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PREFACE

The basic criterion for the assessment of designs for pavement structures in highway and 
runway engineering, in terms of their service life and their operational characteristics, is 
their social effectiveness. Road surfaces must have the required bearing capacity and dura-
bility, and must provide for safe and comfortable driving over long periods. Specialists in 
transport engineering pay considerable attention to the improvement of material quality, 
reduction in the thickness of pavements, improvement in design methods and to other 
problems involved in the construction, operation and reconstruction of roads.

The loading of pavement structures is principally dynamic loading under mobile forces, 
the contact of which with the surface unevennesses of the pavement causes a dynamic state 
of stress. The current state of pavement design, in which these structures are designed only 
with regard to static loading, is basically a consequence of the insufficient development of 
dynamic theory, of the insufficient preparation of design engineers in dynamics, and of the 
absence of practical solutions. The aim of this book is at least partly to fill these voids, to 
inspire interest in the problem, and to strengthen the cooperation between specialists from 
industry and theoretical and research workers.

The starting point for developing the dynamics of pavement structures is detailed 
knowledge of the dynamic properties of materials and structures through the application 
and development of dynamic testing methods. This book summarizes data gathered over 
several years by the author and his team at the Institute of Civil Engineering and Architec-
ture at the Slovak Academy of Sciences, in the developing field of dynamic investigation of 
road surfaces and road construction materials, based on the principle low-energy vibration 
methods.

Systematic experimental testing of real highway pavements carried out over several 
years and of various rigid and flexible pavement structures on the test track, served as the 
empirical basis for identifying acceptable theoretical models of pavement structures that 
agree closely with both the dynamic behaviour of structural materials and the total dynamic 
reaction of road pavements and airfield runways. A layered pavement structure can be 
modelled in terms of an equivalent plate on a subgrade. The stress states determined by 
using the principle of this model were compared with the stresses determined by using the 
layered medium for a large number of various pavement structures, and they have shown 
substantial agreement. The fundamental advantage of the model of an equivalent plate on 
a subgrade is that it makes it possible to deal with the decisive and typical tasks of pave-
ment dynamics, which cannot be solved in a simple way by using the model of the layered 
medium.

The aim throughout this book is to demonstrate practical application, and the differ-
ences between the dynamic and static approaches. It contains a considerable number of 
numerical examples in the sphere of pavement evaluation and design.



Preface xi

The importance of pavement dynamics is not just theoretical. As pavement dynamics 
develops, it should be able to give answers to the practical requirements of design engi-
neers, and hence its importance will continually be increasing.

It is a pleasure to acknowledge the important contributions that Milan Pokorný and Jiří 
Špitálsky made during the preparation and development of the experimental arrangements 
and during the measurements of highway pavements.

Gustáv Martinček
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INTRODUCTION

This book is an attempt to summarize and solve the problems connected with a very impor-
tant but often neclected subject: the dynamics of pavement structures.

Chapter 1 deals with dynamic methods of diagnosis. The principle of the methods, the 
experimental technique, the measurement procedures and the basic theoretical assumptions 
make up the general framework of knowledge necessary for the practical application of the 
methods. Chapter 1 presents the mechanical impedance methods devised for use in testing 
viscous and elastic materials, and based on the principle of the forced vibration of the test 
bodies or the subgrade. From the point of view of practical applications, the main part of 
this chapter contains detailed and simplified procedures for measuring the phase velocities 
of the propagation of stress waves in flexible and rigid road surfaces, the interpretation 
of the measurement results, and methods for the determination of rigidity and elasticity 
characteristics of pavement sections. The methods described are complemented by numer-
ous results obtained from measurement of real pavement structures under construction or 
already completed.

The model of an equivalent plate on subgrade, as the result of dynamic diagnosis, pro-
vides a dynamic theory that makes it possible to determine the dynamic deflection and the 
principal internal forces of real layered pavement structure. The relationships for the calcu-
lation of stresses in a layered pavement structure are presented in Chapter 2.

The various variants of the dynamic theory of an equivalent plate on subgrade are 
analysed in Chapter 3. From studies of the vibration of a layer in contact with half-space 
and stress-wave propagation in a layer on half-space without shear contact, attention is 
concentrated on the vibration of a plate on halfspace and on the technical theory of a plate 
on subgrade using a simplified dynamic model of the soil base. The solutions, in integral 
and closed form are complemented by numerous numerical results.

Chapter 4 presents studies performed in order to determine the state vector components 
under dynamic loading of a half-plate on subgrade, of a plate strip on subgrade, of a plate 
on subgrade with joints and of a plate on inhomogeneous subgrade. All these problems 
have been solved by the reduction of a partial differential equation to an ordinary one using 
Fourier’s integral transformation and by the application of the method of initial parameters. 
Numerous results of parametric numerical study have made it possible to compare the 
extreme values of flexural moments and subgrade reactions under particular schemes of 
dynamic loading for rigid and flexible pavements.

The typical problem of pavement dynamics is the dynamic interaction of the equivalent 
plate with the subgrade under a moving load. These problems are solved in Chapter 5 for a 
load moving along the boundary of a half-plate on subgrade. The solutions of the influence 
of periodical and isolated unevennesses under a moving load and load system with two 
degrees of freedom and the effect of a moving random load with extensive numerical data 
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give well-arranged material for evaluating of the dynamic behaviour of rigid and flexible 
pavement structures.

Chapter 6 deals with the dynamic response of the equivalent plate with free boundar-
ies on an unbounded soil base. Starting from derived fundamental solutions for the sub-
grade and a plate on subgrade, the boundary integral equations according to the theorem 
of reciprocity and their solution using boundary elements are presented with the numerical 
application on a square and rectangular plate on subgrade. The analysis of the dynamic 
response of a bounded plate resting on unbounded subgrade using the method of boundary 
elements confirms that the dynamic increment under a harmonic and pulse load is signifi-
cant and that the derived procedures make it possible to obtain the corresponding dynamic 
coefficients.

The method of boundary integral equations offers us the possibility of studying very 
interesting problems concerning the influence of arbitrarily shaped holes in a plate on 
subgrade during the propagation of vibration. The results of the theoretical and numerical 
analysis are given in Chapter 7 and they confirm that the influence of the hole causes the 
concentration of vibration about the hole. The concentration is significant, especially at 
resonance frequencies, when the hole becomes an amplifier of vibration.

The dynamic response of an unbounded plate on a non-linear soilbase under stationary 
and pulsed loads is the subject of Chapter 8. Many numerical applications make it possible 
to evaluate the influence of non-linearity on the dynamic behaviour of an equivalent plate 
on subgrade.

The effects of vibration-isolating barriers in the soil base in the case of vibration 
propagation evoked by traffic is analysed in Chapter 9. The application of the method of 
boundary elements for various kinds of barrier from different materials, trench barriers 
or sheet piling barriers offers advanced procedures for evaluating the vibration-isolating 
effect in the screening zone behind the barrier.

This book is probably the first attempt to summarize and solve systematically the 
main problems of pavement dynamics. It should be of interest not only to readers who are 
acquainted with the problems of pavement dynamics, but to students and skilled practising 
engineers as well.



1  
DYNAMIC DIAGNOSIS 

OF PAVEMENT STRUCTURES

Dynamic diagnostic methods are based on the principle of the direct and indirect mea-
surement of stress-wave velocities and their damping in the material medium.

Usually the vibration sources used have a small excitation energy. The testing is 
therefore non-destructive as the resulting dynamic stresses are slight and cannot affect 
the state of the original medium.

However, it is quite possible to use dynamic methods with a large excitation energy, 
which can be used to evaluate the bearing capacity of pavement structures and replace 
the static loading tests [1.1–1.3].

Dynamic testing can be classified according to the nature of the vibration process 
used into stationary vibration methods and pulse (impact) methods.

Stationary vibration methods use sources, that generate harmonic vibration at a 
specific frequency and inject it into the object under test. The applied frequency can be 
swept from the lowest frequencies to high ultrasonic frequencies.

The dynamic response of the object under test varies according to whether it is a 
bounded body, with dimensions comparable with the wavelength of the vibration pro-
cess, or whether its dimensions are so large that it can be considered as an unbounded 
medium.

For a test sample that is a bounded body, a state of stationary forced vibration will 
arise characterized by amplitude and the phase of vibration motion at an arbitrary 
point of the sample. As the excitation frequency is changed, so the amplitude and 
phase angle of the resulting vibration will change and the phenomena of resonance 
and anti-resonance will result in extreme or significant values. Measurement of these 
extreme or significant amplitudes, together with the phase angles and corresponding 
frequencies, will provide parameters that can be used to assess the viscoelastic mate-
rial characteristics of the test specimen.

If the harmonic exciting force is acting on an unbounded medium, such as a soil 
base or a structure with large dimensions like a pavement structure, the process of 
stress-wave propagation will occur. The amplitude of the stress-waves diminishes with 
distance because of dispersion and damping. Measurement the stress-waves velocities 
and the corresponding amplitudes of vibration provides parameters for assessing of the 
viscoelasticity and other characteristics of the tested structure.

The dynamic response of a medium or structure under pulse-impact force is the resultant 
effect of the spectrum of stress waves propagated in the medium. In practice the velocity of
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Fig. 1.1. Dynamic diagnostic methods.
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pulse propagation and the amplitude of vibration are used as parameters of the quality and 
properties of the tested structures or medium.

The various dynamic diagnostic methods are set out in Fig.1.1.

1.1 Stress-wave velocity measurement method
The method used to measure the velocity of the propagated stress waves is derived from the 
method of dynamic non-destructive testing, which is particularly advantageous for assess-
ing the properties and characteristics of plane structures and elements.

The distinguished English specialist R.Jones in the sphere of non-destructive testing 
started to use stress-wave velocity measurement to assess the elasticity characteristics, and 
thickness of pavement structures over time and under the influence of traffic [1.4–1.6]. Ref-
erences [1.7–1.9] refer to the intensive investigation and search for possible applications of 
the stress-wave velocity method. The results of our investigations, in which the theoretical 
and methodical investigations are summarized, are given in references [1.10–1.15].

1.1.1 Principle of method and experimental technique
The method is based upon the principle of phase-velocity measurement, in which the phase 
difference is measured between the vibration of the source, which transmits sinusoidal 
stress waves of a set frequency into the test object, and the vibration of the pick-up. The 
pick-up is placed at various distances from the source, and a phase difference of 360° cor-
responds to change of a pick-up distance of about one wavelength.

The phase velocity of stress-wave propagation, c, is related to the frequency f by the 
relationship 

c=fΛ. (1.1)

The apparatus for measuring phase velocities is shown schematically in Fig. 1.2. The 
generator consists of (1) an electrodynamic or magnetostrictive vibrator, (2) a power 
amplifier, and (3) a sinewave generator whose frequency can be set at anything from 20 
Hz to 25 kHz. The evaluation part consists of (4) an accelerometer, (5) a narrow-band 
filter and (6) a phasemeter that can measure from 0° to 360° ± 1°. The apparatus has a 
suitable power supply.

Fig. 1.2. Schematic diagram of apparatus for measuring phase velocities.

It can be seen from equation (1.1) that the decisive parameter is the wavelength Λ. Its deter-
mination can be realized in several ways.
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First, if the wavelength Λ is small in comparison with the dimensions of the object, so 
that it is possible to take readings at a number of point, Λ is determined as follows.

1. The vibrator is acting at one point of the object.
2. The pick-up is moved along a selected line, and the phasemeter is used to determine 

the phase difference between the vibrator and the pick-up that corresponds to k times an 
angle of 360°.

3. The distance l that corresponds to the phase difference k.2π is determined.
4. The wavelength Λ is given by the relationship Λ=l/k.
Second, if the wavelength is large and, because of the dimensions of the object or the 

power of the apparatus, measurements can only be made at a distance equalling one or a 
few wavelengths, then Λ is determined as follows.

1. The measuring line is set on the object and divided into an abscissa with equal inter-
vals, such as 20, 10 or 5 cm.

2. The vibrator is placed at the starting point of the measuring line.
3. The pick-up location is changed to each of the discrete points of divided line in turn. 
4. The phase difference is measured for every pick-up location.
5. The values of the phase angle are in a linear relationship with the pick-up distances 

and the slope of this linear relationship determines the average value of wavelength Λ.
Figure 1.3 shows a typical relationship between the measured phase angle φ and dis-

tance l. The results were obtained on the cement concrete plate of a pavement structure. 
The frequency of the vibration was f=28000 Hz and the intervals of the points on the mea-
suring line were 2.0 cm.

Fig. 1.3. Measured phase angle φ versus distance l.

Various disturbances can arise during the measurement process. The measurement preci-
sion is influenced by the nature of the pick-up’s acoustic contact with the object at discrete 
points of the measuring line. This influence manifests itself as deviations in the linear rela-
tionship of φ versus l, as shown in Fig. 1.3.
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Other reasons for disturbance exist in the bounded dimensions of the test object. The 
interference of direct and reflected waves, or the interference of waves of various kinds 
manifest themselves as a wave-like disturbance of the linear relationship of φ and l. 
This can be seen in Fig. 1.4 for a duralumin plate and longitudinal waves of frequency 
f=18000 Hz.

The interference of direct and reflected waves in a bounded test object can give rise to 
standing waves at resonant frequencies. In such a rare case the measurement of wavelength 
is difficult. 

Fig. 1.4. Influence of reflected waves on relationship of phase angle to distance.

The third way in which the wavelength can be determined is by measuring the phase dif-
ference between the vibrations of two pick-up’s the positions of which are constant [1.16]. 
This method makes it possible to automate measurement. The apparatus is shown schemat-
ically in Fig. 1.5. Two accelerometers (1, 2) with the same phase-frequency characteristic

Fig. 1.5. Schematic diagram of apparatus for measuring phase difference.

are placed in contact with the tested object at a constant distance L. The outputs of the 
accelerometers are connected to the inputs of the phasemeter (3). The vibrator (4) transmits 
harmonic stress waves with frequency f into the tested medium. By the successive chang-
ing of frequency in the range f1−fn the phase difference Δφ of accelerometer vibrations is 
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measured. The distance L has to fulfil the condition L<Λ1, if Λ1 is the wavelength corre-
sponding to the frequency f1. By changing the frequency f, the phase difference Δφ changes 
too. The phase difference Δφ=2π corresponds to the frequency when the wavelength Λ 
is just equal to the distance L. The variation of Δφ versus frequency f (Fig. 1.6) makes it 
possible to determine the wavelength Λ on the basis of the measured value Δφ=k2π in the 
frequency range (f1, fn). The wavelength is determined by the expression

(1.2)

where k is an arbitrary real number.

Fig. 1.6. Variation of phase difference Δφ with frequency.

1.1.2 Theoretical assumptions
The theory underlying the problem of stress-wave propagation in a plane and layered 
medium is based on the assumption of a wider application of the phase velocity method.

Many questions of stress-wave propagation are known, especially in the geophysical 
literature, but the problems of layered pavement structures on a subgrade are theoretically 
so complex that they do not allow for exact numerical results to be obtained. This section 
can only outline the basics of the subject. For more detail, the reader is referred to special 
monographs, such as [1.17] and [1.18]. A study of the many problems of stress-wave prop-
agation that are necessary for dynamic non-destructive diagnosis can be found in [1.13].

Dilatational and shear waves in unbounded media

It is well known that dilatational and shear waves propagate in a homogenous isotropic and 
elastic unbounded medium. They propagate without dispersion: that is, their velocity does 
not depend on the frequency or the wavelength.

The velocity of dilatational waves, c1, is determined by the relationship
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(1.3)

in which E is the modulus of elasticity,  is the density of the material and μ is Poisson’s 
ratio.

The velocity of shear waves, c2, is given by

(1.4)

if G is the shear modulus of elasticity.
The motion of mass particles in shear-wave propagation is perpendicular to the direc-

tion of wave propagation.

Surface stress waves on the half-space

The stress waves that propagate on the half-space surface and diminish with depth are 
termed, surface Rayleigh waves. In the isotropic, homogenous and elastic half-space 
they propagate without wave dispersion, and their velocity cR is given by the frequency 
equation

(1.5)

if

(1.6)

and

(1.7)

The velocity of surface-wave propagation, cR, is always smaller than the velocity of shear 
waves, c2. The values of the velocity ratios cR/c2 and cR/c0 in relationship to Poisson’s ratio 
μ are given in Tab. 1.1. The velocity c0 of longitudinal waves in a one-dimensional medium 
is given by the very well-known relationship 

Table 1.1. Values of the velocity ratios.

μ 0 0.10 0.20 0.30 0.40 0.50
cR/c2 0.874 0.892 0.910 0.927 0.941 0.953
cR/c0 0.618 0.601 0.587 0.575 0.562 0.549

By using the method of phase velocities on pavement structures, the measured velocities 
at very high frequencies correspond to the velocity cR of the surface layer medium, if the 
wavelength Λ is small compared with the surface layer thickness.
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Symmetrical and asymmetrical stress waves in a plate with free surfaces

In an isotropic elastic plate (layer) with free surfaces, wave propagation is partly symmetri-
cal, in view of the neutral plane of the plate (longitudinal waves), and partly asymmetrical 
(flexural waves).

The longitudinal stress waves are defined by the frequency equation

(1.8)

where

(1.9)

(1.10)

The frequency equation (1.8) is fulfilled by a series of dispersion curves of phase 
velocity c. The velocity c of stress-wave propagation depends upon the ratio of plate 
thickness h to wavelength Λ. The variation of the first three branches of phase velocity 
versus the ratio h/Λ is shown in Fig. 1.7. 

Fig. 1.7. Dispersion curves of phase velocity for symmetrical stress waves in a plate.
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The first, fundamental branch of phase velocity begins from the value of velocity in the 
two-dimensional medium, c3, by a large wavelength Λ according to the relationship

(1.11)

Succesively with the shortening of the wavelength the phase velocity c becomes smaller, 
and at very short values Λ is approaching the value of the surface-wave velocity, cR.

The dispersion of flexural waves is determined by the frequency equation in the form 

(1.12)

The curves for the first three branches of phase velocity c are drawn in Fig. 1.8. The 
fundamental curve of the phase velocity starts at zero for h/Λ→0. The phase velocity 
increases with increasing h/Λ, and are approaching the value cR at very short values of 
Λ or as h/Λ→∞.

Fig. 1.8. Dispersion curves of phase velocity for asymmetrical stress waves in a plate.
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The fundamental dispersion curve of the phase velocity for flexural waves in a plate is 
decisive for application to pavement structures.

Based on the results of detailed measurements of phase velocity in concrete and asphalt 
pavements it has been proved that the phase velocity corresponds to the characteristic course 
of this fundamental dispersion curve. Naturally, the pavement structure is in contact with the 
subgrade and so the problem arises of how this contact influences the variation of the disper-
sion curve. Because of the difficult numerical solution of this problem, the influence of the 
subgrade was investigated experimentally on two-dimensional models and in a state of plane 
stress. The results of experiments on Duralumin models of various widths l in contact with an 
acrylic plane medium are plotted in Fig. 1.9. The variations of the dispersion curves of phase 
velocity for the first two branches of symmetrical waves (A1, A2) and the first two branches of

Fig. 1.9. Results of experiments on Duralumin models of various width l in contact with an 
acrylic plane medium.

asymmetrical waves (B1, B2) are identical to the theoretical courses for stress wave propagation 
in two-dimensional models with free boundaries for the values l/Λ>0.10–0.15 In the range 
of ratios l/Λ<0.10–0.15 the courses of the experimental dispersion curves are different; the 
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fundamental dispersion curves (A1, B1) are approaching the value of Rayleigh waves cRII of 
the acrylic medium.

These results clearly prove that the fundamental dispersion curves for a plate with free 
surfaces may also be used for a plate on a subgrade for h/Λ>0.15. At lower frequencies 
(that is at larger wavelength) the influence of the subgrade manifests itself in a marked 
change of the curves and the phase velocities approach the velocity of surface waves in the 
subgrade medium.

Because of the basic importance of the fundamental dispersion curve for flexural waves 
in a plate for the dynamic diagnosis of pavement structures, it is helpful to present the pos-
sibility of its calculation in an elementary way. We have established according to the theory 
of flexural vibration of the plate, considering the influence of shear and rotational inertia 
[1.14], relationships that give results identical to the values gained by the numerical solu-
tion of the transcendent equation (1.12).

The phase velocity c of the fundamental dispersion curve for flexural stress waves in the 
plate is given by the relationship

(1.13)

where

(1.14)

if

(1.15)

(1.16)

(1.17)

and

 (1.18)

Table 1.2 lists the values of the ratio c/c0 as related to the ratios h/Λ and Poisson’s ratio. The 
ratio c/c0=0 for h/Λ=0 and for h/Λ→∞ c/c0 is given by
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(1.19)

Table 1.2. Values of the fundamental dispersion curve of flexural waves in the plate versus 
h/Λ. and Poisson’s ratio μ.

 h/Λ 0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.5 2.0 3.0

 μ=0 0.197 0.314 0.390 0.455 0.511 0.548 0.565 0.590 0.598 0.603
 μ=0.1 0.192 0.313 0.389 0.448 0.509 0.541 0.560 0.580 0.592 0.596

μ=0.2 0.188 0.308 0.387 0.443 0.501 0.535 0.550 0.572 0.579 0.585
μ=0.3 0.185 0.307 0.381 0.438 0.499 0.528 0.545 0.560 0.566 0.571

 μ=0.4 0.182 0.306 0.368 0.433 0.496 0.524 0.540 0.557 0.562 0.567
 μ=0.5 0.179 0.298 0.355 0.428 0.494 0.518 0.528 0.537 0.542 0.545

Shear stress waves in a layer on subgrade

Shear stress waves in a layer on subgrade with thickness h and with the polarization of the 
particles in motion in a horizontal plane are characterized by the frequency equation

(1.20)

where 

(1.21)

(1.22)

GI is the shear modulus of elasticity for the layer medium, GII is the shear modulus of the 
subgrade material, f0 is the wave number, and c2I, c2II are the velocities of shear waves in an 
unbounded medium of the layer or subgrade, given by

(1.23)

A real solution of the frequency equation (1.20) exists if c2I<c2II, and in such a case Love’s 
waves propagate at the surface of the system. The variations of the first three dispersion 
curves are plotted in Fig. 1.10 for c2II/c2I=2.437. It can be seen that the phase velocities of 
stress-wave propagation are approaching to the velocity of shear waves in the layer, as h/Λ 
increases. 
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Fig. 1.10. Dispersion curves of Love’s stress-wavevelocities in a layer on subgrade.

The other case is more important for pavement structures, when the plate or layer medium 
is stiffer than the subgrade medium. Then only a complex solution can be established, as 

Fig. 1.11. Dispersion curves of shear stress waves in a layer on subgrade.
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the energy dispersion in the subgrade has to be included. The numerical solution of the 
frequency equation (1.20) indicates that the results are very similar to the results for the 
plate or layer with free surfaces. The contact with the subgrade manifests itself as energy 
dispersion in the subgrade, but the influence on the velocities is visible only at the lowest 
frequencies for the ratios h/Λ<0.1, when the phase velocities are approaching the velocity 
of shear waves in the subgrade [1.19, 1.20].

The first two dispersion curves for phase velocity c and dispersion coefficient α0 are 
plotted in Fig. 1.11.

The problems of stress-wave propagation described above are only typical basic tasks, 
which can help in the understanding of wave dispersion and propagation in connection 
with the application of the method of phase velocities to pavement structures.

Of course, pavement structures are complicated multilayered systems on subgrade. 
The analysis of stress-wave propagation in such systems and numerical solutions are dif-
ficult. The other aspect of the behaviour of real pavement structures is the viscoelasticity 
of the material, especially in bitumen layers, cohesive soil layers and in the subgrade. 
These characteristics and the non-homogeneity of the materials, influence the results 
obtained by the assumption that the pavement layers and subgrade are elastic, isotropic 
and homogeneous media.

1.2 Mechanical impedance methods
The generally known resonance method belongs to the category of dynamic non-destructive 
methods. It presents a system of procedures for the determination of the modulus of elasticity 
of materials on the basis of measured natural frequencies of specimens or elements in 
various geometrical forms. Usually the fundamental natural frequencies are measured, 
which serve in the calculation of the elasticity characteristics using the corresponding 
theoretical relationships of vibration theory. It is possible to assess the logarithmic 
decrement of vibration as a damping characteristic after the width of the resonance curve.

These procedures can be applied without difficulty on concrete, ceramic and similar 
materials, but they fail when used for testing materials with distinct viscoelastic behaviour 
such as the bituminous materials of road construction or cohesive soil material. The 
considerable damping of such materials causes the resonance zone to weaken, and it may 
be suppressed to a such extent that the measurement cannot be realized.

The testing of viscoelastic materials on the principle of the forced vibration of speci-
mens is possible by another way, using mechanical impedance methods.

1.2.1 Complex modulus of elasticity
The typical property of the viscoelastic behaviour of materials is the dependence of their 
elastic and damping characteristics on temperature and loading time with respect to the 
frequency of the dynamic loading process.

The analysis of the dynamic response of structures made from viscoelastic materials, 
the theory of design and quality control require the assessment of their viscoelastic proper-
ties over a large range of temperatures and frequencies.
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There are various formulations of viscoelastic behaviour in linear viscoelasticity, but 
the conception of complex modulus is the most useful [1.21–1.23]. Provided that the 
sinusoidal variable stress acts upon the element from the linear viscoelastic material, 
then the deformation of the element alters in time with the same frequency but a phase in 
arrears.

If the stress σ is expressed by the relationship

(1.24)

where σ0 is the stress amplitude and ω is the angular frequency, then the strain ε is given 
in the form

(1.25)

where φ is the phase angle.
The complex modulus of elasticity E* established according to the relationships (1.24) 

and (1.25) is expressed by the equation

(1.26)

The real part of the complex modulus, E1, is given by

(1.27)

and the imaginary part, E2, is given by

(1.28)

The absolute value of the complex modulus of elasticity is the ratio of stress and strain 
amplitudes expressed by the relationship 

(1.29)

If the ratio of the imaginary and real parts of the complex modulus is indicated by the 
damping factor δE according to the relationship

(1.30)
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the complex modulus of elasticity is given in the form

(1.31)

and its absolute value is

(1.32)

The subscripts ω and T refer to the value of complex modulus at a given frequency ω 
and temperature T. The coherence of the damping factor δE and the logarithmic decre-
ment  is determined by the approximate expression

(1.33)

The viscoelastic behaviour of a material for a given temperature is fully defined by the 
assessment of the values δE and |E*| for all frequencies.

The complex shear modulus or complex bulk modulus can be expressed in a similar way.

1.2.2 Function of mechanical impedance
The mechanical impedance at the driving point of the harmonic vibrating system is 
defined as the ratio of the exciting force to the velocity of motion at this point. It is the 
so-called mechanical impedance of the driving point and is a complex function.

If the motion velocity is related to another point, the complex ratio of the driving force 
and the motion velocity determines the so-called mechanical transfer impedance. 

The inverse value of the mechanical impedance determines the mechanical mobility.
From the point of view of contemporary measurement techniques it is more advan-

tageous to assess a normalized mechanical impedance Z*, which is defined [1.22] as 
the ratio of the harmonic variable force  to the product of acceleration  at the driv-
ing point of the vibrating object and the object mass M

(1.34)

Z* is a dimensionless complex function, the behaviour of which depends on the shape 
and dimensions of the vibrating object, and on the kind of vibration, and the elasticity 
and viscosity of the object material.

Mechanical impedance by flexural vibration

By using the flexural forced vibration of a tested object the most advantageous scheme 
in practice is the flexural vibration of a cantilever element at the free end of which a 
harmonic force  is acting, or a test specimen with free ends and the exciting force  
in the middle of the specimen length. (Fig. 1.12).
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The cantilever testing element is satisfactory for bituminous pavement materials 
with appreciable damping. Normalized prismatic elements with dimensions 5×5×30 
cm or cylindrical elements may be used.

Fig. 1.12. Schematic diagram of mechanical impedance methods using flexural vibration 
of elements.

Many studies [1.24–1.29] have been performed in which the characteristics of the complex 
modulus of elasticity are determined after various schemes of element vibration, in which 
the amplitudes of force and deformation or deflection and the phase angle of the vibration 
process of these quantities are measured. All these procedures, theoretically often reduced 
in the system with one degree of freedom, have a common feature in that they can be 
applied only for very low frequencies below the fundamental natural frequency of the test 
element. Our effort is to prepare methods and procedures for the assessment of viscoelas-
tic characteristics that would give the possibility of evaluating viscoelastic parameters in 
a wide frequency range by using just the resonance and antiresonance frequencies of the 
tested element [1.30–1.35].

The normalized mechanical impedance for a cantilever element in flexural vibration 
without the influence of shear and rotational inertia is given by the relationship [1.14]

(1.35)
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where

(1.36)

if l is the length of the cantilever element, r is the radius of inertia of the cross section to 
the axis perpendicular to the vibration plane and

(1.37)

For use in practice it is preferable to establish the normalized mechanical impedance 
according Timoshenko’s more accurate differential frequency of motion [1.36].

The variations of the calculated absolute value of normalized mechanical imped-
ance in dB depending on the frequency parameter nl for the values of damping 
factor δ=0.05 and δ=0.5 are plotted in Fig. 1.13 The normalized mechanical imped-
ance presents minima and maxima. The minima of the function 20 log |Z*|, i.e. R1, 
R2, R3,…represent resonances and correspond to the natural frequencies of an ele-
ment that is clamped at the bottom and free at the top. The maxima A1, A2, A3,… 
represent anti-resonances and correspond to the natural frequencies of an element 
that is clamped and simply supported at the top. It can be seen that the differences 
of resonance and anti-resonance extrema are a function of the damping factor δ.

Fig. 1.13. Theoretical curves of mechanical impedance function |Z*| versus frequency 
parameter nl.
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Fig. 1.14. Curves of phase angle φ versus frequency parameter nl.

The variations of phase angle φ depending on the frequency parameter nl in Fig. 1.14 pres-
ent intense changes at the zone of resonance and anti-resonance frequencies. The phase 
angles and their differences depend on the damping factor δ.

The function of normalized mechanical impedance Z* in the case of a flexural vibrating 
testing element (prismatic, cylindrical) with free ends, excited in the middle of its length, 
is given by the relationship [1.14]

(1.38)

where l is half the element length. Equation (1.38) is valid for the elementary theory with-
out the influence of shear and rotational inertia.

By the same procedure as for a cantilever element the variations of the functions |Z*|(nl) 
and φ(nl) can be prepared.

Mechanical impedance by the longitudinal and torsional vibration 
of elements with a constant cross-section

The longitudinal and torsional vibration of a prismatic or cylindrical element with a con-
stant cross-section is described by a similar differential equation of motion [1.14]. Provided 
that the harmonic variable force or torsional moment is acting at one end of the element 
and the second end is free, the normalized mechanical impedance Z* may be established 
in the form
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(1.39)

if for forced longitudinal vibration

(1.40)

and for torsional vibration 

(1.41)

In equations (1.40) and (1.41) l is the length of the test element, Jp is a polar moment of 
inertia in the element cross-section, Jt is a modulus of stiffness in torsion (for a prismatic 
element with square cross-section Jp/Jt=1.183, for a circular cylindrical element Jp/Jt=1.0), 
and Gω(1+iδG) is a complex modulus of clasticity in shear.

The normalized mechanical impedance (1.39) is a complex function. Its absolute value 
and phase angle may be expressed depending on the frequency parameter nl, which has 
the form

(1.42)

for longitudinal vibration and

(1.43)

for torsional vibration.
The function |Z*| depending on the parameter nl forms the anti-resonance and resonance 

extrema. The resonance minima correspond to the natural frequencies of an element with 
free ends and the anti-resonance maxima correspond to the natural frequencies of an ele-
ment that is free at one end and clamped at the other end. The differences of the extrema of 
the function |Z*| in dB depend on the damping parameter of the element material.

1.2.3 Measurement method
The anti-resonance and resonance frequencies and the differences ΔZ* of the extrema can 
be obtained from the measured variations of the mechanical impedance function |Z*|. In 
practice the realization of the measurement of |Z*| is obtained by observation or recording 
of the variation of an exciting force or torsional moment depending on the frequency for 
constant amplitude of acceleration at the driving point.
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On the basis of the determined resonance and anti-resonance frequencies the real parts 
of moduli Eω or Gω can be calculated.

For longitudinal vibration of the test sample the relationship is valid in the form

(1.44)

where f1 is the frequency of the extreme and k=1, 2, 3…for f1 corresponding sucsessively 
to the extrema A1, R1, A2, R2,…

For torsional vibration the real part of the complex modulus Gω is expressed by the 
relationship

(1.45)

in which ft is the frequency of the extreme and k=1, 2, 3…for ft corresponding to the 
extrema A1, R1, A2, R2,…

For schemes of flexural vibration of the element the equation is valid in the form

(1.46)

where ω is the angular frequency of the resonance or anti-resonance extrema, l is the 
length of the tested cantilever specimen, or half the element length for a specimen with 
free ends.

Table 1.3 lists the values of the frequency parameter nl in equation (1.46) for the cor-
responding extreme frequencies depending on damping parameter δ for a cantilever pris-
matic element with dimension ratios 1:1:6 or for a cylindrical element with the ratio of 
diameter d and l equal to 0.193. Table 1.4 lists the values of nl for elements with free ends 
excited in the middle of their length.

The differences of extreme values of normalized mechanical impedance Δ|Z*| in dB, 
obtained by measurement, give the possibility of evaluating the damping parameter δE or 
δG. The theoretical values of Δ|Z*| for longitudinal and torsional vibration are plotted in 
Figs. 1.15 and 1.16, for flexural vibration of the cantilever specimen in Table 1.3 and for 
flexural vibration of an element with free ends in Table 1.5. 

Table 1.4. Frequency parameter nl of mechanical impedance function extrema for element 
with free ends.

δ
Frequency parameter nl

A1 R1 A2 R2 A3 R3 A4 R4 A5 R5

0.025 1.8749 2.3656 4.6933 5.5000 7.8525 8.6432 10.991 11.788 14.130 14.925

0.050 1.8744 2.3674 4.6911 5.5043 7.8459 8.6541 10.978 11.806 14.109 14.950

0.075 1.8734 2.3704 4.6875 5.5128 7.8355 8.6717 10.959 11.836 14.081 15.000
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0.100 1.8722 2.3745 4.6826 5.5240 7.8225 8.6949 10.937 11.873 14.048 15.050

0.125 1.8706 2.3797 4.6765 5.5385 7.8038 8.7248 10.912 11.914 14.016 15.100

0.150 1.8687 2.3860 4.6696 5.5553 7.7909 8.7547 10.887 11.960 13.986 15.150

0.175 1.8666 2.3933 4.6619 5.5748 7.7740 8.7898 10.864 12.009 13.960 15.150

0.200 1.8642 2.4017 4.6539 5.5961 7.7562 8.8312 10.843 12.058 13.938 15.300

0.225 1.8616 2.4108 4.6448 5.6199 7.7414 8.8668 10.824 12.108 13.921 15.350

0.250 1.8589 2.4209 4.6358 5.6449 7.7262 8.9074 10.808 12.158 13.909 15.400

δ
Frequency parameter nl

A6 R6 A7 R7 A8 R8 A9 R9 A10 R10

0.025 17.250 18.100 20.405 21.225 23.542 24.369 26.678 27.519 29.814 30.667

0.050 17.250 18.100 20.367 21.275 23.493 24.432 26.620 27.591 29.745 30.751

0.075 17.200 18.150 20.300 21.350 23.450 24.500 26.550 27.700 29.700 30.850

0.100 17.150 18.250 20.271 21.412 23.385 24.591 26.502 27.766 29.621 30.934

0.125 17.100 18.300 20.230 21.483 23.345 24.666 26.463 27.837 29.585 31.017

0.150 17.100 18.300 20.199 21.552 23.315 24.741 26.434 27.920 29.559 31.098

0.175 17.050 18.400 20.176 21.620 23.295 24.809 26.420 27.998 29.545 31.184

0.200 17.050 18.500 20.159 21.691 23.283 24.891 26.408 28.084 29.534 31.284

0.225 17.050 18.500 20.149 21.776 23.273 24.969 26.398 28.184 29.516 31.403

0.250 17.000 18.600 20.142 21.841 23.266 25.066 26.384 28.303 29.491 31.562

δ
Frequency parameter nl

A11 R11 A12 R12 A13 R13 A14 R14 A15 R15

0.025 32.949 33.800 36.100 36.950 39.200 40.100 42.350 43.250 45.500 46.400

0.050 32.871 33.900 36.000 37.050 39.100 40.250 42.250 43.400 45.400 46.550

0.075 32.800 34.000 35.900 37.200 39.050 40.350 42.150 43.500 45.300 46.650

0.100 32.737 34.100 35.850 37.250 39.000 40.450 42.100 43.600 45.250 46.750

0.125 32.709 34.200 35.850 37.350 38.950 40.550 42.100 43.700 45.250 46.850

0.150 32.691 34.300 35.800 37.450 38.950 40.600 42.100 43.800 45.200 46.950

0.175 32.677 34.350 35.800 37.550 38.950 40.750 42.050 43.950 45.150 47.150

0.200 32.659 34.500 35.750 37.700 38.900 40.900 41.950 44.150 45.050 47.450

0.225 32.631 34.600 35.700 37.900 38.800 41.150 – – – –

0.250 32.569 34.850 – – – – – – – –
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Table 1.5. Differences of extreme values of normalized mechanical impedance Δ|Z*| ver-
sus damping parameter δ for flexural vibration of an element with free ends.

δ
Extremes differences Δ|Z*| (dB)

A1−R1 R1−A2 A2−R2 R2−A3 A3−R3 R3−A4 A4−R4 R4−A5

0.025 63.242 52.995 55.729 46.4747 46.3917 40.5907 40.6237 36.2939
0.050 51.250 41.022 43.776 34.5814 34.5574 28.8351 28.9471 24.7145
0.075 44.290 34.0927 36.8777 27.7743 27.8423 22.2342 22.4612 18.3590
0.100 39.408 29.2510 32.0770 23.0896 23.2746 17.7992 18.1602 14.1960
0.125 35.676 25.5685 28.4455 19.5898 19.9078 14.5700 15.0710 11.3550
0.150 32.682 22.6304 25.5644 16.8484 17.3084 12.1040 12.7430 9.0320
0.175 30.204 20.1841 23.2091 14.6347 15.2397 10.1610 10.9300 7.3270
0.200 28.108 18.1810 21.2440 12.8090 13.5570 8.5940 9.4840 5.9790
0.225 26.3074 16.4463 19.5763 11.2753 12.1633 7.3060 8.3060 4.8930
0.250 24.7414 14.9466 18.1466 9.9728 10.9938 6.2340 7.3420 4.0070

δ
Extremes differences Δ|Z*| (dB)

A5−R5 R5−A6 A6−R6 R6−A7 A7−R7 R7−A8 A8−R8 R8−A9

0.025 35.9604 32.6360 32.6750 29.9286 29.9836 27.551 27.667 25.491
0.050 24.8236 21.494 21.641 18.908 19.071 16.788 17.000 15.014
0.075 18.602 15.431 15.711 13.112 13.439 11.282 11.608 9.765
0.100 14.602 11.542 11.968 9.506 9.954 7.908 8.351 6.617
0.125 11.774 8.836 9.393 7.044 7.600 5.654 6.203 4.559
0.150 9.696 6.864 7.503 5.245 5.930 4.071 4.710 3.146
0.175 8.064 5.327 6.133 3.960 4.708 2.928 3.648 2.155
0.200 6.859 4.208 5.068 2.971 3.796 2.086 2.877 1.448
0.225 5.870 3.269 4.228 2.203 3.109 1.461 2.315 0.942
0.250 5.073 2.571 3.585 1.625 2.588 0.997 1.906 0.581

δ
Extremes differences Δ|Z*| (dB)

A9–R9 R9–A10 A10−R10 R10–A11 A11–R11 R11–A12 A12−R12 R12–A13

0.025 25.591 23.787 23.878 22.239 22.327 20.808 20.891 19.532
0.050 15.165 13.453 13.722 12.187 12.399 11.045 11.258 10.021
0.075 10.093 8.485 8.825 7.424 7.756 6.501 6.830 5.710
0.100 7.060 5.561 5.999 4.686 5.117 3.954 4.376 3.339
0.125 5.097 3.683 4.210 2.978 3.491 2.405 2.905 1.938
0.150 3.767 2.429 3.032 1.869 2.452 1.430 1.995 1.088
0.175 2.849 1.576 2.243 1.139 1.780 0.812 1.428 0.576
0.200 2.205 0.988 1.711 0.657 1.346 0.420 1.077 0.254
0.225 1.753 0.584 1.353 0.341 1.069 0.178 0.869 0.076
0.250 1.439 0.311 1.119 0.141 0.903 – – –
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Fig. 1.15. Differences of mechanical impedance function extrema for longitudinal vibration 
of specimen.

Fig. 1.16. Differences of mechanical impedance function extrema for torsional vibration 
of specimen.
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1.2.4 Experimental apparatus
The experimental arrangement for using the mechanical impedance method is more com-
plicated than that currently used for measuring of resonance frequencies. It is necessary 
to measure not only frequencies also the force or torsional moment and acceleration. It is 
usual to automate the measuring process: that is, to record continuously the values of the 
force amplitude or torsional moment amplitude by constant amplitude of acceleration in a 
wide frequency range.

The block diagram of the experimental arrangement realized by M.Pokorny, which 
has been used for application to cantilever samples and flexural vibration is shown in 
Fig. 1.17.

The sine-wave signal from an automatic generator leads to the power amplifier and 
electrodynamic vibrator. The vibration is transferred through the impedance head into the 
test specimen. The impedance head gives the possibility of measuring the amplitude of 
the force by using a preamplifier and voltmeter and recording the variation in the force 
amplitude with frequency.

Fig. 1.17. Block diagram of experimental arrangement for mechanical impedance method.

The signal from the accelerometer leads through the preamplifier to the control generator 
and serves to regulate the specimen vibration in such a way that the amplitude of accelera-
tion at the exciting point of the specimen is constant during the measuring process.

The block diagram of the arrangement and testing for the application of the mechani-
cal impedance method to longitudinally and torsionally vibrated test samples is shown 
in Fig. 1.18. The test procedure and the composition of the instruments and transducers 
is similar to that in Fig. 1.17.
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Fig. 1.18. Block diagram of arrangement and testing for application of mechanical 
impedance method to longitudinally and torsionally vibrated test samples.

The basic elements of the arrangement for torsional vibration are a torsional vibrator and a 
torsional moment meter, which have to be developed specially for this purpose. A detailed 
description of these elements is to be found in [1.37]. 

1.2.5 Application to non-destructive testing of the subgrade
The mechanical impedance method can be applied to dynamic testing of the material char-
acteristics in the subgrade by using vibrators with a small generating energy of stationary 
vibration [1.38].

The scheme of testing that applies in practice is based on the vertical vibration of a thick 
circular plate with mass m situated on the surface of the subgrade through a circular contact 
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area with radius a. The vibration of the plate is excited by the harmonic variable vertical 
force of an electrodynamic vibrator, which is put trough a force-meter on the mass m.

The theoretical variation of the function Z* of normalized mechanical impedance has been 
established in [1.14] by using the concepts of the complex bulk modulus  and 
the complex modulus in shear  The dependence of the function Z* on the 
dimensionless frequency Ω=ωa/c2 is given by the variation of the absolute value |Z*| and phase 
angle φ. The curves of |Z*| and φ versus Ω are plotted in Fig. 1.19 for damping parameters 

Fig. 1.19. Theoretical curves of mechanical impedance function |Z*| and phase angle φ 
versus frequency Ω for a vibrating mass on subgrade.

δB=δG=δ=0.20, Poisson’s ratio μ=0.25 and for dimensionless parameter  The 
phase angle φ approaches the value φ=−δ at low frequencies. The absolute value |Z*| has 
its minimum in the resonance zone of the vibrating mass on the subgrade.

The theoretical variation of |Z*| for various values of δ, μ=0.35 and parameter b=11 suit-
able for the interpretation of experimental results are plotted in Fig. 1.20.
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Fig. 1.20. Theoretical variations of |Z*| with frequency Ω for various values of damping 
factor δ.

The experimental testing arrangement can be realized according to the scheme shown in 
Fig. 1.21. The mass consists of a thick circular steel plate with radius a=126 mm and 
thickness h=100 mm. The contact circular area F=500 cm2 and the mass m=39.5 kg. The 
parameter b of the system is approximately b≈11. In the middle of the mass at the centre 
of gravity, is situated the piezoelectric accelerometer. The force pick-up is piezoelectric 
too, produced specially for the purpose, with diameter 68 mm; it is fixed on the vibrating 
area of the electrodynamic vibrator. The vibrator is connected to the generator through the 
power amplifier and the signals from the force pick-up and from the accelerometer lead to 
the voltmeters.
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Fig. 1.21. Schematic diagram of testing arrangement for determination of subgrade 
charateristics by mechanical impedance method.

The testing takes place in such a way that for individual frequencies the amplitude of the 
force will be assessed by the constant amplitude of acceleration. The variation of the force 
with frequency is then proportional to the variation of the mechanical impedance function 
|Z*|. The measurements can also be realized by a more complicated arrangement with an 
automatic record of the mechanical impedance function |Z*| in dB, as described for the 
application to testing elements.

The procedure for the evaluation of viscoelastic characteristics consists of the determi-
nation of damping parameter δ, complex modulus of elasticity in shear  and Poisson’s 
ratio μ.

The damping parameter δ of the subgrade material may be determined by using the 
special measurement of phase angle φ for the mechanical impedance function at very low 
frequencies, when φ≈−δ.

The value of Poisson’s ratio μ is found from the extreme ordinate of measured function 
of mechanical impedance by using the theoretical variations in Fig. 1.22. 

The real parts of the complex modulus Gω are found from the measured variation of |Z*| 
by comparison with the theoretical curve.

If we are satisfied with the estimate of Poisson’s ratio μ for subgrade material at an 
average value of μ=0.35, then the damping parameter δ can be assessed on the basis of the 
measured extreme value |Z*|min after the diagram in Fig. 1.22.
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Fig. 1.22. Theoretical diagram for determination of Poisson’s ratio μ according to extreme 
ordinate of mechanical impedance function |Z*|min.

1.2.6 Dynamic viscoelastic properties of bituminous materials
The bituminous materials of road construction have distinct features of viscoelastic 
behaviour. Measurements were performed with the mechanical impedance method 
using the scheme of cantilever elements measuring 5×5×30 cm from various bituminous 
materials. The results of measurements at temperature T=10, 20 and 40 °C, in the form of 
isochrones and damping parameter variations, are shown in Fig. 1.23 for mastic asphalt, 
in Fig. 1.24 for an open-cover asphalt layer, in Fig. 1.25 for a dense-cover asphalt layer, 
and in Fig. 1.26 for asphalt concrete.

The values of the damping parameter δ are average values because it does not present 
a regular and distinct change with frequency. The dependence of δ on temperature T is 
very strong.

The change of the complex modulus values is very distinct not only in their depen-
dence on temperature T but also on the vibration frequency. 
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Fig. 1.23. Isochrones and damping parameter variations for mastic asphalt.

The measurements were made by using mechanical impedance method on a series of 15 
specimens of asphalt concrete in the temperature range −25 to +45 °C. The mean values of 
the measurement results at a frequency of 20 Hz and at resonance and anti-resonance natu-
ral frequencies are plotted in Fig. 1.27 as isotherms and in Fig. 1.28 as isochrones, together 
with the dependence of damping factor δ on temperature. The complex modulus of elastic-
ity |E*| alters from the value |E*|=400 MPa at frequency 20 Hz and temperature T=45 °C to 
the value |E*|=21000 MPa at frequency 3000 Hz and temperature T=−25 °C. The damping 
factor δ has the value δ≈0.16 at temperature T=−25 to −5 °C and at temperature T=+45 °C 
attains to the value δ=0.84.
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Fig. 1.24. Isochrones and damping parameter variations for open-cover asphalt.

