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Preface

Escherichia coli has been a workhorse not only in fundamental biological and
microbiological studies, but also in various biotechnological applications. Recent
advances in systems biology have been changing the way biological studies are
performed – we are hoping to move towards system-wide understanding of the cell
and organism; however, we are still far from truly doing so due to the lack of thor-
ough understanding on complex metabolic, gene regulatory and signaling networks
and their interactions. E. coli, being a much simpler organism compared with higher
organisms, can be a good model system in systems biological studies. The strategies,
methods, and tools developed through the systems biological studies on E. coli can
be extended to other organisms, just like recombinant DNA techniques and other
molecular biological tools did. Also, biotechnological applications developed using
E. coli can be extended to other organisms, in particular other microorganisms, by
taking similar metabolic and cellular engineering strategies. Significant advances
have been made during the last several years on the systems biology and biotech-
nology of E. coli. In this book, the worldwide experts in the field provide us with the
state-of-the-art reviews on the systems-level analyses and applications of E. coli.

In Chapter 1, Dr. Kim and his colleagues present the genome project of E. coli
B. They performed comprehensive functional genomic studies after finishing the
genome sequencing. This will be an important addition to the literature as we now
have the complete picture of another E. coli workhorse, B strain, in addition to
the K12 strains. In Chapter 2, Professor Kim and his colleagues present the state-
of-the-art strategies and applications of genome minimization. Impressive genome
engineering strategies are presented with the practical applications of E. coli strains
with reduced genomes. In Chapter 3, Professor Tomita and his colleagues review
the systems biology of E. coli based on multi-omics analyses. Strategies for the
combined analyses of transcriptome, proteome, metabolome, and fluxome are pre-
sented. Cellular robustness observed based on this systems biological studies is dis-
cussed. Structural proteomics is, as we all know, as equally important as quantitative
proteomics for better biological and biochemical understanding and many applica-
tions. Professor Cygler and his colleagues review the current status of structural
proteomics of E. coli and methods and techniques available to perform the studies.

In Chapters 5 and 6, resources available for systems biological studies on
E. coli are reviewed. Professor Mori and Professor Wanner review the important
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techniques, tools, and libraries available, including the famous gene knock-out
system and the complete KEIO single gene knock-out E. coli library. Then, Dr.
Karp presents an updated status of EcoCyc, the very important database for E. coli
community and beyond. Through this chapter, he proves that EcoCyc is not just a
database for genes and proteins, but is a comprehensive platform for performing
systems biological studies.

In Chapter 7, Professor Jeong gives his insights on how to investigate the complex
metabolic network of E. coli by applying the methods developed in other studies
on networks. He applied these methods to metabolic network as well as protein-
protein interaction network of E. coli. The global and local characteristics of the
network structures along with the recent studies on the dynamic aspects of these
networks are discussed. In addition to Professor Jeong’s chapter on the physical
aspects of E. coli networks, Dr. Galperin provides an in-depth review on signal
transduction network of E. coli in Chapter 8. He reviews 6 classes of sensor proteins
and 32 response regulators, chemotaxis proteins and several others. Several levels
of responses ranging from gene expression to chemotaxis to biofilm formation are
discussed.

Chapters 9 to 12 deal with the computational analyses of the genome-scale E. coli
metabolic network. In Chapter 9, Professor Palsson, one of the pioneers in genome-
scale metabolic modeling and simulation, together with his colleagues describe
foundational concepts central to the reconstruction process and model formulation
and the history of reconstruction of the E. coli metabolic network. They also de-
scribe the development of reconstruction technology, constraints-based modeling
and simulation, and future insights. In Chapters 10 and 11, Professor Goryanin’s
group and Professor Reuss’s group describe kinetic modeling and simulation of
E. coli metabolism. Starting by describing the basic principles of kinetic description
of enzymatic reactions using in vitro enzyme assays, Goryanin and his colleagues
report detailed kinetic modeling of key enzymes in E. coli metabolism. They empha-
size that these kinetic models are important to understand key regulatory properties
of enzymes. Professor Reuss and his colleagues describe integration of the different
networks of E. coli exposed to an increasing carbon limitation during the fed-batch
process with constant feeding of glucose. They report the analysis and dynamic
modeling of regulation phenomena in the catabolism based on the global observa-
tion of flux distribution and gene expression in the central metabolism. In Chapter
12, Palsson and Applebee describe the use of genome-scale metabolic model in
the analysis of the functions of acquired adaptive mutations for understanding their
system-wide effect on phenotype. The constraints-based flux analysis proves to be
a powerful tool to study genome-wide characteristics of metabolism.

In Chapter 13, Professor Busby and his colleagues describe the promoters in
E. coli and molecular characteristics of RNA polymerase recruitment. In addition,
transcription factors and their roles in regulation are described. Importance of plas-
mids in basic biological and applied biotechnological studies does not need to be
emphasized. Ow et al. report in Chapter 14 our current understanding on plasmid
replication and the effects of plasmid presence on host cell physiology at systems-
level including the results of in silico analysis.
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In Chapter 15, the research team of Dr. Rinas and Professor Villaverde review
various factors affecting recombinant protein production, especially in the form of
inclusion bodies. Protein folding, the machinery of protein quality control, structure
and composition of inclusion bodies, and how to control inclusion body forma-
tion are described. In Chapter 16, Professor Georgiou’s group covers the protein
secretion system in E. coli. Starting with the general protein transport in E. coli,
expression and secretion of proteins as well as folding of exported proteins are de-
scribed. They also discuss on the display of proteins using phage display system and
E. coli-based cell surface display system.

Chapters 17 and 18 cover the key aspects of E. coli central metabolism. Professor
Bennett and Professor San’s group review a systems view of the central metabolic
network and strategies for engineering the metabolic network for the production of
various primary and secondary metabolites. Emphasis was also given to cofactor
balance and cofactor engineering issues during the metabolic engineering of E. coli.
Then, Dr. Shiloach and Dr. Rinas further describe the characteristics of central
carbon metabolism with a focus on acetate production in E. coli. They describe
the results of comparative analysis of acetate metabolism in E. coli K12 and B
strains, and the effects of recombinant protein production on glucose catabolism.
The bottlenecks in the primary metabolism and how to overcome these by metabolic
engineering are also described.

Chapters 19 and 20 concern with synthetic biology and systems metabolic en-
gineering of E. coli. Professor Voigt and his colleagues review the reprogramming
of E. coli metabolic and regulatory circuits. They describe in detail three classes
of genetic parts: sensors, circuits and actuators. Construction of genetic sensors and
circuits, and genetic methods to provide perturbation are described. The final chapter
contributed by my own team deals with metabolic engineering of E. coli, in particu-
lar a new paradigm shift towards systems metabolic engineering. Systems metabolic
engineering allows genome-wide metabolic engineering based on the findings of
systems biological studies including omics and computational analyses. Detailed
strategies for systems metabolic engineering are described using E. coli as a model
organism.

For many decades, E. coli has been the organism of choice in studying basic
microbiology, genetics and molecular biology as well as in developing important
biotechnological applications. As compiled in this book, E. coli is now serving as
a platform system for systems biological studies as well. It is hoped that this book
comprised of the state-of-the-art reviews provided by the worldwide experts would
be a good starting point for the new comers in the field and also an important update
for those who have been around in this field. It is hoped that this book will be of
a long lasting value to the scientists and engineers working in the field. I wish to
thank all the contributing authors who made this book possible. Special thanks go
to the members of my lab, led by Dr. Tae Yong Kim, who exerted much effort to
uniformly format the book. Last but not least, I want to thank Springer people for
their help in the production of this book.

KAIST
Daejeon, Republic of Korea Sang Yup Lee
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Genomics, Biological Features,
and Biotechnological Applications
of Escherichia coli B: “Is B for better?!”
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Abstract Strains of Escherichia coli B, especially BL21, have been widely used
for overproducing recombinant proteins, ethanol, and other biomolecules. Almost
all laboratory strains of E. coli are derivatives of non-pathogenic K-12 or B strains.
While most genetic and metabolic studies have been performed with K-12 strains,
little has been done on B strains. Recently, genome sequences of two E. coli strains
of the B lineage, REL606 and BL21(DE3), have been determined, and results of
multi-omics analyses were compared between B and K-12. As compared to K-12,
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B strains show a number of phenotypes such as faster growth in minimal media,
lower acetate production, higher expression levels of recombinant proteins, and less
degradation of such proteins during purification. In this review, we summarize the
unique biological features of the B strains and overview their academic and indus-
trial applications.

1.1 Introduction

Escherichia coli, a common inhabitant of the mammalian intestines, undoubtedly
has been one of the best studied organisms and plays important roles in biological
sciences, medicine, and industry. E. coli strain B was named by Delbrück and Luria
in 1942 (Delbruck and Luria 1942), but the early history of B is less well established
whereas the origin of E. coli K-12 is clear. In any case, derivatives of E. coli B have
been serving not only as a research model for the study of phage sensitivity, restric-
tion systems, and bacterial evolution in the laboratories, but as a major workhorse
for protein expression in the biotechnological industry. However, genetic bases of
the apparent superiority of B in many industrial setups have been restricted to a
limited number of topics and the rest have been left largely undetermined.

The genomes of two derivative strains of B recently have been deciphered
through an international collaboration among scientists in Korea (KRIBB; our
group), the United States (Michigan State University and Brookhaven National Lab-
oratory), and France (Genoscope). This has opened a new possibility of examining
B through various omics technologies including DNA microarray for gene expres-
sion profiling and two dimensional gel electrophoresis followed by MALDI-TOF
identification of proteins. In this chapter, we review the current understanding of
the biological features of B strains in the context of genomic information and re-
sults of the multi-omics analyses together with their utility in scientific studies and
biotechnical applications.

1.2 Genomics of E. coli B Strains

1.2.1 Genomic Comparison of E. coli REL606 and MG1655

The first complete genome sequence of a B strain was determined by an international
consortium (Jeong et al. submitted). The strain of choice was REL606, an Ara−

clone derived from chemical mutation of Bc251 (F− mal+ λs) (Lederberg 1966).
REL606 has been long used as a founder strain for long-term evolution experiments
by Richard E. Lenski at Michigan State University (Cooper and Lenski 2000, Lenski
et al. 1991). A Sanger chemistry-based, standard shotgun approach was exploited
for the genome sequencing of REL606. KRIBB participated in the initial shotgun
sequencing and final process for genome annotation, while Genoscope led genome
sequencing to completion and automatic annotation based on MaGe (Vallenet 2006).
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Fig. 1.1 Whole-genome alignment of E. coli K-12 MG1655 (x-axis) and B REL606 (y-axis).
NUCMER script in MUMMER 3.0 was used for the generation of alignment with default pa-
rameters (http://mummer.sourcefourge.net/)

E. coli B REL606 has a single circular chromosome of 4,612,812 bp with no plas-
mid, which makes it the most compact genome among the completely sequenced
strains of E. coli. Its chromosome size is most similar to that of K-12 MG1655
(4,639,675 bp), and as shown by the whole-genome alignment plot no chromoso-
mal rearrangement was observed other than some insertions or deletions (Fig. 1.1).
When MUMMER was used as an alignment generator, the total length of aligned
regions between REL606 and MG1655 amounted to more than 96%. Average per-
cent identity of the aligned regions is 97.5%, and it further increases up to 99.09%
if it is length-weighted average.

Though overall genome organization is very similar between two strains, several
prominent factors contribute to shaping peculiarities of each genome (Fig. 1.2, see
below). First, highly divergent regions, occupying the equivalent positions on each
genome, are readily identified by the broken lines appearing on the whole-genome
alignment plot (Fig. 1.3). Most of them are related to genes involved in surface char-
acteristics (e.g., LPS core oligosaccharide biosynthesis), which are probably ones
under strong positive selection. Second, there are several horizontally transferred
genomic segments that represent genome-specific regions. Fitness island encoding
gene sets for the metabolism of aromatic hydrocarbon is a good example.

Lastly, distribution of mobile genetic elements such as prophages and insertion
sequence (IS) elements are significantly different between the two strains. Specifi-
cally, IS seems to exert most dramatic effect to its host genome, since it can deacti-
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Fig. 1.2 Genomic regions unique to E. coli B REL606 or K-12 MG1655. The horizontal axis rep-
resents the map coordinates of backbone regions common to REL606 and MG1655; vertical bars
denote locations and lengths of strain-specific regions larger than 2 kb. A H denotes the region over-
lapping predicted genomic islands (Yoon et al. 2005). Genomic regions containing prophage genes
are marked by asterisks. Abbreviations: LPS, lipopolysaccharide; HPA, 3-hydroxyphenylacetic
acid and 4-hydroxyphenylacetic acid; PA, phenylacetic acid; VSP, very short-patch

vate functional genes by insertion events, and can result in genomic rearrangement
by homologous recombination as well. For example, REL606 has a 41-kb deletion
(∼ 0.8% of the entire chromosome), probably mediated by IS1 (the most abundant
IS in B), from yecF to yedS. The deleted segment, that includes sdiA, amyA, rcsA,
vsr, dcm, and the fli cluster, produce relevant B-specific phenotypes that were pre-
viously known. Functions affected by IS transpositional inactivation include porin
expression, restriction-modification, and Lon protease (saiSree et al. 2001, Schnei-
der et al. 2002).

1.2.2 Comparative Genomics of E. coli BL21(DE3)

BL21(DE3) is a specifically engineered B descendant harboring the T7 RNA poly-
merase gene for high-level expression of recombinant proteins (Studier and Moffatt
1986). With other B-specific traits such as deficiency in proteases and amenabil-
ity to high-density culture as mentioned above, BL21(DE3) has become the most
widely used strain for biotechnological applications. Since BL21(DE3) and REL606
are very close to each other being diverged just dozens of years ago from their
common ancestor, we applied a hybrid approach that combines hybridization-based
genome resequencing by NimbleGen’s CGS (Comparative Genome Sequencing)
technology and 454 pyrosequencing by Roche GS 20 at about 10X coverage to
assemble genome sequence of BL21(DE3) using the REL606 genome (Jeong et al.
submitted). All potential mutagenic sites were confirmed by Sanger sequencing of
PCR-amplified products, and genomic rearrangement that could be only identified
by pairwise comparison between the reference sequence and de novo-assembled 454
contigs were also verified by the same method. Over 98% of the final BL21(DE3)
sequence could be covered by 454 pyrosequencing contigs, and ∼166 kb were con-
firmed by conventional sequencing.

We confirmed 415 SNPs, 16 insertions, and 28 deletions in the genome of
BL21(DE3) with respect to REL606. 79% of SNPs (326 out of 415) occur in a nar-
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row region around 4.2 Mb-position, which occupies only 1.4% of the chromosome.
Chemical mutagenesis applied to Bc251 to produce the progenitor to REL606 only
cannot accounts for such a big differences. Close inspection revealed the highly
divergent region was indeed transferred from W3110 by P1 transduction to produce
Bc251. Another P1 transduction to create BL21 replaced again most of the W3110
DNA with B DNA, which resulted in K-12-derived sequence remaining only in
REL606.

To obtain a complete genome sequence of BL21(DE3) based on 454 contigs, we
recently constructed a fosmid library and produced paired-end sequences. Scaffolds
have been made by a mixed assembly approach using fosmid end reads and verified
454 contigs, and gap closure is in progress (Jeong and Kim, unpublished data).

1.2.3 Comparative Omics Analysis of E. coli B and K-12

Recent advances in high-throughput omics technology are providing us with the
possibility of deciphering an organism’s genotype-to-phenotype relationships. Re-
cently, we have carried out comparative and integrated analysis of the genome,
transcriptome, proteome, and phenome data of B and K-12 strains that are closely
related (Yoon et al. submitted). We also reconstructed an in silico metabolic network
of B that accommodates the multidimensional omics data. From the study, we iden-
tified many important differences in cellular metabolism and physiology between B
and K-12.

Lack of flagellar biosynthetic genes and low expression of motility-related genes
make B non-motile. This is an important property of B when used as a cell fac-
tory because flagella biosynthesis is energy-intensive and is not necessary under
an industrial setup of constant agitation and generous supply of nutrients (Posfai
et al. 2006, Yu et al. 2002). Differences in the composition of the LPS core and
expression of outer membrane proteins may influence the permeability and integrity
of the cell envelope, which presumably result in alterations to screening barriers that
control import and export of materials such as antibiotics, nutrients, and proteins.
Importantly, the existence of the second T2S system and enhanced capability for
protein release qualify B strains as the first choice for extracellular production of
recombinant proteins. Information on naturally exported proteins can be useful in
developing a strategy of excretory protein production, as exemplified by the use of
OmpF fusion approach for the extracellular production of human proteins (Jeong
and Lee 2002). B strains exhibited up-regulation of many amino acid biosynthetic
genes, and showed lower expression of proteases. These characteristics are desirable
for the enhanced production of recombinant proteins.

1.3 Biological Features of E. coli B

Elucidation of biological features of a strain is always the starting point for its
biotechnological applications. B and its derivatives have been widely used for the
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production of recombinant proteins and biomolecules. B strains have also served
as research models for studies of phage sensitivity, restriction systems, mutagenic
assays, and bacterial evolution (Cooper and Lenski 2000, Herrera et al. 2002, Swartz
1996). Although the genome sequences of B and K-12 are highly similar based
on comparison of IS elements (Schneider et al. 2002), B often shows phenotypes
distinct from those of K-12 (Swartz 1996).

1.3.1 Catabolism and Acetate Metabolism

B strains have been widely used for overproduction of recombinant proteins because
they offer faster cell growth in minimal media and lower production of acetate than
K-12 derivatives. Such differences between B and K-12 strains can be attributed to
their genetic backgrounds. However, from the analysis of genome sequences of two
B strains, REL606 and BL21(DE3) (Jeong et al. submitted), we found that there
was no genetic difference in genes involved in glycolysis, TCA cycle, pentose phos-
phate pathway, glyoxylate pathway, gluconeogenesis, and acetate production among
genomes of B and K-12. Thus, it is possible that the metabolic genes are under dif-
ferent regulation of in these two groups of E. coli. Transcriptome analysis of BL21
and JM109 (B derivative) during batch fermentation with high initial glucose con-
centration (Phue et al. 2007) demonstrated that genes involved in glyoxylate shunt,
TCA cycle, fatty acid, gluconeogenesis and anaplerotic pathways were expressed
differently between the two strains, while no apparent differences were detected for
those in glycolysis and pentose phosphate pathway.

Acetate accumulation is one of the major problems encountered during high
cell density cultivation of E. coli, because it inhibits cell growth and production
of foreign proteins (Eiteman and Altman. 2006). Generally, B strains accumulate
less acetate than K-12 strains during high cell density cultivation with glucose as
a carbon source. A common explanation for low acetate accumulation by B is the
active glyoxylate shunt which is the main pathway for acetate utilization due to
the high expression of acetate operon (aceBAK). Analyses of DNA microarray and
Northern blot demonstrated that BL21 showed high activity in glyoxylate shunt,
TCA cycle, gluconeogenesis pathway, conversion of acetate to acetyl CoA, and fatty
acid degradation irrespective of glucose concentration in culture media (Phue et al.
2005). In case of JM109, a K-12 derivative, the trend was similar at low glucose cul-
ture conditions, while it was lowered at high glucose conditions. Phue et al. (2005)
suggested that insensitivity of BL21 to glucose concentration can be attributed to
absence of a regulatory mechanism and possibility of altered activity of FruR, a
transcriptional regulator of the control of carbon and energy metabolism, in BL21.
Much effort should be made to fully understand the metabolism of glucose and
acetate of the B and K-12.

1.3.2 Anabolism

Sequence differences in amino acids biosynthetic pathways have been found in
genes for L-arginine and branched-chain amino acids biosyntheses. In K-12, for-
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mation of the enzymes involved in arginine biosynthetic pathway is under feedback
inhibition by arginine, while those enzyme levels are not affected by arginine in B.
The different regulation mode is due to the differences in a single amino acid in
the arginine repressor protein (ArgR), changing from the proline residue in K-12
to leucine in B (Tian et al. 1994). K-12 contains two genes encoding ornithine car-
bamoyltransferase in arginine biosynthesis, argI and argF, while B, E. coli W, and
other species in Enterobacteriaceae have only argI or its equivalents (Legrain et al.
1976).

B is insensitive to extracellular valine while K-12 cannot grow in the presence
of valine (Yoon et al. submitted). The first reaction in the biosynthesis of branched-
chain amino acids (leucine, isoleucine and valine) is catalysed by three isozymes,
acetohydroxy acid synthase (AHAS) I, II, and III encoded by ilvBN, ilvGM, and
ilvIH respectively. It is known that valine exerts feedback inhibition on isozymes I
and III (Umbarger 1996). Thus, exogenous valine can inhibit cell growth because the
valine makes the cell unable to synthesize leucine and isoleucine, which is known
as valine toxicity. It is thus essential that the functional isozyme II is expressed for
cell growth in the presence of exogeneous valine. K-12 has a frameshift mutation in
the ilvG gene, but B has an intact ilvG mediating valine resistance.

1.3.3 Utilization of Carbon Sources

Ability to utilize a variety of substrates is quite different between B and K-12,
which can be attributed largely to genetic discrepancy in nutrient uptake systems.
Most enteric bacteria cannot grow on D-arabinose which is uncommon in the nat-
ural environments. As enzymes for L-fucose utilization can degrade D-arabinose
to dihydroxyacetone phosphate and glycoaldehyde, regulatory mutations of the L-
fucose pathway in K-12 led to growth on D-arabinose (LeBlanc and Mortlock 1971).
In contrast to K-12, B strains cannot grow on L-fucose because of the lack of
L-fuculose-1-phosphate aldolase (Boulter et al. 1974). Interestingly, B strains can
degrade D-arabinose without mutation. This is due to the possession of gene clus-
ter for converting D-arabinose to D-xylulose 5-phosphate, which appears to have
acquired through horizontal gene transfer (Elsinghorst and Mortlock 1994).

Eliminating environmental pollutants such as aromatic compounds by microor-
ganisms is a competitive alternative to the commonly used chemical processes
(Pieper and Reineke 2000). Aromatic compounds are highly abundant in soil and
water, and Pseudomonas strains and other soil bacteria can catabolize a wide range
of aromatic compounds. Unexpectedly, some E. coli strains and other enteric bac-
teria are reported to be able to degrade aromatic amino acids (Diaz et al. 2001).
E. coli B and C can grow on 3- and 4-hydroxyphenylacetic acid (HPA) but not on
phenylacetic acid (PA), while K-12 grow on PA but not on 3-HPA and 4-HPA (Diaz
et al. 2001). Recent studies that compared the genomes of B and K-12 (Yoon et al.
submitted) demonstrated that each has a different gene cluster for the catabolism
of aromatic compounds – the paa cluster for the catabolism of phenylacetic acid in
K-12 and the hpa cluster for the degradation of 3- and 4-HPA in B.
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1.3.4 Cell Surface Features

Cell envelope is the principal stress-bearing and shape-maintaining element in
E. coli, and its integrity is of critical importance to cell viability. B strains have
been widely used for mutagenic assays and toxicological studies because they show
higher membrane permeability than does K-12 (Herrera et al. 2002). Structural stud-
ies on the LPS core oligosaccharides have revealed that K-12 is devoid of the O
antigen while B lacks the O antigen plus the distal part of the polysaccharide core
of the outer membrane (Jansson et al. 1981). Sequence comparison has revealed that
the outer membrane structure of B is quite different from that of K-12 (Jeong et al.
submitted). IS elements were found to be inserted at the gene clusters for O antigen
biosynthesis: at wbbL for K-12 and between manC and wbbD for B strain. In the B
genome, the core part of LPS was further disrupted by the insertion of IS1 at waaT
encoding the UDP-galatose:(glucosyl) LPS �1,2-galactosyltransferase.

Importantly, flagellar biosynthesis genes are missing in B (Jeong et al. submit-
ted). A 38-kb region of K-12 from yecF to yedS, containing fliYZACDSTEFGHI-
JKLMNOPQR genes was deleted in the genome of B. Thus, B cannot form the
flagella and thus is non-motile.

Porin proteins control the permeability of polar solutes across the outer mem-
brane and play important roles in the nutrient uptake process (Nikaido 1996). In
K-12, though the total amount OmpC and OmpF is constant, their relative propor-
tion changes depending on the culture medium osmolality, which is controlled by
the EnvZ-OmpR regulatory system. By contrast, B strains express only OmpF in
large quantity (Pugsley and Rosenbusch 1983). This is attributed to the fact that
IS insertion in the B genome results in the deletion of the first 114 bp of ompC
and the upstream region containing micF which posttranscriptionally prevents the
production of OmpF (Schneider et al. 2002). Noxious agents such as antibiotics
and bile acids diffuse far better through OmpF because OmpF produces a larger
channel than OmpC (Nikaido 2003). Thus, ompF mutants became highly resistant
to β-lactam compounds (Harder et al. 1981). In the phenotype microarray test, we
discovered that B displayed sensitivity to various stress conditions of osmolarity,
pH stress, and antibiotics much higher than K-12 (Yoon et al. submitted).

1.3.5 Heat Shock Proteins

Heat shock proteins (HSPs) including molecular chaperones and proteases make
sure cellular proteins being in the right shape and in the right place at the right time
(Gross 1996). Thus, they are required both during stress and normal growth condi-
tions. Among the ATP-dependent proteases, B strains are naturally deficient in the
major protease Lon which degrades abnormally folded proteins. This is due to the
insertion of IS186 in the promoter region of lon (saiSree et al. 2001). Additionally,
the BL21 cells lack the OmpT outer membrane protease. Besides its major role in
protein quality control, Lon is involved in many biological processes such as cell
differentiation, pathogenicity, motility, stringent response to amino acid starvation,
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and regulation of the toxin-antitoxin module (Tsilibaris et al. 2006). Lon mutants are
viable, but display sensitivity to ultraviolet light and overproduce capsular polysac-
charide, which are the result of the elevated levels of regulatory proteins (SulA and
RcsA) that are normally degraded by Lon.

As HSPs are up-regulated by the heat-shock sigma factor σ 32 encoded by rpoH
when cells are exposed to stress condition such as temperature upshift and pro-
duction of recombinant proteins, they can be used as a stress probe for monitoring
cellular stress (Cha et al. 1999, Vostiar et al. 2004). When cellular stress levels
of BL21 and K-12 strains (JM105, HB101, and TOP10) were measured by fusing
promoters of heat-shock genes (rpoH, dnaK or clpB) to the reporter gene (gfp),
BL21 exhibited the lowest cellular stress level and expressed the highest foreign
protein (Seo et al. 2003). Possibly, lower cellular stress level of B strain is one of
the reasons for high capacity in foreign protein production.

1.3.6 Cell Cycle and Growth

Bacterial cell growth is closely coordinated with DNA replication and chromosome
segregation (Haeusser and Levin 2008). The cell cycle of slowly growing bacteria
can be divided into three time periods: (i) period B, cell division to the initiation of
chromosome replication, (ii) period C, chromosome replication, and (iii) period D,
termination of replication to cell division. From the cytometry data that measured
periods C and D of E. coli, the D period in B/r is much shorter than in K-12 strains
(Michelsen et al. 2003).

Normally, B strains grow faster than K-12 in minimal media. The widely used K-
12 strains, MG1655 and W3110, grow slowly in a pyrimidine-free medium than in
a medium containing uracil. In the rph-pyrE operon involved in de novo pyrimidine
biosynthesis of these strains, rph is frame-shifted to produce truncated RNase PH,
and the premature translation stop leads to decreased expression of pyrE encoding
orotate phosphoribosyltransferase (Jensen 1993). However, the rph gene is intact in
the B strains (Yoon et al. submitted).

1.3.7 Secretion Capacity

Bacterial extracellular proteins perform important biological processes such as as-
sembly of flagella and fimbriae, nutrient acquisition, cell-to-cell communication,
and pathogenesis. In Gram-negative bacteria, excretory proteins are much less than
in Gram-positive species because they should cross the two membranes of the cell
envelope. Laboratory E. coli strains normally does not secrete extracellular proteins
because the genes encoding type II secretion (T2S) pathway operon (gsp) are si-
lenced by H-NS (Francetic et al. 2000). B strains released more proteins according
to analyses of the extracellular proteomes of B and K-12 during flask culture (Yoon
et al. submitted) and high cell density cultivation (Xia et al. 2008). This could be at
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least partly due to an additional gene cluster for T2S in the B strains (Yoon et al.
submitted). Phylogenetic analysis revealed that the T2S system commonly found in
REL606 and MG1655 were clustered into the clade of E. coli and other genera in
the Enterobacteriaceae family, whereas the sequence of the additional T2S system
in REL606 was grouped into the branches of E. coli strains having multiple T2S
systems and families other than Enterobacteriaceae. This implies that the two T2S
systems of the B strains have evolved independently or more specifically the latter
might have been introduced.

1.4 Usage of B Strains

1.4.1 As an Academic Lab Rat

Since 1940s, K-12 and B strains have been widely used as a laboratory strain and
have had significant impact on biological sciences, medicine, and industry (Daege-
len et al. submitted, Lederberg 2004). While K-12 strains have been mainly used
for developing recombinant DNA techniques, B strains have been the subject of
physiological studies (Swartz 1996). B strains also served as hosts for the his-
torical studies of T1-T7 bacteriophages (Delbruck 1946), which led to the con-
struction of BL21(DE3) (Studier and Moffatt 1986). Due to the rapid growth in
minimal media and enhanced membrane permeability, B strains were favored by
physiologists.

A radiation-resistant mutant, E. coli B/r, was isolated after UV-irradiation (Witkin
1946), and has been used for determining cell cycle-related parameters (Helmstet-
ter 1968, Michelsen et al. 2003). Chemical composition measurements of B/r was
measured (Neidhardt and Umbarger 1996), which is essential to estimate growth
requirements such as energy distribution, reducing power (Neijssel et al. 1996) and
metabolic fluxes in a genome-scale metabolic model (Feist et al. 2007).

