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Preface 

This book includes: 
1. The design and analysis of reinforced and prestressed concrete structural 

components (or members or elements) and structures. 
2. The basic theories required for (1). 
3. The properties and behaviour of plain concrete, and of the steel used for 

reinforcing and prestressing concrete. 
4. Cement manufacture. 
5. Properties of cement and fine and coarse aggregates. 
6. The design of concrete mixes and properties of fresh (or wet) concrete. 
7. Numerous design tables and graphs, both for general use and for aiding 

design with British Standard CP 110. (These are listed in Appendix 1 to 
assist location.) 

8. The use of limit state design and British Standard CP 110 in connection 
with the above. 

9. Various British Standard CP 110 clauses, figures and tables used or 
referred to in the text, or otherwise useful, are given in Appendix 4. (The 
structural concrete engineer will undoubtedly acquire CP 110, Parts 1, 2 
and 3, sometime in his career. However, Appendix 4 may be adequate 
for his needs as a student and save him the considerable expense of these 
documents.) 

It has been written primarily as a good course for University (or 
C.N.A.A.) bachelor degree students of civil and/or structural engineering. It 
has everything and more than required by a bachelor degree student in 
architecture and by students on non-degree courses in civil and structural 
engineering, architecture and building. The book is also useful to a student 
on an M.Sc. or post-graduate diploma course in concrete technology or 
structural engineering, as a basis for his more advanced work (Chapters 4 
and 8 may provide some of the course material). 

The book should be a useful addition to the design offices of practising 
engineers, with its numerous design tables and graphs. It will help an 
experienced CP 114 designer to convert to CP 110 as it collects together the 
CP 110 clauses, figures and tables most useful for most designs, and gives 
the information required for designing concrete mixes. 

IX 



x Preface 

A special feature which should appeal to students and practising engin-
eers internationally is the explanation with the use of examples of 
Hillerborg's methods (particularly his advanced method) for designing any 
type of indeterminate slab (see later and Chapter 4). The method is lower 
bound and produces very sensible practical reinforcement systems. 

A special feature which should appeal to students beginning design is that 
the author teaches the student how to create practical structures (see 
Chapter 7 and Section 2.5). Competitive books sometimes give designs of 
structures of known geometry, which check the strength of the given 
structure and design the reinforcement for those sections requiring the 
most. No explanation is given of how to decide upon the geometry of the 
structure, yet this is the first thing a beginner has to obtain. An example is 
given in this book of how to decide upon a reasonable structural system 
from a rectangular layout of column positions. This is usually the starting 
point as the architect will have planned his client's requirements to suit a 
certain layout of columns. The example (Chapter 7) shows speedily that all 
the members will meet with CP 110 requirements; in particular their sizes 
are adequate with regard to limit states and reasonably economic and 
adequate to contain practical reinforcement systems. Then a summary is 
given showing how to set out calculations in practice for submission for 
checking by other professionals. 

With regard to two-way and flat slabs of complicated shapes which 
cannot be designed by the use of tables, this is the first book of its type to 
give useful design examples using Hillerborg's advanced method. They 
stand on their own and are completely explained. The many advantages of 
Hillerborg's methods are outlined. It is also the first book of its type (that is 
not a specialist book devoted to yield-line analysis only) to give useful 
examples using the equilibrium method of yield-line analysis and the most 
effective combined equilibrium and virtual-work method, topics which are, 
at best, scantily covered in most student texts. Yet lecturers often teach 
students these methods and the method of affine slab transformations 
(required for skew slabs, for example sometimes required for bridge decks). 
This method, generally omitted by competitive books, is included in this 
book, which also gives examples using the virtual-work method (the only 
method usually covered adequately by competitive books). 

A history of the design and analysis of these slabs and a review of useful 
design tables put the various designs and analyses into perspective. 

A very special feature of the book is the wide range of topics covered, and 
for this the author is indebted to the following for their assistance and 
comments. Thanks go to 

(\) Mr W. Appleyard, Senior Lecturer in Civil and Structural Engineering, 
University of Bradford, for help with Example 4.5 and with the provision and 
solution of Examples 4.7 and 4.8: 

(2) Dr Andrew W. Beeby, Research and Development Division, Cement and 
Concrete Association, for checking and commenting upon Chapters 1 and 8: 

(3) Dr Ernest W. Bennett, Reader in Civil Engineering, University of Leeds, for 
checking and commenting upon Chapters 1 and 8: 

(4) Dr J. C. Boot, Lecturer in Civil and Structural Engineering, University 
of Bradford, for checking and commenting upon Sections 2.3.9 to 2.6.9 
inclusive: 

(5) Professor John Christian, Chairman of Civil Engineering Programme, 
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Memorial University of Newfoundland, Canada, for checking and commenting 
upon Chapter 1: 

(6) Mr A. T. Corish, Marketing Division, Blue Circle Cement, Portland 
House, London, for kindly checking Sections 2.1 to 2.3.8 inclusive: 

(7) Mr P. Gregory, Esq., Lecturer in Civil and Structural Engineering, 
University of Bradford, for his comments upon Chapters 6 and 8: 

(8) Professor Arne Hillerborg, Lund Institute of Technology, University of 
Lund, Sweden, for the solution to Example 4.15 and for personally tutoring the 
author on this solution and his advanced method. He kindly gave the author 
permission to use the problems of Examples 4.10 to 4.16 inclusive from his 
book. The author is also indebted to Hillerborg's publisher, Eyre & 
Spottiswoode Publications Ltd., for permission to reproduce these examples 
and to DrR.E. Rowe, Director General, Cement and Concrete Association, for 
his help in this respect as the book concerned was published by Viewpoint 
Publications, Cement and Concrete Association. Lastly Professor Hillerborg 
kindly checked and commented upon Chapter 4: 

(9) Professor Leonard L. Jones, Professor of Structural Engineering, 
Loughborough University of Technology, for checking and commenting upon 
Chapter 4: 

(10) Dr Imamuddin Khwaja, University College, Gal way, Ireland, for checking 
and commenting upon Chapters 2,4 and 8. He kindly lent the author the notes 
he gave to students at the University of Bradford on yield-line methods and 
permitted the author to use the problems and solutions of Examples 4.3 to 4.6 
inclusive: 

(11) Dr V. R. Pancholi, Honorary Visiting Research Fellow at the University 
of Bradford, for checking and commenting upon Chapter 5: 

(12) Mr Derek Walker, Consultant Structural and Traffic Engineer and Town 
Planner, G. Alan Burnett & Partners, Chartered Architects, Leeds, for checking 
and commenting upon Chapters 1, 7 and 8. 

In addition the author is indebted to the following graduates, in alphabeti-
cal order, with useful industrial experience, each pursuing research for the 
degree of Ph.D. under the author's supervision at the University of Bradford. 

(i) Andreas Dracos, for kindly checking and commenting upon Chapters 1, 3 
5, 6 and Sections 2.1 to 2.3.8 inclusive: 

(ii) David H. Schofield, for kindly checking and commenting upon Chapters 1 
2, 3, 4, 5, 6, 7. 

The author is indebted to his sons: Charles Anthony Wilby, Chris. B. 
Wilby and Mark Stainburn Wilby for discussions with regard to the styles 
of books and points liked by students. 

The author is indebted to Mr Lionel Browne of the Publishers for his 
considerable enthusiasm and work in moulding the book into shape. 

Extracts from the D.O.E.s Design of Normal Concrete Mixes included in 
Chapter 2 are contributed by courtesy of the Director, Building Research 
Establishment. Crown Copyright reproduced by permission of the 
Controller H.M.S.O., and extracts from CP 110 in Appendix 4 and 
elsewhere in this book, are included by kind permission of the British 
Standards Institution, 2 Park Street, London Wl A 2BS from whom complete 
copies of the documents can be obtained. 

The author thanks Mrs H. Mahoney, Photographs Librarian, Cement 
and Concrete Association, for her efficient help and permission to reproduce 
the photographs in Chapter 7. 



Chapter 1 

Serviceability and safety 

1.1 Serviceability and safety 

A structure or any part of it, such as a beam, column, slab, etc., must be 
serviceable in use and safe against collapse. Serviceability requires that, at 
the kind of loads likely to occur during use, everything will be satisfactory, 
for example, deflections will be adequately small, vibrations will be toler-
able, the maximum width of cracks will be no greater than specified, etc. For 
example, for prestressed concrete no cracks may be specified whatsoever, 
whilst for reinforced concrete design the maximum size of crack might be 
specified as small enough not to admit rainwater (about 0.25 mm) or, if inside a 
building, not to be visually unacceptable. 

Safety requires that the strength of a structure or any part of it be 
adequate to withstand the kind of loads reasonably considered to be most 
critical as regards collapse. 

In assessing the requirements for serviceability and safety just described, 
it is necessary to assess, for example, deflections and ultimate strengths 
which require assessments of Young's moduli and strengths for the concrete 
and reinforcement. These properties vary to some extent for any material 
used. For example, if one cast a large number of concrete cubes and 
endeavoured to make them identical so that they all had the same strength, 
on crushing these cubes one would obtain a result like the graph of Figure 
2.4. One can hardly assume that this particular concrete can be assumed to 
have a strength equal to say its mean strength of 35N/mm2 as shown on 
this graph because one or two cubes out of this very large number have 
failed at near to 15N/mm2. Also it is not economic to try and assume this 
particular concrete to have the strength of the weakest cube tested. So a 
compromise based on experience, and involving a decision on chance with 
regard to safety, has to be made by any code committee. The tensile 
strength of specimens of steel reinforcement all thought to be the same, 
would give a graph similar to Figure 2.4 except that the range and standard 
deviation of the histogram would be very much less. 

Again, in assessing the previously described requirements for service-
ability and safety, it is necessary to decide upon loads which may have to 
be carried during use and occasionally sustained to prevent collapse. It may 
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well be impractical to consider the worst possible event which could ever 
occur, for example, a nuclear holocaust coinciding with an earthquake and 
a hurricane—the client has to be able to afford the building for his planned 
use. So a compromise based on experience, and probability with regard to 
serviceability and safety, has to be made by any code committee. 

1.2 Elastic theory of design 

This method (also called permissible stress method) of design is based on 
the assumptions described in Section 3.2.1. 

The loading which has to be carried in use, or when working, is assessed 
and known as the 'working load'. Then using the elastic theory, sections of 
members are designed so that the maximum 'working stresses' in the 
concrete and reinforcement are not greater than certain 'permissible 
stresses' or 'allowable working stresses'. A permissible stress is restricted by a 
'factor of safety' to be sufficiently below the ultimate stress of the material, 
to be well within the limit of proportionality of the steel reinforcement and 
sufficiently low to be within the initial fairly linear portion of the stress/ 
strain curve for concrete (see Figure 2.10). The 'factor of safety' times the 
permissible stress is equal to either the yield or 0.2% proof stress for steel 
reinforcement or the cube strength for concrete. Codes used to make the 
factor of safety greater for concrete than steel because of the approximate 
linearity of the stress/strain curve for concrete not extending to much of a 
proportion of its ultimate stress. Subsequently with the arrival of recent 
codes of practice in the U.K. and U.S.A. the term 'factor of safety' almost 
requires definition each time it is used, so for any particular code the 
definition needs to be carefully studied. For example, the term 'factor of 
safety' as used in this section is not the same as the term 'partial safety 
factor' used in CP 110 (see later). 

In the case of frames and continuous beams and slabs an elastic theory 
was used (sometimes modified slightly in later years) for evaluating bending 
moments and shear forces. 

In the early days of (reasonable) structural concrete design, the elastic 
theory was well established and had proved reliable for designing steel 
structures. It therefore seemed to be the most reliable, sensible and indeed 
only theory to use for designing structural concrete since concrete appeared 
to have a fairly linear stress/strain relationship up to the stresses likely to be 
permissible. The permissible stress method was used in the U.K. and 
U.S.A., prior to 1957 and 1963, respectively. After these dates an alternative 
'load factor' method (see later) was recommended by the respective British 
and A.C.I, codes. With regard to prestressed concrete the first national 
(previously private ones existed) code of practice CP 1151 was published in 
1959 and required both permissible stress and load factor designs to be 
made. The present British Code CP HO2 does not use the permissible stress 
method for reinforced concrete design but uses it for the limit states of stress 
and deflection (see Section 8.4) for prestressed concrete. Yet the permissible 
stress method can still be used as CP 1143 is still valid. The present A.C.I. 
code4, like CP 110, is not based principally on the permissible stress method 
of design but yet mentions the latter as an acceptable alternative. The 
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British Code BS 5337 for designing water-retaining structures recommends 
permissible stress design and, as an alternative, a 'limit state design' (see 
later in this Chapter, Section 3.2.4 and Example 3.5). 

Permissible stress design has certainly been very satisfactory for a long 
time. 

1.3 Load factor method of design 

When it was eventually considered that the ultimate moments of resistance 
of sections could be reasonably reliably assessed, the elastic theory for 
designing sections was thought to be basically uneconomic because of its 
inability to predict collapse or 'ultimate loads'. The theories for assessing 
ultimate bending moments made use of the plastic action of concrete, that is 
the behaviour at higher stresses when stress is not directly proportional to 
strain (see Figure 2.10) and peak stresses calculated by elastic theory are 
relieved by plastic action. Thus the load factor method is based on 'plastic 
theory' and is sometimes called 'plastic design' (see Section 3.7.2). The ratio 
of the ultimate load to the working load is called the 'load factor'. 

In a structure, sections designed by elastic theory would have different 
load factors. It can be seen from Figure 3.6 how the distribution of concrete 
stress in the upper part of a beam alters from that shown in Figure 3.6(a) for 
working stresses to that shown in Figure 3.6(c) just before failure. The 
reinforcement, if of mild steel, would have a stress/strain curve like curve 11 
on Figure 8.4. The stress in it would therefore increase linearly with increase 
in bending moment from Figure 3.6(a) to Figure 3.6(c), if the 'moment or 
lever arm' (see dimension z in Figures 3.2(d) and 3.7), remained constant. 
From Figures 3.2(d), 3.6 and 3.7 it can be seen that the moment arm reduces 
slightly towards failure. Thus if one designed a section of a beam by elastic 
theory, even if the same factors of safety for concrete and steel reinforce-
ment were used, the load factor would not be the same as the factor of 
safety. This is made more so if the code used for elastic design uses different 
factors of safety for concrete and steel. As the elastic design requirements of 
CP 1143 consider that the strength of concrete is less reliable, because of its 
method of manufacture, than the strength of steel, a greater factor of safety 
for concrete than steel is used. In other words, designing sections of different 
members such as beams, slabs and columns and various types of all these in 
a structure, by say using the elastic theory requirements of CP 114, results 
in these sections possessing differing load factors. 

The advocates of load factor design considered a constant load factor 
desirable for economy and that this should take priority over permissible 
stress design. Now the latter did limit stresses and therefore strains and thus 
crack widths and deflections at working loads, whereas a load factor design 
did not. To endeavour to overcome this, and to not make radically different 
sized members from previously, the load factor design recommendations of 
CP 114 were more conservative. As the permissible stresses in CP 114: 1957 
were increased from previously, greater deflections would occur so Table 7.1 
was introduced to endeavour to limit deflections (unfortunately it does not 
include loading which of course affects deflection). 

In the early days of prestressed concrete design in the U.K., structural 
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concrete members were being made considerably smaller than ordinary 
reinforced concrete members and contained thin wires instead of robust 
bars. Prior to code CP 115 they were designed by the permissible stress 
method, sometimes without checking the load factor. When CP 115 was 
introduced it required a load factor of 2 but this could be less if the member 
would fail at a load not less than the sum of 1.5 times the dead load plus 2.5 
times the imposed, or live, load. This introduced the concept of what has 
subsequently been called 'partial safety factors' for loads in CP 110. The 
imposed load may increase by accident. For example, a flat roof may be 
designed for occasional access but while a procession was passing by it might 
become packed tight with spectators. The dead load cannot increase unless, for 
example, the finishes to a roof or floor are renewed or changed, in which case the 
client would usually seek or encounter some building advice. Thus the load 
factor used for the imposed load part of the loading must be greater than that 
used for the dead load part of the loading. 

The illogicality that existed after the publication of CP 114 was that, for 
example, individual ordinary reinforced concrete sections of a frame, or 
continuous beam or slab, could be designed to have a constant load factor 
but the distribution of bending moments was obtained by elastic analysis. 
The ideas of plastic collapse mechanisms (see Chapter 6), first developed for 
steelwork structures, had not been established well enough for inclusion in 
CP 114 in any greater way than allowing bending moments obtained by 
elastic analysis at supports to be increased or decreased by up to 15% 
provided that these modified moments were used for the calculation of the 
corresponding moments in the spans. 

Still most analyses used would give bending moments at sections which 
would not increase in direct proportion to the loading towards failure, so to 
design sections of indeterminate structures with a constant load factor 
seemed pointless. Also the load factor method, with a general conservatism 
incorporated, only indirectly controlled crack widths and deflections com-
pared to the permissible stress design method. Historically, however, a start 
presumably had to be made somewhere and somehow with the introduction 
of methods endeavouring to gain extra economy by the use of load factor 
methods. 

To summarise, when the load factor method of CP 114 was used for 
sections, crack size was limited by incorporating conservatism into the 
formulae (in effect limiting the tensile stress in the reinforcement) and 
deflection was limited by the use of Table 7.1. Of course in important cases 
the designer could use the elastic methods of CP 114 and calculate 
deflections. 

The book by Evans and Wilby5 gives considerable description and many 
examples on the elastic and plastic methods of CP 114 and the plastic 
method of the A.C.I.6 code of practice. 

1.4 CP 110 philosophy of design 

The European Concrete Committee (abbreviated to C.E.B., the initials of 
the Committee in French) introduced the concept of probability and used 
statistics in connection with the strengths of materials, loadings and safety 
and produced recommendations7 for a code of practice for reinforced 
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concrete. The underlying philosophy involved has been used as a basis for 
the present British CP HO2 and codes of practice in the U.S.A.4 

With regard to concrete strength, the previous British practice was 
essentially to specify a minimum concrete strength below which no cubes 
should fail. This meant that the contractor needed to decide upon the 
quality of his control (see Table 2.2) to be able to calculate the average 
strength of the concrete he should endeavour to make. Then he designed his 
mix for this mean strength as in Section 2.3.10. When on the site, if any of 
the concrete cubes tested failed below the minimum strength then the 
concrete was either removed or cores of the concrete taken and tested or a 
load test was performed to see if the extra age had increased the strength 
and if the general monolithic construction (sometimes permitted to receive 
help from, for example, surrounding brickwork if any) was such that the 
construction could be considered to be safe. The CP 110 philosophy was to 
specify, not a minimum concrete strength as previously, but a strength 
which 5% of the cubes would not achieve, called the 'characteristic strength'. 
This involved the use of statistics and is explained in Section 2.3.9. The idea 
of accepting a strength below that at which some cubes would fail was hard for 
many British engineers to accept, because of their being brought up to think 
and desire that their designs should be very safe—failure was out of the 
question. 

With regard to loading, the previous British practice was to assess the 
load which would be unlikely to be exceeded in use, and this would be 
called the 'working load'. Then if the CP 114 load factor method of design 
was used, sections would be designed to have a factor of safety of 1.8 
against an ultimate load which would be taken as 1.8 times the working 
load. Now the CP 110 philosophy was not to assess the maximum load for 
the working load as previously but was to assess a load which, in effect, 
only 5% of occurrences of loading would exceed, called the characteristic 
load. This involved the use of statistics as is explained in Section 2.3.9. The 
idea of seemingly now accepting a working load which was planned to be 
sometimes exceeded was again hard for many British engineers to accept. 
Then, as if to make it more difficult for engineers to accept, CP 110 
introduced the idea of probability of characteristic strengths and loads 
being variable. 

British engineers had always prided themselves on designing structures 
which in their opinion could never fail. Well, of course, scientific reality 
cannot be ignored, materials do vary and probability does exist. Apart from 
negligence and natural catastrophes, the most likely cause of failure of a 
structure, or inadequacy at working loads (that is cracks or deflections 
being unacceptable), is the coincidental occurrence of both overload and 
excessive weakness at a critical section. 

The probability of failure, for example, could involve the concept of an 
accident rate intuitively accepted for a given type of structure. For example, 
how often are crane gantries liable to fail by overload? The probability of 
failure could also involve economy, for example a reduced probability of 
failure will require a stronger structure at an increased cost. 

Discussions of probability of failure become very emotive because of 
probable loss of life. A possible analogy is a motor coach full of passengers 
because if it crashes loss of life is also involved. There is a certain statistical 
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level of probability of hitting a lamp standard or telegraph post, of running 
into a ditch or river, of rolling over, of hitting another vehicle head on, etc. 
The designers would not dream of designing the motor coach so that no 
lives would be lost, or even that no parts of the coach would fail, under all 
these eventualities. It would not be economically desirable even if possible 
with brilliant engineering design. On the other hand one would expect the 
coach floor not to fail due to a suitcase dropping from a luggage rack. One 
would expect the walls and floor not to fail due to unequal loading of 
passengers or even a fight amongst some passengers. So with structures a 
compromise has to be reached between practicality, economy and prob-
ability of failure. A jetty designed for a certain use, namely a ship being 
piloted up to it by a skilled skipper cannot economically be designed to 
withstand the fairly remote probability of say a drunken skipper sailing a 
large ship at full speed at right angles to and into the side of the jetty. In 
such a case it would be argued that the damage and loss of life to anyone on 
the jetty was the responsibility of the skipper and it was not the re-
sponsibility of the owners of the jetty to build it strong enough for this 
eventuality. 

The CP 110 use of probability manifests itself in the use of 'partial safety 
factors'. The word 'partial' is used as each part of the problem may have a 
different safety factor. The characteristic strength of a material permits 5% 
of the control specimens to be inadequately strong. Dividing the character-
istic strength by a partial safety factor (a number greater than unity) means 
that less specimens will be below the resulting 'design strength' used. The 
characteristic loading is such that it will only be exceeded on 5% of 
occasions. Multiplying the characteristic load by a partial safety factor (a 
number mainly greater than unity) means that the resulting 'design load' 
should be exceeded on less than 5% of occasions. Thus these partial safety 
factors are intended to reduce the probability of failure towards zero. 

CP 110 also introduced the concept of 'limit state design'. In design 
everything that matters as regards the strength and serviceability of a 
structure is limited or restricted to a satisfactory amount. The condition of 
a structure or part of it, when it becomes unfit for use, is called a 'limit state'. 
We can categorise these limit states into two broad divisions, namely 'limit 
states of serviceability' and 'ultimate limit states'. 'Limit states of service-
ability' include: 

1. Deflection: This must not impair the appearance or efficiency of the 
structure—see clause 2.2.3.1 of CP 110 (Appendix 4 of this present book). 

2. Cracking: Cracks must not adversely affect the durability or ap-
pearance of a structure (see clause 2.2.3.2 of CP 110) although the latter 
does not seem to matter in some parts of the world. In Britain there is a 
practice of generally limiting cracks and this is often done no less for a 
hidden and protected member than for one that is seen in a building or 
exposed. This uneconomic and inefficient practice was established in pre-
vious codes. The limit state design of CP 110 now gives opportunities of 
using different limit states for different members whereas CP 114 did not. 

3. Vibration: This must not cause unpleasantness or alarm to the 
occupants, damage to fixtures, fittings and services (such as water pipes), 
etc. (see clause 2.2.3.3 of CP 110). 
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4. Other limit states: Clause 2.2.3.4 of CP 110 requires consideration of 
any other limit states considered necessary by the engineer. 

'Ultimate limit state' requires that the strength of the structure should be 
adequate to withstand the design loads with due consideration being given 
where appropriate to buckling and the general overall stability (see clause 
2.2.2 of CP 110). Ultimate limit states may need to be assessed for the 
following: 

(A) Flexural or compression failure at any critical sections 
(B) Shear failure 
(C) Torsion failure 
(D) Bond or anchorage failure of reinforcement 
(E) Instability of a member 
(F) General instability (for example overturning) 
(G) Bearing failure at a support or under a concentrated load or at bends or 

hooks in tension reinforcement 
(H) Bursting of prestressed concrete end blocks 
(I) Failure of connections (for example between precast concrete elements 

or in composite construction). 

TABLE 1.1. Partial safety factors for loads yf 

Load combination Ultimate Serviceability 
limit state limit state 

(1) Dead and imposed load: 
yf for dead load Gk 

y( for imposed load Qk 

(2) Dead and wind load: 
y{ for dead load Gk 
yf for wind load Wk 

(3) Dead, imposed and wind load: 
yf for dead load Gk 

y{ for imposed load Qk 

y{ for wind load Wk 

1.4 
1.6 

0.9 or 1.4* 
1.4 

1.2 
1.2 
1.2 

1.0 
1.0 

1.0 
1.0 

1.0 
0.8 
0.8 

* Use 0.9 when the dead load contributes to the stability, and 1.4 when the dead load assists the overturning 
of the structure. 

Tables 1.1 and 1.2 summarise the partial safety factors for loads and 
strengths, respectively, as recommended by CP 110 clauses 2.3.3.1 and 
2.3.4.1. For example from Table 1.1 if one is designing for the ultimate limit 
state and considers the combination of loading (1) then, using CP 110 
symbols (Appendix 3) 

Design load = sum of y{ times each characteristic load 
= 1.4Gk + 1.6Qk 

The y{ is smaller for the dead load because there is less likelihood of the 
dead load being increased (for example, a small increase can be due to 
members being cast slightly oversize) whereas the y{ for the imposed load is 
greater because the imposed load can experience an overload. 
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TABLE 1.2. Partial safety factors for material strength ym 

Material 

Concrete 
Steel 

Ultimate 
limit state 

1.5 
1.15 

Serviceability limit state 

Deflection Cracking 

1.0 1.3 
1.0 1.0 

Again from Table 1.1 if one is designing for serviceability limit state for 
the combination of loading (3) then 

Design load = 1.0Gk 4- 0.8£>k + 0.8 Wk 

The y{ is smaller for Qk and Wk because it is a fairly remote possibility 
that full imposed and wind loading will occur together. 

For limit state of serviceability the partial safety factors are lower than 
for ultimate limit state as an overload in the former case may be temporary 
and although undesirable the excessive deflections and crack widths will 
reduce when the overload is reduced. But if the ultimate limit state is 
exceeded with an overload, failure may occur—an irreversible condition. 

In Table 1.2 it will be noticed for example that ym is less for the ultimate 
limit state for steel than it is for concrete. This is because the control in the 
manufacture of steel is considered to be better than it is for concrete. 

1.4.1 Summary of C? 110 philosophy of design 

(a) A 'limit state' is a condition of a structure at which it ceases to function 
in the manner for which it was designed. Limit states can be classified as 
follows: 

1. 'Ultimate limit state'refers to failure. 
2. 'Serviceability limit states' refer to conditions in normal use. The main 

ones are deflection, cracking, vibration, fatigue, durability and fire 
resistance. 
(b) Materials: 

1. 'Characteristic strength' is the strength below which only 5% of test 
specimens will fail (see Figure 2.4). 

2. 'Partial factor of safety', ym, is given by 
characteristic strength 

'Design strength' = 
7rr 

and this is applied to each of concrete and steel, that is the parts involved. 
For example, ym is normally 1.5 for concrete and 1.15 for steel for assessing 
ultimate limit state. Refer to Table 1.2. 

(c) Loads: 
1. 'Characteristic load' is the load which is expected to be exceeded on, in 

effect, only 5% of occasions. 
2. 'Partial factor of safety' for loads, yf, is a factor by which each part (dead, 

imposed, wind) of the loading is multiplied so as to obtain the 'design load', 
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that is the load to be designed against. The design load for limit state of 
serviceability is different and much less than the design load for ultimate 
limit state. 

For example, for ultimate limit state, if wind load is not being considered, 
using Table 1.1, (design load) equals 1.4 times (dead load) plus 1.6 times 
(live load). Another example, for serviceability limit state, for all loads, 
again using Table LI, (serviceability load) equals 1.0 times (dead load) plus 
0.8 times (imposed load) plus 0.8 times (wind load). 

1.4.2 Simplified statement of CP 110 philosophy of design 

An attempt to summarise the whole process of CP 110 design is now made. 
Essentially 'characteristic loads' are determined. There are usually three: 
namely for dead, imposed and wind loadings. These are then, for design, 
considered in what are thought to be the most critical combinations for 
causing failure ('ultimate limit state') and causing, say, excessive cracking 
and deflections in use ('serviceability limit states of cracking and deflection', 
respectively) by using multipliers ('partial safety factors'), to give various 
'design loadings'. 

The resistance to these various load combinations is calculated using 
'design strengths' for concrete and steel obtained by dividing 'characteristic 
strengths' for concrete and steel by their respective 'partial safety factors'. 
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Chapter 2 

Properties of materials and 
mix design 

2.1 Cement 

Cement is the most important and expensive ingredient of concrete, on a 
price per tonne of material basis (dependent upon the mix, the aggregates 
can sometimes cost more than the cement in a cubic metre of concrete). It 
was patented by J. Aspdin in the U.K. in 1824 and he called his product 
Portland Cement because the 'artificial stone' (concrete) made with it 
resembled Portland stone. 

Portland cement is made by grinding together its principal raw materials, 
which are (a) argillaceous, for example silicates of alumina in the form of 
clays and shales, and (b) calcareous, for example calcium carbonate in the 
form of limestone, chalk, and marl which is a mixture of clay and calcium 
carbonate. The mixture is then burned in a rotary kiln (shaft kilns are still 
used for works with small outputs and there is an interest in their 
installation in developing countries) at a temperature between 1400 and 
1500°C; pulverised coal, gas or oil is the fuel. The material partially fuses 
into a clinker which is taken from the kilns, cooled and then passed on to 
ball mills where gypsum is added and it is ground to the requisite fineness. 
The resulting cement is allowed to contain small strictly limited percentages 
of materials not required, some disadvantageous for some uses, such as iron 
oxide and sulphur trioxide. A general idea of the composition of cement is 
indicated by the following oxide composition ranges for Portland cements: 
lime (CaO) 60-67%, silica (Si02) 17-25%, alumina (A1203) 3-8%, iron oxide 
(Fe203) 0.5-6%, magnesia (MgO) 0.1-4%, sulphur trioxide (S03) 1-3%, 
soda (Na20) and/or potash (K20) 0.5-1.3%. 

The constituents forming the raw materials used in the manufacture of 
Portland cement combine to form compounds, sometimes called Bogue1 

compounds, in the finished product. The following four compounds are 
regarded as the major constituents of cement: tricalcium silicate 
(3CaO.Si02 or C3S), dicalcium silicate (2CaO.Si02 or C2S), tricalcium 
aluminate (3CaO.Al203 or C3A) and tetracalcium aluminoferrite 
(4CaO.Al203 .Fe203 or C4AF). 

A cement works is usually sited near to its raw materials. These sites vary 
and consequently cements from different works vary within permissible 
10 
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limitations. In the U.K. this variation seems to have an insignificant effect 
upon concrete. However, research by the author and others indicates that 
the asbestos cement manufacturing process is sensitive to the percentage of 
C3S, which varies significantly with cements from different works in the 
U.K. Examples of other sensitivities: pipe spinners sometimes request 
coarse ground cement, aerated block manufacturers sometimes request 
cements with high total silicates, roof tile manufacturers sometimes prefer 
cements with higher alkalis (for the associated high strengths at early ages), 
floor layers dislike cements with short or long setting times, etc. 

High alumina cement was first made by J. Bied for the French Lafarge 
Company in 1908, and named Ciment Fondu. This discovery was made 
whilst searching for a cement which liberated no free hydrated lime upon 
setting. Portland cement liberates free hydrated lime upon hydration and 
this in the resulting concrete is very vulnerable to attack from mineral 
sulphates, dilute acids and other agents. 

When cement is hydrated, lime and alumina are liberated. The lime 
combines with the alumina and in the case of Portland cement an excess of 
lime results, whereas in the case of high alumina cement an excess of 
alumina results. Bearing this in mind, the properties of these two fundamen-
tally different cements can often be predicted. For example, when these 
cements are mixed together and hydrated, the respective excesses of lime 
and alumina react chemically with one another and a flash set (almost 
instantaneous setting) can result. This can be useful for caulking small 
leakages in cofferdams and water-retaining structures. The flash set phenom-
enon is, however, a reason for new Ciment Fondu concrete not being 
suitable for jointing to new Portland cement concrete, and vice versa. Time 
limits have to elapse so that there is no danger of unhydrated Portland 
cement coming into contact with unhydrated high alumina cement. The 
concrete which is to be extended should be 24 hours old if it is Ciment Fondu 
concrete, 2 days old if rapid hardening Portland cement, and 7 days old if 
ordinary Portland cement. 

When cement is hydrated the terms initial setting time, final setting time 
and rate of hardening are used, often loosely. However, the first two are 
defined for cement by BS 12, 915 and 1370. Other tests of cement for 
soundness, tensile and compressive strength, chemical composition, fine-
ness of grinding, etc., are described in BS 12. The definitions of initial set 
and final set unfortunately bear no precise relationship to practice. They do, 
however, enable the properties of different cements to be compared for their 
setting qualities. It can loosely be said that it is good practice not to disturb 
concrete after its initial set, and the initial setting time is normally not less 
than half an hour. There are exceptions to this rule in practice, however, 
since such operations as the trowelling of concrete floors and granolithic 
finishes, for example, usually need to be performed after the initial set, but 
before the final set has taken place. The final setting time is not usually 
more than ten hours. 

If one imagines say a sewn-up sheep's bladder (a colloidal membrane) 
containing a solution, immersed in a similar solution of greater dilution, 
then water travels through the very fine pores in the bladder so that a 
pressure (an osmotic pressure) is developed in the bladder. This pressure 
continues to increase until the solutions on either side of the colloidal 
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membrane have the same dilution. This is a very simple description of 
colloidal chemistry relative to the hydration of cement. Upon hydration the 
surface of a small portion of cement forms crystalline substances, which can 
be observed with an electron microscope,2 with the water. These form a 
colloidal membrane, surrounding the portion of cement, called tobermorite 
gel3 (a calcium silicate hydrate). As indicated previously, water travels 
through the membrane to dilute the solution of hydrating cement com-
pounds within the membrane. This causes a pressure inside the membrane 
and hence expansion of the concrete or mortar. Conversely, drying of the 
cement after hydration causes shrinkage of the concrete. However, the 
amount of shrinkage caused by complete drying out of hydrated cement 
paste is not completely recovered by subsequent wetting. 

If water is in contact with concrete, for example the wall of a basement, 
water can travel through the concrete not only via any cracks, construction 
joints, or voids, but also via the colloidal membranes. The water passes 
through adjacent colloidal membranes, until all solutions surrounded by 
colloidal membranes have reached the same dilution. Thus water, or 
dampness, can be transmitted through a basement wall of sound concrete. 
Hence the desirability of 'tanking' (providing an impervious membrane) 
even if the concrete is very good. 

The strength of a cement paste depends greatly upon the bonds formed 
between the very small particles of its cement gel. Generally the greater the 
number of these particles and the denser the gel structure, the stronger the 
gel mass.2 The water-to-cement ratio used for a cement paste is related to 
its strength. 

There are several types of cement available to the engineer, for example, 
as follows: 

1. Ordinary Portland cement. This is the most inexpensive cement and is 
consequently widely used. 

2. Rapid hardening Portland cement. As the name implies, concrete made 
with this cement hardens more rapidly than concrete made with ordinary 
Portland cement. Such a property enables early stripping of concrete 
formwork, especially advantageous for precast work where repeated uses 
are made of the same shutter. Extra rapid hardening cements can be 
obtained for special purposes. These two cements are of the same material 
as ordinary Portland cement except more finely ground. 

3. High alumina cement (H.A.C.). This cement is not classed as a 
Portland cement. It hardens much more rapidly than any other commercial 
cement, and it has the further advantage of being sufficiently immune, for 
practical purposes, to attack from several important chemicals. Some 
examples are: many of the sulphates present in subsoil waters and in 
sewage; sulphur compounds formed from the combustion of coal and oil; 
carbonic acid as experienced in subsoil waters from moorland areas; many 
of the chemicals contained in sea water; chemicals which attack Portland 
cement and which are present in important industries such as lactic acid 
(associated with milk), tar oil, cottonseed oil, beer, and sugar juices. H.A.C. 
was excluded from CP 110 by the August 1974 amendment, but was 
previously allowed to be used when high strength was required urgently, for 
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example on maritime structures when it was necessary to have a reasonably 
hard concrete before high tide; for the sealing of water leaks in emergencies 
when excavating in water-bearing ground; for structural work which 
required to be in use within, say, 24 hours; for structural work where 
formwork was required to be stripped early or where it was required to 
prop further shutters from the members cast as soon as possible; for 
prestressed concrete, especially pretensioned concrete, where economy re-
quired release of the wires and removal of the members from the prestress-
ing beds as early as the strength of the concrete permitted. The high early 
strength is obtained to some extent because the chemical reaction of the 
cement with water is very exothermic. To avoid the ills of overheating (see 
7, page 15) it is desirable to have a low water-to-cement ratio (to reduce the 
rate of chemical activity), to cast at an ambient temperature of not more 
than about 20 °C, not to allow the internal temperature of the concrete to 
be more than 30 °C for more than 24 hours after casting, to cure with water 
or similar, and certainly not to steam cure. 

The greatest disadvantage of high alumina cement was its cost, which 
made it prohibitive for many purposes. Another economic disadvantage 
was the necessity of curing with water or dampness. Concrete using this 
cement was nevertheless quoted as being more economical than steam 
cured Portland cement concrete for prestressed concrete work. 

H.A.C. with suitable aggregate can be used as a refractory concrete or 
mortar for fireclay bricks and is suitable for temperatures up to about 
1300°C. High climatic temperatures in combination with high humidities as 
experienced in the tropics were found to reduce the strength of concrete 
made with H.A.C. rather alarmingly.4 The chemical conversion of certain 
crystalline compounds having certain numbers of elements of water of 
crystallisation to other crystalline compounds with different numbers of 
elements of water of crystallisation could cause an internal volume change 
in the concrete with a consequent disruption and weakening of the concrete. 
The shape of crystals changes from hexagonal to cubic. Neville4 claimed 
that this chemical conversion could also eventually occur with aging in the 
cool damp U.K. climate, although CP 110 prior to the August 1974 
amendment, regarded this effect as negligible for properly cured concrete. It 
might be thought that high alumina cement concrete could be used in structures 
protected from moisture, which is the case with many buildings, without 
worrying about chemical conversion. Yet even indoors, with central heating 
and solar gain through large glass windows, temperatures can be high and it is 
argued that there is always water in some form inside the concrete, and the 
humidity of the atmosphere can be high in the U.K. and this air is not normally 
dried before entering buildings. After full conversion, concrete strength 
increases with age. 

Although the dangers of conversion became rather catastrophically expe-
rienced about 1961, seemingly inadequate notice was taken of this sub-
sequently, until about 1974 when there was considerable alarm concerning 
lack of reliable knowledge of when high alumina cement could be used. 
Inadequate notice was taken of work by Bolomey5 of France in 1927 and 
Davey5 in the U.K. in 1937; both demonstrated that high alumina cement 
concretes, hardened under good conditions, subsequently lost up to 40% of 
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their strength permanently, due to curing in warm water, and experienced 
the colour change to yellow-brown, which we now know to be due to 
conversion. 

In the case of the most publicised failure in the U.K., the prestressed 
concrete beams were over a swimming pool and experienced warmth, 
moisture from condensation and roof leaks, sulphate attack from the plaster, 
and possibly had poor concrete and support seatings. The other few failures 
in the U.K. seem to have had more than just conversion as a weakness. 
Subsequently most high alumina cement work has been tested in the U.K. 
and most of it found to be safe. Some structures have been strengthened 
against possible future weakness due to conversion. The author has tested 
roofs to a building with up to 95% conversion and found them very safe 
over several years. There is no doubt that steam constantly directed on to 
high alumina cement beams can cause them to disintegrate. 

4. Cement for use in cold weather. Such cements (manufacture was 
discontinued in the U.K. some years ago) are usually achieved by adding 
about 1.5% of calcium chloride to rapid hardening Portland cement. The 
calcium chloride generates heat by reacting with the water used in mixing 
the concrete. This also enhances the rapid hardening qualities. Because of 
the heat evolved, these cements can very often be profitably used in cold 
weather to allow concreting operations to continue. The high early strength 
properties are advantageous for allowing early stripping, and, in the case of 
precast concrete, handling. The chloride ion aggravates the corrosion of steel 
(this is particularly so in the case of NaCl). Hence if water and oxygen ion 
can penetrate to the reinforcement through pores and/or cracks in the 
concrete, the calcium chloride will increase the rate of corrosion of this 
reinforcement. It is interesting that in the case of water-retaining structures 
and underground pipelines, if the water is in contact with concrete contain-
ing very fine cracks which penetrate to the reinforcement, it is possible for 
corrosion to occur even though many would not imagine that air could 
penetrate through the crack. This is because the oxygen ion of air dissolved 
in the water is easily carried in the water penetrating the crack to the steel— 
refer to the theory of notch corrosion. CP 110 prohibited calcium chloride 
in prestressed pretensioned concrete, and restricted it to not more than 
1.5% by weight of the cement in reinforced concrete. Subsequent amend-
ments have effectively banned calcium chloride in reinforced concrete; 
theoretically a small amount can be used but this is too small to be effective 
practically as an accelerator. Non-chloride accelerators are now being used 
to some extent to aid winter working. 

5. Sulphate-resisting cement. This cement is made specifically to resist the 
attack of sulphates. Underground structures can experience sulphate attack 
from the soil, back-fill or ground water. There is a cement known as super 
sulphated cement which is sometimes claimed to be better when the sul-
phates are acid in nature. 

6. Cements with a low coefficient of shrinkage can be specifically devised 
for highways, dams, water-retaining structures, etc., to reduce the magni-
tude of cracks caused by shrinkage. Such a cement, which also had low beat 
of setting, was devised and used for the mass concreting to the Boulder 
Dam, U.S.A. There are cements which are claimed to expand, but they do not 
always do so if the concrete subsequently dries out. 
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7. 'Low heaf Portland cements generate less heat upon reacting with 
water than normally experienced with other cements and are thus suitable 
for mass concrete work. The heat generated with Portland cement in mass 
concrete work can literally boil off the water required for the necessary 
chemical reaction, the steam causing flash setting of some of the cement and 
also disruption and voids in the resulting concrete. 

8. 'Portland-pozzolana cements'. Fly ash (pulverised fuel ash, P.F.A., or 
pozzolana) is sometimes substituted for 15-35% (one cement manufactured 
in the U.K. uses 28%) by mass of the ordinary Portland cement to achieve 
low heat of setting and reduced shrinkage without reducing the 28-day 
strength of the concrete, but the early rate of hardening is reduced. About 
1970 this idea was used for a gravity dam in Yorkshire, and to help further, 
the concrete mix had a low cement content and used a large size of 
aggregate. Unfortunately fly ash contains a small amount of sulphate. CP 
110 restricts the total sulphate content of a mix expressed as S 0 3 to not 
more than 4% by mass of the cement. So far, in the U.K., in practice fly ash 
has had no difficulty in complying with this restriction. 

9. Coloured cements are used for reconstructed stones, renderings, and 
the like. Because of the high cost of these cements, coloured artificial stones 
usually have a facing about 38 mm thick made with the coloured cement, 
and a backing made with ordinary Portland cement. Coloured cements can 
be obtained by adding the following pigments to Portland cement: yellow 
ochre (yellow), brown oxide of iron (brown), green oxide of chromium 
(green), red oxide of iron (red), manganese black (black). The weight of the 
pigment should not exceed 10% of the weight of the cement, otherwise the 
strength will be impaired. White cements are popular and require to be 
specially manufactured. The colour of a concrete can be improved and will 
wear better if the aggregates also are of a colour similar to the coloured 
cement. Of recent years the manufacture of coloured cements has been 
discontinued in the U.K., except for white cement. 

10. Portland blastfurnace cement is obtained by grinding granulated blast 
furnace slag with the clinker which is normally ground down to make 
ordinary Portland cement. It has a slightly lower heat of hydration than 
ordinary Portland cement, is slightly more resistant to sulphate attack, and 
is slower to develop its early strength. 

11. Water-repellent cements. Certain ones are most effective in sealing 
leakages in water-retaining structures. 

2.2 Aggregates 

Aggregates are classed as fine aggregates and coarse aggregates. Generally, 
various sands are used as fine aggregates, and coarse aggregates are either 
water-worn gravels or crushed rocks. The aggregates chosen are usually the 
most inexpensive to give the requisite quality of concrete. The engineer 
must, however, be satisfied that the source selected will consistently supply 
the quality of aggregate which he has approved. This can be difficult for 
certain special requirements. Sometimes the engineer requires stockpiles at 
the suppliers' works to meet with his approval. These are then drawn upon 
exclusively for the concreting operations. 



16 Properties of materials and mix design 
Aperture size (Imperial) 

BS Sieve No.s Aperture size, in 

300 1.20 2.40 4.76 

mm 

9.52 19.05 

Aperture size (SI) 

Figure 2.1 

Aggregates for normal concreting work are a fairly inexpensive com-
modity at the quarry and thus transport charges substantially influence 
their overall cost. Local aggregates are therefore generally employed, but an 
expensive type of aggregate may warrant greater transport costs if the 
necessary stone does not occur locally. Examples of more expensive stones 
are: granites for granolithic finishes; various types of coloured aggregates 
for artificial (reconstructed) stones (usually used for the surface layer of the 
stone only); and vermiculite (imported into the U.K.) for lightweight 
finishes. 

Reference should be made to the British Standards 882, 1198, 1199, 1200 
and 1201, which recommend various gradings of the particle sizes for both 
fine and coarse aggregates. These enable standardisation and control but 
are not necessarily ideal gradings for concrete. The standards quoted specify 
tests of other relevant qualities of the aggregates, namely specific gravity, 
water absorption, bulk density, organic impurities, and crushing strength. 
Figure 2.1 shows four gradings, upon which the mix designs of the D. S.I. R.Road 
Note No. 48 are based, for 19.05 mm (f in) and down aggregates, and one average 
grading curve for 9.52 mm (fin) aggregate. The grading of a 19.05 mm (fin) 
aggregate should lie within the curves 1 and 4 and preferably within the curves 2 
and 3 if this method of mix design is to be used. 

Coarse aggregates can be classified according to shape (BS 812) as 
follows: 

1. Rounded aggregates, for example beach and other well worn gravels. 
2. Irregular aggregates, for example water worn river gravels. 



Concrete 17 

3. Angular aggregates, for example crushed rock or manufactured ma-
terials. These are commonly granites, limestones, basalts, quartzites, flints, 
pumice, broken bricks, foamed slag, blast furnace slag, sometimes a strong 
sandstone, vermiculite and duromit, etc. 

The grading, shape, porosity and surface texture of the aggregates can 
affect the workability and consequently the strength of concrete. 

When a concrete is required to be lightweight, to have a good resistance 
to heat transmission and impermeability to water, and a high strength is 
not required, special lightweight aggregates are often used, such as vermic-
ulite, foamed slag, clinker, breeze, pumice, wood wool and expanded 
shales. 

If water is added to 1 m3 of sand, the gross volume of this sand in-
creases until it occupies about 1.25 m3. After this volume is attained the 
addition of further water decreases the gross or bulk volume until when the 
sand is finally saturated the volume has returned to 1 m3. When concrete is 
'batched' by volume (that is the ingredients measured by volume) the water 
content of the sand greatly influences the quality of the resulting concrete. 
Consider a l(cement):2(sand):4(gravel) mix, the ratios referring to dry 
volumes of the respective materials (as is standard practice). If we were 
using a sand experiencing its maximum amount of 'bulking' of, say, 25%, 
then the mix actually produced in terms of dry volumes would be 1:2/1^:4 
or 1:1.6:4. 

If water is added to 1 kg of sand, the gross weight is increased by the 
weight of the water added to about 1.1kg upon saturation. Hence, if the 
batching of concrete were by weight, the water content of the sand would 
still be troublesome but not to as great an extent as by volume. Consider 
again a 1:2:4 mix and let the sand be increased in weight by its maximum 
amount of say 10% due to its water content. Then the mix actually 
produced in terms of dry volumes would be 1:2/1.1:4 or 1:1.818:4. For 
illustrative purposes it has been assumed that the bulk densities of the dry 
materials are the same. Thus the inaccuracy of batching by weight is 
basically not as great as batching by volume. This reasoning ignores the 
fact that the same phenomenon also affects coarse aggregates, but to a far 
lesser extent. Several devices are available for measuring the water content 
of the aggregates, so that the mix can be adjusted accordingly. The water 
content often varies from place to place in a stockpile. When a large 
concreting programme is being conducted, sometimes the stockpiles will be 
insufficient (especially on congested sites) and sand which arrives during the 
course of the concreting operations will have a different water content to 
the sand in stock. Aggregates are commonly exposed to the weather so that 
the water content will vary with the rainfall. One needs to be vigilant 
therefore to allow for the errors in batching caused by the water content of 
the aggregates. 

2.3 Concrete 

Coarse aggregate, fine aggregate, cement and water are mixed together in 
suitable proportions, and this mixture, placed and compacted wherever 
required, solidifies after a lapse of time into what is known as concrete. 
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The mixes of concrete commonly used (CP 114) for structural purposes 
were 1 part (by dry volume) of cement: 2 parts (by dry volume) of fine 
aggregated parts (by dry volume) of coarse aggregate, and similarly, 
1:1^:3 and 1:1:2. CP 110 calls such mixes 'prescribed mixes' and specifies 
them for various grades of concrete in terms of weights of cement and total 
dry aggregates with percentages by weight of fine aggregate in total dry 
aggregates. It is now more common to design mixes to specified grades or 
strengths. 

Many investigators have proved that most of the qualities desired of 
concrete benefit by increased compressive crushing strength, for example, 
strength in tension, shear, and resistance to weathering, abrasion and wear, 
and impermeability. Exceptions to this rule are lightness (in density), and 
thermal insulation. 

The factors which have the greatest effect upon the strength of concrete 
are the cement-to-aggregate ratio, the compaction, the water-to-cement 
ratio of the mix, and the method of curing. 

It is easy to imagine that the strength of concrete depends upon the 
absence of voids, or in other words, upon the final density after setting and 
maturing. For example, 5% of air voids can give a loss in strength of 30%, 
10% of voids can give a loss in strength of 60% and 25% of voids can give a 
loss in strength of 90%. Compaction of the concrete is therefore extremely 
important, and this is dependent upon the 'workability' of the concrete. 

2.3.1 Workability 

Workability is the ease with which concrete can be placed in moulds, 
compacted around reinforcement and screeded to a level. Many tests have 
been devised for measuring this property, and all have been subjected to 
much adverse criticism. The test which has possibly been condemned the 
most, namely the slump test, is the most commonly used in the U.K., and is 
referred to by CP 110. The nature and the grading of the aggregates con-
siderably affect the slump. Thus specifying the slump can ensure uniformity 
in the consistency of concrete during the progress of work only if the 
materials are of constant quality. 

Other tests of workability referred to by CP 110 are the compacting factor 
test and the VB consistometer test. The former was developed as an 
improvement upon the slump test in attempting to measure workability. 
The latter became useful in the U.K. when drier concretes than previously 
became necessary for prestressed concrete work, as it can distinguish 
between various concretes having virtually zero slump. It is also better for 
very dry mixes than the compacting factor test. 

Table 2.1 recommends suitable approximate workabilities of concrete for 
various uses. 

Good compaction of the concrete, and hence a high strength concrete 
with a good finish, can be obtained by manipulation of the grading and 
type of the aggregates, the use of additives to reduce the surface tension of 
the water, employment of vibration and/or pressure, and use of a high water 
content. 

The additives are plasticisers and 'super-plasticisers' comprising soaps, 
detergents, or resins. Essentially they reduce the surface tension of the 
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TABLE 2.1. Uses of concrete of different degrees of workability (Road Note No. 4) 

Degree of 
workability 

Very low 

Low 

Slump, 
mm 

0-25 

25-50 

Compacting 

Small 
apparatus 

0.78 

0.85 

' factor 

Large 
apparatus 

0.80 

0.87 

Use for which 

Vibrated concrete in roads 
or other large sections 

Mass concrete foundations 
without vibration. Simple 
reinforced sections with 
vibration 

Medium 50-100 0.92 0.935 Normal reinforced work 
without vibration and 
heavily reinforced 
sections with vibration 

High 100-180 0.95 0.96 Sections with congested 
reinforcement. Not 
normally suitable for 
vibration 

water, that is the water wets the particles more easily, increasing work-
ability. They allow the water-to-cement ratio to be reduced for no decrease 
in workability, thus giving a stronger concrete. Some entrain finely disper-
sed air bubbles sufficiently for the concrete to have increased frost resistance 
for little decrease of strength—used for roads in cold countries and called 
'air entrained concrete'. 

The use of a high water content must be avoided as much as possible as it 
also decreases the strength of the concrete, as explained later. It can 
however be used with advantage when combined with a vacuum process 
(see page 21). A high strength concrete requires to be as free from voids as 
possible. If water in excess of the amount required for the chemical reaction 
with the cement is present in the mix, this water remains in a free state and 
the concrete sets around the drops of water. Such particles of water form 
pores and voids in the concrete, resulting in weakness and permeability. 
Dependent upon curing conditions they may freeze and expand, cause 
corrosion and/or eventually evaporate into the atmosphere. 

23.2 Water-to-cement ratio and strength of concrete 

The important effect of the water-to-cement ratio, by weights, on the 
strength of concrete was realised in 1918 by D. Abrams of Chicago, who 
stated that the strength of any workable concrete was dependent upon the 
water-to-cement ratio alone, assuming the same cement and degree of 
compaction are used and the conditions of curing and age at comparison of 
strengths are constants. The types of aggregates used can be varied, 
provided the concrete does not fail by the fracture of such aggregates. The 
workabilities of different mixes having the same water-to-cement ratios 
would be considerably different; for example a lean (low proportion of 
cement) mix might need vibration to obtain the same compaction as a 
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richer (in cement) mix placed by hand. The strength of concrete increases as 
the water-to-cement ratio decreases, provided the water present is sufficient 
to allow the full chemical reaction to occur with the cement. If the water is 
less than this amount, a decrease in strength is experienced. Figure 2.2 
shows the relationship between the average ultimate compressive stress (or 
crushing strength) and the water-to-cement ratio for 150 mm cubes of fully 
compacted concrete for mixes of various proportions. In recent years U.K. 
manufacturers have altered ordinary Portland cement to rapid hardening 
cement by finer grinding. 

Water-to-cement ratio by weight 

Figure 2.2 

Only the compressive strength of concrete has been considered so far. It 
is generally accepted that this is a fairly reliable guide to the tensile and 
shear strengths, the modulus of rupture, the resistance to abrasion and 
wear, durability to the weather, density, porosity and watertightness. For 
durability, cement content is also important and minima are specified for 
various conditions in CP 110. 

2.3.3 Strength tests of concrete 

BS 1881 specifies a standard compressive test, and also a standard test for 
the modulus of rapture. The latter flexural tensile test gives greater values 
than those obtained from tension tests made on standard briquettes (BS 12). 
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The cross section of the briquette which is tested in tension is 25 mm square, 
the specimen being primarily designed for testing cements by determining 
the strengths of their cement/sand mortars. Larger specimens should be 
used for tension tests when the maximum size of the aggregate is greater 
than 9 mm. The cylinder splitting test has become popular as a tensile test 
of concrete. Unfortunately it is an indirect test of tension and assumes an 
elastic theory to calculate ultimate stress. 

Shear in concrete beams is thought of in terms of diagonal tension and 
consequently the tensile strength of concrete is more relevant than the 
shearing strength. The shearing strength can be obtained from torsion tests 
of cylinders of concrete. The distribution of shear stress in such tests, 
however, is not the same as experienced in, say, a punching shear test. 

With all the tests mentioned, size and shape of specimen matter, and thus 
empirical factors are usually required to relate these indicative control tests 
to the behaviour in the structural member. 

2.3.4 Vacuum concrete 

The concrete is made sufficiently wet to be placed and compacted easily and 
then the vacuum process removes water from the concrete, so that it finally 
has a low water-to-cement ratio. The water is extracted through mats 
placed in contact with the concrete. These mats are such that only water, 
and no cement, or fines (out of the aggregates) can be sucked from the 
concrete by the vacuum pump. Side shutters can usually be removed 
immediately afterwards if desired, as the concrete has almost zero slump. In 
the U.K. the vacuum concrete process is used by certain, but not all, firms 
making pavement flag stones. 

2.3.5 Vibrated concrete and pressure compaction 

Concretes with low water-to-cement ratios can be placed and compacted by 
internal or external vibrators. External vibrators usually consist of motors 
with heavy cams on their shafts, and are fastened to a mould. Internal 
vibrators are of a poker type and can be held in the hand and immersed in 
the concrete where required. They are the more efficient for compaction and 
do not require the strong moulds often necessary for the external vibrators. 
If sufficiently dry mixes are used, the sides of the moulds can be removed 
immediately after vibration. There are in fact beam-making machines where 
the concrete is compacted by vibration, the sides removed immediately, and 
the beam on its pallet dragged away along skids. Most block-making 
machines employ pressure as well as vibration. Here again, solid and 
hollow blocks can be removed immediately from block-making machines 
on their pallets. 

Workmen, when not strictly supervised, tend to make concrete extremely 
wet. Vibration does not increase the workability of such concrete and can 
be detrimental by causing segregation of the constituents of the concrete, 
the gravel tending to sink to the bottom, and the sand and cement to float 
to the top of the concrete. Such segregation can also occur with dry mixes if 
the vibration is sustained for a long enough period. The vibration employed 
with an apparently dry mix should be only just sufficient to make the 
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concrete flow into the sharp arrises of the mould and around the reinforce-
ment. Poker vibrators should not be removed rapidly or they can leave 
voids behind them. 

Essentially compaction by pressure and/or vibration enables drier con-
cretes to be satisfactorily compacted to make stronger concretes. 

2.3.6 Gap graded concrete 

The principle of this method is to omit certain undesirable sizes of 
aggregates from the gradings, such as those of Figure 2.1. Undesirable sizes 
are those which prevent the efficient packing of the other sizes. If desired the 
smaller sizes of the coarse aggregate can be omitted, or one size only of 
aggregate can be used. 

The more common aim of gap grading is to achieve strength from the 
efficient packing of the aggregate. This saves cement and allows aggregate 
suppliers to supply larger aggregate, less expensive to crush, which suits 
them also because there is a large demand for small aggregate for throwing 
with salt onto winter roads in the U.K. By careful packing of stones, a 
strong wall can be built without using any cement. If a cement paste were to 
fill all the minor voids in such a wall, then a very strong construction would 
result, and this would be the ideal aimed at by the advocates of the gap 
grading of concrete. 

A multitude of spheres of diameter D have a rhombohedral form of 
packing. These can be termed major spheres, and spheres of diameter 
0.414D, known as major occupational spheres, can fit into the voids between 
the major spheres. These spheres could, mathematically, constitute our 
coarse aggregate. The fine aggregate would then consist mathematically of 
minor occupational spheres of diameter 0.225D, which would fit into the 
remaining voids. The voids now remaining can be fitted by admittance 
spheres of diameter 0.155Z), and these could also be provided by the fine 
aggregate. Cement would then occupy the remaining voids and a mathemati-
cally perfect compact mix would result. Such a mix, however, could not 
normally be cast in this ideal fashion and consequently some authorities6 

consider that only the major and admittance spheres are of practical value 
in designing a mix. 

Mixes therefore are often designed with one size of coarse aggregate (for 
example 19 mm) and a sand, all the particles of which can pass through the 
voids in the compacted coarse aggregate. The sand is designed to fill the 
voids in the coarse aggregate and the cement is designed to fill all the 
remaining voids. The particles of sand must not be smaller than necessary, 
as this will increase the total surface area to be wetted with water and 
cement, and consequently a wetter mix (giving a weaker concrete) would be 
required for any requisite workability. Irrespective of the calculation just 
suggested, the sand should be sufficient to distribute itself uniformly through-
out the mix under practical conditions. When the sand is less than 18% of 
the mix it is difficult to obtain uniformity even under laboratory conditions. 
Mixes are often designed and then modified to suit the particular site 
conditions of mixing and compacting. 

To increase workability it is advantageous to reduce the surface area of 
all the aggregates in a unit volume. This can be done by using larger 
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particles. The largest aggregate possible should therefore be used, consistent 
with the minimum clearances allowed. 

Gap grading enables leaner and drier mixes to be used, the absence of 
many intermediate sizes of aggregates having reduced the specific surface 
area of the aggregates and therefore having increased workability. The lean 
mixes usually utilised, however, make vibration almost essential. Such 
concrete, being made of leaner and drier mixes than a conventional concrete 
of equivalent strength, will therefore experience less shrinkage and hence 
possess better weathering qualities. Compressive forces on the gap graded 
concrete described are ideally transmitted from particle to particle of the 
coarse aggregate and not through any cement and sand particles. 
Consequently the creep associated with such concrete is low. A coarse 
aggregate as used in a conventional mix experiences a fair amount of 
segregation during transportation, and pouring into and out of lorries, etc. 
Rain also helps segregation in stockpiles. Gap grading avoids these disad-
vantages by requiring only single sizes of coarse aggregate. 

Some advocate two different single sizes of coarse aggregates to be used 
with sand and cement in a mix. Gap graded concretes as lean as 1 (cement): 
2.45(sand):6.59(gravel), with a water-to-cement ratio of 0.51, increase in 
strength with age in a similar fashion to conventional concretes.6 Because of 
the packing of the aggregate of a gap graded concrete, vertical shutters can 
often be removed immediately after casting. Walls and columns can then be 
trowelled if desired or sprayed with a light water jet to expose the 
aggregate. 

One disadvantage of gap grading is that if the single-size aggregates 
supplied contain over 2.5% by weight of undesirable particles, this upsets 
the grading which is very sensitive to such intrusions. If however such 
irregularities are to be expected in the supply then the mix can be calculated 
accordingly to be of reduced efficiency. 

2.3.7 No fines concrete 

Coarse aggregate (gravel) is mixed with cement and the fine aggregate 
(sand) is omitted. No fines concrete is required to contain a multitude of 
voids to give good thermal insulation, and these voids need to be large 
enough to prevent the movement of water through the concrete by capillary 
attraction. In-situ no fines concrete walls have been used in the U.K. for 
housing, the idea being that good thermal insulation is achieved and that 
rain beating on a wall penetrates only a short horizontal distance before 
having dropped to the bottom of the wall, there being no capillary paths 
to conduct the water completely through the wall. It is, however, often 
desirable to render and paint exposed no fines concrete walls. 

2.3.8 Curing of concrete 

After setting or solidifying, concrete increases in strength with age (see 
Figure 2.3). The strength at a particular age can be further increased by 
suitable curing of the concrete whilst it is maturing. Such curing comprises 
the application of heat (not if CaCl2 is present or for high alumina cement or 
mass concrete) and/or the preservation of moisture within the concrete. The 
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application of heat speeds up the chemical reaction and consequently rate 
of hardening of the concrete. 

It can be imagined that preventing the escape of moisture from the 
concrete enables previously unwetted minute particles of cement to partic-
ipate in the cementing action. If heat is applied to accelerate the hardening 
of the concrete it is therefore important not to expel the water held within 
the concrete. In other words, if heat is applied a high humidity is also 
desirable; steam is therefore a most suitable medium for this purpose. 
Steam curing can be done at atmospheric pressure or under pressure. The 
latter method is more effective but far more expensive, as pressure chambers 
are required. For example, the half-hour strength of concrete steam cured 
under pressure could equal the 28-day strength of an identical concrete 
maturing in air. 

Increasing the strength of concrete by preventing the water used in 
mixing from escaping is usually done in one of the following ways: 

1. Flooding or submerging the concrete in water. The floors of basements 
and reservoirs can fairly easily be flooded with water. Precast concrete units 
can be immersed in water in special tanks. 

2. Treating the surface of the concrete so that it cannot dry out. 
Proprietary products exist for painting, or for applying coverings which 
adhere to the concrete. 

3. Covering the concrete with damp sand or hessian fabrics, which are kept 
damp by watering periodically, or with thin polythene sheet. 

2.3.9 Design of concrete mixes 

Most commonly a concrete mix is designed to give the specified strength at 
the minimum cost. The cost depends upon the value of the materials, the 
labour required for batching, mixing, transporting, placing and trowelling, 
and the method of curing adopted. 