Fig. 1.25. Isochrones and damping parameter variations for dense-cover asphalt.

Similar measurements were performed on a series of 15 specimens of bitumen-coated 
sand and gravel material at temperatures from −25 °C to +45 °C. The results of these 
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measurments are evaluated in the graphs in Figs 1.29, 1.30. The damping factor δ(T) 
changes in the range 0.155~0.54 and the absolute value of complex modulus of elasticity 
|E*| in the range |E*|=500−23000 MPa.

These results for measurements obtained on pavement bituminous materials demon-
strate that the method of normalized mechanical impedance is an effective means of direct 
investigation of the dynamic viscoelastic properties in a wide frequency range. It makes 
possible to compare the directly measured properties with the viscoelastic properties deter-
mined from static creep testing by using the principle of superposition of time and tem-
perature, [1.39–1.40]. The realization of this principle is combined with the fulfiling of 
the criterion of a linear thermo-rheological material, which is defined as a material whose 
temperature changes change only the position of the viscoelasticity function on a time or 
frequency scale but not the general shape of the function.

The principle of superposition of time and temperature may be used in the case of the 
dynamic isotherms in Figs. 1.27 and 1.29 to demonstrate that the viscoelastic response 

Fig. 1.26. Isochrones and damping parameter variations for asphalt concrete.
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Fig. 1.27. Isotherms for asphalt concrete

Fig. 1.28. Isochrones for asphalt concrete.
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Fig. 1.29. Isotherms for precoated sand and gravel.

of the bituminous materials tested is only approximately thermorheologically linear. From 
the practical point of view it is advantageous to assume that this criterion is valid for the 
complex modulus of elasticity. The damping factor δ is more or less constant for every 
temperature and is independent of frequency. The principle of superposition of time and 
temperature cannot be used for the damping factor. 

The isotherms, i.e. the functions of the relationships of the complex modulus of elastic-
ity versus frequency obtained by measuring at various temperatures, give these relations in 
a certain limited frequency range. Supposing that material is approximately thermorheo-
logically linear we can compile a fundamental isotherm for the reference temperature T0, 
the variation of which will run in a substantially wider frequency range, by shifting single 
isotherms along the boundary scale.

The shift factor aT may be established according to the relationship

(1.46)

where  is the frequency corresponding to a certain fixed value of the complex modulus 
of elasticity |E*| at reference temperature T0 and fT is the frequency corresponding to the 
same value of |E*| at temperature T. 

In practice, in the determination of the shift factor aT from the isotherm variations 
obtained by measurement, it is necessary first to access the partial shift factors ΔaT, which 
correspond to two neighbouring temperatures. The shift factor aT is given by the product 
of partial shift factors ΔaT successively from the reference temperature T0. In this way 
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the fundamental isotherme at the reference temperature T0=+25 °C has been compiled for 
asphalt concrete and for bitumencoated sand and gravel material.

The shift factor aT and reduced frequencies together with corresponding mod-
uli |E*| were evaluated for three values f=20 Hz, f=500 Hz, f=3000 Hz and f=4000 Hz

Fig. 1.30. Isochrones for precoated sand and gravel.

Table 1.6. Compilation of fundamental isotherm for asphalt concrete.

T(°C) Δ aT aT f(Hz) |E| (MPa)
−25 1.25 7.7 3850 16000
−15 2.00 6.15 3080 14800
+5 1.85 3.07 1530 12700

+15 1.66 1.66 830 10800
T0=+25°C 1 1 500 9600

+35 0.30 0.30 150 7150
+45 0.16 0.048 24 4050

−25 1.125 2.94 59 4700
−15 0.87 2.61 52 4500
+5 1.50 3.0 60 4700

+15 2.0 2.0 40 4000
+25 1 1 20 2650
+35 0.475 0.475 9.5 1500
+45 0.40 0.19 3.8 540
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−25 2.5 96.0 288000 21000
−15 3.75 38.4 115000 19000
+5 2.73 10.2 30600 17000

+15 3.75 3.75 11250 15000
+25 1 1 3000 11900
+35 0.073 0.073 219 8050
+45 0.050 0.0036 11 5500

respectively. The results are compiled in Table 1.6 for asphalt concrete and in Table 1.7 for 
bitumen-coated sand and gravel. The variations of the fundamental isotherms are plotted 
in Figs. 1.31 and 1.32.

The fundamental isotherms at a reference temperature determined by the described 
above procedure characterize the viscoelastic properties of a material over a wide frequency 
range. Together with the shift factor aT they serve for the determination of viscoelastic 
behaviour at an arbitrary temperature T. 

Table 1.7. Compilation of fundamental isotherm for bitumen-coated sand and gravel.

T(°C) Δ aT aT f(Hz) |E| (MPa)
−25 1.25 7.05 3520 14000
−15 1.82 5.64 2820 13200
+5 1.61 3.09 1550 11050

+15 1.92 1.92 960 9600
T0=+25°C 1 1 500 8100

+35 0.50 0.50 250 6500
+45 0.32 0.16 80 4400

−25 1.25 13.20 266 5800
−15 2.25 10.65 213 5450
−5 1.35 4.72 94.5 4300

+15 3.5 3.5 70 3950
+25 1 1 20 2200
+35 0.50 0.50 10 1550
+45 0.363 0.181 3.62 589

−25 1.29 13.20 52800 25000
−15 1.48 10.25 41000 23400
+5 1.90 6.92 27700 21000

+15 3.64 3.64 14550 17000
+25 1 1 4000 12000
+35 0.42 0.42 1680 9700
+45 0.40 0.16 640 7600
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Fig. 1.31. Form of fundamental isotherm for asphalt concrete.

Fig. 1.32. Form of fundamental isotherm for precoated sand and gravel.

1.2.7 Dynamic viscoelastic properties of soil materials
The dynamic viscoelastic properties of cohesive or stabilized soil materials can be inves-
tigated by applying the mechanical impedance method and the schemes of torsional and 
longitudinal vibration of cylindrical elements.

Measurements were performed on a series of test specimens from the loess and ben-
tonite soil materials. The specimens were cylindrical with a diameter of 4 cm and a length 
of 8.7 cm. The density of the compacted soil materials was  for loess and 
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 for bentonite. The test samples were compacted at moisture w=17% for 
loess or w=52% for bentonite and then placed in a desiccator.

By applying the mechanical impedance method and the torsional and longitudinal vibra-
tion of the tested elements, the process of change of the viscoelastic properties was studied. 
The change of the soil structure as a consequence of the thixotropy and the moisture change 
gives rise to a change of viscoelastic characteristics. The results of the measurement are 
compiled in the graphs in Figs. 1.33–1.37 for loess and in Figs. 1.38–1.42 for bentonite. 

Fig. 1.33. Relationship of complex modulus |G*| to frequency, for loess.

Fig. 1.34. Relationship of complex modulus |E*| to frequency, for loess.
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Fig. 1.35. Evolution of |G*| and |E*| over time after compacting, for loess.

Fig. 1.36. Evolution of stress-wave velocities c2 and c0 over time after compacting, for loess.
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Fig. 1.37. Evolution of damping parameter δ and Poisson’s ratio μ over time, for loess.

Fig. 1.38. Relationship of complex modulus |G*| to frequency, for bentonite.
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Fig. 1.39. Relationship of complex modulus |E*| to frequency, for bentonite.

Fig. 1.40. Evolution of |G*| and |E*| over time after compacting, for bentonite.
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Fig. 1.41. Evolution of stress-wave velocities c2 and c0 over time after compacting, for 
bentonite.

Fig. 1.42. Evolution of damping parameter δ and Poisson’s ratio μ over time, for bentonite.

The real parts of the complex moduli Eω, Gω were calculated according to equations (1.44), 
(1.45) and the absolute values of the complex moduli were expressed by the relationships
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 (1.47)

The velocities of shear stress waves, c2, and longitudinal stress waves, c0, were calculated 
according to the relationships

(1.48)

(1.49)

where

(1.50)

if

(1.51)

Poisson’s ratio μ follows from the values of |E*| and |G*|.
The dependence of the complex moduli |G*| and |E*| on the frequency measured at 

the various times of evolution affirm the distinct change of the material structure and at 
the same time the typical relationship |G*| and |E*| from the frequency. The values of the 
moduli increase with increased frequency, especially at the beginning of time evolution. In 
the later evolution the dynamic behaviour of soil materials approaches elastic behaviour.

1.3 Dynamic diagnosis of the subgrade
The subgrade is formed from soil materials of various kinds. Such a medium can (only 
very approximately) be defined as an elastic half-space. In applying dynamic methods for 
determining subgrade material characteristics one has to consider that the soil material 
has viscoelastic properties, which manifest themselves partly in the dependence of elastic 
characteristics on the frequency and partly in the existence of strong damping as a conse-
quence of the internal friction and space dispersion of energy. The other special property 
of the subgrade is its inhomogeneity, which can similarly influence the results obtained by 
methods of dynamic diagnosis and their interpretation.

1.3.1 Application of the phase velocity method
The procedures for measuring stress-wave velocity, as described in section 1.1, may be 
used in testing pavement subgrade and road and highway soil bodies. The measured values 
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of phase velocity, and their dependence on frequency or wavelength, serve as an assessment 
of the elastic characteristics of the subgrade material, for an evaluation of its viscoelastic 
properties and its inhomogeneity.

Reference [1.41] describes the results of measurements on soil subgrade material. The 
aim of this testing was to evaluate the depth and quality of subgrade material compacted 
by a rubber-tyred compactor and vibratory roller.

The results of measurements on the sand and clay soils of highway subgrades versus 
the number of passes of the vibratory roller are given in Table 1.8. The measurements were 
accomplished at frequencies of 20–5000 Hz, the values of Rayleigh-wave velocity cRz cor-
responding to the high frequencies. The moduli of elasticity Ez were established according 
to the relationship Ez=(cRz/0.57)2  After ten passes of the vibratory roller the results 
indicate that the upper layer of the compacted subgrade body has disintegrated.

Table 1.8. Results of measurements on subgrade [1.42].

Number of 
passes

Number of 
specimen

Density
(kg/m3)

Moisture
(%)

Surface-wave 
velocity, cR

(m/s)

Modulus of 
elasticity, E

(MPa)
4 1 1751 9.1 170 156

 2 1757 6.3   

10 3 1576 9.5 150 110

 4 1618 8.3   

16 5 1792 8.3 155 130

 6 1713 8.7   

The results of measurements on the loess material of the subgrade versus the number of 
passes of the rubber-tyred compactor are given in Table 1.9.

Table 1.9. Influence of number of passes on the characteristics of loess subgrade [1.42].

Number of passes Density Moisture cR E
(kg/m3) (%) (m/s) (MPa)

4 2080 13.9 148 140

8 2130 11.4 150 147

12 2135 13.6 163 175

The results of measurements of the clayed subgrade versus the number of passes of the rub-
ber-tyred compactor and various thicknesses of the compacted layer are given in Table 1.10. 
Increasing the number of passes of the compactor for a thickness of the compacted layer 50 
cm produced the disintegration of the compacted surface zone of the layer.
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Table 1.10. Results of measurements on clay subgrade [1.42].

Layer thickness 
(cm)

Number of 
passes

Density Moisture Surface-wave 
velocity cR

E

(kg/m3) (%) (m/s) (MPa)
 2 2033 20.4 138 120
20 6 2027 19.4 150 141
 10 2075 20.9 158 160
 2 2070 20.1 150 143
50 6 2031 19.7 132 109
 10 2048 19.9 112 79

The measurements were carried out by using the phase velocity method on the highway 
subgrade [1.42]. This subgrade was formed from an embankment of 5–6 m height from 
clay-loess soil material, with a surface layer of sand-clay soil material with a thickness of 
40–50 cm. The tests were performed in two sections, the first one of which was insuffi-
ciently compacted. The results are plotted in Fig. 1.43 for the first section and in Fig. 1.44 
for the second section. While the velocities cRz on the second section do not depend on the 
frequencies, the results in the first section indicate the influence of inhomogeneity or vis-
coelastic behaviour (curve 2) and insufficient compaction (curve 1).

Fig. 1.43. Phase velocities of surface waves on highway subgrade.

Fig. 1.44. Phase velocities of surface waves on highway subgrade.
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1.3.2 Application of the mechanical impedance method
The highway subgrade described in the previous section has served as the realization of test-
ing by the mechanical impedance method using the procedure described in section 1.2.5. We 
have used the scheme of the vertical vibration of the mass on the subgrade. The measure-
ments were carried out on two localities for the first section and on three localities for the 
second section. The localities correspond to the places where the phase velocities of stress 
wave propagation were determined.

Fig. 1.45. Curves of measured functions of mechanical impedance of highway subgrade: 
section 1.

Fig. 1.46. Curves of measured functions of mechanical impedance of highway subgrade: 
section 2.
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The curves of measured force amplitude P0 (in volts) at constant amplitude of accel-
eration A of vertical mass vibration versus frequency f (in Hz) are drawn in Fig. 1.45 for 
the first section and in Fig. 1.46 for second section. These curves are proportional to the 
variation of the mechanical impedance function and quite unambiguously correspond to 
the theoretical curve of |Z*|.

The interpretation and evaluation of the measured results is to be formed in Tables 
1.11–1.15. The evaluation was carried out assuming a value of Poisson’s ratio μ=0.35, and 
the damping parameter δ was determined from the extreme ordinate  It is necessary 
to add some notes to the evaluation procedure. The measured values of the frequencies f 
(in Hz) and force amplitudes P0 (in volts) are in the first two columns of the tables. With

Table 1.11. Evaluation of the measured results on highway subgrade. Section 1, first mea-
surement. Amplitude of acceleration, A=0.003V; μ=0.35; δ=0.3.

Frequency
(Hz)

P0
(V)

|Z*| Ωtheor c2
(m/s)

c2,corr
(m/s)

G
(MPa)

60 2.20 4.070 0.355 133.5 150.5 40.8

70 1.80 3.330 0.390 142.0 154.7 43.1

80 1.50 2.770 0.425 148.5 158.0 44.9

90 1.20 2.220 0.475 149.5 158.5 45.2

100 1.00 1.845 0.500 158.0 162.7 47.6

110 0.85 1.570 0.540 161.0 164.2 48.5

120 0.70 1.290 0.590 161.5 164.5 48.7

130 0.60 1.110 0.640 161.0 164.2 48.5

140 0.54 0.995 0.675 164.0 165.7 49.4

150 0.50 0.924 0.715 166.0 166.7 50.0

160 0.48 0.888     

180 0.46 0.850 0.850 167.5 167.5 50.5

200 0.47 0.870     

220 0.48 0.888     

250 0.52 0.960     

300 0.54 0.995     

350 0.58 1.070     

400 0.60 1.105     

500 0.61 1.125  174.5 174.5 54.8

750 0.59 1.085     
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Table 1.12. Evaluation of the measured results on highway subgrade. Section 2, second 
measurement. A=0.003V; μ=0.35; δ=0.1.

Frequency
(Hz)

P0
(V)

|Z*| Ωtheor c2
(m/s)

c2corr
(m/s)

G
(MPa)

60 4.00 7.370 0.262 181.0 209.0 78.6
70 2.90 5.350 0.301 183.5 210.0 79.4
80 2.40 4.420 0.328 193.0 215.0 83.2
90 2.00 3.680 0.355 200.0 218.5 85.9
100 1.60 2.950 0.392 201.0 219.0 86.3
110 1.30 2.398 0.420 207.0 222.0 88.7
120 1.00 1.845 0.465 205.0 221.0 87.9
130 0.90 1.660 0.480 214.0 225.5 91.5
140 0.70 1.290 0.530 209.0 223.0 89.5
150 0.65 1.198 0.550 215.5 226.0 91.9
160 0.56 1.032 0.580 218.0 227.5 93.2
170 0.50 0.922 0.610 220.0 228.5 93.9
180 0.42 0.775 0.660 216.0 226.5 92.3
190 0.41 0.755 0.680 221.0 220.0 94.4
200 0.39 0.719 0.700 226.0 231.5 96.5
210 0.37 0.682 0.725 229.0 233.0 97.7
220 0.35 0.645     
230 0.35 0.645     
240 0.34 0.626 0.800 237.0 237.0 101.1
250 0.35 0.645     
260 0.36 0.663     
270 0.38 0.700     
280 0.39 0.719     
290 0.40 0.737     
300 0.42 0.774     
500 0.52 0.959     
750 0.54 0.995  238.0 238.0 102.0
1000 0.55 1.014     

regard to the parameters and calibrations of the experimental arrangement used, the values 
of mechanical impedance |Z*| in the third column of the tables are calculated according to 
the relationship

(1.52)
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The steep part of the curve of |Z*| at low frequencies, extending to the value at the 
resonance frequency and the values at high frequencies were used in the evaluation of the 
measurements.

The values Ωtheor (column 4 of the tables) were determined according to the theoretical 
variation of the mechanical impedance function for individual measured values of |Z*|.

Table 1.13. Evaluation of the measured results on highway subgrade. Section 2, first mea-
surement. A=0.001V; μ=0.35; δ=0.05.

Frequency
(Hz)

P0
(Volt)

|Z*| Ωtheor c2
(m/s)

c2corr
(m/s)

G
(MPa)

50 1.450 8.030 0.240 165.0 165.0 49.0
60 1.000 5.530 0.285 166.0 165.5 49.3
70 0.700 3.870 0.330 167.5 166.2 49.7
80 0.560 3.100 0.365 173.0 169.0 51.4
90 0.400 2.210 0.420 169.0 167.0 50.2
100 0.300 1.660 0.460 171.5 168.2 50.9
110 0.230 1.270 0.520 167.5 166.2 49.7
120 0.160 0.885 0.580 163.5 164.2 48.5
130 0.125 0.692 0.620 166.0 165.5 49.3
140 0.110 0.609 0.680 163.0 164.0 46.1
150 0.105 0.581 0.720 165.0 165.0 49.0
160 0.110 0.610     
170 0.120 0.665     
180 0.130 0.720     
200 0.145 0.805     
250 0.180 0.995     
300 0.200 1.105     
400 0.220 1.219     
500 0.220 1.219     
750 0.220 1.219  182.0 182.0 59.6

The velocity of shear stress waves  can be determined by using the relation-
ship in the form

(1.53)

The values of the velocity c2 (column 5 of the tables) determined in this way have to be 
corrected, because they were assessed on the basis of the theoretical variation of |Z*| for a 
steady value G, which is independent of frequency. From the practical point of view it is 
sufficient to determine the corrected values c2cor as the arithmetic mean of the given value 
of c2 and the value of c2 for the resonance frequency. The real parts of the complex modulus 
Gz are in the last column of the tables provided that =1800 kg/m3.
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The values of c2 at high frequencies, when |Z*|theor is practically equal to 1.0, can be 
determined by the relationship 

(1.54)

where c2(fres) is the value of the velocity for the resonance frequency fres.

Table 1.14. Evaluation of the measured results on highway subgrade. Section 2, Second 
measurement. A=0.001V; μ=0.35; δ=0.25.

Frequency
(Hz)

P0
(V)

|Z*| Ωtheor c2
(m/s)

c2corr
(m/s)

G
(MPa)

26 6.500 35.900 0.120 171.5 177.2 56.5
30 4.800 27.500 0.138 172.0 177.5 56.7
40 2.700 14.950 0.185 171.0 177.0 56.4
50 1.700 9.400 0.229 172.5 177.7 56.8
60 1.200 6.650 0.270 175.5 179.2 57.8
70 0.950 5.260 0.300 184.0 183.5 60.6
80 0.730 4.050 0.337 187.0 185.0 61.6
90 0.600 3.320 0.370 192.0 187.5 63.3
100 0.500 2.770 0.400 197.5 190.2 65.1
110 0.440 2.430 0.420 207.0 195.0 68.4
120 0.320 1.770 0.480 197.5 190.2 65.1
130 0.240 1.330 0.540 190.5 186.7 62.7
140 0.200 1.105 0.580 191.0 187.0 62.9
150 0.180 0.997 0.620 191.5 187.2 63.1
160 0.180 0.997 0.620 204.0 193.5 67.4
170 0.140 0.775 0.720 187.0 185.0 61.6
185 0.135 0.748 0.800 183.0 183.0 60.3
200 0.140 0.775     
210 0.140 0.775     
230 0.145 0.804     
250 0.160 0.886     
300 0.180 0.997     
350 0.195 1.080     
400 0.200 1.105     
500 0.220 1.218  202.5 202.5 73.8
600 0.220 1.218     

The values of elasticity modulus Ez determined according to the results of measurement 
by the mechanical impedance method and the phase velocity method are to be formed in 
Table 1.16.

The modulus of elasticity Ez was calculated according to the test results of the phase 
velocity method by using the relationship in the form
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(1.55)

in which cRz corresponds to the measured phase velocities. The comparison with modulus 
values in Table 1.15 is quite satisfactory and at the same time confirms the supposition that 
the values of the moduli have to refer to the vibration frequency.

Table 1.15. Evaluation of the measured results on highway subgrade. Section 2, third mea-
surement. A=0.003V; μ=0.35; δ=0.28.

Frequency
(Hz)

P0
(V)

|Z*| Ωtheor c2
(m/s)

C
2corr

(m/s)
G

(MPa)
75 2.70 4.980 0.320 185.0 185.2 61.7
80 2.30 4.250 0.340 186.0 185.7 62.1
90 1.80 3.320 0.375 189.0 187.2 63.1
100 1.40 2.580 0.410 192.5 189.0 64.3
110 1.20 2.210 0.440 199.0 192.2 66.5
120 0.85 1.570 0.510 186.0 185.7 62.1
130 0.70 1.290 0.551 186.0 185.7 62.1
140 0.60 1.110 0.600 184.5 185.0 61.6
150 0.50 0.922 0.660 180.0 182.7 60.1
160 0.50 0.922 0.660 191.5 188.5 63.9
170 0.45 0.830 0.720 186.5 186.0 62.3
195 0.42 0.775 0.830 185.5 185.5 61.9
250 0.46 0.850     
300 0.50 0.922     
400 0.57 1.050     
500 0.58 1.070  192.0 192.0 66.4

Table 1.16. Comparison of the measured characteristics of subgrade material.

Section 
number

Measurement 
number

E(MPa) Note
method Mechanical 

impedance
method Phase 

velocity
1 1 110–136.5 82.5–93.7 Insufficient 

compaction
 2 212–276 170–318 Sufficient com-

paction
 1 132–161   
2 2 152–199 187.0  
 3 167–179   

The methods of dynamic diagnosis of the subgrade are also useful in cases of a subgrade 
with sub-base layers. We can present the results of measurements on the highway subgrade 
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with a 25 cm thick sandgravel layer and with a 15 cm thick cement-stabilized layer. By 
using the method of mechanical impedance the resonance frequency fres=450 Hz has been 
determined. Provided that μ=0.35 and δ=0.20 the characteristic values will be determined 
as c2=445 m/s, G=396 MPa and E=1070 MPa, if =2000 kg/m3. By using the phase veloc-
ity method the values of c=435 m/s was measured at the frequency 450 Hz.

In the same structure but with the 4 cm thick bituminous interlayer the resonance 
frequency fres=550 Hz is the result of mechanical impedance measuring. Then the char-
acteristic data are: c2=543 m/s, G=590 MPa, E=1595 MPa supposing the same values 
of μ, δ and  The velocity of surface waves determined by using the phase veloc-
ity method at the frequency f=550 Hz is c2=510 m/s. The corresponding modulus of 
elasticity E given by equation (1.55) will be E=1600 MPa. Once again, the values 
obtained by the mechanical impedance method and by the phase velocity method com-
pare favourably. However, we have used for the evaluation the theory of a viscoelastic 
homogeneous half-space, although in these cases the structure is a layered subgrade. 
We can suppose that by using the theory of a viscoelastic homogeneous half-space with 
the conception of complex moduli of elasticity depending on an arbitrary function of 
frequency, the behaviour of a layered half-space may be expressed adequately as well. 
While for a viscoelastic subgrade material the change of moduli of elasticity depend-
ing on frequency causes the viscoelasticity, for the layered subgrade this change of 
modulus is the result of the inghomogeneity of the subgrade. The resulting effect, for 
the layered subgrade, is qualitatively same, because the sub-base layers of pavement 
structures cause an increase of the moduli with increasing frequency.

1.4 Diagnosis of dynamic elasticity and rigidity 
of layered pavement structures

The method of phase velocity of stress-wave propagation can be used both in the pro-
cess of construction and in the course of road and airfield servicing as a serviceable 
and effective means of diagnostic testing. Though these methods cannot replace bear-
ing capacity tests, they offer rich information on structural material properties, pave-
ment stiffness, as well as on the overall quality of the pavement structures.

The results of the dynamic diagnosis also help in the formation and identification 
of acceptable theoretical models that agree closely with both the dynamic behaviour of 
structural materials and the total dynamic response of pavements.

When applying the phase velocity method on layered pavement structures the phase 
velocities of stress waves of various kinds can be measured, depending on the arrange-
ment of the transducers (vibrator and pick-up). The basic possibilities for the transducer 
arrangement are shown in Figs. 1.47–1.52. The arrangement of Fig. 1.47 is suitable for 
the determination of flexural waves, the arrangement of Fig. 1.48 for longitudinal 
waves, that in Fig.1.49 shear waves and that in Fig. 1.50 boundary Rayleigh waves. 
The arrangements in Fig. 1.51 and 1.52 partly replace those in Figs. 1.47 and 1.48. 
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Fig. 1.47. Transducer arrangement for determination of flexural-wave velocities.

Fig. 1.48. Transducer arrangement for determination of longitudinal-wave velocities.

Fig. 1.49. Transducer arrangement for determination of shear-wave velocities.
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Fig. 1.50. Transducer arrangement for determination of boundary—surface—wave 
velocities.

Fig. 1.51. Alternative transducer arrangement for measurement of longitudinal-wave 
velocities.

Fig. 1.52. Alternative transducer arrangement for measurement of shear-wave velocities.
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The influence of the reciprocal contact of the pavement layers and the influence of the 
contact with the subgrade obviously transform the properties and the regularities of indi-
vidual kinds of stress wave, but for the sake of this survey it is advantageous to retain the 
categorization of the wave types as for a layer with free surfaces.

1.4.1 Determination of the characteristics 
of rigidity and elasticity using detailed measurement

If the measurement of the phase velocities of stress-wave propagation is conducted on 
pavement structures after the schemes of Figs. 1.47–1.52 and over a wide frequency range 
(35–35000 Hz), the results of the testing will have the form of dispersion curves. Their 
variation with frequency or wavelength makes it possible to assess the characteristics of 
elasticity and stiffness of the pavement structures.

Typical results of measurements on rigid pavement structures [1.43], [1.44] are in 
Figs. 1.53 and 1.54. The structure of the pavement layers was as follows: 22 cm thick 
cement concrete surfacing, 5 cm thick coated sand and gravel, 12 cm thick layer of bitu-
men stabilization, and 8 cm thick layer of lime stabilization. The total thickness of the 
pavement structure is 47 cm. 

Fig. 1.53. Typical results of phase velocity measurement in rigid pavement.

According to the results in Fig. 1.53 the velocity of surface waves at high frequencies 
is cR=2420 m/s. The corresponding velocity of longitudinal waves  can be 
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obtained according to the ratios in Table 1.1. Provided that μ=0.20, the value of velocity 
c0 will be c0=cR/0.587=4120 m/s. It is simple to determine the modulus of elasticity E for 
pavement cement concrete surfacing using the formula  if we know or suppose the 
density ρ.

By the variation of the dispersion curve for flexural waves F and comparison of the 
experimental values with the theoretical ones, the equivalent thickness of the pavement 
structure may be determined. At very low frequencies a part of the dispersion relation S is 
formed that corresponds to stress waves propagated in the stabilization layers. The basic 
dispersion curve of longitudinal waves L has the same characteristic course as the free layer,

Fig. 1.54. Results of measurement of shear and boundary-surface-wave velocities on rigid 
pavement.

but at low frequencies the velocities radically decrease under the influence of the contact 
with the subgrade and approach the velocity of the surface waves in the subgrade. Part of 
the measured velocities forms the higher modes of dispersion curves LL.
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The phase velocities in Fig. 1.53 were measured using the schemes of Figs. 1.47 and 
1.48. The measured velocity values according to the schemes of Figs. 1.49 and 1.50 are 
plotted in Fig. 1.54. It is shown that the mean value of the shear-wave velocity c2 according 
to the basic mode is c2=2850 m/s, and the velocity of the boundary Rayleigh waves at high 
frequencies is cbound=2400–2600 m/s.

The experimental values indicated by cross marks belong to the stress waves that propa-
gate in the interlayer of coated sand and gravel or the bitumen stabilization layer. At high 
frequencies the dispersion curve approaches the velocity of shear waves  for 
these materials. 

Fig. 1.55. Typical results of phase velocity measurement on flexible pavement.

On the sections of flexible pavement structures the phase velocities of stress waves 
propagation may be measured according to the scheme in Fig. 1.47 for flexural waves. It is 
convenient to complete these results by measuring according to the schemes in Figs. 1.51 
and 1.52. All these schemes can be indicated as schemes F, L, S.
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Typical results of detailed measurement in the frequency range 35–35000 Hz on the 
section of flexible pavement are shown in Fig. 1.55. The structure of the pavement layers 
was as follows: 5 cm thick asphalt surfacing, 8 cm thick bitumen-coated sand and gravel, 
10 cm thick layer of cement stabilization (better quality), 15 cm thick layer of cement 
stabilization, and 10 cm thick layer of lime stabilization. The thickness of the pavement 
structure was 48 cm.

The results in Fig. 1.55 show that in the frequency range 35000–8000 Hz the greatest 
part of the frequency was propagated in the surface layer of asphalt surfacing, when the 
velocity of surface waves  and corresponding to a pavement surface tem-
perature T=23–28 °C. The velocity of longitudinal wave  supposing μ=0.30 will 
be c01=2910 m/s. The mean thickness of the equivalent free layer, evaluated according to 
the experimental results, is h1=0.063 m.

In the frequency range 8000–800 Hz the pavement structure acts as a whole and 
the flexural waves and their velocities represent the whole stiffness of the pavement. 
The corresponding velocity of surface waves cR for the equivalent free layer, which 
represents the whole dynamic stiffness, is determined by the value cR=1350 m/s. Then 
c0=2300 m/s if μ=0.20 or c0=2380 m/s if μ=0.30 and the thickness of the equivalent free 
layer is h2=0.345 m.

In the frequency range 800–50 Hz the decisive part of the vibration energy of flexural 
waves probably propagates in the layers of asphalt surfacing and bitumen-coated sand and 
gravel, having the velocity cR2=1500 m/s, c02=2640 m/s and the thickness of equivalent free 
layer h2=0.170 m.

Theoretical variations in the dispersion curves of flexural and longitudinal waves are 
drawn for all three response cases in Fig. 1.55 as solid lines.

The broken dispersion lines in Fig. 1.55 following the experimental results, belong to 
stress waves propagating in the layers lime stabilization layer (curve S1) and in the cement 
stabilization layers (curve Sc). They have the typical form of dispersion curves for shear 
waves, which approach at high frequencies the velocity of shear waves c2: hence for the 
lime stabilization layer c2=500 m/s and for the cement stabilization layer c2=1240 m/s.

In view of the complicated interpretation of the experimental results on flexible pave-
ments, detailed measurements was accomplished on seven different flexible pavements of 
the circular test track [1.45].

The measurement procedure was chosen according to the schemes in Figs. 1.47, 1.51 
and 1.52, which can be indicated as schemes F, L and S. At some frequencies, in particu-
lar at lower frequencies, measurement according to schemes L and S is not possible. The 
results for measured phase velocities are the same for all three schemes at a considerable 
number of frequencies. But in many cases the values of phase velocity measured accord-
ing to schemes L and S are different compared with the velocity c obtained according to 
scheme F and contribute decisively to the generallization of the dispersion knowledge for 
stress-wave propagation of various kinds. 

It is necessary to call attention to a phenomenon that was recorded by the measurement 
and evaluation of phase differences. In some cases the points of the phase diagram do not 
present only one linear dependence of the phase angle φ with the distance l; at a certain 
distance, the measured values create another linear dependence (Fig. 1.56). This signifies 
that two different wavelengths Λ1, Λ2 and two corresponding phase velocities can be evalu-
ated from the measurements.
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Fig. 1.56. Phase diagram showing two kinds of stress wave.

The subgrade of the pavement sections was created from clayed earth. The structure of the 
pavement sections was as follows:

Section 1: closed asphalt carpet CAC 4 cm
 bitumen-coated sand   
 and gravel BSG 20 cm
 sand and gravel SG 20 cm
   44 cm
Section 2: closed asphalt carpet CAC 4 cm
 coated sand and gravel CSG 20 cm
 cement stabilization CS 20 cm
   44 cm
Section 3: closed asphalt carpet CAC 4 cm
 coated sand and gravel CSG 20cm
 open asphalt carpet OAC 20cm
 mastic asphalt membrane MA 2 cm
   44 cm
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Section 4: closed asphalt carpet CAC 4 cm
 coated sand and gravel CSG 10 cm
 coated tuff CT 20 cm
 lime stabilization LS 15 cm
   49cm
Section 5: asphalt concrete AC 8 cm
 coated sand and gravel CSG 10 cm
 coated crushed material CCM 5 cm
 cement stabilization CS 20 cm
 lime stabilization LS 15 cm
   58 cm
Section 6: asphalt concrete AC 8 cm
 coated sand and gravel CSG 10 cm
 cement stabilization CS 17 cm
 sand and gravel SG 15 cm
   50cm
Section 7: mastic asphalt MA 4 cm
 asphalt concrete AC 5 cm
 cement concrete CC 15 cm
   24 cm

Using the phase velocity method the measurements were made in the frequency range 
50–35000 Hz. The results are plotted in Figs 1.57– 1.63 in the form of variations of phase 
velocity c with the wavelength Λ. The marks F, L indicate the dispersion curves of flexural 
and longitudinal waves when the pavement structure acts as a whole, the marks F1, L1 indi-
cate the dispersion curves of flexural and longitudinal waves when only the surfacing pave-
ment layer is active; and the Sk dispersion curves relate to the shear-wave propagation in 
the interlayers. The k subscript marks the k th layer, numbered from the top down. The tem-
perature T of the pavement surface is also indicated. The assessed variation of dispersion 
curves are in all cases in agreement with the structure of the tested pavement sections.

Interpretation and exploitation possibilities of the detailed measurement results

In general it can be stated that, on rigid pavements, it is possible to find out the velocities 
of flexural, longitudinal, shear and boundary waves. The dynamic moduli of elasticity for 
the material of the concrete plate of rigid pavements will be calculated according to the val-
ues of the measured velocities of surface waves cR, the velocities of shear waves c2 or the 
velocities of boundary waves cbound. The velocity of surface waves cR is the value that the 
basic dispersion curves of phase velocity for flexural and longitudinal waves achieve, at 
high frequencies or (which is the same thing) at small wavelengths. The velocity  
will be determined according to the theoretical ratios in Table 1.1. Then the dynamic modu-
lus of elasticity E is given by the relationship
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(1.56)

if ρ is the density of the surfacing concrete material.
The shear modulus of elasticity G will be determined according to the measured value 

of shear-wave velocity c2 by the relationship

(1.57)

The equivalent thickness of the pavement, h, and the dynamic flexural rigidity of the 
pavement structure is determined by using the experimental results of the dispersion 
curve for flexural waves and their comparison with the theoretical values according to 
equation (1.13) or Table 1.2. The equivalent thickness is greater than the thickness of the 
cement concrete surfacing if the contact of the surfacing is with the underlying structure. 
In the case of failed contact the equivalent thickness is practically equal to the thickness 
of the concrete surfacing.

The characteristic feature of the measurement results on flexible pavements is that the 
measured velocities of stress-wave propagation form dispersion curves of flexural and lon-
gitudinal waves of a double kind. The curves F1 and L1 are related to the surface part of 
the pavement structure whereas the dispersion curves F and L correspond to the pavement 
structure as a whole.

The velocities of surface waves in the surface part of the pavement, cR1, and the velocity 
of surface waves, cR, which corresponds to the activity of the whole pavement structure, 
will be determined according to the variation of dispersion curves at high frequencies. 
These values cR1 and cR, as shown in Figs. 1.57–1.63, are influenced by the temperature 

Fig. 1.57. Measured phase velocities on pavement section 1.
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Fig. 1.58. Measured phase velocities on pavement section 2.

Fig. 1.59. Measured phase velocities on pavement section 3.
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Fig. 1.60. Measured phase velocities on pavement section 4.

Fig. 1.61. Measured phase velocities on pavement section 5.
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Fig. 1.62. Measured phase velocities on pavement section 6.

Fig. 1.63. Measured phase velocities on pavement section 7.

of the material. Except for sections 1 and 6, when the temperature of the surface material 
does not differ from the temperature of the rest of the structure, the velocities cR1 of all the 
pavement sections have lower values in comparison with cR as a consequence of the higher 
temperature of the surfacing material.
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The measured values of cR1 and cR make it possible to determine the velocities c0 and the 
variation of phase velocity c for flexural waves with the wavelengths Λ as a base for the 
determination of the mean equivalent thickness h1 or h.

The procedure for the evaluation of the equivalent thickness is given in references [1.10] 
and [1.13]. In view of the laborious evaluation of this parameter, the generalized procedure 
will be given here.

Guillemin [1.8] presented the interpretation of the measured results of flexural-wave 
velocities, expressing the dispersion curve by the exponential relationship

(1.58)

where A, B are functions of the minimal velocities ratio c/cR. The mean equivalent thick-
ness h and the velocity of surface waves, cR, are determined by using the set of measured 
values Λ of c and specially compiled nomograms. It is necessary to remark that the results 
of this measurement do not cover the high-frequency range and not permit the determina-
tion of the value of cR with acceptable precision. 

The results of our measurements, which were effected in the frequency range to 35000 Hz, 
make it possible to assess the values of  and cR quite precisely, especially if the dispersion 
curves F1, L1 or F, L are formed. In these conditions it is more advantageous to start from the 
known values of surface-wave velocities  and cR, and to determine the equivalent thick-
nesses h1 and h by using the Lamb dispersion curve.

The basic dispersion curve for flexural stress waves in the free layer is expressed by the 
simple relationships in equations (1.13)—(1.18). From the equation (1.13) the relationship 
of the wavelength Λ to the layer thickness h and phase velocity c is expressed in the form

(1.59)

where  and  are functions of Poisson’s ratio μ, given by the relationships

(1.60)

(1.61)

(1.62)

and κ0 is determined by equation (1.17).
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For Λ/h→0 the phase velocity c approaches the velocity of surface waves, cR, and is 
given according to equation (1.13) by the relationship

(1.63)

All these equations are necessary for the evaluation and interpretation of the measured 
results according to the basic dispersion curve of flexural stress waves. 

The input data are:
cR—determined by measurement
 μ—approximated or determined on specimens the set of measured wavelengths and 
phase velocities c:
Λ1, c1
Λ2, c2
.
.
.
Λn, cn
The output data describing the characteristics of pavement structure are:

1. the velocity c0 calculated according to the relationship

 

if

 

2.  the individual thicknesses of equivalent layer hi, calculated according to the 
equation

 

if,  are given in the form (1.60), (1.61), (1.62)

3. the mean value of equivalent thickness h given by the relationship

 

4.  the dynamic stiffness of the unit pavement strip EJ reduced by density  calculated 
according to the relationship 
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(1.64)

5.  the values of wavelengths Λk for theoretical variations of dispersion curve correspond-
ing to the thickness h calculated according to the relationship

 

where ck=kcR, if k=0.9, 0.8, 0.7,…,0.1.
The outlined procedure was used for the evaluation of measured results on seven 

pavement sections on the circular test track. The characteristics of the equivalent surface 
layer and the layer that is equivalent to the whole pavement structure are presented in 
Table 1.17.

Table 1.17. Evaluation of measurement on pavement sections of the circular test track.

Section number Surface layer Whole structure
 cR

(m/s)
c0

(m/s)
h

(m)
EJ/ cR

(m/s)
c0

(m/s)
h

(m)
EJ/

1 1300 2209 0.096 363 1200 2039 0.159 1400
2 1260 2141 0.122 687 1370 2328 0.405 29950
3 1140 1937 0.110 421 1140 1937 0.176 1714
4 1240 2107 0.136 935 1420 2413 0.246 7210
5 1340 2280 0.114 638 1540 2617 0.157 2192
6 1550 2634 0.106 696 1440 2447 0.179 2870
7 1260 2141 0.057 70 2500 4248 0.123 2785

EJ in Nm2; density  in kg/m3

The experimental results obtained by detailed measurement on the pavement structures 
form dispersion curves of type S, which correspond to shear stress waves propagating 
through the interlayers of the pavement. The common feature of dispersion curves S is that 
the phase velocity c decreases with decreasing of wavelength Λ and comes asymptotically 
near the velocity of shear waves  in the interlayer. This velocity cs may be used 
as the bass for the determination of the elasticity characteristic of the interlayer material.

It is convenient to use the empirical formula for the relationship between velocity c and 
the wavelength Λ in the form

c=A+BΛ2 (1.65)

The parameters A, B will be obtained by the method of least squares from experimental 
values
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(1.66)

(1.67)

where n is the number of experimental values.
The value of phase velocity cs is the phase velocity c for Λ→0; then according to 

equation (1.65) it follows that

cs=A. (1.68)

1.4.2 Simplified procedures for assessment of the elasticity and rigidity 
characteristics of pavement structures

The most general and most significant characteristic is the dynamic flexural stiffness 
of the pavement structure, which can be determined according to the measured variation of 
the dispersion curve for flexural stress waves and its comparison with the theoretical one. 
The dynamic flexural stiffness EJ of pavement structures is given by equation (1.64). It 
can be seen that this characteristic of the equivalent layer corresponding to the pavement 
structure is given by two unknown parameters: the thickness of the equivalent layer, h, and 
the velocity  Therefore only two values of phase velocity c and wavelength Λ 
determined at two frequencies, are needed for their calculation [1.12, 1.45].

If the phase velocity c and wavelength Λ measured at the first frequency fa are denoted 
by ca, Λa and at the second frequency fb by cb, Λb, then according to equation (1.59) two 
equations may be written. From these equations a biquadratic equation is performed for the 
calculation of the value c0, which is established from the equation 

(1.69)

The positive sign before the square root in equation (1.69) is valid if ca<cb, whereas the 
negative sign is valid if ca>cb.

The ratio η is given in the form

(1.70)

By using the calculated value c0 the second characteristic-equivalent thickness h is deter-
mined according to equation (1.59).

The choice of frequencies

The best approximation of the dispersion curve of flexural stress waves that describes the 
characteristics and dynamic stiffness of the pavement structure can be stated if the mea-
surement is carried out at two frequencies that are sufficiently far apart.
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The most suitable frequencies for rigid pavements are fa=20000 Hz and fb=250Hz.
When measuring flexible pavements or pavements under construction the best fre-

quency fb is 250 Hz. The choice of the frequency fa depends on the condition that the mea-
sured wavelength Λa is shorter than 1/10 of the wavelength Λb. Sometimes the frequency 
fa=10000 Hz is satisfactory.

Comparison of simplified procedures with detailed measurement

The results of detailed measurement on five different sections of rigid pavement structures 
are in reference [1.44]. A comparison of the characteristics of the equivalent layer and the 
dynamic stiffness according to the detailed measurement and measurement at only two 
frequencies is given in Table 1.18. 

Table 1.18. Comparison of rigid pavement characteristics according to detailed and simpli-
fied measurement.

Section number Detailed measurement Simplified procedure
 h

(m)
c0

(m/s)
EJ/ h

(m)
c0

(m/s)
EJ/

1 0.176 4460 8990 0.169 4610 8580
2 0.230 4096 17100 0.220 4310 16400
3 0.176 4250 8170 0.171 4340 7860
4 0.217 4210 15050 0.191 4350 11050
5 0.229 4040 16300 0.210 4190 13600

EJ in Nm2; density  in kg/m3

A comparison of the characteristics of the equivalent layer according to the detailed and 
simplified procedures on seven sections of flexible pavements of the circular test track is 
given in Table 1.19.

Table 1.19. Comparison of flexible pavement characteristics according to detailed and 
simplified measurement.

Section number Detailed measurement Simplified procedure
 h

(m)
c0

(m/s)
EJ/ h

(m)
c0

(m/s)
EJ/

1 0.159 2039 1400 0.159 2100 1480
2 0.405 2328 29950 0.386 2380 27200
3 0.176 1937 1714 0.181 1998 1975
4 0.246 2413 7210 0.153 1650 2080
5 0.157 2617 2192 0.154 2820 2420
6 0.179 2447 2870 0.189 2500 3520
7 0.123 4248 2785 0.171 3990 6630

EJ in Nm2; density  in kg/m3
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It can be seen that the characteristics of the equivalent pavement structures determined 
by using the simplified procedure at two frequencies correspond very well to the values 
obtained by detailed measurement on rigid and flexible pavements. More substantial dif-
ferences are only found in sections 4 and 7 of the flexible pavements. But section 7 has a 
special structure and on pavement section 4 the dispersion curve representing the whole 
flexural rigidity was determined only in a narrow frequency range.

1.4.3 Evaluation of the rigidity of layered pavements using deflection 
determined by means of stress-wave velocities

The dispersion curve of quasi-flexural stress waves gives the variation of the phase veloc-
ity of flexural waves with the wavelength or frequency. The position and the shape of the 
dispersion curve plotted as phase velocity c versus wavelength Λ depend on the rigidity 
of the pavement structure and on the rigidity of the subgrade. At short wavelengths, i.e. at 
high frequencies, the dispersion curve goes from the value of phase velocity cR in the sur-
face layer of the pavement. As the wavelenght increases, the phase velocity decreases, and 
at Λ→∞, i.e. at very small frequencies, the phase velocity approaches the value cRs, which 
corresponds to the velocity of surface Rayleigh waves in the subgrade. The characteristic 
form of the dispersion curve in a pavement lying on a subgrade is indicated in Fig. 1.64.

The theoretical solution and in particular the numerical results for the case of propagation 
of quasi-flexural waves in a layer lying on a subgrade has not yet been obtained because 
of the excessive complexity of the frequency transcendental equation. The characteristic 
form of the dispersion curve in Fig. 1.64 was confirmed not only by means of pavement 
measurements but also by detailed experimental study on plane models.

Fig. 1.64. Form of dispersion curve for quasi-flexural stress waves in layered pavement 
structure lying on subgrade.

In some cases, especially in flexible pavements, the continual variation of the dispersion 
curve may be interrupted as a consequence of imperfect contact of the pavement layers. 
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These irregularities are, however, a reflection of the real activity of the pavement structure 
and its dynamic stiffness.

The variation of the dispersion curve for quasi-flexural stress waves is, in a certain 
wavelength range, identical with the form of the dispersion curve for flexural waves in 
the equivalent layer with free boundaries. At large wavelengths it deviates from this and 
approaches asymptotically the wave velocity in the subgrade, cRs (Fig. 1.65). 

So it is possible to suppose that for Λ<Λ1 the pavement structure acts as the equiva-
lent plate with thickness h and stiffness  while the velocity of longitudinal 
waves, c0, and the thickness of the equivalent plate, h, follow from the variation of the 
dispersion curve. The corresponding algorithm for the determination of c0 and h was given 
in sections 1.4.1 and 1.4.2. At wavelengths Λ>Λ1 the influence of the pavement structure 
is practically negligible and the system acts as a half-space with the characteristics of the 
subgrade.

Fig. 1.65. Theoretical dispersion curve for layered pavement on subgrade for use in 
pavement deflection computation.