Due to the increased membrane permeability, B strains have been used widely
for mutagenic assays and toxicological studies. Mutants of B strain WP2 (e.g. WP2
uvrA and WP2 uvrA/pKM101) have been used as a tester strain in mutagenic assays
(Gatehouse et al. 1994) and officially included in the OECD guideline for bacterial
reverse mutation test (OECD guideline for testing of chemicals: bacterial reverse
mutation test, 1998). These mutants are sensitive to oxidizing mutagens, cross-
linking agents and hydrazines (Blanco et al. 1998, Herrera et al. 1993, Wilcox et al.
1990). The higher permeability can make B a primary choice for functional studies
by flow cytometry and fluorescence microscopy. When B and K-12 strains were
stained with several fluorochromes, B strain showed higher uptake of fluorescent
dyes and higher fluorescent intensity (Herrera et al. 2002).

Evolution experiments with microorganisms are of a great interest because they
allow one to investigate genetic and phenotypic evolution in action under the con-
trolled environment (Elena and Lenski 2003, Philippe et al. 2007). For decades,
B has served as a research model for long-term bacterial evolution. Twelve popu-
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lations derived from a common ancestor have propagated by daily serial transfer
in a glucose-limited minimal medium for more than 40,000 generations (Cooper
et al. 2003). In the experiment, all the populations have adapted to the growth en-
vironment via beneficial mutations. Critical issues in evolution are being addressed
using laboratory populations of bacteria, e.g. the dynamics of evolutionary adapta-
tion, the genetic bases of adaptation, interactions between different genotypes in a
population, and between interacting microbial species (Elena and Lenski 2003). Ap-
plication of evolutionary principle to strain development and process optimization,
which is so called evolutionary engineering, is becoming an important strategy in
the field of metabolic engineering (Sauer 2001). Recently, the efficiency of natural
selection using long-term evolution experiment is successfully exploited to improve
industrial strains (de Crecy et al. 2007, Fong et al. 2005).

1.4.2 As an Industrial Workhorse

A primary goal of the bioprocess development is the cost-effective production of
desired products such as therapeutic and industrial proteins on a large scale. B
and K-12 are preferred production hosts because of fast growth, facility in genetic
modification and cultivation, and high yields for many recombinant proteins. As
mentioned above, B and its derivatives have salient features desirable for high cell
density culture such as low acetate production even when grown on excess glucose,
faster growth in minimal media, protease deficiency, and simple cell surfaces that
enhance permeability. Thus, they have been widely used for the overproduction of
recombinant proteins, ethanol, and other biomolecules on a large scale (Choi et al.
2006).

The most popular strains, BL21 and its derivatives (Studier and Moffatt 1986),
are derived from B, thus are naturally deficient in the major protease Lon. Addition-
ally, their chromosomes are deleted from the gene for the outer membrane protease
OmpT. The absence of these proteases can lead to higher expression levels of recom-
binant proteins and less degradation of such proteins during purification. A deriva-
tive of BL21, BL21(DE3), was constructed to harbor a recombinant phage � carry-
ing the T7 RNA polymerase gene under the control of the lacUV5 promoter (Studier
and Moffatt 1986). Addition of isopropyl �-D-thiogalactopyranoside (IPTG) into
growth media is required to express the T7 RNA polymerase, which then transcribes
target genes located in a plasmid under the control of the T7 promoter. Due to its
high selectivity and activity, BL21(DE3) is extremely popular for mass-production
of recombinant proteins which are toxic to the host cells (Choi et al. 2006). Various
versions of the T7 RNA polymerase-based expression system have been developed
to use cheap and nontoxic inducers instead of IPTG or to minimize basal expression
of the cloned gene (Sorensen and Mortensen 2005).

Membrane proteins (MPs) account for more than 50% of all drug targets and are
of major pharmaceutical and biotechnological interests. Generally, a large amount
of MPs is required for their functional and structural studies. However, in many
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cases, over-expression of MPs is lethal to host cells. To overcome this difficulty, mu-
tant hosts, C41(DE3) and C43(DE3) were derived from BL21(DE3) over-producing
some membrane proteins (Miroux and Walker 1996). These two mutant hosts,
especially C43(DE3), showed reduced toxicity of expressed MPs and are widely
used for a variety of MPs. Although the genetic mutation(s) responsible for the
changes have not yet been identified, comparative genome sequence analyses of
C41(DE3), C43(DE3), and their parental BL21(DE3) revealed several interesting
genetic changes (Kwon and Kim, unpublished data). Comparative analysis revealed
that there are six SNPs in C41(DE3) and seven in C43(DE3) as compared to
BL21(DE3). Interestingly and perplexingly, only two of them overlaps between the
two strains. Also, there are two IS-mediated deletions that have been observed –
one in both C41(DE3) and C43(DE3) and the other only in C43(DE3). It is reported
that C41(DE3) and C43(DE3) are also superior to BL21(DE3) in the production of
some cytoplasmic proteins and in the stability of their cloning plasmid (Dumon-
Seignovert et al. 2004). However, it is hard to predict an expression host and system
working best for a target protein, and so, screening process is required to some
extent.

1.5 Future Prospects

Until now, most genetic and metabolic studies of E. coli have been performed with
K-12 or its derivatives. Also, a variety of omics analyses (Choi et al. 2003, Fran-
chini and Egli 2006, Han and Lee 2006, Ishii et al. 2007, Nandakumar et al. 2006,
Yoon et al. 2003) and in silico metabolic modeling of K-12 (Covert et al. 2004,
Feist et al. 2007) have been accelerated by the availability of the complete genome
sequences of the MG1655 and W3110 strains (Blattner et al. 1997, Hayashi et al.
2006). In contrast to K-12, little studies have been performed for B strains. This
can be attributed to the fact that K-12 strains are the best fit in the current recom-
binant DNA techniques and a wealth of safety information makes them preferred
recombinant organisms by the biosafety communities (Swartz 1996). Additionally,
many B derivatives as industrial hosts have been developed in private companies,
which can make some difficulties in academic and public research. However, vari-
ous features of B strains are beneficial for the overexpression of foreign proteins
and studies of E. coli physiology. B strain is now in its early stages of global
omics studies and systems biology (Xia et al. 2008, Yoon et al. submitted). With
the availability of genome sequences of B strains (Jeong et al. submitted), the omics
information on the cellular metabolism and physiology should be pivotal in better
understanding the underlying biological networks and is invaluable for designing
strains having customized genomes as well as establishing rational fermentation
strategies.
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Abstract A profusion of diverse genome-related information has been obtained
by the sequencing of genomes from many microorganisms, functional analyses of
these genomes, and the application of bioinformatics techniques to genomics, pro-
teomics, and systems biology. The resulting barrage of data coupled with large-scale
gene inactivation studies have allowed researchers to produce a genetic blueprint
for a streamline, custom-designed microbe that carries the minimal gene set re-
quired for the organism to replicate in a given environment. On the basis of this
minimal genome information, several research groups have generated minimal-
genome Escherichia coli strains using sophisticated genome engineering tech-
niques, such as the dual transposition, site-specific recombinations, and markerless
genome recombination. These minimal genomes display various desirable traits for
biological researches, such as improved genome stability, increased transformation
efficacy, and higher production of biological materials. Therefore, the generation of
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a large number of deletion mutants of the minimal E. coli genomes coupled with
restructuring of regulatory circuits may lead to facilitate the construction of a va-
riety of custom-designed bacterial strains (also called a “bioengine”) with myriad
practical and commercial applications.

2.1 Introduction

Nucleotide sequencing and comparative analysis of multiple diverse genomes is
revolutionizing contemporary biology by providing a framework for interpreting
and predicting the physiological properties of an organism. A variety of emerging
postgenomic techniques, such as genome-wide gene expression profiling and mon-
itoring of interactions among macromolecules, are helping to define the molecular
compositions of cells. Scientists have developed, and continue to refine, sophis-
ticated new computational approaches that allow one to explore the inherent or-
ganization of cellular networks as well as the mode and dynamics of interactions
among cellular constituents (Hasty et al. 2001, Herring et al. 2006, Ishii et al. 2007,
Kitano 2002, Koonin et al. 2002). These intricate tools and techniques have intro-
duced a new paradigm in cell biology research: the construction of custom-designed,
minimal-genome microbes (bioengines) that perform functions that raise the quality
of life for human beings.

A minimal genome can be defined as a one that contains the smallest set of genes
that allows the organism to replicate in a given environment (Mushegian 1999). The
creation and study of minimal microbial genomes can help to increase our under-
standing of complex genetic material and provide a basis for the design of custom
bacterial strains. Drawing on the complete genome sequences of more than 800 mi-
croorganisms (June 2008, Genomes OnLine Database http://www.genomesonline.
org/) as well as extensive functional analyses of their gene products, researchers
have proposed two different approaches for the construction of minimal genomes
(Cho et al. 1999, Luisi 2002, Maniloff 1996). The first is a “top-down” approach,
which involves trimming the genome of sequences that appear to be unnecessary
on the basis of functional genomic studies of microorganisms. The second is a
“bottom-up” approach, which entails synthesizing the proposed minimal genome
from basic chemical building blocks and inserting it into an environment that allows
metabolic activity and replication (Forster and Church 2006, 2007, Szostak et al.
2001). Although simple biological constructs can be synthesized artificially (Cello
et al. 2002, Gibson et al. 2008, Itaya et al. 2008, Smith et al. 2003, Tumpey et al.
2005), the bottom-up approach is technically challenging and the actual synthesis
of an artificial minimal genome from chemical building blocks is not possible if
one lacks a complete functional analysis of the genes needed for life. However,
the top-down approach, which starts with the intact genome of a well-characterized
microorganism, is more technically feasible; this is because the top-down approach
can be initiated in parallel with rapidly progressing functional genomics research in
microorganisms.
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Back in 1984, H. Morowitz first raised the idea of using mycoplasmas as mod-
els for the construction of a minimal genome in a living cell (Razin 1997a, b).
The complete genomic sequence of the human pathogen Mycoplasma genitalium
(Fraser et al. 1995) revealed that the genome is only 580 kb in length and con-
tains only about 470 predicted protein coding genes, as compared with 1,703 and
4,288 in the Haemophilus influenzae (Fleischmann et al. 1995) and Escherichia coli
(Blattner et al. 1997) genomes, respectively. However, mycoplasmas are parasites
that evolved, by degenerative or reductive evolution, from Gram-positive bacteria
and they have not been well characterized, because they are hard to grow and their
genomes are difficult to manipulate. Therefore, scientists chose to attempt minimal
genome construction in free-living microorganisms (Koob et al. 1994).

Among the various free-living microorganisms, E. coli is the most logical choice
for minimal genome construction experiments, as it is more fully defined at the
molecular level than any other microorganism. Furthermore, because of its nearly
ubiquitous use as a research tool and its favorable growth characteristics, this bac-
terium has been the organism of choice in the development of tools for sophisticated
genetic engineering. Finally, E. coli is one of the best commercially applicable hosts
for the pharmaceutical and fermentation industries (Blattner et al. 1997, Riley et al.
2006).

Functional analysis of the E. coli genome has revealed that bacteria that are
grown under a given condition use only a fraction of their genes for growth, repli-
cation, and production of important biological materials (Richmond et al. 1999,
Tao et al. 1999). This is because the E. coli genome contains nonessential genes,
transposable elements, bacteriophage DNA, cryptic prophages, pseudogenes, gene
remnants, damaged operons, and virulence factors, some of which yield unneces-
sary or unwanted products that interfere with rational strain improvement and the
production of desired biological substances (Blattner et al. 1997, Hayashi et al.
2006). Therefore, the identification and deletion of nonessential genes and other
dispensable sequences in the microbial genome is necessary for the construction
of a custom-designed bioengine, in which cellular metabolites and energy sources
are efficiently optimized and directed toward the production of both essential and
desired gene products (Edwards and Palsson 2000, Park et al. 2007). Concomitantly,
the bioengine’s metabolic waste and bio-pollution can be minimized, and the quality
and stability of its products can be maximized (Cho et al. 1999, Kolisnychenko et al.
2002, Westers et al. 2003).

In this chapter, we describe approaches for minimizing the E. coli genome by
eliminating unnecessary genes, to create a self-sustaining, self-replicating, artificial
bioengine.

2.2 Estimating the Size and Gene Content of Minimal Genomes

Identification of the regulatory and protein-coding DNA sequences that are most
essential for maintaining and replicating a free-living cellular organism is a logical
first step in the construction of a custom-designed bioengine. Several approaches
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have been used to identify essential and nonessential genes in microorganisms under
given conditions, with the goal of defining the minimal set of genes necessary for
cell survival and self-replication.

2.2.1 Identification of Minimal Essential Gene Sets
by Sequence Comparison in silico

The sequenced genome of the parasitic bacterium M. genitalium contains only
about 470 identified protein-coding genes, and these have been dubbed a minimal
gene complement (Fraser et al. 1995). Although the complete gene complement of
M. genitalium is nearly the smallest one among cellular life forms with sequenced
genomes, there is no evidence that this collection of 470 genes represents a minimal
self-sufficient gene set. To derive such a set, Mushegian and Koonin (1996) com-
pared the 468 predicted M. genitalium protein sequences with the 1,703 predicted
protein sequences encoded by the other completely sequenced microbial genome,
that of H. influenzae (Fleischmann et al. 1995). Because these microorganisms be-
long to two distinct ancient bacterial lineages [that is, Gram-positive (M. genitalium)
and Gram-negative (H. influenzae) bacteria], genes that are conserved in these two
organisms are almost certainly essential for growth and replication. This genomic
comparison suggested that the minimal number of genes necessary and sufficient
to sustain the existence of a modern-type cell is closer to 256 (Koonin et al. 2002,
Mushegian 1999). On the basis of these 256 genes, Mushegian and Koonin sug-
gested the following key features that must be specified by a minimal gene set:
rudimentary systems for gene transcription, protein translation, DNA replication,
recombination, and repair; chaperone-like proteins and machinery for protein export
and metabolite transport; and nucleotide salvage pathways.

Since then, comparisons of protein-coding regions in complete genome sequen-
ces from diverse organisms have revealed clusters of orthologous groups (COGs),
(Tatusov et al. 1997); because orthologous proteins likely have similar functions, the
COGs have been used to define a minimal gene set of life (Mushegian 1999). Using
a similar approach, researchers compared genome sequences from uropathogenic
E. coli CFT073, enterohemorrhagic DEL933, and the E. coli laboratory strain
MG1655 and defined a combined set of nonredundant protein-encoding genes. Of
these genes, only 39.2% (2,996 genes) are common to all three strains (Welch et al.
2002). However, when such an analysis was carried out with about 100 sequenced
genomes, only 63 genes were found to be ubiquitous; most of these genes encode
translational components, and a few specify basic components of the transcription
machinery (Koonin 2003).

The challenge of this comparative genomic approach to the identification of a
minimal gene set is that certain function-related complexities are not taken into
account. For example, the minimal number of essential functions may be larger
than that predicted by genome sequence comparison, because not all proteins that
perform the same function share detectable sequence similarity (Riley and Serres
2000). Therefore, because it may substantially underestimate the size of the min-



2 Escherichia coli Genome Engineering and Minimization 23

imal gene set, one cannot rely exclusively on the comparative approach (Feher
et al. 2007).

2.2.2 Identification of Essential Genes by Large–Scale
Gene Inactivation

Global transposition mutagenesis has been used to identify nonessential genes in
an effort to learn whether the naturally occurring gene complements behave as true
minimal genomes under laboratory conditions.

The positions of 2,209 transposon insertions in the completely sequenced geno-
mes of M. genitalium and its close relative Mycoplasma peumoniae were deter-
mined by sequencing across the junctions of the transposons and the genomic DNA
(Hutchison et al. 1999). These junctions defined 1,354 distinct sites in which trans-
poson insertion did not lead to lethality. This analysis suggests that 265–350 of the
480 protein-coding genes of M. genitalium are essential under laboratory conditions,
including about 100 genes of unknown function (Hutchison et al. 1999).

In Bacillus subtilis, Itaya (1995) introduced mutations in a small set of randomly
selected genetic loci, examined the growth properties of the mutants, and determined
the percentage of genes that could be disrupted without loss of viability. This led
to the hypothesis that the minimal B. subtilis genome may comprise about 318–
562 kb which, given the average size of ∼1 kb for a bacterial protein-coding gene,
corresponds to 300–500 genes (Kunst et al. 1997). And with a systematic approach
that employed single-gene disruptions that covered the complete Bacillus genome,
Kobayashi et al. (2003) identified about 270 genes that are indispensable for growth
of B. subtilis in a rich medium at 37 ◦C.

In Pseudomonas aeruginosa, H. influenzae, Corynebacterium glutamicum, and
E. coli, global transposition mutagenesis has identified 678, 670, 658, and 620
genes, respectively, those essential for growth under laboratory conditions (Akerley
et al. 2002, Gerdes et al. 2003, Jacobs et al. 2003, Suzuki et al. 2006). However,
when Baba et al. (2006) used Red recombination to generate a set of precisely de-
fined, single-gene deletions of all putative protein-coding genes in E. coli K-12, of
the 4,288 genes targeted, only 303 genes, including 37 of unknown function, were
unable to be disrupted in Lulia-Bertani (LB) medium. When these 303 essential
genes were divided into functional groups, the major subsets contained members of
COGs that play roles in protein translation, ribosomal structure, cell division, lipid
metabolism, transcription, and cell envelope biogenesis. And only 67% (205 genes)
of the 303 essential genes overlap with those in the essential gene set predicted
by global transposition (Baba et al. 2006, Gerdes et al. 2003). These differences
can be attributed to the use of different mutagenesis strategies and different growth
conditions. However, because the global transposition system measures the effect of
mutations on cell populations, a mutation that causes very slow growth can appear
to be lethal and hence be falsely classified as essential. Furthermore, of the 3,988
single-gene deletion mutants made by Baba et al., 119 gave rise to mutant E. coli
strains that were unable to grow on glycerol-supplemented M9 minimal medium
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Table 2.1 Number of estimated essential genes in various microorganisms

Method Strain
No. of essential
genes/total ORFs (%) Ref.

Comparative
genomics

M. genitalium and H.
influenzae

256 Mushegian and Koonin
1999

M. genitalium 265–350/468 (79%) Hutchison et al. 1999
H. influenzae RD 670/1703 (38%) Akerley et al. 2002

Global trans-
position

E. coli K12 620/4296 (14%) Gerdes et al. 2003
P. aeruginosa 678/5500 (12%) Jacobs et al. 2003
H. pyroli 255/1590 (16%) Salama et al. 2004
C. glutamicum R 658/2990 (22%) Suzuki et al. 2006

Single-gene
deletion or
knockout

S. cerevisiae 1105/5916 (19%) Giaever et al. 2002
B. subtilis 168 271/4099 (6.8%) Kobayashi et al. 2003
S. typhimurium LT2 490/4597 (11%) Knuth et al. 2004
E. coli K12 303/4296 (7%) Baba et al. 2006

(Joyce et al. 2006). Information about the variously defined minimal gene sets is
summarized in Table 2.1.

2.3 Techniques for Experimental Genome Minimization

For some bacteria, strains that carry spontaneous deletion mutations can be ob-
tained by long-term serial passage of the cells under laboratory culture conditions
(Cooper et al. 2001). However, the spontaneous deleterious mutation rate for the
E. coli genome is too low (∼2 × 10−4 per generation) to allow deletion mutants
to be efficiently created using this technique (Elena and Lenski 2003, Kibota and
Lynch 1996). Therefore, for the rapid construction of minimal genomes by remov-
ing protein-coding genes and other genomic sequences that previously were shown
to be nonessential, researchers have developed a variety of deletion methods, includ-
ing homologous recombination using suicide plasmids, linear DNA recombination
using the phage Red system, site-specific recombination system, and random dele-
tion by double transposition.

2.3.1 Suicide Plasmid–Mediated Genomic Deletion

Suicide plasmids are convenient vehicles for the delivery of DNA into the E. coli
chromosome. Link et al. (1997) have described a method for gene replacement in
E. coli that uses a homologous recombination between the bacterial chromosome
and a suicide plasmid, carrying cloned chromosomal fragments (homologous arms),
whose replication ability is temperature sensitive (Fig. 2.1A). At the non-permissive
temperature (42 ◦C), cells maintain drug resistance only if the plasmid integrates
into the chromosome by homologous recombination between the cloned fragment
and the bacterial chromosome (Hamilton et al. 1989, Posfai et al. 1999). Alternative
suicide plasmids that contain plasmid R6K-origin of replication (ori) can be made
in an E. coli cell that supports synthesis of the replication initiation protein and
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Fig. 2.1 General schemes of the deletion procedures. In all schemes, the chromosomal DNA is
shown at the top of the figure, and the targeted plasmid or DNA fragment is shown below the
chromosomal DNA schematic. The sequences of the A and B regions in the chromosome and the
targeted plasmid or DNA fragment are the same thus can undergo homologous recombination.
(A) Protocol for use of the suicide plasmid-mediated deletion system. The plasmid, which carries
two PCR-amplified DNA fragments (A and B, >500 bp) that flank a target genomic region to be
deleted, is transformed into E. coli, and cells are plated at the nonpermissive temperature (42 ◦C)
of the plasmid replicon. When shifted to the permissive temperature (30 ◦C), the plasmid is ex-
cised from the chromosome by recombination at either A or B. The resistance colonies against the
counterselection marker are screened for deletion of the target region (Link et al. 1997, Posfai et al.
1999). (B) Overview of the Red-mediated linear DNA deletion method. An FRT-flanked antibiotic
resistance gene is amplified by PCR and transformed into E. coli expressing the Red recombinase.
After selection of the antibiotic-resistant transformants, the inserted antibiotic resistance gene is
eliminated by the Flp/FRT recombination system (Datsenko and Wanner 2000). (C) The scar-
less deletion system. The targeted DNA fragment, which carries the actual post-deletion sequence
joints, was amplified by PCR and integrated into the genome by Red recombination. Integration
creates a duplication of the segment that flanks the deletion target region. Cleavage of the inserted
DNA by meganuclease I-SceI introduces a DSB between the duplicated segments and stimulates
their intramolecular recombination, resulting in a scarless genome deletion (Kolisnychenko et al.
2002). (D) Deletion of a genomic region by two serial linear DNA recombination events. A DNA



26 B.H. Sung et al.

then transferred to a target cell that lacks the replication protein, which permits the
plasmid to integrate into the E. coli genome (Koob et al. 1994, Posfai et al. 1994,
Yoon et al. 1998).

After the integration of a suicide plasmid that contains a homologous arm into
the chromosome, the suicide plasmid can be excised out by the second homolo-
gous recombination. Depending on the position of the second recombination event
that excises the plasmid, the chromosome either retains the wild-type sequence or
has a deletion between the target sites (Fig. 2.1A). For easy identification of the
resolved products, a counterselection marker, such as sacB (sucrose sensitivity)
(Dedonder 1966, Gay et al. 1985, Link et al. 1997) or rpsL (streptomycin sensi-
tivity) (Hashimoto et al. 2005, Russell et al. 1989, Wang et al. 1993), is integrated
in the suicide plasmids. The resolution of the plasmids is thus screened on media
supplemented with sucrose or streptomycin, respectively. Another efficient mode
of enhancing the plasmid excision step is the introduction of an 18-base pair (bp)
meganuclease I-SceI cleavage site in the suicide plasmid (Posfai et al. 1999). Cleav-
age of the genome at this unique site creates a double-strand break, which simultane-
ously stimulates recombination and selects for resolution of the integrated plasmid.

Although methods that employ suicide plasmids can be used to delete genomic
segments, for each deletion experiment, these procedures require the creation of
specific targeting vectors before recombining them into the chromosome.

2.3.2 Linear DNA–Mediated Genomic Deletion

To avoid the inconvenience of constructing the targeting vectors in the suicide
plasmid-mediated genomic deletion, linear DNA-mediated genomic deletion appro-
ach has been introduced. In Saccharomyces cerevisiae and a few naturally compe-
tent bacteria, genes or genomic regions can be directly disrupted by transformation
with double-stranded DNA (dsDNA) fragments, created with the polymerase chain
reaction (PCR), that encode a selectable marker and have only about 50 bp of flank-
ing DNA (called homology arms) that are homologous to the chromosome region of
interest. Through homology arm-directed homologous recombination between the
DNA fragments and the chromosome, this procedure facilitates the generation of
specific chromosomal mutations and thus functional analysis of the genome (Baudin
et al. 1993, Oliver et al. 1998, Wilson et al. 1999). In E. coli, however, intracellu-
lar exonucleases, such as RecBCD, degrade linear DNA (Lorenz and Wackernagel

�
Fig. 2.1 (continued) fragment that contains an antibiotic resistance gene and a counterselection
marker cassette flanked by DNA segments that are homologous to the chromosomal target region
was amplified by PCR and inserted into the chromosomal DNA by Red–mediated recombination.
The inserted markers are replaced with a linear DNA fragment consisting of only the chromoso-
mal fragment by a second Red recombination (Hashimoto et al. 2005). AbR stands for antibiotic
resistance marker gene; ori indicates an origin of replication that functions only under permissive
conditions; and cs marker indicates a counterselection marker
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1994) and inhibit recombination with the PCR products. Linear DNA recombina-
tion systems in E. coli were developed by finding ways to inhibit the intracellular
exonucleases. For example, one such system uses the RecET recombinase to disrupt
plasmid-borne genes with linear DNA fragments (Zhang et al. 1998). Other methods
make use of the fact that the phage lambda Red (gam, bet, exo) function promotes
a greatly enhanced rate of recombination when using linear DNA (Datsenko and
Wanner 2000, Murphy 1998, Yu et al. 2000). In the Red system, the Gam pro-
tein inhibits the RecBCD nuclease and prevents it from attacking the linear DNA
fragments, and Exo (a 5′-to-3′ exonuclease) and Bet (a single-strand DNA binding
protein) generate recombination activity for the linear DNA. Because Bet binds to
linear DNA strands that are 36 bases in length or longer, it is recommended that, for
efficient recombination, the DNA have homology arms of more than 40 bp (Yu et al.
2000).

One method that uses Red-mediated recombination for efficient deletion of spe-
cific genomic segments in E. coli is that of Datsenko and Wanner (2000). Their
basic strategy (Fig. 2.1B) is to replace a chromosomal target with a linear DNA
fragment that carries a selectable antibiotic resistance gene flanked by 50-nucleotide
(nt) extensions that are homologous to selected sequences in the bacterial chromo-
some (Fig. 2.1B, segments labeled A and B). This is accomplished by Red-mediated
recombination between the E. coli genome and these flanking homologies. After
selection, the resistance gene can be eliminated by using a helper plasmid that ex-
presses the Flp recombinase, a S. cerevisiae enzyme that acts on the directly repeated
FRT sites that flank the resistance gene (Broach and Hicks 1980). However, because
this method is dependent on yeast Flp/FRT site-specific recombination to eliminate
the selection marker gene, each deletion event leaves behind one FRT site in the
bacterial chromosome, which interferes with subsequent rounds of chromosomal
deletions.

To delete genomic segments without leaving behind remnants of the selec-
tion marker, researchers developed a scarless deletion method that combines Red–
mediated recombination and double strand break (DSB)–stimulated recombination
(Kolisnychenko et al. 2002). For this method, the PCR-generated, linear DNA frag-
ments must be constructed so that they carry the actual post-deletion sequence joints
(Fig. 2.1C). Thus, integration of such a DNA fragment by Red recombination creates
a duplication of the segment that flanks the deletion target region. Cleavage of the
inserted DNA by meganuclease I-SceI introduces a DSB between the duplicated
segments and stimulates their intramolecular recombination. Eventually, repair of
the DSB by this recombination event results in a scarless genome deletion. In an-
other system for markerless deletion, a counterselection marker, sacB, and an I-SceI
recognition site were used simultaneously to increase the efficiency of resolution of
the inserted markers (Sung et al. 2006).

Hashimoto et al. (2005) developed yet another deletion method that goes through
two serial Red–mediated recombination events (Fig. 2.1D). In the first recombi-
nation, the targeted genomic region is replaced with the CmR-r psL-sacB (CRS)
cassette flanked by DNA fragments that are homologous to the chromosomal tar-
get. In this step, the chloramphenicol-resistance gene (CmR) is used as a positive
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selection marker for the deletion mutants. In the second step, the inserted CRS cas-
sette is replaced with a linear DNA fragment that consists of only the chromosomal
sequences, which produces a markerless deletion. For this second round of recombi-
nation, rpsL and sacB are used as the two counterselection markers, and sensitivity
to chloramphenicol is assessed in the selected transformants.

In addition to the protocols described above, an improved method for the rapid
markerless deletion with linear DNA was developed recently by Yu et al. (2008).
In this method, the deletion process is mediated by a single helper plasmid that
carries genes that encode the Red recombination proteins and the I-SceI nuclease
under the control of inducible arabinose and rhamnose promoters, respectively.
Genomic deletions are performed by first growing the bacteria in a medium that
contains arabinose as the carbon source (to spur synthesis of the Red recombination
proteins, which introduces linear DNAs into the bacterial chromosome) and then
changing the carbon source in the growth medium from arabinose to rhamnose (to
stimulate production of the I-SceI nuclease, which introduces a DSB that stimulates
intramolecular recombination). Only two days are required for the deletion of a
genomic segment without remaining a selection marker.

Finally, a DNA recombination system mediated by single-strand DNAs (ssD-
NAs) also has been developed. The ssDNA-binding protein Bet of phage lambda
stimulates recombination in chromosomal DNA by using synthetic ssDNAs as short
as 30 bases in length. This ssDNA recombination can be used to mutagenize or re-
pair the chromosome with efficiencies that generate up to 6% recombinants among
treated cells (Ellis et al. 2001).

