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Foreword

The complexity of the cerebral cortex demands appropriate tools for explo­
ration of its function and its relationship to underlying anatomical wiring. This
book presents a discussion of contributions made by computer science to both
analysis of biological imaging data and construction of neural models of adult
and developing visual cortex. The choice of visual cortex is a particularly for­
tunate one in that there is a wealth of anatomical, physiological and imaging
data available concerning the primary visual cortex, area VI.

The author discusses how the tools of the computer scientist can be used to
develop statistically sound methods of data analysis for optical imaging of the
visual cortex. Since optical imaging is one of the most useful methods available
for mapping the patterns of activity of very large ensembles of neurons, it is
particularly important that the correct analytic tools be used. The modular or­
ganisation of different functions across the surface of visual cortex presents an
ideal substrate for refining statistically appropriate approaches to image abstrac­
tion. Martin Stetter then goes on to discuss a variety of modelling approaches,
based on feasible neural circuits. He describes possible neural substrates that
might underlie the observed functional maps seen in area VI and their larger
scale implications. These models nicely illustrate the powerful contributions
that computer science can make to understanding cortical function.

Martin Stetter has had considerable experience in the training of young com­
puter scientists; his concern for accuracy and his interest in neurobiology has
guided these students along valuable paths in applying computer technology
to study of the cerebral cortex. The tools he discusses in this book are now
essential elements in interdisciplinary cortical research as a whole, not just in
the study of visual cortex, which he uses as a model system.
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The computer scientist, physiologist, anatomist and imager now must play
interdigitated and interdependent roles in the task of understanding cerebral
cortex.

Jennifer S. Lund
Moran Eye Center
University Of Utah
Salt Lake City
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Figure 3.16. (See also Chapter 3, pA3) (a) Orientation map of macaque VI. Colors code
different preferred orientations as indicated by the colored bars. The horizontal extent is 3.3
mID (b) Superposition of oeular dominance and orientation maps. Thick lines: borders of
ocular dominance stripes. Thin lines: Iso-orientation contours within the orientation map of
the same animal (from (Obermayer and Blasdel, 1993».

(a)

(c)

(h)

(d)

Figure 8.15. (See also Chapter 8, p.178) (a) Orientation (OR) map and (b) Orientation
selectivity (OS) map obtained from the reconstructed single-condition maps of figure 8.14
(See p.177) without postprocessing. (c) and (d) same maps after lowpass-filtering (cutoff
wavelength 11 =: 0.27 mm.) Colors mark deg of preferred stimulus orientation .
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Chapter 1

INTRODUCTION

One of the central hypotheses in modem neuroscience is that all behavior
is generated by the brain. It forms our perceptions from physical properties
of our environment and controls our reactions and actions. It is the source of
spontaneous thoughts and meanings, and it provides us with consciousness,
imagination and emotions. Many generations of neuroscientists have devoted
their careers to the goal of revealing the mechanisms, by which these complex
aspects of behavior emerge from the anatomical and physiological properties
of the brain. Although all these efforts have led to considerable progress in
many disciplines of neuroscience, we are still far from even catching a glimpse
on many of the principles of brain function.

One important reason for our obvious lack of success is the sheer complex­
ity of our brain at many levels. Loosely speaking, the human brain forms an
enormous network of one hundred billion nerve cells, which are densely inter­
connected by about 1015 synaptic connections. Each neuron and each synapse
again represent complex dynamical systems with nonlinearities from the cellu­
lar down to the molecular level. In addition, the properties of the elements and
the network are not fixed in time but can be changed by modulatory subsys­
tems and synaptic plasticity. We are facing a giant nonlinear recurrent system,
which progressively re-adjusts itself under the control of intrinsic states and
the external environment. It seems fair to state that the human brain represents
the most complex system in our known universe. How then can we address
this apparently unsolvable problem of understanding the principles of brain
function?

This problem can only be properly addressed by a multidisciplinary ap­
proach, by which two different research lines are tackled in parallel. Experi­
mental disciplines including biology, medical sciences and psychology increase
the pool of experimental data from various brain systems. This effort is com-
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2 EXPLORATION OF CORTICAL FUNCTION

plemented by techniques from mathematics, physics, engineering, computer
science and related disciplines, which characterize relevant information in the
data and extract basic principles and concrete mechanisms of brain operation.
In addition, the common approach has to be interdisciplinary: It is not sufficient
for the disciplines to work side by side in parallel. Instead different research
lines must actively interact and guide each other. For example, the structures of
theoretical models have to obey constraints which are dictated by experimental
results, and conversely their testable predictions should guide the design of new
experiments and should help formulating new and useful questions to ask.

The contribution of physics and computer science to this common under­
taking is at least twofold. First of all, the discipline can yield techniques for
processing experimental data in order to extract relevant features. Challenges
for data analysis can come in many tasks including clustering, object segmen­
tation, signal source separation, time series analysis and time series prediction,
which can be treated using statistical data modeling techniques such as den­
sity estimation and function approximation. Secondly, these disciplines can
provide computational models for the function and development of complex
subsystems of the brain. One class of models treats the brain or some part of it
as a nonlinear dynamical system, from which a simplified model is derived and
theoretically analyzed. Usually, this type of models is based on the anatomical
and physiological findings and aims at extracting operational principles of the
considered system. These models form the category of bottom-up approaches.
An alternative approach treats the brain itself as a signal processing and statis­
tical inference machine. It can be asked which principle of operation or which
design principle would enable the brain or a subsystem to optimally extract and
represent relevant statistical structure in the environment or in a set of actions.
Models of this class are top-down models.

We might ask, why it is beneficial for the scientific community to accept
the challenge of revealing brain function. First of all, we could argue that it is
most satisfying for a scientist to address one of the oldest questions of mankind:
How can we do all these complex things? More importantly, however, for many
classes of problems our brain is obviously by far the most powerful signal pro­
cessing system we know. Gaining knowledge about its operational principles
should provide us with a variety of fundamentally new and powerful signal
processing algorithms, which can be formalized and transferred to technology
and application.

Due to the complexity of the brain, we are forced to restrict ourselves to
the exploration of adequate sub-systems. This approach follows a reductionist
principle, which is not justified per se, because one of the most prominent
features of the brain is its dense connectivity. Therefore, by modeling the
operation of an isolated sub-system, we must at some point address the question
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of how its functional principles are altered by the connections it receives from
and sends to other brain regions.

Higher motor areas
frontal eye field

prefrontal cortex
reasoning
decision
making

primary motorcortex somatosensory processing

Figure 1.1. Illustration of a human brain, which is covered almost entirely by a laminar and
strongly folded structure, the neocortex. Though being relatively uniform in structure. the
neocortex contributes to a large variety of different signal processing tasks.

There are several reasons for considering the neocortex of higher mammals
as an important subsystem of the brain. First, in most higher mammals the neo­
cortex is a large and prominent structure, namely an about 2mm thick lamina
of nerve cell bodies which covers large parts of the rest of the brain (figure 1.1).
Its size already underlines its importance for higher brain function. Second,
The neocortex can be functionally subdivided into a set of different areas (Van
Essen et al., 1992), each of which, in the spirit of complexity reduction men­
tioned above, can be explored as a separate sub-system. Third, the anatomical
structures of the cortex in different areas are very similar to each other (for
an introduction see (Kandel et al., 1991)). This appears even more remark­
able as we realize that the different cortical areas are devoted to completely
different signal processing tasks including processing of visual, auditory and
somatosensory signals, motor control, and even complex behavioral tasks such
as reasoning, decision making and control of social integrity (figure 1.1; for
an overview see (Damasio, 1996)). Loosely speaking, a cortical area appears
as a universal signal processing module. Hence, by understanding the princi-



4 EXPLORATION OF CORTICAL FUNCTION

ples of operation for one area, we can hope to have gained a set of universally
applicable signal processing strategies, which we can use either as a guide for
understanding other cortical areas or for the design of a new class of innovative
computer algorithms.

One cortical area, on which many laboratories concentrate their joint efforts
is the primary visual cortex. The present book describes some contributions of
modem computer science towards a better understanding of its general func­
tional principles. However it cannot and does not even attempt to be a compre­
hensive on this issue. For example, we will not address the important fields of
temporal coding in biological systems (Eckhorn et al., 1988; Gray et al., 1989)
or in artificial neural networks (Maass and Bishop , 1998; Maass, 2000), but
rather exemplify a selection of recent approaches towards the an understanding
of spatial visual representation.

The book can be logically divided in three parts. The first part comprises
chapters 2 and 3, in which I will summarize some general and important aspects
ofhow biological neurons process information, and how they are interconnected
to form the early visual pathway in macaque monkeys. We will find that one
important feature of cortical signal processing is encoding of information by
the activity of large neuron populations.

The second part is devoted to methods for measuring the activity patterns in
large populations of cortical neurons, which are needed as experimental inputs
for computational models. In chapter 4 we will learn about the principles of
optical imaging of brain activity. We shall consider some of its limitations and
formulate possibilities for improvements. Chapters 5 to 8 address the question
of how we can reliably infer neuronal activity patterns from measured imaging
signals. This task will first be formulated as a blind source separation problem,
for which we then summarize a set of algorithms together with some applications
to functional imaging data.

The third part will introduce computational approaches towards a quantita­
tive understanding of cortical functional principles. Chapter 9 will focus on
top-down approaches , which try to understand aspects of cortical function as
the implementation of a design principle or optimality criterion of signal pro­
cessing. In chapter 10, these models will be contrasted by mean-field models
of cortical function as bottom-up approaches, which are based on the descrip­
tion ofneuronal population activities and anatomical knowledge about neuronal
wiring patterns. These models will address the question how cortical function
evolves as a consequence of its anatomical construction principles, and which
of these construction principles are crucial for the generation of its functional
principles. Examples will include representation of orientation and contrast,
but also the processing of more complex stimuli and the use of visual context
for image segmentation.



Chapter 2

NEURONS AND NEURONAL SIGNAL
PROPAGATION

The human brain contains approximately 1012 to 1013 cells. About 1011
cells out of this pool can be classified as nerve cells or neurons. Although
representing only 2-10 % of all brain cells, it is widely accepted that the neu­
rons and their mutual synaptic connections form the anatomical substrate for
the powerful computational abilities of the brain. The remaining cells, many
of which are called glial cells, are devoted to important auxiliary tasks: They
ensure optimal conditions for neuronal signal transmission by preserving im­
portant ionic concentration levels and insulating neurons from each other, they
accelerate neural signals by myelinization, they shield the brain against toxic
substances in the blood by forming the brain-blood barrier and they contribute
to the nutrition of neurons. In chapter 4, we will discuss a potential key role
of glial cells for the optical measurement of nerve cell activity. Nevertheless,
the activities of glial cells are thought to be only of secondary importance for
understanding the principles of neuronal signal processing.

In the this introductory chapter, we will summarize some important aspects
of the morphology of nerve cells and of the transmission of neuronal signals.
After a brief overview in section I, sections 2 - 5 will focus on different aspects
of signal propagation in neurons. Further general reading for neurobiological
issues can be found in (Shepherd, 1988; Kandel et al., 1991; Dowling, 1992),
and for models of neuronal signaling in (Jack et al., 1975; Bower and Beeman,
1994; Koch and Segev, 1998).

1. Overview
Neurons are cells, which are specialized to serve their task of signal trans­

mission and signal processing. Figure 2.1 summarizes some reconstructions
of different cell types. These neurons belong to the class of multipolar nerve
cells, on which we will concentrate our further description. Though there is a

5
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Figure 2.1. IlIustrations of different neuronal morphologies.

variety of different morphological shapes, all multipolar neurons have a basic
anatomical structure in common, which is schematically illustrated in figure
2.2. The central part of a neuron is its cell body or soma, which contains the
nucleus and other important cell compartments. Attached to the soma we find
many tree-like and strongly branching structures, the dendrites. In addition,
each neuron has a single further process. It is called the axon and its connection
with the cell body is referred to as the axon hillock. Axons can become very
long, they can range from fractions of a millimeter up to several meters for
motoneurons of the spinal chord. Therefore, many axons in the central nervous
system are myelinized by glial cells which increases the conduction velocity.
Each axon branches into many axonal fibers, on which we can find synaptic
terminals. These terminals form a synaptic connection with the dendrite, the
soma or the axon hillock of other neurons, which are called "postsynaptic" neu­
rons. On average, every axon forms about 10 000 synapses with postsynaptic
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presynaptic neuron

7

Figure 2.2. Schematicillustration of a neuron. A neuronconsistsof dendrites, the cell body
and a single axon fiber which forms synaptic connections with other, "postsynaptic" neurons
(adaptedfrom (Kandel et al., 1991».

neurons, and each cell receives roughly the same number of connections from
other neurons. The complex shape of the neuron is defined by the cell mem­
brane, which separates its interior from the external milieu. The membrane is
kept in place by the molecular cytoskeleton and by adhesion to neighboring
cells.

Neuronal signals are changes of the resting electrical potential across the
cell membrane, which at rest is maintained at about VR = -70 mV 1. By
their function for the transmission and transformation of these changes, the
morphological parts of a neuron can be grouped into four major functional
components: an input component, an integration component, a conduction
component and an output component (figure 2.3).

The dendrites and the cell body are densely covered with synaptic terminals
from many other neurons, which evoke changes in the membrane potential.
These changes are called postsynaptic potentials (PSPs). Dendrites are the
input component of the neuron (figure 2.3a).

At the axon hillock, many PSPs are integrated to form a total synaptic poten­
tial, and are transformed to a sequence of sharp pulse-like potential changes, the
action potentials or spikes (figure 2.3b). In a simplified view this transformation
can be seen as a threshold operation: Each time the total membrane potential
exceeds a threshold voltage vth, a spike is generated and the membrane poten­
tial is reset to its resting value. This operation can be viewed as a summation
with a subsequent analog-to-digital transform. The axon hillock represents the
integration component. The resulting sequence of spikes is conducted through

1The exact value depends on the species, temperature and other factors
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(d)
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~­

t

Figure 2.3. Simplified overview over neuronal signal flow. (a) The dendrites collect postsy­
napticpotentials (PSPs). (b) At the axonhillock, PSPsare summed and spikes aregenerated by
a thresholding operation. (c)The spikesareconducted along the axonto the synapticterminals,
where theyevoke PSPsin postsynaptic neurons (d).

the axon (figure 2.3c), which the conduction component, and is distributed to
all synaptic terminals, which form the output component. Each time a spike
arrives through the axon, the synapse causes a smooth postsynaptic potential
in the subsequent neuron (figure 2.3d). This operation can be understood as
a digital-to-analog transform. Chemical synapses transmit information only
along one direction. The neuron on the axon side, which emits the signal, is
called the presynaptic neuron, the corresponding synaptic compartment is the
presynaptic terminal. Likewise, the recipient neuron is referred to as postsy­
naptic neuron.

Based on this overview, the following paragraphs will provide some more
details about the different stages of the signal processing in neurons.

2. The Resting Potential
The main constituent of the cell membrane is a phospholipide bilayer, which

is impermeable for water and ions. It separates the extracellular from the in­
tracellular fluid, both of which consist of water and various types of ions and
organic molecules. Embedded into the cell membrane we find specialized pro­
teins, many of which act as specific channels for one or a few types of ions.
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membrane

~~
Ion Internal External Equilib.-

~ --- ~ ~ ~ ~

(mM) (mM) Pot. (mV)
A '~ ~ A K 400 20 EK: -75

K+ Na+ 50 440 ENa: +55.- K+ Ca2+ 0.4 10 ECa : +41

o ~ : .. (±) e CI- 52 560 ECI: -60

potential V(x )

.r

(a) (b)

Figure 2.4. (a) Generation of the equilibrium potential for potassium by a concentration gra­
dient and a selectively permeable cell membrane (for explanation see text). (b) Concentrations
of important ions in the intracellular and the extracellular space and their resultingequilibrium
potentials (after(Kandel et aI., 1991».

The resting potential of a neuron is generated by two effects: (i) Several ion
types show a concentration gradient along the membrane, which is actively
maintained by the cells under energy consumption. (ii) The membrane con­
tains passive ion channels, which make it partially and selectively permeable
for some ions.

The most important ion types for the resting potential are potassium ions K+
and large organic anions (denoted by A-). Figure 2.4a shows a simplified sce­
nario, in which a piece of membrane (vertical dashed line) separates the cytosol
(left) from the extracellular space (right). The concentration of potassium ions
within the cell is approximately 20 fold higher than its concentration outside
the cell: [K+] i ~ 20 X [K+]e 2. The fluid is electrically neutralized by organic
anions A-.

Because the membrane is selectively permeable for potassium, these ions
diffuse outside the cell along their own concentration gradient, and leave the
non-permeating anions behind (figure 2.4a, top). This process causes a sur­
plus of positive charges outside and a surplus of negative charges inside the
cell, which attract each other and concentrate at the membrane. The separated
charges evoke an electrical field and a corresponding electrical potential, which
increasingly prevent further.K+ ions from leaving the cell. When the chemical
and electrical forces cancel, the system has reached its equilibrium. Figure 2.4a
bottom schematically illustrates, how the electrical charge Q, the strength of the

2Thesquarebrackets denote theconcentration of an ion type
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(2.1)

electrical field E and the electrical potential V are distributed across the mem­
brane. The difference EK = Vi - Ve between the potential inside and outside
is the equilibrium potential of potassium, which is negative. In summary, the
membrane acts as the dielectricum of a capacitor which separates the charges
inside and outside the cell from each other.

The equilibrium potential for potassium can be quantified by equating the
electrical force and the chemical force acing on the ions. This yields the Nemst­
equation

RT [K+]e [K+]e
EK = ZF In [K+] i ~ 6010g10 [K+]i mY,

in which R is the gas constant, T the absolute temperature, Z = +1 the valence
of potassium and F the Faraday constant. In the second equation, the prior factor
of the logarithm has been calculated for room temperature (25 deg Celsius) and
the logarithm has been changed to base 10.

However, potassium is not the only ion type which is present in living tissue.
The table in figure 2.4b provides the intracellular and extracellular concentra­
tions of further important ion types for the giant squid axon. Based on these
concentration conditions, each ion has its own equilibrium potential. It can
be obtained by insertion of the respective concentration values into the Nemst
equation eq. (2.1). The equilibrium potentials for some important ions are
listed in the right column of figure 2.4b. Notice that sodium and calcium have
a positive equilibrium potential , their concentration gradient drives them into
the cell.

The equilibrium potential of an ion represents the membrane voltage we
would measure if the membrane were permeable only for that ion. Actually,
however, the membrane is to some degree permeable for many ions (figure 2.4b),
and all of them together determine the membrane potential Vm of the neuron.
If the permeability for a given ion type is very low, it cannot contribute much
to a shift of charges across the membrane and thus does not strongly affect the
membrane potential. Conversely, ions with a high permeability dominate the
value of the membrane potential. This relationship is reflected by the Goldman
equation,

V
m

= RT In %[K+]e + PNa[Na+]e +PCl[CI-]i
F %[K+]i + PNa[Na+]i + PCl[CI ]e

(2.2)

in which P«. PNa and PCl denote the permeabilities of the cell membrane
for potassium, sodium and chloride, respectively. Other permeabilities have
been neglected. If any of the permeabilities is much higher than the others,
the Goldman equation will approximately reduce to the Nemst equation for the
corresponding ion. The value of the membrane potential will be dictated by
this ion and will come close to the respective equilibrium potential.
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capacitive current axial current

leakage current

Figure 2.5. Majorcurrents that contribute to the passive signal propagation in dendrites. An
injectedsynapticcurrentsplits into a capacitive current, an axial currentand a leakagecurrent.
Theexample showsanexcitatory synapse, in whichthecapacitive currentcausesadepolarization
of the membrane.

At rest, the membrane permeability is strongest for potassium, & » PNa,
PCI, and consequently the membrane potential amounts to a value only sightly
above its equilibrium potential : Vm :::::: -70 mV. Under these conditions, the
membrane potential is called the resting potential VR of the cell. In section 4 we
will see that during an action potential, the membrane permeability is highest
for Na+ and the membrane potential is dominated by sodium.

3. Passive Signal Propagation in Dendrites
The signals that are processed by neurons are deviations of the membrane

potential from its resting value. As mentioned previously, these perturbations
are usually caused by presynaptic terminals, which evoke a current injection
into (or out ot) the postsynaptic neuron when they are activated (cf section
5). The evoked perturbations or postsynaptic potentials then propagate through
the dendrites towards the soma, where they are integrated with other PSPs to
form the total synaptic potential. Dendrites are complex structures and signal
propagation may be accompanied by active calcium-dependent processes (Mel,
1993; Johnston et al., 1996; Destexhe et al., 1996; Schutter, 1999), which ren­
ders a comprehensive treatment of this issue beyond the scope of this introduc­
tion. Dendritic integration of signals has been addressed experimentally, (Segev
and Pamas, 1983; Fromherz and Vetter, 1992; Fromherz and Muller, 1994; Klin­
gler and Fromherz, 1995) by analytical model treatment (Rall, 1964; Rall, 1967)
and by compartmental modeling (Bressloff and Taylor, 1993a; Bressloff and
Taylor, 1993b; Bressloff, 1994; Segev, 1995; Schutter, 1999). At this point, we
restrict ourselves to a a brief consideration of what are the principles of passive
signal propagation in dendrites. Let us consider a small piece of a dendrite,
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Figure 2.6 Currents and volt­
ages during signal propagation
along an idealized cylindrical
dendrite. In each segment the
currents must cancel. Hence
the membrane current is pro­
vided by changes in the ax­
ial currents. which in tum are
driven by differences in mem­
brane potential .
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which we assume to be very thin and very long, and which is contacted by a
presynaptic terminal (figure 2.5). When the synapse is driven by a presynaptic
spike, it causes the injection of a small current pulse into the dendrite. This
current splits into three basic components: (a) The injected ions change the
charge distribution across the membrane near the synapse and thereby locally
change the membrane potential. The corresponding current is the capacitive
current ie• (b) Ions diffuse along the dendrite and form the axial current ia . The
axial current is responsible for the propagation of the depolarizing perturbation.
(c) Ions leak through passive channels in the membrane and form the leakage
current, ii, which drives the membrane potential back to its resting level. The
leakage current is thought to be mediated by chloride ions.

Now we want to derive an expression, which specifies how a deviation of
the membrane voltage from its resting level propagates through this idealized
dendrite. For this it is convenient to think of the dendrite as a sequence of short
segments, each with infinitesimal length dx (figure 2.6). Within each dendrite
segment x and at each instant of time t , the total amount of charge is preserved:
The sum of incoming currents must be equal to the sum of outward currents.
Equivalently, the axial current ia(x, t) which enters the segment, but does not
leave it again axially as ia(x + dx, t), has to leave it as resistive or capacitive
membrane current im(x, t)dx:

im(x, t)dx + ia(x + dx, t) = ia(x, t)j dia(x, t) . ( )
dx = t m x,t (2.3)

Each of the axial currents is driven by the voltage between itself and its neigh­
boring segment. This yields

. ( ) _ Vm(x - dx, t) - Vm(x, t) _ dVm(x, t)
t a X, t - d - -ga d 'r« x x

(2.4)
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Figure 2.7 Solution of the
cable equation for an infi­
nite cylindrical dendrite in re­
sponse to a brief current injec­
tion at T = X = O. X =
x]A and T = tlrm are re­
duced length and time vari­
ables. With increasing dis­
tance from the synapse, the
PSP becomes delayed, weaker
and broader «Stetter, 1994),
adapted from (Jack et al.,
1975».
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where ga (mS em) denotes the conductance per unit length along the axial
direction of the dendrite. Finally, the membrane current can consist of many
components, but at least includes the capacitive current and the leakage current,
which may be carried by several types of ions. We obtain

. () dVm(x,t) (V. ( ) TT)
Zm x, t = Cm dt + gm m x, t - vR , (2.5)

where 9m (mS/cm) and em (Ji-Flcm) represent the membrane conductance and
the membrane capacitance, respectively, per unit length of the dendrite. By
deriving eq. (2.4) with respect to z, inserting eqs. (2.4) and (2.5) into (2.3) and
dividing by gm we arrive at the cable equation

\2£i2Vm(X, t) _ dVm(x, t) _ (V. ( ) _ TT ) = 0
1\ dx2 Tm dt . m x , t vR (2.6)

The cable equation describes, how the membrane voltage of a long cylindrical
dendrite behaves in space and time, when the membrane voltage is perturbed
from its resting level. The first term in (2.6) is a diffusion term which specifies
how the ions propagate along the dendrite. It corresponds to the axial current in
figure 2.5. The second term describes how the membrane is recharged and can
be traced back to the capacitive current in figure 2.5. The third term, finally,
is the leakage term which drives the membrane potential back to zero. The
quantitative properties of the dendrites are specified by the length constant, >. =
(ga/9m)1/2 and the time constant Tm = cm/9m. The length constant specifies
how far a local perturbation can propagate along the dendrite and ranges around
0.3 - 1 mm. The time constant determines how long a perturbation of the
membrane potential is typically preserved. It assumes values around 5 - 100
ms.

The cable equation represents a second order partial differential equation,
for which a general solution even in the idealized case of a infinite cylindrical
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dendrite is difficult to find. However, the propagation of a transient voltage
change in response to a short localized current pulse can be well analyzed by
this equation. Figure 2.7 shows, how the voltage over time behaves at different
locations at the dendrite. The variables in capital letters denote effective time
and space, X = x/>" and T = t/Tm . Along their way towards the soma,
the postsynaptic potential decreases in amplitude and becomes increasingly
broader. Hence, with increasing distance from the soma, the influence of a
synaptic current on the somatic potential as well as its temporal localization
decreases .

We conclude that signal propagation in passive dendrites can be understood
as a linear process, namely as a diffusion-based spread of charge in a linear
system. Because of these two properties, this mode of dendritic signaling is
called passive propagation. Passively propagated PSPs decay exponentially
and broaden along their way through the dendrite. At the soma, they show a
variety of strengths and degrees of temporal localization. The total potential
at the soma or the axon hillock results from a complex spatial and temporal
summation of usually tens to hundreds of individual postsynaptic potentials.

4. Active Propagationof Spikes

The characteristics of signal propagation at the axon differs dramatically
from that in dendrites. Starting from the axon hillock and the axon initial seg­
ment, each neuron fires a sequence of short and sharp pulse-like changes in
the membrane potential, the action potentials or spikes. Their temporal pattern
depends in a complex way on the summed PSP of the dendrite. The spike
sequence or spike train encodes and processes the summed dendritic potential.
Further reading on experimental and theoretical approaches to excitable mem­
branes includes (Fitzhugh, 1960; Fitzhugh, 1961; Jack et al., 1975; Abbott and
Kepler, 1990; Ermentrout, 1996; Ermentrout and Kopell, 1998).

The thick solid line in figure 2.8a illustrates, how the membrane voltage
changes in time during an action potential. As soon as the membrane voltage
passes a threshold value, it increases very fast up to a value of about +50 mV
and afterwards decreases even below the resting potential, which it reaches
again after a few milliseconds. In mammals, the whole spike takes roughly one
millisecond. Immediately after the spike it is harder than usual for the neuron
to fire a new spike. This period is called the refractory period of the neuron.

At its peak value, the membrane voltage is close to the equilibrium potential
of Na+. This indicates, that during that period the membrane permeability for
sodium is much higher than the others, PNa » PK, PCI, ... and dominates the
behavior of the membrane potential. Hence, the activation of additional sodium
channels is likely to contribute to the initiation of a spike. After the spike,
the membrane potential is even closer than usual to the equilibrium potential
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Figure 2.8. (a) Shape of an action potential (solid line) and changes of the sodium and potassium
conductances (dashed lines) during an action potential. (b) Voltage-dependence of gNa and gK.

Above a minimum membrane depolarization (threshold voltage, top), voltage-gated sodium
channels open fast and inactivate automat ically (center) . Potassium channels activate slower
and do not inactivate (bottom).

of K+. Consequently, the activation of additional potassium channels should
participate in the repolarization of the membrane.

The mechanism of spike generation has been revealed for the squid giant
axon by (Hodgkin, 1948) and (Hodgkin and Huxley, 1952). By an electronic
feedback circuit, which is known as voltage clamp, it became possible to keep
the membrane voltage fixed at arbitrary values and simultaneously measure the
membrane conductances for either potassium or sodium ions (at each experi­
ment, one of the ion types was replaced by a substitute ion). They found that
in contrast to the dendritic membrane, the axonal membrane is characterized
by ionic conductances which depend both on time and on the current mem­
brane voltage. They are related to voltage-gated ion channels in the membrane.
Figure 2.8b summarizes the nonlinear behavior of the sodium and potassium
conductances. If the membrane voltage increases only slightly above the resting
potential, both conductances do not change very much. However, as soon as
the change in membrane voltage exceeds a certain threshold, the sodium con­
ductance 9Na shoots up very fast to a high value and afterwards drops back to a
low level (inactivation), even if the membrane is still depolarized. In contrast,
the potassium conductance 9K increases slower in response to depolarization
and does not inactivate. Finally, a small, voltage independent leakage current
was found, which is mediated by chloride and other ions (not shown).

Using this knowledge about the voltage-dependent conductances, one can
understand a simplified version of spike formation: As soon as the membrane
voltage at the axon hillock increases above a threshold value, voltage-gated
Na+ channels activate, cause an influx of Na+ ions which further depolarize
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the membrane and cause even more Na+ channels to open. A positive feed­
back loop is initiated, after which the membrane is highly permeable for Na+.
Shortly after this moment, the sodium channels inactivate automatically and
stop the sodium flux, while at the same time the slower potassium channels
open. Potassium leaves the cell and drives the membrane potential towards its
equilibrium potential, which lies even below the resting potential. This means
that the effect of an earlier membrane depolarization before the spike is reset.
Finally, a slower process brings both the membrane potential and the potassium
channels back to their resting state. The dashed lines in figure 2.8a illustrate the
changes of the conductances during a spike. During a few milliseconds after
spike initiation, the Na+ channels are still closed due to their own inactivation
process and cause the refractory period of the neuron.

Once a spike is initiated, it propagates along the axon towards the axon
terminals. The propagation results from the fact that the spike represents a
zone of strong membrane depolarization. This zone depolarizes the adjacent
axonal segment, which in turn starts to initiate a spike using its own voltage­
gated ion channels. This effect happens again and again and causes a continuous
propagation of the action potential along the axon. The spike can only propagate
away from the axon hillock, because the membrane over which it has already
swept is refractory and cannot be excited again for a while.

A few points are worth noticing. Action potentials are generated by a nonlin­
ear process, they preserve their shape during propagation along the axon. This
has two consequences: First, the detailed shape of the action potential prob­
ably does not carry much information. Instead, the timing of a spike relative
to preceding and successive spikes on the same axon or relative to spikes of
other neurons seem to be important variables for encoding of information. This
hypothesis gave rise to integrate-and-fire neuron models. Second, the various
kinds of ion movements across the membrane evoke changes in cellular vol­
umes and shapes. The latter two mechanisms, activity-dependent metabolism
and cell swelling, represent important bases for the optical detection of neuronal
activity, which is treated in chapter 4.

If we inject a stationary depolarizing current into the cell, its membrane
voltage increases, passes the threshold voltage and causes a spike. The more
current we inject, the faster the threshold is reached, and the shorter the inter­
spike interval gets. The relationship between the injected stationary current and
the resulting frequency of spikes is called the current-frequency relationship of
a cell. Figure 2.9a shows a current-frequency relationships for two types of
neurons, pyramidal cells and stellate cells, in the primary visual cortex of cats.
The dashed lines are linear fits to the nonzero parts of the two relationships,
which describe the data very well. Hence, the integrative part of the neuron
(the translation from a stationary current to spike frequency at the axon hillock)
can be described by a simple rectifying and piecewise linear function, at least
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Figure 2.9. (a) Current-frequency relationships for a pyramidal neuron(circles)and a stellate
cell (crosses). Thedashedlinesarelinearfitsto thenonzero partsof thedata (from(Azouzet al.,
1997) and (Ahmedet al., 1998». (b) Response of a pyramidal neuronin macaque visualcortex
to the contrastof visualstimulation (Levitt. unpublished result). The cell showsstrongcontrast
saturation.

up to a maximum frequency which is determined by the refractory period of
the neuron. However, this does not imply that signal processing in networks
of such neurons behaves linearly. Figure 2.9b shows, how the response of an
orientation-selective neuron in the primary visual cortex of a macaque varies
with the contrast of the stimulus. The neuron shows a strongly nonlinear re­
sponse to the stimulus, including a saturation for high contrast levels. Neurons
in cat visual cortex behave similarly (Sclar and Freeman, 1982). This nonlinear
behavior is probably caused by non-stationarity of realistic synaptic inputs to
nerve cells and by the fact that each neuron acts as part of a large neuronal net­
work, which processes the visual stimulus. We will treat computational models
for signal processing by neural networks in chapters 9 and 10.

5. Synaptic Transmission and Plasticity
Signals between neurons are exchanged via synapses. Two major classes of

synapses can be found: Electrical synapses or gap junctions are fast electrical
connections between cells, through which currents can be exchanged bidirec­
tionally. In contrast, chemical synapses establish unidirectional connections,
which use chemical transmission of signals. Chemical synapses are the most
frequent and a very important type of synapses in the central nervous system.
In the following, we will concentrate on a short review of synaptic morphol­
ogy, function and plasticity of chemical synapses and will drop the expression
'chemical' .

Figure 2.lOa sketches the asymmetric setup of a synapse. It consists of a
small presynaptic terminal with a diameter of about 0.5-1 JLm (top part) and a
postsynaptic compartment (lower part). In the presynaptic part we find a num-
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Figure 2.10. Principle ofchemical synaptic transmission: Apresynaptic actionpotentialcauses
the releaseof neurotransmitter, whichdiffuses through the synaptic cleft, activates ion-channels
in the postsynaptic membrane which enable an ion flux across the membrane (adapted from
(Kandel et al., 1991)).

ber of small membrane vesicles, which contain neurotransmitter molecules and
a set of release sites (black triangles) for these vesicles. Also, voltage-gated
calcium channels are embedded in the presynaptic membrane. The postsy­
naptic membrane contains specialized ligand-gated ion channels, which have a
specific receptor for the neurotransmitter molecules and are opened by a chem­
ical binding to such a molecule. The procedure of synaptic transmission is
summarized in figure 2.10. When a spike travels along an axon and arrives at
the presynaptic terminal (figure 2.lOa), it strongly depolarizes the presynaptic
membrane. This activates the Ca2+ channels, calcium flows along its gradient
into the cell (figure 2.1Db) and causes neurotransmitter vesicles to fuse with the
cell membrane (figure 2.lOc). The neurotransmitter molecules diffuse through
the synaptic cleft, which is approximately 10 om wide, and shortly after their
release bind to the receptors of the postsynaptic ion channels (figure 2.lOd).
The channels are activated, the postsynaptic membrane permeability for cer­
tain ions increases, and the resulting ion flux changes the membrane potential
(figure 2.1De) - a postsynaptic potential has been generated. Due to this cascade
of steps, the onset of the PSP has a short delay with respect to the presynaptic
spike. Also, it is less sharply peaked and in the mammalian brain extends to
about 5-100 ms over time.

We have seen that current injection into the postsynaptic membrane is achieved
by a change in electrical conductance of the postsynaptic membrane. Which
change in the membrane voltage is evoked by a given synapse, depends on the
combination of ion types for which it becomes permeable. If a synapse were
only permeable for a given ion type, it would drive the membrane potential
towards the equilibrium potential for that ion (cf. section 2), because the high
permeability for that ion during synaptic transmission would let it dominate
the right hand side of the Goldman equation (2.2). Several types of synapses,
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Figure 2.11 Short term
synaptic plasticity of ex­
citatory synapses: The
presynaptic spike train (bot­
tom) drives a fast depressing
synapse (middle) and a fast
facilitating synapse (top)
on the axon of the same
presynaptic neuron (from
(Markram et al., 1998» .

however, become permeable for a combination of ions. In this case, the synapse
has its own equilibrium potential, which is called reversal potential.

A lacannot transfer the file rge fraction of synapses in the brain use gluta­
mate as neurotransmitter. The ion-channels of glutamatergic synapses become
permeable for both Na+ and K+ and have a reversal potential of about 0 mV.
If such a synapse is activated, it depolarizes the membrane 3. Synapses with
this property are called excitatory synapses, because they drive the membrane
voltage towards the firing threshold for a spike. They cause excitatory postsy­
naptic potentials (EPSPs) with a positive amplitude between 0.2 - 2 mV at the
soma. Glutamatergic ion channels can be subdivided into two classes: AMPA­
receptors and NMDA-receptors. AMPA-receptors evoke strong and fast (::::::
5 ms) EPSPs, whereas the contribution of NMDA-receptors is usually much
weaker and slower (:::::: 100 ms). However, NMDA-receptors are both transmit­
ter and voltage gated - they need a pairing of presynaptic transmitter release
and a postsynaptic depolarization for activation. Also, they are permeable for
Ca2+, which is thought to be involved in the initiation of synaptic plasticity.

3unless the membrane voltage werealreadypositive, whichis usuallynot the case outsideactionpotentials
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A second important type of synapses use gamma-amino-butyric-acid (GABA)
as neurotransmitter and their corresponding ion-channels are selective for CI- .
Because in mammals the equilibrium potential of chloride lies below the resting
potential of neurons, active GABAergic synapses hyperpolarize the membrane.
Synapses with this property are called inhibitory synapses, because they drive
the membrane voltage away from the firing threshold for a spike. The resulting
inhibitory postsynaptic potentials (IPSPs) are much smaller in amplitude than
the EPSPs, because of the proximity of the membrane potential and the reversal
potential of the synapses. Nevertheless, inhibitory synapses can be very effi­
cient even without causing a PSP by themselves: By increasing the membrane
conductance, they establish a short-circuit through the membrane which can
remove already existing EPSPs very effectively. This mechanism of inhibition
is called shunting inhibition.

In response to a presynaptic spike, a synapse causes a PSP with a given
amplitude. This amplitude represents one simple possibility to define the ef­
ficiency of transmission for that synapse, which is referred to as its synaptic
efficacy or synaptic strength. The synaptic efficacy is in general different for
each synapse. Theoretical studies on artificial neural networks (see e.g. (Koch
and Segev, 1998) for an overview) suggest that the set of synaptic strengths in
a network of neurons determines its mode of operation. However, the strength
of a synapse is not fixed over time but can vary in an activity-dependent way
over various time scales. This class of phenomena is called synaptic plasticity.
Because this implies, that the mode of operation of a biological network can
change in an activity-dependent manner, synaptic plasticity is believed to un­
derly both fast adaptation processes (Markram and Tsodyks, 1996) and slower
learning and memory mechanisms (Bliss and Collingridge, 1993).

Figure 2.11 demonstrates different types of short term synaptic plasticity, all
of which act at a time scale from 0.2 s up to a few seconds. The measurements
shows simultaneous recordings from three neurons in a slice of rat somatosen­
sory cortex, one pyramidal neuron and two different postsynaptic neurons, to
which it makes a synaptic contact. The lower trace shows action potentials
that are generated by electrical stimulation in the presynaptic pyramidal cell,
whereas the middle and top traces display the summed PSPs in the two post­
synaptic neurons. Each little peak corresponds to one PSP which arose from
a single spike. In the middle trace, PSP amplitudes strongly decrease over
about 200 ms, they show fast synaptic depression. which partly recovers after
approximately 0.5 s. The top trace, in contrast, shows fast synaptic facilitation
with similar temporal characteristics.

Synapses can also undergo activity-dependent changes in strength which are
persistent over long periods of time. If in response to a single presynaptic burst
of activity the PSP evoked by a synapse becomes and remains stronger for at
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least some hours, the effect is called Long-Term Potentiation (LTP). Similarly,
if activity diminishes the PSP for a long time, Long-Term Depression (LTD) has
occurred (Linden and Connor, 1995). In many cases, LTD and LTP have been
shown to require a pairing of presynaptic spiking activity and postsynaptic
depolarization, which is in tum a sign of postsynaptic activity (for a review
see (Brown et aI., 1990». In this case, synapses change their strengths based
on the coincidence of pre- and postsynaptic activity and thus can detect and
amplify correlations in firing. This class of synaptic plasticity is called Hebbian
plasticity (Hebb, 1949). Synapses with NMDA receptors are discussed as a
molecular substrate for Hebbian synaptic plasticity (Daw et al., 1993; Schutter
and Bower, 1993), because these receptors cause an influx ofcalcium selectively
in the case of paired pre- and postsynaptic activities.

Recent studies have examined different situations, under which LTP and LTD
are observed. If synaptic plasticity is evoked by strong bursts of spikes, LTP
has been observed, if the postsynaptic cell was strongly depolarized at the same
time. Ifdepolarization was only weak, the synapse showed LTD (Artola et al.,
1990). Long-term synaptic plasticity has also been set in relation to pre- and
postsynaptic spike timing . If a presynaptic spike preceded repetitive postsy­
naptic spiking by an amount of 20 ms or less, the synapse under consideration
showed LTP. Conversely, if a postsynaptic spike preceded repetitive presynap­
tic firing by 20 ms or less, LTD resulted . Outside this narrow time window,
no change was observed (Markram et aI., 1997; Bi and Poo, 1998). In other
words, LTP occurred if the presynaptic spikes had a chance to contribute to
the generation of the postsynaptic spike, an acausal sequence resulted in LTD.
These mechanisms were also shown to depend on NMDA-receptor activity.

Finally, activity-dependent long-term synaptic plasticity was found to be
not always strictly confined to the synapses at which activity was paired. Re­
cent studies in rat hippocampus revealed that synapses which undergo Hebbian
plasticity, cause neighboring synapses to show a similar modification. This
behavior was found for synapses that were adjacent at the same axonal terminal
(Bonhoeffer et aI., 1989) as well as for adjacent synapses on the same post­
synaptic dendritic tree (Engert and Bonhoeffer, 1997). Probably, geometrical
rather than electrotonic neighborhood represents the criterion for non-Hebbian
synaptic plasticity, and nitric oxide (Schuman and Madison, 1994) is discussed
as a possible messenger for its initiation.

In summary, we have seen that neuronal signals undergo a variety ofcomplex
and nonlinear transformations along their way through the neuron. Although
neurons stimulated with a stationary current show a relatively simple thresh­
olded linear behavior, realistically stimulated neurons which are embedded in
a network carry out much more complex operations . A response to the ques­
tion how these operations can result as an emergent property of the network,
can bring us towards a better understanding of brain function. But before we
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can setup computational neural network models, we must learn more about the
biological system which we want to model. We chose the visual system of
mammals, and provide a brief introduction to the neurobiology of early vision
in the next chapter.



Chapter 3

THEEARLY VISUAL SYSTEM
OF MACAQUE MONKEYS

The cerebral cortex has the shape of a 2 - 3 mm thick lamina. It consists
mainly of cell bodies and local axonal connections, and shows a relatively
uniform structure, as one proceeds laterally across its different areas. Despite
its uniformity, different parts of the cerebral cortex perform a large variety of
different signal processing tasks (cf. figure 1.1). Hence, it seems desirable to
obtain a detailed understanding of one of these parts, because this will probably
give strong hints towards the operation principles of other cortical sections.

There are at least two reasons to chose the visual system for investigation.
Firstly, vision represents the most important sensory modality of humans , and
it is therefore particularly interesting to learn more about our visual system.
More importantly, however, the visual system is a relatively well-investigated
structure of the brains of higher mammals such as cats and macaque monkeys.
Figure 3.1 illustrates the structure of the cerebral cortex of a macaque monkey
(top left: side view), which surrounds deeper brain centers as a strongly folded
sheet. The visual cortex covers most of the occipital lobe (left part) and can
be divided into different visual areas, denoted by VI - V5, etc. Each visual
area forms a complete representation of the whole visual field, though usually
different features are represented. Figure 3.1c displays an unfolded and flattened
macaque cortex, on which again some visual areas are marked. The visual cortex
of macaque monkeys covers roughly 50 % of their entire cortex, a much higher
percentage than found in humans. Actually, the visual system of macaques
is relatively similar to its human counterpart, and can serve as a good model
system for human vision. The leftmost structure in figure 3.1c is the primary
visual cortex or V1. It is the largest visual area and represents the first stage of
cortical visual processing . We will choose the primary visual cortex of macaque
monkeys as a model system for visual information processing. Where data from
macaque VI is not available, we will summarize measurements form cat cortex.
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Figure 3.1. The visual system of a macaque monkey {after (Kandel et al., 1991» . VI - V5
denote different visual areas. (a) Lateral view of a macaque brain (1) and an expanded view
of the occipital lobe (2) (left: posterior; right: anterior). The visual system covers most of the
occipital lobe. (b) Horizontal section through the occipital lobe and locations of some known
visual areas. (c) Unfolded and flattened cerebral cortex of a macaque. The visual cortex covers
roughly half of its area, and the primary visual cortex, VI, represents the largest visual area.

1. Anatomyof the Early VisualPathway
We start our trip through the visual system of monkeys by summarizing

some importantaspects of its anatomy. This will allowus to deductprinciples
of the wiring patterns between neurons which in tum will serve as input to
computational modelsfor earlyvision. A moredetailed description of the early
visual pathway of mammals can be found in (Kandel et al., 1991).

Figure 3.2 sketches the overall anatomical structure of the early visualpath­
way. When a cat or monkey fixates its environment, light that falls into the eye
is focussed by the corneaand the lens to form two images on the left and right
retinae. The part of the world that contributes to the image formed on the two
retinaeis calledthevisualfield of the animal. Eachretinatransforms the incom­
ing light intensity distribution into spikepatterns, whichare transmitted by the
two optic nerves into the centralnervous system. Each optic nerve consists of
roughly 106 myelinated axons, almostall of whichtargeta structure withinthe
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Figure 3.2. Schematic sketch of the early visual pathway of higher mammals (adapted from
(Bauer, 1999» . For further description see text.

thalamus, which is called the Lateral Geniculate Nucleus or LGN. At the optic
chiasm, each optic nerve branches in a way that one half of the fibers targets the
"contralateral" LGN at the side opposite to its origin, whereas the rest contacts
the "ipsilateral" LGN at the same side as the eye of origin. The cross-over of
the nerve fibers occurs in a highly ordered fashion, which ensures that each
LGN receives the fibers from the ipsilateral parts of both retinae. Thus, each
LGN processes the binocular signals from the contralateral hemisphere of the
visual field.

Proceeding from the LGN l another less concentrated bundle of fibers, which
is referred to as the optic radiation, contacts the primary visual cortex (also
referred to as area 17 or VI) at the occipital lobe of the neocortex. Because
these fibers represent input to VI , they are called "afferent fibers" or "afferents".
In contrast to the optic nerve, the optic radiation does not cross hemispheres.
Hence, each hemisphere of the primary visual cortex processes visual informa­
tion from the contralateral hemisphere of the visual field. Two major output
streams arise from V1. The first stream projects from V1 to higher visual
cortical areas, whereas the second stream projects back to the LGN and other
subcortical nuclei.

One important feature of the connection pattern between the retina, LGN and
VI is its topographic order or "retinotopy": Fibers that start from neighboring
retinal ganglion cells contact neighboring LGN cells which in tum terminate
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at neighboring regions of VI (Rubel and Wiesel, 1977). In the following
paragraphs, we will consider the anatomy of the retina, the LGN, V1 and the
organization of the axonal fibers between them in some more detail.

1.1 The Retina

The retina represents the first processing stage of visual signals in the early vi­
sual pathway. Besides translating the light intensity distribution into membrane
potential changes, the retina carries out important steps of visual processing in­
cluding adaptation to changes in the light intensity and the detection of color,
contrast, and movement of contrast patterns.

Figure 3.3a summarizes the vertical structure of the retina of higher mam­
mals. It consists of three neuronal or granular layers: the photoreceptor layer
(top), the bipolar layer with horizontal cells, bipolar cells and amacrine cells
(middle), and the retinal ganglion cell layer (bottom). The ganglion cell axons
form the optic nerve and transfer the result of retinal processing to the LGN.
The three granular layers are separated by plexiform layers, where synaptic
connections between the neurons are concentrated. The retina is oriented in a
way that incoming light passes all the layers before it finally reaches the pho­
toreceptors (top), where it evokes graded changes in the membrane potential.
Photoreceptors can be divided into rods, which are highly sensitive to light, and
less light sensitive cones. In many color- sensitive animals such as macaque
monkeys, cones have three different spectral sensitivities and provide the basis
of color vision.

The signals of the photoreceptors proceed through the retina via two path­
ways. In the direct or feed-forward pathway, one or several photoreceptors
contact a bipolar cell, and one or several bipolar cells in turn drive one ganglion
cell. Bipolar cells receive exclusive input either from rods or cones and can be
divided into rod- or cone-bipolar cells. Also, the synapses from the photore­
ceptors to the bipolar cell can be inhibitory or excitatory, which gives rise to
a further subdivision of bipolar cells into "ON" and "OFF' bipolar cells. The
meaning of "ON" and "OFF' will become more clear in section 2.1. Synapses
from bipolar cells to ganglion cells, in turn, are always excitatory: ON (OFF)
bipolar cells contact ON (OFF) ganglion cells.

In the indirect or lateral pathway, horizontal cells mediate a lateral informa­
tion flow between bipolar cells as well as between photoreceptors and bipolar
cells. Figure 3.3b provides a simplified scheme of the major wiring patterns
together with the signs of the connecting synapses. The indirect pathway acts
oppositely to the direct pathway. Amacrine cells serve a multitude of tasks in­
cluding the selection of the rod and the cone pathway in scotopic (dark-adapted)
and photopic (daylight-adapted) vision.
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Figure 3.3. (a) Wiring pattern in the retina of higher mammals: The information flows via the
direct pathway from the photoreceptors (top) through the bipolar cells (middle) to the ganglion
cells (bottom). The indirect or lateral pathway is mediated by the horizontal and amacrine
cells. (b) Schematic illustration of the wiring pattern for an ON and an OFF ganglion cell. PR:
photoreceptor, HC: horizontal cell, BP: bipolar cell, GC: ganglion cell. circles with "plus"-sign
excitatory connection. Circles with "minus"-sign: inhibitory connection.

Besides the subdivision into ON- and OFF- neurons, there exists a third
subdivision of retinal ganglion cells into a-neurons and ,B-neurons, and these
cell types show profound functional differences (cf. section 2). Retinal wiring
is characterized by a strong convergence: Within each eye, about 120 million
photoreceptors, which are densely packed to a next neighbor distance of about
2.5 J.Lm converge to roughly 1 million ganglion cells.

The lateral organization of the retina is very inhomogeneous: Near the center
of the retina, where the lens focuses the image of objects fixated by the eyes,
we find the fovea, where visual patterns can be most highly resolved. Many
anatomical characteristics change strongly with the distance from the fovea
(Wassle et al., 1989), which is measured in angular degrees of eccentricity.
Near the fovea, all receptor cells are cones, almost all ganglion cells are ,B-cells,
and there is the smallest convergence between receptors and ganglion cells. In
fact, only one photoreceptor contacts one bipolar cell, which feeds one ganglion
cell. With increasing retinal eccentricity, the densities of photoreceptors and
ganglion cells decrease, and the fraction of rods and a-ganglion cells as well
as the convergence rate increases. For example, at the periphery the ganglion
cell density is 1000 - 2000 fold lower than close to the fovea, and signals from
several hundreds of photoreceptors converge to one ganglion cell.
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right LGN

(a) (b)
Figure 3.4. (a) Vertical slice through the LON of a macaque monkey (adapted from (Hubel
and Wiesel, 1977» , and (b) the retinogeniculate wiring pattern. "P" and "M" mark parvo­
and magnocellular layers, "I" and "C" refer to layers driven by the ipsi- and contralateral eye
respectively. All signals from a given small patch of the visual field arrive at a single column of
the LON.

1.2 TheLGN
The Lateral Geniculate Nucleus or LGN is a part of the thalamus and contains

about 1.3 million neurons. The afferent projections from the retina to the LGN
show little divergence and each axon forms excitatory synapses with one up to a
few LGN cells. Figure 3.4a shows a two-dimensional slice through the LGN of
a macaque monkey and demonstrates that the LGN consists of six cell layers.
four parvocellular or P-cell and two magnocellular or M-celllayers. Axons
from the a-retinal ganglion cells terminate in the M-layers and ,B-ganglion
cells in the P-layers. Additionally, the four P-layers and the two M-layers
are altematingly driven by the ipsilateral eye (letter "I" in figure 3.4a) and the
contralateral eye (letter "C" in 3.4a). The wiring scheme is summarized again
in figure 3.4b. Additional to these two cell types, intercalated (I) neurons can
be found between and ventral to the other layers (Yoshioka et al., 1994). I-cells
differ from the other cell types in the termination zones of their axons, however
little is known about their input.

Parallel to the LGN layers, the topographic order of the afferent projection is
preserved. Figure 3.5 shows, how polar coordinate lines in the left hemisphere
of the visual field (left) are represented in one LGN layer (right) (Connolly and
Van Essen, 1984). One observes a distorted topographic representation, which
emphasizes the representation of the fovea in the LGN. This overrepresentation
of the fovea roughly matches the higher foveal density of retinal ganglion cells.
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Figure 3.5. (a) Leftvisualhemifieldwitha gridof polarcoordinatelines. (b) Topographic rep­
resentationof the left hemisphere plusgridlinesin a layerof the rightLON (from(Bauer,1999».
The central part of the visual field is expanded in the LON. The topographic representationis
identical in all LON layers, whichcauses a columnarorganization.

The ratio between the number of ganglion cells and LGN cells that process
a small patch of the visual field is roughly constant and close to unity. This
fact, and the observation that the physiological properties of LGN- and retinal
ganglion cells are very similar, have lead to the view that the LGN forms a
simple relay between the retina and the cortex.

The LGN also receives input from further structures. Two important streams
of non-retinal input are (i) excitatory feedback-connections from the primary
visual cortex and (ii) connections from inhibitory neurons in the Thalamic
Reticular Nucleus (TRN), which is also referred to as peri-geniculate nucleus
or pre-geniculate nucleus. It forms an incomplete shell around the thalamus.
In cats, the TRN receives collateral fibers both from axons that ascend from the
LGN to the cortex and from corticothalamic feedback-fibers. It has been shown
that modulatory inputs to the LGN (including fibers from the TRN, reviewed
by (Guillery et aI., 1998)) can affect the gain of the signal transmission (Coenen
and Vendrik, 1972) through the LGN, but can also change the mode of firing
(burst or continuous) (Steriade et aI., 1993). Modulatory LGN inputs have been
hypothesized to underly attentional phenomena (Crick, 1984). The TRN has
been less extensively studied in monkeys, however existing evidence from other
modalities (Williamson et aI., 1993) point towards a similar wiring scheme in
macaques. Figure 3.6 summarizes the structure of the LGN and its interaction
with the retina, the cortex , and the TRN.