From these facts about the response of pavement structures, which are confirmed by the 
results of the phase velocity method, we shall attempt further to derive the theory and 
method of rigidity evaluation for layered pavement structures using the deflection deter-
mined according to the results of measurement by the phase velocity method of stress-
wave propagation.

What are the advantages of the method of pavement rigidity evaluation by deflection? 
Above all, the evaluation of pavement rigidity by deflection has been, until now the usual 
procedure for classifying the rigidity and quality of pavements. It includes the subgrade 
reaction, whereas the dynamic stiffness of the pavement is the principal characteristic that 
evaluates the pavement structure proper.
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Deflection assessment from the results of non-destructive testing using the phase veloc-
ity method removes the need for the laborious determination of deflection characteristics 
with costly loading tests. It also eliminates the inaccuracy in the determination of deflec-
tion data influenced by the load time because it uses parameters obtained in a defined 
dynamic regime.

The formation of the procedure for pavement rigidity evaluation using deflection 
requires the derivation of theoretical relationships of deflection for the half-space and the 
plate that is equivalent to a layered pavement structure, under a normal load in a circular 
area with radius a. It is necessary to state the coherence of these theoretical relationships 
with the characteristics of flexural stress-wave propagation in the pavement lying on the 
subgrade. The synthesis will determine the resulting relationship for deflection on the basis 
of parameters ascertained by the phase-velocity method on real structures.

The procedure, which is developed in detail in [1.14], gives the relationships for pave-
ment deflection w and curvature Δ under normal vertical load p0, uniformly distributed on 
a circular contact area with radius a, in the form

(1.71)

(1.72)

where J1(η) is a Bessel function of the first kind, first order with real argument η.
The limit value η1, corresponding to the wavelength Λ1, is determined from the condition 

of deflection equality for the equivalent layer and half-space according to the relationship

(1.73)

In the equations (1.71) and (1.72) c2s is the velocity of shear waves in the subgrade, μs and 
 are Poisson’s ratio and density respectively for the subgrade material, and  and c0 are 

characteristics of the equivalent layer. The phase velocities c are given in the form

(1.74)

if

(1.75)

(1.76)

κ is given by the equation (1.17) and μ is Poisson’s ratio for the equivalent plate material.
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In the case of normal loading with intensity p0 through a rigid circular slab, the stress 
distribution on the contact area does not correspond to a uniform load distribution. The 
pavement deflection in the loaded area, w0, is given in the form

(1.77)

It follows from the structure of the relationships for deflections w, w0 or curvature Δ 
that these values can be calculated according to the characteristics assessed by using the 
algorithms of paragraphs 1.4.1 or 1.4.2. The calculation of w, w0 or Δ may be realized by 
applying computers.

Let us now apply this procedure for pavement calculation to the pavement sections of 
the circular test track. For this purpose we can use the results of the simplified measure-
ments which are given in Table 1.18. The values of deflection w and curvature Δ calculated 
according to equations (1.71) and (1.72) and deflection w0 calculated according to equation 
(1.77) are listed in Table 1.20. The following input data were substituted: c2s=160 m/s, 
μs=0.40, =1800 kg/m3, μ=0.30, =2200 kg/m3, a=0.178 m. . 

Table 1.20. Deflections and curvatures of pavement sections computed according to the 
measured phase velocities.

Section number Deflection w
(m)

Curvature Δ
(m-1)

Deflection w0
(m)

1 0.1168×10-2p0 0.1556×10-1p0 0.8855×10-3
P0

2 0.5701×10-3p0 0.2223×10-2p0 0.3905×10-3p0

3 0.1082×10-2p0 0.1270×10-1p0 0.8191×10-3p0

4 0.1056×10-2p0 0.1173×10-1p0 0.8052×10-3p0

5 0.1005×10-2p0 0.1021×10-1p0 0.7715×10-3p0

6 0.9391×10-3p0 0.8534×10-3p0 0.6954×10-3p0

7 0.7583×10-3p0 0.4493×10-2p0 0.5881×10-3p0

Normal load intensity p0 in MPa

Table 1.21. Comparison of pavement deflections determined using different methods.

 Deflections w (mm)
Section 
number

Static testing Damped impact 
testing

Benkelman’s deflec-
tograph

Phase velocity 
method

 T 
(°C)

w   w T (°C)

   (0.135–00.389) (0.662–1.115)   
1 27 0.72

(0.13–0.14)
0.207

(0.059–0.144)
0.9145

(0.170–0.530)
0.585 25

2 18 0.135
(0.26–0.30)

0.107
(0.081–0.178)

0.318
(0.260–1.215)

0.285 42
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3 18 0.28 0.122
(0.071–0.146)

0.622
(0.365–1.41)

0.541 36

4 21 0.44
(0.21–0.41)

0.109
(0.056–0.083)

0.694
(0.381–1.182)

0.528 27

5 18.5 0.31 0.073
(0.052–0.26)

0.745
(0.466–1.58)

0.502 33

6 30 0.35
(0.14–0.31)

0.147
(0.054–0.616)

0.937
(0.052–0.446)

0.469 24

7 38 0.225 0.235 0.269 0.397 36

The pavement section rigidity, expressed by using w or Δ, gives the sequence: 2, 7, 
6, 5, 4, 3, 1. Pavement section 2 presents the highest dynamic stiffness, section 1 the 
lowest.

The results of deflection measurements on these pavement sections by static tests 
using the load bridge, Benkelman deflectograph and by damped impact tests with a pulse 
time of 0.03 s are in the study [1.46]. Table 1.21 gives a survey of measured deflection 
values in mm under a normal load intensity of 0.5 MPa: the range of measured values 
(in parenthesis) and the mean values. The deflections determined according to the 
measured phase velocities are given in the last column of the table.

The measured deflection values using the damped impact test or Benkelman 
deflectograph display a considerable dispersion. A comparison is possible only with 
the values of the static test or with the mean values of all measurements. Table 1.22 
gives a survey of the comparative values. The deflection values obtained by the phase 
velocity method are compared with the mean values in the first three columns of the 
table. The temperature of the pavement section material was not considered. The 
classification of pavement sections is given by the sequence 2, 7, 6, 5, 4, 3, 1 for the 
phase velocity method and by 2, 7, 3, 5, 4, 6, 1 for the mean values of direct deflection 
measurements.

Table 1.22. Comparison of pavement deflections determined by the phase velocity method 
and by static testing.

Section 
number

w (mm) w (mm) w0 
(mm)

w (mm) w (mm)

 Mean values of all 
measurements

Phase velocity 
method

Static 
testing

Phase velocity method 
(temperature correction)

1 0.614 0.585     0.443 0.72 0.595
2 0.186 0.285     0.180 0.135 0.165
3 0.341 0.541     0.409 0.28 0.451
4 0.414 0.528     0.403 0.44 0.498
5 0.376 0.502     0.385 0.31 0.442
6 0.478 0.469     0.348 0.35 0.499
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The comparison of the deflections obtained according to the phase velocity method with 
the deflections of the static load test is given in the second half of Table 1.22. At the same 
time the deflections according to the phase velocitiy method were reduced at a comparable 
temperature by using the reduction 0.005 mm at 1 °C. The stiffness of the pavement section 
determines the sequence 2, 7, 5, 3, 4, 6, 1 for the phase velocity method and 2, 7, 3, 5, 6, 
4, 1 for static load testing.

With the exception of section 1 the deflection values w, determined according to the 
phase velocity method, are a little greater than the values from the static tests. This fol-
lows from the fact, that these values are determined as the maximal deflection at r=0 by 
the supposition of a uniformly distributed normal load on the circular area, while the static 
deflections correspond to the mean values under the rigid load slab. 

The values of deflections w0 present good global agreement with the deflections obtained 
by direct measurement.

It can be gathered from these results that the comparisons demonstrate the reality and 
objectivity of pavement evaluation by the deflection based on the measured phase veloci-
ties of stress-wave propagation.

1.4.4 Diagnosis of dynamic elasticity and rigidity 
of highway pavement sections

Diagnostic measurements on highway pavement structures were performed over a few 
years in collaboration with construction enterprises. The aim of these measurements was to 
verify these advanced new procedures for the complex evaluation of dynamic elasticity and 
rigidity in layered pavement structures and to obtain qualitative parameters for highway 
construction.

Description of pavement structures, measurement results and evaluation

The structure of the pavement layers on highway sections was as follows: a 24 cm thick 
cement concrete plate, a 4 cm thick bituminous interlayer, a 15 cm thick cement stabiliza-
tion layer, and a 35 cm thick layer of sand and gravel. The total thickness was 78 cm. The 
subgrade was formed of loess-clay material or clay-sand material with boulders.

Diagnostic measurements were made on pavement sections in which the cement con-
crete surfacing was manufactured half or one year ago. Table 1.23 gives some of the mea-
surement results. The values of wavelengths and velocities Λa, Λb, ca, cb are the mean values 
from the measuring results on the inner and outer lanes. The atmospheric temperature was 
6–10 °C.

A summary of the characteristics used to evaluate the dynamic elasticity and rigidity of 
the measured highway sections is given in Table 1.24.

The homogeneity of concrete production may be evaluated by the determination of the 
standard deviation and coefficient of variation for the set of measured values of c0, as given 
in Table 1.25. As the strength of cement concrete is empirically found to be approximately 
proportional 
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Table 1.23. Results of measurement on highway pavements.

Section number Section in km Frequency f
(Hz)

Wavelength Λ
(m)

Phase velocity c
(m/s)

  20000 0.1175 2350
1 8.8 250 2.917 729
  20000 0.125 2500
2 9.0 250 2.782 696
  20000 0.121 2420
3 9.3 250 2.895 724
  20000 0.119 2380
4 9.5 250 3.217 804
  20000 0.1187 2375
5 9.7 250 3.202 801
  20000 0.1162 2325
6 9.9 250 2.920 730
  20000 0.1175 2350
7 14.0 250 2.665 666
  20000 0.120 2400
8 137.0 250 2.795 699
  20000 0.1203 2405
9 137.0 250 2.937 734

Table 1.24. Summary of evaluated characteristics for pavement elasticity and rigidity.

Section number Section in km

(m/s)

h
(m)

EJ
(Nm2)

Deflection w
(m)

Curvature Δ
(m-1)

1 8.8 4038 0.304 38049 0.4160×10-3p0 0.1149×10-2p0

2 9.0 4324 0.255 25738 0.4518×10-3p0 0.1459×10-2p0

3 9.3 4166 0.289 34795 0.4234×10-3p0 0.1204×10-2p0

4 9.5 4075 0.371 70610 0.3659×10-3p0 0.0762×10-2p0

5 9.7 4067 0.368 68929 0.3677×10-3p0 0.0775×10-2p0

6 9.9 3993 0.308 38969 0.4142×10-3p0 0.1137×10-2p0

7 14.0 4060 0.249 21245 0.4737×10-3p0 0.1708×10-2p0

8 137.0 4138 0.270 28077 0.4410×10-3p0 0.1398×10-2p0

9 137.0 4135 0.300 38448 0.4145×10-3p0 0.1129×10-2p0

Density  in kg/m3, normal load intensity p0 in MPa

to the fourth power of the velocity c0, the coefficient of variation for concrete strength will 
be given by the fourth multiple of the variation coefficient for the velocity, i.e. by ν≈0.092. 
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A variation coefficient for concrete strength of under 10% indicates a good standard of 
concrete production and placement. 

Table 1.25. Evaluation of the homogeneity of cement concrete surfacing in highway 
pavements.

Section number Section in 
km

n c0 Mean value 
of c0

ε ε2

  (km/s) (km/s)    
1 8.8 1 4.038  -0.073 0.005329
2 9.0 2 4.324  0.213 0.045369
3 9.3 3 4.166  0.055 0.003025
4 9.5 4 4.075  -0.036 0.001296
5 9.7 5 4.067 4.111 -0.044 0.001936
6 9.9 6 3.993  -0.118 0.013924
7 14.0 7 4.060  -0.051 0.002601
8 137.0 8 4.138  0.027 0.000729
9 137.0 9 4.135  0.024 0.000576 
Σ   36.996  0.641 0.074785

Variance 
Standard deviation σ=0.09668
Coefficient of variation v=σ/c0mean=0.09668/4.111=0.023

The standard deviation σ can be assessed directly from the measured values of stress-wave 
velocity at the frequency f=20000 Hz, which corresponds to the velocities of surface Ray-
leigh waves in the concrete plate.

The values of the equivalent thickness h and dynamic flexural stiffness EJ, which are 
characteristics of the rigidity for the layered pavement structure as a whole, have consider-
ably greater dispersion.

This suggests that the layers of cement stabilization and bituminous interlayers on par-
ticular sections have very different qualities or thicknesses, so that the cement concrete 
plate does not always have the same thickness.

It can be seen that the quality of the concrete surfacing, on its own, does not guarantee 
high stiffness of the pavement structure. The highest velocity c0, i.e. the highest quality of 
concrete, was obtained on the pavement section 2, but the stiffness of the total structure is 
one of the weakest.

The evaluation of pavement rigidity by deflection is very near to the method of quality 
and rigidity evaluation that has been used until now. It is the most objective evaluation 
because it includes the activity of the subgrade as well.

Provided that the intensity of normal load p0=0.5 MPa, the greatest deflections will be 
in the sections 7 (0.237 mm) and 2 (0.226 mm). The pavement sections with the greatest 
stiffness 4 and 5 present deflection values of 0.183 mm.

The measurement was made again on the same pavement sections 1–6 after eight 
months. Repeated measurement gives a valuable opportunity to compare results or to eval-
uate changes in the structure.
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Table 1.26. Comparison of repeated measurement results on highway pavements.

Section 
number

Section 
in km

Frequency 
f(Hz)

Wave length Λ (m) Phase velocity c (m/s)

   Measurement 
1.

Measurement 
2.

Measurement 
1.

Measure-
ment 2

  20000 0.1175 0.1191 2350 2382
1 8.8 250 2.917 2.865 729 716
  20000 0.1250 0.1274 2500 2548
2 9.0 250 2.782 2.593 696 648
  20000 0.1210 0.1220 2420 2440
3 9.3 250 2.895 2.777 724 694
  20000 0.1190 0.1200 2380 2400
4 9.5 250 3.217 3.200 804 800
  20000 0.1187 0.1212 2375 2424
5 9.7 250 3.202 3.235 801 809
  20000 0.1162 0.1200 2325 2400
6 9.9 250 2.920 3.000 730 750

The results of measured wavelengths A and phase velocities c at the frequencies f=20000 Hz 
and f=250 Hz are compared in Table 1.26. A simple comparison of the characteristic values 

Table 1.27. Comparison of repeated evaluation results for highway pavements.

Sec. 
num.

Sec-
tion 

in km (m/s)

h
(m)

EJ
(Nm2)

Deflection w
(m)

  1. 
meas.

2. 
meas.

1. 
meas

2. 
meas.

1. 
meas.

2. 
meas.

1. 
meas.

2. 
meas.

1 8.8 4038 4099 0.304 0.287 38049 33244 0.4160×10-3p0 0.4280×10-3p0

2 9.0 4324 4442 0.255 0.213 25738 15930 0.4518×10-3p0 0.5042×10-3p0

3 9.3 4166 4213 0.289 0.261 34795 26266 0.4234×10-3p0 0.4504×10-3p0

4 9.5 4075 4112 0.371 0.363 70 610 67406 0.3659×10-3p0 0.3691×10-3p0

5 9.7 4067 4153 0.368 0.367 68929 71262 0.3677×10-3p0 0.3649×10-3p0

6 9.9 3992 4122 0.308 0.315 38969 44293 0.4142×10-3p0 0.4022×10-3p0

Density  in kg/m3 normal load intensity p0 in MPa

for 1 and 2 measurements documents the high degree of reproducibility. A summary of 
the characteristics of dynamic elasticity and rigidity of the highway sections is given in 
Table 1.27.
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Table 1.28. Measurement results on highway pavement structures.

Number of meas. Section in km Frequency Λa ca Frequency Λb cb
  (Hz) (m) (m/s) (Hz) (m) (m/s)

1 44.950 20000 0.1141 2282 250 3.038 759.5
2 45.200 20000 0.1117 2234 250 3.054 763.8
3 45.400 20000 0.1136 2272 250 3.055 763.8
4 45.650 20000 0.1147 2294 250 3.000 750.0
5 45.750 20000 0.1153 2306 250 2.973 743.2
6 45.900 20000 0.1179 2358 250 3.057 764.2
7 46.100 20000 0.1169 2338 250 3.186 796.5
8 48.260 20000 0.1172 2344 250 3.163 790.7
9 46.700 20000 0.1159 2318 250 2.951 737.7
10 47.000 20000 0.1141 2282 250 2.857 714.2
11 47.100 20000 0.1134 2268 250 3.094 773.5
12 47.300 20000 0.1167 2334 250 3.026 756.5

It can be seen that the velocities c0 increased after eight months, i.e. the dynamic modulus 
of elasticity increased by approximately 2–6%. The equivalent thickness h of the sections 
1–5 decreased and that of the section 6 increased. There are similar changes in the param-
eters of rigidity. The maximum rigidity is again present in the pavement sections 4 and 5, 
while the minimum rigidity is again in the pavement section 2.

The changes of section rigidity may be caused by changes in the contact of the pave-
ment layers or by building site traffic.

Comparison of the quality parameters of concrete surfacing from direct 
measurements on highway pavements with the values of laboratory testing 

on core samples

The diagnostic measurements of phase velocities ca, cb and wavelengths Λa, Λb at the fre-
quencies f=20000 Hz and 250 Hz were carried out on 12 highway pavement sections in km 
44.950–47.300 (Table 1.28). The results of the evaluation are given in Table 1.29.

At the same time three core samples were taken from the concrete surfacing at every 
measurement site. The dynamic modulus of elasticity E was measured in the laboratory 
by using the core samples, with the resonance method and longitudinal vibration of the 
cylindrical core samples. Data about the dimensions of the tested cylindrical core samples, 
about the density  and the comparison of the values of the elasticity modulus are given 
in Table 1.30.

It can be seen that direct measurements on pavement structures make it possible to 
obtain from the measured values of velocity c0 qualitative parameters that are equivalent to 
the values determined on test samples bored from the concrete surfacing of the pavement 
structure.
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Table 1.29. Evaluation of elasticity and rigidity for highway pavement sections.

Number of meas. hekv Deflection w/p0×103 Deflection w0/
p0×103

 (m/s) (m) EJ (Nm2) w (m) w0 (m)
1 3910 0.344 51862 0.3905 0.2785
2 3824 0.357 55545 0.3856 0.2729
3 3891 0.350 54153 0.3872 0.2766
4 3933 0.333 47393 0.3977 0.2853
5 3956 0.324 44323 0.4025 0.2920
6 4044 0.335 51389 0.3904 0.2801
7 4002 0.371 68198 0.3689 0.2601
8 4014 0.364 64780 0.3726 0.2650
9 3978 0.317 41917 0.4079 0.2964
10 3919 0.301 34777 0.4250 0.3096
11 3883 0.361 59005 0.3918 0.2704
12 4003 0.332 48839 0.4018 0.2849

Table 1.30. Comparison of dynamic moduli of elasticity in cement concrete sufacing 
obtained by using resonance and phase velocity methods.

Number of 
meas.

Core diam-
eter

Length of 
core sample

Density Modulus of elasticity E Resonance 
method Phase velocity method

 (m) (m) (kg/m3) (MPa) (MPa)
1 0.150 0.250 2339 35 580 35 760
2 0.150 0.242 2328 35 500 34 040
3 0.150 0.260 2272 35 280 34 400
4 0.150 0.245 2310 36 790 35 730
5 0.1485 0.255 2312 33 580 36 180
6 0.1485 0.240 2382 38 610 38 950
7 0.1485 0.249 2356 37 950 37 732
8 0.1485 0.238 2351 36 570 37 870
9 0.150 0.267 2289 34 110 36 220
10 0.1497 0.238 2348 35 270 36 060
11 0.1497 0.268 2282 33 830 34 410
12 0.1497 0.247 2335 35 590 37 410

1.4.5 Testing pavements under construction
The methods of dynamic diagnosis and evaluation can also be applied to pavements under 
construction. In this section we present the results of measurements on six sections of 
pavement under construction. The structure of the pavement was as follows: an 8 cm thick 
first layer of cement stabilization with aggloporite (40% aggloporite, 12% cement), a 19 
cm thick second layer of cement stabilization with aggloporite (40% aggloporite, 10% 
cement), and a 24 cm thick sub-base layer. At the time of measurement the first layer of 
cement stabilization was 15 days old and the second layer was 8 weeks old. The material 
density of these layers was =1900 kg/m2.

Tests using the simplified phase velocity method were performed at frequencies 250 
and 10000 Hz or 15000 Hz. The results of the measurement and evaluation are given in 
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Table 1.31. The qualitative parameters of evaluation were determined on the basis of 
measured phase velocities at frequencies 250 and 10000 Hz or at frequencies 250 and 
15000 Hz. It can be seen that the differences are very small.

The results of this evaluation hint at considerable rigidity difference in the measured 
sections, which is supported by differences in the equivalent thickness h, in the tiffness EJ 
and in the values of deflection w.

Many other detailed measurements were made on pavements under various kinds of 
construction [1.43]. The structure of these sections was as follows:

measurements 
1 and 3:

The subgrade was formed by a 4 m thick embankment from clayed sand and 
gravel, compacted slightly.

measurements 
2 and 9:

A 5 m embankment from clayed sand and gravel, 20 cm thick layer of crushed 
stone with grain size 32–64 mm, a bituminous spraying and 3 cm thick scatter-
ing of crushed gravel with grain size 8–16 mm, and a 10 cm thick layer of coated 
sand and gravel. The temperature of the surfacing material, T=43 °C (measure-
ment 2) or T=15 °C (measurement 9).

measurements 
7 and 8:

The subgrade (the original material), 25 cm thick layer of sand and gravel, and 
a 24 cm thick layer of cement stabilization.

measurements 4, 
5 and 6:

A 4 m embankment (clayed sand and gravel or original material), 25 cm thick 
layer of sand and gravel, 24 cm thick layer of cement stabilization, and a 4 cm 
thick layer of coated sand and gravel. The temperature of the surfacing material, 
T=27–30 °C.

measurement A: A similar structure as in sections 4, 5 and 6. T=30 °C.
measurement B: the completed section A with a 24 cm thick layer of cement concrete surfacing.

The results of measurements 1 and 3 on the subgrade determined the velocity of surfaces 
waves cR=140–180 m/s, while at high frequencies (short wavelengths) this velocity achieved 
the value cR=250 m/s. This corresponds to compacted subgrade surfacing. Dynamic 
moduli of elasticity for the subgrade material, obtained according to the relationship 

 are Es=95–180 MPa, provided that =1800 kg/m3 and in the compacted 
surface layer Es=345 MPa.

Measurements on the other sections of pavement under construction generated typical 
variations of dispersion curves for quasi-flexural stress waves and allow the use of the 
usual evaluation procedures.

Table 1.32 summarizes the characteristics obtained for dynamic elasticity and rigidity 
of pavement sections.

Measurements 2 and 9 on the same section, which had atypical base and sub-base lay-
ers, document very weak rigidity. The deflections and the curvatures reached the highest 
values. The influence of different temperatures on the surface bituminous layer manifests 
itself as a change in the pavement characteristics, as can be seen in Table 1.32.

Measurements 7 and 8 on the same section with the finished layer of cement 
stabilization give substantially higher rigidity characteristics, although the low value of h 
suggests that the thickness of the cement stabilization layer does not reach the prescribed 
value of 24.0 cm.

Sections 4, 5 and 6 belong to the pavements with finished base layers; that is in addi-
tion to the cement stabilization layer they have a bituminous membrane. It can be seen 
from the results in Table 1.32 that the rigidity of the pavement sections increased and 
the dynamic stiffness, deflection and curvature are very similar for all three sections. 
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Table 1.32. Evaluation of dynamic elasticity and rigidity of pavements under construcion.

Number of meas.

(m/s)

h
(m) EJ in (Nm2) 

Deflection w/p0
w in (m)

Curvature Δ/p0
Δ in (m-1)

2 1436 0.096 151 1.5703.10-3 5.9785.10-2

9 2494 0.076 223 1.3957.10-3 4.3715.10–2

7–8 2621 0.143 1674 0.8684.10-3 1.1623.10-2

4 2040 0.253 5591 0.6598.10-3 0.5749.10-2

5 2450 0.204 4215 0.6924.10-3 0.6378.10-2

6 1503 0.321 6238 0.6756.10-3 0.6372.10-2

A 2633 0.264 10667 0.5449.10-3 0.3358.10-2

B 3958 0.425 100400 0.3428.10-3 0.0621.10-2

density  in (kg/m3)
normal load intensity p0 in (MPa)

Lastly, the evaluation of section A with all base layers and the subsequent evaluation B 
on the same section but with cement concrete surfacing demonstrate conclusively that 
there is a radical change in the rigidity characteristics due to the activity of the cement 
concrete pavement surfacing.

Figure 1.66 gives a summary of the rigidities obtained by dynamic diagnostic measure-
ments on highway pavement structures expressed in terms of the determined deflections w0 
versus the normal load p0. 

Fig. 1.66. Survey of rigidities obtained by diagnostic measurement on highway pavements 
according to deflection.
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The results of measurements using phase velocity method and their evaluation, per-
formed on the various sections of pavements under construction, document the efficiency 
of the testing method and the proposed evaluation procedures. They are a reliable means 
for evaluating the properties and quality of pavement structures during their construction.

1.4.6 Influence of base and sub-base layers on the overall rigidity 
of pavement structures

The test results on six sections of highway pavement under construction with base layers of 
cement stabilization and aggloporite, given in Table 1.31, can be used to evaluate the influ-
ence of the base layers on overall pavement rigidity. After the cement concrete surfacing 
was finished, tests were made on the same sections of pavement structure. The results of 
the measurements and the determined evaluation parameters are given in Table 1.33. 

Table 1.33. Evaluation of pavements after completion of cement concrete surfacing.

Number of meas. Section in 
km

Frequency
(Hz)

Λa
(m)

ca
(m/s)

Frequency
(Hz)

Λb
(m)

cb
(m/s)

1 109.880 20000 0.1159 2318 250 3.383 845
2 109.940 20000 0.1130 2260 250 3.209 802
3 110.000 20000 0.1182 2364 250 3.207 801
4 110.070 20000 0.1155 2310 250 3.408 852
5 110.180 20000 0.1196 2392 250 3.279 819
6 110.240 20000 0.1185 2370 250 2.970 742

Number of meas.  hekv
(m)

EJ 
EJ in (Nm2)

w0/p0
w0 in (m)

 

1 3961  0.428 102333 0.2344.10-3  
2 3864  0.393 75345 0.2538.10-3  
3 4048  0.371 69755 0.2603.10-3  
4 3946  0.437 108426 0.2309.10-3  
5 4094  0.384 79255 0.2510.10-3  
6 4070  0.313 42181 0.2952.10-3  

Note:  in (kg/m3), p0 in (MPa)

A comparison of the rigidity characteristics of the finished pavement structures with those 
of the base-layer structures (Table 1.31) shows the decisive influence of the rigidity of the 
subgrade and sub-base and base layers on the overall stiffness of the finished pavement 
structure. Sections 1 and 4, which presented the greatest base-layer rigidity, are also the 
sections with the greatest overall rigidity of finished pavement structure. Section 6, with 
the smallest rigidity of the base-layer structure, is the section with the smallest stiffness of 
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the finished pavement section. It can be said that, for equal quality of concrete surfacing, 
the dynamic stiffnesses of finished pavements reflect the rigidity of the subgrade and base 
layers.

The overall dynamic stiffness of pavement structures is also important from the point of 
view of a comparison with the rigidity of adequate physico-mathematical models, which 
could appropriately describe the properties and action of layered pavements.

Let us consider the perfect contact of all pavement layers and compare it with a model 
in which the shear contact at the pavement interlayer is interrupted. We shall use the deter-
mined characteristics of elasticity and rigidity of the base layers in Table 1.31 and the elas-
ticity characteristics of the concrete surfacing from Table 1.33. It is possible to calculate the 
equivalent thickness h and dynamic stiffness in flexion EJ for the sections studied and for 
two assumptions of contact for pavement action. These results may be compared with the 
experimental values given in Table 1.33. The comparisons are summarized in Table 1.34.

Table 1.34. Comparison of theoretical and experimental rigidity parameters for finished 
pavement structures.

Section 
number

 hekv
(m)

  EJ/ .10-3

EJ in (Nm2)
 

 perfect 
contact

without shear 
contact at inter-

layer

experiment perfect 
contact

without 
shear con-

tact

experi-
ment

1 0.540 0.335 0.428 217.5 49.9 102.3
2 0.452 0.291 0.393 115.5 30.7 75.3
3 0.367 0.262 0.372 67.8 24.6 69.7
4 0.477 0.305 0.437 141.2 36.9 108.4
5 0.390 0.268 0.384 82.5 26.8 79.2
6 0.346 0.254 0.313 57.6 22.5 42.2

It can be seen that the equivalent thickness and dynamic stiffness in flexion determined 
according to measurements using the phase velocity method fall between the values calcu-
lated assuming perfect contact of the layers and those assuming interrupted shear contact 
at the interlayer. The interaction of the pavement layers will change over time owing to 
volume changes and traffic. This trend will be manifested as a decrease of the real values 
of the rigidity parameters.

The complex method of dynamic diagnosis of pavement structure presented here per-
mits advanced possibilities to investigate and observe non-destructively the changes in the 
rigidity and quality of pavement structures over time factor or due to the effect of traffic 
[1.41, 1.47].

Knowledge of the dynamic behaviour of the subgrade and pavement materials, and of 
the dynamic parameters of pavement rigidity, which may be acquired through the applica-
tion of dynamic testing methods, together constitute the starting point for the development 
of acceptable theoretical models of a layered pavement system.



2  
MODEL OF THE EQUIVALENT 

PLATE ON SUBGRADE

The results of dynamic diagnosis also serve for the formation and identification of 
acceptable theoretical models of pavement structures which closely agree with both the 
dynamic behaviour of structural materials and the total dynamic reaction of road pavements 
or airfield runways.

The model of the equivalent plate on subgrade is a model by means of which the behav-
iour of layered pavement structures may be expressed. The layered pavement structure 
itself is too complex a model to be used as a basis for the solution of dynamic tasks.

The dynamic theory of the equivalent plate lying on subgrade makes it possible to deter-
mine the dynamic deflection and all decisive internal forces of a real layered pavement 
structure.

2.1 Calculation of cross-section quantities of equivalent plate 
and calculation of stress in layered pavement structures

A comparison of the state of stress in layered plates obtained by a more exact solution 
applying the finite elements method with the results of a simplified technical solution has 
been realized in [2.1]. The simplified solution was established on the assumption that the 
normal line to the central plane of the layered plate will keep the normal to the plate under 
a load too. The comparison demonstrated that this technical theory is, from a practical point 
of view, suitable for the determination of stresses in the layered plate.

Let us assume a layered pavement structure with n layers as shown in the Fig. 2.1. By 
assuming the retention of the normal line to the central plane the deformation εx changes 
linearly in relation to the coordinate z. The stresses σx are linear in every layer and their 

Fig. 2.1. Schematic diagram of layered pavement structure.
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plots form lines, which cross a central axis. This central axis is situated at a distance e=−z0 
from the surface of the layered pavement.

The distance e is determined by the equilibrium condition of the normal forces ∫σxdz=0 
in the cross-section of the unit width of the layered pavement. The equation is [2.1]

(2.1)

where

(2.2)

The normal stresses σx,i in the i th layer under a bending moment M are established accord-
ing to the relationship

(2.3)

if the stiffness of the layered system D is given in the form 

(2.4)

The tangential stresses τxz of pavement structure with perfect contact of the layers are deter-
mined by the relationship

(2.5)

where Q is the shear force, the stiffness  is given in the form

(2.6)

and  is expressed by the relationship

(2.7)

Equation (2.7) is valid for an arbitrary point of the l th layer of the structure.
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2.1.1 Calculation of stress in layered structures with defective layer contact
The influence of volume changes and traffic in a layered pavement structure manifests 
itself as defective shear contact at the interface of some of the layers. For instance, in 
cement concrete highway pavements it is supposed that shear contact failure appears in the 
region of the bituminous interlayer.

In such a case the total stiffness D is the sum of the partial stiffnesses D1, D2,…Dk of 
the layered pavement parts, the contact interfaces of which do not transmit the tangential 
stresses. The following equation is valid:

D=D1+D2+…Dk. (2.8)

Equations (2.1) and (2.4) can be used for calculating the individual central axis positions 
or partial stiffnesses.

The total bending moment M straining the pavement structure is divided into the partial 
values Mj according to the relationship 

(2.9)

The partial shear force Qj is established from the equation

(2.10)

while the following relationship is valid:

(2.11)

The coefficients κ, κ1,…κk express the influence of non-uniformity in shear stress distribu-
tion along the thickness.

In practice the following simplified relationships can be used:

(2.12)

and

(2.13)

in which heq is the equivalent thickness of the total structure and heq,j are the equivalent 
thicknesses of the j th part of the layered system.

By the determination of the partial quantities Mj and Qj it is possible to use the similar 
relationships (2.3), (2.5) to calculate the normal and tangential stresses in the parts of the 
layered system with partial stiffnesses Dj, 
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2.1.2 Coherence of layered pavement stiffness with the characteristics 
of the equivalent plate

The physical model of the equivalent plate in the case of a layered pavement is defined by 
the equivalent thickness heq and the elasticity characteristics corresponding to the material 
of the surface layer. Equality of the stiffness Dekv for the equivalent plate and the stiffness 
D for the real layered system has to be fulfilled. It is expressed by the equation 

(2.14)

Table 2.1. Composition and charasteristics of pavement materials.

Layer number Material Thickness alternative a) alternative b)
 (m) E(MPa) μ E(MPa) μ

1 cement concrete 0.24 38000 0.20 38000 0.20
2 bituminous interlayer 0.04 5000 0.35 2500 0.35
3 cement stabilization 0.15 10000 0.25 8000 0.25
4 sand and gravel 0.35 500 0.35 300 0.35

The thickness of the equivalent plate, heq, according to equation (2.14) is given in the 
form

 

(2.15)

for perfect contact of all layers and in the form

(2.16)

for defective shear contact at the interfaces of the partial structures of the layered system.
Equation (2.15) can be used to calculate the partial equivalent thicknesses, heq.

2.1.3 Variations of normal and tangential stress for highway cement concrete 
pavements with perfect layer contact

Provided that the composition and characteristics of pavement materials in two alternatives 
correspond to the values in Table 2.1, the results of the solution are as follows
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Alternative (a)

e=0.1638 m, heq=0.371 m, D=168.36×106 N m2

Normal stresses:

σ01/M=−38.51, σ11/M=17.92, σ12/M=2.57, σ22/M=3.93,

σ23/M=7.36, σ33/M=16.87, σ34/M=0.90, σ44/M=2.08

Tangential stresses:

τ01/Q=0.0, τ1/Q=3.03, τ11/Q=τ12/Q=2.37,

τ22/Q=τ23/Q=2.26, τ3/Q=2.491, τ33/Q=τ34/Q=0.554,

τ4/Q=0.613, τ44/Q=0.0

Alternative (b)

e=0.154 m, heq=0.347 m, D=137.59×106 N m2

Normal stresses:

σ01/M=−44.31, σ12/M=24.73, σ12/M=1.78, σ22/M=2.60

σ23/M=7.81, σ33/M=17.11, σ34/M=0.68, σ44/M=1.55

Tangential stresses:

τ01/Q=0.0, τ1/Q=3.70, τ11/Q=τ12/Q=2.90,

Fig. 2.2. Variation of stresses in layered pavement.

τ22/Q=τ23/Q=2.83, τ44/Q=3.06, τ33/Q=τ34/Q=1.16,
τ4/Q=1.208, τ44/Q=0.0

The stress variations are depicted graphically in Fig.2.2.
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2.1.4 Variations of normal and tangential stress for highway cement concrete 
pavements with defective shear contact in the bituminous interlayer

The structure and material characteristics of the pavement layers are assumed to be the 
same as in the previous section, but the shear contact at interface 1, i.e. at the interface of 
the cement surfacing layer and the bituminous interlayer is interrupted.

The results of the solution are as follows.

Alternative (a)

e1=0.12 m, D1=45.6×106 N m2

e2=0.128 m, D2=19.19×106 N m2

heq=0.2698 m, D=64.79×106 N m2

Normal stresses:

σ01/M=−73.30, σ11/M=73.30, σ12/M=−11.34, σ22/M=−7.82,

σ23/M=−14.64, σ33/M=10.06, σ34/M=0.537, σ44/M=3.615

Shear stresses:

τ01/Q=0.0, τ1/Q=5.34, τ11/Q=τ12/Q=0.0,

τ22/Q=τ23/Q=0.124,

τ3/Q=0.347, τ33/Q=τ34/Q=0.236, τ4/Q=0.198, τ44/Q=0.0

Alternative (b)

e1=0.12 m, D1=45.6×106 Nm2

e2=0.1276 m, D2=11.9×106 Nm2 

heq=0.2593 m, D=57.5×106 Nm2

Normal stresses:

σ01/M=−82.60, σ11/M=82.60, σ12/M=−6.32, σ22/M=−4.34,

σ23/M=−13.00, σ33/M=9.25, σ34/M=0.371, σ44/M=2.45

Shear stresses:

τ01/Q=0.0, τ1/Q=5.55, τ11/Q=τ12/Q=0.0,

τ22/Q=τ23/Q=0.0673,

τ3/Q=0.2593, τ33/Q=τ34/Q=0.1619, τ4/Q=0.1368,

τ44/Q=0.0
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Fig. 2.3. Variation of stresses in layered pavement with defective shear contact in bituminous 
interface.

The variations of the stresses are drawn in Fig. 2.3. It can be seen from a comparison of 
the results for the two cases of layered pavement activity that the defective shear contact 
in the bituminous interface leads to a considerable decrease in pavement stiffness and to 
an increase in the normal and shear stresses in the layer of concrete surfacing. The normal 
tension stresses and the shear stresses in the sub-base layers are considerably reduced. 



3  
VARIANTS OF THE DYNAMIC THEORY OF 
THE EQUIVALENT PLATE ON SUBGRADE

On the basis of the experimental studies described in Chapter 1 the following working 
hypotheses can be formulated.

1. The dynamic properties and behaviour of the layered pavement structure are suf-
ficiently similar to the dynamic properties and behaviour of the equivalent layer that 
is in contact with the subgrade.

2. The elasticity characteristics for the material of the equivalent layer and its thickness 
and the total flexural stiffness of the system have to express the dynamic behaviour 
of the real structure according to the same dispersion curve of quasi-flexural stress 
waves.

3. The equivalent layer lying on the subgrade allows the modelling of various states of 
the total dynamic flexural stiffness of the real structure, which are dependent on the 
subgrade stiffness, subbase and surface layers of the pavement and on the contact 
quality at the layer interfaces.

In conformity with these hypotheses the layer in contact with the half-space is one of the 
possible models. Such a system has to be analysed on the basis of the equations of elasticity 
theory with corresponding boundary conditions on the surface and contact conditions for 
the stresses and displacements at the interface of the layer and the halfspace. This system 
fulfills the required criteria, and guarantees a precise mathematical formulation of the 
accepted physical model, although difficulties can be expected in the numerical solution 
of the dynamic task.

The other possibility is the layer (or plate) on subgrade without shear contact. This 
system fulfills the required criteria as well. It can be proved that the interrupted shear 
contact has a slight influence on the typical dispersion curve for stress-waves velocities. 
For the equivalent plate on a half-space the formulation, by using the differential equation 
of motion with the influence of shear and rotational inertia and at the same time the 
halfspace reaction, secures a sufficiently precise mathematical formulation of the model 
and extensive possibilities for the numerical solution of the dynamic problems.

At last it is possible to use the technical theories of the layer (plate) on the subgrade in 
which the simplified physical model of the subgrade is accepted. The system is mathemati-
cally formulated by the differential equation of motion for the plate with the influence of 
subgrade reaction. Although these systems assume the simplified subgrade action, they 
have the widest application in the solution of miscellaneous dynamic problems. They also 
make it possible to formulate special cases of subgrade, such as a subsoil layer with a given 
thickness lying on an unyielding subgrade.
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Applying either variant to the formulation of the dynamic theory of the equivalent layer 
lying on subgrade, it is inevitable that we have to consider the viscoelastic behaviour of 
the materials. The materials of pavement structures on a bituminous base and the materials 
of the subbase layers and subgrade present marked viscoelastic properties. In determinig 
the dynamic behaviour of pavement structures these viscoelastic materials are manifested 
partly by strong damping of vibration and partly by changes of the elastic characteristics 
with frequency and (for bituminous material) with temperature as well.

From the point of view of applications the dynamic viscoelasticity, the most acceptable 
form of definition for the viscoelastic behaviour of materials is the concept of complex 
moduli. This concept is in harmony with the current trend towards the development and 
utilization of numerical methods and computer techniques, and at the same time is based 
on experimental determinations of the dynamic viscoelastic characteristics over a wide 
frequency range.

The concept of complex moduli of elasticity formulates the dynamic viscoelastic behav-
iour of materials as a stationary harmonic process. The complex shear modulus  and 
complex bulk modulus  are expressed by the relationships

(3.1)

(3.2)

in which  are the real parts of the complex moduli, δG is the damping parameter of 
the shear effect, and δB is the damping parameter of the volume effect. The subscripts ω, T 
indicate that the values of the complex moduli relate to a given angular frequency ω and 
temperature T.

Assuming equal rheological regularities for the changes of volume and form, then 
δB=δG=δ and Poisson’s ratio μ is independent of frequency. The fact that the definition of 
the viscoelastic behaviour of complex moduli is realized for a stationary harmonic process 
must not be a barrier for the solution of a periodic vibration problems under pulse impact 
loading. It is possible to use the Fourier integral transformation and the results of station-
ary vibration as a starting point. Of course the initial conditions cannot be fulfilled during 
this procedure.

3.1 Layer in contact with the half-space
A layer in contact with the half-space is one of the variants of the dynamic theory of the 
equivalent plate (layer) on subgrade. The torsional and vertical vibration of the layer on the 
half-space are two actual problems of this system.

The problem of the vertical vibration of an isotropic elastic half-space under a harmoni-
cally variable normal load on a circular area and the vertical vibration of a mass with a 
circular contact area on the half-space has been solved by Reissner [3.1] and Šechter [3.2]. 
A summary of the results of [3.2] is to be found in [3.3]. The same task was also analysed 
by Bycroft [3.4].

The torsional vibration of the elastic half-space under a torsional harmonically vari-
able load acting on a circular contact area was first analysed approximately by Reissner 
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[3.5] and subsequently has been analysed precisely by Reissner and Sagochi [3.6] and 
Bycroft [3.4].

Commencing from this knowledge and taking the viscoelastic behaviour as the basis 
of the conception of complex moduli we shall study actual problems of layer vibration in 
contact with the half-space.

3.1.1 Torsional vibration of layer on viscoelastic half-space
The differential equation of motion by torsional vibration in cylindrical coordinates has 
the form

(3.3)

where  is the tangential displacement,  is the density and G* is the complex shear 
modulus.

The shear stresses are determined by the equations

(3.4)

We assume stationary harmonic vibration:

(3.5)

and use the Hankel integral transformation

(3.6)

The solution of differential equation (3.3) is then given by the relationship

(3.7)

where

(3.8)
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if

(3.9)

Let the harmonic variable torsional moment M(t)=Meiωt act on layer I with thickness h, 
which is in contact with the half-space. The boundary conditions on the surface at z=0 are 
given in the form 

(3.10)
 

for the case of linear distribution of the shear stresses on a circular contact area with radius 
a, and in the form

(3.11) 

for the case of stress distribution under a rigid plate, which is supposed to be the same as 
in the static case.

The conditions at the interface between the layer and halfspace, i.e. at z=h, have the 
form

(3.12) 

The application of the Hankel integral transformation to equations (3.10) and (3.11) gives 
the transforms of stresses

or

(3.14)
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Provided that in the solution of equation (3.7) for the half-space only the term with negative 
exponent is selected in accordance with its physical meaning, the displacements  
and stresses  can be expressed. By using the boundary conditions and conditions 
at the interface a system of equations is established, which gives the expressions for the 
functions U in the form 

(3.15)

(3.16)

(3.17)

where

(3.18)

(3.19)

and

(3.20)

The complex velocities of shear waves in the layer and halfspace are in the form 
 if  G*=G(1+iδ).

After rearranging, if the ratios are denoted according to the relationships 

(3.21)

(3.21)

(3.22)
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the original displacements in the layer and in the half-space for the case of linear distribu-
tion of shear stresses from torsional moment M are given by the relationships

(3.23)

(3.24)

In the case of shear stress distribution, which corresponds to equation (3.11), the relation-
ships are given in the form

(3.25)

(3.26)

The terms marked by  and H* have the form

(3.27) 

(3.28)

if 

(3.29)

(3.30)

(3.31)
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(3.32)

The original displacements (3.23)–(3.26) are given by improper integrals, the sub-integral 
functions of which are complex functions of a real variable, have no discontinuities in 
the domain of integration and the improper integrals converge. They can be calculated by 
numerical integration using computers.

3.1.2 Torsional vibration of mass on layered half-space
A rigid disk with mass m and circular contact area of radius a lies on the layered half-space. 
The harmonically variable moment of torsion M=M0e

iωt acting on the disk causes torsional 
vibration. The equation of motion is valid in the form

(3.33)

where I is the mass moment of inertia, M(t) is the reaction of the subbase, and γ is the angu-
lar displacement of the disk. For a circular disk with thickness hd and radius a, I is given in 
the form 

The angular displacement γ corresponds to the mean angular displacement of the 
layered half-space under the disk. It can be determined by using the Rayleigh theorem of 
reciprocity [3.4] from the condition that expressed the equality of deformation work of 
affected torsional moment on the mean angular displacement with the work of the supposed 
distribution of tangential stresses on the contact circular area.

For instance, by stress distribution according to equation (3.11) the equation is valid in 
the form 

(3.34) 

After integration with respect to the variable r the angular displacement γ is given by the 
relationship

(3.35)
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The mean dynamic angular displacement of the disk in a general form is given by the 
relationship

(3.36)

where the real and imaginary part of mean angular displacement γR, γJ will be obtained by 
numerical calculation of the improper integrals (3.35).

By substitution of (3.36) into (3.33) the sub-base reaction M(t)=Meiωt can be 
expressed, if

(3.37)

and

(3.38)

The amplitude-frequency characteristic is given by the equation 

(3.39)

and the phase-frequency characteristic by the relationship

(3.40)

The function of normalized mechanical impedance Z*, which for stationary forced harmonic 
vibration is defined [1.22] as the ratio of the torsional exciting moment to the multiple of 
the angular displacement acceleration and mass moment of inertia for the disk, is given in 
absolute value by the relationship

(3.41)
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Fig. 3.1. Variation of mean dynamic angular displacement of layered half-space.

The variations of the mean dynamic angular displacements of the layered half-space, of 
the amplitudes of torsional vibration for the mass on the subbase and of the mechanical 
impedance functions are plotted in Figs. 3.1–3.3. They were calculated according to 
equations (3.35), (3.39) and (3.41) for the following parameter values: ε=0.02, γ=0.85, 
δ=0.1, δI=0.05, h/a=1.0.

Fig. 3.2. Amplitude-frequency characteristics for torsional vibration of mass on layered 
half-space.
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The dependence of the mean dynamic angular displacements of the layered half-space, |γ|, 
on the ratio of the layer thickness h to the radius a for fixed values of the frequency Ω is 
shown in Fig. 3.4. It can be seen that the amplitudes of dynamic angular displacements for 
h/a>1 are stable whereas for h/a<1 the amplitudes increase rapidly with decreasing h/a.