2.3.3 Site-Specific Recombination–Mediated Genomic Deletion

Site-specific recombination is a useful genetic tool for deleting undesired DNA se-
quences and modifying chromosome architecture. The frequently used Cre/loxP and
Flp/FRT site-specific recombination systems share many features. Cre (Flp) is a site-
specific recombinase that mediates the recombination of a DNA sequence flanked
by two 34-bp loxP (FRT) sites. A loxP (FRT) site consists of two 13-bp inverted
repeats that flank an 8-bp core region. Intramolecular recombination between the
two uni-directionally oriented loxP (FRT) sites that flank a genomic region of in-
terest results in deletion of the intervening DNA fragment (Broach and Hicks 1980,
Sternberg and Hamilton 1981).

To integrate a loxP (FRT) site and an antibiotic resistance marker into a pre-
determined chromosomal site, PCR-amplified segments of the selected chromo-
somal region are cloned into a suicide plasmid that contains the R6K-ori and an
antibiotic-resistance marker. Independently, another PCR-amplified genomic seg-
ment is cloned into another suicide plasmid that carries a different antibiotic-
resistance marker. The suicide plasmids are inserted into the genome by homologous
recombination at predetermined sites. One of the inserted chromosomal sites is then
transferred by P1 transduction into a cell that carries the other insertion (Miller
1992). The predetermined genomic segments, which are flanked by the loxP (FRT)



2 Escherichia coli Genome Engineering and Minimization 29

sequences, are then excised by the Cre (Flp) recombinase (Posfai et al. 1994, Yoon
et al. 1998). For the rapid integration of loxP sites into the genome, Fukiya et al.
(2004) also reported a method that involves the integration of loxP-containing DNA
fragments into the two ends of the target genomic sequence using the Red system.

Yu et al. (2002) established a transposon-coupled, site-specific excision system
(Fig. 2.2A). Using modified Tn5 transposons, the authors constructed two large
pools of independent transposon-generated mutants and then mapped precisely the
chromosomal locations of 800 of these transposons, which carry a loxP site and
either the chloramphenicol- or kanamycin-resistance markers (CmR or K mR). Yu
et al. then combined selected mutants in a single cell by P1 transduction, and large
genomic target regions (57–117 kb) flanked by loxP sites were excised by Cre/loxP
recombination. The advantage of this method is the rapid and easy deletion of almost
any desired segment of the E. coli genome using the transposon-generated mutant
libraries without having to go through the time-consuming process of generating

Fig. 2.2 General scheme of the Tn-coupled Cre/loxP excision system and random deletion by
double transposition. (A) Tn5-mediated insertions and deletion of the target regions using the
Cre/loxP excision system. Two modified Tn5-transposons are introduced into the E. coli genome
randomly by in vitro transposition. Two mutant strains with a loxP site in the same orientation are
selected, one from each mutant library, depending on the target region to be deleted. The two
selected loxP sites are brought, in parallel, into a single strain by P1 transduction. The target
region between the two loxP sites is deleted by the action of Cre recombinase (Yu et al. 2002).
(B) The recursive deletion system. This strategy for deletion can be employed after integration of
the transposon into the host genome using external transposon ends (white triangles). The internal
transposon ends (white arrows) are used in the second transposition event. The intramolecular
transposition leads to the removal of the internal part of the transposon and the deletion of a por-
tion of the chromosome. The addition of a conditional origin of replication allows for capture
of the deleted chromosomal material into a complementary self-replicating plasmid (Goryshin
et al. 2003). AbR stands for antibiotic resistance marker gene; ori indicates an origin of repli-
cation; CmR and K mR indicates a chloramphenicol resistance and a kanmycin resistance gene,
respectively
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either customized deletion constructs or PCR products. However, one loxP site and
an antibiotic resistance marker are retained within the genome after a segment is
deleted, which necessitates the use of further engineering techniques to remove the
remnants if serial accumulation of deletions is desired. Nevertheless the Cre/loxP re-
combination system can be a useful engineering tool, especially for high-throughput
construction of extremely large deletions.

2.3.4 Transposon–Mediated Random Deletion

Goryshin et al. (2003) have described a Tn5-based deletion technology (Fig. 2.2B)
that uses a composite, linear Tn5 derivative that carries a replication origin, K mR

and CmR selectable markers, Tn5 transposon end sequences at its 5′ and 3′ termini
(external ends), and an internal pair of end sequences from a different transposon
(internal ends). In this method, the engineered transposon is introduced into the bac-
terial host genome by the electroporation of preformed transposome complexes into
the cell (Goryshin et al. 2000). The external ends drive integration of this transposon
into the host chromosome. A mutant transposase (TnpEK/LP) is expressed from the
integrated transposon and then binds to and carries out blunt-end cleavage at the
internal ends, which results in (i) the loss of a fragment of the integrated transposon
that houses the K mR gene and (ii) the facilitation of intramolecular transposition.
The intramolecular transposition event can create host genome inversions or dele-
tions that begin at the internal ends and extend for varying distances along the host
chromosome. Deletions result in loss of the transposon DNA, with the exception of
a linker sequence.

Repeated use of this procedure in the same cell, yields a series of random dele-
tions. The average deletion size per round is about 11 kb. The addition of a condi-
tionally active ori (one that is induced by IPTG) in the transposon allows for capture
of the deleted chromosomal material into a self-replicating plasmid that is comple-
mentary to the host chromosome (Fig. 2.2B). Because the transposon integration
sites and genomic deletions are random, screening of mutants obtained by this strat-
egy requires significant time and effort. However, this approach allows the deletion
of genomic segments in the absence of complete genome sequence information and
without prior knowledge of which genes are dispensable for viability.

2.4 Genome Minimization of Microorganisms

E. coli minimal genomes have been constructed by the diverse genomic deletion
methods described above, generating bacterial strains that house genomes that are
5–30% smaller than that of a wild-type E. coli strain. The genomes of other microor-
ganisms, such as B. subtilis, C. glutamicum, and the yeasts also have been reduced
for the construction of minimal-genome factories (Fujio 2007). The deletion sizes
and characteristics of these minimal genomes are summarized in Table 2.2.
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Table 2.2 Deleted functions and characteristics of minimal genomes

Strain Deletion Size
Deleted Functions (D) and
Characteristics (C) Ref.

E. coli
�20-4 218.7 kb (5.6%) (D) Random genomic regions Goryshin et al. 2003
CD�3456 313.1 kb (6.7%) (D) Nonspecific target regions Yu et al. 2002

(C) Presentation of mutually
exclusive regions

MDS12 376.1 kb (8.1%) (D) K-strain–specific islands Kolisnychenko et al. 2002
(C) No significant difference to

the parent cell
MDS43 708.3 kb (15.3%) (D) K-islands, mobile elements Posfai et al. 2006

(C) Increased genome stability
and electroporation
efficiency

MGF-01 1.03 Mb (22%) (D) Nonessential regions
without growth deficiency

Mizoguchi et al. 2007

(C) Increased threonine
production (2-fold)

�16 1.38 Mb (29.7%) (D) Nonessential genes in the
literature

Hashimoto et al. 2005

(C) Growth deficiency,
abnormal nucleoid location

B. subtilis
�6 320 kb (7.7%) (D) Prophage, polyketide

synthesis
Westers et al. 2003

MG1M 991 kb (24%) (D) Prophage, polyketide
synthesis, secondary
metabolites

Ara et al. 2007

(C) Growth deficiency
MGB874 873.5 kb (20.7%) (C) Increased productivity of

extracellular cellulase
(1.7-fold) and protease
(2.5-fold)

Morimoto et al. 2008

C. glutamicum 190 kb (5.7%) (D) R-strain–specific regions Suzuki et al. 2005b
S. pombe ∼500 kb (4%) (C) Growth at a lower rate Giga-Hama et al. 2007
S. cerevisiae 531.5 kb (5%) (C) Increased production of

ethanol (1.8-fold) and
glycerol (2-fold)

Murakami et al. 2007

2.4.1 E. coli

2.4.1.1 Random Genome Minimization by Transposition

Using the composite Tn5 derivative (Fig. 2.2B), Goryshin et al. (2003) developed a
unique method for random and recursive deletion of genomic segments that can be
applied to gene essentiality studies and minimal genome construction. The authors
repeated the random integration/deletion process 20 times per cell to reduce the size
of the E. coli MG1655 genome, generating several different multi-deletion strains
(Fig. 2.3). For 4 of these minimized strains, pulsed-field gel electrophoresis (PFGE)
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Fig. 2.3 Deletion map of minimal genome E. coli strains. Outward from center: 1, set of dele-
tions (209 kb, 5.4% of the wild-type genome) constructed by Goryshin et al. (2003); 2, another
set of deletions (219 kb, 5.6% of the wild-type genome) by Goryshin et al. (2003); 3, deletions
(313 kb, 6.7% of the wild-type genome) by Yu et al. (2002); 4, deletions (708 kb, 15.3% of
the wild-type genome) by Posfai et al. (2006); 5, deletions (1,377 kb, 29.7% of the wild-type
genome) by Hashimoto et al. (2005). This figure was produced using the Genome Paint v. 3.0.1
software provided by the National Institute of Genetics, Japan (http://www.shigen.nig.ac.jp/tools/
GenomePaint/v3.0)

estimated the total amount of deleted DNA to be between 100 and 262 kb (∼5.6%
of the total genome). The locations of the deletions were mapped by microarray
hybridization and revealed that, in the two minimized strains with the smallest
genomes, only 9 and 11 chromosomal deletions were detected. These findings in-
dicate that some deletions may be too small to detect or occurred within the trans-
posons.

2.4.1.2 Minimization of the E. coli Genome Using the Cre/loxP
Excision System

To demonstrate the feasibility of a combinatorial deletion technique in the identi-
fication of essential genes and genome minimization, Yu et al. (2002) performed
a 6.7% reduction of the E. coli MG1655 genome using the transposon-coupled
Cre/loxP excision system (Fig. 2.2A) described above. From 13 pairs of genomic
deletion targets, six mutant E. coli strains that lacked a total of 504.7 kb of DNA
(472 genes) were generated. Yu et al. then combined each individual deletion into
a single genome by P1 transduction. Repeating the Cre/loxP excision procedure on
this combined deletion mutant strain, Yu et al. produced an E. coli mutant with an
additional four large deletions (totaling 313 kb) in the genome (Fig. 2.3). Although
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a total of 287 open reading frames (ORFs) had been removed from this ultimate
strain, its growth rate in LB medium did not differ significantly from that of the
wild-type strain.

Yu et al. also showed that, although many deletions could be successfully com-
bined into a single strain, some deletions that are viable individually are not viable
when combined with other deletions. This observation suggests that some mutations
are ‘mutually exclusive’ (Smalley et al. 2003) [also referred to as ‘synthetic lethal’
(Hartman et al. 2001), or ‘mutually essential’ (Yu et al. 2006)].

As Yu et al. mentioned in their paper (Yu et al. 2002), in order to generate fully
minimized strains and thereby define true minimal essential gene sets, transposon
libraries must be expanded to include a total of about 4,000 mapped insertion mu-
tants (saturation of the library). Also, if one wishes to construct a cumulative dele-
tion strain that contains only bacterial DNA, a second recombination strategy, such
as with the Red system, is required to eliminate both the selectable marker and
the remaining loxP site from the deletion mutants. Nevertheless, the availability of
mapped mutant pools allows the rapid construction of bacterial strains with virtually
any single genomic deletion, which facilitates gene essentiality studies.

2.4.1.3 Genome Minimization Using Scarless Deletion Techniques

Reduced E. coli genomes have also been constructed through the generation of se-
quential large deletions using a combination of Red–mediated and DSB-stimulated
recombination as described above (Fig. 2.1C). To stabilize the E. coli genome and
streamline the bacterial metabolism, researchers have deleted from the genome trou-
blesome DNA sequences and genes that encode proteins that perform unnecessary
or unwanted functions, such as K-islands (genomic segments present in K-12, but
absent from other E. coli strains) (Perna et al. 2001), mobile DNA elements [includ-
ing insertion sequences (IS)], prophases, transposases, integrases, and site-specific
recombinases. These deletions were serially introduced into a single strain by P1
transduction, which generated E. coli reduced strain MDS12 (Kolisnychenko et al.
2002), MDS42, and MDS43 (Posfai et al. 2006), which lack 8.1%, 14.3%, and
15.3% of the E. coli genome, respectively (Fig. 2.3).

Relative to its parent strain MG1655, MDS42 displays a comparable growth rate
and a mutation rate that is reduced by ∼21%. Plasmids prepared from MDS42
cells are free of IS-contamination, and unstable plasmids, even those that carry
a toxic chimeric gene, can be recovered in an unaltered form, which illustrates
the increased genome stability of the deletion mutant. Also, MDS42 displays a
transformation efficiency that is two orders of magnitude higher than that of the
wild type. This unexpected increase in the electrocompetence of MDS42 is pre-
sumed to stem from uncharacterized synergistic effects (such as improved intra-
cellular access for DNA through depolarized membranes) resulting from the re-
moval of more than 180 genes that encode known or predicted membrane-associated
proteins.

Another E. coli strain with a highly reduced genome, Delta16, has been char-
acterized by Hashimoto et al. (2005). The size of the Delta16 genome (3.26 Mb) is
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29.7% smaller than that of the parent strain (MG1655, 4.64 Mb). For the construction
of Delta16, each deletion was generated through two serial lambda Red–mediated
recombination events (Fig. 2.1D). The deletions were then accumulated, one at a
time, in a single strain, by serial P1 transductions using the original single-deletion
strains (Fig. 2.3). Phenotypic analysis revealed that the various large deletion-
containing strains that gave rise to Delta16 grew more slowly than did the parental
cell. In addition, mutant cells that harbored 13 or more deletions were longer in size
and wider than the wild type. Hashimoto et al. (2005) also noticed that, while the
parental cells contained one or two nucleoids localized at the midcell, or at the 1/4

and 3/4 positions, most of the mutant cells had four or more nucleoids that were
localized at the periphery of the cell, near the envelope.

Recently, Kato and Hashimoto (2007) used consecutive genome deletion to dis-
cover that the origin of DNA replication is the only unique cis-acting DNA sequence
in the E. coli genome that is necessary for survival.

To construct the minimal E. coli genome for industrial applications, Mizoguchi
et al. (2007a) selected for deletion regions that were not expected to affect the
growth or basic metabolism of the bacteria. Ninety-five regions of the E. coli
genome, with a total size of 1.8 Mb, were deleted independently using markerless
deletion mediated by the sacB-cat cassette (Mizoguchi et al. 2007b), and the individ-
ual deletions were transferred to a single chromosome by P1 transduction. Through-
out the genome-size reduction process, Mizoguchi et al. assessed the growth proper-
ties (in minimal medium) of each intermediate strain and selected only those strains
that displayed no growth-deficiency for subsequent deletions. In the final mutant
strain, called MGF-01, the genome size was reduced by 22% (1.03 Mb). During
the exponential growth phase, MGF-01 displayed doubling times in M9 minimal
medium that were as fast as that of the wild-type strain, and the final cell density
reached by MGF-01 was 1.5 times higher than that of the wild-type strain. When
the genetic circuit for threonine production (�met ::thrABC-CmR) was integrated
into the chromosomes of MGF-01 and its wild-type parental strain, the resulting
wild-type- and MGF-01-based strains produced 5 and 10 g/l of threonine in 48 h,
respectively.

2.4.2 Other Microorganisms

B. subtilis B. subtilis, one of the most extensively studied model microorganisms,
displays a superior ability to produce various secretory enzymes. Many industrial
scientists have exploited this capability in the production of a variety of useful en-
zymes (Westers et al. 2004). The 4.2-Mb B. subtilis genome contains 10 horizontally
acquired prophage (SPβ and PBSX) and prophage-like (pro1-7 and skin) sequences
(Kunst et al. 1997). In addition, 2.8% of the genome encompasses two large operons
that produce secondary metabolites (pks and pps).

Using a suicide plasmid-based chromosomal integration-excision system
(Leenhouts et al. 1996), Westers et al. (2003) have produced a B. subtilis Delta6
mutant strain, with a 7.7% reduction in the genome (0.53 Mb), by deleting two
prophage (SPβ, PBSX) and three prophage-like sequences (pro1, pro6, skin) as
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well as one of the secondary metabolite operon (pks) from wild-type B. subtilis
168. However, phenotypic characterization of the Delta6 cells disclosed no unique
properties, relative to wild-type 168 cells. Recently, Ara et al. (2007) deleted, from
the B. subtilis genome, all prophage and prophage-like sequences, with the excep-
tion of pro7, as well as the pks and pps operons, which resulted in a B. subtilis
strain (MG1M) that lacked 0.99 Mb of the wild-type genome. However, MG1M
strain displays unstable phenotypes with respect to growth rate, cell morphology,
and recombinant protein production after successive culture, making it inappropriate
for further study.

Another B. subtilis minimal genome strain, MGB874, was created recently by
introducing deletions, step-by-step, into 28 regions in which single deletions do not
affect cell growth (Morimoto et al. 2008). A total of 873.5 kb of DNA (20.7% of
the genome) was deleted from wild-type B. subtilis. In order to assess the ability
of MGB874 to synthesize and secrete proteins, wild-type B. subtilis and MGB874
were transformed with plasmids that encoded extracellular cellulase and protease
enzymes, and protein production was measured. Cellulase and protease enzyme
production was enhanced 1.7- and 2.5-fold, respectively, in MGB874, relative to
the wild-type strain.

C. glutamicum The bacterium C. glutamicum is used widely for the industrial
production of amino acid and organic acids. Therefore, Suzuki et al. (2005a, b, c,
and d) used modified Cre/loxP recombination to generate a minimal-genome C.
glutamicum strain that lacked 190 kb of the wild-type genome that encodes a total
of 188 ORFs. This deletion mutant exhibits normal growth under standard labora-
tory conditions. In addition, Tsuge et al. (2007) have generated 42 C. glutamicum
mutants (with deletions of 0.2–186 kb) using a deletion method similar to that de-
scribed by Yu et al. (2002), which combines an transposon and the Cre/loxP excision
system. Tsuge et al. showed that a total of 393.6 kb (11.9%) of the C. glutamicum R
genome is nonessential for growth under standard laboratory conditions.

Schizosaccharomyces pombe In the fission yeast S. pombe, Hirashima et al.
(2006) reported a method for the deletion of a large genomic region using ho-
mologous recombination between the chromosome and a fragment of linear DNA.
Giga-Hama et al. (2007) used this method to create an S. pombe mutant dedicated
to heterologous protein production. The authors deleted a total of more than 500 kb
from a wild-type S. pombe strain by repeating the deletion procedure multiple times.
Although the authors succeeded in developing a viable strain of S. pombe with a
minimal genome, the phenotypic characteristics of this organism have not yet been
reported.

S. cerevisiae To decipher the number of genes required for growth and the
genome organization responsible for ethanol production, various segments of the
S. cerevisiae genome were deleted, and a viable mutant was created that had lost
about 5% (531.5 kb) of the wild-type genome (Murakami et al. 2007). This mutant
displays an increase in ethanol (1.8-fold) and glycerol (2-fold) production, relative
to the wild type, while also exhibiting levels of resistance to various stresses (heat-
shock, acidic or alkaline growth conditions, the presence of 7.5% ethanol, 1 M NaCl,
or 1.5 M sorbitol in the growth medium) that are nearly equivalent to those of the
parental strain.
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2.5 Conclusions and Perspectives

In order to realize our dream of creating ideal, robust host organisms for novel
uses that benefit humankind, scientists must first unravel microbial genomes to
determine the minimal components that are sufficient for life in specific controlled
environments. Researchers are tackling this task by using a comprehensive approach
based on computational, experimental, and literature-based studies. For some organ-
isms, the removal of all genomic regions save those that are part of the defined core
element has been accomplished, without any deleterious effect on basic cell physiol-
ogy, by adapting well-characterized recombination systems to the deletion of large
genomic segments. Indeed, some of the minimal E. coli genomes constructed to
date even show improved genome stability and/or increased production of industrial
products, relative to wild-type strains.

With the aid of systems biology and synthetic biology approaches, the minimal
E. coli genomes now in existence may be reduced further to produce a genome
that houses the absolute minimal number of genes essential for life. This would
represent an important step toward acquiring the ability to genetically engineer or-
ganisms (novel and existing) knowing only the sequences of their genomes. Min-
imal genome research also may provide insights into the origins of life; bacterial
evolution; regulation of microbial metabolism; and the genomes of more complex
modern organisms. Finally, minimized E. coli genomes can lead to the construction
of elite, custom-designed bioengines with a plethora of practical and commercial
applications.

Bacteria are now commonly engineered to produce useful products, ranging
from industrial chemicals to pharmaceutical proteins. Therefore, the first benefits
of minimal-genome research likely will be in microbial engineering. A minimal-
genome organism might require less energy to produce the same amount of a given
protein or produce fewer waste products that contaminate the desired product. A
minimal-genome organism also may be used as the basis for novel bioengines cre-
ated to perform specific tasks, such as the breakdown of environmental toxins, the
neutralization of toxic spills, or the creation of renewable energy.
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Abstract The omics, which means comprehensive analysis of a specific layer in a
cellular system, are emerging as essential methodological approaches for molec-
ular biology and systems biology. However, single omics analysis does not al-
ways provide enough information to understand the behaviors of a cellular system.
Therefore, a combination of multiple omics analyses, the multi-omics approach,
is required to acquire a precise picture of living organisms. In this chapter, basic
concepts of omics studies, and recent technologies in the omics of metabolism and
published multi-omics analyses of Escherichia coli, are reviewed. Subsequently, a
large-scale multi-omics analysis of E. coli K-12, including transcriptomics, pro-
teomics, metabolomics and fluxomics, is presented. This study uncovered the com-
plementary strategies of E. coli that result in a metabolic network robust against
various types of perturbations, therefore demonstrating the power of a multi-omics,
data-driven approach for understanding the functional principles of total cellular
systems.
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3.1 Overview of Omics and Multi-omics Analysis

3.1.1 A New Approach in Molecular Biology – Omics

The history of molecular biology is defined by a number of innovations. Currently,
a new innovative breakthrough is joining the world of the molecular biology – the
so-called “omics” (Lee et al. 2005, Yadav 2007). The basic methods of modern
molecular biology have been, to simplify the situation somewhat, hypothesis-driven,
reductionist, and bottom-up. In most cases, only a few biochemical species are fo-
cused on in any one study based on hypotheses formed by the researcher(s) prior to
the start of the study. After that, exhaustive investigation is directed towards under-
standing the properties of the target molecules.

Although such an approach is still valuable for obtaining detailed and precise
knowledge of the target molecular species, some inherent problems exist in how
the conventional research flows. At the beginning stage of such classical research
schemes, the selection of the target strongly depends on the personal experience and
intuition of individual researchers. Moreover, information about limited numbers of
molecular species does not always provide insight into a biological “system” that
consists of networks formed by a number of interacting molecular species (Brugge-
man and Westerhoff 2007).

To overcome these weak points in traditional molecular biology, a novel re-
search area, the “omics”, is emerging. Omics means a comprehensive analysis of
biochemical molecular species or interactions of molecules belonging to a specific
layer in a cellular system. For example, “genomics” is defined as the study of
whole DNA sequences and the information contained therein. Many different words
having the suffix of “omics” have been proposed - transcriptomics, proteomics,
lipidomics, glycomics, interactomics, phenomics, and so on. However, all omics
approaches can be considered to share two major features in contrast to traditional
procedures.

One feature is changing the direction of the flow of analysis. Unlike traditional
methods, in omics approaches massive data is first collected with no prior hypothe-
sis, and meaningful targets are searched for within the obtained data set. The second
feature of omics is the attempt to understand the target as a total “system” by using
information of the relationships between many measured molecular species. From
this point of view, the omics can be expected to contribute to the progress of systems
biology.

In brief, omics can be said to be a data-driven, holistic, and top-down ap-
proach, as opposed to traditional approaches. Rapid advances in the development of
high-throughput measuring instruments are inducing dramatic growth in the omics
research area. The extreme progression of information technologies, including en-
hancements of public web-databases of biological knowledge (Caspi et al. 2008,
Kanehisa et al. 2008, Teufel et al. 2006, Wittig and De Beuckelaer 2001), also
support the expansion of omics studies, which require the handling of hundreds
or thousands of measured values.
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3.1.2 Omics for Metabolic Systems – Metabolomics
and Fluxomics

While many technologies are included in the “omics” family, most activity is
found in the following three areas: genomics, transcriptomics, and proteomics. Cur-
rently, whole genome sequences of many species have been deciphered by high-
performance DNA sequencers. Using the information of a complete genome se-
quence, most of the products (mRNAs and proteins) coded in the genome can be
predicted; nonetheless, post-transcriptional modifications cannot be ignored. Thus,
with transcriptomic or proteomic experiments, the near complete detection of bio-
chemical species, i.e., true omics analysis, is possible in principle. However, for
other omics studies, it is impossible to define an explicit number of targets.

Although difficult to comprehensively measure, omics analysis of metabolism
in cellular systems is highly important (Fiehn 2002). The phenotype of a strain is
strongly connected to the profile of metabolite concentrations in the cell. In many
cases, adaptations of living cells to environmental changes can be achieved by re-
configuration of enzymatic reaction rates in some metabolic pathways. Therefore,
metabolomics (Dettmer et al. 2007, Kell 2004, Mashego et al. 2007, Oldiges et al.
2007, Rabinowitz 2007, Wang et al. 2006), which is the omics study for metabolic
compounds (low molecular weight, typically less than 1 kDa), is desired to obtain a
more precise overview of life.

Traditionally, large-scale metabolite analysis has been performed by gas chro-
matography mass spectrometry (GC-MS) (Fiehn et al. 2000), and GC-MS is fre-
quently used in plant metabolomics studies (Sanchez et al. 2008). Other instruments,
including liquid chromatography mass spectrometry (LC-MS) (Chen et al. 2007,
Tolstikov et al. 2007) and nuclear magnetic resonance (NMR) (Grivet et al. 2003,
Jordan and Cheng 2007, Ward et al. 2007), have also been successfully applied to
metabolome analyses.

Capillary electrophoresis mass spectrometry (CE-MS) has emerged as a power-
ful new tool, and various CE-MS methods have been developed for the analysis of
charged metabolites (Gaspar et al. 2008, Monton and Soga 2007, Sniehotta et al.
2007, Song et al. 2008). The advantages of CE-MS compared to other separation
technologies are that this method exhibits extremely high resolution and that al-
most any charged species can be infused into MS. (Soga et al. 2003) developed a
metabolome analysis method by CE-MS whereby metabolites were first separated
by CE based on charge and size and then selectively detected using MS by monitor-
ing over a large range of m/z values. Since hundreds of metabolites can be detected
simultaneously by CE-MS, our understanding of the metabolic layer in cellular sys-
tems is being greatly expanded. More recently, (Soga et al. 2006) also constructed
a coupling of CE and time-of-flight MS (TOFMS), and their CE-TOFMS analy-
sis revealed that serum ophthalmate is a sensitive indicator of hepatic glutathione
depletion in mice.

Another new methodology, called fluxomics (Sanford et al. 2002, Sauer et al.
1999, Wiechert et al. 2007), which means detailed metabolic flux analysis (MFA)
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(Stephanopoulos et al. 1998) of large-scale metabolic pathways, has joined the
omics family for investigating metabolic systems. MFA includes mathematical pro-
cedures for the estimation of unmeasurable reaction rates in a metabolic pathway by
using measurable data, such as specific consumption rates of substrate and specific
production rates of byproduct. MFA itself has relatively a long history – the first
MFA is believed to have been conducted by Aiba and Matsuoka in 1979 (Aiba
and Matsuoka 1979, Stephanopoulos et al. 1998). However, after the 1990s, the
use of stable-isotope labeled substrates has become a common technique, and some
advanced algorithms to handle the information of labeled metabolites for calculating
metabolic fluxes have been developed (Noh et al. 2006, Sauer 2006, Shimizu 2004,
Wiechert 2001). Accordingly, metabolic pathways that have complex topologies can
be treated by current MFA technologies, i.e., metabolic fluxes distributed in a wide
network can now be estimated. Therefore, fluxomics can be considered as one of
the omics methodologies. Figure 3.1 shows a bibliographic search containing the
words “metabolomics or metabolome” or “fluxomics or fluxome” using PubMed
(http://www.pubmed.gov/). An exponential increase in the number of metabolomics
studies and the genesis of fluxomics research can be observed.

A combination of metabolomics and fluxomics has been established by Toya
et al. (Toya et al. 2007). They used CE-TOFMS to measure mass distributions of
intermediate metabolites in cells cultured by isotope-labeled glucose, and performed
flux analysis with the measured mass distribution patterns. Since the pool sizes
of intermediate metabolites are generally so small, isotopic pseudo-steady states
of intermediate metabolites are immediately achieved (Wiechert and Noh 2005).
Accordingly, MFA using CE-TOFMS can be applied to metabolic systems under
drastic dynamical change, such as in a batch culture, which is practically impor-
tant in fermentation industries. Other methods of MFA using LC-MS to determine
labeling patterns of intermediate metabolites have also been reported (Costenoble
et al. 2007, Noh et al. 2007, Schaub et al. 2008, van Winden et al. 2005). Further

Fig. 3.1 Bibliographic
searches in PubMed
(http://www.pubmed.gov/)
containing the keywords
“metabolome OR
metabolomics” and “fluxome
OR fluxomics” (as of May
20, 2008)
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collaborations of metabolomics and fluxomics are expected to be developed and to
be employed in investigations of complex and large-scale metabolic systems.

3.1.3 Integration of Various Omics Analyses – Multi-omics

These days various omics analyses are frequently employed in many experimen-
tal studies. However, it has been gradually realized that obtaining useful biological
knowledge from a single type of omics data (for example, DNA microarray only) is
no easy task. One reason is that single omics analysis provides us with information
about only one layer of a cellular system. Obviously, multiple functional cellular
layers, including the mRNA, protein, and metabolite layers, are interacting with
each other; thus the response of a total cellular system to given perturbations cannot
be fully captured from a single layer. Figure 3.2 shows a schematic diagram of the
functional layers and their interactions in a cellular system.