Mix designs are fairly inaccurate due to the number of possible variables. 
The D.S.I.R. Road Note No. 48 of 1950 based a mix design method on the 
aggregate gradings shown in Figure 2.1. This method is simple and can be 
used by mixing one's sand and gravel in such proportions as to correspond 
to one or other of these grading zones. As the method is even then not very 
accurate, it can be improved upon by casting trial mixes, measuring their 
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workabilities and cube crushing strengths, and then adjusting the mix 
accordingly. Much of this work can easily be performed in the laboratory. 
The part of the method with which Table 2.2 is concerned has of course to 
be established by co-operation with the site. Considerable creditable re-
search since Road Note No. 48 has been faced with the inherent complexity 
of the problem and has not made this method obsolete as a useful simple 
method of designing a mix. All other methods can still be improved by 
studying trial mixes, as mentioned previously. 

TABLE 2.2. 

Conditions Minimum strength as percentage of 
average strength 

Very good control with weight batching, 
moisture determinations on aggregates, 
etc.; constant supervision 75 

Fair control with weight batching 60 

Poor control; volume batching of aggregates 40 

CP 114 used to specify concretes according to their minimum cube 
crushing strength at 7 and 28 days, and it is still possible for a designer to 
do this, but CP 110 has a more scientific approach—unfortunately more 
complicated. The mix design method presented in this book is based on the 
required average crushing strength. To design a mix with a certain specified 
minimum crushing strength, as for CP 114, we use Table 2.2 to obtain the 
requisite average crushing strength, and then design a mix for this average 
crushing strength. 

CP 110 specifies a concrete with a characteristic strength. For example, in 
Table 47 it defines Grades 20, 25, 30, etc., of concrete as having character-
istic strengths of 20, 25, 30, etc., N/mm2. If a large number of cubes of the 
same concrete (same age, curing, etc.) are tested the results can be plotted as 
shown in Figure 2.4. In statistics this figure is known as a histogram, and its 
shape is well known as a normal (gaussian) distribution. The average (or 
mean) cube strength is the value of cube strength corresponding to the 
centroid of this shape. As in this case we assume it to be a normal 
distribution, not skew7 (though in fact it is slightly skew), the average (or 
mean) strength corresponds to the centre line of the shape, as shown. 
Statistical theory gives the formula: 

Characteristic strength = Mean strength — 1.64 x Standard deviation 
(2.1) 

The number 1.64 is derived from the fact that CP 110 chooses character-
istic strength as the value below which we can expect 5% of the cubes to fail 
(see Figure 2.4). 

The breadth of the shape of Figure 2.4 gives an indication of the scatter of 
the results. For statistical purposes this is expressed as standard deviation, 
which can be obtained thus: if we make n cube tests and their crushing 
strengths are fcul,fcu2, • • -,/Cu« then the mean crushing strength is 
/cum = (Z/cui)/n a n d the standard deviation is VIX/cui -/CUm)2/(» ~ !)]• 
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If we are to design a concrete to a particular CP 110 characteristic 
strength then we must obtain the mean strength, that is Characteristic 
strength + 1.64 x Standard deviation. Hence, we need to know the standard 
deviation. Equation 2.1 can be expressed as: 

Characteristic strength = Mean strength — Margin 
where 

Margin = 1.64 x Standard deviation 
and thus 

Characteristic strength 
Mean strength = 1 — 1.64 x (Coefficient of variation) 

where 

Coefficient of variation = 
Standard deviation 

Mean strength 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

For concretes stronger than 20 N/mm2, CP 110 recommends (a) the stan-
dard deviation can be obtained for cube tests on at least 100 separate 
batches of concrete produced over a period of not more than one year, 
provided the margin is not less than 3.75 N/mm2, or (b) the standard 
deviation can be obtained for cube tests on at least 40 separate batches of 
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concrete produced over a period between 5 days and 6 months, providing 
the margin is not less than 7.5 N/mm2, or (c) if histograms have not been 
established as for (a) and (b), then the margin can be simply taken as 
15 N/mm2. 

2.3.10 Design of concrete mix of given mean (or average) strength 

To design a concrete mix for industry the mean strength has first to be 
established as in Section 2.3.9. If however the mix is for a laboratory 
experiment then we design for the mean strength. The required water-to-
cement ratio for the mean strength required is obtained from Figure 2.2, 
which assumes that the concrete is cured in air. Then a decision is made on 
the degree of workability, using Table 2.1 as a guide. Then the most suitable 
aggregate-to-cement ratio can be chosen from Table 2.3. This table gives 
such ratios for different gradings (as given in Figure 2.1), workabilities, 
water-to-cement ratios, and types of aggregates. 

Then if durability is important because, say, the concrete is exposed to 
injurious elements, that is is not protected inside an office block or 
laboratory, Tables 48 and 49 of CP 110 should be consulted to see if we 
have sufficient cement in our mix. If not, we decrease the aggregate-to-
cement ratio accordingly. If this has to be done we might perhaps then 
repeat our design, taking advantage of, say, an increased workability to 
assist compaction and ease, and therefore cost, of concreting. 

Example 2.1. To design a concrete mix for a pretensioned prestressed beam to have 
a mean (or average) crushing strength of 47 N/mm2 at an age of 7 days. 

The coarse aggregate to be used is a 19.05 mm (fin) and down, rounded aggregate 
with a grading curve approximating to Curve 2 on Figure 2.1. Vibration is to be 
employed and the prestressing wires cause little obstruction to the placing of the 
concrete. We shall assume however that the beam is of I-section with narrow 
flanges and web. Hence it is decided that a medium workability is desirable (see 
Table 2.1). 

Using rapid hardening Portland cement and consulting Figure 2.2, the necessary 
water-to-cement ratio is 0.35. 

From Table 2.3, the aggregate-to-cement ratio is therefore 3. 
To check that the cement content is adequate for durability in accordance with 

CP 110, Tables 48 and 49 give the minimum mass of cement per m3 of the concrete. 
Hence it is necessary to calculate this quantity from Section 2.3.12. 

2.3.11 Combining aggregates to obtain a grading for the mix design method 

Available sands and gravels need to be combined in suitable proportions so 
that the resultant grading approximates to one of the curves of Figure 2.1, 
so that the method of mix design of Section 2.3.10 can be used. A graphical 
method is given for obtaining these proportions in Road Note No. 48, but the 
method of calculation, illustrated by the following example, is simpler to 
explain and understand and the calculations are trivial. 

Example 2.2. The gradings of sand and two coarse aggregates kept in stock in the 
concrete laboratory at Bradford University are given in Columns (a), (b) and (c) 
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respectively of Table 2.4. Suppose that these are combined to approximate to Curve 1 
of Figure 2.1, whose grading is listed in Column (i) of Table 2.4. 

To 1 kg of sand we can only decide how many kgx of 9.52 mm (fin) gravel and 
how many kgy of 19.05mm (Jin) gravel to mix with it to obtain the grading of 
Curve 1. Two unknowns only need two equations. Hence we can only make Curve 1 
correct for the percentages passing two chosen sieve sizes. Suppose we choose the 
percentages passing apertures 9.52 mm (fin) and 4.76 mm (i^in). 

According to Curve 1, the percentage passing 9.52 mm (fin) aperture is 45%, hence 
using Table 2.4: 

100 x 1 + 96x + \9y = 45(1 + x + y) 

According to Curve 1, the percentage passing 4.76 mm (^in) aperture is 30%; 
hence using Table 2.4: 

100 x 1 + 13x + y = 30(1+ x + y ) 

Solving these two equations, x = 0.1172, and y — 2.345. Thus the sand, 9.52 mm 
(fin) gravel and 19.05mm (Jin) gravel must be combined in the proportions 
1:0.1172:2.345, respectively. 

The grading of the combined aggregate is obtained by multiplying Columns (a), 
(b) and (c) of Table 2.4 by 1, 0.1172 and 2.345, respectively, the products being 
shown in Columns (d), (e) and (f), respectively. The values in these columns are 
added together to give the values in Column (g) and then divided by 
1 + 0.1172 + 2.345 = 3.462 to give the values in Column (h), and this is the grading 
of the combined aggregate. Comparing this with Column (i) we have achieved the 
same percentages passing 9.52 mm and 4.76mm apertures, as calculated. Our error 
is mainly for percentages passing 1.20mm and 600 urn apertures. We could repeat 
the calculation say making the percentages passing apertures 9.52 mm and 1.20 mm 
equate in Columns (h) and (i). Mix design is not a very accurate science and this is 
probably not worth the trouble and its result would not really be known to be any 
better. Various sets of two percentages passing certain sizes could be made equal in 
Columns (h) and (i) by calculation and all the various results plotted on a graph 
such as Figure 2.1, and one could choose the combined grading which looks 
generally closest to the graph of Curve 1. Again it is extremely doubtful if this is 
worth doing. 

2.3.12 Design of concrete mixes (further methods) 

The Road Note No. 4s method described in Sections 2.3.9 to 2.3.11 inclusive has 
been followed by a Department of the Environment (D.O.E.) publication9 

which is more comprehensive, more complicated to describe and requires more 
tables and figures than Road Note No. 4. Hughes7 presents an even more 
comprehensive and complex method than the two methods just mentioned. In 
the U.S.A. the A.C.I.1 0 recommends a different method. 

As explained in Section 2.3.9 mix designs are not very accurate and need 
to be adjusted by making tests of trial mixes, but are naturally useful for 
determining the first trial mix. The Road Note No. 4 method described 
previously is the simplest of the above-mentioned methods to describe to 
students and to understand. It has been used for many years and is still used 
although the D.O.E. hope that their method will replace it. The other methods 
are easy to use without much understanding by following through the examples 
and using the tables and graphs given in the publications already cited. 
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2.3.13 D.O.E. mix design method 

This method 9 is simply explained in the following example. 

Example 2.3. Design a concrete mix as follows (the item numbers refer to where this 
information is entered in Table 2.5): 

1. Characteristic compressive strength at 28 days = 30N/mm2. (Item 1.1) 
2. Referring to Figure 2.4, Equation (2.1) and the paragraph following it, standard 

deviation = /c = 1.64 and the 'defective rate' = 5%. (Item 1.1) 
3. Ordinary Portland cement. (Item 1.5) 
4. Slump = 10 to 30mm. (Item 2.1) 
5. Maximum aggregate size = 20mm. (Item 2.2) 
6. Maximum 'free-water'-to-cement ratio = 0.55. Free-water is the water avail-

able for chemical action with the cement. That is, it includes surface water on, but 
excludes water which has been absorbed by, the aggregates. If this amount of free 
water is added to the mix the aggregates need to be in a saturated surface-dry 
condition. (Item 1.8) (More information on this subject is given in (24) following.) 

7. Minimum cement content = 290kg/m3. (Item 3.3) 
8. Maximum cement content = 550 kg/m3 as specified in CP 110 clause 6.3.4. 

(Item 3.2) 
9. No previous control data. Therefore, from Figure 2.5 the standard 

deviation = 8N/mm2. (Item 1.2) 

A; s for I 
than 40 
results 

B; minimum 
s for 40 or 
more results 

10 20 30 40 50 60 

Characteristic strength, N/mm2 

70 

Figure 2.5 Relationship between standard deviation, s, and 
characteristic strength 

10. Fine and coarse aggregates are uncrushed. (Item 1.6) As the relative density is 
unknown, D.O.E. recommend taking it as 2.6 (for crushed aggregates they recom-
mend 2.7). (Item 4.1) 

11. Fine aggregate complies with grading zone 3 of BS 882, viz. Table 2.6. (Item 
5.1) 

12. In Table 2.5 calculations are performed and referenced Cl to C5. 
13. Calculation Cl (Item 1.3) uses Equation (2.3) to obtain the 'margin', see 

Section 2.3.9. 
14. Calculation C2 (Item 1.4) obtains the 'target mean strength' (this is just the 

mean strength, see Section 2.3.9, we are trying to achieve with our design) by using 
Equation 2.2 to obtain mean strength. 

15. From Table 2.7 for the materials being used and a free-water-to-cement ratio 
of 0.5 an estimate of the compressive strength at 28 days would be 40 N/mm2. 
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TABLE 2.6. Fine aggregate, BS882: Part 2: 1973 

BS410 
test sieve 

mm 

10.0 
5.00 
2.36 
1.18 

urn 

600 
300 
150 

Grading 
Zone 1 

100 
90-100 
60-95 
30-70 

15^34 
5-20 
0-10* 

Percentage by weight 

Grading 
Zone 2 

100 
90-100 
75-100 
55-90 

35-59 
8-30 
0-10* 

passing BS sieves 

Grading 
Zone 3 

100 
90-100 
85 100 
75-100 

60-79 
12^0 
0-10* 

Grading 
Zone 4 

100 
95-100 
95-100 
90-100 

80-100 
15-50 
0-15* 

* For crushed stone sands, the permissible limit is increased to 20%. The 5% tolerance permitted by Item 5.2 may, in 
addition, be applied to the percentage in light type. 

TABLE 2.7. Approximate compressive strengths (N/mm2) of concrete mixes made with a 
free-water-to-cement ratio of 0.5 

Type of 
cement 

Ordinary 
Portland 
(O.P.C.) 
or 
sulphate-
resisting 
Portland 
(S.R.P.C.) J 

Rapid-
hardening 
Portland 
(R.H.P.C.) 

Type of 

aggregate 

Uncrushed 

> 
Crushed 

Uncrushed 

Crushed 

Compressive s 

Age 

3 

18 

23 

25 

30 

(days) 
7 

27 

33 

34 

40 

trengths (N/mm2) 

28 91 

40 48 

47 55 

46 53 

53 60 

16. On Figure 2.6 the line for values of free-water-to-cement ratio of 0.5 is 
referred to and point A is located on this line corresponding to a compressive 
strength of 40 N/mm2, both values from (15) above. Then the curve upon which 
point A lies is followed to the point B corresponding to a compressive strength of 
43 N/mm2 (the target mean strength from Item 1.4). This point B is then seen to 
correspond to a free-water-to-cement ratio of 0.47. (Item 1.7) This is satisfactory as 
it is less than the specified maximum value of 0.55. (Item 1.8) 

17. From Table 2.8 the free-water content = 160kg/m3. (Item 2.3) 
18. As the free-water/cement ratio was 0.47 (Item 1.7), from (17), the cement 

content = 160/0.47 = 340kg/m3 (Item 3.1 and calculation C3). This is satisfactory as 
it is greater than the specified minimum of 290kg/m3. (Item 3.3) 

19. From Figure 2.7 and Items 2.3 to 4.1 the wet density of the concrete = 
2400 kg/m3. (Item 4.2) 
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0.3 (K 0.5 0.6 0.7 0.8 0.9 
Free-water-to-cement ratio 

Figure 2.6 Relationship between compressive strength and 
free-water/cement ratio 

TABLE 2.8. Approximate free-water contents (kg/m3) required to give various levels 
of workability 

Slump (mm) 
V-B (s) 

Maximum 
size of 
aggregate (mm) 

Type of 
aggregate 

0-10 
> 12 

10-30 
6-12 

30-60 
3-6 

60-180 
0-3 

Uncrushed 

Crushed 

Uncrushed 

Crushed 

Uncrushed 

Crushed 

150 

180 

135 

170 

115 

155 

180 

205 

160 

190 

140 

175 

205 

230 

180 

210 

160 

190 

225 

250 

195 

225 

175 

205 

Note: When coarse and fine aggregates of different types are used, the free-water content is estimated by the expression 
\Wf + 5 Wc where Wf = free-water content appropriate to type of fine aggregate and Wc = free-water content appropriate to 
type of coarse aggregate. 
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Relative density of 
combined aggregate 
(on saturated and 
surface-dry basis 

160 180 200 220 240 

Free-water content, kg/m3 

Figure 2.7 Estimated wet density of fully compacted concrete 

20. Calculation C4 (Item 4.3) gives the total aggregate content by subtracting 
from the weight of 1 m3 of wet concrete (Item 4.2) the weights of cement (Item 3.1) 
and free-water (Item 2.3) in the 1 m3. 

21. Figure 2.8 refers to aggregate of 20mm maximum size. (The D.O.E. booklet 
also gives figures for aggregate of maximum sizes 10 and 40 mm.) From Figure 2.8 
and Items 2.1, 1.7 and 5.1 the proportion of fine aggregate is obtained. (Item 5.2) 

80 

«r 70 
601 

0 50 

't 0̂ 
O 

1 30 
o 
8" 20 

Slump: 0-10mm 
V-B: >12s 

10-30 mm 
6-12s 

30-60 mm 
3-6 s 

60-180 mm 
0-3 s 

1 Qj 
0.2 0.4 0.6 Oi 0.4 0.6 0.8 0.4 0.6 0.8 

Free-water-to-cement ratio 
0.4 0.6 Oi 

Figure 2.8 Recommended proportions of fine aggregate for BS 882 
grading zones 1, 2, 3 and 4 

22. Calculation C5 (Items 5.3 and 5.4) obtains the fine aggregate content by 
multiplying Item 5.2 by the total aggregate content (Item 4.3) and it obtains the 
coarse aggregate content by subtracting this fine aggregate content from the total 
aggregate content. 

23. The quantities of constituent materials are given at the bottom of Table 2.5 
for a mix of 1 m3 and for a trial mix of 0.05 m3. 

24. To obtain the weight of the oven-dry aggregates when aggregates are to be 
batched in an oven-dry condition for a trial mix, the weights of the saturated 
surface-dry aggregates derived from calculations C5 are multiplied by 100/(100 + A) 
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where A is the percentage by weight of water needed to bring the dry aggregates to a 
saturated surface-dry condition. The amount of mixing water should be increased by 
the weight of water absorbed by the aggregates to reach the saturated surface-dry 
condition. For example, if the absorption of the fine aggregate is 2% and of the 
coarse aggregate is 1%, then in the above trial mix: 

Weight of oven-dry fine aggregate = 25.7 x 100/102 = 25.2 kg 
Weight of oven-dry coarse aggregate = 69.2 x 100/101 = 68.5 kg 
Water required for absorption = (25.7 - 25.2) + (69.2 - 68.5) 

= 0.5+ 0.7 = 1.2kg 

Thus, the quantities for the trial mix are: cement 17.0kg, water 9.2kg, fine 
aggregate 25.2 kg (oven-dry) and coarse aggregate 68.5 kg (oven-dry). 

23.14 Quantities of materials required to make 1 m3 of concrete 

A very simple method is illustrated in Example 2.4. This is useful for 
individual beams. If one needed considerable accuracy for a large quantity 
such as a dam, this can easily, and best, be established experimentally in the 
laboratory. 

Example 2.4. Calculate the quantities of ingredients required for casting a beam and 
cubes in the laboratory having a total volume of 0.4 m3. The mix is to be in the 
proportions of 1 part cement to 0.87 parts sand to 0.10 parts 9.52 mm gravel to 2.03 
parts 19.05 mm gravel by dry volumes with a water-to-cement ratio of 0.35 by 
masses. 

Assume the bulk density of cement, sand and gravel to be 1440 kg/m3 (reasonably 
true if not using lightweight aggregates). Assume the density of the matured concrete 
to be 2400 kg/m3 (again reasonably true). The mass of the concrete is equal to the 
mass of its ingredients, except that much of the water will evaporate. Assume all the 
water vanishes—this will very slightly underestimate the cement, sand and gravel. 
Therefore: 

lkg +0.87 kg + 0.10 kg +2.03 kg = 4 kg concrete 
cement sand small gravel large gravel 

Mass of mature concrete = 0.4 x 2400 = 960kg. Therefore requirements are: 
1 x 960/4 = 240 kg cement 
0.87x960/4 = 208.8 kg sand 
0.10 x 960/4 = 24 kg small aggregate 
2.03 x 960/4 = 487.2 kg large aggregate 
240x0.35 = 84 kg water 

Then add 10% to these figures to allow for small underestimation and waste. This 
figure may need small adjustment according to experience of the concreting 
conditions, the particular mix and type of aggregates, etc. 

23.15 Prescribed mixes 

C P 110 gives prescribed mixes in Table 50 to replace the nominal mixes of 
C P 114. Generally these will give uneconomic concretes stronger than 
required. But they have the advantage that proper mix design procedures 
do not need to be established for the concreting plant. 
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2.3.16 Shrinkage 

When cement, sand, gravel and water are mixed together the gross volume 
decreases as the finer particles arrange themselves in the interstices of the 
larger particles. This shrinkage continues as the concrete is being worked 
into place. Evaporation of water in the mix also decreases the volume of 
such concrete. It is possible to fill a mould, for example a 150 mm cube, and 
observe the concrete retract into the mould. Shrinkage, when the concrete is 
in a fluid state, does not matter structurally because no internal stresses can 
be instigated. There is an inaccurately known point at which the concrete 
changes from a fluid to a solid and immature fragile material. The exact time 
when this occurs depends upon the water-to-cement ratio, the type of 
cement, and the ambient humidity and temperature. After this time, further 
shrinkage of the concrete will cause internal stresses and even cracks to 
occur. The time when the transition occurs from liquid to solid is not 
precisely determinable, and it is difficult to know exactly when to commence 
measuring the shrinkage of the concrete in its solid state. 

Measurements of the coefficient of shrinkage are possibly commenced too 
late to be of real mathematical value in research, because such readings are 
often commenced just when the specimen is hard enough to strip and 
handle for the purposes of the test. On such a basis the shrinkage coefficient 
can be of the order of 0.0005 at an age of 12 months and a typical 
relationship between shrinkage and age is illustrated in Figure 2.9. Initially 

0.04 r 

Figure 2.9 

the rate of shrinkage is high so that the error in not knowing the precise 
time to start measurements is quite appreciable. With the above coefficient, 
and supposing, for simplicity, the modulus of elasticity of concrete is 
28 000 N/mm2, then if the concrete were restricted from shrinking the tensile 
stress induced in the concrete would be 0.0005 x 28000 = 14N/mm2. The 
concrete would certainly crack as its ultimate tensile strength would only be 
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about 2.8 N/mm2. The coefficient of shrinkage is less for a lean mix than for 
a rich mix (in cement content). It is less for a low water-to-cement ratio 
than for a high one, is very sensitive to the method of curing, and is 
influenced to a lesser extent by all the other possible variables. 

Shrinkage after the concrete has solidified continues as and when further 
water evaporates. The chemical reaction of cement with water, and thus the 
shrinkage, continues in the concrete seemingly indefinitely. A gel is formed 
which contracts upon desiccation and becomes very hard (see Section 2.1). 
If concrete is submerged in water this cement gel expands with considerable 
force, so that the whole mass of concrete expands. This expansion, however, 
can never equal the shrinkage which has already taken place. On drying the 
concrete in air shrinkage again occurs. Therefore, when concrete is sub-
jected to continual wetting and drying, as for example due to tidal action, it 
experiences corresponding expansions and contractions. If concrete is cast 
beneath water then it does not shrink at all but expands, owing to the 
cement gel absorbing water. 

If a mass of concrete shrinks (or expands) uniformly and its movement is 
not restricted by any external forces, then no internal stresses can be 
induced in the concrete. This seldom happens in practice; usually any 
movement of the concrete is restricted internally by reinforcement embed-
ded in the concrete, and often externally by its surroundings. Also, the 
surface of concrete will often dry out (and therefore shrink) faster than the 
internal particles of concrete. When the concrete of a reinforced beam is in 
the solid state, as it shrinks it also bonds to the reinforcement. The 
resistance of the reinforcement to contraction opposes the shrinkage of the 
concrete. Thus the concrete near to the reinforcement is in tension, a bond 
stress is developed between the two, and the reinforcement is in com-
pression. Shrinkage cracks often exist in reinforced concrete beams at inter-
vals along the length of the reinforcement. These are sometimes too small to 
be observed with the instruments normally available. When a reinforced 
concrete beam is tested, cracks can usually be observed at a lighter loading 
than predicted from the modulus of rupture of the concrete, indicating that 
cracks or tensile stresses are already present due to shrinkage. 

Designs concerning conventional reinforced concrete work do not usually 
attempt to estimate the quantitative effect of shrinkage, because such 
calculations cannot be made with any degree of confidence and the basic 
assumptions of any mathematical analysis can be adversely criticised. 
Prestressed concrete designers simply treat shrinkage as a loss' reducing the 
prestressing force. The ultimate strength of a beam is not altered by 
shrinkage because when cracks occur the initial internal stress systems are 
released, yet shrinkage affects the size of cracks and deflections at working 
loads. 

The particles at the surface usually experience different conditions of 
curing to internal particles. Their rates of shrinkage thus differ and this 
'differential shrinkage' can cause troublesome stresses, cracks and move-
ments, for example the surface crazing of artificial stones and the warping of 
ground floor and road slabs. This effect can be reduced by endeavouring to cure 
the surfaces similarly to the internal fibres. The latter are fairly well sealed from 
the atmosphere so that to reduce differential shrinkage it is therefore 
desirable to seal the surfaces from the atmosphere. One way of achieving 
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this is to immerse the concrete member in water for as long as possible. It is 
often more economical to cover with damp hessian sacks, sand, or water-
proof sheets, or to spray periodically with water. A granolithic topping on a 
floor is very vulnerable to the detrimental effects of differential shrinkage 
and is usually kept damp for as long as practicable, and for at least seven 
days. 

Shrinkage must always be borne in mind in the design and construction 
of structures. Whenever possible, concreting programmes aim at minimising 
the detrimental effects of shrinkage. For example, ground floor slabs on 
solid (placed over either suitable subsoil or suitably consolidated blinded 
hardcore), are often concreted in numerous independent portions each of 
about 4.5 m square, which are able to shrink before being joined together. 
Plain concrete roads are similarly constructed. This is not considered 
necessary when reinforcement is present. Numerous minute cracks are 
formed, but as the reinforcement resists shrinkage the overall contraction is 
negligible. Some engineers will attribute almost any serious crack in a 
structure solely to shrinkage. This is often a fallacy because the reinforce-
ment of most structures has a considerable resistance to the forces exerted 
by the shrinkage of the concrete, so that shrinkage cracks in a long 
structure will take the form of very small cracks fairly regularly spaced 
throughout the length of the structure. A serious crack is more often caused 
by thermal expansion and contraction, and settlement. 

2.3.17 Relationship between stress and strain for concrete 

If a graph is plotted relating stress and strain, the shape of the curve 
obtained is very much influenced by the rate at which the stress is applied. 
It is also dependent upon the strength of the concrete under question and 
indeed to some degree upon all the other possible variables. Figure 2.10 
shows a relationship OAF which is typical of a concrete specimen loaded at 
a uniform rate. If the stressing had been held at the point A the concrete 
would have continued to strain under this particular constant stress. After a 

Strain 

Figure 2.10 
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certain lapse of time, when the strain had reached the point B, had the 
stressing been recommenced at the previous rate, the relationship would 
have been the curve BC. Had the stressing been stopped at C, the same 
phenomenon of creep would have occurred on C to D as occurred on A to 
B, that is the specimen strained or crept under constant stress until the 
stressing was recommenced at the point D, and the relationship then took 
the form represented by DE. 

This phenomenon of creep (known in the U.S.A. as plastic strain or time 
flow) has been the subject of many investigations. Figure 2.11 shows a curve 
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Figure 2.11 

CD which relates the creep (or strain) to time when the specimen is 
subjected to a constant stress. In this instance it took 5 s to apply the stress, 
so that the readings commenced from this time. It was once imagined that if 
this loading had been instantaneous and the observations of creep had been 
commenced immediately then this curve would have taken the form BCD. 
This is not so; the relationship is as ACD. Evans11 constructed an 
apparatus which could load a specimen and record the strains at an 
extremely high speed. This enabled him to obtain readings of creep after an 
instantaneous loading to the stress in question, and enabled him to plot the 
curve AC in Figure 2.11. The same apparatus enabled him to discover an 
interesting relationship between stress and strain. At any particular stress 
an instantaneous increase in stress always gave a directly proportional 
increase in strain. Thus he obtained the linear relationship OG shown in 
Figure 2.10. This was an attempt to find a modulus of linear elasticity 
(Young's modulus) for concrete and thus to divorce the elastic from the 
plastic action, as in the early days attempts were made to use the elastic 
theories of design, which had been developed for steelwork, for reinforced 
concrete. This endeavour to separate elastic and plastic action was not 
subsequently favoured and creep cannot exactly be divorced from elasticity, 
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shrinkage and other possible variables. Investigators generally agree that 
creep is mainly directly proportional to the constant stress causing it and 
proportional to a function of time. Various functions have been recom-
mended for this. 

It is thus distinctly noticeable that with regard to the relationship 
between stress and strain, concrete is comparable in behaviour to natural 
stones and timber, but certainly not to mild steel, because there is no period 
of proportionality, no marked elastic limit and no yield point. Apologies 
must therefore be made for using the term 'modulus of elasticity' for 
concrete. However, from the early days this has been done in connection 
with the elastic theory which still has its uses. Therefore some value or 
values must be attributed to a rather mythical modulus of elasticity. Figure 
2.12 illustrates a typical stress-strain diagram for a concrete specimen and 

0 Strain 

Figure 2.12 

shows various ideas which have been propounded for the modulus of 
elasticity. OT0 is tangential to the function at the origin and is called the 
initial tangent modulus. TPT' is a tangent at the point P and is known as the 
tangent modulus at this point. Similarly T J Q T J is the tangent modulus at 
point Q. The straight line PQ is called the chord modulus for the range P to 
Q. OP is the secant modulus for point P, and similarly OQ is the secant 
modulus for point Q. In Figure 2.10 the slope of the curve OG is Evans' 
short range or instantaneous modulus of elasticity. This modulus is suitable 
for use in predicting the stresses caused in concrete structures by shocks 
from bombing or earthquakes. 

The maximum permissible compressive stress in bending at working 
loads is often specified, for designs based on elastic theory, to be about one 
third of the crushing strength. Up to such working stresses the relationship 
between stress and strain approximates with reasonable accuracy to a 
straight line and most engineers utilise a secant modulus of elasticity 
corresponding to the maximum allowable working stress. This is the 
modulus of elasticity implied when reference is subsequently made to the 
modulus of elasticity of concrete, unless stated otherwise. 
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If points A and B in Figure 2.10 were at the allowable working stress of 
the concrete under investigation, then the moduli of elasticity at points A 
and B are obviously different. One can take the modulus of elasticity for A 
and then make a separate calculation for creep. The former depends on the 
speed of loading to A, and the latter relies on debatable methods. It is usual, 
and simpler, to take the secant modulus of elasticity of point B, or whatever 
point on A to B one considers relevant to the time creep has been 
occurring. For example, concrete at the age of one year can have a modulus 
of elasticity of about one third of its value at the age of one month. When 
creep tests are made, specimens are cast out of the same mix, for the 
purpose of measuring the shrinkage which occurs. The shortening due to 
shrinkage can then be deducted, to give the true creep over the period 
independently of the effect of shrinkage. 

Concrete made with certain popular lightweight aggregates can have a 
modulus of elasticity of only two thirds of the value of a conventional type 
of concrete of the same ultimate compressive strength. For elastic design the 
modulus of elasticity has been related to the concrete strength, but then for 
simplicity CP 114 adopted a constant value of 14000N/mm2. For example, 
the modular ratio ae used by CP 114, is Young's modulus for steel 
210000N/mm2 divided by 14000, which equals 15. 

If a reinforced concrete beam is subjected to a loading test ae could be 
about 9 for use in calculations predicting deflection or stresses. If the load 
were maintained for say one year then ae would be about 15. 

With time, creep causes beams to deflect more, causes compression steel 
to be more highly stressed, and causes long slender columns to increase their 
lateral deflection. This causes the bending moments to be higher and 
research by the author shows this to be a very important effect. 

With regard to prestressed concrete, creep of steel (relaxation) and of 
concrete is calculated as a loss of prestressing force. 

2.4 Types of reinforcement 

Much reinforced concrete construction employs 'black' mild steel bars of 
circular cross section. In the early days, engineers often worried that such 
bars might not grip or 'bond' to the concrete. Consequently, numerous bars 
were devised with surface deformations. As knowledge advanced, it became 
accepted that a mild steel bar of circular cross section could grip adequately 
to the concrete to develop its full tensile strength, surface deformations on 
the bar being superfluous. 

Engineers generally are now happy to use high tensile steel provided the 
bar mechanically bonds with the concrete. If a mild steel bar of square cross 
section is twisted, this cold working converts it into a high tensile steel bar 
which can mechanically grip to the concrete. Another type of bar is made 
by rolling a round mild steel bar with a slight patterning on its surface, then 
subjecting it to cold working by tensioning and twisting to give a high 
tensile bar with a mechanical bond. Another type of high tensile bar is a hot 
rolled high tensile steel bar with a deformed surface. These high tensile 
reinforcements are called high yield by CP 110 because it is the yield stress 
which is of interest in our theories for ultimate strength. Cold working, for 
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example, can increase the yield stress of mild steel much more than its 
ultimate stress. The advantage of using high yield bars is that the mass of 
steel required is reduced, and even though its cost per kilogram is higher 
than mild steel the total cost of the reinforcement and its fixing can be 
reduced. This does not apply in the case of the nominal reinforcement, 
which is usually more economic in mild steel, in a structure. Square twisted 
bars are bulkier for detailing, concreting, etc., than round deformed bars of 
the same strength. This disadvantage is reduced for a square twisted bar 
with chamfered corners. Sometimes square twisted bars have the advantage 
of bulk per unit cost for use as 'spacer bars' in cylindrical shells—for 
keeping the fabrics apart and aiding concreting on the sloping surfaces. The 
appropriateness of a bar for a purpose and its cost and availability will 
usually decide which type of reinforcement to use. Mild steel is usually the 
most universally available and because more is required than high yield 
steel, say, as longitudinal tensile reinforcement in a cylindrical shell, then as 
Young's modulus is the same for both, the moment of inertia will be greater 
and hence the deflection less for shells with such mild steel. Also, the design 
has been elastic so that the lower strains of the mild steel do not conflict as 
much with the assumptions of the design. This also applies to frames which 
have their bending moments decided on elastic theory. 

One should ascertain that any high yield reinforcement to be used bent 
does not have its strength seriously impaired by 'overstrain'. For example, 
the cold working of a bar introduces internal stresses in the bar. If the bar is 
then bent, further high stresses are superimposed on these stresses. It has 
been known for the fibres of steel on the inside of a bend to crush and for 
this not to be noticed until the bar was accidentally gently knocked, when 
the bar then came apart at the bend. Reference 12 explains this problem 
and establishes that for two particular high yield bars, at the time, over-
strain was not a practical worry. One of these bars had less cold working 
than the same make of bar at an earlier time. The amount of cold working 
is very important and a certain bar can have this altered for policy reasons 
from time to time without the designer necessarily realising that this has 
happened. A disadvantage of high yield bars is that the percentage of 
longitudinal tensile reinforcement is reduced, and it has been proved by 
many that this reduces the strength of a beam in shear. Research shows that 
at a given stress in the reinforcement the cracks will be more numerous and 
smaller for a mechanically bonded bar than for a plain bar. Certain 
recommendations for the design of structures to resist bombing do not 
allow high yield steels to be stressed as highly as mild steel reinforcements, 
because they are more brittle than mild steel, so that their strength can be 
impaired by sudden shocks. 

High yield wires are used to make fabrics for reinforcing slabs (BS 1221). 
Cross wires are welded to the main wires and enable the main high yield 
wires to be mechanically bonded to the concrete. The chief advantage of 
such fabric reinforcements is the speed and low cost of fixing. A disadvan-
tage is the high cost of fabrics. Also, fabrics do not commonly allow 
comparable economies to those effected by bending up or curtailing alter-
nate bars in slabs. The steel over the supports of continuous slabs is far 
more rigid for concreting purposes when bars are used as opposed to 
fabrics. The main steel in a slab is sometimes inadequately anchored into 
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the supporting beams when fabrics are used. The cross wires of rectangular 
BS fabrics do not normally satisfy the recommendation of CP 110, to the 
effect that the high yield reinforcement in any direction should be not less 
than 0.12% of the gross cross-sectional area. Sometimes additional bars are 
laid on the fabric to supplement the area of the cross wires to comply with 
the recommendation, but quite often this has not been done. Such steel is 
important, however, when substantial temperature stresses are liable to 
occur or when the slab is of a substantial length (or width) in the direction 
of the cross wires. 

In the U.K., wires commonly used for prestressed concrete are of 2, 5 and 
7 mm diameter. Some are also available crimped or with indented surfaces. 
The wires usually need to be degreased before use either with carbon 
tetrachloride or by allowing them to rust very slightly and then removing 
any loose rust. Some favour the latter with plain wires (ones not provided 
with a mechanical bond) as the rust pitting can increase bond. The author 
consistently found both methods unsatisfactory for certain laboratory tests 
of beams with 2 mm diameter plain wires and reliably cured this trouble by 
using crimped wires. Strand is also very popular in the U.K.—this is 
essentially a wire rope. When stretched the wires tend to pull in laterally, 
resulting in a lower modulus of elasticity and also greater relaxation (creep) 
losses than with straight wires or bars. To reduce these disadvantages 
strand can be cold-drawn, which also makes it less bulky and stronger. 
Much work has also been done in the U.K. with high tensile steel bars 
having rolled-on threads. These threads do not weaken the bar like cut 
threads. 

2.5 Practical use, creation and economics of structural concrete 
Concrete is a heavy structural material. The largest spans of bridges are 
steel suspension bridges, next largest are steel trusses, steel girders, rein-
forced concrete arches, prestressed concrete girders, then reinforced con-
crete girders. Concrete is very cheap per unit compressive strength. This 
strength is weak relative to steel, so that in compression it has larger 
sections and does not have buckling problems as limiting as do steel 
columns and beams. This explains its economy for columns, arches and 
prestressed concrete, all essentially concrete in compression. Also many 
columns, say in a building, are within reason more economic than few, as 
the columns are more economic than longer span beams. 

The large sections cause members to be heavy. It is important for 
economy to minimise the weight of suspended floors and roofs. Slabs 
cannot be too thin because of cracks due to shrinkage and temperature and 
thus the danger of a miscellaneous point load punching through. A 
minimum floor thickness is about 125 mm. For lightness and economy a 
floor 125 mm thick can be spanned continuously as far as possible and 
supported by T-beams which use the slab as their flanges. If the spans 
required are greater, then this system of beams can be supported by main T-
beams. With this system, for economy, the length-to-breadth of the slab 
panels should be ^ 2 : 1 . If less, then the slabs should be designed less 
economically to be two-way spanning. If because of supporting columns the 
grid of beams is required to be square, then 'two-way spanning slabs' will be 
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useful. If the overall floor thickness needs to be reduced then a 'flat-slab 
system' may be used. Because of its shallow depth the amount of reinforce-
ment needed is high and it is a heavy construction as none of the concrete 
not required in flexural tension is eliminated. Economy is improved in this 
latter respect by having dropped panels, but these can only be used 
economically for thicker floors of more than about 220mm total thickness. 
Both types of flat slab have inexpensive shuttering but drop panels cause 
significantly more expense. As the self-weight is high they tend to be less 
economic for light loadings. 'Waffle floors' can help the economy of this 
type of construction, but if the minimum crown thickness is too low and 
inadequately reinforced they can crack noticeably due to shrinkage, and for 
some structures this can interfere with serviceability. 

Similar considerations apply to reinforced concrete roofs. The weight can 
be reduced by using shell roofs, and weight reduction is more important 
because the superimposed load is very light—even with a shell roof only 
63 mm thick the self-weight is often 60% of the total load. The minimum 
thickness of a roof slab would be about 110 mm, and this plus supporting 
beams is far heavier than a shell roof. 

Hollow tile roofs and floors are economic for in-situ constructions where 
floors are required to be say ^ 200 mm thick, and they can have the advantage 
of continuity and can provide flanges for T-beams. 

The previous remarks apply to in-situ concrete. Lightness and economy 
can be assisted by the use of precast concrete floor and roof units. 
Generally, they are less expensive than in-situ floors and roofs, but the 
supporting beams lose efficiency and generally the structure is less robust. 
The great advantage and economy of the continuity of beams and framing 
action of in-situ work is reduced. 

Prestressed concrete tends to be economic mainly when the depth 
allowed is inadequate for reinforced concrete construction. 

The weight problem when overcome in a design automatically gives other 
advantages in the final structure, such as high natural frequency, easily 
spread small point loads and damping of small vibrations. Other advan-
tages automatically obtained are good fire resistance and durability. 

The structure is often dictated by client layout requirements. Aesthetics 
have not been mentioned because there are so many claddings and finishes 
available, for example a beam and slab floor often has a suspended ceiling 
to accommodate services so that the final appearance can be the same as a 
flat slab. Structural concrete usually looks best when the prime aesthetics of 
the building are based on the structure as opposed to the cladding. Both 
truism and proportioning according to strength requirements have parts to 
play, for example a pseudo-reinforced concrete shell roof composed of 
rolled steel girders and a curved slab can look wrong and unattractive—the 
girders have constant depth, looking too much in some places and too little 
in others. 

2.6 'Bond' between concrete and steel 
This is a most necessary requirement of reinforced concrete construction. If, 
for example, no 'bond' existed between the tension reinforcement of a beam 
and the surrounding concrete, then the system would behave in the same 
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way as a carriage spring, having two leaves of different inertias and 
strengths, namely a relatively large concrete leaf (possibly with a modulus of 
rupture of only say 3.5N/mm2) and a comparatively small steel leaf (rela-
tively strong with a maximum ultimate fibre stress in bending of, say, 
520N/mm2). Under these conditions the stiller concrete member would 
resist most of the superimposed bending moment and its ultimate strength 
would very soon be realised, at such a load that the assistance of the 
reinforcement in resisting bending moment could be described as negligible. 
Thus for the reinforcement to be utilised satisfactorily it has to bond to the 
concrete so that a reinforced concrete beam bends as though it is a 
homogeneous member (the strain in the reinforcement being the same as the 
strain in the surrounding concrete fibres). 

Pretensioned tendons must bond to the concrete which is cast around 
them. Otherwise when released after the concrete has adequately matured, 
no precompression would be induced in the concrete, the wires just sliding 
relative to the concrete. 

Bond comprises two different actions. Firstly, there is the ability of the 
concrete to stick to the steel. This is usually referred to as adhesion. 
Secondly, there is the frictional resistance between the steel and the 
concrete, often called grip. When a bar is tending to pull out of its 
surrounding concrete the relative movement of the bar to such concrete is 
known as slip. A bond stress cannot exist without its coexistent strain, that 
is without slip. Adhesion is an initial resistance to bond and occurs when 
the slip is minute. With a smooth cylindrical bar for example, adhesion is 
often attributed to micromechanical locking (minute irregularities on the 
bar mechanically locking to the concrete). As soon as a small amount of slip 
occurs the adhesion is ruptured and takes no further part in the bond 
resistance. For such slips a bond resistance is developed by the friction 
between the bar and the surrounding concrete. This is aided by the 
shrinkage of the concrete upon setting, as this causes the concrete to exert a 
radial pressure on the reinforcing bar, thus increasing the frictional re-
sistance between the two materials. 

The frictional resistance can be assessed by multiplying such a pressure 
due to shrinkage by some suitable coefficient. Certain coefficients suggested 
by Armstrong13 illustrate the sensitivity of the frictional resistance to the 
grease and rust on the surface of a bar. Dilatancy is a resistance to slip 
resulting from the wedging action of the small particles of concrete loosened 
after an initial slip has occurred. This effect constitutes a part of the general 
frictional resistance mentioned previously. The frictional resistance is en-
hanced at the locality of a crack where a tangential friction occurs because 
of the slight change in direction of the reinforcement bar. 

Another contribution to the frictional resistance can be called wedge 
action. When the stress in a bar changes along its length due to its bond to 
the surrounding concrete, the effect of Poisson's ratio will cause a cor-
responding change in its cross-sectional area. Thus, such a reinforcement 
bar becomes slightly tapered and hence the term wedge action. With non-
prestressed reinforced concrete this effect is extremely small. For prestressed 
concrete where steel stresses are much greater the wedge action is a 
significant asset. To illustrate this point, Figure 2.13 exaggerates the effect; 
the pretensioned wire is unstressed after release at A and has therefore a 
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Figure 2.13 

larger diameter here than at B where the wire is in its fully stressed 
condition. 

Both the adhesion and the frictional resistance are increased by mechan-
ical locking, that is by using reinforcement bars with surface deformations 
which mechanically lock to the concrete.14 

Bond therefore consists of firstly an adhesive resistance and then a 
frictional resistance. As a simple illustration, Figure 2.14 refers to a pull-out 
test of a steel rod from a concrete block. When the pull in the rod is P the 
portion of the graph AB represents the way in which the force in the rod is 
gradually transmitted to the concrete by frictional resistance. At the point 
B, the force still in the bar is insufficient to overcome the adhesive resistance 
of the remainder of the bar, and therefore BC represents the way in which 
the force in the rod is gradually transmitted to the concrete by adhesion. 
When the load in the bar is increased to P', the length of the bar slipping 
increases and the curve becomes A B C , A'B' being the frictional stage and 
B'C the adhesive stage. 
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Figure 2.14 

When a reinforced concrete beam is subjected to bending, the tension 
reinforcement which is bonded to the concrete is such that both the steel 
and the concrete are in tension. This is a criticism of the above mentioned 
pull-out test in which the steel is in tension and its surrounding concrete is 
in compression. Tests15 of bond stress are therefore made by measuring the 
strain in the steel, and the strain in the concrete touching such steel, along 
the lengths of the bars provided as tension reinforcement in beams. 
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2.6.1 Anchorage or bond length 

Figure 2.15 shows a bar anchored into a block of concrete. The necessary 
bond length /b is to be determined so that the bar can develop a tensile 
stress of fs at section B. If the bar has a cross-sectional area As and 
perimeter u, then the force in the bar Ns is given by 

K = AJS (2.6) 

If/mbs is the average bond stress between the steel and the concrete, this 
exists over an area of contact equal to w/b, therefore 

iVs=/mbsu/b (2.6a) 

Eliminating Ns between these two equations 

'b = AJJ(fmbsu) (2.7) 
If diameter of bar = dh, then from equation 2.7 

lJdb=fJWmbs) (2.8) 

Figure 2.15 

Table 2.9 enables anchorage lengths to be easily determined for bars in 
tension; values of the ratio /b to dh are read off for values of/cu (= concrete 
grade or characteristic strength) and fy (characteristic strength of steel). 
Values of ultimate anchorage bond stresses and/y are from Table 22 of CP 
110 and Table 2.10, respectively. For example, for a plain bar and 

fcu = 25N/mm2,/mbs = 1.4, and if/s = / y = say, 250N/mm2 (mild steel) then 
from equation 2.8, lh/db = 250/(4 x 1.4) = 44.6, which is given as 45 in Table 
2.9. 

TABLE 2.9. Tension anchorage lengths (mm) 

/ c u 20 25 30 ^40 

fy 
250 
410 
460 
425 
485 

52 
60 
68 
63 
101 

45 
54 
61 
56 
87 

42 
47 
52 
48 
81 

33 
39 
44 
41 
64 

Stresses, N/mm2 Ratios of lh to db 
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TABLE 2.10 

Designation 

Plain hot rolled mild steel 
Deformed hot rolled high yield 
Deformed cold worked high yield 
Deformed cold worked high yield 
Plain hard drawn steel wire (fabrics) 

Nominal sizes, 
mm 

all sizes 
all sizes 
^16 
over 16 
<12 

/ y . 
N/mm2 

250 
410 
460 
425 
485 

When bars in compression are anchored, the compression on a bar is also 
resisted by the pressure on its end (e.g. end C in Figure 2.15). To allow for 
this it is simple to add a suitable amount to equation 2.6a, namely A times 
the compressive stress on the concrete. This was once done, but CP 110 
(Table 22) prefers simply, but less logically and precisely, to increase the 
ultimate anchorage bond stresses for bars in compression. On this basis 
Table 2.11 enables anchorage lengths to be easily determined for bars in 
compression, similarly to Table 2.9 (see Section 2.6.5). 

TABLE 2.11. Compression anchorage lengths (mm) 

fcu 20 25 30 ^40 

42 37 
49 43 
55 48 
51 44 
81 71 

Ratios oflb to dh 

33 
38 
43 
39 
64 

27 
32 
36 
33 
53 

2.6.2 End anchorages 

In practice reinforcement is seldom, if ever, perfectly clean of rust and/or 
mill scale and/or grease. This can have a more disastrous effect upon the 
anchorage in tension of plain than of deformed bars. Hence it is good practice 
always to provide plain bars, when used in tension, with end anchorages 
such as hooks or nibs. These end anchorages are disadvantageous for 
deformed high yield steel because of cost, efficiency when stopping off bars 
in beams, and overstrain,12 but can be used if essential (for example lack of 
space in which to anchor at end of beam in some instances). Similarly it is 
disadvantageous in cost and efficiency to use end anchorages on bars in 
compression, but they can be used if essential. End anchorages are com-
monly hooks and nibs as shown in Figure 2.16 (a) and (b) respectively. To 
anchor a bar, the overall length a required is the value of /b from the tables 
of Section 2.6.1, less 16db and 8db for a mild steel hook and nib, re-
spectively, and 24dh and 12dh for a high yield steel hook and nib, re-
spectively. After determining a for a bar we need to determine its total 
length. The total lengths of bars with hooks and nibs are ah + /b and an + Zn, 
respectively. All these values are given in Table 2.12 to aid designers. From 

/y 
250 
410 
460 
425 
485 
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Figure 2.16 

the geometry of Figure 2.16(a), the total length of the bar 

= ah + lh = (ah -db- 0.5dh) + 0.5n(dh + db) + 4dh 

/ . /h = 3db - 0.54 + 0.57E(dh + dh) (2.9) 
From Figure 2.16(b), the total length of the bar 

= an + ln = (an -db- rn) + 0.5;r(rn 4- 0.5db) + 4db 

.\ ln = Mb - rn + 0.57r(rn + 0.5Jb) (2.10) 
From these equations: for mild steel dh = 4dh and rn = 2db, thus 

/h = 8.85db, say 9db, and ln = 4.93db, say 5db; for high yield steel dh = 6db 

and rn = 3 4 , thus /h = lldb and /n = 5.5db. 
Hooks are worth much more as an anchorage per unit length of material 

than nibs and cost little more to produce. 
Tables 2.13 and 2.14 are based on Table 2.10 and fcu = 20N/mm2 and 

should be useful for designers of in-situ concrete, because the weakest 
structural concrete is generally used for such work. If occasionally say 
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TABLE 2.12 

mm 

IS 

*E 

3 5 
•Si 

TABLE 2.13 

4, mm 

. Anchorage values of hooks and nibs 

db 

164 

'h(Wb) 

84 

U54) 

24db 

'h(H^b) 

I2dh 

U5.5dh) 

6 

96 

54 

48 

30 

144 

66 

72 

33 

8 

128 

72 

64 

40 

192 

88 

96 

44 

. Straight anchorage lengths (fcu 

6 8 10 12 

10 

160 

90 

80 

50 

240 

110 

120 

55 

= 20N/ 

16 

12 

192 

108 

96 

60 

288 

132 

144 

66 

mm 2) 

20 

16 

256 

144 

128 

80 

384 

176 

192 

88 

25 

20 

320 

180 

160 

100 

480 

220 

240 

110 

32 

25 

400 

225 

200 

125 

600 

275 

300 

138 

32 

512 

288 

256 

160 

768 

352 

384 

176 

fy, N/mm
: 

42db 

49db 

554, 
5ldb 

8 U h 

Compression anchorage lengths (/b), m m 

252 336 420 504 672 840 1050 1344 250 
294 392 490 588 784 980 1225 1568 410 
330 440 550 660 880 1100 1375 1760 460 
306 408 510 612 816 1020 1275 1632 425 
486 648 810 972 1296 1620 2025 2592 485 

Tension anchorage lengths (/b), m m 

60db
 360 

68^b
 408 

634 378 
1014 606 

480 
544 
504 

600 
680 
630 
1010 

720 
816 
756 
1212 

960 
1088 
1008 
1616 

1200 
1360 
1260 
2020 

1500 
1700 
1575 
2525 

1920 410 
2176 460 
2016 425 
3232 485 

TABLE 2.14. Overall anchorage lengths (mm) for hooks and nibs (fy = 250N/mm2, 
/cu = 20N/mm2) 

db 

ah(364) 
<U444) 

6 

216 
264 

8 

288 
352 

10 

360 
440 

12 

432 
528 

16 

576 
704 

20 

720 
880 

25 

800 
1100 

32 

1152 
1408 

fcu = 25 N / m m 2 is used then if these tables are still used the bond lengths 
will be not unreasonably conservative. With regard to Table 2.13, plain 
mild steel bars are not recommended to be anchored without end an-
chorages and are therefore excluded from the table. The plain hard drawn 
fabric wires are, however, included as fabrics have welded cross wires which 
give extra security. Also see Section 2.6.5. 

Example 2.5. A plain mild steel bar of 12 mm diameter is to be anchored with a 
hook. The characteristic strength of the concrete is 20N/mm2. Determine the 
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overall length of the anchorage and the total length of the bar required for this 
anchorage. 

From Table 2.10, fy = 250N/mm2. 
From Table 2.9, lh/dh = 52, .*. /b - 624 mm. 
From Table 2.12, I6dh = 192mm, /h - 108 mm 

.-. ah = 624 -192 = 432mm 
Total length = 432 + 108 - 540 mm 

Alternatively, for these particular stresses, using Table 2.14, ah = 432 mm, and 
from Table 2.12, lh = 108 mm, therefore total length = 432 + 108 = 540 mm. 

2.6.3 Laps in reinforcement 

To lap bars in compression, for example in columns, walls and sometimes 
over the supports of continuous T-beams, normally straight lengths are 
lapped the distance of the compression anchorage length (see Sections 2.6.1 
and 2.6.5, and Figure 2.17). There is rarely any advantage in using hooks or 
nibs and so reducing the lap length to the overall length of anchorage (see 
Section 2.6.2). 

m 
Lap 

Figure 2.17 

Lapping bars in tension is to be avoided. Plain bars without end 
anchorages should not be lapped in tension. When bars have to be lapped 
(see Sections 2.6.1, 2.6.2 and 2.6.5) in tension one should try to make laps, 
which need to be the distance of the tension anchorage length, as far from 
the places of maximum stress as possible and to stagger laps so that they do 
not overlap one another. For example, for a particular folded plate16 about 
26 m long the tension steel to be used was in 12 m lengths. The number of 
bars of the same diameter which needed to be provided for the full length 
was increased by one; then each plain bar could be discontinued at any 
position. The system is indicated in Figure 2.18, bars A being of the 
maximum length possible and lengths ah being the overall length of the 
hook anchorage. Adjacent hooks had a clear distance between them of 
about 75 mm to give a tolerance to the bar bender and fixer and to aid 
concreting. 

Qh 

C-DC 

Qh 

D C 

Qh 

- D C 

Qh 

Figure 2.18 
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The compression lap shown in Figure 2.17 should not be used in tension 
as the bars try and pull into line and thus outwards at A and B, trying to 
split off the concrete cover. If one is desperate to use this type of lap in 
tension, then the only chance of success is to use deformed bars and a 
stirrup at A, designed to resist the splitting force. The effective depth of 
reinforcement is reduced at B—to avoid this the lap shown can be rotated 
through a right-angle if detailing permits. 

It is good practice to have a gap of about 15 mm between the lapped bars 
(Figure 2.17), to avoid voids in the concrete between the bars. 

2.6.4 Curtailment of reinforcement in beams 

Table 2.15 is useful for designers giving the points B where bars are no 
longer required for resisting bending moment in a beam of span /. It is 
based on uniformly distributed loads. For continuous spans it assumes that 
the bending moments at mid span and support are equal. Column /? gives 
the number of bars at the position of maximum sagging bending moment at 
or near to mid span. The coefficients a are given for the order in which these 
bars are no longer required for considerations of bending moment, counting 
from the position of maximum sagging bending moment. The bending 
moment diagrams to which the coefficients relate are shown below the 
table. 

Strictly speaking, at the point when a bar is no longer required, if it is not 
immediately bent-up for shear it can be just terminated, but it must be 
checked that it has sufficient anchorage length to develop its full tensile 
strength from the point where this is needed. However, for plain bars a 
mechanical end anchorage is desirable (Section 2.6.2) so the curve of the 
hook or nib can be commenced at this point where the bar is no longer 
required. 

Example 2.6. A simply supported beam carries a uniformly distributed load over a 
span of 8 m and the design for ultimate limit state of bending requires five 25 mm 
diameter deformed bars of hot rolled high yield steel in tension at mid span. One of 
these bars is to be curtailed; determine the length of this bar from mid span, 
assuming fcu = 20N/mm2. 

From Table 2.15, ax = 0.27, .\ at/ = 0.27 x 8 = 2.16m. 
From Table 2.10, fy = 410N/mm2. 
From Table 2.13, lh = 1500mm. 
Allow no anchorage length but check that this bar has sufficient anchorage length 

from mid span where it is fully stressed. 
Length of bar from mid span = 4 — 2.16 = 1.84m and this is all right, as it is 

greater than 1.5 m. (Also see remainder of this section and Section 2.6.5.) 

Example 2.7. In Example 2.6 now curtail a second bar. Determine its length from 
mid span. 

From Table 2.15, ai = 0.19, aj = 0.19 x 8 = 1.52m. 
From above /y = 410N/mm2, /b = 1.5m, and this bar is fully stressed at 

OLJ = 2.16m. Now 2.16 - 1.52 = 0.64m, which is less than 1.5m and thus in-
adequate anchorage. Length of this second bar from mid span is thus 
4 — 2.16 + 1.5 = 3.34m. (Also see remainder of this section and Section 2.6.5.) 
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But then CP 110 expresses concern that in practice the distribution of live 
loading may not be as assumed and this would make errors in the values of 
a. Hence it recommends that an extra anchorage length be added to each 
curtailed bar of I2dh or its effective depth. Against this is the fact that 
design loadings are sometimes very conservative and when the distribution 
is wrong the total is usually less. 

CP 110 also expresses concern about anchoring bars in tension zones and 
recommends bars extending 4an anchorage length appropriate to their 
design strength (0.87/y) from the point where they are no longer required to 
resist bending'. This seems very conservative relative to past practice and 
experience. 

A method used successfully over many years by the author is simpler 
than the requirements of the preceding two paragraphs. It is based on the 
idea that the bar to be curtailed will be continued to some extent beyond 
the point where it is no longer required. There will thus be no sudden 
change in total tensile force on either side of this point, because the beam 
curvature and bending moment do not suddenly alter. Hence it is good 
practice to assume that all the bars have the same strain and stress at this 
point. Thus the bar to be curtailed is anchored for this stress, whether in a 
zone of tension or compression. 

Example 2.8. If the 20 mm diameter bar is to be curtailed out of a group of two 
25 mm diameter and one 20 mm diameter deformed bars, determine the length of 
this bar which must be continued past the point P where it is no longer required. 
Suppose for its design strength the 20 mm diameter bar needs an anchorage length 
of 1.05 m. 

Tensile force required at point P = 2 x (n/4) x 252 x Design strength 
Stress in bars 2 x (n/4) x 252 x Design strength ncn^ Design 

= = =— = 0.7576 x . at this point 2 x (TT/4) X 252 + (TC/4) X 202 strength 
Anchorage length required = 0.7576 x 1.05 = 0.796 m. 

Example 2.9. Repeat Example 2.6 with this alternative method. 
As before aj = 2.16m, fy = 410N/mm2, /b = 1500m. 
The anchorage length required from point P = (4/5) x 1500 = 1200 mm. 
Length of bar from mid span = 4 - 2.16 + 1.2 = 3.04m, and this is all right as it 

is greater than 1.5 m. 

2.6.5 Anchorage length reductions because of design strength 
being less thanfy 

It has been assumed that a bar is anchored adequately to develop its full 
stress. This seems good practice. CP 110 conservatively reduces the yield 
stress by a material factor, but then only requires anchorage for this 
reduced amount. This complicates matters, and reduces the anchorage 
lengths already given very slightly. If one wishes to take advantage of this, 
then: 

1. For tension reinforcement in beams the design strength =fy/ym = 
/y/1.15 = 0.87/y. Hence the anchorage lengths given may be reduced by 
13%, or say 10% or i 
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2. For compression reinforcement in beams the design strength = 
fy/(ym + 0.0005/y) =/y /(1.15 + 0.0005/y). For simplicity the smallest denomi-
nator we are perhaps to use is, from Table 2.10, 1.15 + 0 .0005x250 = 
1.275. Hence it would be always within C P 110 to take the design strength 
as 0.785/y. Hence the anchorage lengths given may be reduced by 2 1 % or 
say 20% or 1/5. 

It would be reasonable to ignore the refinements of this section, as this 
will still give much more economy than the very approximate methods 
suggested by C P 110 as alternatives to the full complexities described in this 
section. 

2.6.6 Anchorage ofbent-up shear bars 

Bars bent up as shown in Figure 3.5(b) can be used as shear reinforcement. 
The anchorage length N B H is that required for the bar to be able to 
develop its design strength at the neutral axis N . 

Example 2.10. A 25 mm diameter mild steel bar is bent up at 45° to resist shear. Its 
design strength is/y/ym = 250/1.15 = 217.4N/mm2, and/ c u = 25N/mm2. The effec-
tive depth of the bottom tensile reinforcement = 450 mm, and the cover to the top 
steel = 25 mm. Determine the length BH. 

In calculating BN we should use the depth of the neutral axis but for simplicity 
and slight extra safety we will use 0.5 x 450 = 225 mm. Then BN = [225 — 25 
(cover) — 12 (half dia. bar)]^2 = 266 mm. The total anchorage length from Table 2.9 
is 45 x 25 = 1125 mm. We can either use this figure or economise further as in 
Section 2.6.5. If we do the latter (as for detailing such a shear reinforcement system, 
usually the shorter the length BH the better) the anchorage length becomes 
1125/1.15 = 978mm. Economising further it has been common past practice to 
allow half the value of a nib for the anchorage effect of the bar deviating through 45° 
at B. CP 114 used to allow this, and it has some value, but it does not seem to be 
mentioned in CP 110. From Table 2.12 this reduction in anchorage length is 
200/2 = 100 mm. From the same table the hook at H reduces the overall anchorage 
length by 400 mm. Hence ah = 978 - 100 - 400 = 478 mm. Hence BH = 
478 - BN = 478 - 266 = 212 mm. 

2.6.7 Bearing stresses inside bends 

Figure 2.19 shows a reinforcement bar of diameter d in tension bent to any 
shape. At point P the tensile force in the bar is Fh and at point P ' this force 
has become Fh — SFh. This change SFb is due to the bond stress over the 
length PP ' shown on Figure 2.19 as a force SFh (this acts all around the 
perimeter of the bar). Because of the change of direction of the bar, and thus 
of the axial force in it, there is a bearing s t r e s s / inside the bend. Resolving 
forces perpendicular to P P ' 

fdrSoL = Fh sin (SOL/2) + (Fh - SFh) sin (SOL/2) 

In the limit when doc -► 0, sin (SOL/2) -► Soc/2, and SFh -> dFh. 

:. 2frd = 2Fh-dFh 
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Figure 2.19 

Now dFb is negligible (->0) in comparison to the size of the quantities 
2frd and 2Fb. 

:.f=FJ(rd) (2.11) 

This stress at P does not need to be checked for the standard anchorage 
hooks and nibs of Section 2.6.2. CP 110 requires/ to be checked when the 
bar continues more than Ad after the bend and is still required for bond 
resistance—for example the bend at B in Figure 3.5(b) and at b' in Figure 
2.21. 

The same theory and equation (2.11) apply for bars in compression. In 
Figure 2.19 Fb would be in the opposite direction and / would be at the 
opposite side of the bar. 

A dowel bar under the bend just transmits and concentrates the bearing 
stress to immediately below it, though it can help to spread this pressure 
transversely. CP 110 already does this considerably in its formula 3.11.6.8, 
and so such dowel bars are not considered helpful in reducing the bearing 
stresses inside bends. 

Example 2.11. For Example 2.10 determine the minimum radius of curvature 
allowed at B. The beam is T-shaped and the bend B is in the wide flange. 

Stress in bar at B = 217.4 x (978 - 266)/978 = 158.3 N/mm2. 
d = 25mm,Fh= 158.3 x (TT/4) x 252 = 77690N. 
The permissible/is, from CP 110 (formula 3.11.6.8), ah = GO, 
= (1.5 x 25)/(l + 2 x 25/oo) = 37.5 N/mm2 

Hence from equation 2.11 
r = FJ(fd) = 77 690/(37.5 x 25) - 82.87 mm 

2.6.8 Anchorage of stirrups {or links) 

CP 110 recommendation 3.11.6.4 conflicts with the CP 110 recommen-
dations already referred to in this chapter regarding anchorage length and 
bearing stress inside bends. Its inadequacy in this respect might be justified 
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on the basis that the design of stirrups for shear is still conservative, but this 
is not indicated, and is not a sound approach. Against this, the anchorages 
are sometimes in tension zones and links are sometimes required to resist 
torsion, for example a beam of square cross section would experience 
maximum shear stress due to torsion not only at the neutral axis but at the 
centres of the top and bottom peripheries of the beam—where the links 
might have inadequate tension anchorage if in accordance with CP 110. 
Multitudes of beams in practice, designed with links to resist shear and not 
designed to resist torsion, do indeed have to resist varying amounts of 
torsion. 