The amplitude of dynamic angular displacement is linearly dependent on the value ε, 
which follows from equation (3.35). For instance, the dependence of |γ| on ε for h/a=1.5 is 
shown in Fig. 3.5.

3.1.3 Vertical vibration of layer on viscoelastic half-space
Starting from the scheme of relationships between the general stress tensor and general 
strain tensor we can express the relationships between the tensor of the mean normal

Fig. 3.3. Mechanical impedance functions for torsional vibration of mass on layered 
half-space.



Variants of the dynamic theory of the equivalent plate on subgrade 105

Fig. 3.4. Dependence of mean dynamic angular displacement |γ| on ratio h/a for fixed 
values of Ω.

Fig. 3.5. Variation of amplitude of dynamic angular displacement |γ| with ratio ε.

stresses and the tensor of the mean normal deformations by using the complex bulk modu-
lus B*, and the relationships between the stress deviator and strain deviator by using the 
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complex modulus G*. In the case of axial symmetry and cylindrical coordinates (r, φ, z), 
the equations of motion have the form

 

(3.42)

where u is horizontal displacement, w is vertical displacement and  is density.
The stresses are given by the relationships

(3.43)

Let us make use of Hankel’s integral transformation on the functions of variable r in the 
equations of motion (3.42), i.e. for the function u(r, z, t) in the form

(3.44)

and for the function w(z, t) according to the relationship
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(3.45)

Supposing that the steady harmonically variable vibration corresponds to the relationships

(3.46)

the system of ordinary differential equations is established in the form

(3.47)

If an auxiliary function F(z) is used according to the relationships 

(3.48)

(3.49)

the first of equations (3.47) will be fulfilled identically, and by substituting into the second 
of equations (3.47), the differential equation is established after rearranging into the form

(3.50)

where the complex velocity of dilatational waves is given by

(3.51)
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and the complex velocity of shear waves by

(3.52)

The roots of the characteristic equation for (3.50) are

(3.53)

(3.54)

Hence the auxiliary function F(z) is given by the equation

(3.55)

if

(3.56)

and  are arbitrary complex functions of variable α. 
The displacement transforms Hu, Hw are determined according to equations (3.48) and 

(3.49). For the layer medium I the equations have the form

(3.57)

(3.58)

while the expression  was inserted into the unknown functions  
For the half-space medium in accordance with the physical meaning of the problem we use 
only exponentially decreasing members and the displacement transforms have the form

(3.59)

(3.60)

where  are arbitrary complex functions of a and the expression  has been 
inserted into the 

The equations for stress transforms can be established according to the relationships 
(3.43). If the equation for σz is multiplied by the expression rJ0(αr) and integrated in the 
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limits (0, ∞) and similarly the equation for τrz is multiplied by rJ1(αr) and integrated in the 
limits (0, ∞), the stress transforms in the layer medium are given by the relationships

(3.61)

(3.62)

The stress transforms in the half-space medium are given by the expressions 

(3.63)

(3.64)

Boundary conditions and contact conditions at the interface

We are interested in the vertical displacement of the layer on the half-space under a dynamic, 
harmonically variable normal load on the layer surface. It is assumed that the normal load 
is uniformly distributed on a circular area with radius a, according to the variation that 
corresponds to the static contact problem of a rigid disk on the half-space. The boundary 
conditions at the layer surface for z=0 are

 

(3.65)
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where p0 is the load intensity and P is the normal force. 
By using Hankel’s integral transformation the transforms are expressed in the form

(3.66)

(3.67)

The contact conditions at the interface of the layer and the half-space are

(3.68)

By substituting into the boundary and contact conditions and rearranging, the system 
of equations in Table 3.1 is obtained for the calculation of unknown complex functions 

 This system can only be solved numerically for fixed values of angular 
frequency ω and α.

The originals of the displacements and stresses were obtained by the inverse of Hankel’s 
transformation according to the relationships 
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(3.69)

The sub-integral functions are complex functions of the real variable α; they have no 
discontinuities in the integration limits in view of the viscoelastic behaviour of the layer 
medium and half-space medium. It is possible to suppose that the improper integrals con-
verge and can be evaluated by numerical integration. The numerical study is very labori-
ous, however, and is not suitable for practical use.

3.2 Stress waves in layer on half-space without shear contact
The interpretation of the measurement results obtained on the pavement structures is based 
on the suppositon of the continual dispersion curve of quasi-flexural stress waves in the 
equivalent layer on a subgrade. This dispersion curve for the long wavelengths approaches 
the velocity of surface waves at the subgrade in consequence of the pavement contact with 
the subgrade. It is interesting to know whether this variance of the dispersion curve is also 
regular in the case of interrupted shear contact between the layer and the half-space. Such a 
study is also significant for the technical theories of the equivalent plate on a subgrade.

The relationships derived in the previous chapter make it possible to study the influence 
of imperfect contact at the interface of the layer and the halfspace on the variance of the 
dispersion curves of stress-wave propagation.

3.2.1 Boundary and contact conditions at the interface
Supposing the same boundary conditions as given by the relationships (3.64), (3.65) or 
(3.66), (3.67), the contact conditions at the interface of the layer and halfspace are 

(3.70)
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By using the conditions (3.70) the complex functions  are eliminated in the form

 

(3.71)

and the system of equations in Table 3.2 is given for the unknown complex functions 

3.2.2 Frequency equation
The frequency equation of the problem can be established as a determinant of matrix coef-
ficients for the homogenous system of equations in Table 3.2. By adding and subtracting 
the first and second column of matrix coefficients like the third and fourth column, together 
with other rearrangements, the elements of matrix coefficients in dimensionless form are 
given by the relationships 
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(3.72)
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where

F=αh

Q=q*h

S=s*h

(3.73)

and

R=(S2+F2)−4QSF2

G*=G(1+iδ) (3.74)

The determinants of the matrix coefficients equal to zero have the form 

a12 [a21 a33 a44+a41 a23 a34–a21 a34 a43−a31 a23 a44]

+a14 a21 a32 a43+a31 a42 a23–a41 a32 a23−a21 a42 a33]=0.
(3.75)

3.2.3 Curves of dispersion for stress-wave phase velocities
The frequency equation (3.75) for the layer on a half-space without shear contact makes it 
possible to obtain the dispersion variances of stress-wave propagation in the system. The 
number of dispersion curves that determine the dependence of the propagation character-
istics on the frequency or wavelength is infinite, as is the number of natural frequencies of 
vibration of bodies with continually distributed mass.

The process of determination of the dispersion curve variances from equation (3.75) can 
be carried out using two alternatives, as follows.

(a) The complex values of wave number F in dimensionless form are found for fixed 
values of frequency, by which the frequency equation (3.75) is fulfilled.

The concretization of such a procedure is in the formation of a dimensionless frequency 
β in the form

(3.76)

and the relationships

(3.77)
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(3.78)

(3.19)

(3.80)

where

(3.81)

(3.82)

(3.83)

Every quantity representing the state of stress or deformation of the system is by stress-
wave propagation from the source, proportionate to the expression ei(ωt−αr). The wave 
number α. has to be complex, considering the viscoelastic behaviour of the material and 
the dissipation of energy into the halfspace. The physically real solutions correspond to the 
complex roots of the wave number, the imaginary part of which is negative.

The phase velocity c is determined in dimensionless form by the equation

(3.84)

where FR=2πh/Λ is the real part of the dimensionless wave number.
The imaginary part FJ of the dimensionless wave number represents the damping and 

dissipation laws of stress-wave propagation in the system medium.
b) The second procedure commences from the complex phase velocity c*=cR+icJ. The 

dimensionless complex phase velocity C corresponds to the relationship

(3.85)

and the expressions for Q1, Q, S1, S are put into the form 
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(3.86)

(3.87)

(3.88)

(3.89)

The complex values of dimensionless phase velocity C are found for fixed values of fre-
quency β, by which the frequency equation (3.75) is fulfilled.

If

β=CF (3.90)

then the real and imaginary parts of the wave number are given by

(3.91)

(3.92)

Then the phase velocity c in dimensionless form is as follows

(3.93)

At the same time the relationships for the calculation of CR and CJ by means of the real and 
imaginary part of the wave number are valid

(3.94)

(3.95)
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It follows from this that physically real values of the complex dimensionless veloc-
ity C, which fulfil the frequency equation (3.75) have to be a number with a positive 
imaginary part. 

In practice the realization of the procedure for the determination of the complex roots 
of frequency equation (3.75) is very laborious. Application of numerical methods of 
linear or quadratic interpolation, or the methods of iteration that are known and used 
for finding the real roots of transcendental equations, give favourable results only in a 
limited frequency range.

The determination of the roots for frequency equation (3.75) and the basic forms of 
the dispersion curves was possible only by using the method of finding the zero contour 
lines for the real and imaginary part of the function. Their point of intersection gives the 
approximate value of the complex root.

3.2.4 Numerical results
A numerical study was carried out for characteristics corresponding to the highway cement 
concrete structure with parameters:

ε11=0.5765, ε12=6.5500, ε22=13.6500,  δI=0.10, δ=0.20, μI=0.25, μ=0.35
The variations of the dispersion curves for the real and imaginary part of the wave 

number FR, FJ versus frequency β in the case of longitudinal and flexural waves are drawn 
in Fig. 3.6. It can be seen that  at low values of frequency β approaches the line that 
represents surface waves in the halfspace. The values  move at low frequencies on the 
line corresponding to the dilatational waves of the layer medium. At high frequencies the 
dispersion variances  and  approach the line that represents surface waves in the layer 
medium.

The relationships of phase velocities and FJ versus frequency β are drawn in Fig. 3.7 and 
the relationship of dimensionless phase velocities  and the cofficient of damping and 
dissipation FJ versus the ratio h/Λ are drawn in Fig. 3.8.

It can be stated that the forms of the basic dispersion curves of phase velocities for lon-
gitudinal and flexural waves correspond at higher frequencies or lower wavelengths to the 
forms of the dispersion curves that are valid for the free layer. The contact of the layer and 
the half-space without shear contact is apparent in the region h/Λ<0.15, where the phase 
velocities of flexural waves decrease and approach the velocity of surface waves in the 
half-space medium if the ratio h/Λ. approaches zero. 

The phase velocities of longitudinal waves in the region h/Λ<0.15 achieve values that 
exceed the velocity of dilatational waves in the layer,  but for h/Λ→0 they decrease 
intensively. It cannot in practice be confirmed, whether the values approach the value cR 
for h/Λ→0.

The influence of the contact conditions at the interface of the pavement structure and 
half-space as derived from theoretical and numerical solutions can be supported by the 
results of measurements on pavement structures. These are acting as the equivalent layer 
on a subgrade. The contact conditions with the subgrade are complex. They correspond to 
imperfect contact, the quality of which changes with time from perfect contact to a non-
shear or to the local loss of contact with the subgrade.
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Fig. 3.6. Variation of real and imaginary part of wave mumber FR, FJ versus frequency β for 
longitudinal and flexural waves in layer on half-space.

Fig. 3.7. Relationship of phase velocities  and coefficient of dissipation FJ to frequency β.
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Fig. 3.8. Relationship of phase velocities  and dissipation coefficient FJ versus ratio h/Λ.

The direct measurement of phase velocities in the range of very low frequencies is difficult 
considering the great wavelength Λ. It is possible to evaluate the phase velocities according 
to the results of measurement by the mechanical impedance method [1.38, 3.7].

The relationships of the velocities of flexural stress waves c versus the ratio h/Λ on 
eight sections of flexible pavement determined by measurement are shown in Fig. 3.9. The 
average thickness of the equivalent pavement layer was approximately h=0.40 m and the 
surface-wave velocity of the subgrade, cR=80–120 m/s. Measurement by the mechanical 
impedance method was made in the frequency range 25–1500 Hz and evaluation of the 
phase velocities was carried out according to the results below the resonance frequencies.
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Fig. 3.9. Relationship of velocities of flexural stress waves, c, versus ratio h/Λ on sections 
of flexible pavement.

The form of the dispersion curve for longitudinal stress waves may be compared with 
the experimental one obtained from measurements on a plane model [3.8], formed by a 
duralumin strip in contact with acrylon medium. The results of direct measurement of 
phase velocities are plotted in Fig. 3.10 and manifest a similar form of dispersion as for the 
theoretical solution.

Fig. 3.10. Experimental dispersion curve for longitudinal stress waves obtained on plane 
model.
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3.3 Plate on half-space without shear contact
The model of the equivalent layer replaced by a plate lying on the half-space without shear 
contact is a system that can adequately reflect the dynamic response of pavement structures 
and make it possible to realize the numerical calculations.

The differential equation of motion for the plate, including the influence of shear and 
rotational inertia [3.9, 3.10], has for unloaded elastic and isotropic plate the form

(3.96)

where w is the vertical deflection of the plate, and the velocity of longitudinal waves c3 and 
the velocity of surface waves cR are determined by the relationships 

 

(3.97)

h is the thickness of the plate,  is the material density and the plate constant D is given 
in the form

(3.98)

The coefficient κ expresses the influence of unequable distribution of shear stresses along 
the plate thickness. The relationship for κ in the form

(3.99)

was derived in [3.11] by comparing the phase velocity of propagation for flexural stress 
waves with the velocity of surface Rayleigh waves at a very short wavelength.

The differential operator  in polar coordinates (r, φ) has the form

(3.100)

The differential equation (3.96) produces a basic dispersion curve for flexural stress waves 
that is practically identical to the exact solution of the theory of elasticity for a layer with 
free surfaces.



124 Dynamics of Pavement Structures

The higher forms of dispersion curve are reduced to only one dispersion curve, which 
approaches the velocity c3 for short wavelengths.

The variation of dispersion curves for a plate with free surfaces is drawn in Fig. 3.11 for 
Poisson’s ratio μ=0.30.

Provided that the loaded plate is lying on the half-space without shear contact, the dif-
ferential equation of motion has the form

(3.101) 

if p is the intensity of vertical load of the plate surface and q is the vertical reaction of the 
half-space.

Now the basic dispersion curve for flexural stress waves corresponds to the model of 
the equivalent layer on a subgrade; that is, the phase velocities approach that of surface 
Rayleigh waves in the half-space for longwave lengths Λ.

Fig. 3.11. Dispersion curves for plate with free surfaces.

3.3.1 Conditions at the interface of plate and half-space
We assume an axisymmetrical problem, with harmonic steady vibration and viscoelastic 
behaviour of the plate and half-space on the basis of the complex moduli concept with 
equal rheological parameters for the volume and form changes.
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By using Hankel’s integral transformation on the equation of motion (3.101) according 
to the relationships

 

 (3.102)

and the assumption of harmonic vibration

Hw(α, t)=Hw(α)eiωt

Hq(α, t)=Hq(α) eiωt

Hp(α, t)=Hp(α) eiωt

(3.103)

the equation is obtained from (3.101) in the form

(3.104)

The conditions at the interface of the plate and halfspace are given in the form

(σz)z=0=q(r,t), 0<r<∞

(τrz)z=0=0, 0 <r<∞
(3.105)

The origin of the cylindrical coordinate system for the half-space is positioned at the inter-
face of the plate and half-space.

The transform of the normal stresses on the half-space surface (Hσz)z=0=
Hq, and for the 

transform of tangential stresses the equation is valid in the form

(3.106)

By using equations (3.63), (3.64) for the transforms of the stresses in the half-space medium 
the fulfilling of the interface condition follows the system of equations 
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(3.107)

All quantities that refer to the half-space are indicated by the subscript z and the asterisk 
indicates their complex values considering the concept of complex moduli.

According to the system (3.107) the following relationships are valid:

(3.108)

(3.109)

if

(3.110)

The transform of vertical deflection for the halfspace Hwz is given according to (3.60) in 
the form

(3.111)

At the interface of the plate and half-space, i.e at z=0, considering the relationship (3.111) 
the following equation is valid:

(3.112)

Substituting (3.112) into (3.104) and considering that the vertical deflection of the plate w 
has to be equal to the vertical deflection of the half-space according to the relationship

(3.113)

the equation is obtained after rearrangement in the form 

(3.114)
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where

(3.115)

if

(3.116)

and

ξ=αh (3.117)

(3.118)

(3.119) 

(3.120)

where δ is the damping parameter of the plate material and δz is the damping parameter of 
the half-space material. 

3.3.2 Normal dynamic load on circular contact area.
The basic type of dynamic load for the equivalent system of a pavement structure is a 
dynamic harmonically variable normal load of the surface on a circular area with radius a. 
We are interested in the deflection and internal forces of the plate, the subgrade reaction, 
the state of stresses and deformations of the half-space respectively.

The problem may be solved at the same time for two variable distributions of a normal 
load on a circular contact area: (a) a uniformly distributed normal load with intensity p0; 
and (b) a load according to the function that corresponds to the static contact distribution 
of the rigid disk on the half-space.
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Hankel’s transforms have the form

(a)

 

(b)

(3.121)

where P is the amplitude of the vertical resultant of a normal load.

3.3.3 Deflection of plate
The load transforms in the form (3.121) bring about the deflection of the equivalent plate 
on the half-space, the transform of which is obtained by the substitution of (3.121) into 
(3.114). Using the inverse of Hankel’s integral transformation the deflection w(r, t) is given 
by the relationship

(a) 

 

(b)

(3.122)

The deflection w corresponds to the deflection of the plate including the part of the 
deflection caused by shear. The solutions for the other internal forces of the plate depend 
on the function w1, which is given by the equation of motion [3.11] in the form

(3.123)

or, after Hankel’s integral transformation in the form

(3.124)
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Substituting (3.114) into (3.124) and rearranging the equation gives

(3.125)

By using (3.112), (3.113), (3.121) and inverse transformation the following equation is 
obtained

(3.126)

Equation (3.126) is valid in the case of load (a). Load case (b) is obtained by the substi-
tution of  in (3.126) with the expression  This substitution will be valid for 
all components of the state vector; therefore we shall only consider solutions for load 
case (a).

3.3.4 Bending moments of equivalent plate
The bending moment of the plate in the radial direction is given by the relationship [3.11]

(3.127)

Commencing from equation (3.126), the equation for the bending moment of the plate is 
derived, after rearrangment, in the form

(3.128)
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where

(3.129)

The bending moment at r=0 is given by the expression

(3.130)

The bending moment of the plate in the tangential direction is derived from the 
equation [3.11] 

(3.131)

By using equation (3.126), performing the derivations and rearranging, the equation for Mφ 
is established in the form

(3.132)

where M(ξ, β) is defined by equation (3.129).
The bending moment Mφ at r=0 is given by the relationship

(3.133)

which is identical to equation (3.130).

3.3.5 Transverse forces on equivalent plate
The transverse force of the equivalent plate, Qr, is defined by the equation [3.11]

(3.134)

Performing the substitution and rearrangement of the equation for Qr gives the 
relationship

(1.135)
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3.3.6 Reaction of subgrade
The transform of the subgrade reaction Hq is determined by equation (3.112). By using the 
equality (3.113) and the inverse of Hankel’s transformation the expression for the original 
function q(r, t) will be given in the form

(3.136)

All these internal forces are the basic decisive components of the state vector that are nec-
essary for the determination of stresses in a pavement structure under dynamic load. There 
are no difficulties in deriving the stresses in the half-space if the dynamic reaction on the 
half-space surface is given.

3.3.7 Numerical calculation of components of state vector for highway 
pavements under construction or completed

All components of the state vector for the equivalent plate on a half-space are deter-
mined in the form of improper integrals. The sub-integral functions are complex func-
tions of the real variable ξ, have no discontinuities in the integration region and the 
improper integrals converge. They can be calculated by using numerical integration 
and computers.

The relationships for bending moments and transverse force may be modified by 
separating out the parts for which direct determination of the improper integral values 
is possible.

The expression for transverse force Qr (3.135) is rearranged in the form

(3.137)

because the following equation is valid

(3.138)

The transverse force Qr for r/h<a/h is similarly given in the form
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(3.139)

Modifying the expression for bending moment in the plate (3.128) the relationship is as 
follows

(3.140)

because of the validity of 

(3.141)

(3.142)

and at the same time of the validity of (3.138).
It can be seen from equation (3.140) that there is a discontinuity for r/h=a/h as a con-

sequence of the curvature change caused by shear deformation. From the practical point 
of view it is better to neglect this specific influence of the more precise plate theory and to 
consider the relationship for bending moment Mr at r=0 in the form

(3.143)
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The relationships for bending moment Mφ (3.132) and (3.133) can be arranged in the 
same way.

For the sake of numerical calculation the limit values of functions F(ξ, β→0), F1(ξ, β→0) 
for dimensionless frequency β→0 have to be obtained.

According to equation (3.115) it follows that

(3.144)

if after equation (3.116) 

(3.145)

The limit values of the sub-integral functions in the expressions for the state vector compo-
nents are at β→0 and at the same time ξ→0. The following equations are valid

(3.146)

(3.147) 

(3.148)

(3.149) 

Motorway pavement structure under construction

The numerical calculation of state vector components is performed for the equivalent plate 
on a subgrade with thickness h, which substitutes for the motorway pavement structure 
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under construction. The structure on the subgrade is composed of a 25 cm thick sand-
gravel layer, then a 24 cm thick layer of cement stabilization and a 4 cm thick asphaltic 
layer of coated sand and gravel.

According to actual measurements on pavements under construction [1.14], we con-
sider these characteristic parameters for calculation:

Gz/G=0.02, a/h=1.0, ε2=c2/c2z=6.518, ε1=c2/c1z=3.12, μ=0.30, μz=0.35, δ=0.10, δz=0.20.
The numerical calculation was performed for 20 different frequency values β at the 

interval (0.1–5.0) and for β=0, the state vector components being calculated at r=0, r=h, 
r=2h, r=3h, r=5h and r=10h.

The approximate (but in practice sufficiently precise) values of the improper integrals 
were obtained by numerical integration over the interval ξ=(0.0–20.0). Because of the com-
plex sub-integral functions for every state vector component the real part, the imaginary 
part and absolute value and phase angle were determined.

The variations of dynamic dimensionless deflections wGa/P with the ratio r/h at the dimen-
sionless frequencies β=0.1, 0.2, 0.5, 1.0, 2.0, 3.0 and 5.0 are plotted in Figs. 3.12–3.15. 

Fig. 3.12. Variations of dynamic dimensionless deflection wGa/P with ratio r/h at 
frequencies β=0.1 and β=0.2.
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According to the stationary part of the linear course of the phase angle φw, the wave-
length Λ and phase velocity c were determined and they are recorded in Figs. 3.12–3.15.

If the values of c/c2 versus h/Λ are plotted (Fig. 3.16), it can be seen that they correspond 
to the theoretical dispersion curves for flexural stress waves in a plate under the influence 
of shear and rotational inertia. This is proof of the correct numerical calculation too. It is 
interesting that at the frequency β=3.0 a transition of the phase velocity values from the 
basic dispersion curve to the dispersion curve of higher forms sets in. The propagation 
of stress waves in the range of this transition is interrupted, as can be seen in Fig. 3.15 at 
frequency β=3.0. 

Fig. 3.13. Variation of dynamic dimensionless deflection wGa/P with ratio r/h at frequencies 
β=0.50 and β=1.0.
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Fig. 3.14. Variation of dynamic dimensionless deflection wGa/P with ratio r/h at frequencies 
β=2.0 and β=5.0.

Fig. 3.15. Variation of dynamic dimensionless deflection wGa/P with ratio r/h at 
frequency β=3.0.
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Fig. 3.16. Theoretical and experimental relationship of velocities c/c0 to h/Λ in the plate.

Fig. 3.17. Variation of dynamic dimensionless subgrade reaction qah/P and transverse 
force Qa/P in the equivalent plate on subgrade at frequency β=0.2.
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Fig. 3.18. Variation of dimensionless bending moment Ma/Ph with the h/Λ at 
frequency β=0.2.

The behaviour of the dynamic dimensionless subgrade reaction qah/P, bending moment 
Ma/Ph and transverse forces Qa/P in the equivalent plate are plotted in Figs. 3.17 and 3.18 
for the frequency β=0.20.

Fig. 3.19. Variation of dimensionless deflection wGa/P with frequency β.
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Computed variations of dynamic values for the state vector components, i.e w(r/h=0), 
q(r/h=0), Mr(r/h=1), Qr(r/h=1) with frequency β, are shown in Figs. 3.19–3.22. 

Fig. 3.20. Variation of dimensionless subgrade reaction qah/P with frequency β.

Fig. 3.21. Variation of dimensionless bending moment Ma/Ph with frequency β.
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For β→0 the problem is approaching to the static case. The variations of the values of 
w and q, in Fig. 3.23 and the values of Mr and Qr in Fig. 3.24 versus the ratio r/h for β=0 
satisfy the condition of static load; that is, the phase angles are constant, and the stress 
waves do not propagate. 

Fig. 3.22. Variation of dimensionless transverse force Qa/P with frenuency β.

Fig. 3.23. Variation of dimensionless deflection wGa/P and subgrade reaction qah/P with 
ratio r/h at β=0.
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Fig. 3.24. Variation of dimensionless bending moment Ma/Ph and transverse force Qa/P 
with ratio r/h at β=0.

Motorway pavement structure

A similar numerical analysis of the state vector components was realized for a completed 
motorway pavement with a cement concrete surfacing 24 cm thick.

Based on diagnostic measurements carried out on completed motorway pavements, the 
following values of input characteristics are considered: Gz/G=0.00423, a/h=0.548, ε2=c2/
c2z=13.65, ε1=c2/c1z=6.55, μ=0.25, μz=0.35, δ=0.10, δz=0.20.

The computed curves of the dynamic deflection characteristics wR, wJ, |w|, φw versus 
the ratio r/h for various values of dimensionless frequency β are plotted in Figs. 3.25 
and 3.26.

The variations of dynamic subgrade reaction q, bending moment Mr and transverse 
force Qr in the equivalent plate at the frequency values β=0.5 and β=1.0 are plotted in 
Figs. 3.27–3.29 and at β=0, i.e for the static case, in Figs. 3.30 and 3.31. 
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Fig. 3.25. Variation of dimensionless deflection wGa/P with ratio r/h at frequencies β=0.20 
and β=0.50.

Fig. 3.26. Variation of dimensionless deflection wGa/P with ratio r/h at frequencies β=1.0 
and β=3.5.



Variants of the dynamic theory of the equivalent plate on subgrade 143

Fig. 3.27. Variation of dimensionless subgrade reaction qah/P with ratio r/h at frequencies 
β=0.50 and β=1.0.

Fig. 3.28. Variation of dimensionless bending moment Ma/Ph with ratio r/h at frequencies 
β=0.50 and β=1.0.
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Fig. 3.29. Variation of dimensionless transverse force Qa/P with ratio r/h at frequencies 
β=0.50 and β=1.0.

Fig. 3.30. Variation of dimensionles deflection wGa/P and subgrade reaction qah/P with 
ratio r/h at β=0.
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Fig. 3.31. Variation of dimensionless bending moment Ma/Ph and transverse force Qa/P 
with ratio r/h at β=0.

Fig. 3.32. Variation of dimensionless deflection wGa/P with frequency β.
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Fig. 3.33. Variation of dimensionless subgrade reaction qah/P with frequency β.

Dynamic values of the state vector components w(r/h=0), q(r/h=0), Mr(r/h=1)Qr(r/h=1) 
versus frequency β are plotted in Figs. 3.32–3.35. 

Fig. 3.34. Variation of dimensionless bending moment Ma/Ph with frequency
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Fig. 3.35. Variation of dimensionless transverse force Qa/P with frequency β.

At the end of this numerical analysis it can be stated that the theory of the equivalent plate 
with the influence of shear and rotational inertia, lying on the subgrade fulfils the dynamic 
response of pavement structures in the frequency range=0.0–3.0 very well. This frequency 
range corresponds to the basic dispersion curve of phase velocities of stress wave propaga-
tion. An example of the computer program is given in Appendix 1.

3.3.8 Comparison of deflections and stresses in layered pavements according 
to theory of equivalent plate on subgrade and theory of layered half-space

A detailed study of the deflections, normal and shear stresses computed using the theory of 
the equivalent plate on subgrade presented in this chapter, compared with the theory of the 
layered half-space according to [3.12], has been performed in [3.13] for various structures 
of layered pavements assuming static loading. 
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Table 3.3. Composition of layered pavement structures.

Pavement 
structure

Layer material Layer 
thickness

(cm)

E(MPa)
for 0°C
11°C
27°C

Poisson 
ratio

μ
for 00C

11°C
27°C

Density

(kg/m3)

right pavement

cement concrete 24 35000 0.30 2500
asphalt concrete 4 5700 0.21 2300

  4200 0.33  
  2000 0.44  

cement stabilization 20 1200 0.25 2000
sand and gravel 15 300 0.35 2150
sand and gravel 15 120 0.35 2100

 78 cm    

flexible pavement

mastix asphalt 4 7500 0.21 2500
  5500 0.33  
  3000 0.44  

asphalt concrete 6 7500 0.21 2400
  5500 0.33  
  3000 0.44  

asphalt concrete 5 7500 0.21 2400
  5500 0.33  
  3000 0.44  

precoated aggregates 11 5700 0.21 2300
  4200 0.33  
  2000 0.44  

mechanically hardened 
aggregates

18 800 0.25 2200

sand and gravel 20 120 0.35 2100
 64 cm    

subgrade
  30 0.35 1700
  45 0.35 1800
  60 0.35 1900

Here we present only the results for one rigid pavement structure and one flexible pave-
ment. The composition of the layered structures, the layer thicknesses, moduli of material 
elasticity at 0 °C, 11 °C, 27 °C and material densities are given in Table 3.3.

The computed radial nomal stresses σr at r=0 and shear stresses τ at r=a in pavement 
structures under static load p=0.5 MPa, uniformly distributed on a circular area with 
radius a=0.2033 m, are plotted in Figs. 3.36 and 3.37. The deflection values in mm and 
vertical normal stresses σz as a subgrade reaction for temperatures 0 °C, 11 °C, 27 °C are 
also shown. 
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Fig. 3.36. Comparison of stresses and deflections computed according to the theory of 
equivalent plate on subgrade and theory of layered half-space for rigid pavement.

Fig. 3.37. Comparison of stresses and deflections according to theory of the equivalent 
plate on subgrade and theory of layered half-space for flexible pavement.

One remark has to be made concerning stress calculation below the neutral axis when 
applying the theory of the equivalent plate on subgrade. The radial and shear stresses have 
to be computed on the assumption that the loading p on a circular surface area with radius 
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a is extended with depth and the load p is reduced by the ratio (a+e)/(a+hi), where e is the 
distance of the neutral axis from the surface and hi is the distance of the i th level from the 
surface.

Comparison of the values computed according to the theory of the equivalent plate 
on subgrade with the values obtained using the theory of the layered half-space indi-
cates a very good level of agrement. However the fundamental advantage of the model 
of the equivalent plate on subgrade is the possibility of solving of decisive typical 
problems of pavement dynamics that cannot be solved in a simple way using the model 
of the layered medium.

3.4 Technical theory of plate on subgrade
The relative complexity of the model of the equivalent plate on half-space suggests that 
one should study and analyse the variants of technical theory for a dynamically equivalent 
plate on a simplified model of the subgrade.

3.4.1 Dynamic simplified model of soil base
The simplified models of the soil base, the characteristics of which are described by 
two or more parameters of elasticity, form the transition between Winkler’s model and 
the half-space theory. Such models have been presented by Filonenko-Boroditch [3.14], 
Pasternak [3.15], Vlasov-Leontjev [3.16] and others [3.17].

A dynamic simplified model of the soil base may be established by a differential equa-
tion of motion in the form

(3.150)

where w is vertical deflection, q is vertical dynamic load, K1 is the coefficient of uniform 
compression in N/m3, K2 is the coefficient of shear transmission in N/m, K3 is the coeffi-
cient of equivalent inertia in m, the operator  in the case of axial symmetry is given by 
the relationship

(3.151)

and  is the material density.
Assuming, stationary dynamic problems, the viscoelastic behaviour of the 

subgrade material may be determined by means of the complex characteristic 
 if δz is the damping parameter. The values of this 

characteristic may be determined on the basis of dynamic experiments performed on real 
subgrade [3.18].

The coefficient of equivalent inertia, K3, can fulfil conditions for various behaviours of 
the simplified model of the subgrade [3.19]. For instance, if we assume K3 is a constant, we 
can require its determination from the condition
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(3.152) 

where cRz is the velocity of surface-Rayleigh waves. Supposing the deflection w(r, t) takes 
the form

(3.153)

where  is Hankel’s function, α=2π/Λ is the wave number and ω is the angular fre-
quency, then from the homogeneous equation (3.150) we can obtain

(3.154)

Using the expression ω=ca, where c is the phase velocity of stress waves the following 
relationship can be obtained

(3.155)

It can be seen that at higher frequencies, when Λ→0, the phase velocity c approaches the 
velocity of surface waves cRz. The phase velocities c increase with increasing of wave-
length Λ. This variant of inertial forces leads to behaviour that matches quite well the 
response of real soil bases.

The other formulation of inertia forces may commence from the condition that the stress-
wave velocity is equal to the velocity of surface waves at very low frequencies. In this case 
we do not know the expression for coefficient K3 as it is a function of variable r, but it is 
possible to formulate the condition as an equation of deflection transforms after Hankel’s 
integral transformation of the homogeneous equation of motion (3.150). The condition is 
fulfilled if the following equation for the transform of inertia coefficient HK3 is valid

(3.156)

Then the phase velocity of stress-wave propagation is determined by

(3.157)

The third variant of inertia forces, which is the closest to the homogeneous half-space, is 
obtained from the condition that the phase velocity c is equal to the velocity of surface 
waves cR in a whole frequency range. The transform of inertia forces is expressed by HK3 
in the form
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(3.158)

The simplified dynamic model of the subgrade with three characteristics gives the basis for 
the conception of the technical theory of the plate lying on subgrade in dynamic problems. 
The advantage of such an idea is that dynamic characteristics and subgrade reaction can be 
formulated directly in a diferential equation of motion of the plate for the cases of complex 
layered subgrade too.

If the subgrade reaction q in diferential motion equation (3.101) is expressed according 
to the subgrade equation (3.150) for the simplified dynamic model of the soil base, the dif-
ferential equation of the plate on subgrade will be obtained in the form 

 (3.159)

3.4.2 Dispersion curve for stress-wave phase velocities and coefficient 
of equivalent inertia

The technical theory of the plate on subgrade will reflect the real dynamic behaviour of 
the system if the curve of dispersion of phase velocities for quasi-flexural stress waves 
corresponds to a free plate in the high-frequency range, and in the low-frequency region 
will approach the velocity of surface waves in the subgrade as a consequence of the plate 
contact with the subgrade.

Assuming the deflection w(r, t) in the form (3.153), then by substitution into the homo-
geneous differential equation (3.159) the following relationship is obtained

(3.160)

By using the expression ω=cα the biquadratic equation for phase velocity c is given in 
the form

(3.161)

The dispersion curve of quasi-flexural waves is expressed by the relationship
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(3.162)

where 

(3.163)

(3.164)

and

 

Assuming the formulation of inertia forces in the simplified model of the subgrade given 
by equation (3.156), the expressions can be writen in the form

 (3.165)

where P1, P2, P3 and Q1, Q2, Q3 are functions of the material characteristics of the plate and 
subgrade and plate thickness h only.

In the limit a→0 the ratio (c/c0)
2 is given by the relationship

(3.166)

We can see that the phase velocity c approaches the velocity of surface waves in subgrade 
cRz at low frequencies, when α→0.

The same result may be obtained for the formulation of inertia forces in the simplified 
model of the subgrade given by equation (3.158).

At very high frequencies when the wave number α→∞, equation (3.161) is reduced to 
the form

(3.167)

One root of this biquadratic equation corresponds to the velocity of the surface waves cR 
in the plate medium.
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The dispersion curve of phase velocities for quasi-flexural waves of the plate on sub-
grade derived on the basis of the differential equation (3.159) with the definition of the 
equivalent inertia coefficient given by equations (3.156) or (3.158) fulfils the real limit 
conditions. 

If coefficient of equivalent inertia K3 is assumed constant, then it cannot fulfil the limit 
condition for α→0, but its use is adequate, because the real subgrade is inhomogeneous, 
and surface-wave velocities increase with increased wavelength.

3.4.3 Axial symmetric dynamic load of unbounded plate on subgrade
The basic dynamic problem is a plate under an axial symmetric load of vertical harmonic 
variable force P(t)=Peiωt. For pavement structures, it is a dynamic load on a circular area 
with radius a.

The general form of the operator

 

in equation (3.159) is reduced to the form

(3.177)

By using Hankel’s integral transformation on the equation of motion (3.159) after the 
relationships

 (3.178)

and supposing harmonic vibration 

(3.179) 

and complex characteristics of elasticity, we obtain the equation
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(3.180)

The deflection transform after rearranging is given in the form

(3.181)

if

(3.182)

where the dimensionless quantities ξ (wave number) and β (frequency) are expressed by 
the relationships

ξ=αh (3.183)

(3.184)

 is the velocity of shear waves in plate medium. 

3.4.4 Solution in integral form
The transform Hp for the case of uniformly distributed load of intensity p on a circular area 
with radius a is given by the relationship
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(3.185)

where P is the amplitude of total vertical force.
Using the inverse of Hankel’s integral transformation the deflection w(r, t) according to 

equation (3.181) is obtained in the form

(3.186)

The subgrade reaction according to equation (3.150) can be expressed in the form

(3.187)

and then by the relationship

(3.188)

where

(3.189) 

According to the more accurate theory of a plate subject to shear and rotatory inertia [3.10] 
the expression for function w1 has to be derived. For the motion of a plate element in the 
vertical direction (the derivation and description is in [1.13]) the equation is valid in the 
form of equation (3.123) or, after Hankel’s integral transformation and supposed harmonic 
vibration in the form of equation (3.124).

Substituting (3.185), (3.181) and the transform Hq and by inverse transformation the 
function w1 is given by the relationship

(3.190)

where

(3.191)
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The bending moment in the radial direction, Mr, is defined by equation (3.127), and after 
substituting (3.190) and rearranging, the following expression is obtained

(3.192)

where

(3.193) 

if 

(3.194)

The transverse force on the plate, Qr, given by equation (3.134), after substituting (3.186) 
and (3.190), is obtained in the form

(3.195)

(3.196)

if

(3.197)

With regard to the validity of equations (3.138), (3.141) and (3.142) the expressions for 
bending moment and transverse force may be modified as follows

for r/h>a/h 
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(3.198)

(3.199)

The bending moment Mr at r=0 for a plate on subgrade is given by the relationship

(3.200)

All components of the state vector for a plate on subgrade are determined by improper 
integrals. The sub-integral functions are complex functions of a real variable, and have no 
discontinuities in the region of integration. The integrals converge and can be evaluated by 
using numerical integration and computers with satisfactory precision for practical use.

3.4.5 Solution in closed form
The deflection transform Hw was determined in its general form by equations (3.181) 
and (3.182). Hankel’s transform of concentrated force with amplitude P is given by the 
relationship

(3.201)

Using the inverse of Hankel’s integral transformation the dynamic deflection is

(3.202)

If the Bessel function  is expressed [1.18] by the relationship
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(3.203)

and substituted into equation (3.202), the deflection after modification is given in the 
form 

(3.204)

The interior integral computed by using the method of residua in the lower complex half-
plane is expressed in the form

(3.205)

if

(3.206)

ξ1, ξ2, ξ3 are the complex roots of the bicubic equation F(ξ, β)=0, which can be determined 
in the lower complex half-plane. Because of the validity of the equation

(3.207)

the dynamic deflection of a plate on subgrade is determined by the relationship

(3.208)

where  is Hankel’s function with the complex argument.
The solution of equation (3.208) offers the possibility of obtaining expressions of similar 

structure for other components of the state vector. 
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3.4.6 Compensation of subgrade inertia by coefficient 
of mass increase of plate

The relatively complex solutions from the previous section, which are too complex for 
practical numerical analysis, force us to find the possibility of simplified solutions.

If we assume that the inertia forces of the subgrade are included in the inertia forces of 
the plate by means of the coefficient of mass increase of the plate, kd, then the differential 
equation of motion for a plate on subgrade is determined in the form

(3.209)

where the coefficient of mass increase, kd, is a constant for every frequency of stationary 
harmonic vibration. Provided that w(r, t)=w(r)eiωt, the homogeneous equation (3.209) may 
be writen in the form

(3.210)

if

 

 

and 

(3.212)

(3.213)

β is the dimensionless frequency according to equation (3.184); h is the plate thickness.
Equation (3.210) can be expressed as a system of Bessel equations:
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(3.214)

and the solution of the homogeneous equation (3.209) is obtained in the form

w(r)=A1J0(γ1r)+A2Y0(γr)+A3J0(γ2r+A4Y0(γ2r) (3.215)

where J0(γ1r), J0(γ2r) are Bessel functions of the first kind and zero order and Y0(γ1r), Y0(γ2r) are 
Bessel functions of the second kind and zero order. A1, A2, A3, A4 are arbitrary constants.

Because the arguments γ1, γ2 are complex, it is better to write the solution (3.125) in the 
form of linear combinations of Bessel functions

(3.216)

where

η1=γ1h, η2=γ2h. (3.217)

Hankel’s functions  i.e. Bessel functions of the third kind are solely from Bessel 
functions which approach zero by the infinite values of complex arguments. The bound-
ary conditions for r→∞ are fulfilled in this manner as from a physical point of view it is 
evident that w(r)→0 for r→∞.  are arbitrary complex constants.

Hankel’s functions  converge on zero for r→∞ if complex roots η1, η2 have a posi-
tive real part and a negative imaginary part whereas Hankel’s functions  converge on 
zero for r→∞, if complex roots η1, η2 have a positive real and imaginary part too.

The complex constants  are determined from the conditions that the deflection at 
r→0 is finite and the transverse force of the system concentrated on a circle with radius r 
is at the limit at r→0 equal to the concentrated force P. 

The imaginary parts of Hankel’s functions have the members  and  which at 
r→0 approach the infinite. The condition of finite deflection at r=0 gives the equation

(3.218)

It is evident that the following equation has to be valid

(3.219)

The transverse force of the system that is necessary to express the second boundary condition 
cannot be identical to the transverse force of the plate. Starting from the differential equation 
of the system in the form

(3.220)



162 Dynamics of Pavement Structures

we can see that the increase of transverse force of the system, i.e.  is expressed 
by members  Then the transverse force of the system Qrs is given 
in the form

(3.221)

The second boundary condition has the form

(3.222)

As the following relationships are valid: 

(3.223)

(3.224)

and the function  in the limit transition for r→0 is approaching i2/πr, the bound-
ary condition (3.222) has the form

(3.225)

By using equation (3.219) the following relationship for  is obtained:

(3.226)

and the dynamic deflection of a plate on subgrade is determined by the expression

(3.227)

3.4.7 Components of the state vector under a dynamic load uniformly 
distributed on a circular area

The fundamental solution (3.227) for a plate on subgrade under a concentrated harmonic 
variable force forms the basis of generalization for other axial symmetric dynamic loads.
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Let us indicate the arguments: η1r/h=ξ1, η2r/h=ξ2 and, η1a/h=α1, η2a/h=α2 where a is the 
distance of the concentrated force from the origin of the coordinate system. Then according 
to Fig. 3.38 the distance between points A and B is determined by equation

(3.228)

For a load p1e
iωt uniformly divided along a circle with radius a, the elementary deflection at 

the point B with the coordinates (ξ, φ) under elementary load  on circle section  
has to be expressed. In conformity with the fundamental solution (3.227) and by integra-
tion the deflection is expressed by the relationship 

(3.229)

Fig. 3.38. Scheme of distances.

and after substitution of the expression (3.228) and the same for z2 the deflection is deter-
mined by the eqaution

(3.230)
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From the theory of Bessel functions the formulae are wellknown [3.20]

(3.231)

for ξ1≤α1 and 

 (3.232)

for ξ1≥α1. The prime (’) by the summation sign signifies that for n=0 the expression has to 
be divided by 2. Similar expressions apply for arguments α2, ξ2.

By integration over the limits (0, 2π), only the first member from the sum, i.e for n=0, 
is different from zero. Then the dynamic deflection expressed for ξ1≤α1, ξ2≤α2, i.e for r≤a 
is given by the relationship

(3.233)

and for ξ1≥α1, ξ2≥α2, i.e. for r≥a, by

(3.234)

where

(3.235)

For a harmonic load uniformly distributed on an annulus with radii aII and aI, if aI<aII the 
following expression is used

(3.236)
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The dynamic deflection for r≤aI is expressed in the form

(3.237)

As in general the following expression is valid 

(3.238)

and for n=1

(3.239)

the resulting relationship for deflection at r ≤aI has the form

(3.240)

and for r≥aII

(3.241)

For a point in the annulus, i.e for aI≤r≤aII, equation (3.234) has to be integrated for αI≤α≤ξ 
and equation (3.233) for ξ≤α≤αII. The relationship is obtained in the form 
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(3.242)

According to [3.20] Vronskian V is valid for functions Jn and  in the form

(3.243)

or

(3.244)

In the case n=0 the following relationship is obtained

(3.245)

Applying this equation in equation (3.242), the deflection w in the point of annulus is given 
by the expression

(3.246)

For a load uniformly distributed on a circular area with radius a=aII, i.e aI=0 or the deflec-
tion at r≤aII according to equation (3.246) and rearranged is given by the relationship 

(3.247) 

and at r≥aII according to equation (3.241) by the expression
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(3.248)

The state vector components for the case of a dynamic load uniformly distributed on a 
circular area can be derived by applying equations (3.247) and (3.248) and the proce-
dures of the previous paragraphs. The dynamic reaction of the subgrade, q, is expressed 
in the form

(3.249)

for r≤aII, and

(3.250) 

for r≥aII.
The transversal force Qr of the plate is given by the relationships

(3.251)

for r≤aII, and 

(3.252)

for  are determined by the relationships
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(3.253)

(3.254)

The radial bending moment of the plate is given by the relationships for r≤aII

(3.255)

and for r≥aII 

(3.256)

3.4.8 Physical model of thin plate on subgrade with rigidity defined 
by dispersion curve for flexural stress waves

Further simplification of the technical theory of the equivalent plate on subgrade, by ful-
filling the conditions of real behaviour of the system allows the application of a physical 
model of a thin plate with flexural rigidity, which is a function of frequency and corre-
sponds to the form of the dispersion curve for flexural stress waves.

The differential equation of motion for a plate on subgrade is given in the form

(3.257)
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The relation between the plate constant D*=[Eh3(1+iδ)]/[12(1−μ2)] and the phase veloc-
ity c of flexural waves in plate with wave number α0=2π/Λ has been determined in [1.43] 
by the expression

(3.258)

where the phase velocity is a function of wave number a or frequency ω. Because ω=cα0, 
equation (3.258) may be modified in the form

(3.259)

where c2 is the velocity of shear waves in the plate medium, β is the dimensionless fre-
quency, and δ is the damping parameter of the plate material.

If the phase velocity c of flexural waves in the plate is expressed as a function of fre-
quency β according to the relationship that corresponds to the dispersion curve of flexural 
waves in the plate, the dynamic rigidity of the plate given by (3.258) will replace the behav-
iour of the plate according to the more accurate theory described in previous paragraphs.

In [3.11] the equation for phase velocity c of flexural waves in a plate has been derived 
in the form 

(3.260)

where

(3.261)

(3.262)

if

 

Equation (3.260) expresses the form of the dispersion curve for flexural waves, which from 
the practical point of view is identical with the form of the exact solution according to elas-
ticity theory. Replacing the wave number with the dimensionless frequency β, substituting 
into equation (3.258) and rearranging the plate stiffness, D* is obtained in the form
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(3.263)

For β→0 the stiffness value has to be D*=[Eh3(1+iδ)]/[12(1−μ2)]. It is necessary to take 
care of the D* evaluation in the region of β2=12κ when the ratio forms indeterminacy of 
the type 0/0.