In conclusion, not just one omics analysis, but multiple omics analyses are re-
quired for deep and precise understanding of a cellular system. This recognition
seems to be shared by many researchers (Andersen et al. 2008, De Keersmaecker
et al. 2006, Joyce and Palsson 2006, Steinfath et al. 2007). Toyoda et al. proposed
the concept of the “omic space”, which consists of multi-layered state variables, and
suggested a data integration framework and graphic presentation method of multi-
ple omics data (Toyoda et al. 2007, Toyoda and Wada 2004). Figure 3.3 displays
a conceptual diagram of the “omic space”. (Lee et al. 2005) indicated the essen-

Fig. 3.2 Schematic diagram of interactions among various functional layers in a cellular system.
Blank arrow, flow of biological information; dashed line, possible interaction between various
biomolecular species
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Fig. 3.3 Conceptual
projection view of omic space
(Toyoda and Wada 2004).
Black arrow, direction of
ascending order in
transcriptomic, proteomic,
metabolomic and phenomic
planes. Gray arrow
genomic-coordinate axes.
The epistatic P1–P2
interaction on the phenomic
plane corresponds to T1 and
T2 genes interacting on the
transcriptomic planes

tiality of the combination of multiple omics analyses for strain improvements in
fermentation industries. (Paley and Karp 2006) developed the “Omics viewer” that
can show different types of data sets (for example, measurements of gene expres-
sion and metabolite concentrations) simultaneously on a metabolic pathway map.
(Arakawa et al. 2005) also developed a mapping tool to display complex omics data
together.

Excellent studies using a combination of multiple omics methods have begun
to be reported. Confining examples to studies of Escherichia coli, the following
works can be found: Yoon et al. (2003) carried out combined transcriptomic (DNA
microarray) and proteomic (two-dimensional gel electrophoresis; 2-DE) analyses
of E. coli during high cell density cultivation, which is required for higher produc-
tivity of recombinant proteins. They showed that patterns of gene expression were
mostly similar to patterns of protein expression, except for several discrepancies
observed for a few genes (Fig. 3.4). Fong et al. (2006) investigated transcriptomics
(DNA microarray) and fluxomics (13C-labeled glucose was used as a substrate, and
label patterns of amino acids of hydrolyzed cells were measured by GC-MS) of E.
coli to reveal the mechanisms of adaptive mutations of some gene-disrupted strains.
They found that activation of latent pathways and flux changes in the tricarboxylic
acid (TCA) cycle in the adaptive evolved strains correlate well with changes in the
transcriptome. Bore et al. (2007) performed transcriptomics (quantitative reverse-
transcription polymerase chain reaction; qRT-PCR) and proteomics (peptide mass
fingerprinting) to study E. coli adaptation to benzalkonium chloride, which is a
commonly used disinfectant and preservative. Their analysis indicated that benza-
lkonium chloride treatment might result in superoxide stress in E. coli. Wittmann
et al. (2007) studied the fluxome (GC-MS analysis of labeled proteinogenic amino
acids) and metabolome (enzymatic analyses) of E. coli during temperature-induced
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Fig. 3.4 Transcriptome and proteome analysis of E. coli during high cell density culture. (From
Yoon SH, Han MJ, Lee SY, Jeong KJ, Yoo JS (2003) Combined transcriptome and proteome
analysis of Escherichia coli during high cell density culture. Biotechnol Bioeng. 81(7):753–767.
Copyright c© 2003 by Wiley Periodicals, Inc. Reprinted with permission of Wiley-Liss, Inc., a
subsidiary of John Wiley & Sons, Inc.). X axis, cell concentration (g DCW/L); Y axis, expression
level in log2 scale for transcriptome (gray) and in absolute value of volume % for proteome (black);
gray-colored gene name, only mRNA level was detected; black-colored gene name, both mRNA
and protein level were detected

recombinant production of human fibroblast growth factor. Their analysis showed a
relationship between the adenylate energy charge drop and an increase in the gly-
colytic flux. Other regulations in central carbon metabolism were also estimated.
(Durrschmid et al. 2008) performed transcriptomics (DNA microarray) and pro-
teomics (two-dimensional difference gel electrophoresis (Marouga et al. 2005);
2D-DIGE) analyses of E. coli stress response mechanisms towards recombinant
protein expression. Their investigation of the expression of two model proteins
demonstrated that there is a distinct impact of recombinant proteins, particularly
on levels of known stress regulatory genes and proteins, as well as on the response
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Table 3.1 Reported multi-omics analyses of E. coli

Transcriptome Proteome Metabolome Fluxome

Yoon et al. 2003 ◦ ◦
Fong et al. 2006 ◦ ◦
Bore et al. 2007 ◦ ◦
Wittmann et al. 2007 ◦ ◦
Durrschmid et al. 2008 ◦ ◦

associated with ArcA and psp. Table 3.1 summarizes these multi-omics research
studies targeting E. coli.

In 2001, the Institute for Advanced Biosciences (IAB) of Keio University was
founded at Tsuruoka City, Yamagata, Japan. The purpose of the IAB is to actual-
ize the crossover association of different research fields, including genomics, pro-
teomics, metabolomics and informatics, for the establishment of “integrative sys-
tems biology” to obtain a more complete picture of living organisms. E. coli was
selected as the primary target of the IAB, and a multi-omics approach was applied to
reveal the basic principles of cellular responses of E. coli to genetic or environmental
perturbations (Ishii et al. 2007). In the following section, a large-scale multi-omics
study performed in the IAB is presented.

3.2 Multi-omics Analysis of E. coli

3.2.1 Chemostat Cultures of the Keio Collection

The Keio collection (Baba et al. 2006), which is the complete collection of all
single-gene disruptants of E. coli K-12, was used for this study. From the Keio col-
lection, 24 single-gene disrupted strains were selected. These strains are disruptants
of genes in glycolysis or pentose phosphate pathway metabolism. These metabolic
pathways are parts of the “central carbon metabolism”, which functions to supply
energy and synthesize essential precursors used for cellular components. Since cen-
tral carbon metabolism is crucial for living cells, the disruption of genes involved in
this metabolism was expected to result in dramatic changes in the cellular system.
A uniform dilution rate of 0.2 h−1 was applied to the chemostat cultures of the Keio
collection strains.

Gene disruption can be thought of as an “internal” perturbation to the cell. On the
other hand, “external” perturbation can be added by changing environmental factors.
In this study, we chose substrate concentration change as the external perturbation.
This was carried out by changing the dilution rate of the chemostat culture. Table 3.2
summarizes the strains and culture conditions used, and Fig. 3.5 shows the pathway
map of central carbon metabolism of E. coli and the positions of disrupted single
genes examined in this study.
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Table 3.2 Strain and culture conditions

Strain E. coli BW25113
galM, glk, pgm, pgi, pfkA, pfkB, fbp, fbaB, gapC, gpmA, gpmB,

pykA, pykF, ppsA, zwf, pgl, gnd, rpe, rpiA, rpiB, tktA, tktB,
talA, talB

Medium Modified M9
Carbon source Glucose
Oxygen supply Aerobic
Temperature 37 ◦C
pH 7.0
Dilution rate 0.2 h−1 (for single-gene disruptants)

0.1, 0.2, 0.4, 0.5, 0.7 h−1 (for wild-type)

3.2.2 Transcriptome, Proteome, Metabolome,
and Fluxome Analysis

The performed multi-omics analysis included layers closest to the genome and those
closest to the phenotype, i.e., including transcriptomics, proteomics, metabolomics
and fluxomics. Both cell-wide semi-quantitative analysis and targeted quantitative
methods were employed in the transcriptome and proteome analyses. The transcrip-
tome analysis was performed by DNA microarray for 4213 genes and qRT-PCR for
85 genes involved in central carbon metabolism. The proteome analysis was carried
out with 2D-DIGE (approximately 2000 proteins were detected) and quantitative
methods using liquid chromatography-mass spectrometry/mass spectrometry (LC-
MS/MS) for 57 proteins involved in central carbon metabolism. The metabolome
analysis was performed by CE-TOFMS for 579 metabolites. To perform the fluxome
analysis, 13C-labeled glucose was used as a substrate and mass distributions of pro-
teinogenic amino acids of cultured cells were measured by GC-MS. The metabolic
fluxes were calculated from the information of the obtained mass distributions. Ta-
ble 3.3 summarizes the omics technologies employed in this study. All measurement
data is published on our website (http://ecoli.keio.ac.jp/).

The obtained data set was used to analyze the response of the cellular system
to the perturbations. For this purpose, two-step normalizations were applied to the
measurement values (Ishii et al. 2007), and final converted values are named as
“expression index” (EI).

3.2.3 Observed Robustness in E. coli Metabolic System

Figure 3.6 shows EIs of quantitative measurements (qRT-PCR for mRNAs, LC-
MS/MS applied methods for proteins, and CE-TOFMS for metabolites) for all sam-
ples. Upon first glance of this figure, mRNAs and proteins seem to vary with the
change of specific growth rate (equal to the dilution rate in a chemostat culture).
Surprisingly, no clear changes of mRNAs and proteins were found for most single-
gene disruptants, even when the disrupted gene concerns crucial central carbon
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Fig. 3.5 Map of E. coli K-12 central carbon metabolism. (Modified from Ishii et al. 2007). Bold
font, metabolites; italics, genes. Gray character genes are examined single-gene disruptions

metabolism. Moreover, no significant or regular change was observed for metabo-
lites in both growth rate changed samples and single-gene disrupted samples. Some
nucleotides in single-gene disruptants showed relatively large variances, but this is
probably because of instability and/or low extraction efficiency of the nucleotide
compounds. To authenticate these findings, averages of absolute values of the EI in-
cluded in a specific category (i.e., mRNAs, proteins, or metabolites) were calculated
and referred to as the average expression index (AEI). Figure 3.7 shows the AEIs of
each category.
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Table 3.3 Employed technologies in the multi-omics study of E. coli

Number of measured chemical
Used technology species

Transcriptomics DNA microarray 4213
qRT-PCR 85

Proteomics 2D-DIGE 2000 (approximately)
LC-MS/MS 57

Metabolomics CE-TOFMS 579
Fluxomics GC-MS 104 (isotopomers of fragment

from proteinogenic
amino acids)

Fig. 3.6 Heatmap of the EI
values of intracellular
components. (Modified from
Ishii et al. 2007). The
heatmap shows the EI values
of intracellular components
that were detected in more
than half the samples. RF,
reference sample (wild-type
cells cultured at a specific
growth rate of 0.2 h−1); GR,
wild-type cells cultured at the
indicated specific growth
rates; KO, single-gene
knockout mutants cultured at
a specific growth rate of
0.2 h−1
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Fig. 3.7 AEI values for
quantitative measurements
obtained by targeted analysis.
(Modified from Ishii et al.
2007). RF, reference sample
(wild-type cells cultured at a
specific growth rate of
0.2 h−1); GR, wild-type cells
cultured at the indicated
specific growth rates; KO,
single gene knockout mutants
cultured at a specific growth
rate of 0.2 h−1. Numbers 1, 2,
3 and 4, correspond to
specific growth rates of 0.1,
0.4, 0.5 and 0.7 h−1, and
numbers 5, 6 and 7
correspond to rpe, pgi and
pgm disruptants, respectively

The AEIs for mRNAs and proteins gradually increased at higher growth rates.
This suggests that E. coli actively regulates global gene and protein levels to meet
increasing metabolic demands. Meanwhile, the AEI values for metabolites did not
change significantly with the growth rate. This relative stability in metabolite level
may be a consequence of the active regulation of enzyme expression. Focusing on
local pathways, large changes of expression levels of proteins related to energy sup-
ply under aerobic condition were observed accompanying an increase in the specific
growth rate (Ishii et al. 2007).

In contrast to the changes observed in wild-type cells cultured at various growth
rates, the AEIs for both mRNAs and proteins in most gene-disruptants showed small
changes, which fell within the range of variation observed in wild-type samples at
the same specific growth rate (i.e., reference samples). In comparisons of targeted
analyses of mRNAs (qRT-PCR) and proteins (LC-MS/MS), the AEI values in all
disruptants were smaller than the AEI values observed for wild-type cells at a spe-
cific growth rate of 0.7 h−1. Similar results were obtained for the AEI values repre-
senting the global analysis of expression of mRNAs (DNA microarray) and proteins
(2D-DIGE) (Ishii et al. 2007). An overview of the changes in AEIs explained above
is displayed in Table 3.4.

Table 3.4 Changes in AEIs

Most of examined single-gene
Growth rate change (wild-type) disruptants

mRNAs + −
Proteins + −
Metabolites − −
+: Variation among samples was large. −: Variation among samples was small.
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These findings suggest that E. coli does not appreciably respond to the loss of a
single enzyme in central carbon metabolism by regulating the abundance of other
compensatory enzymes. Actually, in most single-gene disruptants, the expression
level of isozyme coding genes was almost same as the level in the wild-type strain
(Ishii et al. 2007). In single-gene disruptants, a stable metabolic state is maintained
by using remaining isozymes or by rerouting metabolic fluxes. For example, in the
zwf-disruptant, some fluxes flow in a countercurrent direction compared to the wild-
type, as reported in a previous study (Zhao et al. 2004)

Two exceptions were the pfkA-disruptant and rpiA-disruptant (Ishii et al. 2007).
In these strains, potential mutations in genes other than the disrupted gene were
checked, and various mutations enhancing the expression level of compensatory
isozymes of the disrupted gene (pfkB in pfkA-disruptant and rpiB in rpiA-disruptant)
were found, as reported in previous studies (Daldal 1983, Skinner and Cooper 1974).

3.3 Concluding Remarks

Changes in the dilution rate of a chemostat culture correspond to changes in the
concentration of growth-limiting substrates, and thus various settings of the dilu-
tion rate can be regarded as an environmental perturbation for E. coli. On the other
hand, the disruption of a gene can be thought of as an intracellular perturbation. Our
multi-omics analysis demonstrates that the metabolic network of E. coli is markedly
robust against both types of perturbations. E. coli can actively respond to changes
in the concentration of growth-limiting substrates by regulating the level of enzyme
expression to maximize growth rate, which is reflected in the observed stability
of metabolite levels. However, this strategy may come at a high cost, because the
cell must prepare additional systems (such as sensor proteins, signal mediators,
and transcriptional regulators) to detect and react appropriately to each specific
perturbation. This strategy contrasts with the finding that E. coli does not appear
to reconfigure mRNA or protein levels actively when most single metabolic genes
are disrupted. In this case, structural redundancy in the metabolic network itself
provides the necessary robustness. As a result, the levels of most metabolites remain
at wild-type levels, although some localized perturbations may occur. This strategy
seems to save more energy than the active regulation of mRNA or proteins, because
it requires no specific molecular machinery for detecting each mutation. Even if this
strategy appears insufficient in the face of some mutations, E. coli may survive by
accumulating additional mutations, as observed for pfkA and rpiA disruptants. Using
multiple strategies may thus enable E. coli to maintain a stable metabolic state when
exposed to various types of perturbations.

Biological robustness is one of the central subjects in systems biology (Kitano
2004), and conceptual descriptions or analyses with mathematical models have
been attempted to explain how robustness is achieved (Kitano 2007). Furthermore,
some omics or multi-omics analyses to study robustness in real cells have also
been reported. For example, (Becker et al. 2006) performed a proteomics analysis
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of Salmonella, and found extensive metabolic redundancies and access to diverse
host nutrients. (Gibon et al. 2006) measured the transcriptomes, proteomes, and
metabolomes of Arabidopsis rosettes wild-type and pgm-disruptant, and demon-
strated that the amplitudes of diurnal changes in metabolite levels in pgm were
similar or smaller than those in the wild-type. The above mentioned multi-omics
analysis of E. coli also supports the existence of robustness as a common principle
to ensure survival in the face of countless accidents.

The next challenge of the multi-omics data-driven systems biology of E. coli is
to construct a mathematical model incorporating the obtained multi-omics data to
elucidate a tangible mechanism of metabolic robustness in E. coli. Analyses using
a mathematical model will suggest methods for breaking cellular robustness to en-
hance the productivity of useful metabolic compounds. Finally, and needless to say,
the integrative multi-omics approach can be applied to many organisms, not just
microorganisms, and thus expanding applications of this approach can be expected
in the future.
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Abstract Structural information of the protein complement of E. coli represents
an important component in our quest for a more complete understanding of this
organism at the molecular level. Structural proteomics, the application of technolo-
gies to enhance the rate of protein structure determination at the genome level, has
significantly increased the structural coverage of the E. coli proteome. The Bacterial
Structural Genomics Initiative (BSGI) has focused on the structure determination
of E. coli proteins of both known and unknown function, using a combination of
NMR and X-ray crystallography. This program has resulted in the implementation
of several technologies, including robotics platforms, in a coordinated manner in
order to streamline the steps involved in protein structure determination. Here, we
describe our experimental approaches as well as some examples high-lighting new
structural and functional insights of specific targets.
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4.1 Introduction

Structural genomics and proteomics can be defined in various ways, but a common
theme is the application of high or medium-throughput methods to determining pro-
tein structures with little or no sequence similarity to known structures. This goal
of increasing the coverage of structure space with respect to protein sequence was a
formative concept in initiating structural genomics programs world-wide nearly ten
years ago (Shapiro and Lima 1998). A second reason for these large-scale protein
structure determination efforts has been to utilize the power of structural information
to infer protein function, especially in those cases where similarity at the level of the
protein sequence has been lost (Watson et al. 2007). A number of computational ap-
proaches have been developed over the past several years in order to accomplish this
task (Lee et al. 2007), and lay the groundwork for specific experiments to validate
or refute these predictions.

While the field of structural genomics is still relatively young, it has immensely
influenced modern biology, through the provision of many thousands of new protein
structures which are made quickly available to biologists through deposition in the
Protein Data Bank (Berman et al. 2000), as well as through the development and
dissemination of a number of technologies and tools that can be used to speed up
the various steps in the structure determination pipeline (Manjasetty et al. 2008).
This wealth of new protein structure information has, in turn, permitted generation
of comparative protein structure models for a large number of related sequences,
which can be used to guide further experiments (Ginalski 2006). Indeed, the greatest
legacy of structural genomics may not be the structural information that ultimately
results from its practice, but rather the change in thinking that these technological
advances have caused, making protein structure information available at a lower
cost, for more targets, and to more scientists more quickly than was formerly con-
ceivable. An indication of the impact of structural genomics is seen through the
more than 2000 hits resulting from a search using PubMed. Importantly for the
biological community at large, the quality of the resulting crystal structures from
structural genomics initiatives are at least on par, if not better, on average, than
those from investigator-driven laboratories (Brown and Ramaswamy 2007). One of
the “Holy Grails” of structural biology generally is the hope to eventually predict,
with some level of accuracy, those proteins that are likely to crystallize, and those
which will not. The flood of structures from structural genomics projects as well as
the target status information contained within TargetDB are slowly shedding light
on this matter (Slabinski et al. 2007a,b, Smialowski et al. 2006).

Many early structural genomics initiatives focused on microbial genomes due to
the relative ease in cloning and expression, the large number of potential microbial
ortholgue sequences available as backups, and the fact that a proportion of these pro-
teins are sequence-conserved in eukaryotes. We chose Escherichia coli as a suitable
system, in part due to its status as a “model” organism for many physiological and
biochemical processes. Many parallel genomics and functional proteomics studies
had been initiated on E. coli concurrently, all with the shared goal of increasing
the breadth and depth of understanding of this bacterium so that ultimately, its
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metabolism could be modeled at the level of an intact cell (Feist et al. 2007). In
addition to the BSGI (Matte et al. 2003, 2007), several other centers invested heav-
ily in the determination of E. coli protein structures, including the Midwest Center
for Structural Genomics (MWCSG), the North East Center for Structural genomics
(NESG) as well as groups in France (Abergel et al. 2003) and Japan (Yokoyama
et al. 2000).

4.2 Genomics and Proteomics Studies of E. coli

The complete genome sequences of E. coli K-12 (Blattner et al. 1997), O157:H7
(Hayashi et al. 2001, Perna et al. 2001), CFT073 (Welch et al. 2002) and DH10B
(Durfee et al. 2008) set the stage for large-scale proteomics studies on this organ-
ism, with most of these studies focusing on the well-annotated K-12 bacterium
(Karp et al. 2007, Riley et al. 2006). Based on data within the E. coli genome
and proteome database GenProtEC (http://genprotec.mbl.edu/), as of Aug 2007, a
total of 4485 ORFs have been identified within E. coli K-12, with ∼58% having
an experimentally-verified function, ∼24% having an imputed function based on
sequence similarity, and ∼10% remain of unknown function. The E. coli K-12
annotation available through EcoCyc is similar, with 66% of genes having an
experimentally-verified function and 76% an assigned function (Karp et al. 2007).
Structural information for proteins of unknown function can contribute significantly
to narrowing down possible functions, and can lead to the design of targeted exper-
iments to test the resulting predictions (Adams et al. 2007, Kim et al. 2003, Watson
et al. 2007).

Structural studies on E. coli proteins at the level of its genome are only one
of many “omics” approaches that are being utilized to understand this bacterium
at the cellular level. Other approaches include analysis of the E. coli phosphopro-
teome (Macek et al. 2008), combined 2D gel and mass-spectrometry analysis of
E. coli proteins (Maillet et al. 2007), protein-protein interactions using pull-downs
(Arifuzzaman et al. 2006) or TAP/SPA tagging (Butland et al. 2005) and system-
atic knockouts of all non-essential E. coli genes (Baba et al. 2008), to name but a
few. These experimental approaches are supplemented by a variety of databases
and bioinformatics tools that serve to organize and make data on E. coli avail-
able to the larger community. Examples of such tools include the encyclopedia
of Escherichia coli K-12 genes and metabolism, EcoCyc (http://ecocyc.org/), the
E. coli genome and proteome database, GenProtEC (http://genprotec.mbl.edu/), the
Bacteriome.org database (http://www.bacteriome.org), cataloging E. coli protein-
protein interactions (Su et al. 2008) and EchoBASE, a database dedicated to the
annotation of E. coli proteins of unknown function (Misra et al. 2005). Many of
these and other resources are available through the central, EcoliHub web site
(http://www.ecolicommunity.org/). Together this information will allow modeling
of the physiology, metabolism and overall behavior of the E. coli cell. Such a
systems-biology approach has many potential outcomes, ranging from a more
thorough understanding of how bacteria grow and function, to the genetic
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manipulation of E. coli for industrial-scale fermentation (Chou 2007, Herrgard et al.
2006), and a better understanding of E. coli-host interactions resulting in pathogen-
esis (Fogg et al. 2006) as well as novel antibiotic discovery (Abergel et al. 2003).

4.3 Methodology

A key element of structural genomics initiatives is the leverage of medium to
high-throughput, parallelized methods in conjunction with automated and robotics
platforms, used together to increase sample throughput. At the BSGI, several
methodologies have been implemented to enhance various stages in the pipeline
(Fig. 4.1).

This process is not linear, however, as it is frequently required to revisit one or
more previous steps in the process in order to optimize the “product”, either a protein
sample for NMR analysis or protein crystals for X-ray diffraction. It should be noted
that in order for such projects to succeed, it is necessary to maximize efficiency at
every step, as the overall process is very much like a funnel, with attrition at each
point in the pipeline having a cumulative influence on the outcome. For those inter-

Fig. 4.1 Schematic representation of steps associated with the structural genomics pipeline. In
several instances, it is necessary to revisit previous steps in the pipeline in order to futher optimize
purity, behavior or the specific construct in order to proceed to structure determination
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ested, more detailed protocols relating to the various steps within the experimental
pipeline are available (Cygler et al. 2008)

4.3.1 SPeX-DB Database and Target Management

A key element of all structural proteomics efforts is information management, both
in terms of protein targets, but also experimental information and the accumulated
materials that result from each step in the pipeline. A laboratory information man-
agement system (LIMS) is a key component, used to tie these different types of
information together in a single, coherent manner which is accessible to a variety
of users within the project. While various LIMS have been developed for structural
genomics projects (Albeck et al. 2005, Goh et al. 2003, Prilusky et al. 2005), each
have specific strengths and weaknesses, and some level of customization for a spe-
cific project is inevitable. Within the BSGI, the SPeX-DB database and its associated
web-based interface have been developed over several years, and have served as a
one-stop center for data management for the project (Raymond et al. 2004).

There are several aspects to target management and selection where a LIMS sys-
tem plays a key role in improving functionality. A broad variety of information is
required on proteins within an organism’s genome, such as E. coli, in order to deter-
mine whether or not it is a suitable target. The extent to which a particular sequence
is found in other prokaryotic and eukaryotic genomes is an important criterion for its
potential value as a structure target, and requires access to such information stored
within databases such as PFAM (Finn et al. 2008) or InterPro (Mulder and Apweiler
2008). These tools also give a glimpse of potential, more distant structural rela-
tionships for the chosen sequence, and may indicate possible functional domains.
Analysis for potential signal sequences using SignalP (Bendtsen et al. 2004) or
transmembrane-spanning regions identified using TMHMM (Krogh et al. 2001) is
essential in order to identify these elements in order to select appropriate positions
for fusion tags or in the case of TM regions, design alternative constructs where
these are removed. Of course, the resulting sequences must be checked against those
for structures within the Protein Data Bank (Berman et al. 2000) using tools such
as BLAST as well as against the central registry of structural genomics targets,
TargetDB (Chen et al. 2004). Such a centralized registry is necessary in order to
avoid unnecessary duplication of effort in those cases where a different center is
highly advanced on a specific target sequence. Links to NCBI DNA and protein
sequence records for specific targets, as well as to the ExPASy server (Gasteiger
et al. 2003) allow quick access to a variety of information and bioinformatics tools
that expedite target selection.

4.3.2 Cloning and Expression of E. coli Proteins

Once targets for cloning are selected, the corresponding DNA sequences for each
ORF are obtained from NCBI and analyzed for restriction sites using in-house
developed software. This allows different, compatible restriction enzymes to be
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selected, with a minimal number of targets “lost” due to the presence of internal
sites. The same software also generates the sequences of the forward and reverse
primers, and organizes them into an Excel table which can be used to order directly
from an appropriate vendor. A set of three compatible vectors have been engineered
which can accept the same digested PCR products, and which express proteins as
in-frame fusions with a N-terminal His6-tag and no cleavage site (designated pFO4),
an N-terminal His8-tag followed by a tobacco-etch virus protease (TEV) cleavage
site (pJW234) and a third vector yielding a N-terminal GST fusion protein with
a TEV cleavage site (pRL652). Cleavage sites compatible for TEV protease were
selected due to the high specificity of this protease, with virtually no secondary
cleavage of the protein of interest, the ready expression and purification of TEV
protease from an appropriate expression vector, and the presence of a His-tag fused
to the protease, permitting easy removal from the purified protein sample (Kapust
et al. 2001, Kapust and Waugh 2000). Most aspects of cloning, from arraying of
primers for PCR, to digestion and purification of PCR products and plasmid DNA
mini-preps, have been automated using a Beckman-Coulter dual bridge liquid han-
dling robot. This robot is equipped with a vacuum manifold, span-8 and 96-pipetting
units, as well an orbital mixer (Fig. 4.2).

As a result of this process, a significant quantity of information and materials are
generated that must be recorded and stored, including primers and primer sequences,
PCR-products, plasmids, and the transformed expression strains as glycerol stocks.
Here again, SPeX-DB has been designed to handle these tasks, with the ability to
search and locate individual plasmids and glycerol stocks via the database. Glycerol
stocks are of particular importance as they represent the link between those who
generate the clones and the various users which will express and purify proteins
from them. We have adopted the use of 2D bar-coded capped tubes sold by Matrix
Technologies (http://www.matrixtechcorp.com/) for their storage, as the bar-code
represents a convenient way of identifying the particular tube with respect to its
database entry.

Fig. 4.2 Beckman-Coulter
dual-bridge robot equipped
with span-8 and 96-pipettor
units, a vacuum manifold
used for filtering 96-well
plates, and an orbital
mixing unit
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Fig. 4.3 Representative SDS-PAGE gels from small-scale protein purification experiments. Each
set of four lanes corresponds to a single expression clone containing a His-tag (marked pMNxxx),
with lanes corresponding to low-molecular weight markers (M), total protein (T), soluble protein
(S), Ni-beads after washing and before elution (B) and the protein eluting using 250 mM imida-
zole (E)

Not all expression clones express soluble protein at a sufficient level suitable
to move forward in the pipeline. Protein expression is evaluated using small-scale
expression tests, initially using total and soluble fraction as analyzed by SDS-PAGE
(Fig. 4.3), and later using dot blots or small-scale, semi-automated purification
of His-tagged or GST-tagged fusion proteins using a Beckman dual-bridge robot
(Fig. 4.4).

Fig. 4.4 Strategy for
semi-automated expression
testing using the Beckman
dual-bridge robot. Cells are
cultured in 24- or 96-well
blocks, induced with IPTG
and cells lysed using
BugBuster bacterial cell lysis
detergent (Novagen). Proteins
purified using Ni-NTA resin
(Qiagen) are then eluted and
analyzed using in a dot-blot
detected using an anti-His-tag
antibody
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4.3.3 Protein Production, Purification and Quality Assessment

We adopted the strategy of triaging expression clones into three groups, representing
proteins that (a) expressed at a high level and are soluble, (b) expressed at a low level
and were soluble, or (c) did not express or were insoluble. Proteins from groups (a)
and (b) were then scheduled for production and purification, although using different
protocols. Those in group (a) could be cultured in a smaller volume (500 ml) and
induced for a shorter time (3–6 h) compared to group (b), which required larger
culture volumes (1–2 l) and typically longer induction times (12–18 h). Cells are
cultured using 2.8 l Fernback flasks in either terrific broth (TB) or 2YT media.