30 EXPLORATION OF CORTICAL FUNCTION

from retina cells synapses

excit, O I •
inhib.QTO

LGN

TRN

Figure 3.6 Schematic struc­
ture of the LON, the TRN
and the corresponding wiring
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projects to the cortex and re­
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in tum inhibits the LON.
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1.3 General Aspects of Cortical Circuitry
The structure of the neocortex is quite similar in different areas ofone species

and between different species. It is formed from a layer of neurons approxi­
mately 2mm thick and contains about 200,000 neurons per mm2 of cortical sur­
face (O'Kusky and Colonnier, 1982). The primary visual cortex of macaques
(area 17 or VI) covers a total area of 1300 mm2 (Rubel and Wiesel, 1977),
and its 260 million neurons process the input from about 2 million LGN fibers.
This huge increase of neuron numbers in the cortex compared to the LGN gave
rise to the hypothesis that population coding is an important strategy of cortical
representation of information.

Based on differences in the sizes and packing densities of the cell somata at
different depths in the cortical sheet, and based on the presence or absence of
afferent fibers the cortex can be divided into six layers (cf figure 3.8). Approx­
imately 80 % of the cortical neurons are pyramidal cells, which are excitatory
and form both intrinsic local projections and long range projections outside the
area. Their dendritic trees cover a roughly cylindric volume with a diameter
of 200 - 300 J.Lm, which can reach vertically through the cortical depth over
several layers. The local lateral axon projections of pyramidal cells, which
are referred to as "axon collaterals", form terminals near the cell body, but also
spread laterally away from the cell. In the superficial layers 2 and 3, these lateral
projections form clusters of connections in a set of patches of approximately
250 J.Lm diameter, which can be located up to a few millimeters away from the
cell body (patchy connections, cf. section 1.5). In some species, the excitatory
neurons in layer 4 - the major thalamic recipient zone - have spherical instead
of cylindrical dendritic trees. These cells are called spiny stellate cells. They
do not project outside the area.
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Figure 3.7. Theretinocortical projectionis retinotopic, i.e. theprojectionsfromtheretinato the
LGN and from the LGN to the cortexpreserve their neighborhood relationships (after (Kandel
et al., 1991». (a) Corticalrepresentation (bottom)of differentpartsof the visualfield(top)in the
human brain (adaptedfrom (Stetter, 1994». (b) Definition of the cortical magnification factor
M.

The remaining 20 % of cortical neurons consist of a variety of inhibitory
intemeurons. Their dendritic trees again are roughly spherical with a diameter
of 200 - 300 J.Lm and their axonal projection (the "axonal field") is usually
restricted to a local area around the soma. A prominent type of inhibitory cell
is the basket cell; their axonal fields can extend laterally to a diameter of about
600 - 1200 J.Lm.

Based on their afferent fibers and the targets of their efferent fibers, the six
layers of area 17 can be roughly grouped as follows: (i) Layer 4 receives
afferent fibers from the LGN and represents the input layer of the cortex. (ii)
The superficial layers 2 and 3 receive input from layer 4 neurons and project to
other cortical areas. (iii) The deep layers 5 and 6, finally, receive signals from
layers 2/3 and 4, respectively, and project back to the pulvinar, the LGN and
to other brain nuclei. Layer 1 is called the molecular layer and is comprised
mainly of the apical dendrites of lower pyramidal neurons and horizontally
running axons from a variety of sources. It contain only a few GABAergic cell
bodies.

Like the fibers of the optic nerve, the geniculocortical fibers preserve retino­
topic order in their terminations. The signals that originate from adjacent gan­
glion cells will therefore, relayed by nearby LGN neurons, arrive at neighboring
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locations in layer 4 of the primary visual cortex. This retinotopic arrangement is
illustrated in figure 3.7a for a human brain, where the top picture subdivides the
visual field into 12 regions. The bottom part of the figure shows, in which parts
of the primary visual cortex these regions of the visual field are represented.
Clearly, the neighborhood relationships are preserved, but the foveal region is
expanded compared to the periphery in the cortex. An important measure for
the characterization of the retinocortical projection is the magnification factor
(figure 3.7b). If two retinal ganglion cells collect information from two patches
of the visual field that are 1 deg of visual angle apart from each other, the
cortical magnification factor M specifies the average distance of their relayed
projections into the cortex. The cortical magnification factor varies strongly
with retinal eccentricity.

The details of the cortical wiring patterns strongly depend on the species
under consideration. In the next two paragraphs we therefore concentrate on
macaque VI for a slightly more detailed description of the cortical circuitry.

1.4 Vertical Circuitry in VI
In macaque monkeys, the six principal layers of the cortex can be further

subdivided. Figure 3.8a shows a vertical slice through VI , which has been
stained for the metabolic enzyme cytochrome oxydase (CO). Regions of high
CO concentration have been more active on average than others and receive
direct thalamic input (Horton, 1984). One observes three horizontal dark bands,
which can be assigned to layers 4a, 4ca plus 4ctJ, and 6 (see figure 3.8b) .
Additionally, small CO rich blobs with a diameter of 250 p,m are embedded
periodically in the superficial layers (arrows in figure 3.8a).

Figure 3.8b summarizes evidence for excitatory vertical pathways through
VI of monkeys (Blasdel and Lund, 1983; Lund, 1987; Yoshioka et al., 1994;
Levitt et al., 1996; Yabuta and Callaway, 1998), for reviews see (Lund, 1988;
Callaway, 1998). The afferent fibers from the LGN target five different zones,
which are fully segregated for the M, P, and I type LGN fibers (left). Mag­
nocellular fibers terminate in layer 4ca and send collaterals to layer 6. Their
individual axonal fields have a diameter between 600 and 2000 p,m and each
axon forms about 3000 synapses in total (cf. (Blasdel and Lund, 1983), see also
(Stetter et al., 1993) and references therein). There are probably two popula­
tions of parvocellular fibers. The first population includes 90 % of the fibers,
which spread about 250 JLm in layer 4ctJ (about 300 synapses), the remaining
10 % of the fibers terminate in layer 4a. Intercalated fibers project directly
into the CO blobs. Afferent fibers from the left and the right eyes are laterally
segregated into alternating stripes of about 450 JLm, which are called ocular
dominance (OD) stripes (Hubel and Wiesel, 1968; Hubel and Wiesel, 1977).
They are not shown in figure 3.8b. Instead, the illustration can be viewed as a
slice parallel to one of the ocular dominance stripes. Ocular dominance segre-
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Figure 3.8. (a) vertical slice through VI of a macaque (from (Bauer, 1999), after (Blasdel and
Lund, 1983)). Darker regions are stained for cytochrome oxidase (CO) and mark regions of
thalamic input. (b) Cortical layers of macaque VI together with the major excitatory streams
through VI.

gation is most evident physiologically in layer 4c and decreases as projections
proceed to the superficial and deeper layers.

Two major excitatory intracortical pathways can be separated: (i) An upward
path (figure 3.8b middle): The first stream from layer 4 to the superficial layers
includes a redistribution of the three incoming pathways to three new streams.
One M-dominated stream projects from upper 4co to 4b and then predominantly
to extrastriate areas, a second stream collects information from mid 4c (M +
P) and projects to interblob zones , and the third P-dominated stream projects
from lower 4cfJ over 4a to the blobs. (ii) A downward path (figure 3.8b right):
The same three zones of layer 4c project to three distinct divisions of layer 6
and receive recurrent feedback-connections from their target layer 6 neurons
(Wiser and Callaway, 1996; Callaway, 1998). There is also a large variety
of inhibitory intemeurons, which project between the laminae (Lund, 1987).
Important inhibitory pathways implement inhibitory feedback between layers
4co and 4cfJ and between layers 6 layer 4. In combination with local lateral
connections, interlaminar inhibition might serve as an anatomical substrate for
perceptual grouping, as suggested by theoretical studies based on "competitive
layer" neural network models (Wersing et al., 1997; Ontrup and Ritter, 1998;
Wersing et al., 2000) . Output fibers from VI, finally, project from layers 4b, 2,
and 3 to areas V2, V3 and MT, and project back to the LGN from layer 6.
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Figure 3.9. (a) Patternoflateral connectivity of corticalpyramidal cells (adaptedfrom (Rock­
land andLund, 1983». Blackpatchesrepresentthereconstruction of HRP-Iabeledcollaterals of
pyramidal cells in tangential section. (b) Schematicdiagramof excitatory and inhibitory lateral
connectivity in the superficial layers. The cortexis viewedfromtop.

1.5 Lateral Connectivity in VI
Excitatory lateral intracortical connections are mediated by collateral fibers

of pyramidal neurons. Pyramidal neurons in the superficial layers and excitatory
stellate cells in upper layer 4 express two sets of collaterals: (i) A dense and
local lateral connectivity, which is restricted to a diameter of approximately
300 - 400 J.tm. (ii) Long-range lateral fibers, the synaptic boutons of which are
restricted to a set of patches with approximately 250 J.tm diameter and 250 J.tm
gaps in between, but which can extend up to 3 nun laterally from each neuron.
Because of the patchy appearance of the clusters of boutons , these long-range
connections are referred to as patchy connections. Figure 3.9a displays HRP­
labeled patchy connections of a set of stained pyramidal cells. Long-range
connections change from a patchy shape in the superficial layers to a more
elongated shape in layer 4b. Long-range connections in layers 5 and 6 lack the
strongly patterned connectivity seen in the superficial layers.

Lateral inhibition is present in upper layer 4 and the superficial layers. It is
mediated by basket neurons with an axonal field of 600 - 800 J.tm in diameter
(Lund, 1987). Local inhibition is mediated by other neuron types including
chandelier cells, which spread their axons only by about 200 usx: VI contains
a large variety of inhibitory interneurons, which are reviewed in (Lund, 1987).
Figure 3.9b summarizes the lateral connection scheme in the superficial layers.
Lateral inhibition spreads somewhat wider than the diameter of the intracortical
patches driven by pyramidal neurons and may help create the patchy pattern
of connections (Lund et al., 1994). Patchy connections probably contribute
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both to local visual processing within the classical receptive field (cf section
2.4) and to the processing of visual context (Lund et al., 1995; Bartsch et al.,
1997; Stetter et al., 2000c).

2. Physiology of the Early Visual Pathway
After summarizing the wiring pattern of the early visual pathway, we will

now consider the response properties of neurons at different levels of early
vision. The combination of knowledge about both the connectivity and the
neuronal responses that are generated by this connectivity in the presence of a
stimulus will serve as important inputs for the design of mathematical models
of early vision.

2.1 Retinal and Geniculate Neurons
If retinal ganglion cells are successfully excited by a visual pattern, they

fire a sequence of action potentials or spikes, which is called a spike train. A
spike train of a neuron can be detected by putting a microelectrode close to
its cell body or axon and measuring the extracellular electrical potential over
time. In cats each retinal ganglion cell is sensitive to stimuli only within a
small, roughly circular part of the visual field, which is called its receptive field
(Kuffler, 1953). Also, if this receptive field was illuminated with a small bright
spot, the response was not uniform but depended on its position within the
receptive field. Figure 3.10 summarizes the change in the neuronal response
of ganglion cells to different stimulus conditions. Some neurons were excited,
when the spot hit the center of the receptive field, whereas they were silenced
by illumination of the surround. These ganglion cells are called ON-center
ganglion cells. A second type, referred to as OFF-center ganglion cells, was
inhibited by illumination in the center and excited by surround illumination.
Diffuse illumination evoked almost no response. A comparison of this center­
opponent organization with the anatomical wiring suggests that the receptive
field center is mediated by the direct path, whereas the surround is mediated by
the lateral path.

The description of the receptive field must include at least two parts: (i) its
spatial extent, and (ii) information about the structure of the neural response
in space and time. The receptive field of a retinal ganglion cell is small and
approximately concentric. For ON-ganglion cells it is excitatory in the center
and inhibitory in the surround. This arrangement is called a "Mexican hat"
profile.

The response properties of retinal ganglion cells can be further subdivided ac­
cording to additional characteristics (DeMonasterio and Gouras, 1975; Croner
and Kaplan, 1995), for a review of early work see (Kaneko, 1979). About 80 %
of the cells have comparatively small receptive fields, a high luminance contrast
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threshold, respond linearly to stimuli, and are color-sensitive. For example, in
one class of these cells, the center is excited best by red light, and the surround
is maximally inhibited by green light. This class, which is assigned the abbre­
viation "r+g-" cells, will respond both to a contrast in white light illumination
or to a diffuse red illumination. Other classes of color-sensitive ganglion cells
are cells with g+r-, y+b-, and b+y- characteristics, where b and y denote blue
and yellow. The same four characteristics can be found for OFF-center neu­
rons. It was found, that these neurons correspond to the ,B-cells, which had
been identified anatomically. Approximately 10 % of the retinal neurons had
large receptive fields (3-5 times as large as ,B-cells at the same eccentricity (De­
Monasterio and Gouras, 1975)), a higher sensitivity to luminance contrast, a
fast response to stimulus changes , and no color-sensitivity. Some of these neu­
rons respond only to the onset or the termination of the stimulus. Another class
responds nonlinearly both to the onset and to the termination. These transient
neurons have been identified as a-cells. The remaining 10 % of neurons do not
project to the LGN and will not be further considered here.

The two different receptive field properties of a- and ,B-neurons suggest
that they are devoted to different tasks of visual information processing. a­
ganglion cells are designed to sensitively detect motion, even of structures with
low contrast. They act as novelty detectors, which report quickly about any
changes in the environment, and can be viewed as an alert system. ,B-ganglion
cells, in contrast, are optimized for a detailed analysis ofa more or less stationary
scene. Consequently, the distribution of both cell types strongly depends on
the retinal eccentricity: The fovea contains only ,B-cells, which help analyzing
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Figure 3.11. (a) Response ofa complex orientation selective cell ofmacaque V1 (from (Hubel
and Wiesel, 1968». The black bar illustrates the stimulus , the rectangle marks the receptive field
borders . The neuron is strongly tuned to the orientation of the bar. (b) Orientation tuning curves
of two VI cells (from (Levitt and Lund, 1997». x-axis: stimulus-orientation in degrees (90
deg refers to a horizontal grating moving upwards). y-axis: Spike rate (lis). Both neurons are
strongly tuned to orientations near 30 deg. In addition , the bottom neuron is direction selective.

the fixated object in some detail, whereas the fraction of a-cells increases with
eccentricity (DeMonasterio and Gouras, 1975). Consistent with the amount of
convergence to ganglion cells, the receptive field sizes of both a and f3 cells
strongly increase with eccentricity. The center size of a receptive fields ranges
from about 0.12 - 2 deg of visual angle for eccentricities between 1 and 40 deg.
The smallest f3 receptive field centers in the fovea are less than one minute of
arc in diameter.

In monkeys, the receptive field profiles of M and P neurons of the LGN are
very similar to those of the retinal a and f3 neurons, respectively (Kaplan and
Shapley, 1982). We will not summarize them separately here, but it shall be
mentioned that the responses of LGN neurons, in contrast to retinal neurons,
are due to substantial modulatory influences from the cortex, the TRN, and
other brain structures (cf section 1.2), which could participate in the control of
attentional states.
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Figure 3.12 Sketch of a sim­
ple receptive field profile.
Typically, simple cells have
twoor three elongated and seg­
regated subfields, which show
altematingly ON- and OFF re­
sponse. The subfield can be
less regular than in the sketch.

2.2 CorticalReceptive Fields
Similar to the retinal and the LGN-cells, neurons in the primary visual cortex

respond only to stimuli within a small patch of the visual field, which is called
their "classical receptive field". Also, most of them can be driven from eithereye
although one eye usually dominates the input. But compared to LGN neurons,
cortical response characteristics show a qualitatively new feature: most of the
cortical neurons respond selectively to contrast lines, bars, or gratings of a
certain orientation within the receptive field (Rubel and Wiesel, 1962; Hubel
and Wiesel, 1968; Dow, 1974; Schilleret al., 1976a; Schilleret al., 1976b; Hubel
and Wiesel, 1977). Depending on the subtype ofneuron, the response to circular
spots is only small and diffuse illumination does not drive the neurons at all.
Besides orientation-selective neurons, the primary visual cortex contains also
some weakly tuned or untuned neurons. Most of these neurons are input neurons
in layer 4cp and color-opponent cells (similar to LGN neurons) in the superficial
layers.

Figure 3.11a shows the spike trains of a cortical neuron in macaque VI in
response to a moving oriented bar. The neuron responds most strongly for a
given orientation of the bar, and its response declines strongly with increasing
differences of the stimulus orientation from the preferred orientation of the cell:
the cell is tuned to the stimulus orientation. In figure 3.11b the average spike
rates of two different cortical neurons are plotted as a function of the orientation
of a moving grating as stimulus. These curves are called the "orientation tuning
curves" of the cells. The response of the top neuron is tuned to an orientation
of approximately 30 deg. The neuron responds similarly to an orientation of
210 deg, which corresponds to a grating of the same orientation than the 30 deg
stimulus but moving into the opposite direction. The bottom plot shows the
response of a neuron that responds differently for the two opposite directions
of motion of an optimally oriented grating - it is direction selective.
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Figure 3.13. (a) Orientation tuning curveof a cell in the primaryvisual cortexof a cat, mea­
sured for different levels of stimulus contrast (from (Sclar and Freeman, 1982» . The tuning
width of approximately 45 deg is contrastinvariant. (b) Contrast-response curve for a neuron
from macaque primaryvisual cortex(Levitt, unpublished result). WhileLGN neurons respond
logarithmically tocontrastchanges, mostof thecorticalneurons showa strongerthanlogarithmic
saturation.

The receptive fields of orientation selective neurons can be subdivided into
two types: (i) Simple receptive fields consist of two or three elongated and
segregated subfields with ON and OFF-characteristics (Hubel and Wiesel, 1962;
Hubel and Wiesel, 1968; Schiller et al., 1976a; Jones and Palmer, 1987a; Jones
et al., 1987; Jones and Palmer, 1987b). They are sensitive to the position of
the stimulus within the receptive field, or, in case of a grating, to the phase
of the grating. (ii) Complex cells have larger receptive fields, which cannot
be subdivided into ON and OFF-regions. They are insensitive to the stimulus
phase, are more likely to be direction selective and respond strongly only to
moving stimuli. For both types of neurons, the full width at half maximum of
the orientation tuning curves in monkeys varies between 10 and 100 deg, the
most frequent tuning strength being 40 deg (Schiller et al., 1976b). However, a
considerable number of neurons are tuned as tightly as 20 deg. Similar numbers
for the strength of orientation tuning hold for cats (Hammond and Andrews,
1978).

In cats, orientation tuning is independent of the stimulus contrast (Sclar and
Freeman, 1982; Skottun et al., 1987). This is demonstrated in figure 3.13a,
which shows the orientation tuning curve of a neuron from the primary visual
cortex of a cat. Also, the responses of orientation selective neurons both in
cats and monkeys were found to saturate strongly with increasing stimulus
contrast (Albrecht and Hamilton, 1982; Albrecht, 1995). This saturation of the
cortical contrast-response function is usually stronger than that ofLGN cells, the
contrast-response function of which depends linearly on the log contrast. Figure
3.13b shows the mean response of a neuron in macaque VI as a function of
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log contrast. The saturation at high contrast levels is stronger than logarithmic,
and for very high contrast levels, the response even decreases in many cases.
This behavior, which can be seen at the right part of figure 3.13b is referred
to as supersaturation. The maximum spike rates at 100 % contrast remain
well below the physiologically possible limit. This allows to hypothesize that
contrast saturation is not caused by the properties of single neurons but rather
by the properties of the whole neural network.

The working point of the contrast-response curve (the site of its steepest
slope) can change depending on the history of a neuron . If a receptive field
in cat area 17 is exposed to high contrast stimulation for a longer time, the
contrast response curve shifts to higher contrast levels and the neuron becomes
less contrast sensitive (Ohzawa et al., 1985; Sengpiel et al., 1998a).

2.3 Cortical Response to More ComplexStimuli
When stimuli with a more complex structure than a simple oriented grat­

ing are presented, cortical neurons show interesting changes of their response.
These properties can provide the basis for a deeper understanding of how visual
signals are integrated in the recurrent cortical network.

Figure 3.14 summarizes results by (DeAngelis et aI., 1992), who presented
a linear superposition of two grating stimuli with orthogonal orientations to the
classical receptive field of a neuron in cat primary visual cortex. The plots in
figure 3.14a show, how the response of the neuron increases with increasing
length (top) or width (bottom) of a single, optimally oriented grating. The
stimulus size, at which the responses saturate, define the size of the classical
receptive field. The plots in figure 3.14b show that the response of the neuron is
strongly suppressed, if a second grating orthogonal grating is superimposed on
the first grating. This effect will be henceforth referred to as cross-stimulation
suppression.

Stimuli that lie outside the classical receptive field of a neuron usually are
unable to evoke a response of this cell. However, a number of studies on
monkeys (Kapadia et aI., 1995; Sillito et al., 1995; Levitt and Lund, 1997) and
cats (Blakemore and Tobin, 1972; Gilbert and Wiesel, 1990; Polat et al., 1998)
have shown, that the presence of such a flanking stimulus can considerably
modulate the response of a cell to a stimulus within its classical receptive field.
In other words, the response of the cell to a local feature depends on the visual
context into which this feature is embedded. Therefore, this class of phenomena
is often referred to as contextual effects.

If the centered stimulus is surrounded by an annular high-contrast stimulus
outside the classical receptive field, and if the surround orientation matches
the center orientation, the response is suppressed. This effect is called iso­
orientation suppression. For orthogonal orientation, the response is slightly
(Levitt and Lund, 1997) or strongly (Sillito et al., 1995) facilitated. This effect
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Figure 3.14. (a) Response of a corticalneuron to a small and optimallyorientedgrating as a
functionof thestimuluslength(A)andwidth(B).(b) Neuronal response, if anorthogonalgrating
is superimposed on the originalorientedgrating. Alongthe abscissa, the length (A)or width(B)
of the orthogonal grating is varied. The responseis strongly suppressed by the presenceof the
secondgrating(from(DeAngelis et al., 1992» .

is called cross-orientation facilitation. The black filled circles in the diagrams
Figure 3.15a demonstrate these effects: Two neurons have been stimulated
with a high contrast center stimulus and an annular non-classical surround.
The plots show their responses as a function of the surround orientation. If the
center and surround orientations coincide, the responses of the cells decrease
compared to presentation of the center alone (solid line), whereas for orthogonal
orientation the response is unchanged or slightly facilitated. The open circles
are the responses to presentation of the surround alone. They demonstrate that
the surround has only a modulatory effect and cannot drive the neurons alone.
Figure 3.15b summarizes a related effect which is called end-stopping. The
plots show, how the neuronal response varies with the length (E) and width (F)
of an optimally oriented stimulus. The response reaches its maximum, when
the stimulus size fits the dimensions of the classical receptive field. When the
stimulus further increases in length or width, it begins to cover part of the non­
classical surround of the cell and causes a suppressive effect. Not all cells show
end stopping. For example, the neurons in figure 3.14a showed no contextual
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Figure 3.15. (a) Response of two cells from macaque VI to a center stimulusas a function of
the orientationof an annularsurroundoutside the classicalreceptive field (black filledcircles;
stimulus geometry is shown at the bottom right; from (Levitt and Lund, 1997)). Solid line:
Response to stimulation by the center alone. Open circles: Response to stimulationby the
surround alone. Black filled triangles mark the fixed center orientation. Both cells show iso­
orientationsuppression, and a slight facilitation for orthogonal orientations. Stimuli had high
contrast (75 %); Differences of 180deg in orientation refer to the same orientation but opposite
directions of movement. (b) End stoppingin cat visualcortex (from(DeAngelis et al., 1992)).
The plot showsthe response of neuronsas a function of the length (E) and the width (F) of an
optimallyorientedgrating. Beyondan optimal lengthor width, the stimuluscontributes to the
nonclassical surroundand causesa suppression.

modulation, and other neurons have been reported to be strongly facilitated by
co-aligned flanking bar stimuli (Kapadia et al., 1999).

If the center contrast is low, contextual effects can change their character­
istics. Some studies in cats (Polat et al., 1998) and monkeys (Kapadia et al.,
1995) report, that iso-orientation suppression turns into facilitation for low cen­
ter contrast, which is consistent with a fill-in-paradigm. Other studies (Levitt
and Lund, 1997) report cross-orientation facilitation to turn into suppression .

Contextual effects depend also on the geometrical properties of the stimulus
in the non-classical surround. If the center stimulus is accompanied by two
small flanking bars co-aligned with the central oriented stimulus, iso-orientation
facilitation has been observed (Polat et al., 1998; Kapadia et al., 1999). In
chapter 10, we will address the possible role of iso-orientation modulation for
object-based image segmentation.
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Figure 3.16. (a) Orientation map of macaque VI. Colors code different preferred orientations
as indicated by the colored bars. The horizontal extent is 3.3 rnm (b) Superposition of ocular
dominance and orientation maps. Thick lines: borders of ocular dominance stripes. Thin lines:
Iso-orientation contours within the orientation map of the same animal (from (Obermayer and
Blasdel, 1993». (For colorfigure see ColorSection, p. xv)

2.4 Spatial Distribution of Cortical Response Properties
The distribution of the receptive field properties across the cortex was first

investigated by electrode penetrations (Rubel and Wiesel, 1962; Hubel and
Wiesel, 1968). In this technique a microelectrode is advanced into the tissue
in steps of a few micrometers and the receptive field properties of many neu­
rons are recorded sequentially. The actual trajectory of the microelectrode is
reconstructed after the measurement from brain sections by analyzing small
lesions which had been generated at the site of the electrode tip during the
measurement.

These penetrations revealed a columnar functional structure of the cortex.
Neurons that lie within a narrow column of about 20-30 p.m orthogonal to the
cortical surface, often show similar preferred orientations and are driven pref­
erentially by the same eye. Each such column is called an orientation column.
However, the columnar structure is not strictly preserved. i.e., orientation selec­
tivity sometimes changes as one proceeds vertically along the column (Bauer
et al., 1989). Also, the complexity of the neuronal orientation-dependent re­
sponse and some other feature selectivities change within the column, i.e. they
are different for the different cortical layers. In monkeys, most of the layer
4a and 4cp neurons, and some of the 4ca neurons are spatial opponent rather
than orientation selective (Blasdel and Fitzpatrick, 1984). Simple and complex
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neurons are mixed, however simple cells dominate in the superficial layers, 4ca
and in layer 5, while complex cells are more frequent in layers 4b and 6 (Bullier
and Henry, 1980). Additionally, layer 4b and 6 neurons are strongly direction
selective (Hawken et al., 1988), while color-sensitivity is more frequently found
in the superficial layers (Hubel and Wiesel, 1977).

The horizontal distribution of neuronal properties has been measured by
tangential penetrations, and more recently by optical imaging of voltage sen­
sitive dye signals (Blasdel and Salama, 1986; Blasdel, 1992a) or intrinsic sig­
nals (Grinvald et al., 1986; Bonhoeffer and Grinvald, 1996). Optical imaging
measures the two-dimensional distribution either of shifts of the membrane
potentials (voltage sensitive dyes) or of metabolically evoked changes in light
absorbance and reflectance (intrinsic signals), from which the spatial activ­
ity pattern in the cortical superficial layers in response to stimulation can be
inferred (cf. chapters 4 - 8 and (Stetter et al., 1997c; SchieBl et al., 1999; Stet­
ter and Obermayer, 1999». These measurements demonstrated that preferred
orientations of cortical neurons changed smoothly across the cortical surface
and formed an orientation map with linear zones, singularities, and fractures
(Obermayer and Blasdel, 1993). Figure 3.16a shows an orientation map from
macaque V1, in which the different preferred orientation angles of neuron popu­
lations are encoded in a color circle. Figure 3.16b shows, that ocular dominance
is also ordered in stripe-like patterns, which can be shown to coincide with
the anatomically segregated innervation patterns of afferent fibers. Both topo­
graphic maps are coupled: orientation singularities tend to lie near the centers of
the ocular dominance bands, whereas the lines of constant preferred orientation
(iso-orientation lines) and the borders of ocular dominance stripes prefer large
(e.g. orthogonal) intersection angles (Obermayer and Blasdel, 1997; Muller
et al., 2000). Finally, the superficial layers contain a quasiperiodic pattern of
patches, in which neurons are non-oriented, color sensitive (Livingstone and
Hubel, 1984; Ts' 0 and Gilbert, 1988), prefer lower spatial frequencies and have
higher contrast sensitivity than outside (Edwards et al., 1995; Tootell et al.,
1988). These regions are correlated with the CO-blobs.

The size of cortical receptive fields, averaged over all layers, depends strongly
on the retinal eccentricity. Figure 3.17 demonstrates a close relationship be­
tween the change in the cortical magnification factor and the receptive field
size as a function of retinal eccentricity in the early visual system of macaque
monkeys. Actually the inverse magnification factor (dots) and the average re­
ceptive field diameter (triangles) are almost perfectly correlated with each other.
The product of the receptive field size and the magnification factor is constant
and corresponds to an area of about 1 mm in diameter. This important finding
suggests that on average each classical receptive field is processed by roughly
1 mrrr' of cortical tissue, irrespective of the location within the visual field. It
has led to the view that the minimal complete processing unit in VI, which is
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Figure 3.17 The average re­
ceptive field size in deg of vi­
sual angle (dots, layer 4c ex­
cluded), and the inverse mag­
nification factor for macaque
VI (adapted from (Rubel and
Wiesel, 1974». Both quan­
tities are strongly correlated,
and suggest that the contents
of each receptive field is pro­
cessed by I mm2 of cortex.
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referred to as a "hypercolumn" or a functional domain, consists of a small cube
of cortical tissue, 1 x 1 mm in size, which extends over all layers in depth. Ac­
tually, typical wavelengths of orientation maps, ocular dominance stripes and
the periodicity of CO blobs are consistent with this scale: Each hypercolumn
contains neurons with all preferred orientations and ocular dominance values,
which can carry out a complete analysis of their common receptive field. Newer
estimates of the receptive field size lead to a size of 2 x 2 mm for a cortical
hypercolumn (Lund, personal communication).

Recent studies have also revealed links between the patterns of corticallat­
eral connectivity and and functional topographic maps of the cortex. First
of all, the side steps of pyramidal neurons (patchy connections, cf. figure
3.9) are not independent of the pattern of orientation maps: There is some as
yet incomplete evidence, that in monkeys (Malach et al., 1993; Malach et al.,
1994), cats (Gilbert and Wiesel, 1989; Kisvarday et al., 1997) and tree shrews
(Bosking et al., 1997) orientation selective pyramidal neurons send side steps
preferentially to target neurons with similar orientation preferences. At least
for monkeys, the specificity is not very strongly tuned - for 30 % of the con­
nections, the preferred orientations of the source and target regions differed by
more than 45 deg (Malach et al., 1993). Long-range side steps of the pyramids
were also found to preferentially link regions with the same ocular dominance
and with the same CO-activity (70 % links between the same property according
to (Yoshioka et al., 1996».



Chapter 4

OPTICAL IMAGING OF BRAIN ACTIVITY

The last chapter has made clear, that the visual cortex is a highly structured
network of many millions ofneurons. In order to understand the function of this
complex system, it is very important not only to know responses of individual
neurons to stimulation but also to be able to measure how the visual system
responds to given stimuli as a whole. This reflects the hypothesis that the visual
cortex represents many aspects of visual information by the activity of neuron
populations rather than individual neurons (cf. chapter 3, section 1.3).

During the last two decades, optical imaging of neural activity (Blasdel and
Salama, 1986; Grinvald et al., 1986) has been proven a powerful technique for
the detection of two-dimensional neural activation patterns with sub-millimeter
resolution. Being the only in vivo method for functional imaging which can
spatially resolve the details of the functional cortical architecture (as opposed
to tMRI and PET (Cohen and Bookheimer, 1994; Ostergaard et al., 1998), but
see (Kim et al., 2000a) for a promising tMRI study and its controversial dis­
cussion (Logothetis, 2000; Kim et al., 2000b), optical imaging has triggered
the discovery of many important aspects of the functional organization of the
cortex such as the two-dimensional pinwheel-like structure of orientation maps
in cats (Bonhoeffer and Grinvald, 1991; Bonhoeffer and Grinvald, 1993; Bon­
hoeffer et al., 1995; Kim and Bonhoeffer, 1994), monkeys (Blasdel and Salama,
1986; Blasdel, 1992a; Blasdel, 1992b), ferrets (Chapman et al., 1996; Rao et al.,
1997) and other species (Bosking et al., 1997), the layout ofdirection selectivity
maps (Shmuel and Grinvald, 1996; Weliky et al., 1996) and the relationship be­
tween different map systems within one and the same animal (Yoshioka et al.,
1994; Yoshioka et al., 1996; Obermayer and Blasdel, 1993; Hiibener et al.,
1997). Optical imaging has been successfully applied to reveal the structure
of auditory (Hess and Scheich, 1996; Dinse et al., 1997) and somatosensory
maps (Godde et al., 1996) and helped to gain useful insights into develop-
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mental processes of cortical function (Kim and Bonhoeffer, 1994; Godecke
and Bonhoeffer, 1996; Godecke et al., 1997; Dinse et al., 1997; Godde et al.,
1996). Finally, the technique allowed for the first time to directly relate anatom­
ical cortical wiring patterns to functional aspects of the cortex (Malach et al.,
1993; Malach et al., 1994; Kisvarday et al., 1994; Das and Gilbert, 1995; Dalva
et al., 1997).

Therefore, optical recording of brain activity and accompanying theoretical
methods will be treated in some detail in the present and the four following
chapters. Here , I will provide a brief overview over .a typical experimental
setup and over different biophysical mechanisms that have been exploited for the
optical detection of brain activity. I will then present a mathematical framework
based on tissue optics, which allows us to quantify the relationship between
these biophysical signal sources, their spatial location, and the actual optical
measurements. We will see that optical imaging can only access activity patterns
near the brain surface, and will use tissue optical considerations to suggest an
improved technique for optical imaging of neural activity, which can be used
to measure the distribution of neural activity over depth.

1. Principlesof Optical Imaging
Generally, techniques for the optical recording of brain activity use a rela­

tionship between neuronal activity within brain tissue and changes in the optical
properties (e.g. the light reflectance) of the brain tissue for light in the visible or
near-infrared range of wavelengths. These changes can be evoked by chemical
agents applied to the tissue or by metabolically evoked variations in the bio­
logical and chemical structure of the tissue itself. Optical imaging aims at the
measurement of two-dimensional distributions of activity across large neuron
populations and has to be distinguished from the optical recording of activity
at the single cell level (Cohen et al., 1968; Cohen, 1973; Fromherz and Vet­
ter, 1992; Fromherz and Muller, 1994). We make this distinction explicit by
abbreviating the optical recording of population activity as "optical imaging".

1.1 Experimental Setup and Data Collection
Figure 4.1 illustrates a typical experimental setup used for optical imaging.

The part of the brain brain surface under consideration is homogeneously illu­
minated by a narrow-band light source. Because the changes in reflectance we
want to detect can be very small, the power of the light source has to be sta­
bilized: for intrinsic signals, variations in the light intensity should not exceed
0.01 % of the mean intensity. Also, because we want to measure changes that
occur within the tissue, the light should have a sufficient penetration depth into
the tissue. This restricts the choice of the light wavelength to ranges outside
the absorption bands of water, between 500 om and 1300 om.
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Figure 4.1. Typicalsetup for optical imaging of neuronal activity: Brain tissue is homoge­
neously illuminated by monochromatic red or near infrared light. A sensitive CCD-camera
repeatedly records the light reflected from the brain surface, while the corresponding nerve tis­
sue is stimulated (example shown: visual stimulation). The collected sequences of images are
stored and processed on a computer system.

For a single trial of an optical imaging experiment, the brain tissue is stimu­
lated, while a sensitive CCD-camera collects a sequence of images of the tissue
before, during and after stimulation, which are stored in a computer system as
an image stack. Figure 4.1 shows the example of optical imaging of the visual
cortex and its visual stimulation. Stimulation, data collection and data storage
are synchronized by the data acquisition computer, which may serve additional
control tasks including breath control and synchronization of the anesthetized
animal during the trial. After a recovery period, the next trial can be carried
out.

The changes in reflectance caused by active neuron clusters can be as small
as 0.1 % of the reflected light. Therefore, some care must be taken for the
choice of the correct camera properties and the design of an appropriate mea­
surement strategy. Optical signals result from local changes in light absorption,
light scattering or fluorescence and their strengths scale linearly with the total
amount of light reflected back from the tissue. Hence, in order to maximize the
amplitudes of these signals, optical imaging has to be carried out under strong
illumination conditions. In this regiine, the dominating source of noise for the
detection of the light intensity is photon shot noise (Bonhoeffer and Grinvald,
1996; Stetter and Obermayer, 1999). We now have to ask, which statistical error
is introduced by photon shot noise and how we can minimize it. If the photons
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are remitted independently from the constantly illuminated tissue, the number
n of photons collected per unit time by a pixel of the CCD camera follows a
Poisson distribution. If the expectation of the number of measured photons is
N, the standard deviation of n around this value is given by Un = v'N (Pa­
poulis, 1965). Hence, the relative statistical error for the measurement of the
light reflectance is given by un/N = N- 1/ 2 • In order to measure changes in
reflectance with an accuracy of 0.1 %, we have to collect at least 106 photons
per pixel and image, and for an accuracy of 0.01 % we need to collect 108

photons.

Due to this reason, the camera should be able to collect as many photons per
pixel as possible. This can be achieved by two means or a combination of both:
(i) The camera has a high well-capacity Cw, which is the maximum number
of optically induced electrons that can be stored by a pixel before readout.
Usually the number of levels for digitization reflect the signal-to-noise level
that is reachable by the camera based on its well-capacity. For example, a 12­
bit camera brings the shot noise error down to approximately 1/212 = 1/4096
under maximal illumination. (ii) The camera should have a high frame rate.
If the camera can record M frames per second, but we want to store only K
images per second for the image stack, we can obtain an effective well-capacity
of CwM/ K by summing up M / K subsequent frames for each image. For both
cases, the illumination power should be adjusted to a level which fills the pixels
of the camera almost to its well-capacity.

1.2 Optical Imaging using Dyes

One class of methods for optical imaging actively generates a relationship
between neuronal activity and the optical properties of nerve tissue. This is
achieved by probing various biophysical and physical parameters of nerve cells
by dyes. Depending on a cellular parameter, these dyes change their spectral
absorption, the strength of fluorescence, the wavelength of fluorescence or other
optical properties, which can be detected by optical imaging. If the cellular
parameter is related to neuronal activity in a well-defined way, the dye can
be used to optically probe neuronal activity. Two important representants for
dye-imaging are methods based on voltage-sensitive dyes and Ca2+-sensitive
dyes.

Voltage-sensitive or potentiometric dyes consist of molecules which attach
themselves to the cell membrane and change their optical properties depending
on the electrical field in their neighborhood (Stark-effect) (Salzberg etal., 1973).
If the nerve cell is activated, its membrane potential changes and the electrical
field near the membrane is altered. This local field is probed by molecules of
the voltage-sensitive dye, which changes its electronic state and therefore its
absorption or fluorescence properties. The same behavior can be observed, if
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a whole stained neuron population is activated, and the recorded signal can be
used for dye imaging.

One important dye used for optical imaging include merocyanine oxazolone
(NK2367) (Blasdel and Salama, 1986; Blasdel, 1992a). Voltage sensitive dye
imaging directly monitors the electrical state of the neuron and provides a high
temporal resolution , because the dyes molecules change their state very fast.
However, voltage sensitive dye imaging also has some disadvantages: First,
the signals do not only reflect the action potential activity, but also monitor
all fluctuations in the dendritic membrane potentials (cf. chapter 2, section
3), which may be sub-threshold and possibly do not contribute to the neuronal
spiking activity. Also, voltage-sensitive dyes are phototoxic which restricts their
applicability to long and chronical measurements . Finally, pure dye signals are
hard to detect, because the reflectance signal is superimposed with intrinsic
optical signals (cf. chapter 2, section 1.3).

Another version of dye-imaging uses Ca2+-sensitive dyes (Tsien, 1980; Poe­
nie, 1992; Galizia et al., 1997) and is referred to as Ca2+ imaging. It uses
the facts that the postsynaptic intracellular Ca2+-concentration increases when
the cells are activated, and that a presynaptic calcium-influx is necessary for
transmitter release. The activity-dependent increase of intracellular Ca2+­
concentration both in neurons and glial cells can be due to several different
mechanisms including: (i) The influx of free calcium ions from the extracel­
lular space or the endoplasmatic reticulum with relatively short time constants
usually in the sub-second range (Kandel et al., 1991; Bygrave and Benedetti,
1996); (ii) The release of Ca2+-ions from various internal stores, which can
have very slow time-constants in the range of several seconds (Friel and Tsien,
1992). For Ca2+ imaging, neural population activity is recorded by introducing
a Ca2+-sensitive fluorescent dye to the intracellular space of neurons. Evoked
changes in the concentration of intracellular free calcium cause a change in
the intensity or a spectral shift of the fluorescent light, which can be detected
by a CCD-camera and a spectral filter. Calcium-imaging has the advantage of
providing much stronger optical signals (a few percent of the background light)
than voltage-sensitive dye signals or intrinsic signals (0.1 percent). However,
Ca2+-imaging detects only an indirect measure of neuronal activity. This mea­
sure may differ in its spatial pattern from the actual pattern of activity and may be
nonlinearly and even non-uniquely related with the strength of neural activity.
Further, the dyes bind Ca2+ ions and thus interfere with the cellular machinery
to some degree. Finally, Ca2+-sensitive dyes are due to both reversible and ir­
reversible photobleaching (Pawley, 1995). Photobleaching imposes constraints
on the strength and duration of illumination, limits the signal-to-noise ratio for
photon shot noise and interferes with the detection of activity-related changes in
fluorescence. In chapter 8, we will show, how these problems can be overcome
by use of statistical data analysis techniques.
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Figure4.2. Biophysical components of intrinsic signals. In each subplot. the left scene corre­
sponds to inactive neurons. the right scene to active neurons. (a) Active neurons locally decrease
the oxygen saturation of haemoglobin . The tissue reacts by globally increasing the blood-flow
and consequently the haemoglobin saturation (b) In reaction to neuronal activity. also the total
amount of blood in the tissue (blood-volume) increases. (c) Active tissue decreases its light
scattering coefficient and becomes slightly more transparent. (d) Various chromophores (cy­
tochrome oxidase shown) change their spectral behavior depending on the metabolic activity of
the tissue.

1.3 Optical Imaging of Intrinsic Signals
Optical Imaging of intrinsic signals uses the fact, that local neural activity

causes changes of both the light absorption and the light scattering properties
of the neural tissue (Bonhoeffer and Grinvald, 1996). These changes are not
induced by particular dyes applied to the tissue, but are consequences of the
metabolic reaction of the tissue itself to neural activity and are therefore called
intrinsic signals. Optical imaging of intrinsic signals offers the important ad­
vantage of a relatively weak interaction with the brain tissue under investigation.
There is neither phototoxicity nor an interference of dyes with the metabolic
state of the cells. However, not all types of intrinsic signals accurately reflect
brain activity, and we face the problem of separating the signal components,
which are closely bound to neural activity, from other components which we
may consider as biological background or noise signals in the context of optical
imaging. In chapter 5 - 8 we will provide a detailed treatment of this issue.
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Figure 4.2 summarizes some of the major biophysical origins of intrinsic
signals (Cohen et aI., 1968; Cohen, 1973). When nerve cells in a local clus­
ter fire spikes, the energy consumption of their synaptic terminals increases
(Roland, 1993; Magistretti and Pellerin, 1999; Logothetis et al., 2001), and as
a consequence the oxygen demand of the tissue that contains these synapses
becomes higher. Oxygen diffuses from nearby capillaries to these sites which
causes a decrease in the oxygen saturation of the blood (figure 4.2a). Diffusion­
based blood deoxygenation in the capillary bed is strongly localized to neural
synaptic activity (Logothetis et al., 2001; Almeida and Stetter, 2001). Its spatial
extent around the active neuron population is related to the diffusion coefficient
for oxygen and to the typical distances of capillaries and ranges around 100
- 200 pm (Bonhoeffer and Grinvald, 1996). At the same time, the amount of
light scattering close to the active neurons decreases (figure 4.2c). Although
the detailed mechanisms that relate scattering to neural activity are still unclear,
it could be shown that the optical transmittance of hippocampal tissue in vitro
increases both after induced cell swelling (Kreisman et al., 1995) and neural
excitation (MacVicar and Hochman , 1991; Andrew and MacVicar, 1994), and
that these reactions are localized to regions spred approximately 100 - 300 pm
around the active tissue (Orbach et aI., 1985; MacVicar and Hochman, 1991).

Once the oxygen level in the tissue decreases , the tissue reacts by providing
additional oxygen using two mechanisms: An increase in blood-flow glob­
ally increases the oxygen saturation of blood far above its resting level, and
simultaneously the amount of blood in the tissue, the blood volume, increases
(figure 4.2b). Changes in blood-flow and blood-volume extend by more than
500 pm (Bonhoeffer and Grinvald, 1996). Finally, several chromophores in­
cluding cytochrome oxidase (figure 4.2d) and NADPH change their absorption
characteristics dependent on the oxygenation state of the tissue. All intrinsic
signals are slow compared to the temporal change in neuronal activity. Usually,
their onset is delayed by 0.3 - 3 sec with respect to the stimulus onset and they
usually reach their maximum after several seconds.

The biophysical mechanisms summarized above cause changes in the optical
properties of the tissue, which we refer to as intrinsic signals. Intrinsic signals
modify the light reflectance of tissue, which can be detected by a CCD-camera
(figure 4.1). Figure 4.3 summarizes the relationship between different intrinsic
signals (middle column) , theirbiophysical origins (left column), and the differ­
ent components we find in the images of the brain surface (right column). We
neglect the influence of chromophores, the contribution of which to intrinsic
signals is still unclear.

The most important intrinsic signals are localized changes in light absorption
and scattering, because they reflect local neuronal activity. The local change in
absorption is probably mostly carried by diffusion-based blood-deoxygenation
though direct evidence for this relationship is still lacking (Mayhew et aI., 1999).
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Biophysical Origins Intrinsic Signals Signal Components in Images

blood saturation ----local change inabsorption rr:»: mapping signal
cell swelling local change inscattering~

(evoked by stimulation)

blood flow - global change inabsorption-- global signal
blood volume ------ (evoked by stimulation)
incapillary bed

blood flow ~ changes inbl?Od v~ssels-- blood-vessel patterns
blood volume in (evoked by stimulation)
larger blood vessels

Figure 4.3. Relationshipbetweendifferent intrinsicsignals(middle column), theirbiophysical
origins(leftcolumn), andthedifferent signalcomponents recordedinopticalimagingof intrinsic
signals (right column).

The amount of change in light absorption is determined by the relative differ­
ence in optical absorbance between the oxygenated and deoxygenated state of
haemoglobin in the capillaries, which is generally wavelength dependent. For
a wavelength of 570 nm or longer, light is more strongly absorbed by reduced
haemoglobin (Hbr) than by oxygenated haemoglobin (Hb02) . Consequently,
light reflectance locally decreases in response to neural activity. Likewise, light
is less strongly scattered due to neuronal activity. In active regions , more light
is transported away from the considered position and less light is reflected back
to the camera. In summary, neuronal activity cause a local decrease in light
reflectance, which is carried both by absorption and scattering. We refer to
the images of the corresponding reflectance patterns on the brain surface as the
mapping signal. A second type of intrinsic signal is a global, spatially extended
change in the light absorption of nerve tissue in response to neural activity. This
signal is carried mostly by changes in blood flow (accompanied by a global in­
crease in blood saturation) and blood volume in the capillary bed. Its images
on the brain surface are called global signals. Blood supply to the capillary bed
is accompanied by changes in blood-flow and blood-volume in larger arteries
and veins, which are also related to neuronal stimulation. They cause changes
in light reflectance which follow the shape of the larger blood vessels on the
brain surface and which we denote as blood-vessel patterns.

If we succeed in extracting the mapping signal from the other signal com­
ponents, we can use it for the characterization of neural activity in the sub­
millimeter regime, as demonstrated in Figure 4.4 (cf. also chapter 8). The im-
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(a) (b) (c)

Figure4.4. Example for optical imaging of intrinsicsignals. (a) Raw image from a region
in VI of a macaque monkey, taken under illumination with green light (590 om) in order to
enhance visibility of thebloodvessels. (b) Mapping signalin response to stimulation of the left
eyeand(c) differential imageobtained fromthedifference ofresponses to left-eye andright-eye
stimulation after data analysis (see chapters 6 and 8). Functional imageswere recordedunder
illumination with720nm wavelength. Thehorizontal bandsin (b) and(c) areoculardominance
stripes.

ages show a 3.85 x 3.85 mm region of the primary visual cortex of a macaque
monkey. Raw images of the cortical surface, taken under illumination with 590
nm wavelength look like figure 4.4a. Figures 4.4b and 4.4c display the mapping
signal in response to left-eye stimulation and the differences between mapping
signals for left- and right-eye stimulation (the differential images). In order to
obtain these functional images, raw data stacks have been subject to several
steps of data processing, which will be described in detail in chapters 5 and 8.

It has become clear, that optical imaging represents an indirect measurement
of the neuronal activity distribution in at least two senses: First, the measured
quantity is not identical to neural activity but only reflects it to a certain degree.
The detailed relationship can only be resolved by simultaneous electrophysi­
ological and optical measurements. Second, optical imaging cannot measure
intrinsic signals themselves , which represent changes in the three-dimensional
distribution of the fluorescence , absorption or scattering properties of light (fig­
ure 4.3). Instead, the technique measures a change in the light reflectance of
the tissue surface that is caused by the intrinsic signals. In order to infer the
distribution of intrinsic or dye signals across the tissue, we have to provide a
quantitative description of the relationship between the signals and their im­
ages on the brain surface, which we measure. In the following sections of the
present chapter we describe how Monte-Carlo simulations of light propagation
in tissue can be used to quantify this relationship, and provide a feasibility study
for three-dimensional optical imaging using a non-confocal scanning laser de­
vice (Stetter and Obermayer, 1998; Stetter et al., 1998e; Stetter and Obermayer,
1999).
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2. Monte-CarloSimulationof Optical Imaging

Cortical tissue represents an optically turbid medium that for red and near
infrared wavelengths is characterized by strong light scattering (scattering coef­
ficients J.t s~ 1Omm-1) with a strong forward scattering anisotropy (g~ 0.9), and
a weak absorption with absorption coefficients near J.ta ~ Il.Imm") (Cheong
et al., 1990). As a consequence, photons entering the tissue typically undergo
multiple mostly forward directed scattering processes before they are either
absorbed or remitted from the tissue. Therefore, photons can propagate to con­
siderable depths and a significant fraction of them can spread over considerable
lateral distances of more than 1 mm, before they are remitted. Intrinsic signals
are sampled through the whole volume passed by the photons. Consequently,
information about the depth of these signals can not be detected using a CCD
camera system. Further, due to the lateral spread of the photon pathways, in­
trinsic signals are strongly blurred by the tissue, which leads to a loss both in
lateral resolution and contrast. Under these conditions, it is not necessarily
intuitive, if and under which conditions small intrinsic signals can be reliably
detected with sub-millimeter accuracy.

In order to answer this question, we setup a model cortical tissue that is
described by the optical properties measured for human gray matter in vitro
(Cheong et al., 1990). Because the role of scattering changes for intrinsic signal
imaging is still not completely clear, we concentrate on absorption signals. In
the model, a local strongly absorbing sphere is embedded into the tissue and
serves as a model for an intrinsic absorption signal or a dye absorption signal
caused by a localized cluster,of active neurons. Into this model tissue we inject
a narrow beam of photons and calculate their pathways through the tissue using
Monte Carlo simulations (Graaf et al., 1993a; Graaf et al., 1993b; Schmitt and
Ben-Letaief, 1996). From all photons that exit the model tissue we obtain the
diffuse reflectance pattern for this illumination condition. These simulations
are carried out for different locations of the incoming beam, and from the
superposition of all reflectance patterns we obtain a simulated image of the
absorption signal.

2.1 Light Propagationin Inhomogeneous Turbid Media

As a model of the grey matter of the neocortex, we consider a semi-infinite
continuous turbid medium which extends to infinity in the x- and y-directions
and in the negative z-direction. Its surface lies within the x-y-plane (see also
figure 4.6). The optical properties of this medium can be characterized by
its index of refraction n (assumed to be constant), its absorption coefficient
J.ta(r) , its scattering coefficient J.ts(r), and by a phase function p(r, s, s'), where
r = (x, y, z) denotes the position in space and s, Sf represent unit vectors
describing the propagation direction of a photon before and after a scattering
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Figure 4.5. The phase function p(r, s, s') describes the probability density for a photon to be
scattered from propagation direction s into direction s' at r . For isotropic media, the phase
function depends only on the position r and on the scattering angle e.

process (Cheong et al., 1990; Klier, 1972; van Gernert et al., 1989; Wilson and
Jacques, 1990). The coefficients J.La(r) and J.Ls(r) are the probability density
functions for an absorption or a scattering event of a photon at the location
r, while the phase function p(r, s, s') is the probability density function for
scattering a photon at the location r from direction s into direction s' (figure
4.5).

In order to describe the propagation ofphotons through the tissue, expressions
for scattering and absorption probabilities along given trajectories are required.
In order to obtain these quantities, we consider a bundle of no photons, which
propagate from a starting location ro along a straight trajectory r(t) = ro +
l s, l ~ O. In this formulation, l is identical to the distance of the photons
from the starting point. Due to absorption and scattering processes, the number
of photons along the trajectory decreases according to

dn(l)d1" = -J.L(r(l)) n(l) , (4.1)

while the photons propagate through a layer of tissue between ro + ls and
ro + (l + dl)s. The coefficient J.L represents J.La for absorption and J.Ls for
scattering respectively. If absorption and scattering processes are statistically
independent, the total attenuation due to both mechanisms results as

dn(l)d1" = - (J.La(r(l)) + J.Ls(r(l))) n(l) =: -J.Lt(r(l)) n(l) (4.2)

where J.Lt(r) = J.La(r) +J.Ls(r) is the total attenuation coefficient. Integration of
the differential equations (4.1) or (4.2) along the trajectory yields

n(l) = noexp (-101

J.L(r(l')) dl') (4.3)
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(4.5)

(4.6)

with JJ = JJa, JJs or JJt respectively. If the ensemble of initially no photons
propagates about a distance of lo, n(lo) of them reach the point r(lo) without
interacting with the tissue. Thus, in the limit of large no, one obtains the 'total
survival probability' for a photon along the trajectory as

Pt(l) = lim n(l) = exp (- rl
JJt(r(l')) dl') . (4.4)

no-too no 10

Pt (l) represents the probability for a photon not to undergo any tissue interaction
between ro and ro+ ls. Similarly, the survival probability under consideration
of absorption events only becomes

Pa(l) = exp (-11

JJa(r(l')) dl') .

and the survival probability for scattering is

Ps(l) = exp (-11
JJs(r(l')) dl') .