By a harmonic variable dynamic load it is sufficient to compute the plate stiffness 
D* according to equation (3.263) and to solve the vibration problem of a thin plate on 
subgrade.

Let us summarize the relationships for the state vector components of the thin equiva-
lent plate on subgrade with the compensation of the subgrade inertia by the coefficient of 
the mass increase of the plate, kd, under a harmonic variable load uniformly distributed on a 
circular area with radius aII. By using the analogous procedures as in previous chapters the 
same relationships for deflection and subgrade reaction are valid, i.e. (3.247), (3.248) and 
(3.249), (3.250) respectively. In these expressions the quantities  
are given in the form

(3.264)

(3.265)

The complex constant A* is expressed by the relationship

(3.266)

The radial bending moment of the plate Mr is determined by the equation

(3.267)

and after substitation Mr is given in the form for r≤aII

(3.268)

and for r≥aII 
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(3.269) 

The transverse force of the system, Qrs is in the case of a thin plate on subgrade determined 
by the relationship

(3.270)

After substitution, derivation and rearranging the expressions are determined in the form
for r≤aII

(3.271)

and for r≥aII

(3.272)

The transverse force of the plate, Qr, may be expressed by equation (3.270)–(3.272) in 
which the member with coefficient  is omitted. This member represents the part of 
the transverse force transferred by the subgrade.

3.4.9 Numerical results
Numerical calculations were performed by using computers for two variants of the techni-
cal theory of the equivalent plate on subgrade under a harmonic variable load uniformly 
distributed on a circular area with radius a:

(a) for the solution in integral form;
(b) for the solution in closed form and compensation of the subgrade inertia by the 

coefficient of the mass inecrease of the plate.

The numerical results were obtained for two types of pavement structures, represented by 
the equivalent plate on subgrade:
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I. A highway cement concrete pavement with these input characteristics:

Gz/G=0.00423, aII/h=a/h=0.548
ε1=c2/c1z=6.55, ε2=c2/c2z=13.65
μ=0.25, μz=0.35
δ=0.10, δz=0.20
K1h/E=0.000785, K2/Eh=0.000825

II. A flexible pavement with these input data:

Gz/G=0.020, aII/h=a/h=1.00
ε1=c2/c1z=3.12, ε2=c2/c2z=6.52
μ=0.30, μz=0.35
δ=0.10, δz=0.20
K1h/E=0.00192, K2/Eh=0.00673

The numerical calculations were realized for 18 different values of dimensionless frequen-
cies in the interval (0–3.0) or (0–5.0), and the state vector components were obtained at 
r=0, r=h, r=2h, r=3h, r=5h, r=7h and r=10h.

A numerical solution according to variant (b) was performed for various coefficients of 
the mass increase of the plate: kd=1.0, kd=1.25, kd=1.50, kd=1.75, kd=2.0, kd=2.5.

The variations of dimensionles deflection wE/ph, subgrade reaction q/p, transversal 
force of the plate Q/ph and bending moment of the plate M/ph2 with the ratio r/h for fre-
quencies β=0.5 and β=1.0 are plotted in Figs. 3.39–3.42. They are valid for pavement I and 
were obtained according to variant (b).

The variations of w, q, M and Q for β=0 are drawn in Figs. 3.43 and 3.44, which show 
the loss of wave character of the load process in the limited static case.

Fig. 3.39. Variation of dimensionless deflection wE/ph with ratio r/h at frequencies β=0.50 
and β=1.0.
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Fig. 3.40. Variation of dimensionless subgrade reaction q/p with ratio r/h at frequencies 
β=0.50 and β=1.0.

Fig. 3.41. Variation of dimensionless transverse force Q/ph with ratio r/h at frequencies 
β=0.50 and β=1.0.
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Fig. 3.42. Variation of dimensionless bending moment M/ph2 with ratio r/h at frequencies 
β=0.50 and β=1.0.

Fig. 3.43. Variation of dimensionless deflection wE/ph and subgrade reaction q/p with r/h 
in static case.
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Fig. 3.44. Variation of dimensionless bending moment M/ph2 and transverse force Q/ph 
with r/h in static case.

Fig. 3.45. Relationship of dimensionless deflection wE/ph to frequency β.



176 Dynamics of Pavement Structures

Fig. 3.46. Relationship of dimensionless subgrade reaction q/p to frequency β.

Fig. 3.47. Relationship of dimensionless transverse force Q/ph to frequency β.
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Fig. 3.48. Relationship of dimensionless bending moment M/ph2 to frequency β.

Fig. 3.49. Influence of subgrade inertia on variation of dimensionless deflection wE/ph and 
subgrade reaction q/p in equivalent plate on subgrade.
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Fig. 3.50. Influence of subgrade inertia on variation of dimensionless bending moment 
M/ph2 and transverse force Q/ph in equivalent plate on subgrade.

Fig. 3.51. Relationship of coefficient of mass increase of plate kd to frequency β.
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The computed curves of w(0), q(0), Q(r/h=1) and M(r/h=1) versus frequency β are plot-
ted in Figs. 3.45–3.48.

Neglecting the subgrade inertia forces considerably influences the values of the state 
vector components of a plate lying on a simplified model of subgrade. This can be seen 
from a comparison of the variations of absolute values for w and q in Fig. 3.49 and for M 
and Q in Fig. 3.50. These results were obtained for flexible pavement II by using the solu-
tion in integral form, i.e. variant (a).

The computed values of the state vector components for various input data of coef-
ficient kd, i.e coefficient of mass increase of the plate, give the opportunity to determine 
for an arbitrary frequency β the value of kd in such a way that the values of state vector 
components are approximately identical to the values of variant (a). The values of kd 
versus frequency β for pavement structures I and II and by the identification of absolute 
values (wE/ph)r/h=0 or (q/p)r/h=0 are plotted in Fig. 3.51. Although the influence of pave-
ment stiffness and the given state vector component on the form of function kd(β) is 
evident, in practice the approximate relation kd(β) in Fig. 3.51 is useful in the solution of 
a plate on subgrade according to the technical theory in variant (b). 



4  
DYNAMIC INTERACTION OF PLATES 

WITH THE SUBGRADE FOR 
CHARACTERISTIC LOADS

In the previous chapter the diverse variants of the theory of the equivalent plate on subgrade 
were analysed in connection with the basic loading case: axial symmetric harmonically 
variable loading of an unbounded plate on subgrade. Such a load is in the static case the 
design load of pavement structures.

The aim of this chapter is the study of the other characteristic loading cases in the 
dynamic harmonic regime. For the characteristic loading cases, we consider dynamic load-
ing at the boundary region of the half-plate on subgrade, the state of dynamic stress about 
the cut transverse joint of the plate on subgrade, and the influence of the inhomogeneous 
subgrade on the interaction of the plate with the subgrade.

4.1 The applied variant of the theory of an equivalent plate on subgrade
The simplest variant of the technical theory of a plate on subgrade that retains the essential 
properties of real system behaviour is the physical model of a thin plate with flexural stiffness 
corresponding to the curve of dispersion of flexural stress waves in connection with the sim-
plified model of the subgrade. If the compensation of the subgrade inertia, by the coefficient 
of mass increase of the plate kd, is used, the differential equation of motion has the form

(4.1)

in which D* is given by equation (3.263).
The operator  in a rectangular coordinates system is given by the expression 

(4.2)

The bending moments Mx and My are determined by the relationships

(4.3)



Dynamic interaction of plates with the subgrade for characteristic loads 181

The transverse forces on the plate are determined by the expressions

(4.4)

and the twisting moment by

(4.5)

The equivalent transverse forces of the plate including the effect of twisting moments are 
given in the form

(4.6)

The transverse forces of the system (plate on subgrade) are determined by the equations 

(4.7)

The reaction of the subgrade is expressed by the relationship

(4.8)

4.2 Reduction of partial differential equation to an ordinary differential equation
The analysis of characteristic loading cases is possible if Fourier integral transformation, 
with regard to one variable, is used according to the relationships
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(4.9)

(4.10)

If we assume harmonic vibration with angular frequency ω, then by using (4.9) in 
equation (4.1) the ordinary differential equation is obtained in the form 

 (4.11)

where Fw is the Fourier transform of the deflection and Fp is the transform of the external 
load. The integration variable α0 presents the wave number.

Let us assume the solution of homogeneous equation (4.11) in the form  After 
substituting into (4.11), the following relationship for  is obtained

(4.12)

and the solution of the homogeneous equation has the form

(4.13)

Provided the dimensionless variable

(4.14)

and dimensionless wave number

α=α0L (4.15)

the Fourier transform of the deflection can be expressed in the form

(4.16)
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if 

(4.17)

(4.18)

and L is the chosen length.

4.2.1 Application of the method of initial parameters
In the case of arbitrary external loading or for the solution of characteristic loading 
cases the method of initial parameters is advantageous. The initial parameters are the 
transforms of the deflection Fw0, angular displacement Fφ0, bending moment FM0 and 
transverse force FQ0.

In accordance with equations (4.16), (4.3) and (4.7), the equations are given as follows

(4.19)

(4.20)

(4.21)
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For η=0 the following expressions are obtained

(4.22)

where

(4.23)

The values of constants A1, A2, A3, A4 may be expressed from the equations system (4.22) 
through initial parameters by the following relationships 

(4.24)

where Kww, Kwφ,…KQQ are the influence functions summarized in Table 4.1. The matrix of 
influence functions has a symmetric structure with regard to the upward diagonal.

The concept of the solution and derived expressions, as described, makes it possible 
to analyse characteristic cases of dynamic loading at the boundary region or about the cut 
transverse joints of a plate on subgrade and close to the sudden change of rigidity in the 
equivalent plate on subgrade as a consequence of inhomogeneous subgrade.
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4.3 Dynamic load at the boundary region of a plate on subgrade
Although the design methods of pavement structures assume, as a decisive case, static 
loading of an unbounded pavement structure, it is known that some components of the 
static vector, by loading at the border of the pavement, may exceed the values of the basic 
loading case. We shall attempt to solve, in the next chapter, the state of stresses by dynamic 
loading about the border of the equivalent plate on subgrade.

4.3.1 Half-plate on subgrade
According to the scheme in Fig. 4.1 we assume a harmonic variable concentrated force 
Peiωt acting at distance y1 or dimensionless quantity η1=y1/L from the boundary of the half-
plate on subgrade.

For the region η<η1, i.e. zone I, the relationships of the Fourier transform components 
derived in the form (4.24) and the corresponding matrix of influence functions in Table 4.1 
are valid.

Fig. 4.1. Schematic diagram of half-plate on subgrade and system of coordinates.

Table 4.1. Matrix of influence functions.
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For the region η>η1, i.e. zone II, the relationships of the transform components can be 
established in the form

 (4.25)

assuming that the complex values γ1, γ2 have a negative real part. B1, B2 are arbitrary com-
plex constants.

Assuming a free boundary of the half-plate on an unbounded subgrade medium, the 
boundary conditions are determined in the form

(4.26)

where FQz is the Fourier transform of the reaction of free subgrade.
The reaction of the free subgrade may be determined by using the equation of the sim-

plified model of subgrade (3.150) in the form

(4.27)

if ν is subgrade deflection.
By using Fourier integral transformation in the x direction the following equation is 

obtained

(4.28)

The solution of the homogeneous equation is given for the transform of subgrade deflec-
tion Fν in the form

(4.29)
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where

(4.30)

Considering only the part of solution (4.29) which is in free subgrade with the distance 
damped, i.e. 

(4.31)

and the condition that for y=0 the subgrade deflection transform has to be equal to the 
deflection transform of halfplate border, the following equation is given

(4.32)

Then the reaction transform of the free subgrade FQz is given by the transform of shear 
force at y=0 according to the relationship

(4.33)

and in dimensionless form

(4.34)

if

(4.35)

The contact conditions at the interface of zone I and zone II, i.e. at η=η1 are given in 
the form

FwI(η=η1)=
FwII(η=η1)

FφI(η=η1)=
FφII(η=η1)

FMI(η=η1)=
FMII(η=η1)

FQI(η=η1)−
FP=FQII(η=η1)

(4.36)

where FP is the Fourier transform of dynamic load.
Substituting into the boundary conditions (4.26) and contact conditions (4.36) and 

rearranging, the following system of equations for unknown quantities Fw, LFφ0, B1, B2 
is obtained 
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Fw0 LFφ0 B1 B2 Right-hand 
side

(4.37)
a11 a12 a13 a14 a10

a21 a22 a23 a24 a20

a31 a32 a33 a34 a30

a41 a42 a43 a44 a40

where
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(4.38)
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In the limited case when η1=0, the coefficients of system (4.37) have the following values 

(4.39)

and the solution corresponds to a half-plate on unbounded subgrade with the dynamic force 
acting at the boundary.

The equation system (4.37) is in general a system with a complex coefficients and the 
unknown initial parameters Fw0

, Fφ0 and quantities B1, B2 are complex functions of dimen-
sionless wave number α.

4.3.2 Survey of relationships for state vector components 
of a half-plate on subgrade

By using equations (4.24), (4.3), (4.5), (4.7), (4.8) and by inverse transformation the fol-
lowing expressions are obtained for the region 0<η<η1:

(4.40)
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where

 

and for the region η>η1 of a half-plate on subgrade in the form
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(4.41.)
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4.3.3 Numerical results
Computers were used to calculate the components of the state vector for the equivalent 
half-plate on unbounded subgrade under a harmonic dynamic force Peiωt. The dynamic 
force with amplitude P is assumed to be concentrated in the direction y and uniformly 
distributed on the line segment 2a in the direction x. Then the force amplitude P may be 
expressed as P=p2a, where p is the load segment intensity.

The Fourier transform FP is given by the relationship

(4.42)

We shall present the results corresponding to the concentrated segment harmonic variable 
load at the boundary of the half-plate on subgrade. Input data for the system present a 
flexible pavement structure, which corresponds to a highway pavement under construction 
composed of a 25 cm thick sandgravel layer, then a 24 cm thick layer of cement stabilization 
and a 4 cm thick asphaltic layer. They are given by the values

 

The process of numerical calculation was carried out for 21 various values of dimension-
less frequencies β=ωh/c2 in the range (0–3.0).

The improper integrals used to define the state vector components, were computed by 
numerical integration in bounded interval α=(0–40). The upper value of α represents the 
Fourier spectrum component when the wavelength is comparable with the thickness of the 
equivalent half-plate and in this way also ensures sufficient precision.

As the sub-integral functions are complex functions for every component of the state 
vector the real and imaginary part and amplitude and phase angle φ have to be computed. 
According to the linear variation of phase angle φ the wavelength Λ and corresponding 
phase velocity c may be determined.

The variations of dimensionless deflection wGL/P, subgrade reaction qL2/P, bending 
moment My/P and transverse force QyL/P versus dimensionless ratio η=y/L at the frequencies 
β=0.1 and β=0.5 and ξ=x/L=0.01 are plotted in Figs. 4.2–4.5. 
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Fig. 4.2. Variation of dimensionless deflection wGL/P with ratio η=y/L at frequencies 
β=0.1 and β=0.5.

Fig. 4.3. Variation of dimensionless subgrade reaction qL2/P with ratio η=y/L at frequencies 
β=1.0 and β=0.5.
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Fig. 4.4. Variation of dimensionless bending moment My/P with ratio η=y/L at frequencies 
β=0.1 and β=0.5.

Fig. 4.5. Variation of dimensionless transverse force QyL/P with ratio η=y/L at frequencies 
β=0.1 and β=0.5.
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Fig. 4.6. Relationship of dimensionless deflection wGL/P to η=y/L in static case.

The relation wGL/P versus y/L at the frequency β=0 is drawn in Fig. 4.6. The phase angle 
φw with its constant course indicates that there is no propagation of the energy. The com-
puted curves of wGL/P, QyL/P, Mx/P, QxL/P, and Mxy/P versus ξ=x/L at frequencies β=0.1 
and β=0.5 at the halfplate boundary, i.e. at η=y/L=0.01, are plotted in Figs. 4.7–4.11.

Fig. 4.7. Variation of dimensionless deflection wGL/P with ratio ξ=x/L at frequencies 
β=0.1 and β=0.5.
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Fig. 4.8. Variation of dimensionless transverse force QyL/P with ξ=x/L at frequencies β=0.1 
and β=0.5.
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Fig. 4.9. Variation of dimensionless bending moment Mx/P with ξ=x/L at frequencies β=0.1 
and β=0.5.
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Fig. 4.10. Variation of dimensionless transverse force QxL/P with ξ=x/L at frequencies 
β=0.1 and β=0.5.
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Fig. 4.11. Variation of dimensionless twisting moment Mxy/P with ξ=x/L at frequencies 
β=0.1 and β=0.5.
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The variations of wGL/P, qL2/P, QyL/P and Mx/P with frequency β are plotted in 
Figs. 4.12–4.15.

In the case of a concentrated harmonic force acting at a distance η=η1=0.25 from the 
half-plate border the computed course of deflection wGL/P versus η=y/L for ξ=x/L=0.01 is 
plotted in Fig. 4.16 for β=0.1 and β=0.5.

Fig. 4.12. Variation of dimensionless deflection wGL/P with frequency β.

The other calculations were carried out for the half-plate on subgrade which is equivalent 
to the behaviour of a rigid highway pavement structure. This pavement has the same struc-
ture as in the previous case but it is finished by means of a 24 cm thick cement concrete 
surfacing. The input data are 
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The computed values of dimensionless deflections, subgrade reactions, bending moments 
and transverse forces in relation to the frequency β are drawn in absolute values in Figs. 4.17 
and 4.18 at the locations of concentrated dynamic load at points (0.0, 0.0) and (0.0, 0.25). 

Fig. 4.13. Variation of dimensionless subgrade reaction qL2/P with frequency β.

Fig. 4.14. Variation of dimensionless transverse force QyL/P with frequency β.
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4.4 Plate strip on subgrade
Let us assume an unbounded plate strip on subgrade according to the scheme in Fig. 4.19, 
with a concentrated harmonic variable load P(t)=Peiωt acting at a distance y1 from the strip 
border. We consider again the dimensionless coordinates ξ=x/L, η=y/L, η1=y1/L, where L is 
the width of the plate strip. 

Fig. 4.15. Variation of dimensionless bending moment Mx/P with frequency β.

In the region of the unloaded plate strip the solutions (4.24) can be considered for the 
transforms of the state vector components. At η=0 and η=1 the boundary of the plate strip 
that is in contact with the unbounded subgrade, is free. The boundary conditions at η=0 are 
in the form

FM0(η=0)=0
FQ0(η=0)=FQz(η=0)

(4.43)

where FQZ is the transform of the free subgrade reaction given by equation (4.34).
At the section η1<η<1 the following equations are valid
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(4.44)

At the other border of the plate strip, i.e. at η=1, the following boundary conditions have 
to be fulfilled

(4.45)

After substituting and rearranging, the following system of equations is obtained

a11 
Fw0+a12 

Fφ0=a10

a21 
Fw0+a22 

Fφ0=a20

(4.46)

where 

(4.47)

(4.48)

(4.49)
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Fig. 4.16. Variation of dimensionless deflection wGL/P with η=y/L at frequencies β=0.1 
and β=0.5 in the case of harmonic force acting at distance η=η1=0.25.
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Fig. 4.17. Variation of dimensionles deflection wGL/P and subgrade reaction qL2/P with 
frequency β for various force locations.

Fig. 4.18. Variation of dimensionless bending moments M/P and transverse force Qy/P with 
frequency β for various force locations.
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(4.50)

Fig. 4.19. Schematic diagram of plate strip on subgrade and system of coordinates.

(4.51)

(4.52)

The unknown initial parameters Fw0, 
Fφ0 can be computed from the system (4.46) and 

according to the relationships (4.26) and (4.34) FQ0 is given.
All these initial parameters are complex functions of the dimensionless wave number α.

4.4.1 Relationships for state vector components of plate strip on subgrade
In the region of the plate strip 0≤η<η1 the relationships (4.40) are valid. For the region 
η1<η<1 the relationships are obtained in the form 
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(4.53)

4.4.2 Numerical results
The procedures in sections 4.3.3 may also be used for numerical computations. With regard 
to the high values of the arguments of hyperbolic functions which are situated in sub-
integral expressions and in equation system (4.46) too, especially at the high values of wave 
number α or frequency β, double precision of computing is necessary, using computers.

Naturally there are no differences in the values of the state vector components about 
the loaded border, calculated for a half-plate on subgrade or a plate strip on subgrade. It is 
possible to provide results as evidence in support of the case of border loading at the point 
(ξ=0, η=0). The half-plate or plate strip on subgrade are equivalent to a flexible pavement 
with input parameters as in section 4.3.3.

A comparison of the computed values is in Table 4.2. 



210 Dynamics of Pavement Structures

Table 4.2. Comparison of values of state vector components for half-plate on subgrade and 
plate strip on subgrade.

Frequency Absolute value of state vector components at the plate (ξ=0.01 η=0.01)
β  halfplate on subgrade plate strip on subgrade
0.0 81.04 81.05

0.1
 

48.02 45.69

0.2  28.52 27.84

0.0 7.58 7.58

0.1
 

5.32 5.18

0.2 3.91 3.86 

0.0  5.59 5.60

0.1
 

5.39 5.44

0.2  5.43 5.48

0.0 0.286 0.286

0.1
 

0.285 0.283

0.2  0.234 0.234

4.5 Dynamic stress state near cut transverse joints of the plate on subgrade
Rigid pavement structures are divided by longitudinal and transverse cut joints. These 
joints are made in cutting the cement concrete surfacing to a depth that corresponds to 
approximately one third of the concrete plate. After some time, as a result of volume 
changes and traffic, the cut joints proceed as cracks through the whole thickness of the 
plate.

The pavement structure cannot carry bending moments over in the direction perpen-
dicular to the joint. The ability to transfer transverse forces remains because the cracks 
in the place of the joints have irregular contact areas. A similar effect may be assumed 
to occur in the case of cracks in flexible pavements.

In this section, we shall try to solve the case of the dynamic state of stress about 
the joint under a concentrated harmonic variable load. The scheme of the problem is 
indicated in Fig. 4.20.

The basic system is assumed to be in the form of two divided half-plates, I and II, on 
the subgrade with the acting unknown transverse force FQ0 of the system. Half-plate I 
is under an external dynamic load Peiωt. With regard to the application of Fourier inte-
gral transformation in the ξ direction, the Fourier transform of the unknown transversal 
force FQ0 is considered in the η direction (Fig. 4.21).
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Fig. 4.20. Schematic diagram of the problem of dynamic state of stress about a 
pavement joint.

At the point η=0 of half-plates I and II only transverse force of the system FQ0 is acting, 
because the bending moment FM0=0. The condition of system continuity with regard to the 
supposed joint connection is required to fulfil the equation

(4.54)

Fig. 4.21. The basic system in the form of two divided half-plates on subgrade.

4.5.1 Influence functions of a half-plate on subgrade with initial parameters 
of transverse force FQ0 and bending moment FM0

The solution of the differential equation of the system of a half-plate on subgrade is given 
for the deflection transform and other components by equations (4.25).

For η=0 the following equations are valid 

(4.55)
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where Fw Fφ0,
 FM0, and FQ0 are initial parameters.

Assuming that at the free boundary of the half-plate on subgrade the transverse forces 
and bending moments are acting, then the unknown constants B1 and B2 being in this case 
unknown complex functions of wave number α, may be expressed from the last two equa-
tions (4.55) in the form

(4.56)

(4.57)

The state vector components expressed by the initial parameters and influence coefficients 
are given by the following relationships

Fw(α, η)=KwM
FM0+KwQ

FQ0

Fφ(α, η)=KφM
FM0+KφQFQ0

FM(α, η)=KMM
FM0+KMQ

FQ0

FQ(α, η)=KQM
FM0+KQQ

FQ0

(4.58)

if the influence functions KwM,…KQQ are given by the matrix of Table 4.3. 

Table 4.3. Matrix of influence functions.

4.5.2. Determination of unknown initial parameters for transversal force FQ0

The initial parameter FQ0 may be determined by using the condition (4.54). Half-plates I 
and II have the same thickness and plate stiffnesses, i.e.  However, quantities s1, 
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s2, q1 and q2 are different be-cause γ1 and γ2 for half-plate II have to be considered with a 
positive real part with regard to negative coordinates η. So we shall distinguish the quanti-
ties  for half-plate I and  for half-plate II.

By using condition (4.54) for the equality of deflection of half-plate I and half-plate II 
at η=0, the equation for the unknown initial transverse force of the system, FQ0, is obtained 
in the form

(4.59)

if  is the transform of the initial deflection for half-plate I under a dynamic harmonic 
load, which can be determined by the procedure as in section 4.3.1 for a half-plate on sub-
grade but considering the initial transverse force FQ0 in the form (4.59). 

4.5.3 Numerical results
The influence of the pavement joint on the values of the plate vector components was 
studied for the equivalent plate on subgrade under a dynamic concentrated load acting at 
distance η1 from the joint. The system corresponds to the flexible pavement with input data 
given in section 4.3.2.

The results of the solution are plotted in Figs. 4.22–4.24 for the absolute values of wGL/P, 
qL2/P, My/P, Mx/P and QyL/P versus coordinates η1 at the point of action of the concentrated 
dynamic load. The variations are indicated for dimensionless frequencies β=ωh/c2=0, 0.1, 
0.2, 0.3 of the harmonic load.

Fig. 4.22. Variation of dimensionless deflection wGL/P and subgrade reaction qL2/P with 
coordinate η1 of concentrated dynamic load.



214 Dynamics of Pavement Structures

Fig. 4.23. Variation of dimensionless bending moments My/P and Mx/P with coordinate η1 
of concentrated dynamic load.

The variations of absolute values for the same state vector components with frequency β 
and positions of dynamic load η1=0.01 and η1=0.3 are drawn in Figs. 4.24 and 4.25.

From the variations of bending moments Mx/P, My/P in Fig. 4.23 and Fig. 4.25 it can 
be seen that the absolute values Mx/P, My/P by dynamic concentrated load about the joint 
do not reach the maximal values of Mx/P in the case of border loading of the halfplate on 
subgrade.

4.6 Influence of inhomogeneous subgrade on dynamic interaction 
of plate with subgrade

In the case of inhomogeneous subgrade or in the case of a defective drain field the result 
will sometimes be the moistening of the subgrade and sub-base layers. In winter the stiff-
ness of the subgrade and sub-base layers may be extremely high in these places as a conse-
quence of freezing temperatures. The stiffness of the pavement structure will increase too.
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Fig. 4.24. Variation of dimensionless transverse force QyL/P with coordinate η1 and variation 
of deflection wGL/P and subgrade reaction qL2/P with frequency β.

At the transition from normal to frozen pavement, the sudden change in pavement stiffness 
can be pronounced, which can unfavourably influence the state of stress under loading by 
vehicle transit.

4.6.1 Results of dynamic diagnosis of highway pavement at the site 
of failure cracks in concrete surfacing

The size of the stiffness change for pavement structures can be demonstrated using the 
results of dynamic diagnosis of highway pavements obtained by means of the evalua-
tion of phase-velocity measurements. These measurements were performed in the region 
of cracked concrete surfacing at six different places using the procedure described in 
section 1.4.2. The results and evaluation of the measurements carried out in April and 
repeated at the same places in June are summarized in Tables 4.4 and 4.5.
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Fig. 4.25. Variation of dimensionless bending moments M/P and transverse force QyL/P 
with frequency β.

As can be seen, measurement sites 1, 2, 3, 5 and 6 present approximately similar charac-
teristics, but measurement site 4 in April gives disproportionally high stiffness, which is 
demonstrated by the high values of the equivalent thickness heq, dynamic flexural rigidity 
EJ and by the low value of deflection w0. During the subsequent measurements in June, site 
4 displayed characteristics comparable with those of the other sites.

By means of detailed investigation it was ascertained that, in the measured region of the 
cracked concrete surfacing, the subgrade and sub-base layers were moistened, and frozen 
in winter. During the measurement in April part of the section was not frozen but site 4 was 
still frozen, and so its rigidity was extremely high. During the measurement in June the 
rigidity was similar to that of the other measurement sites.

Such local volume changes and differences in pavement stiffness caused an unfavour-
able state of stress from traffic and the failure of the structure.

It follows from the characteristic values of the measured section number 4 that the stiff-
ness change manifests itself in a threefold value of equivalent thickness, above a thirtyfold 
increase of pavement flexural stiffness and almost to a multiple of 2.5 of a deflection 
decrease.

It will be very interesting to analyse the influence of a sudden change in stiffness on the 
state of stress about the interface under a dynamic concentrated load.
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Table 4.4. Results of measurements on highway pavement section in April and in June.

Measur. number measurement in April
Frequency

(Hz)
Λa
(m)

ca
(m/s)

Frequency
(Hz)

Λb
(m)

cb
(m/s)

1 10000 0.1265 2530 250 2.922 730
2 10000 0.1250 2500 250 2.866 716
3 10000 0.1256 2512 250 2.957 739
4 10000 0.1266 2532 250 4.706 1176
5 10000 0.1250 2500 250 3.018 754
6 10000 0.1268 2536 250 2.885 721

measurement in June
1 10000 0.1179 2358 250 2.513 628
2 10000 0.1211 2422 250 2.712 678
3 10000 0.1235 2470 250 2.934 733
4 10000 0.1211 2422 250 2.743 686
5 10000 0.1197 2394 250 2.931 733
6 10000 0.1215 2430 250 2.806 701

Table 4.5. Evaluation of measurements on highway pavement section carried out in April 
and repeated at the same places in June.

Number of 
meas.

Measurement in April Measurement in June

 c0
(m/s)

he
(m)

EJ/
EJ in (Nm2)

w0/p0
w0 in (m)

c0
(m/s)

he
(m)

EJ/
EJ in (Nm2)

w0/p0
w0 in (m)

1 4364 0.279 34605 0.356.10-3 4093 0.218 14533 0.454.10-3

2 4315 0.272 31081 0.367.10-3 4187 0.250 22804 0.400.10-3

3 4328 0.289 37756 0.348.10-3 4254 0.290 36780 0.351.10-3

4 4310 0.813 831386 0.165.10-3 4184 0.256 24524 0.392.10-3

5 4302 0.304 43362 0.335.10-3 4116 0.300 38231 0.378.10-3

6 4379 0.271 31782 0.364.10-3 4192 0.268 28253 0.377.10-3

 in (kg/m3)
p0 in (MPa)

4.6.2 Influence of sudden change of rigidity in equivalent plate on subgrade
The influence of inhomogeneous subgrade and sub-base layers may be modelled by means 
of a sudden change in the equivalent thickness of the plate on subgrade according to the 
scheme in Fig. 4.26.
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Fig. 4.26. Schematic diagram of sudden change of equivalent thickness of plate on 
subgrade.

Fig. 4.27. Schematic diagram of basic system.

The basic system is assumed to be in the form of two divided half-plates on subgrade: half-
plates I and II with the unknown transversal force FQ0 and bending moment FM0. Half-plate 
I is loaded by a dynamic concentrated force Peiωt. By using the Fourier integral transfor-
mation in the ξ direction, the action of integrands FQ0 and FM0 in the η direction may be 
assumed to be in agreement with the scheme of Fig. 4.27.

The conditions of system continuity at the interface of a sudden change of rigidity is 
required to fulfil the following equations 

FwI(η=0)=FwII(η=0)
Fφ1(η=0)=FφII(η=0).

(4.60)

Using the influence functions for a half-plate on subgrade with the initial parameters FQ0 
and FM0 according to Table 4.3, equations (4.60) yield the equation system

b11 
FQ0+b12 

FM0/L=b10

b21 
FQ0+b22 

FM0/L=b20

(4.61)

where

(4.62)
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(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

In equations (4.66) and (4.67) the quantities  and are the transforms of initial deflec-
tion and initial angular displacement of the halfplate on subgrade under a concentrated 
harmonic variable force Peiωt acting at a distance η1 from the interface. Their values can be 
determined by using the procedures given in section 4.3.1.

The unknown initial parameters are expressed from equations system (4.61) by the rela-
tionships

(4.69)

(4.70)

where

BE1=b10b22−b20b12

BE2=b20b11−b10b21

BE=b11b22−b12b2l

(4.71)

The state vector components of the system with a sudden change of pavement stiffness 
will be determined applying the procedures and relationships from section 4.3.1 for the 
half-plate on subgrade with the initial transverse force and initial bending moment of the 
system, the integrands of which are determined in the form (4.69) and (4.70).
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4.6.3 Numerical results
The numerical solution performed for equivalent plate I on subgrade corresponds to the 
rigid highway pavement structure with input data given in section 3.4.9. The sudden 
change in rigidity is given by the stiffness ratio  which cor-
responds to the measured values on the pavement section. (Tables 4.4 and 4.5, measure-
ments number 4 and 5).

Here we present the results of the numerical solution for state vector components under 
loading of plate I by a concentrated harmonic variable force acting at distance η1=y1/L=0.25 
according to the scheme in Fig. 4.28. 

We are interested in the dynamic state vector components of the half-plate I close to the 
load and sudden change of rigidity.

The variations of the state vector components with coordinate η at dimensionless fre-
quencies β=ωh/c2=0.1 and β=0.5 are plotted in Figs. 4.29–4.34.

Fig. 4.28. Schematic diagram of the dynamic load and sudden change of plate thickness.

The influence of the dynamic load distance from the interface of the rigidity change was 
studied at various frequencies β at the point ξ=0.01, η=0.01. The absolute values of deci-
sive components versus load distance η1 are drawn in Figs. 4.35 and 4.36 for an analysed 
rigid pavement. Relatively high values of bending moments Mx/P and transverse forces or 
subgrade reactions at the interface are attained at load distances η1=0.025–0.05, i.e. at short 
load distances.

The considered sudden change of rigidity determines the behaviour of half-plate I as 
being similar to the behaviour of an unbounded half-plate clamped at η=0. It is interesting 
to present the extreme values of bending moments My(ξ=0, η=0) for a clamped halfplate 
under static load by concentrated force P at distance ξ=0, η=η1. According to [4.1] the 
bending moment My(0, 0) is independent of the load distance η1 and has the value

(4.72)

In our case, which corresponds to a half-plate on subgrade with elastic clamped boundary, 
the bending moments My(0.01, 0.01)/P achieve values about 0.200, approximately constant 
at distances η1>0.10. With regard to the elastic clamped boundary the bending moments 
decrease at shorter load distances. 
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Fig. 4.29. Variation of dimensionless deflection wGL/P with ratio η at frequencies β=0.1 
and β=0.5.
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Fig. 4.30. Variation of dimensionless subgrade reaction qL2/P with η at frequencies β=0.1 
and β=0.5.
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Fig. 4.31. Variation of dimensionless transverse force QyL/P with η at frequencies β=0.1 
and β=0.5.
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Fig. 4.32. Variation of dimensionless bending moment My/P with ratio η at frequencies 
β=0.01 and β=0.5.
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Fig. 4.33. Variation of dimensionless bending moment Mx/P with ratio η at frequencies 
β=0.1 and β=0.5.
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Fig. 4.34. Variation of dimensionless twisting moment Mxy/P with ratio η at frequency β=0.1.

4.6.4 Sudden change of rigidity situated parallel to the free boundary 
of half-plate on subgrade

The other variant of an homogeneous subgrade and sub-base layers offers a sudden change 
of rigidity that is parallel to the free boundary of the half-plate on subgrade. The scheme of 
this case is given in Fig. 4.37. The dynamic harmonic variable load acts at the boundary of 
half-plate I and the distance of the boundary from a sudden change in rigidity is indicated 
by coordinate η1=y1/L.

For the solution of this problem it is possible to use the procedure for a half-plate on 
subgrade described in section 4.3.1. In the region of the half-plate η<η1, i.e. in zone I the 
relationships for state vector components in the form (4.24) and the matrix of influence 
functions in Table 4.1 are applied. In zone II the relationships for transforms of state vector 
components in the form (4.25) have to be used.
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Fig. 4.35. Relationship of dimensionless bending moment |Mx|/P and |My|/P to dynamic 
load distance η1.
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Fig. 4.36. Relationship of dimensionless subgrade reaction |q|L2/P and transverse force 
|Qy|L/P to dynamic load distance η1.
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Fig. 4.37. Schematic diagram of dynamic load and sudden change of rigidity parallel with 
free boundary of half-plate on subgrade.

The boundary conditions at η=0 are determined by the assumption of a free boundary with 
acting concentrated external load Peiωt. They are given by the equations

FM0(η=0)=0

FQ0(η=0)=FQz(η 0)−FP1

(4.73)

where FM0, 
FQ0 are transforms of the initial bending moment and initial transversal force, 

FQz is a transform of the subgrade transversal force and FP1 is a transform of external 
force.

The contact conditions at the interface of zone I and zone II at η=η1 are determined by 
the equations

FwI(η=η1)=
FwII(η=η1)

FφI(η=η1)=
FφII(η=η1)

FMI(η=η1)=
FMII(η=η1)

FQI(η=η1)=
FQII(η=η1)

(4.74)

Substituting into (4.73) and (4.74) the system of equations (4.37) is obtained, in which the 
coefficients a11, a12, a21, a22, a31, a32, a41, a42 are given by the same relationships (4.38) but 
for the others the equations are given in the form 
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(4.75)

where  are parameters according to (4.23) but referred to zone II of the half-
plate with greater thickness.

After computation of the unknown initial parameters Fw0, 
Fφ0 the originals of the state 

vector components are determined according to equations (4.40) for region I and according 
to equations (4.41) for region II.

The numerical solutions were performed partly for the characteristics of a plate on sub-
grade in zone I corresponding to a rigid highway pavement structure and partly for the 
characteristics equivalent to flexible pavements. The sudden change of rigidity was always 
given by the ratio 
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Fig. 4.38. Variation of dimensionless deflection |w|GL/P with frequency β.

Fig. 4.39. Variation of dimensionless subgrade reaction |q|L2/P with frequency β for various 
interface distances η1.

The computed amplitude-frequency characteristics of dimensionless deflections wGL/P, 
subgrade reaction qL2/P, transverse forces of the system QyL/P and bending moments 
My/P in the point η=η1, i.e. at the interface of the rigidity change for plate I, are plotted 
in Figs. 4.38– 4.41 of rigid pavements and in Figs. 4.42 and 4.43 for My/P and qL2/P for 
case of flexible pavements.
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Fig. 4.40. Variation of dimensionless transverse force |Qy|L/P with frequency β for various 
interface distances η1.

Fig. 4.41. Variation of dimensionless bending moment |Mx|/P with frequency β for various 
interface distances η1.
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Fig. 4.42. Variation of dimensionless bending moment |My|/P with frequency β for various 
interface distances η1 and flexible pavement.

Fig. 4.43. Variation of dimensionless subgrade reaction |q|L2/P with frequency β for various 
interface distances η1 and flexible pavement.

The variations of subgrade reaction, bending moments and transverse force of the system 
produce resonance zones and, as a consequence, a considerable increase in the values that 
are connected with the natural frequencies of the cantilever part of zone I.

With regard to the cantilever behaviour of plate I (Fig. 4.37) it will be interesting to 
compare the values of bending moments My/P(η=η1) for β=0 with the values of the static 
case of the cantilever plate strip which is clamped at one side and loaded by a concentrated 
force P on the free side of the strip (Fig. 4.44).

According to [4.1] the bending moment at the point ξ=0, η=η1 under a concentrated 
loading force has a constant value independent from the width of plate strip, η1. It is given 
by the expression
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My(η)=η1)=−0.465P. (4.76)

In our case, which differs from this model because the plate is lying on subgrade and at 
the interface has an elastic clamped boundary, the values My(β=0)=(0.320–0.385) P for 
rigid pavement and My(β=0)=(0.240–0.300) P for flexible pavement were obtained. With 
regard to subgrade reaction the values of bending moments are smaller in comparison to 
the free cantilever plate. Of course, the values of bending moments My under a dynamic 
load acquire higher values as in the static case given by expression (4.76) as a consequence 
of resonance phenomena.

Fig. 4.44. Bending moment My in the static case of a cantilever plate strip.

4.7 Comparison of extreme values of flexural moments and subgrade reactions
From the point of view of design and the evaluation of stresses in the equivalent plate on 
subgrade or in a layered pavement structure the extreme values of bending moments Mx, 
My are decisive. For the bearing power of the subgrade the normal stresses of subgrade 
reaction are significant. 

The extreme values of bending moments for characteristic loading cases are summa-
rized in Table 4.6. It follows from the summary that for the equivalent plate on subgrade 
the bending moments of the half-plate on subgrade under the loading of the free boundary 
are decisive. The loading close to the joints gives smaller values but the influence of the 
inhomogeneous subgrade and sub-base layers modelled by a sudden change in rigidity 
causes a considerable increase in bending moment values, by the second loading scheme 
in particular.

The subgrade reactions for characteristic loading schemes are summarized in Table 4.7.
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Table 4.6. Survey of bending moment values for various schemes of loading on rigid and 
flexible pavements.

Scheme of loading rigid pavement flexible 
pavement

 |M|/P |M|/P
unbounded plate on subgrade 0.402 0.226
loading of the halfplate boundary 0.470 0.286

loading near the joint           

– 0.236

loading near the sudden       

0.365 0.240

loading near the sudden    

0.536 0.405

Table 4.7. Survey of subgrade reaction values for various schemes of loading on rigid and 
flexible pavements.

Scheme of loading rigid pavement flexible pavement
 |q|h2/P |q|h2/P
unbounded plate on subgrade 0.0165 0.0392
loading of the halfplate boundary 0.0345 0.0486
loading near the joint – 0.0381
loading near the sudden change of rigidity 0.0211 0.0382
loading near the sudden change of regidity 0.0345 0.1099

The maximum values of subgrade reactions are recorded by dynamic loading at the border 
of the half-plate on subgrade respectively in the case of the loading close to the sudden 
change of system rigidity.

4.8 Pulse (impact) loads of equivalent plate on subgrade
The solution of individual characteristic cases of dynamic loading for the equivalent plate 
on subgrade was realized by considering a harmonic variable load. They form the basic 
problems and starting point for the determination of the dynamic response under pulse 
loading.

Pulse-impact loading is a dynamic load that is actually produced by traffic and which is 
used for the determination of the stiffness and bearing capacity of pavement structures in 
highway and runway engineering as a simulator of the vehicle loads.
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The shape of the force pulse that adequately corresponds to the impact loading may be 
expressed by the relationship [1.22]

(4.77)

where ω0 is a parameter with angular frequency extent, the choice of which changes the 
duration of the pulse. The time during which the pulse lasts can be determined from the 
condition ωot≈6, i.e. T0=t=6/ω0. For the purpose of the solution of the dynamic pulse load-
ing effect the application of Fourier integral transformation is available. The conception of 
complex moduli applied by stationary vibration under external harmonic loading does not 
fulfil the principle of causality, but from a practical point of view this fact can be neglected. 
It manifests itself only by the inaccurate initial values of the dynamic response.

The dynamic response of the equivalent plate on subgrade under harmonic loading was 
determined in previous chapters by means of complex state vector components or in the 
form of amplitude-frequency and phase—frequency characteristics. In general it can be 
indicated by S*(β)=SR(β)+iSJ(β), if β is a dimensionless frequency.

The transform of the loading force pulse (4.74) is given by the expression

(4.78)

where

(4.79)

and  is the stress-wave velocity in the medium of the equivalent plate; a is half-
way from the line segment in the direction ξ on which the load is concentrated.

The Fourier transform of an arbitrary state vector component FS is given by the 
relationship

FS=S*(ω) FP(ω)=S*(β) FP(β). (4.80)

Using the Fourier inverse transformation the original state vector component S(t) is given 
by the equation

(4.81)

or in the form

(4.82)
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where T is dimensionless time

(4.83)

Equation (4.82) can be computed using numerical integration and computers. A numerical 
procedure was performed in which the values S*(β) were computed at 21 discrete values β 
in the integration range β(0.0–3.0). The real and imaginary part of complex function S*(β), 
i.e. SR(β) and SJ(β) in interval <0.0, 3.0>, were expressed by cubic splines with connection 
to the discrete values β, by means of which the functions SR(β), SJ(β) were computed for 
arbitrary value β connected to the numerical integration of improper integrals. 

4.8.1 Dynamic response of plate on subgrade as an analogue 
of flexible pavement structure

The numerical results can be presented for the case of the equivalent half-plate on 
subgrade under pulse loading at the boundary. The input data correspond to the flex-
ible pavement. The dimensionless deflection wGL/Pmax(ξ=0, η=0), subgrade reaction 
qL2/Pmax(ξ=0, η=0) and bending moment Mx/Pmax(ξ=0, η=0) versus dimensionless time 
T are plotted in Figs. 4.45–4.47 for various times of pulse duration given by val-
ues Ω0=0.075, 0.15, 0.30, 0.50 and 0.75. At the same time the values of the compe-
tent quantities under the static load Pmax are marked. It can be seen that the dynamic 
response values do not exceed these static ones.

Fig. 4.45. Variation of dimensionless deflection wGL/Pmax with time T for the equivalent 
half-plate on subgrade under pulsed loading.

The other situation is in the case of the boundary pulse loading of the half-plate on subgrade 
with a sudden change of rigidity. As can be seen in Fig. 4.48 the dynamic response computed 
for a sudden change of rigidity at distance η1=0.1 and for bending moment My/Pmax demon-
strates that maximum values of dynamic bending moment under pulse loading exceed the
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Fig. 4.46. Variation of dimensionless subgrade reaction qL2/Pmax with time T of the 
equivalent half-plate on subgrade under pulsed loading.

Fig. 4.47. Variation of dimensionless bending moment Mx(0)/Pmax with time T for equivalent 
half-plate on subgrade under pulsed loading.

Fig. 4.48. Variation of dimensionless bending moment My/Pmax with time T for equivalent 
half-plate on subgrade under pulsed loading.
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static values under force load Pmax. This is a reflection of the expressive increase of bending 
moment values in the amplitude-frequency characteristics (Fig. 4.42) as a consequence of 
resonance phenomena.

Fig. 4.49. Variation of dynamic coefficients  with parameter Ω0.

The dynamic coefficients  defined by the ratio of the maximum value of the dynamic 
response to the static value under Pmax, are plotted in Fig. 4.49 versus parameter Ω0. BY 
increasing Ω0, i.e. if the time of pulse duration decreases, the dynamic coefficients 
and  decrease but the dynamic coefficient  values are higher. 



 5  
DYNAMIC INTERACTION OF PLATE WITH 

SUBGRADE UNDER A MOVING LOAD

The dynamic loads of the pavement structures in highway and runway engineering are 
evoked by moving vehicles and it is necessary to evaluate their effects in comparison with 
the effect of proposal static loads. The interaction of the plate and the subgrade under a 
moving load suggests the actual dynamic effect of irregularities on road surfaces too.

It is known that the decisive values of stresses and deformations for layered pavement 
structures can be achieved by loading at the border of the pavement. From this point of 
view the relevant task is to assess the dynamic response of the system under a moving 
concentrated load along the trajectory parallel to the border of the pavement.

5.1 Physical model of plate on subgrade as dynamic equivalent of the pavement
Numerous comparative studies on various modifications of the system of the equivalent 
plate resting on subgrade in previous chapters give reason to conclude that the simplest 
modification is the physical model of a thin equivalent plate in connection with the 
simplified model of subgrade. Such a model covers the essential properties of the 
dynamic behaviour of the system: real dispersion of flexural stress waves, the inertia of 
the co-acting subgrade, the dispersion of the energy into the subgrade and the damping 
properties of the material.