While it is conceivable to purify proteins in medium-throughput using con-
ventional column chromatography, the process is greatly expedited by the use of
affinity tags. These tags also can also be used to readily detect proteins using
antibodies where necessary. We adopted the use of Ni-NTA resin from Qiagen
(www.qiagen.com) as the best overall affinity resin for capturing His-tagged pro-
teins. In some instances Ni-Sepharose 6 Fast Flow resin (GE Healthcare) or Talon
superflow metal affinity resin (Clonetech Laboratories) is used, depending on the
specific protein. In order to minimize non-specific binding of contaminating pro-
teins, it is important to utilize a low concentration of imidazole (20–40 mM) in the
binding buffer and wash buffers, as well as to appropriately “match” the quantity
of Ni-NTA resin to the amount of expected fusion protein. Our experiences suggest
that Ni-NTA has a much larger binding capacity for many His-tagged proteins than
suggested by the manufacturer (20 mg/ml).

Secondary purification following the affinity step utilizes either anion exchange
chromatography alone or in combination with gel filtration using an Äkta Purifier
or Äkta Explorer FPLC system (GE Healthcare). In many cases, the gel filtration
step is useful not only for the removal of contaminating proteins and other bio-
molecules, but is also used to remove aggregated protein species that may impede
crystallization as well as to exchange the sample into the final buffer to be used
for crystallization screening. The typical drawbacks to gel filtration (low flow rate,
small sample load) can be partially compensated by the use of prep-grade columns
such as Superdex-75 and Superdex-200 which have high flow rates and loading
capacities.

Due to the large attrition of purified protein samples at the level of structural
analysis, it is important to ensure homogeneity so that the sample has the best
chance of crystallizing or yielding an interpretable NMR spectrum. We think of
protein homogeneity in two ways; one is chemical purity, most often assessed by
SDS-PAGE and electron-spray mass spectroscopy (ESI-MS) analysis following the
final purification step. The second is solution homogeneity, or how many different
macromolecular forms are represented in solution. This second criterion for homo-
geneity is more subtle, but can be equally important with respect to protein crystal-
lization (Valente et al. 2005). Frequently, a sample which looks good by SDS-PAGE
will have problems related to solubility, stability and aggregation, especially at the
relatively high protein concentrations required for crystallization. Protein solution
behavior can be evaluated using native PAGE, dynamic light scattering (DLS), and
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analytical gel filtration. We have adopted a number of approaches, including the
use of optimal solubility screening, in which buffer pH, composition and various
additives are utilized in improving protein solution behavior by DLS (Collins et al.
2005, Jancarik et al. 2004), the use of enzyme substrates, products or inhibitors
to stabilize the conformation of enzymes for crystallization, the use of fluorescence
melting analysis to find one or more ligands, salts or buffers that enhance the thermal
melting point (Tm) of a protein sample (Ericsson et al. 2006, Vedadi et al. 2006), and
finally, the use of size exclusion chromatography to remove aggregates prior to crys-
tallization screening. This last method has proven very useful, in conjunction with
DLS analysis, to prepare monodisperse protein samples suitable for crystallization
screening (Matte and Cygler 2007).

4.3.4 Crystallization and Structure Determination

All crystallization screening is performed in 96-well sitting drop vapor diffusion or
microbatch (under oil) plates using a Hydra II+one crystallization robot (Fig. 4.5a;
Thermo Fisher Scientific, Hudson, NH). Typically, drops consisting of 0.2–0.3 �l
protein in buffer and 0.3–0.4 �l reservoir solution are set at either 20 ◦C or 4 ◦C.

Plates set at 20 ◦C are monitored using a CrystalFarm
TM

imaging system (Fig. 4.5b;
Bruker AXS, Madison, WI), consisting of a plate hotel and CCD camera to record
images of drops, which are accessible to users through a web-based interface.
The contents of the drops (clear solution, precipitate, etc) can then be scored and
recorded using the web-based software. Visualization of plates occurs on a pre-
determined schedule, with all images stored within a centralized database.

We have developed an in-house set of ∼400 conditions that serve as the pri-
mary crystallization screen for each new protein sample. There are two advantages
to this screen – (a) the solutions are organized according to precipitant type, so

(a) (b)

Fig. 4.5 (a) Hydra II+one Protein Crystallization robot (Thermo Fisher Scientific). (b)
CrystalFarmTM system for imaging protein crystallization trays (Bruker AXS)
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that a protein can be screened against conditions containing polyethylene glycol or
salts, as desired and (b) stock solutions of the screening solutions are kept available
so that crystallization hits can be quickly reproduced using identical solutions to
those contained within the screens. In addition to these, the Classic and Classic
II screens from Qiagen (www.qiagen.com) and the Index screen from Hampton
Research (www.hamptonresearch.com) are used. The precipitation behavior of the
sample is first checked using solutions of polyethylene glycol (PEG) with an aver-
age molecular weight of 8000 and saturated ammonium sulfate to determine if the
protein concentration is within a suitable range; it should neither be too concentrated
nor too dilute. Crystals from the initial screens are checked for diffraction properties
using a Rigaku 007 rotating anode source with a HTC imaging plate detector. Initial
crystallization hits are reproduced and optimized if necessary in 24-well Limbro
plates. All of the usual strategies for crystal optimization are employed, including
varying precipitant concentrations, inclusion of additives, varying of drop ratios and
temperatures and the use of both micro- and macro-seeding methods.

For solving structures of proteins having low sequence similarity to structures
in the PDB, single wavelength anomalous diffraction using L-selenomethionine
(SeMet)-substituted proteins in the method of choice (Hendrickson et al. 1990).
To accomplish labeling of proteins, an E. coli metA auxotroph is transformed
with the plasmid, and grown in semi-defined LeMaster media containing 25 mg
L−1 L-SeMet. Frequently, the expression, purification and crystallization behav-
ior of the SeMet-substituted protein are similar to that of the unlabelled protein,
although some changes (lower solubility) can result if the methionine content of
the protein is unusually high. X-ray diffraction data are collected for these crys-
tals at X-ray beamlines within the Protein Crystallography X-ray Resource (PXRR;
http://www.px.nsls.bnl.gov/) at the National Synchrotron Light Source, Brookhaven
National Laboratory, or at the SGX-CAT beamline at the Advanced Photon Source
(http://www.sgxpharma.com/pipeline/beamline/beamline.php).

The most common methods for flash-cooling of crystals for X-ray data collec-
tion are either (a) addition of glycerol at a concentration of 20–30% to the reser-
voir solution or (b) increasing the concentration of precipitant contained within the
reservoir such that no ice forms upon flash cooling to 100K. Diffraction data result-
ing from these experiments are integrated and scaled using HKL2000(Otwinowski
and Minor 1997). Our preferred method for structure solution is the collection of
the Se anomalous signal at the Se peak, the Se-SAD method. The location of Se
sites and the consequent calculation of phases are then determined using any of the
standard packages, including SOLVE (Terwilliger and Berendzen 1999), SHELX
(Sheldrick 2008) using the HKL2MAP interface (Pape and Schneider 2004) or au-
toSHARP (Vonrhein et al. 2007). Density modification is performed either using
the programs RESOLVE (Terwilliger 2000) or DM (Cowtan and Main 1998). If
diffraction data extend to 2.5 Å resolution or better then model building is per-
formed using ARP/wARP (Cohen et al. 2004), otherwise it is done using RE-
SOLVE (Terwilliger 2003). Further alternating cycles of refinement using Refmac
(Murshudov et al. 1999) and fitting using COOT (Emsley and Cowtan 2004) result
in the final structure.



4 A Medium-Throughput Structural Proteomics Approach 69

4.3.5 Structure Determination by NMR Spectroscopy

For structural studies, NMR spectroscopy offers the advantage that it can be used
both as a tool for protein characterization and as a method of structure determi-
nation. We typically acquire NMR spectra of all proteins whether they are strictly
speaking NMR structure targets or not. While 15N-correlation spectra (HSQC) are
the most useful (requiring 15N-labeled protein), even one-dimensional spectra of
unlabeled proteins are useful for assessment of the homogeneity, stability and sol-
ubility of protein samples. The amide signal of the indole ring of tryptophan has
a characteristic chemical shift downfield of most other protein signals. A compar-
ison of the observed and expected number of indole signals is a quick check on
the solution homogeneity of the sample. In addition, the line width (sharpness) of
the NMR signals gives a qualitative assessment of the protein rotational diffusion
rate and hence it’s aggregation state. Proteins that aggregate slightly show broader,
less well-resolved spectra than highly soluble, monomeric proteins. Conversely, un-
folded proteins show overly narrow peaks with a characteristic pattern of chemical
shifts. Time-dependent changes in the behavior of the protein are also easily de-
tected by NMR.

A distinct advantage of NMR for protein characterization is the ability to ob-
tain residue-specific information. This generally requires 15N-labeled or 15N,13 C
doubly-labeled protein obtained from bacteria grown in minimal media using
(15NH4)2SO4 and 13C-glucose. 15N labeling is inexpensive and allows very rapid
acquisition (< 15 minutes for a typical protein at 10 mg/ml) of two-dimensional
15N-HSQC spectra in which each amino acid residue gives rise to a distinct signal
(peak) in the spectrum. Proline residues are an exception and do not have a signal,
while amino acid side chain amides such as tryptophan, glutamine or asparagine
give rise to extra peaks. The assignment of each peak to the corresponding amino
acid residue in the protein is obtained via triple-resonance NMR experiments us-
ing 15N,13 C-labeled protein. At the BSGI, NMR spectra are typically collected
at 303K on a Bruker Avance DRX600 MHz spectrometer with a triple resonance
cryoprobe. Data are processed using NMRPipe (Delaglio et al. 1995), GIFA (Pons
et al. 1996) or XWIN-NMR (Bruker Biospin). Data analysis is carried out using
NmrDraw (Delaglio et al. 1995) or XEASY (Bartels et al. 1995).

An advantage of initial screening using 15N-HSQC spectra is that flexible regions
of proteins are easily identified as they give rise to strong, easily detected signals.
This contrasts with X-ray crystallography where the flexible portions are invisible
and generally impede protein crystallization. Identification of the disordered regions
is very useful for the optimization of protein crystallization since it allows new con-
structs expressing different regions of the protein to be made and the disordered
regions removed. In functional studies, 15N-HSQC spectra are also used for detect-
ing intermolecular interactions either between proteins or, most frequently, between
an 15N-labeled protein and a low molecular weight compound such as a peptide.
Mapping the peaks that shift upon the binding of a ligand allows identification of the
ligand binding site and plotting the size of the shift as a function of the free ligand
concentration gives the binding affinity (Kd). NMR is one of the few techniques
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that can measure millimolar binding affinities, and somewhat surprisingly, the anal-
ysis is easier and accuracy better for weak interactions. For modeling complexes
using NMR chemical shift changes, we use the program HADDOCK (Dominguez
et al. 2003).

NMR structural information comes in several forms and, in contrast to crystallog-
raphy, is obtained piecewise. This has the advantage that it can be used to generate
low resolution models as stepping stones toward higher resolution structures but
the diverse nature of the information ultimately makes NMR structure determina-
tion more labor intensive and slower than X-ray crystallography. The workhorse
of NMR structure determination is NOE restraints which reflect short (<5 Å)
distances between hydrogen atoms. These are obtained from 15N and 13C-edited
multidimensional NOESY experiments for proteins and 2D homonuclear NOESY
experiments for peptides and small molecules. The assignment of NOEs is the most
time-consuming part of NMR structure determination and several semi-automated
and fully-automated programs have been developed by research groups in the field.
Most NMR structures at the BSGI have used either ARIA (Nilges et al. 1997) or
CYANA 2.0 (Guntert et al. 1997) to complete NOE assignments based on a prelim-
inary structural model.

Other structural information comes in the form of values for φ and ψ tor-
sion angles that are determined from NMR coupling constants and chemical shifts
(Cornilescu et al. 1999). Hydrogen bond constraints based on deuterium exchange
rates are often added at the end of the structure determination once NOEs have
identified hydrogen bond acceptors. The process of NMR structure determination is
highly iterative and involves several rounds of refinement of the structural restraints
and structural models.

An important innovation in NMR structure determination was the development
of residual dipolar couplings (RDC) as a routine technique (Bax and Grishaev
2005). RDCs give information about the relative orientation of internuclear vectors
(typically backbone 1H-15N amides) and complement the local, geometric infor-
mation of NOEs, torsion angles and hydrogen bonds (Trempe and Gehring 2003).
For measuring RDCs, we try different media (typically Pf1 bacteriophage, alkyl
poly(ethylene glycol)/n-alcohol, or strained polyacrylamide) until a satisfactory set
of spectra are obtained. The resulting RDCs are analyzed using the MODULE soft-
ware (Dosset et al. 2001) and incorporated into CNS (Brunger et al. 1998) for final
structure calculations using the full complement of NOE, torsion angle, and other
NMR information. Chemical shift data determined at the BSGI are deposited at the
BioMagResBank (http://www.bmrb.wisc.edu).

4.4 Structures of Selected Targets

As discussed earlier, one of the strategies for target selection was to choose sequen-
ces for relatively large protein families for which structural information was cur-
rently unavailable. Using the methods described herein, over 80 protein structures,
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mostly from E. coli, have been determined within the project using either X-ray
crystallography or NMR spectroscopy. In the following, we will provide examples
of some of the interesting structural features that resulted from these studies, as well
describe important functional insights that were obtained.

4.4.1 Proteins of Previously Known Function

4.4.1.1 Enzymes of the Histidine Biosynthetic Pathway

Unlike eukaryotes, bacteria such as E. coli contain all of the enzymes necessary
to synthesize histidine, in a total of ten enzymatic steps, beginning with conden-
sation of ATP with 5-phosphoribosyl 1-pyrophosphate (Alifano et al. 1996). At
the beginning of our project, no structural information was available for most of
these enzymes, and due to their broad distribution in other organisms, several were
selected for structural analysis. We have determined the crystal structures of E. coli
histidinol phosphate phosphatase, HisB (Rangarajan et al. 2006a), histidinol phos-
phate aminotransferase, HisC (Sivaraman et al. 2001), histidinol dehydrogenase,
HisD (Barbosa et al. 2002) as well as the HisI paralog from Methanobacterium
thermoautotrophicum (Sivaraman et al. 2005).

E. coli and Salmonella typhimurium histidinol phosphatase is a bi-functional en-
zyme which catalyzes the sixth and eighth steps in histidine biosynthesis (Loper
1961). The imidazole glycerol phosphate dehydratase activity (E.C. 4.2.1.19) and
the histidinol phosphate phosphatase activity (E.C. 3.1.3.15) are carried out inde-
pendently by separate domains of the enzyme. The N-terminal domain of E. coli
HisB, residues 1–167, contains the histidinol phosphate phosphatase activity. This
domain has been classified as a member of the haloacid dehalogenase-like hydro-
lase (HAD) family of enzymes, based on the presence of four conserved aspar-
tate residues (Thaller et al. 1998). This family of enzymes utilizes a single metal
ion in catalysis and proceeds through a phosphoaspartate intermediate (Allen and
Dunaway-Mariano 2004). The crystal structure of E. coli N-HisB was determined
as complexes with several combinations of ligands, including Mg2+, Mg2+/L-
histidinol and Ca2+, a known inhibitor (Houston and Graham 1974), alone and in the
presence of the phosphoaspartate intermediate. All of these structures were deter-
mined and refined at resolution ranges between 1.7–2.2 Å (Rangarajan et al. 2006a).
The crystal structure of N-HisB indicates it is a dimer, consistent with solution data,
with each monomer adopting a Rossmann fold. Different crystal structures were
found to contain different combinations of metal ions. E. coli N-HisB contains a
structural Zn2+ site, as revealed both in the crystal structure and by EXAFS mea-
surements. Unlike other HAD enzymes, two distinct metal-binding sites, a primary
site with high affinity and a secondary site having lower affinity, were identified in
the active site region. This conclusion is based on both X-ray crystallographic evi-
dence as well as data from isothermal titration calorimetry (ITC). The proposed cat-
alytic mechanism involves nucleophilic attack of the substrate by Asp10, resulting in
formation of a phosphoaspartate intermediate and inversion of configuration about
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the phosphorous atom. The metal at the high-affinity site, Mg2+ under physiological
conditions, would play two roles, to neutralize the negative charge of the substrate
phosphoryl moiety, as well as to stabilize the phosphor-aspartate intermediate.

The transfer of an amino group to histidinol phosphate, the seventh step in his-
tidine biosynthesis, is performed by L-histidinol phosphate aminotransferase (Hsu
et al. 1989). Like many aminotransferases, HisC is a PLP-dependent enzyme, with
the protype member of this family represented by aspartate aminotransferase. The
crystal structure revealed a dimeric α/β protein, with each monomer consisting of
two domains; a larger PLP-binding domain, and a smaller domain (Sivaraman et al.
2001). The N-terminal region of the enzyme is associated with dimer formation.
We successfully trapped the external aldimine form of the enzyme, forming a co-
valent complex with PLP, as well as the cognate complexes with PMP, and with
both PLP and L-histidinol phosphate. This last complex represents structurally the
gem-diamine intermediate formed during conversion of the internal aldimine to the
external aldimine forms of the enzyme during the catalytic cycle. Several residues
interacting with PLP, including Tyr55, Asn157, Asp184, Tyr187, Ser213, Lys214
and Arg222 were identified as conserved in other, related aminotransferases. The
residue Tyr10 was identified as important for interaction with the imidazole ring of
the histidinol phosphate substrate via a hydrogen bond. The structure of the gem-
diamine intermediate, in particular, is unusual, and we suggest was trapped through
non-productive binding of L-histidinol phosphate at the HisC active site, preventing
conversion to the external aldimine (Sivaraman et al. 2001).

The final two steps in histidine biosynthesis, the NAD+-dependent oxidations of
L-histidinol to L-histidinaldehyde and then to L-histidine, are performed by the bi-
functional enzyme L-histidinol dehydrogenase, HisD. The catalytic mechanism for
HisD involves retention of the histidinaldehyde (histidinal) intermediate at the HisD
active site (Adams 1955). HisD had previously been characterized biochemically
as a Zn-metallo-enzyme, in which the Zn2+ ion performed a structural or catalytic
function (Grubmeyer et al. 1989). Overall, 2 molecules of NAD+ are reduced to
NADH with concomitant transfer of four electrons to the substrate.

The HisD molecule was found to be dimeric, with each subunit consisting of
two large and two small domains, with the two large domains adopting similar,
incomplete Rossmann folds, arguing in favor of an ancient gene duplication event
(Barbosa et al. 2002; Fig. 4.6a). Domains 3 and 4 together form a tail-like structure
which forms domain-swapping interactions with the other subunit of the dimer. An
octahedrally-coordinated Zn2+ site was observed, coordinated by four side chains
of the enzyme as well as the ND1 and N atoms of L-histidinol (Fig. 4.6b). The
observation of the amino moiety of L-histidinol coordinating Zn2+ was unexpected
based on previous NMR studies (Kanaori et al. 1996). The NAD+ molecule is bound
within a cleft formed at the C-terminal ends of the β-sheet within domain 1, mak-
ing contacts with only one subunit of the dimer. Mechanistically, the overall reac-
tion is expected to proceed via four proton abstraction steps (Teng and Grubmeyer
1999), which we propose are performed by Glu326 (step 2) and His327 (steps 1,
3 and 4).
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(a) (b)

Fig. 4.6 Crystal structure of E. coli L-histidinol dehydrogenase (HisD; PDB 1KAE). (a) Struc-
ture of the HisD dimer, with one subunit shown in light gray and the second subunit colored
in dark gray. The swapping of domains 3 and 4 with the other subunit of the dimer occurs
within the dimer. (b) Interactions between HisD, the cofactor NAD+ and the L-histidinol prod-
uct. The Zn2+ ion is shown as a sphere as well as the key active site residues Glu326 and
His327. This and subsequent images of protein structures were prepared using the program PyMol
(http://sourceforge.pymol.net)

4.4.1.2 Other Metabolic Enzymes

Several of the structures determined as part of this project include metabolic
enzymes. Two examples of these are N -succinylarginine dihydrolase, AstB, of
the arginine succinyltransferase (AST) pathway (Tocilj et al. 2005) and the ex-
opolyphosphatase, PpX, which degrades polyphosphate to inorganic phosphate
(Rangarajan et al. 2006b).

In E. coli, the AST pathway is the dominant route for arginine catabolism, lead-
ing to glutamate, ammonia and formation of CoA and succinate from succinyl-CoA
(Schneider et al. 1998). This pathway consists of five enzymes with AstB catalyzing
the second step, the conversion of N -succinylarginine to N -succinylornithine with
the concomitant release of ammonia and carbon dioxide. The structure of AstB
revealed a dimeric enzyme, with each monomer consisting of repeating β-β-α-β
units generating a propeller structure having pseudo-5-fold symmetry. Character-
ization of the site-specific mutant enzyme, Cys365Ser, resulted in a reduction of
specific activity of ∼2 orders of magnitude, allowing the co-crystal structure with
the N -succinylarginine substrate to be determined (Tocilj et al. 2005). The substrate-
binding site is within a ∼15 Å deep tunnel, binding such that the guanidinium
group is at the bottom of the tunnel and the succinate carboxylate closest to the
surface. The substrate is anchored through extensive H-bonding interactions involv-
ing a number of highly sequence-conserved residues. The structure of the complex
supports the prediction of Cys365, His248 and Glu174 as being the key catalytic
residues (Shirai and Mizuguchi 2003), with Cys365 being the key nucleophile, at-
tacking the guanidinium group of the substrate.

Polyphosphate, a high-energy, linear polymer made up of hundreds of phos-
phate units, is required for stationary-phase survival of E. coli (Crooke et al. 1994)
and plays a role in protecting cells against stress resulting from heat or oxida-
tion. Polyphosphate is degraded by both endo- and exo-polyphosphatases, with
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Fig. 4.7 Crystal structure of
the exopolyphosphatase PPX
from E. coli (PDB 2FL0)
showing the inter-subunit
cleft, the putative
polyphosphate-binding site,
containing a number of basic
residues

the exopolyphosphatase from E. coli being a dimer made up of 58 kDa subunits
(Bolesch and Keasling 2000). Each PpX monomer was found to consist of four
structural domains, with domains 1 and 2 being structurally similar to one another
(Rangarajan et al. 2006b). The dimer is formed through head-to-tail association
of the two monomers, resulting in a long, deep S-layered cleft at the subunit in-
terface. Many basic and polar residues are located within this cleft, which is the
most likely location for polyphosphate binding (Fig. 4.7). A number of conserved
residues were identified and found to cluster near the interface between domains 1
and 2, which is near one end of the cleft and represents the putative PpX active
site. Active site features include a glycine-rich phosphate-binding loop (P-loop,
Gly145-Ser148) for anchoring phosphoryl groups or functioning as an oxy-anion
hole, as well as Asp143 and Glu150, which most likely function to coordinate a
catalytically-important Mg2+ ion.

4.4.1.3 Pseudouridine Synthases

Pseudouridine (5-β-D-ribofuranosyluracil, ψ), is amongst the most abundant mod-
ifications found in RNA molecules, and has been characterized extensively in struc-
tural RNAs including rRNA, tRNA and small nuclear and nucleolar sn(o)RNA
(Charette and Gray 2000). This modified base plays a variety of roles within
RNA, including assembly of the catalytic RNA active site required for pre-mRNA
splicing (Lin and Kielkopf 2008), pH-induced structural changes in 23S rRNA
(Abeysirigunawardena and Chow 2008), ribosome-mediated translational termina-
tion (Ejby et al. 2007) and the structural stability of some tRNAs (Cabello-Villegas
and Nikonowicz 2005) and 23S rRNA.

In bacteria, site-specific formation of pseudouridine by isomerization of uri-
dine is catalyzed by ψ-synthases (Ferre-D’Amare 2003, Ofengand 2002). Based on
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amino acid sequences, these enzymes are divided into 5 subgroups, with little overall
sequence similarity between the groups (Kaya and Ofengand 2003, Koonin 1996).
Pseudouridine synthases have been extensively characterized from E. coli, where
a total of 11 distinct enzymes have been identified (Del Campo et al. 2001, Kaya
and Ofengand 2003). While we now have some insight into key catalytic residues
(Del Campo et al. 2001, Hamilton et al. 2005, Phannachet et al. 2005) and the likely
chemical mechanism of catalysis (Gu et al. 1999, Hamilton et al. 2006), much re-
mains to be learned about the exquisite specificity of these remarkable enzymes for
their target uridine residues.

As part of the BSGI project, the crystal structures of three E. coli ψ–synthases
have been determined, RsuA and its complexes with uracil and UMP (Sivaraman
et al. 2002), RluD (Sivaraman et al. 2004) and RluF (Sunita et al. 2006). All three
enzymes possess a domain organization, with RsuA and RluD both having two do-
mains and RluF three domains. The crystal structure of RsuA revealed a small,
N-terminal α3β4 domain with structural similarity to ribosomal protein S4, while in
RluD, this domain had to be removed in order to obtain diffraction-quality crystals.
All three enzymes contain a catalytic α/β domain made up from a central, mixed
β-sheet that contains a cleft with the key catalytic Asp residue, Asp102 in RsuA,
Asp139 in RluD and Asp107 in RluF (Fig. 4.8a,b). This central β-sheet is the most
structurally-conserved feature of this enzyme family. All three enzymes possess a
cleft within the catalytic domain that represents the predicted RNA-binding site,
with many structurally-equivalent residues from bacterial �-synthase structures

(a) (b)

Fig. 4.8 (a) Superposition of the structures of the E. coli pseudouridine synthases RsuA (PDB
1KSK), RluD (PDB 1PRZ) and RluF (PDB 2GML) showing the common fold of the catalytic
domain. (b) Structural conservation of the key catalytic Asp residue in each structure, Asp102 in
RsuA, Asp139 in RluD and Asp42 in RluF, are shown in stick representation
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mapping to this region. In RluF, the domain organization appears more complex,
with the enzyme having N-terminal and catalytic domains as well as a C-terminal
domain. It is unclear the exact role of these auxiliary domains, although they are
evidently flexible with respect to the catalytic domain and a role in RNA recognition
is possible (Matte et al. 2005, Sivaraman et al. 2002).

4.4.2 Hypothetical (“Y”) Proteins

4.4.2.1 Heme Oxygenase – ChuS

Pathogenic bacteria, including E. coli, make use of a variety of systems to sequester
iron, an essential nutrient, from their environment. One of these systems involves
sequestering and uptake of heme. Following transport into the cell, a series of enzy-
matic reactions are required to breakdown the heme and release free iron within the
bacterium. ChuS, a protein contained within the heme-degradation operon in E. coli,
had not been previously structurally or functionally characterized.

The crystal structure of ChuS revealed a protein consisting of two domains
joined by a flexible linker, with each domain having a central, nine-stranded β-sheet
flanked by α-helices (Suits et al. 2005). These domains bear high structural similar-
ity to one another, and can be superposed with a root mean squares deviation of 2.1
Å, indicative of a structural duplication and possibly duplication of function. Several
side-chains of the two domains are also found to superpose in this comparison. Inter-
estingly, spectral analysis showed both the full-length protein as well as independent
N- and C-terminal domains were found to possess heme-binding activity. Enzymatic
analysis showed that ChuS and its isolated domains each have heme oxygenase
activity, based on their ability to form biliverdin and release CO2 from heme.

The co-crystal structure of ChuS with heme revealed a different heme binding
mode than for other heme oxygenases, with the C-terminal domain of the protein
playing an important role (Suits et al. 2006). A key residue involved in axial co-
ordination of heme was identified to be His193. This residue was also shown by
directed mutagenesis to asparagine to be the key player in the heme-degrading ac-
tivity of ChuS.

4.4.2.2 Shikimate/Quinate Dehydrogenases

Aromatic amino acids and other aromatic metabolites are synthesized in E. coli
using the shikimate pathway, starting with phosphoenolpyruvate and D-erythrose-
4-phosphate as precursors (Herrmann and Weaver 1999). As this pathway is absent
in mammals, it represents a potential anti-microbial target (Coggins et al. 2003),
and has been targeted in plants for the development of the herbicide glyphosate.
This pathway consists of seven enzymatic steps, resulting in the formation of cho-
rismate, with the fourth step, the NADP-dependent reduction of 3-dehydroshiimate
to shikimate catalyzed by shikimate dehydrogenase, AroE (Anton and Coggins
1988). A sequence-related enzyme, YdiB, was characterized and was shown to have



4 A Medium-Throughput Structural Proteomics Approach 77

(a) (b)

Fig. 4.9 (a) Structure of the E. coli YdiB dimer (PDB 1O9B), showing the NAD cofactor bound
at each active site in stick representation. (b) The YdiB active site, with residues selected for
site-directed mutagenesis and subsequent kinetic analysis shown in stick representation. Of these
residues, Lys71 and Asp107 were found to be most important for substrate binding

quinate/shikimate dehydrogenase activity that, unlike AroE, could use either NADP
or NAD as cofactor (Michel et al. 2003). Both AroE and YdiB display a similar
fold, with two α/β domains separated by a cleft suitable for binding the cofactor.
The C-terminal, NAD(P)-binding domain adopts a nearly canonical Rossmann fold.
Interestingly, despite their relatedness in sequence, AroE is a monomeric enzyme
while YdiB has been shown to be a dimer (Fig. 4.9a). While both AroE and YdiB
recognize the nicotinamide and pyrophosphate moieties of the cofactors in a similar
manner, there are important structural differences in interaction with the adenosine
portion. The residues Arg150 and Arg154 of AroE were found to form an “electro-
static clamp” ideally suited for binding the phosphate moiety found in NADP but
absent from NAD. Kinetic analysis of active site mutants of YdiB revealed roles for
Lys71 and Asp107 in substrate binding, with no specific role for a residue partici-
pating in general acid-base catalysis (Fig. 4.9b; Lidner et al. 2005). This later study
allowed us to differentiate between two previously proposed models of substrate
binding to these enzymes (Benach et al. 2003, Michel et al. 2003), with the data
in support of the model proposed by Michel et al. (2003), in which residues mak-
ing interactions with 3-dehydroshikimate are expected to include Lys71, Asp107,
Gln262, Tyr234, Ser20 and Ser22.