Note, that due to the inhomogeneity of the medium, the probabilities (4.4) ­
(4.6) depend on the trajectory (i.e. on ro and s) of the photons within the tissue.
In the special case of a homogeneous medium, JJa(r) = JJa, ps(r) = Ps, the
interaction probabilities reduce to simple exponential expressions,

Pa(l) = exp(-JJa I),
Ps(l) = exp( -Ps I),

(4.7)

(4.8)

which in case of absorption are well-known as Beer's law.
Ifa photon is scattered after its free path length, the new propagation direction

is determined according to the phase function p(r, s, s'). If the medium is
isotropic, the phase function at a fixed scattering location depends only on the
scattering angle O,p(r,s, s') == p(r, 0), where 0 is defined as the angle between
the propagation direction before and after the scattering process, cos(O) =
sT . s', and "." denotes the inner product of two vectors. The azimuth angle
¢ around the axis defined by s (figure 4.5) is then uniformly distributed. For
many applications, the detailed dependence of p(r, 0) on the scattering angle 0
is not critical (Wilson and Jacques, 1990) (nor is it known), and it is adequate
to characterize it by its first moment, the anisotropy parameter g(r) with

g(r) = 17r

p(r, 0) cos(O)dO. (4.9)

In Monte Carlo simulations, where a phase function for the scattering angle is
needed, one convenient choice for the phase function is the Henyey-Greenstein­
function (Schmitt and Ben-Letaief, 1996; Henyey and Greenstein, 1941; Flock
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et al., 1989a),

( 0)
_ 2- 1 - g(r)2

p~ - 3/2'
471" (1+g(r)2 - 2g(r) cos(O))
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(4.10)

In the special case ofa homogeneous medium, the light propagation in biological
tissue (in the limit Jls » Jla) can be described by diffusion theory yielding an
effective penetration depth of (Wilson and Jacques, 1990)

(4.11)

(4.12)

The diffuse reflectance pattern D(O') caused by illumination with a narrow,
vertically incident light beam is then

1
D(O') = 2 exp(-O'jfJe ff ) ,

0'

where 0' denotes the two-dimensional distance vector between a location on the
surface of the tissue and the incoming light beam. For example, biologically
plausible parameters at 633 om light (i.e. those of human gray matter in vitro:
Jla = 0.26 mm", Jls = 6.02 mm", and 9 = 0.88 (Cheong et al., 1990»
lead to an effective penetration depth of fJelI = 0.875 mrn: Incident photons
propagate approximately 0.9 mm into the tissue and laterally spread by the same
amount. In section 3, we will provide results about the detailed behavior of the
penetration depth.

2.2 SimplifiedTissue Model for Localized Absorbers
Localized intrinsic blood-related signals are caused by a local increase of

the absorption coefficient of cortical tissue at red and near-infrared light due
to local deoxygenation of blood by active neurons. Our goal is to determine
the pattern of diffusely remitted light (i.e. the intrinsic blood-related signal)
under various illumination conditions in the presence of a local absorber within
the tissue compared to the case without that absorber. We model this situa­
tion by considering the simple case of an isotropic semi-infinite medium, i.e.
anisotropies such as the mainly vertical apical dendrites ofpyramidal neurons or
horizontal nerve fiber bundles from pyramidal collaterals (Rockland and Lund,
1983) are neglected in the present simple approach. This model tissue is taken
to have constant optical parameters Jla, Jls' and 9 everywhere except within a
hard sphere with radius p, which is centered at a depth - Z < 0 below the origin
of the coordinate system, i.e. the center of which is located at R = (0,0, -Z)
(figure 4.6). This sphere serves as a model for the local variation of the light
absorption within the tissue (i.e. a blood-related intrinsic signal) , which could
be evoked by a local neural activity center. According to that, the absorption co­
efficient within the sphere is increased by JlA > 0 resulting in a total absorption
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Figure 4.6. The modeltissueis assumedtobe anisotropic.semi-infinite mediumwithconstant
optical parameters pal p•• and g. Within a small sphere with radius p centered around R =
(0,0, - Z) theabsorption coefficient is increasedbypA. Thissphericabsorbermodelsalocalized
blood-relatedintrinsicsignal sourcecaused by a smallneural activityblob.

coefficient of

/La,sphere = /La + /LA (4.13)

for the local absorber. /LA will be referred to as incremental absorption coeffi­
cient. The scattering properties, in contrast, are assumed to be identical within
and outside the sphere.

Within this framework, the scattering probability for a photon propagating
within the tissue simply reduces to Beer's law, Eq. (4.8) and the phase function
is given by a single Henyey-Greenstein expression, p(r, B) == p(B) eq. (4.10).
The only quantity that depends on the trajectory of a photon through the tissue
is the absorption probability Pa(l) eq. (4.5). It can be integrated analytically
for a given photon trajectory r(l) = ro + ls, l ~ O. For that trajectory we
determine the intersection points lr and Iz of the trajectory with the boundary
of the absorbing sphere. They are given as the solution of the equation

(4.14)

which can be written as

lr,2 = sT. Ar ± J(s'Ar)2 - (.6.r2 - p2), (4.15)

where Ar = R - ro, .6.r = IIArl1 and a real solution is only defined for
a positive argument of the square root. The solutions of Eq. (4.15) belong
to three different spatial scenarios (figure 4.7): (i) The whole trajectory runs
outside the sphere or touches it in only one point (two negative solutions, one
or no real solution), (ii) the trajectory starts inside the sphere and leaves it (one
positive and one negative solution), or (iii) it starts outside the sphere, enters
it and leaves it again (two positive solutions). Now the integration within the
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exponent of the survival probability for absorption, Eq. (4.5), can be carried
out for the three cases leading to the following probabilities:
Case (i), trajectory outside the sphere:

(4.16)

Case (ii) , trajectory starts inside the sphere:

P. (l) - { exp( -/La l) exp( -/LA l) 1 < it (4.17)
a - exp(<u« l) exp( -/LA it) 1~ it

Case (iii), trajectory penetrates sphere:

{

eXP(-/La l) 1< it
Pa(l) = exp( -/La l) exp( -/LA (l - it)) it:::; 1< l2

exp( -/La l) exp( -/LA (l2 - it)) 1~ l2
(4.18)

Hence, the total probability Pa(lo) for a photon to survive the propagation
from ro to ro +los without being absorbed is given by the product ofelementary
survival probabilities, where each single probability describes only the contri­
bution of the propagation through the homogeneous medium (exp( -/La lo)) or
through the sphere (for example exp( -/L A (l2 - it))). This property, which
simply arises from the assumed independence of different absorption mecha­
nisms, allows for a straightforward generalization of the calculation ofPa (lo) to
several absorbing regions 81 , ... , 8M with incremental absorption coefficients
/LA,!, .." /LA,M , which can be efficiently numerically implemented: One deter­
mines the path length !llm of the photon within each absorber 8m, which then
yields the survival probability

M

Pa(lo) = exp( -/La lo) IT exp( -/LA,m !llm). (4.19)
rnee l

2.3 Monte-CarloSimulations
Monte-Carlo methods for the description of light propagation through turbid

media have been described in (Graaf et al., 1993a; Graaf et al., 1993b; Schmitt
and Ben-Letaief, 1996; Flock et al., 1989a; Flock et al., 1989b). We apply the
method in order to characterize the propagation pathways of photons through
the model tissue specified above. In order to achieve that, a number of photons
is vertically injected into the medium, and their multiply scattered pathways
through the medium are followed (up to a maximum number of iterations) until
they are either absorbed or leave the medium again.

The propagation pathway for each photon through the tissue is determined as
follows. First the photon is injected into the medium at a fixed position (xt , y[ )
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Figure 4.7 Behavior of the
survival probability Pa(l) ofa
photonalong a trajectoryro +
Is for the threepracticallydif­
ferent cases, namely: (i) the
photonmisses the sphere. (ii)
it leaves the sphere, and (iii)
it penetrates the sphere.

and initially (at time step t = 0, i.e, before its first tissue interaction) follows
the trajectory ro(t = 0) + ls(t = 0) with ro(O) = (XI,YI,O) and s(O) =
(0, 0, -1). In order to determine the location of the next tissue interaction, the
propagation length ls is drawn from the survival probability Ps(l), eq. (4.8),
which provides the current free path length in presence of tissue scattering
alone. Next, the probability for the photon to be absorbed along its current
free pathway, i.e. between ro and ro + Iss, is determined. This probability is
just 1 - Pa(ls), where Pa(l) is taken from eqs. (4.16)-(4.18) using ro(t) and
s(t) . Comparison of a uniformly distributed random number x (between 0 and
1) to Pa(ls) decides, whether the photon is absorbed (x > Pa(ls)) or not. If
the photon survives, the start of its next trajectory is taken to be ro(t + 1) =
ro(t) + Iss(t), and its next propagation direction s(t + 1) is determined from
the scattering angle () and if> (see figure 4.5), which in tum are drawn from
the Henyey-Greenstein distribution eq. (4.10) and from a uniform distribution
between 0 and 27l" respectively.

For the detection of exiting photons, the tissue surface was divided into a
raster of (2na + 1) x (2na + 1) squares with diameters fla around the photon
injection site, which was kept constant for each single simulation. The number
of exiting photons and their properties were stored separately for each square
and were assigned to the corresponding raster point. For each square (x,y),
the photons were sorted according to nz different maximum penetration depths
in steps of flz and no: different exit angles in steps of flo = 7l"/(2no:) (figure
4.8).

If a photon exits the medium, it is first tested, if it undergoes total reflection
on the surface of the medium. Ifthis is the case, the photon trajectory is reflected
back into the medium, otherwise the photon is allowed to exit the medium where
the exit direction is determined according to Snell's law. Reflection processes
besides total reflection are not taken into account, because during the analysis
of the remitted patterns we consider only photons exiting steeper than 60 deg,
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Figure 4.8. Detection of the diffuse reflectance pattern. The region around the photon injection
point is divided into a raster of (2na + 1) x (2na + 1) pixels of ~a on a side. Ifa photon exits
at a given square , its maximum penetration depth is stored in a corresponding penetration depth
histogram with n. bins and penetration depth intervals ~z. Also, the exit angle Q between the
surface normal and its exit direct ion is stored.

where the specular reflection is weak and not very strongly dependent on the
exit angle. This maximum exit angle for photons to be detected corresponds
to a numerical aperture of N A = 0.5 of the considered imaging system. For
each exiting photon, the maximum penetration depth, the exit location and the
exit angle between the trajectory and the surface normal are stored. After the
injection of a large amount of photons, these quantities characterize the diffuse
reflectance patterns under the considered illumination condition.

The simulator was implemented in C and TCLfI'K on SUN Spare 4 and
Spare 20 workstations. All simulations were run using a single set of optical
parameters, that were taken to be those of human gray matter in vitro at 633
om, i.e. fLa = 0.26 mm", fLs = 6.02 mm" , and 9 = 0.88 (Cheong et al.,
1990). The index of refraction was taken to be that of water, i.e. n = 1.33.
If a local absorbing sphere was present, its radius was p = 0.1 mm and its
incremental absorption coefficient was set to fL A = 10 mm"". This possibly
unrealistically high value was chosen, because it does not change any of our
results qualitatively (see also section 4.5) but strongly increases the quantitative
effect of the local absorber on the simulated diffuse reflectance pattern.

3. Results for Simulated Video Imaging
Figure 4.9a displays a tangential view on the simulated trajectories of 600

photons within the tissue (below x-axis). While the effective penetration depth
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(a) (b)

Figure 4.9. (a) Simulated trajectories for 600 photons injectedwithin a model tissue (view
tangential to tissuesurface. whichcoincides with the x-axis). Units: 500 p.mper tick. Photons
can enter several centimeters into the tissue. (b) Diffuse reflectance patterncalculated for N =
108 photons injectedintothetissue. Gridconstantof themesh: 50 p.m. Fortheparameters used,
thereflectance patternextends to approximately 1 mm (0./ / = 0.875 mm). Opticalparameters:
p'a = 0.26mm- 1

, p.. = 6.02mm- 1
• and9 = 0.88)

amounts to less than 1 mm, some photons propagate many centimeters through
the tissue before they become absorbed or remitted. Figure 4.9b shows a cal­
culated reflectance pattern for N = 108 photons injected at a single spot at the
origin of a homogeneous model tissue. For the parameters used, the reflectance
pattern spreads approximately 1 mm to each side. Both plots demonstrate. that
(i) locally injected photons sample a large volume of tissue in the range of sev­
eral cm3, before they exit the tissue again, and (ii) a considerable part of local
the image of signals can theoretically be spread up to a millimeter caused by the
lateral extent of the diffuse reflectance pattern. Under these conditions, it is not
necessarily intuitive, if and under which conditions small intrinsic signals with
sub-millimeter sizes can be reliably imaged by a CCD-camera. In the following
we will therefore treat this issue quantitatively.

3.1 Lateral Resolution and Contrast for Video Imaging
In conventional optical imaging using a CCD-camera (henceforth referred to

as video imaging), the brain surface is illuminated by a collimated light beam.
We use an idealized description of this beam and thinkof it as a grid of parallel
and infinitely sharp photon rays, which hit the model tissue vertically on the
vertices ofa square lattice. Each of these incidentphoton rays generates a diffuse
reflectance pattern, and the CCD-camera forms an image of the brain surface by
simultaneously recording the superposition ofall these patterns. Consequently,
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we simulate standard optical imaging by defining a two-dimensional photon
injection raster (XI,m, YI,n) = (m~r, n~r), m, n = 0, ±1, ...,±M on the
surface of the model tissue. At each of the (2M + 1)(2M + 1) raster points,
N photons are vertically injected into the tissue, the diffuse reflectance patterns
are calculated and stored as described in the previous section. For conventional
video-imaging, the tissue surface is covered with a single large raster. For each
pixel (x, y) of this raster, the photons of all (2M+1)(2M+1)reflection patterns
emerging through that pixel are summed up yielding the distribution I(x, y) of
remitted photons after the application of all (2M +1)(2M +1) incoming light
beams. This corresponds to a simultaneous illumination of all raster points
with in total (2M + 1)(2M + I)N photons and a simultaneous detection of
the remitted light. In order to avoid boundary effects, i.e. in order to take
into account photons that are injected outside the injection raster but exit the
tissue within the detection raster, injection points outside the injection raster are
added and equipped with the reflectance pattern obtained for the homogeneous
medium figure 4.9.

Now we calculate the simulated CCD-image of a model tissue, that is equipped
with a local absorber (radius p = O.Imm, incremental absorption coefficient
J.LA = lOmm-1) centered below the originatR = (0,0, -Z) as shown in figure
4.6). In order to determine the lateral resolution and the contrast, we carried out
the following simulations: N = 106 photons were injected into each of 21 x 21
illumination points located on a square grid (grid constant O.05mm) around the
origin covering a total area of 1 x Imm, No penetration depth information
was resolved, i.e nz = 1,~z = 00. The grid constant of the detection raster
was taken to be the same than that of the photon injection raster. The resulting
image I (x, y) for conventional optical imaging using a video- or CCD-camera
was computed as described above.

Figure 4.10 shows the simulated images of the absorber if it is located at a
depth of Z = 0.2 and 0.6 mm respectively. Even for a very shallow location
of the absorber, its video image is already strongly blurred (left), while for
Z = 0.6 mm it is not detectable anymore in the current framework of 106

injected photons. The figure demonstrates that though photons can propagate
very far into the tissue (figure 4.9a), the changes in reflectance detected on the
surface of the tissue originate almost exclusively from absorption signals within
the superficial 500 J.Lrn of the tissue.

In order to quantify the relative contribution of absorption signals in various
depths to the total reflectance of the tissue, we calculated CCD-images for
different absorber depths between 0.1 and 1 mm and calculated the contrast c
of the resulting images I (x, y) as

c = maxx,y(I(x, y)) - minx,y(I(x, y)) .
maxx,y(I(x, y))

(4.20)
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Figure 4.10. Simulatedvideoimagesforahomogeneous tissuewitha localabsorberat Z =0.2
mm(left) and Z = 0.6 mm(right). The relativestrengthof the signal strongly decreaseswith
depth, i.e. most of the changein reflectance originates fromabsorberscloser than 600Jjmto the
surface. Gray scale: Numberof remittedphotons.

Figure 4.11a shows one-dimensional slices of the simulated images of the ab­
sorbing sphere located at depths of 0.1 nun (solid), 0.3 nun (dashed) and 0.5
nun (dash-dotted) below the surface. The vertical dotted lines mark the actual
radius of the absorbing sphere. The figure demonstrates, that the images of the
absorber become blurred by the influence of strong tissue scattering and extend
beyond the true radius of the imaged sphere (dotted lines). The blur, which
is depth-dependent and amounts between approximately 50 t-tm for Z = 0.1
nun and 100 t-tm for a depth of Z = 0.5 nun to either side. Hence, the image
of a point-like intrinsic signal at a depth between 0.2-0.5 nun spreads to ap­
proximately 200 t-tm. This result agrees well with experimental results from
hippocampal slices (Kreisman et al., 1995).

The solid line in figure 4.11b quantifies the contrast ofthe images according to
eq. (4.20) as a function ofthe depth of the absorber. The image contrast strongly
decreases and between 0.3 and 0.5 nun saturates at a low level, which is related to
noise variability. Some aspects of cortical function are organized in a columnar
fashion. Therefore, one may ask, which parts ofa vertical and columnarintrinsic
absorption signal contributes to the video image. This question can be addressed
in the present framework, if we approximate a columnar absorber as a sequence
of spherical absorbers located at the same (x,y) position but at increasing
depths. If the column reaches from Z = 0 up to a depth of Zo, its image is
approximately given by the sum of the images of the individual spheres located
between the two depths: Ccum(ZO) = E~~O.l c(Z). Note that this is only true,
if the superposition principle holds, which is likely to be given for realistic
changes in absorption. The cumulative contrast Ccum (Zo), normalized to its
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Figure 4.11. Image contrast for video imaging. (a) lD-slices through the images of a spherical
absorber 0.1 mm (solid), 0.3 mm (dashed) and 0.5 mm (dash-dotted) below the surface. Vertical
dotted lines mark the true absorber radius of 0.1 mm. (b) Solid line: Image contrast c from
eq. (4.20) as a function of absorber depth. Dashed line: Cumulative signal strength of a
columnar structure obtained as the normalized integral over the contrast. Images of intrinsic
signals originate from the superficial 0.3 - 0.5 mm of the nerve tissue.

value at Z = 0.6 mm, is shown as dashed line in figure 4.11b. The curve
strongly increases up to 0.2 mm and then starts to saturate. This demonstrates
that the image of a columnar intrinsic signal is formed mainly by its top 0.2 ­
0.5mm.

3.2 Detectability Threshold
In the simulations above, the number of injected photons per illuminated spot

was arbitrarily chosen as N = 106 photons. Since optical imaging works under
strong illumination conditions, the noise sources for the detection of changes
in reflectance are dominated by photon shot noise ranging around ....;N, which
in turn restricts the signal-to-noise ratio for the detection of these reflectance
changes. In this estimate, we treat biological noise, i.e. reflectance changes
that are not related to neural activity (such as slow changes in the oxygenation
level of blood (Bonhoeffer and Grinvald, 1996)), as signal rather than as noise,
as they are generated by the tissue and not by the physical recording condi­
tions. Photon shot noise levels can be estimated by calculating the approximate
number of photons that are used to record a single pixel during a scan. For
a wavelength of 605 nm (which is frequently taken for optical imaging (Bon­
hoeffer and Grinvald, 1996)), a single photon carries roughly the energy of
Ep = he/>. = 3 x 1O-19J (h is Planck's constant and e is the speed of light).
A rough estimate for the photo damage limit for biological tissue (though es­
timated for skin only) is 0.3W/cm2 for illuminations up to 100s (Sliney and
Wolbarsht, 1980). If the scanning light beam covers a surface of 5mm x 5mm,
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a realistic irradiation power for that beam is 10mW, which leads to an intensity
roughly ten times below the photo damage limit. For that power, the light beam
carries about 3 x 1016 photons per second. If the whole image is divided into
256 x 256 pixels, each pixel is then recorded using roughly N; = 4.6 X 1011
photons at a 1Hz frame rate. Hence , the noise level in this experiment would be
reduced by a factor JNjNt compared to the shown simulation results, i.e. ap­
proximately 11680for the simulations of the previous section. The background
level of reflected light in the images is about 14000 photons per pixel in the
simulations (figure 4.11a) , which in the experiment described above would be
increased to Np = 6.4 X 109 backscattered photons. The minimum detectable
signal is then ..[N; = 80000 photons and the minimum detectable contrast be­
comes ..[N;INp = 1.25 X 10-5• For a very coarse estimation of the minimum
detectable change in the absorption coefficient, we assume a linear relationship
between the strength of the incremental absorption coefficient /-LA within the
sphere and the resulting contrast within the image (i.e. linearization of the ex­
ponential absorption probability). In this case, the simulated contrast caused by
an absorber with /-LA = 10mm-1 located at a depth of 0.3mm is c = 0.18 (fig­
ure 4.11b). The estimated minimum detectable change in absorption coefficient
for this depth becomes 6./-L":!in ~ (10 x 1.25 x 10- 5/0.18) mm"! ~ 7 10-4

mm-1.

This value has to be compared with a realistic change in the absorption co­
efficient /-LA as caused by a blood-related mapping signal. This value can be
estimated as follows: Human blood contains approximately Ct = 150 gil of
haemoglobin (Schmidt and Thews, 1989). With a molecular weight of 65400
for haemoglobin, this value translates to a molar concentration of con» = 2.29
mmolll. Because about 5 percent of brain tissue consists of blood, the con­
centration of haemoglobin in brain tissue becomes C = 0.05cbHb ~ 0.11
mmolll. At 600 nm light wavelength, the extinction coefficient for deoxy­
genated haemoglobin (Hbr) is Cr = 0.35 lI(mmol mm), and the coefficient for
oxygenated haemoglobin (Hb02) is Co = O.IlI(mmol mm) . At rest, a fraction
x of the haemoglobin is oxygenated, and the rest is deoxygenated. x is called
the saturation level. The absorption coefficient due to the blood in brain tissue
becomes

/-L~ = In(lO)c(xco + (1 - x )cr) (4.21)

At rest, the blood saturation level in parenchyma is approximately x = 0.5, and
is changed by 2 percent by neuronal activity (Mayhew et al., 2000). According
to eg. (4.21), this corresponds to an activity-related change in absorption coef­
ficient of /-LA ~ 1.2.10-3 mm", A comparison with the estimated detection
threshold of /-L":!in ~ 7 .10-4 mm"! demonstrates, that video-images ofblood­
related intrinsic signals are close to the detectability threshold for a single-trial
experiment and definitely originate from the superficial 0.4 mm of brain tissue.
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4. Simulated ScanningLaser Optical Imaging
As we have seen, video imaging records intrinsic signals only from the su­

perficial 400 J1.m of the tissue and in addition integrates intrinsic signals over
this depth. The cortex, in contrast, is in total roughly 2 mID thick and carries
out different processing tasks within different layers. For example, the superfi­
ciallayers of the macaque monkey striate cortex are dominated by orientation
selectivity and color sensitivity of the cells (Hubel and Wiesel , 1968; Hubel
and Wiesel, 1977), while direction selective neurons concentrate in layer 4b
(Hawken et al., 1988). Also, many of the layer 4C neurons are not or weakly
orientation selective and can be distinguished by their color sensitivity and
contrast threshold (Hubel and Wiesel, 1977). While the structure of orientation
maps within the superficial layers of macaque primary visual cortex has been
examined in several studies, the three-dimensional spatial distribution of direc­
tion selectivity, color sensitivity and contrast thresholds could not be addressed
with the standard technique because these properties may reside in different
depths (cf chapter 3, section 2.4). Hence, it would be desirable to find an ex­
tension of conventional optical imaging in a way that (i) signal detection can
be performed for deeper cortical structures and (ii) signals can be detected
selectively for some depth within the cortex.

Confocal scanning laser techniques have been used in ophthalmoscopy (with
fast image sampling rates up to video frequency of 50 or 60 frames per second
(Webb and Hughes, 1981; Fitzke et al., 1991; Fitzke and Masters, 1993; Stetter
et al., 1995d; Stetter et al., 1995e; Timberlake and Stetter, 1996; Stetter et al.,
1996; Babel et al., 1997», in densitometry (Tornow et al., 1997; Marcos et al.,
1997) and in confocal microscopy (Pawley, 1995; Scholz et al., 1998; Bucher
et al., 2000), where they have been shown to allow for depth-resolved detec­
tion of fluorescence signals. This seems to suggest confocal microscopy for
optical imaging , but some constraints prohibit its straightforward application
for the detection of intrinsic optical signals. Firstly, a fluorescing object as
usually detected by confocal microscopes, acts as a light source, and the origin
of the emitted photons and therefore the location of the object in depth can be
well detected by confocal optics. In contrast , absorption and scattering sig­
nals (including intrinsic signals) are sampled over the whole volume passed
by an ensemble of photons and therefore information about the depth of local
absorbers or scatterers cannot be obtained in an obvious way. Secondly, due
to technical reasons an optical imaging setup requires a recording technique
which can keep some minimum working distance of a few centimeters from
the brain surface. Because confocal microscopes work in the regime of high
numerical apertures, their maximum distance from the specimen lies far below
the required working distance. Finally, intrinsic signals are very weak and due
to signal-to-noise reasons we have to detect many photons per voxel (cf section
1). Due to the strong restriction imposed by the confocal pinhole, confocal
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Figure 4.12. Basic principle of scanning laser imaging. A thin laser beam scans line by line
overthesurfaceof thetissue. Foreachposition of thescanning laserbeam,thediffusely reflected
light is collected, unscanned, andsent,eventually through a confocal mask,ontoa lightdetector.
The amountof detectedlight is usedto determine the graylevelof a singlecorresponding pixel.
The total imageis generated pixelby pixelandlineby linefor all positions of the scanning laser
beam.

microscopes usually detect only a few tens of photons per voxel, a number far
too small for optical imaging.

In this section we suggest an experimental setup for high contrast depth
selective optical imaging and, again using Monte Carlo simulations, character­
ize, to what extent this technique should outperform conventional video optical
imaging. Similarly to confocal microscopy, the basis for the proposed setup is
formed by a scanning laser device, but here we suggest to run the system in a
weakly or non-confocal ("flying spot") mode. This provides the possibility of
a large working distance and a high photon yield.

4.1 Principle and Simulation of Scanning Laser Imaging
Figure 4.12 schematically illustrates the basic principle of scanning laser

imaging. In this technique, a thin, collimated laser beam scans line by line over
the object under consideration, which in our case is a part of the tissue surface.
For a given position of the beam, the diffusely reflected light is unscanned by
propagating it through the x-y-scan unit in the reverse direction, and is guided
(eventually through a confocal mask) to a light detector. This reflected light
is used to determine the gray level of a single pixel within the image frame,
the position of which within the frame is determined by the current orientation
of the scanning laser beam and thus corresponds to the currently illuminated
small patch of cortical tissue. During one complete scan, the gray levels of all
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pixels within the image frame are measured in sequence. In particular, because
the whole distribution of the diffusely reflected light - the diffuse reflectance
pattern - is in principle available for every single pixel, one can hope to be able
to detect more subtle properties of intrinsic signals (such as their 3D-positions)
from the details of the reflectance patterns.

For the simulation of scanning laser optical imaging, we calculate the diffuse
reflectance patterns for a two-dimensional grid of photon injection sites, iden­
tically to video optical imaging. Simulated scanning laser images are obtained
by calculating a given property of the diffuse reflectance pattern for each pixel
separately and attaching the corresponding value to that pixel. For example,
if only intensity information is to be recorded, the total remitted photon count
is determined for each of the (2M + 1)(2M + 1) reflection patterns and is
assigned to the single raster point , around which the corresponding reflection
pattern is centered.

Actually, the analysis presented in the following sections is based on the
very same set of reflectance patterns as used for simulated video imaging in
section 3. Hence, the differences in the images derived from both methods
result from different kinds of the light detection rather than from different kinds
of illumination or the detection of different tissue properties, since the identical
photon propagation pathways are used for both video and scanning laser optical
imaging. This enables us to provide a reliable comparison ofthe relative changes
in image resolution and contrast.

4.2 Lateral Resolution and Contrast
In this subsection we perform a comparison between simulated scanning laser

images and video images for the same model tissue as described in section 3.1:
N = 106 photons were injected into each of 21 x 21 illumination points and the
diffuse reflectance patterns were calculated. Scanning laser optical imaging was
simulated by summing over the total reflected light for each photon injection
(x, y) separately and taking the resulting value as the gray level I(x, y) of a
single pixel corresponding to the photon injection site. No confocal geometry
was used for these simulations corresponding to a "flying spot" geometry.

Figure 4.13 compares the resulting scanning laser images (left column) with
the video images (right column and figure 4.10) for absorber depths of Z = 0.2
and 0.6 mm respectively. The scanning laser images are much less blurred and
stronger in contrast than video images. As a consequence, which becomes ob­
vious from a comparison of the two bottom plots, we predict that the proposed
scanning laser method can image deeper structures than the video technique.
The image contrast, eq. (4.20), has been evaluated for scanning laser images
and is compared to the corresponding contrast reached by conventional video
imaging in figure 4.14. For all depths, the contrast of the scanning laser image
is approximately threefold higher than that of the corresponding video image .
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Figure4.13. Simulated scanning laser images (left column) and the simulated video images
(right column, same as in figure 4.10) for comparison. The specimen was a homogeneous tissue
with a local absorber at Z = 0.2 rom (top row) and Z = 0.6 rom (bottom row). Scanning
laser images are much less blurred and show a higher contrast than video images. Gray scale:
Number of remitted photons.

With increasing absorber depth, it falls much slower than the contrast of the
video image. This predicts that scanning laser techniques can reach approxi­
mately three times the depth of video techniques in the same situation.

4.3 Depth Detectionof a Local Absorber
In principle, a scanning laser device can detect the whole two-dimensional

distribution of a diffuse reflectance pattern for each pixel (see also section 4.1).
here we investigate, if and to what extent we can use further aspects of the
diffuse reflectance patterns besides its integral (the total photon count) for the
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Figure 4.14 Image contrast
of the local absorber from
scanning laser optical imaging
(solid) and from video imag­
ing (dashed. cf figure 4.11b).
For the same depth of the
absorber, scanning laser im­
ages are predicted to have ap­
proximately threefold higher
contrast than video images.
Also, simulated scanning laser
measurements reach approxi­
mately threefold deeper than
than video measurements.
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detection of the depth within the tissue, at which a blood-related absorption
signal is located.

First a Monte Carlo simulation of the diffuse reflectance pattern in response
to a narrow incident light beam was carried out on a homogeneous model tissue
without any additional local absorber. For that simulation , 108 photons were
injected vertically at the origin of the model tissue and the diffuse reflectance
pattern was characterized as described in section 2.3. The photon properties
were stored with na = 30 (61 x 61 raster) in /).,a = 50 J.Lm steps, no = 18, n z =
30 and /).,Z = 50 J.Lm. Using this information, penetration depth histograms of
the photons were calculated as a function of the radial distance of their exit
location from the incoming light beam. For that, the photons of all raster
points between two circles with radii rl := r« - /).,r/2 and r2 = rl + /).,r/2
were lumped together (see figure 4.15b, inset), and the joint penetration depth
histogram h((ra ) was calculated as

hc;(ra) = L hc;(x,y), (= 0, ... ,nz -1,
{x,Ylrc::;x2+y2$r2}

(4.22)

where h((x, y) is the number of photons which exit the tissue within the square
at (x, y) and at the same time have a maximum penetration depth between (/).,z
and (( + l)/).,z.

The resulting penetration depth histograms for radial boundaries rl = 0, 0.2,
0.4,0.6 mm and r2 = rl + 0.2mm are shown in figure 4.15a. One observes,
that both the mean and the most frequent penetration depths systematically
increase with the distance of the photon exit points from the incoming beam.
Therefore, by selectively measuring photons that exit from the tissue through
an annulus around the photon injection site with radius ra = rl + r2/2 and
width /).,r (henceforth referred to as detection annulus), one can approximately
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Figure 4.15. (a) Normalized penetration depth histograms for 108 photons injected into a
homogeneous medium, averaged over annuli with inner radii TI = 0, 0.2, 0.4, 0.6 mm and outer
radii T2 = TI + 0.2 mm (see inset in (b)). The most frequent penetration depth increases
systematically with the radius of the annulus. Maximum photon counts: 0 - 0.2mm: 77900,
0.2 - 0.4 mm: 25014, 0.4 - 0.6 mm: 12285, 0.6 - 0.8 mm: 7472. (b) The peak penetration
depth depends approximately linearly on the radius r« = (n + T2)/2 ofthe detection annulus.
Solid : linear least squares fit, offset -0.02 mm, slope 1.30, circles: data. Inset: Calculation of
the penetration depth histograms vs. the lateral spread of the photons. The histogram is built
from all photons that were exiting the medium within an annulus between Tl and T2 (detection
annulus) . For these photons, the different possible maximum penetration depths were counted
in order to determine the penetration depth histogram.

select the detected photons by their different penetration depths. Figure 4.15b
plots the most frequent penetration depths zp of the photons (i.e. the maxima
of the functions in figure 4.15a) vs. the radius ra of the detection annulus and
reveals a linear relationship between both quantities. The least squares fit of a
linear function yields

zp = 1.30ra - 0.02. (4.23)

Selective measurement of photons that exit from an annulus around the illu­
minated origin can be performed using standard confocal geometry by appli­
cation of an annulus-type confocal mask, which is optically conjugate to the
surface of the tissue (cf. figure 4.18). Equation (4.23) establishes a first order
relationship between the radius of the detection annulus and the depth up to
which intrinsic signals are sampled. At the same time it becomes obvious that
the penetration depth histograms have a considerable spread around their peeks,
and a clear separation of photons by penetration depth is not possible.

Now we compare the diffuse reflectance patterns for a single incident light
beam obtained from a homogeneous tissue (see previous subsection) with
that obtained from the same tissue equipped with a local absorber at R =
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Figure 4.16. Absorption patterns, which are defined as the differences between the reflectance
patterns calculated with and without an absorber being present at depths Z = 0.2,0.4,0.6,0.8
mm below the photon injection point. Gray levels indicate the difference in photon count per
raster square. With increasing depth of the absorber, the signal amplitude strongly decreases,
while the fraction of darkening at the periphery of the absorption patterns (far from the origin)
increases.

(0,0 , -Z) (i.e. below the the photon injection point). Diffuse reflectance
patterns with 108 injected photons each were calculated for vertical positions
Z = 0.2,0.4,0.6,0.8 rom of the local absorber. The difference between the
two-dimensional diffuse reflectance patterns of the homogeneous medium and
the medium plus an absorber represents the changes in reflected light that are
are caused by the absorber.

Figure 4.16 displays these difference patterns for the four depths of the ab­
sorber on a 41 x41 raster with 0.05 rom grid constant. The extent of darkening
represents the decrease of reflected light intensity for each raster point due to the
absorbing sphere. The result shows, that the strength of the absorption signal
strongly decreases with increasing depth of the absorber. This is in agreement
with the results presented in figure 4.13. Further, besides the amplitude of the
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Figure 4.17. (a) Normalized change in the curve shape Sz(ra)jmax(ISz(ra)I), where
Sz(ra) is the change in the normalized radial reflectance function due to the presence of the
absorber. The four functions correspond to absorber depths of Z = 0.2, 0.4, 0.6, Il.Smm. With
increasing Z, the changes in the curve shape shift to higher radii of the detection annulus (i.e. to
the periphery of the reflectance pattern) . Absolute minima of S: Z = 0.2 mm: -0.58; Z = 0.4
mm: -0.35; Z = 0.6 mm: -0.19; Z = 0.8 mm: -0.10. (b) Sz(ra)j max(ISz(ra)\) for fixed
depth Z = 0.4 mmand different strengths , f£A = 1 mm" , f£A = 5 mm-1andf£A = 10 mm- 1

of the absorber. The curve shape is insensitive to the strength of the intrinsic signal and only
reflects its location in depth. Absolute minima of S: f£a = 10 mm- 1: -0.35; f£a = 5 mm- 1:
-0.25; f£a = 1 mm- 1

: -0.07.

intrinsic signal, also its spatial characteristics vary with the depth of the ab­
sorber: The deeper the absorber is located within the tissue, the more light is
absorbed from the periphery of the diffuse reflectance pattern compared to the
amount of light absorbed from the center.

Proceeding from that observation it was tested, if the radial behavior of the
reflectance can be used to gain depth information about the absorber. The ra­
dial reflectance function R(r a),which is defined as the amount of light remitted
through a detection annulus with central radius r« and width !:i.r , was calcu­
lated for the homogeneou,s medium and the media containing the absorbers. We
chose Ar = 0.1 mm and r a = 0.05 +kO.1 mm, k = 0,1,2, .... The maximum
value of each radial reflectance function, which was located at k = 0 for all
cases, was normalized to unity in order to separate the amplitude information
from changes in the curve shape. The normalized radial reflectance functions
for the homogeneous medium Ro,hom(ra ) and for the medium plus absorber at
Z, Ro,z(ra ) , were subtracted from each other to yield the change in the curve
shape, Sz(ra ) , with Sz(ra ) := Ro,z(ra ) - Ro,hom(ra ) . The changes in curve
shape, again normalized to unity, are plotted for Z = 0.2,0.4,0.6, 0.8mm in
figure 4.17a. The behaviour of the change in the shape of the radial reflectance
functions confirms the qualitative observation from figure 4.16, that with in­
creasing depth of the absorber the changes in reflected light intensity shift to
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increasing radii. This results shows, that one can to some extent gain depth in­
formation about the local absorbing region by measuring the radial reflectance
functions through a set of confocal annuli with increasing widths and analyzing
changes in the shapes of the resulting functions. Figure 4.17b shows the nor­
malized curve shape for a constant depth but different strengths of the absorber:
The curve shape does not change. Hence, by calculating (i) the integral over
each radial reflection pattern and (ii) its normalized curve shape, we obtain
two independent (non-interfering) measures which contain information about
the strength and the depth of the intrinsic signal.

4.4 Setup for ScanningLaser Optical Imaging
We showed that depth information about the local absorber under consider­

ation is contained in the radial profile of the diffuse reflectance pattern. This
profile can be measured by counting the backscattered photons as a function
of the distance of their exit point from the incoming light beam yielding the
radial reflectance function R(r) . In order to achieve this, one has to selectively
detect photons that exit the tissue through an annulus with a given radius (the
detection annulus) around the illuminated spot. In addition this has to be done
for several differently sized annuli simultaneously. In this paragraph we sug­
gest a possibility to setup a online detector for the radial reflectance function.
The basic principle for the setup of a single detection annulus is to use a con­
focal geometry with an appropriately sized ring aperture. However, in contrast
to conventional confocal detection, where the optically conjugate plane of the
confocal aperture lies within the tissue slice to be scanned, a detection annulus
is implemented if the optically conjugate plane of the confocal aperture coin­
cides with the surface of the tissue. If this is the case, the tissue surface acts as
the light source under consideration and the confocal geometry selects photons
emitted by a ring-shaped part of the surface without constraining the exit angles
of the photons (up to the numerical aperture).

In order to measure the radial reflectance function, one has to simultaneously
detect light remitted through a set of concentric annuli. We suggest two possible
experimental setups for this measurement. The first possibility is to record the
whole diffuse reflectance pattern using a CCD-camera. From the image of the
diffuse reflectance pattern one can then calculate the radial reflectance function
by marginalizing over the angle. CCD-cameras provide relatively low frame
rates (e.g. 60 Hz). Since only one pixel of the Scanning Laser image per video
frame can be detected , this method is too slow for the detection of sufficiently
highly resolving optical images. For example, the recording of a scanning laser
image with 256 x 256 pixels would require roughly 18 minutes. However, this
method bears relatively low costs and may be suitable for non-space-resolved
optical detection , for example during the developmental phase of the depth
detection method.
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Figure 4.18. Schematic illustration of online-detection of the radial reflectance function. An
optical setup forms a low depth of focus imageof the diffuse reflectance pattern. This image
propagates through a set of reflecting annuliwithsystematically decreasing radii. Eachannulus
reflects a ring-shaped part of the diffusely reflected light onto one of n detectors D 1 , . .. , Dn

which thereby detectlightforma singleannulus withinthe reflectance pattern.

Currently available scanning laser devices such as scanning laser ophthal­
moscopes (SLO) use avalanche diodes for light detection (Tornow et al., 1997),
which have single photon sensitivity and very short readout times. SLO's can
provide images in video resolution (equivalent to 768 x 512 pixels) in video
frame rate (Webb and Hughes, 1981; Fitzke et al., 1991; Fitzke and Masters,
1993; Stetter et aI., 1996; Stetter et aI., 1995d; Stetter et al., 1995e). A second
suggestion for a possible implementation of scanning laser imaging is illus­
trated schematically in figure 4.18. The detector unit of a SLO can be replaced
by a cascade of ring-shaped mirrors, the apertures of which become smaller in
diameter with increasing distance from the reflected light to be detected. A con­
focal optical setup with a high depth of focus generates an image of the diffuse
reflectance pattern on the first mirror. This mirror reflects the most peripheral
part of the reflectance pattern to a detector Dn and passes the remaining light
to the second mirror, which in turn reflects the remaining most peripheral part
of the light to detector Dn-l etc., until the central part of the incoming light
hits the last detector D1• The n detectors provide the radial reflectance function
R(ra ) in real time, i.e. with the full temporal and intensity resolution of the
detectors.

The 3D-distribution of changes in light absorbance could then be estimated as
follows: First, a full 2D-set of radial reflectance functions, i.e. one function for
each pixel of the frame, is measured using the proposed setup. The simulations
show, that the different detection annuli of that setup to some extent select
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photons by their penetration depths into the tissue (see figure 4.15a). In addition,
the most frequent penetration depth depends roughly linearly on the radius ofthe
considered detection annulus (figure 4.15b). The photons detected by a given
annulus can be assigned a quantitative penetration depth via this relationship.
If the penetration depth selectivity by each annulus were perfect, the changes in
the radial profile for one pixel would be just the cumulative change in absorption
(its integral from the surface up to the depth under consideration), as soon as the
abszissa is scaled to reflect the photon penetration depths via the relationship
mentioned above. Thus the first derivative of the reflectance function of a given
pixel would yield the vertical distribution of absorbance changes below that
pixel. However, because the penetration depth selectivity is not perfect but
consists of rather broad histograms (figure 4.15a), the 3D-distribution obtained
from this procedure represents a convolution of the original distribution with an
unknown convolution kernel. 3D blind deconvolution techniques , which have
been recently developed for confocal microscopy, might help to recover the
original model distribution from a set of simulated radial reflectance profiles.
These deconvolution techniques could be guided by some prior knowledge
about the convolution kernels obtained from the simulations presented here.

4.5 Influence of Variations in the Simulation Setup
In this subsection we discuss to what extent different assumptions made

for the simulation setup could influence the predictions obtained. All tissue
optics simulations were carried out using a single set of optical parameters
taken from human gray matter in vitro, but what happens if these numbers are
not completely correct? First of all, though the true values and their variances
to be expected in vital cortical tissue are not known, all optical parameters of
biological tissues are relatively similar to each other (Cheong et aI., 1990). this
suggest, that the true parameters do not deviate very strongly from the ones
taken in the presented simulations . It should be kept in mind, however, that our
optical parameters were obtained on blood-free preparations and blood has a
considerably higher scattering and absorption coefficient than the brain tissue,
and the in vivo values for J.La and J.Ls could be higher than those taken here.

Variations in the absorption coefficients leave the trajectories of the photons
unchanged, but lead to the absorption of a different fraction of them. As can
be seen from eq. (4.19), if the absorption coefficient increases from J.La to
J.La + f).J.La , the survival probability for the homogeneous medium changes to
Pa(l) = exp( -J.Lal) exp( -f).J.Lal) , such that photons with longer pathways
through the tissue are more strongly absorbed than those with short trajectories.
Hence, an increase in J.La would cause a stronger lateral decay of the diffuse
reflectance pattern. Similarly, a decrease in the forward scattering anisotropy
9 or an increase in the scattering coefficient J.Ls would similarly cause a lateral
shrinkage of the diffuse reflectance pattern eq. (4.11). In contrast, changes in
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the incremental absorption coefficient /-tA of the local absorber does not change
any of the results qualitatively, since for a given set of photon trajectories, the
number of photons that hit the absorber remains constant. Therefore, the only
effect of an increase of the absorption coefficient by f)./-tA is a decrease the
fraction of photons, which can actually pass the absorber by a factor in the
order of exp( -2f)./-tAP) , where P is the absorber radius. Due to this reason,
we strongly increased the absorption coefficient of the local absorber compared
to a biologically realistic value, because this reduces the number of injected
photons necessary to reveal its effect. If one aims at the investigation of the
images of several absorbers or interacting absorbers and local scatterers, it may
become important to take more realistic values for the absorption coefficient
J.LA. For example, the detection of two absorbers, one being located above the
other, may occur roughly independent of each other because of the small size of
the change (0.1 % change of the backscattered light). However, ifboth of them
are provided with very strong absorption coefficients in a simulation, the deeper
absorber may become even undetectable because the more superficial absorber
removes all the photons attempting to pass it. This may in fact occur in the
case of superficial cortical blood vessels, which weaken both the incoming and
the reflected light and thereby probably influence the strengths of the detected
intrinsic signals (McLoughlin and Blasdel, 1997).

For the simulations, we assumed a vertical illumination of the model tis­
sue, which is only approximately fulfilled for scanning laser techniques and is
practically not fulfilled for conventional video imaging. Instead, the cortex is
illuminated laterally under a relatively small angle in order for the video camera
to have access to the cortical surface. This kind of illumination should further
decrease the penetration depth of the light and increase its lateral spread thus
further decreasing the image quality reached by the video imaging technique.
This points to a further advantage of scanning laser detection, where illumina­
tion and light detection occur along the same optical pathway thus allowing an
approximately vertical illumination in a natural way.

Finally, all simulations assume a geometrically flat and optically isotropic
tissue, whereas biological tissue is definitely non-isotropic and curved. The
curvedness of realistic tissues may not cause strong problems for scanning
laser imaging, since the proposed light detection method involves a high depth
of focus. However, possible influences of tissue anisotropies have to be tested
both by simulations and by experiments.

Possible experimental tests of scanning laser imaging could be performed
by first injecting small local absorbers such as microbeads or small patches
of ink into nerve tissue, then imaging the tissue and afterwards histologically
determining the location and extension of the absorbers. If these experimental
tests confirm our simulations, we may have the key to a new generation of
devices for the detection of three-dimensional neural activity distributions with
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highcontrast, highresolution, andrelatively low-cost compared to leading-edge
fMR.I techniques (Kimet al., 2000a).



Chapter 5

OPTICAL IMAGING AS
SOURCE SEPARATION PROBLEM

If we want to reliably infer neuronal activity patterns from optical imaging
data, we face two problems: (i) Most of the optical signals represent only
an indirect measure of neuronal activity. This is particularly true for evoked
metabolic changes such as intrinsic signals. Therefore, the relationship be­
tween neuronal activity and optical signals must be characterized in detail. The
only direct method for doing this is the simultaneous electrophysiological and
optical measurement of neuronal activity, which has been done for intrinsic
signal imaging (Malonek and Grinvald, 1996). We will not further treat direct
comparison, but will later discuss some indirect methods for estimating to what
extent intrinsic signal components reflect neuronal activity. (ii) Only some of
the measured changes in light reflectance are suitable for monitoring neuronal
activity. They are mixed with unwanted components, which either reflect only
the global activation level or are independent of neuronal activity. We need
to separate the signal components in the image stack, which are closely and
locally coupled to neuronal activity, from the remaining components. In other
words, dye signals or intrinsic mapping signals must be reliably separated from
global signals, blood vessel patterns, hemodynamics and ongoing activity in
order to obtain a (still indirect) measure for two-dimensional neuronal activity
distributions over space.

This and the following chapters 6 - 8, summarize recent approaches towards
the solution of problem (ii): "extract the relevant optical signals from raw
data". Here we first formulate the analysis task for optical imaging data as a
source separation problem. Then we describe some of the standard methods
for solving this source separation task, but also list a few of their limitations,
which motivate the development and application of alternative analysis methods
presented later.
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Figure 5.1. Summed andbinnedrawdataset fromoptical imagingof intrinsicsignals. Images
showa 3.85 x 3.85 mID regionof VI of a macaque monkey. Each framecontains 1 secondof
datacollection. Subscripts denotetimesrelative to thestimulus onset,at whichthemeasurement
of the corresponding framestarted. Reflectance changes due to intrinsicsignalsare much too
small to be visible.

1. Formulation of the Source Separation Task
During an optical imaging trial, a CCD-camera collects a set of images

from the illuminated brain surface before, during, and after stimulation of the
corresponding nerve tissue. Let us first specify a mathematical notation for the
description of an optically recorded image stack.

1.1 Data Representation
If we illuminate a cortical region, the intensity of the light reflected at time t

from position r of the cortical surface is denoted as x (r, t). During an optical
imaging experiment, the reflected light x is projected by the camera lens onto the
photo diode array ofthe CCD chip. The photo diode array ofthe cameracontains
a raster of Px x Py pixels, and the camera samples the intensity distribution
every b.t seconds to yield M frames m = 1, ... , M, with P = Px X Py pixels
each. For small pixels (each corresponding to a square b.r mm in size on the
cortex) and for short time intervals b.t, the number of photons collected at pixel
r = (rx , ry), 1 ~ rx ~ Px , 1 ~ "v ~ Py between time tm and t-« + fltm is
approximately given by

(5.1)
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where"I isaconstantproportionality factor, whichdependsondeviceparameters
includingthe quantum efficiency of the CCD chip and m is the frame number.
If we assume a constant geometry of the setup and a constant frame collection
rate, l:i.r and l:i.t can be absorbed into the proportionality factor, which we
henceforth omit for simplicity.

Figure 5.1 shows an example of an image stack, as it is obtained from an
optical imagingexperiment. For this particulardata set, images with 256x 256
pixels- corresponding to a 3.85x3.85 mmregion- of the primary visualcortex
of a macaque monkey were taken under illumination with 605 om and with a
frame rate of 15Hz (camera: SMD-1M60). The gray-level of each raw frame
is describedby a 16bit integer. For everysingle trial, a sequenceof 120frames
was taken during 8 seconds, while from t = 0 s up to t = 5 s one eye was
stimulatedby a driftingsquare wavegrating. The data collectionsequencewas
followed by a 16 s recovery period without visual stimulation, after which the
next trial started. Sixteen identical trials were summed up pixelwise to yield
a single averaged image stack, and sequences of 15 subsequent frames of this
stack were binned to yield the 8 frames x~(r), m = 1, ..., 8 shown in figure
5.1. Summation and binning was carried out in order to reduce photon shot
noise by increasing the effective number of photons contributing to each pixel
(cf. chapter 4, section 1.1).

1.1.1 Preprocessing or Data

The images in figure5.1 showa large and several smaller superficial blood­
vessels, but there are no obvious stimulus-evoked changes observable. This is
thecasebecausethe intrinsicsignalsareverysmallcomparedto the background
reflectance. The small changes can be.emphasized by subtraction of the first
frame from the other frames:

x:n(r ) = x~(r) - x~(r). (5.2)

Thisoperationremoves thetime-independent components of thelightreflectance
and is referred to as first frame analysis (Bonhoeffer and Grinvald, 1996).

Figure 5.2 displays the same data set as figure5.1 after first frame analysis.
Now it is possible to observe a variety of changes in reflectance with different
spatial patterns: One prominent signal consists of an increase in reflectance
from the largerblood vessels. Also, some smallervascularpatterns are visible,
whichare caused by small movements of the blood vessels relativeto the brain
surface. Further, the whole parenchyma becomes darker in the late phase of
the trial. This effect can be categorized as a global signal (cf. figure4.3) and is
due to an unspecific increase in parenchymal blood-volume. Finally, there is a
barely visiblesystemof three approximately horizontal bands, which represent
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t = -1 sec t = 0 sec t = 1 sec t = 2 sec

t = 3 sec t = 4 sec t = 5 sec

Figure 5.2. Same singlecondition stack as shownin figure 5.1, but after first frameanalysis.
The firstzeroframeis not shownanymore. The mostprominent changes in timeare an increase
in reflectance in the largerbloodvessels and a darkening due to a blood-volume relatedglobal
signal in the late phase. Changes range around0.1 percent of the background reflectance (cf.
figure 5.1).

the mapping signal of this experiment. A comparison between the scale bars
in figure 5.2 and figure 5.1 demonstrate, that all these changes in reflectance
amount to approximately 0.1 percent of the background reflectance.

Figure 5.3 shows every second frame of figure 5.2 again, but now the big
blood-vessel has been masked out and an individual gray scale has been applied
to each image in order to emphasize the mapping signal. The mapping signal
consists of a set of roughly horizontal bands, which we can identify as the ocular
dominance bands of the left-dominated cells. The figures demonstrate that the
mapping signal is usually strongly contaminated by other signal components,
which can be much stronger in amplitude than itself. If we want to use the
mapping signal as an estimator of neuronal population activity, we have to find
data processing methods, which allow us to reliably separate it from the other
signal components based on the measured mixtures in figures 5.2 and 5.3.

1.2 The Source Separation Problem and Data Model
Let us reformulate the problem we want to solve:

• In an optical imaging experiment, we measure a mixture of different signal
components, which are related to different types of intrinsic signals.
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t = -1 sec t = 1 sec t = 3 sec t = 5 sec

Figure 5.3. Everysecondimageof the samedata set as in figure5.2, but after maskingout the
big blood vesselsand with individual grayscalesfor bettervisibilityof the mappingsignal. For
each image, the gray levelwas set to the mean± 1.8 timesthe standarddeviationof gray levels
for the maskedregion.

• From these measurement we want to extract one signal component, namely
the mapping signal, i.e. we wish to separate it from the other components.

• We do not know the patterns of individual signals nor do we have information
about the mixing process, e.g. the mixing coefficients of a linear mixture.

• Finally, the mixtures are strongly contaminated by photon shot noise.

In the signal processing community, this problem is well-known as Blind Sepa­
ration of Sources (BSS) problem. For optical imaging, the sources correspond
to the individual signal components such as the mapping signal, global signal,
vascular patterns etc. We want to separate the sources from each other on the
basis of our data sets which only contain mixtures of sources . The adjective
''blind'' denotes that the separation is attempted without any explicit knowledge
about the sources or the mixing process but is based on assumptions about the
statistical nature of the sources. The BSS task has to be carried out in the
presence of noise, hence optical imaging rises a noisy BSS task.

We formulate a statistical model for the collected data set as follows: The
mean reflected light is assumed to consist of several components, namely the
mean background reflectance Ro{r) and changes in reflectance RI(r, t), which
are caused by different intrinsic signals indexed by I = 1, ... , L. Rl(r, t) is
the I-th cause or the l-th signal source function. For example, R1(r, t) could
describe the spatiotemporal course of the mapping signal, R2 (r, t) of the global
signal, R3(r, t) spatiotemporal vascular patterns, etc. Because the sources are
small compared to the background, it seems reasonable to neglect higher order
terms, because multiplicative terms of the form Rj (r, t) Rl (r, t), which describe
interactions between sources, are much smaller than linear terms in the sources.
Motivated by this consideration, we formulate the following linear statistical
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(5.3)
L

x~(r) = Ro(r) + 2: Rm,I(r) +nm(r) .
1=1

In eq. (5.3), Rm,I(r) = RI(r,tm) denotes a sample of the I-th source at time
tm , and the random variables nm (r) describe photon shot noise. In its most
general form, the BSS task consists of the recovery of the mapping signal, say
Rm,I(r), from the measured mixture x~(r) .