The differential motion equation has the form (3.257) or (4.1). The complex plate 
constant D* is replaced by the relationship (3.258), and if the phase velocity c of the 
flexural stress waves is expressed by the relationship corresponding to the dispersion curve 
of flexural stress waves according to [3.11], the plate constant D* will compensate for the 
dynamic rigidity of the equivalent plate in the sense of the refined theory of the plate taking 
account of the influence of shear and rotational inertia. The resulting relationship for D* 
has the form (3.263) when β is given in the form

(5.1)

The dimensionless wave number a=α0L=2πL/Λ, μ is Poisson’s ratio and κ=(0.87+1.12μ)/
(1+μ)2. L is an arbitrary length constant.
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We assume further that the load function p(x, y, t) is expressed as the sum of harmonic 
components for the functions of place or time so that the concept of complex characteris-
tics  may be applied.

5.2 Load moving along boundary of half-plate on subgrade
The effect of the moving concentrated load for the unbounded plate on Winkler’s subgrade 
has been analysed in [5.1]. Here we shall analyse the dynamic response of the system under 
a moving concentrated load along the trajectory, parallel to the border of the pavement, i.e. 
of the system of the equivalent half-plate on unbounded subgrade.

The load function is given by the relationship

p(x, y, t)=δ(x−vt)δ(y1)P (5.2)

where v is the speed of concentrated force P in the direction x along the trajectory with the 
distance y1 from the boundary. δ(x−vt), δ(y1) are Dirac generalized functions.

A quasi-stationary state arises assuming that the half-plate is at a standstill in connection 
with a moving dimensionless coordinate system:

(5.3)

if L is the chosen length constant. 
The problem is defined as a dynamic system response at the point (ξ=0, η) under a 

concentrated load at the point (ξ, η1) according to the scheme of Fig. 5.1, if the differential 
equation is given in the form

 

Fig. 5.1. Schematic diagram of coordinate system and load moving along boundary of half-
plate on subgrade.
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Applying Fourier’s integral transformation for the dimension ξ in the form

(5.5)

the ordinary differential equation for Fourier’s transform of deflection Fw(α, η) is obtained

(5.6)

The concentrated load is considered in the ξ direction, divided on the line segment 2a/L, as 
can be seen from the right side of equation (5.6).

The solution of homogeneous equation (5.6) lets us express the deflection transform in 
the form

Fw(α, η)=A1 sinh γ1η+A2 cosh γ1η+A3 sinh γ2η+A4 cosh γ2η (5.7)

if

(5.8)

(5.9)

This solution can be connected with the application of the method of initial parameters in 
the same way as it was realized in previous chapters in the case of forced vibration under 
a harmonic concentrated load. It is not necessary to repeat the detailed procedures but, for 
the sake of completeness it is convenient to indicate that by the solution of differential 
equation (5.6) and using the method of initial parameters the transform of deflection for 
the area I is expressed in the form

(5.10)

and for area II in the form

(5.11)
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The initial parameters Fw0,
 Fφ0, 

FM0, 
FQ0 are the transforms of deflection, angular 

displacement, bending moment and transverse force at η=0 and Kww, Kwφ, KwM, KwQ are 
influence coefficients that are functions of α, ν, and of stiffness parameters.

 in equation (5.11) are arbitrary complex constants while γ1, γ2, according to 
relationships (5.8), (5.9) have a negative real part.

The conditions of the boundary of the half-plate at η=0 have the form

(5.12)

when the right part of the second equation (5.12) presents the reaction of free subgrade and 
γz is determined by the expression 

(5.13)

The conditions of continuity at the interface of I and II are given in the form

FwI(η1)=
FwII(η1)

FφI(η1)=
FφII(η1)

FMI(η1)=
FMII(η

FQI(η1)=
FQII

(η
1
)

(5.14)

and together with the boundary conditions (5.12) enable us to determine the transforms 
of the initial parameters and the values of complex constants  and  Applying these 
values and the relationships of plate theory the transforms of state vector components of 
the system can be determined.

By inverse transformation of the arbitrary component FS(α, η) the originals are estab-
lished according to the relationship

(5.15)

It follows from this procedure that, in contrast to forced vibration under a harmonic force, 
the relationships differ only in having the term ν2α2L2 instead of ω2L4, and the numerical 
solution is realized for various values of load moving speed v. The dimensionless speed 
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CP=ν/c2, if  is the shear-wave velocity in the plate medium, now represents the 
dimensionless frequencies β=ωh/c2 in the case of forced vibration.

Another difference is in the conception of sub-integral complex functions during 
inverse transformation. Whereas sub-integral functions by forced harmonic vibration, 
which are complex functions of wave number square α2, were considered with 
symmetrical real and imaginary parts, in the case of a moving load the sub-integral 
functions have to be considered with asymmetrical imaginary parts. This signifies that 
the complex characteristics of elasticity  have to be considered in the form

E*=E(1+iδ sgn α)  

(5.16)

This procedure is similar to that for an arbitrary dynamic load if Fourier’s integral 
transformation is used on real-time functions. In such a case the complex characteris-
tics are considered in the form (for example) E*=E(1+iδ sgnω). The physical reason 
follows from the fact that the dynamic effect in a mechanical system manifests itself by 
means of propagated stress waves. If we assume that the stress of the propagated wave 
is in the form σ(ξ)=σ0e

iαξ, then the corresponding deformation as a consequence of the 
damping effect is shifted in phase with the angle φ and has the form ε(ξ)=ε0e

i(αξ−φ).

5.3 Numerical results
Numerical computations using the procedure described above were realized partly on a 
system that is equivalent to the behaviour of highway cement concrete pavements and 
partly on the equivalent system for flexible pavements. The input characteristics for 
both pavement structures are considered to be the same as in Chapter 4.

The variations of the computed dimensionless state vector components versus ξ 
are plotted in Figs. 5.2–5.6 for various values of dimensionless speed CP=ν/c2. They 
are valid for the case of a cement concrete pavement structure. The numerical results 
obtained for flexible pavement structures are drawn in Figs. 5.7–5.11.

The dynamic coefficient  defined as the ratio of the maximum dynamic value 
of state vector component to the value at zero speed of a moving load, are plotted for 
deflection w, subgrade reaction q and bending moment Mx(t) in Figs. 5.12 and 5.13 in 
relation to the moving speed Cp. It is shown that the dynamic increase of the moving 
load effect rises with increasing Cp.

The maximum values are achieved at the speed Cp=0.175–0.180 for a cement con-
crete pavement and at Cp=0.21–0.22 for a flexible pavement structure. With further 
increase of moving speed values the dynamic coefficients drop significantly below the 
level of static values. The maximum values of dynamic coefficients by the considered 
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Fig. 5.2. Variation of dimensionless deflection wGL/P with ξ for various speed values CP 
in rigid pavement.

Fig. 5.3. Variation of dimensionless subgrade reaction qL2/P with ξ for various speed values 
CP in rigid pavement.
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Fig. 5.4. Variation of dimensionless bending moment Mx/P with ξ for various speed values 
CP in rigid pavement.

Fig. 5.5. Variation of dimensionless transverse force QxL/P with ξ for various speed values 
CP in rigid pavement.



Dynamic interaction of plate with subgrade under a moving load  247

Fig. 5.6. Variation of dimensionless twisting moment Mxy/P with ξ for various speed values 
CP in rigid pavement.

Fig. 5.7. Variation of dimensionless deflection wGL/P with ξ for various speed values CP 
in flexible pavement.
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Fig. 5.8. Variations of dimensionless subgrade reaction qL2/P with ξ for various speed 
values CP in flexible pavement.

Fig. 5.9. Variation of dimensionless bending moment Mx/P with ξ for various speed values 
CP in flexible pavement.
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Fig. 5.10. Variation of dimensionless transverse force QxL/P with ξ for various speed values 
CP in flexible pavement.

Fig. 5.11. Variation of dimensionless twisting moment Mxy/P with ξ for various speed 
values CP in flexible pavement.
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Fig. 5.12. Dynamic coefficients  versus speed factor CP in rigid pavement.

Fig. 5.13. Dynamic coefficients  versus speed factor CP in flexible pavement.



Dynamic interaction of plate with subgrade under a moving load  251

parameters of damping and dispersion are =1.47–1.56 for rigid pavements and =1.6–1.7 
for flexible pavements.

The numerical results obtained accord with practical experience, which suggests that 
the dynamic increase of the moving load effect arises from speeds that are too high com-
pared with current speeds of vehicles or airplanes during take off and landing. In the case of 
a rigid pavement, when the velocity of shear waves c2 in the medium of the concrete plate 
is given by the value c2≈2500 m/s, the critical moving speed vcr=(0.175–0.18) 2500=445 
m/s=1600 km/h. Similarly, for a flexible pavement, then assuming that c2 in bituminous 
medium 1500 m/s, the critical speed is vcr=(0.21–0.22)1500–325 m/s=1170 km/h.

5.4 Influence of unevennesses on dynamic response
From the practical point of view the most relevant task is to assess the dynamic response 
of the system under moving loads at the transition of surface irregularities. The dynamic 
increment of acting forces by transition of surf ace unevennesses is visible already by the 
usual speeds of the moving load.

5.4.1 Influence of periodical surfacing unevennesses under moving load
Let us assume that the surfacing unevennesses on the track are parallel to the border of the 
half-plate on the subgrade, with a shape given by the equation

(5.17)

and continuously repeated on the track at y=y1. In equation (5.17) w0 is the depth and l0 is 
the length of the unevenness according to the scheme in Fig. 5.14.

For a concentrated moving load the right side of differential equation (5.4) is expressed 
by the relationship 

(5.18)

where g is the acceleration of gravity. In this equation the effect of system deflection under 
a moving load is neglected.

Introducing a moving system of dimensionless coordinates (ξ, η), it follows that

(5.19)
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Fig. 5.14. Schematic diagram of pavement unevenness.

and the right side of differential equation (5.4) is established by the relationship

(5.20)

Applying Fourier’s integral transformation and supposing that the moving load is divided 
on a line segment with length 2a, the expression for the right side of equation (5.6) is 
obtained in the form

(5.21)

It is shown that the additional effect of acting forces evoked by unevennesses increases 
with the square of the moving load speed ν2, is linear with the depth w0 of unevennesses, 
and is inversely proportional to the length of unevenness, l0. 

5.4.2 Influence of periodical surfacing unevennesses by a moving load system 
with two degrees of freedom

Again, we assume continuous unevennesses of the track surfacing according to equation (5.17), 
and the effect of system deflection under a moving load is neglected as it is small in comparison 
with the depth of the unevennesses.

The moving load is formed by a system with two degrees of freedom according to the 
scheme in Fig. 5.15. The total weight of load P is composed of an unsprung part and a 
spring-loaded part according to the expression

P=P1+P2 (5.22)
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Fig. 5.15. Schematic diagram of unevenness and system of moving load.

where P1=m1g is the weight of the unsprung part and P2=m2g is the weight of the spring-
loaded part. Both masses are connected by means of a complex spring constant  which 
characterizes the stiffness and damping of the connection.

The motion of the mass m2 in a vertical direction is described by the differential equation

(5.23)

where w2(x, t) is the vertical displacement of spring-loaded mass m2. Introducing the mov-
ing system of dimensionless coordinates (ξ, η) and the relationship 

(5.24)

equation (5.23) is transformed into the relationship

(5.25)

if Ω0 is given by the expression

(5.26)

The dynamic load component R(ξ) evoked by the vertical motion of the spring-loaded part 
P2 is determined by the expression

(5.27)

Using Fourier’s integral transformation of equations (5.25) and (5.27) the following 
relationships are established:
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(5.28)

(5.29)

where  are transforms of the products w2(ξ)δ(ξ) or w0(ξ)δ(ξ).
Introducing equation (5.29) into equation (5.28) and rearranging the transform of the 

dynamic load component, FR(α) is determined in the form

(5.30)

The Fourier transform  assuming that the concentrated load used is divided on the 
line segment 20, is given by the relationship 

 (5.31)

Substituting this expression into equation (5.30) and rearranging the dynamic load compo-
nent as Fourier’s transform, FR(α) has the form

(5.32)

At the same time the spring constant was introduced with the value  with regard to 
the assumption of a divided concentrated load on the line segment 2a.

The right side of equation (5.6) is determined by total expression of the Fourier’s trans-
form in the form
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(5.33)

5.4.3 Influence of isolated surfacing unevenness by a moving load system 
with two degrees of freedom

The influence of repeated surface unevennesses studied in previous sections does not com-
plicate the solution of moving-load problems from the point of view of an applied algo-
rithm. It is manifested only in a more complicated form of the right side of the differential 
equation of motion. Of course the assumption of regular repeated unevennesses on the 
track surface has too high a measure of determinism, which is demonstrated by excessively 
high unreal values of the state vector quantities at moving speed ν, when the resonance 
vibration of springloaded mass m2 is setting in. 

More realistic behaviour is obtained by analysis of the effect of isolated surfacing 
unevenness. Of course this problems is more complicated, and its solution requires a lot of 
computer time.

We assume the isolated unevenness of track surfacing in the form

(5.34)

Using the expansion of the function in the Fourier series it follows that

(5.35)

if

(5.36)

and λ0/L is dimensionless length period. This ratio λ0/L has to be chosen at a sufficiently 
high value for the resulting effect to correspond to isolated unevenness.

According to equation (5.36), by using (5.34) we obtain
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(5.37)

(5.38)

The basic zero member of the series for k=0 is determined in the form 

(5.39)

The dynamic load component arising from the vertical motion of the spring-loaded mass 
m2 can be derived for k=0 in the form of a Fourier transform

(5.40)

The universal k-member of the series has the form

(5.41)

The contribution of the unsprung part of the load system to the righthand side of differen-
tial equation (5.4) is expressed for k=1, 2, 3,…in the form

(5.42)

and, by applying Fourier’s integral transformation, in the form

(5.43)

The contribution of the spring-loaded part of the load system, applying a similar proce-
dure to that in section 5.4.2, leads to the transform of dynamic load component FRk(α) in 
the form 
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(5.44)

Together, the right-hand side of differential equation (5.6) is determined by the total expres-
sion for the Fourier transform in the form

(5.45)

As can be seen from the composition of equation (5.45) it is necessary to solve the problem 
for a single member of the Fourier series and then superimpose the results.

5.4.4 Numerical results
The numerical solution was performed for the equivalent half-plate on unbounded sub-
grade, which corresponds to a rigid pavement structure with the same input characteristics 
as in previous sections. The load system moved along the border of the half-plate, i.e. on 
the track η1=0, with moving speed ν.

Isolated unevenness is assumed on the track. The characteristics of the unevenness are 
given by the ratios

 

and the characteristics of the load system by the ratios
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The state vector components, namely the dimensionless deflection wGL/P, the subgrade 
reaction qL2/P and bending moment Mx/P, were computed for boundary point η=0 and 
various speeds of load motion.

The results of the solution obtained by considering 60 members of the Fourier series 
are plotted as functions of coordinate ξ in Fig. 5.16 for wGL/P, in Fig. 5.17 for qL2/P and 
in Fig. 5.18 for bending moment Mx/P. The ascertained differences of the computed values 
for k=60 and k=50 did not exceed 1.5%.

It can be seen from the curves of the computed state vector components that the influ-
ence of unevenness is manifested in an increase of the values with increased dimensionless 
load speeds Cp=ν/c2. These increments of the computed state vector component values have 
already set in for relatively low speeds. 

Fig. 5.16. Influence of isolated unevenness on dimensionless deflection wGL/P for various 
speed values CP in rigid pavement.
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Fig. 5.17. Influence of isolated unevenness on dimensionless subgrade reaction qL2/P for 
various speed values CP in rigid pavement.

Fig. 5.18. Influence of isolated unevenness on dimensionless bending moment Mx/P for 
various speed values CP in rigid pavement.

The dynamic coefficients  considered as the ratios of the dynamic values to the values 
that correspond to zero speed, are plotted in Fig. 5.19. There are variations of  with 
the load speed Cp, and the dynamic effect increases with increasing Cp. Such a result is 
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connected of course to the assumption considered in the theoretical solution, that during 
the motion the load system follows the given track of unevenness. In practice the influence 
of motion inertia in the horizontal plane gives rise to contact interruption between the 
moving load system and the initial part of the track unevenness at higher load speeds. 
This phenomenon leads to a decrease of load forces and so to a decrease in the values of 
dynamic behaviour.

Fig. 5.19. Influence of isolated unevenness on dynamic coefficients  versus speed factor CP

The approximate determination of the speed limit value for a moving load system in the 
case of contact interruption with unevenness gives the relationship

(5.46)

in which it is assumed that the contact interruption is at the length l0/4. In the numeri-
cal solution the characteristics of unevenness were considered by the values w0=0.02 m 
and l0=3.0 m and then the speed limit of moving load according to (5.46) is given as 

This value corresponds to the dimensionless ratio Cp=ν/c2=16.7/2350–0.0067.
The probable curves of the decreased dynamic effects at higher moving speeds are 

indicated by the broken lines in Fig. 5.18.



Dynamic interaction of plate with subgrade under a moving load  261

The effect of surface unevenness for a moving load may be supported by evidence 
using the results of experiments on rigid cement concrete pavements [5.2]. The measured 
dynamic deflections versus moving speeds are reproduced in Fig. 5.20. We can see that 
after an initial quadratic increase of the dynamic effects the curve stars to flatten from 
vehicle speeds ν≈9 m/s, i.e. 32.5 km/h, and attains the maximum value of dynamic coef-
ficient 

Fig. 5.20. Effect of surface unevenness under moving load according to [5.2].

5.5 Effect of moving random load
The deterministic solutions of the preceding sections enable us to determine and evaluate 
the effect of surface unevennesses during vehicle traverse on the dynamic values of state 
vector components.

They suggest that this influence is real for contemporary vehicles speeds, and provide 
the opportunity to evaluate quantitatively the effect of unevennesses corresponding to 
given parameters.

The unevennesses of track surfacing are of course random in character. As a conse-
quence of this the moving load is also random in character, and its effect on the system is 
manifested as a random dynamic response. Therefore it is necessary to solve the problems 
of moving loads on the basis of the statistical methods of structural mechanics.

The solutions of the effect of a dynamic random moving load on a beam are indicated 
in [5.3], [5.4], [5.1] and elsewhere. The method of decomposition into the natural modes 
of vibration of the load and deflection is usually used, and often the spectral method of the 
stationary random process.

Let us attempt to solve our problem of the equivalent half-plate on unbounded subgrade 
under a random load moving along a track parallel to the free half-plate boundary.
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We shall assume the external load p(x−vt, y, t) as a non-stationary process with the 
mean (deterministic) value E[p(x−vt, y, t)] and centred (random) value  in 
the form

(5.47)

For a concentrated moving load the expression is valid as follows (Fig.5.21)

p(x−vt, y, t)=δ(x−vt) δ(y1) P(t) (5.48)

where

(5.49)

The load P(t) has the mean constant value

E[P(t)]=P (5.50)

and  a random function of the time.
In the dimensionless coordinates of a moving coordinates system equation (5.48) has 

the form

p(ξ, η1, t)=δ(ξ)δ(η1). (5.51)

Fig. 5.21. Schematic diagram of random moving load.

The effect of loading by mean value

E[p(ξ, η1, t)]=δ(ξ) δ(η1) P (5.52)

corresponds to the deterministic solution of section 5.2. The effect of the centred stochastic 
part of the load in the form

(5.53)

may be solved using the covariance function and corresponding power spectral densities, 
assuming a stationary stochastic load.
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We assume the known covariance Cp(τ) and corresponding power spectral density Sp(ω) 
for the stationary stochastic load which are connected by the known relationships

(5.54)

and

(5.55)

It is necessary to determine the frequency characteristics (functions of the system response) 
F(iω) for state vector components at the arbitrary point of the system under a moving 
concentrated load acting at the point (ξ, η1), which is a harmonic variable with the angular 
frequency ω.

The solution of the basic differential equation of motion (4.1) is supposed in the form

w(x, y, t)=w(x−vt, y)eiωt. (5.56)

Introducing the dimensionless moving coordinates system

 

the equation is obtained in the form 

 (5.57)

and the differential equation is established as follows

(5.58)

Using Fourier’s integral transformation in the form (5.5) the ordinary differential equation 
for Fourier’s transforms of deflection Fw(α, η) is obtained in the form
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(5.59)

if at the same time the concentrated load is considered as distributed in direction ξ on the 
line segment 2a/L.

The solution continues in a similar way to that in section 5.2, unlike the relationships for 
 which now have the form

(5.60)

(5.61)

and similarly 

(5.62)

The computation F(iω) for the state vector components has to be performed for the con-
stant value of moving speed v and various frequencies ω.

The spectral density of the corresponding state vector component Ss(ω) is given by the 
formula

Ss(ω)=|F(iω)|2SP(ω) (5.63)

and the variance  is determined by the relationship

(5.64)

The standard deviation σs, referring to the value of the deterministic solution under the 
mean moving load corresponds to the coefficient of variation Vs.

The dynamic response of the system under a moving load is a non-stationary stochastic 
process, even though a stationary stochastic load was considered. The statistical character-
istics of the system response are functions of the position and the time.

5.5.1 Numerical results
A numerical study was performed for the equivalent half-plate on subgrade, which cor-
responds to the rigid highway cement concrete pavement with input characteristics given 
in previous chapters.



Dynamic interaction of plate with subgrade under a moving load  265

Assuming the exponential covariance of the random load  in the form

(5.65)

the power spectral density according to (5.55) is given by the relationship

(5.66)

The variance of the load,  may be determined using the variance of the vehicle accelera-
tion which is, according to [5.4], the product of the parameter of global dynamic vehicle 
transfer I, the parameter C as a measure of surface irregularities, and the vehicle speed ν. 
It is expressed by the formula

(5.67)

The variance of the acceleration of the vehicle, ICv, is evaluated according to [5.4] by 
six degrees. For the first degree ICv does not exceed the value 0.5 m2/s4 and for the sixth 
degree ICv is higher than 10 m2/s4.

Numerical solutions, performed according to equations (5.63) and (5.64), assuming 
the covariance functions of the load according to (5.65) give for a rigid pavement struc-
ture the results plotted in Figs. 5.22–5.24 in terms of the ratio of the coefficients of varia-
tion Vs/VP versus dimensionless load moving speed CP=ν/c2 (c2 is the velocity of shear 
waves in a cement concrete medium). In each case the motion of the load was considered 
on the track parallel to the pavement border at distance η1=0.01.

The results in Fig. 5.22 correspond to the position and time given by coordinates ξ=0.01, 
η=0.01. The curves of the comparative coefficients of variation Vs/VP for deflection w,

Fig. 5.22. Relationship of the coefficients of variation to speed factor CP for state vector 
components of pavement.
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subgrade reaction q and bending moment Mx are evaluated assuming (a) exponential cova-
riance functions with dimensionless frequency βg=ωgh/c2=0.1 (full lines), and (b) constant 
covariance, i.e. βg=0 (broken lines). The curves display maxima near the speed CP=0.1 
then, after decreasing, minima at speeds around CP=0.15–0.22. In the region of real vehicle 
speeds the coefficient of variation of given state quantities Vs is practically the same as or 
lower than the coefficient of variation VP. Assuming a constant covariance function (βg=0), 
the ratio Vs/VP is Vs/VP≈1, whereas for βg=0.1 Vs/VP≈0.6 for w and q or Vs/VP≈0.8 for Mx.

The results Fig. 5.23 are similar but they correspond to the coordinates ξ=−0.2, η=0.01 
and to the state vector components w, q and Mxy.

Fig. 5.23. Relationship of the coefficients of variation to speed factor CP for state vector 
components of pavement.

The results in Fig. 5.24 correspond to the coordinates ξ=0.1, η=0.01 and show the varia-
tions of Vs/VP for transverse force Qx and twisting moment Mxy.
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Fig. 5.24. Relationship of the coefficients of variation to speed factor CP for state vector 
components of pavement.

The general conclusion following from the numerical solutions is that the dynamic response 
for the significant state vector components under a moving random load has statistical 
characteristics that for real vehicle speeds do not exceed the statistical characteristics of 
the load. From the practical point of view it is possible to consider for the decisive state 
vector components of the pavement the same values of the coefficients of variation as are 
supposed for random loads. 



 6  
DYNAMIC RESPONSE OF PLATES 

WITH FREE BOUNDARIES ON 
UNBOUNDED SOIL BASE

At present the state of stresses and deformations for layered pavement structures is analy-
sed on the basis of the static load of an unbounded system. The characteristic effects of 
dynamic loads on the equivalent plates on subgrade have been summarized in previous 
chapters. The object of this chapter is to draw attention to the differences between the 
dynamic response of bounded and unbounded pavement systems.

The method of boundary integral equations, which in the past was widely used for static 
solutions of plates [6.1–6.5] is also convenient for the solution of the dynamic forced vibra-
tion of a plate on subgrade. The solution using boundary elements can be applied if the 
dynamic fundamental solution is available.

6.1 Fundamental solutions for plate and subgrade
Using the theory of a thin plate and the dynamic simplified model of the subgrade the dif-
ferential motion equation has the form

(6.1)

This equation was analysed in section 3.4.8. The inertia forces of the equivalent plate 
and subgrade can be expressed by using the coefficient of mass increase of the plate kd 
in the form 

(6.2)

If it is required to fulfil the exact form of the dispersion curve for flexural stress waves as 
determined by the more exact theory of a plate under the influence of shear and rotation 
inertia, it is possible to use the plate constant D* in the form

(6.3)

where β=ωh/c2 is the dimensionless frequency and κ=(0.87+1.12μ)2/(1+μ)2.
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The function of dynamic deflection for the loading of an unbounded plate on subgrade 
by a harmonic unit concentrated force, i.e. the fundamental solution, Green’s function, has 
the form

(6.4)

where γ1, γ2, Ψ, Θ are given by

(6.5)

(6.6)

(6.7)

if the dimensionless frequencies are

(6.8)

 are Hankel’s functions of the complex arguments γ1r, γ2r with positive real part and 
negative imaginary part. In the case where the imaginary parts of arguments γ1r, γ2r are 
positive, it is necessary to replace functions  with functions  in connection with the 
physical reality of the solution.

The soil base defined by the dynamic simplified model (section 3.4.1) described by the 
differential equation

(6.9)

where w0 is a deflection of the subgrade and δ(r) is Dirac’s generalized function, which 
is assumed to be a concentrated harmonic variable force acting on the surface of the 
subgrade.

Using Hankel’s integral transformation we obtain the transform of Green’s function Hw0 
in the form

(6.10)

where α is an integral parameter of Hankel’s transformation and
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(6.11)

The original of the Green’s function w0(r, t) is defined by relation

(6.12)

Bessel’s function J0(αr) can be expressed by [1.18]

(6.13)

Substituting into equation (6.12), the deflection after adjustment will have the form 

(6.14)

Using the method of residues in a lower complex half-plane the unproper internal integral 
gives the relation

(6.15)

in which

(6.16)

is a pole in the lower complex half-plane.
The validity of the relation [1.18]

(6.17)

where  is Hankel’s function of the second kind with complex argument, gives the 
Green’s function G0(r, t) in the form
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(6.18)

6.2 Boundary integral formulation according to theorem of reciprocity
We assume that the plate occupies a region S with total boundary Γ on the unbounded 
subgrade S0. The radius vector of the load point  of the unit force  and boundary point 

 are denoted in Fig. 6.1. We consider the bending moments Mnn, twisting moments Mnt 
and shear forces Qn at the plate boundary. Because of thin plate theory it is necessary to 
consider the equivalent shear forces 

Boundary integral formulations are obtained using the Rayleigh theorem of reciprocity. 
According to the theorem, in the case of a dynamic stationary task the virtual work of the 
system forces under unit concentrated force on deformations evoked by system load p is 
equal to the virtual work of system forces under load p on deformations evoked by unit 
concentrated force.

Fig. 6.1. Schematic diagram of the system and radius vectors.

Boundary integral formulations for the plate on subgrade have the form

(6.19)

where
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and

 

 are the equivalent shear forces and bending moments on the plate boundary under 
a unit concentrated load, and  and wu are corner forces and deflections under load p 
or a concentrated unit load.

The forces  arise at the corner points u of the plate boundary Γ (Fig. 6.2) because 
of the partial derivation of the twist moment in a tangential direction, and they are equal 
to the difference of twist moments Mnt(−)−Mnt(+) at the corner point. The relationships have 
the form 

Fu=(Mnt(−)−Mnt(+))u
 

Fig. 6.2. Schematic diagram of the boundary corner point u.

(6.21)

The integral formulation for soil base S0 is given by the relationship

(6.22)
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if

(6.23)

and is  a fictitious circle boundary with its centre at the point of radius vector  and with 
radius a, which exceeds the boundary Γ.

6.2.1 Boundary conditions
The boundary conditions for the plate with free boundaries are given by 

(6.24)

We assume equality of plate deflection and subgrade deflection on the plate boundary, no 
existence of bending moments, and the equality of the equivalent shear force of the system 
with the shear force of the subgrade 

6.2.2 Integral formulations for an internal point of the plate and subgrade
Provided that the dynamic external load is acting on the plate surface, then using the bound-
ary conditions the integral formulation for an internal point of the plate acquires the form

(6.25)

and the integral formulation for the internal point of the subgrade is

(6.26)
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6.2.3 Boundary integral equations
By means of the limit transition on the boundary for  the boundary integral equa-
tion will be obtained from equation (6.25) 

 

(6.27)

in which the variable distances

(6.28)

Similarly, by means of the limit transition for  and limit transition for a→∞ of the 
circle boundary  the boundary integral equation is determined from equation (6.26)

(6.29)

Equation (6.29) reflects the reality that G0(R),  fulfil the condition of regu-
larity by the limit transition for a→∞, and the boundary integral equation for the interior 
boundary of the unbounded regular region has identical form to the boundary integral 
equation of the bounded region. The regularity is interrupted in the case of a free member 
of integral formulation, because the deflection function is constant in the whole region. 
Since from a physical point of view the following equation is valid

(6.31)

the coefficient of the free members has to acquire the value 
With regard to three unknown boundary quantities    

in the boundary integral equations (6.27), (6.29), it is necessary to formulate another 
integral equation.

Provided that for a concentrated moment we can write the fundamental solution 
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(6.31)

where  is the unit vector in direction n, then the boundary integral formulation has 
the form

(6.32)

By means of limit transition on the boundary integral equation we obtain

(6.33)

6.3 Relations for calculation of internal forces and moments in plate 
on subgrade under virtual unit force and moment loads

The radial bending moment  evoked by virtual unit concentrated force is determined by 
a relationship which has the form 

(6.34)

and the tangential bending moment  is determined by the relationship

(6.35)

The bending moment  in the direction of normal line to the plate boundary is deter-
mined [6.6] by the equation

(6.36)

where the angle αn according to the scheme in Fig. 6.3 is the angle between the direction r 
and normal direction to the plate boundary.
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Fig. 6.3. Schematic diagram of the boundary angles.

The twisting moment  on the plate boundary is given by the relationship

(6.37)

The transverse force  of the system, i.e. of a plate resting on subgrade, is determined by 
the relationship

(6.38)

where Ψ is given by equation (6.6) and h is the thickness of the plate.
The equivalent shear force  on the plate boundary is given by 

(6.39)

By the virtual load of unit moment the same relationships are valid for 
 but related to Green’s function G1, determined in 

equation (6.31).

6.4 Solution of boundary integral equations using boundary elements
The boundary integral equations (6.27), (6.29), (6.33) form a system of three integral equa-
tions with unknown boundary quantities: deflection w, normal slopes of subgrade ∂w0/∂n 
and plate ∂w/∂n. Their solution is possible using the discretization of the plate boundary.

The total boundary curve can be divided into N boundary elements supposing constant, 
linear or quadratic approximations of sub-integral functions. The assumption of a constant 
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course along the element is simple. The unknown quantities are concentrated at the nodal 
points, which are at the centre of the element length. This assumption makes it possible to 
solve the pronounced singularities at the singular elements. Less precision can be compen-
sated for by using a larger number of boundary elements.

Let us work out the virtual unit concentrated force at every nodal point of the boundary 
elements and similarly the unit moments in the normal direction to the boundary elements. 
Then it is possible to transform a system of integral equations into a system of 3N linear 
algebraical equations with the dimensionless unknown wE/ph, E/p ∂w0/∂n, E/p ∂w/∂n at 
the nodal points

(6.40)

The coefficients of the system of equations are determined by the set of relationships

(6.41)

(6.42)
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in which lj is the length of the j th boundary element and

 

αkj is an angle between the line connecting points ζk, ηj at the boundary curve and normal 
at boundary point ηj, and φkj is the angle between the radius vectors  and 
are Hankel’s functions of zero and the first order, second kind with complex argument, in 
which the real part is positive and the imaginary part is negative. 

(6.43)

 

(6.44)

(6.45)

(6.46)
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 (6.47)

(6.48)

In equations (6.44), (6.46), (6.47) and (6.48),  is an angle between the line connecting 
points ζk, ηj at the boundary curve and tangent line at boundary point ηj, and  is an angle 
between the line connecting points ζk, ηj at the boundary curve and normal line at boundary 
point ζk.

The calculation of the influence coefficients at singular elements Akk, Ckk, Fkk, Hkk and Ekk 
requires special attention. Detailed analysis of the relations indicates that the coefficients 
Hkk and Ekk (assuming the constant approximation) are equal to zero. The other coefficients 
Akk, Ckk and Fkk have to be calculated in the sense of a Cauchy principal value, by using the 
integrals with finite values and Gauss’s quadrature formulas.

Absolute members of the equation system (6.40) depend on the external dynamic load. 
If, for instance, the plate on subgrade is under a dynamic load peiωt uniformly distributed on 
the circular area with radius e0, equation (3.248) already derived is as follows
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(6.49)

where

(6.50)

The right-hand sides of the equation system (6.40) at last have the form

(6.51)

(6.52)

All coefficients and absolute members of the system (6.40) are complex. The unknown 
boundary quantities wE/ph, E/p ∂w0/∂n, E/p ∂w0/∂n, calculated from the system of equa-
tions, are determined by complex numbers, the characteristics of which are absolute value 
and phase angle.

Deflections in interior points of the plate or subgrade are established according to equa-
tions (6.25) and (6.26).

6.5 Numerical results
The submitted solution can be illustrated by the numerical results for the forced flex-
ural vibration of a plate with free boundaries resting on the unbounded subgrade under a 
dynamic harmonic load, which is uniformly divided on the circle with radius e0. 

The following values for the parameters have been considered

 

A plate on subgrade equivalent to a rigid pavement structure with equivalent thickness 
h=0.36 m has been assumed.

6.5.1 Square plate on subgrade
A square plate resting on subgrade with free boundaries and dimensions 4.80 m×4.80 m 
is loaded by a harmonic variable force Peiωt, which acts at the axis y (Fig. 6.4), where 

 and ω is an angular frequency.
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Fig. 6.4. Schematic diagram of boundary elements for square plate on subgrade.

Considering symmetry to axis y the boundary was divided into 16 boundary elements 
of length 0.6 m. The number of boundary unknowns was 3×16=48 and because of 
complex coefficients the problem was solved by a system of 96 equations. We assumed 
two load locations of the driving force Peiωt, with excentricities of working yp=2.10 m 
and yp=0.01 m.

The obtained amplitude—frequency characteristics of the deflections |w|E/ph at 
boundary nodal points 1 and 16 are shown in Figs. 6.5 and 6.6. They are calculated for 
dimensionless frequencies β=ωh/c2 in the range 0.01–0.35. 

Fig. 6.5. Amplitude—frequency characteristics of deflection at boundary nodal points.
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Fig. 6.6. Amplitude—frequency characteristics of deflection at boundary nodal points.

The deflection amplitudes of forced damped vibration of the plate at resonance frequen-
cies β are shown in Figs. 6.7 and 6.8 for the load case with eccentricity yp=2.10 m and in 
Figs. 6.9 and 6.10 for the load with eccentricity yp=0.01 m.

Fig. 6.7. Deflection amplitudes of forced vibration at frequencies β=0.08 and β=0.027.
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The value of deflection amplitude |w|E/ph can be determined by the division of vertical 
amplitude A with gauge m. The set of deflection amplitudes was calculated by using the 

Fig. 6.8. Deflection amplitudes of forced vibration at frequencies β=0.093 and β=0.325.

Fig. 6.9. Deflection amplitudes of forced vibration at frequencies β=0.03 and β=0.08.
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Fig. 6.10. Deflection amplitudes of forced vibration at frequencies β=0.093 and β=0.325.

boundary integral formulations and their transformation for a discrete solution applying 
boundary elements. The net of interior points had the basic dimension 0.3×0.3 m with the 
exception of the boundary zones, where the distance from the boundary was 0.6 m. The 
calculation of deflection amplitudes near the boundary has a small amount of precision 
with regard to the singular character of the fundamental solution.

The shape of the deflection amplitudes for the resonance frequencies β=0.08 and 
β=0.093 is similar to the vibration shapes of a free square plate with free boundaries, which 
corresponds to the second and third natural frequency [1.13]. According to [1.13] the rela-
tionship established for these frequencies of a square plate with side length l has the form

(6.53)
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where

(6.54)

For Poisson’s ratio μ=0.20 this can be expressed

 

From the numerical solution of a square plate resting on subgrade the dimensionless fre-
quencies β=ωh/c2 have correspondent values β2=0.08, β3=0.093. It can be seen that the 
interaction of the plate with the subgrade caused an increase in resonance frequencies by 
the ratios 0.080/0.0535 or 0.093/0.0654, i.e. approximately about 50%. The ratio of the 
frequencies which depends on the value of Poisson’s ratio, is practically the same as for the 
free plate and corresponds very well to the value μ=0.20.

The first resonance zone in the frequency range β=0.025–0.035 probably corresponds 
to the vibration in which the vertical or rocking vibration of the plate mass on subgrade is 
determined. At the same time deformation of the plate shape is also present.

Provided that K1h/G=0.00188, then a constant of vertical elasticity is approximately 
Cz=K1l

2=0.00188G l2/h and the total mass of the plate  The angular frequency of 
vertical plate vibration on the subgrade considered as a rigid plate is given by

 

At the same time deformity of the plate decreases the calculated value of angular frequency 
and forms a resonance zone in the frequency range β=0.025–0.035.

The third resonance zone at frequency β=0.325 has the amplitude shapes of forced 
vibration, which differ depending on the position of action of the driving harmonic force. 

6.5.2 Rectangular plate on subgrade
The rectangular plate with free boundaries resting on subgrade has the dimensions: lx=4.80 
m, ly=3.68 m.

Symmetry to the axis y is assumed again. The boundary is divided into 16 boundary 
elements. The length of the elements on the side ly is 0.46 m. The numerical solution was 
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Fig. 6.11. Amplitude—frequency characteristic of deflection at boundary point of rectan-
gular plate on subgrade.
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Fig. 6.12. Amplitude—frequency characteristics of deflection at boundary nodal points of 
rectangular plate on subgrade.
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realized for two positions of a driving harmonic force, yp=1.50 m and yp=0.01 m. The 
amplitude-frequency characteristics of deflections |w|E/ph in nodal points 1 and 16 or in 
interior point S are plotted in Figs. 6.11 and 6.12.

The deflection amplitudes of forced plate vibration on subgrade at resonance frequen-
cies β are plotted in Figs. 6.13–6.15 for two load positions.

The shape of the deflection amplitudes corresponding to the second and third resonance 
frequencies are very similar, without regard to the position of the driving force.

Fig. 6.13. Deflection amplitudes of forced vibration at frequency β=0.03 for two load 
positions.
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Fig. 6.14. Deflection amplitudes of forced vibration at frequency β=0.10 for two load 
positions.

6.5.3. Evaluation of application of the boundary element method
The theoretical procedures that have been presented, and compiled computer programs in 
FORTRAN 77 for IBM personal computers, demonstrate the considerable possibilities for 
and the advantage of the proposed methods in the application of the numerical solution of 
forced plate vibration resting on unbounded subgrade.

The advantage of the application of the method of integral equations is evident just 
in the cases of plate interaction with the subgrade. In such a case the method combines 
the exactness of the analytical solution with the efficacy of the numerical procedures for
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Fig. 6.15. Deflection amplitudes of forced vibration at frequency β=0.33 for two load 
positions.

fulfilling the boundary conditions. In comparison with the method of finite elements the 
method of boundary elements requires the solution of substantially smaller systems of equa-
tions. Another advantage is the possibility of its application for plates of arbitrary shape.

With regard to the singularity of fundamental solutions it is necessary to calculate some 
influence coefficients in the system of equations in the sense of a Cauchy principal value. 
For the same reason the calculation of the state vector components near the nodal points of 
boundary elements is insufficiently precise. 
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6.5.4. Effect of pulse loads
The differences between the dynamic response of a bounded and an unbounded plate resting 
on unbounded subgrade have their origin in the different forms of the amplitude—frequency 
characteristics. The amplitude—frequency characteristic of the unbounded plate is a mono-
tonicall decreasing function, and in the case of a bounded plate resting on the subgrade there 
are resonance zones.

In order to study the effect of pulse loads the procedure of section 4.8 is adopted. The 
application of the indicated procedure to the dynamic response of a rectangular plate with 
free boundaries resting on subgrade allows us to obtain the corresponding dynamic coef-
ficients  of the deflection |w|E/(ph). They are plotted in Fig. 6.16 for various values of 
the dimensionless parameter Ω0, which corresponds to the time of pulse duration.

Fig. 6.16. Dynamic coefficients  for effect of pulse loading on bounded and unbounded 
pavement structure.

The analysis of the dynamic response of a bounded plate resting on unbounded subgrade 
using the method of boundary elements confirms that the dynamic increment under a har-
monic and pulse load is evident. These results are also important for layered pavement 
systems, because the equivalent plate with free boundaries presents a system which is in 
contrast to the model of an unbounded plate on subgrade. 



 7  
CONCENTRATION OF THE VIBRATION 

ABOUT THE HOLES IN PLATE 
ON SUBGRADE

The method of boundary integral equations and the analysed procedures offer the pos-
sibility of studying some very interesting problems concerning the influence of holes 
of arbitrary shape in the plate on subgrade during the propagation of the vibration. In 
such a case the diffraction of the stress waves on the hole’s boundaries is affected. The 
similarity of the problem with stress concentration about the holes in the static case is 
reinforced and transformed in dynamic problems because of dynamic increments in the 
resonance zones. These resonances can be formed by certain ratios of wavelength to the 
dimensions of the hole.

7.1 Integral formulations according to theorem of reciprocity
Let us assume thin plate theory and the simplified model of the soil base, and the funda-
mental solutions (6.4), (6.18).

In Fig. 7.1 a hole of arbitrary shape with boundary curve Γ is situated in an unbounded 
plate S resting on subgrade. The radius vector of the load position is  the radius vector of 
the unit concentrated force is  and the radius vector of the boundary point is 

Fig. 7.1. Schematic diagram of system of a hole in plate on subgrade.

In general, the bending moments Mnn, the twisting moments Mnt and the shear forces Qn of 
the system affect the hole boundary. Because of thin plate theory it is necessary to consider 
the equivalent shear forces 
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According to Rayleigh’s theorem of reciprocity the integral formulation for the plate 
has the form

(7.1)

where

 

and

 

The significance of the symbols and signs is the same as in Chapter 6.
The integral formulation for the medium of subgrade S0 takes the form

(7.2)

if
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7.1.1 Boundary conditions
Provided that the boundaries of the hole in the plate are free, the boundary conditions are 
as follows:

(7.3)

7.1.2 Boundary integral equations
Using the boundary conditions (7.3) and by means of the limit transition on the boundary 
for  and the limit transition of the circular boundary  for a→∞ the integral 
equation is established from equation (7.1) as follows:

(7.4)

where 

 

The boundary integral equation (7.4) expressed for the interior boundary of an unbounded 
regular region is identical in form to the boundary integral equation of the bounded region. 
Quantities G(R),  fulfil the condition of regularity by 
limit transition for a→∞. The interruption of the regularity is actual in the case of a free 
member and because from a physical point of view the following relationship is valid:

(7.5)

the coefficient of the free member is 
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By means of the limit transition on the boundary for  the second integral 
boundary equation will be expressed from the integral formulation for the subgrade S0 
(7.2) in the form

(7.6)

The third boundary integral equation can be expressed if the fundamental solution for the 
plate deflection G1(r, t) under a virtual unit polarized moment is established in the same 
way as in (6.31).

According to the Rayleigh theorem of reciprocity the integral formulation for the inte-
rior point of the plate is given by the relationship

(7.7)

By using the boundary conditions (7.3), by means of transition on the boundary of the plate 
hole for  and by means of the limit transition to the boundary  for a→∞, the 
integral boundary equation is expressed in the form

(7.8)

The validity of the relationship

(7.9)

was considered by limit transition for a→∞.
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The relationships for internal forces and moments in a plate on subgrade have already 
been derived and described in section 6.3. The significance of the angle αn in this case is 
given according to the scheme of Fig. 7.2. 

Fig. 7.2. Schematic diagram of boundary angles.

7.1.3. Solution of integral equations using boundary elements
Boundary integral equations (7.4), (7.6) and (7.8) have three unknown boundary quantities: 
deflection w, normal slope of the plate ∂w/∂n and normal slope of the subgrade ∂w0/∂n.

Their solution is possible using discretization of the plate boundary. Then, decomposing 
the entire boundary into boundary elements with N nodal points and assuming a constant 
course for the sub-integral function, the system of 3N linear algebraic equations with the 
dimensionless unknowns  E/p ∂w0/∂n, E/p ∂w/∂n at the nodal points is obtained as 
follows

(7.10)

The coefficients of the equation system are given by the relationships (6.41)–(6.48) of 
Chapter 6, but the angles  have to relate in a tangential and normal direction in 
the boundary nodal points according to the scheme of Fig. 7.2.
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The right-hand sides of the system of equations (7.10) have the form of relationships 
(6.51), (6.52) in the case of load peiωt, which is uniformly distributed in a circular area with 
radius e0. 

7.2 Numerical results
A submitted solution can be illustrated by the numerical results of the problem of stress-
wave propagation in an unbounded plate, with a rectangular hole, resting on the subgrade. 
The boundaries of the hole are free.

A dynamic harmonic load acting on the surface of the plate is uniformly distributed on 
a circular area with radius e0.

During the numerical study the following parameters and dimensionless values were 
used: δ=0.10, δ0=0.20, μ=0.20, μ0=0.35, c2/c20=13.65, K1h/E=0.00188, K2/Eh=0.00197, 
e0/h=0.25.

The theoretical analysis and procedures were realized using a computer program in 
FORTRAN 77 on an IBM PC—AT personal computer. The numerical parametric study 

Fig. 7.3. Schematic diagram of boundary elements.

was carried out for rectangular holes in the plate on subgrade with various dimensions of 
hole sides. The number of boundary elements and nodal points was held to be the same. 
The elementary scheme of the hole and its division into boundary elements and nodal 
points are shown in Fig. 7.3.

Assuming symmetry of the system and division of every side into eight boundary ele-
ments, the total number of unknown boundary quantities will be 3×16+4(corner points)=52. 
Because of the complex values of the unknown quantities the task is transformed into the 
solution of 104 algebraic equations. 
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7.2.1 Diffraction of stress waves in plate on subgrade with rectangular hole
The dimensions of the sides of the rectangular hole in the plate are lx=4.80 m, ly=1.60 m. A 
dynamic harmonic load with angular frequency ω acts at the symmetry axis y at distance 
2.80 m.

The calculation of the unknown quantities on the boundary of the plate hole was per-
formed for various values of dimensionless frequency β=ωh/c2 in the range (0.0–0.30). 
Provided that the velocity of shear waves in concrete plate c2=2400 m/s and the thickness 
of the plate h=0.30 m, the frequency range covers frequencies up to 380 Hz.