It would seem desirable17 for the anchorages of links designed to resist 
shear and/or torsion to be in accordance with the previous sections of this 
chapter. In addition tests12 show that deformed bars are only 10% more 
effective in shear than plain bars, and that if the deformed bars are high 
yield then the failure is unexpected and violent. Deformed high yield stirrups 
should not be stressed any higher than mild steel links in shear.12 This 
unfortunately disagrees with CP 110 but agrees with CP 114 (1957). 

Example 2.12. Design the anchorage of an 8 mm diameter mild steel link of design 
strength fy/ym = 250/1.15 = 217.4N/mm2, and/cu = 25N/mm2. The internal dimen-
sions of the link are 175 x 400 mm. 

L l 
AOmmk j 

Figure 2.20 

The tension lap from Table 2.9 is 45db. Two right-angle bends, using say the 
shape of link of Figure 2.20, are worth 8db each as anchorage (see Section 2.6.2). 
Hence tension lap required is 45db — 16dh = 29db = 29 x 8 = 232 mm. The length of 
each vertical end is approximately (232 — 175) x 0.5 = 28.5 mm. This should be at 
least /n of Table 2.12, i.e. 5dh = 5x8 = 40mm. The link is shown in Figure 2.20, the 
lap being along the top and down each side a length of 40 mm. 

2.6.9 Splitting effects of bar anchorages 

Anchoring a bar abed from a beam into a column as shown in Figure 2.21 
is bad practice, causing splitting of the column along bed. Even if the 
bearing stress is in order at b, increasing the length bed does not add useful 
anchorage length, because of the splitting weakness. The bar should be 
taken as far across the column as possible, that is ab'c'd'. Designs are made 
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b' b 

c' l c 

d' I d 

Figure 2.21 

for bending moments and shear forces assuming members to be con-
centrated at their centre lines. The true internal stress system at a practical 
junction is difficult to assess; hence the junction should be detailed as 
conservatively as possible, that is, bb' should be as great as possible. In 
calculating the anchorage length, the bend at b' is worth the values 8db and 
\2dh of nibs in Table 2.12. 

2.6.10 Anchorage lengths based on elastic analysis 

Equation 2.8 can be used provided fs is taken as the permissible stress for a 
bar in tension and/m b s as the permissible bond stress. Permissible stresses 
are stresses at working loads and are given in CP 114 and BS 5337:1976. In 
a similar way Sections 2.6.2-2.6.10 (excluding Section 2.6.5) apply. 

Thus BS 5337:1976 gives / s = 85 N/mm2 in tension for plain bars and 
exposure Class A and/m b s = l.ON/mm2 and 0.9N/mm2 for Grade 30 and 
25 concretes, respectively. The respective anchorage lengths are thus 
85rfb/(4 x 1.0) = 2l.25db and 85db/(4 x 0.9) = 23.61db. Table 2.16 is to help 
designers of water containers. 

TABLE 2.16 

db, m m 

21.254 
23.614 

6 

127 
141 

8 

170 
188 

10 

212 
236 

12 

255 
283 

16 

340 
377 

20 

425 
472 

25 

531 
590 

32 

680 
755 

Example 2.13. Determine the overall anchorage length of a 20 mm diameter plain 
bar of mild steel with an end hook, permissible tensile stress = 85 N/mm2 and 
permissible average bond stress = 0.90N/mm2. 

From Table 2.16, straight anchorage length = 472 mm. 
From Table 2.12, hook is worth 320mm. 
Hence (see Figure 2.16(a)) ah = All - 320 = 152 mm. 
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Chapter 3 

Reinforced concrete beams 

3.1 Design 

To design a reinforced concrete beam a reasonable procedure is as follows: 

1. Estimate the dimensions of the beam. The overall depth can be taken 
as say a proportion of the 'effective span', 1/20 for simply supported, 1/25 
for continuous, and 1/10 for cantilever beams. The breadth (or breadth of 
rib for, say, a T-beam) can be taken as j to \ of this depth. 

2. For a rectangular beam, the ratio of the maximum distance between 
lateral restraints to breadth is ideal if less than 30, reasonable if between 30 
and 40, and likely to be impracticable if more than 50. This is because of the 
possibility of narrow beams buckling sideways. 

3. Check the strength in shear, and torsion if present, in the worst case, 
usually a section adjacent to a support. It may well be that reinforcement is 
required and this should not normally be greater than say 10 mm diameter 
stirrups (two, four or six arm according to width of beam) at 80 mm centres. 
The beam may well eventually be detailed with bent-up bars assisting the 
stirrups in the localities of maximum shear force. 

4. Check the strength in bending. For a rectangular (or simply supported) 
beam this is best done first at the section subjected to maximum bending 
moment. For a continuous T-beam, mid span will normally be strong enough in 
bending if the supports are, because the beam is acting as a rectangular beam at 
the supports. If compression steel is required it might be desirable because of 
detailing to revise the design to eliminate the need for such steel—if this is not 
done it is useful practically for the area of the compression steel not to exceed 1% 
of the breadth (of rib for a T-beam) times the overall depth. Then determine the 
longitudinal tension reinforcement and see if it can be detailed reasonably in the 
beam. In the case of simply supported T-beams it is speedier to calculate the 
reinforcement before the compressive strength of the section. 

The beam has now been reasonably well designed and it is now only a 
matter of checking the limit states of deflection and cracking, and then 
determining the bending and shear steel at critical sections. 

63 
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3.2 Elastic analysis for bending moments 

At working loads the elastic analysis gives a reasonably accurate assessment 
of the (longitudinal) stresses in the concrete and reinforcement. It also gives 
a reasonable assessment of deflections experienced at modest loads in a 
loading test using a Young's modulus obtained from test of specimens of the 
concrete. For estimating the deflection of a member in practice, for, say, a 
CP 110 Grade 20 or 25 concrete, the elastic analysis is reasonable for design 
purposes if a Young's modulus of the concrete of say 14kN/mm2 is used for 
continuously sustained loading and 21kN/mm2 for loading of short 
duration. 

CP114 allowed the design of beams to be based on elastic analysis, 
restricting stresses to within the elastic behaviour of the materials at 
working loads. Multitudes of structures which have lasted many years 
illustrate the safety of such designs. This method has been dispensed with 
by CP 110, but is still used for water-retaining structures (BS 5337: 1976). 

For shell roofs the analysis for forces and bending moments is elastic, so 
it would seem logical and safe (because our experience is based on elastic 
design) to use elastic analysis for designing for these forces and moments. 
Where experimental evidence has not adequately ratified the methods of 
predicting ultimate bending moments, members can be designed by elastic 
theory with confidence, for example shells, or a beam with unsymmetrical 
section with skew loading. 

For the above and other reasons the elastic analysis will be presented as 
concisely as possible, using only the moment of intertia of the equivalent 
concrete section method. 

3.2.1 Assumptions made in the elastic design of reinforced concrete 

Firstly, it is assumed that plane sections subjected to bending remain plane 
after bending (Bernoulli's theorem). This is found to be reasonably true by 
experiment, and means that the distribution of strain is linear across the 
section. 

It is also assumed that stress is proportional to strain for both the steel and 
the concrete. This is accurately true for the steel up to the limit of 
proportionality, but only approximately true for the concrete as far as the 
allowable working stress (permissible stress), and is most inaccurate above 
this stress towards failure. The elastic method of design endeavours to 
compute the stresses at working loads, and limits these stresses to amounts 
below the yield stress of the steel and the crushing stress of the concrete. 
The respective factors of safety are obtained from experience in industry. It 
can therefore be appreciated that beams designed in such a fashion are safe 
but are not designed to have specific load factors against their ultimate 
strengths. Advocates of elastic design feel that stresses and therefore the size 
of cracks at working loads are controlled. Concerning the design of prestressed 
concrete beams in bending the 'modulus of elasticity for concrete in tension is 
assumed to be the same as the value of this modulus for concrete in 
compression'. 

Perfect bond is assumed between the steel and the concrete. The concrete 
shrinks upon setting and therefore exerts a pressure upon the steel, which 
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assists the resistance to friction between the two materials. This pressure is 
reduced to some extent when the steel and surrounding concrete are 
stressed in tension because Poisson's ratio is greater for steel (approximately 
0.29) than for concrete (approximately between 0.20 and 0.14). The con-
verse applies when the steel and surrounding concrete are stressed in 
compression. Irregularities on the surface of the reinforcement lock the steel 
mechanically to the concrete. Several proprietary high tensile bars and 
prestressing wires are purposely manufactured to create such an effect. 

The depth of the steel reinforcement is considered to be negligible compared 
with the depth of the beam. This is usually a reasonable assumption. 

Normally, temperature and shrinkage stresses are ignored in the design of 
sections to withstand bending moments, shear forces, and axial forces. It 
can be mentioned here that fortunately the thermal coefficients of expansion 
of concrete and steel are sensibly the same. For the design of the structure 
as a whole, temperature and shrinkage effects must be considered. For 
example, long buildings need movement joints, temperature stresses are 
particularly important in the design of chimneys, and losses in prestress due 
to shrinkage are important. 

Concrete is assumed to be cracked in tension when bending stresses are 
considered. This is because the tensile strength of concrete is only about 
one-tenth (and can be as little as one-thirtieth for high strength concretes) of 
its compressive strength. The same concrete is, however, expected to resist 
diagonal tensile stresses. If the beam were prestressed it would be permiss-
ible for certain small tensile stresses to occur under bending. The elastic 
method of design of BS 5337:1976 for the design of water-retaining 
structures assumes that the concrete will withstand tensile stresses so that 
no cracks occur, but nevertheless does not trust the concrete in tension 
structurally. In fact concrete has a most unreliable resistance to tension. 
The ultimate strengths of numerous direct tension specimens made from the 
same batch of concrete in an exactly similar fashion can vary enormously. 
The maximum strength can often be as much as twice the minimum 
strength. The ultimate tensile stress in bending, judged by the extreme fibre 
stress, using the assumptions of the elastic analysis (and known as the 
modulus of rupture) is higher and more reliable than the direct tensile 
strength. 

3.2.2 Moment of inertia of a reinforced concrete section 

Referring to Figure 3.1(a), XX is the neutral axis of any section subjected to 
bending, SAcl is a small portion of area of the concrete at a distance dcl 

from the neutral axis, and SAsl is a small portion of area of the steel at a 
distance d1 from the neutral axis. 

The distribution of strain is assumed linear and is shown in Figure 3.1(b). 
Let the strain be of magnitude ex at unit distance from the neutral axis. 
Therefore 

Strain for portion SAcl = sldcl 

.'. Stress for portion SAcl = s1dclEc 

If Ec and £s are the Young's moduli for the concrete and steel respectively, 
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(a ) (b) 
Figure 3.1 

the force for portion SAcl = eldclEc3Acl and similarly the force for portion 
SAsi = eldlEs8Asl. Therefore, the moment of resistance of the section, M, is 

M = Zie^EMciKi + ZMEMnWi 
.'. M = s.E^SA^d^ + T,oL,SAsldl) (3.1) 

where ae = EJEC is the modular ratio. 
Comparing equation 3.1 with the classical formula M = fl/y, where/ is 

the stress at distance y from the neutral axis, f/y = elEcy/y = e1Ec if we 
consider concrete only, in which case / is the equivalent moment of inertia 
(or second moment of area) of the cross section. Hence 

M = exEcI (3.2) 

and comparing this with equation 3.1 

/ = ZSAcld
2

cl + 2ae5i48ldf (3.3) 
The area of steel SAsl can be regarded as equivalent to an area of concrete 
ae.SAsl. In other words ae.SAsl is the equivalent area of the area of 
reinforcement SAsl. This means that to obtain / we just multiply each steel 
area by ae and then obtain the moment of inertia of the section as though it 
were all of concrete. It is often convenient when considering compression 
steel to consider the gross section of concrete and, as the area of the 
compression steel has not been subtracted, to multiply each of the steel areas 
by (ae — 1) instead of ae. These give the areas, in excess of the gross area, 
due to steel. 

Example 3.1. The section shown in Figure 3.2(a) resists a bending moment of 
56kNm. Determine the maximum stress in the concrete and the stress in the steel if 
ae = 15. 

Equivalent area of steel = 15 x 2 x 0.7854 x 252 = 14 730mm2. Figure 3.2(b) 
shows equivalent area of section, and centroid of this is the neutral axis XX. 
Equating moments of equivalent areas about axis XX 

(150x)(x/2)= 14 730(450 - x) 

:. x2 + 196.4x- 88 380 = 0 
.'. x = 214.9 mm 
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Taking moments of (equivalent) area about XX 

/ = (150x3/3) + 14 730 x (450 - x)2 

= 1310 x 106mm4. 

From equation 3.2 

sl = M/(IEC) = 56/(1310£c) = 0.042 75/£c 

Figure 3.2(c) gives distribution of strain and Figure 3.2(d) gives corresponding 
distribution of stress. Therefore 

fc = E^x) = 0.042 75 x 214.9 = 9.187 N/mm2 

and 

fs = £^(450 - x) = 0.042 75 ae(450 - x) = 150.8 N/mm2 

These last two equations are sometimes expressed as 

fc = Mx/I and/ s = aeM(450 - x)/I (3.4) 

Example 3.2. If the beam of Example 3.1 were simply supported over an (effective) 
span (/) of 9.75 m and all the loading was uniformly distributed (q), determine the 
central deflection. Assume that the bending moment of 56kNm was at mid span. 
Take Es = 200kN/mm2; then Ec = 200/ae = 13.33kN/mm2. 

Central deflection at mid span = ax = (5/384)((?/4/£/) 
In this example M = ql2/8 

.". q = (56 x 8)/9.752 = 4.713 kN/m (or N/mm) 

5x4.713x9750 4 

= 31.76 mm 384 x 13 330 x 1310 x 106 

Example 3.3. Determine the moment of resistance of the section shown in Figure 
3.2(a) if the permissible stresses (i.e. the stresses allowed at working loads) are 
10.5 N/mm2 and 210 N/mm2 for the concrete and steel, respectively, and the 
modular ratio is 15. 

From Example 3.1, x = 214.9 mm and / == 1310 x 106mm4. 
If concrete is the criterion, from equation 3.4 

Moment of resistance =fc(I/x) = 10.5 x 1310 x 106/214.9Nmm 

= 64.01 kNm 

If steel is the criterion, from equation 3.4 

/ s / 210 x 1310 xlO 6 

Moment of resistance = = N mm 
ae (450 -x) 15(450-214.9) 

= 78.01 kN m 
Therefore according to the assumptions of this design the moment of resistance of 
the beam is limited by the compressive strength of the concrete to 64.01 kN m. 

3.2.3 Method for tabulating calculations for x and I 

Table 3.1 illustrates the method. A is the equivalent area of a portion, y is 
the distance of the centroid of A from any chosen axis, say YY for Figure 
3.3(a), In is the second moment of area for the portion about its neutral axis. 
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Then taking moments of area about YY 

"LAy = x£A (3.5) 

.'. x = XAy/ZA (3.6) 

Second moment of area of whole section about YY 

= Iy = XAy2 + Un (3.7) 

If / is second moment of area of the whole section about its neutral axis 
XX, and x is depth of neutral axis below YY, then 

Iy = x2XA + I (3.8) 

From equations 3.7 and 3.8 

/ = "LAy1 + I / n - x2I,A (3.9) 

Supposing we wish to obtain the lever arm z. Then considering the tensile 
steel, area As, effective depth du the moment of resistance =fsAsz = 
/ , W i - x) 

:.z = I/lAs(dl-xft (3.10) 

Example 3.4. The section shown in Figure 3.3 is through an external counterfort to a 
tank. The reinforcement bars comprise six of 25mm diameter in tension and four of 
20 mm diameter in compression and have 50 mm cover of concrete, ae = 15, the 
permissible stresses (for BS 5337: 1976 strength calculations for Grade 25 concrete 
and Class A exposure for plain bars of steel) are: concrete in compression 
9.15 N/mm2, and steel in tension 85N/mm2. Determine the moment of resistance of 
the section at working loads, and the stress in the compression steel. 

Table 3.1 shows the calculation (dimensions are in centimetres for convenience). 
Then from equation 3.5 

8x2 + 38 030 = 16x2 + 1053x 

8x2 + 1053x- 38 030 = 0 

.'. x = 29.50cm = 295.0mm 

From equation 3.9 

/ = 5.333x2 + 3 101000 - x2(16x + 1053) 

= 3 101000 - 29.52(16 x 29.5 + 1048) 

= 1.778 x 106cm4 = 17 780 x 106mm4 

Referring to equations 3.4 
17 780 x 106 

Moment of resistance (concrete) = 9.15 x Nmm = 551.5 kNm 
295 

85 17 7 8 0 x l 0 6 

Moment of resistance (steel) = — x N mm = 185.9 kN m 
15 (837-295) 

The latter is therefore the criterion, and the stress in the compression steel will be 
185.9 

= 15 x x (295 - 60) = 36.86 N/mm2 

17 780 ' 

The latter is well within the permissible stress of 125 N/mm2 given by BS 5337, 
and 551.5 is much greater than 185.9, hence a designer might reduce the diameter of 
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(3.13) 

the 20 mm bars—unless their robustness is required to support the reinforcement 
cage. Their number cannot be reduced because of the stirruping system. 

3.2.4 Popular formulae for slabs and rectangular beams (elastic theory) 

For a rectangular section such as shown in Figure 3.2, if b is its breadth and 
d the effective depth of the tension steel, then moments of areas about XX 
give 

bx2/2 = (xeAs(d — x) 

Dividing throughout by bd2 and substituting p = AJbd and xx = x/d 

x2/2 = oiep(l-xl) (3.11) 

x2 + 2aepx1 — 2aep = 0 
*i = -* e P + VLKP)2 + 2(aep)] (3.12) 

As strain is linear, from Figure 3.2 

sl=fc/(Ecx)=fJ[Es(d-xn 

.'• fjfc = *M ~ X)/X = M 1 - *l)/*l 
Let a f =/ s / / c , then 

xl =ae/(ae + af) (3.14) 

From equations 3.11 and 3.13 

p = xJ2oLf (3.15) 
In Figure 3.2(d) Nc is the total force (= 0.5fcbx) of the compressive stress 

in the concrete, and Ns is the force (= Asfs) in the tension steel. The distance 
between these two forces z is called the lever arm or moment arm, and 
zr = z/d. Thus 

z = d — x/3 or Zj = 1 — x1/3 (3.16) 

Resolving longitudinally Nc = Ns. If M is the bending moment resisted by 
the section then M = Ncz = Nsz, thus 

M = Ncz = 0.5fcbxz = (O^x^Jbd2 = Kbd2 (3.17) 

where K = 0.5fcxlZl = M/bd2. Also 
M = Nsz = AsfZld (3.18) 
Designers make use of the full permissible stresses of concrete and steel 

(unless other factors (for example deflection) dictate otherwise), and then the 
previous equations give useful design formulae. For example, for water 
containers from BS 5337 the permissible stresses in concrete of Grade 25 
and steel (plain bars, exposure Class A) are 9.15 N/mm2 and 85N/mm2, 
respectively, and ae = 15. Substituting these figures in the previous equa-
tions gives Of = 9.29, thus xx = 0.6175, zx = 0.7942 and p = 0.033 25. Then 
in equation 3.17 the coefficient 0.5fGxlzl = 2.2437N/mm2. 

The last paragraph did not make use of equation 3.12. This equation is 
most useful for obtaining xx when the section is fully defined. 
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Example 3.5. A cantilever wall of a shallow rectangular tank contains a 5 m head of 
water. Design the cross section at the bottom of the wall in accordance with the 
elastic method of BS 5337:1976. 

Distribution of water pressure on wall is triangular, its maximum being 
5 x 10 = 50kN/m2. For lm run of wall, bending moment at base of 
wall = (50/2) x 5 x (5/3) = 208.3 kNm/m. Let h = wall thickness. 

Using a Grade 25 concrete the permissible tensile concrete stress for designing 
against cracking is 1.84N/mm2, thus (1 x h2/6) = 208.3/1840 /. h = 0.824m, say 
0.8m as we have ignored the reinforcement. Using 50mm cover and 20mm 
diameter bars, d = 800 - 60 = 740 mm. 

Designing for strength, assume for speed that the permissible stresses of concrete 
and steel stated previously apply simultaneously, then using the previous formulae, 
for concrete 

M = 2244 x 1 x 0.742 = 1229 kNm 
This is more than required. For steel 

As = 208.3/(85000 x 0.7942 x 0.74)m2 = 4170mm2 

From Table 3.2 use 20 mm diameter bars at 75 mm centres. We need to check that 
the increased / for an uncracked section, due to the steel, makes h satisfactory. Had 
we taken h = 0.824 or more this last check would be unnecessary. 

7 = 1 x0.8 3 /12+ 0.004 19 x 14 x (0.74 - 0.4)2 = 0.04945 m4 

.-. M=^ 1840 x 0.04945/0.4 = 227.5kNm which is >208.3 

TABLE 3.2. 

No. of Cross-sectional areas of groups of bars, mm2 

bars 

1 
2 
3 
4 
5 
6 
7 
8 

28.3 
56.5 
84.8 
113.1 
141.4 
169.6 
197.8 
226.2 

50.3 
100.5 
150.8 
201.1 
251.3 
301.6 
351.9 
402.1 

78.5 
157.1 
235.6 
314.2 
392.7 
471.2 
549.8 
628.3 

113.1 
226.2 
339.3 
452.4 
565.5 
678.6 
791.7 
904.8 

201.1 
402.1 
603.2 
804.2 
1005 
1206 
1407 
1609 

314.2 
628.3 
942.5 
1257 
1571 
1885 
2199 
2513 

490.9 
981.7 
1473 
1964 
2454 
2945 
3436 
3927 

804.2 
1609 
2413 
3217 
4021 
4826 
5630 
6434 

9 254.5 452.4 706.9 1018 1810 2827 4418 7238 

10 282.7 502.7 785.4 1131 2011 3142 4909 8043 

dh,mm 6 8 10 12 16 20 25 32 

50 565.0 1005 1571 2262 4021 6284 9817 16085 75 
100 
125 
150 
175 
200 
250 
300 

377.0 
283.0 
226.0 
188.0 
162.0 
141.0 
113.0 
94.3 

670 
503 
402 
335 
287 
251 
201 
168 

1047 
785 
628 
524 
449 
393 
314 
262 

1508 
1131 
905 
754 
646 
565 
452 
377 

2681 
2011 
1608 
1340 
1149 
1005 
804 
670 

4189 
3142 
2513 
2094 
1795 
1571 
1257 
1047 

6545 
4909 
3927 
3272 
2805 
2454 
1963 
1636 

10 723 
8 042 
6434 
5 362 
4 596 
4021 
3217 
2681 

Pitch Cross-sectional areas of bars per metre, mm2 

of bars, mm 
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A more economical method of obtaining the above steel, because of 1229 being 
much greater than 208.3, is 

K = 208.3/(1 x 0.742)kN/m2 = 0.380N/mm2 

From Table 3.3, take zx as 0.885 

.". As = 208.3/(85 000 x 0.885 x 0.74)m2 = 3742mm2 

From Table 3.2, spacing of bars = (3140/3742) x 100 = 84 mm, say 80mm. 

As = 3140 x 100/80 = 3925 mm2 

TABLE 3.4. 

Portion 

Concrete 
Steel 

Totals 

A 

10 x 8 = 80 
0.3925 x 14 = 5.495 

85.50 

y 

4 
7.4 

Ay 

320 
40.7 

360.7 

Ay2 

1280 
291 

In 

10x83 /12 = 427 

2008 

Take this as our design and check precisely for h. Table 3.4 is as described in 
Section 3.2.3, using dm units for convenience. Therefore 

x = 360.7/85.5 = 4.219 dm = 0.4219 m 

/ = 2008 - 85.5 x 4.2192 = 486.1 dm4 = 0.048 61 m4 

M = 1840 x 0.048 61/(0.8 - 0.4219) = 236.6kNm 
which is >208.3. Design could be recommenced using a slightly thinner wall, but 
the reinforcement would be increased slightly so the alteration in cost would be 
fairly insignificant and may be more or less. 

The deflection of the top of a container wall like this can be very important, 
particularly near corners of rectangular tanks, and the above / is suitable for use in 
such elastic analyses because there are more uncracked than cracked sections. 
Although the value of h was determined so that the wall would not crack, there will 
be some cracks because of shrinkage, temperature changes and small relative 
settlements—the design mainly ensures that cracks will be few and small. 

The vertical stress due to the self-weight of the wall has been ignored because it is 
relatively small compared to the flexural tensile stress and it is compressive. 

Example 3.6. A slab with h = O.Sm, d = 0.74 m, and 20 mm diameter bars at 80 mm 
centres as tension reinforcement withstands a bending moment of 208.3 kNm/m. 
Taking ae = 15, determine the stresses in the steel and the extreme fibre of the 
concrete. 

Consider lm width of slab. From Table 3.2, As = 3140/0.80 = 3925 mm2, thus 
p = 0.003 925/(1 x 0.74) = 0.005 304. From equation 3.12 

X l = -0.079 56 + v(0.079 562 + 2 x 0.079 56) = 0.4863 
From equation 3.16, zt = l - 0.4863/3 = 0.8379. From equations 3.17 and 3.18 

fc = 2 x 208.3/(0.4863 x 0.8379 x 1 x 0.742)kN/m2 = 1.867 N/mm2 

fs = 208.3/(0.003 925 x 0.8379 x 0.74)kNm2 = 85.59 N/mm2 

(This demonstrates that the final design of Example 3.5 is reasonable.) 
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3.3 Elastic theory for shear stresses 

From the elastic theory for bending it is possible to compute the distri-
bution of horizontal shear stresses. From classical elastic theory, the shear 
force is equal to the rate of change of the bending moment along a beam, 
and for this to occur the beam has to withstand horizontal shearing 
stresses. The section of a reinforced concrete beam shown in Figure 3.4(a) is 

(NC + 8NC) 

[Ns + 8Ns) 

(b) 

A/ci 
AB 

CD 
ly2 

A ' B ' 

C'D' 

-INC]+8NC]) 

(Ns* 8 /V s 

Figure 3.4 

(c) 
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symmetrical about a vertical axis. The distributions of bending stresses for 
two sections distance Sx apart are shown in Figure 3.4(b), the bending 
moments causing the distributions between M and (M + 3M) respectively. 
The horizontal shear stress will now be determined at AB. The concrete 
stress on the small element of area bdy is given by 

fcl = (M/I)y (3.19) 

at one section of Figure 3.4(b) and at the other section by 

fci+Sfci=l(M + 6M)/r\y (3.20) 

Subtracting these quantities 

Sfel = (SM/I)y (3.21) 

Forces on strip at the two sections are 

JVei =fdbSy (3.22) 
Ncl + 5Ncl = (fcl + Sfcl)bSy (3.23) 

Subtracting these quantities 

SNcl = Sfclb3y (3.24) 

Figure 3.4(c) shows the same two sections as Figure 3.4(b). It can be seen 
that the plane ABA'B' has to resist shear stresses due to all such quantities 
as (Ncl + SNcl) — Ncl = SNcl. Hence the total shear stress resisted by plane 
ABA'B' is given by 

v = {ZSN^yfaSx) (3.25) 

Substituting from equations 3.24 and 3.21, equation 3.25 becomes 

v = VL(6M/l)yb . Sy^b.Sx) (3.26) 

Now from the well-known theory of bending, shear force 

V = SM/Sx (3.27) 

Therefore from equations 3.26 and 3.27 

v = [I,(V5x/I)yb . Sy^b.Sx) = (V/IbJXby. Sy (3.28) 

Or more precisely 

v = (V/Ibi) by.dy (3.29) 
Jyi 

This is the horizontal shearing stress at a point distance yx from the 
neutral axis XX. From classical theory of elasticity it is also the vertical 
shearing stress at this point. Equation 3.29 has been derived considering the 
rate of change of compressive stress in the concrete along the beam, and 
only concerns sections above the neutral axis. Considering a plane CDC'D' 
below the neutral axis, the horizontal shear stress resisted by this plane 
considering forces below it is given by 

v = [(AT, + SNS) - ATJ/(fc25x) = (l/b2)(dNJSx) (3.30) 
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Now from Section 3.2.4, M = Nsz and combining this with equation 3.27 

V = SM/dx = z(SNJdx) (3.31) 

From equations 3.30 and 3.31 

v = V/zb2 (3.32) 
This equation is independent of y2, hence the shear stress (vertical or 
horizontal) is constant below the neutral axis. 

Equations 3.29 and 3.32 are expressions which apply to any section 
which is singly reinforced and symmetrical about its vertical axis. Applying 
these to a rectangular section as shown in Figure 3.2,bl=b1 = b. Equation 
3.29 therefore becomes 

v = j{Xy.dy = ^ll(x)2-y2^ (3.32a) 

This gives a parabolic distribution of stress above the neutral axis and the 
maximum value is at the neutral axis when yt = 0, thus 

maxv = V(x)2/(2I) (3.33) 
Now from equations of Sections 3.2.3 and 3.2.4, 

M = Ncz = (fJ2)xbz (3.34) 
M=fc(I/x) (3.35) 

Eliminating M between equations 3.34 and 3.35 
(x)2/(2I) = l/(bz) (3.36) 

Substituting this in equation 3.33 
max v = V/zb (3.37) 

Below the neutral axis, applying equation 3.32, 
v = V/{zb) (3.38) 

The distribution of shear stress is therefore as shown in Figure 3.2(e). As 
concrete is much stronger in compression and shear than it is in tension, the 
principal tensile stresses, often known as the diagonal tensile stresses, are the 
criterion as regards failure due to shearing forces. If the principal tensile 
stresses due to combining the stresses shown in Figures 3.2(d) and (e) are 
computed, below the neutral axis, there are no longitudinal concrete stresses 
in the diagram. As the horizontal shear stresses by classical theory have 
equal complementary vertical shear stresses, these combine to give principal 
diagonal tensile stresses at 45° to the horizontal and equal in magnitude to 
the horizontal shear stresses. Above the neutral axis the longitudinal 
compressive stresses reduce the diagonal tensile stresses resulting from 
combining complementary horizontal and vertical shear stresses. Diagonal 
tensile stresses help shrinkage stresses in causing cracking. This diagonal 
cracking is sometimes simultaneous with shear failure for a beam with no 
web reinforcement. 

For T-beams and beams with compression reinforcement, at and below 
the neutral axis the above applies, that is the maximum diagonal tensile 
stress is constant and equal to V/(zb). 
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Example 3.7. From the previous discussion the distribution of horizontal (or 
vertical) shear stress in the concrete for the section in Figure 3.3(a) of Example 3.4 is 
as shown in Figure 3.3(b), being parabolic for GH, JK and LM. Determine the shear 
stresses represented by points H, J, K, L, M and N, if the shear force is 60 kN. 

For points M and N, that is maximum at neutral axis XX, using equation 3.29 
(and figures from Example 3.4) it is simpler to consider the section below the neutral 
axis for the moment of area term 

v = [0.06/(0.016 34 x 0.16)] x 0.044 18 x (0.847 - 0.3179) MN/m2 

= 0.5365 N/mm2 

As explained previously this is equal to V/(zb). Thus alternatively from equation 
3.10 

z = 1.634 x 106/[441.8(84.7 - 31.79)] cm 

= 699 mm 

then 

i? = 60000/(699 x 160) 

= 0.5365 N/mm2 

For approximate preliminary design one would perhaps have guessed that the 
centre of compression was at about half the depth of the T-flange giving 
z = 847 — 75 = 772 mm, about 10% error on the dangerous side. The following 
shear stresses are not needed by the designer but are of academic interest. 

For point H, using equation 3.29 

0.06 
v = x 0.45 x 0.05(0.3179 - 0.025) MN/m2 

0.016 34x0.45 ' 

= 0.053 78 N/mm2 

For point J 

0.06 
v = 0.053 78 + x 0.017 59 x (0.3179 - 0.05) 

0.016 34x0.45 
= 0.053 78 + 0.03845 
= 0.092 23 N/mm2 

For point K 
0.06 

v = x 0.45 x 0.15 x (0.3179 - 0.075) + 0.038 45 
0.016 34x0.45 ; 

= 0.1722 N/mm2 

For point L 

v = 0.1722 x 0.45/0.16 = 0.4843 N/mm2 

3.4 Shear reinforcement 

Generally speaking experimental research1 shows that if design is based on 
ultimate strength in shear with suitable load factors, then diagonal crack 
widths at working loads are acceptable. The ultimate shear forces carried by 
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beams with plain webs have been substituted, by researchers, in equation 
3.38 to obtain ultimate values for v. The latter have varied with the many 
possible variables. Of these variables CP 110 has selected the percentage of 
longitudinal reinforcement 100AJ(bd) (where d = effective depth) as the 
most important. CP 110, Table 5, gives ultimate values of V/(bd). It has 
made the simplification of assuming the lever arm as a constant. As the 
science is not very accurate this is a not unreasonable assumption. When 
V/(bd) exceeds these values shear reinforcement must be provided to carry 
the excess shear force. However, except where V/(bd) is less than half these 
values, CP 110 requires nominal links to be provided throughout the 
span1,2 so that for mild steel links AsJsy = 0.002fot, where ^ s v is the cross-
sectional area of the two legs of a link, bt is the breadth of the beam at the 
level of the tension reinforcement, and sv is the spacing of the links >0.75d. 
According to Ref. 4 this should be no different for high-yield steel. 

For say long continuous beams where temperature stresses assist 
shrinkage and diagonal tensile stresses, for want of research to the contrary, 
the writer2,4 would suggest always using the above nominal links through-
out the spans. 

No matter how much shear reinforcement is provided, V/(bd) must not 
exceed the values of Table 6 of CP 110, because steel resists diagonal 
tension but not the diagonal compression. 

Shear reinforcement can be links and/or inclined bars. CP 110 favours a 
truss-analogy method for designing these and adding their ultimate strength 
to the ultimate shear strength of the concrete from its Table 5. Research 
shows that beams do not act in this way (e.g. cracks prior to failure are 
inconsistent with it) but that the ultimate strength design is conservative 
with this method. 

3.4.1 Design of shear reinforcement by CP 110 truss analogy 

The CP 110 truss-analogy method has been judged conservative by research 
chiefly concerned with vertical stirrups, and stirrups1 and bars inclined at 
45° to the horizontal. Some work with reinforcement at 30° to the horizon-
tal also supports the method. Outside this range one should seek exper-
imental justification. In practice most stirrups are vertical and most bars 
inclined at 45°. 

Bars belonging to the main tensile reinforcement are bent up at points 
such as C and E in Figure 3.5(a). Alternatively, independent shear bars (or 
stirrups) may be used as shown in Figure 3.5(b). A beam is considered to be 
a statically determinate truss as illustrated in Figure 3.5(a). The longitudinal 
tension reinforcement is analogous to tension members such as AC and CE 
in Figure 3.5(a); the concrete resisting longitudinal compression (due to 
bending) is analogous to compression members such as BD and DF; the 
bent-up bars are analogous to inclined tension members such as BC and 
DE, and the inclined compression members such as AB, CD and EF, 
required to complete the truss analogy, are provided by the concrete of the 
web. The forces in the analogous truss members AC, BC, DC and EC are as 
shown, namely Ns2, Nsv, Nc and Nsl, respectively. A vector diagram is 
drawn for these forces in Figure 3.5(c); as the bending moment increases for 
sections further away from the supports, Ns l will be greater than Ns2 and 
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Top reinforcement 

Bottom reinforcement 

(b) 

Figure 3.5 

(d) 
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their difference is represented by the vector KM; forces Nc and Afsv are 
represented by the vectors LK and LM respectively. If the area of tensile 
reinforcement which is analogous to member CE is As, and the area of the 
bars bent up is \j/As, and if the bent-up bars are required to develop their 
full stress /sv, then Nsy = ij/Asfsy. At the same time, if the stresses in the 
members CA and CE are not to exceed fs, they are designed so that 
Nsi = Asfs and Ns2 = (As — ij/As)fs. Hence, referring to Figure 3.5(c) the 
vector LM = ^4S/8V and the vector KM = Asfs - (As - ij/As)fs = \//Asfs. In 
the case of mild steel reinforcement, fsy=fs and therefore LM = KM; 
consequently in the vector diagram LKM, 

OL = OLX (3.39) 

For high-yield steel,4 using/sv = 250N/mm2 (CP 110 would say 425) and 
fs = say 460N/mm2, LM = 250$ As and KM = 460$ As,

 a n d f r o m t h e vector 
diagram 

sin a/sin a t = LM/KM = 250/460 (3.40) 

The inclined compression members are assumed to be sufficiently strong 
for all requirements. They are safeguarded by compliance with Table 6 of 
CP 110. By Ritter's Method of Sections, assume the truss to be cut at the 
section xx shown in Figure 3.5(a). Then resolving vertically for, say, the left-
hand side of this section 

Nsv sin p = Shear force at xx = V (3.41) 

The principle of the superposition of trusses can be applied. For example, 
the system shown in Figure 3.5(d), where sv = AC/2, is assumed to be twice 
as strong as the system of Figure 3.5(a); hence from equation 3.41 

V = 2NsysinP (3.42) 

The inclined bars shown in Figures 3.5(a) and (d) are sometimes described 
as being in single-shear and double-shear, respectively. Extending this 
principle of superposition for any value of sv in Figure 3.5(d), equation 3.42 
becomes 

V = (AC/sy)Ns,sinP (3.43) 

From triangle ABC 
AC = z(cota + cot£) (3.44) 

This is traditional international truss analogy, but CP 110 says z = d 

. . AC = d(cot a + cot p) (3.44a) 

Hence equation 3.43 becomes 

V = (Nsvd/sv) sin 0(cot a + cot P) (3.45) 

Applying equation 3.45 to mild steel reinforcement and hence using the 
equation 3.39, also from triangle KLM in Figure 3.5(c), 

a + a i + i S - 180° (3.46) 
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Therefore from equation 3.39 

a = 90°-03/2) (3.47) 

Substituting this in equation 3.45 

V = (iVsvd/5v) sin j8[tan(j8/2) + cot p] 

= (Nsv^/sv)[2sin2(jS/2) + cosiS] 

.'. V = Nsvd/sv (3.48) 
Applying equation 3.45 to high tensile reinforcement, and hence using 

equation 3.40 

sina = (250/460) sin a t 

Therefore from equation 3.46 

sin a = (250/460) sin(180° - fi - a) 

.'. 1.84 sin a = sin p cos a + cos (5 sin a 

.'. cot a = (1.84-cos jS)/sinj8 (3.49) 

Substituting this in equation 3.45 

V = (Nsyd/sy)(l .84 - cos fi + cos /?) = 1M(Nsyd/sv) (3.50) 

For inclined bars CP 110 recommends the truss analogy as described, but 
using a < 45°. For stirrups CP 110 assumes that x = d and a = 45°, so that 
equation 3.45 becomes 

V = (Nsvd/sv)(sin fi + cos P) (3.51) 

From equation 3.51 and substituting Afsv = AsvfyJym = /lsv0.87/yv 

^svAv = K/[0.87/yv(sin p + cos P)d~] (3.52) 

For vertical stirrups P = 90°, thus 

AJsy = F/(0.87/yvd) (3.53) 

Table 3.5 (upper half) is useful for designers, uses equation 3.53, and 
refers to mild steel stirrups with /yv = 250N/mm2, from Table 2.10. 
According to Ref. 4 this also applies to all other stirrups. However, for 
those who wish to use CP 110 for cold deformed hot-rolled high-yield steel 
stirrups, fyy = 410N/mm2, the lower half of Table 3.5 is provided. This 
would be reasonable also for the use of deformed cold-worked high-yield 
steel stirrups, because CP 110 limits/yv to 425 (only 3.7% more than 410). 

For mild steel bars bent up at 45°, from equation 3.39, a = CLX = 67.5°. 
Table 3.6 gives shear resistances for single-shear systems for single bars, 
using equation 3.41 and l/ym = 0.87. Ref. 4 would use/yv = 250N/mm2 for 
all other bars. CP 110 allows /yv = 410-425 N/mm2 for deformed high-yield 
steel bars and Table 3.6 gives shear resistances for/yv = 410 N/mm2 which is 
all right for all deformed high-yield bars. 

Example 3.8. A beam of T-section has a rib of breadth 250 mm, d = 600 mm and 
100AJ(bd) = 1.2. Design links to resist an ultimate shear force of 200 kN if the 
characteristic strength of concrete = 25 N/mm2. 
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TABLE 3.6. 

Single bars in single shear 

/ y v , N / m m 2 i m m 10 

250 K, kN 12.08 

410 KkN 19.81 

at 45°, 1/7 

12 

17.39 

28.53 

m = 0.87 

16 

30.92 

50.71 

20 

48.29 

79.24 

25 

75.49 

123.8 

32 

123.7 

202.9 

V/(bd) = 0.2/(0.25 x 0.6)MN/m2 = 1.333 N/mm2, which is satisfactory from Table 
6 of CP 110 (see Section 3.4). From Table 5 of CP 110 (see Section 3.4) shear 
resistance provided by concrete web alone 

= [0.65 + (1.2 - 1.0)(0.85 - 0.65)] x 250 x 600N = 103.5 kN. 
Hence shear reinforcement is required and it has to resist 200 — 103.5 = 96.5 kN. 
Using stirrups the V/d required is 96.5/0.6 kN/m = 160.8 N/mm. From Table 3.5 use 
6 mm diameter mild steel two-arm stirrups at 75 mm centres (164 > 160.8). 

Example 3.9. A beam of rectangular cross section has b = 300 mm, d = 700 mm, and 
\00AJ(bd) = 1.87. The ultimate shear force it has to resist is 642kN. Design a 
suitable shear reinforcement system. Assume characteristic strength of concrete in 
compression = 20 N/mm2. 

V/bd = 0.642/(0.3 x 0.7) MN/m2 = 3.06 N/mm2, which is satisfactory from Table 6 
of CP 110 (see Section 3.4). 

From Table 5 of CP 110 (see Section 3.4) shear resistance provided by concrete 
web alone 

= [0.8 + (0.8 - 0.6) x (1.87 - 1.0)] x 300 x 700N = 204.5 kN. 
Hence shear reinforcement is required and it has to resist 642 — 204.5 = 437.5 kN. 
According to CP 110 the shear force taken by bent-up bars must not exceed 
0.5 x 437.5 = 218.8kN. Using pairs of 20mm diameter bent-up mild steel bars in 
double shear, from Table 3.6 this is worth 48.29 x 4 = 193.2 kN (< 218.8). Thus the 
amount to be resisted by stirrups is 437.5 -193.2 = 244.3 kN, giving 
V/d = 244.3/700 kN/mm = 349 N/mm. Using mild steel links with two arms, from 
Table 3.5, 10mm diameter links at 90mm centres give V/d = 379.6 N/mm (> 349). 

3.5 Bond' stresses due to shear (or flexural bond) 

The theory expounded concerning shear stresses (Section 3.3) assumes 
perfect adhesion of the concrete to the tensile reinforcement, and therefore 
involves 'bond stresses' being developed between the steel and the concrete. 
Referring to Figure 3.4(b), the change of force in the tensile reinforcement 
between the sections shown is (Ns + SNS) — Ns = SNS. This can only be 
resisted by bond stresses which act on the contact area between the steel 
and the concrete of Sxl,us. Hence the bond stress at this locality is given by 

/bs = dNJ(dxXus) = (l/Lu^dNJdx) (3.54) 
where Xus = sum of the perimeters of bars of tensile steel. Now 

V = dM/dx = (d/dx)(Nsz) = z(dNJdx) (3.55) 
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Hence from equations 3.54 and 3.55 

/bs = V/(zZus) = V/(ZldXus) (3.56) 

These bond stresses are known as local bond stresses and ultimate values 
of V/(dI,us) = z1fhs are recommended for various types of concrete in Table 
21 of CP 110, even though/bs is derived from the elastic theory. Research 
on ultimate values has been related to F/(ZZMS), however, and as the results 
are not very precise it is not unreasonable for CP 110 to take zx as 
constant. Designs need to ensure that ultimate local bond stresses are 
nowhere exceeded and this is the only requirement in this connection; such 
bond stresses are local effects and do not for instance require any 
anchorage. 

Example 3.10. The maximum tensile reinforcement in a beam consists of four 25 mm 
diameter plain bars, and d = 600 mm. The maximum ultimate shear force im-
mediately adjacent to a support is 140kN. If the ultimate local bond stress of Table 
21 of CP 110 is 2N/mm2 (= Zj/JJ, what is the least number of the reinforcement 
bars which must continue through to the support? Note that CP 110 calls our z{fhs 
just/bs. 

Applying equation 3.56, Zws = 140000/(2 x 600) = 116.7 mm. The circumference 
of one 25mm diameter bar = n x 25 = 78.5mm. Number of bars required to 
continue through to support = 116.7/78.5 = 2, to nearest integer. 

3.6 Torsion 

Torques are usually calculated assuming a structure to be elastic and 
uncracked. This is true neither at working nor at ultimate loads, but there is 
no reliable alternative to this procedure. The monolithic nature of in-situ 
construction means that most sections inevitably experience torques, even if 
only very small, at some time or other. The experience of the designer usually 
enables him to provide for minor torques when detailing the reinforce-
ment. For example, the external beams to a floor might be given nominal 
stirruping of say 10 mm diameter at 230 mm centres, as opposed to say 
6 mm diameter at 300 mm centres for the internal beams (assuming the 
possibility of torques on the internal beams is negligible, that is a low ratio 
of live to dead load). This practice is obviously satisfactory in that torsional 
failures are extremely rare, yet the majority of structures are never over-
loaded and have been designed to more conservative past codes. CP 110 
indicates that where torsional resistance of members can be ignored in 
analysis of an indeterminate structure, only nominal shear reinforcement 
(Section 3.4) is required for torsion. If torsional resistance needs assessing, 
CP 110 requires the torsional rigidity, G x C, of a member to be such that 
G = 0.4£c and C, the torsional moment of inertia, equal to half polar 
second moment of area based on the gross concrete sections. This makes 
some allowance for the fact that plane cross sections warp under torsion, 
and the classical theory assumes plane sections remain plane. Torsion 
failures are very inconsistent and this leads to divergent views upon design 
by various researchers. In practice, torques often occur simultaneously with 
shear forces and bending moments, thus complicating the problem still 
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further, especially as the design of members in shear is a difficult problem in 
itself. In this respect it is good practice to create structural systems so that 
torsion is always a subsidiary and negligible effect. 

Design has been based on the classical work of St. Vernant5 modified in 
the light of experimentation. The maximum shear stress due to torsion for a 
rectangular section is at the middle of the longer sides5 according to St. 
Vernant, whereas CP 110 assumes a plastic stress distribution, that is a 
uniform shear stress given by 

^ = 6r/[^ i n(3/ I m a x- / l m i n)] (3.57) 

where T is the torsional moment due to ultimate loads, hmin is the smaller 
dimension of the section, and /imax is the larger dimension of the section. 

T-, L- or I-sections may be treated by dividing them into their com-
ponent rectangles, so as to maximise the function ^(h^inhmax) which will 
generally be achieved if the widest rectangle is made as long as possible. 
The torsion shear stress carried by each component rectangle can be 
calculated by treating them as rectangular sections subjected to a torsional 
moment of 

T T ^ A a x A ^ m i A a x ) ] 

Where the torsion shear stress, i?t, exceeds the value vt from Table 7 of 
CP 110, reinforcement should be provided. In no case should the sum of the 
shear stresses resulting from shear force and torsion (v + vt) exceed the value 
vtu from Table 7 of CP 110 nor, in the case of small sections (yl < 550 mm), 
should the torsion shear stress, vt9 exceed vtuy1/550, where yl is the larger 
dimension of a link in mm. 

Torsion reinforcement should consist of rectangular closed links together 
with longitudinal reinforcement. CP 110 requires this reinforcement to be 
additional to any requirements for shear or bending and to be such that: 

0.87/yv(Asv/5v) ^ T/(0.*xiyi) (3.58) 

Asl ^ (AJsJfMixt + yi) = [TAO.Sx^^CUi + *i)/0.87/yl] (3.59) 

where Asv is the area of the legs of closed links at a section, Asl is the area of 
longitudinal reinforcement, /yv is the characteristic strength of the links, fyl 

is the characteristic strength of the longitudinal reinforcement, sv is the 
spacing of the links, xx is the smaller dimension of the links, and y{ is the 
larger dimension of the links. 

In the above formulae fyy and fyl are not to be taken as greater than 
425N/mm2. (Ref. 4 would say 250N/mm2.) 

Example 3.11. Design links for the section shown in Figure 3.2, hmax = 488 mm, to 
resist an ultimate torsional moment of 3 kN m combined with an ultimate vertical 
shear force of 60kN. Concrete is of Grade 25, cover is 25 mm (xx = 100mm, and 
y^ = 438mm), and /yv = 250N/mm2. If fyl = 425N/mm2, what extra longitudinal 
reinforcement is required? 

From equation 3.57, 
t?t = (6x 0.003)/[0.152(3 x 0.488 - 0.15)] MN/m2 = 0.6088 N/mm2. 
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From Table 7 of CP 110, this is >0.33 so that torsional reinforcement is required. 

V/(bd) = 0.06/(0.15 x 0.45) MN/m2 = 0.8889 N/mm2 

vx + V/(bd) = 1.498 

This is in order, as Table 7 of CP 110 limits this to 3.75. 
As yx < 550mm, vt must not exceed 3.75 x 438/550 = 2.99N/mm2, which is all 

right as vt = 0.6088 N/mm2. 

From equation 3.58, 

0.87/yv(yl8V/sv) = 3/(0.8 x 0.1 x 0.438)kN/m = 85.62 N/mm 

Using Table 3.2, W0AJ(bd) = (100 x 982)/(150 x 450) = 1.455. From Table 5 of CP 
110, V/(bd) = 0.65 + 0.2 x 0.455 = 0.741 N/mm2. 

Hence shear reinforcement (two-arm links) is required to resist a value of 
V/(bd) = 0.8889 - 0.741 = 0.1479 N/mm2. 

Also from Table 6 of CP 110, 0.741 < 3.75 and is therefore satisfactory. 

V/d = 0.1479 x b = 0.1479 x 150 = 22.19 N/mm 

Total V/d = 85.62 (see equation 3.53) + 22.19 = 107.8 

From Table 3.5, use 8 mm diameter two-arm links at 200mm centres. From 
equation 3.59, 

Asl = 85.62(100 + 438)/(0.87 x 425) = 124.6mm2 

Refer to CP 110, as yl > 300 mm, use two bars in the top corners of the stirrups, two 
at hall depth (of y{) of stirrup (wired to inside of stirrup) and two in the bottom 
corners of the stirrups. The latter cannot be catered for by just increasing the size of 
the tension steel in this case, as the cover would be inadequate. Neither can a bar be 
placed between these tension bars because of the spacing required between bars 
(assuming /i = 19 mm). The bottom two bars for torsion will therefore be placed 
above the tension bars, a clear distance of 19 x 2/3 = 13 mm above them. Thus, 
using Table 3.2, six 6 mm diameter bars will be used as the longitudinal torsion bars. 

Example 3.12. An L-shaped beam has: depth and overall breadth of top flange 
120 mm and 300 mm, respectively, thickness and overall depth of web 100 mm and 
600 mm, respectively. The ultimate vertical and horizontal shear forces are 20 kN 
and 10 kN, respectively and the ultimate torque is 2kNm. Determine the reinforce-
ment required for resisting shear and torsion. Concrete is of Grade 30. Cover to 
longitudinal steel is 20 mm. 

Taking the gross web as one rectangle, 

2*iiAn« = l3 x 6 + 1.23 x (3 - 1) = 9.46dm4 

Taking the gross flange as one rectangle 

^miAiax = 1.23 x 3 + l3 x (6 - 1.2) = 5.184 + 4.8 = 9.984dm4 

Hence the latter is the way to consider the section as two rectangles. 
For the gross flange, torque = 2 x 5.184/9.984 = 1.038 kNm. 
For the web, torque = 2 - 1.038 = 0.962kNm. 
From equation 3.57: 

6x0.001038 
0.122(3x 0.3 - 0 . 1 2 ) ' 

6x0.000962 

for gross flange vt = A i l 2 n r> i—AT^T M N / m 2 = 0.5545 N/mm2 

for web v. = — " " "' ~— MN/m2 = 0.4307 N/mm2 

1 0.12(3x 0.48 -0 .1 ) ' 
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From Table 7 of CP 110, these are >0.37 so that torsional reinforcement is 
required for both gross flange and web. 

For gross flange 
V/(bd) = 0.01/(0.12 x 0.27) = 0.3086N/mm2 (assuming d = 300 - 30 = 270mm). 
For web 
V/(bd) = 0.02/(0.1 x 0.57) = 0.351 N/mm2 (assuming d = 600 - 30 = 570mm). 
For gross flange 
vt+ V/{bd) = 0.8631 N/mm2. 
For web 
vt+ V/{bd) = 0.782 N/mm2. 

These are in order as Table 7 of CP 110 limits this value to 4.1. 
For gross flange 
yl = 300-40 = 260mm. 
For web 
yt =600-40 = 560 mm. 
As yl < 550 for the gross flange, vt for it must not exceed 4.1 x 260/550 = 

1.938 N/mm2, which is all right as vt = 0.5545 N/mm2. 
The design is continued, treating the gross flange and web, respectively, as in 

Example 3.11, as though each were an independent member. 

3.7 Plastic analysis 

A material is in a plastic condition when stresses cause permanent defor-
mations, that is when stress is no longer directly proportional to strain (as 
in Hooke's law). A section of a beam experiences such conditions when 
realising its ultimate moment of resistance. The plastic method of design 
predicts the ultimate moment of resistance, and this is required to equal the 
ultimate bending moment derived from the working loads multiplied by 
suitable load factors, called the design loads by CP 110. 

3.7.1 Assumptions of plastic design methods 

Plastic design concerns two ideas. Firstly, with regard to the assessment of 
the bending moments in a redundant frame, plasticity is the ability of highly 
stressed sections to what might be termed yield, and allow a redistribution6 

of the bending moments towards failure. Secondly, plastic design can be 
employed in the design of individual sections of structural members. In the 
latter instance the following assumptions are employed. 

It is assumed that plane sections subjected to bending remain plane after 
bending, which means that the distribution of strain is linear. Some 
relationship is then assumed between this strain, and stress. This is where 
the methods differ. Concrete is assumed to have no resistance in flexural 
tension, perfect bond is assumed between the steel and the concrete, the 
depth of the steel reinforcement is assumed to be small compared with its 
effective depth, and normally temperature and shrinkage stresses are ig-
nored in the stress analysis of sections. 
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3.7.2 Plastic design in bending 

The term balanced design refers to the situation when the beam is designed 
to fail simultaneously in flexural compression and tension. Under-reinforced 
sections will fail in flexural tension and over-reinforced sections will fail in 
flexural compression. An under-reinforced section fails owing to yielding (or 
straining excessively in the case of high-yield steel) of the tensile reinforce-
ment; this causes the cracks to open so that the depth of the beam available 
to resist flexural compression is reduced, and final collapse occurs by the 
crushing of the compression zone. This is not, however, a flexural compres-
sion failure, since the failure has actually been precipitated by the in-
adequacy of the tensile reinforcement and the final failure in apparent 
flexural compression is a secondary effect; it could be described as part of 
the disintegration of the beam after failure. 

Figure 2.10 shows a typical relationship between stress and strain for 
concrete in compression. As described in Section 2.3.17, this will vary in 
shape according to the speed of loading, the strength of the concrete, etc. 
Considerable plasticity is experienced towards failure, i.e. stress is not 
linearly proportional to strain near failure. It is assumed that the distri-
bution of strain due to bending is linear. The strain is therefore pro-
portional to the distance from the neutral axis. Curves such as those 
illustrated in Figure 2.10 can therefore be plotted on the axes O/and Oy as 
shown in Figure 3.6. For example Figure 3.6(a) illustrates the elastic stress 
distribution at working loads at a section where there is a crack. For higher 
loads the stress distribution becomes as shown in Figure 3.6(b), and just 
before failure the stress distribution will be as shown in Figure 3.6(c). The 
point denoted by g is at the same position on all of Figures 2.10, 3.6(a), (b) 
and (c). Different scales are used for the strains plotted on the axes Oy. The 
diagrams ehgO in Figure 3.6 are termed stress blocks. 
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Figure 3.6 

For estimating the ultimate moments of resistance of beams, the shape of 
the stress block just before failure must be known. This is assessed 
empirically, and shapes suggested for the stress block just before failure 
have included parabolas, cubic parabolas, trapeziums, ellipses, and many 
unusual shapes; some theories have even assumed that part of the concrete 
just below the neutral axis resists tensile stresses. This idea is not justified 
by experiments, because the cracks penetrate too far so as to reduce the 
compression zones at the critical sections. C. S. Whitney, in 1937, suggested 
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considering the stress block as equivalent to a rectangular shape. This leads 
to a simple theory which has often been found to be more accurate than 
other methods, for example see Ref. 7. 

3.7.3 Plastic design of 'under-reinforced' rectangular sections 

The distribution of stress at failure is shown in Figure 3.7. A general shape 
is considered for the stress block, the average compressive stress of which is 
equal t o / c m , and the centroid is at a depth of k2x. Equating longitudinal 
forces, Nc = Ns 

Jem*" = ASJS 

.-. x = AsfJ(fcmb) (3.60) 
Taking moments about the line of action of Nc the ultimate resistance 
moment 

Mu = Nsz = Ns(d-k2x) (3.61) 

Substituting for x from equation 3.60 this becomes 

Mu = J V s [ ( i - M . / s / 0 ] 
.'. Mu = AMI - k2pfjfcm\ =fpbd\\ - k2pfjfcm] 

where p = AJ(bd). Whitney and the simplified method of CP 110 use a 
rectangular stress block such that/ c m = 0.85/c' (where /c ' = U.S.A. cylinder 
strength ^ 0.84/cu) and 0.4/cu, respectively, k2 = 0.5 for both, and/ s is /y for 
Whitney and/y/ym for CP 110 where ym = 1.15. With the equivalent (unlike 
actual) stress block of Whitney the depth of the stress block xx is less than 
the depth of the neutral axis x. The above equations would use xx instead of 
x in this instance. Whitney gives a good prediction of how a beam will 
actually fail.7 The coefficients quoted for Whitney's theory in this chapter 
assume fcu ^ 33.33 N/mm2. For higher values of/cu refer to Section 8.4.5. 
The simplified rectangular stress block of CP 110 is chosen to have x{ = x. 
CP 110 gives a reliably conservative prediction of failure, distorted to 
ensure that flexural tension rather than compression failures will occur. The 
former failure gives plenty of warning—large deflections and cracks before 
failure—whereas the latter failure is very sudden. 

The method claimed by CP 110 to be more precise than its simplified 

(3.62) 
(3.63) 

\k7X 

A/c 

Figure 3.7 
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method uses a stress block as shown in Figure 3.8(b) and the distribution of 
strain shown in Figure 3.8(a), where el = 0.0035. Tests over many years 
show that the maximum extreme fibre compressive strain realised before 
failure in flexure is about this figure. CP 110 specifies e0 = {y/fcu}/5000, 
fl = 0.45/cu and curve AB as a parabola. Thus, considering the shape ABD, 
its area is AD x BD/3, C is its centroid and CE = BD/4. The compression 
force Nc is 

fcmxb - (area ABGF)fo 

•'• /cm* = a r e a ADGF — area ADB = / 1 x —/iX0/3 

.'. fcm = / i [ l - *0/(3x)] = / i [ l ~ fi0/(3fii)] 

.". /c« = 0.45/cu[l - {V(/cu)}/52.5] (3.64) 
Taking moments for compression force about F 
Nck2x = b[(area ADGF)0.5x - (area ADB)(x - CE)] 
fcmxk2x = O.S^x2 - (/iX0/3Xx - x0/4) 
• '. k2 = (fJLJlO.5 - {X0/(3X)}{1 - x0/(4x)}] 

= {0.45/cu/(2/cm)}[l - {280/(3£l)}{l - e0/(4£l)}] 
.-. k2 = (0.225fJfcJll - {(V/CU)/26.25}[1 - (V/c»)/70]] (3.65) 
Equations 3.64 and 3.65 are the same as given on page v, Appendix A of 

Part 2 of CP 110, and are the basis of the design charts. 

3.7.4 'Balanced' plastic design of rectangular sections 

The equations of Section 3.7.3 apply. With these equations, as As increases 
x increases and Mu increases, but experimentally we find that x cannot 
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increase beyond a certain amount and increasing the reinforcement further 
gives no increase in Mu, the section being known as over-reinforced. When 
x has its maximum value, and As corresponds to this, the section is in its 
'balanced design' condition, the maximum flexural compression being bal-
anced by the minimum i4s to give a maximum Mu for the section. 

For balanced design Whitney gives x1 = 0.537d, and CP 110, for design 
purposes, gives x = 0.5d. Using the simplified CP 110 method, from Section 
3.7.3, equation 3.60 becomes 

0.5<* = AJJ(0Afcub), :. p = 0.2(/cu//s) (3.66) 

Equation 3.61 becomes 

Mu = AJs(d - 0.5 x 0.5d) = 0.15Asfsd (3.67) 

and substituting for pfs from equation 3.66 

Mu = 0J5pfsbd2 = 0A5fcubd2 = K,bd2 (3.68) 

TABLE 3.7. 

/ v , 

N/mm2 

250 
410 
460 
425 
485 

* i > 

/., 
N/mm2 

217 
357 
400 
370 
422 

N/mm2 

20 

1.843 
1.120 
1.000 
1.081 
0.948 

3.0 

25 

2.304 
1.401 
1.250 
1.351 
1.185 

3.75 

/ c u ,N/mm 

30 

2.765 
1.681 
1.500 
1.622 
1.422 

4.5 

2 

40 

3.687 
2.241 
2.000 
2.162 
1.896 

6.0 

50 

4.608 
2.801 
2.500 p% 
2.703 
2.370 

7.5 

Equations 3.66 and 3.68 are used for design Table 3.7. Without tables, 
equation 3.68 is usually used to decide the size of the member as limited by 
the strength of the concrete. Then As is often obtained from equation 3.67 
thus: 

Mu Muym 1.15MU 1.533MU 
A

 u
 u / m u u /T f£\\ 

O.lSdf, 0.754/, 0.754/, dfy 

Example 3.13. A slab 160 mm thick is reinforced in tension with 16 mm diam-
eter bars having 30 mm cover. Determine the spacing of the reinforcement if the 
slab is designed in accordance with CP 110 for an ultimate resistance mo-
ment of 27.6 kNm, and if fcu = 25 N/mm2 = 25 000kN/m2, fy = 250 N/mm2 = 
250000kN/m2 and ym for the steel = 1.15. 

Using simplified CP 110 method, from equation 3.68 considering lm width of 
slab, for balanced design 

Mu = 0.15 x 25 000 x 1 x (0.160 - 0.038)2 

= 0.15 x 25 000 x0.1222 

= 55.82kNm 
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This is greater than 27.6kNm, hence section is under-reinforced. From equation 
3.62 (or 3.63), using/s = 250000/1.15 = 217400kN/m2 

27.6 = 217400/4S[0.122 - 0.5 x 217400As/(0.4 x 25 000 x 1)] 

.'. As = 0.001161m2 = 1161mm2 

From Table 3.2, use 16 mm diameter bars at 150mm centres. 

Example 3.14. Repeat Example 3.13 using the method preferred by CP 110. 

Equations 3.64 and 3.65 give 

fcm = 0.45 x 25[1 - {(V25)/52.5}] = 10.18 N/mm2 

k2 = (0.225 x 25/10.18)[l - [{(V25)/26.25}{1 - (V25)/70}]] = 0.4548 

From equations 3.60 and 3.62 for 1 m width of slab for balanced design 

0.5 x 122 = ^217.4/(10.18 x 1000) 

Mu = As x 217.4[122 - 0.4548/ls217.4/(10.18 x 1000)] 

/ . Mu = 61 x 10180(122 - 0.4548 x 61)Nmm = 58.53kNm 

This is >27.6, hence section is under-reinforced. Hence from equation 3.62 

27.6 = 217400AS[0.122 - 0.4548 x 217400/4S/(10 180 x 1)] 

.'. As = 0.001145 m2 = 1145 mm2 

From Table 3.2, use 16 mm diameter bars at 175 mm centres. (Page ix of CP 110, 
Part 2, obtains the same answer by using the design charts.) 