The random variables nm(r) in eq. (5.3) describe the fluctuation ofthe actual
photon count around its mean value (photon shot noise). Photon shot noise at
different times and within different pixels is assumed statistically independent
and Poisson-distributed. Because in optical imaging the mean photon count is
usually strong (cf. section 1.1), the corresponding Poisson distribution can be
well approximated as a Gaussian distribution with a variance proportional to
the total mean reflectance R(r, t m). The probability distribution function for
photon shot noise becomes

where 0'0 denotes a constant factor, which is related to camera properties in­
cluding the quantum yield. If we take into account the fact, that the total mean
reflectance deviates only very little from the value ofthe background reflectance,
we can approximate the noise variance by

(5.5)

(5.6)

i.e., the noise variance may depend on space, but is almost independent of time.
In the present context, the background reflectance does not contain any in­

formation about the signal sources, but constitutes most of the reflected light.
Therefore, we will only consider data sets, from which the background re­
flectance has been removed by first frame analysis. The model becomes:

L

xm(r) = 2: Rm,I(r) +nm(r),
1=1

or in matrix formulation
L

X = 2:RI + N. (5.7)
1=1

In eq. (5.7), all matrices have the size M x P. The components of the data
matrix X are (X)m,r = xm(r), and likewise the (m, r)-th component of RI
and N are Rm,l (r) and nm(r), respectively. Column vectors of the data matrix
are the time series of gray values for an individual pixel r and are denoted
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by x(r) = (xl(r), ""xM(r))T (the subscript T denotes the transpose of a
matrix or vector). They are referred to as pixel time series. The rows of the
data matrix contain the pixels of the m-th image of the image stack xm =
(xm(l., 1), ..., Xm(Px , Py )) . The same scheme holds for the other matrices.

Blind source separation cannot be performed without any prior knowledge
or prior assumptions about the behavior of the sources. There are a variety of
more or less reasonable assumptions about the sources, which can serve as a
basis for a solution of the source separation task. They include the following
statements:

• The sources occupy different bands in the frequency domain.

• The sources can be distinguished by their variance over the data set.

• Different sources are uncorrelated or statistically independent from each
other.

• The sources change smoothly over space and time.

1.3 Spatiotemporally SeparableProblems
While various sources of knowledge can be used for solving the BSS task,

the separation of L small sources from a single noisy measurement is still a hard
problem. Therefore, most of the analysis methods treated in this chapter make
use of a further assumption, which strongly reduces the number of possible
patterns of the sources: separability of the sources in space and time. This
assumption may not be strictly fulfilled, but seems not unrealistic in light of
the observed data. From figure 5.2 it can be seen that the different sources
do not strongly change their spatial patterns, but only change their amplitudes
over time. The reflectance changes in blood-vessels are spatially restricted
to the morphological vascular pattern. Also, the global and mapping signals
occur where neuronal activity is evoked. Even if the spatial pattern of neuronal
activity would change over time, this change would probably be too fast for
the intrinsic signals to follow. It seems therefore reasonable to assume that
the mapping and global signals do not strongly change their spatial patterns
as well, which seems to agree with the data (figure 5.3). Finally, even small
movement artifacts such as the patterns visible at some smaller blood vessels
in figure 5.2 can be described by a single spatial pattern, namely the gradient
of the blood-vessel profile.

Figure 5.4 summarizes this view of an optical imaging data stack: The spa­
tiotemporal signal can be described by a set of spatial prototype patterns which
pop up and vanish again in response to stimulation. Consequently, the signal
of each frame can be described as a linear combination of the same set of spa­
tial prototype patterns, yet with different mixing coefficients. In mathematical
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Figure 5.4. lllustration for spatiotemporal separability in optical imaging experiments. Ac­
cording to that assumption, a set of constant spatial prototype patterns pops up and vanishes
again with different time courses, and each frame contains a different linear combination of the
prototype patterns.

terms, each source R/(r, t) can be writtenas

R/(r, t) = a/(t)s/(r),

and the data model becomes

(5.8)

(5.9)
L

xm(r) = L am ,/ s/(r) + nm(r),
/=1

where the mixing coefficients are related to the time courses of the respective
sourcepattem viaam,/ = al(tm ) . Finally, ifwecombinethemixingcoefficients
to the M x L mixing matrix A, (A)m,l = am,l and the sources to the source
vector s(r) = (s1(r) , ..., sL(r))T, we can formulate the data model for linear
Blind Source Separation as

x(r) = A s(r) + n(r). (5.10)

Thismodeldescribes P observed pixeltimeseriesasrealizationsof agenerative
model, which produces data vectors as noisy mixtures of L sources. Neither
the sourcess nor the mixingmatrixA are known. The BSS problemconsistsof
estimatingbothA andsin eq. (5.10) fromtheobserveddataset{x( r)} byuseof
some general assumption about the sourcesor source statistics. The following
section summarizes approaches towards the solution of the BSS problem eq.
(5.10) or eq. (5.6), whichhavebeenestablished in theopticalimagingliterature.
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(5.13)

2. HeuristicMethods for Source Separation
Three widely used procedures for post-processing of optical imaging data

stacks are differential imaging (Blasdel, 1992a), subtraction of or division by
a "cocktail blank" and bandpass filtering (Bonhoeffer and Grinvald, 1996).
Often, bandpass filtering and one of the other methods are combined for the
extraction of the mapping signal. In this section we provide a description of
these methods in the framework of our data model for optical imaging and
specify the assumptions which they use for solving the BSS problem (5.9),
but also list a few limitations which motivate alternative approaches treated in
chapters 6 and 7.

2.1 Differential Imaging
If an optical imaging data set is based on a single type of stimulus (denoted

as one stimulus condition), as shown in figure 5.2, it is called a single-condition
image stack. For some aspects of cortical function there exist pairs of stimuli,
which are already known to excite disjunct populations of neurons. A pair of
stimuli which fulfills this condition is called an orthogonal pair. Examples for
approximately orthogonal stimuli are left-eye and right eye stimulation (cell re­
sponses are approximately disjunct because of ocular dominance) and oriented
stimuli which differ by 90 deg in orientation (because of orientation selectiv­
ity of most cortical neurons, cf. figure 3.11). If disjunct neuron populations
are activated by orthogonal stimuli, we expect the mapping signal for both
stimulations also to cover disjunct areas. In contrast, global changes in light
reflectance only respond to the mean activation over a larger cortical region,
which is similar for both stimuli.

Differential imaging is based on the model assumption that all signals ex­
cept the mapping signal are identical for orthogonal stimuli, whereas the two
mapping signals are complementary to each other. If this model is true, and
denoting the mapping signal as the first source, S1 (r ), the responses to the pair
of orthogonal stimuli 1 and 2 can be written as

L

xg) (r) = L am,l Sl(r) + am,1 S1 (r) + ng) (r), (5.11)
1=2
L

x};) (r) = L am,l Sl(r) + am,1 (Smax - S1(r)) + n};)(r), (5.12)
1=2

where the superscripts denote the stimulus condition and Smax denotes the
maximum value of the mapping signal. We can estimate the mapping signal by
subtracting the two image stacks from each other,

1
~xm(r) = 2"(x};)(r) - xg)(r))
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and averaging the result over time yields:

81(r) = ~ Lam,1 (SI(r) _ s~ax)
m

+ ~ L ~ (n~)(r) - n~)(r)) (5.15)
m

S
= iilsl(r) - iiI ~ax + n'(r). (5.16)

The hat in eq. (5.16) marks the estimate of a statistical quantity and iiI ab­
breviates the mean over the time series am,l. The mapping signal can be
correctly estimated up to a constant factor, and if the noise is uncorrelated,
the standard deviation of the averaged noise n' (r) is reduced by a factor ..[M:
O"n,df(r) = O"n(r)/..[M.

Figure 5.5 demonstrates the procedure of differential imaging and uses the
same example as shown in figures 5.1 - 5.3. Single condition image stacks for
left-eye and right eye stimulation are shown in the top and middle row of figure
5.5a, and the bottom row contains their pixelwise difference. Blood vessel
patterns and the global components are strongly reduced, whereas the mapping
signal is preserved. The resulting differential image has been obtained as the
mean over the last four images of the differential image stack and is shown in
figure 5.5b. The approximately horizontal ocular dominance bands pop up in
the picture.

2.1.1 Limitations

There are two major limitations for the applicability of differential imag­
ing. In summary: (i) Global signals may not always be identical for different
conditions and (ii) the design of orthogonal pairs of stimuli requires knowl­
edge about cortical organization, and orthogonal pairs also do not always exist
for arbitrary experiments. The assumption that all signals except the mapping
signal are identical in two data sets for orthogonal stimuli represents an ide­
alized situation. Differences can arise from several origins: (i) Variability in
the response of global stimulus-locked components. This would lead to an in­
complete removal of the global components from the differential image stack.
Because global signals usually are stronger than the mapping signal, even a
small residual of a global signal would mean a strong contamination of the
mapping signal. Particular examples for signal variability are small movement
artifacts of superficial blood vessels (figure 5.5a,bottom,leftmost image) or vari­
ability in the strength of blood-flow and blood-volume changes (visible as bright
blood-vessel pattern in figure 5.5a,bottom,images 5-7 from left). (ii) Different
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Figure 5.5. (a) Differential imaging experi­
ment for ocular dominance. Single-condition
image stacks for left-eye (top) and right-eye
stimulation (center) are subtracted pixelwise
from each other to yield the differential im­
age stack (bottom). Blood-vessel patterns and
global components have been strongly reduced.
(b) Differential image obtained by summation
of frames 4-7 of the bottom stack in (a).

single-condition stacks can contain signal components which are not locked to
the stimulus, but are independent of stimulation. Examples include vasomotion
signals (Mayhew et aI., 1996a), ongoing activity and detection artifacts. For all
these signals, the model assumptions (5.11) and (5.12) are wrong, and differ­
ential imaging cannot succeed. Figure 5.6a shows a differential imaging stack
after first frame analysis, that has been obtained from the primary visual cortex
of a ferret (Stetter et aI., 2000c) for 0 deg and 90 deg oriented grating as or­
thogonal stimuli. Five images (image collection time: 600 ms) were collected
during the whole stimulus presentation time of 3 sec (ora 2001 imager, Optical
Imaging Inc.) and reduced to a stack of four images by first frame analysis.
The stack contains a strong artifact with a roughly annular shape combined
with a gradient in gray level from bottom to top, which might be caused by
movements in the setup. The artifact is time-dependent, and could not be elim­
inated by differential imaging (figure 5.6b), because the time courses in the two
single-condition stacks are different from each other.
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(b)

(a)
Figure 5.6. (a) Differential imaging stack af­
ter first frameanalysis from ferret area 17 for 0
and 90 deg orientedgrating stimuli. (b) 0 - 90
deg differential image obtained as the mean of
(a). A time-dependent artifact is superimposed
on the mapping signal (vertical elongatedblob
patterns) whichcannotbe removedby differen­
tial imaging. Image specifications: 192 x 144
pixels. 36 J-lm per pixel; image area: 6.9 x 5.2
mm) ,

A much more serious drawback of differential imaging results from the fact,
that we cannot expect to get orthogonal stimulus pairs for every aspect of cortical
function we want to explore. Generally, in order to be able to design orthog­
onal pairs of stimuli, we have to know in advance, which feature selectivities
are shown by single neurons. Orientation selectivity of single cells has led to
orthogonally oriented gratings, and ocular dominance to pairs of monocular
stimuli as orthogonal pairs. There are a variety of tasks for optical imaging,
however, for which orthogonal pairs of stimuli are difficult to construct or
even do not exist. For example, the measurement of cortical contrast-response
curves, the measurement of responses to localized stimuli or the measurement
of contextual effects represent experiments, for which orthogonal stimuli do not
exist. A design which answers the question, if spatial frequency selectivity in
cortex is binary or continuous (Hiibener et al., 1997), is difficult to address by
differential imaging, but here the reason is that we lack the prior knowledge of
what is the nature of spatial frequency selectivity (binary-like or continuous) of
cortical neurons. In summary, if we want to address more sophisticated ques­
tions than the measurement of (well-known) orientation and ocular dominance
maps by optical imaging, we must be able to extract the mapping signal from
single condition stacks such as figure 5.2a, top, rather than from differential
imaging stacks. Motivated by these considerations, we will score further meth­
ods for analyzing optical imaging records also for their ability to extract the
mapping signal from single-condition image stacks.
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2.2 Cocktail-Blankfor Single-Condition Imaging
One frequently used procedure for the processing of single-condition images

is based on the "cocktail blank". This method can be applied, if we have access
to images for a set J1. = 1" ..,P of different stimulus conditions, and if we
assume that the sum of the cortical activity patterns for all stimulus conditions
covers the cortex uniformly, If this assumption holds and if optical signals
superimpose linearly, we can obtain an image which corresponds to the optical
recording from a completely and uniformly excited cortex by summing up the
responses to all stimulus conditions:

(5.17)

This summed frame is defined as the cocktail blank. If we additionally assume
again, that the global signal components s/, l = 2, " ' , L, are identical for all
stimulus conditions, the cocktail blank can be written as

where the mapping signal has been assumed again as the first source in the sum.
If we subtract the cocktail blank from the JL-th raw single-condition image, we
arrive at

Ifall single-condition responses together sum up to a uniform cortical excitation,

the second term in eq. (5.21) is constant over space, ~ 2:~=1 S~II) (r) = Se, and

after correction by the cocktail blank, sr) (r) represents an unbiased estimate

of the true single condition response Sr) (r) up to a constant.

2.2.1 Limitations
In general we have to face the fact that cocktail blank images do not lead to

true single-condition mapping signals, but always contain contributions from
different single condition responses also. This becomes more obvious, if we
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reformulate eq. (5.21) (using the abbreviation n'(r) for the noise term) as

s~Jl)(r) = al (s~Jl)(r) (1 - ~) - ~ i: s~V)(r)) + n'(r), (5.22)
P P V=FJl.

which for the particular case of a pair of orthogonal stimuli (1) and (2) reduces
to the estimator for the differential signal

(5.23)

The equations demonstrate that the estimator for a single condition image

s~Jl)(r) always contains contributions from other maps s~v)(r),v of: p.. Par­
ticularly if the assumptions that lead to the application of the cocktail blank
method are not strictly fulfilled, subtraction of or division by the cocktail blank
mixes the responses to different stimulus conditions in an uncontrollable way.
This method is widely used but its value for obtaining true single condition
maps is questionable.

2.3 BandpassFiltering
A further assumption about the different signal components that has been

frequently used in the optical imaging literature is bandpass filtering of images
(Blasdel, 1992a; Bonhoeffer and Grinvald, 1996). Source separation by band­
pass filtering is based on the assumption that the spatial patterns of different
sources, sl(r), are concentrated around different spatial frequencies, i.e, they
have different characteristic wavelengths. This assumption can be formulated
more quantitatively in the frequency domain as follows: The discrete Fourier
transform of a source image sl(r) is given by

(5.24)

and the inverse transform by

1 P",-I PlI-I ((k k))
sl(rx,ry) = p p L L Sl(kx,ky)exp 211"i ;;x + ;;y .

x y k:z:=O kll=O X Y

(5.25)
We denote the Fourier transform ofan image, s; (r) by the corresponding capital
letter. The absolute value of the wave-vector k specifies the inverse wavelength
or spatial frequency of a sine-wave, and its direction is orthogonal to the wave
front. For many considerations it is important to know, how strong the contribu­
tion ofa given frequency component k = [k] to the source image is irrespective
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global+other metabolic signals

spatial frequency

Figure 5.7 lliustrationoftyp­
ical frequency courses for dif­
ferent signal sources. Even
if sources are concentrated
around different frequencies.
they cannot be generally as­
sumed disjunct.

of its direction of propagation. Using polar coordinates for the wave vector,
k = (k, ¢) with the azimuth angle ¢, a measure of this quantity is given by the
power spectrum

Sl(k) = fo27r k d¢ SI(k)Si(k), (5.26)

where the superscript * denotes the conjugate complex value of a complex
number.

For source separation by bandpass filtering, the model assumption is that
different sources are concentrated in disjunct frequency bands of the power
spectrum. This assumption was motivated by the following observations: (i)
For ocular dominance and orientation selectivity the global signals are concen­
trated around lower spatial frequencies than the mapping signal (cf. chapter 4,
section 1.3 and figure 5.5a). (ii) White noise contains components with high
spatial frequency, which are not present in images of intrinsic signals due to
metabolic spread and optical blur by tissue scattering (cf. chapter 4, section 3).
Figure 5.7 illustrates the expected frequency courses of different signal sources.
White noise is flat in frequency space, and dominates the power spectrum at
high spatial frequencies, whereas the global signal and other metabolic signals
might occupy mainly the low spatial frequency domain. The mapping signal is
expected to occupy an intermediate range of frequencies.

Given these model assumptions, we can exclude the low and high spatial
frequencies of the record by a bandpass filter, and thereby can reduce the con­
tamination of the mapping signal by the other components. A bandpass filter can
be easily applied in the frequency domain by multiplication with the circularly
symmetric function

(5.27)

(5.28)
1 + exp( -(3x)'

= 1 (kip - Ikl) 1 (Ikl - khp) ,
1

B(k)

I(x) =

Figure 5.8 demonstrates the application of a bandpass filter to the differential
image 5.8a (same as in figure 5.6b). The mapping signal is contaminated by a
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Figure 5.8. Source separation by bandpass filtering.(a) Original 0-90 deg differential image
fromferretarea 17(sameasinfigure 5.6b). (b) Powerspectrum of thedifferential imageshownin
(a). (c)Samedifferential imageafterbandpass-filtering (parameters: highpasscutoff: khp = 0.4
mm-I; lowpass cutoff: kIp = 3.26 mm-I ; f3 = 1.4 nun). (d) The originalpower spectrum
(solidline). the profileof the bandpass filterapplied(dashed line)and the powerspectrumof the
differential imageafter bandpass-filtering (dottedline).

global annular artifact combined with a gradual increase of the gray-level from
top to bottom. Figure 5.8b shows the power spectrum of the image, which has
been obtained by embedding the zero-mean image into a 256 x 256 frame,
application of a fast Fourier transform (FFf) algorithm (Press et al., 1988),
and subsequent application of eq. (5.26). In this case, two different signal
components can be clearly distinguished from the power spectrum: One that is
concentrated at low spatial frequencies and another concentrates at intermedi­
ate spatial frequencies. Towards the high frequency end the spectrum becomes
flat and is dominated by white noise. Figure 5.8c shows the image after appli­
cation of a bandpass filter, which partially removes the low spatial frequency
components and the white noise (the corresponding power spectrum and the
applied bandpass filter is shown in figure 5.8d). The central region of the image
has been flattened by the reduction of the global component, and the elongated
blobs of the mapping signal have been emphasized a little bit with respect to the
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noise, but a complete and deterioration-free extraction of the mapping signal
was not achieved.

2.3.1 Limitations

Bandpass filtering also suffers from a number of drawbacks. In summary:
(i) Sources are not disjunct in frequency space, and their behavior depends on
the experiment. (ii) The filter values are arbitrary and strongly affect important
properties of the resulting images. (iii) Bandpass-filtered noise looks similar
to many optical maps. Signals and noise are therefore difficult to distinguish
from each other after bandpass filtering.

Figure 5.8 already demonstrates, that even the global and the mapping com­
ponent, which motivated post-processing by bandpass-filtering, are not disjunct
in frequency space, but overlap. Even an optimum filter with a highpass cutoff
located at the local minimum between both peaks, cannot perform a complete
separation. Either the global signal is incompletely removed, or the mapping
signal becomes adulterated, or a combination of both effects happens . Addi­
tionally, we do not know what the true frequency course of each signal is: Is the
low-frequency peak really only due to global components? How far do global
components reach towards the high frequency end? Furthermore the spectrum
of the mapping signal depends on the stimulus condition and on the aspect of
cortical representation we want to investigate. It may be concentrated at in­
termediate frequencies for orientation selectivity, but concentration is already
questionable for stripe-like ocular dominance patterns, and the concentration
may be at completely different frequencies depending on the stimulus applied.
For example, responses to positional stimuli, which are used for the explo­
ration ofretinotopic order, may have typical wavelengths of several millimeters
(McLoughlin and Blasdel, 1998). Other components, namely blood-vessel pat­
terns show even stronger overlap with the mapping signal than the global signal.
Blood vessels are strongly elongated structures and contain both high- and low­
frequency components, and bandpass filtering fails to remove them from the
data.

Figure 5.9 demonstrates this drawback for the example of the single-condition
stack shown in figure 5.2, from which the single-condition image for left-eye
stimulation (figure 5.9a) has been obtained by pixelwise summation. The hori­
zontal stripe pattern formed by the mapping signal is barely visible in the pres­
ence of the strong blood vessel patterns as expected . In figure 5.9b, the same
image after bandpass filtering is displayed. Low spatial frequency components
including the bright region within the large blood vessel in the top part of the
image and the global darkening below that blood vessel have been reduced, and
the image has been smoothened. However, the blood-vessel patterns are still
present in the image, and still are much stronger than the mapping signal.
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Figure 5.9. (a) Single-condition imageobtained as thepixelwise sumoverthesingle-condition
stack shown in figure 5.2. (b) Sameimageafterbandpass filtering. Thoughglobal reflectance
changes (brightbloodvessel, globaldarkening) arereduced, theblood-vessel patternsstill dom­
inate the picture. Highpass cutoff: 1.06 mm"" (), = 0.95 mm); Lowpass cutoff: 6.6 mm""
(), = 0.15 mm);

The application of bandpass filtering raises the question, which filter values
shall be used for filtering. If the power spectrum ofan image is multimodal such
as in figure 5.8b, we can take the highpass cutoff frequency, which corresponds
to the local minimum between the peaks. Ifthe total spectrum consists ofa linear
superposition of several mono-modal spectra for the individual sources, and if
we define the separation erroras the summed fractions ofthe spectra that are mis­
treated (e.g., the fraction of the mapping signal that is cut away plus the fraction
of the global signal that is preserved), the choice of the cutoff frequency at the
local minimum will minimize the separation error (Bishop, 1995). However,
many images do not contain expressed minima, and the cutoff frequencies of
the filters - within some reasonable intervals - have to be treated as arbitrary
parameters. This observation raises the question, if and how observables of the
functional cortical organization, which we want to extract from optical imaging
measures, do depend on the choice of the cutoff frequencies.

Figure 5.10 demonstrates, that the quality of separation as well as important
properties of cortical activity maps depend critically on the arbitrary choice of
the high-pass cutoff frequency. The figure displays the number of singularities
(solid line) of the orientation map (cf. figure 3.16a) optically recorded from the
visual cortex of a ferret (43d old) as a function of the cutoff-frequency of the
high-pass filter. The insets are orientation histograms obtained after analysis
without (left) and with (right) highpass filtering. They show, how frequently
pixels of a given preferred orientation (in bins of 15 deg) are found within
the region of interest of the orientation map. The dash-dotted and dashed
lines plot the first and the second Fourier components, respectively, of the
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Figure 5./0. Biologically relevant quantities which are derived from the orientation map of
ferret visual cortexas a function of the cutofffrequency of an appliedhigh-pass filter. The diagram
plots the number of singularities (solid line) and the first (dash-dotted line) and second (dashed
line) Fourier components of the orientation histogram as a function of the cutoff frequency.
The low-pass cutoff was 2.7 mm"" (A = 0.37 rom). Insets show the orientation histograms
without high-pass-filtering (left) and after high-pass-filtering (right) with the cutoff-frequency
0.54 mm"! (A = 1.84 mrn). All quantities depend on the choice of the high-pass cutoff
frequency (behavior shown is typical) .

orientation histogram as functions of the cutoff-frequency ofthe high-pass filter.
These numbers represent measures for the shape of the orientation histogram:
A monomodal and peaked orientation histogram is indicated by a large first
Fourier component, whereas a bimodal histogram would give rise to a large
second Fourier component. All quantities depend on the choice of the cutoff­
frequency for which there is no way to determine a "correct" value. Observables
turn out to be less sensitive against the choice of the lowpass-cutoff frequency
as long as the filter does not remove considerable parts of the mapping signal.

Bandpass filtering of optical maps introduces a further difficulty: Particularly
if aspects of local cortical processing are investigated by optical imaging, post­
processing by bandpass filtering introduces a possible source of ambiguity in
the data. Many aspects of cortical organization, which we want to detect,
are arranged in periodic patterns. But the same is true for bandpass-filtered
noise: its periodicity is determined by the frequency band that is preserved
by the filter. This observation has even triggered structural models, which use
bandpass-filtered noise for a phenomenological description of the structure of
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Figure 5.11. (a) 0-90 deg differential image from ferret primary visual cortex (same record
as used for figure5.10). and (b) the same image afterbandpass filtering (highpass cutoff: 0.43
mm"! (>.= 2.3 rom); Lowpass cutoff: 1.63mm"" (>. = 0.61 rom». (c) Randomwhite noise
imagewithsamemeanand variance than (a), and (d) its bandpass-filtered version(samecutoff
frequencies). Thoughthe signalis weakerin the bandpass filtered image, its spatial structureis
verysimilar to the differential image.

orientation maps in area 17 (Rojer and Schwartz, 1990). Thus, bandpass-filtered
noise can be very similar to the signals we want to measure. As a consequence,
signal patterns and noise patterns may become very similar to each other in a
bandpass filtered image, and it may be difficult to distinguish them from each
other. Figure 5.11 demonstrates this effect for the same data set as used in figure
5.10. The top row shows an original 0-90 deg differential image (left) and its
bandpass-filtered version, whereas the bottom row shows a random white noise
pattern with the same mean and variance than the differential image before
(left) and after bandpass-filtering with the same filter values. A comparison
between both bandpass-filtered versions demonstrates the expressed similarity
between the noise and the differential imaging patterns. In this example, the
noise variance after bandpass filtering is much lower than the variance of the
optical signal (see scale bar), but generally the dls-signal-to-noise ratio can be
close to zero in optical imaging experiments, and in this case even the signal
sizes would become comparable to each other.
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Figure 5.12. Overview over source separation methods which we have applied to optical imag­
ing data together with their mutual relationships. The methods are based on different assumptions
or sources of knowledge about the signals including knowledge about functional relationships
(top) and assumptions about statistical properties of sources (bottom). PCA: principal com­
ponent analysis. ICA: independent component analysis. ESD: extended spatial decorrelation.

Part of the problem described here can be overcome shifting the center fre­
quency of the bandpass filter away from the dominant frequency of the mapping
signal. The effect of this procedure can be seen in figure 5.8, where the filtered
noise (outside the annular artifact) appears more wiggly than the mapping signal
inside.

The present chapter can be summarized as follows: We have formulated the
data analysis task for optical imaging as a source separation problem and have
described three heuristic methods, which have been established in the litera­
ture as standard tools for the solution of this problem. We have demonstrated,
that these heuristic methods can be viewed within the framework of the source
separation problem as formulated in section 1.2, and that they are based on the
following particular assumptions about the behavior of different signal com­
ponents: Differential imaging assumes completely stimulus-unspecific global
components and an ideally stimulus-specific mapping signal, whereas normal­
ization by a cocktail blank in addition assumes that a set of stimulus-condition
as a whole excites the cortex uniformly. Bandpass-filtering, in contrast, is based
on the assumption that different signal components cover different regions in
the frequency domain.

We and many others (Blasdel and Salama, 1986; Grinvald et al., 1986; Ts'o
et aI., 1990; Bonhoeffer and Grinvald, 1991; Blasdel, 1992a; Kisvarday et aI.,
1994; Bonhoeffer and Grinvald, 1996; Sengpiel et al., 1998b) have demon­
strated that these methods can work well for selected real data sets. At the same
time it has become clear that for many optical imaging experiments (actually
the majority of all sets), these assumptions may not be true and the application
of differential imaging or bandpass filtering may fail or even yield mislead­
ing results. It is therefore reasonable and necessary to search for alternative
approaches for the analysis of functional brain imaging data. These methods
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should be applicable to the source separation problem eq. (5.7) or (5.10) and
should be able to take reasonable assumptions about the different sources as
input. Two classes ofmethods, which are summarized in figure 5.12, have been
successfully applied to the analysis of optical imaging data: Regression meth­
ods (top) (Mayhew et al., 1996b; Stetter et al., 1997c; Greve et al., 1999a; Greve
et al., 1999b; Stetter et al., 2000b), which describe data sets as combinations
of deterministic model functions and noise, and projection methods (bottom)
(Stetter et al., 1997c; Everson et al., 1997; Otto et al., 1998; SchieBl et al.,
1999; Schaner et al., 2000; SchieBl et al., 2000b; Stetter et al., 2000c; Vollgraf
et al., 2000; SchieBl et al., 2000a), which try to find "interesting" directions
in the data space according to a given criterion. In the following two chapters
we will describe regression methods and projection methods, respectively, and
will demonstrate on artificial data sets how they can be applied to image stacks.
Chapter 8 will provide selected applications of the statistical methods to real
data sets.



Chapter 6

REGRESSION METHODS FOR
SOURCE SEPARATION

In many statistical analysis tasks, we are confronted with data sets, which
are arranged in pairs of data points (tm , X m ) , m = 1, ... , M. For example, X m
may be some observable which has been measured at times t-«. and we wish
to characterize the statistical structure in this data set. Often, there is some
reason to believe that there is an underlying deterministic functional relationship
between the pairs of data. The characterization of this underlying functional
relationship based on the data set {(tm , xm )} == (tm , xm ) , m = 1, ... , M,
represents a regression task (Kay, 1993; Bishop, 1995).

Formally, we assume that each dependent data point, say X m , is connected
to its partner tm via a function a(t;w), i.e. it represents a noisy sample of the
deterministic function a(tm ; w) at tm :

X m = a(tm ;w) + nm , m = 1, ... , M. (6.1)

In eq. (6.1), nm are realizations of some random noise variable. a(t;w)
denote a class of functions which are parameterized by the vector of statistical
parameters w = (WI , ..., WL)T, which is unknown and must be estimated from
the data. Because the parameter vector exhaustively describes all properties of
the model function, we will often refer to w itself as the model. In the following
sections, we will consider special cases of this regression scheme and will show
how they can be applied for source separation in imaging data.

1. General Linear Models
A general linear model (GLM) represents a regression method, for which a

special assumption about the function a(t, w) is made: the function is assumed
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Figure 6.1 llIustration of a
regression task: characteriza­
tion of the underlying func­
tional relationship from a set
of data pairs.
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to depend linearly on the model parameters w:

L

a(t; w) == 2: al(t)wI = a(t)Tw. (6.2)
1=1

This means that a general linear model describes the output data as a linear
combination of fixed functions al(t), l = 1, ...L plus additive noise:

L

Xm = 2:al(tm)wI +nm, m = 1, ..., M (6.3)
1=1

Note that this does by no means imply that the model functions themselves are
linear, but instead that they are linearly mixed to explain the data. However
eq. (6.3) implies that the functions al(t) are assumed to be known, and the L
parameters WI encode the amplitudes of the functions. Estimating the param­
eters means to estimate, how much each of the model functions contributes to
the observed relationship between t and x. Figure 6.2 illustrates, how a general
linear model works .

The model eq. (6.2) can be written in matrix form as

x=Aw+~ ~~

where the data points and noise have been combined to vectors x = (Xl, ..., XM ?
and n = (nl' ...,nM)T, respectively. TheMxL matrix A contains the samples
of the model functions as columns,

aL(td )
aL(t2)

aL(tM)

(6.5)

and is called the design matrix of the GLM.
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1.1 Maximum Likelihood Estimation of Parameters
We wish to find an optimal set of parameters, for which the linear model

eq. (6.3) describes the data best. For this we have to define what is a good
description of the data. One common measure for the quality of a regression is
based on the criterion, how likely the observed set of output data, x, has been
generated by a given model w on the basis of the input data t = (tl,"" t M ).
This measure can be written as the conditional probability

(6.6)

and is called the likelihood of the data given the model. If we assume that
different pairs of data are drawn independently from the underlying distribution,
the likelihood factorizes and can be written as

M

p(Xl' ..., XM Itl , ..., tM; w) = II p(xm I t m ;w) (6.7)
m=1

An expression for the likelihood can be obtained using the following consid­
eration: Given the model assumption eq. (6.3), we can identify any contribution
to the data, which cannot be explained by the model, as noise:

L

nm = Xm - Lal(tm)w/.
1=1

(6.8)

The probability for a data pair (tm , X m ) to be generated by a given model w
is the higher, the more likely it is, that the mismatch between model and data
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Figure 6.3. Illustrationof the likelihoodof data. (a) The likelihoodof the data is given by the
probability, that the deviationsof the data fromthemodel(theresiduals)are due to noise, i.e. that
they are drawnfrom thenoisepdf. (b) The likelihoodfunctioncan be viewedas a functionof the
model parameters insteadof the data. Maximizing this functionyields the maximum-likelihood
parameter vector.

is due to noise. In other words, if the probability density function (pdf) of
the noise component nm is given by Pn(nm), the likelihood of the data pair
(tm , xm ) in light of the model w is given by the probability for the assigned
noise to happen:

p(Xm I tm;w) = Pn (xm - aT(tm)w).

The complete likelihood of the whole data set becomes

M

p(x I tjw) =Pn(x - A w) = II Pn (xm - aT(tm)w) ,
m=l

(6.9)

(6.10)

where Pn(n) denotes the joint pdffor the whole random noise vector n (figure
6.3).

In maximum likelihood estimation, we identify the optimal model with the
parameter set VI, which is most likely to generate the observed data set, i.e, the
parameter set which maximizes the likelihood of the data:

VI = argmaxw (P(xltjw)) (6.11)

This equation again expresses the view, that the model is scored by its ability
to explain the data correctly. In particular, the pdf p(xlt; w) is viewed as a
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functionof the modelparameters W and is calledthe likelihoodfunction. If we
use the fact that the likelihood is non-negative and that the logarithm is strictly
monotonically increasing, eq. (6.11) is equivalent to finding the minimum of
the negativelog-likelihood:

w = argmin., (-logp(xlt;w)). (6.12)

For pdf's which belong to the exponential family, the logarithm in eq. (6.12)
extracts their exponent and thereby simplifies the calculations that have to be
carried out.

1.2 Maximum Likelihood for Gaussian Noise
If the noise is white and Gaussian with variance u~, the likelihoodfunction

can be written as

p(x I t;w) (6.13)

For the maximum-likelihood solution, the derivative of the negative log-likeli­
hood must vanish,

d
0 = dw -In(p(x I t; w))lw (6.15)

= :2 (ATX- ATAw) (6.16)
n

= AT
2A

((ATA)-lATx-w). (6.17)
un

ForGaussiannoise,themaximum-likelihoodparametervectorcanbecalculated
analytically from the data and the design matrix and is givenby

(6.18)

The solutionexists,as long as the matrix ATA has full rank, i.e, as long as the
model functions used are not linearlydependent. Using the solutioneq. (6.17),
we can rewrite the likelihood function eq. (6.14) as

p(xltjw)= 1 M/2 eXP(-~(W-WlAT2A(W-W)). (6.19)
J27l"u~ un

The likelihoodfunction is Gaussian in W with mean wand covariance matrix
Cw = u~(ATA)-l (cf. figure 6.3b).
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The noise that is present in the data, which is referred to as the residual, can
then be estimated as

where

ft = x-Aw
= x - A(AT A)-IAT x

-. Rx,

(6.20)

(6.21)

(6.22)

(6.23)

is the residual-generating matrix and I denotes the M x M unit matrix. The
estimated noise variance becomes

A2 (Rx)T(Rx)
(j = ,

n trace(R)
(6.24)

where the trace of the residual-generating matrix provides the number of data
points corrected by the number of estimated parameters (degrees of freedom).
The covariance matrix for the model parameters C w provides an error measure
for the estimate: The variance of the l-th parameter WI is estimated as

a} = (Cw)l,l = a-~ ((ATA)-I)!!.
l

(6.25)

A measure of the level of significance of a parameter estimate is its estimated
signal-to-noise ratio, which is called the Z-score. The Z-score of the l-th pa­
rameter is given by

(6.26)

Equations (6.18), (6.25) and (6.26) provide the minimum variance unbiased
estimators for the amplitude parameters of the model functions, their statistical
errors and their significance levels.

1.3 Linear Models for Optical Imaging Frame Stacks
The GLM framework can be used as an approach towards the source sepa­

ration problem eq. (5.9) and (5.10) as follows (Mayhew et al., 1996b; Stetter
et al., 1997c): (i) We formulate candidates of the time courses al(t) of the dif­
ferent signal sources in response to stimulation . (ii) These time courses serve
as model functions of a GLM, which we use to estimate the spatial distributions
81(r) of the different signal amplitudes . The spatial pattern of the mapping
signal, 81 (r), yields the estimate for the two-dimensional distribution of neu­
ronal activity. This application of a GLM uses knowledge about the temporal
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Figure 6.4 An image stack of
an optical imaging experiment
can be considered as a collec­
tion of pixel time series. Each
pixel time series is fitted by
a GLM in order to estimate
the contribution of the differ­
ent sources to the total signal
within that pixel.

structure of the signal components in order to extract their spatial structure. For
this an image stack is regarded as a collection of pixel time series (figure 6.4)
and the time courses ai (t) of the different source patterns are assumed to be
known. Now we can use a GLM to model each individual pixel time series,
say the pixel time series at position r, x(r) = (Xl(r), ..., XM (r))T , as a linear
combination of the known model functions. As a result, we obtain estimators
of the statistical parameters wl(r) (eq. (6.18)), which specify the amplitude of
the l-th model function within the pixel time series at r. The spatial distribution
of each statistical parameter is called a statistical parametric map or SPM. In
other words, the l-th SPM w!(r) is the estimator for the strength of the l-th
signal component at pixel r and can be identified as the estimator of the l-th
source pattern: wI(r) == sl(r).

In summary, if we assume (i) that the source separation problem is linear
and separable in space and time, eq. (5.10), and (ii) that we explicitly know
the time courses al (t) of the source patterns, we can write the source separation
problem as

x(r) = As(r) + n(r), (6.27)

where A is the design matrix with the signal time courses as columns. We
obtain the maximum-likelihood solutions

(6.28)

where the l-th component of the vector s(r) contains the statistical parametric
map for the l-th source pattern. Its variance is given by

(T2(r) = (Rx(r))T(Rx(r)) ((ATA)-I) .
I trace(R) I,l

(6.29)
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Figure 6.5. Demonstration of a fit using a GLM. (a) Three model functions (b) Data set as
noisy mixture of the functions in (a). (c) Best fits of the signal time courses using a GLM with
the true model functions (a). (d) Data (circles) plus best fit (solid line) . The dashed lines mark
the distance of one estimated noise standard deviation Un to either side.

Finally, because application of the GLM is a local operation in space, we can
abbreviate eqs. (6.27) and (6.28) by using the data matrix notation eq. (5.7) to

x = AS+N,
S = (AT A)-lATX

(6.30)

(6.31)

where S is the L x P matrix which contains the L source images as rows.

1.4 Examples
Figure 6.5 shows a simple example based on an artificial pixel time series,

which demonstrates how a GLM works. In figure 6.5a, three model functions
are plotted - two alpha-functions x(t) = ((t - T)j8) exp( -(t - T)j8) with
(Tl,81) = (10,20) (dash-dotted line) and (T2' 82) = (5,5) (dashed line) and
one exponential function x(t) = exp(-tjT3) with T3 = 20 (solid line) -
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Figure 6.6. Fit of strongly noisy data by a GLM (a) . Data from same model functions and
mixing coefficients as in figure 6.5, but with stronger noise, Un = 0.5. (b) Best fit using a GLM
and the true functions .

which have been used and combined with Gaussian white noise with a standard
deviation of (Tn = 0.1 to generate the noisy time series in figure 6.5b. Figure
6.5c shows the same data set (circles) together with the best fit using a GLM,
which has been obtained as x = As (solid line). The dashed lines mark the
estimated standard deviation of the noise x± an' In the example shown, the true
amplitudes of the three curves were s = (-0.3,1,0.5), and their estimates were
obtainedby theGl.Mas s = (-0.2949±0.0244, 0.999±0.046, OA91±0.045),
where the errors denote the standard deviations of the amplitude estimates
according to eq. (6.25). The estimated noise amplitude was an = 0.101. All
estimated parameters are very close to the true values, and the time series is
well described by the model.

Given the assumptions are true, a GLM works well even for very low signal­
to noise levels. Figure 6.6 demonstrates the noise robustness of a GLM for the
same set of model functions and mixing coefficients as in figure 6.5, but now
the noise level was (Tn = 0.5. Though the structure of the data has become
almost invisible due to the strong noise (figure 6.6a), the model can still reliably
recover the amplitudes. Figure 6.6b again shows the best fit (solid line) and
the confidence intervals (dashed lines) together with the data. In this case, the
estimated amplitudes were s = (-0040 ± 0.16,0.83 ± 0.30,0.81 ± 0.289)
resulting in Z-scores near 3, and the estimated noise standard deviation was
an = 0.64. The reason why a GLM seems to work so astonishingly well is that
we use an extremely strong source of knowledge for the fit, namely the exact
shape of the model functions. If we do not use the correct functions for the fit,
a GLM may fail completely (cf figure 6.9).

Figures 6.7 and 6.8 demonstrate, how a GLM can be used to extract individual
source patterns from an image stack, if the time courses of the patterns are
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Figure 6.7. Artificial imagestackas a toy-source separation problem. (a) Left: Setof artificial
source images BI(r); Right: their corresponding time courses al(t) . Solid, dashed and dash­
dottedlinescorrespond to theleft, middleandrightimage, respectively. (b) Imagestackobtained
from the patterns in (a) with amplitudes -0.5,1,1 and Un = 0.3. Everyfourth imageis shown.
Grayscale: ±2

known. The left part of figure 6.7a displays a set of three artificial source
patterns 8/ (r), l = 1, 2, 3 with 64 x 64 pixels, each normalized to unit variance.
The plot at the right part displays three time series a/(t), l = 1,2,3, where the
first and second functions are alpha functions with (7"1, (h) = (10,20) (l = 1,
solid line) and (7"2,82) = (5,15) (l = 2, dashed line) and the third function is
an exponential decay with 7"3 = 20 sec (l = 3, dash-dotted line). From these
images and time series, the image stack shown in figure 6.7b was generated as

with tm = 0,1, ..., 40 and a noise standard deviation of an = 0.3. There are
frames which almost purely contain the second or third source, but in particular
the first source is always strongly mixed with the two other patterns source and
is barely visible in the image stack. We regard the first source 81 as a model for
the mapping signal, which we want to recover from the image stack.

Figure 6.8a shows the statistical parametric maps s/(r), l = 1,2,3 that are
obtained from the image figure 6.7b stack by application of a GLM eq. (6.28)
with the correct model functions. The tree maps reflect the individual source
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32

Figure 6.8. Source separation using a GLM . (a) Statistical parametric maps s,(r) (Gray
scale:±1.5) obtained from the image stack figure 6.7 using the true model functions. (b) Digital
Z-score. The regions. where the absolute value of the Z-score exceeds the value of2 are marked
white. (c) The residual of the fit (every fourth image shown; gray scale ±O.5 )

patterns and their amplitudes very well, i.e. all three sources have been very
well separated from the noisy mixture by the GLM. The image row 6.8b below
the estimated sources provides the digital Z-score for the statistical parametric
maps. Every pixel, for which the absolute Z-score eq. (6.26) of the correspond­
ing parameter exceeds 2 shows a bright value. The digital Z-score can be used to
mark regions where the corresponding parameter is significantly present. The
residual for the fit can be seen in figure 6.8c (every fourth image shown). The
residual does not contain any visible structure, which means that the model has
extracted all the structure in the data.

This example demonstrates that a GLM is able to solve a linear source sep­
aration problem very well, if the model functions are known exactly. This is
usually not the case and figure 6.9 demonstrates what happens, if the wrong
model functions are used for the fit. This time, the tree model functions shown
in figure 6.9a were used for the GLM instead of the true functions 6.7a. The
resulting SPMs are shown in the top row of figure 6.9b, the corresponding dig-
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Figure 6.9. Performance of a GLM with incorrect model functions. (a) Model functions used:
A constant function (solid), a ramp (dashed) and a sine-wave (dash-dotted). (b) The statistical
parametric maps obtained from the image stack in figure 6.Th using the model functions in (a)
instead of the true functions. The source separation is incomplete. (c) The residual (every fourth
image shown) still contains structure in space.

ita! Z-scores below the respective SPM, and every fourth image of the residual
is displayed in figure 6.9c. The following observations can be made: (i) The
sources are estimated incorrectly, and the source separation is incomplete. (ii)
The residual data stack still contains some structure. As a consequence, the
Z-score which is calculated on the basis of the incorrect residual, can be less
well interpreted as a measure for significance.

From these observations we can draw two conclusions: (i) For a GLM to
be applicable it is important to retrieve as much knowledge as possible about
the time courses of the individual sources. (ii) The contents of the residual can
serve as an important quality measure for the GLM: According to eq. (6.20),
the residual should contain white Gaussian noise. As long as the residual
contains correlations like some spatiotemporal structure, the model functions
cannot explain the data correctly. Note that the opposite is not true. There are
GLM model functions, which are not the true ones but produce a white residual:
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Because we assume the source separation problem to be linear, any set of linear
combinations of the true functions will fully explain the data, yet will retrieve
only linear combinations of the original source patterns.

In summary, general linear models can help to quantify the source patterns
and their confidence levels from the data, if the model time series are known,
or if there exist reasonable approximations. The necessary condition of a fiat
residual can serve as a quality measure for a GLM, but a fiat residual is not
sufficient to ensure a correct source separation. In later sections we will describe
further methods for the statistical analysis of optical imaging data. Several of
them will provide estimates for signal time series, which can serve as model
functions for a GLM. But first we consider an extension oflinear models, which
allows to a certain degree the optimization of the model functions themselves,
namely nonlinear parametric models.

2. Nonlinear Parametric Models

The success of a linear model depends crucially on the assumptions imposed,
namely that the source separation problem is linear, separable in space and time
(cf. eq. (5.9», and that we know the correct model functions. If one or both
assumptions are not true, a GLM may fail. A more powerful approach towards
source separation is therefore to estimate both the model functions and their
amplitudes from the data. This approach actually relaxes both requirements of
standard GLM, because (i) we can obtain the model functions from the data and
(ii) we can obtain a different set of model functions for each pixel of an image
stack, which leads to a non-separable model. We refer to models which estimate
both the functions and their amplitudes as nonlinear models. In general case
it is difficult to estimate a set of arbitrary functions, say by a non-parametric
method, because of two reasons: First of all, the set of functions that describes
the data correctly is not unique, as we have already seen in the previous section:
Many sets of functions could fit the data but at the same time would fail to
separate the sources correctly. Secondly, non-parametric descriptions of model
functions requires the estimation of many degrees of freedom from the data,
and the method is subject to overfitting.

These problems can be by-passed, if we do have some sources of knowledge
about the approximate shape of the functions. For example, we know that
metabolic changes are smooth in time, we know their approximate time-scale
and we know that stimulus-evoked signals must start after the stimulus-onset
etc. Based on these sources of knowledge, it is often possible to define a family
of candidates for each model function, which are characterized by a set of
parameters. In other words, we can restrict the search space for the model
functions by a parametric description of their curve shapes over time. This
approach towards regression is referred to as a nonlinear parametric model
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(NPM). A nonlinear parametric model helps both restricting the number of
parameters and resolving possibleambiguities in the sets of model functions.

2.1 Model Frameworkand ParameterEstimation
A nonlinearparametric modelrepresents a specialcaseof thegeneralregres­

sion task eq. (6.1), in which the regression function can be written as a linear
combination of parameterized model functions

L

a(tj w) = L al(tj <I»SI , W =: (<I> , s). (6.33)
1=1

In eq. (6.33), al(tj <I» denote the L families of candidatemodel functions, the
curve shapes of whichare parameterized by a set of nonlinearparameters <I> =
(¢1, , ¢c)T. Thisvectorcanbeconsidered as acollectionofparametersubsets,
(¢l , , ¢~1' ·..¢f, ..., ¢~dT, where the subset (¢i, ...,¢~)T parameterizes the
l-thfamilyofmodelfunctions, i.e. al(tj <I» =: al(tj (¢L ...,¢~)). Thevaluesof
<I> have to be estimated from the data. Becausethere is a nonlinearrelationship
between <I> andthedata, theseparameters arereferredto as nonlinearparameters
and the model approach is referred to as a nonlinear model. The vector s =
(Sl, ... , SL)T contains the amplitude parameters of the model functions and its
components are referred to as linear parameters. They provide the amplitude
or signal strength of every component within the time series and must also be
estimatedfrom the data. The total parameterset is givenby W = (<I>, s) .

Using a NPM, a given time series of signals, x = (Xl,'''' XM )T, can be
written as

L

X m = Lam,I(<I»SI +nm , m = 1, ...,M, (6.34)
1=1

where am,I(<I» = al(im, <I» . Similarlyto eq. (6.4),we can write the model eq.
(6.34) in matrixform as

x = A(<I»s + n, (6.35)

but now the M x L design matrix A(<I» depends on the nonlinear parameters
of the model.

Both linear an nonlinearparameters can be estimatedusing the principle of
maximumlikelihood (cf. section1.2). ForGaussian noisewehaveto maximize

p(x I tjw)=:p(x I tj<I>,s) (6.36)

= (27fa~)M/2 exp (- ~:;~ (6.37)

( ;)M/2expL212(x - A(<I»s?(x - A(<I»s~ (6.38)
21fan \. an V

f
~max.
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Figure 6.10. Simplified maximization of the likelihood function: For each arbitrary but fixed
nonlinearparameter, thelinearparameters areoptimizedanalytically (blackdots). Thenonlinear
parameters are optimizedalongthe linearoptima(dashedline).

Equation (6.38) represents a multidimensional optimization problem, the so­
lution of which is time-consuming. Figure 6.10 illustrates, how we can simplify
the maximization by treating linear and nonlinear parameters separately. For
this we make use of the fact that the likelihood function is Gaussian in the di­
rection of the linear parameters. For an arbitrary but fixed nonlinear parameter
set ~, the optimization task then reduces to finding the optimal linear parameter
set, which can be done analytically using eq. (6.18). In figure 6.10 this means
that for every value of the nonlinear parameters, we maximize the likelihood
along the direction of the linear parameters, i.e, we find the maximum of the
likelihood along the solid lines (marked as a black dot). The nonlinear pa­
rameters are then optimized along the trajectory of all optimal linear solutions
(dashed line in figure 6.10).

This two-step procedure can be mathematically formulated as follows: For a
fixed but arbitrary set of nonlinear parameters, ~, the optimal linear parameters
SOpt (q» are determined as:

(6.39)

The residual is then given by

n(~) = x - A(q» SOpt(~)

= (1 - A(~) (AT(~)A(q»)-l AT(q») x. (6.40)
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The optimal nonlinear parameters IPOpt can be obtained by minimizing the cost
function

M

E(IP) = 2:: n~(IP),
m=1

(6.41)

which represents the squared norm of the residual, and the optimal linear pa­
rameters result from eq. (6.39) as

(6.42)

The two-stage estimate makes use of the fact that linear parameters can be
estimated analytically. The cost function needs only to be minimized in the
lower-dimensional space of the nonlinear parameters resulting in a faster and
more stable procedure.

2.2 Application to Optical Imaging Frame Stacks
The application of nonlinear parametric models to the separation of sources

from frame stacks is analogous to the GLM framework shown in section 1
(Greve et al., 1999a; Greve et al., 1999b; Stetter et al., 2000b). An image stack
x(r) is modeled pixelwise by a nonlinear model as:

x(r) = A(IP(r))s(r) + n(r), (6.43)

where the columns of A(~(r)) contain candidates for model functions, which
are parameterized by the set of nonlinear parameters. Equation (6.43) can be
rewritten as

L

xm(r) = 2:: am,I(~(r)) sl(r) +nm(r), (6.44)
1=1
L

= L RI(r, tm) +nm(r), (6.45)
1=1

where the sources

(6.46)

are no longer spatiotemporally separable, because the temporal model functions
depend on space via the nonlinear parameters ~(r). Nonlinear parameterized
models can therefore be used as an ansatz for the solution of the general source
separation problem eq. (5.6) instead of the spatiotemporally separable version
eq. (5.10). The case of separable sources arises as a special case of NPMs, for
which the nonlinear parameters are independent of space, ~(r) == IP Yr.
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Figure 6.11. Demonstration of a fit usinga NPM.(a) Initialmodel functions for the nonlinear
fit. (b) Circles: Artificial datageneratedusingthesameparameters as in figure6.5b. Solid: Best
fit usinga GLM and the modelfunctions in (a). (c) Best timecourses as estimatedby the NPM.
(d) Data (circles)plus best NPM fit (solid line). The dashedlines mark the confidence levelof
one estimatednoise stdandard deviation (J n to either side.

2.3 Examples
Figure 6.11 demonstrates how a NPM works. The circles in figure 6.11b

show an artificial time series, which has been generated using the same func­
tions and parameters as in figure 6.5: two alpha-functions x(t) = ((t­
T)/8) exp(-(t - T)/8) with (TI, 8I) = (10,20), (T2,82) = (5,5) and an
exponential function x(t) = exp( -t/T3) with T3 = 20 were superimposed
with the amplitudes -0.3,1,0.5 and combined with Gaussian white noise
with standard deviation an = 0.1. In other words, the true linear parame­
ters were (SI' S2, S3) = (-0.3,1,0.5) and the true nonlinear parameters were
q> = (Tl'81, T2, 82 , T3) =(10,20,5, 5, 20). Now we assume that we know some
aspects of the true model functions, namely the function class (exponential or
alpha functions), however we do not know the precise parameter values. Figure
6.11a shows three model functions, which correspond to the initial parameter
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values <.Po = (12,5,3,3,20) for the NPM. Because the model functions are not
correct, a GLM based on these functions will yield a suboptimum fit, which
is plotted as a solid line in figure 6.11b. Figure 6.11c provides the best set of
model functions after optimization of the curve shapes by a nonlinear model
(Optimization was carried out for the parameters Tl, <51,T2 and <52). The cost
function was minimized using ordinary gradient descent with adaptive step size
control (Stetter et al., 2000b) (131 iterations, stopping criterion: less than 10-5

change in the residual) and yielded <Popt = (11.45,13.17,4.97,5.75,20) and
S = (-0.38 ± 0.11,0.92 ± 0.17,0.54 ± 0.14), which is reasonably close to
the true values. Figure 6.11d, finally, shows the data together with the best
nonlinear fit and the confidence levels ±a-n and demonstrates, that the NPM
has achieved a good description of the data.