4.4.2.3 Protein Structures Determined by NMR

A significant number of structures of smaller proteins of little or previously-
unknown function have been determined using NMR methods as part of the BSGI
project. Examples include the solution structures of E. coli YbeD, a conserved pro-
tein which shows structural similarity to regulatory domain of 3-phosphoglycerate
dehydrogenase (Kozlov et al. 2004), the oxidative stress-related protein YggX
(Osborne et al. 2005), CsrA, a member of a new class of RNA-binding regula-
tory proteins (Gutierrez et al. 2005), the Rho-specific transcription factor YaeO
(Gutierrez et al. 2007) and YcgL, a conserved protein representing the DUF709
sequence family (Minailiuc et al. 2007).
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The ybeD gene is located between dacA and genes of the lip operon, required for
lipoic acid biosynthesis. Lipoic acid is found as a prosthetic group used by a num-
ber of metabolic enzymes, including pyruvate and 2-oxoglutarate dehydrogenases
and branched-chain keto acid dehydrogenases. The structure of YbeD revealed a
β-α-β-β-α-β fold, with the two α–helices located on one side of a four-stranded,
antiparallel β-sheet. A patch of conserved hydrophobic residues are found on the
β-sheet surface, suggesting a role for this region in protein-protein interactions.
Most intriguingly, YbeD shows high structural similarity to the regulatory domain
of 3-phosphoglycerate dehydrogenase, possibly indicating an allosteric role in reg-
ulation of lipoic acid biosynthesis (Kozlov et al. 2004).

YggX has been characterized as playing a role in diminishing the effects of ox-
idative damage, partly through protection of DNA from iron-mediated oxidative
damage (Gralnick and Downs 2003). In E. coli, the yggX gene is part of the SoxRS
regulon used as an antioxidant defense system. The structure of YggX reveals a sin-
gle domain protein containing two antiparallel β-sheets and three α-helices. While
the YggX sequence is found in a number of other gram-negative bacteria, only a
single structurally-related protein, of unknown function, could be found in Pseu-
domonas aeruginosa. Unexpectedly, YggX was found unable to bind iron salts in
vitro, suggesting that other cofactors may be involved in mediating iron-dependent
oxidative damage (Osborne et al. 2005).

Carbon storage regulator A (CsrA) is a founding member of a family of bacterial
regulatory proteins that function by controlling the level of mRNA translation. In
E. coli, CsrA is responsible for the repression of a variety of stationary-phase genes
and carbon metabolism (Babitzke and Romeo 2007). The protein binds specific
mRNAs to repress the initiation of protein synthesis. Derepression occurs by an
unusual mechanism in which non-coding, regulatory RNAs bind to CsrA and dis-
place it from the mRNA. The solution structure of CsrA was the first in the Csr/Rsm
family and revealed a novel fold consisting of a symmetric dimer composed of five
beta-strands and a short alpha-helix in each subunit. NMR titration experiments
identified elements involved in RNA binding and the mechanism for the recognition
of mRNAs regulated by CsrA (Gutierrez et al. 2005).

Termination of transcription in bacteria is either dependent on a hexameric he-
licase, Rho, or can occur independently of the helicase. The protein YaeO binds
tightly to Rho, inhibiting Rho-dependent transcriptional termination (Pichoff et al.
1998). The structure of YaeO revealed an N-terminal α-helix and a seven-stranded
β-sandwich. NMR titration experiments designed to probe the interaction between
Rho and YaeO revealed that the binding site on Rho for YaeO overlapped with its
binding site for RNA, revealing that YaeO is a competitive inhibitor with respect to
RNA. These results were supported by gel-shift experiments, revealing the loss of
nucleic acid-binding activity by Rho upon binding YaeO. Together, these data and
computational molecular docking resulted in a model of the Rho-YaeO complex
(Gutierrez et al. 2007).

YcgL is a conserved protein of unknown function, representing the DUF709
sequence family. The NMR structure of this 108-residue protein was determined,
revealing a protein with the topology β1-β2-α1-β3-α2-β4, forming a three-layered



4 A Medium-Throughput Structural Proteomics Approach 79

α/β/α sandwich (Minailiuc et al. 2007). The structure of YcgL is differs from those
of proteins available within the PDB, indicating it represents a novel fold.

4.5 Summary and Conclusions

Structural proteomics has and continues to contribute new structural information
for E. coli in order to further our understanding of the proteome of this organism.
This structural information in turn will be exploited by biologists in many different
ways, ranging from the relationships between sequence and structure and compara-
tive protein modeling to details of enzyme function and of protein-protein recogni-
tion. Methods continue to be refined, mainly with the goal of improving the success
in protein sample preparation and protein crystallization. The next challenges in-
volve tackling the membrane protein complement and protein-protein complexes
of E. coli.
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Abstract Since genomic sequencing project launched, during in 1990s, biological
research environments has been dramatically changed by developments of inter-
disciplinary fields between biology and others such as chemistry, physics, informa-
tion science, mathematics and engineering. Many high-throughput systems to obtain
comprehensive analysis results have become available. As the result, accumulation
of experimental data is now growing exponentially like sequence data in public
databases. Experimental resources, such as plasmid clone and deletion mutant li-
braries, are the products of such high-throughput systems, and at the same time,
motive force to generate further comprehensive information from experimental
analyses. In this manuscript, we summarize the situation about the experimental
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resources and how they have contributed in biology fields, especially in the 21st
new generation of biology, such as systems biology.

5.1 Introduction

The research in genetics starts careful observation of phenotype and then looks for
the cause in most case mutation on its genetic information. On the other hands,
molecular biology has developed reverse genetic, which makes it possible by re-
verse direction, i.e. from the cause (gene) to the phenotype (function). In the last
decade after the completion of genomic sequencing of the target organism, infor-
mation about the approximate total number of genes coded on the chromosome and
their predicted coding regions are available. Using this information with technology
developments, the preparation of entire set of ORF clone and deletion mutant li-
braries has become possible. The importance of such comprehensive resources is not
only for high-throughput comprehensive experiments but also for direct comparison
across the strains on the same genetic background.

5.2 Information Resources

5.2.1 Sequence Information

Genomic sequence is one of the fundamental information of the organism. Fortu-
nately, Escherichia coli K-12 genomic sequence has been determined using two
sub-strains, MG1655 (Blattner et al. 1997) and W3110 (Aiba et al. 1996, Itoh et al.
1996, Oshima et al. 1996, Yamamoto et al. 1997), which were constructed from
the same ancestral strain (Hayashi et al. 2006). We carefully compared genomic
sequences of these two strains and confirmation by direct sequencing of conflict
regions using PCR has been performed. Finally just 9 bases in 8 ORFs had been
revealed as true nucleotide level differences. Larger differences were distribution of
ISs and large inversion between rrnD and rrnE in W3110. Surprisingly, there were
no nucleotide level changes in the inter-genic regions (Hayashi et al. 2006).

5.2.2 Biological Information (Annotation)

Finally, we obtained the most accurate genomic sequences both of two sub-strains
and that was a good starting point to compile the latest functional information of
the genes. To perform this, the annotation meetings were held by the international
E. coli scientists and build up the first gene annotation Table with known knowl-
edge and functional predictions (Riley et al. 2006). It is, still at present, so difficult
to predict the true starting position of genes, however, it was meaningful to share
gene Table with good agreements by the members of international researchers. This
Table was then to be a starting point for further functional analyses and also be a
blue print of construction of resources. The efforts to improve annotation are still
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kept and currently about 150 genes have been revised or added their annotation to
the starting one, which we fixed in 2006 (Riley et al. 2006) (Refseq: NC000913,
http://www.ncbi.nlm.nih.gov/).

5.3 Experimental Resources

5.3.1 ASKA and Mobile Plasmids Libraries

We first tried to construct ORF plasmid clone library, ASKA ORF library, of all of
the predicted coding regions (Kitagawa et al. 2005). Each of the ORF regions was
amplified by PCR from the second to the last amino acid coding region. The con-
struction method and the structure of clone are shown schematically in Fig. 5.1. Cur-
rently, two libraries were established, fusion and non-fusion with GFP protein at C
terminus of the target ORFs. All clones have His-tag at N terminus. Their expression
is regulated by IPTG inducible promoter and synthetic SD signal. Without IPTG,
the expression is tightly repressed by LacI q repressor protein in cis. Once such
libraries have been established, many comprehensive analyses could be available,
such as protein localization by monitoring GFP fluorescence (Niki in preparation),
protein-protein interaction by pull-down assay etc (Arifuzzaman et al. 2006), etc.

The second construction was comprehensive mobile plasmid library using ColE1
derived vector. The features of this library are that, self-transmittable from male type
cell to female and relatively low copy number. The ORF fragments were transferred
and cloned from ASKA library into mobile plasmid vector using SfiI restriction
enzyme (Saka et al. 2005).

5.3.2 Keio Collection

This is a single gene deletion library of predicted ORFs of E. coli K-12 except
essential genes (Baba et al. 2006). Before 2000, E. coli was thought to be a difficult
organism to construct mutant by homologous recombination (Datsenko and Wanner
2000). This was one of the reasons for E. coli to be behind Saccharomices serevisiae
(Giaever et al. 2002) and Bacillus subtilis (Kobayashi et al. 2003) in construction of
comprehensive deletion mutant library. In 2000, however, the efficient method using
lambda RED recombinase had been developed (Datsenko and Wanner 2000). Then,
we started to construct comprehensive deletion (replacement with Km resistant gene
cassette) mutant library by this technology (Baba et al. 2006). We observed that 303
ORFS had been repeatedly failed to be constructed as deletion mutant and defined
as essential gene candidates. However, once established as deletion mutant, there
might be possibility to keep another copy of the target gene, which is called partial
duplication. This was the reason why we stored independent two isolates of each of
the target genes. Currently, identification of such gene duplication is underway and
the results might open to the public in near future. The construction and the structure
are shown schematically in Fig. 5.2.
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Fig. 5.1 Construction of AKSA ORF plasmid library. Predicted amino acid sequences at around
the N- and C-terminal regions of the cloned ORF. The arrow indicates a target ORF and a pair
of primers used for PCR amplification. The bottom nucleotide and amino acid sequences indicate
the predicted final structure around the site of cloned ORF. The product proteins should contain 6
Histidine, 7 and 5 amino acids at the N- and C-terminal ends of the target gene, respectively, fol-
lowed by GFP fragment: 6xHisThrAspProAlaLeuArgAlaXXX. . .XXXGlyLeuCysGlyArg. . .GFP,
where XXX. . .XXX indicates second to the last amino acid codon of target gene. Removal of GFP
fragment by NotI digestion. Each ORF clone has two NotI sites, one at the C-terminal spacer region
(within SfiI #2) and region directly next to the termination codon of GFP gene. GFP can therefore
be removed by NotI digestion followed by self-ligation

5.3.3 Other Comprehensive Experimental Resources

5.3.3.1 Random Transposon Insertion Mutants

To prepare disruption mutants of E. coli, random insertion mutagenesis by transpo-
son has a long history in this organism. Miki and his colleagues started to construct
a comprehensive random insertion mutant library of E. coli K-12. They used Tn10
derivative transposon and mutagenized lambda Kohara clones (Kohara et al. 1987).
The mutagenized phages were then subjected to infection to wild type W3110 host
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Fig. 5.2 Construction of Keio collection. Primer design and construction of single-gene deletion
mutants. Gene knockout primers have 20-nt for priming upstream and downstream of the FRT
sites flanking the kanamycin resistance gene in pKD13 and 50-nt homologous to upstream and
downstream chromosomal sequences for the target gene deleted. The upstream primer includes
the initiation codon of the target. The downstream primer includes codons for the six C-terminal
residues, the stop codon, and 29-nt downstream. After establishment of deletion (replaced with
kan cassette) mutant, over-supply of FLP recombinase leads elimination the kan cassette by site-
specific recombination between two FRT sites. The final structure is designed as in-frame deletion
translated using authentic SD, the initiation and termination codons. SD, Shine–Dalgarno ribosome
binding sequence

strain. The chromosomal fragment of each of the mutagenized Kohara clone phages
was integrated into the host chromosome by homologous recombination to make
the host strain partial diploid. After selection of haploid type of mutant strain by
antibiotic resistance, the library was established. 6404 insertion strains were estab-
lished and are now distributed from the National Institute of Genetics, Mishima,
Japan (http://www.shigen.nig.ac.jp/ecoli/strain/top/top.jsp).

Sun Chang Kim and his colleagues developed two series of random transposon
insertion mutant libraries which carried cre/loxP excision system (Yu et al. 2002).
They developed insertion mutants more than 400 each with transposons carrying
loxP and chloramphenicol or kanamycin resistance genes. Insertion location were
determined and established as Cmf and Kmf libraries. These libraries provide the
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system to remove large fragment from the chromosome. Two insertion mutations
with appropriate direction and location were selected and combined by P1 trans-
duction, then the region between two loxP sites was removed by Cre protein. The
purpose of this resource is to remove large fragments from the chromosome and
eliminate the size of its genome for providing improved E. coli both as a better
model organism and as a better engineering tool. Other efforts to construct minimal
genome of E. coli were performed (Kato and Hashimoto 2007, Kolisnychenko et al.
2002, Posfai et al. 2006).

Random insertion technology has been used to identify essential genes, however,
mutants were not stored as a library (Gerdes et al. 2003, Goryshin et al. 2003).

5.3.3.2 Comprehensive Promoter Clone Library

To analyze gene expression profiling using any other technology than DNA mi-
croarray or chip, Robert A. Larossa and his colleagues developed genome-wide,
genome-registered collection of E. coli bioluminescence reporter gene fusion (Van
Dyk et al. 2001). They adopted random fusion of E. coli chromosomal DNA
fragments to lux operon. Using these resources, gene expression profiling anal-
ysis comparing with DNA microarray technology for stress responses had been
performed.

Recently, more designed based comprehensive fusion library was developed. Uri
Alon and his colleagues developed comprehensive library of transcriptional fusion
of gfp to measure expression dynamics in individual living cells (Zaslaver et al.
2006). Until then, there were no comprehensive tools that could provide quanti-
tative blueprints of gene circuitry. To address this, they designed primers to flank
intergenic region longer than 40 bp and cloned into pSC101 derived relatively low
copy number vector to generate transcriptional fusion with gfp.

5.4 On going Project of New Resources

All resources developed have their original research purposes to be solved for their
construction and expansion or new construction are needed for new research idea
towards the next step. We developed single gene deletion library initially for func-
tional analyses of all of the gene coded on the E. coli chromosome and make it
possible to compare on the same platform both function known and unknown target
genes. During construction of the library, as we expected, about 300 target genes
had been failed to be isolated as deletion strain and we defined those as essential
gene candidates (Baba et al. 2006, 2008, Baba and Mori 2008). For analyses of the
essential genes from the global aspect on the same platform with high throughput
way, new resources were required, for example single gene deletion mutant library
of essential genes under the condition of in trans complementation from the expres-
sion plasmid clone.
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Also we showed comprehensive protein-protein interaction by pull-down as-
say using His-tagged bait proteins expressed from our ASKA plasmid library
(Arifuzzaman et al. 2006). Most of the membrane proteins were failed to be an-
alyzed because of their solubility. To solve this problem, another system is also
required. For this purpose, we are now designing of Gateway entry clone library
and its destination plasmids.

In E. coli, comprehensive network analyses in transcriptome, proteome, interac-
tome, metabolome etc., have been performed and are still continuing towards com-
plete understandings of physiological networks in a cell. The remained important
target network to be solved is genetic interaction. For this new target network, syn-
thetic lethal/sickness analysis using double knockout strains is one of the appropri-
ate analyses methods. To perform this, construction of another entire set of deletion
library and the new system to combine two deletions into the same chromosome are
required.

Needless to say that construction of resources is almost endless efforts to put
science into the next step.

5.4.1 Gateway Entry Clone Library

Gateway technology is a site-specific recombination-assisted cloning method (http://
www.invitrogen.com/) and its advantage is flexibility of shuttling insert DNA from
an entry clone to other variety of vectors without any restriction enzyme cloning
method. ASKA ORF library has SfiI sites at the both ends of the target ORF frag-
ment and these two sites have the different cohesive ends. This makes possible to
uni-directional cloning to another vector. We developed the new vector, function as
entry clone of Gateway technology and having SfiI sites at both ends between att
recombination sites to make entry clone by transferring SfiI fragment from ASKA
plasmid clone (Kitagawa et al. 2005). Pilot test of our new entry vector was finished,
and systematic construction is now underway (Yamamoto et al. 2008a).

5.4.2 Low Copy Expression Plasmid Library

For physiological functional analysis, approaches in genetics, such as complemen-
tation, are powerful way. It is inevitable for this purpose to develop low copy ex-
pression plasmid vector, which provides precise expression regulation for genetical
complementation. Some genes, especially physiologically important genes such as
essential genes, are very difficult to clone into multi copy plasmid vector probably
because of tight requirement for their cellular expression level. To perform this,
we have developed F plasmid derived low copy vector systems and construction of
essential genes has been almost done. Physiological analyses using these plasmid
clone library are now underway and the expansion to the entire gene library is now
under consideration.
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5.4.3 The Second Set of Deletion Library

As mentioned above, comprehensive genetic network analysis is important re-
mained target of E. coli. To perform this, the second set of deletion library having
different antibiotics resistance is needed to combine single gene deletions to make
double knockout mutant. We designed the new deletion strain with chloramphenicol
resistance and 20 nt bar code sequence with similar idea of Yeast deletion library
(Giaever et al. 2002). Construction of new deletion collection has been done and
evaluation is now underway. Development of the system to combine two single dele-
tion mutations by conjugation has also been finished. Towards the comprehensive
genetic network analysis, the first tests have been done (Butland et al. 2008, Typas
et al. 2008).

5.4.4 Essential Gene Deletion Library

The essential genes are the indispensable genes for cellular survival in a certain
growth condition, generally defined in a rich medium condition such as LB. In E.
coli, a several systematic studies to identify the essential genes have been endeav-
oured (Baba et al. 2006, Gerdes et al. 2003, Goryshin et al. 2003, Hashimoto et al.
2005, Miki et al. 2008). Although the extensive studies about the individual essen-
tial genes have been made, they have examined with the strains with the various
genetic background and under the various growth conditions. For the systematic
and genome-wide comparison, we are now constructing the new deletion library
of essential genes under the condition of in trans complementation from the low
copy plasmid clone library described above. Elimination of essential genes from the
chromosome was performed by the same method as construction of Keio collection
(Yamamoto et al. 2008b).

5.4.5 Chromosomal Fusion with GFP Protein

Fusion protein with fluorescence generating reporter gene might provide flexible
purposes for its use in research. Monitoring protein localization, movement and
quantification are small examples of the major uses. To quantify the protein expres-
sion level in living cells, we have constructed in frame chromosomal fusion of the
target genes related to the central metabolic pathway with modified GFP (Nagai
et al. 2002) to monitor their cellular dynamics (Dose et al. 2008). The comparison
of the quantification between Western analysis and by fluorescence is now under-
way. Antibodies used for Western analysis were produced using purified proteins
as antigen from ASKA ORF collection. Not only the chromosomal fusion of GFP
will provide very efficient monitoring system of target protein concentration but also
analysis system in a single cell level. Stochastic expression of those target genes is
currently important research target.
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5.5 Conclusion and Perspective

Table 5.1 summarize the current E. coli resources. These resources described above
have opened new research fields especially in the researches of global aspects. And
particularly in genetics, they provide the platform to test entire set of genes to be
compared on the same genetic background. To analyze cells as systems level, these
uniformly designed resources are now essential tools and the preparation of such

Table 5.1 Experimental comprehensive resources of Escherichia coli K-12

Plasmid Clone library
ASKA ORF collection

(GFP+)
published entire genes designed (Kitagawa et al. 2005)

ASKA ORF collection
(GFP−)

published Entire grene designed (Kitagawa et al. 2005)

ASKA gateway entry
collection

on going entire genes designed (Yamamoto et al.
2008a).

Lux fusion library published ∼ 600 random
fusion

(Van Dyk et al. 2001)

Promoter fusion published entire promoters
(∼ 2, 000
promoters)

designed (Zaslaver et al. 2006)

ASKA low copy
collection

on going entire genes designed (Yamamoto et al.
2008a).

Chromosomal modification library
Keio collection published entire genes (except

essential genes)
designed (Baba et al. 2006)

ASKA bar code
deletion library

on going entire genes (except
essential genes)

designed (Yamamoto et al.
2008b)

Cmf library published ∼ 400 insertion
strains

random
insertion

(Yu et al. 2002)

Kmf library published ∼ 400 insertion
strains

random
insertion

(Yu et al. 2002)

TAP tag fusion published ∼ 1, 000 fusion
strains

designed (Butland et al. 2005)

ASKA essential gene
deletion collection

on going essential genes designed (Yamamoto et al.
2008b)

Random transposon
insertion library

published ∼ 7000 insertion
strains

random
insertion

(Miki et al. 2008)

ASKA chromosomal
fusion collection

unpublished ∼ 100 in frame
chromosomal
fusion

designed (Dose et al. 2008)

Large deletion strains
large deletion library published 30% elimination of

the genome
large scale

deletion
(Kato and Hashimoto

2007)
minimal genome published Elimination of non

essential genes,
IS, cryptic phaget
etc. ∼ 15%
reduction

large scale
deletion

(Posfai et al. 2006)
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tools accelerate systems approaches using E. coli. For the last 50 years, contribution
of E. coli in basic biology was huge to build up the concepts of genes. For the next
50 years, E. coli will also be an important organism for contribution of building up
the concepts of cells. To make this reality, we need seriously to consider the com-
munity level activities rather than individual competitive researches. We hope more
productive era sharing everything from cultivation to harvest (from construction of
resources to getting analyses’ results) will become reality in near future in E. coli
research community.
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Abstract The EcoCyc database integrates information about the E. coli genome,
its metabolic pathways, and its regulatory network. EcoCyc is in use by scientists
from a variety of disciplines. Experimental biologists use it as a reference source
on E. coli, and to leverage information about E. coli to the study of other microbes.
Because the E. coli genome has the largest number of experimentally characterized
genes of any organism, EcoCyc is used in the annotation of other microbial genomes
by sequence similarity. EcoCyc has also been used in a number of global biological
studies by computational biologists, and to provide training and validation datasets
for the development of new bioinformatics algorithms. EcoCyc serves as a reference
source for metabolic engineers, and it is used in microbiology education. The soft-
ware behind EcoCyc, called Pathway Tools, has been used to develop EcoCyc-like
databases for many other organisms. Pathway Tools provides powerful query and
visualization capabilities, including tools to analyze high-throughput datasets by
painting those datasets onto genome-scale diagrams of the metabolic network, the
transcriptional regulatory network, and the complete genome map.
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6.1 Introduction

The EcoCyc database has been under development since 1992 with the goal of serv-
ing several different scientific communities that require knowledge of the molecular
parts of E. coli. EcoCyc has evolved from an initial focus on the metabolic path-
ways of E. coli to describe its complete genome and proteome, its metabolism and
transport capabilities, and its regulatory network.

This chapter surveys the scientific disciplines served by EcoCyc. It discusses how
these scientists use EcoCyc, and how the information and software tools provided by
EcoCyc have been designed to serve their needs. The article also describes recently
released software tools within EcoCyc, such as its Omics Viewers, the new graph
tracks for visualization of ChIP-chip datasets, and the comparative analysis tools
that support comparisons between any of the 370 organisms (including E. coli) that
are supported within the BioCyc collection.

Our knowledge of who uses EcoCyc comes from a survey of EcoCyc users that
we conducted in the spring of 2005, and from a citation analysis we performed
for EcoCyc. To date, publications about EcoCyc (and the associated database Reg-
ulonDB (Gama-Castro et al. 2008, Salgado et al. 2004), which draws most of its
content from EcoCyc) have been cited more than 500 times according to the ISI Web
of Knowledge (http://www.isiwebofknowledge.com/). Scientists who use EcoCyc
fall into the following groups:

� Experimental biologists who work with E. coli, other microbes, and higher or-
ganisms

� Computational biologists
� Bioinformaticists
� Metabolic engineers
� Educators

6.2 EcoCyc as a Reference for Experimental Biologists

EcoCyc is a knowledge resource for experimentalists who work with E. coli, other
microbes, and higher organisms. Over the last 50 years a tremendous amount of
information has been gathered on the genetics, biochemistry, and cell biology of E.
coli, and continues to be amassed at a rapid pace. The pertinent literature is spread
among a large number of scientific journals and many books.

Our 2005 Web-based survey asked what responders use EcoCyc for. Wet-lab
biology usage indicated by the survey was as follows (each sentence contains re-
sponses from one survey question): study the biology of E. coli (30%); use E. coli
as a model organism to study a particular aspect of biology (41%); use E. coli as a
tool (e.g., for protein expression) (23%); other microbial research (31%); and other
biological research (13%).1 In the survey, 67% of responders said they use EcoCyc

1 For questions in our survey that allow responders to select multiple choices, percentages refer to
percent of responders who selected that answer, and do not add up to 100.
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as a general E. coli reference tool; 19% use it as a tool for understanding other
nonpathogenic bacterial species; 27% use it as a tool for understanding pathogenic
bacterial species; and 28% use it for hypothesis generation (developing ideas for
new experiments).

EcoCyc can be thought of as an online review article. In EcoCyc version 12.0,
released in April 2008, 3,444 of the gene products described in EcoCyc (out of 4,472
total genes) contain mini-reviews authored by EcoCyc curators who summarize and
cite the experimental literature for that gene product. The majority of these sum-
maries are from 50 to 2,000 words in length. EcoCyc version 12.0 cites more than
16,000 peer-reviewed publications that have formed the basis for curation. Sum-
maries are also found in other EcoCyc pages, including pathway and transcription
unit pages. EcoCyc evidence codes describe the types of experimental evidence that
support assigned gene functions. In version 12.0, functional assignments for 2,853
gene products are supported by experimental evidence, which is the highest in both
relative and absolute terms of any model organism (Karp et al. 2007).

6.2.1 EcoCyc Analysis of Functional-Genomics Experiments

The use of DNA microarrays within the E. coli community has expanded tremen-
dously. Proteomics and metabolomics work in E. coli is also increasing steadily.
These “omics” methods yield large quantities of data that are difficult to analyze,
but promise to produce new insights into cell function; 44% of our survey respon-
ders said they use EcoCyc for analysis of the E. coli regulatory network. EcoCyc
facilitates analysis of functional-genomics data in two unique respects.

First, the extensive catalog of transcriptional regulatory circuits within EcoCyc
puts known mechanisms of gene regulation at the fingertips of experimentalists,
allowing them to focus on discovering new regulatory mechanisms rather than redis-
covering known mechanisms. EcoCyc describes the regulation by 183 transcription
factors of 1,492 promoters through regulatory interactions with 1,982 transcription
factor binding sites. The majority of these regulatory interactions are based on ex-
perimental assays reported in the literature.

A new effort within the EcoCyc project aims to expand the types of cellular
regulation encoded within EcoCyc. In 2007, the Pathway Tools software underly-
ing EcoCyc was expanded to be able to capture, display, and edit six subtypes of
regulation by attenuation, and curation of attenuation began. In 2008 we will be ex-
tending Pathway Tools to accommodate regulation by small RNAs, and translational
regulation, and curation of these types of regulation will begin.

The second way in which EcoCyc facilitates analysis of functional-genomics
data is via unique bioinformatics analysis capabilities, namely, three Omics Viewers
that paint omics data onto global diagrams of E. coli cellular networks and of the E.
coli genome. The same omics dataset can be viewed on all three diagrams so that it
may be interpreted from different biological perspectives. Omics measurements are
mapped to the same color scale on all three diagrams. Animation can be used on all
three diagrams to display multiple measurements, which could reflect different time
points, mutations, or treatments.



102 P.D. Karp

Examples of the three Omics Viewers are shown in Figs. 6.1, 6.2, and 6.3.
A new tool for analysis of ChIP-chip datasets is shown in Fig. 6.4. This tool,

which we call graph tracks, is an extension of the genome-browser tracks capa-
bility. A ChIP-chip dataset is loaded into the Eco-Cyc genome browser (like the
Omics Viewers, a data file can be uploaded via the EcoCyc Web site, or loaded into
the desktop version of EcoCyc and Pathway Tools; the latter is recommended for
frequent users because it runs faster and provides more capabilities). The dataset
must be in GFF format (see http://www.sanger.ac.uk/Software/formats/GFF/). Data
is plotted against the genome with intensity values depicted both as the Y coordinate
and as color. Multiple graph tracks and normal horizontal tracks can be displayed
simultaneously to compare multiple datasets.

6.2.2 Leveraging EcoCyc to the Study of Other Microbes

EcoCyc sits at the core of the BioCyc collection of Pathway/Genome Databases
(PGDBs) for 379 organisms (Karp et al. 2005). For each of those organisms, BioCyc

Fig. 6.1 The Cellular Omics Viewer. This image shows an E. coli gene expression dataset painted
onto the E. coli metabolic network. The color assigned to each line (reaction) corresponds to the
expression level of the gene coding for the enzyme that catalyzes that reaction. The controls in the
upper left allow the user to stop and start animated displays within this diagram
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Fig. 6.2 The Regulatory Omics Viewer. This image shows an E. coli gene expression dataset
painted onto the E. coli transcriptional regulatory network. The color assigned to each circle or
square (genes) corresponds to the expression level of that gene. The innermost ring contains regu-
lator genes (transcription factors and sigma factors) that have no regulatory inputs defined within
EcoCyc. The middle ring contains regulator genes that do have defined regulatory inputs. The outer
ring contains non-regulator genes. Genes in the outer ring are grouped into clusters such that two
genes are assigned to the same cluster if those genes share the exact same set of regulators

contains their genomes, predicted metabolic pathways, and predicted pathway hole
fillers (that is, genes that are predicted to code for enzymes missing from the
metabolic pathways). For the bacteria, BioCyc also contains predicted operons. All
the bioinformatics tools available for EcoCyc are also available for other organisms
in BioCyc, including the genome browser and Omics Viewers.