Example 3.15. The slab of Example 3.13 is reinforced in flexural tension with 16 mm 
diameter bars at 175 mm centres (that is, As = 1149 mm2 per metre) and is to be 
tested to destruction. Predict its ultimate resistance moment using Whitney's 
theory.7 

To determine whether it is under- or over-reinforced, apply equation 3.60 
(referring also to Sections 3.7.3 and 3.7.4). 

x, = [1149 x 250/(0.85(0.84 x 25) x 1000}] = 16.09 mm 

For balanced design xx = 0.537 x 122 = 65.5 mm, hence section is under-
reinforced. Hence applying equation 3.62 

Mu = 1149 x 250[122 - 0.5 x 1149 x 250/(0.85(0.84 x 25) x 1000}] N mm 
= 32.73 kNm 

This is considerably greater than the 27.6kNm used in Example 3.14, indicating the 
conservativeness built into the CP 110 design method. 

Example 3.16. Design a section of a beam, using the simplified CP 110 method, to 
have an ultimate resistance moment of 200kNm, using fcu = 20N/mm2, 
fy = 250N/mm2 and ym for steel = 1.15. 

From equation 3.68, 

200 xlO 6 = 0 . 1 5 x 2 0 M 2 

.'. bd2 = 66.67 x 106 
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If b^0.5d say, then d3 = 133.3 x 106 and d = 5li. So 6 = 255, say, choose 
b = 250mm. Then d = V(66.67 x 106/250) = 516mm. From equation 3.69 (or 3.66 
or 3.67) 

As = 1.533 x 200 x 106/(516 x 250) = 2377 mm2 

From Table 3.2 use three 32 mm diameter bars. 

Example 3.17. Repeat Example 3.16 using Table 3.7. 

From Table 3.7, K1 = 3N/mm2 and p = 1.843%. Using equation 3.68, 
bd2 = 200 x 106/3 = 66.67 x 106. As in Example 3.15, choose b = 250mm, then 
d = 516mm. Then As = 0.018 43 x 250 x 516 = 2377mm2. From Table 3.2 use three 
32 mm diameter bars. 

3.7.5 Plastic design of any shape of'under-reinforced' section 

For the section of Figure 3.4(a), using a rectangular concrete stress block of 
average stress fcm (see Section 3.7.3), equating longitudinal forces 

/cnA = Asf (3.70) 
where Ac = area of concrete in compression. Taking moments about the line 
of action of Nc 

Mu = Asfsz (3.71) 
where z = lever arm = distance between lines of action of Nc and Ns. Nc 

acts at centroid of Ac. 
Whitney specifies fcm = 0.85/c' ^ 0 . 8 5 x 0.84/cu = 0.714/cu as before. CP 

110 specifies fcm = 0Afcu for simplified design method. 

3.7.6 'Balanced' plastic design of any shape of section 

For balanced design (see Section 3.7.4) the depth of the stress block xx ob-
tained from equation 3.70 is 0.537d for Whitney's theory and 0.5d for CP 110. 

Example 3.18. A T-beam has a flange of breadth 750 mm and depth 130 mm. The 
width of its rib or web is 300 mm and the tensile reinforcement comprises one layer 
of five 25 mm diameter bars having an effective depth of 500 mm. Determine its 
ultimate resistance moment from the simplified design method of CP 110, assuming 
/cu = 20N/mm2,/y = 425N/mm2 and ym = 1.15 for the reinforcement. 

From equation 3.70 and Table 3.2, 

0.4 x 20[300x + (750 - 300) x 130] = 2455 x (425/1.15) 
.'. x = 183 mm 
As 0.5 x 500 = 250 the section is under-reinforced. Also x > depth of flange, 

hence beam is designed as a T-beam and not a rectangular beam. 
If depth of centroid of Ac is k2x then taking area moments about the top of the 

beam for Ac 

Ack2x = 300x2/2 + (750 - 300) x (1302/2) 
.'. k2x = [8 826000/{300x + (750 - 300) x 130}] = 77.8 mm 
From equation 3.71 
Mu = 2455 x (425/1.15) x (500 - 77.8)N mm = 383.1 kNm 
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3.7.7 Plastic design of any shape of 'under-reinforced' section containing com-
pression steel 

It might be said that compression reinforcement is only required in a beam 
when the balanced design condition applies. Whilst this is often true, there 
are cases where compression steel is available even though not required to 
assist flexural compression, for example sometimes at the supports of con-
tinuous beams. In such cases the compression steel can increase the ultimate 
bending moment of the section and sometimes economises in tensile 
steel. 

For a section like Figure 3.4(a) but including compression steel in the top, 
using a rectangular concrete stress block (see Section 3.7.3): 

Compression force for gross area of concrete in compression = Acfcm 

Compression force for compression steel over and above that included at 
this position above = A's(fsc -fcm) 

Therefore equating longitudinal forces 

AJcm + 4(/ , c -fcJ = AJS (3.72) 
where As = gross area of concrete in compression, A's = area of compression 
steel and fsc = stress in compression steel (usually characteristic strength 
because the strain is high in the concrete and thus the steel as flexural 
concrete failure occurs). Taking moments about the line of action of Nc 

M^AJsZ^AJ^d-k.x,) (3.73) 

Whitney specifies /cm —0.714/cu as before. CP 110 specifies fcm = 0.4/cu for 
simplified design method. Whitney gives /sc as yield stress of compression 
steel and CP 110 gives /sc as 2000/y/(2000ym +/y), where ym = 1.15, which it 
suggests can be simplified to 0.72/y for ease of calculation. There is no need 
to make this simplification if use is made of Table 3.8. These comments on 

TABLE 3.8. 

/ y ,N/mm 2 

2000^/(2300 +/y), 
N/mm2 

0.72/y,N/mm2 

250 

196.1 

180.0 

410 

302.6 

295.2 

460 

333.3 

331.2 

425 

311.9 

306.0 

485 

348.3 

349.2 

fsc depend upon the strain in the compression steel being at least that 
corresponding to its yield stress. The strain at the level of the compression 
steel needs to be assessed and related to the stress-strain relationship for the 
steel (for example CP 110, Fig. 2)—see Section 3.7.10. Note k2x1 is the 
depth to the total compression force resulting from concrete and compres-
sion steel forces. 

3.7.8 'Balanced' plastic design for any shape of section containing compression 
steel 

For balanced design (see Sections 3.7.4 and 3.7.6) the depth of the stress 
block x1 is 0.531d for Whitney's theory and 0.5d for CP 110. 
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Example 3.19. Determine the ultimate resistance moment from the simplified design 
method of CP 110 of the beam section shown in Figure 3.3 where the reinforcement 
bars are 10 mm diameter in compression and 32 mm diameter in tension and have 
40mm cover of concrete. Assume fs = 250/1.15 = 217.4N/mm2,/sc = 196.1N/mm2, 
and/cu = 0.4 x 25 = 10N/mm2 

From equation 3.72 and Table 3.2 

[160x + (450 - 160) x 150] x 10 + 314(196.1 - 10) = 4825 x 217.4 

.'. x = 347.2. 

This is >150, hence beam is designed as a T- and not a rectangular beam. For 
balanced design, whether T- or rectangular section, x = 0.5 x (900 — 56) = 422 mm. 
Hence section is under-reinforced. Taking moments about top of beam for compres-
sion forces 

/c2x[{160 x 347.2 + (450 - 160) x 150} x 10 + 314(196.1 - 10)] 

= [160 x (347.22/2) + (450 - 160) x (1502/2)] x 10 + 314 x (196.1 - 10) x 45 

.'. k2x = 125.6mm 

From equation 3.73, 

Mu = 4825 x 217.4 x [(900 - 56) - 125.6] N mm = 753.6kNm 

This assumes that the compression steel is not near the bottom of the stress block. 
Effective depth of compression steel = d' = 45 mm, whereas x = 347.2. From CP 
110 (see Section 3.7.10) this matters when d' > 0.2143d. In this example d' is much 
less than 0.2d. If the compression steel is near the neutral axis (rather an unusual 
case) refer to Section 3.7.10. 

3.7.9 Design of compression steel for a rectangular section 

In practice the commonest place where compression steel is required is at 
the supports of continuous in-situ T-beams. The bending moments at mid 
span and supports are of similar magnitude; the T-section at mid span 
enables the rib (or stem) there to be small compared with the size of a 
rectangular beam; then at the support the bending moment is reversed and 
the beam is designed as a rectangular beam, with the small rib as its 
compression zone. In these circumstances the section here may require com-
pression steel. Thus a rectangular section has to be designed to take a 
bending moment in excess of its balanced design bending moment by the 
addition of compression steel. 

Example 3.20. Design a rectangular section 300 mm wide by 600 mm deep to have an 
ultimate resistance moment of 300kNm in accordance with CP 110. Assume 
fcu = 20N/mm2,/y = 250N/mm2 and ym for steel = 1.15. 

For balanced design (with no compression steel) see Section 3.7.4, and applying 
equation 3.68, estimating d = 560mm, Mu = 3 x 300 x 5602Nmm = 282.2kNm. 

Hence section needs compression steel. An estimate of d' = 35 mm. Then z for 
compression steel = d — d' — 525 mm and z for concrete in compression = 
0.75 x 560 = 420 mm, because depth of stress block is 0.5x560. Thus, using 
Table 3.8 

A's = [(300 - 282.2) x 106/(196.1 x 525)] = 172.9 mm2 
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From Table 3.2 use say two 12mm diameter bars. Resolving forces longitudinally 
(that is using equation 3.72), 

(250/1.15) xAs = 300 x 0.5 x 560 x 0.4 x 20 + 172.9 x (196.1 - 0.4 x 20) 
.'. As = 3241mm2. 
From Table 3.2 use say seven 25 mm diameter bars. These will need to be in two 

layers, say five in the bottom and two in the layer above. Using 19 mm down coarse 
aggregate the vertical distance between the layers of bars = 13 mm, say 15mm. This 
will mean that, using 25 mm cover to the tension steel, an estimate of d — 550 mm 
(the accurate value necessitates the calculation of the position of the centroid of 
these bars). Using 25 mm cover for the compression reinforcement, d' = 31mm. This 
design can be repeated with these more accurate values of d and d', but it should not 
alter the results as the reinforcement is on the generous side because of the 
limitation of bar sizes, and the initial estimates of d and d' were not too inaccurate. 
d' > 0.2143d, hence (see Section 3.7.10) the stress we have taken in the compression 
steel does not need reducing. 

3.7A0 Compression steel near to neutral axis 

In practice this can hardly ever arise, as when compression steel is required 
it is placed as far from the neutral axis as possible for economic reasons. At 
failure in flexure the maximum strain in the concrete is about 0.0035 and 
the distribution of strain is approximately linear. Hence the strain at the 
level of the compression steel is 0.0035 (x — d')/x. According to Fig. 2 of CP 
110, if this strain is less than 0.002 then the stress-strain curve of Fig. 2 
should be used to determine the design stress in the compression reinforce-
ment. Hence for CP 110 we do not have to concern ourselves in Sections 
3.7.7, 3.7.8 and 3.7.9 with reducing the stress in the compression steel if 
(x — d')/x < 20/35, that is x < 2333d'. In the case of balanced design 
x = 0.5d, and this becomes 0.5d < 2.333d', that is d' > 0.2143d (CP 110 calls 
this 0.2d). 

3.7.11 Further points about compression steel 

Compression steel, even if available in a section, should not be relied upon 
in design if not prevented by adequate anchoring from buckling out of the 
faces of the member; each bar should be anchored at right-angles to the 
outer surface of the concrete according to CP 114, but CP 110 has reduced 
this requirement in its Clause 3.11.4.3. Both codes specify diameter and 
spacing of suitable stirrups. For example, framing bars in a beam are not 
always suitably anchored for compression steel when evaluating ultimate 
resistance moment. 

Compression steel, even if available in a section, should not be relied 
upon in design without adequate compression laps. For example, steel in 
the bottom of a continuous T-beam over a support with nominal lapping 
can only be used to the strength of the lapping in compression. 

3.8 Limit state of deflection 

Deflections can be calculated as in Example 3.2. This assumes the gross 
concrete section to be homogeneous and the deflection is obtained with 
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elastic theory. The value assumed for Ec or ae (as Ec = EJoce) can vary 
considerably (see Section 2.3.15). For accurate work it is best to obtain Ec 

from laboratory tests on specimens of the concrete. In loading tests on in-
situ buildings with say Grade 20 (CP 110) concrete perhaps about 2-3 
months old, the writer has experienced ae of about 10, that is due to the live 
load applied. In design it is useful to divorce the live and dead loadings and 
take ae = 8 for strong concretes to 10 for weak concretes for calculating 
deflections due to live loads (that is of short duration; not developing much 
creep), and take ae = 15 for deflections due to dead loading (this will be 
realised over several years of creep). 

Ignoring the reinforcement and including concrete in tension, which at 
the positions of cracks will not exist, is usual practice. In the writer's 
experience troubles with deflection arising from design are usually due to no 
calculations of deflections, on at least these lines, being made. In the 
laboratory, obtaining Ec and Es from tests of specimens of the concrete and 
steel respectively, and allowing concrete to take tensile stresses and allowing 
for reinforcement to obtain /, deflections of beams can be predicted very 
accurately1 before cracks about 0.01mm wide occur. For greater loads the 
deflection often approaches the deflection calculated in the same way but 
excluding concrete in tension. Just before failure it often becomes greater 
than this calculated amount. 

For a beam (span /) carrying uniformly distributed loading q and if the 
breadth is a constant proportion of its depth and if Ec is constant, then 
maximum deflection ~ql4/bd3 ~ qf/d*. Thus the l/d ratio can be a guide to 
deflection, but only in conjunction with q. The tables restricting l/d in CP 
114 for beams and slabs were inadequate in that q was ignored. Tables 8 
and 9 of CP 110 are similar but require modification by factors given in 
Tables 10 and 11, but whose derivation and justification are not given. For 
example, for a constant l/d the greater q the greater the deflection (even 
though the reinforcement will be increased slightly). Now from Table 10 the 
greater the reinforcement the less the factor, which reduces the allowable l/d 
ratio, so indirectly some allowance is made for q. Table 11 has similar logic 
but also allows for the fact that when compression steel is present it 
restrains the tendency of the shrinkage in this location to increase 
deflections. 

Deflections must be limited so as not to cause trouble to internal 
partitions and finishes. Beams obviously sagging are aesthetically un-
desirable—the deflection can be calculated and the beam given an upward 
camber of at least this amount. Slightly hogging beams are aesthetically 
acceptable. Consideration should be given to each particular case, and CP 110 
gives general guidance on limitation of deflection. 

3.9 Limit state of cracking 

Research has indicated that water cannot penetrate to the reinforcement to 
cause corrosion if cracks are not greater than 0.25 mm wide. This figure can 
vary with the concrete grade, cover, etc., and CP 110 uses a figure of 
0.3 mm, specifying other figures for various exposures. CP 110 considers 
that its reinforcement detailing recommendations take care of undesirable 
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cracking. For example, smaller diameter bars at closer centres resist cracks 
much better than the converse. When this problem is of particular impor-
tance because, say, of severe exposure, or where groups of bars are used, an 
empirical formula is given in Appendix A of CP 110 for assessing crack 
widths. 
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Chapter 4 

Reinforced concrete slabs 

4.1 Slabs spanning 'one way' 

These are designed per unit width as rectangular beams (see examples in 
Chapter 3). 

One-way spanning slabs have always been designed as beams of consider-
able width. This involves secondary distribution reinforcement being pro-
vided which has been specified as various amounts by different codes of 
practice over the years. The specifications have been based on practical 
experience. This 'distribution reinforcement' is provided to distribute tem-
perature and shrinkage effects, to assist in fixing and spacing the main steel, 
and to act as distribution steel for concentrated loads. 

4.2 Slabs spanning 'two ways' 

These are, for example, in-situ rectangular slabs supported on four, three or 
two adjacent sides. Originally they were designed by ascertaining bending 
moments and shear forces by elastic theory and then designing sections for 
these by elastic theory (Sections 3.2.4 and 3.3). Subsequently it was possible 
(CP 114) alternatively to design the resistance to bending moments by 
plastic theory (Section 3.7.2). This seems to have been satisfactory, but is 
very illogical, as towards failure the distribution of the bending moments 
will be different to that given by the elastic theory. 

Bending moments from elastic theory can be calculated from simple 
formulae in CP 110 for rectangular slabs carrying uniformly distributed 
loads. These together with formulae for slabs with triangularly distributed 
loadings (for walls of tanks) and with concentrated loads are given in 
Reynolds' Handbook. 

A later step has been to design slabs by assessing the bending moments at 
collapse by Johansen's yield-line1 or Hillerborg's strip method.2 

Generally shear stresses are low and usually found to be satisfactory 
when checked. Slab thicknesses are often dictated by deflection consider-
ations and sometimes slabs have to have a minimum practical thickness 
100 
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of preferably 125 mm. Deflections may be calculated from elastic 
theory but are more simply dealt with using Tables 8, 9 and 10 of CP 110. 
Cracks can be controlled at working loads by attention to detailing (see CP 
110). 

4.2.1 General discussion of design2* of two-way spanning slabs 

British Standard CP 114, 1957 gave bending moment coefficients for two-
way spanning rectangular slabs with simply supported edges in its Table 16. 
These coefficients were determined from Grashof-Rankine formulae (de-
veloped independently by Grashof in Germany and Rankine in the U.K.), 
which were derived by equating the central deflections of two strips of slab, 
each of unit width, at right-angles to each other, and each bisecting the slab. 
Ref. 3 claimed that this method gives greater bending moments than exist. 
The problem of corners tending to lift was considered complex. The neglect 
of torsion at the corners was justification for over-estimating bending 
moments. Ref. 3 also considered that test results justified the omission of 
corner reinforcement. 

Table 17 of CP 114, 1957 gave bending moment coefficients for slabs 
restrained along all edges; with hinged (discontinuous) and fixed (con-
tinuous) edge conditions. These coefficients were obtained from U.S.A. 
regulations based on a mathematical analysis by Westergaard4,5 and sup-
ported by test data. Some plastic redistribution of bending moments was 
assumed to occur to reduce the number of coefficients to a minimum to help 
designers. At corners where at least one of the two sides meeting was 
discontinuous, reinforcement was specified by CP 114. 

CP 114, 1957 allowed an alternative method to the above to be used, 
namely a 'purely theoretical analysis' based on the elastic theory with 
Poisson's ratio = 0, provided the sections were designed elastically using a 
modular ratio = 1 5 . The basis of the exact elastic theory of plates spanning 
in two directions was established by Lagrange and Navier in the nineteenth 
century, but most of the problems having practical importance have been 
solved in the past sixty-five years or so, when the names of Neuber, Bubnov, 
Timoshenko, Galerkin, Vlassov, Kalmanok and Girkmann have been in-
separably associated with the fundamentals of the classical theory of plates. 
These analyses, prior to the availability to designers of computers and finite 
element and other methods suitable for the computer, were considered to be 
out of the question for designers of reinforced concrete slabs. Thus Ref. 3 
recommends the use of Marcus's6 method (proposed and used in Germany) 
which is similar to the Grashof-Rankine method but includes a simple 
correction to allow for restraint at corners and for assistance given by 
torsion. The results of Marcus's method were considered3 to deviate by 
only 1-2% from a rigorous elastic analysis based on the elastic theory of 
plates. Marcus's method was also used by the German reinforced concrete 
regulations. Bending moments in continuous panels were determined by a 
method provided by Loser7 based on Marcus's method. Ref. 3 gives design 
tables using Loser's method for various ratios of dead to live load. Prior to 
CP 114, 1957 Reynolds' Reinforced Concrete Designer's Handbook of 1948 
recommended the same as the above except Pigeaud's method instead of 
Westergaard's method. CP 114, 1957 allowed a further alternative method 
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of design to the above two methods, namely Johansen's8'9 yield-line 
method. A load factor of 1.8 was recommended but a restriction was placed 
on using the full concrete cube strength for extra safety. However Ref. 3 
expressed worries about the 'upper bound' (see Section 4.4.3) nature of 
yield-line designs and the method's inability to give 'stress conditions away 
from the yield lines and hence information on how to distribute reinforce-
ment'. Ref. 3, however, anticipated that the yield-line method might be 
popular for 'complex slab systems for which computations according to the 
elastic theory are impracticable'. Alongside the British practice just de-
scribed, Westergaard4,5 was a pioneer in elastic analysis of two-way rein-
forced concrete slabs in the U.S.A. In Ref. 5 Westergaard recommended 
moment coefficients that gave considerable weight to the non-elastic (plas-
tic) readjustments in slab moments which take place before failure. In 
recognition of these favourable adjustments, his recommended coefficients 
were established at 28% below strictly elastic values. The A.C.I. Standard 
Building Code Requirements for Reinforced Concrete (ACI 318-63) 1963 
recommended three alternative designs. Two fundamentally stemmed from 
Westergaard although work by Van Buren, Di Stassio10 and Berlin11 was 
also recognised, whilst the other was based on the work of Marcus. 

It will be noticed that the yield-line method was permitted by the British 
code in 1957 but not by the U.S.A. code of 1963. It was not permitted by 
the A.C.I. Building Code of 1971 but permitted by the Code of 1977. In 1962 
Ref. 12 was published in the English language. This gave formulae for cal-
culating the ultimate bending moment at collapse for many differently-shaped 
slabs. 

In 1964 Ref. 13 was published in the Czech language. A German and 
English edition was published in 1969 and an enlarged German/English 
edition was published in 1971. This work gave about 600 pages of tables of 
coefficients for bending moments, shear forces, and deflections at many 
points of square, rectangular and skew slabs with many combinations of 
restraint and free edge conditions, and of reactions at various points along 
the supports. 

About 1960 many bridges were beginning to be designed for a large 
programme of motorways in the U.K. There was considerable demand for 
methods of designing two-way deck slabs of rectangular and sometimes 
skew shapes. Computers were not easily available, nor easy to use by most 
designers of reinforced concrete slabs. The Grashof-Rankine method was 
extended by some so that a slab analysis was considered as a grillage 
analogy. Then the grillage could be analysed by the method of Hendry 
and Jaeger,14 or later the method of Bares and Massonnet,15 prior to 
computers and then eventually by computers and computer packages. Also 
a great interest in both research and design developed concerning 
Johansen's yield-line method. Subsequently, and to date, finite difference 
and finite element methods for elastic design have been developed con-
siderably for use with computers. CP 110:1972 allows 'elastic analysis' 
for bending moments (and shear forces) as in CP 114. Likewise it again 
allows the use of Johansen's yield-line method. It now also allows 
Hillerborg's strip method to be used. However, it now restricts these 
methods with the proviso that 'the ratios between support and span mo-
ments are similar to those obtained by the use of elastic theory; values 
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between 1.0 and 1.5 are recommended'. This requires some sort of elastic 
analysis to be made as well as the ultimate strength analysis. This mitigates 
against the advantage of ultimate collapse mechanism analysis previously 
quoted; that is its advantage when elastic analyses are complex and a 
computer program is not available. 

CP 110 recommends the use of the coefficients in its Table 12 for two-way 
spanning slabs which are simply supported along their edges, and have 
inadequate torsional resistance at their corners to prevent them lifting. This 
table is derived from the Grashof-Rankine formulae previously mentioned. 
It recommends the use of the coefficients in its Table 13 for slabs which are 
rectangular and cast monolithically with their supports. These coefficients 
have been derived from yield-line analysis and calculated from values given 
by Taylor et al}6. 

Hillerborg's method for designing for ultimate strength was published in 
Sweden (in Swedish) in 1956 and 1959. It received much more attention 
after a critical analysis of the method and a comparison of it with tests were 
published by Wood and Armer17,18,19 in 1968. They found (mathemati-
cally) that the 'strip' method did not suffer from the disadvantage of being 
'upper bound' as did Johansen's method. The strip method gave the 
designer wide freedom of choice in his design approach. It is easier to 
curtail reinforcement than is the case with Johansen's method. Wood and 
Armer pointed out that a design using moments approaching those from 
elastic analysis was an efficient design and to be preferred. The suitability of 
the method for slabs with openings is a strong point in its favour. 

The most difficult slabs for this method are those supported on columns. 
For such cases Hillerborg developed what Crawford20 calls the advanced 
strip method, using a rectangular element (in lieu of a strip) carrying load in 
two directions to a support at one corner of the element. Wood and Armer 
report that they could not prove a mathematical basis for this type of 
element even though they devoted a considerable time to this investigation. 
For irregular shapes the advanced Hillerborg method also uses elements of 
triangular shape. An alternative to Hillerborg's advanced method is 
Kemp's21 method, which is also much easier to understand. 

The methods just mentioned, namely Hillerborg (strip and advanced) and 
Kemp can, particularly in the hands of an inexperienced designer, produce 
designs which are very unsatisfactory for limit state of deflection and 
cracking. The less the design departs from elastic theory the more efficient 
the design in these respects as mentioned by Wood and Armer (see 
previously). As regards the design of an individual strip with one or both 
ends fixed, the distribution of bending moments obtained from an elastic 
analysis can be altered to say increase or decrease the mid-span moment in 
accordance with the plastic theory but not making this alteration can still 
be considered as one possible plastic analysis. That is this one particular 
plastic analysis choice does not conflict with elastic analysis and thus helps 
to control stresses (thus cracks) and deflections at working loads. Thus the 
method of Fernando and Kemp22 was developed to control the freedom of 
choice of Kemp's21 method so as not to depart too greatly from the elastic 
method of matching up the deflections of an element in the two directions 
at right-angles; this is similar to the method of Grashof-Rankine for elastic 
theory, but more rigorous, complicated and difficult (requiring computer 
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assistance) than Grashof-Rankine in that deflections of all elements are 
dealt with, whereas Grashof-Rankine dealt only with the central point. In 
some ways the Fernando and Kemp method is similar to using a beam-
analogy method for a slab and solving as a grillage with a computer 
program but ignoring torsional resistance of the beams. In this case normal 
flexibility coefficients would be used. These are simpler to derive than the 
special flexibility coefficients needed for the Fernando and Kemp method 
and which deal with short loads instead of point loads. 

Wilby23 wrote computer programs (which are essential) for using the 
strip-deflection method,22 for any size of rectangular slab with any type of 
support conditions, loading and any number of strips taken in each 
direction. These programs were used to produce many design tables.24 As 
the equations given in Ref. 22 are mainly incorrect they are fully developed 
in Ref. 24. 

4.2.2 Design tables15 for two-way slabs 

Various design tables which have been in use over approximately the past 
decade are listed below. Many of these tables are still in use. They are all 
based on the limit state of ultimate strength, except for those based on CP 
114 and even these are modified because of ultimate strength 
considerations. 

1. Taylor, S. R., Hayes, B. and Mohamedbhai, G. T. G.16 The coefficients 
presented are derived from the yield-line theory and apply to the full width 
of the slab. It is recommended16 that the loading used should be the design 
load of 1.4 times the dead load plus 1.6 times the live load, as given in CP 
110. It is also suggested16 that although in theory the full width of the slab 
should be used, in practice only a middle strip (three-quarters of the width) 
of the slab might be reinforced in accordance with the moments produced 
from these coefficients, and similarly for the length of the slab. In the 
derivation of the coefficients, yield lines have been extended to the corners 
of the slab and corner levers (see later) have been ignored. 

2. CP 110 Coefficients in Table 13 of CP 110 are based on work done 
by Taylor, Hayes and Mohamedbhai16 but have been modified to some 
extent. They give coefficients for the full width of the slab with a suggestion 
of reinforcing only a middle strip (see 1. previously). Similarly, CP 110 
defines a middle strip of three-quarters of the full width of the slab and 
states that the steel area, obtained from the moments calculated from the 
moment coefficients, is used only to reinforce this middle strip. Edge strips 
are then reinforced by using the minimum area of steel given in clause 
3.11.4.1 of CP 110. 

3. Thakkar, M. C. and Rao, J. K. S.26 In this method the average 
moment distribution per unit width of the slab is derived for uniform 
orthotropic reinforcement throughout the whole width of the slab. That is, 
the slab is analysed by Hillerborg's strip method and then the average of the 
moments for all strips along each edge is taken and this value is the 
moment per metre width quoted by the tables. 

4. CP 114 These tables have been obtained from a theoretical elastic 
analysis and adjusted in the light of experimental data. This code separates 
each direction of the slab into a middle strip, of width three-quarters the 
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width of the slab, and edge strips one-eighth of the width of the slab. Where 
slabs have aspect ratios greater than four the middle strip in the short 
direction could be taken to have a width of ly — lx and each edge strip a 
width of /x/2, where /x and ly are the short and long spans of the slab, 
respectively. The coefficients given in the table are used for the middle strip 
of the slab only. 

5. Wilby, C. B. Wilby has produced tables24,27 with his computer 
program for the strip-deflection22 method for eight strips in each of two 
mutually perpendicular directions, namely length and width. To obtain 
coefficients for comparison with the previously mentioned tables, the mean 
values for the full widths of the slabs of bending moment per unit length 
have been taken. As the methods compare reasonably well these tables may 
be used in lieu of those in CP 110 and they consider cases not considered by 
CP 110. Also they give deflections. 

43 Flat slabs 

These are slabs without beams supported only by columns. Flared column 
heads usefully reduce the high shear stresses in the slabs around the column 
heads. Flat slabs generally give a heavier construction than beam and slab 
systems; they require more concrete and steel but the shuttering is much 
less expensive. For longer spans of flat slabs dropped panels are sometimes 
used to make the construction lighter in weight. This usually means 
dropping the soffits of rectangular portions of slab around the column 
heads. Flat slabs are described further in Section 7.3 which also describes 
'waffle' slabs. 

Design has been based on empirical formulae which are limited to 
systems with rectangular panels, length-to-width not exceeding 4/3, with at 
least three continuous spans in both directions. Such formulae are given in 
CP 110 and are simple to use. The alternative method allowed by CP 110 is 
more arduous but is useful when the empirical formulae do not apply. It 
consists of dividing the structure longitudinally and transversely into frames 
consisting of columns and the connecting strips of the slabs, and then 
elastically analysing these frames for bending moments and shear forces. 
This is well enunciated in CP 110. More recently they might be designed 
using Johansen's yield-line1 or Hillerborg's strip method.2 

4.4 Yield-line theory of slab analysis 

Having read the previous Sections 4.2 to 4.3 the reader might still ask, 
'Why use the yield-line instead of the elastic theory?' Even though the basic 
equations of the theory of elasticity are simple enough, it can be extremely 
difficult to solve these equations for complex structural formations. This 
difficulty can also apply to finite element methods. Also the yield-line theory 
gives a more realistic representation of the behaviour of slabs at ultimate 
limit states than the elastic theory. 

There are two different methods of yield-line analysis, perhaps most 
simply introduced by the following two examples. 
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Example 4.1. A square isotropically reinforced slab (this means the slab is reinforced 
identically in orthogonal directions, which means that its ultimate resisting moment 
is the same in these two directions and along any line in any other direction—see 
proof in Section 4.4.1) is simply supported along all of its sides. Determine by the 
equilibrium method of analysis the ultimate resisting moment m per unit length of 
yield line balancing an ultimate uniformly distributed load <jkN/m2 (this includes 
the self-weight of the slab). 

It is easy to imagine that the slab will essentially fail by the diagonals of Figure 
4.1(a) becoming yield lines. That is, cracks will occur along these lines in the soffit of 
the slab and they will open as the tensile steel yields. Steel can maintain its yield 
stress as the steel yields, so the section rotates for no increase in moment, but 
eventually the rotation becomes excessive (extreme fibre strain =^ 0.0035) and the 
concrete compression zone disintegrates. As the rotation at the centre of each yield 
line becomes considerable, but not excessive, due to yielding of the steel there, the 
rotation near the corners of each yield line eventually becomes sufficient for the steel 
to have yielded there also. Failure is precipitated therefore when each unit of length 
of each yield line has reached its ultimate bending strength. Generally the rotation 
at the centre of a yield line will not have been sufficient to cause failure there before 
the ultimate bending moments near the ends of the yield line have been realised. 

k / H 
Centroid 

(a) 

Figure 4.1 

Thus m is constant along each yield line and is the same for each because of 
symmetry. Considering the equilibrium of the moments of any one of the identical 
slab segments about the support (see Figure 4.1(b)) the total bending moment along 
AC is m//v

/2, and is shown by a vector such that the moment acts in a clockwise 
direction when viewed along the vector arrow. This vector has a component parallel 
to AB of (1/V2XW//V2). Similarly for CB. Hence taking moments about AB 

(ql2/4W6) = 2(l/V2Xm//V2) 
/ . m = g/2/24kNm/m 

Example 4.2. The rectangular isotropically reinforced slab shown in Figure 4.2 is 
simply supported along all of its sides. Determine by virtual-work analysis the 
ultimate resisting moment m per unit length of yield line balancing a total ultimate 
uniformly distributed load of qkN/m2. 

It is easy to imagine that the slab will essentially fail by the yield lines shown in 
Figure 4.2(a). The distance lx is unknown but will be such as to maximise the 
ultimate resistance moment required to balance the ultimate loading. A simple 
procedure, which lends itself to solution by computer, is by trial and error. In Figure 
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( Q ) ( b ) Figure 4.2 

4.2(a) angle ACD is 90°, AC = V(l-52 + '?)• Triangles CBA and DBC are similar, 
thus CD: CA = CB: AB, and triangles ACE and ACB are also similar, thus 
EC:AB = AC:CB.Thatis 

l2 = {1.5/1^(225 + l\) and /3 = (/1/1.5)V(2.25 + l\) 

Considering AC, from Figure 4.2(b), the total angle of rotation at this yield line for 
a small unit increase of deflection at C in radians is 

1 1 1.5 I, _ 1 /1.5 _^_\ 
T3

 + T2 ~ /lv/(2.25 + /?) + 1.5 V(2.25 + l\) " V(2.25 + l\) \ h + 1.5/ 
Similarly for this unit deflection at C the total rotation of the yield line CF is 

1/1.5 + 1/1.5 = 1.333. For our first trial let lx = 2.1m. Then AC = V(2.25 + 4.41) = 
2.58m. The rotation at AC = (1/2.58)(1.5/2.1 + 2.1/1.5) = 0.8195. 

The internal work done (bending moment x angular rotation) as the unit in-
cremental deflection occurs at yield is 

m x 2.58 x 0.8195 x 4 + m(6 - 2 x 2.1) x 1.333 = 10.86m 
The external work done (making use of symmetry) whilst this incremental 

deflection occurs is 
2(Load on AHC) x £ + 2(Load on CFGB) x \ + 4(Load on ABC) x £ 

= 0.667 x (1.5 x 2.I4) + (6 - 2 x 2.1) x 1.5q + 1.333(0.75 x 2.1q) 

= 6.9q 

Equating internal and external works done m = (6.9/10.86)^ = 0.6354<j. 
Trying other values for lx and summarising for values of lx of 1.8, 1.95, 2.1 and 

2.25 the corresponding values of m/q are 0.635, 0.637, 0.635 and 0.632, respectively. 
For a given q the maximum m = 0.637<? kN m/m corresponding to the yield pattern 
when /x = 1.95 m. 

4.4.1 Reinforcement 

If a slab is not isotropically reinforced (see Example 4.1), its ultimate 
strengths are different in two perpendicular directions and it is orthogonally 
anisotropically or simply orthotropically reinforced. When isotropically rein-
forced (see Example 4.1), its ultimate resistance moment is the same in any 
direction. This will now be proved. As the lever arm is assumed constant, 
for the bending moment per unit length to be constant in any direction it is 
only necessary to prove that the force provided by the tensile reinforcement 
per unit length is constant in any direction. Referring to Figure 4.3 the 
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Figure 4.3 

reinforcement has the same spacing s in each rectilinear direction and the 
force in each bar is Ns. Considering the line CD the component of Ns at A 
perpendicular to this line is Ns cos a. Also AB = s/cosa. Thus the force per 
unit length of CD and perpendicular to CD due to the bars in the direction 
AE is (Ns cos2a)/s. The component of Ns at D perpendicular to CD is 
N ssina. Also CD = s/sina. Thus the force per unit length of CD and 
perpendicular to CD due to the bars in the direction DF is (Ns sin2a)/s. 
Thus the total force per unit length of CD and perpendicular to CD is 
(cos2 a + sin2a)iVs/s = NJs which is the same as the force per unit length in 
either of the two rectilinear directions of the reinforcement, Q.E.D. 

Slabs that are orthotropically reinforced can be dealt with by altering the 
dimensions for design purposes.28 

In the above example the sections are assumed to be under-reinforced— 
this is normally the case for slabs, because of deflection and minimum 
thickness requirements. The analyses are dependent upon all yield lines 
being able to develop fully before say the initial portion loses its moment-
carrying capacity due to excessive rotation—the extreme fibre strain reach-
ing about 0.0035. The reinforcement per unit length can be different in each 
of two rectilinear directions, but must be constant along any line, otherwise 
in the above examples m would not be constant along each line. The 
analysis is most convenient for slabs of difficult shapes and slabs with holes 
or openings, where an elastic analysis is difficult. R. H. Wood2 says that a 
slab designed elastically, stopping off all bars whenever one could, would 
generally be more economic than if it were designed by yield line (or strip 
method), and was to be preferred as a design. The reinforcement would not 
be so simple a system. The yield-line analysis offers no information on the 
best distribution of the steel, but can be used to analyse a slab where the 
steel has been distributed according to some other method (for example 
Hillerborg's). Curtailing bars means that yield lines have to be considered at 
sections where the bars are discontinued. 

If cracks need to open considerably the bars across the crack tend to kink 
to endeavour to be at right-angles to the cracks; this gives a slightly 
stronger resistance moment (up to about 14%). Hence the designer can 
ignore kinking and his design will be slightly safer. 
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Membrane action can help the strength of a slab when the deflections are 
large towards failure. It is reasonable for the designer to ignore it and have 
slightly extra safety. 

4.4.2 Further points on yield-line analyses 

Both of the previous methods of analysis give what is termed 'upper-bound' 
solutions (see Section 4.4.3) in that it might always be possible to think of some 
other pattern of yield lines which might require a greater m to balance a given 
loading. 

Essentially there is not much difficulty in choosing various possible 
sensible yield-line patterns and thus in practice there is no great need to 
worry about this upper-bound problem. One chooses from experimental 
experiences of failures or from imagining how failures might occur. For 

\ Supported on 
three sides 

Figure 4.4 

example, the tank wall (Refs. 30 to 36) shown in Figure 4.4 may fail by either of 
the yield-line mechanisms shown, and to design the wall both have to be 
investigated. 

Yield lines are generally straight, lie along lines of encastre supports, pass 
over columns, and pass through the intersection of rotating adjacent slab 
elements. Strictly speaking when a yield line meets an unsupported edge it 
must do so perpendicularly, as yield-line moments are maximum moments. 
However, if the yield line away from this edge is skew and straight, it is 
usually continued in a straight line to the edge.28 This makes negligible 
error in the calculations. 

In the previous examples an alternative possibility is for the yield-line 
pattern to be as shown in Figure 4.5. If the corners are not held down each 

B C Figure 4.5 
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corner element such as ABCD will rotate about AC lifting B from the 
support. If the corners are held down, at each corner, lines such as AC will 
become yield lines. In this case reinforcement is required perpendicularly to 
lines such as AC in the top of such a slab. The slab spans between AD and 
CD, and AB and BC, and sometimes supplementary reinforcement is 
desired to take care of this, the bars being parallel to the direction AC and 
in the bottom of the slab. The yield lines at corners are called 'corner levers'. 
Although their effect is adverse they are often neglected in yield-line 
analyses for simplicity. For right-angled corners this causes an error of 
about 9% with bottom steel only and much less when there is top as well as 
bottom steel. The error is particularly high37 for acute angles with free 
edges, about 26% with bottom steel only and 14% when there is top and 
bottom steel. 

For non-rectangular shapes Ref. 12 is useful. 

4.4.3 'Upper-bound' and 'lower-bound' solutions 

Most engineering analyses or designs make approximations which cause 
them to give conservative solutions. In yield-line terminology these are 
called 'lower-bound' solutions. The yield-line theory as developed to date 
gives only 'upper-bound' solutions which are dangerous. 

It was of course a worry, which delayed the acceptance of yield-line 
analysis for design, that one might consider a reasonably sensible yield-line 
pattern for failure and then the solution should turn out to be upper 
bound and one might sometimes wonder with a complicated slab how 
many crack patterns one might need to consider to obtain a solution at 
least felt to be insignificantly upper bound. Nevertheless the same com-
plicated slabs may well be more difficult to analyse elastically. 

The critical pattern was easy to obtain in Example 4.2 by varying one 
parameter, namely ll9 to obtain a maximum value of m/q. Had one of the 
short sides been fixed (or encastre) then there would have been a second 
similar variable locating the distance of F from one of the shorter sides. 
Had two adjacent sides been fixed then using a similar crack pattern there 
would have been four variables, namely the co-ordinates locating C and F. 
If one programmed the analysis on say a microcomputer then one could 
make many trials of various combinations of guessed values of the four co-
ordinates and this would be a speedy and easy way of obtaining a solution, 
which could be difficult without the computer. 

In Example 4.2 the maximised or critical yield-line pattern with 
lx = 1.95 m still gives an upper-bound solution because other patterns, often 
for example with a greater number of yield lines, will give solutions which 
are less upper bound. (NB The trials with /x not equal to 1.95 m do not 
satisfy equilibrium and are therefore invalid.) 

4.4.4 Further consideration of the 'equilibrium method' 

This has been introduced by giving Example 4.1 for a simple symmetrical 
case. For a less symmetrical case, suppose a region of a slab enclosed by 
yield lines is as shown in Figure 4.6. Each arrow along each edge indicates 
vectorially the bending moment for the yield line. Each arrow perpendicular 
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Figure 4.6 

to each edge and in the plane of this region of the slab indicates vectorially 
the twisting moment for this yield line. Along each edge there will be a 
resultant shear force normal to the plane of the slab. 

Johansen considered that for each edge the total twisting moment and 
the total shear force could be replaced by two forces (normal to the plane of 
the slab), one at each end of this edge. These forces are referred to as 'nodal 
forces'. For equilibrium it can be shown5 that: 

1. If several yield lines converge to a point called a 'node' then all the 
nodal forces at this node must vectorially add up to zero. 

2. When three yield lines meet at a point (that is a node) and the 
reinforcement is isotropic (that is identical in orthogonal directions) the 
nodal force for each yield line at this point is zero. 

3. When a yield line intersects a free edge (see Figure 4.7) and the 
reinforcement is orthotropic and the m-moment key lines are as shown, then 
the nodal (or knot or edge) forces are as shown in Figure 4.7 and are given by 

Kl2 = +nmcotij/ (4.1) 

and K3l = — \im cot i// (4.2) 

\m y 

1 X^^^Yield line 
jum / 

Free edge 

Figure 4J 
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where a 'moment key line' is a line giving vectorially the ultimate moment 
of resistance of the slab (for the relevant reinforcement) and where \j/ < 90°. 

4. When a yield line intersects a free edge and the reinforcement is 
isotropic (that is \i = 1 in case 3. previously) then, 

K12 = +mcoti/^ 

and K3l = —mcotij/ 

(4.3) 

(4.4) 

where \\J < 90°. 
5. In cases 3 and 4 above when \\i = 90° the nodal forces Kl2 and K3l 

will be zero. 
The next example shows how to use the equilibrium method for a more 

complicated analysis than that of Example 4.1 in that nodal forces have to 
be considered. 

Example 4.3. Determine the ultimate moment of resistance m per unit length of yield 
line balancing a total uniformly distributed loading of 5 kN/m2 for the isotropically 
reinforced slab shown in Figure 4.8. The shading indicates that side AB is not 
supported, sides AD and BC are fixed and side DC is simply supported. The slab is 
under-reinforced and, assuming Figure 4.8 shows it in plan, the bottom reinforce-
ment is such that the ultimate resisting moment in any direction (see Section 4.4.1) is 
m and the top reinforcement, at the supports, is such that the ultimate resisting 
moment is am in any direction. These moments are shown vectorially in Figure 4.8. 

-Ot/77 1 
I 
I 

-am 

x ,,6-2x x 

\ 'IE I F '1 

vy777777777777777777777777\ I 6 metres 
C 

Figure 4.8 

This example will consider a seemingly possible yield-line layout as shown in Figure 
4.4(a). 

The nodal force acting at E for the assumed rigid region AED is (from equation 
4.3 and see Figure 4.9) 

m cot \jj = m— (4.5) 

The moment for the vector along ED is m(DE) and resolving this into com-
ponents in the directions EA and AD, respectively, the component in the direction 
AD is 

AD 
m(DE) sin ij/ = m. DE • —— = Am (4.6) 
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Nodal force = -02*. 
1* 

Figure 4.9 

Taking moments about AD in Figure 4.9 (using equations 4.5 and 4.6) 

x 4x x 
4m + 4am — m—x — — • — • 5 

4 2 3 

A / x 2 \ 10x2 

.• .4m^l + a--j = — 

40 x2 

• m = ■=-

= 0 

3 (16 + 1 6 a - x 2 ) 
(4.7) 

Region FBC is similar to region ADE and will give the same equation. 
The nodal forces at E and F for the region EFCD shown in Figure 4.10 are from 

equation 4.4; each (as in equation 4.5) equals 

x 
- m -

(4.8) 

The moment for the vector along ED is m(DE) and resolving this into com-
ponents in the directions CD and at right-angles to CD, respectively, the component 
in the direction CD is 

m(DE) cos if/ = m. DE 
DE 

6-2* 

(4.9) 

Y///////////////////////////A 
6 metres 

Figure 4.10 
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For region EFCD, moments about CD (see Figure 4. JO) give 

x 5 = 0 mx 1 4 
2mx + 2 4 - ( 6 - 2 x ) x 4 x 2 + 2 x - x 4 x x x -

20 / 9 - 2 x \ 
■■■m = T{—) , 4 - 1 0 ) 

Equating the values of m in equations 4.7 and 4.10 gives 

9x2 + 32(1 + a)x - 144(1 + a) = 0 (4.11) 
Exactly the same equation can be obtained by using the virtual-work analysis (see 

Example 4.4), but not as simply and directly as a differentiation is involved to obtain 
the maximum value of m. 

Equation 4.11 only applies to the yield-line pattern considered and which can 
only exist if x ^ 3, that is half the length of AB. From equation 4.11 

- 32(1 + a) + V[322(l + a)2 4- 36 x 144(1 + a)] 
18 

(4.12) 

Now a is positive and it can be seen that in equation 4.12 the square root is of a 
larger amount than 322(1 + a)2 and so it will give x as positive which of course it is. 
It can also be seen that increasing the value of a increases the value of x. Therefore, 
the greatest value of a for this yield-line layout is when x is a maximum for it, 
namely 3. Putting x = 3 in equation 4.11, gives a = 0.687. If a ^ 0.687 then the 
yield-line pattern just considered can be used. If, however, a > 0.687 then we are 
outside the range of this pattern and we shall need to consider a yield pattern the 
same as shown in Figure 4.9. 

The above has been treated algebraically. For computer use it is better generally 
to analyse one yield pattern at a time and repeat the calculation by altering a 
relevant variable. In this case a would be chosen, a value of x guessed, and then m 
calculated from equations 4.7 and 4.10. The difference in these values is obtained. 
Then other values of x are chosen until the difference just mentioned is considered to 
be negligible. 

4.4.5 Further consideration of the virtual-work method 

The problem of Example 4.3 will now be solved using the virtual-work 
method in the following example. 

Example 4.4. Consider unit displacement, normal to the plane ABCD in Figure 4.8, 
at E and F. The expenditure of energy by applied loading is as follows: 

1. Portion AED (same as BFC by symmetry) 

( i x 4 x x ) x 5 x | = f x 

2. Portion EFCD 

2 x (̂  x x x 4) x 5 x ^ + {(6 - 2x) x 4} x 5 x | = 60 - ^ x 
The internal energy held in yield lines is as follows: 
(a) Yield line AD (same as BC by symmetry) 

angular rotation for unit displacement at E = 1/x radians 
moment = 4am 
energy = 4am/x 

(b) Yield line ED (same as FC by symmetry) 
For convenience the moment vector along ED can be obtained by vectorially 
adding its components in directions parallel to DC and AD, respectively. 
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For component in former direction: 
angular rotation for unit displacement at E relative to DC = 1/4 
moment = mx 
energy = mx/4 
For component in latter direction: 
angular rotation for unit displacement at E relative to AD = 1/x 
moment = 4m 
energy = 4m/x 

The work equation is now obtained by equating (1) and (2) to (a) and (b) thus 

^ 2 0 40 f4am mx 4m) 2x— x + 6 0 - — x = 2x< + — + — > 
6 3 [ x 4 x J 

40f ■ 9x-x2 } 
" w - j { i 6 ( i + ,) + *»} (4'13) 

For m to be a maximum dm/dx = 0, that is 

(9 - 2x){16(l + a) + x2} = (9x - x2)2x 

.". 9x2 + 32(1 + a)x - 144(1 + a) = 0 (4.14) 

This is the same as equation 4.11 enabling the reader to compare the analyses of 
Examples 4.3 and 4.4. This example would continue as Example 4.3, except that the 
last paragraph of Example 4.3 would not apply because the differentiation required 
to obtained equation 4.14 is effected from an algebraic equation. 

4.4.6 Combination of equilibrium and virtual-work methods 

These methods can be combined to speed design. Examples 4.3 and 4.4 
solve the same problem by both methods. If to effect these solutions values 
of x are guessed each time an evaluation is made using, say, either a 
programmable hand calculator or a desktop microcomputer, it will be found 
that if the value of x is a certain small amount different to its value corresponding 
to the critical value of m, then the value of m obtained using the virtual-work 
method will be very much nearer indeed to its critical value than that obtained 
using the equilibrium method. This illustrates that the latter is very much more 
sensitive to yield-line layout than the former method. Hence, a yield-line 
analysis can be effected relatively simply by combining the two methods as 
follows: 

Step 1 Assume a suitable yield-line layout and use the equilibrium 
method to obtain moments in each of the rigid regions. 

Step 2 If the moments obtained for the various rigid regions is such that 
the difference between the maximum and minimum is within about 50% of 
the minimum moment, then apply the work method to this layout and the 
moment thus obtained may be considered sufficiently accurate for design 
purposes, and no further calculations need be done. 

Step 2A If the difference between the maximum and minimum moments 
in Step 2 is more than about 50% of the minimum moment, then assume a 
second trial layout and apply the equilibrium method. Repeat this pro-
cedure if necessary until the difference is within 50% of the minimum 
moment and then proceed as in Step 2. 
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In most cases the above procedure gives sufficiently accurate results for 
design purposes with minimum effort. The examples that will be given now 
will use this procedure to obtain the design moments. 

Example 4.5. A square isotropically reinforced slab shown in Figure 4.11 carries an 
ultimate uniformly distributed load of p/unit area. Determine the corresponding 
ultimate moment of resistance per unit length, m, of yield line. 

A possible yield line pattern is shown in Figure 4.11. 
First trial Let us assume that x = 0.8/. From geometry 

AE = CG = 
(21 

-(0.8/) = - / 
-0.8/) 3 

EB = BG = AB - AE 

angle BEF = angle BGF = \jj = angle AEJ = cot" 
AE 
JAT 

= cot" 

.'. COtl/f = § 

.*. The nodal force at E in the rigid region (c) (see Section 4.4.4) 
= + m cot \ff 
= +fm 

Nodal force at E in the rigid region (a) = — fm 
The nodal forces at F in each of the three regions are zero from symmetry (see 

Section 4.4.4). The equilibrium equations for the rigid regions are: 
Region (a) or (b) Taking moments about AD 

m/ + f m . A E - p . [ ^ J D . 0 . 8 / ) . i . 0 . 8 / -
.'. m = 0.0965p/2 

■i.(JA.AE).£.AE] = 0 

Figure 4.11 
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Region (c) Referring to Figure 4.12, vector moments in the directions EF and FG 
added together give a vector moment which can be resolved into vector moments in 
the directions EB and BG added together. Taking moments about BE, 

pi(a 
/ 2 I / 

m- - -m.BG - p- (area RBNF)— + (area FNG) 3 3 

= 0 

. ml 

.-. m = 0.0745p/2 

10 

- ' •G 

1 1 2 \ 1 / 
- + - - . / + (area ERF)----

/ / 1 / 2 11 1 / 2/ / 
5 5'T0 + 2*5'T5 '45 + 2 ' 5 * T 5 l 5 

Nodal force 

Nodal force - 1m 

Figure 4.12 

The difference in yield-line moments obtained from regions (a), or (b), and (c) is 
(0.0965 - 0.0745)p/2 = 0.022p/2 which is about 30% of the lesser value, 0.0745p/2. 
Therefore, referring to Step 2A, as this is less than 50%, we can apply the work 
equation to this layout. 

For Figure 4.11, taking the vertical deflection of F as unity 

Slope of (a) normal to AD = 
1 5 

Slope of (c) normal to EG 

QF 4/ 
1 

BF ~ 
1 

B D - F D 
5 

TJ2 
The arrows show the directions of the yield-line moments vectorially. 

Portion (a) rotates about an axis AD but not at all about an axis at right-angles to 
AD (for example in the direction AE). The moment vectors EF and FD give a 
resultant ED which can be resolved into EA and AD, in other words one can travel 
from E to D via F or A. The vector component AE does not rotate but the vector 
AD rotates by the slope of (a) just given. Therefore, the energy absorbed at the yield 
lines for portion (a) (or portion (b) from symmetry) 

5 5 
= (m. AD) x — = -m 

4/ 4 
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Portion (c) rotates about an axis EG (by the slope of (c) given previously) but not 
at all about an axis at right-angles to EG. The moment vectors GF and FE give a 
resultant GE. Therefore, the energy absorbed at the yield lines for portion (c) 

= ( m . E G , x ^ = m . B E . V 2 x ^ = ^ 

Therefore, the total energy absorbed at yield lines 

= 2 x f m + § m = ^m 

The deflection at E 
_ AE _ §/ _ 5 
~ Q F ~ 0 8 / ~ 6 

The work done by the loading for region (a) (same as region (b) by symmetry) 

1 
p • (area JFD) x - — (area JEA) x 

- L 

1 5] 
- x -
3 6j 

2 3 

1 / 2i 5 " ■ - • / • - / x — 

2 3 18 27(r 

Now EK = EB/V2 = 1/(3 y/2), BF = 0.2/^2 and JB 
The work done by the loading for region (c) 

ly/2 

= 2 . p | i (area JBF) x - — (area JBE) x - x -

■ly/2 
0.2/V2 

2 ' / ^ 2 ' 3 x / 2 ' l 8 j 
11 

270 Pi2 

2 v 3 
Equating total work done to total energy absorbed at yield lines 

.'. m = 0.09333p/2 
m 

Example 4.6. The reinforced concrete slab shown in Figure 4.13 carries an ultimate 
distributed load of 6kN/m2. Determine the corresponding ultimate moment of 
resistance per unit length, m, of yield line. 

A possible yield-line pattern is shown in Figure 4.13. 

-2m\ 

-2m 

X 5-(x+y) ,. y . 
' E "!F 

< ♦ / • «Vf 

(a) / ( b ) \ ( c ) 

/ m \ 

\ / m \ 

Y \ 
y/////////////////////////// 6 metres 
h« >■ 

B 

V 
'/ 
'/ in 
/ -

1Z 3 

Figure 4.13 
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First trial 
Guess/estimate x = 4 and y = 1 

mx 
Nodal force at E (see Section 4.4.4) = — = m 

my m 
Nodal force at F = —- = — 

4 4 

For region (a), taking moments about AD: 
for yield line AD, 2m x 4 = 8m 
for yield line DE, vector ED can be resolved into vectors EA and AD, 
m. AD = 4m 
for nodal force at E, — m. x = — 4m 
for loading, - 6 x f x 4 x § = — 64 
.". 8m + 4m - 4m - 64 = 0, 
.'. m = 8 

For region (c), taking moments about BC: 
for yield line FC, vector FC can be resolved into vectors FB and BC, m. BC = 4m 

for nodal force at F, — • v = — 
4 4 

for loading, — 6 x { x 4 x j = - 4 

.'. 4m + — - 4 = 0 
4 

. . m — 17 
For region (b), taking moments about DC: 

for yield line ED, mx = Am 
for yield line FC, my = m 

for nodal forces at E and F, I m + — 1 • 4 = 5m 

for loading, - 6 x [ | x 4 x 4 x f + l x 4 x f + | x 4 x l x f ] = 128 
/ . 4m + m + 5m = 128 
/ . m = 12.8 
These results indicate that regions (a) and (b) have been chosen too large and 

region (c) too small. A reduction in area (a) increases area (b) whilst an increase in 
area (c) reduces area (b). Because of the large difference in the value of m for regions 
(b) and (c) it is highly unlikely that the yield-line pattern shown in Figure 4.13 could 
give the same value of m for the three regions. Hence the alternative pattern shown 
in Figure 4.14 will now be considered. Let us guess/estimate x = 4 and y = 1. The 
nodal forces for the regions (a) and (c) at points F and E will be zero (see rules 2 and 
3 in Section 4.4.4). The equilibrium equations for the regions (a), (b) and (c) are: 
For region (a), taking moments about AD: 

for yield line AD, (2m). AD = 8m 
for yield line EFD, vectors EF and FD add up to a resultant ED which can be 
resolved into vectors EA and AD, m. AD = 4m 

[ XX X I 

^ • y ^ + x- (4- )>)— =— 96 .'. 8m + 4m - 96 = 0 
.'. m = 8 
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x = 4 
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Figure 4. 14 

For region (b), taking moments about DC: 
for yield line DFC, vectors DF and FC have a resultant vector DC, m. DC 6m 

for loading, — 6 

0 

6 (4 
2 

-y)2 

3 
-54 

/. 6m-54 
.'. m = 9 

For region (c), taking moments about BC: 
for yield line EFC, vectors EF and FC add up to a resultant EC which can be 
resolved into vectors EB and BC, m. BC = 4m 

for loading, — 6 • [,& - x ) 2
 | (4-y) (6-x)2 

= - 2 4 

.*. 4m - 24 = 0 

.'. m = 6 
The maximum value of m, namely 9, does not exceed a 50% increase in the 

minimum value of m, namely 6, so from Step 2A previously, we can use the work 
equation for this yield-line pattern. 

Taking the vertical deflection of line EF as unity, the slope of region (a) normal to 
AD is 1/4, the slope of (b) normal to DC is 1/3 and the slope of (c) normal to BC is 
1/2. 

Work done by loading for region (a) 

r i x 
= 6|x.,.- + - . ( 4-y){ = 24 

Work done by loading for region (b) 

r 6 n 
«6.[(4-,).-.-_ 

= 18 

Work done by loading for region (c) 

= 6U6-x).yl- (6-x) 
2 

(4-y). 1]-12 

Energy absorbed at the yield lines: 
For portion (c), it rotates about an axis BC only, an amount 1/2, see above. The 
resultant of the moment vectors CF and EF can be resolved into the moment 
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vectors CB and BE. Hence energy absorbed at yield lines 
= (m.CB).(l/2) = 2m 

For portion (b), it rotates about an axis DC only, an amount 1/3, see above. The 
resultant of the moment vectors DF and FC is moment vector DC. Hence energy 
absorbed at yield lines 

= (m.DC).(l/3) = 2m 
For portion (a), it rotates about an axis AD only, an amount 1/4, see above. The 
energy absorbed at yield line AD 

= (2m.AD).(l/4) = 2m 
The resultant of the moment vectors DF and EF is DE and this can be resolved into 
the moment vectors DA and AE. Hence energy absorbed at yield lines DF and FE 

= (m.DA).(l/4) = m 
Equating energy absorbed to work done: 
2m + 2m + 2m + m = 24 + 18 + 12 
.". m = 7.714 

With the increased use of computers a hand-held or desktop microcom-
puter might be programmed to solve this example by the method of 
equilibrium, or virtual work. Then various sets of x and y can be guessed 
until the solution has adequate accuracy. This was done for the yield-line 
pattern of Figure 4.14 and the results were x = 3.804, y = 1.215 and 
m = 7.754. So the above result of 7.714 has an error of only 0.52% 
supporting the effectiveness of the combined method advocated in this 
section. 

4.4.7 Affine slab transformations 

There are affinity theorems by Johansen for transforming certain slab 
problems into equivalent simpler ones to analyse (by the methods already 
described in this chapter). An affine slab and loading is devised to cor-
respond to a given real slab and loading and the results for the former apply 
to the latter. These theorems1 are summarised as follows. 

Affinity theorem for orthotropic reinforcement (the reinforcement in one 
direction gives an ultimate resisting moment, m, and in the other direction 
fim): 

1. Multiply all relevant dimensions (defining slab shape or load position) 
in the direction of the \im reinforcement by 1/VM-

2. Multiply each total load by 1/VM-
Affinity theorem for skew reinforcement (the angle between the reinforce-

ment in two directions being 0): 
1. Define all relevant points by co-ordinates relative to axes parallel to 

the reinforcement. 
2. Replot these points to orthogonal axes. 
3. Multiply each total load by cosec (p. 

In both the above cases, the support conditions are the same for the affine 
as the real slab. 
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Example 4.7. The slab shown in Figure 4.15(a) carries the point load WkN, a 
uniformly distributed load gkN/m2 and a line load wkN/m. The reinforcement in 
the direction of dimension 'a' is obtained from the bending moment \im. Give details 
of the affine slab. 

Figure 4.15(b) shows the affine slab where, from the above 
a' = a/y/n 
W = W/y/fi 
q'a'l = qa\j^J\i 
.'. q' = q 

y'i = yiNv-
length of line load w = L = J[(y2 - yj2 + (*2 - *i)2] 
length of line load w' = L = J[(y'2 - y\)2 + (x2 - *i)2] 
w'L = wL/y/11 
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Now this affine slab Figure 4.15(b) can be analysed as though the reinforcement in 
any direction were the same (see Section 4.4.1). 

Example 4.8. The slab shown in Figure 4.16(a) has edges simply supported along AB 
and DC, fixed along AD and unsupported along BC. It carries a uniformly 
distributed loading of q kN/m2 over the whole area and a line load of w kN/m along 
BC. Reinforcement is parallel to the edges and provides ultimate moments of 
resistance per metre as follows: 

Top reinforcement: 
bars parallel to shorter edges: 12m 
bars parallel to longer edges: 0.4m 

Bottom reinforcement: 
bars parallel to shorter edges: m 
bars parallel to longer edges: m/3 

Give details of the affine slab. 
Figure 4.16(a) is transformed to Figure 4.16(b) and this is transformed to give the 

final affine slab in Figure 4.16(c). 

(c) 

Figure 4.16 

Uniformly distributed load for Figure 4.16(c) is qab sin 60° 

b' = b/y/(l/3) = bJ3 
Total line load for real slab = wb kN 

Vd/3). 
cosec 60° 

ab^3 

Total line load for affine slab 
wb 

7(1/3) 
cosec 60° = 2wb 

Line load along unsupported edge of affine slab = —— = —vvkN/m 

Now the affine slab Figure 4.16(c) can be analysed to obtain m using the 
previously explained methods. 

4.5 Hillerborg's strip method of slab design 
This is perhaps most simply explained by the following example. 

Example 4.9. Design the slab shown in Figure 4.17 which has edges restrained 
against rotation and has to carry an ultimate uniformly distributed total load of 
15 kN/m2. 
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Figure 4.17 

It seems sensible (based on our experience of elastic theory, or tests) to reduce the 
reinforcement parallel to supports towards supports from mid span. For simplicity 
in practice we shall design for six bands of reinforcement in each direction, so we 
have to divide the loading to give constant loading for the width of each band. In 
the x-direction, from symmetry we need to design only three bands, and the typical 
strips to be designed, as representative of each band, are LM, NP, and QR. The only 
load these strips are designed to carry is that on their shaded portions, there being 
none on LM in this instance. Similarly in the ^-direction the strips ST, UV and WX 
are designed to carry the load on their shaded portions. Thus we have chosen that 
the two zones such as ABCDEFGHA, now called (A) and (B), are to be carried by 
strips in the x-direction and the remainder of the slab, zone (C), is to be carried by 
strips in the ^-direction. This means that we have chosen that the load on the two 
zones (A) and (B) is carried by strips to the edges ac and bd, and that the load on the 
zone (C) is carried by strips to the edges ab and dc. This kind of loading on the 
edges is in line with much past practice for deciding loads on supporting peripheral 
beams, and is more recognisable if the internal discontinuity lines, such as 
ABCDEFGH, were ae, ec, bf and fd. The stepped discontinuity lines were chosen to 
approximate to ae, ec, bf and fd, because of the desire to have the reinforcement in 
bands. The discontinuity lines are chosen to be a sensible (with regard to one's 
experience of elastic theory, yield line, and/or experimentation) division of the areas 
of the slab likely to be carried by each support. 