An example for a source separation task which is spatiotemporally non­
separable together with its solution by an NPM is shown in figure 6.12. The
image stack shown in figure 6.12a was generated again using the three source
patterns of figure 6.7a with 32 x 32 pixels together with two alpha functions
with rise times Tl = T2 = 10 and an exponential decay function (T3 = 20).
The delays for the two alpha functions were systematically varied: The delay
of al varied linearly along the x-direction from 18 to 22 and the delay of a2

varied linearly along the negative y-direction from 4 to 8. The three sources
were combined with amplitudes (-0.5,1,1) and Gaussian noise with Un = 0.1
to

= -0.5

+
+
+

al (tm ; ri = 10, <51 = 18 + 4/31rx ) 81(r)

a2(tm i T2 = 10, <52 = 8 - 4/31ry ) 82(r)

a3(tm ; T3 = 20)83(r)

nm(r) (6.47)

To this image stack, a NPM with initial parameter values <Po = (10,20,10,
6,20) was applied pixelwise (i.e, to each pixel time series separately and under
the same conditions as in figure 6.11). The resulting statistical parametric maps
for the nonlinear parameters <51,opt(r) (left) and <52,Opt(r) (right) are shown in
figure 6.12b, and figure 6.12c displays the SPMs for the linear amplitude param­
eters 81(r), 82(r), s3(r) (from left to right). The linear maps are very similar
to the original source patterns, which demonstrates that the NPM successfully
extracted the sources from the spatiotemporally non-separable example data.
The non-linear SPMs for the delays figure 6.12b correctly extracted a horizontal
and vertical gradient for the delay of the second and third sources, respectively.
The delays were actively estimated (differed from their initial values) only at re­
gions with a non-zero contribution of the respective source, i.e. at regions were
the corresponding spatial source pattern has non-zero values. This behavior
is reasonable because nonlinear parameters cannot be reliably estimated if the
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Figure 6.12. Sourceseparation usinga nonlinear parametric model. (a) artificial noisyimage
stack (every second imageshown). Sourcesare non-separable in space and time becauseof a
gradientin thedelaysof thealphafunctions (seetext). (b) SPMofthenonlineardelayparameters,
(c)SPMof the linearamplitude parameters and(d) the residual imagestack(samedisplay as the
stackin (a» . A NPMcan successfully performa sourceseparation for the problemeq. (5.6).

corresponding model function is not significantly contained in the considered
pixel time series. Figure 6.12d, finally shows the residual of the fit in which
almost no structure is left.

The examples shown demonstrate the powerful potential of NPMs for the
analysis of optical imaging data. However, a few limitations of this method
are worth mentioning: (i) NPMs represent a nonlinear optimization procedure,
which can be captured in local minima. The success rate for nonlinear fits there­
fore depends on the initial values for the parameters. In practice, reasonable
initial values for the curve shape parameters of model functions can be obtained
by analyzing mean-time series ofdifferent regions of interest in a preprocessing
step and obtaining initial values for the nonlinear functions from a fit to these
mean-time series. Often , the initial parameters are close to the average over the
nonlinear SPM, and the nonlinear parametric model only has to find the devi ­
ation of the actual parameter from the mean value. Actually, the initialization
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of the parameters to the mean of the true values has been used for the fit figure
6.12. (ii) If the families of model functions chosen are similar to each other (as
the two alpha functions in the examples) , or if they do not change very strongly
depending on their parameters (as the exponential function in the examples),
the resulting cost function for the optimization process can show almost flat
regions. In the examples above, the cost function becomes flat in the 81 and 82

directions, if the two alpha functions have the same non-linear parameters and
opposite amplitudes and becomes flat along the 'T3 direction of the exponential
for large values of'T3. Part of this problem can be overcome heuristically by
putting constraints on the allowed ranges of different parameters. (iii) a NPM
has to estimate a considerable number of parameters per pixel time series. As
a consequence, this methods requires sufficiently long image stacks, which are
not always available from real imaging experiments. Also, its sensitivity to
noise increases compared to a GLM (cf. errors in amplitude parameters for
GLM and NPM above), because the NPM has to estimate more free parameters
from the data. (iv) A NPM can only be applied successfully, if the true time
series are located within the search space of the model families: we still have
to guess the correct model family, and if we fail to do so the NPM will fail.

In the next chapter we will describe an alternative set of methods for source
separation, namely projection methods, which do not rely on explicit knowl­
edge about the time courses of signals, but instead use assumptions about their
statistical structure over space and time to find interesting directions in the data
space.



Chapter 7

PROJECTION METHODS FOR
SOURCE SEPARATION

1. Principle

Projection methods represent a family ofparticular algorithms, which attempt
to find and represent interesting statistical structure in the data. The data to be
analyzed are a set of P data vectors x(r) = (Xl, ...,XM? (r), which are indexed
by r. Each data vector can be represented as a point within aM-dimensional
vector space, which is called the data space or state space, and all P data vectors
together form a data cloud within the state space. Generally, the data points can
be considered as random samples, which are drawn from a usually unknown
pdf p(x) . Projection methods attempt to characterize important aspects of
the underlying pdf p(x) on the basis of the observed data set. They attempt
to find a direction or a set of directions within the data space, along which
particular aspects of the statistical structure of the data become obvious. In the
simplest case, the projection of the data onto these directions reveal an aspect
of its statistical structure . Figure 7.1 schematically illustrates two examples
for interesting directions in the data space, namely a direction along which the
variance of the data becomes maximal (figure 7.1a) and a direction along which
the data show maximal segregation into clusters (figure 7.1a).

How can projection methods contribute to the solution of the source separa­
tion problem eq. (5.lO)? In the previous chapter we have seen that regression
methods for the analysis of optical imaging data may fail to provide a correct
solution, if some explicit knowledge about the time courses of the different
signal components is not available, or ifwe use the wrong search space for the
time courses. As an alternative, we may consider methods , which are based on
some implicit knowledge, namely on certain assumptions about the statistical
structure of the data. For this approach it is useful to think of a given observed
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(a)

EXPLORATION OF CORTICAL FUNCTION

(b)

Figure 7.1. illustration of the principle of projection methods. The goal is to find directions
withinthe data space, whichreveal interesting statisticalstructure of the underlying probability
densityfunctionp(x) . Theprojection of thedataontothecorresponding vectors v andw makes
one aspectof this structure explicit. Thereare many interesting features including (a) maximal
variance of the dataor (b) maximal clustering of data.

pixeltimeseriesx ofan opticalimaging experiment as a randomsample, which
is drawnfrom the unknown pdfp(x). Now, insteadof explicitly specifying the
properties of the time series itself, we assume that we know something about
p(x) - in otherwords wesetupa generative modelof theunderlying probability
densityfunction.

The generative modelfor the pixel time seriesfollows in a naturalwayfrom
eq. (5.10): We assume that the pixel time series result as a linear mixture of
source vectors plus additive noise,

x=As+n. (7.1)

This generative model also specifies a relationship between the pdf's of the
observed mixtures and the unknown sources. As discussed in the previous
chapter, our taskconsists of estimating the sources s. Here we have to estimate
themonlyon thebasisof theobserved dataandsomeknowledge or assumptions
about the underlying pdf's, but both the mixing matrix A and the sources s are
unknown. Therefore, the present problem represents an example of a blind
source separation (BSS)problem(Jutten and Herault, 1986). BSS attempts to
findan estimateB = A-I for the inverse of the mixingmatrixI. The columns
of A representa particularset of projection directions, namelythe desiredtime
coursesof the signalcomponents. However, thereexists an ambiguity between

IThe true inverse onlyexistsif A is a squarematrix, M == L , andhas full rank. Wewillhenceforth restrict
ourselves to thiscase.
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the length of the column vectors of A (i.e. the amplitudes of the time courses
al(t)) and the variance of the source patterns:

X m = Lam,l Sl = Lam,l (AlSD = L(am,lAl) sl == La~,l sl' (7.2)
1 / l /

In the last chapter this ambiguity was resolved by keeping the functions a/(t)
normalized to unity. In the present chapter, we define the source patterns s/(r)
to have unit variance for reasons discussed below.

Principal Component Analysis (PCA) (Bishop, 1995) removes second order
correlations from the data and represents an important preprocessing tool which
can already perform at least a partial separation. Full BSS algorithms often pro­
ceed from the results ofPCA and use further statistical source properties in order
to complete the separation. One class ofBSS algorithms, which is known as In­
dependent Component Analysis (Jutten and Herault, 1986; Bell and Sejnowski,
1995; Amari, 1996; Cardoso, 1997; Hyvarinen et al., 2001), is based on the as­
sumption of statistical independence of different sources . A second class of
BSS algorithms is based on the assumption of vanishing cross-correlations be­
tween sources that are smooth in time (Molgedey and Schuster, 1994). In the
following, we will describe some approaches towards a partial or full solution
of the blind source separation problem eq. (5.10) together with some exam­
ples on artificial data and performance measures. Blind separation of sources
has been successfully applied to biomedical data including functional Magnetic
Resonance Imaging (fMRI) (McKeown et al., 1998), electro-encephalograpical
measurements (EEG) (Makeig et al., 1996), cardiovascular signals (Vetter et al.,
1999) and optical imaging (Stetter et al., 1997c; Everson et al., 1997; Otto et al.,
1998; SchieBl et al., 1999; Schoner et al., 2000; SchieBl et al., 2000b; Stetter
et al., 2000c; Vollgraf et al., 2000; SchieBl et al., 2000a).

Our treatment in the following chapters is based on the following assump­
tions: (i) The mixing matrix is a full rank square matrix, L = M . This can
be virtually always fulfilled in practical applications because of the presence of
noise, which can be treated as "spurious" sources. (ii) The data vectors have
zero mean: ~ L:p x(r) = O. This assumption can be fulfilled without loss of
generality by subtraction of the mean time series from the original data.

2. Principal Component Analysis
Principal Component Analysis finds a set of orthogonal directions within the

data space, referred to as principal components (PC) , along which the variance
of the data assumes extremal values. Figure 7.1a shows an example of an
elongated two-dimensional pdf in a gray scale plot. A set of data points drawn
from this pdf show a high variance along one direction and a lower variance
along the other. The vector v represents the first principal component of this
pdf, namely the direction along which the projections of the data show maximal
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~t
1. principal component =

high variance component

~~t
2. princIpal component =

low variance component

Figure 7.2. lllustrationof PCA for time-series data (temporal PCA). PCA can separatetime
series the amplitudes of whichvarystronglyoverthe set of pixels(dashedlines in the ensemble
of time series)fromthosewhichvarymoreweakly. The variance of a time seriesdoes not refer
to its own amplitude withinone pixel. but characterizes how stronglyits amplitude changes on
average over all pixels.

variance. Consequently, the projections of the data onto the first PC capture
the highest portion of the variance that is present in the data. The second PC
represents the direction of highest variance in the subspace orthogonal to the
first PC and so forth. Because the set of all principal components is a complete
orthonormal system, the whole data set can be exactly reconstructed from its
projections onto all principal components. Again we identify each data point
of the data set with an individual pixel time series, and the whole data set with
the set of all pixel time series of an image stack. Figure 7.2 illustrates how
PCA acts if each data point is a time-series. PCA can separate prototype time
series (the principal components), the amplitude of which vary strongly as one
proceeds through all pixels, from those with weaker variance.

2.1 Mathematical Formulation
The set of M principal time series vm, m = 1., ..., M within the data space

and the data variances along these directions can be found as the solutions of
the eigenvalue problem

CxV=VA.

The matrix Cx is the covariance matrix of the data with elements

(7.3)

1
Cx,mn = (xm(r)xn(r))r:= p Lxm(r)xn(r) (7.4)

r
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Figure 7.3. illustration of the sphering procedure for a Gaussian pdf (top) and a non-Gaussian
pdf (bottom). Each pdf is treated as a Gaussian. and the principal components are calculated.
Then the dataare transformed to the set of pes and their variances within the new coordinate
system are equalized.

and can be written in matrix notation as

(7.5)

The orthogonal M x M matrix Y (i.e., y-I = yT) contains the eigenvectors
V m as columns. A is the diagonal matrix with the corresponding eigenvalues
Am as diagonal elements . The m-th eigenvalue Am represents the variance of
the data along the m-th principal axis V m .

2.2 Sphering and Dimension Reduction for
Optical Imaging

By use of the matrices Y and A we can transform the original data in a way
that the new data set is uncorrelated: the components of the transformed vectors
have unit variance and all cross-correlations between them vanish. We define

Y := A-1/2yTX =: DX, (7.6)

for which we find the correlation matrix
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yyT = ..!..A - 1/ 2y T X X T Y A -1/2
P

= A-1/2yTCxYA-1/2
A-1/2yTyAA-1/2

= I (7.7)

where I is the M x M unity matrix. Equation (7.7) demonstrates that the
components of the transformed data vectors are mutually uncorrelated and have
unit variance. The transformation eq. (7.6) is called sphering, the matrix D is
the sphering matrix and the transformed data set Y is called the sphered data
set. The motivation for this nomenclature becomes obvious from the top row of
figure 7.3. In case that the data follow a multivariate Gaussian distribution (or
loosely speaking, if the pdf looks like an ellipsoid), sphering finds the principal
axes and equalizes the extent of the pdf along each axis. As a consequence, the
Gaussian pdf becomes circularly symmetric and factorial.

It is worth mentioning that the sphering operation is based only on the second­
order covariance matrix Cx, i.e. it is fully determined by the second-order
statistics of the data. It can capture all the important structure of a joint Gaus­
sian pdf, but if the data distribution is non-Gaussian, it may contain important
features which can be described only by higher-order statistics. These aspects of
the data cannot be accessed by PCA. The bottom row of figure 7.3 demonstrates
sphering on a non-Gaussian pdf. Irrespective of the shape of the distribution,
PCA selects the orthogonal directions of extremal variance, changes the co­
ordinates to these axes and equalizes the variances. In this case, the pdf of
the resulting sphered data shows some interesting structure, namely the tips
along the oblique directions, which have not been captured by the sphering
as a second-order technique. This motivates techniques based on higher-order
statistics for source separation, which we address in the following sections.

In many applications, the dimension of the data space is not necessarily the
same as the intrinsic dimension of the data. For example, the dimension of the
data space in optical imaging is given by the number of frames recorded per
trial, which is arbitrary. In contrast, the dimensionality of the data is related to
the number of sources, which may be smaller than the dimension of the data
space. If we would perform sphering as described above, all directions would
be normalized to unit variance. This would result in an expansion of directions
which contain only noise and no data contributions, would be expanded, which
leads to an amplification of noise. If the data can be distinguished by variance
from the noise, PCA can be used to determine the intrinsic dimensionality of
the data. Namely, if the data and noise parts have different variances, they
concentrate in different principal components , because the latter sort the data
by variance. If, for example, the data contribution is concentrated within the
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subspace spanned by the PC's ml ~ m ~ m2, its intrinsic dimension is
K = m2 - ml + 1 and the data can be processed in two ways:

First, we can generate a compact code of the data by projecting the data into
the subspace which is spanned by the K considered principal components. The
new data set

(7.8)

consists of vectors with the lower dimension K < M, but capture most of the
variance of the signals. This procedure is called dimension reduction.

Second, we can reconstruct the data using the K important PC's only instead
of all PCs. Principal components, for which we assume or know that they do not
encode any important aspects of the signals are omitted. A "cleaned" version
Xof the data set X can be calculated as

m2 m2

X = L Vm (v~X) = L vm >.;(2Ym l
m=ml m=ml

(7.9)

where Ym denotes the image contained in the m-th row of the sphered data set,
normalized to unit standard deviation, and is referred to as the m-th principal
image.

As can be seen from eq. (7.6), PCA can be successfully applied for Blind
Source Separation, if the mixing matrix can be written as

A =VA1/ 2 (7.10)

where V is orthogonal and A is diagonal with non-negative and different diag­
onal elements. This leads to the following necessary conditions for the applica­
bility of PCA: the time courses al(t) of the sources must be mutually orthogonal
and the source patterns sl(r) must be represented in the data with different vari­
ances. Though this is usually not true for single trials in functional imaging
data, we will demonstrate in the next chapter, how PCA can be successfully
applied to the analysis of combinations of trials.

A general mixing matrix cannot be written in the form eq. (7.10). Instead,
an arbitrary full rank real matrix with M ~ L can be rewritten by its singular
value decomposition

(7.11)

where U and V are orthogonal and A is diagonal with non-negative elements.
If we want to solve the BSS problem for the general case, we have to estimate
all three matrices V, A and U. The first two matrices can be estimated by PCA
and can be inverted by sphering. Provided we have found the true sphering
matrix, sphered data fulfill

y = Dx
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Figure7.4. BlindSeparation ofSourcesintwosteps: Sphering (left-tomiddle)removes second
ordercorrelations. Sphering is notunique andis determined onlyup to an orthogonal matrixU.
whichis estimated in a second stepby Independent Component Analysis (ICA)or second-order
decorrelation techniques (e.g. extended spatialdecorrelation, ESD).

= DAs+Dn
= A-1/2yTyA1/2UT S+Dn

= UTs+Dn, (7.12)

and we have reduced the problem to the task of estimating the orthogonal ma­
trix U from the sphered data set. If the mixture was noisy, the noise has been
transformed to ii = D n and has become correlated. Figure 7.4 illustrates the
two-step process which is convenient for blind source separation (yet not neces­
sary for most algorithms). After sphering, which is done by use of second-order
statistics and the assumption of uncorrelated sources, the orthogonal matrix U
has to be estimated using different statistics. The following sections introduce
two approaches , by which U can be estimated. The first approach is called
Independent Component Analysis (ICA), where higher-order statistics are used
for this task. The second approach is based on second-order statistics, but uses
some statistical knowledge about the spatial structure of the source patterns .
We refer to this approach as extended spatial decorrelation (ESD, cf. section
4).

3. Independent Component Analysis
Independent Component Analysis assumes that the observed data are a linear

mixture of statistically independent sources. Statistical independence of the
sources means that the source vector s is a random vector with statistically
independent components. This is reflected by the fact, that the joint density
p(s) factorizes into the marginal pdf's,

M

p(s) = IIpI(SI)
1=1

(7.13)
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where PI(Sl) is the probability density of the l-th source. For functional imaging
applications this means that ICA assumes the pixel values of different source
patterns to be statistically independent from each other. ICA uses the indepen­
dence assumption of the sources in order to estimate the unmixing matrix A-I
and the sources s from the data set X. Because of the ambiguity between the
source variances and the row norm of the mixing matrix, eq. (7.2), and be­
cause factorizing densities still factorize, if the coordinate axes are permuted,
ICA algorithms provide the source estimates with arbitrary variances and in an
arbitrary order: They determine the unmixing matrix only up to an arbitrary
scaling and permutation matrix. Here we select sources with unit variance (see
above) and select an arbitrary permutation. In many practical applications, the
data are usually sphered first and afterwards the orthogonal matrix U and the
sources are estimated from the sphered data set Y.

Several algorithms for lCA have been suggested during the last decade (Jutten
and Herault, 1986; Comon, 1994; Bell and Sejnowski, 1995; Cardoso, 1997;
Oja, 1997; Hyvarinen and OJa, 1997; Lee, 1998; Hyvarinen et al., 2001). In the
following sections we briefly describe two approaches towards lCA, namely
lnfomax (Bell and Sejnowski , 1995) and fastICA (Hyvarinen and Oja, 1997).

3.1 Infomax
The Infomax-principle for ICA (Bell and Sejnowski, 1995) considers a map

from the (sphered) data space to the source estimates

S = Wy, W T = W-1 (7.14)

and attempts to estimate the orthogonal matrix W such that the source estimates
become as independent as possible. This is achieved by the following trick:
The source estimates are transformed component-wise by a non-linear invertible
function

Zl = rpl(SI) , Z = cI»(Wy), (cI»)1 = rpl , (7.15)

in a way that the transformed data vector is restricted to aM-dimensional
hypercube:

-1 ~ zi ~ 1,l = 1, ...,M. (7.16)

(7.17)

If we canfind parameters W for which z is uniformly distributed within
its target hypercube, then the components of z are statistically independent.
Because the transform cI» between z and s acts component-wise, it does not
change any dependencies between the components, and therefore we have si­
multaneously found independent components Sl. This becomes obvious, if we
use the transformation rules for probability densities:

p(s) = q(z)det (~:) = q(z)detJ .
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Figure 7.5. Independent Component Analysis by Infomax. The algorithm finds an orthogonal
transform followed by a component-wise nonlinearity suchthat the resulting vectorshowsmax­
imal entropy. Because the outputis restrictedto a hypercube. maximum entropyis reachedby
the uniformdistribution. Independent outputz (right) implies independent components of the
sourcevectors (middle).

with

8zk '( )J kl = -8 = dk/lpl 81
81

(7.18)

where the prime denotes the first derivative of a function and dkl denotes the
Kronecker-symbol, which is 1 if k = 1 and 0 otherwise. If the pdf of the
transformed vector z factorizes, we obtain the following expression for the
source density:

p(s) = (If q/(Zl)) (If IpHSl))

= II q,(Ip/(sl))IpH81)

I

- IIpl(s/), (7.19)
I

The equations (7.18) say that as soon as q(z) factorizes, the source density p(s)
factorizes as well and we have found independent components.

The uniform distribution of a random vector with finite support has the largest
Shannon-entropy (Shannon, 1948) of all possible distributions. In order to
equalize q(z) as good as possible, the parameters W can be optimized by a
learning rule which maximizes the entropy of the output vectors z . The method
can only generate a completely uniform distribution, if the marginal source
densities match the derivatives of the (arbitrarily chosen) nonlinearity (cf. eq
(7.18)). This usually cannot be guaranteed, because the source densities are
unknown, but in order to factorize the source distribution, it is not necessary for
the algorithm to really arrive at the uniform distribution. The algorithm works
reasonably well, if the nonlinearity is approximately correct.
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Figure 7.6 Kurtosis k as a
measureofnon-Gaussianity of
a pdf. Gaussian densities have
zero kurtosis (dashed), super­
gaussian densities a positive
(thick line) and subgaussian
densities a negative kurtosis
(thin line).

Because maximizing the output entropy on the basis of a given data set at
the same time maximizes the mutual information between input and output, the
corresponding algorithm has been called Infomax. The Infomax principle has
been extended by (Amari, 1996) to include the concept of the natural gradient
and to keep the variance of the estimated sources fixed. The Infomax principle
together with these ingredients yield the following learning rule for the matrix
elements of W:

s = W(i)y
W(i + 1) = W(i) - ~(s)sTW(i)

(7.20)

(7.21)

Figure 7.5 illustrates the Infomax procedure. The pdf for the sphered data is
rotated and transformed component-wise. The parameters of both operations
are adjusted such as to equalize the output distribution as much as possible.

3.2 FastlCA based on Extremal Kurtosis
A second principle alternative to the Infomax-principle for finding the inde­

pendent components of a data set is based on the idea to find a projection of the
data such that the resulting pdf looks as non-Gaussian as possible. The idea is
motivated by the central limit theorem, according to which the densities of lin­
ear combinations of random variables are always closer to Gaussianity than the
densities of the pure variables. For Blind Source Separation this means that the
pdf's of the source components are always further from a Gaussian distribution
than those of the observed data components. One measure of Non-Gaussianity
of a random variable z is its kurtosis

(7.22)

The kurtosis represent a diagonal element of the fourth-order curnulant of the
data and reflects fourth-order statistics. Density functions with expressed peaks
and long tails are characterized by positive kurtosis and are called supergaussian.
In contrast, flat and concentrated densities are called subgaussian because of
their negative kurtosis value. Gaussian distributions have zero kurtosis, because
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Figure 7.7. Principle of Independent Component Analysis by maximizing the kurtosis of the
estimated source density. FastICA finds a direction, along which the absolute kurtosis of the
projected data becomes maximal. The figures show a supergaussian joint pdf (top) and its
projection onto the abscissa (bottom) for the data after sphering (left) and after fastICA (right).
The kurtosis of the pdf is maximal when it factorizes.

they are fully determined by statistics up to second-order. FastICA considers a
linear map of the (sphered) data y

s=Wy (7.23)

and optimizes the parameters such as to maximize the absolute value of the
kurtosis of the output components S!. If the absolute kurtosis is maximal, the
source estimates are most likely not to consist of a mixture anymore.

The principle of maximization or minimization of the kurtosis of the esti­
mated sources has been shown by (Hyvarinen and Oja, 1997) to provide a fast
fixed point algorithm for ICA, as long as at least one non-Gaussian source is
present. The method yields the rows of the unmixing matrix W = iJ one at a
time. The first row w[ of W is obtained by the fixed point iteration

(7.24)

while for the remaining rows, after each application of Eq. (7.24) the resulting
vector Wj has to be projected into the subspace orthogonal to Wl, . .. , Wj-l'

Figure 7.7 illustrates once more the operation of fastICA. The algorithm
rotates the pdf of the data such that its projections onto the new axes become
as highly kurtotic as possible. The figure demonstrates for the example of a
two-dimensional supergaussian pdf, that the kurtosis of the projection is higher
when the pdf factorizes (bottom right) than if it does not factorize (bottom left).
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4. Second Order Decorrelation Methods
ICA uses higher order statistics in order to estimate the unmixing matrix.

Because in real applications the size of the data set is restricted and the data
are noisy, it is difficult to reliably estimate higher-order cumulants, and the
separation quality of ICA can seriously deteriorate compared to the noiseless
case. Further, ICA and PCA ignore any statistical properties of the source
patterns in space. Both methods would yield the same result, irrespective of the
order of the data points, because they cannot distinguish between the original
image set x(r) and an image set with randomized pixels x(Perm(r)). In the
latter case, however, the resulting source estimates would be completely useless
for the biologist. We can conclude that the sources exhibit some important
spatial structure or coherence, which relates the different pixel values over
space, and which is ignored by ICA.

Decorrelation-based BSS methods circumvent this drawback by the follow­
ing strategy: (i) The estimate of the unmixing matrix is based on second-order
statistics only, which can be robustly estimated from data sets with realistic
sizes. (ii) PCA is extended by additional assumptions about the second-order
source statistics over space. Second-order decorrelation methods have been in­
troduced by (Platt and Faggin, 1992; Molgedey and Schuster, 1994). They have
been recently reformulated for the spatial domain (Otto et al., 1998; SchieBI
et al., 1999), improved with respect to their noise robustness (Schoner et al.,
1999a; Schoner et al., 2000; Schoner et al., 1999b), and have been proven
powerful BSS techniques for source separation of functional imaging data (
(SchieBl et al., 1999; Schielll et al., 2000b; Stetter et al., 2000c; Vollgraf et al.,
2000; Schielll et al., 2000a), see also chapter 8).

Second-order decorrelation methods for optical imaging are based on as­
sumptions about the correlation functions between the unknown source pat­
terns. The cross-correlation function between two source patterns sl(r) and
sm(r) is defined as

The sum in eq. (7.25) runs over all pixels which are common for both patterns,
and Q is the number of these pixels. The cross-correlation function Cs ,lm(.6.r)
measures the correlation of the function Sl with a version of Sm which has been
shifted by 6.r. The autocorrelation function ofa source s; is given by Cs,ll(l\r)
and can be regarded as a measure of spatial smoothness.

By use of these definitions, the assumptions used for second order BSS
can be formulated as follows: (i) Each source is smooth in space, which is
reflected by a smooth autocorrelation function (ii) Different sources as well
as arbitrarily shifted versions of them are uncorrelated, i.e. cross-correlation
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functions between different sources vanish identically. (iii) Different sources
should have different autocorrelation functions. If we combine all correlation
functions of a set of M sources to a matrix C s(.6.r) with (Cs(.6.r))lm .­
Cs,lm(.~r),we can formulate the first two assumptions as

Cs,lm(.6.r) = dl,mCs,ll(.~r) =dl,mA(.dr)ll V.6.r. (7.26)

C s(.6.r), .6.r =/:. 0 is referred to as a shifted correlation matrix and A(.dr)
denotes the diagonal matrix of the auto-correlation functions. A method that
fulfills the condition eq. (7.26) for arbitrary shift vectors extends peA, which
only diagonalizes Cs(O). We refer to algorithms, which simultaneously diago­
nalize all shifted covariance matrices Cs(.6.r) as extended spatial decorrelation
(ESD) methods. Loosely speaking, ESD uses the information in Cs(O) in order
to estimate Y and A, and the shifted correlation matrices in order to additionally
estimate U. Depending on the particular algorithm considered, however, all
matrices might be used to estimate each of the three quantities . In the following
sections, we will summarize a few different approaches towards BSS according
to eq. (7.26)

4.1 Single-ShiftESD
Single-shift ESD uses the zero-shift covariance matrix plus one additional

shifted correlation matrix of the measured data in order to estimate the M 2

parameters required for BSS: the (M - 1)M off-diagonal elements of the
unmixing matrix B plus M autocorrelation values at the chosen shift. In the
noiseless case, the correlation matrices of the observed data can be written as

and if the two correlation matrices fulfill

Cs,ll(O)Cs,mm(.6.r) =/:. Cs,Il(6r)Cs,mm(0) VZ =/:. m,

(7.27)

(7.28)

the estimate for the unmixing matrix B = A-I can be uniquely determined
from the two conditions (Molgedey and Schuster, 1994):

BCx(O)BT

BCx(.6.r)B
T

BCxBT = A(O)

= A(.dr)

(7.29)

(7.30)

for a single arbitrarily chosen shift vector .6.r. The BSS problem has been
reduced to the problem of simultaneously solving the two diagonalization tasks
eqs. (7.29) and (7.30). If we write the separating matrix as

B = UA1/ 2y T = un, (7.31)
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where D is the sphering matrix, then B diagonalizes the zero-shift correlation
matrix eq. (7.29),

BCx(O)BT = UnGnTUT = UCy(O)UT = UIUT = UUT = I
(7.32)

because of eq. (7.7) and the orthogonality of U. Equation (7.32) says that
the sphered data set and any orthogonal transform of it fulfills eq. (7.29).
Consequently, we can use the second equation (7.30), applied to the sphered
data, in order to determine the orthogonal matrix uT as the eigenvector matrix
of the symmetrized (cf. section 4.4) and shifted covariance matrix of the sphered
data:

(7.33)

The algorithm can be carried out by diagonalization of only two matrices, eq.
(7.29) and (7.30), independently of each other and is very fast compared to ICA
and fastICA.

4.2 Multishift ESD
Single-shift ESD uses a well-determined system of equations in order to

estimate the separation matrix. In the noiseless case and if the assumptions
about the sources are ideally fulfilled, it represents a fast method for second­
order BSS. However, real data are noisy, and the zero correlation condition eq.
(7.26) is not necessarily ideally fulfilled. In order to increase the robustness of
the method against these influences, it seems reasonable to use many shifted
covariance matrices for estimating the unmixing matrix.

Multishift ESD (Schoner et al., 1999a; Schoner et al., 2000; Scheuer et al.,
1999b) uses the fact that the condition eq. (7.30) must hold for every arbitrary
shift vector. By choosing a set {.6.r} = (.6.rl, ..., .6.rN) of shift vectors , we
arrive at the overdetermined equation system

We have to find an orthogonal matrix U, which simultaneously diagonalizes
the N shifted correlation matrices. If U can be assumed strictly orthogonal,
the simultaneous diagonalization can be carried out by a method (Cardoso and
Souloumiac, 1996) based on Jacobi rotations (referred to as "Jacobi methods").
The presence of noise in the mixtures can lead to a wrong estimate for the
sphering matrix , because we diagonalize

instead of the noiseless matrix ACs(O)AT , and sphering is carried out incor­
rectly. As a consequence, the remaining matrix U, which completes the blind
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(7.38)

source separation, may not be orthogonal anymore, and cannot be found using
the Jacobi method.

For noisy BSS tasks, it seems more appropriate to consider a cost function for
the matrix U, which becomes minimal, if the conditions eq. (7.34) is optimally
fulfilled. But now we do not require the matrix to be orthogonal anymore, and
possible deviations from orthogonality can help to correct for possible errors
due to wrong sphering. We can score a separating matrix by its ability to remove
the cross-correlation functions between the source estimates while keeping the
autocorrelation functions finite. One possible cost function which achieves this
task is

E(U) = L L (Sm(r)sl(r + ~r))r (7.36)
{t.r} l:;em

= L L ((UCy(~r)UT) )2. (7.37)
{t.i-} l:;em 1m

Alternatively, we can minimize a cost function, which scores the full sepa­
rating matrix,

E(B) = L L ((BCx(~r)BT)lm)2.
{t.r} l:;em

Its optimization implicitly estimates both the sphering matrix D and the matrix
U without any further assumptions, but the optimization can be numerically
unstable, if the mixing matrix is far from orthogonal.

4.3 Noise-RobustSphering
As we have seen, noise can deteriorate the zero-shift covariance matrix and

can cause erroneous sphering. If the sensor noise is white in space and time,
i.e., if it has a diagonal correlation matrix, then the sphering matrix can be
estimated more reliably by using a symmetrized shifted correlation matrix for
a small shift vector ~rn, instead of the zero-shift covariance matrix:

ex = ACs(~rn)AT + (n(r)nT(r + ~rn))r

= ACs(~rn)AT ~ ACs(O)AT (7.39)

4.4 A Unifying Approach: Convolutive Decorrelation
Procedures

Single-shift and multishift ESD represent heuristic approaches towards se­
cond-order decorrelation, and can be viewed as special cases of a more general
approach towards decorrelation methods (Vollgraf et al., 2000), which is based
on convolved versions of the signals considered. Starting from a general for­
mulation of convolutive decorrelation methods we derive criteria for the choice
of the cost function and the pairs of convolutions for optimal performance.
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4.4.1 Principle of Convolutive Decorrelation Methods

We wish to optimize a strategy for estimating the unmixing matrix B from
a set of shifted covariance functions

BCx(.6.r)B
T = A(.6.r), ,n = 1, ... , N . (7.40)

As we shall see shortly, signals of finite length, in general, have only ap­
proximately vanishing cross correlation functions. Therefore, the choice of the
shift parameters .6.r is crucial for the success of the algorithm. Optimal Ar
would yield minimal cross correlations in the true sources, compared to their
autocorrelations. Since the sources and hence optimal .6.r are unknown, we
have to find strategies which minimize finite size effects and noise effects.

One general approach towards the solution of eq. (7.40) is to consider filtered
or convolved versions of the signals instead of shifted ones. For discrete signals,
the convolution of a signal X m with a kernel f is given by

(Xm *J)(r) = Lxm(r - .6.r)f(.6.r) .
~r

(7.41)

With f(.6.r) = <5(.6.r - .6.ro), a shift of a spatial pattern by .6.ro results as a
special case of a convolution. A unified approach to BSS based on decorrelation
uses correlation matrices of a set of convolved versions of mixtures,

(7.42)

in order to estimate the sources. (x«J) denotes the component-wise convolution

of the signal vector x with f. A convolutive covariance matrix C!,g can be
viewed as a linear combination of all shifted covariance matrices, weighted
with the values of the convolution kernels f and g at the corresponding shifts

C!,g = L L f(.6.rl)g(.6.r2)Cx(.6.r2 - .6.rd·
~rl ~r2

(7.43)

C!,g can only be diagonal, independently of f and g, if Cx(.6.r) is diagonal
for all .6.r. Conversely, if all Cx(.6.r) are diagonal, then the same is true for
C!,g. We conclude that signals have zero cross correlation functions if, and
only if, arbitrary convolved or filtered versions of the signals are uncorrelated
at zero time delay. Consequently, the task of source separation can be carried
out by simultaneously diagonalizing convolutive instead of shifted covariance
matrices. We arrive at the following set of conditions for the unmixing matrix
B:

C!,g = BC!,gBT = A(J,g) (7.44)

for all considered pairs of convolution kernels (I, g). C[,g = ((8*J) (!h g)T}r
denotes the convolutive correlation matrix of the estimated sources, which we
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wish to bring as close as possible to a diagonal matrix A (j,g). The single-shift
and multishift ESD algorithms are included in the approach eq. (7.44) as special
cases with shift operations as convolutions and their characterization is included
in the following analysis of the general problem eq. (7.44).

4.4.2 Finite Signals
The effects of finite signal size onto the BSS task can be well analyzed in

the frequency domain. We denote the Fourier transform of a signal S by the
respective upper case letter S. For infinite, discrete signals Sm, the Fourier
transform is given by

Sm(k) = L sm(r)e(-ikr),
r

(7.45)

where i is the imaginary unit and k denotes a vector of spatial frequencies (wave
vector) in the two-dimensional space. The transformation to the frequency do­
main allows the cross correlation functions of the sources, C, (Llr), to be easily
computed by a conjugate complex multiplication. In the frequency domain, the
assumption of zero cross-correlation functions eq. (7.26) is given by

Sm(k)Si(k) = 0 for m # l , and any k, (7.46)

where the superscript * denotes the conjugate complex of a number. Condition
eq. (7.46) says that the frequency components ofuncorrelated signals must be
sparse, i.e. for any spatial frequency k, no more than one signal may be active.

A signal of finite length can be considered as an infinite signal, multiplied
with a window function, which is different from zero only for a range of finite
length. The multiplication in the spatial domain becomes a convolution in
the spatial frequency domain, and the spectra of the signals are blurred with
the spectrum of the window function. Equation (7.46) therefore holds only
approximately and the cross correlation functions do not vanish completely
anymore.

4.4.3 Symmetry of Matrices

We want to diagonalize correlation matrices such that the resulting separating
matrix and the source estimates are real functions, but shifted or convolutive
covariance matrices are not necessarily symmetric. Consequently, they can have
complex eigenvectors and eigenvalues. We can analyze the diagonalization of
an arbitrary matrix C by considering its decomposition into a symmetric and
an antisymmetric part:

C = C s + Ca, (7.47)
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In order to successfully diagonalize C, we have to fulfill the condition
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(7.48)

where A is diagonal and therefore symmetric. However, real separating ma­
trices B do not change the symmetry of the corresponding matrix, i.e. we
find

(BCS/UBT)
1m = Lb/ic:rbmi

i,j

= L bmj(±cj{U)b/i
j,i

= ± (BCS/UBT)ml' (7.49)

where the positive sign corresponds to the symmetric and the negative sign to
the antisymmetric matrix. If we know that the unmixing matrix B must be real,
we can conclude that the antisymmetric part in eq. (7.48) must vanish. Any
finite antisymmetric contribution of covariance matrices in the observed data
must be due to influences of noise or finite signal size. Additionally, we cannot
use the antisymmetric part of the covariance matrix in order to correct errors
within the symmetric part, because both matrix spaces are orthogonal to each
other. Due to these reasons, we can reduce most of the noise and finite size
effects if we omit the antisymmetric part and use only symmetrized covariance
matrices.

4.4.4 Cost Functions
It is important to know, which properties of cost functions are advantageous

for the efficient simultaneous diagonalization of the equations (7.44). For di­
agonalization of more than two covariance matrices, an analytic solution like
in (Molgedey and Schuster, 1994) does not exist anymore. Further, since the
sources are usually only approximately uncorrelated, the best achievable solu­
tion would still not completely diagonalize the covariance matrices. Therefore,
a measure is needed, which evaluates, how close the covariance matrices of
the reconstructed signals C{,g = BC!,gBT come to a diagonal form. This
measure is implemented by a cost function, which has to be minimized with
respect to B.

One simple choice for a cost function penalizes the squared sum over all
off-diagonal elements of C{,g.

EI(B) = L L L (BC!19BT):m'
{(f,g)} I m#1

(7.50)
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where the first sum runs over all pairs of convolution kernels (J,g). The gradient
of (7.50) has the form

V'El(B) = 4 L (C{,Y - diag(C{'Y)) BC!'Y. (7.51)
{(J,y)}

It can be seen, that the gradient vanishes if all C{IY are diagonal, but the gra­
dient also vanishes, when B identically vanishes, which would be the absolute
minimum of the cost function in the case of not ideally uncorrelated sources.
It is therefore necessary to either constrain B explicitly in order to prevent it
from growing to small, or to setup a cost function, which is invariant against
changes in the variance of the outputs s.

In order to overcome this problem, it has been suggested (Molgedey and
Schuster, 1994) to constrain the diagonal elements of the estimated mixing
matrix to a fixed value, i.e.,

E2(B) = El(B) with Bill =:: 1, 1= 1, ... , M (7.52)

during minimization of the cost function (7.50). However, this constraint does
Dotprevent B from becoming arbitrary small. Consider a matrix

(

1 a a)
a 1 a

B- 1 = . '. . ,. . . .. . . .
a a .. . 1

for which (7.52) is fulfilled. For large a, the corresponding matrix B is

(7.53)

(

M-2 1
-M-1 M=r ..

1
_1_ _M-2 .
M-1 M-1

B=-a : : .. .
1 1

M=r M-1

M~1 )M-1
. ,

M-2
- M-1

(7.54)

where M is the number of sources. Increasing the value of a will decrease
the row norm of B and hence decrease the cost function without diagonalizing
C[,y.

s
The following numerical example illustrates the weaknesses of the constraint

eq. (7.52). Consider two covariance matrices

and

C~ = (~ ~)

C2 = (2 0)
5 0 1

(7.55)

(7.56)



Projection Methodsfor Source Separation 145
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Figure 7.8 Surface of the
cost function eq. (7.52) with
the constraint Bill = 1 for
two sources and the mixing
matrix provided in the text.
The two hyperbolic ridges are
regions with singular B-1 and
have infinite values of the cost
function.

for two given source signals, which are mixed using the matrix

A = ( 1 0.7)
0.7 1 . (7.57)

(7.58)

Figure7.8 shows a contourplot of the cost function with respect to the two off­
diagonal elements of the estimated mixing matrix B-1. The hyperbolic ridge
corresponds to values at which B-1 becomes singular and causes an infinite
value of the cost function. Solid lines mark gradient descent trajectories for
5 different initializations. It can be seen, that depending on the initialization,
the gradient descent procedure may succeed to find the true mixing matrix
(trajectories 1,3), or may diverge, leading to arbitrary small B and hence trivial
minima (trajectories 2,4,5). Due to these properties, the constraint (7.52) does
not seem to be suitable for gradient based joint diagonalization.

The spurious minima of the simple cost function (7.50) arise from vanishing
variances of the output signals s. To avoid this behavior, it seems reasonable to
constrain the variances of the source estimates, which corresponds to constrain­
ing the unmixing matrix instead of the mixing matrix. The source variance can
be constrained by normalizing the off-diagonal elements of C{,g by the diag­
onal elements. Then, the gradient of the cost function is zero for directions,
which only change the source variance by changing the row norm of B. The
modified cost function is given by

(
Cf ,g)2

E3(B) = L L L 5 1m .
{(f,g)} I m;tl I(C{,gL (C{,g) mml

Because the matrices C{,g are not necessarily positive definite, the normalizing
term must appear as absolute value in the denominator of (7.58). The gradient



146 EXPLORATION OF CORTICAL FUNCTION

5,."..,.~-~~-----,

4 .',':\,
.>

3

2

1

o0 0.2 0.4 0.6 0.8 1
not positive definite

Figure 7.9. Histogram of the reconstruction error of the successful trials (finite reconstruction
error) with positive definite C!,9 (left) and not positive definite C!,9 (right). Positive definite
covariance matrices perform considerably better.

can be obtained from

where e'm abbreviates (e!'9) 1m'

Simulations have shown, that this cost function performs well as long as all
covariance matrices are positive definite. Two experiments with 80 simulta­
neous diagonalizations each were performed. Each experiment consisted of
the simultaneous diagonalization of four 4 x 4 covariance matrices. For the
first 80 experiments, only positive definite matrices with random eigenvalues

in (ef9) II E]0,1] were used, whereas in the second 80 trials matrices were

allowed to contain entries of arbitrary sign: (C!'9) II E [-1, 1]. For each

experiment, the mixing matrix A was initialized with elements from a (0,1)­
normal distribution. The results were evaluated, using the reconstruction error
RE(BA). This quantity provides a measure of the ratio of the off-permutation
elements of BA to the permutation elements. The permutation is determined
by the largest elements in each row. If BA could not be interpreted as a per­
mutation matrix, i.e. two or more maximum elements in one row or column,
the source separation was considered as failed . Otherwise the reconstruction
error was scored using the performance index as suggested by (Koehler and
Orglmeister, 1999):

(7.60)
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(7.61)

In the experiment with the positive definite C[,g, a finite reconstruction error

could be achieved in 77 of 80 trials, whereas with the not positive definite C{,g
only 15 of 80 separations where successful. Figure 7.9 shows the histogram of
the reconstruction error of the successful trials. It is on average much lower if
all matrices C[,g are positive definite.

Another cost function that is independent of the output variances compares
the diagonal elements of the matrices C{,g with their eigenvalues:

E4(B) = L V (diag (C!,g) ,eig (C!,g))
{(f,g)}

The operator diag extracts the vector of diagonal elements of a matrix and the
operator eig the vector of eigenvalues. V is a distance measure between the
vector of the eigenvalues and the vector of diagonal elements of C{,g. For

diagonal C!,g these two vectors are identical (provided they are properly sorted
by magnitude). To obtain invariance on output variances, the diagonal elements
need to be normalized to unity

1

(o[,g) = (ct,g) I(C[,g) (C[,g) 1-2 .
s 1m S ml S 11 S mm

Thus, the cost function has the form

(7.62)

(7.63)E4(B) = L: (L: 11 -IAf'gIIOl) 0

2,

{(f,g)} I

where the parameters al and a2 control the distance metric and Ar,g are the

eigenvalues of OJ,g.
This cost function performs quite similar to eq. (7.58) as shown in figure

7.10, where for 2000 separating matrices near the absolute minimum A-I of
the experiment of figure 7.8, the values of both cost functions are plotted against
each other. The narrow shape of the cloud corresponds to a strong correlation
between the two cost functions, but eq. (7.63) is quite computationally expen­
sive due to the need of numerically calculating the gradient, which includes
multiple evaluations the eigensystem of C!,9 .

In summary, the cost function (7.58) seems to be most advantageous, because
it is fast to compute and for positive C{,g avoids spurious minima corresponding
to trivial solutions.

4.4.5 Choice of Convolution Kernels

For convolutive decorrelation algorithms we may freely choose the set of
convolutions f and g, which we want to use for source separation. The following
considerations provide two criteria for good choices of convolution kernels.
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10'

Ea

Figure 7.10. Logarithmic plot of the values of the cost functions Ea and E4 for the example
eqs. (7.55- (7.57)and2000 separating matrices near the globalminimum.

The first criterion is based on the maximization of noise robustness . In
the presence of white noise, a noise vector is added to the linear mixture,
x = As + n. The noise signals are considered to have zero cross correlation
functions with each other and with the signals, i.e. (en (~r))ml = 0 for all ~r
and all I =f:. m. Thus, the best source separation result for B = A-I yields

s=Bx = s + A-ln. (7.64)

That is, in the best case, the sources are properly separated , but the noise is
still present. In the general case, the covariance matrices of the outputs can be
written as

C{,9 = BAsATBT + BC!,9BT. (7.65)

Optimal convolution kernels for noise robustness should suppress C~9, which
is, equivalently to (7.43),

C!,9 =L L f( -rdg(-r2)Cn(r2 - rl) = 0
rl r2

(7.66)

The noise is assumed to be white, thus C n(r2 - rl) = 0 for rl =f:. r2. Thus,
the noise term in (7.65) is zero when f and 9 are orthogonal.

L f(r)g(r) = 0
r

(7.67)
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The second criterion is based on the observation (figure 7.9), that convolutive
decorrelation using the cost function (7.58) work best, if the convolutive corre­
lation functions are positive definite. Here we examine ifone can generally find
convolution kernels, that guarantee positive definite C{,g and c~,g. Because

positive definiteness of C!,g and c~,g are equivalent, we can test for positive
definiteness on the basis of the mixtures instead of the sources. The goal is to
achieve positive diagonal elements of C!,g. The m-th diagonal element is the
correlation of the two signals 8 m *f and 8m *g. This quantity can be calculated
in the frequency domain

(c!,g) = -2
1

:LF(k)G*(k) 8m(k)8~(k). (7.68)
mm 7r k

Making use of the conjugate complex symmetry of the spectrum of real signals,
we obtain the desired condition

lR(F(k)G*(k)) ;::: 0 for all k, (7.69)

where lR(z) denotes the real part of a complex number z, The equality must
not hold for at least one spatial frequency vector k with 8m (k) i- 0, otherwise
we would get a zero diagonal element in C!,g (and also in C{,g) which would
lead to a singularity in the normalization term of cost function (7.58). Hence,
in the general case, this finding is incompatible with (7.67), what can be seen
from

:Lf(r)g(r) = (F*G)lk=O = :LlR(F(k)G*(k)). (7.70)
r k

Equation (7.70) can only be zero if all sum terms on the right hand side are zero
or negative terms are allowed.

Thus, positive definite covariance matrices cannot be generally guaranteed
with orthogonal (J,g). However, this does not mean, that it is impossible
to obtain positive definite covariance matrices from orthogonal convolution
kernels. If prior knowledge about the sources is available (e.g. if they are
restricted to a certain frequency band), this knowledge can be used together
with eq. (7.68) for the construction of convolution kernels, which fulfill eqs.
(7.67) and (7.70) simultaneously.

5. Examplesand Benchmarks
The success of the separation performance among different BSS algorithms

strongly depends on the statistical properties of the data set (SchieBl et al.,
1999). Figure 7.11a shows the same set of artificial source patterns as used in
the previous chapter 6. The sources have been designed as spatially smooth but
otherwise arbitrary patterns. In this data set, the autocorrelation functions are
smooth and are different from each other, but the cross-correlation functions
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Figure 7.11. (a) Set of three artificial source patterns 81 (top), 82 (middle) and 83 (bottom) as
in figure 6.7, sampled with 256 x 256 pixels. (b) One-dimensional slices through their auto- and
cross-correlation functions . The sources have smooth and different autocorrelation functions,
but their cross-correlation functions vanish almost completely.

vanish almost completely. During the generation of several artificial source
patterns, we found that the first property has to be designed by hand, but the
second property of small cross-correlation functions emerges naturally for most
patterns. In contrast, statistical independence is not a natural feature both
of arbitrary artificial sources and of natural scenes (Oja, 1997). Figure 7.12
illustrates, how two-dimensional slices p(Sl' S2) (7.12a), p(Sl' S3) (7.12b) and
p(S2' S3) (7.12c) through the joint distribution of the artificial sources in figure
7.11 are shaped. The pdf is far from factorial.

In optical imaging of intrinsic signals, it is not completely clear, how far
the prototype patterns fulfill the independence assumptions and to what extent
their cross-correlation functions vanish. Hence, the artificial patterns of figure
7.11, which .are neither completely independent nor completely uncorrelated,
represent a good benchmark for the performance of different BSS algorithms.

Figure 7.13 shows an example of the performance of single-shift ESD for a
noiseless mixture of the original patterns. The three sources figure 7.13a where
normalized to zero mean and unit variance and mixed using the random matrix

(

0.39 -0.56 0.78 )
A = . 0.08 0.44 0.57

-0.64 -0.95 -0.82
(7.71)
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Figure 7.12. Scatterplots (a) of the data vectors (SI,S2). (b) the vectors (SI, S3) and (e) the
vectors (S2. S3)' of the three artificial sourcepatterns in figure 7.11. which approximate two­
dimensional slices through thejoint pdfP(SI. S2, S3)' The sourcecomponents showexpressed
statistical dependencies.

with a condition number of 6.5 (figure 7.13b). Figure 7.13c and 7.13d display
the reconstruction of the patterns after sphering and after single-shift ESD,
respectively. The BSS technique successfully reconstructs the three source
patterns up to their sign and order in spite of the presence of small nonzero
cross-correlations.

Because optical imaging data sets contain strong photon shot noise and are
located in the regime of low signal-to-noise ratio close to 0 dB, it is also im­
portant to benchmark the robustness of different BSS algorithms against sensor
noise n. For a combined noise and statistical dependency benchmark, we gen­
erated many noisy mixtures of the sources using the matrix eq. (7.71). To
each of the resulting mixtures different Gaussian white noise with variance a;
was added. ICA based on Infomax, fastICA by kurtosis maximization and
single-shift ESD were then applied to the noisy mixtures resulting in the source
estimates Sl, l = 1,2,3.

The quality of reconstruction was automatically scored by calculating the
covariance matrix Gml = (SmSI)r between the true source and the estimates.
In the ideal case, the result would be a permutation matrix, that is one component
within each row and column. Note, that this criterion directly judges the sources
and is different from the criterion G = BA used in section 4.4, which is based
on the matrices and measures, how well the separating matrix inverts the mixing
matrix. Judging the sources is desirable in the noisy case, because the optimal
unmixing matrix might differ from A-I: Even if B would be found to yield
B = A-I, the source estimates 5 = s + A-In still would be suboptimum,
because they are corrupted by the noise. Instead, the optimal unmixing matrix
can differ from A-I, because it corrects for the sensornoise as good as possible.
The reconstruction error was determined as RE(G).
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Figure 7.13. Reconstruction of spatially smooth signal sources (a) from a noiseless mixture
(b) according to eqs. (7.1) and (7.71) using single-shift ESD. (c) Mixtures after sphering by
peA. The separation is incomplete. (d) Successful separation after full ESD with shift vector
~r = (5,5). ESD is robust against moderately non-zero cross-correlations.

Figure 7.14 shows the dependence of the mean error on the signal to noise
ratio for Infomax (figure 7.14a), fastiCA (kurtosis maximization, figure 7.14b)
and single-shift ESD (figure 7.14c). The signal-to-noise ratio (SNR) is the ratio
between the largest variance of the three mixtures and the variance of the added
noise in db. For each SNR 25 trials with different sensor noise were carried
out (circles). The solid line indicates the percentage of successful separations,
the dashed line marks the percentage of permutations matrixes counted in a
set of 3x3 random matrices for comparison. It represents the chance level for
obtaining a "successful" separation. The separation performance at the limit
of high SNR is a measure for the robustness of the respective method against
statistical dependencies or nonzero cross-correlations. Both ICA algorithms
7.14a and 7.14b work well in presence of statistical dependencies, but fastiCA
shows a lower reconstruction error. This enhanced robustness might be due to
the fact, that fastiCA evaluates only the kurtosis and not the full shape of the
pdf. The best and most stable reconstruction, however, is achieved by ESD.
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Figure 7.14. Reconstruction error as a function of the signal to noise ratio in db (25 trials
per noise level), (a) Infomax, (b) fastICA and (c) extended spatial decorrelation (shift vector
.6.r = (5,5) pixels). Data were the smooth sources shown in figure 7.11 Oeft).(d) Performance
of ESD after lowpass filtering of the mixtures (cutoff-frequency = 25 cycles I 256 pixels).
Circles: individual trials. Solid line: percentage of successful trials. Dashed line: percentage
of permutation matrices by random generation of 3 x 3 matrices.

The reconstruction error is very small and has a low variance. This corroborates
the observation of a robust source reconstruction in figure 7.13.

Noise robustness of the methods is scored by their behavior for lower SNR. In
all cases, the average quality of the separation and the variance of reconstruction
errors get worse with rising noise. Compared on the individual noise levels,
ESD outperforms the two ICA algorithms on the model data set. In addition,
the success rate of ESD stays stable at 100 percent of the trials , even for the
strongly noisy case, while the performance of the ICA algorithms is much more
noise sensitive - they break down at intermediate noise levels.
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(a) (b) (c) (d)

Figure 7.15. Reconstruction of strongly noisymixtures by ESD. (a) Original sourcepatterns,
(b) after noisy mixture(condition number=5, a« = 0.8). (c) Reconstruction by single-shift
ESD (shift vector~r) = (5,5» and (d) reconstruction by multishift-ESD with shift vectors
(±r, 0), (0, ±r),(±r, ±r), (±r, =fr) withr =1,3,5,10,20,30). Multishift ESDprovides the
best reconstruction.