The amplitude—frequency characteristics of the deflection |w|E/ph are drawn in 
Fig. 7.4 for nodal points 1, 6, 13 and 18. The dynamic response has two resonance 
zones in the analysed frequency range, the first near frequency β=0.025 and the second 
for β=0.165.

Fig. 7.4. Amplitude—frequency characteristics of deflection at nodal point of hole boundary.
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Fig. 7.5. Amplitudes of dynamic deflections |w|E/(ph) and phase angles φw along hole 
boundaries at frequency β=0.05.

The distribution of the amplitudes of dynamic deflections |w|E/ph and phase angles φw 
along the hole boundaries is plotted in Figs. 7.5– 7.7 for frequencies β=0.05, 0.10 and 

Fig. 7.6. Amplitudes of dynamic deflections |w|E/(ph) and phase angles φw along hole 
boundaries at frequency β=0.10.
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Fig. 7.7. Amplitudes of dynamic deflections |w|E/(ph) and phase angles φw along hole 
boundaries at frequency β=0.165.

Fig. 7.8. Effect of plate hole on vibration amplitudes at frequency β=0.05.
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0.165. It can be seen that the marked concentration of vibration along the sides of the 
rectangular hole is particularly noticeable near the corner of the lateral sides. The largest 
concentration of vibration at these places arises at the resonance frequency β=0.165.

The increase of the vibration amplitudes about the rectangular hole in comparison with 
the situation of vibration propagation in a plate on subgrade without a hole present, occurs 
along the cross-section A–A, i.e. along the axis y in Figs. 7.8–7.10.

Fig. 7.9. Effect of plate hole on vibration amplitudes at frequency β=0.10.

Fig. 7.10. Effect of plate hole on vibration amplitudes at frequency β=0.165.
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The influence of the hole causes the concentration of vibration with the interference of 
direct and reflected waves in front of the frontal side of the rectangular hole but at the area 
behind the hole too. The concentration of the vibration is especially marked at the reso-
nance frequencies. The hole becomes an amplifier of the vibration.

7.2.2 Influence of length of lateral sides of rectangular hole on resonance 
regions and vibration concentration

Let us assume a rectangular hole in a plate on subgrade with sides lx=4.80 m, i.e. the same as 
in the previous analysis, but with the length of the lateral sides doubled, i.e. ly=3.20 m. The 
location of dynamic load Peiωt is on the axis y at distance 3.60 m. The amplitude—frequency 

Fig. 7.11. Amplitude-frequency characteristics of deflection at nodal points of hole boundary.
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Fig. 7.12. Amplitudes of dynamic deflections |w|E/(ph) and phase angles φw along hole 
boundaries at frequency β=0.05.

Fig. 7.13. Amplitudes of dynamic deflections |w|E/(ph) and phase angles φw along hole 
boundaries at frequency β=0.165.



304 Dynamics of Pavement Structures

characteristics of deflection |w|E/ph at the boundary nodal points 1, 18 or 6, 13 are shown 
in Fig. 7.11. Resonance zones rise again at frequencies β=0.025 and β=0.165. The results 
demonstrate that these resonances do not depend on the length of lateral side ly of the rect-
angular hole.

The curves of the amplitudes of dynamic deflection |w|E/ph and the phase angle φw at 
the boundary points are drawn in Figs. 7.12 and 7.13 for frequencies β=0.05 and β=0.165. 
They confirm the concentration of the vibration about the corner points of the rectangular 
hole, especially at the frequency β=0.165; at the same time, however, they indicate the 
subduing of the concentrated amplitudes of vibration at the lateral sides of the hole for the 
frequency β=0.05.

This trend is confirmed by the curves of the deflection amplitudes on the hole boundary 
in the case ly=4.80 m, i.e. for a square hole as in Fig. 7.14; in contrast the increase of the 
concentration of vibration with reduction of the lateral hole sides, ly=0.16 m, is presented 
in Fig. 7.15.

In conclusion it is possible to state that the length ly of the lateral sides of a rectangular 
hole in a plate on subgrade for the analysed scheme of dynamic load activity has no

Fig. 7.14. Amplitudes of dynamic deflections |w|E/(ph) and phase angles φw along hole 
boundaries at frequency β=0.05.
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Fig. 7.15. Amplitudes of dynamic deflections |w|E/(ph) and phase angles φw along hole 
boundaries at frequency β=0.05.

influence on resonance zones but alters the size of vibration concentration about the corner 
points of the hole, which increases with a reduction of the lateral side length.

7.2.3 Influence of length of frontal sides of a rectangular hole 
on resonance regions

Another series of numerical calculations was performed for the case of a rectangular hole 
with frontal side length lx=6.40 m and lateral side length ly=3.20 m.

The amplitude—frequency characteristics of a dynamic deflection at boundary points 1, 
6, 13 and 18 are plotted in Fig. 7.16, and the curves of the deflection amplitude and phase 
angle φw along the hole boundary at frequency β=0.092 are plotted in Fig. 7.17. 
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Fig. 7.16. Amplitude-frequency characteristics of deflection at nodal point of hole boundary.

Fig. 7.17. Amplitudes of dynamic deflections |w|E/(ph) and phase angles φw along hole 
boundaries at frequency β=0.092.
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One can see that the amplitude—frequency characteristic contains the first resonance 
zone at the non-altered frequency β=0.025, but the second resonance zone has changed as 
a consequence of the alteration of frontal side length lx. It has decreased from the value 
β=0.165 to β=0.092. The character of the vibration concentration about the corner points of 
the hole in the plate has remained similar to the previous cases.

It is evident that the second resonance frequency depends only on the length lx of the 
frontal side of the rectangular hole. Proof is available. By the flexural vibration of the plates 
the resonance frequencies change in indirect proportion to the square of the side lengths. 
In this case this means that the ratio of resonance frequencies β=0.092 and β=0.165, i.e. 
0.092/0.165=0.557, has to be equal to the ratio of the squares of frontal side lengths of the 
plate hole, i.e. 4.802/6.402=0.561. In practical terms, this requirement is fulfilled.

The first resonance zone, which does not depend upon the lengths of the frontal or lat-
eral hole sides, is probably connected to the stiffnesses of the subgrade and plate. In section 
6.5 by the solution of the vibration of the bounded plate on subgrade similar resonance 
zones have arisen at frequencies β=0.025–0.035. 

7.3 Influence of rectangular hole in plate on subgrade by pulse propagation
The method of boundary integral equations developed for the problem of flexural stress-wave 
propagation in a plate with a hole provides the dynamic response of the system, S*(β), under 
a dynamic harmonic load with arbitrary dimensionless frequency β=ωh/c2. The dynamic 
response S*(β) is a complex function with real part SR(β) and imaginary part SJ(β).

In the cases of non-stationary vibration under a pulsed dynamic load it is possible to use 
Fourier’s integral transformation according to the procedure in section 4.8. Although by its 
application the zero initial conditions are not fulfilled the dynamic response is sufficiently 
true and reliably reflects the reaction of the system under a pulse load.

The original of the state vector component is given by inverse transformation according 
to equation (4.79). The realization of such a procedure requires us to know the courses of 
functions SR(β) and SJ(β) at the relevant frequency range and to replace the improper inte-
gral with a finite integral. We know the values of functions SR(β) and SJ(β) only at discrete 
frequencies β this is why it has to be replaced in the numerical solution of equation (4.79) 
by continuous spline functions.

7.3.1 Numerical results
Let us assume that the plate on subgrade has a rectangular hole 6.40×3.20 m and the pulsed 
load is acting on the symmetry axis y at a distance 3.60 m. The results of the numerical solu-
tion using the method of boundary elements and harmonic load are known from section 7.2.3. 
The dynamic deflection response is presented as amplitude—frequency functions for bound-
ary points 1 and 13 in Fig. 7.16. The characteristics for point 1 reflect essentially only the first 
resonance zone, while the characteristics for boundary point 13 comprise both resonances but 
reflect more the second resonance zone.

The curves of the real part wRE/ph and imaginary part wJE/ph of the dynamic deflec-
tion response at point 1 are shown in Fig. 7.18 and the calculated dynamic deflection to 
the pulse excitation in Fig. 7.19 for values of pulse duration represented by parameter 
Ω0=0.012, 0.025, 0.050, 0.100 and 0.250. Parameter Ω0 is indirectly proportional to the 
pulse duration. 
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Fig. 7.18. Variation of real and imaginary parts of dynamic deflection response at hole 
boundary point 1.

Fig. 7.19. Dynamic deflection responses at hole boundary point 1 under pulsed load for 
various values of pulse duration.
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Fig. 7.20. Variation of real and imaginary parts of dynamic deflection response at hole 
boundary point 13.

Fig. 7.21. Dynamic deflection responses at hole boundary point 13 under pulsed load for 
various values of pulse duration.
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Similarly the real and imaginary part of the dynamic deflection response at boundary 
point 13 are given in Fig. 7.20 and the dynamic deflection under pulse load for various 
values of Ω0 is shown in Fig. 7.21.

It can be seen that the dynamic response at point 1 is formed by the spectrum compo-
nents of the first resonance frequency β=0.025 while the spectral components of the second 
resonance frequency β=0.092 predominate in the response at point 13.

The dynamic deflection response achieves its maximum amplitudes at point 1 for pulse 
parameter Ω0=0.012 and at point 13 for β=0.025.

A relatively complicated and at present non-analysed problem of the vibration concen-
tration near a hole in a plate on subgrade can be realized very well using the method of 
boundary integral equations.

Diffraction of the stress waves on the boundary of the hole causes concentration of the 
vibration in the surroundings by the process of propagation, which is magnified by means 
of resonance phenomena.

All these facts obtained by the problem solution are quite obvious and comprehensible 
from a physical point of view. Despite this the intensity of the concentration of vibration at 
some points of the plate hole is so expressive that it evokes the necessity of experimental 
identification of the phenomena.

The questions raised for solution in this section have no immediate use in the design of 
pavement structures but their contribution to theoretical fundamentals and further develop-
ment in the mechanics of pavement structures is evident. 



 8  
NON-LINEAR DYNAMIC RESPONSE OF 

UNBOUNDED PLATE ON SUBGRADE

Green’s function w0 for an unbounded plate on subgrade in the conception of a dynamic 
influence function of the deflection for stationary time courses is the solution of the 
equation

(8.1)

where δ(r), δ(t) are Dirac’s generalized functions. By using Hankel’s integral transfor-
mation and Fourier’s integral transformation we obtain Green’s function in the form

(8.2)

if γ1, γ2, Θ are given by the equations (6.5)–(6.7).

8.1 Dynamic deflection of unbounded plate on non-linear soil base 
under a stationary load

A non-linear deflection may be established by the solution of a differential equation of 
motion in the form

(8.3)

We suppose, then, a harmonically variable normal load with frequency 
ω1 and a non-linear cubic member with a coefficient of non-linear compression  

in N/m5.
The solution of equation (8.3) using Green’s function w0 is as follows
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(8.4)

where the sub-integral function is a vector function with the radius vector of deflection 
point  and the radius vector of the load point 

Provided that the following equation is valid

(8.5)

if the integral is considered as generalized function, then equation (8.4) for deflection can 
be expressed

(8.6)

if 

(8.7)

and

(8.8)
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By using the procedure in [3.19] the value of integral N is determined by the relation

(8.9)

The nonlinear deflection of a plate on subgrade according to equation (8.6) is expressed 
by the equation

(8.10)

in which  is the linear deflection of the plate.
The method of iteration can be used in the solution of integral equation (8.10). The first 

approximation expressed by linear deflection  gives the relationships

(8.11)

and substituting this into the right-hand side of equation (8.10), this relationship becomes

(8.12)

Since the following equation is valid 

(8.13)

if the integral is considered as a generalized function then equation (8.12) becomes

(8.14)

In the following iteration step equation (8.14) will be used and by substituting it into (8.10) 
the second approximation will be obtained.
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8.2 Non-stationary vibration problems of an unbounded plate on subgrade
For the stationary vibration of a plate on subgrade the damping of the material of the 
plate and subgrade is considered by the application of complex characteristics of elasticity 

In the case of a non-stationary vibration problem it is better to consider viscous damping, 
because by using the complex characteristics of elasticity the problems with the fulfilling 
of the causation principle are established.

The differential equation of motion is considered in the form

(8.15)

in which K1, K2 and D are real characteristics of subgrade elasticity and plate rigidity, the 
damping characteristic K5 (Ns/m3) expresses the damping stress by unit moving velocity, 
and δ(r) and δ(t) are Dirac’s generalized functions. 

By using Hankel’s integral transformation the original or Green’s function w0(r, t) is 
established from equation (8.15) in the form

(8.16)

where α is an integral parameter of Hankel’s transformation and ω is an integral parameter 
of Fourier’s transformation.

Calculating the interior integral by the method of residua we obtain

(8.17)

if

(8.18)

The improper integral (8.17) can be calculated numerically by substituting an integral 
with a sufficiently large value of upper limit α. The integral converges and has no 
singularity for

 

In the case of a vertical normal load with intensity p=P/πa2, which is uniformly divided on 
a circular area of the plate surface with radius a, equation (8.17) is given in the form 



Non-linear dynamic response of unbounded plate on subgrade 315

(8.19)

Equations (8.17) and (8.19) are valid for an instantaneous pulse load (given by Dirac’s 
generalized time function). In the cases of pulse loads formulated by the functions of 
non-stationary time course f1(τ) the dynamic response of the system is determined by the 
relationship 

(8.20)

8.3 Non-linear non-stationary vibration of a plate on subgrade
The assumption of the non-linear effect of subgrade leads to the differential equation of 
motion in the form

(8.21)

Equation (8.17) was derived for Green’s function w0(r, t) for non-stationary time courses. 
Then for the deflection w of the plate on subgrade according to (8.21) the relationship is 
given 

(8.22)

where S0 is the load area of the plate on subgrade and S∞ is the unbounded region of the 
plate on subgrade.
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The first part of equation (8.22) is the linear solution of the task, which can be marked 
by wL.

Fourier’s transform of the function w0(r, t) is given in the form

(8.23)

if

(8.24)

and

(8.25)

(8.26)

Equation (8.22) can be expressed as the relationship

(8.27)

By using the procedure in [3.19] the relationships can be established in the form 

 (8.28)
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According to equation (8.28), equation (8.27) becomes

(8.29)

where

(8.30)

Because of the validity of the following relationships

(8.31)

(8.32)

the improper integral in equation (8.29) can be expressed using the method of residua in 
the form

(8.33)

Equation (8.33) is valid assuming that

(8.34)

which is always fullfiled for the real values of the damping. 
Then in the first approximation equation (8.29) becomes

(8.35)
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8.4 Numerical applications
Equations (8.19), (8.20) and (8.35) can be calculated using numerical integration and com-
puters. It is better to modify these relationships into dimensionless forms by introducing 
the dimensionless variables

(8.36)

Then equation (8.19) will acquire the form

(8.37)

where 

(8.38)

Equation (8.20) has, after modification, the form

(8.39)

and equation (8.35) for non-linear dynamic response has the form

(8.40)

if
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8.4.1 Effect of a trapezoid-shaped pulse
We may assume that a vertical normal load of intensity p=1, the time course of which is 
determined in Fig. 8.1, is acting on a circular area with radius a on the plate surface.

The numerical analysis is realized for the following values of parameters: μ=0, 25, 
kd=2.50, K1h/E=0.00078, K2/Eh=0.00082, ε0=0.02, h/a=1.73.

The variations of dimensionless deflection Wo=wE/ph with the dimensionless time 
t1=tc0/h are plotted in Figs. 8.2–8.4 for various distances from the exciting load which are 
given by the ratios r/a=5, 10 and 20. 

Fig. 8.1. Schematic diagram of trapezoid-shaped pulse.

The forms of the dynamic response confirm the characteristic laws of system action. From 
the dispersion curve of phase velocities it is evident that the phase velocities of the stress 
waves increase with increasing frequency or decreasing wavelength. It can be seen from 
Figs. 8.2–8.4 that the front of the pulse response with increasing distance from the exciting

Fig. 8.2. Dynamic deflection response for r/a=5.
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Fig. 8.3. Dynamic deflection response for r/a=10.

force is formed through wave components, the wavelength of which is shortest immedi-
ately at the front of the pulse. With time increase the wavelength gradually increases.

Fig. 8.4. Dynamic deflection response for r/a=20.
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Fig. 8.5. Non-linear dynamic response for r/a=5 and decreasing rigidity of subgrade.

The non-linear dynamic responses for the same pulse load, calculated by the numerical 
integration of equation (8.40), are plotted in Figs. 8.5–8.10. The dynacmic response at 
the distance given by ratio r/a=5 is in Figs. 8.5 and 8.6, at distance r/a=10 in Figs. 8.7

Fig. 8.6. Non-linear dynamic response for r/a=5 and increasing rigidity of subgrade.
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Fig. 8.7. Non-linear dynamic response for r/a=10 and decreasing rigidity of subgrade.

and 8.8, at distance r/a=10 in Figs. 8.7 and 8.8 and at distance r/a=20 in Figs. 8.9 and 
8.10. The courses of the non-linear response correspond to the dimensionless characteris-
tic of non-linearity A0=−0.002, or A0=0.002 and A0=−0.05, i.e to decreasing or increasing

Fig. 8.8. Non-linear dynamic response for r/a=10 and increasing rigidity of subgrade.
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Fig. 8.9. Non-linear dynamic response for r/a=20 and characteristic of non-linearity 
A0=−0.002.

rigidity of the subgrade. The physically real characteristic of nonlinearity certainly cor-
responds to decreasing rigidity of the subgrade by the increase of deflections. In the time 
variation of pulse response it manifests itself as an increase of maximum dynamic deflec-
tions and by the increase of the time t1 in which these maxima set in.

Fig. 8.10. Non-linear dynamic response for r/a=20 and characteristic of non-linearity 
A0=−0.05.
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Fig. 8.11. Linear and non-linear response for r/a=5 under pulse of half-sinusoidal shape.

By increase the distance from the pulse source, the amplitudes of the response deflection 
decrease, as can be seen in Figs. 8.9 and 8.10 for the ratio r/a=20. The influence of non-
linearity increases with increase of the value of A0 (compare Figs. 8.9 and 8.30). The linear 
and non-linear dynamic response for a pulse load of half-sinusoidal shape with maximal 
amplitude p=1 and divided on an equal time section as shown in Fig. 8.1 is in Fig. 8.11. 
Comparing this with the response for a trapezoid-shaped pulse in Fig. 8.5, it can be seen 
that the dynamic deflections and the influence of non-linearity are both smaller. This cor-
responds to the reality of the situation because a pulse load of half-sinusiodal shape has a 
smaller value than a trapezoidshaped pulse.

8.4.2 Bending moment in plate on subgrade and subgrade reaction due 
to an instantaneous pulse load

The radial bending moment in a plate on subgrade is determined by the relationship
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(8.41)

According to equations (8.37), (8.38) and (8.41) the radial bending moment in the plate 
has, after rearranging, the form

(8.42)

In the case of a non-linear subgrade the bending moment, in the first approximation, is 
given by the equation 

 

(8.43)

The subgrade reaction q due to a pulse load is expressed by the relationship

(8.44)

By using equations (8.37) and (8.38), the subgrade reaction in dimensionless form is given 
by the equation

(8.45)

The non-linear reaction of the subgrade in the first approximation is determined in the form
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(8.46)

Equations (8.42), (8.43) and (8.45), (8.46) refer to an instantaneous pulse load. It is simple 
to rearrange these equations for the case of a pulse load with time variation f1(τ1).

The courses of calculated dimensionless deflections W0=w0E/ph dependent on dimen-
sionless time t1 are plotted in Fig. 8.12 for r/a=1, 5 and 10.

Fig. 8.12. Dynamic deflection response under unit instantaneous pulse at various ratios 
ξ=r/a.
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Fig. 8.13. Linear and non-linear deflection response under unit instantaneous pulse for r/a=5 
and A0=−0.002.

The values of the deflections are approximately 30 times smaller, because the value of a 
unit instantaneous pulse is 30 times smaller than the value of the trapezoid-shaped pulse 
in Fig. 8.1.

Fig. 8.14. Linear and non-linear deflection response under unit instantaneous pulse for r/a=5 
and A0=−0.20.



328 Dynamics of Pavement Structures

Very small values of deflections cause the influence of subgrade non-linearity to be vis-
ible only for the larger values of parameter A0, as can be in Figs. 8.13 and 8.14.

The curves of bending moments of a plate on subgrade in dimensionless form Mo=Mr/ph2 
depending on t1 at r/a=5 are plotted in Fig. 8.15 for a trapezoid-shaped pulse, in Fig. 8.16 for 
a triangle-shaped pulse and in Fig. 8.17 for a half-sinusoidal-shaped pulse. The time section 
of all the pulse shapes is the same as in Fig. 8.1. In Fig. 8.17 the course of bending moment 
for a triangle-shaped pulse is plotted as well.

The form of the moment response suggests that the instantaneous changes of pulse 
time variation f1(τ1) are reflected in intense changes of the variation of dynamic moment 
response. These changes are greatest for a trapezoid-shaped pulse and smallest for a half-
sinusoidal-shaped pulse.

The subgrade reaction q/p in dimensionless form calculated for a half-sinusoidal-shaped 
pulse is plotted in Fig. 8.18 at the distances r/a=5 and r/a=10.

With regard to the theory of the equivalent plate on subgrade the results obtained and 
derived relationships and procedures in this section are an effective tool for the complex 
analysis of the influence of dynamic load of pavement structures. At the same time they 
form the theoretical basis for the development of dynamic diagnosis.

Fig. 8.15. Bending moment response of plate on subgrade under trapezoid-shaped pulse 
for r/a=5.
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Fig. 8.16. Bending moment response of the plate on subgrade under triangle-shaped pulse 
for r/a=5.

An example of the computer program for the case of linear and nonlinear dynamic deflec-
tions of a plate on subgrade under a pulse load is given in Appendix 2.

Fig. 8.17. Bending moment response under triangle- and half-sinusoidal-shaped pulse 
for r/a=5.
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Fig. 8.18. Subgrade reaction response under half-sinusoidal-shaped pulse for r/a=5 
and r/a=10.



 9  
EFFECTS OF VIBRATION-ISOLATING 

BARRIERS ON THE PROPAGATION 
OF VIBRATION IN SOIL BASES

Many experimental investigations performed on real or model soil bases [9.1]–[9.7] have 
shown that barriers in soil bases may be a very effective means for the vibration screening 
of objects or zones that are situated immediately behind the barrier. In particular, the barrier 
can be applied to the propagation of technical seismic effects or vibration evoked by traffic, 
when the majority of the frequency spectrum components have wavelengths smaller than 
or comparable to the dimensions of the barrier.

The problem has been treated in [9.2] using the method of finite elements as a two-
dimensional problem, i.e. the plane strain problem.

9.1 Application of boundary element method
Our investigation has been performed theoretically by the use of the method of boundary 
integral equations and that of boundary elements respectively [6.1–6.4] assuming the soil 
base as described by the simplified dynamic model. We then assume the depth of a barrier 
larger than or comparable to the wavelength of the propagated force effect components. 
In this way, the influence of the shape and dimensions of the barrier on vibration-isolating 
effect can be investigated.

A harmonically variable dynamic force acting at the surface of the soil base 
generates dilatational and shear waves, which spread into the soil base, and surface 
Rayleigh waves which radiate at the surface with velocity cR. The amplitudes of vertical 
displacements w and horizontal displacements u by Rayleigh waves are concentrated 
at the surface (Fig. 9.1). It is known [9.8] that the greater part of the energy (67 %) is 
radiated by the surface waves.

If the depth H of the obstacle (Fig. 9.1) is comparable to the wavelength ΛR, we can 
expect the screening effect before the incoming waves.

Fig. 9.1. Schematic diagram of barrier in soil base.
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9.1.1 Simplified dynamic model of subgrade and fundamental solution
The simplified dynamic model of subgrade was analysed in section 3.4.1. The differential 
equation of motion for such a model of subgrade has the form

(9.1)

where δ(r), δ(t) are Dirac’s generalized finctions, and cR is a complex velocity of Rayleigh 
waves.

By using Hankel’s and Fourier’s integral transformations the transform of Green’s func-
tion, HFw is given according to equation (9.1) in the form

(9.2)

where α, ω are integral transformation parameters.
The original of Green’s function w(r, t) takes the form 

(9.3)

By using the procedure of section 6.1, Green’s function for the subgrade is as follows

(9.4)

if

(9.5)

Green’s function as the dynamic influence function of the deflection under a harmonic unit 
concentrated force in the form

(9.6)

represents the fundamental solution. The function  is Hankel’s function of complex 
argument α1r with positive real part and negative imaginary part.
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9.1.2 Boundary integral formulation according to Rayleigh’s 
theorem of reciprocity

Let us assume that the barrier occupies a region S0 with boundary Γ in the unbounded sub-
grade S. The radius vector of the load point  of the unit force point  and boundary point 

 are indicated in Fig. 9.2. 

Fig. 9.2. Schematic diagram of system and coordinates.

The boundary integral formulation according to the theorem of reciprocity has the form

(9.7)

if

 

and the variable distances  is the fictitious boundary of the region S.

9.2 Barriers of different materials
If the barrier medium S0 in the subgrade is made from a different material the integral for-
mulation for the barrier medium has the form
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(9.8)

 represent the fundamental solution, deflection and coefficient of shear 
transmission for the barrier medium.

The conditions at the boundary Γ are 

 

(9.9)

By means of limit transition on the boundary Γ for  and on the boundary  with 
the radius  the boundary integral equations will be obtained from (9.7) and (9.8)

(9.10)

 

The distances R′ and  are represented by equations (6.28). The coefficient of the free 
member in the first integral equation has the value  as it was given in section 6.2.3.

If the entire boundary is decomposed into boundary elements with nodal points, then it 
is possible to transform the system of integral equations into a system of 2N linear alge-
braic equations as follows

(9.11)
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The dimensionless unknowns wjK2/pa2, K2/pa ∂wj/∂n at the nodal points of the boundary 
can be determined by the solution of system (9.11). 

The complex coefficients of the system (9.11), assuming a constant course of sub-inte-
gral function along the boundary element, have the form

(9.12)

where

(9.13)

and αkj is the angle between the direction of the normal at the boundary point ηj for sub-
grade medium and the direction of the line connected boundary points ξk and  is a 
similar angle for the barrier medium, lj is the length of boundary element and dimension-
less parameters are given in the form

(9.14)

In the case of a uniform normal load peiωt on a circular area of the subgrade with radius a, 
the right-hand side of the first equation (9.11) is expressed by the equation 

(9.15)

where J1(α) is the Bessel function of the first order.
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9.2.1 Effect of a linear barrier
By numerical study of the effect of a linear barrier with length L=9.0 m and thickness 
B=0.6 m and with dimensionless parameters γ=10, γ0=5 the boundary was divided into 32 
boundary elements. A harmonic variable load Peiωt, uniformly distributed at the circular 
area with radius a=0.25 m, affects the subgrade according to the scheme of Fig. 9.3.

The calculated amplitudes of dynamic deflections wA=|w|K2/pa2 are plotted along 
the boundary and along the section A–A for the cases with and without a barrier. The 

Fig. 9.3. Effect of linear barrier for Cba=5.0 and vibration frequency Ω=1.0.

materials of the barrier and subgrade are given by the ratio Cba=cR,0/cR=5.0 and dimension-
less frequency of vibration Ω=1.0.

From Fig. 9.3 the dramatic vibration-isolating effect behind the barrier, and the super-
position of direct and reflected waves before the barrier, can be seen.

9.2.2 Influence of various barrier rigidities on vibration isolation
The results in Fig. 9.4 represent the influence of parameter Cba on the screening zone along 
the cross-section A–A at frequency Ω=1.0. The screening effect increases with increase 
of the ratio Cba if the wave characteristic of the barrier medium is greater than the wave 
characteristic of the subgrade.

On the other side the results are more complicated if the material of the barrier has a 
lower value of velocity of surface waves that the subgrade. 
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Fig. 9.4. Influence of parameter Cba on screening zone at frequency Ω=1.0.

The results of a detailed study of barrier efficiency at various frequencies Ω at interval 
(0.3–1.0) and for various values of Cba are given in Fig. 9.5. The efficiency expressed by 
amplitude reduction factor ARF is given in the screening zone by the ratio

(9.16)

if |wBA|(l) is the course of the deflection amplitudes behind the barrier and |w|(l) is the 
course of the deflections amplitudes in the same section of the subgrade without a barrier. 
The length of section is L0=5.0 m. 
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Fig. 9.5. Variations of amplitude reduction factor ARF with Cba for various values of 
frequency Ω.

The trend of higher efficiency with increase of barrier medium rigidity is clear across 
the whole frequency range. In the region Cba<1.0 the behaviour of ARF is very compli-
cated. There are resonance zones, and in the first one ARF>1, i.e. the concentration of the 
vibration increases behind the barrier. However, the efficiency of the barrier is weaker at 
other resonances too. The results demonstrate that barriers made from material with wave 
characteristics lower than those of the subgrade characteristics, do not provide a sufficient 
vibration-isolating effect. For each frequency, intervals of values Cba exist in which the bar-
rier is a source of vibration concentration and thereby an amplifier of the vibration.

These phenomena are legitimate; they are connected with the diffraction of the stress 
waves on the boundaries of the barrier and with the resonances. It can be demonstrated 
that the resonances take place if the wavelength Λba in the barrier medium has the values 
Λba=25, B, 0.5B,…B is the thickness of barrier.

The efficiency of the barrier is also reduced in the region Cba>1 at very high frequencies, 
if the wavelength in the subsoil is comparable with the thickness of the barrier.



Effects of vibration-isolating barriers on propagation of vibration in soil bases 339

9.2.3 Influence of various barrier thicknesses on vibration isolation
The effect of various barrier thicknesses was analysed through numerical study on the 
same linear barrier with thicknesses B=0.3, 0.6, 1.0 m. The rigidity of the barriers is always 
given by the ratio Cba=5.0.

The variations of the subgrade deflection at the point (0.0, 2.0) in the screening area 
behind the barrier with the dimensionless frequency Ω is given in Fig. 9.6 for the barrier 
thicknesses B=0.3 m and B=1.0 m.

It can be seen that in the frequency range Ω=(0–2.0) the vibration-isolating effect of the 
barrier with B=1.0 m is considerably higher than for B=0.3 m.

A more general survey is given by the results in Fig. 9.7, where the variations of 
ARF factor with frequency are drawn for B=0.3, 0.6 and 1.0 m. These curves confirm 
that the vibration-isolating effect increases with increasing barrier thickness. It can be 
seen, however, that at higher values of frequencies above Ω=1.0 the isolating effect is 
influenced by resonance phenomena; the screening effect decreases and the vibration 
concentration increases. 

Fig. 9.6. Variations of subgrade deflection behind barrier with frequency Ω for barrier 
thickness B=0.3 m and B=1.0 m.
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9.2.4 Dynamic deflection field around barrier
Contemporary computer techniques make it possible to calculate a whole field of dynamic 
deflections around the barrier and to show the deflection amplitudes graphically.

Such graphic images are presented in Fig. 9.8 for the frequency of exciting force Ω=0.3, 
in Fig. 9.9 for Ω=0.5, in Fig. 9.10 for Ω=1.0 and in Fig. 9.11 for Ω=1.5. All these results 
are valid for thickness B=0.6 m and parameter Cba=5.0. The screening efect behind the bar-
riers and the superposition of direct and reflected waves in the region between the source 
of vibration and the frontal side of barrier can be seen quite conclusively. The decrease of 
wavelength with increase of vibration frequency is evident too.

Fig. 9.7. Variations of amplitude reduction factor ARF with frequency Ω for barrier 
thickness B=0.3 m, B=0.6 m and B=1.0 m.
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Fig. 9.8. Dynamic deflection field around barrier for vibration frequency Ω=0.3.

Fig. 9.9. Dynamic deflection field around barrier for vibration frequency Ω=0.5.
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Fig. 9.10. Dynamic deflection field around barrier for vibration frequency Ω=1.0.

Fig. 9.11. Dynamic deflection field around barrier for vibration frequency Ω=1.5.
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Fig. 9.12. Amplifying of vibration field around barrier for Ω=0.3, Cba=0.2, B=0.6 m as a 
result of resonance phenomenon.

In contrast, the amplifying of the vibration field around the barrier is drawn in Fig. 9.12 for 
the parameters Ω=0.3, Cba=0.1, B=0.6 m. The resonance phemonenon causes the barrier to 
become an amplifier of vibration. 

9.3 Trench barriers
A barrier made by means of a trench with boundary Γ is a special case in which the follow-
ing boundary condition applies:

(9.17)

i.e we require zero shear forces  on the boundary.
Then the boundary integral formulation for an interior point of the subgrade is estab-

lished from equation (9.7) in the form
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(9.18)

By limit transition on the boundary Γ for  and on the boundary  with radius 
 the boundary integral equation is given as follows

(9.19)

where the distances R′,  are expressed by equations (6.28).
The solution of the integral equation (9.19) is possible by dividing the boundary Γ into 

N boundary elements. The constant, linear or quadratic course of the sub-integral functions 
along the elements can be assumed. The boundary integral equation (9.19), after discretiza-
tion, is transformed into the following system of algebraical equations: 

(9.20)

where Akj is given by the first equation (9.12) and Pk in the case of normal load p uniformly 
distributed on circular area with radius a is expressed by equation (9.15).

In the system (9.20), the coefficients Akj and the right-hand sides Pk are complex quanti-
ties. The unknown boundary deflections at nodal points wjK2/pa2 calculated by the solution 
of system (9.20) are complex too. The deflection at the arbitrary point of the subgrade is 
determined by using equation (9.18) and the known boundary deflections.

9.3.1 Linear trench barriers
A numerical study of a linear trench barrier with length L=10.0 m was carried out for vari-
ous thicknesses: B0=1.0 m, B1=0.6 m and B2=0.24 m.

The source of the dynamic harmonic load is situated excentrically to the symmetry axis 
of barrier at the point with coordinates (1.0, −2.50). All numerical calculations are per-
formed for the dimensionless characteristic of the subgrade  the damping 
parameter of subgrade medium δ=0.20 and the radius of load area a=0.25 m. The boundary 
of the trench barrier was divided into 32 boundary elements.
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The results of the calculated dynamic amplitudes of deflection at the boundary nodal 
points and in the cross-section A–A can be seen in Fig. 9.13 for a trench barrier with 
B2=0.24 m and frequency Ω=0.5. 

Fig. 9.13. Effect of linear trench barrier at vibration frequency Ω=0.5.

The deflection amplitudes in the screening zone behind the barrier and their variations 
along the cross-section A–A are marked in Fig. 9.14 for Ω=0.3 and thicknesses B1, B2 in 
Fig. 9.15 for Ω=0.5 and in Fig. 9.16 for Ω=1.0, in each case for B0, B1 and B2. The results

Fig. 9.14. Deflection amplitudes in screening zone behind trench barriers for Ω=0.3.
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Fig. 9.15. Deflection amplitudes in screening zone behind trench barriers for Ω=0.5.

illustrate that the screening effect depends on the frequency and on the thickness of the 
barrier. Trench barriers, as a limited case of barriers with lower rigidity than the subgrade 
medium, demonstrate that the resonances influence the vibration-isolating effect and 
reduce its efficiency.

Fig. 9.16. Deflection amplitudes in screening zone behind trench barriers for Ω=1.0.
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The variations of deflection amplitudes in Figs. 9.15–9.16 for Ω=0.5 and 12=1.0 con-
firm these conclusions.

9.4 Sheet piling barriers
Sheet piling barriers can take on an arbitrary shape: bounded curve or line, closed curve. If 
the depth of the barrier is greater than the wavelength of the stress waves propagated in the 
subgrade, the boundary condition on Γ may be expressed

(9.21)

We assume zero vertical deflection in the location of a sheet piling barrier. 
The integral formulation according to Rayleigh’s theorem of reciprocity has for the 

interior point of subgrade the form

(9.22)

By using the usual procedure of the transition to the boundaries and the condition (9.21) the 
boundary integral equation is as follows

(9.23)

The solution of (9.23), applying boundary elements, generates a system of algebraical 
equations with unknown shear forces at the nodal points of the boundary.

After discretization into N boundary elements the system of equations has the form

(9.24)

Assuming a constant sub-integral function along the boundary element the complex 
coefficients Bkj are given by the equation (9.12) and Pk can be established according to 
equation (9.15).

The determination of the values of diagonal coefficients requires special aftention 
because Hankel’s function  gains an infinite value for the zero value of the argument. 
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Singular integrals  have to be calculated in the sense of the main value 
by using integral with finite values and Gauss’s quadrature formulas. 

9.4.1 Linear sheet piling barriers
A numerical study of a linear sheet piling barrier was performed for the characteristics 
γ=10, δ=0.20, a=0.25 m and L=9.6 m.

The barrier was divided into 32 boundary elements with the same length. The efficiency 
of the barrier was investigated by the calculation of deflection amplitudes |w|K2/pa2 along 
the cross-section in the screening zone behind the barrier, which is identical to the y axis. 
The source of the exciting harmonic force was at a point with distance 2.5 m before the 
barrier and with eccentricity 1.0 m from the symmetry axis of the barriers.

The variations of the deflection amplitudes are plotted in Fig. 9.17 for Ω=0.3, in Fig. 9.18 
for Ω=0.5 and in Fig. 9.19 for Ω=1.0. The considerable vibration-isolating effect behind the 
barrier diminishes with increasing frequency.

An example of the computer program for the sheet piling barrier is in Appendix 3. 

Fig. 9.17. Variation of deflections amplitudes with distance for sheet piling barrier and Ω=0.3.
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Fig. 9.18. Variation of deflection amplitudes with distance for sheet piling barrier and Ω=0.5.

Fig. 9.19. Variation of deflection amplitudes with distance for sheet piling barrier and Ω=1.0.
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Fig. 9.20. Schematic diagram of closed circular sheet piling barrier.

9.4.2 Closed circular sheet piling barriers
The efficiency of a closed circular sheet piling barrier with radius R=3.0 m and with the 
source of the dynamic force according to the scheme of Fig. 9.20 was studied numerically 
by dividing the boundary curve into 64 boundary elements.

The variation of calculated dynamic deflection amplitudes |w|K2/(pa2) along the cross-
section A–A is drawn in Fig. 9.21 for Ω=0.5, in Fig. 9.22 for Ω=0.75, in Fig. 9.23 for 
Ω=1.00 and in Fig. 9.24 for Ω=2.0.

The variations of deflection amplitudes document the superposition of direct and 
reflected waves in the interior region of the barrier and the high degree of the vibration-
isolating effect behind the closed barrier. The same effect can be expected if the exciting 
force is located on the exterior of the closed barrier. A passive vibration-isolating effect will 
be expected in the interior of the closed region. Such a case of passive vibration-isolation 
is the principle method for screening traffic vibration. 

Fig. 9.21. Variation of deflection amplitudes with distance for closed barrier and Ω=0.5.



Effects of vibration-isolating barriers on propagation of vibration in soil bases 351

Fig. 9.22. Variation of deflection amplitudes with distance for closed barrier and Ω=0.75.

Fig. 9.23. Variation of deflection amplitudes with distance for closed barrier and Ω=1.0.

9.5 Screening effect for pulse loads
The method of boundary integral equations is a good means for the solution of problems in 
which the dynamic exciting force is a harmonically variable function of time with angular 
frequency ω. 
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Fig. 9.24. Variation of deflection amplitudes with distance for closed barrier and Ω=2.0.

Fig. 9.25. Behaviour of real part of dynamic deflection response at point of subgrade 
medium without barrier.

In the cases of non-stationary vibration under a pulsed dynamic load the procedure of sec-
tions 4.8 and 7.3 can be applied. For illustration we present the results for a linear barrier 
with the parameters L=9.0 m, B=0.6 m, Cba=5 and the scheme of Fig. 9.3. 
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Fig. 9.26. Behaviour of imaginary part of dynamic deflection response at point of subgrade 
medium without barrier.

Fig. 9.27. Dynamic deflection response at point of subgrade medium under pulsed load for 
various values of pulse duration.

The courses of the real part wRK2/pa2 and imaginary part wJK2/pa2 of the dynamic deflec-
tion response at the point (0.0, 0.60) are shown in Figs. 9.25 and 9.26 for the subgrade 
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medium without the barrier. The corresponding variation of dynamic deflection as a time 
function for various values of pulse duration represented by parameter Ω0=0.012, 0.025, 
0.050, 0.100 and 0.250 is shown in Fig. 9.27.

Similarly, the real and imaginary parts of the dynamic deflection response for subgrade 
with a barrier are shown in Figs 9.28 and 9.29. The calculated dynamic deflection of the 
pulse excitation is shown in Fig. 9.30. 

Fig. 9.28. Behaviour of real part of dynamic deflection response at point of subgrade 
medium with barrier.

Fig. 9.29. Behaviour of imaginary part of dynamic deflection response at point of subgrade 
medium with barrier.
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Fig. 9.30. Dynamic deflection response at point of subgrade medium with barrier under 
pulsed load for various values of pulse duration.
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 Appendix 1.  
Computer program for the plate on half-space 

without the shear contact.

Program was developed for the case of plate on half-space and dimensionless frequency 
β→0, i.e static case. It makes possible to gain variations of the values of deflection, half-
space reaction, bending moment and transversal force with the ratio r/h. The plate deflec-
tion is given by the relationship (3.122) and expressions (3.144) and (3.145) for F(ξ, β→0) 
and F1 (ξ, β→0). All others relationships are derived in section 3.3.
Input data: DTA=δ
 DTA1=δ1

 MI=μ
 EPS1=ε1=c2/c1z

 EPS2=ε2=c2/c2z

 G1=Gz/G
 G2=a/h
Output data: W=wGa/P (r/h=0)
 W1=wGa/P (r/h=1)
 W2=wGa/P (r/h=2)
 W3=wGa/P (r/h=3)
 W5=wGa/P (r/h=5)
 W10=wGa/P (r/h=10)
 S=qah/P (r/h=0)
 S1, S2, S3, S5, S10
 Q1=Qa/P (r/h=1)
 Q2, Q3, Q5, Q10
 M=Ma/Ph (r/h=0)
 M1, M2, M3, M5, M10
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C    THE PLATE ON HALFSPACE WITHOUT THE SHEAR CONTACT-STATIC CASE
C    PROGRAM WPIS
     COMPLEX DTA,DTA1,W,W1,W2,W3,W5,W10,S,S1,S2,S3,S5,S10,Q,Q1,Q2,Q3,
    *Q5,Q10,M,M0,M1,M2,M3,M5,M10,FC,FM,FT1,FT,WA,W1A,W2A,W3A,W5A,W10A,
    *SA,S1A,S2A,S3A,S5A,S10A,Q1A,Q2A,Q3A,Q5A,Q10A,MOA,M1A,M2A,M3A,M5A,
    *M10A,V,WO,MA,MAA,QA,QAA
     REAL MI,KA
     OPEN(2, FILE=’WPI.DAT’)
     OPEN(3, FILE=’WPO.DAT’)
     READ(2,10)DTA,DTA1,MI,EPS1, EPS2,G1,G2
  10 FORMAT(2(F5.2,F5.2),F5.2,F6.2,F6.2, F8.5,F6.3)
     WRITE(3,11)DTA,DTA1,MI,EPS1,EPS2,G1,G2
  11 FORMAT(5X,6HDELTA=,F5.2,F5.2,3X,7HDELTA1=,F5.2,F5.2,3X,3HMI=,F5.2,
    *3X,5HEPS1=,F6.2,3X,5HEPS2=,F6.2,3X,3HG1=,F8.5,3X,3HG2=,F6.3,/)
     WA=CMPLX(0.,0.)
     W1A=CMPLX(0.,0.)
     W2A=CMPLX(0.,0.)
     W3A=CMPLX(0.,0.)
     W5A=CMPLX(0.,0.)
     W10A=CMPLX(0.,0.)
     SA=CMPLX(0.,0.)
     S1A=CMPLX(0.,0.)
     S2A=CMPLX(0.,0.)
     S3A=CMPLX(0.,0.)
     S5A=CMPLX(0.,0.)
     S10A=CMPLX(0.,0.)
     QAA=CMPLX(0.,0.)
     Q1A=CMPLX(0.,0.)
     Q2A=CMPLX(0.,0.)
     Q3A=CMPLX(0.,0.)
     Q5A=CMPLX(0.,0.)
     Q10A=CMPLX(0.,0.)
     M0A=CMPLX(0.,0.)
     MAA=CMPLX(0.,0.)
     M1A=CMPLX(0.,0.)
     M2A=CMPLX(0.,0.)
     M3A=CMPLX(0.,0.)
     M5A=CMPLX(0.,0.)
     M10A=CMPLX(0.,0.)
     ETA=0.0
     STEP=0.01
     DO 200 I=1,2000
     ETA=ETA+STEP
     B=ETA*G2
     FA0=BESS(0,B)
     FA1=BESS(1,B)
     B=ETA
     F10=BESS(0,B)
     F11=BESS(1,B)
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      B=ETA*2.
      F20=BESS(0,B)
      F21=BESS(1,B)
      B=ETA*3.
      F30=BESS(0,B)
      F31=BESS(1,B)
      B=ETA*5
      F50=BESS(0,B)
      F51=BESS(1,B)
      B=ETA*10
      F100=BESS(0,B)
      F101=BESS(1,B)
      B=ETA*G2
      FG1=BESS(1,B)
      FT1=2.*DTA1*(EPS1**2-EPS2**2)*ETA/(DTA*EPS2**2)
      KA=((.87+1.12*MI)/(1+MI)) **2
      FT=ETA**4–6.*(1-MI)*G1*FT1
      W=6.*(1.-MI)/3.1415926*FG1/(FT*DTA)
      W1=W*F10
      W2=W*F20
      W3=W*F30
      W5=W*F50
      W10=W*F100
      S=-6.*(1.-MI)/3.1415926*G1*FT1*FG1/FT
      S1=S*F10
      S2=S*F20
      S3=S*F30
      S5=S*F50
      S10=S*F100
      Q=-(6.*(1.-MI)/3.1415926*(G1*FT1*DTA))/(FT*DTA)*FG1
      QA=Q*FA1/ETA
      Q1=Q*F11/ETA
      Q2=Q*F21/ETA
      Q3=Q*F31/ETA
      Q5=Q*F51/ETA
      Q10=Q*F101/ETA
      M=(1./3.1415926*(ETA**2-G1*FT1/KA)/FT)*FG1
      M0=M*(1.+MI)/2.
      MA=M*(FAO-(1.-MI)*FA1/(G2*ETA))
      M1=M*(F10-(1.-MI)*F11/ETA)
      M2=M*(F20-(1.-MI)*F21/(2.*ETA))
      M3=M*(F30-(1.-MI)*F31/(3.*ETA))
      M5=M*(F50-(1.-MI)*F51/(5.*ETA))
      M10=M*(F100-(1.-MI)*F101/(10.*ETA))
      WA=WA+W
      W1A=W1A+W1
      W2A=W2A+W2
      W3A=W3A+W3
      W5A=W5A+W5
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     W10A=W10A+W10
     SA=SA+S
     S1A=S1A+S1
     S2A=S2A+S2
     S3A=S3A+S3
     S5A=S5A+S5
     S10A=S10A+S10
     QAA=QAA+QA
     Q1A=Q1A+Q1
     Q2A=Q2A+Q2
     Q3A=Q3A+Q3
     Q5A=Q5A+Q5
     Q10A=Q10A+Q10
     M0A=M0A+M0
     MAA=MAA+MA
     M1A=M1A+M1
     M2A=M2A+M2
     M3A=M3A+M3
     M5A=M5A+M5
     M10A=M10A+M10
200  CONTINUE
     W0=-STEP*(G2*EPS2**2/(8.*3.1415926*G1*DTA1*(EPS1*2-EPS2**2)))
     W=STEP*WA+W0
     W1=STEP*W1A+W0
     W2=STEP*W2A+W0
     W3=STEP*W3A+W0
     W5=STEP*W5A+W0
     W10=STEP*W10A+W0
     S=STEP*SA
     S1=STEP*S1A
     S2=STEP*S2A
     S3=STEP*S3A
     S5=STEP*S5A
     S10=STEP*S10A
     QA=STEP*QAA-(1./(2.*3.1415926))
     Q1=STEP*Q1A-(1./(2.*3.1415926)*G2)
     Q2=STEP*Q2A-(1./(2.*3.1415926)*G2/2.)
     Q3=STEP*Q3A-(1./(2.*3.1415926)*G2/3.)
     Q5=STEP*Q5A-(1./(2.*3.1415926)*G2/5.)
     Q10=STEP*Q10A-(1./(2.*3.1415926)*G2/10.)
     M0=STEP*M0A+1./(12.*3.1415926*KA*G2)
     MA=STEP*MAA+1./(12.*3.1415926*KA*G2)
     M1=STEP*MIA+G2/(12.3.41926*KA)
     M2=STEP*M2A+G2/(12.*31415926*KA*4 )
     M3=STEP*M3A+G2/(12.*3.1415926*KA*9.)
     M5=STEP*M5A+G2/(12.*3.1415926*KA*25.)
     M10=STEP*M10A+G2/(12.*3.1415926*KA*100.)
     WRITE(3,12)
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  12 FORMAT(5X,’DEFLECTIONS’)
     CALL RIA(W)
     CALL RIA(W1)
     CALL (WA2)
     CALL RIA(W3)
     CALL RIA(W5)
     CALL RIA(W10)
     WRITE(3,13)
  13 FORMAT(5X,’HALFSPACE REACTIONS’)
     CALL RIA(S)
     CALL RIA(S1)
     CALL RIA(S2)
     CALL RIA(S3)
     CALL RIA(S5)
     CALL RIA(S10)
     WRITE(3,14)
  14 FORMAT(5X,’TRANSVERSAL FORCES’)
     CALL RIA(QA)
     CALL RIA(Q1)
     CALL RIA(Q2)
     CALL RIA(Q3)
     CALL RIA(Q5)
     CALL RIA(Q10)
     WRITE(3,15)
  15 FORMAT(5X,‘BENDING MOMENTS’)
     CALL RIA(M0)
     CALL RIA(MA)
     CALL RIA(M1)
     CALL RIA(M2)
     CALL RIA(M3)
     CALL RIA(M5)
     CALL RIA(M10)
     END

     SUBROUTINE RIA(V)
     COMPLEX V
     VR=REAL(V)
     VI=AIMAG(V)
     VA=CABS(V)
     VF=ATAN(VI/VR)
     WRITE(3,16)VR,VI,VA,VF
  16 FORMAT(5X,E14.6,3X,E14.6,3X,E14.6,3X,E14.6)
     RETURN
     END

     FUNCTION BESS(IA,B)
     DIMENSION CB(6,7)
     DATA CB/1.,.5,2*.79788456,2*.18539816,-2.2499997,-.56249985,
    1-7.7E-7,1.56E-6,.04166397,-.12499612,1.2656208,.21093573,
    2-5.5274E-3,0.01659667,3.954E-5,-5.65E-5,-.3163866,-.03954289,
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    3-9.512E-5,1.7105E-4,-.00262573,.00637879,.0444479,.00443319,
    4.00137237,-.00249511,5.4125E-4,-7.4348E-4,-.0039444,-.
    500031761,-7.2805E-4,1.13653E-3,2.9333E-4,-7.9824E-4,2.1E
    6–4,i.io9E-5,i.4476E-4,-2.oo33E-4,-i.3558E-4,2.9i66E-4/
     IF(B-3.)1,1,3
   1 X1=(B/3.)**2
     X=CB(IA+1,1)
     X2=1.
     DO 2 1=2,7
     X2=X2*X1
   2 X=X+CB(IA+1,I)*X2
     IF(IA.EQ.1)X=X*B
     BESS=X
     RETURN
   3 I1=IA+5
     I2=IA+3
     X2=CB(I2,1)
     X1=CB(I1,1)
     X3=3./B
     X4=1.
     X5=1.
     DO 4 1=2,7
     X4=X4*X3
     X5=X5*X3
     X2=X2+CB(I2,I)*X4
   4 X1=X1+CB(I1,I)*X5
     IF(IA)5,5

,
6

   5 X=X2*COS(B-X1)/SQRT(B)
     GOTO 7
   6 X=X2*SIN(B-X1)/SQRT(B)
   7 BESS=X
     RETURN
     END



Appendix 2.  
Computer program for the linear and 

non-linear dynamic deflections of the plate 
on subgrade under pulse load.