The distribution of bending moments and shear forces in each strip can be 
determined by either elastic or plastic theory. For example, for strip ST, taking a 
nominal breadth of lm, the total load along ST is 15 x 4.5 = 67.5 kN. By elastic 
theory, it is a fixed beam, so each support moment is 67.5 x 4.5/12 = 25.31 kNm 
and the mid-span moment is 25.31/2 = 12.66kNm. By plastic theory, suppose we 
choose to keep the maximum bending moment to a minimum, that is make the 
support and mid-span moments equal, then either of these = 67.5 x 4.5/16 = 
18.98 kNm. 
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4.5.1 Further points on Hillerborg's strip method 

This method involves a tremendous amount of plastic action. If one's 
experience of elastic analysis, yield line or tests is severely gone against in 
deciding discontinuity lines and points of contraflexure of strips, then a very 
undesirable slab can be obtained, with regard to cracking. It is also possible 
that such a slab might not pass the British Standard loading test because of 
lack of recovery of deflection due to high plasticity, even though the 
ultimate strength might be satisfactory. 

If the strips are designed elastically then the method is very illogical, in 
that deflections of strips are not matched up, as was done years ago by 
Grashof-Rankine. 

In the past decade at least, there has been a tendency to use computers to 
design structures more accurately, so in one sense the strip method seems a 
retrograde step. It is the kind of method one has not been proud to use in design 
offices when precise elastic analyses38 have been too difficult to attempt in the 
time available. But there are more computer packages available today. 

The great advantage of the method is that it is easy to use and apply to 
any shape. It is probably best when there is not an elastic analysis available. 

For skew slabs the strips are taken as beams cranked in plan and the 
geometry involves different portions of a strip having different widths.29 

It is an easy method to apply to slabs containing holes.29 

It is generally accepted37 that Hillerborg's strip method is not upper 
bound which is a concern with yield-line analyses. If yield lines are chosen 
to be disposed where one would imagine from experience of tests or from 
common engineering sense then the analysis should not be significantly 
upper bound; however it will generally be the latter. For the strip method it 
is best to choose the discontinuity lines from thoughts (probably based on 
experience of elastic theories) of which areas would be sensibly carried by 
which supports. 

Hillerborg's strip and advanced (see Section 4.7) methods are very 
economical in that generally each portion of loading is carried only once. 
This contrasts with methods used over the past half century in design offices 
where beams are formed within the slab thickness and a portion of loading 
is, for example, carried twice by slab and this then by a beam. 

4.6 CP 110 and yield-line and strip methods 

CP 110 recommends that yield-line and strip methods can be used provided 
that the ratio between support and span moments is between 1:1 and 1.5:1. 
This helps to safeguard against designing a slab which may crack badly at 
working loads. 

Certain plastic methods used2 choose the positions of the points of 
inflection or contraflexure at 0.2 of the span from each support for strips 
such as ST, 0.4 of the length of the loaded area from each support for strips 
such as UV and WX, 0.5 of the length of the loaded area from each support 
for strips such as NP and QR (strip LM having no loading). These points 
are marked with an asterisk in Figure 4.17. On this basis Figure 4.18(a) 
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Figure 4.18 

shows the loading on strip NP and its points of contraflexure. Figure 4.18(b) 
shows how the bending moments are to be calculated for the portion of NP 
between the points of contraflexure. Reaction Rt = R2 = 0.45 x 15 = 
6.75 kN. The bending moment diagram is shown in Figure 4.18(c) and its 
maximum bending moment is Rx x 0.45 — 0.45 x 15 x 0.225 = 1.519kNm. 
Figure 4.18(d) shows how the bending moments are to be calculated for the 
portion of NP between the points of contraflexure and the supports. The 
bending moment for the portion shown is shown in Figure 4.18(e) and its 
maximum value is Rx x 0.45 + 15 x 0.45 x 0.225 = 4.556 kNm. Shear forces 
can be calculated correspondingly. Other strips can be treated similarly. 

4.7 Hillerborg's advanced method39 

This uses quadrilateral shapes, rectangles, triangles as well as strips. A basic 
rectangular element has a point support at one corner and two mutually 
perpendicular inplanar moment vectors—each one parallel to a side of the 
rectangle. The writer is considering moments as vector moments using the 
right-hand rule, as commonly used in classical mechanics. 
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Example 4.10. The slab shown in Figure 4.19(a) carries a uniformly distributed load 
q. Suggest a design solution using Hillerborg's methods. 

Consider the rectangular element AGFE. It is in equilibrium as follows: a point 
support upwards at A, a loading q. AG. AE downwards, a moment vector FG and a 
moment vector EF. From external considerations: the reactions at A and B are the 
same from symmetry; the total of these reactions is the same as the total reaction 
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due to the line-load support DC from symmetry considerations. Thus the shear 
forces on sections GK and EN are zero. Considering the whole slab 

Reaction at A = RA — qab/4 

Therefore the element must be of the area shown so that resolving vertically for it: 
the downward load = qab/4 which equals the value of RA above and which is 
therefore correct. For the element take moments about GF, then the vector moment 
GF 

/a\ a b fa\ qa2b 

So the vector moment GF per unit length 

qa2b fb\ qa2 

Now it is sensible, bearing in mind serviceability conditions, to have a stronger 
strip of slab near to the free edge AB; hence the bending moment for design along 
GF is distributed as in Figure 4.19(b): the half nearer the edge is allocated a moment 
qa2/6 per unit length and the other half a moment qa2/\2, so that the average 
moment per unit length is qa2/S as required above. 

Again for the element take moments about EF, then the vector moment EF 

b\ a b fb\ qab2 

q-
K2) " 2 2 \4J 16 

So the vector moment FE per unit length 

qab2 fa\ qb2 

16 " \2 

It is sensible, bearing in mind serviceability conditions, to have a stronger strip of 
slab near to the free edge AD so we halve EF, use a moment qb2/6 per unit length 
for the outer half and a moment qb2/12 per unit length for the other half. These then 
average qb2/S per unit length for FE. 

As DC is a line-load support it should be split into several portions. In this case 
four portions are taken. The rectangular element EHJD is supported by a line load 
along DJ, there are vector moments EH and HJ and it carries a loading q. EH . ED. 
In Figure 4.17 each portion of loading was carried in either one direction of two 
mutually perpendicular directions. But with both Hillerborg's strip method and his 
advanced method any portion of loading can be carried by one proportion of it 
being carried in one direction and the remainder carried in the other direction. 
Furthermore one proportion can be greater than one so that the remainder is 
negative. In the case of a vertically downwards portion of loading if one proportion 
is greater than unity then the negative remainder would be positively upwards. 

Suppose for the loading q on element EHJD its proportion carried in the DE 
direction is ql. Then taking moments about DJ for the element: 

qb2 

6 

. . q 

a 

T = 4i 

4q 

' 3 

a 

4 
b 

2 
ft u 

Therefore the proportion of the loading q carried in the DJ direction is 
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q — qx =—q/3 (that is an upwards loading). Now the element EHJD is not the 
proper Hillerborg rectangular element described at the beginning of this section, 
because there is not one corner load but a line load along DJ and therefore 
moments cannot be taken about HJ for this element. But ENCD can be treated as a 
strip spanning from ED to NC just as for the Hillerborg strip method of Section 4.5. 
This strip spans from end to end ignoring the support DC just as in Figure 4.17 strip 
WX spans from end to end ignoring the support bd. The main point with 
Hillerborg's methods is to carry towards collapse all loads and portions of loads 
somehow or other, no matter how badly cracked the slab is. 

Suppose for the loading q on element HFKJ its proportion carried in the JH 
direction is q2. Then taking moments about JK for the element: 

qb2 a a b /b\ 

72~*4 = ^ 2 ' 4 ' 2 W 

Therefore the proportion of the loading q carried in the JK direction is 
q-q2 = 4/3. 

Now for the Hillerborg strip ENCD the moment vector FK 

q a b S3 \ q a b /a\ 

_qa2b 

~~96~ 
So the vector moment FK per unit length 

qa2b /b\ qa2 

= ~96~""" \ 2 / ~48~ 

The bending moments per unit length and the directions with arrows of the way 
in which loading is carried are shown in Figure 4.19(b) and (a) respectively. Figure 
4.20(a) shows the loading diagram for strip ENCD with corresponding shear force 
and bending moment diagrams in Figure 4.20 (b) and (c), respectively. 

Alternatively to the above, if one did not like distributing the bending moment 
vectors along GF and FE in an arbitrary fashion, then AGFE could have been split 
into four rectangular elements to obtain a similar result. Furthermore a greater 
number of rectangular elements could be used for this area and the rest of the slab. 
For this present example Hillerborg suggests using fewer elements for practical 
design as shown in Figure 4.19(c) and then distributing the moments along the edges 
of the rectangle in a reasonable way. He justifies this by saying 'that different 
theoretical solutions give somewhat different distributions of moments and that a 
reinforcing bar in practice is efficient in resisting moments occurring within a 
considerable relative distance from the bar itself. The writer's comment on this 
would be that the greater the number of sensible (that is bearing in mind servi-
ceability, viz. how it tends to act elastically at working loads) elements the better the 
solution, and the extra work involved is quite reasonable when Hillerborg's methods 
are solving problems outside existing design tables and which would be tremen-
dously formidable by other analyses. 

Hillerborg states Tor practical design the main condition is that the equilibrium 
is fulfilled for the elements as a whole and that the lateral distribution of moments 
chosen is reasonable'. 
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( a ) Loading diagram 

Figure 4.20 

( b ) Shear force diagram 

( c ) Bending moment diagram 

Example 4.11. The slab shown in Figure 4.21(a) carries a uniformly distributed load 
q. Suggest a design solution using Hillerborg's methods. 

If one considers serviceability/elastic considerations, towards the edge ABC the 
slab will tend to span like a continuous beam of two spans, so referring to Table 6.2 
(page 161) it is reasonable to make FB say 0.6a. Considering the direction AE the 
slab is simply supported at sides ED and AC so it is reasonable to make AH = b/2. 

Then for element AFGH: resolving vertically, the vertical reaction at A 

b 
= RA = q.0Aa- = Q.2qab 

= RA. 0.4a - q . 0.4a • 0 - 04qa2b 

Taking moments about FG, the vector moment FG 

b /0.4aN 

So the vector moment for FG per unit length 

= 0.04qa2b -=- f - ) = 0.08aa2 = — g a 2 

\2) 3 
Now it is sensible, bearing in mind serviceability conditions, to have a stronger 

strip of slab near to the free edge AB, hence the bending moment for design along 
FG is distributed as in Figure 4.21(b): the half nearer the edge is allocated a moment 
0.32ga2/3 per unit length and the other half a moment 0.16<?a2/3, so that the average 
moment per unit length is 0.24ga2/3 as required above. 
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Figure 4.21 

Taking moments about HG the vector moment GH 
b ~ . b fb\ 1ab2 

= RA.--q.0Aa- (-) = ?—-
A 2 H 2 \4J 20 

So the vector moment GH per unit length 

20 v ; 8 
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It is sensible, bearing in mind serviceability conditions, to have a stronger strip of 
slab near to the free edge AE so HG is halved and a moment qb2/6 per unit length 
used for the outer half and a moment qb2/12 per unit length used for the other half. 
These then average qb2/S per unit length for GH. 

Now the vector moment FG for element AFGH is equal to the vector moment 
GF for element FBKG. Hence for this latter element, taking moments about BK the 
vector moment KB 

= q. 0.6a • - • (0.3a) - 0.04qa2b = 0.05qa2b 

So the vector moment for KB per unit length 

Similarly to before it is sensible to have a stronger strip of slab near to the free 
edge AB so BK is halved and a moment 0Aqa2/3 per unit length used for the outer 
half and a moment 0.2qa2/3 per unit length used for the other half. These then 
average qa2/10 per unit length for KB. The ratio of moments per unit length 
between the halves of FG and BK is kept the same, namely 2 to 1 as chosen for FG. 
These are shown in Figure 4.21(b). 

Again for element FBKG, taking moments about FB the vector moment KG 

So the vector moment for KG per unit length 

= l,flfc^(0.6«) = l ^ 

(NB The vector moment KG is a pure moment and has the same moment about 
any line parallel to KG, for example FB in this case.) 

It is sensible, bearing in mind serviceability conditions, to have a stronger strip 
near to the support B so GK is halved and a moment qb2/6 per unit length used for 
the half nearest to BK and a moment qb2/12 per unit length used for the other half. 
These then average 3qb2/24 per unit length, as required above, for KG. 

For element HNQE, if the portion of q to be carried in the HE direction is ql then 
taking moments about EQ 

qb2 b (b\ 
Y'0.2a-^.0.2a--- - =0 

(NB Vector moment GH for element AFGH is equal and opposite to vector 
moment HG for element HGSE.) 

.'. <h = 4*/3 
Therefore the portion of q to be carried in the EQ direction is q — qt = — q/3. 
For element NGSQ, if the portion of q to be carried in the NQ direction is q2, 

then taking moments about QS 

qb2 b /b\ 
^0.2a-q2.0.2a-l-\ = 0 

2<1 
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Therefore the portion of q to be carried in the QS direction is q — q2 = q/3. 
For element GTVS, if the portion of q to be carried in the GS direction is q3 then 

taking moments about SV 

qb2 b(b\ 
— • 0.3a-<?3 .0.3a-- ( - 1 = 0 
12 H3 2\4J 

2a 

Then the portion of q to be carried in the SV direction is q — q3 = q/3. 
For the element TKZV, if the portion of q to be carried in the TV direction is qA 

then taking moments about VZ 

= 0 qb2 

6 
■0.3a-

4a 
U = ~3 

q4 .0.3a 
b 

Y a 
Then the portion of q to be carried in the VZ direction is q — q4 = — q/3. 
Now for the Hillerborg strip spanning from HE to JD, the vector moment GS per 

unit length (considering a strip of unit width) 

= - • HN . (0.3a) - - • NG . (0.1a) = -^— qa2 

Again for this strip, the vector moment ZK per unit length 

= - - • HN . (0.9a) + I • NG . (0.7a) + | • GT. (0.45a) - | • TK . (0.15a) 

0.05 , 
= — q a 

The bending moments per unit length and the directions with arrows of the way 
in which loading is carried are shown in Figure 4.21(b). 

The system of elements chosen decides the reactions at A and B, namely RA 

already calculated and RB which can be calculated by resolving vertically for 
element FBKG, viz. 

1 b 
-RB = q.0.6a-

.'. RB = 0.6qab 

What this means is that towards ultimate load all portions of loading can be 
carried by the reinforcement provided, from the above rectangular element and strip 
analysis, no matter how much cracking is involved to allow this to happen, and then 
the reactions will be as calculated above. 

For Example 4.11 Hillerborg alternatively suggests using fewer elements 
for practical design as shown in Figure 4.21(c) and then distributing the 
moments along the sides of the rectangles in a reasonable way. However, 
the writer considers that more guidance is given by more elements as in 
Figure 4.21(a) and that the extra work is reasonable considering the 
immense work in solving this problem by other methods. 
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Example 4.12. The slab shown in Figure 4.22(a) carries a uniformly distributed load 
of 4kN/m2 and a point load P = 60kN. Suggest a design solution using Hillerborg's 
methods. 

For element AEJH, taking moments about AE, the vector moment JH 

„ (5 - y)2 60 

2 2 

(NB The vector moment JH is a pure moment and has the same moment about 
any line parallel to JH, for example AE in this case.) 

For element HJGD, taking moments about DG, the vector moment HJ 

y2 

= 4 x 3 x — 
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The above two vector moments are equal and opposite; equating them gives 

6 x (5 - y)2 + 30 = 6y2 

Solving this quadratic equation gives y = 3m. 
So for element HJGD the vector moment HJ = 54 kN m and per unit length 

54 
= — = 18kNm/m 

3 ' 

It is desirable, see previous examples, to have a stronger strip near the outer edge 
AD, so we choose to distribute this moment as shown in Figure 4.22(b). 

For element HJGD, taking moments about HD, the vector moment JG 

32 

= 4 x — xy = 54kNm 
2 

So the vector moment JG per unit length 

54 
= — = 18kNm/m 

y 
It is desirable, see previous examples, to have a stronger strip near the outer edge 

DC, so we choose to distribute this moment as shown in Figure 4.22(b). 
Again it is desirable to have a stronger strip near the outer edge AB particularly 

because of the proximity of the point load to this edge. One way Hillerborg suggests 
dealing with this desirability is to consider separately the uniformly distributed 
loading and the point load. For the former, taking moments about AH for element 
AEJH, the vector moment EJ per unit length 

32 

= 4 x — = 18kNm/m 
2 

This is distributed sensibly as shown in Figure 4.22(c). 
Figure 4.22(d) shows elements for carrying the point load. Elements AESQ and 

EBTS each carry half of the point load at their corners at S as shown. For element 
AESQ, taking moments about AQ, the vector moment ES per unit length 

= 3 0 x 3 = 90kNm/m 
Taking moments about AE, the vector moment SQ per unit length 

= 30x 1/3 = lOkNm/m 

These moments are shown in Figure 4.22(e), the lOkNm/m being distributed 
sensibly. Figure 4.22(c) and (e) combined give the resultant distribution of moment 
along EJ and this is shown in Figure 4.22(b) which now gives the complete solution. 

Example 4.13. The slab shown in Figure 4.23(a) carries a uniformly distributed load 
q. Suggest a design solution using Hillerborg's methods. 

Hillerborg39 recommends the use of triangular corner-supported elements with 
reinforcement parallel to the diagonals and analysing the slab as in Figure 4.23(b), as 
if it were supported at only two corners. 

For triangular element ABE: Taking moments about AE, the vector moment AE 

_qa2 EB 

So the vector moment AE per unit length 

_qa^ EB _qa2 

~ 4 ' 3 ^ b A " 12 



136 Reinforced concrete slabs 

A k - - - Q — - - ^ B 
v\ it 

Figure 4.23 

Taking moments about a line at right-angles to AE at A, to avoid involving the 
support reaction, the vector moment BE 

(NB The vector moment BE is a pure moment and has the same value about 
any line parallel to BE, for example the line through A in this case.) 

So the vector moment BE per unit length 

Hillerborg, bearing in mind which bands ought to be stronger, chooses to 
distribute the above moments as shown in Figure 4.23(c). As in the previous 
examples this choice is 'reasonable' and will vary to some extent with different 
designers. However the distribution is made the slab will crack accordingly towards 
failure so that all portions of loading can be carried according to the distribution of 
reinforcement provided. 

Example 4.15. The author was once required to design a slab approximating to that 
shown in Figure 4.24(a) over a small petrol filling station. A lightweight kiosk was 
between two columns and a row of pumps was at right angles to this and in line 
with the individual column. The actual roof had curves instead of corners. The 
writer's solution involved shallow hidden beams and deflection checks so that a 
wavy periphery would not result. This was prior to the methods of Johansen's yield 
line, Kemp, Fernando and Kemp and Hillerborg being used in the U.K. The writer 
has consulted Professor Kemp and it was agreed that the methods of Refs. 21 and 22 
could not be used for this problem. The writer consulted Professor Hillerborg who 
kindly provided the following solution to what he regarded as a difficult problem. 
For simplicity unit uniformly distributed loading is considered. 

The slab is split up into suitable Hillerborg elements and these are numbered 1 to 
13 on Figure 4.24(a). Also on this figure suitable directions, generally parallel to the 
sides, are shown, with arrows, for the reinforcement. Negative bending moments 
refer to tension in the top of the slab, when recorded on Figure 4.24(b). The bending 
moments calculated are each for a complete side not per unit length. Angle a = 15.37°. 
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1.4m 0.3 

Figure 4.24(a) 

Figure 4.24(b) 

Element No. 1: Taking moments about HJ, the vector moment HJ 

1.32 

= 1.4 x = 1.183 
2 

Taking moments about BJ, the vector moment JB 
1.42 

= 1.3 x 1.274 
2 

Element No. 2: Taking moments about JS, the vector moment SJ 
1.42 

= 0.3 x — = 0.294 
2 
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Element No. 3: Taking moments about SY, the vector moment YS 

1.42 

= 2.1x = 2.058 
2 

Taking moments about RS, the vector moment YO 

1.4 x 2.12 

= 1.183 = 1.904 
2 

(NB The vector moment YO is a pure moment and has the same moment about 
any line parallel to YO, for example RS in this case.) 

(NB The shear force at OY is zero from symmetry.) 
Element No. 4: This element can usefully be designed to carry a moment required 
for equilibrium because the reinforcements at this junction in elements 1 and 9 are 
not in line, or the vector moments at right-angles to these reinforcements are not 
parallel. Figure 4.25(a) shows a triangle of forces for these vector moments. Thus the 
moment at BJ = 1.274, the moment at the end KC of element No. 9 at right-angles 
to the reinforcement direction CD = 1.322 and the moment to be carried by element 
No. 4 = 0.349. Taking moments about JK, the vector moment JK 

1.32 

= 0.3 x 0.349 = -0.096 
2 

Thus the support moment is 'formerly' slightly positive, oppositely to the negative 
moments in the adjacent strips (that is along HJ and KM). 
Element No. 5: Again the reinforcement at right-angles to SY in element No. 3 is 
not in line with the similar reinforcement in element No. 12. Element No. 5 can 
usefully be designed to carry a moment required to satisfy equilibrium similarly to 
element No. 4 and to carry the moment because of the reinforcements in elements 
Nos 2 and 11 being out of line—it may as well be carried here rather than in the 
column. The triangle of forces, similar to the one shown in Figure 4.25(a), is shown 
in Figure 4.25(b). Thus the moments at JS and SY total 0.294 + 2.058 = 2.352, the 
moment at the end TS of element No. 12 at right-angles to the reinforcement 

0.6U 

( a ) ( b ) ( c ) 

Figure 4.25 
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direction TV = 2.440 and the moment to be carried by element No. 5 = 0.644. 
Taking moments about ST, the vector moment ZY 

2.12 

= 0.3 x - — + 0.644 + 0.096 (from element No. 4) 

= 1.402 

Element No. 6: Taking moments about FP, the vector moment FP 

1.42 

= 0.59x + (1.01 
2 

1.4 1.4 
0.59) x — x — = 0.715 

2 3 

Taking moments about PQ, the vector moment PQ 

0.42 

= 0.458 

0.592 

= 1.4 x — h (1.01 
1.4 - 0.59) x — x 
2 

0.59 + 

Element No. 7: Taking moments about PW, the vector moment PW 

1.42 

= 0.3 x = 0.294 
2 

Element No. 8: Again the reinforcement at right-angles to FP in element No. 6 is 
not in line with the similar reinforcement in element No. 10. Element No. 8 can 
usefully be designed to carry a moment required to satisfy equilibrium similarly to 
element No. 4. The triangle of forces, similar to the one shown in Figure 4.25(a), is 
shown in Figure 4.25(c). Taking moments about NP, the vector moment NP 

0.3 / 1 .10+1 .01 \ 2 

= — x( ) +0.196 0.363 

Element No. 9: From element No. 4 the vector moment at the end KC of element 
No. 9 at right-angles to the reinforcement direction CD is 1.322. Taking moments 
about end KC the vector moment at right-angles to the reinforcement direction CD 
at end DM (assuming DM has been chosen so that the shear force at DM is zero) 

T 4.252 4.25 4.25 
= 1.2x — + (1.3-1.2)x — x — 

= 9.416 

cos a — 1.322 

Taking moments about end KM, the vector moment at right-angles to the 
reinforcement in direction CK at end KM 

1.2) x 1.2 + 0.1 T 1.22 4.25 
= 4.25 X - — + — - x (1.3-

|_ 2 2 
= 3.202 

Element No. 10: From Figure 4.25(c) the vector moment at the end EN of element 
No. 10 at right-angles to the reinforcement direction DE is 0.742. Taking moments 
about end EN the vector moment at right-angles to the reinforcement direction DE 
at end DM 

1.2 x 
4.252 (1.2 1.1) 4.252 

x •cos a — 0.742 

9.415 
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(assuming DM has been chosen so that the shear force at DM is zero). This value needs to 
agree with the corresponding value for element No. 9, namely 9.416 earlier. This 
agreement is satisfactory. If the difference were more than 10% then the position of DM 
would have to be changed, that is an alteration would be required in the relative sizes of 
elements Nos 9 and 10. If the two values have a difference of less than 10% then they are 
averaged to give the design moment at this location. 

Taking moments about end MN the vector moment at right-angles to the 
reinforcement direction DM at end MN 

4 4 . 2 5 x l £ + ^ x < 1 . 2 - l . l ) x ( u + f ~ 

= 2.711 

Elements Nos 11 and 12: These can usefully be taken together when considering 
vector moments at right-angles to the reinforcement in the TV direction. From 
Figure 4.25(b) and earlier the vector moment for these two elements at end KZ at 
right-angles to the reinforcement in the direction TV is 2.440. Taking moments 
about end KZ, the vector moment at right-angles to the reinforcement direction TV 
at end LU 

0 3.862 (2.4-1.378) 3.862 

1.378 x + - - x 

9.903 

•cosa -2 .440 

(assuming LU has been chosen so that the shear force at LU is zero). The vector 
moment at right-angles to the reinforcement in direction CK at end TV, from 
element No. 9, is 3.202. Taking moments, for element No. 12 about end TV, the 
vector moment at right-angles to the reinforcement in direction ZT at end ZU 

1.0782 3.86 
3.86 x + x (2.1 - 1.078) 

2 2 
1.078 + 

1.022 
•cosa - 3.202 

= 1.658 

(NB The shear force at ZU is zero from symmetry.) 
Element No. 13: From element No. 7 the vector moment at the end NI of element 
No. 13 at right-angles to the reinforcement direction LN 

0.294 
2 cos a 

0.152 

Taking moments about end NI the vector moment at right-angles to the reinforce-
ment direction LN at end LU 

4.642 4.642 

0.15 x —— + (1.378 - 0.15) x •cosa — 0.152 

= 9.921 

(assuming LU has been chosen so that the shear force at LU is zero). This should 
agree with the corresponding value from elements Nos 11 and 12, namely 9.903. 
These are within a 10% difference so average these values giving 9.912. Had the 
difference been greater than 10% then the position of line LVU would have needed 
altering. 

From element No. 10 the vector moment at the end LN of element No. 13 at 
right-angles to the reinforcement direction LU is 2.711. Taking moments about UI, 
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the vector moment IU 

0.152 4.64 / 1.228 , , 
4.64 x —— + — x (1.378 - 0.15) x I 0.15 + ) | cos a + 2.711 

= 1.125 

All design moments are now known. To give a sensible, with regard to thoughts 
on serviceability, reinforcement distribution, the design moments are distributed as 
shown in Figure 4.24(b). This is Hillerborg's suggestion. He also says that other 
distributions are of course possible. Naturally, different designers will propose 
slightly different distributions. HiUerborg says that there must always be enough 
reinforcement near the columns and all parts have to have some reinforcement. This 
latter is taken care of by using code minimum requirements. These latter are 
particularly important for those parts of Figure 4.24(b) to which no design moments 
are allocated. HiUerborg states that all bottom reinforcement shall continue to the 
column lines. In this example the dimensions for the actual structure were metres, 
but are not stated above. The loading was unit load per unit area but the 
dimensions are not stated above—it was naturally not unity for the actual structure. 

On Figure 4.24(b) the bending moment for which reinforcement has to be 
calculated for DC = — 1.274 - 0.294 - 2.058 = -3.626. The negative sign means 
that the reinforcement must be in the top of the slab. This bending moment for the 
section DC decides the total reinforcement which is then distributed as shown in 
Figure 4.24(b). The total design moments for the other sections shown on Figure 
4.24(b) are as follows: 

AB, -1 .183+ 0.096-3.202 = -4.289 
EF, 1.904 + 1.402 + 1.658 = 4.964 
GH, 9.416 + 9.912 = 19.328 
JK, - 2 . 7 1 1 - 0 . 3 6 3 - 0 . 4 5 8 = -3.532 
LM, -0.715 - 0.294 - 0.715 = - 1.724 

Point F would be on the centre line. Points F and H are not necessarily the same 
point. 

The reader should have thoroughly understood the previous examples in this 
section before studying this example. 

4.8 Slab with hole using Hillerborg's strip method 

The following example shows a way in which HiUerborg recommends using 
his strip method for a slab with a hole. This particular method is less 
economic than the previous HiUerborg examples in this book in that, for 
example, a portion of load on portion No . 2a (see Figure 4.26) is carried to 
portion No . 8 which then carries it to strips Nos 10 and 11 which then carry 
it to the supports. A normal economic advantage of Hillerborg's methods is 
that each portion of load is only carried once directly to the supports. 
However, for a slab with a hole the following is an economic method. 

Example 4.16. The slab shown in Figure 4.26(a) carries a uniformly distributed load 
of 12kN/m2 except where the hole 2 m by 1.5 m occurs. Suggest a design solution 
using Hillerborg's methods. 

The first step is to ignore the opening and determine moments as previously. 
There are generally two alternatives: one is to span each portion of load in only one 
direction (as in Figure 4.17), the other is to span each portion of load, part in one 
direction and the remainder in a direction perpendicular to it. Using this latter 
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method Hillerborg suggests discontinuity lines as shown in Figure 4.26(b) and 
carrying the loads in the directions shown with arrows. 

For strip No. 2, the strip spanning from EF to KJ, the writer would probably 
calculate the maximum moments from Table 7.2 (page 179): span 12 x 52/14.2 = 
21.13 kNm/m and support — 12 x 52/8 = — 37.5kNm/m. Alternatively a position for 
the point of contraflexure can be chosen. For this example Hillerborg chooses this at 
3.8 m from the free edge; this then gives a maximum span moment 

= 12x3.82/8 = 21.7 kNm/m 
and a maximum support moment 

= - 12 x 1.9 x (5 - 3.8) - ^ x (5 - 3.8)2 = - 3 6 k N m / m 

Hillerborg has guessed, by his experience, a point of contraflexure which gives a 
similar solution to the elastic theory used above. With plasticity this departure from 
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elastic theory is naturally permissible. If Hillerborg has a choice he normally prefers 
to increase the elastic support moment slightly whereas detailers normally prefer the 
support and span moments to be equal. 

For strip No. 4-2-5, the strip spanning from NL to GH, Hillerborg chooses a 
point of contraflexure lm from GH. This makes the simple span between NL and 
the point of contraflexure symmetrically loaded and the reaction is 
12 x 1 = 12kN/m and maximum span moment 

= 12 x l - 1 2 x l2/2 = 6kNm/m 
Then the support moment 

= - 1 2 x l - 1 2 x l2/2 = - 1 8 k N m / m 
In this case an elastic analysis gives a slightly lesser span moment. 
For portions 1, 3, 6 and 7 Hillerborg, because they are corner portions, allows half 

the loading to be taken in each direction. Then for strips 1-2-3 and 6-2-7 the 
bending moments are half those of strip 4-2-5, and are therefore: maximum span 
moment = 6/2 = 3kNm/m and support moment = — 18/2 = —9kNm/m. 

Then for either strip 1-4-6 or 3-5-7 Hillerborg chooses the point of contra-
flexure 0.6 m from the fixed support. This makes the calculation simple in that the 
simply supported span between this point of contraflexure and the edge AB is 
symmetrically loaded and the end reaction 

= 6x0.95 = 5.7kN/m 
The maximum span moment is the same all along the central portion and 

= 5.7 x 0.95 - 6 x 0.952/2 = 2.7kN m/m 

The support moment, at edge DC, 
= - 5 . 7 x 0 . 6 - 6 x0.62/2 
= -4 .5kNm/m 

Edge strips bounding the hole are shown in Figure 4.26(c) and the directions in 
which the loading will be carried in portions Nos 2a, 2b, 4a and 5a are shown 
with arrows. These portions are within the portions Nos 2, 4 and 5 shown in Figure 
4.26(b). 

Edge strip No. 8 supports portion No. 2a with a uniformly distributed reaction qx 

as shown in Figure 4.26(c). Taking moments about edge EF 

4J.0.5X 1.25 = 12 x 1.5x0.75 
.'. qx =21.6kN/m2 

Then the reaction at the support (EF) 

= 12 x 1.5 - 21.6 x 0.5 = 7.2kN/m 
The distance from this support to the point of zero shear (that is maximum 

moment) 

= 7.2/12 = 0.6 m 

Then the maximum span moment 
= 7.2 x 0.6 - 12 x 0.62/2 = 2.16 kN m/m 

Edge strip No. 9 supports portion No. 2b with a uniformly distributed reaction q2 

as shown in Figure 4.26(c). Taking moments about edge KJ the support moment 
= 4 2 .0 .5x 1 . 7 5 - 1 2 x 2 x 1 = 0.875.q2 - 2 4 

Now if this moment = — 24 then q2 is zero. The basic case (that is ignoring the hole) 
gave a moment at this support of — 36 kN m/m. To maintain this value would give a 
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negative value of q2 meaning that portion No. 9 would not be supporting portion 
No. 2b but dragging down on it. Then portion No. 9 would be lifting portions Nos 
10 and 11. The general idea was that portion No. 9 would support portion No. 2b 
and that portions Nos 10 and 11 would support portion No. 9. In this case 
Hillerborg decided not to allow q2 to be negative and yet allow the support moment 
to be as near to —36 as possible. Thus this support moment is taken as 
—24kNm/m and then q2 is zero. The portions Nos 2b and 9 of the slab thus 
cantilever from the support (KJ). 

Edge strip No. 10 supports portion No. 4a with a uniformly distributed reaction 
q3 as shown in Figure 4.26(c). Taking moments about edge NL 

1 2 x 1 x 0 . 5 ^ 1 X T / 2 
fr= n< ?-)< =3.7kN/m 2 

0.5 x 3.25 

The maximum span moment will be much less than the basic of 6 kN m/m, see 
earlier. Hillerborg takes this latter figure. 

Edge strip No. 11 supports portion No. 5a with a uniformly distributed reaction 
q4 as shown in Figure 4.26(c). Taking moments about GH the support moment 

= < j 4 . 0 . 5 x 2 . 2 5 - 1 2 x 2 x 1 = 1.125.^ — 24 

If this is made —18 to agree with the basic case, see earlier, then 

<?4 = 6/1.125 = 5.3kN/m2 

Half of edge strip No. 8 is carried on edge strip No. 10 (and half on edge strip No. 
11), see Figure 4.26(c), therefore 

<?5.0.5x0.5 = ^ . 0 . 5 x 1.0 
.-. q5 =2q{ = 43.2kN/m2 

and the moment at mid span for edge strip No. 8 (taking moments about the mid 
span) 

= 0 . 5 . 4 5 . 1 . 2 5 - 1 . 0 . ^ . 0 . 5 = 16.2 kN m/m 

Half of edge strip No. 9 is carried on edge strip No. 10 (and half on edge strip No. 
11), see Figure 4.26(c), therefore 

4 6 .0 .5x0.5 = <af2.0.5.1.0 
.'. <?6 = 2q2 = zero 

and the moment at mid span for edge strip No. 9 (taking moments about the mid 
span) 

= 0.5. q6.1.25-1.0. q2.0.5 = 0 

For strip No. 10, taking moments about edge KJ, the support moment 

= 5R, - 43.2 x 0.5 x 3.75 - 3.7 x 1.5 x 2.75 
= 5Rl-963 

Hillerborg chooses this moment as — 24kNm/m. Then 

R, = (96.3 - 24)/5 = 14.5 kN/m 

The distance from the free edge to the point of zero shear force (that is maximum 
moment) 

= (14.5/43.2)+1 = 1.336m 

Then the maximum span moment 

= 14.5 x 1.336-43.2.(1.336-l)2 /2 = 16.9 kN m/m 
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Figure 4.27 

For strip No. 11, taking moments about edge KJ, the support moment per metre 
run 

= 5R2 - 43.2 x 0.5 x 3.75 - 5.3 x 1.5 x 2.75 
= 5R2 - 102.8 
Hillerborg chooses this moment as -24kNm/m because he chose this for 

portion No. 10, see earlier. Then 
R2 = (102.8 - 24)/5 = 15.8 kN/m 
The distance from the free edge to the point of zero shear force (that is maximum 

moment) 
= (15.8/43.2) +1 = 1.366m 

Then the maximum span moment 
= 15.8 x 1.366-43.2.(1.366-l)2/2= 18.7kNm/m 
In Figure 4.27 the distribution of moments is shown, calculated by adding the 

moments of the basic case and the moments in the edge strip around the hole. 

4.9 Traditional U.K. design office methods 

Prior to Johansen's and Hillerborg's methods and since, slabs have been 
designed using code tables (see Section 4.2.1). When shapes did not allow 
this, then main, secondary etc. beams were formed with reinforcement 
within the slab depth and everything designed simply for adequate strength 
against bending moments and shear forces. This kind of design is incon-
sistent with the satisfying of deflection considerations of the various internal 
beam and slab members. The individual sections of the conceived con-
stituent members are designed by code methods based formerly on elastic 
theory but now on plastic theory. 

The problem of holes is dealt with by pushing aside the reinforcement, 
which would have traversed the holes, to form narrow beams at the sides of 
the holes. Then nominal corner bars are placed at the corners to reduce 
cracking there because from photo-elastic tests high stresses are known to 
occur at these corners. Away from the hole this impairs the reinforcement 
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system locally. This is checked by calculations making simplifying assump-
tions and extra reinforcement placed locally accordingly, although often 
no such reinforcement is necessary. Example 4.16 would be designed by 
code tables and then the treatment for the hole would be as just described. 

4.10 General discussion of design methods for two-way and flat 
slabs 

This discussion excludes a design method which consists of assessing the 
distribution of bending moments and shear forces by elastic analysis and 
then designing the reinforcement by code methods either elastic (CP 114) or 
plastic (CP 114 and CP 110). This is the best method in the writer's opinion, 
but limited to those slabs of shapes and loadings covered by tables and 
computer programs. 

Johansen's8'9 yield-line method is attractive in that it considers the way 
in which slabs collapse. It is upper bound. But if the most sensible modes of 
failure are considered the design should not be very significantly upper 
bound. It usually, however, commences with a most uneconomic reinforce-
ment layout. Reinforcement can be curtailed but this involves extra mech-
anisms being considered and the process of curtailment is not particularly 
systematic. 

Kemp's21 method can be used for many of the problems, except for 
example those dealing with triangular and trapezoidal shapes of slabs, 
which can be solved with Hillerborg's strip and advanced methods. It is easy 
to understand but laborious in practice. Just a single point load is easy to 
deal with but distributed loads, practically, have to be considered as 
individual loads, one on each element of a slab as though a great number of 
point loads, and an analysis has to be effected for each of these 'point loads' 
and then all analyses finally added together. Sensible engineering choice 
enters into the method so it is not very suitable for computer programming. 

The method of Fernando and Kemp22 has to make use of a com-
puter.23 '24 It is similar to a grillage elastic analysis excluding torsional 
resistance of members. It is more limited than Hillerborg's methods in that 
it cannot deal with the sort of problem found in Example 4.15. 

Hillerborg produced a considerable treatise in his book39 justifying his 
methods. After this justification he gives many different examples but one 
has to read, digest and understand the considerable treatise before one can 
understand the examples. The examples also assume that the reader has 
considerable other background knowledge and experience. The justification 
is difficult and very time-consuming to follow and thoroughly understand, 
yet the method is easier to use in practice than the Johansen, Kemp and 
Fernando and Kemp methods already discussed. It is more versatile than 
them; seemingly it can be used to design any shape of slab with any 
loading. It has advantages over Johansen's method in being lower bound, 
giving sensible practical arrangements of reinforcement, and allowing easy 
curtailment of reinforcement. It is much more economic than the traditional 
U.K. design office methods (see Section 4.9). 

Wood17 and Armer18 '19 have studied and made tests to justify 
Hillerborg's methods. Several U.K. and U.S.A. textbooks have included 
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Hillerborg's strip method. A very few have seemingly outlined Hillerborg's 
advanced method from the scientific works just quoted of Wood and 
Armer, and certainly are not written for students. None of the books, which 
the author could find from a considerable search, gives any examples of how 
to use Hillerborg's advanced method. 

The author has given examples, covering most types of loading and a 
very difficult shape in Example 4.15, completely explained as they are 
pursued. They are best attempted in the sequence given and some syllabi 
may exclude Example 4.15, which the author found difficult to explain. 
After understanding these examples the reader may find he can understand 
many of the further examples given in Hillerborg's book.39 

If the elastic analyses described in the first paragraph of this section are 
not available then Hillerborg's methods seem to offer the best solution to 
any problem. 
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Chapter 5 

Columns and walls 

5.1 General 

CP 110 recommends ultimate load design using plastic theories and not 
elastic theory as was allowed by CP 114. 

5.2 Slender columns 

Slender and short columns are ones affected and not affected by buckling, 
respectively. CP 110 defines a column as short when its 'effective length 
(height)' is less than 12 times its least lateral dimension. A slender column is 
designed as a short column required to withstand an additional bending 
moment given by CP 110 equations 33-38 inclusive. These are empirical 
formulae partly based on classical buckling theory. 

5.3 Axially loaded short columns 

The assumptions of this analysis are given in Section 3.7.1. Figure 5.1(a) 
shows the cross section of a column and Figure 5.1(b) the distribution of 
stress across the cross section. Basically the concrete strains in a plastic 
fashion until the reinforcement yields (or, for high yield steel, its strain is so 
great as) to realise the maximum strain which can be tolerated by the 
concrete. The latter occurs when the stress in the concrete is about 0.67/cu, 
that is the 0.67 is based on experimental evidence; the 150mm cube 

I—. f? 

Figure 5.1 

149 
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strength is affected by nearness of loading platens because of friction 
between concrete and platens restricting movement associated with 
Poisson's ratio. Hence resolving vertically 

Ultimate axial load = 0.67/cuAc +fJAsc (5.1) 
where Ac = area of concrete, 4̂SC = area of compression steel, 
fcu = characteristic strength of concrete and fy' = characteristic strength of 
steel in compression. Refer to Section 3.7.7, which explains that for design, 
CP 110 approximates/y'/ym to 0.72/y./cu is divided by a ym of 1.5 so the 
ultimate axial load for CP 110 design purposes 

= (0.67/1.5)/cu/lc + 0.72/y.4sc 

= 0A5fcuAc + 0.12fyAsc 

where fy is the characteristic tensile strength of the steel. As loads in practice 
are rarely axial, to allow for an eccentricity up to 0.05 x least lateral 
dimension, CP 110 recommends for design an ultimate axial load 

= 0.4/clA + 0.61 AsJy (5.2) 

Example 5.1. Design a short reinforced concrete column for an ultimate axial load of 
2900 kN. 

Suppose fcu = 25 N/mm2 and fy = 250 N/mm2 and assume say 2% of reinforce-
ment, then 

Asc = 0.02(AC + AJ, .'. Asc = 0.0204\AC 

From equation 5.2, 
2900 = 0.4 x 25 000 xAc + 0.67 x 250000 x 0.0204MC 

Therefore Ac = 0.2161 m2 and 
Asc = 0.02041 x 0.2161 = 0.004411m2 

Gross cross sectional area of column = 0.2161 + 0.0044 = 0.2205 m2. Use a column 
470mm square with (see Table 3.2) four 32 mm diameter and four 20mm diameter 
bars. 

5.4 Plastic analysis for eccentrically loaded short columns 

This is a column required to be designed for an ultimate axial load N 
combined with an ultimate bending moment M where M = Ne. Figure 
5.2(a) shows the cross-section of a column of any shape, Figure 5.2(b) the 
distribution of stress assumed by CP 110 for design purposes, and Figure 
5.2(c) the distribution of strain. The 0.4/cu should really be 
(0.67/1.5)/cu = 0.45/cu but this is reduced to 0.4/cu to give slightly less 
chance of failure as a concrete compression failure is sudden and thus 
undesirable. 

Resolving vertical forces N = Nc + Nsc — Ns where Nc is the force in the 
concrete over the gross area in compression, and Nsc and Ns are forces in 
the steel in compression and tension, respectively. CP 110 ignores the fact 
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0.4/cu 

Figure 5.2 

that concrete does not exist over the cross-sectional areas of steel-
generally a useful and satisfactory assumption. Thus 

N = 0AfGUAc + Ascfsc - Asfs (5.3) 

where Ac = area of concrete in compression, Asc and As = areas of steel in 
compression and tension respectively, k2x is the distance to the line of 
action of Nc (that is to the centroid of AG), and fsc and fs = design strengths 
(stresses) of compression and tension steels, respectively. Taking moments 
for convenience about the line of action of JV_ 

N(e + d - x) = Nc(d - k2x) + NJd - d!) (5.4) 

For large eccentricities, failure is initiated by the tension steel yielding or 
straining excessively (for high-yield steel) causing the value of x to be 
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reduced until eventually the concrete crushes. For small eccentricities the 
concrete may crush to cause failure when the steel remote from N is in 
compression or only modestly strained in tension. Between these two types 
of failure we have what is called a balanced condition where the failure is 
caused by simultaneous crushing of the concrete and yielding or excessive 
straining of the tension steel. For this condition let N = Nb and e = eh. 
Then from Figure 5.2(c), taking ec = 0.0035 because tests show that this is 
approximately the maximum strain which is experienced at crushing of the 
concrete, and taking es = 0.002 +/s/200 from CP 110, Fig. 2, 

x _ ec 0.0035 
1 " e c + £ s ~ 0.0055 +fJEs 

where/ sis/y/ym=/y/1.15. 
For this condition, for a defined section, x is given by equation 5.5, then 

Ac calculated and then equation 5.3 gives Nb if we know/ s c . From Figure 
5.2(c) esc can be found for this balanced condition and, from the stress-
strain curve for this steel, /sc can be determined. Normally esc is large 
enough to develop the maximum stress in the steel (it might not do so if this 
steel were unusually near to the neutral axis). Then eb can be determined 
from equation 5.4. 

Loads with eccentricities less than eh cause primary compression failures 
at ultimate loads greater than Nb, whereas loads with eccentricities greater 
than eb cause primary tension failures at loads smaller than Nb. 

Thus if e > eh,fs =/y/1.15 and ec = 0.0035. Assume fsc = 0.72/y or take a 
more accurate value from Table 3.8. Then for a defined section and a 
known e, equations 5.3 and 5.4 can be solved for the two unknowns N and 
x. 

But if e < eb, £c = 0.0035, so equation 5.5 has two unknowns x and/ s . If 
this/ s is substituted in equations 5.3 and 5.4 (and/sc obtained from Table 
3.8) and then N eliminated between these two equations, a cubic equation 
for x results. It may be solved by trial and error (a computer can help), 
estimating sensible values of x, or by using a computer program for solving 
a cubic equation. When x is obtained N can then be obtained from either of 
the equations from which it was eliminated. 

In the first case £sc and in the second case es and esc can be determined 
finally from Figure 5.2(c) to see if they are great enough to correspond to 
the values of/sc and/s assumed, using the stress-strain curve of CP 110, Fig. 
2. If not, then values of/sc and/ s are estimated and the above calculations 
repeated until the values assumed for/sc and/ s have values £sc and £s which 
agree with their values on the stress-strain curves. 

In the following examples, eccentricity is specified from the centre line of 
a column, as this is a more practical case for the reasons given in Section 
5.6. 

Example 5.2. The cross section of a column is rectangular of width 250 mm (= b) by 
depth 450 mm (= h), and As = Asc = 1473 mm2 (three 25 mm diameter bars—see 
Table 3.2), d' = 50mm and d = 450 - 50 = 400mm. If/cu = 25N/mm2,/y for As and 
Asc is 250 N/mm2, Es = 200 kN/mm2 and the eccentricity of the line of action of the 
load from the centre line of the column = el = 420 mm, determine the CP 110 
ultimate load for the column. 
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For balanced design condition^ = 250/1.15 = 217.4N/mm2. From equation 5.5 

x 0.0035 . n o i - _ 
. . x = 0.2125m 0.4 0.0055 + 0.2174/200 

From Figure 5.2(c), 

£sc = 0.0035 x (212.5 - 50)/212.5 = 0.002 676 

This is >0.002, so from CP 110, Fig. 2, and Table 3.8 fsc = 196.1 N/mm2. 
From equation 5.3, 

Nh = 0.4 x 25 000 x 0.25 x 0.2125 + 0.001 473 x 196 100 - 0.001 473 x 217400 

= 531.3 + 288.9 - 320.2 = 500.0kN 

From equation 5.4, 

Nh(eh + 0.4 - 0.2125) = 531.3 x (0.4 - 0.2125/2) + 288.9 x 0.35 = 257.2 

.'. eh = 0.3269 m 

Therefore value of e{ for balanced design 

= eh-x + h/2 = 0.3269 - 0.2125 + 0.225 = 0.3394 m 

This is less than 420mm, hence failure is by yielding of tension steel. Equation 5.3 
gives 

N = 0.4 x 25 000 x 0.25x + 288.9 - 320.2 - 2500x - 31.3 

e — ex — h/2 + x 

:. e + d-x = el-h/2 + d = 0.42 - 0.225 + 0.4 = 0.595 m. 

From equation 5.4 

0.595N = 2500x(0.4 - x/2) + 288.9 x 0.35 

From the above two equations in N and x, x = 0.1708 and N = 395.7 kN. 
(It is interesting to note that in Table 3.8 there is a greater percentage difference in 

the values of/sc for the lower concrete strengths. In this example if/sc = 180.0 is used 
instead of 196.1 then x = 0.177m and N = 387.5 kN.) 

Now as £c = 0.0035, from Figure 5.2(c) 

esc = 0.0035 x (170.8 - 50)/170.8 = 0.00248 

This is greater than 0.002 (see CP 110, Fig. 2), so the value assumed for /sc is 
correct. (Had this not been so, it would be necessary to obtainfsc from the strain £sc 
on CP 110, Fig. 2. Then repeat the above calculations. Then the £sc calculated would 
correspond to a slightly different value of/sc to the one taken. The whole process is 
repeated as many times as necessary to obtain the required accuracy of N). 

Example 5.3. The cross section of a column is rectangular and b = 250 mm, 
h = 450 mm, d' = 50 mm and d = 450 - 50 = 400 mm. If fcu = 25 N/mm2, fy for As 

and Asc is 250N/mm2, Es = 200kN/mm2, ex = 420mm, TV = 395.7 kN and As = Asc 

determine (As + Asc) using the CP 110, Part 2, Design Charts. 
d/h = 400/450 = 0.8889, (use Chart 44). 
M/(bh2) = 0.3957 x 0.42/(0.25 x 0.452)MN/m2 = 3.28 N/mm2. 
N/(bh) = 0.3957/(0.25 x 0.45) MN/m2 = 3.52N/mm2. 
.'. 'AJ = 2.55 x 250 x 450/100 = 2869 mm2 ('AJ in CP 110 = As + AJ. 

For design, Chart 45 rather than 44 would be used to be on the safe side. Chart 
44 is used as it is nearer to the truth and it was desired to compare this result with 
Example 5.2. The steel area of 2869mm2 compares with 2 x 1473 = 2946mm2. The 
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small difference between the Charts and Example 5.2 is due to the fact that (a) the 
stress blocks are slightly different, (b) the charts do not use the correct value of d/h. 

It is interesting to note that linearly interpolating between Charts 44 and 45 gives 
2890 mm2, which is within 2% of 2946 mm2. 

Example 5.4. Repeat Example 5.2, only using ex = 180mm. 

As before, the value of el for the balanced design condition = 0.3394 m. This is 
greater than 0.18 m, hence failure is by compression of concrete. Equations 5.3, 5.4 
and 5.5 become 

N = 0.4 x 25 000 x 0.25x + 288.9 - 0.001 473/s (5.6) 

e + d-x = el-h/2 + d = 0A&- 0.225 + 0.4 = 0.355 m 

0.355N = 2500x(0.4 - x/2) + 288.9 x 0.35 (5.7) 
Assuming/, is on the first portion of the stress-strain curve of CP 110, Fig. 2, then 

from Figure 5.2(c) 

x _ 0.0035 
0 4 " 0.0035 +/s/200000000 ( 5 ' 8 ) 

One way of solving these equations is to assume that/s is say 217 400kN/m2 (that 
is 250/1.15 N/mm2), then calculate x from the last equation. With these values 
calculate values of N from the previous two equations. These wifl normally differ. 
Adjust the value of fs and start again. Repeat until the values of N from the two 
equations are sufficiently in agreement. Alternatively the equations can be algebraic-
ally reduced to 1250x3 — 112.5x2 + 361 Ax — 146.4 = 0. It is then very easy and 
rapid to solve this with an electronic hand programmable calculator and guessing 
values of x, or with a computer library program. The former method gave 
x = 0.3191m, / s = 177 500kN/m2, and N = 825.2 kN. From Figure 5.2(c) 

£sc = 0.0035 x (319.1 - 50)/319.1 = 0.002 952 

This is > 0.002 (see CP 110, Fig. 2), so our assumption for/sc is correct. Also from 
Figure 5.2(c) 

0.0035 x (400-319.1) _ _ o £s = = 0.000 887 3 
319.1 

Referring to CP 110, Fig. 2, 

0.8/y/ym = 0.8 x 217.4 = 173.9 N/mm2 

and the corresponding strain is 

0.1739/200 = 0.000869 5 

Thus the strain in this steel appears to be within the second linear portion of the 
stress-strain curve. The co-ordinates of two points connected by this line are 
(0.000 869 5, 173 900) and (0.002, 196 100). Thus for any point on this line 

(es - 0.000 869 5)/(/s - 173 900) = (0.002 - 0.000 869 5)/(196100 - 173 900) 
.-. /s = 19 640000es + 156 800 (5.9) 

Thus the previous assumption that fs was on the first portion of the stress-strain 
curve is incorrect and equation 5.8 becomes 

x/0.4 = 0.0035/[0.0035 + (/s - 156800)/19640000] (5.10) 
From equation 5.9 the value of fs corresponding to £s = 0.000 887 3 can be 

obtained. The above calculations for N, x, £sc and £s are then repeated. The whole 
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process can be repeated until the value of N has sufficient accuracy. It converges 
rapidly. To reduce the arithmetic one might like to plot the above mentioned line of 
the stress-strain curve so that the values of fs for various values of £s can be read 
graphically. Alternatively, by direct calculation the above equations can be algebraic-
ally reduced to 1250x3 - 112.5x2 - 44.6x - 14.38 = 0. 

It is very easy and rapid to program this on an electronic hand programmable 
calculator and solve by trial and error as x is known to be near to 0.3191. This gave 
x = 0.3170, fs = 174800kN/m2, and N = 823.9kN. Had we guessed initially that 
the second portion of the stress-strain curve was relevant, not the first portion as in 
equation 5.8, then we would have used equation 5.10 instead of equation 5.8 and 
saved considerable time and effort. As x is now different to when £sc was previously 
checked, esc will be rechecked. From Figure 5.2(c). 

£sc = 0.0035 x (317 - 50)/317 = 0.002 948 
This is > 0.002 (see CP 110, Fig. 2), so our assumption for/sc is still correct. 

Example 5.5. Repeat Example 5.3, only using e{ = 180mm, and N = 823.9kN. 
d/h = 400/450 = 0.889 (use Chart 44). 
M/{bh2) = 0.8239 x 0.18/(0.25 x 0.452)MN/m2 = 2.929N/mm2. 
N/(bh) = 0.8239/(0.25 x 0.45) MN/m2 = 7.324N/mm2. 
kAJ = 2.2 x 250 x 450/100 = 2475 mm2. 
Comparing this example with Example 5.4, the steel area of 2475 mm2 compares 

with 2946 mm2. The difference is due to the fact that (a) the stress blocks are slightly 
different, (b) the charts do not use the correct value of d/h. 

It is interesting to note that if the preceding analysis is repeated using the more 
complicated stress block of Fig. 3, CP 110, Part 2, and if linear interpolation is used 
between the Charts 44 and 45 of CP 110, Part 2, then the answer given by the 
calculation is within 1% of the answer given by the Charts. 

5.4.1 Design of eccentrically loaded columns 

To be in accordance with CP 110 it is probably best to choose columns 
from the Charts of Parts 2 and 3 of CP 110. If a column section cannot be 
obtained in these Charts then the Charts can give guidance in estimating 
approximately the dimensions of, and steel in, the column. Then it has to be 
checked as in Section 5.4. 

5.5 Reinforced concrete walls 

Load-bearing reinforced concrete walls are designed as columns, but if any 
structural reliance is made on the reinforcement, such reinforcement needs 
to have ties across the wall to prevent the bars buckling outwards. Such ties 
are highly undesirable in practice, causing much trouble to both the 
steelfixer and concretor. It is therefore usually more economical to design 
the wall as though it contained no reinforcement. It would not, however, be 
built without any reinforcement because differential settlement, shrinkage 
and temperature expansion or contraction could all cause cracking, which 
would be most noticeable on a concrete surface. Such small movements also 
cause hair cracks between the bricks of brickwork walls, but even if 
occasional bricks are cracked the cracks blend with the pattern of the wall 
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and are not noticeable to the layman. Cracks in concrete surfaces tend to 
concentrate into a few of large size, rather than many of a small size, and 
ramble in various directions in an unsightly way. Consequently horizontal 
and vertical reinforcement is placed in both faces of a reinforced concrete 
wall, whether the wall is load bearing or not, the horizontal reinforcement 
usually being nearer the surface than the vertical reinforcement. In practice, 
the vertical bars are usually made of at least 12 mm diameter, except in the 
case of very thin walls, as these have to support the horizontal reinforce-
ment. The construction of walls may be very difficult if light reinforcement 
fabrics are used. 

5.6 Design of columns to frameworks 

In accordance with CP 110, frameworks are analysed using elastic theory 
for forces and bending moments, assuming the members to be concentrated 
at their centre lines (see Chapter 7). The designer may then choose to 
redistribute these bending moments as described in Chapter 6. Each column 
section then needs to be designed for a bending moment about its centre 
line and an axial force whose line of action is through this centre line. It will 
be appreciated from Section 5.4 and its examples that a direct design 
calculation is difficult because of decisions as to whether primary compres-
sion or tension failures or balanced design conditions are relevant. The 
designer will often desire the column to be as large as possible to aid 
detailing of column and interconnecting beam reinforcement, to avoid long 
column instability, and for economy as the concrete is a more economic 
material than steel with regard to the carrying of compression forces. 
However, the larger the column the more it restricts circulation space in the 
building, and for this reason and aesthetic considerations the architect will 
often want columns to be as few and as slender as possible. The designer 
often chooses the size of a column using these considerations, and an 
assessment of strength. To assess the size of the column and its reinforce-
ment to carry the load required a very approximate design is usually made. 
This can then be checked more accurately by using the design charts of CP 
110, or analytically, similar to the method of Section 5.4 if the section is not 
included in the design charts. If the approximate design is inadequate or 
uneconomic then this design is altered accordingly and the above procedure 
repeated until the designer is satisfied. This is a long process if charts, or a 
computer program, are not used. For the initial approximate design the 
gross cross-sectional area can be obtained by dividing the ultimate axial 
load by 0.42/cu if the line of action of the eccentric load is outside and 
0.45/cu if within the section. These figures are for rectangular or square 
cross sections. For circular cross sections the figures would be 0.39/cu and 
0.42/cu, respectively. In all cases the amount of longitudinal reinforcement, 
fy = 250N/mm2, can be taken to be 2.0% of the gross cross-sectional area. 

Example 5.6. Make an approximate initial design for a circular column required to 
withstand a design ultimate moment of 153 kNm and an axial load of 2400 kN for 
fcu = 50N/mm2 and/y - 425N/mm2. 
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Eccentricity of load = 153/2400 = 0.0638 m. 
The size of the column is not yet known. Assume that the line of action of the 

axial load is inside the section, and check this later. 
Cross-sectional area required 

= 2400/(0.42 x 50000) = 0.1143m2 

Diameter of column 

= V(0.1143/0.7854) = 0.3815 m, say 400 mm 

The line of action of the axial load is within the section. Total area of steel 
reinforcement 

= 0.02 x 0.1143 x (425/250) m2 = 3886 mm2 

Example 5.7. Check the previous design using CP 110 Design Charts. 
From Table 3.2, the steel would be eight 25 mm diameter bars. From CP 110, 

Table 19, suppose that the cover to the links needs to be 25 mm. Again guided by 
CP110, suppose that the links are of 8 mm diameter. Then the cover to the main 
steel is 33 mm. Referring to CP 110, Part 3, hjh = (400 - 2 x 33 - 25)/400 = 0.7725. 
To be on the safe side use Chart 137 rather than 136. Now 

M/h3 = 0.153/0.43 MN/m2 = 2.39 N/mm2 

and N/h2 = 2 A/0 A2 = 15.0 N/mm2 

hence 100 'AJ/AC = 2.6 

Therefore 
'AJ = 0.026 x 0.7854 x 4002 = 3276 mm2 

Eight reinforcement bars allow a system of rectangular stirrups, which are much 
better for construction purposes than helices. If the reinforcement is to be reduced it 
means choosing say either eight, six or twelve bars, for rectangular stirrups. No 
practical economy can therefore be made in the reinforcement (see Table 3.2) if the 
bars are all kept of the same diameter. Using two diameters, six 25 mm diameter and 
six 10 mm diameter bars can be used together in a symmetrical arrangement giving ?. 
steel area of 3416 mm2 < 3927 mm2 (eight 25 mm diameter bars). These will be 
positioned on a circle of diameter hs = 309 mm. Thus spacing of bars will be 

n x 309/12-80.9 mm 

If bars are alternate then distance between two consecutive bars 

= 8 0 . 9 - 1 2 . 5 - 5 = 63.4mm 
This is satisfactory if the size of coarse aggregate is less than 63 — 5 = 58 mm (see 
CP 110). It will probably be 25 mm and down aggregate because of steel from beams 
framing into this column, say. This column is similar to the one designed in CP 110, 
Part 3. 

Example 5.8. Make an approximate initial design for a rectangular column required 
to withstand a design ultimate moment of 91 kNm and an axial load of 2460 kN for 
fcu = 50N/mm2 and/y = 425N/mm2. Then check the design using CP 110 Design 
Charts. 

Eccentricity of load = 91/2460 = 0.037 m. 
Assume that the line of action of the axial load is inside the section and check this 

later. 
Cross-sectional area required = 2460/(0.45 x 50000) = 0.1093 m2. 
If one dimension is 450 mm, the other needs to be 

0.1093/0.45 m = 243 mm, say 250 mm 
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Thus the line of action of the axial load is within the section, as assumed. 
Total area of steel reinforcement 
= 0.02 x 0.1093 x (250/425) m2 = 1286 mm2 

Use four 20mm diameter bars. Using 30 mm cover to these bars, 
d = 450 - 3 0 -10 = 410mm 
and d/h = 410/450 -0.91 

UseCP 110, Chart 88. Then 
M/{bh2) = 0.091/(0.25 x 0.452) MN/m2 = 1.798 N/mm2 

N/bh = 2.46/(0.25 x 0.45) MN/m2 = 21.87 N/mm2 

and'AJ = 1.0 x 0.25 x 0.45/100m2 = 1125mm2 

Hence the steel and size of section chosen are in order. This column is similar to the 
one designed in CP 110, Part 2. 

5.7 Very slender columns 

Since 1968 the author and Dr V. R. Pancholi have conducted research for 
the S.R.C. (now S.E.R.C.) at the University of Bradford, with the assistance 
of A. Dracos and D. H. Schofield, into very slender columns with length to 
least lateral dimension ratios of 30 to 79, mainly 30 to 60, see Refs. 1 and 2. 
Occasionally very slender columns have been used for important structures, 
for example supports to bridge decks for (a) the bridge across the River 
Derwent at Hobart, Tasmania, and (b) the approaches to the main span of 
the Almo bridge, Sweden. 

Our tests show that the columns fail by instability when the maximum 
concrete strain is well below the 0.0035 used by CP 110 (and a similar figure 
used by the A.C.I, code), for example often no more than 0.001. Thus the 
codes mentioned are incorrect in using theories based on material failure for 
very slender columns. 

The instability failure experienced manifests itself in that the column 
collapses due to excessive lateral deflection. In a practical structure, if the 
column ends were still secure and the collapse loading was not redistributed 
to other members, the column would eventually fold up under a lower load 
than caused the initial instability failure. This 'disintegration' after initial 
failure is irrelevant but at this stage the basic code theories (that is 
maximum strain of 0.0035) should apply. 
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Chapter 6 

Reinforced concrete frames and 
continuous beams and slabs 

6.1 Introduction 

Although this chapter is really part of, and its contents are used in, Chapter 
7, it is useful for it to be separated for clarity and easy reference as it 
contains Tables 6.1 and 6.2 which designers refer to considerably, even 
though it makes a very short chapter. The author wrote Chapters 6 and 7 
because a lecturer complained that many books considered elements, for 
example beams, slabs, columns, in isolation and not as a complete structure, 
and of course one great advantage of reinforced concrete has always been 
its use in monolithic constructions, which have many advantages—stability, 
inherent strength, economy, etc. 