The BioCyc.org site contains a powerful array of comparative genomics func-
tionality that allows scientists who study other microbes to further leverage Eco-
Cyc (46% of our users use EcoCyc to study other organisms besides E. coli),
and also allows scientists who study E. coli to learn from its similarities to other
organisms.

One comparative tool is the comparative genome browser. From a gene page
in BioCyc (meaning, from a gene page for any organism in the BioCyc collection
including EcoCyc), mid-way down the page is a button Align in Multi-Genome
Browser. Clicking on the button will produce a list of all BioCyc organisms. Se-
lect the organisms of interest and click Submit. The resulting display will show
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Fig. 6.3 The Genome Omics Viewer. This image shows the same E. coli gene expression dataset
as shown in Fig. 6.1, painted onto the complete E. coli genome. Each “shark fin” represents a
single gene. The color assigned to each gene corresponds to the expression level of the gene.
Upward pointing genes code for proteins, downward pointing genes code for RNAs. The left–right
directionality of each gene indicates its direction of transcription

Fig. 6.4 The EcoCyc genome browser with a graph track displayed. The graph track shows an
X–Y plot of the intensity of RNA polymerase binding along the E. coli genome near the bottom
of the figure. This ChIP-chip dataset was kindly provided by Dr. R. Landick of the University of
Wisconsin
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chromosomal regions for each organism, aligned at the orthologs of the start-
ing genes. Genes drawn in the same color in this display are orthologs of one
another (orthologs are defined as best bi-directional BLAST hits). The genome
browser navigation controls can be used to zoom or translate the genome map
display.

A second set of comparative tools is available from the Comparative Analysis
link on the main BioCyc query page (http://biocyc.org/server.html). These tools will
generate comparative reports across many dimensions of a PGDB. Several report
types are available. One report compares the metabolic pathway complements of the
selected organisms. Another report compares the metabolic reaction complements.
Another compares transporter complements. Reports are also available to compare
proteins, metabolites, and transcription units.

Each report contains several sections. For example, Figs. 6.5 and 6.6 show sec-
tions of the pathway report. The reports contain tables that contain summary statis-
tics. To drill down to the data from which those summary statistics were integrated,
click on a cell within the table. For example, clicking on a row name will produce

Fig. 6.5 This table presents
statistics on the number of
pathways present in each
pathway class for the two
E. coli strains under
comparison. The two largest
top-level classes,
Biosynthesis and Degrada-
tion/Utilization/Assimilation,
are broken down further to
show the distribution of
pathways among their
next-level subclasses. The
vast majority of pathways are
assigned to only a single
class. However, a small
number may be assigned to
more than one class
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Fig. 6.6 A pathway hole is a reaction in a pathway for which no corresponding enzyme has been
identified in the genome. Pathway holes may exist for a number of reasons: They may represent
true enzymatic functions in the organism for which the gene has not yet been found, or they could
represent false positive pathway predictions or cases in which the pathway in this organism differs
slightly from the reference pathway in MetaCyc. This table counts all the pathway holes in each
organism, and classifies pathways based on their number of pathway holes

a new table showing a list of all data elements within the columns of that row. For
example, clicking on the row heading “Total Pathways with Holes” in Fig. 6.6 will
produce Fig. 6.7, which shows every pathway containing at least one pathway hole
(a reaction that has no assigned enzyme) in these E. coli strains.

Fig. 6.7 A listing of
pathways in two E. coli
PGDBs that contain pathway
holes. The listing is truncated



6 The Multiple Scientific Disciplines Served by EcoCyc 107

6.3 Significance for Computational Biology

By computational biology we mean analysis of biological systems using computa-
tional methods; 51% of our survey responders said they use EcoCyc for computa-
tional biology, such as in the following areas.

6.3.1 Significance for Microbial Genome Analysis

A flood of nucleotide sequence data from microbial genomes is upon us. The
genomes of more than 500 microorganisms—cultured and uncultured—have been
completely sequenced, and many more will be completed in the next 5 years. Accu-
rate, extensive analysis of these data is essential to permit them to be fully exploited
in applications in medicine and biotechnology.

EcoCyc allows microbial-genome projects to produce more accurate annotations
of sequenced genes, and to predict the metabolic pathways of their organisms. When
gene function predictions are performed using sequence-similarity programs such
as BLAST and FASTA, newly sequenced microbial genes often show similarity
to E. coli genes. Researchers turn to EcoCyc as a source of information about E.
coli gene function because EcoCyc is updated so frequently with literature-based
information. Because E. coli is the genome with the highest fraction of its gene
functions established experimentally, annotators for other microbial genomes are
well advised to prefer sequence-similarity matches to E. coli genes over matches
with similar scores from other organisms, to minimize the transitive annotation
problem. Transitive annotation can decrease the accuracy of sequence annotation
by transferring gene functions from one gene to another through long chains of
similarity matches, each of which increases the likelihood of an incorrect functional
prediction. Although EcoCyc curation in the 1990s focused on those genes whose
products encode enzymes in metabolic pathways, it now contains rich annotations
of all characterized E. coli genes.

In addition to predicting gene function, many scientists are using EcoCyc path-
way data to predict the metabolic pathways of genomes they sequence. That predic-
tion occurs by combining the PathoLogic module of Pathway Tools in combination
with the larger MetaCyc pathway database (Caspi et al. 2008). Twice per year, SRI
propagates updates to EcoCyc metabolic pathways and enzymes to MetaCyc. Meta-
Cyc version 12.0 describes 1,036 experimentally elucidated pathways from 1,108
organisms. PathoLogic predicts the pathways of an organism by matching enzymes
in the organism’s annotated genome against enzymes in MetaCyc pathways, to pre-
dict which pathways from MetaCyc are present in the organism. To date, 1,300
groups have licensed Pathway Tools and MetaCyc from SRI, and tell us they are
applying the software to at least 200 genomes.

As antibiotic-resistant bacteria become more prevalent, pharmaceutical compa-
nies are seeking novel microbial drug targets. Some companies are targeting en-
zymes within metabolic pathways (Karp 1997, 2003). Because EcoCyc improves
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our ability to predict the metabolic pathways of a microbe from its genomic se-
quence, it facilitates development of new pharmaceuticals (Karp 1997, 2003, Karp
et al. 1999), such as its use by Bristol-Myers Squibb to find drug targets in Strepto-
coccus pneumoniae (Thanassi et al. 2002).

6.3.2 Significance for Global Biological Studies

Because the EcoCyc data are structured within a sophisticated ontology that is
amenable to computational analyses, EcoCyc allows scientists to ask questions
spanning the entire genome of E. coli, the known metabolic network of E. coli, the
known transport complement of E. coli, the known genetic regulatory network of
E. coli, and combinations thereof. A surprisingly diverse array of systems biology
studies is being fueled by EcoCyc: 40% of our survey responders said they use
EcoCyc for large systematic biological studies. As we add new types of data to
EcoCyc, we facilitate new types of global studies. For example, addition of new
types of regulatory mechanisms will accelerate global studies of these mechanisms.

EcoCyc was used to develop methods for computing shortest path lengths within
metabolic networks. These methods were used to study the topological organization
of the E. coli metabolic network (Ravasz et al. 2002), and to investigate correlations
between path lengths and factors such as genome distance between enzymes (Arita
2004, Simeonidis et al. 2003).

EcoCyc was used in several studies relating protein structure to the metabolic net-
work. One study compared the small-molecule metabolism enzymes of yeast and E.
coli to see which were conserved (Jardine et al. 2002). Two related studies surveyed
the structural anatomy of EcoCyc pathways (Teichmann et al. 2001a,b). Two studies
considered the organization of E. coli metabolic enzymes into protein families using
EcoCyc (Rison and Thornton 2002, Tsoka and Ouzounis 2001). EcoCyc was used
as a source of information on metabolic enzymes in a study that correlated sequence
and functional relatedness in enzymes (Pellegrini et al. 1999).

EcoCyc was used as a source of transcriptional regulatory network information
for analysis of genome-wide transcriptional regulatory networks (Ma et al. 2004),
and was used to understand patterns in transcriptional control (Shen-Orr et al. 2002).
EcoCyc pathways were used as a source of functionally related proteins for a study
of the correlation between protein levels—evaluated based on codon bias—and
functional relationship (Lithwick and Margalit 2005).

Van Dien et al. drew on EcoCyc to interpret label-tracing experiments in Methy-
lobacterium extorquens to estimate flux rates through its metabolic network (Van
Dien et al. 2003). Cases et al. used EcoCyc to investigate the fraction of the genome
devoted to transcription-related proteins, small-molecule metabolism enzymes, and
transport, for 60 bacterial genomes classified by lifestyle (Cases et al. 2003).
Peregrin-Alvarez et al. used EcoCyc to study the phylogenetic extent of metabolic
enzymes and pathways throughout all taxonomic domains (Peregrin-Alvarez et al.
2003).
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6.4 Significance for Bioinformatics Research

The development of many new bioinformatics methods requires high-quality gold-
standard datasets for training and validation of those methods; 21% of our survey
responders said they use EcoCyc as a gold-standard dataset for developing bioin-
formatics algorithms, and 58% said they use EcoCyc for bioinformatics. As we
add new types of data to EcoCyc, we facilitate development of new bioinformatics
methods, for example, addition of new types of regulatory mechanisms will enable
development of new predictors for those types of regulation.

Genome context methods for predicting gene function, such as phylogenetic pro-
files, conserved chromosomal adjacency, and the Rosetta Stone method, have been
one of the major developments in bioinformatics in the last 5 years. EcoCyc played
a key role in their development (Bowers et al. 2004, Enault et al. 2003, von Mering
et al. 2003). EcoCyc was used to determine whether proteins that appear to share
regulatory sequences might be functionally related (Studholme et al. 2004).

EcoCyc data were used to develop computational methods for predicting other
key biological relationships, such as protein-protein interactions (Bowers et al.
2004, Tsoka and Ouzounis 2000), and to compute correspondences among atoms
in reactants and products in biochemical reactions (Arita 2003).

EcoCyc was used as a gold standard for developing analytic and predictive com-
puter programs. It has been used in operon prediction (Price et al. 2005, Romero
and Karp 2004, Steinhauser et al. 2004) as well as for predicting promoters and
transcription start sites (Burden et al. 2005, Gordon et al. 2003). EcoCyc was used as
the source of metabolic pathways for genome-wide prediction of protein functions
and interactions (Marcotte et al. 1999). The EcoCyc class hierarchy was used to
categorize proteins for generating phylogenetic profiles (Pellegrini et al. 1999).

EcoCyc was consulted for compound-related information in a C-14-glucose
radio-labeling study that followed the time dependence of various metabolite pools
(Tweeddale et al. 1999). EcoCyc proved useful for investigating details of various
proteins in a project to construct a whole-cell simulation (Tomita et al. 1999).

6.5 Significance for Model-Organism Database Development

In addition to E. coli serving as a model organism for microbial research, EcoCyc
has become a model for development of bioinformatics database development for
other organisms. The Pathway Tools software underlying EcoCyc is now being used
in the development of many other organism-specific databases. Web links to these
databases can be found at http://BioCyc.org.

Databases include

� Microbes: Saccharomyces cerevisiae, Candida albicans, Streptomyces coeli-
color, Pseudomonas aeruginosa, Rhizobium etli, Brucella suis, Coxiella burnetii,
Rickettsia typhi

� Plants: Arabidopsis thaliana, Medicago truncatula, multiple Solanaceae species
� Mammals: Mus musculus
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6.6 Significance for Metabolic Engineering

Metabolic engineers alter microbes to produce biofuels, to produce flavor enhancers
in food, to increase efficiency of production of bioproducts such as amino acids
and vitamins, to produce pharmaceuticals, and to degrade toxic pollutants (Bailey
1991, Stephanopoulos and Vallino 1991). The Department of Energy GTL Project
seeks to engineer microbes to solve problems of global carbon sequestration and
environmental remediation (Frazier et al. 2003). The late Jay Bailey described many
metabolic-engineering case studies in which heterologous proteins are introduced
into cells to alter their metabolism (Bailey 1991). He wrote “No universal principles
have emerged from metabolic engineering research to guide the choice of the next
useful genetic alteration. . . there is no substitute for knowledge of the pathways
involved, their regulation, and their kinetics” (Bailey 1991). Metabolic engineers
consult EcoCyc and MetaCyc to select the optimal enzyme for an engineering prob-
lem, to predict undesirable side effects of a metabolic alteration, and to predict the
metabolic network of their workhorse organism using Pathway Tools; 25% of our
survey responders said they use EcoCyc for metabolic engineering.

The Palsson group has drawn heavily from EcoCyc to prepare quantitative flux
balance models of the E. coli metabolic network (Edwards and Palsson 2000, Reed
and Palsson 2003, Reed et al. 2003). We have recently collaborated with the Pals-
son group to further develop new versions of our respective models of the network
(Feist et al. 2007). The Palsson group also used EcoCyc to validate results from
in silico modeling of genome-scale E. coli metabolism (Reed and Palsson 2004).
Other metabolic engineering studies making use of EcoCyc include (Chassagnole
et al. 2002, Jardine et al. 2002, Weber et al. 2002)

6.7 Significance for Education

Of our survey responders, 20% said they use EcoCyc in graduate or undergraduate
classes that they teach. The classes include Metabolic Network Analysis; Microbial
Physiology; Introduction to Bioinformatics; Molecular Genetics; Genomics, Pro-
teomics and Systems Biology; and Microbial Biotechnology. Dr. R. Gunsalus of the
University of California Los Angeles is developing a Web portal to EcoCyc for use
in undergraduate microbiology education.
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Abstract Diverse complex systems such as cells, Internet and society can be
mapped into networks by simplifying each constituent as a node and their interaction
as a link. Traditionally it has been considered that these networks are random, but
recent series of studies show that they are far from being random and have common
inhomogeneous topology through generic self-organizing process. In this chapter,
we briefly introduce the network analysis methods which were re-developed in
statistical physics community recently. First, we introduce basic complex network
models such as Erdős-Rényi model, small-world model, scale-free model which
were developed to describe complex systems. And then, we applied these meth-
ods to biological system, such as metabolic network and protein-protein interaction
network of E. coli. We measure the global and local characteristics of the network
structure. Finally we briefly review recent works on biological networks especially
on dynamic aspect.
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7.1 Introduction: Complex Bio-Networks

During the latter half of the 20th century, biology has been dominated by reduction-
ist approaches that have provided a wealth of knowledge about individual cellular
components and their functions. Typically, these approaches have entailed careful
examination of a limited number of individual components in a biological system,
hypothesis building based on the empirical observations, and further experiments to
test these hypotheses. Reflecting the value of following this approach, biomedical
researchers from a range of disciplines have deliberately restricted their analyses
to well-defined systems with relatively few components, implicitly attempting to
reduce biological phenomena to the behavior of individual molecules.

Despite the enormous success of the reductionist approach, a discrete biologi-
cal function can only rarely be attributed to an individual molecule. Indeed, most
biological functions arise from complex interactions among its various compo-
nents (individual proteins, nucleic acids, small molecules, etc.). The need for more
comprehensive approaches that address the full complexity of a biological sys-
tem has now surfaced, largely with the emergence of genomics, in which the
entire DNA sequences for a number of organisms now allows the definition of
their gene portfolios. Extrapolation between genomes has accelerated the defini-
tion of what amounts to a “parts catalog” of cellular components in a large num-
ber of organisms. Also, large-scale efforts for studying the effects of systematic
gene disruptions and for measuring expression levels of all genes under different
conditions by microarray and proteomics approaches for entire genomes are well
underway.

In turn, these advances have created an unprecedented opportunity towards de-
veloping a comprehensive understanding of biological systems, in part through the
identification of the fundamental logic and derivative constraints that limit cell be-
havior. While the datasets available to us are far from being complete, they do offer
a critical mass and coherency for such analyses, and for the subsequent capacity
for model development and prediction through simulation of the ensuing model.
Therefore, it has been studied to identify such underlying constraints and to model
in quantitative terms the structure and functional (including regulatory) properties
of the complex biological networks that maintain proper functioning various organ-
isms. This analysis is aided by the coincidence of two recent scientific develop-
ments: the emergence of databases containing integrated data on the topology of
various networks of biological significance, and the recent advances in understand-
ing and quantifying the topology of complex (non-biological) networks which we
are going to review in the next sections.

This chapter has been organized as follows. In Section 7.2, we introduce several
basic network models which were developed to describe the ubiquitous complex
networks found in real world. In Section 7.3, we analyzed metabolic network and
protein-protein interaction network of E. coli in details. Section 7.4 includes recent
advance in network-biology especially about the dynamic aspect of bio-network
analysis. Most of this chapter was taken from recent papers written by the author
(Eom et al. 2006, Jeong 2003, Kim et al. 2007).
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7.2 Simple Models of Complex Networks

Modeling complex networks has a long history, and has been particularly active as
a branch of combinatorial graph theory. However, the study of random networks
in association with the real-world networks such as information systems, economic
systems, and biological systems has begun recently. In this section, we briefly review
a few important theoretical network models, and discuss recent empirical results on
the network topology, which indicate the need for new approaches in understanding
network development and describing their topology.

7.2.1 Erdős-Rényi Random Network Model

The most investigated random network model has been introduced by two Hun-
garian mathematicians, Erdős and Rényi (ER) (Bollobas 1985, Erdős and Rényi
1960) (see Fig. 7.1a), who were the first to study the statistical aspect of random
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graphs using the probabilistic method. The popularity of the ER model lies in its
simplicity: It assumes that all vertices are equivalent, and any pair of vertices is
connected with the same probability pE R . ER discovered that many properties of
random graphs, such as the emergence of trees or cycles, appear quite suddenly at
a threshold value pE R(N ). Within the physical literature, the ER model is known
as infinite-dimensional percolation, belonging to the universality class of the mean
field percolation (Stauffer and Aharony 1992). To compare the ER model with
other network models, we need to focus on the connectivity distribution. As ER
have shown, the probability that a vertex has k edges follows a Poisson distribution
P(k) = e−λkλ/k!, where the expectation value of degree 〈k〉 = λ is (N − 1)pE R ,
therefore ER network exhibits random and homogeneous structure (See Fig. 7.1d).
However, it was found that degree distribution of most real world networks is far
from being random which leads us to develop new network model.

7.2.2 Small-World Network Model

In 1998 Watts and Strogatz (WS) reported that many systems display both a high
degree of local clustering reminiscent of finite-dimensional lattices (for example, a
square lattice), and small-world phenomena characterizing random networks. Local
clustering describes the tendency of groups of nodes to be all connected to each
other, while small-world phenomena describes the property that any two nodes in the
system can be connected by relatively short paths. To account for the transition from
the local order to the small world behavior, they introduced the small-world network
model (see Fig. 7.1b) (Watts and Strogatz 1998), which has been investigated rather
intensely lately (Barthelemy and Amaral 1999a, Suki et al. 1998). In this model,
starting from a regular lattice, each link between nodes is rewired with probability
pW S , such that long range link can be formed to ensure small-world characteristics.
The connectivity distribution of the WS model depends on the parameter pW S: for
pW S = 0, P(k) is narrowly peaked at the average connectivity of the regular lattice,
while for finite pW S, P(k) gets broader, converging to the Poisson connectivity
distribution of the ER random graph (See Fig. 7.1e), which again turns out to be not
appropriate to describe the inhomogeneous topology of the real world networks.

7.2.3 Barabasi-Albert Scale-Free Network Model

All existing network models we have considered so far fail to incorporate two
generic aspects of real networks. First, they assume that networks have a fixed num-
ber of nodes. In contrast, most networks form and grow by the continuous addition
of new nodes, that link to the nodes already present in the system. For example,
the Internet expands by the attachment of new communication devices and routers
to the system, and the World-Wide Web (WWW) grows by the addition of new
web pages and domains. Second, the models assume that the probability that two
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vertices are connected is random and uniform. In contrast, most real networks ex-
hibit preferential connectivity. For example, new Internet domains are preferentially
linked to major highly connected routers (nodes) to obtain broader bandwidth, or a
newly created webpage will more likely link to well known, popular webpages with
already high connectivity. Consequently, the probability with which a new node is
connected to the existing nodes is not uniform, but there is a higher probability to
be connected to a node that already has a large number of links (Fig. 7.1c). Barabasi
et al. demonstrated that these two ingredients are sufficient to explain the inho-
mogeneous power-law distribution observed in real networks (Barabasi and Albert
1999). The network generated by this model evolves into a scale-invariant state,
the probability that a node has k edges following P(k) ∼ k−3 , i.e., a power-law
with an exponent γ = 3 (See Fig. 7.1f). Furthermore, the Barabasi’s group showed
that excluding any of the two ingredients will eliminate the power-law connectivity
(Albert and Barabasi 2000) and they developed a continuum theory (Barabasi et al.
1999) that allowed them to calculate the exponent γ , and predict the dynamics of
the scale-free network. And they have also shown that the power-law distribution is
robust against various local actions on the network structure, such as establishing
links between existing nodes, or rerouting existing links from one node to another
(Albert and Barabasi 2000). While these events can modify the scaling exponent
γ , they do not eliminate the inhomogeneous nature of the network connectivity.
The user’s main goal is to maximize the benefits of the online environment, which
can be best achieved by connecting to nodes where the best service is available, a
flocking attitude that eventually leads to a few highly connected nodes and power
laws. Consequently, complex communication networks inevitably evolve to develop
scale-free network connectivity, and thus display topological inhomogeneities. (Al-
bert et al. 1999b, Huberman and Adamic 1999)

7.3 Topology of Biological Networks

It is increasingly appreciated that the robustness of various cellular processes is
rooted in the dynamic interactions among its many constituents (Barkai and Leibler
1997, Bhalla and Iyengar 1999, Yi et al. 2000), such as proteins, DNA, RNA, and
small molecules. The existence of complex interactions among various components
of a cell or simple microorganisms has long been appreciated, but in the absence
of large-scale databases and a sufficiently developed theoretical framework, no
meaningful analysis of these interactions was deemed possible. However, recent
large-scale sequencing projects coupled with systematic two-hybrid analyses have
provided complete sequence information for a number of genomes, and also al-
lowed the development of protein interaction-(Rain et al. 2001a, Uetz et al. 2000)
and integrated pathway-genome databases (Kanehisa and Goto 2000, Karp et al.
1999, Overbeek et al. 2000) that provide organism-specific connectivity maps of
metabolic- and, to a lesser extent, various other cellular networks. Yet, due to the
large number and the diversity of the constituents and reactions forming such net-
works, these maps are extremely complex, offering only limited insight into the
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organizational principles of these systems. Our ability to address in quantitative
terms the structure of these cellular networks, however, has benefited from recent
advances in understanding the generic properties of complex networks (Albert et al.
2000, Watts and Strogatz 1998), which will be described in this section.

7.3.1 Network Analysis Methods

Until recently, complex networks have been modeled using the classical random
network theory (Bollobas 1985, Erdős and Rényi 1960) which assumes that each
pair of nodes (i.e., constituents) in the network is connected randomly with proba-
bility p. This process leads to a statistically homogeneous network, in which most
nodes have approximately the same number of links, 〈k〉 (Fig. 7.1a). On the other
hand, recent empirical studies on the structure of the World-Wide Web (Albert et al.
1999a), Internet (Faloutsos et al. 1999), and social networks (Barabasi and Albert
1999) have demonstrated that these systems are described by scale-free networks
(Barabasi and Albert 1999) (Fig. 7.1c), for which degree distribution P(k) follows
a power-law, i.e. P(k) ∼ k−γ . Unlike exponential networks, scale-free networks
are extremely heterogeneous, their topology being dominated by a few highly con-
nected nodes (hubs) which link the rest of the less connected nodes to the system
(Fig. 7.1c). This degree distribution P(k) is a good measure for analyzing connectiv-
ity of the complex network and also has been applied to several biological networks
as well.

Another basic measure for network analysis is a clustering coefficient. The clus-
tering coefficient Ci of node i is the ratio of the total number y of the links con-
necting its nearest neighbors to the total number of all possible links between all
these nearest neighbors, Ci = 2y/ki (ki −1) where ki is the degree of node i . The
clustering coefficient of a network, C , is the average of this value over all the nodes.
Most real networks have much larger value of clustering coefficient than model net-
works such as ER or BA network due to, e.g., the community or modular structure
(Dorogovtsev and Mendes 2002). Finally, the assortativity r , which measures the
correlation between degrees of node linked to each other, is defined as the Pearson
correlation coefficient of degrees between pairs of nodes (Newman 2002). Positive
values of r stand for the positive degree-degree correlation which means that nodes
with large degrees tend to be connected to one another. Most social networks have
this positive degree correlation r > 0 (assortative mixing), like the co-authorship
network of arxiv.org network (Newman 2001). On the other hand, most biological
and technological networks show negative degree correlation r < 0 (disassortative
mixing), including protein interaction network (PIN) and Internet AS network. If
there is no degree correlation among nodes (neutral), as in the case of BA model,
the value of r is in the vicinity of 0. There is another convenient way to check the
degree correlation, which is measuring the quantity 〈knn〉 = �k ′k ′ p(k ′/k), i.e. the
average degree of nearest neighbors of nodes with degree k (Pastor-Satorras et al.
2001). Assortative mixing is represented by a positive slope of the 〈knn(k)〉 graph,
while the others by horizontal (neutral) or a negative slope (disassortative).
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While these quantities are measures for global properties of the network, local
properties of the network have been analyzed via motif analysis. Subgraph patterns
and network motifs have been applied recently to understand the local structure of
complex networks (Milo et al. 2004, 2002, Vazquez et al. 2004). Subgraph patterns
consist of more than three nodes and the links connecting only these nodes, which
represent the minimum subnetworks of complex networks. Examples of triad sub-
graph patterns are shown in Fig. 7.4a. Network motifs are the subgraph patterns that
occur in a complex network at numbers that are significantly higher than those in
a random network (Milo et al. 2002). These are believed to represent the simplest
building blocks of complex networks and the topologically characteristic interaction
patterns within complex networks. Recently, it was also shown that certain motifs
have been enhanced through the evolution of a network, which supports the func-
tional importance of the motifs (Vazquez et al. 2004). For example, in transcription
networks, a biochemical network responsible for regulating the expression of genes
in cells, the network motifs are thought to be circuit elements that perform key in-
formation processing functions (Mangan and Alon 2003, Milo et al. 2002, Shen-Orr
et al. 2002). The feed-forward loop, one motif of transcription networks, can act as
a circuit that reduces noise and responds only to a persistent signal.

The following algorithm is used to obtain the network motifs (Milo et al. 2002).
We scanned for all possible three-node subgraphs in the network and recorded
the number of occurrences of each subgraph. To identify a statistically signifi-
cant subgraph pattern, we compared the network to an ensemble of suitably ran-
domized networks. Each node in the randomized networks contained the same
number of incoming and outgoing links as the corresponding node in the origi-
nal network. In addition, the randomized networks that were used to estimate the
significance of n-node subgraphs were generated to preserve the same number of
appearances of all (n − 1 ) node subgraphs as in the original network. For each
subgraph i , the statistical significance of the subgraph is described by the Z score
Zi = (Nreal

i − 〈Nrand
i 〉)/std(Nrand

i ). Nrand
i is the number of appearances of the

subgraph i in the network, and 〈Nrand
i 〉 and std(Nrand

i ) are the average and standard
deviation of its appearances in the ensemble of randomized networks, respectively.
The subgraph pattern exhibiting a high Z score is the statistically significant pattern.
In this analysis, the network motifs were selected when those subgraph patterns have
a Z score greater than 2.