Due to the scattering and reflectance properties of cortical tissue, high spatial
frequency components in the signals can not emerge from the neural activation
(Stetter and Obermayer, 1999). This justifies spatial low pass filtering (but not
highpass filtering), which furthermore enhances the performance of the ESD
algorithm (figure 7.14d) especially at high noise levels.

Figure 7.15 shows an example of a source reconstruction by ESD from a
noisy mixture. Figure 7.15b contains the noisy mixtures of the source .patterns
7.15a, which were given to the decorrelation procedures as an input. The result
of a single-shift ESD, in which the separation is incomplete due to the strong
sensor noise, can be seen in figure 7.15c. MultishiftESD with 48 shift vectors, in
contrast, can separate the data considerably better (figure 7.15d). This behavior
demonstrates the ability of multishift ESD to partially cancel out noise effects
by approximately solving a strongly overdetermined equation system.

A systematic comparison between the performances of different ESD al­
gorithms is provided in figure 7.16, which plots the reconstruction error (7.60)
versus the SNR (measured in dB) for single shift (7.16a) and multi-shift (7.16b)
ESD. The error bars indicate twice the standard error of the mean (2x SEM),
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Figure 7.16. Reconstruction errors vs, SNR level (a) for single-shift strategies and (b) for
multishift-ESD.

for 10 runs with the same mixing matrix, but newly generated noise of the given
noise level.

In figure 7.16a, the reconstruction denoted "opt" was obtained by performing
single-shift ESD for all possible shifts within b..r E ([-30,30], [-30,30])
and selecting the reconstruction with the minimal reconstruction error. This
algorithm can only be applied if the result is known, and it was carried out to
mark the best possible single-shift performance. The curve "mean" represents
the performance that was achieved as the average reconstruction error for all
successful shifts in a 61 x 61 square around the zero shift. It marks the average
performance of angle-shift ESD. The algorithm denoted by 'cor' represents a
heuristic strategy for selecting a good shift, which can be also applied to real
data sets. The basis for the strategy lies in the observation that we have to
estimate the separation matrix from a single shifted correlation matrix of the
sphered data y. The larger the off-diagonal elements of this matrix are, the
less their values are corrupted by noise and the better the corresponding shift
vector can be scored. According to this idea, "cor" selects the shift vector, for
which the off-diagonal elements of Cy(b..r) become maximal compared to the
diagonal elements:

A _ norm (Cy(b..r) - diag (Cy(b..r)))
urcor - argmax{L~r} norm (diag (Cy(b..r))) , (7.72)

where norm computes the largest singular value of its argument matrix. One
observes that "cor" performs considerably better than an average result and for
low up to intermediate noise even approaches the best possible performance.

Figure 7.16b benchmarks two different multishift algorithms, each carried
out with standard sphering using eqs (7.4),(7.3) and (7.6) (index "0") and noise-
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robust sphering using eqs (7.39),(7.3) and (7.6) (index "I"). The algorithm
"dpa" finds the separating matrix by numerically minimizing the cost function
eq. (7.37) of the sphered data. The minimization was carried out using the
Polak Ribiere conjugate gradient technique, where the line search is substituted
by a dynamic step width adaptation (Riiger, 1996). The Jacobi method referred
to as "jac" simultaneously diagonalizes the shifted correlation matrices of the
sphered data. This method can only find an orthogonal matrix and has to rely on
correct sphering. A comparison between the two plots shows that the multi-shift
algorithms are able to perform much better than even the optimal single-shift
method. For low to medium noise levels this is even the case when using
the standard sphering method combined with the gradient descent algorithm.
The advantage of the noise robust sphering method, compared to the standard
sphering, is obvious: the reconstruction error stays very low for all evaluated
noise levels and for both "jac" and "dpa" , The gradient descent technique is
more robust against erroneous sphering than the Jacobi method.

Figure 7.16 shows results which were produced using a single mixing matrix,
but further simulations show that the algorithms compare qualitatively similar
when using mixing matrices with condition numbers between 2 and 10.



Chapter 8

REAL WORLD APPLICATIONS OF
SOURCE SEPARATION TECHNIQUES

1. Nonlinear Model-Analysis of Calcium Imaging Signals
from the Honeybee Brain

1.1 Background
During the last couple of years, optical imaging of neuronal population ac­

tivity using Ca2+-sensitive dyes (Tsien, 1980; Poenie, 1992; Galizia et al.,
1997) has become an important experimental tool for the investigation of neu­
ronal response properties and coding strategies. As mentioned in chapter 4,
section 1.2, Ca2+ imaging uses the fact that postsynaptic intracellular Ca2+
concentration often increases when the cells are activated, and that a presy­
naptic calcium-influx is necessary for transmitter release. Neural population
activity is recorded by introducing a Ca2+-sensitive fluorescent dye to the intra­
cellular neuronal space of the considered tissue, illuminating it, and recording
the amount of fluorescent light over space and time during neuronal stimula­
tion. The resulting change in the two-dimensional pattern of fluorescent light
intensity is taken as a measure of the pattern of neuronal population activity.
Recently, this technique has been successfully applied to characterize important
aspects of neuronal olfactory coding in the antennallobe of honeybees (Joerges
et aI., 1997; Galizia et al., 1998; Galizia et al., 1999; Sachse et al., 1999).

The optical signal obtained in Ca2+ imaging experiments represents a com­
posite signal (cf. also figure 8.2), the structure and the components of which
have not yet been analyzed in depth. First of all, the signal contains at least one
component that is due to photobleaching of the dye. Second, the intracellular
Ca2+-concentration generally can change due to several mechanisms, not all
of which are necessarily linked to neuronal activity. Third, autofluorescence
may form another component of the fluorescence signal. This implies that the
change of the intracellular Ca2+-concentration, which gives rise to the neuronal

157
M. Stetter, Exploration  of  Cortical  Function

© Kluwer Academic Publishers 2002



158 EXPLORATION OF CORTICAL FUNCTION

activity estimate, in general cannot be determined simply from the amplitude
of the measured fluorescence composite signal, because this signal changes due
to several causes. We face the issues of (i) the identification of the different
signal components from the measured mixture, and (ii) their separation and
quantification.

In this section we demonstrate that a regression-based analysis of Ca2+­
imaging data by nonlinear parametric models (cf. chapter 6, section 2 provides
a powerful tool for the identification and mapping of Ca2+-signal components
(Stetter et al., 2000b). We fit both individual time-series and complete im­
age stacks obtained from Ca2+-imaging experiments of the antennal lobe of
honeybees (Apis mellifera) by NPMs and obtain the following key-results: (i)
Besides photobleaching, the time series averaged over active regions of the
antennallobe contain both a fast and a slow component. (ii) For subsequent
trials during an experiment, the amplitude of the fast component decreases over
time, whereas the amplitude of the slow component increases. (iii) The spatial
distributions of the amplitudes of both components in response to stimulation
are not identical but differ from each other. These findings provide for the first
time a consistent interpretation of the fluorescent signals, yet arise the important
issue of which neuronal processes underlie the two signal components we have
observed.

1.2 Animal Preparation, Staining, and Data Collection
In-vivo calcium recordings have been performed as described in (Galizia

et al., 1998). After capture from the hive, bees were quickly chilled for anaes­
thetisation and fixed in a Plexiglas chamber. The head capsule was opened and
the brain was floated in a solution of Calcium Green 1 or 2 AM (Molecular
Probes, Eugene; 50 p,g dye were first dissolved in 50 p,l Pluronic in DMSO
and then diluted in 950 p,l Ringer, 130 mM NaCl, 6 mM KCl, 4 mM MgC12,
5 mM CaC12, 160 mM sucrose, 25 mM glucose, 10 mM HEPES, pH 6.7,500
mOsmol). After 1 h staining, the brain was rinsed in fresh Ringer, and the
recording chamber placed under the microscope with constant Ringer perfu­
sion (1 ml/min) at room temperature (22 deg Celsius). At all stages, great care
was taken not to wet the antennae.

Images of a 240 x 250p,m square region of the antennallobe were taken
with a 12 bit CCD camera (Photometries CH250A, Tucson, Arizona) at a rate
of 2 images per second, with 240 ms exposure time per image. For every trial,
either M = 40 or M = 50 images, corresponding to 20 or 25 seconds, were
recorded, while an odor was applied to the antennae from t = 3 s until t = 5
s after the beginning of the image collection. Before storage, each image was
spatially binned to a final size of Px x Py = 49 x 51 pixels. After each trial,
a 35 or 40 second recovery period without illumination preceded the next trial.
One single experiment consisted of six trials with odor followed by one trial
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with plain air as stimulus (air trial). Usually, many experiments were carried
out for a given animal.

The data format of an image stack as collected during one individual trial
corresponds to the format illustrated in figure 6.4.

1.3 Function Families for the NPM
For application to Ca2+ imaging data, families of model functions al (tj <.fI )

for the NPM described in chapter 6, section 2 were chosen as follows (figure
8.1). Firstly, the fluorescence signal is subject to photobleaching, which might
be caused by one or several different mechanisms. Photobleaching is described
by an exponential function,

(8.1)

(figure 8.1, top), where i indexes different photobleaching mechanisms and Tb,i

are the corresponding time constants. Stimulus-evoked changes in fluorescence
contain both a Ca2+ release mechanism from internal stores or the influx of ex­
tracellular calcium (Tsien and Tsien, 1990) and a subsequent buffer mechanism
(Friel and Tsien, 1992). When neurons become active during a small period of
time, a first-order calcium release mechanism will increase the concentration
c(t) offree Ca2+ according to c(t) = CO + (coo - co)(l - exp(-tiT)) (with
some time constant T), which can be well approximated by a linear function
during the early phase. At the same time, a first-order buffer mechanism tries
to restore the resting level by an exponential decay. Hence, if we assume first
order reaction kinetics to hold for the Ca2+-release and buffer mechanisms, the
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) t - tSe,i - tS8 (t - tSe,i - D8)ae(tjDe,i,'Te,i = aO . exp - .
'Te,1 'Te,1

(8.2)

(figure 8.1b, center) with its initial linear increase and its late exponential decay
represents a good phenomenological description of a stimulus-evoked compo­
nent. In eq. (8.2), D8 denotes the time of the stimulus onset, De,i is the response
latency and 'Te,i denotes the rise-time of the response for the i-th stimulus-related
component. ao is a constant which normalizes the function to a maximum value
of 1. Finally, a constant function describes the background fluorescence (figure
8.1b, bottom). For example, a nonlinear model with one bleaching compo­
nent and two stimulus-related components is described by the parameter sets
s = (so, Sb, Se!, Sc2), where So is the amplitude of the background fluorescence,
and q, = ('Tb' Del, 'Tel, De2' 'Te2)'

For the model functions and parameterizations used, the cost function turned
out to be relatively smooth and the optimization by standard numerical gradient
descent quickly converged to a unique result. This indicated, that the optimiza­
tion process was not disturbed by local minima. Initial values of nonlinear
parameters were set as estimated by visual inspection from the /IF/ F image
(figure 8.2) to Del = 0.25 s, De2 = 2 s, 'Tci

l =0.10 S'T;} = 0.05 s. The gradi­
ent was calculated numerically using step sizes of (0.01 ; 0.01; 0.0004; 0.0002)
for the four parameters. The step size for the parameter update was adapted
as follows: If the gradient along a direction changed sign in two subsequent
steps, the step size was decreased by a factor of two, if its sign was preserved
for three subsequent update steps, the step size was multiplied by a factor of
1.25. Programs were implemented in Matlab on a SUN ULTRA 10 workstation.
Computation time was approximately 1 sec per pixel time series.

1.4 Identification of Signal Components from Mean Time
Series

For the identification of different components of fluorescence, nonlinear
model fits were first applied to mean time series taken over an active region,
i.e. over a region where the fluorescence increased in response to an odor.
The approximate extensions of active regions were determined prior to the
analysis from the /IF/ F image (Joerges et al., 1997), which represents a simple
estimator of the relative change in fluorescence due to olfactory stimulation: It
was obtained as follows:

1 Use a stimulus-trial xm(r).

2 Calculate the mean fluorescence before stimulation: F (r) = ! 2:~=1 X m (r)
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Figure 8.2. Nonlinear model analysis of a mean time
series. (a) Mean time series (black circles)and the best
nonlinear fitusingonephotobleaching andonestimulus­
evoked component, and(b) best fit for onebleaching and
two stimulus-evoked components. Left : t:..F/ F image
togetherwiththe regionof interestoverwhichthe mean­
timeserieswascalculated

3 Calculate the mean fluorescence during maximal response:

Fr(r) = :t 2:~=10 xm(r)

4 D.FjF(r) = (Fr(r) - F(r))jF(r).

The gray scale image in figure 8.2 shows the D.FjF -image of an antennal
lobe for the sum over 7 trials under stimulation with hexanol, showing approx­
imately 1 % change in fluorescence in the central lower part of the image. This
region corresponds to a set of glomeruli, (the functional units of the antennal
lobe), which have been driven by the presentation of hexanol. D.FjF images
represent the common way of analyzing Ca2+-imaging data. Here, however,
we aim at a more detailed characterization of the fluorescence signal in space
and time.

The solid lines with black circles in figures 8.2a and 8.2b represent the mean
time series obtained by averaging over the pixel time series within the region
of interest marked in the D.FjF image in figure 8.2. The negative slope prior
to stimulation indicates photobleaching and the increase starting from t = 3 s
corresponds to a stimulated response. The dashed line in figure 8.2a shows the
best fit, if one bleaching-component and one stimulus-evoked component are
used. The photobleaching component is overestimated, as can be seen from its
high slope in the early phase. This poor performance is caused by a negative
undershoot in the late phase of the data. Figure 8.2b (dashed) shows the best fit
for one bleaching and two different stimulus-evoked components. The second
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Figure 8.3. Delay(left)andrise time(right)parameters for meantimeseriesfrom23 consecu­
tivetrialson the sameanimal (stimulus: hexanol). All parameters are remarkably constantover
timeandbetweentrials. Meanvalues: Ocl =0.37s,Tel =3.85s,Oc2 =2.37s,Tc2 =9.54s. For
all parameters, linearregression yieldedabsolute slopesof less than 0.015seconds per minute
duration of the experiment.

component can account for the undershoot and the model provides a good
fit. Usage of more than two stimulus-evoked components resulted in an under­
determined system with a partially flat cost function, and the same was observed
for the case of more than one photobleaching component. We summarize that
for this particular data set, one bleaching and two different stimulus-evoked
components, a fast positive and a slow negative one, are necessary and sufficient
for the description of the change in fluorescence over time.

The model analysis using the one-bleaching-two-signals model was repeated
on many mean time series, which we obtained from single trials for different
odors and from different animals. Figure 8.3 shows the nonlinear parameters
for a sequence of 23 subsequent trials for the same animal as in figure 8.2 (other
odors where tested intermittently). It shows that the delays and rise-times of
the two signal components remain remarkably constant over time and between
trials. The analysis was carried out on 13 sequences of trials as in figure 8.3,
taken from 7 different animals. Mean values and standard deviations were de­
termined for each sequence, and are summarized in figure 8.4. The curve shape
parameters do not vary strongly between different odors and different animals.
These results demonstrate that the two different stimulus-related components
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Figure 8.4. Mean delays and rise-time parameters for different odors, odor combinations and
for 7 different animals. Vertical dashed lines separate different animals, error bars mark the
standard deviations of the series as shown in figure 8.3. All nonlinear parameters are very well
constant over time, between odors, and between animals. Symbols: b.: hexanol in mix; e:
isoamylacetat+hexanal; 0: citral+hexanol; <I: limonene, hexanol; 1>: limonene-hexanol; filled
square: octanol; \7: limonene; 0: clove oil; n: lavanda; x : isoamylacetat; +: hexanol;

in the fluorescence signal have well-defined and stable dynamical parameters.
Their mean delays and rise-times over all trials analyzed were determined as Del

=(0.4 ± 0.3) s, Tel =(3.8 ± 1.2) s for the fast component and De2 =(2.4 ± 0.6)
s, Te2 =(10.3 ± 3.2) s for the slow component. All quantities refer to the best
estimates (e.g. Dcl == Jel ) , but because there is no ambiguity we will henceforth
omit the hat in the notation and always refer to the best fits. Errors include vari­
ations between animals. Because of this constancy, the nonlinear parameters
were kept constant at their mean values for the following considerations.

The top row of plots in figure 8.5 shows the relative amplitudes of the fast
and slow signal components, selSQ, for the same sequence of trials as in fig­
ure 8.3, the plots below contain the corresponding Z-scores. There are three
major observations: (i) The large Z-scores indicate that the presence of both
components is highly significant. (ii) Both relative changes are comparable in
absolute size, and the peak changes are estimated approximately three times as
large as from the simple !::i.FIF image. This is due to the fact that NPM analysis
accounts for the full signal including its curve shape, and that both components
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Figure8.5. Chronical behavior of the relative changes in amplitude for the fast (top left) and
slow (top right) signal components for 23 subsequent and identical trials (stimulus: hexanol).
The fast component decays while the slow component tends to increase in strength over time.
Bottom plots: Corresponding Z-scores of the amplitudes above. The presence of both signals is
highly significant.

overlap and thereby partiallycancel each other in the measuredmean time se­
ries. (iii) The fast component decreases over time (rate: -0.011 h-1), whereas
the slowcomponents showsa tendency to increaseuntil a saturation is reached
approximately 1 h after beginning of the experiment (rate: 0.019 h-1) . This
behavior is observed in about50 % of the sequences analyzed, in the remaining
trials there was a much weakeror evenno change in amplitudes over time.

Figure 8.6 shows how the amplitudes of the signal components are affected
by situations, in whichtheCa2+-influx fromtheextracellular space(figure8.6a)
or spikingneuronalactivity (figure 8.6a)areblocked. Blockingoccurredduring
the periodmarkedby theblackbars. In eithersituation, undera Ca2+-free envi­
ronment and under application of TTX, both the fast and the slowcomponents
are reversibly blocked. Also, imagingon preparations without stainingdid not
result in a significant presenceof signal-components (notshown). Theseresults
indicate, that both detectedsignal components are Ca2+-dependent, are stimu-



ApplicationsofSource Separation Techniques 165

- CreeCa2
+ •

4,...--------,

100 150

••
50

•.-o •
o

4,..------...,

..
~2
CI.
81
01

-8 c2 (slow)

""' - CreeCi+
~3 • • •

100 150

•
50

8 c1 (Cast)

(a)
30...-------- 30...----------.

50 100 150
t/min

8 ei (fast)

~20

~ ~.
I .....

NI0 •

,
•

• • •o•

o
•~20 0

8 ••
~ .00
N 10

•

••

50 100 150
t/min

-8 c2 (slow)

..'•,o

3,...---------,

! ..
-rrx

3,...-------..,

15010050
-1'----------'

o150100
•

50
-1'--------........o

(b)

30,...---------,·0
20- .00

~ . .
fii: 10
~•o o.••

o o

I••o,
200100

t/min
100

t/min

-10'---------' -10'----------'
o 200 0
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Figure 8.7. Statistical parametric maps from an air trial. (a) The background fluorescence
so(r) (b) The strength of the photobleaching component sb(r) and (c) the time-constant Tb(r)
of the photobleaching.

Ius evoked and cannot be explained as autofluorescence signals. The fast and
slow components either are related to the same Ca2+-dependent mechanisms
or are causally related to each other, because pharmacological treatment always
affects both signals.

1.S Analysis of SpatialDistributions
Proceeding from the identified signal components, we can apply nonlinear

models pixelwise to all pixel time series of complete image stacks. Because in­
dividual pixel time series were more noisy than mean time series, results turned
out to improve, if we first corrected for photobleaching and afterwards fitted a
model using only the background component and the two signal components.

. For the correction, we first fitted a NPM with one background and one photo­
bleaching component to the air trial of each experiment. Figure 8.7 shows the
resulting statistical parameter maps for the background fluorescence so(r) and
the strength sb(r) together with the time constant Tb(r) of the photobleaching
component. From these experiments we learn that bleaching is well described
by a single exponential decay. Typically, its strength varies over space by
(!:::..Sb/ Sb,mean) ~ ±O.5, and its time-constant by (!:::..Tb/Tb,mean) ~ ±O.25, where
the index mean marks the mean value of a quantity over all pixels of the image.
Once the best model for the air trial was fitted, the model instead of the air trial
was used to correct for photobleaching in the stimulated trial by subtraction.
This procedure avoids adding noise from the air trial to the image stack to be
analyzed. After correction, each pixel time series of a trial was fitted using a
GLM (cf. chapter 6, section 1) with a background component and the model
functions of the fast and the slow components with fixed nonlinear parameters
as determined from the corresponding mean time series. Because the nonlin-
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ear curve shape parameters were kept fixed for each image stack, only three
amplitude parameters had to be fitted for each time series.

Figure 8.8 shows the best fit as described above for the same data set as
used in figure 8.2. The left column contains every forth frame of the bleach
corrected original image stack, the middle column the best model fit and the
right column shows the residual, which is the difference between the data and
the model. Firstly, the residual contains little structure, which indicates that
all the relevant structure in the data is successfully captured by the model.
Because the curve shape of the model functions is kept constant, this means
that the whole spatiotemporal signal can be explained by the presence of only
two signal components. In other words, the temporal dynamics of the signal
components are not only constant between odors and animals, but are also
constant over space within the same animal. Secondly, it becomes visible that
the spatial patterns of the fast and slow components are different from each
other. This property is demonstrated more strikingly in figures 8.9 and 8.10.

In figure 8.9, the statistical parametric maps 8.9a and 8.9b and the corre­
sponding Z-scores 8.9d and 8.ge are shown for the fit of figure 8.8. The signals
extracted by the NPM are much less noisy than the signals extracted by b.F/ F
analysis, and by the Z-score we can quantify our confidence in them. Note that
these maps result only from a temporal analysis, i.e. no spatial processing such
as smoothing has been applied. The image figure 8.9f is the difference between
the strengths of the fast and slow components. It is nonzero, in the case shown
amounts to approximately 30 % of the signal components itself and is spatially
modulated. We conclude that we have similar spatial distributions but different
details in structure in the fast and slow components.

the spatial distributions of the fast and the slow component are similar, but
can differ from each other in the details of their structure.

This effect is demonstrated again in figure 8.10, which shows the spatial
distributions of the fast and slow responses for a different animal, and for three
different stimulus conditions. In all cases, the fast and the slow component for a
given odor are more similar to each other than to any component ofanother odor,
but they are not identical. This is demonstrated by the difference maps between
the fast and the slow components in the right column of figure 8.10. The fast and
slow component usually show a similar pattern of active glomeruli, however
the intensity distributions of both components are different. Sometimes, this
difference is large for an individual glomerulus, which then appears only in
one of the components (e.g. the activity spot at the right edge in the top row
images). The second aspect shown in figure 8.10 is the approximate linearity of
the fluorescence signals. From top to bottom, the first three rows show responses
to limonene, hexanol , and a symmetric mixture of both odors with the same
concentrations. The three maps directly below the horizontal line are obtained
by a linear superposition of the maps for stimulation with the pure odors. If
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Figure 8.8. Spatiotemporal fit ofa whole image stack. (Left): Same image stack as analyzed in
figure 8.2 after model-based correction for photobleaching (every forth frame shown).(Middle):
Best pixelwise fit of the data using the two signal components as determined from mean-time
series. (Right): Residual image stack (model subtracted from data). The residual contains little
structure indicating that the model successfully extracts all the relevant information from the
data.
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Figure 8.9. Statistical parametric maps of the fast (a) and slow (b) components for the fit shown
in figure 8.8. Both maps are much less noisy than the corresponding ~F/F image (c). (d) and
(e) Z-score distributions of the fast and slow components in (a) and (b), respectively. Some
glomerular regions are active with high significance. (f) The difference between the fast and
slow component amounts to approximately 30 % of each component. Its spatial modulation
indicates, that the fast and slow components are differently distributed over space.

the fluorescence signal behaved linearly, the mixture of odors would evoke the
same response than the superposition of the responses to the pure odors. A
comparison of the third and fourth row from top with each other demonstrates
an expressed similarity of the spatial patterns for both cases, which corroborates
the linearity assumption. The total strength is somewhat weaker in the response
to mixed odors than expected by a linear behavior, which hints towards the
presence of lateral inhibition in the antennal lobe. This difference in strength
is demonstrated by the negative regions in the two two bottom plots, which
display the difference between the response to odor mix and the superposition.

1.6 Discussionand Conclusions
Sets of nonlinear model functions were fitted to the time courses of fluores­

cence signals from Ca2+-imaging experiments. Using this technique, we were
able to identify two well-defined and well-distinguishable dynamical compo­
nents of the stimulus-related fluorescence signal - one signal corresponds to a
relatively fast increase in local fluorescence, whereas the second components
reflects a slower decrease below background fluorescence. The temporal dy­
namics of both components are very well constant over space as well as over
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Figure 8.10. Different examples for the spatialmapsof fast (left) and slow (middle) compo­
nents and their differences (right). The respective patterns for stimulation with limonene (a),
hexanol (b) and a mixture of both odors (c) are similarbut not identical for the fast and slow
components. (d) Linearsuperposition of responses to pureodorsand(e) the difference between
the response to the mix and the superposition. Bothmix and superposition patternsare similar
to each other in space,however the response to the mix is slightlysmaller than expectedby a
linear superposition.
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different trials, odors, and animals, but the spatial amplitude distributions of
both components can differ considerably from each other.

The goal ofCa2+ imaging in this system is to infer the spatial or spatiotempo­
ral patterns of neuronal population activity in response to olfactory stimulation
exploiting the relationship between neuronal activity and the amount of in­
tracellular Ca2+. This Ca2+-level is monitored by measuring the change in
fluorescence caused by a Ca2+ -sensitive dye. Our identification of two differ­
ent components of stimulus-related fluorescence with slightly different spatial
distributions rises the important issue ofwhat is the relationship between each of
the components and neuronal activity. Possibly the different components reflect
different cellular mechanisms of Ca2+ supply, which in tum might be related to
different stages ofolfactory coding. For example, the fast and slow components
may reflect successive stages of olfactory processing in the antennal lobe. In
this case, the differences of the spatial pattern of the two components would
indicate that odors elicit not just a fixed set of activated glomeruli, but rather a
slow sequence, with some glomeruli being activated with a delay. More bio­
physical work has to be done in order to specify the origin ofeach component as
well as their relationship with neural activity. We hope that our characterization
of the behavior of the responses over time and space can help addressing these
questions.

Nevertheless, some speculations about the origin of both signals should be
discussed. We observed that both signal components are reversibly and si­
multaneously removed (i) by application of TTX and (ii) by removal of free
extracellular Ca2+, both of which block neural activity in the antennal lobe
(figure 8.6). (iii) Also, both components are statistically insignificant in most
air trials (in some air trials, weak stimulus-related components were observed,
but those can be assigned to residual odor impurities in the air used and are not
reproducible). The first and the third observation indicate that the fluorescence
signals are coupled to neuronal activity, whereas the second test hints towards
a coupling either on activity or on a Ca2+ influx. Alternatively, one might ar­
gue that autofluorescence contributes to the measured change in fluorescence
and could provide one of the signal components. This interpretation is ques­
tionable, because in experiments carried out without staining, no significant
fluorescence signals have been observed. It can be concluded that neuronal
activity and the Ca2+ -sensitive fluorescent dye are necessary for the generation
of either component.

Based on these observations it is still unclear what is the origin of the com­
ponents and why they behave differently over space. For example, the slow
signal component always had a negative amplitude, which apparently reflects
a strong decrease in intracellular Ca2+ concentration. However, Ca2+ ions
are very effectively buffered in the intracellular space, resulting in a very low
concentration in the range of 100 nM (Bygrave and Benedetti, 1996). There-
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fore, even a complete removal of free Ca2+ could not account for the strong
undershoot observed. One alternative possibility of its origin could be a com­
partmentalization of the fluorescent dye into the endoplasmatic reticulum (ER),
which operates as a Ca2+-reservoir. This interpretation is corroborated by the
increase of the slow component over time, which could reflect the increase
of compartmentalized dye. Pharmacological studies have to be undertaken to
prove this hypothesis , according to which the second component would reflect
a Ca2+ release out of the ER (Bygrave and Benedetti, 1996). Our nonlinear
model would then allow to segregate the contribution of extracellular calcium
influx (first component) and intracellular calcium release (slow component) in
a single measurement. Alternatively to this hypothesis, the two signals could
be generated by different mechanisms in different cell types (Verkhratsky and
Kettenmann, 1996).

The present method characterizes fluorescence signals with much higher ac­
curacy than ~F/ F images, and additionally provides confidence levels. By
use of these properties it becomes possible to address new aspects of neuronal
encoding of olfactory stimuli. For example, the strength and the type of nonlin­
earities in the code of composite stimuli (Joerges et al., 1997) can be quantified
and tested for significance. Also, it becomes possible to identify the positions
of individual glomeruli directly from sets of Ca2+ imaging experiments by use
of the Z-score. Based on those methods, it will become possible to quantita­
tively characterize the vector coding strategy, by which olfactory stimuli are
represented in the antennallobe of honeybees.

2. Principal Component Analysis for Optical Imaging of
Intrinsic Signals

In this section we demonstrate, that PCA already represents a powerful tool
for partial or even complete source separation of frame stacks from optical
imaging of intrinsic signals, provided the method is correctly applied. The data
analyzed will include data sets which have been shown already in chapter 5.
There, we have seen that these data sets (e.g. figure 5.6) cannot be satisfactorily
analyzed by established heuristic methods. Here we will observe that PCA often
outperforms differential imaging or bandpass filtering in its source separation
abilities, and will characterize to what extent and under which conditions this
is the case.

2.1 Animal Preparation and Data Collection
Optical imaging of intrinsic signals was performed on area 17 of ferrets and

cats. Techniques for surgery and animal preparation have been described in de­
tail in (Bonhoeffer and Grinvald, 1996) and (Sengpiel et al., 1998b). For optical
imaging, the cortex was illuminated using bandpass-filtered light of 605 ± 10
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Figure8.11. Removal of a time-dependent artifactusingPCA. (a) Summeddifferentialimage
(0 - 90 deg orientations without first-frame analysis) recorded from ferret visual cortex. (b)
The time series of the first (PC 1) and second (PC 2) principal components of the differential
image stack. Eigenvalues (variances) were: Al = 45157. A2 = 7489. (c) First and (d) second
principal image obtained from the two time series in (b) using eq. (7.8). Scale bar: 1 mm; the
gray scales denote gray valuesof pixels. Its ranges were determinedas the mean ± three times
the standarddeviationfor each image.

nm. Images of intrinsic signals in response to visual stimulation were recorded
using a cooled slow-scan CCD-camera (ORA200l, Optical Imaging, German­
town, NY). Stimuli consisted of moving oriented bar gratings. If not specified
explicitly, for each trial five frames of 600 ms duration were recorded during
each 3 s stimulus presentation, followed by an inter-stimulus interval of 7 sec­
onds, in which the next stimulus was presented stationary. Single-condition
and difference image stacks X with (X)m,r = xm(r) were obtained by pixel­
wise summation over 16 trials eventually followed by first frame analysis, as
described in chapter 5.

2.2 peA on a Differential Image Stack
Figure 8.11 demonstrates the removal of a time-dependent artifact from a

differential image stack using PCA. The data were recorded optically from ferret
visual cortex using 0 deg and 90 deg oriented stimuli and represent the same
image stack as shown in figure 5.6. Figure 8.lla shows the summed differential
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Figure 8.12. Combination ofimage stacksforimprovedperformance ofPCA. K differentbut
not necessarily orthogonal single-condition stacksare combinedto yield a long imagesequence
withK M pixelsper time series. The numbers shown(K =4, M = 14) refer to the particular
data set analyzedin figures 8.13 and 8.14.

image (without first frame analysis), which contains both the mapping signal
and a large, roughly annular artifact. The annular patterns resulted from a
time-dependent artifact which cannot be removed by differential imaging (cf.
section 2.1). In figure S.llb, the first two principal components , VI and V2,

are plotted as time-series. The first principal time series has a large variance
and a complicated time course, which describes the time-dependence of the
artifact, while the second principal component has a smaller variance and a
time course which can be interpreted as the behavior of the mapping signal.
The corresponding principal images YI (r) and Y2(r) are given in figures S.llc
and 8.11d. They demonstrate that the mapping signal (figure S.lld) can be
almost completely separated from the time-dependent artifact (figure S.llc) by
PCA and corroborate the previous interpretation of the time series. Note, that
the separation by PCA was possible, because the artifact and the mapping signal
differed strongly in their variances over space and had approximately orthogonal
time series. Figure 8.11c still contains a small fraction of the mapping signal,
which is probably due to the presence of white noise and to small deviations of
the real time series from orthogonality.

2.3 PCA on Sequences of CombinedImage Stacks
The time series of the global and the mapping signals are both locked to the

stimulus. As a consequence they are probably not orthogonal to each other and
are not separable by PCA. For the separation of the global and the mapping
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signal using PCA, we generate a combined data stack, which contains K >
1 single-condition image stacks for different stimuli in a sequence such as
to form a long time series of KM images (figure 8.12). In this combined
stack, the global signal shows a similar response irrespective of the stimulus
type, whereas the time-course of the mapping signal depends on the stimulus.
Therefore, the time series of both signals are now likely to be nearly orthogonal.
Additionally, global signals are known to be stronger than the mapping signal
components, their variance can be expected to be higher. We can summarize that
in a combined image stack, the time series for global and mapping signal sources
are likely to be orthogonal and to show different variance over the ensemble of
pixels. Because of these two properties, however, the source separation problem
becomes treatable by PCA.

Figure 8.13 shows the first nine principal time series (figure 8.13a), the cor­
responding principal images (figure 8.13b), and the Scree plot (the logarithm
of the principal component eigenvalues ordered in size) for a combined data
stack, which had been generated by stacking four single-condition image sets
(M = 14 images each, 8 s stimulus duration, 2 s time between stimuli) for stim­
uli with orientations 0, 45, 90, and 135 deg and performing first frame analysis
(figure 8.13). The Scree-plot shows that only the first 7-8 principal components
carry signals, whereas the higher components, which show roughly uniform
variances, carry noise. This agrees with the noisy appearance of the 9th prin­
cipal time series and images. The time-dependences of the first three principal
components from top are nearly identical for each stimulus presentation irre­
spective of the stimulus type. Using their spatial patterns they can be assigned
to the global signal (top image) and to signals from larger blood vessels vas­
cular patterns and illumination artifacts (second and third image). The fourth
to seventh principal components contain linear combinations of the mapping
signals for the different stimulus-conditions, which appear as periodic patterns
in the cranial window region of the corresponding images. Note, that PCA can­
not separate different single-condition responses from each other, because their
variances usually are similar. It is not useful to assign any biological meaning to
the individual principal components that capture the mapping signal, but they
can be used to reconstruct a cleaned data set with reduced noise and global
signal components.

Signal extraction and noise reduction of the data set in figure 8.13 can be
achieved by reconstructing the data set, cf. eq. (7.9), using only the principal
components 4-7. Discarding the higher principal components reduces noise,
while discarding the first three principal components removes part of the global
signal and the blood vessel artifacts. Single condition images can be obtained
by pixel-wise summation of all resulting images for a given stimulus condition
or by fitting a linear model to the cleaned time series. Figure 8.14a shows the
four single condition images of the data set of figure 8.13 before PCA, where
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Figure 8.13. (a)Thefirstnineprincipal timeseriesand(b) thecorresponding principalimages,
normalizedto unit variance, for an imagestackfromcat area 17 (6Od) after combination of four
single conditionstacks (0,45,90,135 deg) and first-frame analysis (gray scale: ±3). Legends
provide the eigenvalues (variances). The first three components capture the global signal and
blood vesselpatterns, whereasthe mapping signal is concentrated in components 4-7. (c) Log­
arithmof the eigenvalues sortedby size (Screeplot). All but the first7-8 principalcomponents
containnoise.
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Figure 8.J4. Reconstruction of the mapping signal for the data stack of figure 8.13 . (a) Single­
condition images (from left to right : 0 deg, 45 deg, 90 deg, 135 deg) after first-frame analysis .
(b) Single-condition images for the cleaned data set using principal components 4-7 of figure
8.13. Scale bars : 1 mm. (c) Z-score for the datain (b). Regions of high significance of the
mapping signal are shown in black. (d) Projection of the reconstructed images (b) onto the raw
data. Bars mark stimulus duration. Color bar ranges were determined as the mean ± three times
the standard deviation for all except Z-score images.

both the global signal (diffuse background) and the mapping signal (small dark
blobs) are mixed together. Figure 8.14b displays the reconstruction of the same
single-condition image after peA and noise removal. The reconstruction has
been done by determining the best curve-shape of an alpha function from a
mean time series of.. the cleaned stack using a NPM, followed by a pixelwise
application of a linear model using the best alpha function. The statistical
parametric map of the GLM provides the reconstructed single condition image
and the Z-score its significance areas. In the reconstructions, figure 8.14b, the
global signal is drastically reduced compared to the original data, whereas the
mapping signal is preserved and concentrated.
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Figure 8.15. (8) Orientation (OR) map and (b) Orientation selectivity (OS) map obtained from
the reconstructed single-eondition maps of figure 8.14 without postprocessing. (c) and (d) same
maps after lowpass-filtering (cutoff wavelength A = 0.27 rom. Colors mark deg of preferred
stimulus orientation. (For colorfigure see ColorSection, p. xv)

Figure 8.14c displays the Z-score as a function of space within the region
of the cranial window for the four reconstructed single condition maps. The
dark islands in the Z-score mark the regions where the mapping signal differs
significantly from zero. Figure 8.14<:1. finally, plots the time series z (normalized
to unity), which results from the back-projection ofthe pattern y in figure 8.14b
onto the original combined data stack: z = X yT. It measures, how much
of the reconstructed image is contained in each individual frame of the data.
Each estimated single-condition map appears most strongly within the part of
the combined data stack, in which the corresponding stimulus condition has
been presented (black bar). Also, the respective orthogonal stimulus-condition
shows an anticorrelation, yet much weaker than the correlation in the correct
stimulus-condition, which demonstrates that responses to orthogonal stimulus­
conditions do not form completely disjunct patterns.

We can now combine the reconstructed single-condition stacks to obtain
orientation maps for this animal. Following (Blasdel and Salama, 1986; Blasdel,
1992a; Stetteret al., 1993), a vector which describes the orientation selectivity of
neurons at a pixel r can beobtained as follows: If we have K single condition
maps sk(r), which are obtained under stimulation with orientation Ok, k =
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(8.3)

1, "'l K, the orientation preference vector d(r) = (dX l dy)(r) can be obtained
as

K

dx(r) = L cos(2(h)sk(r)
k=l
K

dy(r) = L sin(20k)sk(r).
k=l

This formula corresponds to fitting a pi-periodic sinewave to the optical re­
sponses as functions of the stimulus orientation, sk(r) == S(Ok, r). The direc­
tion of the resulting vector represents twice the estimated preferred orientation
and its length estimates the preference of one orientation over the orthogonal
one:

d(r) = OS(r). (cos(20R(r)),sin(20R(r))). (8.4)

where OR(r) is defined as the orientation preference map, and OS(r) is the
orientation selectivity map. For the special case of the four orientations used,
the orientation preference vector becomes

d(r) = (sOdeg(r) _ s90deg(r), s45deg(r) _ s135deg(r)) (8.5)

Figure 8.15a and 8.15b show the orientation-map (OR) and the orientation
selectivity map (OS) that were obtained directly from the reconstructed single­
condition images of figure 8.15. Both maps have been obtained without band­
pass filtering and without differential imaging. The orientation map clearly
shows the characteristic pinwheel patterns (cf. section2.4), but the difficul­
ties and ambiguities related to heuristic methods for postprocessing of optical
recordings (cf. sections 2.1 and 2.3) have been avoided. Figure 8.15c and
8.15d show the same maps after reduction of the high-frequency noise compo­
nents with a lowpass filter (no highpass-filter has been applied). The resulting
maps are now smoother, but a comparison with the unfiltered versions demon­
strates that in contrast to bandpass filtering (figure 5.10), their structure has not
changed. In addition, a mis-interpretation of filtered noise as an optical signal
is unlikely, because the filter was chosen to yield a higher typical frequency of
the filtered noise (image periphery) than of the optical signal (image center).

In summary, we showed that temporal PCA can be successfully used both
for noise-reduction and for the removal of global signals and vessel artifacts.
Because the global and the mapping signals show a different behavior over space
and additionally differ in strength by approximately a factor of 5 (Bonhoeffer
and Grinvald, 1996), their variances are strongly different in many cases and
they can be separated using PCA. However, this requires application of PCA to
a whole sequence of single-condition stacks. This mode of application extends
recent work (Carmona et al., 1995; Cannestra et al., 1996; Everson et al., 1997;
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Everson et al., 1998), where PCA has been applied on single condition or
differential image stacks. These studies use PCA in order to reduce white noise
and to extract prominent prototype time courses of the mixture of intrinsic
signals, but different signal components are not separated.

3. Extended Spatial Decorrelation for Optical Imaging
Data

PCA suffers from the drawbacks that it requires orthogonality of prototype
time series, which is not necessarily given, and that ignores additional sources
of knowledge besides the variances of time-series over the data set. In this
section and following (Schielil et al., 1998; SchieBl et al., 1999; Stetter et al.,
2000c) we show that ESD analysis, which in contrast to PCA uses information
about the source structure in space, improves the extraction of the mapping
signal from the mixture and is also applicable to individual image stacks based
on a single stimulus. The successful analysis of individual single-condition
stack is of particular importance as future applications of functional imaging
methods will include stimulus-conditions for which no orthogonal pairs exist.
Again we will include single-condition data sets into our analysis which have
been shown to be reluctant to established analysis methods (cf. chapter 5).

3.1 ESD on Differential Image Stacks

Figure 8.16 shows the result of an ESD analysis for an individual differ­
ential image stack. In figure 8.16a, we see a series of five images of a 0-90
deg differential image stack optically recorded from cat area 17 (time increases
from top to bottom). It contains the oscillatory mapping signal that emerges
superimposed to a global spatial pattern. Images were low-pass filtered with
a cutoff frequency of (2.7 cycles/mm) in order to improve the performance of
ESD (cf. (SchieBIet al., 1999) or chapter 7), but no high-pass-filter was applied.
Figure 8.16b lists the three leading principal images, and figure 8.16c the con­
jugate principal time series obtained from their back-projection. In this series,
a movement artifact has been separated (third from bottom), but the mapping
signal is still distributed across two images (first and second from bottom) and is
still superimposed onto the global background. Figure 8.16d and 8.16e display
three of the five spatial source patterns and their conjugate time series as esti­
mated by ESD using the shift vector ~r = (5,5) (the remaining two sources
contain noise patterns). Now the mapping signal is completely concentrated
in one source (second from bottom) and is separated from the global pattern
(bottom). Figure 8.16f and 8.16g contain the conventional differential map and
the mapping signal as provided by ESD analysis. A comparison reveals that
ESD, in contrast to differential imaging, could remove the global signal and the
movement artifact. In figure 8.16h, finally, the binarized absolute value of the
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Figure 8.16. (a) Time series of images of a 0 - 90 deg differential stack from cat area 17
(time interval: 600 ms). Images are low-pass filtered (cutoff: 2.7 mm""). Scale bar: 1 mm.
Gray scale: ±200. (b) Leading three principal images (bottom = 1. PC; gray scale: ±400),
and (c) conjugate time series for the data set shown in (a). Signal separation is incomplete. (d)
Estimated spatial source patterns (arbitrary gray scale) and (e) conjugate time series after ESD
analysis with Ar = (5,5) . The mapping signal is concentrated in the "center" source, and is
separated from a global background and a movement artifact. (0 Resulting differential map
obtained by summation of images in (a) (g) Resulting statistical parametric map obtained using
a GLM. Model functions were the time series shown in the center and bottom graphs of (e).
The global signal and the movement artifact have been successfully removed in this map. (h)
Significance map for the statistical parametric map in (g). Black indicates regions for which the
absolute Z-score was larger than 3.

Z-score is given for the map in figure 8.16g. Black marks regions, in which the
absolute value of the Z-score for the middle time series is larger than three.

3.2 ESD of Single-Condition Stacks
ESD can also extract the mapping signal from an individual single condition

stack. Figure 8.17a shows a 0 deg single-condition image for the same record
as in figure 8.11. The data set consists of a mixture of the mapping signal,
a global background and a time-dependent artifact. Figure 8.17b shows the
best separation result for peA (top), which is still very poor, and its conjugate
time series (bottom). Figure 8.17c contains the best image (top) and time
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Figure 8.17. (a) 0 deg single condition maps of the same data set as in figure 8.11 and 5.6
after first frame analysis and pixelwise summation. (b) Best signal extraction using peA. Top:
principal image. Bottom: conjugate time series. (c) Spatial pattern obtained from ESD analysis
(normalized to unit variance). Top: spatial pattern of the source. Bottom: conjugate time series.
Images are low-pass filtered (cutoff: 2.7 rom-l). Scale bar: 1 rom.

series (bottom) obtained from ESD. ESD successfully removes the artifact and
achieves a strong yet not fully complete separation from the global signal.

3.3 Analysis of Highly Noisy Single-ConditionStacks
ESD can be used to separate even a weak mapping signal from other bi­

ological sources in the presence of noise. Figure 8.18a (top row) shows the
single-condition stack of figure 5.3, from which the highest frequency compo­
nents were removed by a lowpass filter with a cutoff-frequency of>. = 0.094
mID (40 cycles per image diameter). The goal for the analysis is to separate the
mapping signal from the blood-vessel patterns and the global background. The
middle row, figure 8.19b, shows the source estimates after ESD. According to a
visual inspection of the source images, the strong global signal is concentrated
in the leftmost source and the stripe-like mapping signal in the second source
pattern from right. Sources no. 4, 5, and 7 from left contain different blood­
vessel patterns and blood-vessel movement artifacts and the remaining sources
contain noise. Compared to the input pattern of the top row, the mapping signal
could be successfully separated from the other components, and could be con­
centrated in a single source pattern. The plots in the bottom row result from the
back-projection of the respective source pattern (middle) onto the input data set.
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(a): image stack before ESD

(b): Best source estimates after ESD

(c): Time series from back project ion

Figure 8.18. (a) Single-condition stack for left-eye stimulation after first-frame analysis, mask­
ing of a region of interest and lowpass-filtering (cutoff: 10.6 mm"", >.. = 0.094 mm). Time
from left to right: -1,0,1,2,3,4,5 sec. relative to stimulus onset. (b) Spatial patterns of source
estimates after ESD analysis. (c) Normalized Back-projections of source patterns on the data
set in (a). Time axis: t E [-1,5].

The mapping signal and the global signal smoothly increase over time, but the
time delay of the global signal is bigger than that of the mapping signal. This
smooth and stimulus-locked temporal change can be used as an additional hint
of the origin of a source pattern. However, global and mapping components
must be distinguished by some additional knowledge about their behavior in
space (cf. discussion below).

Figure 8.19 summarizes ESD results for all image stacks of an ocular domi­
nance experiment. A standard procedure for the generation of single-condition
images involves first frame analysis, temporal summation of the images and
lowpass-filtering. The two single-condition images for left- and right-eye stim­
ulation from this procedure are shown in figure 8.19a and 8.19b. The mapping
signal is strongly mixed with blood-vessel patterns and spatially global re­
flectance changes. Note that this corruption cannot be reversed by bandpass
filtering, which generated the image of figure 5.9. Figure 8.19c and 8.19d show
the resulting mapping source pattern from an individual ESD analysis of the
left-eye and right-eye single-condition stack. In both maps, the mapping signal
is weak and strongly noisy, but has been reasonably well separated from the
other patterns. ESD applied on the OD difference image stack leads to the
differential map shown in 8.1ge, in which the signal-to noise ratio has been
improved compared to pure temporal summation. Figure 8.19f results from
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Figure 8.19. Left column: Single-condition imagesobtainedby first-frame analysis, lowpass­
filtering and temporal summation. (a) Left-eyestimulation (cf. figure 8.18a) and (b) right-eye
stimulation. (c) and(d) Corresponding single-condition mapsfor left and right-eyestimulation,
respectively, afterESDanalysis. (e)Oculardominance mapfromESD-analysis of thedifferential
image stack. (0 Lowpass-filtered version of (e) (cutoff4 mm- 1

, ~ =0.25 mm).

8.1ge after lowpass-filtering with a lower cutoff-frequency. Note that filtering
should be done after source separation rather than before: Had we filtered the
data before with the strong lowpass-filter, the other source patterns such as the
blood-vessel patterns would have been strongly blurred and would have more
strongly corrupted the mapping signal. After ESD we can be more confident to
look at the mapping signal, for which high frequencies components are damped
out by light-scattering in tissue (cf chapter 4). This justifies the application of
a lowpass-filter to the resulting map.

4. Concluding Remarks
We used projection methods for the extraction of the mapping signal of

optical recordings from other signal components, which are less closely related
to stimulated neuronal activity.

Ifdata are analyzed using bandpass filtering with a given set ofcutofffrequen­
cies h and 12, this corresponds to the statistical model "signals are concentrated
within the frequency band [h,h], the background is concentrated outside".
Thus, every pair of cutoff frequencies serves as parameters for the statistical
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Figure 8.20. Top row: (a) Left-eye single-condition map after single-shift ESD (vector (5,0»,
(b) averaged result over ten shift vectors (t.r" =1+2i, i =0, ... , 9) and (c) Difference between
both maps. (d) - (e): Same for right-eye single condition map. The separation results is fairly
insensitive against the particular choice of the shift vector.

model, which can be arbitrarily chosen. In contrast, the methods applied in this
chapter are based on parameter-free statistical assumptions, namely "the signals
are orthogonal and can be distinguished by variance" (peA), or "different signal
sources are smooth and their cross-correlation functions vanish" (ESD). The
shift vector of ESD does not touch the statistical model, i.e. the independence
assumption. Rather, the the same kind of independence is assumed for all shift
vectors. In particular, this implies that the results obtained for several shifts
can be averaged. Figure 8.20 compares the two single-condition maps obtained
for a single-shift ESD (8.20a, 8.20d) with the average obtained from ten ESD
applications with different shift vector (8.20b, 8.20e). The right column (8.2Oc
and 8.20f) displays the difference images between the single-shift and the av­
eraged map: Both results agree well with each other in that the procedure is
relatively insensitive against the detailed choice of the shift-vector. In addition,
the difference contains some noise. Hence, averaging can help reducing the
noise in the resulting map. However because the sensor noise transformed by
different similar unmixing matrices is strongly correlated, noise reduction is
not very prominent.

Let us briefly discuss the assumptions on which ESD for optical imaging
is based. Though not proven to be true, smoothness over space is very likely
to be given for all signal components. For the mapping and global signals,
smoothness is generated by the strong scattering of light within the tissue,
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which blurs all components over space by at least 100-200 p.m (cf chapter 4
and (Stetter and Obermayer, 1999)). For blood-vessels on the cortical surface,
which are continuous structures in one dimension, the autocorrelation functions
can extend to more than one millimeter. The assumption of vanishing cross­
correlations between the sources is less intuitive, yet in the case of orientation
maps, where the mapping signal is oscillatory as opposed to the global signal,
the resulting cross-correlation functions between the two patterns are small.
Also, we observed that cross-correlations between blood vessel patterns, that
were extracted from images of the cortex under illumination with green light,
and ocular dominance stripes from differential images are less than 20 % of the
autocorrelations (Schielll et al., 2000a). Generally the shift vector or vectors for
ESD have to be chosen in a range, where both the autocorrelations of the sources
and the cross-correlations between the mixtures are large. According to our
experience, these conditions are usually fulfilled for arbitrary small shift vectors.
ESD can also be applied in a multishift mode (Schoner et al., 2000) . If all sets
of reasonably small shift vectors are used, multishift ESD does not contain any
free parameters anymore. On most of the real data sets, the performance of
multi shift ESD (data not shown) has turned out to be very similar to that of
single-shift ESD, mostly due to the reasons discussed in relation to figure 8.20.

While making use of knowledge about spatial coherence, ESD as applied in
this work is confined to second order statistics, because it is based on second­
order correlation functions . Though this might appear as a limitation, a recent
comparison (Schielll et al., 1999) ofESD with Independent Component Analy­
sis (lCA) based on Infomax (Bell and Sejnowski, 1995) (moments of any order)
and on kurtosis optimization (Hyvarinen and Oja, 1997) (fourth order moments,
cf. also chapter 7) showed that ESD provides the best separation results for spa­
tially smooth data. This is probably due to the fact that, in the presence of noise,
higher order moments are more difficult to estimate using a limited set of data
points, than moments of second order. Also, the ICA algorithms usually do not
exploit the spatial coherence of patterns as done by ESD.

PCA and ESD are based on fairly general assumptions, but both methods
only work if those assumptions are true, and some care has to be taken when
interpreting the results. The only direct test for the biological relevance of
both differential maps and PCAIESD maps is a comparison between the op­
tical maps and the corresponding electrophysiologically measured neuronal
response. However, an indirect method for scoring the reconstructed maps
pops out of the method: If the spatial neuronal activation patterns have already
been characterized, the spatial distributions help identifying the mapping signal,
when accompanied by a reasonable conjugate time series. If no information
about spatial neuronal activation patterns is available beforehand, the shape
of the time-series, which must change coherently with the stimulus onset, can
serve as a criterion for the identification of the mapping component. In any
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case, however, the only direct test for the biological relevance of both differen­
tial maps and PCAIESD maps is a comparison between the optical maps and
the corresponding electrophysiologically measured neuronal response.

In summary, there is a variety of recently developed statistical procedures,
which allow to reliably extract indicator signals for cortical neuronal activ­
ity patterns from optical measurements. Once we have access to the spatial
response characteristics of cortical tissue, we possess a promising basis for
revealing some of the secrets of cortical information representation. Experi­
mental activation data serve as important input to functional models for cortical
representation of information, which will be introduced in the following chap­
ters.



Chapter 9

COMPUTATIONAL MODELS OF
EARLY VISION

In the previous chapters we have seen, that a combination of modern measure­
ment techniques and analysis methods can provide knowledge about how both
individual neurons and large neuron populations respond to external stimuli.
Understanding brain function means to understand the principles of information
processing that underlie the observed response characteristics. These principles
can be approached by the following questions: (i) What is the underlying goal
of information processing in the considered part of the brain? Are the observed
brain characteristics compatible with an optimality criterion for signal process­
ing? This class of question can are addressed by top-down models of brain
function, which we will refer to as computational models. (ii) Alternatively
we may ask for the principles of neural implementation of observed response
characteristics: How does the considered population of neurons generate the
observed response characteristics based on the wiring patterns known from
anatomy? Can we extract universal principles of structure-function relation­
ships from the answer to this question? Principles of neuronal implementation
can be addressed by connectionist or neural network models.