6.2 Frames 

CP 110 accepts frames being designed for bending moments and shear 
forces obtained by elastic analysis. The second moments of areas are not 
usually varied according to the disposition of reinforcement. It is common 
practice to calculate the second moments of areas of the gross concrete 
cross sections only, ignoring reinforcement. The individual sections are then 
designed for ultimate limit states of bending moment and shear force. The 
disposition of this reinforcement influences the distribution of bending 
moments towards plastic collapse of a frame. 

Much research has been done (for example the author has supervised the 
work of Refs. 1, 2, 3) with regard to the plastic redistribution of bending 
moments towards collapse. The fear is that if a designer chooses to make 
the resistance moment of a section excessively weak, then the section might 
fail by the extreme concrete fibre strain trying to exceed 0.0035 (the 
maximum amount experienced before concrete crushing), or fail in shear, 
before the other sections of the collapse mechanism have realised their full 
resistance moments. To allow reasonable plastic redistribution of moments 
but to safeguard against the above, CP 110 says The ultimate resistance 
moment provided at any section of a member must not be less than 70% of 
the moment at that section obtained from an elastic maximum moments 

159 
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diagram covering all appropriate combinations of ultimate loads, and the 
elastic moment at any section in a member due to a particular combination 
of ultimate loads should not be reduced by more than 30% of the 
numerically largest moment given anywhere by the elastic maximum mo-
ments diagram for that particular member, covering all appropriate com-
binations of ultimate loads.' Then CP 110 is concerned that the sections 
should be reasonably under-reinforced (because of the fear of concrete 
compression failure, which occurs suddenly). Where, as a result of re-
distribution, the ultimate resistance moment at a section is reduced, it 
therefore restricts the neutral axis depth to be not greater than (0.6 — fi)d, 
where d is the effective depth and fi is the ratio of the reduction in resistance 
moment, to the numerically largest moment given anywhere by the elastic 
maximum moments diagram for that particular member, covering all 
appropriate combinations of ultimate loads. Also, for buildings of more 
than four storeys CP 110 more cautiously allows elastic moments to be 
reduced by only 10%, not 30% as mentioned previously. 

Design in accordance with the first paragraph of this chapter is com-
mendable, in that it automatically gives good control of crack widths and 
deflections (limit states of serviceability). Design in accordance with the 
second paragraph endeavours to give increased economy and reinforcement 
systems which are easier to detail and assist in concreting. For example, the 
steel required over the supports is often reduced to help detailing, particu-
larly when there are two continuous beams at right-angles to one another 
joining a column at the same place and the architect has requested that 
the column should have a small cross-section. 

6.3 Continuous beams and slabs 

The previous section deals with frames, but applies similarly to continuous 
beams and slabs. Tables 6.1 and 6.2 are most useful for designers. Table 6.1 
gives bending moment coefficients for continuous beams or slabs whose 
spans are equal, or do not vary by more than say 10%, carrying uniformly 
distributed loads. For live loads the coefficients are for complete spans 

TABLE 6.1 

Dead load 

0.125 
A0.071A0.07f 

0.100 0.100 

0.080*0.025*0.080* 

0.107 0.072 0.107 

0.077 0.036 0.036 0.077 
0105 0.080 0080 0.105 

▲ "A A A A A 

[ 0.078 0.033 0.0^6 0.033 0.078 

Live load 

0.125 

0.096 0.096 

0.117 0.117 
A A A A 

0.101 0.075 0.101 

0.121 0.107 0.121 
0.099 0.081 0.081 0.099 

0.120 0.111 0.111 0.120 
A A A A A A 

0.100 0.080 0.086 0.080 0.100 
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Dead load 

038 0.62 
z z z 

062 038 

0X0 0.50 0.60 
z z z z 

0.60 0.50 0X0 

0.39 0.5£ 0X6 0.61 
z z z z z 

0.61 0X6 0.54 0.39 
0X0 0.53 0.50 0X7 0.60 

z z z z z z 
0.60 0X7 0.50 0.53 0X0 

Live load 

0.U 0.62 
z z z 

0.62 OW 
0X5 058 062 

z z z z 
0.62 0.58 0X5 

0X5 060 057 062 
£ Z 1 1 Z 

062 057 060 0X5 

0X5 060 059 058 062 
Z Z Z Z Z Z 

0.62 058 059 060 0X5 

loaded in the worst possible arrangement. The elastic bending moment at 
either support or span = Coefficient x Total load on span x Span. 
Similarly, Table 6.2 gives coefficients for shear forces. The elastic shear force 
at a support = Coefficient x Total load on span. 
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Chapter 7 

Design of structures 

7.1 Introduction 

Some other books give designs which check the adequacy and design of, and 
design the reinforcement for, beams, slabs and columns, whose sizes and layouts 
are given without any explanation of derivation. In other words the essential 
speedy creation (which a designer has to perform) of the design, giving layout 
and sizes of members, is not done. The beginner following such designs 
naturally asks, 'How were this layout and these sizes chosen?' These books 
might be thought useful for designers of sufficient experience as not to need 
guidance on determination of layout and sizes, but then such designers do not 
need the information which the books give—unless they are experienced with 
CP 114 and trying to convert their skills to CP 110, in which case they probably 
will find the books most useful. 

The beginner needs to be able to create/design suitable structural systems 
and the sizes of the beams, slabs and columns involved, with the knowledge 
that the reinforcement will properly fit in the sections upon subsequent 
detailing and that more comprehensive or accurate design will not require 
revision of the outline drawings. The self-weight of reinforced concrete 
members is very significant in their structural design and is unknown until 
layout and sizes, which it affects, have been determined. As speed is 
important for economy in design, it is therefore necessary to determine the 
adequacy of the layout and outlines from simple (approximate), basic, 
reliable and rapid calculations considering the most influential design 
requirements first. For example, it is certainly not unknown for a beginner 
to have inadequate guidance and to design a continuous T-beam by firstly 
concentrating on making full use of the flange in flexural compression at mid 
span and then finding that this needs to be revised radically several times 
because of other design requirements (such as concerning considerations of 
shear and flexural compression at the supports, and the practicality of 
detailing reinforcement etc.) which, for efficiency and speed of design, should 
have been considered previously. 

This present chapter, therefore, takes the beginner through the system of 
creating/designing a beam and slab layout (from merely a column layout 
required by the architect planning the client's requirements), obtaining the 
162 
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Figure 7.1 

sizes and checking the practicality of the main practical design problems 
(for example, that reinforcement can be detailed in sections) in the sequence 
in which a professional designer has to rapidly perform this operation. 
Continuous T-beams, mentioned previously, are designed for layout, size 
and reinforcement in a speedy practical sequence. The reader is able to 
follow the mind of the professional designer through this present Section 7.1 
and its sub-sections 7.1.1 to 7.1.5 inclusive. Following the designer's mind 
in creating a structure is not the same as submitting tidy calculations 
justifying one's creations, to checkers of the designs, for structural ade-
quacy. In Section 7.1.6, therefore, the designs are set out in a suitable way 
for submission to others who wish to check general structural adequacy. 
These could be: one's supervisor in the design concern or an outside 
supervisory authority (local, national or consultant working for one or 
other of these). This setting out of the calculations also acts as a summary 
to the designs in the previous sub-sections. 

Chapter 6 belongs to Chapter 7 but has been separated for clarity of the 
very useful design tables it contains—these are used where required in 
Chapter 7. 

Figure 7.1 shows a layout of columns, which has been determined to be 
sympathetic to the arrangement of the windows and layout of internal 
requirements (for example, partition walls, equipment, machinery). The 
building is four 7 m bays wide and ten 5 m bays long. Table 7.1 gives a very 
approximate guide for preliminary design proportioning. If there were no 

TABLE 7.1. 

Ratios of span to overall depth 

Simply supported beams 

Continuous beams 

Cantilever beams 

Slabs spanning in one direction, simply supported 

Slabs spanning in one direction, continuous 

Slabs spanning in two directions, simply supported 

Slabs spanning in two directions, continuous 

Cantilever slabs 

20 

25 

10 

30 

35 

35 

40 

12 
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intermediate beams and the floor slabs were designed as 7 m x 5 m two-way 
spanning they would be, from Table 7.1, say about 7/40m = 175 mm thick. 
This is a rather thick slab. Intermediate beams reduce it considerably so 
that the total amount of concrete and reinforcement is less, and the load on 
the supporting beams, columns and foundations is less. Also the shuttering 
does not need to be as strong. The intermediate beams can be as shown in 
Figure 7.1 and from Table 7.1 the slab is about 2.5/35 m = 71 mm say 
125 mm thick as this is about a minimum floor thickness for practical 
reasons, and for deflection in this example, see later. Otherwise they could 
have been at right-angles to these, giving two-way spanning slabs 
5m x 3.5m, of thickness, from Table 7.1, approximately 5/40m = 125mm 
say 150 mm for practical reasons. If these two schemes are compared the 
first is favoured as the shorter beams carry a greater proportion of the load 
on each 7 m x 5 m panel. 

7.1.1 Floor slab 

This is therefore a 125 mm thick one-way slab, continuous for 20 bays, each 
of 2.5 m span. Suppose the floor carries bedrooms for a hotel or hospital. 
CP 3 requires the floor to be designed for a uniformly distributed load of 
2kN/m2. As the slab was made thicker than required for practical reasons 
the concrete will only need to be weak but as it is a slab and not very thick 
we do not want the cover to be very great. Considering mild exposure in 
CP 110 Table 19, we choose Grade 25 concrete so that we can have 20 mm 
cover—not 25 mm as with Grade 20—so as not to reduce the effective depth 
of the reinforcement. Referring to CP 110 Table 56, the slab will have \\ 
hours fire resistance and we assume that this is satisfactory. The floor will 
carry lightweight partitions and there will be floor finishes, perhaps tiles on 
the floor, and either plaster or a suspended ceiling and minor services 
below; assume all this weighs 1.5kN/m2. The self-weight of the floor (taking 
the weight density of reinforced concrete as 23.6kN/m3) = 0.125 x 23.6 = 
2.95 kN/m2. 

Thus characteristic dead load = 2.95 + 1.5 = 4.45 kN/m2. The building is 
wide and long enough compared to its height for wind forces to be 
neglected (see CP 3). From CP 110 clause 2.3.3.1, design load = 
1A x 4.45 + 1.6 x 2 = 9.43 kN/m2. 

From CP 110 Table 4, maximum bending moment is at the first interior 
support and 

= 9.43 x 2.52/9 = m per metre 6.55 kN width of slab. 

Using/y = 460N/mm2 and CP 110 Design Chart No. 4, and (guessing 
8 mm diameter bars and thus d = 125 — 24 = 101 mm) 

M/(bd2) = 0.006 55/0.1012 MN/m2 - 0.6421 N/mm2 

then 100 AJ(bd) = 0.165 
.-. As = 0.165 x 0.101/100 = 0.000 166 7m2/m 
From Table 3.2 use 8 mm diameter bars at 300 mm centres. This is 

reasonable for detailing. The steel at other locations can be obtained pro 
rata to the bending moments of CP 110 Table 4. For example the smallest 
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of these is at the middle of the interior spans and as Chart No. 4 is linear 
for smaller values of M, 

As = 0.1667 x 9/14 = 0.1072 mm2/ni 

To check that the deflection is not excessive, CP 110 Table 8 allows a 
span-to-effective-depth ratio of 26 and from CP 110 Table 10 the modifi-
cation factor can be taken as 1.41. Therefore allowable maximum span 

= 1.41 x 26 x 0.125 = 4.58m > 2.5m 

This must not, however, be less than (CP 110 clause 3.11.4.1) 
0.0015x0.101 =0.0001515m2 /m. Use 8mm diameter bars at 300mm 
centres. 

With regard to the limit state of cracking, CP 110 clause 3.11.8.2 says 
that for normal conditions of exposure no special check is required if our 
slab thickness is less than 200mm thick which it is; and the clear distance 
between the reinforcement bars must not exceed 3d, which for the 8 mm 
diameter bars = 3 x 101 = 303 mm, and this can be followed in the 
detailing. 

We need some steel at right-angles to the above steel. This is usually 
called distribution steel; it helps to distribute point loads across the width of 
a slab, to resist shrinkage and temperature stresses, and to help fix the main 
steel. Using high-yield distribution steel, reference to CP 110 clause 3.11.4.2 
gives the area of this steel as 

0.0012 x 0.125 = 0.00015 m2/m 

From Table 3.2 use 8 mm diameter bars at 300mm centres. 
It is very unlikely that shear reinforcement will be required (in this 

eventuality we would normally avoid having to use it by making the slab 
thicker). From CP 110 Table 4 maximum shear force 

= 0.6 x 9.43 x 2.5 = 14.15 kN per metre width of slab 
Referring to Section 3.4 

V/bd = 14.15/0.101 kN/m2 = 0.1401 N/mm2 

which is obviously satisfactory from CP 110 Table 5. 

7.1.2 Beams of 7 m span 

CP 110 Table 19 gives a minimum cover of 20 mm for mild exposure and 
Grade 25 concrete. Using a fire resistance of \\ hours, as for the slab, CP 
110 Table 54 requires a minimum concrete cover to main reinforcement of 
15 mm and requires a beam width of 85 mm using a vermiculite/gypsum 
plaster finish. 

The continuous beam supporting the heaviest loading is the penultimate 
beam. From CP 110 Table 4 the reaction on this beam from the 
slab = (0.6 + 0.55) x load. Hence the characteristic dead load from the slab 

= 1.15 x 4.45 x 2.5 = 12.79 kN/m 
and the characteristic live load from slab 

= 1.15 x 2 x 2.5 = 5.75kN/m 
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From Table 7.1 the overall depth of the beam required is approximately 
7/25 = 0.28 m. Within reason the greater the depth the more economic and 
easy the design, detailing and fixing of the reinforcement. A small amount of 
extra vertical shuttering (which does not alter scaffolding costs) and of 
concrete can save expensive reinforcement and its fixing and reduce concret-
ing costs of placing concrete around high percentages of reinforcement. 
Architects often require the overall depths of beams to be a reasonable 
minimum for reasons of asesthetics. Deeper beams increase the heights of 
buildings where strict use is made of minimum headrooms, but we are only 
talking about altering the depth of beams by perhaps about 0.1 m or so to 
increase the economy and speed of the reinforced concrete construction. In 
this example suppose the architect for aesthetic reasons does not desire a 
beam with overall depth deeper than 0.4 m. The breadth of the rib of a 
beam will often be about j to y of the overall depth with a minimum 
sufficient to accommodate three 25 mm diameter bars. Using 19 mm down 
coarse aggregate the horizontal distance between bars, from CP 110, must 
be greater than 19-I-5 = 24 mm, say, 25 mm. Hence width of rib to 
accommodate three 25 mm diameter bars = 5 x 25 + 2 x 25 (that is 
covers) = 175mm. Hence use a beam of overall depth 0.4m and breadth of 
rib of 0.2 m. The effective depth, assuming 25 mm diameter bars with 25 mm 
cover at mid span, will be approximately 400 — 25 — 25/2 = 362 mm and 
then the span-to-effective-depth ratio = 7000/362 = 19.3. This is less than 
26 from CP 110 Table 8 so limit state of deflection is satisfied. 

Then characteristic self-weight of rib 

= (0.4 - 0.125) x 0.2 x 23.6 = 1.30kN/m 

and the total characteristic dead load is 

12.79+ 1.3 = 14.09 kN/m 

The design ultimate load is then 

1.4 x 14.09 + 1.6 x 5.75 = 28.93 kN/m 

If the support moments can be carried, and the reinforcement will 
practically fit in the sections, then the spans should be adequate to resist 
flexural compression; there is a considerable area of the T-flange available, 
whereas there is only the rib to take compression at the supports, and the 
bending moments at mid spans and supports are similar in magnitude. 

It is also important to know if the maximum shear force can be carried 
by the rib with suitable reinforcement if necessary—sometimes being able to 
practically detail the shear reinforcement can be the critical problem to 
overcome with the design, necessitating a larger rib. 

From CP 110 Table 4, maximum bending moment at a support (and 
anywhere) 

= 28.93 x 72/9 = 157.5 kN/m 

and the maximum shear force (adjacent to the inner support of either end 
span) 

= 0.6 x 28.93 x 7 = 121.5kN 
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At this support the beam is cracked in flexure in the top and acts as a 
rectangular beam. The overall depth of the beam is 0.4 m. The slab has top 
main steel up to 8 mm diameter with 20 mm cover. The main beam steel 
over the support must be beneath this slab steel; hence, assuming it is of 
25 mm diameter bars its effective depth 

= 4 0 0 - 2 8 - 1 2 . 5 = 359 mm 
Using the same type of reinforcement as for the slab, from CP 110 Table 

3 fy = 425 N/mm2, then using CP 110 Part 2 Design Chart No. 3 
M/bd2 = 157.5/(0.2 x 0.3592)kN/m2 = 6.11 N/mm2 

This is beyond the range of the Chart, so compression steel is required. 
So using Chart 33, 

As = 2.0 x 200 x 359/100 = 1436 mm2 

and 

A's = 1.0 x 200 x 359/100 = 718 mm2 

From Table 3.2 use three 25 mm diameter bars as tension steel and two 
25 mm diameter bars as compression steel. 

V/bd = 121.5/(0.2 x 0.359) kN/m2 = 1.692 N/mm2 

< 3.75 of CP 110 Table 6. Then see Example 3.8. At support As 

provided = 1473 mm2 and 

.'. 100AJ(bd) = 100 x 1473/(200 x 359) = 2.05 

From CP 110 Table 5 shear resistance provided by concrete alone 

= (0.85 + 0.05 x 0.05) x 200 x 359 N = 61.2 kN 

Hence shear reinforcement is required and has to resist 121.5 — 61.2 = 
60.3 kN. Using stirrups the V/d required is 60.3/0.359 = 168 N/mm. 
From Table 3.5, using steel with/yv = 250 N/mm2, use 8 mm diameter two-
arm stirrups at 125 mm centres. 

There are significant bending moments and shear forces because of the 
ends not being pin-jointed to the external columns. This reduces the 
maximum shear forces and bending moments used above. Hence this beam 
is capable of being designed and detailed with regard to ultimate limit state 
from the above. 

The maximum span bending moment is in the end span and from CP 110 
Table 4 

28.93 x 72 

= = 128.9 kN/m 

Assuming 25 mm diameter bars will be used (two of these need to carry 
through the supports to provide compression steel there) and using 25 mm 
cover to them, the effective depth 

= 4 0 0 - 2 5 - 1 2 . 5 = 362 mm 

The whole of the large slab portion of the T-beam is unlikely to be 
required in compression, so the centre of the compression force is unlikely 
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to be lower than half the slab depth. Therefore the moment arm can be 
taken as 

= 362-125/2 = 299 mm 

128 900000 
A = 

299 x 425 
= 1014mm2 

Use two 25 mm diameter bars and one 8 mm diameter bar. 
The continuous T-beam of this type will normally be adequately strong in 

flexural compression. This can be checked, and a more accurate calculation 
for the reinforcement made, as in Example 3.18, using CP 110 clause 3.3.1.2 
to obtain the effective width of the flange. 

The limit state of cracking is easy to comply with in the detailing, see CP 110 
clause 3.3.9 and Table 24. 

As mentioned before, bending moments due to the beams framing into the 
external columns cause moments and shear forces along the continuous 
beams, mainly advantageously. If a more accurate design is to be produced, 
use can be made of Table 7.3 (p. 180). In any case the bending moment in the 
beam at this junction must be assessed as given at the end of Section 7.1.3 
for detailing the beam at this location. 

7.1.3 External columns between ground and first floor 

Figure 7.2 shows an external column. The base shown rests on a cohesive 
soil (clay) and is designed for uniform soil pressure. That is, the base is 
assumed to rotate because of the inelastic or plastic action (or creep) of the 
soil. So that the shutters can be unaltered for economy, the external column 
BG is designed for BC to be as small in girth as possible and then the upper 
portions of the column BG are kept the same size, their reinforcement being 
reduced. The greatest vertical load is little greater at B than at C, yet it is 
combined with a substantial bending moment at C, which is therefore the 
critical section for design. 
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Considering durability (mild exposure) and fire resistance (1^ hours) CP 
110 Tables 19 and 59 mean that the cover of Grade 25 concrete to the links 
needs to be 20 mm and the minimum dimension of the concrete needs to be 
150 mm, using vermiculite/gypsum plaster. 

The vertical loads can be accurately obtained from the shear forces of the 
beams framing into the columns and estimating the self-weight of the 
columns. The 5 m long beams should therefore be designed in a similar way 
(NB CP 110 Table 4 cannot be used for point loads) to that given in 
Section 7.1.2 before the columns are designed. Assume that the vertical load 
at C comprises a characteristic dead load of 665 kN and a maximum 
characteristic live load of 166 kN. To estimate the size of the column 
assume it is axially loaded, ignore the strength of its reinforcement, and 
increase the cross-sectional area by about 30%. The design ultimate load 

= 1.4 x 665 + 1.6 x 166 = 1197kN 

Then the cross-sectional area of column required (see equation 5.2) 

= 1.3 x 1197 000/(0.4x25)= 155 600 mm2, say 350 mm by 450 mm 

Second Moment of Area for the column 

= 350 x 4503/12 = 2658 x 106mm4 

The stiffnesses of columns DE and CB, respectively, are 2658 x 106/3000 = 
886000 mm3 and 2658 x 106/4000 = 664 500 mm3, respectively. The 
Second Moment of Area of the beam poses a problem as the beam is a T-
beam at mid span but a rectangular beam in effect at the location of cracks 
near the supports. The writer considers the former as the more accurate 
assumption, as did Scott and Glanville, and many structures have been 
designed on this basis in the past. However, the latter assumption is easier 
for calculation, gives higher moments in the columns, and is favoured in 
books by Allen (1974) and Higgins and Hollington (1973) of the Cement 
and Concrete Association. Using this latter assumption the Second 
Moment of Area for the beam 

= 200 x 4003/12 = 1067 x 106mm4 

and the stiffness 

= 1067 x 106/7000 = 152400 mm3 

For this beam the total design ultimate load = 28.93 kN/m, and if it were 
fixed the end moment (from Table 7.2) 

= 28.93 x 72/12 = 118.1 kNm. 

The bending moment at C, from CP 110 clause 3.5.2, is 

H8.1 x ——— 6 6
c

4 ' 5 ,^ AlfS = 48.24kNm. 
664.5 + 886 + 152.4/2 

As A in Figure 7.2 is assumed to be in effect a hinge, it would be more 
accurate to reduce the stiffness of CB, but CP 110 does not suggest this, and 
thus gives a higher moment at C. 

There are walls between the external columns, various internal walls and 
the overall height of the building compared to its horizontal dimensions is 
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sufficiently low for lateral wind forces to be ignored. It can be assumed 
therefore that the beam column junctions will not move laterally, that is the 
columns can be considered as 'braced' as defined by CP 110 clause 3.5.1.3. 
From CP 110 Table 15 take the effective height of column CB as the length 
CB = 3.7m guessing AB as 0.3 m. Then 3.7/0.35 = 10.57 which is less than 
12; hence column can be treated as a short column (see Section 5.2). 

From CP 110 clause 3.5.5 the minimum design ultimate bending moment 

= 1197 x 0.05 x 0.45 = 26.9 kNm < 48.24kNm, 

hence design for this latter. If the links are 8 mm diameter this means that 
the cover to the main steel is 28, say, 30 mm. Suppose 25 mm bars are to be 
used in a single layer at each side of the column then effective 
depth = 450 - 43 = 407 mm and d/h = 407/450 = 0.90. Thus for 
/cu = 25N/mm2 and/y = 425N/mm2 use Design Chart 76 of CP 110 Part 2. 

N/bh = 1.197/(0.35 x 0.45) MN/m2 - 7.6N/mm2 

M/bh = 0.048 24/(0.35 x 0.452) MN/m2 = 0.6806 N/mm2 

therefore no reinforcement is required. But the percentage of reinforcement 
should not be less than one (see CP 110 clause 3.11.4.1), hence the area of 
reinforcement required 

= loo x 350 x 450 = 1575 mm2 

Then from Table 3.2, four 25 mm diameter bars can be used. 
For junctions with beams higher up the external column, bending 

moments will be similar but the vertical loadings much less. The column is 
kept the same size all the way to economise on shuttering. A greater 
predominance of bending moment relative to axial load could require 
greater reinforcement so it would be precipitous to redesign this portion CB 
of the column to be smaller with more reinforcement just because the 
reinforcement required is fairly modest, although four 25 mm diameter bars 
are quite good for detailing purposes particularly at the junctions with the 
beams. 

With the present design the bending moment in the beam framing into 
the column at its support is the sum of the bending moments in the columns 
at C and D, that is 

664.5 4- 886 
° " ' U * 664.5 + 886 + .52.4/2 = " " " - " ° 

It was mentioned at the end of Section 7.1.2 that this bending moment 
would be calculated here. Its effect can be assessed along the continuous 
beam using Table 7.3. 

7.1.4 Bases 

From Section 7.1.3 the design ultimate vertical load at C was 1197kN and 
AB the thickness of the base was guessed to be 0.3 m. The characteristic 
self-weight of the column BC can be taken as 

0.450 x 0.350 x (4.0 - 0.3) x 23.6 = 13.75 kN 



Introduction 171 

The design ultimate vertical load at B is therefore 

13.75 x 1.4 +1197 = 1215kN 
The weight of the base gives a characteristic pressure on the soil of 

0.3 x 23.6 = 7.08 kN/m2 and an ultimate design pressure of 
1.4 x 7.08 = 9.91 kN/m2. As mentioned before, the soil is cohesive and is 
considered to give a uniform pressure beneath the base. Assume the soil 
beneath the base can safely withstand a pressure of 217kN/m2. Using a 
load factor of say 1.8 the ultimate pressure on the soil can be 217 x 1.8 = 
390kN/m2. Then the area of the base needs to be 

1215/(390-9.91)-3.2m 2 

Making it square to save shuttering it needs to be 1.8 m x 1.8 m. 
From CP 110 Table 19 cover to reinforcement for moderate exposure 

(buried concrete) = 40 mm. If 16 mm diameter bars are to be used to form a 
square mesh, then the effective depth for the bars in the upper 
layer = 300 - 40 - 24 = 236 mm. 

For shear using CP 110 clause 3.10.4.2 condition (1): ultimate design 
uniform pressure on base = 1215/1.82 = 375 kN/m2, shear force on section 
distance 1.5 times effective depth (= 1.5 x 236 = 354 mm) from face of 
column 

= 375 x 1.8 x (1.8/2 - 0.35/2 - 0.354) = 250.4 kN 

V/bd = 0.2504/(1.8 x 0.236) MN/m2 = 0.59 N/mm2 

Condition (2): critical shear perimeter is 1.5 x slab thickness = 
1.5 x 300 = 450 mm away from the faces of the column and is 

= 2 x 350 + 2 x 450 + 2TI x 450 = 4427 mm 
area enclosed by this perimeter 

= 350 x 450 + 2 x 450 x 350 + 2 x 450 x 450 + n x 4502 

= 1514000 mm2 

shear on perimeter 

= 1215-1.514 x 375 = 647kN 

shear stress on perimeter 

= 0.647/(4.427 x 0.236) MN/m2 = 0.619 N/mm2 

From CP 110 Tables 5, 6 and 14, these shear stresses are satisfactory if the 
longitudinal reinforcement is slightly greater than 

This is to be so for bending considerations later. 
Using clause 3.10.3 of CP 110 the maximum bending moment is at a 

section passing completely across the base at the face of the column and 

375 / 1 . 8 - 0 . 3 5 V 
= — x ( I =98.55kNm/m 
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For fcu = 25 N/mm2 and/y = 250N/mm2 use CP 110 Design Chart 1 

M 0.09855 
—=- —=- MN/m2 = 1.769 N/mm2 

bd2 0.2362 ' ' 

.-. A, = 0.9% of M = ^ x 1000 x 236 = 2124mm2/m 

From Table 3.2 use, say, 16 mm diameter bars at 90mm centres. 
With regard to limit state of cracking, from CP 110, clause 3.11.8.2, the 

clear distance between bars should not exceed 300 mm so the 90 mm centres 
suggested are satisfactory. 

CP 110, clause 3.10.5, says that limit state of deflection can be ignored for 
bases. Deflections would not be unsightly underground; also the greater 
proportion of the loading is dead not live so the deflection due to the latter 
would not normally result in undesirable springiness of the base. 

The local bond stresses associated with the shear forces above need to be 
checked for adequacy. Assuming the reinforcement is not reduced in 
effectiveness by curtailment where either of these shear forces occur: 

perimeter of bars per unit length of base = n x 16/0.09 = 558.5 mm/m 

from Table 21, ultimate local bond stress = 2N/mm2; from formula 43 of 
CP 110 (or Section 3.5 of this book) this gives an ultimate shear force 

= 0.002 x 558.5 x 236 = 263.6kN/m 

where this occurs it corresponds to an ultimate shear stress 

MN/m2 = 0.6205 N/mm2 

1.8 x 0.236 
This is satisfactory as it is greater than 0.59 and 0.619 previously. 

The reinforcement must be able to develop adequate anchorage length, 
within the size of the base, from the position of the maximum bending 
moment. The distance from the face of the column, where the maximum 
bending moment was calculated to the periphery of the base = 
(1.8 — 0.35)/2 = 0.725 m. Using an end cover of 40mm this gives a possible 
overall bar length of 0.725 — 0.040 = 0.685 m available for anchorage. 
Referring to Table 2.9 (and see Example 2.4) 

Jb = 45db = 45 x 16 = 720 mm 

If hooks are used as anchors to the bars, from Table 2.12 a. hook is 
equivalent to an anchorage length of 256 mm. Hence the overall anchorage 
length required = 720 — 256 = 464 mm, so 685 mm is satisfactory. 

It is interesting that the CP 110 calculation for bending moment gives the 
same result as using Johansen's method with a yield-line pattern as shown 
in Figure 7.3(a), and as using Hillerborg's methods for strips and elements 
as shown in Figure 7.3(b). Applying Johansen's method to the yield-line 
pattern of Figure 7.3(b) gives an upper-bound solution to that using Figure 
7.3(a) as a yield-line pattern. 
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m 

Figure 7.3 

7.1.5 Anchorage of column bars into bases {see Sections 2.6-2.6.10) 

In this example the column bars are in compression. There will be 'starter 
bars' projecting from each base, as shown in Figure 7.4. These are lapped 
with a 'compression lap' with the column bars. Distance ax is this lap plus a 
tolerance of, say, 20 mm (that is one aims at having a gap of 20 mm between 
the column bars pad A). A is a 'kicker pad' of concrete, say 50 mm deep, for 
holding the column shutters apart and to hold them in position at this 
point. The base must be adequately thick to accommodate the distance a2, 
which needs to be the 'compression anchorage length'. 

r-^\ 
Figure 7.4 

Extra length such as a3 cannot be counted in the compression lap for 
similar reasons to those given in Section 2.6.9. If the base is too thin to 
accommodate a2 then it may need to be thickened, giving economies in the 
reinforcement for bending moments in the base. Alternatively, larger 
diameter or more starter bars, or both, may be used. 

7.1.6 Design calculations 

As mentioned in Section 7.1, this present sub-section sets out the previous 
calculations, in a style used in design offices for ease of checking by one's 
supervisor, or an outside supervisory authority, wishing to check general 
structural adequacy. Two margins are used, one for titles and the other to 
give information required later or when detailing reinforcement. The follow-
ing also acts as a summary of the designs of the previous sub-sections: 
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Slab 

Beam 

span 2.5 m (continuous 20 bays) 
loading (char.): live 2kN/m2 

finishes 
self-weight, SW 

1.5 
2.95 

4.45 kN/m2 

ultimate design load: 1.6x2 =3 .2 
1.4x4.45 = 6.23 

9.43 kN/m2 

support M 
9.43 x 2.52 

= 6.55kNm/m 

d = 1 2 5 - 2 0 - 4 
M 0.006 55 

M 2 " 0.1012 

Chart No. 4, 
100,4. 

: 0.165 

101mm 

= 0.6421 

bd 

As = 0.165 x 0.101/100 = 0.000 166 7 m2/m 
Interior span 

As = 0.1667 x 9/14 = 0.1072 mm2/m 
min. As = 0.15 x 1000 x 101/100 = 151.5mm2/m 
V= 0.6 x 9.43 x 2.5 = 14.15 kN/m 
V/(bd) = 14.15/0.101 = 0.1401 N/mm2 

Distribution steel As = 0.0012 x 0.125 
= 0.00015 m2/m 

span 7 m (4 bays) 
7 m span loading (char.) 
live from slab 1.15 x 2 x 2.5 = 5.75 kN/m 

dead from slab 1.15 x 4.45 x 2.5 = 12.79 
SW rib = (0.4 - 0.125) x 0.2 x 23.6 = 1.30 

Total dead 14.09 kN/m 

Design load = 1.4 x 14.09 -f 1.6 x 5.75 
= 28.93 kN/m 

28.93 x 72 

support M = = 157.5 kN m 

max. V= 0.6 x 28.93 x 7 = 121.5 kN 
d = 400 - 20 - 8 - 12.5 = 359 mm 
M _ 157.5 

bd* ~ 0.2 x 0.3592 

Chart No. 33 

100/1. 

rkN/m2 = 6.11 N/mm2 

bd 
2.7 

2.0 x 200 x 359 
A, = = 1436 mm2 

100 

125 mm thick 

cover = 20 mm 

d = 101mm 

fy = 460N/m2 

8 mm # at 
300 mm centres 

as above 

as above 

cover 20 mm 

bars 25 mm 

d = 359 mm 

fy = 425 N/mm2 

3-25 mm <P 

AK = 1474 mm2 
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1 .0x200x359 
A' = = 718mm2 

100 

V _ 121.5 
W ~ 0 . 2 x 0.359 

kN/m2 = 1.692 N/mm2 

< 3.75 (Table 6) 

10O4, 100 x 1474 
bd 200 x 359 

= 2.05 

shear resistance, concrete only 
= (0.85 + 0.05 x 0.05) x 200 x 359 = 61.2kN 

shear steel required for 
V= 121.5-61.2 = 60.3 kN 

60.3 
: 0.359 

168 N/mm 

28.93 x 72 

span M (max.) = = 128.9 kN m 

d = 400 - 25 - 12.5 = 362mm 
z = 362 -125/2 = 299 mm 

128 900000 
As = = 1014 mm2 

s 299 x 425 

AtC 
char, dead load = 665 kN 
char, live load = 166 kN 
design ult. load = 1.4 x 665 + 1.6 x 166 

= 1197kN 

cross-sectional area : 
1.3 x 1197 000 

Second mt. area ■ 

0.4 x 25 
= 155 600 mm2 

350 x 4503 

12 
2658 x 106mm4 

Stiffness of cols: 

2658 x 106 

DE: 
3000 

= 886000 mm3 

2658 x 106 

CB: = 664 500 mm3 

4000 

Beam: 
Second moment of area: 

200 x 4003 

12 
= 1067 x 106mm4 

1067 x 106 

Stiffness = — - = 152400 mm3 

7000 

Fixed end M 

_ 29.93 x 72 

= 12 
= 118.1 kNm 

2-25 mm <P 

/yv = 250 N/mm2 

8 mm <P 2-arm stirrups 
at 125 mm centres 

cover 25 mm 

d = 362 mm 
fy = 425 N/mm2 

2-25 mm <P 
1-8 mm ^ 

350 x 450 
(157 500 mm2) 
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Col. M at C 

118.1 x 664.5 

Bases 

664.5 + 886 + 152.4/2 

= 48.24 kNm 

effective height/lateral dimension 

3.7 
= = 10.57 < 12 

0.35 

min. design ult. M = 1197 x 0.05 x 0.45 
= 26.93 k N m < 48.24 

cover to main steel = 

effective depth = 450 - 43 = 

N 1.197 
bh 0.35 x 0.45 

M 0.048 24 
bit 0.35 x 0.452 

MN/m2 = 7.6 N/mm2 

MN/m2 = 0.6806 N/mm2 

Design Chart 76 
use nominal steel: 
= jfe x 350 x 450 = 1575 mm2 

M in beam at junction 

664.5 + 886 
118.1 x 

V664.5 + 8 8 6 + 152.4/2 

= 112.6kNm 

design ult. load at C = 1197kN 
SW col. CB = 0.45 x 0.35 x 3.7 x 23.6 = 13.75kN 
design ult. load at B 

= 1197 + 1.4 x 13.75 = 1215kN 
SW base - 0.3 x 23.6 = 7.08 kN/m2 

SW base: ultimate design pressure 
= 1.4 x 7.08 = 9.91 kN/m2 

Safe soil pressure = 

Using load factor for soil = 1.8 
ultimate pressure on soil can be 

= 217 x 1.8 = 390 kN/m2 

area of base = 
1215 

390-9 .91 
= 3.197m2 

make base — 
effective depth of bars (in upper layer) using 16 mm 
0 bars and 40 mm cover 

= 300 - 40 - 24 = 

ult. design pressure = 1215 
124 : : 375 kN/m2 

.'. short col. 

30 mm 
25 mm # bars 
407 mm 

/cu = 25N/mm2 

/ = 425 N/mm2 

4 25 mm <P 
(1963 mm2) 

217 kN/m2 

1.8m x 1.8m 
(3.24 m2) 

236 mm 
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(1) distance from face of col. 
= 1.5 x 236 = 354 mm 

V=315 x 1.8 x 

= 250.4 kN 

V 0.2504 

0.354 

bd 1.8x0.236 

0.35 

MN/m2 =0.59 N/mm2 

(2) distance from face of col. 
= 1.5 x 300 = 450mm 
critical shear perimeter 
= 2 x 350 + 2 x 450 + 2TT x 450 = 4427 mm 
area enclosed by perimeter 
= 350 x 450 + 2 x 450 x 350 + 2 x 450 

x 450 + 7i x 4502 

= 1514000mm2 

V= 1215 - 1.514 x 375 = 647kN 

0.647 
MN/m2 =0.619 N/mm2 

bd 4.427 x 0.236 

Satisfactory if longitudinal steel (CP 110 Table 5) 

0.12 
:0 .5+ x 0 . 5 : 

0.15 
: 0.9% 

max. M 

_ 375 
~ ~ 2 ~ " \ 2 
M _ 0.098 55 

bd~~ 

1.8-0 .35V 
: 98.55 kNm/m 

Chart 1, /L 

0.2362 

0.9 

= 1.769 N/mm2 

100 
x 1000x236 = 2124mm2/m 

Perimeter of bars 
= 7T x 16/0.09 = 558.5 mm/m 

Table 21, ultimate local bond stress = 2 N/mm2 

Section can take ultimate shear force 
= 0.002 x 558.5 x 236 = 263.6 kN/m 

i.e. corresponding ultimate shear strength 

0.2636 
1.8 x 0.236 

MN/m2 = 0.6205 N/mm2 

> 0.59 and > 0.619 (see previously) 
.'. satisfactory 
overall anchorage length available 

= (1.8 - 0.35)/2 - 0.040 = 0.685 m 
From Table 2.9 

lh = 454 = 45 x 16 = 720 
From Table 2.12 

hook E= 256 mm 
ah = 7 2 0 - 2 5 6 = 464 mm 

< 685 mm ..satisfactory 

16 mm <P bars 
at 90 mm centres 

40 mm end cover 
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7.1.7 Student design office exercise 

Each member of the class can be given a different column grid layout 
similar to that of Figure 7.1, that is 7 x 5 m, 6.9 x 5 m, 6.8 x 5 m, 7 x 4.9 m etc. 
A student can check calculations at all stages, with his colleagues working 
on grids immediately on either side of his own. This helps supervision 
enormously. 

The exercise can be as in Sections 7.1-7.1.6 and can be more accurately 
designed using bending moment envelopes. 

Pairs of students can design structures of the same geometry, one with 
Grade 25 concrete and the other with Grade 20 or Grade 30 concrete. Pairs 
of students can also design structures of the same geometry and grade of 
concrete but using different steels. 

7.1.8 Floor of building (two-way and fiat slabs) 

Suppose that the floor of Section 7.1.1 is supported by a 5m square, as 
opposed to the rectangular, system of columns. It then seems natural, 
because of symmetry, to choose two-way spanning slabs or a flat slab, 
rather than a system of one-way spanning slabs with subsidiary and main 
beams. Using Table 7.1 the two-way continuous slabs would need to be 
approximately 5000/40 = 125mm thick. This is reasonably thin; hence an 
intermediate system of crucifix beams, making the slabs 2.5 m square, is not 
required. The beams between the columns supporting the slab, from 
Table 7.1, will perhaps need an overall depth of about 5000/25 = 200 mm, 
and breadth say about half of this, namely 100 mm, say 125 mm as 100 mm is 
rather too small to accommodate beam reinforcement. 

Ignoring shear, a flat slab needs an overall depth of about 
125/0.9 = 139mm, say 150mm. With drops the slab would need to be 
about 125 mm thick and the drops about 1.4 x 125 = 175 mm thick. In 
either case it would be normal to avoid the need for shear reinforcement 
and this would usually necessitate the slab being thicker even if column 
heads are used. 

7.2 Design tables 

Table 7.2 is useful for the design of the beams shown and also for giving 
fixed end moments for commencing moment distribution analyses. In this 
table, as regards the end restraints, F denotes free to rotate and C denotes 
constrained (i.e. fixed or encastre). The bending moments at A, B and 
C, respectively, are aAQ/, aBg/, acQl respectively, where Q is the total load 
on span /, and C is the position of maximum positive bending moment 
in the span. The maximum deflection along the span is /3Ql3/{EI). The 
reaction at A is P = yQ. Also OL1 = 1 — a, a2 = 2 — a, a3 = 3 — a and a1 = 
1 + a - a2/2. 

Table 7.3 is very useful in conjunction with Tables 7.2, 6.1 and 6.2. It is 
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Loading 

A B 
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C 

C 

F 

C 

C 

B 

F 

F 

C 

F 

F 

C 

F 

F 

C 

F 

F 

C 

Coefficients 
bending moment 

« A 

- 1 / 8 

-1 /12 

-1/5.33 

- 1 / 8 

— 

- 1/6.4 

-1/9.6 

— 

aa1a2/2 

— aa2 

ac 

1/8 

1/14.2 

1/24 

1/4 

1/6.4 

1/8 

1/6 

1/9.51 

1/16 

(X(Xl 

a2a!a3/2 

2a2a2 

aB 

— 

-1 /12 

" 

- 1 / 8 

— 

— 

- 1/9.6 

— 

— a2a t 

Deflection 

P 

1/76.8 

1/185 

1/384 

1/48 

1/107.3 

1/192 

1/60 

1/139.5 

1/274.3 

a2a2/3 

P 

y 

1/2 

0.625 

1/2 

1/2 

0.688 

1/2 

1/2 

0.656 

1/2 

<*i 

o^a1 

a2(l + 2a) 

for continuous beams of spans AB, BC, CD, etc. The first section is for a 
unit bending moment applied at A, whilst the second section is for unit 
bending moments applied simultaneously at A and the other end of the 
continuous beam. The bending moment at any support is the applied 
bending moment M at the end (or ends) times the coefficient. The shear 
force next to any support is M x Shear force coefficient divided by the span; 
EF is always the end span, otherwise the spans read consecutively from left 
to right (that is AB, BC, CD, etc.). The use of Table 73 is described in 
Sections 7.1.3 and 7.1.2. 

Table 74 gives the weights (for 0 = 9.8O7m/s2) of various building 
materials. 
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TABLE 7.4. Weights of materials 

Aluminium 
Ashes (dry) 
Asphalt 
Brickwork, cement mortar 

common brick 
pressed brick 

Cement 
loose 
bags 
bulk 

Coal 
solid 
crushed washed 
crushed unwashed 

Concrete 
plain or reinforced 
granolithic or terrazzo 
foamed slag non-structural 
foamed slag structural 
aerated 

Cork 
Copper 
Fibreboard 
Fibreboard, compressed 
Glass 
Iron 
Lead 
Lime plaster 
Macadam 
Mortar (set) 

cement screeds 
lime screeds 

Plasterboard 
Rubber 
Steel (cast or mild) 
Tarmacadam 
Vermiculite/cement screed 
Wood paving 
Wood wool/cement slabs 
Woodwork 

red pine 
teak 
pitch pine 
greenheart 

kN/m3 

27.0 
6.3 

20.4 

19 
23 

11.8-13.3 
11.0-12.6 
12.6-14.1 

12.8 
9.0 
9.3 

23.6 
23.6 
13-15 
21 

8.5-9.4 
2.4 

85.9 
2.9 
5.0 

24^27 
70.6 

112 
18.8 
21 

22.6 
15.7-17.3 
9.3 
9.6 

77 
23 

5.8 
8.7 
5.8-7.2 

4.8-7.2 
6.4-8.8 
6.6-7.2 

10-12 

Concrete hollow tile slabs 
125 mm thick 
150 mm thick 
190 mm thick 

Corrugated sheeting 
galvanised iron 
asbestos-cement 

Doors 
N-light roof glazing 
Roofing felt (two-layer built up) 
Windows 

kN/m2 

2.14 
2.38 
2.68 

0.144 
0.156 
0.384 
0.264 
0.048 
0.240 

7.3 Creation (design or selection) of structural system 

The designer has to initially decide which type of construction to use. Of 
course he could design and obtain prices from contractors for many 
different alternative schemes. Generally the time available for, and the cost 
of, design and pricing or estimating mitigate against this procedure. The 
structural designer in conjunction with the architect has therefore generally 
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to decide upon the structural system before obtaining tenders from con-
tractors. The better their experience, the better the selection of the struc-
tural system should be, and the selection may have minimum cost as its only 
objective or may be a compromise between cost, aesthetics and quality. 

The author has not mentioned the type of firm where he gained consider-
able experience, namely the designer-contractor. This is because over the 
past twenty or more years these types of firms have become fairly in-
significant with regard to the total amount of design work effected in the 
U.K. These firms had a great advantage in designing structures to suit the 
economics of their own construction organisation, that is making full 
economic use of exactly the type of plant, works and personnel possessed by 
the company. Also when in competition with other designer-contractors 
the client was assured of obtaining the most economic construction. The 
disadvantage of the system was that the client and architect did not have 
the advantage of a consultant structural engineer independent of the 
contractor and this is probably the reason for consultants mainly being 
used in preference to designer-contractors because the architect advises the 
client and professionally he will probably prefer to have the services of a 
consultant even though the total construction may be less economic. 

For a building the column layout will be determined from the use of the 
building and will be as regular a system (or systems) as possible to give 
repetition for keeping down the contractors' costs (for example, of shutter-
ing, or formwork). 

In this book we are considering flat roofs. For those interested in shell 
and folded plate roofs the author has produced many publications and of 
these would recommend to beginners Refs 1 to 7; all but Ref. 5 concern 
cylindrical shells, Ref. 4 also concerns hyperbolic paraboloidal shells (or 
hypars), Ref. 5 concerns conoidal shells (or conoids) and Ref. 6 also 
concerns folded plates. For further reading the author has produced Refs 8 
to 11. 

For a flat roof the superimposed loads used in the U.K. are light in 
weight relative to the self-weight of the concrete; for example, in Sections 
7.1 to 7.1.2 the self-weight of the slab and beams is considerably greater 
than the superimposed loads they are designed to carry. Whatever type of 
construction is used to support the superimposed loads between the col-
umns therefore needs to be as light in weight as possible as regards cubic 
metres of concrete used. Lightness in weight reduces the amount of 
reinforcement required, but this can also be effected by using a greater 
overall construction depth. The area of shuttering required for the soffit is 
the same for all types of in-situ concrete roofs. The sides of beams require 
shuttering and the deeper these beams to reduce reinforcement require-
ments the greater the amount and therefore cost of this shuttering. 
Architects often do not like deep, heavy looking beams. Also if the overall 
construction depth is excessive say at the roof and every other floor of a tall 
building, then the building will require extra wall cladding and will end up 
taller than necessary. The complexity of reinforcement bending and fixing 
may be borne in mind by an estimator as slowing down the construction 
programme, yet the actual difference in cost between normal and complex 
bending and fixing per tonne will generally be fairly insignificant with 
regard to the total cost of the construction. 
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A flat slab will not therefore usually provide a very economic roof 
because although there are no beam sides to shutter, the construction is 
heavy (meaning large quantities of concrete and stronger soffit shutters) and 
shallow in overall depth. Thus large quantities of reinforcement are re-
quired because of both the heavy self-weight and the small overall depth. 
For example the roof slab may be 200 mm thick for a flat slab roof whereas 
the slab of an alternative design with beams and slab might well be 125 mm 
thick. The flat slab can be made lighter by having 'dropped-panels', that is 
the area around each column is made thicker than the remainder of the 
slab. This involves the expense of shuttering the vertical periphery of each 
drop panel. Hollow tiles have also been incorporated in flat slabs to reduce 
weight but this will generally be found to be uneconomic. 

Apart from systems with either or both thicker slabs and/or larger 
columns, flat slabs are usually supported by columns with heads flared out 
each in the shape of an inverted pyramid or cone to reduce the high shear 
stress in the slab around the periphery of each column. The term 'punching 
shear stress' used to be used in this connection, the scenario being that of 
columns punching through a flat slab. The term was used and a check was 
made of the slab tearing in shear on a plane vertically above the periphery 
of the column. Tests show that this never happens and that the failure in 
shear, characterised by an inclined crack basically due to diagonal tension 
but also affected by bending moment etc., occurs a short distance away 
from the periphery of the column. For example CP 110 says in effect that 
the critical section for calculating shear should be taken on a perimeter 1.5 
times the overall depth of the slab, from the boundary of the supported 
area. 

Flat slabs can be made more economic by reducing the amount and thus 
the weight of the concrete by introducing voids of minimum shuttering cost. 
For example a 'waffle slab' uses say standard glass fibre moulds (for 
lightness and ease of stripping) as shown in position in Figure 7.5 with the 
idea that the tremendous repetition of use which each of these moulds can 
sustain will make this shuttering very inexpensive. More recently this idea 
has been extended using larger voids, see Figures 7.6 and 7.7, these giving 
more of a standardised two-way spanning slab supported by beams to the 
column arrangement. 

Continuing our discussion of roofs (the flat slab discussion having led to 
regular systems of two-way spanning slab arrangements just mentioned) 
after flat slabs the next in-situ arrangements would be those of beams 
supporting either one-way or two-way spanning slabs. If the column 
arrangement is square in plan or of up to say 1.5 to 1.0 length-to-width 
ratio then two-way spanning slabs may well be useful. Again for a roof it is 
desirable to keep the thickness of the slab to a minimum of say 125 mm. 
Panel sizes can be designed on this basis. If they are too large for a suitable 
division of the distances between columns with a suitable beam system, then 
the thickness can be kept the same for smaller panels and economies made 
in the amount of reinforcement required, because the depth is then greater 
than the minimum requirement. 

For more rectangular column layouts one-way spanning slabs of mini-
mum thickness, say, 125 mm would be used in preference to two-way 
spanning slabs. 
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Figure 7.5 (courtesy the Cement and Concrete Association) 

"1? 

Figure 7.6 (courtesy the Cement and Concrete Association) 
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Figure 7.7 (courtesy the Cement and Concrete Association) 

The beam layouts for these beam/slab systems sometimes involve main 
beams supporting secondary beams. This can cause enormous weight on 
the main beams which may need to be of shorter span and greater depth 
than the secondary beams. 

Figure 7.8 shows one of many types of precast concrete roofs. The type 
shown incorporates voids to keep the weight down. Generally the beam 
units of these types of roofs (and floors) can be of ordinary or prestressed 
reinforced concrete. An alternative type commonly used is such that each 
unit is in effect a hollow beam. The author has been concerned with units 
which comprise halves of these, and patented for his employer a system 
using such halves either together or as singles or in pairs between hollow 
blocks making three types of floor from a machine-produced block and a 
machine-produced half hollow beam unit. Generally it has been the 
author's experience that precast slabs are less expensive than in-situ slabs 
mainly because of the shuttering cost. If a slab is at a height then there is 
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Figure 7.8 (courtesy the Cement and Concrete Association) 

also an advantage with precast units in the saving of considerable scaffold-
ing costs for the shuttering. 

Generally in-situ slabs are of better quality than precast slabs. For 
example they are more robust, that is they do not have thin (for example 
30 mm thick) unreinforced members supporting the top surfaces, although 
the top surfaces of precast floors are often strengthened, for example, with 
25 mm thick screeds. Still an in-situ slab is more robust against, say, a blow 
from a sledge hammer, a load being accidentally dropped on the floor, say, 
on one of its corners (that is an impact point load), and so on. 

Precast units have to sit on beams and be fastened to them. This causes 
clumsy detailing problems. If the units simply sit on the beams then the 
overall depth is unnecessarily high. Beams sometimes have their sides 
provided with seatings for the precast units; the beams are then rectangular 
and cannot benefit from being T-beams as in in-situ construction. 
Supporting beams sometimes have their top part cast after the precast units 
are in place so that the beams can be T-beams but then the beams have to 
be propped whilst the units are placed, unless the T action is only for 
subsequent live load. 

The units are sometimes filled in with in-situ reinforced concrete over the 
supports to gain the advantage which in-situ floors automatically have, that 
is of continuity. 
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The type of roof shown in Figure 7.8 can be made with the beam unit 
supporting the blocks incomplete and requiring supporting until finally 
completed with in-situ concrete. Apart from the disadvantages of this 
system one advantage is being able to make a very standard and lightweight 
beam unit. One such system used burnt clay tiles with grooves in them for 
accommodating prestressing wires for fabricating the beam units. 

Previously in this section the discussion has concentrated on roofs. 
Similar considerations apply to floors, particularly for those carrying 
lightweight superimposed loads. For floors supporting heavy superimposed 
loads, the self-weight of the concrete is a smaller proportion of the total 
weight of the construction than for roofs and it is therefore not so 
important to try and reduce the self-weight as described previously for 
roofs. 

Flat slabs supported by columns with flared heads will not be economic 
for small spans because of the size and therefore cost of these heads. 

Precast frames1213 are economic for single-storey buildings commonly of 
column layouts 9 m by 4.5 m to 6 m. The author1 2 1 3 has designed and 
constructed many of these and exceptionally designed for a column layout 
of 15 m by 9.3 m—the doubly-pitched portal frames in this case carried 
overhead cranes and needed to be post-tensioned. 

With precast frames, joints are the weakness and the problem. The 
author in Ref. 14 describes a joint suitable for use in multi-storey buildings. 

References 

1. EVANS, R. H., and WILBY, C. B., Concrete—Plain, Reinforced, Prestressed and Shell, 
Edward Arnold, London (1963) 

2. WILBY, C. B., and BELLAMY, N. W., Elastic Analysis of Shells by Electronic Analogy, 
Edward Arnold, London (1962) 

3. WILBY, C. B., 'A Proposed "Exact" Theory for Analysing Shells, and its Solution with an 
Analogue Computer,' Proceedings of the Institute of Civil Engineers, July (1962) 

4. WILBY, C. B., and KHWAJA, I., Concrete Shell Roofs, Applied Science Publishers Ltd., 
Amsterdam, London, New York (1977) 

5. WILBY, C. B., and NAQVI, M. M., Reinforced Concrete Conoidal Shell Roofs—Flexural 
Theory, Design Tables, Cement and Concrete Association, London (1973) 

6. WILBY, C. B., Concrete for Structural Engineers, Newnes-Butterworths, London (1977) 
7. WILBY, C. B., Design Graphs for Concrete Shell Roofs, Applied Science Publishers, London 

(1980) 
8. WILBY, C. B., and BELLAMY, N. W., Analysis Elastico de Cascarones por la Analogia 

Electronica, Compania Editorial Continental, S.A., Mexico (1963) 
9. WILBY, C. B., 'A Method of Designing North-Light Shell Roofs', Indian Concrete Journal, 

Jan.(1961) 
10. WILBY, C. B., Elastic Stability of Post-tensioned Prestressed Concrete Members, Edward 

Arnold, London (1964) 
11. WILBY, C. B., 'Shell Roofs', Handbook of Structural Concrete, Editors Kong and Evans, 

Chapter 32, Pitman Books Ltd., London (1982) 
12. WILBY, C. B., A Warehouse with Continuous Precast Frames', Concrete & Constructional 

Engineering, Jan. (1958) 
13. WILBY, C. B., 'Precast Concrete Framed Roofs—Design of Joints and Post-tensioning', 

Indian Concrete Journal, Feb. (1960) 
14. WILBY, C. B., 'Structural Behaviour of a Special Type of Joint for Connecting Precast 

Concrete Members of Industrialised Buildings', Proceedings R1LEM -CEBC1B 
Symposium, University of Athens (1978) 



Chapter 8 

Prestressed concrete 

8.1 Prestressing 

Prestressing consists of initially applying loads to a member to counteract 
the effects of the working loads to which it will eventually be subjected. 
Concrete is relatively weak in tension compared with compression, so the 
prestressing forces are used to compress zones which will subsequently be 
required to carry tension. Prestressing forces are usually applied in one of 
the following ways: 

1. Stretching wires, cables or bars on a bed, concreting the member 
around such wires, and then releasing the wires when the concrete is 
sufficiently hard. When the wires are released, they shorten, and compress 
the concrete member, the line of action of such compression for each wire 
being the profile of the wire in the beam. This procedure is known as 
pretensioning. 

2. A member is concreted and a duct is formed in the member either with 
a metal sheath or an inflatable tube. A tendon, consisting of either a bar, 
cable (for example Strand) or groups of wires, is threaded through the duct 
and tensioned when the concrete is sufficiently hard, and anchored to the 
concrete member, so that the concrete member is compressed by this 
tendon. The procedure is known as post-tensioning, and it is usual sub-
sequently to fill the duct surrounding the cable with grout. A grout of 
cement, with no more than sufficient water for the workability required, is 
suitable. Sand is not recommended.1'2 Special plasticisers3,4 are recom-
mended to give better quality grouting. Air entrainers4 can be used instead 
of or in addition to plasticisers. It is vitally important not to trap pockets 
of water in ducts, as they have frozen in winter and caused trouble. Soroka 
and Geddes5 report 'the ultimate moment and pattern of cracking are 
hardly influenced by grout quality'. Szilard6 reports particular concern with 
regard to the adequacy of the strength of the grout and its corrosion 
resisting properties. Refs. 5 and 6 list 75 and 103 references respectively on this 
subject. The author has experience of a special polyester material which would 
seem to be excellent for strength and workability for use in even damp ducts, 
though its rapid setting time would be its greatest disadvantage in use and some 
188 
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development in this respect would be necessary. Epoxy resins3 are affected by 
water, as in the experience of the author the hardeners react chemically with 
water. 

3. A variation on method 2 is to place the tendon in the sheath before 
concreting. It is usually easier to thread the tendon in the sheath before 
concreting than in the duct after concreting. This does not, of course, allow 
inflatable tubes to be used for forming the duct. This latter method appears 
to be cheaper from the point of view of forming the duct, but on the whole, 
in the U.K., when the extra cost of positioning the inflatable tubes and 
threading the ducts they form is considered, it is usually more economical 
to place the tendon in the expendable tubing before casting. 

4. Another variation on method 2 is to make the concrete member in 
precast portions which are placed together on the site, the joints between 
such members being dry packed with cement: sand mortar, usually after the 
tendons have been threaded through the blocks. An alternative material for 
jointing is polyester resin. The author devotes Chapter 16 of Ref. 7 to 
'Beams Consisting of Segments—Joint Efficiency'. 

5. A variation7 on method 4 is to cast each portion against the previous 
portion, sometimes post-tensioning each portion to the previous one, and 
then finally post-tensioning all portions together. 

6. Prestressing forces can be exerted on structures in suitable places by 
jacks. For example, hydraulic jacks have been used in the abutments of 
dams arched in plan, to exert known forces in favourable directions and 
achieve economies in the amounts of concrete required in the dams. 

8.1.1 Advantages and disadvantages of prestressing 

The chief advantages of prestressed concrete are in reducing the quantities 
of steel and concrete required and in eliminating or reducing the widths of 
cracks. The disadvantages are the extra labour costs connected with the 
stressing of the tendons, and with other items. 

Prestressing strengthens a beam in shear and can give a useful saving in 
shear reinforcement, useful with regard to cost and sometimes especially 
with regard to facility of detailing. The author has on occasions post-
tensioned jointed precast structures solely because of the weakness of the 
joints in shear. 

In the U.K., if a member can be equally well constructed in prestressed or 
ordinary reinforced concrete, then the latter is usually more economical. 
When, however, large spans are required with shallow depths, for example 
for bridges, precast floors and so on, and the ordinary reinforced concrete is 
structurally unacceptable, then prestressed concrete is the only answer in 
concrete, and, if there is a reasonable repetition in the making of members 
(to reduce shuttering costs), in the U.K. it is sometimes more economical 
than structural steelwork. If a factory is highly organised in the manufac-
ture of prestressed flooring units it is sometimes found that units which 
could be of ordinary reinforced concrete can be made shallower in pre-
stressed concrete and can thus be less expensive overall by making savings 
in transportation, handling and stacking. When the spans of bridges are 
sufficiently short to make prestressing cheaper than steelwork, prestressed 
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concrete has the great advantages over steelwork of relative freedom from 
maintenance, and fire resistance. 

Prestressed concrete construction is often more expensive to design than 
ordinary reinforced concrete work. In post-tensioned in-situ structures, 
prestressing procedures have to be carefully planned because tensioning one 
cable makes previously tensioned cables deficient in stress and can cause 
undesirable stresses to develop due to the eccentricity of the prestressing 
force; this eccentricity will usually be eliminated when the prestressing is 
satisfactorily completed. Sometimes this planning involves larger amounts 
of structures to be shuttered or alternatively supported before prestressing 
than would be necessary if the structure were of ordinary reinforced 
concrete. In such circumstances prestressing sometimes slows down the 
speed of construction and increases the shuttering required for a contract. 

Members designed with prestressed concrete can be very flexible and the 
designer must be particularly careful that deflections, cambers and flexibil-
ities are satisfactory. 

It is conceivable even to pay more for prestressed concrete structures 
than for ordinary reinforced concrete structures when resistance to cor-
rosion is important; the life of the prestressed structure can be greater 
because of the absence of cracks. Structures such as docks, wharfs and 
jetties which are exposed to sea water, exposed structures at gas works, 
bridges exposed to pollution, structural work in dairies exposed to lactic 
acid, are common examples of concrete structures exposed to corrosive 
elements and can benefit from prestressing. 

8.2 Materials 

Prestressed concrete uses highly stressed steel and concrete, and good 
materials and workmanship are most important. Failures have occurred 
due to corrosion of tendons. The concrete and grouting materials must be 
non-corrosive to the steel and dense for strength and for resistance against 
water or corrosive liquids endeavouring to come into contact with the steel. 
Calcium chloride is detrimental in concrete that allows water to contact the 
steel (see Chapter 2). Generally the quantities of chlorides and sulphates 
should be strictly limited in the concrete materials. The corrosion of 
tendons is due to pitting and hydrogen embrittlement as well as stress 
corrosion; Ref. 6 is useful. 

If high alumina cement is to be used, refer to Section 2.1. 

8.2.1 Stress corrosion 

This is a very important problem. There have been failures due to stress 
corrosion, and there has been much research, particularly in connection 
with prestressed concrete bridges, and also because the strands used for 
tendons are also used for cables of suspension and cable-stayed bridges and 
funicular mountain railways. The author has seen considerable research in 
progress in stress corrosion in Paris and Zurich. Leonhardt3 establishes 
conditions which must exist for stress corrosion of prestressing wires. The 
author understands that British steel has always been manufactured not to 
experience this problem. 
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8.3 Losses of prestress 

The stress initially effected in the tendons is reduced by the following losses. 
(For examples of how CP 110 deals with these losses, see Example 8.5.) 

1. Relaxation (creep) of steel. The high stresses used in the tendons mean 
that the steel is sometimes stressed slightly beyond its limit of pro-
portionality. Hence, after anchorage the strain in the steel can correspond 
to a lower stress as creep occurs. With pretensioned members, this loss can 
be greatly reduced by tensioning say in the afternoon and then suitably 
increasing the strain in the tendons next morning before casting. This is an 
operation which interferes with progress and increases labour costs, and for 
overall economy it is usually better not to try to eliminate creep but to 
consider it as a loss in prestress. A rise of temperature helps the steel to 
creep and can thus increase creep loss. The relaxation loss depends on the 
type of tendon and the magnitude of the stress it experiences. 