Program was developed according to the relationship (8.39) and (8.38) for linear deflec-
tions and according to (8.40) for nonlinear deflections. The arbitrary shape of pulse load is 
given by means of thirty values F on the section T1 (0–30).
Input data:  Output data:
MI=μ E0=ε0=ε1h/c0=K5c0/Ekd T1=tc0/h
KSI=r/a E1=K1h/E W0=w0E/ph
HA=h/a E2=K2/Eh WN=1wE/ph
KD=kd F=f1(τ1)  

C    DYNAMIC NONLINEAR DEFLECTIONS OF THE PLATE ON SUBGRADE
C    PROGRAM NIMP
     DIMENSION T1(101),W0(101),W(101),WN(101)
     REAL KD
     OPEN(2,FILE=’NIMP.DAT’)
     OPEN(4,FILE=’MIMPP.DAT’)
     OPEN(3,FILE=’NIMPP.DAT’)
     READ(2,10)A0,E0,E1,KD
  10 FORMAT(4F7.5)
     PRINT 9,A0,E0,E1,KD
   9 FORMAT(5X,’A0=’,F7.5,3X,’E0=’,F7.5,3X,’E1=’,F7.5,3X,’KD=’,F7.5)
     READ(4,11) (T1(K),W0(K),K=1,101)
  11 FORMAT(5X,F7. 3,3X,E14. 6)
     STE=2.
     WM=SQRT(E1/KD-E0**2/4.)
     DO 99 K=1,101
     IF(K.EQ.1)GOTO 20
     IF(K.EQ.2)GOTO 21
     WC=W0(2)**3*SIN(WM*STE/2.)*EXP(-E0*STE/4.)
     DO 100 J=1,K-1
     WC=WC+W0(J+1)**3*SIN(WM*(T1(K)-J*STE))*EXP(-E0*(T1(K)-J*STE)
    */2.)
 100 CONTINUE
     WC=WC*STE
     GOTO 30
  21 WC=W0(2)**3*SIN(WM*STE/2.)*EXP(-E0*STE/4.)
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     WC=WC*STE/2.
     GOTO 30
  20 WC=0.
  30 W(K)=WC*A0/WM
     WN(K)=W0(K)-W(K)
     PRINT 12,T1(K),W0(K),WN(K)
  12 FORMAT(5X,F7.3,3X,E14.6,3X,E14.6)
     WRITE(3,13)T1(K),WN(K)
  13 FORMAT(5X,F7.3,3X,E14.6)
  99 CONTINUE
     END

C    DYNAMIC DEFLECTIONS OF THE PLATE ON SUBGRADE UNDER PULSE LOAD
C    PRORAM MIMP
     DIMENN F(30)
     REAL MI,KSI,KD
     OPEN(2,FILE=’MIMP.DAT’)
     OPEN(3,FILE=’MIMP0.DAT’)
     OPEN(4,FILE=’MIMPP.DAT’)
     M=30
     READ(2,10)MI,KSI,HA,KD,E0,E1,E2,F
  10 FORMAT(4F7.4,3F7.5,/,10F6.4,/10F6.4,/10F6.4)
     WRITE(3,11)MI,KSI,HA,KD,E0,E1,E2,F
     PRINT 11,MI,KSI,HA,KD,E0,E1,E2,F
  11 FORMAT(5X,’MI=’,F7.4,3X,’KSI=’,F7.4,3X,’HA=’,F7.4,3X,’KD=’,F7.4,
    */,5,’E0=’,F7.5,3X,’El=*,F7.5,3X,’E2=’,F7.5,3X,/,5X,10F6
    *.4,5X,10F6.4,/5X,10F6.4)
     T1=-1.0
     STE=1.0
     DO 100 K=l,201
     T1=T1+STE
     IF(T1.EQ.0.)GOTO 14
     WA=0.
     ETA=0.
     STEP=0.01
     DO 200 I=1,1500
     ETA=ETA+STEP
     CALL BESSEL(1,ETA,B1)
     ETAR=ETA*KSI
     CALL BESSEL(0,ETAR,B0)
     WM=SQRT(E1/KD+E2*HA**2/KD*ETA**2+HA**4*ETA**4/KD/(12.*(1.-MI**2))
    *-E0**2/4.)
     IF(K.EQ.2) GOTO 20
     IF (K.LE.(M+1)) GOTO 21
     WC=BO*B1*1./2.*SIN(WM*STE/2.)*F(l)*EXP(-E0*STE/4.)
     DO 300 L=2,M
     WC=WC+B0*B1*SIN(WM*(T1-L*STE))*F(L)*EXP(-E0*(T1-L*STE)/2.)
 300 CONTINUE
     WC=WC*STE
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     GO TO 30
  21 WC=B0*B1*1./2.*SIN(WM*STE/2.)*F(1)*EXP(-EO*STE/4.)
     DO 400 J=2,K-1
     WC=WC+B0*B1*SIN(WM*(T1-J*STE))*F(J)*EXP(-E0*(T1-J*STE)/2.)
 400 CONTINUE
     WC=WC*STE
     GOTO 30
  20 WC=B0*B1*SIN(WM*STE/2.)*F(1)*EXP(-E0*STE/4.)*STE/2.
  30 W=WC/WM
     WA=WA+W
 200 CONTINUE
     W=WA*STEP
     W0=-W/2./3.1415926/KD
     GOTO 15
  14 W0=0.
  15 PRINT 12,T1,W0
     WRITE(3,12)T1,W0
     WRITE(4,13)T1,W0
  12 FORMAT(5X,’T1=’,F7.3,3X,’W0=’,E14.6)
  13 FORMAT(5X,F7.3,3X,E14.6)
 100 CONTINUE
     END

     SUBROUTINE BESSEL(IA,B,BESS)
     DIMENSION CB(6,7)
     DATA CB/1.,.5,2*.79788456,2*.78539816,-2.2499997,-.56249985,
    1-7.7E-7,1.56E-6,.04166397,-.12499612,1.2656208,.21093573,
    2-5.5274E-3,0.01659667,3.954E-5,-5.65E-5.-.3163866,-.03954289,
    3-9.512E-5,1.7105E-4,-.00262573,.00637879,.0444479,.00443319,
    4.00137237,-.00249511,5.4125E-4,-7.4348E-4,-.0039444,-.
    500031761,-7.2805E-4,1.13653E-3,2.9333E-4,-7.9824E-4,2.lE
    6-4,1.109E-5,1.4476E-4,-2.0033E-4,-1.3558E-4,2.9166E-4/
     IF(B-3.)1,1,3
   1 X(B/3.)**2
     X=CB(IA+1,1)
     X2=1.
     DO 2 1=2,7
     X2=X2*X1
   2 X=X+CB(IA+1,I)*X2
     IF(IA.EQ.1)X=X*B
     BESS=X
     RETURN
   3 I1=IA+5
     I2=IA+3
     X2=CB(I2

,
1)

     X1=CB(I1,1)
     X3=3./B
     X4=1.
     X5=1.
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     DO 4 1=2,7
     X4=X4*X3
     X5=X5*X3
     X2=X2+CB(I2,I)*X4
   4 X1=X1+CB(I1,I)*X5
     IF(IA)5,5,6
   5 X=X2*COS(B-X1)/SQRT(B)
     GOTO 7
   6 X=X2*SIN(B-X1)/SQRT(B)
   7 BESS=X
     RETURN
     END



 Appendix 3.  
Computer program for the dynamic 

deflection field around the sheet piling 
barrier in subgrade.

Program was developed according to the method of boundary elements as it is applied in 
chapter 9 and 9.4. It makes possible to solve the diffraction of the waves about the sheet 
piling barrier. The division of barrier is supposed into 32 boundary elements with the same 
length.

Input data:
NN number of boundary elements
X (J), J=1,NN coordinates of nodal element points
Y (J), J=1,NN coordinates of nodal element points
XX (M), M=1,20 coordinates of network points
YY (I), I=1,22 coordinates of network points
DLJ=lj length of boundary element
XKSI, YKSI coordinates of load point
DTZ=δ damping parameter 

A radius of circular load area
OM=ωa/cR—dimensionless frequency
Output data:
ZZ—YY (K), XX (M) coordinates of network points
CABS (WP(M)) absolute values of dynamic deflections wK2/pa2

REAL (WP(M)) real parts of dynamic deflections wK2/pa2

AIMAG (WP(M)) imaginary parts of dynamic deflections wK2/pa2
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C    VIBROISOLATING EFFECT OF SHEET PILING BARRIER
C    PROGRAM MA2
     COMMON/A1/ ETA(32),FI(32),DL(32),AL,ALEJ(32),W(32),
    *B(3,32),BZ(32)
     COMMON/A2/FIKSI,ETAKSI,ALKSI,A
     COMPLEX B,BZ,W,AL,ALEJ,DTZ,ALR(32,32),ALZP(20),
    *BP(0,32),BZP(20),WP(20),ALKSI
     DIMENSION X(32),Y(32),FIPJ(20,32),PSIP(20,32),ALFP(20,32),YY(22),
    *XX(0)
     OPEN(UNIT=2,FILE=’MA2.DAT’)
     OPEN(UNIT=3,FILE=’MA20.DAT’)
     OPEN(UNIT=4,FILE=’MA2R.DAT’)
     OPEN(UNIT=5,FILE=’MA2I.DAT’)
     READ(2,10)NN
  10 FORMAT(I4)
     PRINT 11,NN
  11 FORMAT(5X,3HNN=,I4,/)
     READ(2,12) (X(J),J=1,NN)
     READ(2,12) (Y(J),J=1,NN)
  12 FORMAT(12F6.2)
     PRINT 13,(X(J),J=1,NN),(Y(J),J=1,NN)
  13 FORMAT(12F6.2)
     CALL VSTUP(NN,X,Y)
     CALL MAT(NN,XKSI,YKSI,ALR)
     CALL SLVE(B,BZ,NN,.1E-12)
     READ(2,14) (YY(I),1=1,22)
  14 FORMAT(12F6.2)
     PRINT 15,(YY(I),1=1,22)
  15 RMAT(12F6.2)
     READ(2,16) (XX(M),M=1,20)
  16 RMAT(12F6.2)
     PRINT 17,(XX(M),M=1,20)
  17 FORMAT(12F6.2)
     DO 90 K=l,22
     ZZ=YY(K)
     CALL VYSTUP(NN,XX,ZZ,BP,BZP,WP)
  90 CONTINUE
     END

     SUBROUTINE VSTUP(NN,X,Y)
     COMMON/A1/ ETA(32),FI(32),DL(32),AL,ALEJ(32),W(32),
    *B(3,32),BZ(32)
     COMPLEX B,BZ,W,AL,ALEJ
     DIMENSION X(32),Y(32)
     DO 100 J=1,NN
     ETA(J)=SQRT(X(J)**2+Y(J)**2)
     IF(X(J).EQ.0.0.AND.Y(J).GT.0)GO TO 14
     IF(X(J).EQ.0.0.AND.Y(J).LT.0)GO TO 15
     IF(X(J).GT.0.AND.Y(J).EQ.0.0)GO TO 108
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     IF(X(J).LT.0.AND.Y(J).EQ.0.0)GO TO 109
     GO TO 16
  14 (J)=3.1415926/2.
     GO TO 100
  15 (J)=3.1415926*3.72.
     GO TO 100
 108 FI(J)=0.
     GO TO 100
 109 FI(J)=3.1415926
     GO TO 100
  16 FI(J)=ATAN(ABS(Y(J))/ABS(X(J)))
     IF(X(J).GT.0.AND.Y(J).GT.0)GO TO 100
     IF(X(J).LT.0.AND.Y(J).GT.0)GO TO 17
     IF(X(J).LT.0.AND.Y(J).LT.0)GO TO 18
     IF(X(J).GT.0.AND.Y(J).LT.0)GO TO 19
  17 FI(J)=3.1415926-FI(J)
     GO TO 100
  18 FI(J)=3.1415926+FI(J)
     GO TO 100
  19 FI(J)=2.*3.1415926-FI(J)
 100 CONTINUE
     READ(2,20)DLJ
  20 FORMAT(F5.2)
     DO 101 J=1,32
 101 DL(J)=DLJ
     RETURN
     END

     SUBROUTINE MAT(NN,XKSI,YKSI,ALR)
     COMMON/A1/ ETA(32),FI(32),DL(32),AL,ALEJ(32),W(32),
    *B(3,32),BZ(32)
     COMMON /A2/ FIKSI,ETAKSI,ALKSI,A
     COMPLEX B,BZ,W,AL,ALEJ,DTZ,ALEK(32),ALR(32,32),ALKSI,ALZ(32),
    *B1RB2R,H1R,H2R,DLK(2),B1K,B2K,HIK,H2K,DLE,BIE,B2E,H1E,H2E,
    *B11B12,H11,H12,B01,B02,H01,H02
     DIMENSION FIKSIK(32),FIKJ(32,32),ALF(32,32),C(2)
     READ(2,8)XKSI,YKSI
   8 FMAT(2F6.2)
     PRINT 9,XKSI,YKSI
   9 FORMAT(5X,5HXKSI=,F6.2,3X,5HYKSI=,F6.2)
     READ(2,10)DTZ,GA,OM,A
  10 RMAT((F5.2,F5.2),3F6.2)
     PRINT 11,DTZ,GA,OM,A
  11 FORMAT(5X,4HDTZ=,(F5.2,F5.2),3X,3HGA=,F6.2,
    *3X,HOM=,F6.2,3X,2HA=,F6.2)
     AL=CSQRT(OM**2/DTZ-1./GA)
     IF(REAL(AL).LE.0)GO TO 12
     GO TO 13
  12 AL=-AL
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  13 DO 100 K=1,NN
     ALEK(K)=AL*ETA(K)/A
     DO 100 J=1,NN
     FIKJ(K,J)=ABS(FI(K)-FI(J))
     ALEJ(J)=AL*ETA(J)/A
     IF(J.EQ.K)GO TO 100
     ALR(K, J)=CSQRT(ALEK(K)**2+ALEJ(J)**2–2.*ALEK(K)*ALEJ(J)*COS(FIKJ
    3(K,J)))
     IF(REAL(ALR(K,J)).LE.0)GO TO 14
     GO TO 15
  14 ALR(K,J)=-ALR(K,J)
  15 CALL HANK0(ALR(K,J),BIR,B2R,HIR,H2R,.00001)
     IF(AIMAG(ALR(K,J)).GE.0)GO TO 16
     IF(AIMAG(ALR(K,J)).LE.0)GO TO 17
  16 B(K,J)=-CMPLX(0.,1.)*DL(J)*H1R/4.
     GO TO 100
  17 B(K,J)=-CMPLX(0.,1.)*DL(J)*H2R/4.
 100 CONTINUE
     DO 101 K=1,NN
     DLK(1)=DL(K)/2.*0.33998*AL/A*0.99
     DLK(2)=DL(K)/2.*0.86114*AL/A*0.99
     C(1)=0.65214
     C(2)=0.34785
     B(K,K)=(0.,0.)
     DO 102 I=1,2
     IF(REAL(DLK(I)).LE.0)GO TO 30
     GO TO 31
  30 DLK(I)=-DLK(I)
  31 CALL HANK0(DLK(I),B1K,B2K,H1K,H2K,.00001)
     IF(AIMAG(DLK(I)).GE.0)GO TO 32
     IF(AIMAG(DLK(I)).LE.0)GO TO 33
  32 B(K,K)=B(K,K)-CMPLX(0.,1.)*0.98*DL(K)*H1K*C(I)/4.
     GO TO 102
  33 B(K,K)=B(K,K)-CMPLX(0.,1.)*0.98*DL(K)*H2K*C(I)/4.
 102 CONTINUE
     DLE=DL(K)/100.*AL/A
     IF(REAL(DLE).LE.0)GO TO 34
     GO TO 35
  34 DLE=-DLE
  35 CALL HANK0(DLE,B1E,B2E,H1E,H2E,.00001)
     IF(AIMAG(DLE).GE.0)GO TO 36
     IF(AIMAG(DLE).LE.0)GO TO 37
  36 B(K,K)=B(K,K)-CMPLX(0.,1.)*0.02*DL(K)*H1E/4.
     GO TO 101
  37 B(K,K)=B(K,K)-CMPLX(0.,1.)*0.02*DL(K)*H2E/4.
 101 CONTINUE
     FIKSI=2.*3.1415926-ATAN(ABS(YKSI)/ABS(XKSI))
     ETAKSI=SQRT(XKSI**2+YKSI**2)
     CALL HANK1(AL,B11,B12,H11,H12,.00001)
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     ALKSI=AL*ETAKSI/A
     DO 104 K=1,NN
     FIKSIK(K)=ABS(FI(K)-FIKSI)
     ALZ(K)=CSQRT(ALEK(K)**2+ALKSI**2–2.*ALEK(K)*ALKSI*COS(FIKSIK(K)))
     IF(REAL(ALZ(K)).LE.0)GO TO 22
     GO TO 19
  22 ALZ(K)=-ALZ(K)
  19 CALL HANK0(ALZ(K),B01,B02,H01,H02,.00001)
     IF(AIMAG(ALZ(K)).GE.0)GO TO 20
     IF(AIMAG(ALZ(K)).LE.0)GO TO 21
  20 BZ(K)=-CMPLX(0.,1.)*3.1415926/2./AL*B11*H01
     GO TO 104
  21 BZ(K)=-CMPLX(0.,1.)*3.1415926/2./AL*B11*H02
 104 CONTINUE
     DO 103 K=1,NN
     PRINT 23,REAL(B(K,K)),AIMAG(B(K,K)),CABS(B(K,K))
  23 FORMAT(5X,3E14.6)
     PRINT 24,REAL(BZ(K)),AIMAG(BZ(K)),CABS(BZ(K))
  24 FORMAT(2X,3E14.6)
 103 CONTINUE
     RETURN
     END

     SUBROUTINE SLVE(D,DZ,NN,EPS)
     DIMENSION FIW(32),D(32,32),DZ(32)
     COMPLEX B,BZ,DIV,DELT,W,ALEJ,AL,D,DZ
     COMMON/A1/ ETA(32),FI(32),DL(32),AL,ALEJ(32),W(32),
    *B(32,32),BZ(32)
     DO 9015 K=1,NN
     I=K
     IF(K-NN)9021,9007,9021
 9021 IF(CABS(D(K,K))-EPS)9006,9006,9007
9006 I=I+1
     DZ(K)=DZ(K)+DZ(I)
     DO 9023 J=1,NN
9023 D(K,J)=D(K,J)+D(I,J)
     GO TO 9021
9007 DIV=D(K,K)
     DZ(K)=DZ(K)/DIV
     DO 9009 J=1,NN
9009 D(K,J)=D(K,J)/DIV
     DO 9015 MM=1,NN
     DELT=D(MM,K)
     IF(CABS(DELT)-EPS)9015,9015,9016
9016 IF(MM-K)9010,9015,9010
9010 DZ(MM)=DZ(MM)-DZ(K)*DELT
     DO 9011 J=1,NN
     IF(CABS(D(MM,J)).LT.EPS)GO TO 11
     D(MM,J)=D(MM,J)-D(K,J)*DELT
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  11 D(MfJ)=D(M,J)
9011 CONTINUE
9015 CONTINUE
     DO 99 MM=1,NN
     W(MM)=DZ(MM)
     FIW(MM)=ATAN(AIMAG(W(MM))/REAL(W(MM)))
     PRINT 10,REAL(W(MM)),AIMAG(W(MM)),CABS(W(MM))fFIW(MM)
  10 FORMAT(5X,4E14.6,)
  99 CONTINUE
     RETURN
     RETURN
     END

     SUBROUTINE VYSTUP(NN,XX,ZZ,BP,BZP,WP)
     COMMON/A1/ ETA(32),FI(32),DL(32),AL,ALEJ(32),W(32),B(32,32),
    *BZ(32)
     COMMON/A2/ FIKSI,ETAKSI,ALKSI,A
     DIMENSION FIPJ(20,32),ALRP(20,32),ALZP(20),BP(20,32),BZP(20),
    *WP(20),FIKSIP(20),FIWP(20),XX(20),EETA(20),FFI(20)
     COMPLEX B,BZ,W,AL,ALEJ,ALEM(20),ALKSI,ALZP,
    *ALRP,BBP(20),BP,BZP,WP,BIR,B2R,HIR,H2R,B01,B02,
    *H01,H02,B11,B12,H11,H12
     DO 91 M=1,20
     EETA(M)=SQRT(XX(M)**2+ZZ**2)
     IF(XX(M).EQ.0.0.AND.ZZ.GT.0)GOTO 74
     IF(XX(M).EQ.0.0.AND.ZZ.LT.0)GOTO 75
     IF(XX(M).GT.0.AND.ZZ.EQ.0.0)GOTO 78
     IF(XX(M).LT.0.AND.ZZ.EQ.0.0)GOTO 79
     GOTO 76
  74 FFI(M)=3.1415926/2.
     GOTO 91
  75 FFI(M)=3.1415926*3./2.
     GOTO 91
  78 FFI(M)=0
     GOTO 91
  79 FFI(M)=3.1415926
     GOTO 91
  76 FFI(M)=ATAN(ABS(ZZ)/ABS(XX(M)))
     IF(XX(M).GT.0.AND.ZZ.GT.0)GOTO 91
     IF(XX(M).LT.0.AND.ZZ.GT.0)GOTO 77
     IF(XX(M).LT.0.AND.ZZ.LT.0)GOTO 88
     IF(XX(M).GT.0.AND.ZZ.LT.0)GOTO 89
  77 FFI(M)=3.1415926-FFI(M)
     GOTO 91
  88 FFI(M)=3.1415926+FFI(M)
     GOTO 91
  89 FFI(M)=2.*3.1415926-FFI(M)
  91 CONTINUE
     DO 100 M=1,20
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     DO 100 J=1,NN
 100 FIPJ(M,J)=ABS(FFI(M)-FI(J))
     DO 103 M=1,20
     ALEM(M)=AL*EETA(M)/A
     DO 103 J=1,NN
     ALRP(M,J)=CSQRT(ALEM(M)**2+ALEJ(J)**2
    *2.*ALEM(M)*ALEJ(J)*COS(FIPJ(M,J)))
     IF(REAL(ALRP(M,J)).LE.0)GO TO 14
     GO TO 15
  14 ALRP(M,J)=-ALRP(M,J)
  15 CALL HANK0(ALRP(M,J),BIR,B2R,HIR,H2R,.00001)
     IF(AIMAG(ALRP(M,J)).GE.0)GO TO 16
     IF(AIMAG(ALRP(M,J)).LE.0)GO TO 17
  16 BP(M,J)=-CMPLX(0.,1.)*DL(J)*H1R/4.
     GO TO 103
  17 BP(M, J)=-CMPLX(0.,1.)*DL(J)*H2R/4.
 103 CONTINUE
     CALL HANK1(AL,B11,B12,H11,H12,.00001)
     DO 104 M=1,20
     FIKSIP(M)=ABS(FFI(M)-FIKSI)
     ALZP(M)=CSQRT(ALEM(M)**2+ALKSI**2-2.*ALEM(M)*ALKSI*COS(FIKSIP(M)))
     IF(REAL(ALZP(M)).LE.0)GO TO 18
     GO TO 19
  18 ALZP(M)=-ALZP(M)
  19 CALL HANK0(ALZP(M),B01,B02,H01,H02,.00001)
     IF(AIMAG(ALZP(M)).GE.0)GO TO 20
     IF(AIMAG(ALZP(M)).LE.0)GO TO 21
  20 BZP(M)=-CMPLX(0.,1.)*3.1415926/2./AL*B11*H01
     GO TO 29
  21 BZP(M)=-CMPLX(0.,1,)*3.1415926/2./AL*B11*H02
  29 PRINT 30,REAL(BZP(M)),AIMAG(BZP(M)),CABS(BZP(M))
  30 FORMAT(3X,3E14.6)
 104 CONTINUE
     DO 105 M=1,20
     BBP(M)=(0.,0.)
     DO 106 J=1,NN
     BBP(M)=BBP(M)-BP(M,J)*W(J)
 106 CONTINUE
     WP(M)=BBP(M)+BZP(M)
     FIWP(M)=ATAN(AIMAG(WP(M))/REAL(WP(M)))
     PRINT 22,REAL(WP(M)),AIMAG(WP(M)),CABS(WP(M)),FIWP(M)
  22 FORMAT(5X,4E14.6,/)
     WRITE(3,23)ZZ,XX(M),CABS(WP(M))
  23 FORMAT (2F6.2,E14.6)
     WRITE(4,24)ZZ,XX(M),REAL(WP(M))
  24 FORMAT(2F6.2,E14.6)
     WRITE(5,25)ZZ,XX(M),AIMAG(WP(M))
  25 FORMAT(2F6.2,E14.6)
 105 CONTINUE
     RETURN
     END
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     SUBROUTINE HANK0(C,BE01,BE02,H01,H02,DEL)
     COMPLEX C,BE01,BE02,H01,H02,H0,H00
     EXTERNAL NFAK
     REAL NFAK
     BE01=(0.,0.)
     C1=0.
     RO=CABS(C)
     IF(RO.GT.5.0)GO TO 19
     IF(REAL(C).LT.1.E-06)GO TO 5
     FI0=AIMAG(C)/REAL(C)
     FI=ATAN(FI0)
     GO TO 6
   5 FI=3.1415926/2.
   6 IF(REAL(C))9,9,10
   9 FI=FI+SIGN(1.,AIMAG(C))*3.1415926
  10 BE02=CMPLX(ALOG(RO/2.)+0.577216,FI)*2./3.1415926
     H01=(0.,0.)
     H02=(0.,0.)
     K=0
     DE01=1.
     GO TO 16
  15 IF(K.GT.30)GO TO 17
     DE011=1./NFAK(K)
     DE01=(-1)**K*DE011*(RO/2)**(2*K/3.)/NFAK(K)*(RO/2)**
     1(2*K/3.)*(RO/2)**(2*K/3.)
     GO TO 16
  17 DE01=(-2)**K*(RO/2)**(2*K/3.)/2.6525E32*(RO/2)**(2*K/3.)/2.6525
     2E32*(RO/2)**(2*K/3.)/NFAK(K)/NFAK(K)
  16 DE1=COS(2*K*FI)
     DE2=SIN(2*K*FI)
     BE01=BE01+CMPLX(DE01*DE1,DE01*DE2)
     IF(K)18,18,11
  11 B1=ALOG(RO/2.)+0.577216
     C1=C1+1./K
     F1=DE01*DE1*(B1-C1)-DE01*DE2*FI
     F2=DE01*DE2*(B1-C1)+DE01*DE1*FI
     BE02=BE02+CMPLX(F1,F2)*2./3.1415926
     F3=SQRT(F1**2+F2**2)
     F4=SQRT((DE01*DE1)**2H-(DE01*DE2)**2)
     IF(F3.LT.DEL.AND.F4.LT.DEL)GO TO 14
     IF(K.EQ.30)GO TO 14
  18 K=K+1
     GO TO 15
  14 H01=H01+CMPLX((REAL(BE01)-AIMAG(BE02)),
    2(AIMAG(BE01)+REAL(BE02)))
     H02=H02+CMPLX((REAL(BE01)+AIMAG(BE02)),
    3(AIMAG(BE01)-REAL(BE02)))
     GO TO 20
  19 H00=2.*CMPLX(0.,1.)*C



378 Appendix 3

     H0=1.+1./4./H00+9./32./H00**2+1225./384./H00**3+
    211025./6144./H00**4
     H01=CSQRT(2./3.1415926/C)*CEXP(CMPLX(0.,1.)*(4.*C-3.1415926)/4.
    3)*H0
     H02=CSQRT(2./3.1415926/C)*CEXP(CMPLX(0.,-1.)*(4.*C-3.1415926)/4.
    4)*H0
     BE01=(H01+H02)/2.
     BE02=(H01-H02)/2./CMPLX(0.,1.)
  20 CONTINUE
     RETURN
     END

     SUBROUTINE HANK1(C,BE11,BE12,H11,H12,DEL)
     COMPLEX C,BE11,BE12,H11,H12,H1,H10
     EXTERNAL NFAK
     REAL NFAK
     BE11=(0.,0.)
     C1=0.
     RO=CABS(C)
     IF(RO.GT.5.)GO TO 20
     IF(REAL(C).LT.1.E-06)GO TO 5
     FI0=AIMAG(C)/REAL(C)
     FI=ATAN(FI0)
     GO TO 6
   5 FI=3.1415926/2.
   6 IF(REAL(C))9,9,10
   9 FI=FI+SIGN(1.,AIMAG(C))*3.1415926
  10 BE12=CMPLX(-COS(FI),SIN(FI))/RO*2./3.1415926
     H11=(0.,0.)
     H12=(0.,0.)
     K=0
     DE11=RO/2.
     GO TO 16
  15 IF(K.GT.30)GO TO 17
     DE111=1./NFAK(K+1)
     DE11=(-1)**K*DE111*(RO/2)**(2/3.*K-H1)/NFAK(K)*(RO/2)**(2/3.*K)*
    3(RO/2)**(2/3.*K)
     GO TO 16
  17 DE11=(-1)**KMRO/2)*M2/3.*K+1)/2.6525E32MRO/2)**(2/3.*K)
     3/2.6525E32*(RO/2)**(2/3.*K)/NFAK(K)/NFAK(K+1)
  16 DE1=COS((2*K+1)*FI)
     DE2=SIN((2*K+1)*FI)
     BE11=BE11+CMPLX(DE11*DE1,DE11*DE2)
     B1=ALOG(RO/2.)+0.577216-1./(2*K+2)
     IF(K)19,19,11
  19 BE12=BE12+CMPLX(DE11*(DE1*B1-DE2*FI),
    4DE11*(DE2*B1+DE1*FI))*2./3.1415926
     IF(K)18,18,11
  11 C1=C1+1./K
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     F1=DE11*DE1*(B1-C1)-DE11*DE2*FI
     F2=DE11*DE2* (B1-C1)+DE11*DE1*FI
     BE12=BE12+CMPLX(Fl,F2)*2./3.1415926
     F3=SQRT(F1**2+F2**2)
     F4=SQRT((DE11*DE1)**2+(DE11*DE2)**2)
     IF(F3.LT.DEL.AND.F4.LT.DEL)GO TO 14
     IF(K.EQ.30)GO TO 14
  18 K=K+1
     GO TO 15
  14 H11=H11+CMPLX((REAL(BE11)-AIMAG(BE12)),
    5(AIMAG(BE11)+REAL(BE12)))
     H12=H12+CMPLX((REAL(BE11)+AIMAG(BE12)),
    6(AIMAG(BE11)-REAL(BE12)))
     GO TO 21
  20 H10=2.*CMPLX(0.1.)*C
     H1=1.-3./4./H10-15./32./H10**2-4315./384./H10**3-14175./
    26144./H10**4
     H11=CSQRT(2./3.1415926/C)*CEXP(CMPLX(0.,1.)*(4.*C-3.*3.1415926)
    7/4.)*H1
     H12=CSQRT(2./3.1415926/C)*CEXP(CMPLX(0.,-1.)*(4.*C-3.*3.1415926)
    8/4.)*H1
     BE11=(H11+H12)/2.
     BE12=(H11-H12)/2./CMPLX(0.,1.)
  21 CONTINUE
     RETURN
     END
     REAL FUNCTION NFAK(N)
     NFAK=1.
     IF(N.LT.2)GO TO 4
     IF(N.GT.30)GO TO 6
     DO 5 I=1,N
   5 NFAK=NFAK*I
     CONTINUE
     GO TO 4
   6 NFAK=1.
     DO 7 I=31,N
   7 NFAK=NFAK*I
   4 RETURN
     END
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of vibration, 370
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reduction factor 369

Antiresonance, 21, 26
extremes, 23
frequencies, 24

Apparatus, 4, 6, 30
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generator part, 30, 34
imput part, 30, 34

Barrier, 361
closed, 380
from different material, 364
linear, 367, 375, 379
rigidity, 368
sheet piling, 377
stiffness, 368
trench, 375

Bending moment, 146, 147, 172, 197
radial, 146, 172, 185, 188
of equivalent plate, 146

Bessel functions, 177
Bituminous materials, 35
Boundary, 293

conditions, 110, 123, 126, 298
elements, 293, 303
integrals, 303
integral equations, 293, 299, 325
integral formulation, 296, 320, 363
of the plate, 293
of the half-plate, 202

Cantilever, 20
testing element, 20, 35

Characteristics, 3, 62
amplitude-frequency, 308, 314
of pavement, 69, 77
of elasticity, 3, 17, 51, 62
of rigidity, 62

phase-frequency, 257
statistical, 289, 292

Coefficient, 164
of equivalent inertia, 167
of mass increase, 176
of shear transmission, 164
of uniform compression, 164
of variation, 289

Comparison, 161, 228
of deflections, 161
of stresses, 161

Complex, 307
characteristics, 307
function, 20, 121
modulus of elasticity, 17, 50, 108
roots, 175
shear modulus, 24, 50, 108
velocities, 121

Concentration, 320
of vibration, 320, 339

Contact, 126, 138, 144
conditions, 126
shear, 138

Covariance, 287
exponential, 289

Cross-section, 99
quantities, 99

Curvature, 82
of the pavement, 82, 84

Curves, 9, 15
of dispersion, 9, 16

Damping, 19
factors, 19, 32
charateristics, 32, 35

Deflection, 138, 161, 164
assessment, 79
of plate, 138, 175, 345

Density, 110
of material, 8, 44, 69

Degree of freedom, 276, 278
Diffraction, 327

of stress waves, 320, 327
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Dirac’s functions, 263
Dispersion, 8

curves, 131
of flexural waves, 10
of longitudinal waves, 9
of shear waves, 16

Dynamic, 
coefficients, 261
deflection, 175
elasticity, 86
equivalent, 107, 262
interaction, 196, 262
load, 144, 179
non-destructive testing, 3, 32
rigidity, 86
simplified model, 164
stiffness, 75

Dynamic measurement, 1
of pavements, 3
of subgrade, 32

Dynamic properties, 35
of bitouminous material, 35
of soil material, 44
viscoelastic, 35

Dynamic response, 3, 293
of the plate, 144, 293, 340
of sugrade, 293, 340
under pulse load, 257

Effect, 285, 361
of pulse load, 257
of screening, 368, 381
of unevennesses, 274, 285
of vibroisolation, 361, 370

Elasticity, 86
bulk modulus, 108
modulus, 18
shear modulus, 24, 108

Equation of motion, 109, 114, 138, 164, 196
Equivalent, 69

layer, 107
plate, 99
thickness, 102

Extremes, 24
antiresonance, 21, 24
maximal, 21
minimal, 21
resonance, 21, 24

Force, 20, 174
dynamic, 211
harmonic, 20, 23, 211, 221
internal, 301
shear, 302
transverse, 147, 302
vertical, 32, 171

Fourier, 198
integral, 226
series, 279
transformation, 198
transform, 199, 203, 211

Frequency equation, 8, 9, 11, 127
Frequency, 1, 3

angular, 18
natural, 312
of harmonic vibration, 1
parameter, 24
ultrasonic, 1

Function, 19
of mechanical impedance, 19

Fundamental solution, 293
of plate on subgrade, 293
of subgrade, 296

Green’s function, 294
of plate on subgrade, 294
of subgrade, 296

Half-plate, 202
on subgrade, 202

Half-space, 109, 117
Hankel’s functions, 177
Hankel’s transformation, 120, 124, 140
Harmonic, 1

force, 20, 23, 211, 221
vibration, 266
waves, 3

Highway, 86
pavement, 86, 235

Holes, 320
in the plate on subgrade, 320
rectangular, 327

Impedance, 17
mechanical, 17, 19, 20, 23
normalized, 20

Influence, 202, 238
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functions, 202, 230
of isolated unevenness, 278
of periodical unevenness, 274
of shear, 138
of rotational inertia, 138
of the side length, 330, 334

Initial, 265
parameters, 265
conditions, 257

Integral, 171
boundary, 296, 303
formulation, 296, 299
improper, 174, 344

Interface, 105
of plate and half-space, 123, 126

Interference, 5
of direct and reflected waves, 5, 330
of waves, 330

Isochrones, 35
Isothermes, 36

fundamental, 41

Joint, 229, 233
cut, 229
of the plate, 229
transversal, 229

Layer, 107
on half-space, 109, 117, 126
on subgrade, 107

Layered half-space, 114
Linear, 342

deflection, 342, 358
thermo-rheological material, 38, 40

Load, 139, 144
dynamic, 144, 164
moving, 262, 
random, 285

Mass, 32, 109
vibration, 32, 109

Measurement, 3
of stress wave velocities, 3, 60, 86
procedures, 24, 32, 51

Mechanical, 17
impedance, 17, 20, 23
mobility, 20

Medium, 7

elastic, 109
homogeneous, 7
isotropic, 109
layered, 99
of surface layer, 109

Methods, 3
of boundary elements, 293, 317, 320, 361
of initial parameters, 200
of measurement, 3, 24
of mechanical impedance, 17
of phase velocities, 3, 51
of stationary vibration, 1
pulse, 1

Model, 99
of equivalent plate on subgrade, 99, 107
physical, 97, 262

Modulus, 17, 24, 108
complex, 17
of elasticity, 18, 108
shear, 24, 108

Moment, 197
bending, 146, 197
torsional, 110
twisting, 197

Moving, 262
load, 262, 263, 274, 278
random load, 285
system, 276

Non-destructive, 3
dynamic methods, 17
measurement, 32
testing, 3

Non-linear, 340
dynamic response, 340
soil-base, 340
vibration, 345

Non-stationary vibration, 345
Normalized mechanical impedance, 20
Numerical, 134, 303

calculation, 148
results, 134, 189, 228, 240, 289
solution, 303, 317

Pavement structures, 1
completed, 96
flexible, 190, 259
layred, 60
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rigid, 86
testing, 86, 92
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Phase, 1
angle, 1, 328
difference, 3, 5, 6
meter, 4, 6
shift, 5
velocity, 3

Pick-up, 3, 4, 6
contact, 5
distance, 3
positions, 5
vibration, 34

Plate, 138, 164, 262, 293
cement concrete, 86
on half-space, 138
rectangular, 314
square, 308
stiffness, 75
strip, 221

Point, 4, 299
internal, 299
external, 380

Poisson’s ratio, 8, 14, 83
Power spectral density, 287
Principles, 380

of superposition of time and temperature, 38
Propagation, 7

of stress waves, 7, 8, 14
of pulses, 349

Pulse, 257
force, 257
instantaneous, 355
load, 257, 318
propagation, 349

Quasi-flexural waves, 

Random, 285
moving load, 285

Rayleigh, 8, 296, 320
theorem of reciprocity, 296, 320, 363
waves, 8

Reaction, 139, 147
of subgrade, 147

Reciprocity theorem, 296, 320, 363
Resonance, 21, 26, 312, 316

extremes, 23, 26
frequencies, 21, 312, 316

Response, 293, 340
dynamic, 293, 340

Rigidity, 60, 77
change, 98
flexural, 63
of pavements, 60, 77
of plate, 186

Screening, 361
effect, 370

Sheet piling barrier, 377
Shear, 138

contact, 138
force, 205
stress waves, 14
transmission, 164

Soil, 361
base, 361
cohesive, 44
material, 44
stabilized, 44

Solution, 171, 174, 293
in closed form, 174
in integral form, 171
of boundary integral equations, 293

Stabilization, 86
cement, 86
lime, 62, 66
layers, 92

Standart deviation, 88
State vector, 208, 226

components, 208, 226
Stiffness, 75

of barrier, 370
of plate, 75

Strain, 117, 119
Stress, 101, 161

in layered pavement, 103
state dynamic, 196, 229
waves, 3, 7, 8, 9, 14, 126

Subgrade, 32, 50, 164
medium, 15
inhomogeneous, 234, 238
testing, 32, 50

Subsoil layers, 60
Surface unevennesses, 274, 276, 278
Surfacing, 65
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cement concrete, 88, 90, 96

Technical, 164
theory of plate on subgrade, 164, 196

Testing, 1
non-destructive, 3
of pavements, 86, 92
of subgrade, 32, 50
samples, 90

Theory, 107
of equivalent plate on subgrade, 107
of layered halfspace, 114

Thickness, 75, 103, 370
equivalent, 75, 102
of barrier, 370
of layer, 75
of plate, 103

Torsional, 109, 114
vibration of the layer, 109
vibration of the mass, 114

Transformation, 120, 198
Fourier, 198
Hankel’s, 120, 124, 140

Transverse force, 147, 320
of equivalent plate, 147

Unbounded, 293
medium, 318
soil-base, 293
plate on subgrade, 294, 319

Unevenness, 274, 276, 278
influence, 274, 276, 278
isolated, 278
of surfacing, 278
of the pavement, 274
periodical, 274

Variance, 289
Velocity, 3

phase, 3, 61
of dilatation waves, 8
of longitudinal waves, 9
of shear waves, 8
of stress waves, 62

Vibration, 320
amplitude, 1
flexural, 20, 26
forced, 1
harmonic, 266
phase, 1
torsional, 23, 26

Vibrator, 4, 30, 31
electrodynamic, 4
magnetostrictive, 4

Vibroisolation, 361
in soil-bases, 361

Virtual, 296, 301
moment load, 303
unit force, 301

Viscoelastic, 17, 18, 109
half-space, 109, 117
material, 17
properties, 18

Wave, 132
number, 132
length, 4

Waves, 7
dilatational, 7
longitudinal, 9
shear, 7
surface, 8


	TITLE
	COPYRIGHT
	CONTENTS
	PREFACE
	LIST OF SYMBOLS
	INTRODUCTION
	1 DYNAMIC DIAGNOSIS OF PAVEMENT STRUCTURES
	2 MODEL OF THE EQUIVALENT PLATE ON SUBGRADE
	3 VARIANTS OF THE DYNAMIC THEORY OF THE EQUIVALENT PLATE ON SUBGRADE
	4 DYNAMIC INTERACTION OF PLATES WITH THE SUBGRADE FOR CHARACTERISTIC LOADS
	5 DYNAMIC INTERACTION OF PLATE WITH SUBGRADE UNDER A MOVING LOAD
	6 DYNAMIC RESPONSE OF PLATES WITH FREE BOUNDARIES ON UNBOUNDED SOIL BASE
	7 CONCENTRATION OF THE VIBRATION ABOUT THE HOLES IN PLATE ON SUBGRADE
	8 NON-LINEAR DYNAMIC RESPONSE OF UNBOUNDED PLATE ON SUBGRADE
	9 EFFECTS OF VIBRATION-ISOLATING BARRIERS ON THE PROPAGATION OF VIBRATION IN SOIL BASES
	REFERENCES
	APPENDIX 1: COMPUTER PROGRAM FOR THE PLATE ON HALF-SPACE WITHOUT THE SHEAR CONTACT
	APPENDIX 2: COMPUTER PROGRAM FOR THE LINEAR AND NON-LINEAR DYNAMIC DEFLECTIONS OF THE PLATE ON SUBGRADE UNDER PULSE LOAD
	APPENDIX 3: COMPUTER PROGRAM FOR THE DYNAMIC DEFLECTION FIELD AROUND THE SHEET PILING BARRIER IN SUBGRADE
	SUBJECT INDEX