Earlier we have summarized anatomical and physiological data about the
early visual system of macaque monkeys, and have seen that it serves as a model
system both for other macaque cortical areas and probably for the human brain.
In the remaining part of the present chapter, we will give a brief survey over
computational models of brain function for the example of the visual system,
whereas the next chapter treats connectionist models of early vision.

1. Why Computational Models?

When an animal fixates its environment, the eyes generate an image flow
on its retinae. As reviewed in chapter 3, the retinal signals are transmitted to
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the primary visual cortex, where they evoke complex spatiotemporal response
patterns. These evoked cortical activation patterns form part of an "internal
representation" of the external environment. Subsequent parts of signal pro­
cessing in the animal 's brain have to rely on the internal representation of the
environment. For example, neuron populations in higher cortical areas, which
are postsynaptic to the primary visual cortex, do not have direct access to the
visual scene or, more generally, to the external world. Rather they have to
make use of the internal representation of the environment, namely the activity
pattern in lower areas such as the primary visual cortex, in order to infer what
is out there in the world.

Of course it is crucial for the survival of an animal, that this internal repre­
sentation is formed in a reliable, efficient and flexible way - a species whose
internal representation cannot decide, whether it represents a piece of food or
an approaching tiger in the visual field, might tend to die out soon. In light of
these considerations it seems plausible to believe that evolution has designed
the visual system of mammals (as a part of the whole central nervous system)
such as to form a very efficient internal representation of the natural world,
which provides a maximum fitness to the species. We may use this belief as
a guideline for a better understanding of what could be the nature of visual
processing.

Computational models of early vision are based on the assumption, that the
way the visual system encodes natural scenes is optimal subject to the hardware
constraints dictated by the anatomy and physiology of the early visual pathway.
Note that we do not require visual coding to work well for arbitrary scenes,
but only for the comparatively small subset of images that are likely to be
generated by a natural visual environment of the animal. Once the optimality
criterion or design principle is formulated, we can characterize neural codes that
fulfill the criterion and compare predictions derived from the coding strategy
with the response properties of biological systems such as VI. Because both the
visual signals and the neural representation are noisy and intrinsically stochastic,
many computational models are based on a statistical formulation of visual
information processing.

In the following we will first characterize some aspects of the statistics of
natural scenes, which will help us understanding which tasks could possibly
be carried out by the early visual pathway. Subsequently, we will focus on
the formulation of different design principles for visual processing. These
principles include the reduction of redundancy and the efficient representation
of higher-order redundancies under the constraint that the input scenes can be
well reconstructed by the code.
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2. Statistics of Natural Images
Important aspects of the statistics of natural scenes are reviewed in (Atick,

1992), (Field, 1994) and (Ruderman, 1994). In this subsection we will high­
light a few statistical key properties of ensembles of natural images, which are
particularly important for undetstanding possible goals of visual information
processing.

2.1 Statistical Description of Image Ensembles
First we have to find a framework for the statistical description of natural

scenes. When the retina or a camera forms an image of the visual environment,
this image is sampled by a set of P more or less regularly spaced sensors such
as the photoreceptors or the photo diodes of a CCD camera. For camera images
with Px x Py = 256 x 256 pixels, P = PxPy = 65, 536, while for a retinal
image the number of sensors is even much higher, namely P ::::: 106• The light
intensity that hits a sensor at location r is then converted to one of G possible
output values x(r) = 0, ... , G - 1. In digitized 8-bit camera images, these
values could correspond to the G = 256 possible gray levels, in photoreceptors
G is determined by the number of different levels of the membrane potential
that are distinguishable in the presence of random fluctuation of the membrane
voltage. If we wish to describe image sets in a statistical way, it is best to
consider each image as a realization of a random vector: Each image vector
x == {x(r)} =(x(1, 1), ...,x(Px,Py ) ) represents a single data point in a very
high-dimensional space of dimension P, where it occupies an integer location
within a hypercube with the volume GP . This hypercube is referred to as the
state space of the images. The set X := {x/, 1= 1, ... , L} of all images which
contain a natural scene, will form a subset of all possible images within this
hypercube. Based on the relative frequency of these images within the state
space, we can assign a probability distribution P (x) for the natural scenes within
the state space. For continuous pixel values, P(x) would become a probability
density function (pdf) . Irrespective of the nature of the pixel values, we will
refer to P(x) as pdf. P(x) can be thought of as the probability, that an arbitrary
image x contains a picture of a natural scene.

If we would know P(x). we would have a complete statistical description
of the set of natural scenes. Practically it is impossible to characterize P com­
pletely because of the high dimensionality of the image space, but it is well
possible to characterize different aspects of the statistics of natural images. as
summarized in the following paragraphs.

2.2 Natural Scenes are Highly Non-GaussianDistributed
First of all we notice that the set of all natural scenes is a vanishingly small

subset of all possible images. This can be easily tested by generating random
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images using a computer: the results will virtually never resemble a natural
scene. Thus, the subset of images x, for which P{x) is substantially nonzero,
must cover a very small volume in the state space.

Next it is important to realize that the structure of the sub-volume of the state
space, which contains all natural scenes, is very complex. In particular, the
images are highly non-Gaussian distributed in the state space. Consequently,
higher-order statistics are very important for the characterization of P.

In order to see the non-Gaussianity of natural scenes more clearly, we proceed
from the assumption, that natural scenes are Gaussian distributed, and give
arguments against its consequences. For simplicity, we will treat the state
space as a continuous space. If the distribution of natural scenes in the state
space is Gaussian, we can write the probability distribution as (Bishop, 1995)

P{x) = ~exp ((x - x)T~-l{x - x))

= ~ exp (L (x{rd - x{rd)~-l{rl, r2)(x{r2) - x{r2)))(9.1)
rl,r2

where x{r) = (1/ L) E, xl{r) represents the ensemble average over all natural
images and N is a normalization factor. Equation (9.1) shows that the covari­
ance matrix of the image ensemble,

~(rl, r2) = ((x{rd - x{rl)) (x{r2) - x{r2))) (9.2)
1 L

:= L LXI{rd xl{r2) - x{rd x{r2), (9.3)
1=:1

together with the mean image x, completely characterizes the probability dis­
tribution P. In other words, by knowing xand E, we can exhaustively describe
the statistics of natural images.

Now we assume, that the covariance matrix of the image ensemble is sta­
tionary, ~(rl, r2) = ~(rl - r2) =: ~(r) where r = rl - r2. This assumption,
which means that the statistics of natural images are invariant against trans­
lations, is very reasonable, as retinal images actually do undergo all kinds of
translations as the animal explores its environment via saccadic movements.
For stationary statistics, the covariance matrix ~(r) of the image ensemble is
related to its power spectrum S (k) via the Wiener-Khinchin theorem (Gardiner,
1983):

~(r) = JJd2k exp{i k r ) S(k). (9.4)

If we further assume that the image ensemble is ergodic, we can estimate the
power spectrum from individual images, the simplest possibility being

S{k) = I{2:)2 JJd
2r

exp{-ikr)x{r)1
2

(9.5)
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(a) (b) (c)

Figure 9.1. (a) "Natural image" in the sense of an image with structured, visually meaningful
contents. (b) Reconstruction of (a) from its amplitude spectrum alone (random phase spectrum).
and (c) Reconstruction of (a) from its phase spectrum alone (random amplitude spectrum). The
important knowledge about the image is contained in the phase spectrum.

Equation (9.4) indicates that the power spectrum of an image (and consequently
its square root, the amplitude spectrum) fully determines its correlation matrix.
If natural scenes were Gaussian distributed, their pdf would be completely
characterized by the amplitude Fourier spectrum of the images.

Figure 9.1 demonstrates, that in fact the amplitude spectrum is of minor im­
portance for the characterization of natural scenes. Figure 9.1a shows an orig­
inal scene, from which we calculated the complex discrete Fourier transform
following eq. (5.24). The image in figure 9.1b was reconstructed by randomiz­
ing the phase spectrum while leaving the amplitude spectrum unchanged, and
performing the inverse transform eq. (5.25). Figure 9.1c was obtained by pre­
serving the phase spectrum instead and randomizing the amplitude spectrum
before back-transformation. One observes that, based on the amplitude spec­
trum alone. a reconstruction of an image is .impossible, even if is amplitude
spectrum is completely known (figure 9.1b). On the other hand, as long as the
phase spectrum is preserved, one can still get a detailed idea of the original
image contents, even if any information about the amplitude spectrum has been
removed.

This example demonstrates , that the phase spectrum is much more important
for the characterization of the contents of a natural scene than the amplitude
spectrum. Consequently, a Gaussian distribution of images, which is fully
described by second-order statistics and the amplitude spectrum, obviously
provides a very poor statistical description of natural scenes. Natural images
are highly non-Gaussian distributed, and for their proper characterization it is
crucial to capture the non-Gaussianity of the image distribution by consideration
of higher-order statistics. Wecan gain a heuristic idea of why the phase spectrum
is important for image characterization and how the characteristics of the phase
spectrum can be analyzed from an image: A non-random phase spectrum means
that the phases of different Fourier sine waves are linked to each other - for
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(9.6)

example, edges within the images are locations at which the phases of many
sine waves are aligned. This shows that at least one important ingredient of
natural scenes, namely edges, are represented by correlations between phases,
namely local phase alignments. If we apply a set of local edge detectors to an
image, we analyze local regularities within the phase spectrum of images by
detecting these local phase alignments. Exactly this operation is carried out by
orientation selective neurons in the primary visual cortex (cf. figure 3.12).

2.3 Scale Invarianceof Natural Image Statistics
Natural scenes are generated as projections of objects or sets of objects onto

the retina of an animal. The objects that form a scene can be located at any
arbitrary distance from the image plane, and therefore the angular extent of
their retinal images varies. Near objects form large retinal images, whereas the
same objects further away give rise to smaller retinal images. It is therefore
reasonable to hypothesize that natural scenes are to some extent invariant against
scaling transformations. In other words, if we magnify or subsample a set of
natural images, the resulting statistics of the transformed set should not be very
different from the statistics of the original set of images.

Several studies have accumulated evidence that the statistics of natural im­
ages are scale invariant. One quantity that has been explored by several studies
(Deriugin, 1956; Burton and Moorhead, 1987; Field, 1987; Ruderman, 1994)
is the power spectrum S(k) of natural scenes, which has been found inversely
proportional to the square of the wavenumber,

So
S(k) = k2 ' k = [k],

With this behavior, the power spectrum does not contain any preferred scale. If
we magnify the set of natural images by a factor a, the power spectrum of the
new set, Smag(k) becomes

2 2 So
Smag(k) = a S(ak) = a a2k2 ' = S(k), (9.7)

i.e. it is identical to the original spectrum. Because the power spectrum char­
acterizes second order statistics of the image set, we know that image statistics
up to second order are scale invariant. But is this also true for higher-order
statistics, which prove much more important for the characterization of natural
scenes than 2nd order statistics?

If we could show scale invariance of the probability distribution P(x) of
the images itself, we would at the same time know that all statistics are scale
invariant. As we have pointed out, the full pdf cannot be characterized because
of the high dimensionality of the image space. Instead we consider projections
ofthe pdfonto some axes within the image space and to characterize their scaling
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(9.8)

laws. Two special cases of projection axes have been considered (Ruderman,
1994): (i) The projection axis is aligned with one coordinate axis, for example
the r-th axis of the image space. Then the projection is just the gray-level
distribution of this pixel, which is given by the marginal distribution

Pr == Pr(x(r)) = I: P(x).
{x(r')} , r' t=r

(ii) The projection axis is the negative diagonal between the axis of two neigh­
boring pixels. Then the projection yields the distribution of contrast values
x(r +~r) - x(r) with ~r = (1,0) or ~r = (0,1) . If the image set is station­
ary and ergodic, the corresponding distributions again can be approximated by
calculating the corresponding histograms across the images themselves.

(Ruderman, 1994) calculated the two histograms for different scales of the
images by coarse graining, i.e. the histograms were based on mean gray levels
over blocks with ax a pixels where a was a small integer. It was found that: (i)
the histograms were similar for the different scales, indicating a scale invariance
of the whole pdf. (ii) The shapes of the histograms differed considerably from
what would be expected from a Gaussian distribution. (iii) For higher values
of a, where many contrast values were averaged, the histograms still differed
from the Gaussian shape. This indicates that the central limit theorem (Gardiner,
1983) does not hold in this case and demonstrates that neighboring pixels are
highly statistically dependent on each other. In the next paragraph, we will
characterize these statistical dependencies more systematically.

2.4 Redundancy in Natural Scenes
One important task of the visual system is to represent the contents of natural

scenes reliably and efficiently by a neural code. Therefore we might ask how
long a message must be on average in order to capture all important aspects of
a natural scene. One possible description of a scene would be simply the listing
of all its pixel gray values. A pixel-based representation is not very efficient,
because different pixels of an image are highly dependent on each other (for
example within an uniformly colored, flat part of the image) .

An estimate of the average minimum message length required for the descrip­
tion of a natural scene is given by the Shannon entropy or information entropy
H(X) of this ensemble «Shannon, 1948), for reviews see (Atick, 1992; Deco
and Obradovic, 1996; Deco and Schiirmann, 2000)). If the images are dis­
tributed according to P (x), the entropy is given by

H(X) = - I: ... I: P(x)ldP(x) =: - I:P(x)ldP(x). (9.9)
x(l,l) x(P"',P\I) x

Because we use the dyadic logarithm ld, the entropy is measured in bits. In eq.
(9.9), the negative logarithm becomes large, if an image has a low probability
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of occurrence. The whole entropy represents the ensemble average of this
negative logarithm, and can therefore be interpreted as the average amount
of surprise or novelty that is contained in the image ensemble. If the gray
levels within different pixels are statistically independent, the pdf factorizes,
P(x) = IlrPr(x(r)) =: IlrPr(x). It is easy to show that the entropy of the
ensemble reduces to the sum of pixel entropies:

p

H(X) = - E EPr(x)ld Pr(x) = E Hr(x). (9.10)
r x r

Conversely, if there are any statistical dependencies between pixels, we can infer
the gray level of one pixel to some extent by knowing the gray levels of other
pixels. Therefore, statistical dependencies should reduce the surprise, novelty,
or the minimum description length required for an image. This is reflected by
the fact, that the Shannon entropy fulfills the relationship

(9.11)
r

where equality holds if and only if the pixels are statistically independent.
We may also ask the question, how much information a set of images with P

pixels each can carry at maximum. For an individual pixel with possible gray
levels x = 0, 1,2, ... , G - 1, the pixel entropy is maximized, if each gray level
is assumed with the same probability Pr(x) = I/G, i.e,

G-l 1 1
Hr(x) :S - E GldG = IdG.

x=o
(9.12)

For the whole image set, the entropy becomes maximal in the case ofstatistically
independent pixels, and the combination of eqs. (9.10) and (9.12) yields the
information capacity C:

C=PldG. (9.13)

In the present context, C can be interpreted as the information entropy of an
image set that is uniformly distributed within the state space or in other words
as the maximum description length we can possibly expect for an image set.

Now we are ready to define the redundancy of an image set. Loosely speak­
ing, we expect an image set to contain redundancy, if it can be described by a
shorter message than given by the capacity. Accordingly, the redundancy R of
an image set can be defined as

R= 1- H(X).
C

(9.14)
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This definition can be reformulated (Atick, 1992) in a way that the two different
origins of redundancy pop out more clearly:

(9.15)

The first term on the right hand side of eq (9.15) reflects redundancy due to
the non-uniform distribution of gray-levels, whereas the second term describes
redundancy that is caused by statistical dependencies between pixels (cf. eq.
(9.10)). This second term is called the mutual information between the pixels
of the images :

'" P(x)I(X) = L.i P(x)ldn () .
x rPr X

(9.16)

Up to a constant factor, it is identical to the Kullback-Leiblerdivergence between
the full and factorial pdfs: It measures how much the actual pdf differs from a
factorizing pdf with the same marginals and therefore characterizes the amount
of statistical dependencies between pixels.

The information-theoretical framework introduced above will prove useful
for the construction of efficient codes, but it has also been used to describe
dependencies in natural scenes. From psychophysical experiments, redundancy
in natural scenes was estimated near 65 % (Ruderman, 1994). A statistical
analysis of television images revealed a redundancy near 90 %, most of which
was due to second order redundancy (Schreiber, 1956).

2.5 Summary
From the previous considerations we arrive at the following key points for

the statistical characterization of natural scenes:

• The distribution of natural scenes across the state space is complex and
highly non-Gaussian.

• Second-order (Gaussian) statistics and the power spectrum are inappropriate
for the characterization of natural scenes.

• The structure of images is contained in the higher-order statistics, which
are captured by the phase spectrum. Important structures are local phase
alignments or edges.

• The statistics of natural scenes are scale invariant.

• Natural scenes are highly redundant. Most of the redundancy is contained in
the second-order statistical dependencies and in non-uniform distributions
of pixel gray levels.
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Based on these statistical properties of natural images, we can now formulate
hypotheses about the goal of sensory coding (a design criterion) and can examine
its consequences for aspects of neural signal processing in the early visual
pathway.

3. Compact Coding
In the last subsection it has become clear that a large portion of the redun­

dancy of natural images is contained in the second- order correlations between
the pixels. Also it has been shown that second order statistics are not appro­
priate for the characterization of the relevant structures in images such as local
edges or phase alignments. It seems therefore a good strategy for the visual
system to remove second-order redundancies at some point. Based on these
considerations, we formulate the following design criterion: At some stage,
the visual system transforms the retinal images in a way that second order re­
dundancies are removed from the transformed set. After the transformation,
the relevant aspects of the images are encoded more efficiently in the sense of
shorter description lengths. This principle is referred to as compact coding.

In the following we consider the simplified case of a linear code and assume
for simplicity that the image vectors have zero mean (without loss of generality
we can subtract the mean image from all images of the ensemble prior to the
following considerations). Let us consider a linear orthogonal transform of the
images,

Si=w;x,i=I, ...,P or s=WXj W;Wj=8ij' (9.17)

For example, the quantities Si can be interpreted as output signals of a set of
neurons at a given stage of visual processing. In a compact code, we wish
to represent the original images with a smaller number of elements Si, i =
1, ... , K < P than givenby the dimension of the state space while throwing away
as little information as possible. In other words, we want to find a transform
W which minimizes the average error introduced by omitting the channels
SK+b ... , sp. We minimize

p

E=( L s~).
i= K + l

(9.18)

If we restrict ourselves to linear transforms and second order statistics, an
optimal compact code can be constructed using Principal Component Analysis
(PCA) (cf. (Bishop, 1995) and chapter 7). In the present context, PCA treats
the pdf of the image set as a Gaussian distribution in the high-dimensional state
space and finds directions along which the variance of the images shows an
extremum (a maximum, a minimum, or a saddle point). A compact code can
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be constructed by transforming the images into the principal component space
and dropping the P - K principal components with the lowest variances. If we
assume that the channels are represented by neurons or neuron populations with
limited and similar dynamic ranges, it seems reasonable to generate a compact
code with equalized variances. In summary, the optimal linear compact code
Si, i = 1, ... , K can be achieved by sphering (cf. chapter 7, section 2.2) and
dimension reduction by projection into the subspace spanned by the K leading
principal components:

EUj = AjUj, i = 1, ..., P,

s, = A;1/2 U[ X, i = 1, ... , K.

(9.19)

(9.20)

Note, that only for a Gaussian pdf sphering removes all redundancies in the
data. In case of a non-Gaussian distribution (cf. figure 7.3, bottom), removal of
second-ordercorrelations by sphering still leaves and even emphasizes structure
in the distribution, which is related to the important higher-order redundancies.

In the visual system, the retina has been suggested as a site where the visual
system forms compact codes in the space-time (Atick and Redlich, 1990) and
color domains (Buchsbaum and Gottschalk, 1983; Atick et al., 1990; Atick,
1992). The retina was selected as a probable candidate mainly because of
the following reasons: (i) It has the bottleneck problem of transmitting the
information of about 120 million photoreceptors through the optic nerve with
roughly one million fibers. (ii) Second-order redundancies are not very useful
for the visual system, and it is reasonable to remove them already in an early
stage of visual processing, namely in the retina. (iii) Removal of second order
redundancies is a linear signal processing task, and most of the retinal units
actually respond almost linearly (cf. chapter 3, section 2.1).

(Atick and Redlich, 1990) and (Atick, 1992) characterized, which properties
a retinal receptive field (a retinal filter kernel) must have in order to optimally
reduce second order redundancies in the retinal output signals. The result­
ing optimal filters turned out to have striking similarities with retinal receptive
fields in several respects: (i) The spatial shape of the filter was bandpass (a
Mexican hat type receptive field) and was a lowpass-filter for high and low illu­
mination levels respectively. Their characteristics agreed very well with those
found in psychophysical and physiological experiments. (ii) For spectral sen­
sitivity curves as found for primates, the optimal receptive fields developed as
single-opponent color sensitive receptive fields similar to those of parvocellular
neurons. However, for this to be true it was necessary to enforce the additional
constraint that the channels for intensity and color should carry a similar amount
of information.

Several models have also suggested that cortical receptive fields find the first
or some of the first few principal components of the input ensemble. Neural
networks with a localized feed-forward architecture (which is motivated by
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the restricted axonal arborization radii of geniculocortical afferent fibers) were
trained to find the leading principal components of their input by Hebbian learn­
ing rules (Hebb, 1949). These networks were shown to develop receptive fields
which resembled those of simple cortical cells (Yuille et al., 1989; Stetter et al.,
1993; Stetter and Lang, 1994) and which arranged into orientation maps (Stet­
ter et al., 1994; Stetter et al., 1995a; Stetter et al., 1995c; Stetter et al., 1995b).
Results proved robust against variations of the synaptic constraints (Miller,
1994; Miller and MacKay, 1994), and experimentally observed modifications
of Hebbian learning could be shown to cause simultaneous self-organization
of multiple feature maps (Kussinger et al., 1997; Stetter et al., 1997a; Stet­
ter et al., 1997b; Piepenbrock et al., 1997; Stetter et al. , 1998b; Stetter et al.,
1998c; Stetter et al., 1998d) and the development of texture-detecting receptive
fields (Brunner et al., 1997; Brunner et al., 1998; Bauer et al., 2000).

One point of criticism against these models results from the observation that
for stationary statistics principal components are not localized. As a conse­
quence, these models do not predict localization of receptive fields as a conse­
quence of the self-organization process. However, if receptive field localization
is put into the models by hand, the resulting local linear filters resemble simple
orientation selective receptive fields. Also, if biological random variations in
the properties of the retinal filters over space are taken into account, the reti ­
nal output signals are no longer stationary. Networks that generate a compact
code on these non-stationary signals develop localized simple receptive fields
(Stetter et al., 1993).

These examples demonstrate, that some aspects of early vision can be very
well understood as the attempt to form an optimal compact code for natural
scenes. In the next subsection, compact coding, which aims at the removal of
useless redundancy, will be contrasted with sparse distributed coding, which
aims in an efficient coding of the remaining higher-order redundancy, i.e, in
the efficient description of the structure in the data.

4. Factorial Codes
Compact coding represents an important preprocessing step ofnatural scenes,

which removes second order redundancies, but there are three important rea­
sons, why the generation of a compact code is probably not a general design
principle of signal processing beyond the retina (for a more complete discus­
sion of this issue see (Field, 1994». (i) There are much more cortical neurons
than input channels to the cortex. In other words, the cortex does not have a
bottleneck problem: Even if each dimension of the cortical state space were
represented by a whole population of neurons, its dimension is similar or even
higher than that of the input space of geniculate fibers. (ii) The relevant struc­
tures of natural scenes are contained in the higher-order statistics of the image
ensemble. An efficient representation of these structures must therefore aim
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at the description of the full complex shape of the image pdf. This task might
require a large number of free parameters, which is not compatible with the
data representation by as few channels as possible in a compact code. (iii) An
efficient code should find a clever way of representing redundancies in the input
image set rather than removing them.

Let us now consider a code of the set of input images,

Si = Wi(X) , i = 1, .." P, s = W(x), (9.21)

and let us write down the redundancy of the set S of output activities as

(9.22)

with C being the capacity of each output channel.
We wish to construct this code in a way that it efficiently represents the

redundancies that are present in the input. One possibility to achieve this is to
make the representation as simple as possible. For this it is helpful to recall
that the redundancy of a code consists of two contributions: A simple one that
is due to non-uniform distributions of activity (first term in eq. (9.22» and
one that is due to possibly very complex statistical dependencies in the data
(second term in eq. (9.22». We can make the description of redundancies
simpler by shifting redundancy from the second to the first term without losing
information contained in the input. Ideally we will arrive at a code, where the
mutual information between the channels (second term in eq. (9.22» vanishes
completely and all the redundancy is captured by the marginal entropies. In
this case, the output activities are statistically independent, P(s) = fI iPi(Si),
and we have generated a factorial code.

As we have seen in chapter 7, section 3, a factorial code can be generated
by independent component analysis, which is a well-known signal processing
technique in the field of blind source separation (Jutten and Herault, 1986;
Bell and Sejnowski, 1995; Cardoso, 1997; SchieBI et al., 1999). In signal
processing applications, ICA is used to extract different causes or components
from a set of composite signals by using the assumption of their statistical
independence. For example, chapters 7 and 8 have presented applications of
ICA for the analysis of optical imaging data. But now, we can apply the idea of
ICA to gain a better understanding of brain function: A factorial code tries to
find statistically independent causes (such as objects in the outer world) that give
rise to the structures found in the image ensemble, and could be an important
step towards a successful image segmentation. It is worth mentioning, however,
that complete statistical independence of the output channels will usually not
be achievable, because the external causes may not be completely independent
from each other, because the encoding function eq. (9.21) that is necessary for
the decomposition, may be very complex, and because of noise.
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One way to explicitly approach a factorial code is to force the marginal en­
tropies Hi{S) to become as small as possible while the total entropy H{S) of
the code is preserved. We will reconsider this strategy in the next section. An
alternative possibility for the construction of of a factorial code is to minimize
statistical dependencies by increasing the total information H (S) of the code as
much as possible. If the marginal entropies Hi(s) are not controlled simultane­
ously, this procedure results in a minimization of the whole redundancy instead
of only its second term in eq. (9.22). The total output entropy of a code can be
maximized by maximizing the mutual information between the output and the
input (Bell and Sejnowski, 1995),

P{s,x)
I{S, X) = ~~ P{s, x)ld P{s)P{x) . (9.23)

Maximization of the mutual information eq. (9.23) represents a reasonable
design principle for cortical processing (Eckhorn and Popel, 1974; Eckhorn and
Popel, 1975), as it maximizes the amount of information that can be extracted
from the code about the input images. It has been successfully applied for
modeling the self- organization of cortical maps (Linsker, 1989).

5. Sparse Distributed Coding
Recently, sparse distributed coding has been suggested as a promising coding

principle in the cortex (Field, 1994; Olshausen and Field, 1995b; Olshausen
and Field, 1995a; Olshausen and Field, 1996). It represents a special way of
approaching a factorial code, for which further assumptions about the particular
shape of the marginal distributions Pi{Si) are made. It is suggested, that for a
particular image most of the nodes are silent, whereas a few nodes are strongly
active. For each image, another small subset of nodes becomes active, but on
average all nodes show the same activity distribution. Because the nodes are
silent for most of the time and highly active for the rest, the activity distributions
in a sparse distributed code will be highly kurtotic and supergaussian (figure
9.2a, cf. also figure 7.6). A strongly supergaussian distribution is also referred
to as a sparse distribution. As mentioned in chapter 7, the amount by which the
activity distribution Si deviates from the Gaussian distribution is measured by
its kurtosis

(9.24)

The higher the kurtosis of a node i, the lower its marginal entropy Hi{S), and
the higher the sparsity of the code. Consequently, if we maximize the output
kurtosis of a code while preserving the total entropy, we generate a sparse
representation and at the same time force the system towards a factorial code
(see also (Hyvarinen and Oja, 1997) and chapter, 7, section 3.2).
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Figure 9.2. (a) Sparse activity distribution with a high positive kurtosis (solid line) . The
node has a high probability of being either inactive or strongly active, and a low probability
of intermediate activity. The dashed line sketches a Gaussian distribution for comparison. (b)
Hypothetical sets of images. Set A contains a natural scene at different illumination levels, set B
contains the same scene plus an object at several contrast levels. (c) Hypothetical joint intensity
distribution of the two pixels marked within the images in (b). The distribution is supergaussian.
If the code is formed by projecting onto the two axes ui and U2 , output channels respond sparsely
(insets).

Figure 9.2b gives an intuition why a sparse code might be suitable for the
description of complex structures in the image pdf. Let us consider two sub­
sets of natural images, one set showing a scene at different illumination levels
(top), and the other one showing the same scene under the same conditions,
but with an additional object being present at some location (bottom). If we
draw the joint distribution of gray levels for the two highlighted pixels, we
arrive at the hypothetical X-shaped distribution in figure 9.2c. It represents a
two-dimensional slice through the pdf of the set of natural scenes. Clearly, one
branch of the pdf varies strongly with the mean brightness of the images (set A),
whereas a variation along the other branch indicates the presence of an object
(set B). This decomposition is not easily visible from the raw pixel intensity
histograms, which depend both on the illumination level and on the object con­
trast. If we construct a transform such as to maximize the kurtosis (sparsity)
of the projections onto each axis, we arrive at a code which is given by the
projection onto the two axes uj and U2 in figure 9.2c. The new coordinate axes
point into the directions of the two branches, which can now be represented and
described independently of each other.

Cortical representation of visual stimuli has been shown to be compatible
with the design principle of sparse distributed coding. (Field, 1994) has filtered
both a set oflog-intensity natural scenes as well as a set of surrogate images with
11k amplitude spectra and random phases (cf. figure 9.1b). Filters were (i)
Mexican hat filters similar to retinal receptive fields (figure 3.10) and (ii) Gabor-
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filters similar to cortical simple receptive fields (figure 3.12). Afterwards, he
determined the kurtosis of the images and the two filter outputs and found,
that the kurtosis of the filtered natural scenes were much higher than that of
the raw scenes: k(image) : k(Mexican hat) : k(Gabor filter) ~ 0.8: 1.7:
4.5. In contrast, filtering of the surrogate images yielded a kurtosis close to
zero. In summary: If cortical filters as known from experiments are applied to
natural scenes, they generate a sparse code which is selective to the important
higher-order features such as phase alignments.

Otherresearchers (Olshausen and Field, 1995b; Olshausen and Field, 1995a;
Fyfe and Baddeley, 1995; Olshausen and Field, 1996; Ziegaus and Lang, 1999)
have also carried out the reverse study: They constructed a sparse code of natural
scenes and showed that it leads to a framework that shows strong similarities
with cortical visual processing. A sparse distributed code must fulfill two
requirements: (i) it must be able to represent all natural scenes, and (ii) it
must fulfill the sparsity condition: each stimulus should be represented by
only a small subset of neurons, which in this case should be strongly active.
Both requirements can be combined to form a cost function, which we want to
minimize. We assume, that a set of images x shall be reconstructed by the code
using a set of basis vectors w.:

(9.25)

At the same time, each node i shall be as sparse as possible. A suitable cost
function for the code is:

(9.26)

The first term in eq. (9.26) punishes a large reconstruction error, whereas
the second term enforces sparsity, if the function F is suitably chosen (e.g.
F(x) = Ixi). The cost function can be minimized in a two-step process: For
each image presentation, the activities of the output nodes Si evolve according
to the gradient of E,

(9.27)

until they reach their equilibrium point. Afterwards, the basis vectors w, are
updated according to the gradient of the cost function:

(9.28)
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Figure 9.3 25 out of 144
cortical filters w after train­
ing of a sparse code(adapted
from (Olshausen and Field,
1995a». Input patterns were
12 x 12 patches of sphered
natural scenes. White marks
positive, dark negative vector
components. All filters are lo­
calized and strongly resemble
simple receptive fields.

'fJ and>. are step size parameters. Figure 9.3 shows the basis functions that
emerged from the procedure described above under presentation of 12 x 12
patches of natural images, that were sphered by a whitening lowpass filter
prior to their presentation (in this example, the dimension of the images is
144). All the filters strongly resemble simple cortical receptive fields. They are
localized, oriented and contain elongated subfields. This result demonstrates
that the design principle of sparse distributed coding predicts filters that are
very similar to cortical receptive fields.

Equation (9.27) could for example be interpreted in biological terms as fol­
lows: Si is the activity of the i-th cortical neuron, and Wi is its afferent as well
as its feedback synaptic vector from and to the LGN. The change in activity
of the cortical neuron i is driven by three terms: (i) A feed-forward term that
calculates the overlap between the filter and the input (first term in eq. (9.27).
It is carried by retinocortical pathway. (ii) A negative recurrent term which
is driven by the other output activities (second term) and can be related to
lateral inhibitory connections, possibly mediated by basket cells. (iii) A self­
inhibitory term that enforces sparseness (third term) and might correspond to
local inhibition mediated by chandelier cells. The interpretation of the learning
process of the filters is also biologically plausible from the interpretation of
eq. (9.28): The reconstruction of the image by the cortex is projected back via
the TRN to the LGN and is subtracted from the afferent signals that arrive at
the LGN. The residual signal (x - x) contributes to Hebbian learning of the
afferent geniculocortical weights Wi.

We have seen that from the design principles of compact and sparse dis­
tributed coding we can derive computational models of cortical function. Some
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aspects of their operation prove similar to experimentally observed cortical
neuronal response properties . This demonstrates, that cortical function is com­
patible with the design principles imposed: it works optimal in the sense for­
mulated in the design principle. This by no means implies that we do now
fully understand cortical function. For example, many functional aspects are
compatible with several (virtually with every reasonable) design principles and
consequently one particular optimality criterion is not sufficient to understand
how the brain works. Also, many functional aspects (e.g. temporal coding) are
not even addressed so far, but may be at least as important as the spatial code.
Finally, computational models show why it might be reasonable for the brain to
operate in the particular observed way but give no answer to the question how a
particular algorithm is implemented in the cortical anatomical substrate. This
latter question is addressed by connectionist models of cortical function, some
of which we summarize in the next chapter.



Chapter 10

MEAN-FIELD MODELING OF
CORTICAL FUNCTION

In chapter 3 we have provided a brief overview over the neuroanatomy of the
macaque cortex. It has become clear that cortical tissue has a highly complex
structure with many neuron types, each of which again shows a considerable
diversity across the population of individual nerve cells. By use ofmathematical
models for cortical function, we hope to obtain a deeper understanding of what
is going on in our brain. Computational models (cf. previous chapter) help
to understand whether or not a general design principle of signal processing is
compatible with observed aspects of brain function. However, computational
models rarely deal with the question of how an algorithm is implemented in
the brain and therefore might be subject to oversimplification . They leave us
with the question how cortical information representation is generated by the
network of neurons in cortical tissue: How does cortical function result from
cortical structure?

One possibility to address this question is to generate a detailed model of
cortex which mirrors the anatomy and physiology as closely as possible . How­
ever, modeling every detail of cortical anatomy represents an extremely difficult
and tedious if not impossible task. In addition, even if we were able to build a
one-to-one model of a piece of cortex, our model would behave exactly as the
cortex itself and thereby we would not be able to understand it any better as its
biological counterpart. Finally, we might add many aspects to the model which
are unique to one particular piece of cortex (say, of one particular animal) and
are not general cortical features. In this sense, forming a very detailed model
of cortical function would "overfit" the system by explaining the details rather
than the general principles .

Connectionist models of cortical function want to extract the general un­
derlying principles for the observed structure-function relationships: Which of
the anatomical features observed in biological cortices are important and neces-
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sary ingredients for the generation of the observed cortical response properties?
Consequently, a connectionist model should act at an intermediate complexity
level, and it is one major task for the modeler to find the correct level of complex­
ity. Once good models are found and basic principles of cortical information
processing are extracted, our reward might be the key to a "general problem
solver" module: Although cortical function is very diverse (from local scene
analysis in the primary visual cortex up to reasoning and decision making in
the prefrontal cortex (Damasio, 1996)), the anatomy of the cortex is astonish­
ingly uniform over all areas. This observation has led to the hypothesis that the
cortex carries out the same (or similar) operations to different types of input.
By understanding how the primary visual cortex works, we can therefore hope
to derive general construction principles of the whole cortex.

In the following sections, we will address the question how cortical responses
(summarized in chapter 3, section 2) are generated by the neuronal circuitry of
the early visual system. We will start from simple models and will identify and
add more and more necessary ingredients for the observed response behavior.

1. Iceberg-Model of Orientation Selectivity
One important early model for orientation tuning first formulated by Hubel

and Wiesel, e.g. (Rubel and Wiesel, 1977), is based on the structure of simple
receptive field profiles (figures 3.12 and 9.3). They consist of elongated sub­
fields with alternating ON- and OFF-response. The Iceberg-model proposes
that orientation selectivity is generated by filtering oriented input with the re­
ceptive field profile (calculating its overlap with the profile) and feeding the
result through a rectifying nonlinearity. This means that the model assumes
that orientation selectivity is purely generated by feed-forward processing of
input (mediated by the feed-forward fibers from the retina over the LGN to a
cortical neuron) and local processing within the neuron. In particular, no func­
tion is assigned to the intracortical circuitry as well as feedback-circuitry to the
LGN. These connections are neglected in the iceberg model and it is sufficient
to consider the response of an individual cortical neuron.

The iceberg-model for oriented cortical response can be mathematically for­
mulated by a simple neural network, the architecture of which is illustrated in
figure 10.1. Two layers of ON- and OFF-center LGN cells process the visual
input and project to a single considered cortical neuron. The projections are
structured in a way that only ON- and OFF-LGN cells with spatially aligned
concentric receptive fields (figure 10.1, right part) drive the cortical simple
cell by non-negative weights wON and wOFF • respectively. This particular ar­
rangement of afferent LGN cells is viewed as the origin of elongated ON and
OFF subfields of simple receptive fields. Because we do not address aspects
of temporal coding for the moment, it is sufficient to assume a rate code for
the neurons. ON-LGN-cells increase (decrease) their spike rate relative to the
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Figure 10.1. One-dimensional cross-section through a simple neural network for the iceberg
model. A cortical neuron is selectively fed by ON- and OFF-type LGN neurons with aligned
receptive field centers. The drawing on the right part illustrates the alignment of ON-LGN
receptive fields with nonzero weights wON to the cortical neuron. Bottom plots sketch a zero­
phase grating stimulus ~ (bottom) and the corresponding effective LGN activity v (top), which
are very similar to each other.

spontaneous activity level (which is relatively high for LGN cells), if a bright
(dark) light bar covers their center. This deviation is denoted by vON. The
relative change in spike rate for OFF-center LGN cells is denoted by vO FF.

Because OFF-center LGN cells show roughly the opposite response behavior
to ON-center cells, we can approximately set vON ~ _vOFF == v, where v is
referred to as effective LGN response. The second plot from bottom in figure
10.1 schematically illustrates the effective response ofLGN neurons over space,
if a zero-phase grating is presented to the network (bottom plot). Because the
activity v results as a linear filtering of the sine-wave input ~ by the Mexican
hat like LGN receptive field profile, v and ~ have the same phase and frequency
and differ only in amplitude: v = vo~. Based on these observations, the total
synaptic input of the cortical neuron becomes

hLGN = ~WON vON +wOFF vOFF
L..Jaa a a

a

(10.1)
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~ '"WONV _ WOFFVL..J a a a a
a

= VQ L)w~N - w~FF)e,
a

(10.2)

(10.3)

where a runs over all LGN cells which drive the cortical neuron. In the present
linear model framework, the total synaptic input of the cortical neuron (up to a
constant factor) can be calculated as the overlap between the input pattern and
thefilterG(r) with G(ra ) = w~N _w~FF. ra denotes the receptive field center
of the a-th LGN cell in the visual field. This filter represents the model of a
simple receptive field profiles, which have been found to resemble Gabor-filters
(Daugman, 1980).

In the rate model, the output of the cortical neuron can be calculated as a
nonlinear transfer function of the input. Motivated by thresholded semilinear
current-frequency relationships shown in figure 2.9a, we can identify the input
current with the total synaptic input hLGN and can calculate the output as a
thresholded and rectified version of the input:

s = f(hLGN
) = max(hLGN - T,O) (10.4)

Note that by adopting the behavior of the frequency-current relationship, we
implicitly assume stationarity of the system.

Orientation selectivity is generated in the model framework as follows: If the
stimulus is an oriented structure such as a sine wave grating, the total synaptic
input will be maximal, if the orientation and phase of the sine wave is aligned
with orientation and phase of the receptive field profile, and will be zero, if
the structures are orthogonal. The two rows at the bottom of figure 10.2 show
different oriented sine wave gratings and the Gabor-filter G(r). In the example
shown, the overlap is maximal for the middle stimulus and decreases with the
difference between orientations. The resulting synaptic input for two different
contrast levels ofthe stimulus grating is plotted in the bottomdiagram against the
stimulus orientation. The simulation was performed using differently oriented
sine-waves as stimuli and a Gabor-filter with ak = 0.2 (roughly one oscillation
within the non-zero region) as receptive field profile. The neuronal output is
shown in the top diagram of figure 10.2, and was obtained using eq. (10.4) and
a threshold ofT = 0.4 (dashed line in plot below). The response is orientation
selective, but nevertheless the iceberg model has some serious drawbacks, which
motivate the consideration of more sophisticated models for cortical function:

• In biology, the sharpness of orientation tuning is independent of stimulus
contrast (cf. figure 3.13a and (Sclar and Freeman, 1982». This indepen­
dence might be important, as it ensures that stimulus orientation and stimulus
contrast are coded independently of each other in the cortex, which facili­
tates the independent readout of both quantities. The iceberg-model predicts
a strongly contrast-dependent orientation tuning width.
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Figure 10.2. The iceberg-model of orientation selectivity. Bottom rows: Filtering oriented
input by a simple receptive field profileyields an orientation tuned input from the LON to a
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version of its input. The output is orientation selective, but its tuning width increases with
stimuluscontrast.
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• In biology the orientation tuning curves are sharper than predicted by the
iceberg model, and the output of neurons is often more sharply tuned than
their input (Volgushev et al., 2000). Ifrectifying nonlinearities ofLGN cells
are taken into account in the model instead of the linear filter model assumed
here, its simulated tuning curves become even broader.

• The iceberg model does not assign any function to intracortical circuitry,
which in fact is even much stronger than the feed-forward circuitry. This
leaves the question of which operations are performed by lateral intracortical
connections.

• The iceberg model is not suitable for modeling more complex features of
cortical processing. For example it cannot explain, why the neuronal re­
sponse curves obtained from neuronal stimulation (cf. 2.9b) are completely
different from those obtained by electrical stimulation (cf. 2.9a).

In light of these observation, we face the necessity to build a more sophisticated
model of cortical function, which involves dense recurrent intracortical circuitry
(Somers et al., 1995; Ben-Yishai et al., 1995; Ben-Yishai et al., 1997; Bartsch
et al., 1997; Hansel and Sompolinsky, 1998). A sufficiently large cortical
circuit may contain millions of densely interconnected neurons, which cannot be
modeled at a single neuron level because a prohibitive computational expense.
We face the task to formulate a model framework which allows a simplified yet
still valuable theoretical description of a large neuron population at a mesoscopic
level. One important type of mesoscopic cortical description has been provided
by mean-field models of cortical function, which will be introduced in the next
section.

2. Mean-FieldModel of NeuronalPopulation Activity
Modeling of cortical signal processing can be considerably simplified by

taking into account the columnar structure of the cortex. Each cortical column
contains many thousands of neurons, which receive approximately the same
afferent and intracortical input and show similar response properties. But even
ifsome response properties (such as direction selectivity in macaque VI) change
over depth, there is still a topographic mapping of functional aspects: In most
of the cases many nearby neurons show similar selectivities.

2.1 Principle and Basic Assumptions
Based on these observations, (Ben-Yishai et al., 1995) and (Bartsch et al.,

1997) have formulated a mean-field description of cortical processing. First, if
two neurons k and l within a cortical column receive similar total synaptic inputs,
hk ~ hi, it seems a good approximation to assume that each neuron within a
given population a, for example all excitatory (a = "e") or all inhibitory
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Figure 10.3. (a) Principle of binary stochasticneurons: The neuron randomly toggles forth
and back betweenan active(right)and inactive (left) state. If the neuronis drivenby excitatory
input, the probability for activation increases and inactivation probability decreasesresultingin
a higher mean activity. (b) Semilinearactivation function g(h).

neurons (a = "i") within a column, receive the same input, hk,a == b« for all
neurons k of the population. In other words, instead of feeding to every neuron
its actual input, all neurons within one population are assumed to receive the
same mean input. Due to that reason, this kind of models is referred to as
mean-field models 1. Second, within each population many neurons encode
similar input properties. Therefore it seems reasonable to hypothesize, that
only the overall activity of a whole neuron population is important, whereas the
fluctuations within the activities of individual neurons, which can be viewed
as nonlinear stochastic units, can be neglected at this level. This corresponds
to the assumption that important stimulus properties are encoded in population
activities (for aspects of population coding see (paradiso, 1988; Zohary, 1992».
Note that omitting random fluctuations does not imply that we exclude non­
random collective phenomena, i.e, the mean population activity can still be
strongly time-dependent. For a model that explicitly includes fluctuations we
refer to (Tsodyks and Sejnowski, 1995». Though neurons of one cell type
within a cortical column are natural candidates for a neuron population, the
framework can be applied in a more general way: Arbitrary sets of neurons
with similar inputs and responses can be combined to a population.

2.2 Dynamics of a Neuron Population
We are now ready to write down a simplified description of neuronal pop­

ulation dynamics. One possibility for such a description assumes individual
neurons as stochastic neurons binary stochastic units, which can flip forth and
back between an active (spiking) and inactive (non-spiking) state. The prob-

IThis term has been borrowed from solid slate physics,where mean-field modelsdescribe the behaviorof
atomicmagnetic momentsunderthemeanmagnetic fields of theirneighbors insteadof the actualftuctoating
magneticfield.
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ability per unit time for an inactive neuron to be activated is denoted by the
activation rate 'Y and its inactivation rate by 8 (lO.3a). Below, we will relate 'Y
and 8 to the mean synaptic input of the population: A high excitatory input will
lead to a high activation rate and a low inactivation rate, which causes a higher
fraction of neurons to be active. Low input or inhibitory input, in contrast will
reduce the activation rate and the neurons settle down to the inactive state. Ifwe
consider a population of N binary stochastic neurons with identical activation
and inactivation rates, the number of active neurons A changes within the small
time interval ti.t according to

ti.A = 'Yti.t(N - A) - 8ti.tA = hN - h + 8)A) ti.t. (lO.5)

In the limit ti.t ~ 0, this relation transforms to a rate equation for the fraction
of neurons m = AIN that are active at time t:

(10.6)

Now we assume for simplicity, that the inactivation rate behaves inversely to the
activation rate. This is reasonable because neurons which are strongly driven by
input are less likely to stop firing spontaneously. If 'Ymax denotes the maximum
possible activation rate, we arrive at 8 = 'Ymax - 'Y and

(lO.7)

One possible interpretation of the maximum activation is related to the refrac­
tory period of biological neurons. For a neuron to undergo two subsequent
activations, it must at least fire a spike and wait for the refractory period 7

until it can be activated to fire the next spike. This means that we can iden­
tify the maximum activation rate with 'Ymax = 117. The rate equation for the
population activity becomes

d
7 dtm= -m+7'Y=: -m+g, (10.8)

where 0 ~ 9 = 7'Y~ 1 denotes the activation probability (relative to 7) for the
neuron population.

For realistic regimes of operation, eq (lO.8) can be interpreted as the dy­
namics of a pool of spiking neurons. This view can be motivated as follows:
The (absolute) refractory period 7 is in the range of 1-2 ms, which means that
electrically driven neurons can reach spike rates of approximately 500 - 1000
Hz. In contrast, the spike rates observed for visually stimulated cortical neurons
range around 50 Hz: realistic activation rates are much smaller than the max­
imal rate, 'Y « 'Ymax, (g « 1), and consequently the inactivation rate is very
fast: 8 ~ 'Ymax = 117. In this regime, each time a neuron becomes activated
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and fires a spike, it immediately becomes inactivated again with a rate close
to its refractory period. In other words, a binary stochastic neuron which is
activated fires an individual spike and automatically inactivates again: In the
limit of low mean activation, our mean-field model describes a population of
spiking (instead of binary) neurons.

Now we have to specify, how the activation probability changes with the
synaptic input. If the input of a neuron population falls below a threshold
T, all neurons of the population are inactive, otherwise, neurons should be
activated the more frequently, the more excitatory input they receive. The
simplest function, which preserves this important rectifying nonlinearity present
in biological neuronal systems is a semilinear function, and we can formulate
the dependence of the activation probability 9 on the mean synaptic input h of
the population as

g(h) = max.(f3(h - T), 0). (10.9)

g(h) is referred to as the activation function of the population (figure 10.3b).
Note that at this point we have made use of the mean-field assumption. In eq.
(l0.9), h has to be the mean synaptic input of the population. If we had used
the actual synaptic input, the activation function would have different values for
each neuron in the population and the ensemble average could not be as easily
written down as in eq. (l0.8).

3. Modeling Orientation Selectivitywith two Cell Types
In chapter 3, section 204, we have seen that the primary visual cortex pro­

cesses visual input locally: Each local visual feature is processed and repre­
sented by a patch of cortex about 1 - 2 mm in diameter, which is called a
hypercolumn. The neurons within a hypercolumn are densely connected by
lateral intracortical fibers and form a strongly coupled recurrent network. In
contrast to the considerations of the iceberg model, we wish to explore, how the
afferent input (transformed visual signals) is processed by this recurrent cortical
network. We ask which signal processing operations are implemented in the re­
current network. By formulating a mean-field model of a cortical hypercolumn
(Ben-Yishai et al., 1995; Ben-Yishai et al, 1997; Bartsch et al., 1997; Bartsch
et al., 1999b; Stetter et al., 2000a), we can efficiently describe the dynamics of
hundreds of thousands of neurons within a hypercolumn at a population level.

3.1 Model Setup for a Hypercolumn
A model hypercolumn for the processing of oriented stimuli as illustrated in

figure lOA can be constructed by considering the following observations: (i)
The primary visual cortex has a columnar structure, (ii) within each column
many neurons respond approximately to the same stimulus orientation, and (iii)
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Figure lOA. Mean-field model of an orientation hypercolumn. (a) Two neuron populations
per orientation column receive broadly tuned afferent input hLGN(O - 00), where 00 is the
stimulus orientation . The preferred orientation 0 is defined by the afferent orientation bias.
(b) A hypercolumn consists of many orientation columns which cover the orientation space
uniformly and are driven by the same oriented stimulus. (c) Orientation columns Q and f3 are
mutually connected by short-range lateral connections Sa,P .

eachorientation column contains bothexcitatory and inhibitory neurons. Based
on these observations, we consider two poptilations of neurons per column
whichcontainall excitatory (pyramidal) neurons, denotedby an index 'e', and
all inhibitory neurons (various types) denoted by an index 'i'. For a given
orientation column, we denote the average activities of these populations by
rne and rni and their mean synaptic inputs by he and hi, respectively. The
average activity of each population is then givenby

d
T dt rna = -rna + ga(h a), a = e, i ,

with the activation functions

(10.10)

(10.11)

Ta denote the activation thresholds and f3a the activation gains for both popu­
lations.

All neurons withinan orientation column of the mean-field modelare driven
by the same afferentinput, hLGN , whichis mediated by thalamocortical fibers
terminating withinthiscolumn(figure lOAa). Thesefibers carryan orientation­
biased signal, whichmightfor example be generated according to the iceberg­
model by simple receptive fields with elongated ON- and OFF-dominated re­
gions (cf. section 1) . The preferred orientation () of the orientation column is
thusdeterminedbythepreferredorientationof theafferentinput, andorientation
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columns can therefore be labeled by this preferred orientation angle. Ifa visual
stimulus with orientation 00 is applied to the receptive fields of the neurons, the
geniculocortical input of the orientation column 0 can be parameterized as

hLGN (0 - (0) = c(l - e + e cos(2(0 - ( 0) )) , (10.12)

where 0 ~ e ~ 0.5 controls the strength of the afferent orientation bias and c
measures the maximal thalamocortical input. The latter is mediated by LGN­
cells and is therefore proportional to the logarithmic stimulus contrast (Albrecht
and Hamilton, 1982).

Each hypercolumn contains orientation columns with all preferred orien­
tations -rr/2 ~ 0 ~ rr/2 (figure IOAb), and these orientation columns are
densely interconnected by local intracortical fibers. The local connection stren­
gth from population f3 at orientation column 0' to population a at orientation
column 0of that hypercolumn is denoted by Sa,p(O -0') (a, f3 = e, i). Because
intracortical connections often connect cell populations with similar orientation
preferences (Kisvarday et al., 1994; Yoshioka et al., 1996), we describe the con­
nection patterns within and between the orientation columns of the model by
rr-periodic Gaussian functions,

. ( (<P(~0))2)
Sa,p(~O) = signpSapNO' exp - 2u~p (10.13)

where ~() = () - ()', <p(0) = min (I01 , rr - 10!), signp = ±l for f3 = e, i
refers to the sign of the coupling, SaP 2:: 0 denotes the absolute value of the
integral over the coupling strengths, and NO' is a normalization factor. The
widths Uap of the Gaussian function determine the orientation specificity of
the local lateral connections. In order to obtain analytical results, the Gaussian
profiles eq. (10.13) are sometimes replaced by cosine-shaped profiles,

1
Se,e(~()) = Si,e(~O) = -(Eo + E2 cos(2~())) (10.14)

rr
1

Se,i(!:1()) = Si,i(~O) = -(-10 - 12 cos(2~())). (10.15)
rr

The average activation of the population ofcell type a within orientation column
() at time t is denoted by ma(O,t), and its dynamics follows the equations

~ma(O,t) = -ma(O, t) + ga(ha(O, t)), a, f3 = e, i (10.16)

where time is taken in units of the time constant, i.e. T = I, and

+rr/2

ha(O, t) = :L. J d:' SaP(() - 0') mp(O',t)
P=e,z_1r/2

'"hlateral
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+c {I - E: + E: cos [2(0 - eo)]} a, f3 = e, i (10.17)
... ,

'"hLON

Figure lOAc shows a typical choice for the profiles of the lateral coupling
strengths. Excitatory connections are mediated by local collaterals of pyramidal
neurons, which are strongest between neurons with similar orientation prefer­
ences and almost zero for pairs with orthogonal orientation preferences (top
curve in figure lOAc). Note that the fibers arelocalized in orientation space but
need not necessarily be localized in spatial cortical coordinates. For example,
within the 2 x 2 mm area of the hypercolumn, the same orientation preference
appears several times (cf. figures 3.16 and 8.15) periodically with the typical
wavelength of the orientation map (Miiller et al., 2000). Iso-orientation specific
lateral connectivity would then form a set of patches of connectivity over the
iso-orientation regions (which has been actually observed by (Malach et al.,
1993), see also chapter 3, section 204). Inhibitory connections are often as­
sumed to spread further laterally in orientation space than excitatory fibers, i.e.
there is non-zero cross-orientation inhibition (bottom curve in figure lOAc).
These longer range lateral inhibition can be assigned to basket neurons (Lund,
1987), which form relatively large axonal arbors. For the parameter choice
shown, the fibers do not distinguish between the types of target neurons, i.e.
Se,e = Si,e and Se,i = s.;

In the following sections, we will adopt this anatomically motivated con­
nection scheme. In addition, the activation function of the inhibitory neuron
population is assumed to have a higher threshold (Ti > Te ) and a higher gain
(f3i > f3e) than that of the excitatory population, as reported by (McCormick
et al, 1985).