2. Elastic deformation (strain) of concrete. When pretensioned wires are 
released they compress the concrete, the concrete strains, and thus reduces 
the strain and hence the stress in the wires. This is known as loss of 
prestress due to strain (or elastic deformation). A post-tensioned member 
with only one tendon does not, in theory, experience a strain loss because as 
the jack strains the tendon it compresses the concrete. When more than one 
tendon is used, then as each tendon is strained the jack increases the strain 
in the concrete; this reduces the strain in the tendons already anchored; 
that is strain losses occur in all but the last tendon to be stressed. All these 
losses total less than those experienced with pretensioned concrete. When 
pretensioned wires are released they will shorten owing to the concrete 
becoming strained and stressed (that is prestressed). The shortening of the 
wires divided by their length is the loss in strain of the wires, say sl. This 
shortening must be the same for the concrete immediately in contact with 
the wires and this is unstressed before the shortening and then stressed due 
to the shortening. Hence the strain in the concrete is also el. Applying 
Hooke's law, the loss of stress in the wires is Essl and the gain of stress in 
the concrete is Ecel. Hence loss of stress in wires = Ese1 = Es (Stress in 
concrete/£c) = ae (Stress in concrete). This is most important and will be 
summarised as follows: 
For pretensioning: 

. . shortening of wires 
Loss of strain in wires = —— 

length 
= gain of strain in concrete = sx 

. . . . stress in concrete 
Gain in strain in concrete = = e1 

£c 
/stress in concrete\ 

Loss of stress in wires = £_et = £s x 

= ae x (stress in concrete) 

3. Shrinkage of concrete. Shrinkage is discussed in Chapter 2. As concrete 
shrinks after the tendons have been anchored to the concrete, the concrete 
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member shortens and hence so does the tendon, thus releasing some stress 
in the tendon. In the case of pretensioned concrete, the shrinkage effect 
begins as soon as the concrete is cast, but with post-tensioned concrete the 
concrete is able to shrink before the tendon is stressed. If there were no 
longitudinal reinforcement the shrinkage would be restricted only by fric-
tion with moulds, etc., and most of the shrinkage would occur before 
stressing. Humidity and temperature also affect shrinkage. For practical 
design CP 110 gives suitable recommendations for calculating the loss of 
prestress due to shrinkage of the concrete (see Example 8.5). 

4. Creep in concrete. Creep has already been explained in Chapter 2. As 
the concrete creeps it reduces the strain and hence the stress in the 
prestressing tendons. With prestressed concrete, creep is not under a 
constant stress, as considered in Chapter 2, because the stress in the 
concrete is reducing as the concrete creeps. The creep loss may be estimated 
by reference to CP 110. The loss is greater for pretensioned than for post-
tensioned members. Pretensioned tendons rely upon their bond to the 
concrete for anchorage and in time this releases (or creeps) slightly; this 
creep of bond stress is not counted as a separate loss, so is accounted for as 
an increase in creep loss. 

5. Slip of anchorage. This refers to the tendons losing stress after 
anchorage due to the anchorage device slipping; for example wedges are 
pulled forward in their jaws as the stress is taken up by the anchorage. This 
should be assessed for the particular system used. For prestressing over 
short distances it is preferable that this allowance should be as small as 
possible, as the greater the allowance the greater the probable error in the 
reliability of this quantity. For this reason the author8 found certain bars 
useful for prestressing over short lengths; the relative movement between 
the nuts and threads of the system caused only very little loss of stress. 

6. Friction in jack and anchorage system. In pretensioning, if the extension 
of the wire is measured directly then the friction in the jack is not a loss to 
be deducted from this prestress measurement. If, however, in pretensioning, 
and mostly in post-tensioning, the prestress is measured say on the body of 
the jack with a vernier recording the movement of the movable part relative 
to the stationary part, then as there will be friction in the jack, this frictional 
force will be included in our measurement of the force in the tendon using 
the oil pressure gauge on the jack. The difference between the forces 
measured in a tendon by these two methods depends upon the type of jack 
used. This difference should be reasonable for the particular type of jack as 
excessive oil pressure would indicate that the jack had seized up and further 
stressing would damage it. Certain jacking equipment can incorporate a 
strain gauge load cell. In post-tensioning systems where the tendons are 
deviated just before the final anchorage, indeed deviated to effect the final 
anchorage because of the space required by jacks and anchorages, there is a 
frictional loss related to the pressure of the tendons on the sides of the 
deviating device used by the particular system. This must be allowed for in 
determining the prestressing force in the tendons and it depends upon the 
particular system. 

7. Friction along duct in post-tensioning. With regard to a straight tendon 
it will normally be detailed not to touch its duct, but in practice, because of 
lack of straightness of tendon and duct, there will be some contact between 
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a tendon and its duct. The duct will tend to deviate the tendon, perhaps in 
some kind of wobble along the duct. Because of this deviation there must be 
pressure between tendon and duct and thus frictional forces between the 
two when the tendon is being stressed. When a tendon is taken round a 
bend, the tendon exerts pressure on the duct, or concrete tank wall, etc., and 
there is friction associated with this pressure on tensioning the tendon. 

CP 110 recommends the following formula which has been justified by 
tests: 

Px = P 0 exp [ -Kx- ( / i x / r p s ) ] (8.1) 
which for small values of Kx and fix/rps can be approximated to 

Px = P0ll-Kx-(iix/rpsn (8.2) 
where 

P0 = Prestressing force in a tendon at the jacking end. 
Px = Prestressing force at any distance x from the jack. 
K is a constant depending on how much the duct is likely to deviate, that 

is how rigid the sheath is, how often it is supported, how much 
vibration is used for the concrete. 

H is the coefficient of friction between the tendon and the duct surface, or 
surface of concrete tank wall, etc. 

rps = Radius of curvature. 
e =2.718. 

In the case of tendons which are not to be finally bonded to the member, 
they can be lubricated, and some tendons can be purchased enclosed in 
polythene sheaths packed with suitable grease. The author has used the 
latter on the outside of a dome which required strengthening as an 
emergency measure—the polythene and grease have good weather 
resistance. 

The author in Ref. 7 devotes Chapter 5 to friction describing methods of 
assessment, giving derivation of formulae (such as equations 8.1 and 8.2) 
and suggesting a different approach. It gives K and ji values for normal 
work and, in a Table 5.1, for both mastic coated and pregreased tendons 
which are used to reduce friction in the U.S.A. Then Appendix 1.6 in the 
book gives K and \i values used in many different countries for many 
various types of tendons and ducts. 

8. Steam curing. This can interfere with the losses due to creep and 
shrinkage of the concrete, and relaxation of the steel. 

8.4 Limit state design of members 

Members must be designed for the following, according to CP 110: 

1. Limit state of cracking, due to flexure. 
2. Ultimate limit state, due to flexure. 
3. Prestressing requirements; losses; maximum initial prestress; end-

block design or transmission length requirements. 
4. Ultimate limit state; shear. 
5. Limit state of deflection. 
6. Considerations affecting design details. 
7. Torsion. 
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For an exposed structure it might be required to eliminate cracks 
completely, whatever the particular loading being experienced by the 
member. In the U.K. absence of cracks was originally considered to be one 
of the prime advantages of prestressed concrete. Generally speaking the 
greater the amount of flexural tension which can be allowed the more 
economic will be the construction, for example less tendons required, but 
the greater the danger of cracking. 

The ultimate strength of a prestressed concrete beam is generally not 
greatly different whether the prestressing is applied or not. The greater the 
amount of prestressing applied to such a beam the more it will be possible 
to reduce the size of the cracks (they can even be eliminated), the amount of 
the deflection, and its rigidity (proportional to second moment of area). 

For design purposes (with regard to the limit state for cracking) CP 110 
suggests three classes of structures thus: 

Class 1. No tension is allowed to be taken by the concrete except for a 
limited amount due to prestress alone. 

Class 2. Tension is allowed to be taken by the concrete but the amount is 
limited to preclude noticeable cracking. 

Class 3. Refers to partial prestressing, where large theoretical tensile 
stresses are allowed which cannot exist because of exceeding the modulus of 
rupture of the concrete, but these theoretical tensile stresses are limited so 
that the cracks which will occur are not likely to allow rainwater to 
penetrate to the reinforcement, etc. 

The designer has to choose his limit state of cracking according to the 
conditions of exposure, and the quality required, of the structure. If the 
designer is, say, concerned about temperature stresses due to the member 
not being perfectly free to move, then he may require no tensile stresses, and 
he may require the minimum compressive stress at any stage of loading 
experienced under working conditions to be slightly in excess of the 
maximum tensile temperature stresses. This would be more conservative 
than Class 1. 

Class 1 would be used say for exposed structures (exposed to polluted 
atmosphere, sea water, etc.). Class 2 would be used for more economy than 
Class 1, when durability is not so important. Class 3 would be used for 
greater economy, but of course one of the advantages of prestressed 
concrete, namely absence of cracking, is sacrificed. Class 3 could be suitable 
where there would be no tensile stresses under most working loads, but yet 
for the infrequent maximum working load of short duration tensile stresses 
would be induced in the member. It has been used for some railway bridges. 

The sequence of design for Classes 1 and 2 is suggested to be in the order 
1-6 (see the beginning of this section). For Class 3 the sequence is suggested 
to be 2, 5, 1, 3, 4, 6. 

To design for the various limit states of CP 110 it is necessary to be able 
to calculate stresses and deflections at working loads. This is done with the 
elastic theory. It is also necessary to assess ultimate strength, and this is 
done using the plastic theory. Also, transmission lengths for prestressing 
wires and end-block designs, for post-tensioned members, must all be 
adequate. All these methods will now be discussed. 

In design it is always necessary to find a suitable section and its 
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reinforcement, before all the checks of the adequacy of 1-6 (previously in 
this section) are ascertained with adequate precision. With experience the 
original estimate of the section may need little or no alteration as a result of 
these checks. For optimisation one would program the procedure so that 
the computer can keep modifying the original estimate of the section to 
satisfy the various checks as economically as possible. This is simply a 
matter of programming the procedures of design which follow in this 
chapter. 

8.4.1 Simple assessment of size of prestressed members 

As previously mentioned, experience helps this procedure. One can be 
guided by observing sizes of members of similar jobs from publications, etc. 
Alternatively, or in addition, one can choose the type of concrete to be 
used—one which is not too difficult to achieve with the methods to be used 
and standard of product required—and proceed as follows. 

Example 8.1. An initial estimate is required of a suitable I-shaped cross section for a 
prestressed concrete beam which has to resist a total bending moment at mid span 
at working loads of 870 kN m (inclusive of its self-weight), and is to be designed for a 
limit state of cracking of Class 1. 

It is fairly easy for the manufacturer to obtain a concrete of characteristic cube 
strength at 28 days (when we assume the structure may need to withstand its 
working load) of 40 N/mm2, and this concrete can be made of early enough strength 
for the requirements at transfer. 

Referring to Table 32 of CP 110, and because we are considering concrete stresses 
ym = 1.3, but as an allowance has been made for this in the table, the allowable 
compressive stress is 

0.33 x 40 = 13.2N/mm2 = 13 200kN/m2. 

If the tendons are to be straight then the bending moment due to the weight of the 
member will reduce the prestressing at mid span, but not at the supports, and thus 
the supports are the critical sections for deciding the amount of prestressing. At 
these sections at working loads the prestressing could be as Figure 8.1(a). This 
would also be the prestressing at the mid-span section, because of the straight 
tendons. The total bending moment at mid span can therefore give a stress 
distribution as Figure 8.1(b), which is superimposed upon (a) to give (c) in Figure 8.1, 
assuming the section to have its neutral axis at mid depth of the section. The section 
can hence be designed as for Figure 8.1(b)\ thus the section modulus needs to be 

870/13 200 = 0.065 91m2. 

Try the section shown in Figure 8.2. Its second moment of area is 

[(0.45 x 1.13)/12] - [(0.3 x 0.83)/12] = 0.037 11m4 

and its section modulus is therefore 

0.037 11/0.55 = 0.067 48 m3. 

This section will therefore be suitable. The bending moment used included an 
allowance for the self-weight of the member. This had to be estimated and should be 
checked against the section now obtained. If the estimate is found to be wrong then 
the section we have just designed gives a good clue to a revised estimate of the self-
weight of the beam for use in a revised design. 
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Example 8.2. It might be useful to continue the design of Example 8.1 to assess 
approximately the tendons required. 

Suppose the beam is pretensioned and 7 mm diameter wires are to be used. From 
Table 29 of CP 110 the specified characteristic strength of these wires is 60.4 kN and 
the cross-sectional area of each wire is 38.5 mm2. For assessing stresses ym = 1, and 
the maximum initial prestressing force in a wire, according to CP 110, would 
normally be 70% of this 60.4kN = 42.28kN. The ACI-ASCE 323 Report suggests 
that for approximate purposes total losses can be taken as 245 N/mm2 for pre-
tensioning and 175 N/mm2 for post-tensioning, but loss due to friction between 
tendon and duct must be added to the 175. Hence total loss of prestressing force per 
wire 

= 0.245x38.5 - 9.433 kN 



Limit state design of members 197 

and prestressing force per wire after losses 
= 42.28-9.43 = 32.85 kN 

The prestressing force required after losses (see Figure 8.1(a)) will be the average 
prestress multiplied by the area of the cross section. 

Area of cross section = 0.45 x 1.1 - 0.3 x 0.8 = 0.255 m2 

Now the section was slightly larger than required. We might as well allow for this, 
so the stress in Figure 8.1(a) now becomes 

870/0.06748 = 12 890kN/m2 = 12.89 N/mm2 

This figure will therefore be*used instead of 13.2 in Figure 8.1. It is shown in 
brackets in the figure. 

Prestressing force required after losses when member finally in use, from Figure 
8.1(a) = 0.5 x 12 890 x 0.255 = 1643 kN. Therefore 

Number of wires required = 1643/32.85 = 50.02 = 51 wires 
The designer has to check whether or not these can be placed in the section, with 

the distances between wires and covers specified by CP 110; and the centroid of the 
wires should coincide with the centroid of the force calculated from the stress 
distribution of Figure 8.1(a) and the cross-sectional areas of Figure 8.2. If this is not 
possible, then larger tendons may be satisfactory, but if unsatisfactory the designer 
starts again with another size of section. 

In this case the wires can be accommodated in the section. They will mostly be 
placed in the bottom flange, perhaps two or more in the top flange and perhaps a 
few in the web. 

From Figure 8.1(a) the bending moment due to the prestressing force 
= 1643 x e = (12 890/2) x 0.06748 

where e is the depth of the resultant prestressing force below the centre of the depth 
of this symmetrical section. Therefore e = 0.2647 m. 

As mentioned before, the wires have to be disposed so that their centroid is at this 
depth. 

8.4.2 Assumptions for elastic design 

Of the following assumptions, 1-4 are the same as those described in 
Chapter 3: 

1. Plane sections subjected to bending remain plane after bending. 
2. Stress is proportional to strain for both the steel and the concrete. 
3. Perfect bond is assumed between the steel and the concrete. In the case 

of post-tensioning this theoretically applies after the tendon has been 
grouted. 

4. Depths of reinforcements relative to the depth of the concrete member 
are considered to be negligible. 

5. Allowances must be made for shrinkage and creep losses. 
6. Young's modulus for concrete is the same in tension as compression; 

this is reasonably true. 

8.4.3 Limit states of stresses and deflections 

During the life of a prestressed concrete beam there are many changes in 
the stresses and deflections it experiences, and all the worst possibilities 
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should be investigated. When all this has been evaluated, if anything is 
wrong then one has to return to the beginning and re-estimate the size of 
the section. Hence one has to concentrate on the most likely worst cases 
first, so that if re-design is necessary one finds this out as soon as possible. 

Essentially a member has to be designed for stresses at transfer of 
prestress from tendons to concrete. This is an important limit state, as the 
concrete is often not very old and hence not as strong as it will be when in 
the final structure; also, the tendons have not experienced losses as great as 
they will experience in the final structure. 

Then the member, if not in situ, will be handled, stacked, loaded, 
transported, unloaded, perhaps stacked and then lifted into position. All 
these operations, if not skilfully performed, could impose many adverse 
stresses. It is usually best, for prestressed concrete, to have spreaders for 
slings of cranes and to use lorries with long backs so that beams are always 
supported at their ends as they have been at transfer, and will be in the final 
structure. Then adverse stresses can be eliminated, and there is no need to 
design for this limit state of handling, transportation, erection, etc. 

A member must also, of course, be designed for its limit states of stresses 
and deflection when in its final position in the structure. 

8.4.4 Simplified elastic design of prestressed concrete beams 

The simplification is by way of ignoring the steel reinforcement in calculat-
ing the cross-sectional area, depth of neutral axis and second moment of 
area of the concrete section. This reduces the work of the calculations 
considerably, as for very accurate calculations various different sectional 
properties are required. For example, when pretensioning, the areas of the 
wires and the concrete they displace should be included in the calculations 
of the sectional properties and different modular ratios should be used for 
transfer and final serviceability. For post-tensioning, at transfer, the tendon 
and duct should be excluded, but any other steel included, in calculations of 
sectional properties. On the other hand, for limit state of serviceability (that 
is after the duct has been grouted) all the concrete (including grout), tendons 
and any other reinforcements should be included in the calculations of 
sectional properties, these reinforcements having different modular ratios to 
those used at transfer. 

The simplified method is adequate for many purposes, as the percentage 
of steel in the cross section is generally low enough to cause little error, and 
this error tends to cause excess safety. 

The losses are firstly taken as percentages of the initial prestressing 
tendon forces. This enables the concrete stresses to be obtained and then 
the losses can be obtained more accurately from these stresses. If it is then 
found that the original estimate of losses was not good enough, an 
adjustment is made and the design repeated. The process can be repeated 
until the designer is satisfied—it can quite simply be programmed for a 
computer. However, with experience a designer often does not need to alter 
his first estimate, as he will have slightly overestimated so as not to have the 
trouble of re-design; the computer is of course useful for optimisation here. 
The method is illustrated in the following examples. 
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Example 8.3. Continue the design of the beam of Example 8.1. Having approxi-
mately checked the stresses it might now be best approximately to check the limit 
states of deflection in case we have to alter the section on this count. 

When we are interested in the maximum deflection in service, the concrete then 
has a characteristic strength of 40N/mm2, and ym for concrete is unity, so from 
Table 1 of CP 110 Ec = 31kN/mm2. Shrinkage and creep have been allowed for in 
the losses assumed. When we consider deflection at transfer we will assume that the 
concrete has a characteristic strength of 30 N/mm2, and ym for concrete is unity, so 
from Table 1 ofCP 110, 

Ec = 28 kN/mm2 

Assuming the beam is simply supported over a span of 22 m and that all loading 
is uniformly distributed (q\ then 

(g/8) x 222 = 870, .'. q = 14.38 kN/m 

From CP 110, clause 2.2.3, the limit states of deflection are as follows: 

1. If finishes are to be applied the span-to-total-upward-deflection ratio should 
exceed 300. This refers chiefly to floor and roof units which can have varying 
cambers, often because of releasing the wires when the concrete is not strong enough 
on the prestressing beds—the indicative cubes are sometimes compacted very much 
more thoroughly and sometimes cured more favourably than most of the concrete in 
a member and, under these bad circumstances, are misleading. The less the upward 
deflection, the less the problem and hence this limitation suggestion of CP 110. 

At transfer the losses will not be as great as finally. For pretensioning they can be 
very approximately 10-15% (assuming the relaxation losses of the steel are kept 
modest). Supposing we take 10% to be on the safe side. At transfer the smaller losses 
give greater concrete stresses, which are usually the most limiting consideration at 
transfer. (Note that a safe and not excessively conservative figure for post-tensioned 
concrete would be just the steel relaxation loss if the tendons are stressed simul-
taneously and there are no excessive losses due to severe curvature, such as for a 
circular tank or dome.) 

Prestressing force of 1643 kN was based on losses of 

(9.43/42.28) x 100 = 22.3% 

Then at transfer prestressing force after losses 

= " 4 3 x (100-10) 
100 - 22.3 

The bending moment due to this prestressing force 

= 1903 x 0.2647 = 503.7 kNm 

The deflection upwards due to this constant bending moment (the span on the 
prestressing bed is the overall length of the beam, say 23 m) 

503.7 x23 2 _ _ 
= 0.0321m 8 x 2 8 x 106x 0.037 11 

This is reduced by the downwards deflection due to the self-weight of the beam 
which is 

5 x 6 . 0 1 8 x 2 3 4 „ _ 
■ = 0.0211m 3 8 4 x 2 8 x l 0 6 x 0 . 0 3 7 1 1 
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where the self-weight of the beam, assuming the weight density of prestressed 
concrete is 23.6 kN/m3 (mass density of prestressed concrete = 2400 kg/m3), is 

0.255 x 23.6 = 6.018 kN/m 

At transfer, therefore, the total upward deflection 

= 32.1-21.1 = 11.0mm 

This gives a span-to-deflection ratio of 2091, which is greater than 300 and 
therefore satisfactory should the member be used in this way. (In this particular 
example it was not necessary to calculate the 21.1, as the 32.1 without the reduction 
of 21.1 would still have been satisfactory for the span-to-deflection ratio of 300, but 
this will not always be the case.) 

2. The final span-to-deflection ratio should exceed 250, the deflection being 
measured below the level of the supports. In the present example the deflection 
downwards 

5 x 14.38 x 224 _ „ 
0.03813 m 384x31x 106x 0.037 11 

The bending moment due to the prestressing force 

= 1643 x 0.2647 = 434.9 kNm 

The deflection upwards due to this constant bending moment 

434.9 x 222 

= 0.022 87 m 8 x 3 1 x 106x 0.037 11 

Hence the deflection below the supports is 

38.13-22.87 = 15.26 mm 

This gives a span-to-deflection ratio of 1442, which is satisfactory as it exceeds 250. 
3. Partitions and finishes, either above or below, if the beam is in a building, can 

be damaged by excessive deflections. CP 110 generally suggests limiting the de-
flection to 20 mm and to a span-to-deflection ratio greater than 350. These 
deflection calculations are for deflections after the fixing of the partitions and the 
applications of the finishes. We can therefore assume the concrete to be at least 28 
days old and we are essentially interested in the subsequent deflection due to live 
load. However, if say glass partitions are built up to the soffit of the beam, then no 
live load deflection is tolerable and details have to be devised to, for example, allow 
a beam to slide past rather than bear on to a partition. 

In the present example, the self-weight of the beam, from 1 above, is 6.018 kN/m, 
hence the live load is 

14.38-6.018 = 8.362kN/m 

and the deflection due to this 

= (8.362/14.38) x 38.13 = 22.17 mm 

The span-to-deflection ratio is 992.3, which is greater than 350 and therefore 
satisfactory. 

The deflection is, however, greater than 20 mm and therefore not as recommended 
by CP 110. If this is acceptable practically then the design does not need revision to 
reduce this deflection. Thus in the present example the beam might not be suitable in a 
building. 
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Example 8.4. Before we examine in more detail the preliminary design given in 
Examples 8.1 and 8.2, it would be advisable to determine approximately the 
adequacy of stresses at transfer of this design. 

At transfer the losses will not be as great as finally. They can be 10-15%. 
Supposing we take 10% to be on the safe side. At transfer less losses give greater 
concrete stresses, which are usually the most limiting consideration at transfer. 

Prestressing force of 1643 kN was based on losses of 22.3%. Hence, referring to 
Figure 8.1(a), the stress of 12.89 N/mm2, which is directly proportional to the 
prestressing force, will be altered for conditions at transfer pro rata to the different 
prestressing forces at transfer and finally, and it thus becomes 

12.89 x (100-10) 
100-22.3 

14.93 N/mm2 

Figure 8.3(a) therefore shows the distribution of prestress at transfer at the supports. 
At transfer the member will usually hog upwards and hence the mid-span section 
withstands the maximum bending moment due to the self-weight of the member 
superimposed upon the prestress at this section. For calculating this bending 
moment we should use the overall length (23 m) of the beam. The maximum bending 
moment due to self-weight 

= (6.018 x 232)/8 = 397.9 kNm 

and the extreme fibre stresses due to this bending moment 

= 397.9/0.067 48 kN/m2 = 5.897 N/mm2 

5.897 "< * 
N/mm' 

\Comp 
ression 

Tension 

5.897 
N/mm7 

(b) 

5.897 
< it-, 
N/mm2 

/Comp-
ression 

9.033 
N/mm2 

( c ) 

Figure 8.3(b) therefore shows the distribution of stress at mid span due to the self-
weight loading. Algebraically adding these stresses to the prestress shown in Figure 
8.3(a) we obtain Figure 8.3(c), which gives the resultant distribution of stress at mid 
span at transfer. 

Referring to Table 36 of CP 110, the concrete strength at transfer will need to be 
the greater of 14.93/0.5 = 29.86N/mm2 or 9.033/0.4 = 22.58N/mm2. This agrees 
with our assumption of 30 N/mm2 in Example 8.3. 

file:///Comp
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Example 8.5. In Examples 8.1, 8.2, 8.3 and 8.4 we have made an approximate design 
of a prestressed concrete beam. We shall now check for this beam the limit states 
determined by elastic theory and concerning stresses and losses. 

For these limit states CP 110 gives ym = 1 for steel and 1.3 for concrete. 
Considering the losses: 

1. Relaxation of steel. CP 110 refers us to BS 2691, 1969, and supposing we use 
cold drawn and prestraightened low relaxation wire, then, as the initial prestress we 
took is 70% of characteristic strength, Table 6 of this British Standard gives the 
maximum percentage relaxation after lOOOh as 2%. 

2. Elastic deformation of concrete 
(a) At transfer 
Support: stress in concrete at level of centroid of wires (from Figure 8.3(a)) 

550 + 264.7 
= x 14.93 = 11.06 N/mra2 

1100 ' 

From Example 8.3, Ec = 28kN/mm2. Clause 2.4.2.4 of CP 110, for the wires, 
gives Es = 200kN/mm2. Hence 

ae - 200/28 = 7.14 

Therefore, as explained earlier, loss of prestress 

= 7.14x 11.06 = 79.0 N/mm2 

Using cross-sectional area given in Table 29 of CP 110, the loss of force per wire 

= 79.0 x 38.5 N = 3.042kN 

Hence the percentage loss of initial prestressing force 

= (3.042/42.28) x 100 = 7.19% 

Mid span: at level of centroid of wires, stress due to self-weight 

= 5.897 x (264.7/550) = 2.838 N/mm2 

Therefore resultant stress at this level due to self-weight and prestress 

= 11.06-2.838 = 8.22 N/mm2 

Therefore, as previously, percentage loss of initial prestressing force 

= 7.19 x (8.22/11.06) = 5.34% 

(b) In service 
Support: stress in concrete at level of centroid of wires (from Figure 8.1(a)) 

= {(550 + 264.7)/l 100} x 12.89 = 9.55 N/mm2 

From Example 8.3, Ec = 31kN/mm2. Clause 2.4.2.4 of CP 110 for the wires gives 
Es = 200 kN/mm2. Hence 

ae = 200/31 = 6.452 

Therefore loss of prestress 

= 6.452 x 9.55 = 61.61 N/mm2 

Therefore percentage loss of initial prestressing force 

= 7.19 x (61.61/79) = 5.61% 

Mid span: from Figure 8.1(c) stress at level of wires 

= 12.89 x (550 - 264.6)/1100 = 3.344 N/mm2 
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Therefore percentage loss of prestress 

= 5.61 x (3.344/9.55) = 1.96% 
3. Shrinkage of concrete. Supposing the beam is cured in effect in water—say by 

covering with wet hessian cloth which is covered with polythene sheet; there will 
then be no shrinkage loss at transfer. Table 41 of CP 110 gives concrete shrinkage 
values for pretensioning between three and five days after casting, curing at 
exposures of 90% and 70% relative humidity respectively as far as transfer. Let us 
assume that we cure after transfer at normal exposure until it is in use, then, guided 
by Figure 2.9, take the maximum shrinkage per unit length as 0.04%. Taking the 
shortening movement of the tendon as the same as the concrete shrinkage, then 
strain loss in tendon due to shrinkage 

= 400x 10" 6 

Hence corresponding loss of stress 

- 400 x 10"6 x 200 x 103 = 80N/mm2 

Therefore percentage loss of prestress (finally) 

= (80/79) x 7.19 = 7.28% 

4. Creep of concrete. At transfer, creep has had negligible time to take place, hence 
we take this loss as zero. The stress in the concrete at transfer will cause subsequent 
creep, and it is upon this stress that the final creep is based. Referring to clause 
4.8.2.5 of CP 110, as cube strength at transfer is 30N/mm2, creep per unit length is 

48 x 10"6 x (40/30) = 64 x 10"6 per N/mm2 

According to CP 110, if the maximum stress at transfer exceeds 3- x Cube strength at 
transfer 

= ^ x 3 0 = 10 N/mm2 

then the creep loss should be increased. At transfer Figure 8.3(a) gives the stresses at 
each support and Figure 8.3(c) gives the stresses at mid span. At mid span the 
stresses do not exceed 10 N/mm2 so the creep loss is satisfactory. At each support, as 
the maximum stress is approximately half the cube strength, the creep per unit 
length from CP 110 is 

1.25 x 64 x 10"6 = 80 x 10"6 per N/mm2 

The stress causing creep will depend upon whether the beam is supporting its own 
weight only or its full load most of its life. At the level of the centroid of the wires 
the former gives a stress of 11.06 N/mm2 at support and 8.22 N/mm2 at mid span, 
whilst the latter, from Figure 8.3(a) and Figure 8.1(b), gives 11.06 N/mm2 at support 
and 

11.06-(264.7/1100) x 12.89 = 7.96 N/mm2 

at mid span. Supposing the imposed load is rarely applied, so that we take the worst 
of the cases just mentioned. When in use therefore the creep per unit length is 

(a) 11.06 x 80 x 10"6 = 885 x 10"6 at the support 
and (b) 8.22 x 64 x 10"6 = 526 x 10"6 at mid span 

As the movement of the concrete is assumed to be the same as that of the tendon, 
then the loss of stress in the tendon is 

(a) 885 x 10"6 x 200 x 103 = 177N/mm2 at the support 
and (b) 526 x 10"6 x 200 x 103 = 105.2 N/mm2 at mid span 
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These can be expressed as 
(a) (177/61.61) x 5.61 = 16.12% at support 
and (b) (105.2/61.61) x 5.61 = 9.58% at mid span 
5. Slip of anchorage. Suppose the wedges at each end pull in 3 mm and our system 

is one where we jack the movable wire anchorage block away from the prestressing 
bed, which has a length of say 75 m; then this loss, if not allowed for when stressing, 
would be 

(6/75 000) x 200 x 103 = 16N/mm2 

But we will allow for this when stressing and extend the movable anchorage block 
6mm more than its required amount. 

6. Friction in jack and anchorage system. This is nil because of the way we are 
pretensioning; see 5 above and also Section 8.3, para. 6. 

Summarising the losses: 
at transfer total loss at mid span 

= 2(1) + 5.34(2) = 7.34% 
and at a support 

= 2(1)+ 7.19(2) = 9.19% 
Finally, in use total loss at mid span 

= 2(1) + 1.96(2) + 7.28(3) + 9.58(4) = 20.82% 
and at a support 

= 2(1) + 5.61(2) + 7.28(3) + 16.12(4) = 31.01% 
At transfer we took the losses as 10%, so for greater accuracy we could now try 

9.1% for support sections and 7.3% for mid-span sections and repeat the above 
design. Further such repetitions can then be made until the desired degree of 
accuracy is achieved. When in use we took the losses as 22.3%. For greater accuracy 
we would repeat the above design and use losses of 20% for mid span and 31% for 
support sections. Also for more accurate design, we would repeat the example, 
considering losses for the wires at their respective levels. We have considered them 
all as though concentrated at their centroid and this is slightly erroneous. For 
normal purposes our present accuracy in this problem could be considered satisfac-
tory and hence our design is justified. 

8.4.5 Ultimate limit state due to flexure (bonded tendons) 

If a member has been designed as shown previously, then if the tendons are 
arranged so that most have a reasonably generous effective depth, checking 
the ultimate limit state is almost a formality. The exception to this is in the 
case of CP 110, Class 3, structures (partially prestressed)—see Section 8.4. 
These could be designed for ultimate limit state first, then deflections at 
working loads checked before checking the stress systems at working loads 
and transfer. 

In the case of a rectangular beam with one tendon, this is required at 
about j of the height of the beam. Hence when cracking occurs due to 
overloading, the effective depth of this tendon is small, so the tendon does 
not control the crack widths very well at the soffit. In a case like this the 
ultimate limit state might not be satisfactory so additional non-prestressed 
reinforcement might be used and placed as near to the soffit as possible. 
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Likewise in the case of a pole of circular cross section, when the bending 
moment can be in any direction; if the tendons are arranged around the 
periphery then the ultimate limit state will most probably be all right, but 
not if there is say just one tendon down the centre. 

As in Chapter 3 the equivalent rectangular stress block due to C. S. 
Whitney is favoured9 for predicting actual ultimate resistance moments, 

that is, fcm = (<x/2j8)/c' and x, = 2/lx 

where (taking/; = 0.84/cu) 

a = 0.72 for/cu ^ 33N/mm2 

and decreases by 0.04 for every 8.21 N/mm2 above 33 N/mm2 

and p = 0.425 for /cu < 33 N/mm2 

and decreases by 0.025 for every 8.21 N/mm2 above 33 N/mm2 

Thus for /cu ^ 33 N/mm2, 

/cm = 0.85/; = 0.714/cu and x{ = 0.85x 
It is generally used in the U.S.A. and is the basis of the CP 110 simplified 
method and many other codes internationally. Towards failure in bending a 
prestressed concrete beam cracks and behaves like a non-prestressed rein-
forced concrete beam apart from: 

1. The strain in the tendon was not zero at zero loading, as in the 
reinforcement of the reinforced concrete beam. At zero loading the strain ^p 
in a tendon corresponds to the force in the tendon after losses (that is, the 
losses which have occurred up to the time of loading to failure) divided by 
the cross-sectional area of the tendon and its Young's modulus. Strain in 
the tendon caused by the loading adds to ep. The strain due to the prestress 
in the concrete can be ignored, as it is negligible compared to ep and the 
strains at failure. 

2. The stress-strain relationships for tendons are different to those for a 
reinforcement bar (see Figure 8.4). The ultimate resistance moment for an 
under-reinforced prestressed beam can be obtained as in Example 3.15 for 
under-reinforced sections, provided the ultimate tensile strength (stress) of 
the tendons is used f o r / in equations 3.60 and 3.62. To determine if the 
section is under-reinforced we need to calculate the maximum concrete 
strain corresponding to the tensile reinforcement strain when ultimate steel 
stress (or a suitable proof stress) is reached (see Figures 8.4 and 8.6) to check 
that this is less than the maximum known to be possible from experiments, 
namely 0.003 according to Whitney (0.0035 is used by CP 110). Figures 
8.5(a) and (b) show the distribution of stress across the cross section and the 
corresponding distribution of strain, respectively. 

From similar triangles in Figure 8.5(b), the maximum concrete strain 

If this is greater than 0.003 (Whitney) then it is an over-reinforced pre-
stressed concrete beam and its ultimate resistance moment cannot be 
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A 6 8 10 
S t ra in ( thousandths) 

12 16 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 

11. 

12.7 mm dia. super quality strand, Es = 176kN/mm2 

15.2 mm dia. drawn strand, £s = 192kN/mm2 

5 mm dia. crimped prestressing wire, Es = 200kN/mm2 

15.2 mm dia. French strand, £s = 178kN/mm2 

28.6mm dia. strand, £s = 169kN/mm2 

32 mm dia. prestressing alloy bar, Es = 175kN/mm2 

16 mm dia. round cold worked high yield reinforcing bar, Es = 200kN/mm2 

20 mm dia. round hot rolled high yield reinforcing bar, Es = 213kN/mm2 

9.5 mm square twisted high yield reinforcing bar, Es = 198kN/mm2 

11mm square twisted with chamfered edges high yield reinforcing bar, 
208kN/mm2 

20 mm hot rolled mild steel reinforcing bar, Es = 208kN/mm2 

EK = 

Apart from 4, all the above are British products. 

Figure 8.4 

assessed as above, as the concrete will disintegrate before the steel reaches 
its ultimate tensile strength (and corresponding strain esu). 

For an over-reinforced section a simple direct calculation as above 
cannot be made because the stress in the steel at failure is less than its 
ultimate tensile strength and is not known initially, hence xx cannot be 
immediately obtained etc.; also, the stress-strain curve for the steel cannot 
be represented by a simple mathematical expression. A simple solution is by 
successive approximations (a method suitable for the digital computer). A 
value of x is assumed and x{ is obtained from x as before (Whitney). Then 



Limit state design of members 207 

(a) 
Figure 8.5 

equating longitudinal forces 

fcmAQ = AJS (8.4) 

where As is the cross-sectional area of the tendons, / s the stress in the 
tendons at failure, fcm the mean concrete stress of the equivalent stress 
block, and Ac the area of concrete (cross section can be of any shape) 
subjected to fcm. This gives fs and the corresponding strain es is obtained 
from the stress-strain curve for the tendon. Then from equation 8.3 but 
substituting ec = 0.003 (Whitney) and esu = es 

0.003 = 
d — x 

(8.5) 

which now gives x. Now if this disagrees with the value assumed, the 
calculation is repeated until it is correct. When we are satisfied, taking 
moments about the line of action of Nc 

Mu = AJs(d-k2x) (8.6) 
In the case of a rectangular beam, using Whitney's theory, k2x = O^Xj. 

Example 8.6. A beam of rectangular cross section 0.25 m wide by 0.45 m deep is 
post-tensioned by one 25 mm diameter bar at 75 mm above its soffit. The duct 
enclosing the bar is grouted. Determine the ultimate resistance moment of the 
section using the simplified CP 110 method and assuming fcu = 40N/mm2, ym for 
steel = 1.15, and stress in 25 mm diameter tendon after losses = 570N/mm2. 

Equating longitudinal forces (equation 3.60, Table 3.2, and CP 110, Table 31) 
0.25 x x x 0.4 x 40000 = 500/1.15, .'. x = 0.1087m 

Figure 8.6 is prepared from CP 110, Fig. 3 and Table 31 
fjym = 500/491/1.15 = 0.8855 kN/mm2 
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Slope = 29.46 kN/mm2 

0.8855 

0.7084 

0.005 
Strain 

Figure 8.6 

and the minimum strain for the maximum stress to be realised 

= £su = 0.005 + 0.8855/175 = 0.01006 

Also £p = 0.57/175 = 0.003 26 

Hence from equation 8.3 

(0.01006-0.003 26) x 108.7 
£< = 4 5 0 - 7 5 - 1 0 8 . 7 = ° - 0 0 2 7 7 6 

This is less than 0.0035, so the section is under-reinforced. Hence using equation 8.6 

Mu = (500/1.15)(0.45 - 0.075 - 0.5 x 0.1087) = 139.4kN m 

Example 8.7. Repeat Example 8.6, only with two bars instead of one, both at the 
same level. 

Equating longitudinal forces gives x = 2 x 0.1087 = 0.2174m. From equation 8.3 

(0.01006-0.003 26) x 217.4 
*< = 4 5 0 - 7 5 - 2 1 7 . 4 = ° 0 0 9 3 8 

This is greater than 0.0035, hence section is over-reinforced. Assume 
x = 0.1923m = xx(CP 110) 

From equation 8.4 and CP 110, Table 31 
0.25 x 0.1923 x 0.4 x 40000 = 2 x 491 x/ s 
.\fs = 0.7833 kN/mm2 

As before fpJym = 0.8855 kN/mm2 

so 0.8/pU/ym = 0.7084 kN/mm2 

Hence from Figure 8.6, 

es = (0.7084/175) + (0.7833 - 0.7084)/29.46 = 0.006 59 

Then from equation 8.3 but substituting ec = 0.0035 (CP 110) and esu = 0.006 59 

« ^ r (0.006 59 - 0.003 26)x 
0 0 0 3 5 = 0.45- 0.075 J •■•* = 0.1923m 
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This is in order, the estimate of x being correct. Normally several attempts would 
be required. Although this trial and error method is favoured by others, and by the 
writer when using real stress-strain curves for the tendons, the writer prefers direct 
calculation when using the simplified stress-strain curves of CP 110. To illustrate 
this, instead of assuming x as before, assume that the strain in the tendons is in the 
range AB of Figure 8.6. Then from equation 8.4 and CP 110, Table 31 

0.25 x x x 0.4 x 40000 = 2 x 491/s .'. fs = 4.073x 

From Figure 8.6, 

(0.7084/175) + (4.073*- 0.7084) 
£s = — = 0.1383* - 0.02 

Using this for esu and £c = 0.0035 in equation 8.3 

(0.1383* - 0 . 0 2 - 0.003 26)x 
0.0035 = — 

0.375 -x 

:. x = 0.1923 m and / s = 4.073x = 0.7833 kN/mm2 

Hence fs does lie in range AB and the calculation is satisfactory. If/S had been in 
range AO then one would assume it in this range and make a similar but simpler 
calculation to the above. Then from equation 8.6 

Mu = (0.7833 x 2 x 491X0.375 - 0.5 x 0.1923) = 214.5 kN m 

Example 8.8. Repeat Example 8.6 using CP 110, Table 37. 

Using Table 31, 

f ^ = 5 0 ° = 01333 
fcubd 40000x0.25x0.375 

Therefore from Table 37, 

/pb/0.87/pu = 1.0, and x = 0.290 x 0.375 = 0.1088 m 

From CP 110, equation 44 and Table 31, 

Mu = 0.81fpuAps(d - 0.5 x 0.1088) = 0.87 x 500 x 0.3206 = 139.5 kNm 

Example 8.9. Repeat Example 8.7 using CP 110, Table 37. 

Using Table 31, 
^ - 2x500 = 0 . 2 6 6 7 

fcubd 40000x0.25x0.375 
For larger amounts of tendons, Table 37 empirically assumes slightly less reliance 

on the grouting of post-tensioned tendons. Thus to compare with Example 8.7 we 
should take the figures for pretensioning in Table 37. Thus /pb/0.87/pu = 1.0, and 
x = 0.580 x 0.375 = 0.2175 m. From CP 110, equation 44 and Table 31, 

Mu = 0.81fpuAps{d - 0.5 x 0.2175) = 0.87 x 1000 x 0.27 = 231.6kNm 

This disagrees with 214.5 because Table 37 has an experimental basis. CP 110 Chart 
140 gives 220kNm which disagrees with 214.5 because it uses a CP 110 Fig. 1 stress 
block. 

Using the post-tensioning suggestions of Table 37 

/Pb/0.87/pu = 0.883 

and x = 0.511 x 0.375 = 0.1916m 
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From CP 110, equation 44 and Table 31 
Mu = 0.883 x 870 x (0.375 - 0.5 x 0.1916) = 214.5 kN m 

8.4.6 Additional untensioned steel (bonded tendons) 

If the ultimate resistance moment is inadequate, and the other limit states 
satisfactory, sometimes extra untensioned steel is added. This has negligible 
effect on the other limit states, and thus saves re-design. This extra steel 
might be extra prestressing tendons which are not stressed, or reinforcement 
bar. This steel is placed with maximum effective depth. 

Additional untensioned steel is sometimes necessary for crack control 
when post-tensioned bonded tendons are located at some distance from the 
tensile face of the concrete. 

Example 8.10. Repeat Example 8.7 but add two 12mm diameter bars, with 25 mm 
concrete cover, in the bottom of the beam. Assume f = 460N/mm2 for these bars. 

Equating longitudinal forces, using Table 3.2 

0.25 x x x 0.4 x 40000 = 2 x 500/1.15 + 226 x 0.46/1.15 
.'. x = 0.24m 
For tendons, from Example 8.6, £su = 0.01066 and ep = 0.003 26. Hence from 

equation 8.3, 
£c = (0.01006 - 0.003 26) x 0.24/(0.375 - 0.24) = 0.0121 
Using distribution of strain diagram and similar triangles, strain in 12 mm 

diameter bars 
= 0.0121 x (419 - 240)/240 = 0.009025 

so that maximum stress can be realised in these bars (see CP 110, Fig. 2), that is 
strain greater than 

0.002 + 460/(1.15 x 200000) = 0.004 
As ec is greater than 0.0035, section is over-reinforced. Equating longitudinal forces 

0.25 x x x 0.4 x 40000 = 2 x 491 x/s + 226 x 0.46/1.15 
. \ / s = 4.073x- 0.09206 

From Figure 8.6, 

£s = (0.7084/175) + (/s - 0.7084)/29.46 = 0.1383x - 0.023 12 
Using this for £su and £c = 0.0035 in equation 8.3 

(0.1383x - 0.023 12 - 0.003 26)x 
0.0035 = — 

0.375-x 
.'. x = 0.2105 m, and/s = 0.7654kN/mm2 

As fs lies in the range AB in Figure 8.6, the calculation is satisfactory. We have 
assumed the strain in the 12 mm diameter bars is large enough for them to develop 
their maximum stress. Strain in bars 

= (0.0035/210.5) x (450 - 25 - 6 - 210.5) = 0.003467 
Referring to CP 110, Fig. 2, this strain is less than 0.004, so the maximum stress is 

not quite realised. If we reassess this design stress/sl, then repeat the calculation, we 
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should improve the result. If this is done a few times the accuracy becomes 
adequate. Then Mu is determined by taking moments about the line of action of Nc. 

Mu = 2 x 491 x/s(0.375 - 0.5x) + 226 x/8l x (0.419 - 0.5x) 
Had the 12 mm diameter high-yield bars been replaced by bars of an equivalent 

strength in mild steel then the strain would have only needed to have exceeded 

0.002 + 250 
0.003 087 (CP 110, Fig. 2) 1.15x200000 

for its design yield stress to have been realised, that is mild steel for additional 
unprestressed steel is likelier to simplify the design. In the above design, because the 
additional steel was not fully stressed a certain amount of trial and error is used, but 
convergence is very rapid. Some might prefer to guess x to avoid solving the 
quadratic equation and continue by trial and error as indicated in Example 8.7, but 
this is slower to converge. 

8.4.7 Compression steel 

Wires or handling reinforcement placed in the top of a beam are usually 
too inadequately anchored against buckling (see CP 110) to be included in 
the ultimate resistance moment calculations. If compression steel is to be 
included in these calculations, it is included in the previous calculations in 
the same way as given in Chapter 3. 

8.4.8 Ultimate limit moment due to flexure {unbonded tendons) 

In this instance Sections 8.4.5-8.4.7 apply, except that CP 110 reduces the 
force which can be developed in the tendons. The problem is that as loading 
is applied, instead of the force imposed in the tendon decreasing towards 
the support as with bonded tendons or reinforcement bars, the force in the 
tendon is always the same from end to end in an unbonded tendon. 
Towards failure the first crack occurs at the position of maximum bending 
moment. At this crack, instead of the tendon being highly stressed locally 
and anchored on either side of the crack so that its extension is limited (as 
would be the case if the tendons were bonded to the concrete), when the 
tendon is unbonded, this high stress extends along its whole length. The 
whole length thus extends pro rata and the extension is considerable, 
allowing the first crack to open excessively (few if any extra cracks form 
towards failure), precipitating earlier failure than occurs with a beam with a 
bonded tendon. 

The normal theories treat post-tensioning as if it were pretensioning and 
just modify the ultimate resistance moment for unbonded tendons as 
previously and bonded tendons as described in Example 8.9. However, the 
problem is basically different at pretensioning, working loads and ul-
timately. References 7 and 10 deal at length with this problem at tensioning 
and at working loads. They take account of pressures between tendons and 
their surrounding concrete, which can give high stress concentrations in the 
concrete.7'11 (A failure has been reported where these pressures were 
considered to be too high and the concrete was under-strength.) Tendons 
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cannot be deflected say vertically by beams without such forces existing and 
the theories of Refs. 7 and 10 calculate stresses and deflections for beams 
with tendons of various profiles. 

Example 8.11. Repeat Example 8.7, only assuming the tendons are unbonded. 
See Example 8.9 but using CP 110, Table 38, instead of Table 37, and supposing 

l/d = 20. From Example 8.6, /pe = 570N/mm2; thus, using Table 31, 

! ^ = 0.57x2x491 
fcubd 40000x0.25x0.375 
From Table 38,/pb//pe = 1.20 and x = 0A6d. Then using CP 110, equation 44, 
Mu = 1.2 x 0.57 x 2 x 491(0.375 - 0.5 x 0.46 x 0.375) = 193.9kNm 

Compare this result with the 214.5 kN m for bonded tendons in Example 8.9. 

8.4.9 Prestressed columns 

It is rarely economical or necessary to prestress columns. One example of 
prestressing columns (designed by the author) is in the case of large span 
pitched-roofed portal frames; in this instance, however, the columns ex-
perience very small direct stresses relative to the bending stresses. 

8.4.10 Prestressed ties 

Prestressed ties7 are often extremely useful for space frames, arches, hyper-
bolic paraboloids, gable ties to barrel vault and folded plate roofs, suspen-
ders to tied arch bridges and ties beneath prestressing beds. Extensions of 
ties are often desired to be as small as possible. This means a low strain is 
desirable in a tie, hence a steel tie or a prestressed concrete tie is designed, 
using a low stress. If the steel tie needs to be clad to resist fire or corrosion 
then the prestressed tie is often a more economical solution. One objection 
to unprotected steel ties to concrete structures is that their life and fire 
resistance is far less than that of the concrete members and if they fail a 
heavy structure collapses. Pretensioning was favoured for ties because the 
long slender members were considered to buckle as Euler's theory when 
post-tensioned. Refs. 7,11 and 12 show that the tendons restrain such buckling 
and a position of static equilibrium can be obtained when post-tensioning, so 
that if a certain unnoticeable curvature is allowed then the post-tensioned 
member can be designed accordingly and very economically. Post-tensioned 
ties have the economic advantage that they can easily be effected on site from 
existing scaffolding to shells, arched bridges, etc., when required. Pretensioned 
ties have to be delivered on time and threaded amongst the scaffolding and 
provided with special end attachments. Designs of pretensioned and steel ties 
are compared in Ref. 13 and post-tensioned ties are designed in Refs. 7,11 and 
12. 

8.4.11 Shear resistance of prestressed concrete beams 

At working loads for CP 110 Class 1 and 2 structures, beams are considered 
as uncracked and hence principal stresses can be calculated in the usual 
manner by combining stresses due to prestressing, bending and shear. The 
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concrete is usually well able to resist the principal compressive stresses, and 
can usually resist the principal tensile stresses; if it cannot, then the section 
or the amount of prestressing has to be altered, or shear reinforcement in 
the form of inclined tendons, or vertical or inclined stirrups, or vertical 
prestressing, has to be introduced. The principal stresses can be calculated 
from the well known expression 

/ = 0.5{/h +fv ± V/[(A -D2 + 4»2]} (8.7) 

where fh and fv are horizontal and vertical direct stresses (tensile positive) 
and v = shear stress. 

In the early days of prestressed concrete it was only necessary to limit the 
principal tensile stress to zero or a small amount, say 0.5 N/mm2 at working 
loads. This can still be done for a preliminary design. Research in shear 
generally shows that, with the kind of load factors used, if a beam is 
satisfactory with regard to its ultimate shear resistance then the diagonal 
cracks at working loads for reinforced concrete beams are adequately 
narrow and they are narrower still for prestressed concrete beams because 
of the prestressing forces tending to close such cracks. CP 110 therefore 
regulates only the ultimate shear resistance and equation 8.7 is used for 
sections not cracked in bending on the basis that when the principal stresses 
become great enough to cause cracking this can be regarded as correspond-
ing to ultimate failure in shear. CP 110 treats sections experiencing cracks 
due to bending differently in shear (see Example 8.12). Research concerning 
ultimate shear strength,1415 as with non-prestressed concrete, is incon-
clusive and appears inconsistent; hence empirical formulae have to be 
agreed for codes and these have to err greatly on the side of safety in some 
instances, because of the erratic nature and sensitivity to many variables of 
shear failures. 

Example 8.12. Consider the CP 110 design of the beam of Example 8.7 in shear. 
At a support where the section is not cracked in bending and the shear force is a 

maximum, suppose f = 7 N/mm2, then from CP 110 Table 39 
Vco = 2.2 x 250 x 450 N = 247.5 kN 

Then CP 110 is concerned about sections where there is likely to be a bending crack 
towards failure reducing the shear strength of the beam. The C. and C.A. Handbook 
on CP 110 suggests considering such a crack at a distance of half the effective depth 
from the point of maximum bending moment. Suppose for such a section 

V/M = 0.032 m " l and ft = 11 N/mm2 

0.25 x 0.453 

Now / = = 0.001 898 m4 

12 
0.8 x 11000x0.001898 hence M0 = = 91.42kNm 0 0.375-0.1923 

For Table 5 
100/1, 100 x 2 x 491 _ 

bd 250 x 375 
thus vc = 0.75 + 0.2 x 0.047 = 0.759 N/mm2 
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From Example 8.6, /pe = 570N/mm2 and /pu = 500/491 = 1.018 kN/mm2. Thus 
from CP 110, equation 46: 

Vcr = M _ °-55 X 5 7° j x 759 x 0.25 x 0.375 + 91.42 x 0.032 = 52.17 kN 

These values of Vco and Vcr are required to be less than the shear forces due to 
ultimate loads at these sections. 

8.4.12 Inclined tendons 

If a tendon is inclined upwards, at an angle a to the horizontal, towards and 
to the support, it is easy to imagine in the case of post-tensioning with a 
force P that reactions P and Rx are imposed on the concrete (see Figure 
8.7); thus for any section between A and B the shear force will be that due 
to the loading minus the vertical component of P, namely P sin a. Analyses 
giving shear forces and bending moments for beams with cables displaced 
upwards towards the supports with various profiles are given in Refs. 7 
and 10. 

^ p 

*r 

R 

Figure 8.7 

8.4.13 Composite construction 

An example of this is shown in Figure 8.8. The prestressed rectangular beam 
is propped until the in-situ reinforced concrete slab is mature. Figure 8.9(a) 
shows the final T-beam. Figure 8.9(b) gives the stress distribution in the 
prestressed concrete beam before the slab is cast. There are dowel bars 
between the beam and the slab so that, when the props are removed, the 
self-weight of the slab and future live loading are carried by the 'composite' 
T-beam. Figure 8.9(c) shows the stress distribution after the props have been 
removed, the beam having to carry the self-weight of the slab, and Figure 
8.9(d) shows the stress distribution when the live loading is also being 
carried. The dowels required can be calculated by determining the horizon-
tal shear stress at the junction between slab and rectangular beam (see 
Section 3.3). Composite construction is generally economic when a floor or 

* H i i h | i i = I 

Figure 8.8 
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Figure 8.9 

bridge deck is desired to be in situ as opposed to precast, for robustness, 
and its total depth is required to be less than for in-situ reinforced concrete 
construction or when durability (absence of cracks at working loads) is 
required (for example bridge decks). 

Sometimes prestressed precast beams as in Figure 8.8 are used without 
propping to support the shuttering to the in-situ slab (this can also be a 
hollow tile floor or roof, or a deck comprising precast units, where the 
portion over each beam is made in situ but the precast soffit is maintained 
so that it can be supported by the beam). Holes to accommodate bolts (for 
example about 12 mm diameter) are cast through the beams to enable the 
shuttering to be supported. This method is useful when the headroom is 
high, in avoiding expensive scaffolding to support shuttering. In Figure 8.8 
above it means that the composite T-beam supports the superimposed 
loading but not the self-weight of the slab. 

Composite construction is often carried out (particularly in bridge work) 
without propping, using the prestressed precast beams as permanent 
formwork. 

8.4.14 Continuity 

This has problems in that for various combinations of live loads on different 
continuous spans the tendons ideally need to be in varying positions. 
Cables have to be waived over supports of continuous beams; this increases 
friction losses and can make grouting difficult. Many calculations of 
sequence of prestressing and different loading possibilities have to be made. 
The careful control of the sequence of prestressing makes this operation 
costly. A continuous beam shortens due to prestressing, so if the columns 
supporting it are in situ, ideally all but one need to be hinged at top and 
bottom so that some of the post-tensioning is not absorbed in bending the 
columns as opposed to post-tensioning the beam. A continuous beam is 
very vulnerable to the slightest differential settlement of supports. They can 
be designed for some settlement of supports and this makes them less 
economic. This is done for cable-stayed prestressed concrete bridges, 
pioneered by Prof. Leonhardt in Germany. Continuity is not favoured in 
mining subsidence areas; the jacking of supports requires too much atten-
tion and one could be caught out by sudden unpredictable settlement. 
(Continuous bridge beams with exposed tendons, which can be periodically 
inspected and eventually replaced if necessary, are analysed in Ref. 7.) 

8.4.15 End splitting forces 

Referring to Figure 2.13,, the prestressing wire upon release increases its 
diameter at A, and thus splitting forces are created between, and normally to, 
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a line between A and B. Designers have sometimes been unaware of this 
problem and have experienced splitting cracks in pretensioned members 
along the line between A and B. Other end splitting forces are caused by the 
end anchorages of tendons being, in effect, a system of irregularly distri-
buted point loads on the end of a member. Each point load causes splitting 
forces normal to its line of action. Again failures have occurred. 

This problem should be considered by the designer and CP 110 gives 
simple empirical guidance. 

8.4.16 Prestressed concrete tanks, pipes, domes, shells and piles 

For circular tanks and pressure pipes, circular prestressing is provided to 
counteract the circumferential tension due to the loading. A residual 
circumferential compression can ensure no cracks developing, due to 
shrinkage and temperature change, and this increases the watertightness. The 
pipes also need longitudinal prestressing for handling purposes. The writer 
has been consulted concerning troubles with certain prestressed concrete 
pipes. From his considerable literature searches he would recommend Ref. 
16 for determining soil pressures on pipes and Ref. 17 for guidance on the 
design of prestressed concrete pipes. Some recent research supervised by the 
author on this problem is given in Ref. 18. 

With rectangular tanks the walls must be free at the base, otherwise the 
corners act rigidly as folded plates and prevent the post-tensioning impos-
ing stresses along the walls (a very able designer overlooked this point). 
Prestressing is useful for providing the ring tension to domes. The writer 
has rectified a dome, failing due to inadequate ring steel, by prestressing 
around the periphery. 

Prestressed concrete piles are used for longer piles when handling stresses 
are a problem; end reinforcement details are important. Prestressing is 
useful for normal and North Light barrel vault roofs longer than about 
36 m and 27 m, respectively, assuming that the ratio of width to length is 
about 1:2. 

8.4.17 Torsional resistance 

The ultimate limit state for torsion is dealt with in the same way as for non-
prestressed beams (see Chapter 3). 

8.5 Load balancing 

This method of design19 helps suitable profiles for tendons of simply 
supported and continuous beams to be rapidly determined. 
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Appendix 1 
Tables and graphs for design 

Throughout the text there are many tables and graphs which are useful for 
speeding up design. Many of these are similar to those all confined together 
at the end of the old Reynolds' Handbook. As these tables and graphs are 
scattered throughout the text, so that they occur where their basis is being 
described, the following list will enable easy reference to them for those 
engaged in design: 

Mix design 

Graphs plotting percentage passing against sieve aperture 
size for concrete aggregate Figure 2.1 

Table recommending suitable workabilities for various 
uses Table 2.1 

Graphs plotting average ultimate compressive stress 
against water-to-cement ratio for concretes of various 
ages Figure 2.2 

Table recommending minimum strength as percentage 
of average strength for various conditions of control of 
concreting Table 2.2 

Tables recommending aggregate-to-cement ratios for 
various gradings and types of aggregates, water-to-
cement ratios, and workabilities Table 2.3 

Table showing how to determine a certain required 
grading from available sand and coarse aggregates Table 2.4 

Weights of materials 

Weights of materials in kN/m3 and kN/m2 Table 7.4 

218 
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Reinforcement 

Table giving cross-sectional areas of numbers of bars and 
bars in slabs Table 3.2 

Tables giving CP 110 values of/y for various types of 
reinforcement bars Table 2.10 

Anchorage or bond lengths 

Table giving tension anchorage lengths (lb/dh) for various 
values of/cu and/y 

Table giving compression anchorage lengths (ljdh) for 
various values of/cu and/y 

Table giving anchorage length equivalents of hooks and 
nibs for various diameters of mild and high-yield steel 
bars 

Table giving compression and tension anchorage lengths 
for/cu = 20N/mm2 and various values of/y 

Table giving overall anchorage lengths using hooks and 
nibs for fy = 250 N/mm2 and /cu = 20 N/mm2 

Table giving tension anchorage lengths for bars used in 
water-retaining structures, BS 2007 

Curtailment of bars in beams 

Table giving points for stopping off or bending up ten-
sion reinforcement bars towards supports for simply sup-
ported, continuous and fixed beams Table 2.15 

Elastic theory 

Table giving tension anchorage lengths for bars used in 
water-retaining structures, CP 2007 

Tables for calculating equivalent area, x and / 

Tables giving corresponding values of K [= M/(bd2)~\ and 
zl for/s = 85 N/mm2 and ae = 15 

Shear reinforcement 

Table 2.9 

Table 2.11 

Table 2.12 

Table 2.13 

Table 2.14 

Table 2.16 

Table 2.16 

Table 3.1 and 
Table 3.4 

Table 3.3 

Table giving values of V/d for two-arm stirrups for 
various values of/yv, dh and sv Table 3.5 
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Table giving values of V for single bars bent up at 45° in 
single shear for various values off and db Table 3.6 

Plastic design of sections for bending moments 

Table giving, for balanced design, values of Kx 

[= MJ{bd2j] and p% [= l0OAJ(bd)] for various values of 
/y>/ sand/c u Table 3.7 

Strength of steel in compression 

Table giving /sc (design ultimate compressive stress) for 
various values ofjfy for compression steel Table 3.8 

Figure giving CP 110, Fig. 3, stress-strain curve for 
25 mm diameter alloy bar Figure 8.6 

Design of beams and slabs 

Table to assist in the preliminary design of depths of 
beams and slabs of various spans Table 7.1 

Continuous beams and slabs 

Tables giving bending moments and shear forces in con-
tinuous beams and slabs carrying dead and imposed f Table 6.1 and 
loadings [Table 6.2 

Table giving bending moments and shear forces in con-
tinuous beams and slabs subjected to unit bending mo-
ment at one and both ends Table 7.3 

Single-span beams with fixed and free end supports 

Table giving bending moments, support reactions and 
deflections for beams with various loadings Table 7.2 
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Units and Greek symbols 

For the purpose of being absolutely clear internationally about the units 
used in this book, the following conversions (which should prove useful 
anyway to engineers internationally) are given. 

British Imperial 
1 ton 
20001b 
0.9843 ton 

l ib 
10001b 
1 inch 
lfoot 
1000 lb in 
1000 lb/in 
1 lb/in2 

1000 lb/in2 

1 lb/ft2 

1 ton/ft2 

1 lb/ft 
1 ton/ft 
1 lb/ft3 

145.0 lb/in2 

U.S.A. 
1 long ton 
1 short ton 
0.9843 long tons 

l ib 
l k i p 
1 inch 
lfoot 
1 kip in 
1 kip/in 
lpsi 

( 1 kip/in2 

(1000 psi 
1 lb/ft2 

1 long ton/ft2 

1 lb/ft 
1 long ton/ft 
1 lb/ft3 

l P a 

Metric 
1016.0kg 
907.1kg 

\1 tonne 
[1000 kg 

0.4536 kg 
453.6 kg 
2.54 cm 
30.48 cm 
1.152kgcm 
178.6 kg/cm 
0.070 309 kg/cm2 

70.309 kg/cm2 

4.882 kg/m2 

10940kg/m2 

1.488 kg/m 
3333 kg/m 
16.02 kg/m3 

10.20 kg/cm2 

SI 
9.964 kN 
8.896 kN 
9.807 kN 

4.448 N 
4.448 kN 
25.4 mm 
0.3048 m 
0.1130 kNm 
175.1 kN/m 
6.895 kN/m2 

6.895 N/mm2 

0.047 88 kN/m2 

107.3 kN/m2 

0.014 59 kN/m 
32.69 kN/m 
0.157 07 kN/m3 

lN /m 2 

Notes 
1. The terms 'force' and 'mass' have not been used above, and acceleration 

due to gravity = 9.807 m/s2 

2. p.s.i. = psi = lb/in2 = pounds per square inch 
3. kip = 10001b = 1000 pounds 
4. kip/in2 = 1000 psi = 1000 pounds per square inch 
5. Pa = pascal 
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The Greek Alphabet 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 

A 
B 
r 
A 
E 
Z 
H 
0 
I 
K 
A 
M 

(X 

P 
y 
s 
£ 

c 
n 
e 
i 

K 

X 
V 

alpha 
beta 
gamma 
delta 
epsilon 
zeta 
eta 
theta 
iota 
kappa 
lambda 
mu 

13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 

N 
^ 
O 
n 
p 
2 
T 
Y 
0 
X 
¥ 
Q 

V 

z o 
n 
P 
a 
T 

V 

4> 
i 
•A 
CD 

nu 
xi 
omicroi 
Pi 
rho 
sigma 
tau 
upsilon 
phi 
chi 
psi 
omega 

Other symbols used in mathematics: 
V del 
d curly d (partial differential) 
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Nomenclature used in 
British Standard CP 110 

Symbols for CP 110 were agreed internationally and are used, for example, 
by the latest A.C.I, code of practice used in the U.S.A. They are generally 
used in this present book. The symbols conform to an internationally 
agreed system of constructing symbols which can be used in creating further 
symbols. 