3.2 Simulating Contrast-Invariant Orientation Thning
Figure 10.5 shows, how a hypercolumn of recurrently connected cortical

orientation columns represents an oriented stimulus. The presence of an ori­
ented contour or grating within the aggregate field of the hypercolumn evokes
a broadly tuned input, which is shown in figure 1O.5a for three log contrast
levels. The cortical activities are iterated through the recurrent circuitry, until
a stationary state is reached. The resulting activity pattern over the 42 orienta­
tion columns and for the three contrast levels are shown in figure 10.5b. The
activity pattern is more sharply tuned in orientation space than the input, and
its tuning width is independent of contrast as observed in biological systems.
Note the symmetry between the index 0 of the orientation column and the stim­
ulus orientation 00, hLGN (0 - ( 0 ) = hLGN (00 - 0). As a consequence, the
activity pattern over the whole hypercolumn for a single stimulus orientation is
the same as the response of one orientation column measured over all stimulus
orientations. In other words, the functional form of the activity pattern in the
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Figure10.5. (a) Simulation of orientation representation in a hypercolumn with two typesof
neurons. (a) Weakly tunedinputhLG N (8) to the hypercolumn for 80 = 0 deg stimulation with
threelogcontrastlevels. (b) Meanactivities of theexcitatory neurons of theorientation columns
in the stationary state for stimulation as shownin (a). The activity patternis sharplytunedand
its width is independent of contrast. Parameters: 42 columns, See = S•• = S•• = Su = 30;
T. = 1, T. = 2,13. = 0.5,13. = 1, U•• = os« = 34 deg, U •• =U ii = 00.

model is identical to the orientation tuning curve of one column. Therefore,
we will henceforth identify both quantities with each other and refer to plots
as in figure 10.5b as orientation tuning curves. In summary, a model hyper­
column with strong recurrent and local excitation and a distributed recurrent
inhibition represents the stimulus orientation independently of contrast. This
regime of operation of a hypercolumn has been referred to as "marginal phase"
(Ben-Yishai et al., 1995), because the cortical representation is preferentially
determined by intracortical dynamics instead of the detailed characteristics of
afferent input.

3.3 Analytical Treatment of OrientationTuning
In order to gatheran analytical understanding of the representation oforiented

stimuli, we consider the cosine-shaped connectivity patterns ofeqs. (10.14) and
(10.15) with Eo ~ E2 ~ 0 and 10 ~ 12 ~ O. Further, we denote by Ma(O) the
steady state activity of the population a, which arises as the stationary solution
ofeq (10.16) and define its zeroth order and the second order Fouriercoefficients

ma,O .- / dO' /1f Ma(O') ,

ma,2 .- / dO' /1f Ma(O') cos(20').

(10.18)

(10.19)
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It can be shown (Bartsch et aI., 1997; Stetter et aI., 2000a), that in the stationary
state ma,o and m a ,2 follow the conditions

ma,o = E:;<ec+ E2me,2 - 12mi,2)(sin(20c,a) - 20c,acos(20c,a)) (10.20)

m a ,2 = ~ (sc + E2me,2 - 12mi,2) (Oc,a - sin(40c,a)/4) , (10.21)

where Oc,a is the tuning width (measured at the basis of the tuning curve) of
population a.

For sufficiently high recurrent excitation, the hypercolumn operates in the
marginal phase (Ben-Yishai et al., 1995), in which even a vanishingly small
afferent orientation bias is amplified and gives rise to an activity blob whose
width is independent of stimulus contrast. For Ti > Te, the width of the blob
across inhibitory neurons is.slightly smaller than the width of the blob across
the excitatory population and both widths depend on stimulus contrast albeit
less than 10 percent for Ti = 2Te. These results can be derived as follows.
The marginal phase is defined by the stability of an oscillatory solution of the
stationary activities Ma(O) in the orientation space even for (almost) unbiased
input. An oscillatory solution is indicated by the stability of a nonzero value of
ma,2, which requires the determinant ofthe right hand side ofthe linearequation
system in me,2 and mi,2, eq. (10.21), to vanish. We obtain the condition

f3e E2 (Oc,e - sin(40c,e)/4) - f3d2 (Oc,i - sin(40c,i)/4) = 71", (10.22)

which for the special case of a flat profile of the lateral inhibition, i.e. 12 = 0,
reduces to the expression

(10.23)

or
1

f3e E2 = f(Oc,e) (10.24)

with f(x) = (1/7I")(x - sin(4x)/4).
Figure 10.6 illustrates, under which conditions eq. (10.24) can be fulfilled.

For 0 s 0 ~ 71"/2, f assumes values between 0 and 1/2. A solution ofequation
(10.24) exists only for a sufficiently strong spatial modulation E2 of the lateral
excitation profile and thus for a sufficiently strong overall connection strength
Eo ~ E2 > 2/ f3e. In this case, the orientation tuning width is uniquely deter­
mined by the properties of the lateral circuitry and in particular is independent
of the stimulus contrast. According to the second term on the left hand side
of eq. 10.22, modulation 12 > 0 of lateral inhibition shifts the boundary of
the marginal phase to higher values of E2 , yet sharpening occurs as long as
its modulation over space is weaker than that of the excitatory connections,
12 < E2·
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Figure 10.6 Graphical so­
lution of the condition eq.
(10.24). A solutionexistsonly
for f3.E2 > 2. In thiscase, the
orientation tuningwidthBe ,. is
uniquely determined andis in­
dependent of contrast.

In summary, there is a phase boundary for the strength ofthe lateral excitation
at fJeE2 = 2. Above this phase boundary, stimulus orientation is represented
by a sharp tuning curve, independently of the strength of afferent orientation
bias and independently of stimulus contrast. This holds, as long as the profile
of excitatory circuitry is more strongly modulated in orientation space than the
inhibitory circuitry profile.

4. Modeling Contrast Saturation with two Cell Types
Figure 2.9 has demonstrated that the spike rates of cortical neurons saturate

with increasing logarithmic contrast of a visual stimulus (2.9b), but do not sat­
urate, if they are stimulated by a stationary injected current (2.9a). Thus, it
seems reasonable to hypothesize, that contrast saturation is an emergent prop­
erty of the cortical neuronal system instead ofan intrinsic property of individual
neurons. In this section we address the question, if and under which conditions
contrast saturation can be a consequence of the neuronal circuitry (as opposed to
synaptic properties (Stetter et al., 1998a». f. gain we start with a simple model
architecture, in which all excitatory and inhibitory neuron types are lumped
together into only two neuron populations 'e' and 'i' per orientation column.

4.1 Analytical Treatmentof Isolated OR-Columns
First , we wish to analytically describe the basic principles of recurrent signal

processing which can serve as the origin of contrast saturation. For this, it has
proven useful (Bartsch et al., 1997; Stetter et al., 2000a) to consider the strongly
idealized case, in which the different orientation columns are decoupled from
each other and only connections within each orientation column are preserved
(figure 10.7), i.e., SofJ(O - Of) = signfJSofJ8(O - Of). In this case, the average
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only local connections

Figure 10.7. Stronglyidealizedversion of a hypercolumn, in which only local connections
withineach orientation column are preserved.

activities of each orientation column evolve independently according to

:tme = -me + ge (Seeme - Seimi + hLGN
) ,

~m i = -mi + gi (Sieme - Siimi + hLGN
) .

(10.25)

(10.26)

Also, because the orientation columns are decoupled, only one column needs
to be considered, for which we omit the arbitrary orientation index e.

The stationary solutions Me and M, of the coupled equations (10.25) and
(10.26) obey

Me = e« (SeeMe - SeiMi + hLGN
) I

u, = gi (SieMe - SiiMi + hLGN
) ,

(10.27)

(10.28)

and they can be determined by considering three different intervals of input
strengths. For the trivial case of weak sub-threshold input, hLGN < Te ~ Ti,
both activation functions on the right hand sides ofeqs (10.27) and (10.28) van­
ish, which yields zero stationary activations Me = Mi = D. If the LGN-input
is increased slightly above the activation threshold of the excitatory population,
this population becomes active, but its activity is not strong enough to excite
the inhibitory population also. In this regime, one finds gi = 0 and therefore
Mi = 0, while the fixed point equation for Me becomes

(10.29)
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For f3eSee < 1 we obtain

M (hLGN) = f3e (hLGN - T. ) M· = 0
e 1 _ f3e See e , I ,
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(10.30)

(10.31)

(10.32)

If the input from the LGN is further increased, the inhibitory population
becomes active as well. This happens as soon as the total input of the inhibitory
population exceeds its threshold Ti. The critical external input h~r?tN , for which
this happens, and which is therefore the contrast threshold for the inhibitory
neurons, is then defined by the condition

S ( LGN) LGN «e; (hLGN ) hLGN
Ti = ieMe herit + herit = 1 _ f3e See erit - Te + erit .

Solving this equation for the contrast threshold leads to

hLGN _ f3eSieTe + (1 - f3eSee)Ti
erit - 1 + f3e(Sie - See) ,

where a nonzero denominator is assured for f3eSee < 1.
In the remaining case of hLGN > h~r?tN, both activation functions ge and

9i in eqs. (10.27) and (10.28) can be replaced by their linear parts. The fixed
point equation for the system becomes

Inversion of the matrix on the right hand side of eq. (10.33) provides the fixed­
point activations

where the denominator is given by D = 1 - f3eSee + f3iSii + f3ef3i(SieSei ­
SeeSii) and Me(h~r?tN) is determined from eqs. (10.32) and (10.30).

These analytical results are summarized once more in figure 10.8. For
Te < hLGN ~ h~r?tN, only the excitatory population becomes active and
each orientation column behaves like a linear amplifier. Its gain is given by
f3e/(1 - f3eSee) (eq. (10.30» and diverges as See approaches the critical con­
nection strength See = 1I f3e. In the following we will call the parameter regime
o~ See < II f3e the "linear phase" of the cortical column. If the input exceeds
hrraN' the inhibitory neurons become active, suppress the excitatory neurons
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Figure 10.8 Contrast re­
sponse of the excitatory (M.,
solid) and inhibitory (Mi,
dashed) population of an
isolated orientation column.
For weak: recurrent excitation,
f3.S.. < 1, the excitatory
neurons show contrast sat­
uration as a network effect.
The inhibitory neurons do not
saturate.

Input hLGNhLGN
eritT

Activation
a 1-t{.\(1 Siil-I Sed) """'---~

and cause them to saturate. The contrast gain of the excitatory population be­
comes (1+ fJi(Sii - Sei))/D (eq. (10.34», which may become small, if the
excitatory population is inhibited more effectively than the inhibitory popula­
tion, i.e. Sei > Sii. At

(10.36)

the gain of the excitatory population becomes zero for inputs stronger than
h~r?tN, and for even higher values of Sei supersaturation occurs.

We conclude that in the linear phase, See < 1/fJe, the contrast response
curve saturates as the result of the activation of inhibitory neurons with a high
activation threshold. The model predicts that their contrast threshold, h~~N, co­
incides with the stimulus contrast at which excitatory neurons begin to saturate.
The gain of the excitatory population at high contrast levels, hLGN > h~r?tN,

decreases proportional to the difference Sii - Sei between self-inhibition, Sii,
and inhibition Sei of excitatory neurons. The model also predicts that the in­
hibitory population does not saturate with stimulus contrast (below the trivial
case M, = 1).

4.2 Contrast Saturationin the Marginal Phase
Now we consider a hypercolumn with recurrent connections according to

eqs. (10.14) and (l0.15), which operates in its marginal phase. For this lateral
connection scheme it can be shown that the contrast response curve cannot
saturate in the marginal phase. For 12 = 0 (flat inhibition) and Eo = E2 =
10 == S, we can obtain an analytical expression for m e,2:

c-Te
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(10.38)

with d(x) = sin(x) - x cos(x). Because 0 < d(x) ~ 7r for 0 < x ~ 7r, the
second Fourier coefficient m e,2 is bounded from below by

c-Te

m e,2 ~ S2f3i + S'

As a consequence, m e,2 and therefore also the mean activation increases at least
proportional with log-contrast c, and saturation cannot occur.

4.3 Contrast Saturation and OrientationTuning
The analytical results of limiting cases shown so far hint towards a situation,

in which a hypercolumn with two neuron populations per orientation column
shows contrast saturation for weak recurrent excitation and contrast-invariant
orientation tuning for strong recurrent excitation. In this subsection we study
the issue of co-occurrence of contrast saturation and invariant orientation tun­
ing numerically. Three connection patterns of a hypercolumn are considered,
namely: (i) Decoupled orientation columns as described in section 4.1 (referred
to as "local"), (ii) a cosine-shaped excitation profile balanced by an orientation­
independent inhibition as described in section 3.3 (referred to as "cosine/flat"),
and (iii) local excitation which is balanced by flat inhibition, i.e. Gaussian
profiles eq. (10.13) with O'ee = O'ie = 1 deg, O'ii = O'ei = 00 (referred to as
"local/flat").

Figure 10.9 shows numerical simulations of ahypercolumn which operates
in the linear (left column) and in the marginal phase (right column). The top
row displays contrast response curves of the hypercolumn, the middle row its
orientation tuning curves, and the bottom row the contrast-dependence of the
orientation tuning widths. Solid lines, solid lines with circles, and dashed
lines correspond to the three connection patterns (i), (ii) and (iii) specified
above. The plots demonstrate that in the linear phase contrast response curves
saturate (figure 1O.9a) but that orientation tuning remains weak and is dependent
on contrast (figure 1O.9c, 1O.ge). In the marginal phase, orientation tuning
is sharper and independent of contrast (figure 1O.9d, 1O.9f), but the contrast
response is linear after a sharp onset and does not saturate (figure 1O.9b).

Two further observations are worth mentioning: First, the onset oforientation
sharpening and the onset of contrast saturation coincide in the linear regime
(figure 1O.9a, 10.ge). This coincidence is a strong prediction of the model and
can be used to test experimentally, whether groups of neurons in the primary
visual cortex indeed operate in the linear regime. Second, figure 1O.9ashows
that saturation of the contrast response curve is weaker in a hypercolumn with
flat inhibition compared to a hypercolumn with decoupled orientation columns
for the same values of the integrals Sop over the connection strengths. For flat
inhibition, a large fraction of inhibitory connections received by active neurons
originate from cross-oriented neurons, which are silent because of the localized
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Figure 10.9. (a), (b) Contrast response curves, (c), (d), orientation tuningcurves, and (e), (f)
the orientation tuningwidthOc,e (halfwidthat thebaseof the curvesin (c), (d) as a function of
log contrastc for the excitatory neuronpopulation. Left column: network operates in the linear
phase (Bee = Bie = Bii = 1, Bei = 2 broadly tuned inputs with e = 0.3); Right column:
networkoperates in the marginal phase (Bee = Bie = Bei = Su = 6, nearly untunedinput
e = 0.01.). Solid lines: ''local'' couplings. Dashedlines: "local/flat" couplings. Solidcircles:
"cosine/flat" couplings. Contrastresponse saturates in thelinearphase(a)butnotin themarginal
phase (b). In the linear phase orientation sharpening is weak (c) and depends on contrast (e),
whereas it is sharperand contrast-independent in the marginal phase (d,f). Other parameters
werePe = 0.5,Pi = 1,Te= 1,Ti = 2, and c =2.0 (in (c), (d» .
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activation patterns (figure 1O.9c). This renders fiat inhibition less effective than
local inhibition of the same integral strength. If Sei were increased, however, the
hypercolumns with distributed inhibition would also show complete saturation
or supersaturation.

Next, the phase boundaries of the linear and marginal regimes were deter­
mined numerically for the connection pattern (iii), which may be closest to
wiring patterns in area 17. Because the linear phase is characterized by a finite
slope of the contrast-response curve close to the activation threshold, c ~ Te ,

we calculated the contrast gain (the slope of the contrast response curve) at
c = Te• Its divergence marks the boundary of the linear regime. The marginal
phase is characterized by the generation of a narrow activation blob from ini­
tially untuned input. We stimulated a hypercolumn with weakly tuned input
(E: = 0.01) and calculated the resulting orientation tuning width (Je,e. A de­
crease of the orientation tuning width below 90 deg marks the boundary of the
marginal phase.

Figure 10.10 shows the behavior of the contrastgain at the threshold (solidi cir­
cles) and the orientation tuning width (crosses) as a function of the connection
strength S == Eo = E2 = 10' The dotted vertical lines mark the boundary for
the linear phase as derived for connection pattern (i) in section 4.1 and for the
marginal phase as derived for connection pattern (iii) in section 3.3. Analytical
and numerical values for the phase boundaries agree well with each other and
the simulations demonstrate that the linear and marginal phases do not overlap.
For the boundary of the linear phase, the close correspondence of analytical
and numerical values is due to the fact, that in the simulation the input was
weakly tuned and evoked a fiat activation pattern. All orientation columns have
similar average activities and can therefore be approximated by a single ori­
entation column. For the boundary of the marginal phase, the small deviation
between analytical and numerical values is an artifact of the finite step size in
the connection strength used for the simulation. If the simulations are repeated
using a more strongly orientation-biased input (E: = 0.3), the contrast response
curves do not change, whereas orientation tuning curves become continuously
sharper with increasing connection strength. In either case, the separation of
orientation tuning is contrast dependent outside the marginal phase.

We can summarize as follows: It can be shown very clearly, that a hyper­
column model with two neuron populations is not sufficient to account for
the representation of stimulus contrast and stimulus orientation as observed in
the primary visual cortex of many mammals. In the next section, we will in­
troduce a mean-field model, which accounts for the large variety of different
inhibitory neuron types observed in the cortex of cats and monkeys (Bartsch
et al., 1999a; Bartsch et al., 1999c; Bartsch et al., 2000a).
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Figure 10.10. The behavior of the contrast gain at activation threshold (solid line) and the
orientation tuningwidth(crosses) as a function of the connection strengthS == Eo = E2 = 10
(h = 0)forahypercolumnwithcosine/flatconnectivity. Vertical dottedlinesmarkthe analytical
results. Other parameters were: f3e = 0.5, f3; = 1, Te = 1, T; = 2, e = 0.01, contrast for
the orientation tuning width: c = 2.0. Insets illustrate criteria used for calculation of the
curves. Both analytical and numerical results predict, that there is no overlapping regime of
co-occurrence of contrastsaturation and contrast-invariant orientation tuning.

s. Hypercolumns with Multiple Populations
Now we explore what is the possible influence of the diversity of neurons

in the cortex on its functional characteristics. For this we extend the model of
an orientation column, which is now provided with a more complex structure:
We take into account the fact that cortical tissue contains many different cell
types and combine each of these cell types to a separate population. In general,
an orientation column, indexed by its preferred orientation 0, now contains Ne

populations with different excitatory neuron types and N, different populations
of inhibitory neurons (figure 10.11b). The n-th excitatory population is indexed
by (e, n) and the n-th inhibitory population by (e, n) . We henceforth refer to
the subpopulations as model neurons or simply ''neurons'' .

The strength of recurrent intracortical couplings is assumed to depend only
on the source and target orientation columns but not on the particular target
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(b)

Figure 10.11. (a) Mean-fieldhypercolumn with manydifferent celltypes. Recurrentcouplings
dependon the sourceand targetorientations only. (b) Structure of a singleorientationcolumn. It
consistsof N; excitatory andN, inhibitory cellpopulations with generally differentproperties.

neuron. The mean connection strengthfrom neuron (0:, n) within column 0' to
neuron f3, m in column 8 (0:, f3 = e.i) is given by

S;':(O,O') == Sa(8 - 8'). (10.39)

The generalizationcompared to the previous section consists of the fact that
different neuron subpopulations can have different mean cellular properties
and wiring patterns. To start with a simple case, we keep all properties of the
neurons up to their activationfunctions identical for the present considerations
and assume that the neurons differ only in their mean activationthresholds. The
activity of neuron (0:, n), 0: = e, i in response to synaptic input h is given by a
semi-linear activationfunction

ga,n(h) = max(f3a(h - Ta,n) ,0), (10.40)

where f3a denotes its slope and Ta,n its activation threshold. The activities
of neurons (e,n) and (i, n) in column 8, me,n(8, t) and mi,n(8, t), evolve
according to

~ma,n(8, t) = -ma,n(8, t) + ga,n (h1at (8, t) +hLGN (0, t)) (10.41)

'Ir/2

h1at(8,t) = L.L I d8'Sa(8-8')m{j,n(8',t) (10.42)
{j=e,1 n -'Ir /2

hLGN (8 - ( 0) = c(l- e + ecos(2(8 - ( 0) )) . (10.43)

Note that hLGN and h1at are identical for all subpopulations,
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5.1 Analytical Treatmentof Contrast Saturation
We wish to understand how the contrast-response curve of the orientation

column - or a representative subpopulation therein - depends on the distribution
of activation thresholds. Again it seems reasonable to analyze an isolated but
intrinsically coupled orientation column with Ne excitatory and N, inhibitory
neurons (figure 10.11b). In the stationary state, the total synaptic input, H,
which is the same for all neurons in the orientation column, is given by

Ne N;

H = hLGN + s, L Me,n - Si L Mi,n,
n=l n=l

(10.44)

where, according to eq. (10.40), Ma,n = 9a,n(H) == Ma,n(Ta,n, H) are
the steady state activations of the model neurons and Sa == Sa((0 - Of) = 0)
abbreviate the identical intra-column connection strengths between the neurons.
Now we assume, that the activation thresholds Te and 11 are distributed over
the orientation column according to pdfs Pe(Te) and Pi(Ti), respectively. In the
limit of infinitely many neurons, we can replace the sums in eq. (10.44) by the
ensemble averages over the threshold distributions and obtain

H = hLGN + s,i:Me(Te,H)Pe(Te) ei;

e. i:Mi(Ti, H)Pi(Ti) et; (10.45)

Because of the definition of the semi-linear transfer function eq. (10.40), we
know that neurons with Ta ~ H are silent and therefore do not contribute to
the sums or integrals in eqs. (10.44) and (10.45) . Conversely, for To < H, the
activation function can be replaced by its linear part, Ma(Ta, H) = fJa(H ­
Ta ). Therefore we can replace the upper limits of the integrals in equation
10.45 by H:

H H

H = h
LGN +e.s, ! (H - Te)Pe(Te) a; - fJiSi ! (H - Ti)Pi(Ti) er;

-00 -00

(10.46)
Equation (10.46) represents a self-consistent relation between the total synaptic
input H and the afferent input hLGN• By solving this equation, we can write
down an analytical solution for the stationary activation

(10.47)

as a function of the external instead of the total synaptic input, which is the
contrast-response function of the neurons. Carrying out the integrals in eq.
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Figure 10.12 Analytical so­
lution eq. (10.51) for one iso­
lated orientation column and
5-peaked threshold distribu­
tions. Top: The distributions
and the resulting second inte­
grals Ga(H). Bottom: The
function F(H) eq. (10.50)
(thin line) and its inverse (thick
line) as resulting from the sce­
nario in the top part. The thick
line relative to the small co­
ordinate system schematically
illustrates the behavior of the
contrast response function.

(10.46) yields

H = hLGN + Se!3eGe(H) - Si!3iGi(H) (10.48)
H H' J2

GcAH) = 100 dH' 100 dTPo(T), dT2Go(T) =Po(T), (10.49)

a = e, i. By defining the function

(10.50)

equation 10.48 reduces to F(H) = hLGN and we can express the steady state
activations Mo by

(10.51)

Equation (10.51) provides an analytical relationship between geniculate input
and the response of the recurrent cortical circuit. Note that it only holds for
one isolated orientation column and if F is invertible. The latter condition
corresponds to the boundary condition for the linear phase.

Figure 10.12 illustrates the meaning of eq. (l0.51) for the special case of only
one excitatory and one inhibitory neuron type and only two threshold values Te

and Ti. In this case, the two threshold distributions reduce to Kronecker delta
functions around the two thresholds, Pe(T) = 8(T-Te)andpi(T) = 8(T-Ti)
and their second integrals become semilinear functions. Go(H) = max(H -
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(10.52)

Tal 0) (figure 10.12 top). The function P(H) (Eq. 10.50) becomes

{

H H~~

F(H) = H - fJeSe(H - Te) Te < H ~ Ti
H - fJeSe(H - Te) + fJiSi(H - Ti) H > Ti

In this scenario, the resulting contrast response function eq. (10.51) shows
the typical saturating behavior, which we have already observed in the earlier
treatment of contrast saturation (cf. section 4.1). The gradients ofp-l (hLGN )

are a = (1 - fJeSe)-I, where afJe is the initial contrast gain of the contrast­
response function, andb = (l-fJeSe+fJiSi)-1 for higher contrast levels. These
expressions correspond to eqs. (10.30) and (10.34) for the special symmetries
of the lateral connections considered here.

5.2 Numerical Simulations of Contrast Responses
For the following simulations we assumed threshold distributions, which for

excitatory neurons are Gaussian, Pe(Te) = N(Jloe lde), and for inhibitory neu­
rons are either also Gaussian, Pi(11) = N (J1.i I di)) or bimodal according to two
superimposed Gaussian functions Pi = 0.5(N(J1.i,ll di,l) +N(Jloi,2l di,2)). In­
hibitory mean activation thresholds are set to be higher (J1.i = 2) than excitatory
mean activation thresholds (J1.e = 1). Also, simulations will use fJe = 0.5 and
fh = 1, but the special choice of parameters does not strongly influence the
results.

Figure 10.13 compares the numerical solution of the differential equation
eq. (10.41) (solid line) with the analytical expression eq. (10.51) (circles)
for two unimodal and fairly narrow threshold distributions (histograms) in the
linear phase. It demonstrates that the analytical solution approximates the
solution of the differential equation very well. The dashed and dash-dotted
lines plot Ge and Gi for the distributions used. The behavior of this system
can be understood similarly to the contrast saturation treated in section 4.1 :
First, only excitatory neurons are active and, because we operate in the linear
phase, act as linear amplifiers. For higher contrast levels, more and more
inhibitors become active and reduce the contrast gain. Different from the case
of only two thresholds, the contrast-response curve gradually changes its gain
over contrast. A gradual contrast saturation can be qualitatively understood
as follows: With increasing afferent input hLGN , more and more inhibitory
neuron subpopulations are recruited (become active): The increase in number
is proportional to Pi(p-l (hLGN ) ) . The more neurons are recruited, the stronger
the decrease in contrast gain. In other words, we expect a relationship between
the second derivative of the contrast-response function at hLGN and the density
of neurons with activation thresholds Ti = P-I(hLGN ) .

This relationship can be quantified by by forming the 2nd derivative of the
steady state activation eq. (10.51) with respect to the LGN input. We arrive
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Figure 10.13. Simulation of a contrast-response curve for a set of 400 coupled model neu­
rons (200 exc., 200 inh.) in the linear phase (Be = I , S, = 1) and for unimodal Gaussian
threshold distributions Pe(Te) = N(l , 0.1), Pi(Ti) = N(2 ,0.1) (cf. threshold histograms in
the diagram). Solid line : Numerical solution of the differential equation eq. (10.41). Cir­
cles: Evaluation of the analytical expression (10.51). Both curves agree very well. Dashed and
dash-dotted lines show G« and Gi, respectively.

at the following relationship between the curvature of the contras t-response
function and the distributions of activation thresholds pQ(TQ):

rP
d(hLGN )2 Me =

H =

The denominator of eq. (10.53) is positive in the linear phase, because the gain
of F has to be finite (invertibility of F). The contrast-response curve shows
a negative curvature or saturation, if more inhibitory than excitatory neurons
are recruited by a small increase in the input, i.e. if SefJePe(H) < SifJiPi(H)
holds. Otherwise, the contrast-response function increases its gain.

Besides a quantitative understanding of the structural origin of contrast gain
in the linear phase, it might be even more important to see, whether a gradually
increasing and finally saturating contrast-response can also be stabilized in
the marginal phase by some threshold distribution. If this could be achieved,
we would succeed in formulating necessary conditions for cortical circuitry to
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Figure 10.14. Simulation for a set of 400 coupled model neurons (200 exc., 200 inh.) in
the marginal phase (Se = Si = 6). Solid lines: Contrast-response curves; dark gray:
Histograms of excitatory thresholds Pe(Te) = N(l,O.l); light gray: Histograms of in­
hibitory thresholds Pi(Ti). Top: Pi(Ti) unimodal, small variance (N(2,0.1»; Middle:
Pi(Ti) = N(2,1) unimodal, large variance. Bottom: A bimodal distribution of Pi(Ti) is
used (Pi,l = 1, JLi,2 = 2,Oi,l = Oi,2 = 0.1). A bimodal distribution Pi is necessary and
sufficient for graded contrast-response and contrast saturation also in the marginal phase.

show a constant orientation tuning and contrast saturation for a single parameter
setting.

Figure 10.14 shows the contrast-response curve of an excitatory neuron with
threshold Te = 1 for different cases of the inhibitory threshold distribution in
the marginal phase. If the threshold-distribution is small and unimodal (top),
the contrast-response shows a pseudo-binary switch-on behavior as observed
in the marginal phase with two neuron types (cf. section 4.3). This behavior
remains stable, as long as the distribution is unimodal, even if it is very wide
(figure 10.14, middle). As soon as the threshold distribution becomes bimodal
(figure 10.14, bottom), the contrast-response first increases from zero and later
saturates, as observed in biology. This demonstrates that two inhibitory neuron
populations, one with low and the other with higher activation threshold, are
necessary and sufficient to stabilize contrast saturation in the marginal phase.



Mean-Field Modeling ofCortical Function

~1.5r------.-----....--------.,...---.....,

.!.
t> 1
.~

;l

~0.5

~El OL..__I::-::::::::::~_........._""::::::::::"::~-_-1

235

-50 0 50
preferred orientation [degree]

0.5 1 1.5 2
log contrast [a.u.]

2.5

Figure 10.15. Top Orientation tuning curve and Bottom contrast-response curve of an ex­
citatory neuron with preferred orientation 0° for a hypercolumn with 21 orientation columns
(50 excitatory neurons and 100 inhibitory neurons each) in the marginal phase. The sys­
tem shows a graded and saturating contrast response, which is combined with a contrast­
invariant orientation tuning width. Parameters: Se = 6, S, = -6, Ue = 34 deg, Ui = 00,

de = di,l = di,2 = O.l,Jje = Jji,l = 1, Jji,2 = 2.

5.3 Orientation and Contrast Response with Three
Neuron Types

Now we are ready to combine many structured orientation columns as ana­
lyzed previously to a full hypercolumn. The orientation columns are mutually
coupled by lateral connections with Gaussian profiles as specified in eq. (10.13),
and are driven by weakly orientation biased input (oS = 0.1).

Figure 10.15 shows orientation tuning curves of the me,! (0) excitatory pop­
ulations of 21 orientation columns (top) and the contrast-response curves of
a subset of 5 excitatory subpopulations of the 0 = 0° column (bottom) for
unimodal Pe(Te) and bimodal pi(Ti)' Even though the system operates in
the marginal phase, where orientation tuning is independent of contrast, the
contrast-response curve shows expressed saturation at the same time. This be­
havior is independent of the detailed shape of the threshold distributions, as
long as it is bimodal.

A phase-diagram determined by the initial contrast gain and the orientation
sharpening (cf. figure 10.10) for a hypercolumn with one excitatory and two
inhibitory (low- and high-threshold) neuron types is plotted in Figure 10.16.
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Figure 10.16. The behavior of the contrast gain at activation threshold (solid line) and the
orientation tuning width (crosses) as a function of the connection strength S == Eo = E2 = 10
(12 = 0) for a hypercolumn with one excitatory and two inhibitory neuron populations. Other
parameters were: fl. = 0.5, fl i = 1, T. = 1, Til = 1, Ti2 = 2, e = 0.01, contrast for the
orientation tuning width: c = 2.0. Insets illustrate criteria used for calculation of the curves.
There is a wide range (4 :5 S :5 180). over which the linear and marginal phase coincide. Steps
in the solid line are finite-size effect.

Due to low-threshold inhibition, the linear phase with finite initial contrast gain
is stabilized up to.very strong recurrent excitation strengths (8 ::::: 180 com­
pared to 8 = 2 for two-neuron hypercolumns), and there is a wide range of
coupling strengths, in which orientation tuning is invariant and the contrast­
response saturates. In summary, this finding predicts that the experimentally
observed cortical response properties require essentially two functionally dis­
tinct inhibitory neuron types to be present: Inhibitors with a low activation
threshold (or tonically active inhibitors) stabilize the contrast gain at or near
the contrast threshold to finite values, whereas inhibitors with high activation
thresholds cause the saturation of the contrast-response curves at higher contrast
levels.

In figure 10.15, both types of inhibitors were assumed to distribute lateral in­
hibition between different orientations. Possible candidates for such inhibitors
are basket cells with axonal arborizations up to 1200 J.LID (Lund, 1987), but
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Figure 10.17. (a) Orientation tuning curves (top) and the contrast-response function of the
zero-deg. orientation column (bottom). (b) Schematic illustration of the corresponding wiring
scheme: low-threshold lateral inhibitors (e.g, basket neurons) and high-threshold local inhibitors
(e.g. chandelier cells). Parameters: Se = Sil = S;2 = 50; (marginal phase) (b) U e = 34 deg;
(Uil, 0';2) = (00,34) deg. T e =Til = 1; Ti2 = 1.5. The hypercolumn properly operates as in
figure 10.15.

it seems more reasonable to identify the two functionally different inhibitors
with two anatomically distinguishable biological neuron types. Many inhibitors
apart from basket cells are local companions, which contact only postsynaptic
neurons within the same or closely adjacent orientation columns. One impor­
tant local inhibitor is the chandelier cell. Therefore, we may ask, under which
conditions a hypercolumn with pyramidal neurons as the excitatory population,
basket cells as lateral inhibitors and chandelier cells as local inhibitors , still
show the behavior seen in figure 10.15.

Orientation tuning and contrast response for a hypercolumn with three neu­
ron types are provided in figures 10.17 and 10.18 for two different combina­
tions of wiring profiles and activation thresholds of inhibitory neurons. If the
low-threshold cells mediate lateral inhibition and the high-threshold neurons
local inhibition (figure 10.17b), orientation tuning is sharp and constant with
saturating contrast response function (figure 1O.17a). If the properties are re­
versed (low-threshold chandelier cells and high-threshold basket cells, figure
10.18b), orientation sharpening is weak, unstable and contrast-dependent (fig­
ure 10.18a). These simulations emphasize the important role of inhibition for
the observed cortical representation of orientation and contrast of a stimulus
(cf. (Eysel et al., 1998», but additionally provide the following prediction: A
hypercolumn needs two different inhibitors for the generation of experimentally
observed contrast and orientation representation. At least one of the cell types
must mediate lateral inhibition (e.g. basket cells), and this cell type must have a
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Figure 10.18. (a) Orientation tuning curves (top) and the contrast-response function of the
zero-deg. orientation column (bottom) for reverse properties of the inhibitory neurons: (b) low­
threshold local inhibitors and high-threshold lateral inhibitors. Parameters: Se = Sil = S;2 =
50; (marginal phase)(b) O'e = 34deg; (O'il ,0';2)= (34, infty) deg. Te = Til = 1;T;2 = 1.5.

low activation threshold. Iflocal inhibitors (e.g. chandelier cells) contribute to
the recurrent circuit as modeled, they should have a high activation threshold.

6. Mean-FieldModeling of Contextual Effects
As summarized in chapter 3, section 2.3, oriented stimuli outside the clas­

sical receptive field modulate the responses to an oriented stimulus within the
classical receptive field of a considered cell without being able to drive the cell
alone. Showing an iso-oriented annular surround stimulus outside the classical
receptive field of a neuron additionally to an centered stimulus suppresses its
response (Blakemore and Tobin, 1972; Sillito et al., 1995; Levitt and Lund,
1997). This behavior might be a possible mechanism for texture-based seg­
mentation, where contour is defined by an abrupt change in the orientation of
an elongated texture. Figure 10.19a shows an example for a visual scene, in
which the boundary between two extended gratings with different orientations
pops out. One possible mechanism for the amplification would be an increased
response of orientation-selective neurons with receptive fields near the border.
Those neurons would see different orientations within and outside their classi­
cal receptive fields, and would have an increased response. In contrast, neurons
far from the border would see the same orientation within and outside their clas­
sical receptive field and their responses would be decreased by iso-orientation
suppression.

But in a different stimulus paradigm, namely if the non-classical receptive
field is stimulated by small flanking grating patches or bars instead of full an-



Mean-Field Modeling ofCortical Function

(a)

239

Figure 10.19. (a) Example image for the demonstration of texture-based segmentation (a
contour is defined by texture boundaries). (b) Example image for the demonstration of line­
completion (aligned line segments are perceptually grouped to an interrupted diamond).

nuli, iso-oriented surround stimuli can also facilitate the response of a neuron
(Sengpiel et al., 1997; Polat et al., 1998; Kapadia et al., 1999). This obser­
vation, which apparently contradicts the previous findings, could serve as the
physiological basis of line completion, which is schematically illustrated in fig­
ure 10.19b. Line segments which are aligned are perceptually linked together
to parts of a continuous contour, and we perceive an interrupted circle.

One possible anatomical substrate mediating this interactions are orienta­
tion specific long-range connections formed by excitatory pyramidal neurons
(figure 3.9) (Rockland and Lund, 1983). Models incorporating these patchy
connections showed that nonclassical receptive field effects can be mediated
by these fibers (Pawelzik et al., 1996; Mundel et al., 1996; Todorov et al.,
1996; Bartsch et al., 1997; Stetter et al., 2000a; Bartsch et al., 2000b). In this
section we summarize some approaches towards an understanding of the role
of these connections for the formation of contextual effects in VI.

6.1 Model Setup for Contextual Effects
One approach towards a model of contextual effects consists of two neigh­

boring and coupled mean-field hypercolumns a = 1,2 within the primary visual
cortex (but see (Bartsch et al., 2000c) for an alternative approach). Hypercol­
umn 1 is considered to process the visual input within the considered receptive
field and is referred to as "center" hypercolumn. The aggregate field of hy­
percolumn 2 is assumed to be adjacent but still disjunct from the considered
receptive field. It processes the nonclassical receptive field of the "center" hy-
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Figure 10.20. Mean-field model of two coupled hypercolumns a = 1,2, the orientation
columns() of whichcontainoneexcitatory('e') andtwoinhibitory('iI' ,'i2') neuronpopulations.
Bothhypercolumnsreceive weaklyorientationbiasedgeniculocortical inputshB

, LON, a = 1,2,
fromadjacentbutnonoveriapping patchesof thevisualscene,whichcorrespondto thecenterand
the nonclassical surroundof hypercolumn 1. Orientation columnswithineach hypercolumnare
denselyinterconnectedby shortrangeconnections Sa,fJ «() - (}'), where0 denotesthe typeof the
target populationand fJ the type of the sourcepopulation(0, fJ = 'e', ' i' ). In addition, both hy­
percolurnns are mutuallyinterconnected by symmetrical and excitatorylong-rangeconnections
La,fJ«(} - (}').

percolumn and modulates it via their mutual couplings. Figure 10.20 schemat­
ically illustrates the model setup.

Again, each hypercolumn consists of a set of orientation columns, indexed
by their preferred orientations e, and each column consists of an excitatory
(e) and two inhibitory neuron populations (iI, i2). The activity of neuron
(a), a = e, iI, i2 in response to synaptic input h is given by a semi-linear
activation function 90{h) = max{/3o{h - To), 0) where /30 denotes its slope
and To its activation threshold. Similarly to eq. (10.16), the dynamics of a
neuron population a in hypercolumn a and column e,m~{e, t), mfl (e, t) and
mf2{e, t), are described by the following set of differential equations:

~m~{e, t) = -m~{e, t) +90 (ha,lat{e, t) + ha,LGN (e, t)) (10.55)
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Figure 10.21. (a) Modulation of thecenterresponseby an orientedstimulusin the nonclassical
surround. Comparedto stimulation of the centerhypercolumn alone (dashedline), the surround
stimulus causes iso-orientation suppression (circles), but has only a weak impact in the cross­
orientationstimulus condition. The surroundstimulus alone cannot drive (solid line but only
modulatethe centerhypercolumn. (b) Connectivity neededfor the behavior in (a). Long-range
connections must predominantly drive inhibitory intemeurons for iso-orientation suppression.
Parameters were Le ;il ;i 2 = 0.5,0.5 ,3, AQ{3 == A{3 = 34 deg, (:J =e, il , i2.

1r/2

ha,lat(B, t) = ~ . J dB' [Sa ,,B(B - B')mp(B' , t) +
,B=e,~1,~2_1r/2

La,,B(B - B')m~=Fa(O', t)]

ha,LGN (B) = c(1 - e+ecos(2(B _ Ba))) ,

(10.56)

(10.57)

where (Ja is the stimulus orientation presented to the center hypercolumn (a = 1)
or to the surround hypercolumn (a = 2). Intracortical couplings are symmet­
ric between both hypercolumns and all long-range connections are excitatory,
i.e. La,p = La,e =: La. They depend only on the difference in preferred
orientations and are assumed as Gaussian functions in orientation space:

(10.58)

(10.59)

where La ~ 0 is the integral strength of the long-range connections to popula­
tion 0: and N>. is a normalization constant.
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Figure 10.22. (a) Iso-orientation facilitation for the same circuit as in figure 10.21, but this
time the long-range connections drive excitatory target neurons stronger than the inhibitors (b).
Parameters: L .;i1 ;i2 =1,0.5,0.5, Ap =34 deg, f3 =e, i1, i2.

6.2 Numerical Simulations
Based on the coupled hypercolumn model we can now explore, if and how

long-range connections can modulate local cortical processing. For the follow­
ing simulations, we used a strong local recurrent connectivity with identical
strengths Sa = 50 and widths uap == up, Ue = Ui2 = 34 deg, Uil = 00

(cf. figure 10.17). Afferent input had intermediate orientation bias e = 0.3
and c = 2.5, and the parameters for the activation functions were chosen as
fJe = 0.5, fJi1 = fJi2 = 1, Te = Til = 1 and Ti2 = 1.5. The results reported do
not qualitatively depend on these choices as long as the system operates in the
overlap region of the linear and marginal regimes (central part in figure 10.16).

Figure 1O.21a demonstrates, how a stimulus presented in the non-classical
surround of hypercolumn 1 (the center hypercolumn) can modulate its response
to a stimulus within the receptive field. Compared to the dashed line, which
marks its response to center stimulation alone, the activity of the center column
is reduced (circles), if an oriented stimulus is presented to the nonclassical sur­
round (see icons above plot). If center and surround orientations are identical or
similar, the suppression is strongest, i.e. this system shows iso-orientation sup­
pression. In contrast, if both stimuli are orthogonal to each other, only a weak
suppressive effect is observed. In particular, over all orientation differences,
the sign of the modulatory effect is the same. The solid line in 1O.21ashows the
response of the center hypercolumn to surround stimulation alone and demon­
strates, that the surround stimulus cannot activate but only modulate the neurons
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Figure 10.23. (a) Dependence of the suppression profile on the orientation-specificity of long­
range connections. Circles: Strongly orientation specific long-range couplings (At! = 6 deg)
cause a narrowly tuned iso-orientation suppression. Triangles show the same curve as in figure
10.21 (At! = 6 deg) for comparison. Again. the dashed and solid lines mark the response to center
alone and surround alone stimulation. (b) Schematic illustration of the long-range connectivity
used. Parameters: L .;;1 ;;2 = 0.5,0.5,3. At! = 6 deg, f3 = e, il, i 2.

in the center hypercolumn. Modulatory suppression as shown in figure 1O.21a
requires a particular connection scheme for the long-range connections, which
is summarized in figure 1O.21b: (i) Long-range connections should predomi­
nantly connect columns with similar preferred orientations, which is supported
by experiments (MaIach et al., 1993; Bosking et aI., 1997). (ii) The fibers must
drive at least one inhibitory neuron type stronger than the excitatory populations
which has been suggested by recent experiments (Das and Gilbert, 1999). For
high contrast levels, where all neuron populations are active, the effect does not
depend on which inhibitory neuron type (il or i2) is driven strongest.

Figure 10.22 shows a parameter regime, in which the surround stimulus facil­
itates the center response (circles vs. dashed line), but cannot drive the neurons
of the center hypercolumn alone (solid line). Again, cross-orientation modu­
lation is weak and has the same sign as the center modulation. Facilitation is
observed, if the long-range connections drive excitatory target neurons stronger
than inhibitory ones (figure 1O.22b).

The angular profile of the nonclassical modulation is mostly determined by
the orientation specificity of the long-range couplings Lo.,p(O - Of). This is
demonstrated in figure 1O.23a, which compares the suppressive modulation
caused by strongly orientation specific long-range connections (circles) with
suppression for more broadly tuned long-range connectivity (triangles) . The
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Figure 10.24 Cross-
orientation modulation
in the marginal phase. Iso­
orientation specificlong-range
connections cannot evoke any
cross-orientation modulation,
because all basket cells that
signal across orientations are
silenced by the local recurrent
circuitry (shaded orientation
column).

orientation specificity of long-range connections is strongly correlated with the
orientation tuning of the suppression. In contrast, the profile of non-classical
modulation depends only weakly on the local connectivity within the hyper­
columns, as long as they operate in the marginal phase (data not shown).

In order to understand, why the modulatory effects are determined predom­
inantly by the properties of the long-range connections , we have to realize that
the activity pattern within each hypercolumn is determined by the local recur­
rent circuitry: Because the hypercolumns operate in the marginal regime , the
local circuit forms a sharply tuned activity patch around the orientation column
which matches the stimulus orientation (figure 10.24). The curve shape of the
patch is relatively rigid and can only be weakly influenced by external (afferent
or lateral) input. In particular, any synaptic input that is mediated by long-range
connections can only modulate the activity level of active neurons, but cannot
activate silent neurons. This behavior is schematically illustrated in figure 10.24
for cross-orientation stimulation. The shaded orientation column is driven by
long-range connections , but cannot become active because its state is deter­
mined by the local recurrent dynamics . Consequently, we can only expect a
non-classical modulation to occur, if there are long-range fibers which connect
active source neurons with active target neurons, in other words, the range of a
surround modulation in orientation space is approximately given by the width
A of the long-range connection profile plus the width of the cortical activity
pattern. Because the activity patterns have approximately constant shape, the
angular profile of the surround modulation is determined by the angular profile
of the long-range connections in orientation space.

Figure 10.24 also helps to understand, why cross-orientation modulation is
hard to achieve with iso-orientation specific patchy connections. It sketches
the situation of cross-oriented stimuli and purely iso-orientation specific long­
range fibers. The activity patterns of source and target neurons are disjunct
in orientation space, and therefore no cross-orientation effect can be observed.
In particular, orientation contrast sensitivity (iso-orientation suppression com-
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Figure 10.25. (a) Iso-orientation suppression combined with a weak cross-orientation facili­
tation appears, as soon as long-range connections to excitatory target neurons are more broadly
tuned than connections to inhibitory target neurons (b). Parameters: L. ;i1; i2 = 0.5,0.5,3,
~i1 = ~i2 = 17 deg, ~e =34 deg.

bined with cross-orientation facilitation) in the marginal phase cannot be caused
by dis-inhibition as suggested earlier (Pawelzik et al., 1996).

Figure 1O.25a shows a simulation, in which iso-orientation suppression is
combined with a weak cross-orientation facilitation (sensitivity to orientation­
contrast). This behavior is caused by long-range connections, which are more
broadly tuned for excitatory target neurons than for inhibitory target neurons
(figure 1O.25b). As a consequence, long-range modulation via inhibitory in­
temeurons dominates at small orientation differences between source and target
orientation column, whereas for larger differences in orientation direct excita­
tion dominates. In other words, the profile of the long-range connections im­
plements an inverse Mexican hat in orientation space, which directly translates
into orientation-contrast sensitivity.

70 Concluding Remarks
Because individual hypercolumns within the model show a very different

behavior depending on the parameter regime (either linear or marginal), it is
important to determine, which phase, if any, might be implemented in the
primary visual cortex. Unfortunately, this cannot be tested directly, because the
phase boundaries provided above cannot be translated directly into biologically
accessible quantities, and also because the total strength between biological
neuron populations cannot be easily measured. However, in both the linear and
the marginal phase there are model predictions which can help testing whether



246 EXPWRATION OF CORTICAL FUNCTION

biological brain states can be properly described by a mean-field model in one
or the other regime. Both regimes have some advantages and drawbacks.

In the marginal phase, salient features (e.g. high contrast oriented gratings)
are amplified and represented with a high signal-to-noise ratio, and the stimu­
lus quality is decoupled from the stimulus strength. Less salient features (e.g
low-contrast oriented gratings) are suppressed, which may not always be de­
sirable. A further property of a hypercolumn which acts in the marginal phase
is amplification even of small random fluctuations: Even untuned input would
cause a sharp orientation-selective activity pattern, as soon as it exceeds the
threshold. Because neural transmission is noisy, blobs in the marginal phase
would be present all the time and change their position on the cortical surface
in response to orientation biased input rather than being switched on and off
due to input.

Conversely, if the cortex would operate in the linear phase, the strength of
cortical activation would be sensitive to changes in the afferent activities and
would establish a useful internal representation, which represents also the de­
tails of a visual scene. Simulations have shown, that a hypercolumn acting in
the linear phase (as opposed to the marginal phase) seems better capable of
representing more than one stimulus orientation simultaneously and showing
cross-stimulation effects (Stetter et al., 2000a). Recently, fast synaptic depres­
sion of intracortical connections has been proposed as a mechanism to combine
the advantages of both phases. Immediately after a saccade, the synapses are
strong, the cortex operates in the marginal phase and reliably extracts the most
salient features from the highly noisy input, which consists only offew spikes at
that time. Later, as more and more afferent spikes are accumulated, the synapses
become weaker due to fast depression, the system approaches the linear phase
and represents the details of the visual scene (Adorjan et al., 2000; Schwabe
et al., 2000).

One possible mechanism for contrast saturation is the presence of high thresh­
old inhibition (as observed in (McCormick et al., 1985)). At a given contrast
level, inhibitory neurons with a high activation threshold are recruited, inhibit
the postsynaptic excitatory neurons and cause their saturation. If this mecha­
nism is indeed realized in cortex, it would be accompanied by the following
set of testable effects: (i) There are inhibitory neurons, which become active
only for high contrast levels at which pyramidal neurons start to saturate. (ii)
These inhibitory neurons themselves do not saturate but show roughly linear
and steep contrast response functions up to 100 % contrast.

Cross-orientation contextual effects may occur (i) if there exist direct long­
range connections between neurons with orthogonal preferred orientations (this
is not experimentally supported so far) or (ii) if long-range connections are iso­
orientation specific, but contact local interneurons with low-thresholds, which
in tum project to orthogonal orientations and thus provide the link between both
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Figure 10.26 Proposed
wiring pattern: Long-range
collaterals drive pyramidal
neurons along the retinotopic
direction which corresponds
to the preferred orientation
of the source neuron, and
strongly drive inhibitory
interneurons in the orthogonal
direction.

populations. These hypothetical interneurons must not participate in the tight
local cortical feedback within one hypercolumn, since otherwise they would be
silenced by the inhibitory input provided by the active orthogonal populations.
In effect, the long-range couplings should provide super-threshold input to these
interneurons which in turn would have modulatory effects to the populations
with orthogonal preferred orientations. Thus, if the latter scenario would be
realized in the cortex, there should be excitatory neurons with low activation
thresholds, which are directly activated (not only modulated) by long-range
connections.

The exploration of the neuronal implementation of contextual effects by
a hypercolumn-based mean-field model was also able to resolve the apparent
contradiction between (i) experiments which report iso-orientation suppression
by annular surround stimuli and support the hypothesis that VI contributes
to texture-based segmentation, and (ii) studies which report iso-orientation
facilitation by co-aligned flanking patch stimuli and support the hypothesis that
VI contributes to line completion. Figure 10.26 displays a proposed wiring
pattern for cortical patchy connections, which can explain both phenomena
in the same anatomical substrate (Li, 1998; Bartsch et al., 2000b). If a long
oriented bar is presented as stimulus, the area it covers can be projected from the
visual field to the cortical surface via their retinotopic relationship - it defines
a visuotopic axis on the cortical surface. It is proposed that long-range fibers
that emerge from a neuron weakly drive excitatory target neurons along the
visuotopic axis of its own preferred orientation and strongly drive inhibitory
interneurons along the orthogonal orientation.

If the stimulus in the non-classical surround covers a whole annulus around
the classical receptive field, both the collinear facilitatory and the strong or­
thogonal suppressive connections are recruited. In this scenario, the whole
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Figure 10.27. Perceptual grouping of line segments requires a collinear arrangement. (a) If
line segments are aligned, they are preceptually groupedto an interrupted diamond(sameas in
figure10.19b). (b) Samearrangement as in a, but theco-aligned lines are rotatedby 90 deg.The
rotated lines are not grouped.

cortical tissue which represents the annular area of the surround stimulus is
identified with the surround hypercolumn. This is possible because the hy­
percolumn model does not include any statement about the spatial distribution
of orientation columns that contribute to a hypercolumn . For this interpreta­
tion of the surround hypercolumn, the long-range interactions on average drive
inhibitory intemeurons more strongly than excitatory target neurons, and the
model correctly predicts iso-orientation suppression. Conversely, if the non­
classical surround stimulus consists of two flanking bars which are co-aligned
both visuotopically and in orientation with the center stimulus, the surround
hypercolumn must be identified with the two patches of cortex that represent
the two flanking stimuli only. In this case, only the collinear facilitative long­
range connections are recruited, and the hypercolumn model correctly predicts
iso-orientation facilitation.

At least one paradigm of perceptual grouping seems compatible with (and
might be causally related to) the proposed wiring scheme of figure 10.26 and
is demonstrated by the two line assemblies in figure 10.27. All lines in both
squares are identical, except the lines which belong to the diamond. These seg­
ments are co-aligned in figure 1O.27a and rotated by 90 deg (but still aligned)
in figure 10.27b. The co-aligned segments are strongly grouped, but grouping
has almost completely disappeared in the scene with the rotated line segments.
Perceptual grouping is strongly anisotropic, and is strongest if the segments
are co-aligned . Line completion also does not require attentive search or any
concious effort. It is a pre-attentive phenomenon of human perception, which
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indicates that early vision might play an important role in its generation. One
possible neuronal correlate for perceptual grouping could be manifested in a
lateral wiring scheme of the primary visual cortex as proposed in figure 10.26.
Future investigations will answer the questions, whether this scheme is imple­
mented in early vision, if and to what extent it is part of the general construction
principles of the neocortex, and what is the general design principle it imple­
ments.
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