4 1 

Ac 
4,1 

4 
a 
a! 

Area of concrete 
Area of effective concrete flange 
Area of prestressing tendons 
Area of compression reinforcement 
Area of compression reinforcement in the more highly com-
pressed face 
Area of tension reinforcement 
Area of reinforcement in other face (see 3.5.5.3) 
Area of longitudinal reinforcement (for columns) 
Cross-sectional area of longitudinal reinforcement provided for 
torsion 
Area of tension reinforcement provided 
Area of tension reinforcement required 
Cross-sectional area of the two legs of a link 
Deflection 
Distance from compression face to the point at which the crack 
width is being calculated 
Distance between bars 
Distance of the centroid of the concrete flange from the centroid 
of the composite section 
Distance from the point (crack) considered to the surface of the 
nearest longitudinal bar 
Distance of the centroid of the steel from the centroid of the net 
concrete section 
Distance between the line of action of the load and the face of 
the supporting member 
Width of section 
Breadth of compression face 
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be Width of contact surface (between in situ and precast 
components) 

bl Breadth of section at level of tension reinforcement 
bw Breadth of web or rib of a member 
C Torsional constant (see 3.3.7) 
cmin Minimum cover to tension steel 
Dc Density of concrete at time of test 
d Effective depth of tension reinforcement 
d' Depth to compression reinforcement 
dc Depth of concrete in compression 
dQ Depth to additional reinforcement to resist horizontal loading 
dt Effective depth in shear (see 4.3.5.3) 
d2 Depth to reinforcement (see 3.5.5.3) 
Ec Static secant modulus of elasticity of concrete 
Ecf Modulus of elasticity of flange concrete 
Ecq Dynamic tangent modulus of elasticity of concrete 
Es Modulus of elasticity of steel 
e Eccentricity 
e Base of Napierian logarithms 
ea Additional eccentricity due to deflections in walls 
ex Resultant eccentricity of load at right angles to plane of wall 
exl Resultant eccentricity calculated at top of wall 
ex2 Resultant eccentricity calculated at bot tom of wall 
F Ultimate load 
Fh Anchorage value of reinforcement 
Fbst Tensile bursting force 
Fb t Tensile force due to ultimate loads in a bar or group of bars 
Fh Horizontal component of a load 
Fk Characteristic load 
Ft Tie force 
Fv Maximum vertical ultimate load 
Fw Horizontal force on stiffened section of wall 
/bs Bond stress 
fci Concrete strength at (initial) transfer 
fco Stress in concrete at the level of the tendon due to initial 

prestress and dead load 
/ c p Compressive stress at the centroidal axis due to prestress 
fcu Characteristic concrete cube strength 
fk Characteristic strength 
fph Tensile stress in tendons at (beam) failure 
/pe Effective prestress (in tendon) 
f t Stress due to prestress (see 4.3.5.2) 
fpu Characteristic strength of prestressing tendons 
fs Service stress 
fs2 Stress in reinforcement (see 3.5.5.3) 
ft Maximum principal tensile stress 
fy Characteristic strength of reinforcement 
fyl Characteristic strength of longitudinal reinforcement 
/yv Characteristic strength of link reinforcement 
G Shear modulus 
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Gk Characteristic dead load 
g Distributed dead load 
gk Characteristic dead load per unit area 
h Overall depth of section in plane of bending 
/zagg M a x i m u m size of aggrega te 
hc Diameter of column head 
he Effective thickness 
/zf Thickness of flange 
/imax Larger dimension of section 
hmin Smaller dimension of section 
/ Second moment of area 
i Radius of gyration 
j Number of days 
jc Number of days of concrete hardening 
ji Age at first loading 
K A constant (with appropr ia te subscripts) 
k A constant (with appropr ia te subscripts) 

Distance from face of support at the end of a cantilever 
or 
Effective span of a simply supported beam or slab 

/e Effective height of a column or wall 
/ex Effective height for bending about the major axis 
/ey Effective height for bending about the minor axis 
/m Average of lx a n d l2 

lc Clear height of column between end restraints 
/sb Length of straight reinforcement beyond the intersection with 

the stirrup 
/x Leng th of the shor te r side (of rec tangula r slab) 
ly Length of the longer side (of rectangular slab) 
lx Length of a slab panel in the direction of span measured from 

the centres of columns 
l2 Width of slab panel measured from the centres of columns 
M Bending moment due to ultimate loads 
Ma Increased moment in column 
Ma d d Maximum additional moment 
Mcs Hogging restraint moment at an internal support of a con-

t inuous composite beam and slab section due to differential 
shrinkage 

Mds Design bending moments in flat slabs 
M{ Maximum initial moment in a column due to ultimate loads 

(but not less than 0.05Nh) 
Mix Initial moment about the major axis of a slender column due to 

ultimate loads 
Miy Initial moment about the minor axis of a slender column due to 

ultimate loads 
M sx , Msy The bending moments at mid span on strips of unit width and 

spans lx and ly, respectively 
Mt Total moment in a column due to ultimate loads 
M tx Total moment about the major axis of a slender column due to 

ultimate loads 
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Mt Total moment about the minor axis of a slender column due to 
ultimate loads 

Mu Ultimate resistance moment 
Mux Maximum moment capacity in a short column assuming ul-

timate axial load and bending about the major axis only 
Muy Maximum moment capacity in a short column assuming ul-

timate axial load and bending about the minor axis only 
M z , My Moments about the major and minor axes of a short column 

due to ultimate loads 
M0 Moment necessary to produce zero stress 
M1 Smaller initial end moment due to ultimate loads (assumed 

negative if the column is bent in double curvature) 
M2 Larger initial end moment due to ultimate loads (assumed 

positive) 
N Ultimate axial load at section considered 
Nb a l Axial load on a column corresponding to the balanced con-

dition (see 3.5.7.4) 
Nux Axial load capacity of a column ignoring all bending 
n Total ultimate load per unit area (\Agk + 1.6gk) 
ns Number of storeys 
nw Axial load per unit length of wall 
Pk Characteristic load in tendon 
P0 Prestressing force in the tendon at the jacking end (or at 

tangent point near jacking end) 
Px Prestressing force at distance x from jack 
Qk Characteristic imposed load 
q Distributed live load 
qk Characteristic live load per unit area 
r Internal radius of bend 
rps Radius of curvature (of a prestressing tendon) 

— Curvature of a beam at mid span or, for cantilevers, at the 
rb support section 

— Creep curvature 

— Shrinkage curvature 
r 

cs 

— Curvature of a beam at point x 
rx 
Sc First moment of area of the concrete to one side of the contact 

surface, about the neutral axis of the transformed composite 
section 

sb Spacing of bars 
sv Spacing of links along the member 
T Torsional moment due to ultimate loads 
T° Temperature in degrees 
t Time 
u Perimeter 
wcrit Length of a critical perimeter 
V Shear force due to ultimate loads 
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Vc Ultimate shear resistance of concrete 
Vco U l t ima t e shear resis tance of a sect ion unc racked in flexure (see 

4.3.5.1) 
VCT Ultimate shear resistance of a section cracked in flexure 
Vd Total vertical shear due to design service load 
v Shear stress 
vc Ultimate shear stress in concrete 
vh Horizontal shear stress per unit area of contact surface 
vt Torsional shear stress 
vtu Ultimate torsional shear stress 
Wk Characteristic wind load 
x Neutral axis depth 
*! Smaller dimension of a link 
y0 Half the side of end block 
ypo Half the side of loaded area 
yx Larger dimension of a link 
z Lever arm 
ac A ratio of the sum of column stiffnesses to the sum of beam 

stiffnesses 
a c l Value of ac at lower end of column 
ac2 Value of ac at upper end of column 
acmin Minimum value of a c l and ac2 
ae Modular ratio 
af Angle of internal friction for concrete interfaces 
an Coefficient as a function of column axial loading 
ax x ,ax y Bending moment coefficients for slabs with no provision to 

resist torsion at the corners or to prevent the corners from 
lifting 

jSb Ra t io of b e a m m o m e n t s with respect to service stress in b e a m s 
(see 3.3.8.1) 

jScc Ratio of total creep to elastic deformation 
/} r e d Ratio of reduction in resistance moment 
/?sx,j8sy Bending moment coefficients for slabs with provision to resist 

torsion and to prevent corners from lifting 
/?! Ratio of the longer to shorter base sides 
yf Partial safety factor for load 
ym Partial safety factor for strength 
Sm Degree of hardening at moment of loading 
ecs Shrinkage strain 
ecl Strain in concrete at the level of the tendon at time of loading 
sc2 Strain in concrete at the centroid of the section at time of 

loading 
ediff Differential shrinkage strain 
em Average strain 
ex Strain at the level considered 
rj Relaxation coefficient 
6S Angle between the compress ion face a n d the tens ion re-

inforcement 
A w Coefficient for walls dependent upon dimensions and concrete 

used 
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[i Coefficient of friction 
£s Depth of slab factor 

pQ Coefficient which depends upon the percentage of tension and 
compression steel in the section 

0 Creep coefficient with appropriate subscripts 
£ ,4SV Area of shear reinforcement 
£ us Sum of the effective perimeters of the tension reinforcement 
Acc Concrete creep deformation 
Acs Concrete shrinkage deformation 
<P Bar size 



Appendix 4 

Extracts from British Standard 
CP 110: Part 1:1972 

Throughout this present book references are often made to parts of CP 110. 
These are generally reproduced in essence in this Appendix. If a part of CP 
110 is given to some extent, or completely, in the text then usually a note of 
this is given in this Appendix. Points in CP 110 which come from previous 
sources are sometimes not quoted in this Appendix. 

Headings and references to sections, figures and tables set in bold type are 
from CP 110. All other references relate to this book. 

2.2.3 Serviceability limit states 

2.2.3.1 Deflection. Refer to Example 8.3, p. 199. 

2.2.3.2 Cracking. Cracking of concrete should not adversely affect the 
appearance or durability of the structure. 

The engineer must satisfy himself that any cracking will not be excessive, 
having regard to the requirements of the particular structure but, as a guide, 
the following may be regarded as reasonable limits. 

1. Reinforced concrete. An assessment of the likely behaviour of a 
reinforced concrete structure should show that the surface width of cracks 
would not, in general, exceed 0.3 mm. Where members are exposed to 
particularly aggressive environments such as the very severe category in 
Table 19, the assessed surface widths of cracks at points nearest to the main 
reinforcement should not, in general, exceed 0.004 times the nominal cover 
to the main reinforcement. It should be recognised that in a reinforced 
concrete structure, under the effects of load and environment, the actual 
widths of cracks will vary between wide limits, and the prediction of an 
absolute maximum width is not possible; the possibility of some cracks 
being wider than the above must be accepted unless special precautions are 
taken. 

2. Prestressed concrete. Refer to Section 8.4. 
2.2.3.3 Vibration. Refer to Section 1.4(c) 

2.2.3.4 Other limit states. Refer to Section 1.4(d) 

229 
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2.3.3 Values for the ultimate limit state. 

2.3.3.1 Loads. Refer to Table 1.1 

2.3.3.2 Materials. Refer to Table 1.2 

2.3.4 Values for a serviceability limit state 

2.3.4.1 Loads. Refer to Table 1.1 

2.3.4.2 Materials. Refer to Table 1.2 

2.4.2.2 Elastic modulus: concrete. In the absence of better information, for 
normal-weight concrete the short-term elastic modulus, relevant to the 
serviceability limit states, may be taken from Table 1. 

TABLE 1. Values of modulus of elasticity of concrete 

Cube strength of concrete at the Modulus of elasticity 
appropriate age or stage considered, of concrete, 
N/mm2 kN/mm2 

20 25 
25 26 
30 28 
40 31 
50 34 
60 36 

2.4.2.4 Elastic modulus: steel. For reinforcement, the elastic modulus for all 
types of loading may be taken as Es = 200 kN/mm2. 

For prestressing tendons, the short-term elastic modulus may be taken as 
£s = 200 kN/mm2 for wire and small diameter strand, 
Es = 175 kN/mm2 for alloy bars and large diameter strand. 

For sustained loading conditions, appropriate allowance for relaxation 
should be made. 

2.4.3.2 Analysis of sections. The strength of a section should be assessed by 
inelastic analysis based on short-term stress-strain curves derived from the 
design strengths of materials given in 2.3.3.2, and from Figures 1 to 4. 

3.1.4.3 Characteristic strength of reinforcement. Table 3: refer to Table 2.10 

3.2.2.3 Redistribution of moments. Refer to Section 6.2 

3.3.4 Moments and forces in continuous beams: uniform loading and equal 
spans. Provided the charactersic imposed load does not exceed the charac-
teristic dead load, for beams which support substantially uniformly distrib-
uted loads over three or more spans which do not differ by more than 15% 
of the longest, the ultimate bending moments and shear forces used in 
design may be obtained from Table 4. 
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0__8_/y./?m_ 

/ / / 

^y/*m Tension 

Compression 

.. . . r 

^200kN/mm 2 / 

0.002 

Note: fy in N/mm 2 

rm+ 2000 

Strain 

Figure A4.2 Short-term design stress-strain curve for 
reinforcement 

(For Figure A4.1 Short-term 
design stress-strain curve for 
normal weight concrete see 
Figure 3.8(b) of this book) 

0.005 

200kN/mm 2 for wire to B5 2691 sections 
2 and 3 and strand to BS 3617 sections 
2 and 3 175 k N / m m 2 for al loy bars to 
BS U 8 6 and 19-wire strand to BS 4757 
section 3 

Strain 

Figure A4.3 Short-term design stress-strain curve for nor-
mal and low relaxation products 

TABLE 4. Ultimate bending moments and shear forces 

At outer 
support 

Near middle 
of end span 

At first interior 
support 

At middle of 
interior spans 

At interior 
supports 

Moment 

Shear 

0 

0.45F 

Fl 

IT 
— 

-Fl 

~9~ 

0.6F 

Fl 

14 
— 

-Fl 

~io~ 
0.55F 

In Table 4, / is the effective span and F is the total ultimate load 
(1.4Gk + 1.6<2k). No redistribution of the moments found from Table 4 
should be made. 

3.3.5.1 Analysis of sections. Refer to Section 3.7 and its sub-sections. 

3.3.6.1 Shear stresses and shear reinforcement in beams. Where the shear stress 
exceeds the appropriate value of vc from Table 5, shear reinforcement in the 



232 Extracts from British Standard C P 110 

form of links, or links combined with bent-up bars, should be provided (but 
see 3.11.4.3 for minimum provision of links). In no case, even with shear 
reinforcement, should v exceed the values given in Table 6. 

TABLE 5. Ultimate shear stress in beams 

100/4S 

bd 

0.25 
0.50 
1.00 
2.00 
3.00 

Concrete 

20 

N/mm2 

0.35 
0.45 
0.60 
0.80 
0.85 

grade 

25 

N/mm2 

0.35 
0.50 
0.65 
0.85 
0.90 

30 

N/mm2 

0.35 
0.55 
0.70 
0.90 
0.95 

40 or more 

N/mm2 

0.35 
0.55 
0.75 
0.95 
1.00 

The term As in Table 5 is that area of longitudinal tension reinforcement 
which continues at least an effective depth beyond the section being 
considered except at supports where the full area of tension reinforcement 
may be used in all cases provided that the requirements of 3.11.7 are met. 

TABLE 6. Maximum value of shear stress in beams 

Concrete grade 

20 25 30 40 or more 

N/mm2 N/mm2 N/mm2 N/mm2 

3.35 3.75 4.10 4.75 

When links are used for shear reinforcement, the spacing of the legs, in 
the direction of the span and at right-angles to it, should not exceed 0.75<i 
and the following requirement should be satisfied. 

A^ > b(v - vc) 
5V ^ 0.87/yv

 l ; 

where /yv is the characteristic strength of the link reinforcement which 
should not be taken as more than 425 N/mm2, 

,4SV is the cross-sectional area of the two legs of a link, 
5V is the spacing of the links along the member. 

Up to 50% of the shear reinforcement may be in the form of bent-up bars 
which should be assumed to form the tension members of one or more 
single systems of lattice girders in which the concrete forms the compression 
members. The maximum stress in any bar should be taken as 0.87/yv. The 
shear resistance at any vertical section should be taken as the sum of the 
vertical components of the tension and compression forces cut by the 
section. Bars should be checked for anchorage (see 3.11.6.2) and bearing (see 
3.11.6.8). 
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3.3.7 Torsional resistance of beams. Refer to Section 3.6 

TABLE 7. Ultimate torsion shear stress 

Concrete grade 

20 25 30 40 or more 

N/mm2 N/mm2 N/mm2 N/mm2 

vtmin 0.30 0.33 0.37 0.42 
vtu 3.35 3.75 4.10 4.75 

3.3.8.1 Span/effective depth ratio for a rectangular beam. The basic span/ 
effective depth ratios for rectangular beams are given in Table 8. These are 
based on limiting the deflection to span/250 and this should normally avoid 
damage to finishes and partitions for beams of up to 10 m span. 

TABLE 8. Basic span/effective depth ratios 
for rectangular beams 

Support conditions Ratio 

Cantilever 7 
Simply supported 20 
Continuous 26 

Table 8 should only be used for spans greater than 10 m if the engineer is 
satisfied that a deflection of span/250 is acceptable. When it is necessary 
further to restrict the deflection, to avoid damage to finishes or partitions, 
Table 9 should be used for spans exceeding 10 m. 

TABLE 9. Special span/effective depth ratios for 
rectangular beams 

Span, Cantilever Simply Continuous 
m supported 

10 20 26 
12 Value to be 18 23 
14 justified by 16 21 
16 calculation 14 18 
18 12 16 
20 10 13 

Deflection is influenced by the amount of tension reinforcement and its 
stress and therefore the span/effective depth ratios should be modified 
according to the area of reinforcement provided and its service stress at the 
centre of the span (or at the support in the case of a cantilever). Values of 
span/effective depth ratio obtained from Tables 8 or 9 should therefore be 
multiplied by the appropriate factor obtained from Table 10. 
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TABLE 10. Modification factor for tension reinforcement 

Service stress (fs), 
N/mm2 

145 (fy = 250) 
150 
200 
238 (fy = 410) 
246 (fy = 425) 
250 
267 (fy = 460) 
290 (fy = 500) 
300 

100,4S 

bd 

0.25 

2.0 
2.0 
2.0 
1.60 
1.55 
1.52 
1.41 
1.27 
1.22 

0.50 

1.98 
1.91 
1.46 
1.23 
1.20 
1.18 
1.11 
1.03 
0.99 

0.75 

1.62 
1.58 
1.26 
1.09 
1.06 
1.05 
0.99 
0.92 
0.90 

1.00 

1.44 
1.41 
1.15 
1.00 
0.98 
0.97 
0.92 
0.86 
0.84 

1.50 

1.24 
1.22 
1.02 
0.90 
0.88 
0.87 
0.84 
0.79 
0.77 

2.00 

1.13 
1.11 
0.94 
0.84 
0.83 
0.82 
0.78 
0.74 
0.72 

2.50 

1.06 
1.04 
0.89 
0.80 
0.79 
0.78 
0.75 
0.71 
0.69 

^3.0 

1.01 
0.99 
0.85 
0.77 
0.76 
0.75 
0.72 
0.68 
0.67 

The service stress may be estimated from the equation 

/ s = 0 . 5 8 ^ ^ 1 1 
(13) 

If the percentage of redistribution is not known but the design ultimate 
moment at mid span is obviously the same or greater than the elastic 
ultimate moment, the stress fs in Table 10 may be taken as 0.58/y. 

Compression reinforcement also influences deflection, and the value of the 
span/effective depth ratio obtained from Tables 8 or 9, modified by the factor 
obtained from Table 10, may be multiplied by a further factor obtained from 
Table 11. 

TABLE 11. Modification factor for 
compression reinforcement 

100A'S 

bd 

0.25 
0.50 
0.75 
1.0 
1.5 
2.0 

^3.0 

Factor 

1.07 
1.14 
1.20 
1.25 
1.33 
1.40 
1.50 

Intermediate values may be interpolated. 

3.3.9 Crack control in beams. In general the reinforcement spacing rules given 
in 3.11.8.2 will be the best means of controlling flexural cracking in beams 
but in certain cases, particularly where groups of bars are used, advantage 
may be gained by calculating crack widths (see Appendix A) under service 
loads and comparing them with the recommended values given in Section 2. 
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3.4.5.1 Shear stresses in solid slabs: general. No shear reinforcement is 
required when the stress v is less than £svc 

where £s has the value shown in Table 14 and 
vc is obtained from Table 5. 

TABLE 14. Values of $s 

Overall slab depth, mm «. 

300 or more 
275 
250 
225 
200 
175 
150 or less 

1.00 
1.05 
1.10 
1.15 
1.20 
1.25 
1.30 

The shear stress v in solid slabs less than 200 mm thick should not exceed 
£svc. 

3.4.5.2 Shear stresses in solid slabs under concentrated loads. Refer to 
Section 7.3 

3.5.1.3 Braced and unbraced columns: definitions. Refer to Section 7.1.3 

3.5.1.4 Effective height of a column. 

TABLE 15. Effective column height 

Type of column Effective column height 

Braced column properly restrained in 
direction at both ends 

Braced column imperfectly restrained in 
direction at one or both ends 

Unbraced or partially braced column, 
properly restrained in direction at one end 
but imperfectly restrained in direction at 
the other end 

0.75/o 

A value intermediate between 0.75/o and /0 
depending upon the efficiency of the 
directional restraint 

A value intermediate between /0 and 2/0 
depending upon the efficiency of the 
directional restraint and bracing 

3.5.2 Moments and forces in columns. Refer to Section 7.1.3 

3.5.5 Short columns resisting moments and axial forces. Any short column 
may be designed in accordance with the following recommendations pro-
vided the moment at any cross-section is not taken to be less than that 
produced by considering the ultimate axial load as acting at an eccentricity 
of 0.05/zmin, where hmin is the minimum depth of cross-section. 
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3.11.2 Concrete cover to reinforcement. The nominal cover should always be 
at least equal to the size of the bar and in the case of bundles of three or 
more bars, should be equal to the size of a single bar of equivalent area. 

Table 19 gives the nominal cover of dense natural aggregate concrete 
which should be provided to all reinforcement, including links, when using 
the indicated grade of concrete under particular conditions of exposure. 

3.11.4 Minimum areas of reinforcement in members. 

3.11.4.1 Minimum area of main reinforcement. The area of tension reinforce-
ment in a beam or slab should not be less than 0.15%btd when using high 
yield reinforcement, or 0.25%btd when mild steel reinforcement is used, 
where bt is the breadth of the section and d is the effective depth. For a box, 
T- or I -section, bt should be taken as the average breadth of the concrete 
below the upper flange. 

The minimum number of longitudinal bars provided in a column should 
be four in rectangular columns and six in circular columns and their size 
should not be less than 12 mm. Except for lightly loaded columns (see 
3.5.1.1) the total cross-sectional area of these bars should not normally be 
less than 1% of the cross section of the column. 

A wall cannot be considered as a reinforced concrete wall unless the 
percentage of vertical reinforcement provided is at least 0.4%. This vertical 
reinforcement may be in one or two layers. 

It should be noted that for fire resistance purposes, a wall containing less 
than 1.0% of vertical reinforcement is classed as a plain concrete wall. 

3.11.4.2 Minimum area of secondary reinforcement. In a solid concrete 
suspended slab, the amount of reinforcement provided at right-angles to the 
main reinforcement, expressed as a percentage of the gross cross section, 
should not be less than 0.12% of high yield reinforcement or, alternatively, 
not less than 0.15% of mild steel reinforcement. In either case, the distance 
between bars should not exceed five times the effective depth of the slab. 

In a flanged beam the amount of reinforcement provided over the top 
surface and across the full effective width of the flange, expressed as a 
percentage of the longitudinal cross-sectional area of the flange, should not 
be less than 0.3%. 

Where in a wall the main vertical reinforcement is used to resist compres-
sion, at least 0.25% in the case of high yield or 0.3% in the case of mild steel 
of horizontal reinforcement of not less size than one-quarter of the size of 
the vertical bars and not less than 6mm should be provided. It may also be 
necessary to provide links in the thickness of the wall (see 3.11.4.3). 

3.11.4.3 Minimum area of links. When in a beam or column part or all of the 
main reinforcement is required to resist compression, links or ties at least 
one-quarter the size of the largest compression bar should be provided at a 
maximum spacing of twelve times the size of the smallest compression bar. 
Links should be so arranged that every corner and alternate bar or group in 
an outer layer of reinforcement is supported by a link passing round the bar 
and having an included angle of not more than 135°. All other bars or 
groups within a compression zone should be within 150 mm of a restrained 
bar. For circular columns, where the longitudinal reinforcement is located 
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round the periphery of a circle, adequate lateral support is provided by a 
circular tie passing round the bars or groups. 

When in a wall the percentage of vertical reinforcement resisting compre-
ssion exceeds 2%, links at least 6 mm or one quarter of the size of the largest 
compression bar should be provided through the thickness of the wall. The 
spacing of these links should not exceed twice the wall thickness in either 
the horizontal or vertical directions and in the vertical direction should be 
not greater than 16 times the bar size. Any vertical compression bar not 
enclosed by a link should be within 200 mm of a restrained bar. 

In all beams except those of minor structural importance (for example 
lintels) or where the maximum shear stress, calculated in accordance with 
3.3.6, is less than half the recommended value, nominal links should be 
provided throughout the span such that: 

for high yield links 

for mild steel links 

where Asy is the cross-sectional area of the two legs of a link, 
bt is the breadth of the beam at the level of the tension 

reinforcement, 
sv is the spacing of the links. 

The spacing of links should not exceed 0.75 times the effective depth of 
the beam, nor should the lateral spacing of the individual legs of the links 
exceed this figure. Links should enclose all tension reinforcement. 

3.11.6.1 Local bond. Critical sections for local bond occur at the faces of 
simply supported ends of members, at points where tension bars stop and at 
points of contraflexure. However, points where tension bars stop and points 
of contraflexure need not be considered if the anchorage bond stresses in 
the continuing bars do not exceed 0.8 times the value given in 3.11.6.2. 

TABLE 21. Ultimate local bond stresses 

Bar type 

Plain bars 
Deformed bars 

Concrete grade 

20 

N/mm2 

1.7 
2.1 

25 

N/mm2 

2.0 
2.5 

30 

N/mm2 

2.2 
2.8 

40 or more 

N/mm2 

2.7 
3.4 

Where there would be an advantage, and the deformed reinforcement to 
be used is Type 2, as defined in E.l of Appendix E, the values of bond stress 
for deformed bars may be increased by 20%. 

3.11.6.2 Anchorage bond. 

Where there would be an advantage, and the deformed reinforcement to 
be used is Type 2, as defined in E.l of Appendix E, the values of bond stress 
for deformed bars may be increased by 30%. 

- ^ = 0.0012bt 

^ = 0.002fct 
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TABLE 22. Ultimate anchorage bond stresses 

Bar type 

Plain bar in tension 
Plain bar in compression 
Deformed bar in tension 
Deformed bar in compression 

Concrete grade 

20 

N/mm2 

1.2 
1.5 
1.7 
2.1 

25 

N/mm2 

1.4 
1.7 
1.9 
2.4 

30 

N/mm2 

1.5 
1.9 
2.2 
2.7 

40 or more 

N/mm2 

1.9 
2.3 
2.6 
3.2 

3.11.6.4 Anchorage of links. A link may be considered to be fully anchored if it 
passes round another bar of at least its own size through an angle of 90° 
and continues beyond for a minimum length of eight times its own size, or 
through 180° and continues for a minimum length of four times its own 
size. In no case should the radius of any bend in the link be less than twice 
the radius of a test bend guaranteed by the manufacturer of the bar. 

3.11.6.8 Bearing stress inside bends. Refer to equation 2.11, p. 59. 

3.11.7 Curtailment and anchorage of reinforcement 

3.11.7.1 General recommendations for curtailment of bars. In any member 
subject to bending every bar should extend, except at end supports, beyond 
the point at which it is no longer needed for a distance equal to the effective 
depth of the member, or twelve times the size of the bar, whichever is 
greater. A point at which reinforcement is no longer required is where the 
resistance moment of the section, considering only the continuing bars, is 
equal to the required moment. In addition, reinforcement should not be 
stopped in a tension zone unless one of the following conditions is satisfied: 

1. The bars extend an anchorage length appropriate to their design 
strength (0.87/y) from the point at which they are no longer required to 
resist bending, or 

2. The shear capacity at the section where the reinforcement stops is 
greater than twice the shear force actually present, or 

3. The continuing bars at the section where the reinforcement stops 
provide double the area required to resist the moment at that section. 

One or other of these conditions should be satisfied for all arrangements 
of ultimate load considered. At a simply supported end of a member each 
tension bar should be anchored by one of the following. 

(a) An effective anchorage equivalent to 12 times the bar size beyond the 
centre line of the support; no bend or hook should begin before the centre 
of the support. 

(b) An effective anchorage equivalent to 12 times the bar size + d/2 from 
the face of the support, where d is the effective depth of the member; no 
bend should begin before d/2 from the face of the support. 

(c) Provided the local bond stress at the face of a support is less than half 
the value given in 3.11.6.1 a straight length of bar beyond the centre line of 
the support equal to either one third the support width or 30 mm, 
whichever is greater. 
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3.11.7.2 Simplified rules for curtailment of bars in beams. As an alternative to 
3.11.7.1 for beams which support substantially uniformly distributed loads, 
the following simplified rules may be applied. 

1. Simply supported beams. At least 50% of the tension reinforcement 
provided at mid span should extend to the supports and have an effective 
anchorage of 12$ past the centre of the support. The remaining 50% should 
extend to within 0.08/ of the support. 

2. Cantilever beams. At least 50% of the tension reinforcement provided 
at the support should extend to the end of the cantilever. The remaining 
50% should extend a distance of 1/2 or 45 times the bar size, whichever is 
the greater, from the support. 

3. Continuous beams of equal span where the characteristic imposed load 
does not exceed the characteristic dead load, and which are designed in 
accordance with 3.3.4. 

(a) At least 20% of the reinforcement in tension over the supports should 
be made effectively continuous through the spans. Of the remainder, half 
should extend to a point not less than 0.25/ from the support, and the other 
half to a point not less than 0.15/ from the support, but no bar should stop 
at a point less than 45 times its own size from the support. 

(b) At least 30% of the reinforcement in tension at mid span should 
extend to the supports. The remainder should extend to points not less than 
0.15/ from interior supports, and not less than 0.1/ from exterior supports. 

(c) At a simply supported end, the detailing should be as given in (1) 
above for a simply supported beam. 
3.11.7.3 Simplified rules for curtailment of bars in slabs. As an alternative to 
3.11.7.1 for solid slabs spanning one way which support substantially 
uniformly distributed loads, the following simplified rules may be applied. 

1. Simply supported slabs. At least 50% of the tension reinforcement 
provided at mid span should extend to the supports and have an effective 
anchorage of 12# past the centre of the support. The remaining 50% should 
extend to within 0.08/ of the support. 

2. Cantilever slabs. At least 50% of the tension reinforcement provided at 
the support should extend to the end of the cantilever. The remaining 50% 
should extend a distance of 1/2 or 45 times the bar size, whichever is the 
greater, from the support. 

3. Continuous slabs of approximately equal span where the characteristic 
imposed load does not exceed the characteristic dead load, and which are 
designed in accordance with 3.3.4. All tension reinforcement over supports 
should extend a distance of 0.1/ or 45 times the bar size, whichever is the 
greater, and at least 50% should extend 0.3/ into the span. 

The tension reinforcement at mid span of a slab should extend to within 
0.2/ of internal supports and within 0.1/ of external supports and at least 
50% should extend into the support. 

Where at an end support there is a monolithic connection between the 
slab and its supporting beam or wall, provision should be made for the 
negative moment which may arise. The negative moment to be assumed in 
this case depends on the degree of fixity, but it will generally be sufficient to 
provide tension reinforcement, equal to half that provided at mid span, ex-
tending 0.1/ or 45 times the bar size, whichever is the greater, into the span. 
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3.11.8 Spacing of reinforcement 

3.11.8.1 Minimum distance between bars. These recommendations are not 
related to bar sizes but when a bar exceeds the maximum size of coarse 
aggregate by more than 5 mm, a spacing smaller than the bar size should 
generally be avoided. A pair of bars in contact or a bundle of three or four 
bars in contact should be considered as a single bar of equivalent area when 
assessing size. 

The spacing of bars should be suitable for the proper compaction of 
concrete and when an internal vibrator is likely to be used, sufficient space 
should be left between reinforcement to enable the vibrator to be inserted. 
Minimum reinforcement spacing is best determined by experience or proper 
works tests but in the absence of better information, the following may be 
used as a guide. 

1. Individual bars. Except where bars form part of a pair or bundle (see 
(2) and (3)) the horizontal distance between bars should not be less than 
/iagg + 5 mm, where /iagg is the maximum size of the coarse aggregate. Where 
there are two or more rows: 

(a) the gaps between corresponding bars in each row should be vertically 
in line; 

(b) the vertical distance between bars should be not less than | / ia g g . 
2. Pairs of bars. Bars may be arranged in pairs either touching or closer 

than in (1) above, in which case: 
(a) the gaps between corresponding pairs in each row should be vertically 

in line and of width not less than /iagg -I- 5 mm; 
(b) when the bars forming the pair are one above the other, the vertical 

distance between pairs should not be less than § /iagg. 
(c) when the bars forming the pair are side by side, the vertical distance 

between pairs should be not less than hagg + 5 mm. 
3. Bundled bars. Horizontal and vertical distances between bundles 

should be not less than /zagg + 15mm and the gaps between the rows of 
bundles should be vertically in line. 

3.11.8.2 Maximum distance between bars in tension. Unless the calculation of 
crack widths (see Appendix A) shows that a greater spacing is acceptable, 
the following rules should be applied to beams in normal internal or 
external conditions of exposure. 

1. In the application of these rules any bar with a diameter less than 0.45 
times the diameter of the maximum bar size in the section should be ignored 
except when considering those in the side faces of beams. Bars placed in the 
side face of beams to control cracking should be of a size not less than 
yf(shb/fy\ where sb is the spacing of the bars and b the breadth of the section 
at the point considered. 

2. The clear horizontal distance between adjacent bars, or groups, near 
the tension face of a beam should not be greater than the value given in 
Table 24 depending on the amount of redistribution carried out in analysis 
and the characteristic strength of the reinforcement. 

3. The clear distance from the corner of a beam to the surface of the 
nearest longitudinal bar should not be greater than half the clear distance 
given in Table 24. 
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TABLE 24. Clear distance between bars 

/ % redistribution to or from section considered 

N/mm2 

250 
410 
425 
460 
500 

- 3 0 

mm 
215 
130 
125 
115 
105 

- 2 5 

mm 
230 
140 
135 
125 
115 

- 2 0 

mm 
245 
150 
145 
130 
120 

- 1 5 

mm 
260 
155 
155 
140 
130 

- 1 0 

mm 
275 
165 
160 
150 
135 

0 

mm 
300 
185 
180 
165 
150 

+ 10 

mm 
300 
205 
200 
180 
165 

+ 15 

mm 
300 
215 
210 
190 
175 

+20 

mm 
300 
220 
215 
200 
180 

+ 25 

mm 
300 
230 
225 
205 
190 

+ 30 

mm 
300 
240 
235 
215 
195 

4. When the overall depth of a beam exceeds 750 mm, longitudinal bars 
should be provided over a distance of 2/3 of the overall depth from the 
tension face. This reinforcement should be positioned near the side faces 
and be spaced at not more than 250 mm; it may be used in calculating the 
resistance moment of the section. 

The above rules are not applicable to members subjected to particularly 
aggressive environments unless in the calculation of the resistance moment 
/y has been limited to 300N/mm2. 

The above rules for beams also apply to slabs except that, in normal 
internal or external conditions of exposure: 

1. when a slab is not more than 200 mm thick, or 250 mm thick if the 
characteristic strength of reinforcement used in design is not more than 
425 N/mm2, no check is required but the clear distance between bars should 
not exceed three times the effective depth of the slab; 

2. when the amount of tension reinforcement in a slab, expressed as a 
percentage of the gross cross-sectional area, is less than 0.5%, the clear 
distance between bars may be twice that given by Table 24; 

3. when the amount of tension reinforcement in the slab is between 0.5% 
and 1.0%, the clear distance between bars may be equal to the appropriate 
figure from Table 24 divided by that percentage. 

When using Table 24 for slabs, if the amount of redistribution is not 
known, for example when using Table 13, a value may be assumed of —15% 
for support moments and zero for span moments. 

4.1.4.3 Characteristic strength of prestressing tendons 

TABLE 29. Specified characteristic strengths of prestressing wire 

Nominal size, 
mm 

2 
2.65 
3 
3.25 
4 
4.5 
5 
7 

Specified characteristic 
strength Apsfpu,kN 

6.34 
10.3 
12.2 
14.3 
21.7 
25.7 
30.8 
60.4 

Nominal cross-sectional 
area A^, mm2 

ps ' 

3.14 
5.5 
7.1 
8.3 

12.6 
15.9 
19.6 
38.5 
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TABLE 30. Specified characteristic strengths of prestressing strand 

Number of wires 

7 

19 

Nominal size, 
mm 

6.4 
7.9 
9.3 

10.9 
12.5 
15.2 

18 
25.4 
28.6 
31.8 

Specified characteristic 
strength A] 

44.5 
69.0 
93.5 

125 
165 
227 

370 
659 
823 
979 

ps./pu • , kN 
Nominal cross-sectional 
area Aps, mm2 

24.5 
37.4 
52.3 
71.0 
94.2 

138.7 

210 
423 
535 
660 

TABLE 31. Specified characteristic strengths of prestressing bars 

Nominal size, 
mm 

20* 
22 
25* 
28 
32* 
35 
40* 

Specified characteristic 
strength /4ps/pu , kN 

325 
375 
500 
625 
800 
950 

1250 

Nominal cross-sectional 
area Aps, mm2 

314 
380 
491 
615 
804 
961 

1257 

" Preferred sizes. 

4.3.3.2 Stress limitations under service conditions 

4.3.3.2.1 Compressive stresses 

TABLE 32. Compressive stresses in concrete for serviceability limit states 

Nature of loading Allowable compressive stresses 

Design load in bending 

Design load in direct compression 

0.33/cu 
In continuous beams and other statically 
indeterminate structures this may be increased to 
0.4/cu within the range of support moments 
0.25/cu 

4.3.3.3 Stress limitations at transfer 

4.3.3.3.1 Compressive stresses 

TABLE 36. Allowable compressive stresses at transfer 

Nature of stress distribution Allowable compressive stresses 

Triangular or near triangular distribution of prestress 0.5/cl 
Uniform or near uniform distribution of prestress 0Afcl 

where fcl is the concrete strength at transfer. 
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4.3.4 Ultimate limit state: flexure 

4.3.4.1 Section analysis. Refer to Section 8.4 and its sub-sections 

4.3.4.3 Design formula. In the absence of an analysis based on the 
assumptions given in 4.3.4.1, the resistance moment of a rectangular beam, 
or of a flanged beam in which the neutral axis lies within the flange, may be 
obtained from equation 44. 

Mu=fphAps(d-0.5x) (44) 
Values for fph and x are given in Table 37 for pretensioned members and 

for post-tensioned members with effective bond between the concrete and 
tendons. The effective prestress after all losses should not be less than 
0.45/pU. Prestressing tendons and additional reinforcement in the compres-
sion zone should be ignored in strength calculations when using this 
method. 
TABLE 37. Conditions at the ultimate limit state for rectangular beams with pretensioned 
tendons or with post-tensioned tendons having effective bond 

-/pu^ps 

fcubd 

0.025 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.40 

Stress in tendons 
the design 

as a proportion of 
strength /pb/0.87/pu 

Pretensioning 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
0.9 

Post-tensioning 
with effective 
bond 

1.0 
1.0 
1.0 
1.0 
0.95 
0.90 
0.85 
0.75 

Ratio of depth of neutral axis to 
that of the centroid of the tendons 
in the tension zone x/d 

Pretensioning 

0.054 
0.109 
0.217 
0.326 
0.435 
0.542 
0.655 
0.783 

Post-tensioning 
with effective 
bond 

0.054 
0.109 
0.217 
0.326 
0.414 
0.488 
0.558 
0.653 

For rectangular beams and flanged beams in which the neutral axis lies 
within the flange, the stress in the tendons at failure where unbonded 
tendons are used may be derived from Table 38. 

TABLE 38. Conditions at the ultimate limit state for post-tensioned rectangular beams having 
unbonded tendons 

Stress in tendons as a proportion of Ratio of depth of neutral axis to that 
/pu^ps effective prestress fph/fpu for values of of the centroid of the tendons in the 
~T~bd~ ' (effective sPan \ tension zone x/d for values of 

d [effective depth) U effective span \ 
d \effective depth/ 

30 20 10 30 20 10 

0.025 1.23 1.34 1.45 0.10 0.10 0.10 
0.05 1.21 1.32 1.45 0.16 0.16 0.18 
0.10 1.18 1.26 1.45 0.30 0.32 0.36 
0.15 1.14 1.20 1.36 0.44 0.46 0.52 
0.20 1.11 1.16 1.27 0.56 0.58 0.64 

file:///effective
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In Table 38 the following assumptions have been made: 

1. the effective prestress after all losses have occurred (fpc) does not 
exceed 0.6/pu, 

2. the compression block is rectangular with a uniform stress of 0.4/cu, 
3. the tendons are either in ducts or, if they are free as in hollow sections, 

diaphragms are provided to prevent a reduction of the effective depth, 
4. the effective depth is determined by assuming that the tendons are in 

contact with the top of the duct or the soffit of the diaphragms. 

4.3.5.1 Sections uncracked in flexure. The ultimate shear resistance of a 
section uncracked in flexure, Fco, corresponds to the occurrence of a 
maximum principal tensile stress, at the centroidal axis of the section, of 
/ = 0.24V/C11. 

In the calculation of Vco, the value of prestress at the centroidal axis, 
should be taken as 0.8/cp. The value of Vco is given by 

Vco = 0.67frM/t2 + 0 . 8 / ^ ) (45) 
where ft is 0.24V/Cu> taken as positive, 

fcp is the compressive stress at the centroidal axis due to prestress, 
taken as positive, 

b is the breadth of the member which for T-, I- and L-beams should 
be replaced by the breadth of the rib few, 

h is the overall depth of the member. 

Values of VJbh obtained from equation (45) are given in Table 39. 

TABLE 39. Values of VJbh 

Jcp 

N/mm2 

2 
4 
6 
8 

10 
12 
14 

Concrete grade 

30 

N/mm2 

1.30 
1.65 
1.90 
2.15 
2.35 
2.55 
2.70 

40 

N/mm2 

1.45 
1.80 
2.10 
2.30 
2.55 
2.75 
2.95 

50 

N/mm2 

1.60 
1.95 
2.20 
2.50 
2.70 
2.95 
3.15 

60 

N/mm2 

1.70 
2.05 
2.35 
2.65 
2.85 
3.10 
3.30 

In flanged members where the centroidal axis occurs in the flange the 
principal tensile stress should be limited to 0.24y/fcu at the intersection of 
the flange and web; in this calculation, 0.8 of the stress due to prestress at 
this intersection should be used in calculating Vco. 

For a section uncracked in flexure and with inclined tendons or vertical 
prestress, the component of prestressing force normal to the longitudinal 
axis of the member may be added to Vco. 
4.3.5.2 Sections cracked in flexure. The ultimate shear resistance of a section 
cracked in flexure, Fcr, may be calculated using equation 46: 

. / p e Y . , , , . , V VCI = I 1 - 0.55 ^ I vcbd + M0~ (46) 
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where d is the distance from the extreme compression fibre to the 
centroid of the tendons at the section considered, 

M0 is the moment necessary to produce zero stress in the 
concrete at the depth d. 

M0 = 0.8/pt - where /p t is the stress due to prestress only at 

depth d and distance y from the centroid of the concrete 
section which has second moment of area /, 

/ p e is the effective prestress after all losses have occurred. For 
the purposes of this equation / p e shall not be put greater 
t han0 .6 / p u , 

vc is obtained from Table 5, 
Kand M are the shear force and bending moment, respectively, at 

the section considered due to ultimate loads, 
Vcr should be taken as not less than 0Abdyffcu. 

The value of Vcr calculated using equation 46 at a particular section may 
be assumed to be constant for a distance equal to rf/2, measured in the 
direction of increasing moment, from that particular section. 

For a section cracked in flexure and with inclined tendons, the com-
ponent of prestressing force normal to the longitudinal axis of the member 
should be ignored. 

4.8.1. Maximum initial prestress. The jacking force should not normally 
exceed 70% of the characteristic strength of the tendon but may be 
increased to 80%, provided that additional consideration is given to safety, 
to the stress-strain characteristics of the tendon and to the assessment of 
the friction losses. 

4.8.2.4 Loss of prestress due to shrinkage of the concrete. The loss of prestress 
in the tendons due to shrinkage of the concrete may be calculated from the 
modulus of elasticity for the tendons given in 2.4.2.4, assuming the values 
for shrinkage per unit length given in Table 41. 

TABLE 41. Shrinkage of concrete 

System 
Shrinkage per unit length 

Humid exposure Normal exposure 
(90% r.h.) (70% r.h.) 

Pre-tensioning: transfer at between 
3 days and 5 days after concreting 100 x 10" 6 300 x 10" 6 

Post-tensioning: transfer at between 
7 days and 14 days after concreting 70 x 10"6 200 x 10" 6 

4.8.2.5 Loss of prestress due to creep of the concrete. The loss of prestress in the 
tendons due to creep of the concrete should be calculated on the assump-
tion that creep is proportional to the stress in the concrete for stresses of up 
to one-third of the cube strength at transfer. The loss of prestress is 
obtained from the product of the modulus of elasticity of the tendon (see 
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2.4.2.4) and the creep of the concrete adjacent to the tendons. Usually it is 
sufficient to assume, in calculating this loss, that the tendons are located at 
their centroid. 

For pre-tensioning at between 3 days and 5 days after concreting and for 
humid or dry conditions of exposure where the required cube strength at 
transfer is greater than 40.0 N/mm2, the creep of the concrete per unit 
length should be taken as 48 x 10~6 per N/mm2. For lower values of cube 
strength at transfer the creep per unit length should be assumed to be 
48 x 10"6 x 40.0//ci per N/mm2. 

For post-tensioning at between 7 days and 14 days after concreting and 
for humid or dry conditions of exposure where the required cube strength at 
transfer is greater than 40.0 N/mm2, the creep of the concrete per unit 
length should be taken as 36 x 10~6 per N/mm2. For lower values of cube 
strength at transfer the creep per unit length should be taken as 
36 x 10~6 x 40.0//ci per N/mm2. 

Where the maximum stress anywhere in the section at transfer exceeds 
one-third of the cube strength of the concrete the value for the creep per 
unit length used in calculations should be increased. When the maximum 
stress at transfer is half the cube strength, the values for creep are 1.25 times 
the values given above; at intermediate stresses, the values should be 
interpolated linearly. 

The values in the preceding paragraphs relate to the ultimate creep after 
a period of years. When it is necessary to determine the deformation of the 
concrete due to creep at some earlier stage, it may be assumed that half the 
total creep takes place in the first month after transfer and that three-
quarters of the total creep takes place in the first six months after transfer. 

4.9.2 Size and number of prestressing tendons. The size and number of 
prestressing tendons should be such that cracking of the concrete would 
precede failure of the beam. 

This requirement will be satisfied for under-reinforced beams, where 
failure would be due to fracture of the tendons, if the percentage of 
reinforcement, calculated on an area equal to the width of the beam soffit 
multiplied by its overall depth, is not less than 0.15. For over-reinforced 
beams, where failure would be due to crushing of the concrete, the 
maximum number and size of tendons will be governed by strain com-
patibility considerations (see 4.3.4.1). 

4.9.3 Cover to prestressing tendons. The cover to prestressing tendons will 
generally be governed by considerations of durability or fire resistance and 
the recommendations of 3.11.2 concerning cover to reinforcement may be 
taken to be applicable to tendons also. The ends of individual pre-tensioned 
tendons do not normally require concrete cover and should preferably be 
cut off flush with the end of the concrete member. 

In post-tensioning systems, particularly with large or wide ducts, pre-
cautions should be taken to ensure a dense concrete cover. Where the 
tendons are located outside the structural concrete, as defined in 8.8.3, and 
are to be protected by dense concrete added subsequently, the thickness of 
this cover should be not less than that required for tendons inside the 
structural concrete under similar conditions. 
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4.9.4 Spacing of prestressing tendons. In all prestressed members, there 
should be sufficient gaps between the tendons or groups of tendons to allow 
the largest size of aggregate used to move, under vibration, to all parts of 
the mould. 

Where curved tendons are used in post-tensioning, the positioning of the 
tendon ducts and the sequence of tensioning should be such as to prevent: 

1. bursting of the cover at the sides of ducts in thin members, 
2. bursting of the cover where the tendons run close to and approx-

imately parallel with the soffit of the member, 
3. crushing of the concrete separating tendons in the same vertical plane. 

If necessary, reinforcement should be provided between ducts. 

In pretensioned members, where anchorage is achieved by bond, the 
spacing of the wires or strands in the ends of the members should be such as 
to allow the transmission lengths given in 4.8.4 to be developed. In addition, 
if the tendons are positioned in two or more widely spaced groups, the 
possibility of longitudinal splitting of the member should be considered. 

6.3.2 Grade designation 

TABLE 47. Grades of concrete 

Grade 

7 
10 
15 
20 
25 
30 
40 
50 
60 

Characteristic 
strength, 

7.0 
10.0 
15.0 
20.0 
25.0 
30.0 
40.0 
50.0 
60.0 

N/mm2 
Lowest grade for compliance with 
appropriate use 

plain concrete 

reinforced concrete with lightweight aggregate 
reinforced concrete with dense aggregate 

concrete with post-tensioned tendons 
concrete with pre-tensioned tendons 

6.3.3 Minimum cement content. One of the main characteristics influencing 
the durability of any concrete is its permeability. With strong, dense 
aggregates, a suitably low permeability is achieved by having a sufficiently 
low water-to-cement ratio, by ensuring complete compaction of the con-
crete, and by ensuring sufficient hydration of the cement through proper 
curing methods. Therefore, for given aggregates the cement content should 
be sufficient to provide adequate workability with a low water-to-cement 
ratio so that the concrete can be completely compacted with the means 
available. 

Table 48 gives the minimum cement content required, when using a 
particular size of aggregate in a Portland cement concrete, to provide 
acceptable durability under the appropriate conditions of exposure. The 
reduced minimum cement contents given in Table 48 should only be used 
when trial mixes (see 6.5.3) have verified that a concrete with a maximum 
free-water-to-cement ratio not greater than that given for the particular 
condition, can be consistently produced and that it is suitable for the 
conditions of placing and compaction. 
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6.3.4 Maximum cement content. Refer to Table 2.5, pp. 32-33. 

8.1 Specification 

Prestressing tendons should comply with the requirements of BS 2691, BS 
3617, BS 4486 and BS 4757. 

10.2 Beams 

The fire resistance of a reinforced or prestressed concrete beam depends on 
the amount of protective cover, consisting of concrete with or without an 
insulating encasement, provided to the reinforcement or tendons. 

TABLE 54. Fire resistance of reinforced concrete beams 

Description 

1. Siliceous aggregate concrete: 
(a) average concrete cover to main 
reinforcement 
(b) beam width 

Dimension of concrete tc 
resistance in hours, mm 

4 

65* 
280 

3 

55* 
240 

2 

45* 
180 

> give 

H 

35 
140 

afire 

1 

25 
110 

i 

15 
80 

2. As (1) with cement or gypsum plaster 
15 mm thick on light mesh reinforcement: 
(a) average concrete cover to main 
reinforcement 
(b) beam width 

3. As (1) with vermiculite/gypsum plasterf 
or sprayed asbestos:} 15 mm thick: 
(a) average concrete cover to main 
reinforcement 
(b) beam width 

50* 
150 

40 
210 

30 
170 

20 
110 

15 
85 

15 
70 

25 
170 

15 
145 

15 
125 

15 
85 

15 
60 

15 
60 

* Supplementary reinforcement, to hold the concrete cover in position, may be necessary. Reference should be made to 10.2. 
t Vermiculite/gypsum plaster should have a mix ratio in the range of 1^-2: 1 by volume. 
% Sprayed asbestos should conform to BS 3590. 

10.3 Floors 

TABLE 56. Fire resistance of reinforced concrete floors (siliceous or calcareous aggregate) 

Floor construction 

Minimum dimension to give fire resistance 
in hours, mm 

li 
1. Solid slab Average cover to 

reinforcement 25 25 20 20 15 15 
Depth, overallf 150 150 125 125 100 100 

t Non-combustible screeds and finishes may be included in these dimensions. 



10.5 Columns 

TABLE 59. Fire resistance of concrete columns 

Type of construction 

1. Siliceous aggregate concrete: 
(a) without additional protection 
(b) with cement or gypsum plaster 15 mm 
thick on light mesh reinforcement 
(c) with vermiculite/gypsum plaster* or 
sprayed asbestosf 15 mm thick 

* Vermiculite/gypsum plaster should have a mix ratio in the 
t Sprayed asbestos should conform to BS 3590. 

Appendix 4 251 

1 faces exposed) 

Dimension of concrete to give fire 
resistance in hours, mm 

4 3 2 1± 1 i 

450 400 300 250 200 150 

300 275 225 150 150 150 

275 225 200 150 120 120 

of l f -2 : 1 by volume. 

Appendix A CP 110: Part 2:1972 (see Figure 3.8(b), p. 91) 



Index 

Adhesion 48, 49 
Advanced method, Hillerborg's, see Slabs 
Age of concrete 20, 24, 39 
Aggregate: cement ratio 27 
Aggregates 15-17,28,29 

combining 27 
fine, coarse 15 
gradings 16, 27-30 
lightweight, shape 16, 17 
rounded, irregular, angular 16, 17 

Air entrained concrete 19 
Anchorage 47-54, 239, 240 

end 51-54 
failure 7 
splitting effects of 60 

Anchorage lengths 51-53, 57-59, 60, 61, 219 
elastic theory 61 

Anchorage of column bars into bases 173 
Anchorage of shear bars 58 
Anchorage of stirrups 57, 58 
Arches 212 
Asbestos cement 11 

Balanced design 89, 94, 95 
Basement wall 12 
Bases 170-173, 176, 177 
Batching concrete by volume and weight 17,18 
Beams 

breadth 63 
continuous 2, 160, 161, 163, 165-168, 

220, 230 
depth 63, 65, 98, 233 
elastic theory formulae 71 
T- 63, 96 

Bearing failure 7 
Bearing stresses inside bends 58, 239 
Bending moments, redistribution 159, 160 
Bogue compounds 10 
Bond 47-53, 64 
Bond failure 7 

Bond stress 50, 51, 84,238 
Briquettes for tension test 20 
Bulk volume 17 

Calcium chloride 14, 190 
Cement 10-15 

chemical composition 10 
extra rapid hardening 12 
for cold weather 14 
high alumina (H.A.C.) 11, 12, 13 
minimum content 248, 249 
Portland 10 
Portland blast furnace 15 
rapid: hardening 12, 20 
sulphate-resisting 14 
super sulphated 14 
testing of 21 
water-repellant 15 
with low coefficient of shrinkage 14 
with low heat of setting 15 

Characteristic load 8 
Characteristic strength 5, 8, 9, 25, 26, 34, 230, 

242, 243, 248 
Chemical conversion 13, 14 
Ciment Fondu 11 
Coloured cements 14 
Columns 149-158,251 

circular 156 
eccentrically loaded 150-155 
short 149, 150,235 
slender 149, 158 

Compacting factor 18 
Composite construction 214, 215 
Compression steel 95-97, 211 
Compression steel near neutral axis 97 
Concrete 17, 44 

age of 20, 24, 39 
air-entrained 19 
curing of 23 
design of mixes 24-38, 218 

253 



254 Index 

Concrete (cont'd) 
grades 25, 248 
mixes 18,24,27 
no fines 23 
quantities of materials 38 
strength 18 
use of 19 
vacuum 21 
vibrated 16,21,22 
voids in 18 

Connections 7 
Continuous beams, see Beams 
Continuous slabs, see Slabs 
Corrosion of tendons 190 
Cover of concrete 236, 237, 247 
Cracks, cracking 4, 6, 8, 9, 98, 101, 193, 229, 

234 
Creation of structures 181-187 
Creep 41-44, 192,203 
Curing of concrete 23 
Curtailment of reinforcement 55, 56, 219, 239, 

240 
Cylinder splitting test 21 

Deflection 6, 8, 9, 97, 101, 193, 197, 222 
Design calculations 173-177 
Design load 7, 8 
Design of 

bases 170-173 
beams 63, 220 
columns 156-158, 168-170 
compression steel 95, 96 
concrete mixes 24-38, 218 
floor of building 162-168, 174, 175 
frames 156, 159, 160, 168-170 
prestressed concrete members 193-216 
shear reinforcement 78-84, 165, 167, 174, 

175,213,231,232 
slabs 220 
structures 162-187 

Design philosophy (CP 110) 4. 5, 8, 9 
Design strength 8, 9 
Designers1 tables 

anchorage lengths 219 
areas of bars 219 
areas of bars for slabs 219 
balanced design values Kx and p 220 
bending moments and shear forces in 

continuous beams and slabs 179, 180, 
220 

bending moments, support reactions and 
deflections for beams with fixed and 
free supports 178-179 

bent-up bars 220 
curtailment of bars 219 
hooks and nibs 219 
ratios of span to overall depth, beams and 

slabs 163,233,234 
stirrups 219 
stress in compression steel 220 

two-way spanning slabs 104, 105 
values of zx and K — M/(bd2) for elastic 

theory 219 
weights of materials 218 

Diagonal tensile stresses 77, 79 
Dilatency 48 
D.O.E. mix design method 34 
Ducts 188 
Durability 8, 20 

Economics 46, 47 
Elastic modulus 230 
Elastic theory/analysis/design 2, 3, 4, 64, 197, 

198,219 
Elastic theory formulae for slabs and beams 71 
Elastic theory of plates 101 
End anchorages 51-54 
End blocks 7 
Epoxy resin 189 
Equivalent area 66 
Extra rapid hardening cement 12 

Factor of safety 2, 5 
Factor yf 7 
Factor ym 8 
Fatigue, 8 
Fire resistance 8, 250, 251 
Flash set 11 
Flat slabs 105, 146, 178, 183 

dropped panels 105 
Flexural compression failure 7 
Flexural bond 84 
Fly ash 15 
Frames 156-160 
Frost resistance 19, 188 

Gap-graded concrete 22, 23 
Grades of concrete 25, 248 
Grading, combining aggregates 27-30 
Granolithic 16 
Gravity, acceleration due to 221 
Greek alphabet 222 
Grip 48 
Grouting ducts 188 

Hardening, rate of 11 
High alumina cement (H.A.C.) 11, 12, 13 
Hillerborg's strip/advanced methods, see Slabs 
Hooks 219 

Instability 7 

Laps in reinforcement 54, 55 
Limit state design 6, 193-212 
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Links 236 
Load 

dead 7, 8 
factor 3, 4 
imposed 7, 8 
wind 7, 8 

Loading tests 125 

Mean strength 25, 26, 27 
Mix design 24-38, 218 
Modular ratio 66, 67, 70, 71-74 
Modulus of elasticity 43, 65, 66, 230 
Modulus of rupture 65 
Moment of inertia 65 
Moment of resistance 67 

Neutral axis 65-67 
Nibs 51-53 
No fines concrete 23 
Nomenclature 223-228 

Over-reinforced 89, 205, 208 

Partial factor of safety 6, 7, 8, 9 
Partial prestressing 194 
Permissible stresses 2 
Philosophy of design (CP 110) 4, 5, 8, 9 
Plastic analysis 88 
Plastic analysis assumptions 88 
Plastic collapse mechanisms 4 
Plastic design in bending 89-97 
Plasticisers 18 
Poisson's ratio 65 
Polyester 189 
Portland blast furnace cement 15 
Portland cement 10 

ordinary 20 
rapid hardening 12 

Portland-pozzolana cement 15 
Post-tensioning 188 
Post-tensioning for shear 189 
Precast concrete floors and roofs 185-187 
Prescribed mixes 18, 38 
Prestress, losses due to 

creep 192, 203 
elastic deformation 191, 192, 202 
friction 192, 193,204 
relaxation (creep) of steel 191, 202 
slip of anchorage 192, 204 
shrinkage 191, 203 
steam curing 193 

Prestressed concrete 188-217 
additional untensioned steel 210-211 
advantages and disadvantages 189-190 
classes of structures 194 
columns 212 
composite construction 214, 215 

compression steel 211 
continuity 215 
end splitting forces 215-216 
inclined tendons 214 
limit states of deflections and stresses 

197-201 
load balancing 216 
losses 191-193,246 
materials 190 
shear resistance 212 
stress corrosion 190 
tanks, pipes, domes, shells and piles 216 
tendons 242-244, 248 
ties 212-214 
torsional resistance 216 
ultimate limit state due to flexure 193 
unbonded tendons 211, 244 

Prestressing beds 212 
Prestressing dams 189 
Pressure compaction 21, 22 
Pretensioning 188 
Probability 4, 6 
Proof stress 2 

Rapid hardening cement 12, 20 
Reinforcement 44-46, 107, 108, 219, 236, 241 

areas 72 
Relaxation 46, 191,202 
Road Note No 4, 16, 19, 24, 25, 27, 30 

Safety 1 
Serviceability limit state 1, 229 
Set: initial, final 11 
Setting time: initial, final 11 
Shear failure 7 
Shear reinforcement 78-84, 219, 231, 232 
Shear strength 232 
Shear stresses (elastic) 78 
Shrinkage 39-41, 203 
Shrinkage stresses 65, 77, 79 
Slabs 

affine, transformations 121 
continuous 2, 160, 161, 164, 165, 220 
design of 220 
elastic theory formulae 71 
flat 105, 146, 178, 183 
Hillerborg's advanced method 127-141, 146 
Hillerborg's strip method 100, 102, 103, 

123-125, 141-146 
holes in 108, 125, 141-145 
isotropically reinforced 106 
Johansen's yield line 100, 102, 103, 105-123 
orthogonally anisotropically reinforced 107 
orthotropically reinforced 107 
shear stresses 235 
skew 121, 123, 125 
spanning one way 100 
spanning two ways 100, 101, 146, 178, 183 



256 Index 

Slabs (cont'd) 
traditional U.K. design office methods 145 
waffle 183, 184 

Slip 48, 192,204 
Slump test 18 
Space frames 212 
Statistics 4, 5, 25 
Steam curing 14, 24, 193 
Stopping-off bars, order of 56 
Strand 46, 206 
Strength tests 20, 21 
Stress-block 89-91 
Stress: strain relationship 41, 205-206 
Strip method, Hillerborg's, see Slabs 

discontinuity lines 124 
Sulphate-resisting cement 14 
Super-plasticisers 18 
Super sulphated cement 14 

Ultimate limit state 7, 8, 9, 204, 211 
Under-reinforced 89, 108, 208 
Units, conversion British Imperial, U.S.A., 

metric and S.I. 221 

Vacuum concrete 21 
Variation, coefficient of 26 
VB consistometer test 18 
Vibrated concrete 16, 21, 22 
Vibration 6, 8, 229 

Waffle slabs 183, 184 

Walls 149, 155, 156 
Water-repellant cements 15 
Water-retaining structures 3, 56, 59, 60, 71 
Water-to-cement ratio 19, 20, 36, 37 
Wedge action 41 
Weights of materials 181, 218 
Workability 21, 36 
Working loads 2, 5 
Working stress 2 

Yield line, Johansen's, see Slabs 
affine slab transformations 121 
combination of equilibrium and virtual-

work methods 115 
corner levers 110 
design of bases 133, 134 
equilibrium method of analysis 106,110,115 
kinking of reinforcement 105 
lower-bound solutions 110 
membrane action 105 
upper-bound solutions 110 
virtual-work method of analysis 106, 114, 

115 

T-beams 63,96,97, 162-163,214,215,236, 245 
Tables for designers, see Designers tables 
Tank for water 72 
Tanking 12 
Temperature stresses 65 
Tobermorite gel 12 
Torsion 85-88, 193 
Torsion failure 7 
Torsion test 21 
Truss-analogy 79 