With this well-developed theoretical framework in hand and with the availability
of detailed databases, we are now in position to initiate the analyses of complex
bio-networks. Some of the first questions we asked included the following: What
is the topological structure of metabolic and other cellular networks in global and
local perspective? (See Fig. 7.2) What are the biologically and topologically relevant
quantities that characterize them? Are there generic and common structural charac-
teristics that apply to all cells, including both prokaryotes and eukaryotes? How are
the specificity and the differential properties of various organisms reflected in the
structure of these networks? In the following section we will summarize our results
obtained on the large-scale structure of biochemical reaction pathways and protein
interaction networks, especially for the case of E. coli, main topic of this book.
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Fig. 7.2 Metabolic network including the central pathways and the membrane formation pathways.
Circles denote essential and non-essential metabolites distinguished by the colors (black: essential
metabolite; gray: essential metabolite constituting biomass; and white: non-essential metabolite).
Cofactors are not drawn here because the number of the associated reactions is too large for visual
examination. Each box represents the metabolic reaction for different functional classes specified
by different colors and line styles

7.3.2 Metabolic Network of E. coli

To address the large-scale structural organization of metabolic networks, we have
examined the topologic properties of the core metabolic network of 43 different
organisms based on data deposited in the WIT (now ERGO) database (Jeong et al.
2000, Overbeek et al. 2000). In the metabolic network, nodes are substrates which
are connected to each other through the actual metabolic reactions (Fig. 7.4B). As
illustrated in Fig. 7.3a, results convincingly indicate that in E. coli the probability
that a given substrate participates in k reactions follows a power-law distribution,
i.e., the E. coli metabolic network belong to the class of scale-free networks. Fur-
thermore, it is found that scale-free networks describe the metabolic networks in
all organisms in all three domains of life, including 6 Archaea, 32 Bacteria, and
5 Eukaryotes, indicating the generic nature of this structural organization. Also,
essentially identical results were obtained when we examined the topologic prop-
erties of the information transfer pathways of the 43 different organisms based
on ‘Information transfer’ portions of data deposited in the WIT/ERGO database
(Overbeek et al. 2000). Another general feature of many complex networks is their
small-world character (Strogatz 2001, Watts and Strogatz 1998), i.e., any two nodes
in the system can be connected by relatively short paths along existing links. In
metabolic networks these paths correspond to the biochemical pathway connect-
ing two substrates. The degree of interconnectivity of a metabolic network can be
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Fig. 7.3 Topological
properties of E. coli
metabolic network. (a)
Degree distribution P(k),
showing inhomogeneous
structure for both in and out
degrees, (b) Clustering
coefficient C(k), showing
typical decreasing behavior
as a function of degree k like
many other biological
networks, (c) Assortativity,
average degree of neighbor
node 〈Knn(k)〉, showing
dissortative mixing again like
many other biological
networks
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characterized by the network diameter, defined as the shortest biochemical pathway
averaged over all pairs of substrates. For all non-biological networks they examined
to date the average connectivity of a node is fixed, which implies that the diameter of
the network increases logarithmically with the addition of new nodes (Barabasi and
Albert 1999, Barthelemy and Amaral 1999b, Watts and Strogatz 1998). In contrast,
we find that the diameter of the metabolic network is the same for all 43 organisms,
irrespective of the number of substrates found in the given species (Jeong et al.
2000). This is surprising and unprecedented, and is possible only if with increas-
ing organism complexity individual substrates are increasingly connected in order
to maintain a relatively constant metabolic network diameter. Within the special
characteristics of living systems this attribute may increase an organism’s fitness to
efficiently respond to external changes or internal errors. For example, the transition
time between two metabolic steady states is apparently largely governed by time
constants involved in changing the enzyme concentrations (Cascante et al. 1995),
an attribute which could be best achieved when only a few alternative biochemical
reactions need to be activated. In Fig. 7.3b, clustering coefficient of E. coli metabolic
network shows C(k) ∼ k−α which represents the hierarchical and modular structures
embedded in the biological networks (Ravasz et al. 2002). L ike other biological net-
work, metabolic network of E. coli shows dissortative mixing (Fig. 7.3c), such that
substrates with larger degrees (hubs) tend to interact with substrates with smaller
degrees.

We also examined the triad subgraph patterns of metabolic networks of 43 or-
ganisms and identified their network motifs including E. coli. In this analysis, the
direction of each link implies direction from an input substrate (educt) to an out-
put substrate (product) (Fig. 7.4b) (Eom et al. 2006). We found that all metabolic
networks have their own network motifs. To provide a more quantitative analysis,
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Fig. 7.4 Local properties of E. coli metabolic network. (A) Motif profile, all possible 13 types of
three node connected subgraphs. (B) Graphical reorientation of a chemical reaction. (C) The triad
significance profiles (TSPs) of metabolic networks. TSPs for E. coli and other organisms found in
WIT database were plotted
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we investigated the local structure of metabolic networks of each organism in detail
and identified the significance profile (SP) of each metabolic network (Milo et al.
2004). The SP is the vector of Z scores normalized to a unit length, of which the i-th
component is given by S Pi = Zi/(� j Z2

j )
1/2. The SP of a given network represents

the relative significance of the subgraphs in that network. It is important to compare
networks of different sizes because network motifs in large networks tend to have
higher Z scores than network motifs in small networks (Milo et al. 2004). The triad
significance profile (TSP) for each metabolic network is presented in Fig. 7.4c. The
TSPs of these networks are found to be almost insensitive to a removal of 20% of
edges or to an addition of 20% new edges randomly, representing that the results
are robust to possible missing or false-positive data errors. All metabolic networks
showed similar TSPs and three network motifs of triads 5, 10, and 13 were found
frequently. These motifs, especially 5 and 10, are well-known feed-forward loop
and its variation of function is a prevalence of short detours in metabolic network
(Gleiss et al. 2001, Heinrich and Schuster 1996). In contrast, triads 2, 4, and 8 were
anti-motifs that were significantly underrepresented. The correlation coefficient be-
tween the TSPs of metabolic networks in 43 organisms was about 0.78 showing that
metabolic networks have the same topological structure in both large-scale orga-
nization (inhomogeneous power-law degree distribution) and in local organization
(sharing common topological substructures).

7.3.3 Protein Interaction Network of E. coli

Next example of biological network is protein interaction network (PIN). Proteins
are traditionally defined by their individual actions as catalysts, signaling molecules,
or building blocks of cells and microorganisms. However, recent integrative ap-
proaches view their role as an element in a network of protein–protein interactions
with a ‘contextual’ or ‘cellular’ function within functional modules (Eisenberg et al.
2000, Hartwell et al. 1999). To uncover this role, it is important to assess the position
of a protein within the protein–protein interaction network. We first have assessed
the topologic characteristics of system-wide protein–protein interaction network
found in the yeast, S. cerevisiae, and the bacterium, H. pylori, obtained mostly by
systematic two-hybrid analyses (Ito et al. 2001, Rain et al. 2001b, Xenarios et al.
2000). Due to its size, a complete map of the yeast and H. pylori networks, while in-
formative, in themselves offers little insight into their large-scale characteristics (See
Fig. 7.5). Like other bio-networks, the probability that a given yeast protein interacts
with k other yeast proteins follows a power-law (Jeong et al. 2001) with an expo-
nential cutoff (Barthelemy and Amaral 1999a). This exponential cutoff is due to the
physical limitation of the binding sites in the protein structure. A similar result was
obtained for H. pylori as well. This indicates that the network of protein interactions
in both a bacterium and an eukaryotic cell forms a highly inhomogeneous scale-
free network. An important known consequence of the inhomogeneous structure is
the network’s simultaneous tolerance against random errors coupled with fragility
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Fig. 7.5 Protein-Protein interaction network, essential (gray) and non-essential (white) proteins
were connected through physical bindings

against the removal of the most connected nodes (Barabasi and Albert 1999). Yet,
if there is indeed a biologically relevant functional link between topology and error
tolerance, on average less connected proteins should prove less essential than highly
connected ones. We calculated this correlation and showed that the likelihood that
removal of a protein will prove to be lethal clearly correlates with the number of
interactions the protein has. For example, while proteins with five or less links
constitute 93% of the total number of proteins they find that only 21% of them
are essential. In contrast, only 0.7% of the yeast proteins with known phenotypic
profile have more than 15 links but single deletion of 62% of these proves lethal.
This implies that highly connected proteins with a central role in the network’s
architecture are three times more likely to prove essential than proteins with low
number of links to other proteins (Jeong et al. 2001).

We also analyzed PPI network of E. coli using protein complex data by
G. Butland et al. (Butland et al. 2005). We found that again degree distribu-
tion of E. coli PPI network shows inhomogeneous scale-free degree distribution
(Fig. 7.6a) and proteins with larger degrees are more essential than proteins with
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Fig. 7.6 Topological properties of protein-protein interaction network. (a) Degree distribution, (b)
degree vs essentiality showing that as degree increases, lethality of the protein also increases. (c)
Clustering coefficient C(k), (d) Assortativity, average degree of neighbor nodes

smaller degrees (Fig. 7.6b). Interestingly in Fig. 7.6c, it is observed that clustering
coefficient C(k) shows relatively neutral behavior implying E. coli protein interac-
tion network doesn’t have hierarchical characteristics. Also the assortativity of E.
coli protein interaction network seems to be neutral for outgoing link while it is
dissortative for incoming link like many other biological networks (see Fig. 7.6d).
Since PPI network by Han et al. is directed, we applied motif analysis algorithm
to find relevant subgraph pattern hidden in E. coli protein interaction network. As
seen in Fig. 7.7, quite different from the metabolic network, motif 11 is found more
frequently and motif 10 is suppressed. However, motifs 5, 6, 12, 13 are shared with
the metabolic network of E. coli.

7.4 Beyond Static Graph Analysis

So far, we have only considered spatial (geometrical) inhomogeneity of the com-
plex networks, however it is also important to deal with temporal heterogeneity of
the complex network. Links between nodes in the network can vary over time, for
example, not every reaction in the metabolic network is active all the time. And the
activity of each link in the metabolic network or regulatory network can be different
in time such that some of them are highly active under most conditions while oth-
ers are activated for certain specific conditions. Therefore, to fully understand the
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Fig. 7.7 Local properties of protein-protein interaction network of E. coli. TSPs for E. coli and
yeast transcription network were plotted together

biological networks we have to consider the weight and direction and the temporal
change of the network components. In this respect, we will introduce recent studies
on dynamic aspect of metabolic networks using flux balance analysis (FBA) and
protein interaction networks of E. coli in this section.

7.4.1 Understanding the Robustness of Metabolic Network

As complex biological systems are very robust to genetic and/or environmental
changes on all levels of organization, their inherent robustness has been of great
interest in biology as well as in engineering theory (Wagner 2005). The biolog-
ical function of E. coli metabolism can be sustained against single-gene or even
multiple-gene mutation possibly by utilizing the redundant pathways (Papp et al.
2004, Reed and Palsson 2004). While the investigations on the topological and func-
tional/phenotypic properties of metabolic networks have been increasingly popu-
lated as shown in previous sections, (Almaas et al. 2004, Covert et al. 2004, Guimera
and Nunes Amaral 2005, Papp et al. 2004) they still provide a limited understand-
ing of the metabolic robustness despite its biological significance. In this section,
we focus on the interplay between such robustness and the underlying metabolism,
and how the robustness can be accomplished at the level of the metabolites which
are the fundamental entities (Raymond and Segre 2006, Schmidt et al. 2003) inte-
grated/dissipated by the metabolic processes. To this end, we constructed the com-
putational models at a system level, and simulated them with a constraints-based
flux analysis (Price et al. 2004).

To explore the robustness of E. coli metabolism from the metabolite perspective,
we should identify the metabolites which are substantial in cellular functions. In
this regard, all intracellular metabolites are classified into two categories, essential
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and non-essential metabolites according to the phenotypic effects on cell survival
when the consumption rate of the given metabolite is suppressed to zero. The re-
sultant list of essential metabolites is identified under many different environments
which are specified by combinations of several C, P, N, and S sources, and aer-
obic/anaerobic conditions (Kim et al. 2007). By disrupting multiple genes around
essential/non-essential metabolites in vivo, we could validate the predicted effects
of the metabolite essentiality on cell survival. For example, the associated genes
of an essential metabolite, tetrahydrofolate, were selected for the multiple-gene
disruption. Each single and double gene deletion mutant (�purN, �lpdA, �glyA,
and �purN �lpdA) could still survive albeit with some growth rate changes, but
simultaneous deletions of the triple genes (�purN �lpdA �glyA) did not allow
the cell to grow at all, reflecting that the combinatory suppression of the tetrahy-
drofolate pool is indeed fatal to the cell. On the contrary, 1-deoxy-D-xylulose
5-phosphate had been identified as a non-essential metabolite in silico, and ex-
perimental removals of all the reactions producing the metabolite by constructing
�dxs �xylB caused the only slight change and even increase of growth rate com-
pared with wild type. Throughout these experiments, the measured growth rates
of the gene deletion mutants relative to that of the wild type were found to be
consistent with the in silico predictions. These results indicate that deletion strains
for essential metabolites can suffer from the deleterious impact on cellular func-
tions, while those for non-essential metabolites show the negligible influence on
the actual growth. We also investigated the inherent network property of essential
metabolites to elucidate the correlation between the structural property and func-
tional behavior from the metabolite perspective. We found that essential metabo-
lites are likely to be connected with more reactions than non-essential ones. Fur-
thermore, the metabolic networks of 227 organisms with fully sequenced genomes
disclose that the metabolites essential for various growth conditions are com-
monly distributed across the organisms, showing the high degree of phylogenetic
conservation.

To better understand the robustness of the cellular metabolism from the metabo-
lite perspective, it is necessary to quantify the usage of all relevant fluxes to a single
metabolite. In this sense, we introduce the flux-sum (Φ) of the metabolite, which is
defined as the summation of all incoming or outgoing fluxes for given metabolite i
as follows:

	i =
∑

j∈Pi

Si jν j = −
∑

j∈Ci

Si jν j = 1

2

∑

j

∣∣Si jν j

∣∣

where Si j is the stoichiometric coefficient of metabolite i in reaction j , and j is the
flux of reaction j . Pi denotes the set of reactions producing metabolite i , Ci the set of
reactions consuming metabolite i . Under the stationary assumption, Φi is the mass
flow contributed by all fluxes producing (consuming) metabolite i . Based on this
measure pertaining to the behavioral characteristic of metabolites, we can analyze
the robustness of E. coli metabolism to maintain the cellular functions against the
genetic mutations. The sensitivity to genetic perturbation for a given metabolite can
be quantified by evaluating the relative fluctuation of Φi in response to each deletion
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of non-lethal reactions:
√〈

	2
i

〉 − 〈	i 〉2/ 〈	i 〉 where < . . . > denotes the average
over the reaction deletions. It turns out that the essential metabolites are more likely
to have small relative fluctuations. This indicates that flux-sums of essential metabo-
lites are relatively insensitive to genetic perturbation compared with those of non-
essential ones. Indeed, 94.3% of total metabolites found in the fluctuation range of
less than 0.0875 are essential, while there are only non-essential metabolites in the
twenty highest ranks in relative fluctuations. Thus, essential metabolites are resistant
to the internal variation compared with non-essential ones by maintaining the basal
mass flow of the corresponding metabolite, thereby leading to the robustness of the
cellular metabolism.

To clarify such resistance of essential metabolites against the internal distur-
bance, the severe perturbation was conducted by deleting the most contributing
reaction to the flux-sum for a given essential metabolite. Remarkably, for many
essential metabolites, the resultant flux loss is mostly recovered by the fluxes of
other remaining reactions, thereby leading to very small change of the flux-sum, in
spite of removing the dominant reaction5 with the largest flux value. For instance,
the flux-sum of an essential metabolite, carbamoyl phosphate, is reproducible by
other fluxes even when the largest flux from carbamate kinase is eliminated; other
reaction, carbamoyl-phosphate synthase can compensate such flux loss fully, thus
resulting in the recovery of 98.9% of the basal flux-sum. For many essential metabo-
lites, the flux-sum is only changed much less than the reduced flux corresponding to
the deleted reaction. Accordingly, even though the reaction with relatively high flux
is eliminated, the flux-sum can be compensated by other fluxes around the essen-
tial metabolite, recovering such flux loss. Moreover, using the stoichio-similarity,
we could develop the method to predict the most probable reaction which would
recover the flux-sum after disruption. Hence, we believe that cellular robustness
can be elucidated by such functional property of metabolic network manifesting the
resilience of essential metabolites against the disturbed flux configuration.

Essential metabolites play a pivotal role in the cell survival, steadily maintaining
the mass flow to produce or consume the metabolites against any internal distur-
bance within the cell. In other sense, this metabolite perspective on the robustness of
E. coli provides us the cellular-level fragility: the failure of maintaining the flux-sum
of a single essential metabolite can suppress the whole cellular growth drastically.
Especially, for most essential metabolites (85%), reducing the flux-sum by half be-
low the basal level intentionally leads to the growth rate down to half or even less,
while only 28.9% of active non-essential metabolites have the same effect on the
cell growth for such flux-sum perturbation.

The functional robustness of metabolic networks reflects the resistance towards
internal defects and environmental fluctuations as an end product of a long evo-
lutionary process. Such fault-tolerance or robustness may be a key to cell survival
against environmental or genetic change. In this regard, a metabolite-based perspec-
tive could provide us a new guideline to interpret the cellular robustness. Essential
metabolites substantial to the cell survival are capable of rerouting metabolic fluxes
while sustaining their usage level. This capability of the essential metabolites leads
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to the quite dramatic tolerance to a wide range of internal disturbances. From a ther-
apeutic point of view, disrupting (knock-out) the multiple non-lethal genes around
an essential metabolite can lead to fatal cell damage; even attenuating (knock-
down) the relevant genes may cause the same effect. Thus, synthetic lethal muta-
tions (Tucker and Fields 2003, Wong et al. 2004) can be systematically identified
in conjunction with experimental screening techniques available (Ooi et al. 2003,
Tong et al. 2001), thereby facilitating the discovery of drug targets for the genetic
therapy.

7.4.2 Beyond the Static Graph Analysis:
Spatio-Temporal Dynamics

The topological data and approach discussed in previous sections represent a partial
snapshot of the metabolism. Indeed, the topology of the metabolic network pro-
vides only the genome-encoded potential metabolic activity of an organism. The
actual function of its metabolic network, however, is realized through the genetic
regulatory network that functionally activates and inactivates various enzymes or
groups of enzymes that catalyze biochemical reactions embedded in the metabolic
network topology. Thus, for an in-depth characterization of metabolism we need to
develop a better understanding of the regulatory network and its dynamics, as well.
An important limitation of any modeling effort is the lack of availability of enzyme
kinetic data, making impossible the full dynamic characterization of these pathways.
However, already available microarray data does give us important qualitative in-
formation on the correlation between the enzymatic activities of different pathways.
In this sense, there are several studies to analyze the available microarray data to
infer information about correlations between the various components of the E. coli
metabolism. These studies will offer valuable information on the dynamical features
of its metabolism that has never been included in previous modeling efforts. One of
simple but interesting works on temporal aspect of complex network was found
in protein interaction network. For the case of protein interaction network, it was
verified that considering dynamic aspect is crucial to understand the lethality of the
node properly. That is, although it was shown that highly connected proteins (hubs)
are more essential (lethal) than less connected proteins, recent study shows that all
hub proteins are not equivalent. Han et al. showed (Han et al. 2004) that there are
two different categories for the hub proteins, first one is ‘party’ hubs which interact
with their partner proteins simultaneously, the other is ‘date’ hubs which in contrast,
interact with different proteins at different locations and times using a filtered yeast
interactome (FYI), compiled from different sets of yeast mRNA expression data to
find the difference. (See Fig. 7.8) They found that date hub is more important than
party hub such that when party hubs are removed from the system, general connec-
tivity of the network remains still unaffected while the removal of date hubs breaks
network into pieces so that proteins cannot interact with each other. Therefore, it is
very important to consider spatial and temporal information when we analyze the



130 H. Jeong

Fig. 7.8 Two different types
of the hub. Party hub interacts
with many proteins at the
same time and location while
date hub interacts with many
proteins at different time and
locations

Date HubParty Hub

bio-network. In this sense, spatio-temporal dynamic analysis should be applied to
biological system along with static graph analysis.

Despite of the significant advance in network science during last decade, we are
still far from understanding the biological system even for simple organism like E.
coli. However, network biology which is still in its infancy, will give us an insight
to find a way to understand the biological system along with large scale data sets
generated and integrated into the database extensively.
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Abstract The genome of Escherichia coli K12 encodes at least 6 classes of sensor
proteins: 30 histidine protein kinases, 5 methyl-accepting chemotaxis proteins, 23
membrane components of the sugar:phosphotransferase system (PTS), 29 proteins
with diguanylate cyclase and/or c-di-GMP-specific phosphodiesterase activity and
two predicted serine/threonine protein kinases. The full signal transduction network
additionally includes 32 response regulators, numerous chemotaxis proteins, PTS
components, adenylate cyclase, CRP, and uncharacterized c-di-GMP-responsive
components. Bacterial response to environmental signals can occur on several lev-
els: the level of individual genes and proteins (changes in gene expression, post-
translational regulation), the whole-cell level (chemotaxis), and the multicellular
level (biofilm formation). All signal transduction systems are energy-dependent
but their energy expenditure is miniscule compared to that of the processes they
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regulate. A better understanding of the signal transduction mechanisms and integra-
tion of these mechanisms into the metabolic pathway model of the E. coli cell will
remain major challenges for systems biology.

8.1 Introduction

For many years, Escherichia coli K12 served as a favorite model organism for
studying principles and mechanisms of bacterial signal transduction. As a result,
the current understanding of the signal transduction machinery in E. coli, albeit ob-
viously incomplete, is probably as good as that for any organism in the prokaryotic
or eukaryotic world. The availability of complete genome sequences of three strains
of E. coli K12 (Blattner et al. 1997, Hayashi et al. 2006, Durfee et al. 2008) and
their pathogenic counterparts (Hayashi et al. 2001, Perna et al. 2001, Welch et al.
2002, Johnson et al. 2007) made it possible to enumerate all (known) components
of the signal transduction machinery encoded in each E. coli genome. This, in turn,
allowed identification, at least in terms of sequence, of those signal transduction pro-
teins whose biological functions are still unknown and remain to be experimentally
characterized. In many respects, E. coli K12 proved to be a very convenient model:
its signal transduction machinery is far more complex than that of its relatives who
are obligate pathogens, such as Haemophilus influenzae or Legionella pneumophila.
On the other hand, E. coli encodes far fewer signal transduction proteins than its
free-living relatives (and opportunistic pathogens), such as Pseudomonas aerugi-
nosa, Shewanella oneidensis, or Vibrio cholerae, not to mention the enormous ex-
pansion of signaling systems in the genomes of such model organisms as Anabaena
PCC7120, Myxococcus xanthus, or Streptomyces coelicolor (Galperin 2005). Thus,
signal transduction in E. coli is an experimentally tractable system that is respon-
sible for much of the progress in understanding the principles and mechanisms of
prokaryotic signal transduction.

The difficult task of a systematic description of the bacterial signal transduc-
tion machinery has been greatly simplified by the availability of specialized public
databases, such as the Microbial Signal T ransduction database (MiST, http:// ge-
nomics.ornl.gov/mist) at the Oak Ridge National Laboratory in Tennessee (Ulrich
and Zhulin 2007) and the Kyoto Encyclopedia of Genes and Genomes (KEGG,
http://www.genome.ad.jp/kegg/) at the Kyoto University in Japan (Kanehisa et al.
2008). The web pages of these databases dedicated to E. coli K12 (http://genomics.
ornl.gov/mist/view organism.php?organism id=99, and http://www.genome.ad.jp/
dbget-bin/get pathway?org name=eco&mapno=02020, respectively) provide a
bird’s eye view of the composition and properties of signaling proteins encoded in
the E. coli genome. In addition, the author maintains tables of Signal Transduction
Census and Response Regulator Census at the web sites http://www.ncbi.nlm.nih.
gov/Complete Genomes/SignalCensus.html and http://www.ncbi.nlm.nih.gov/
Complete Genomes/RRcensus.html, respectively. These web sites provide an easy
way to access up-to-date information on signal transduction mechanisms in E. coli
and related bacteria.
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8.2 Diversity of Bacterial Signal Transduction Pathways

The two best-studied classes of membrane-bound receptor proteins are sensory his-
tidine kinases and methyl-accepting chemotaxis proteins (MCPs), discovered in
E. coli in the mid 1980s (Grebe and Stock 1999, Stock et al. 2000, Inouye and
Dutta 2003). In the past several years, analyses of microbial genomes, as well
as experimental studies, revealed several additional classes of bacterial receptors,
which include Ser/Thr protein kinases and protein phosphatases, adenylate cyclases,
diguanylate cyclases and c-di-GMP-specific phosphodiesterases (Table 8.1).

The signaling pathways utilized by various receptors are shown on Fig. 8.1
Signaling by histidine kinases and MCPs is usually referred to as two-component
signal transduction, as it includes phosphoryl transfer between two different pro-
teins, a histidine kinase and a response regulator. Two-component signal transduc-
tion pathways are extremely diverse but always include the following three steps:

Table 8.1 Principal Classes of Sensory Proteins in Escherichia coli K12

Sensor type No. Function Signaling mechanism

Histidine kinase 30 Transcriptional
regulation, control
of other processes

Phosphorylation of the REC
domain of various response
regulators

Methyl-accepting
chemotaxis
protein

5 Chemotaxis Interaction with histidine
kinase CheA, chemotaxis
response regulator CheY

Ser/Thr protein
kinase

1 + 1a Transcriptional
regulation,
posttranslational
regulation

Phosphorylation of Ser or Thr
residues in target proteins

Ser/Thr protein
phosphatase

2 Same as above Dephosphorylation of Ser/Thr
protein kinases or other
target proteins

PTS membrane
component

23 Sugar transport,
chemotactic
signaling,
regulation of
adenylate cyclase
activity

Direct effect on chemotaxis,
most likely through direct
interaction of PTS enzyme I
with the histidine kinase
CheA

Adenylate cyclase 1 Global regulation of
transcription

Synthesis of cAMP

Diguanylate cyclase 12+7b Regulation of
protein and
polysaccharide
secretion

Synthesis of c-di-GMP

c-di-GMP-specific
phosphodiesterase

10+7b Same as above Hydrolysis of c-di-GMP

a While YegI is believed to function as a Ser/Thr kinase, it remains unclear whether UbiB is an
enzyme of ubiquinone biosynthesis or a Ser/Thr kinase that regulates this pathway (see the text for
details).
b Seven E. coli K12 proteins contain both GGDEF and EAL domains and could potentially catalyze
both synthesis and hydrolysis of c-di-GMP (see the text for details).
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Fig. 8.1 Signal transduction pathways of the principal classes of bacterial receptors. Signal trans-
duction from a two-component signal transduction system (1), methyl-accepting chemotaxis sensor
protein (2), phosphoenolpyruvate-dependent sugar:phosphotransferase system (3), Ser/Thr protein
kinase (4), adenylate cyclase (5), and sensor diguanylate cyclase (6)

(i) phosphorylation of a His residue in the kinase molecule; (ii) phosphoryl transfer
to an Asp residue in the molecule of the cognate response regulator; (iii) conforma-
tional change of the response regulator that alters its interaction with its target on the
chromosomal DNA or bacterial flagellum or, in some cases, the enzymatic activity
of its output domain (see below).
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Chemotaxis signaling, which starts from MCPs, is a special kind of two-
component signal transduction that involves a specialized histidine kinase CheA,
which directly interacts with MCPs, and a specialized response regulator CheY that
consists of stand-alone receiver domain without any output domains. Regulation of
flagellar motility is based on the interaction of the phosphorylated form of CheY
with the FliM protein at the base of the flagellum, which affects the direction of
flagellar rotation and thus regulates the chemotaxis response (Aizawa et al. 2002,
Szurmant and Ordal 2004).

Components of the PEP-dependent sugar:phosphotransferase system (PTS) par-
ticipate in phosphorylative sugar uptake and traditionally have not been considered
part of the signal transduction machinery. Nevertheless, two members of the PTS
phosphorelay play key roles in signal transduction. The phosphorylation level of the
PTS enzyme I (EI) directly affects the chemotaxis machinery, whereas the phospho-
rylation level of the glucose-specific enzyme IIA (EIIAGlc) modulates the activity of
the adenylate cyclase, at least in E. coli and its closest relatives (Postma et al. 1993,
Deutscher et al. 2006).

Ser/Thr protein kinases phosphorylate Ser and Thr residues in various cellular
proteins. Only a small fraction of their targets have been identified so far. Ser/Thr
protein phosphatases reverse the effect of Ser/Thr protein kinases by dephosphory-
lating their target proteins or, in some cases, the Ser/Thr protein kinases themselves
(Shi et al. 1998, Deutscher and Saier 2005).

The adenylate cyclase modulates the cellular level of cyclic adenosine monophos-
phate (cAMP), a key cellular second messenger that regulates transcription from a
variety of relatively weak promoters. The mechanism of this regulation includes
binding of cAMP to a specialized adaptor protein, CAP (also referred to as cAMP
receptor protein, CRP), triggering a conformational change in CRP that increases its
affinity to DNA and allows it to activate transcription of otherwise poorly expressed
genes (operons).

Signaling through diguanylate cyclases includes modulation of the cellular level
of another cellular second messenger, cyclic dimeric bis-(3′–5′)-guanosine mono-
phosphate (c-di-GMP), which regulates a variety of function related to the cell
surface elements, including motility, secretion of proteins and exopolysaccharides,
biofilm formation, and production of certain virulence factors (Römling et al.
2005, Jenal and Malone 2006). Some of the c-di-GMP functions are mediated
by its binding to the recently described PilZ domain, while others might involve
other binding proteins, including diguanylate cyclases themselves. Cyclic-di-GMP-
specific phosphodiesterases, which catalyze c-di-GMP hydrolysis, could also func-
tion as c-di-GMP-binding proteins.

8.3 Signal Transduction Machinery of E. coli

8.3.1 Two-component Sensors: Histidine Kinases

Histidine kinases are most numerous and most diverse membrane receptors encoded
in bacterial genomes. Accordingly, they control the greatest variety of cellular re-
sponses. Most of the diversity of histidine kinases comes from the sensory (signal
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input) domains, which can be periplasmic, membrane-embedded or cytoplasmic. A
single histidine kinase can contain several sensory domains, for example a periplas-
mic sensory domain and one or more ligand-binding PAS domains in the cyto-
plasm. In contrast, cytoplasmic signal transduction modules of histidine kinases are
rather uniform and consist of two structural domains, dimerization/phosphorylation
HisKA domain that consists of long alpha-helices and a C-terminal globular ATPase
domain. Signal transmission by histidine kinases involved formation of dimers, so
that an ATPase domain of one molecule binds ATP and transfers its 
-phosphate
onto a conserved histidine residue in the HisKA domain of the other molecule in the
dimer. This phosphoryl residue is subsequently transferred to an aspartyl residue in
the receiver domain of the cognate response regulator. Analysis of sequence simi-
larities between different histidine kinases by Parkinson and Kofoid (1992) revealed
five conserved sequence motifs, referred to as H, N, G1, F and G2 boxes. The first of
these boxes corresponded to the sequence motif around the conserved phosphoryl-
accepting histidine residue.

A cell of E. coli K12 encodes 30 histidine kinases; functions of six of them
(AtoS, RstB, YehU, YpdA, YfhK, and YedV) still remain unknown (Hagiwara et al.
2004, Yamamoto et al. 2005), see Table 8.2 Among the remaining 24, by far the
most (six, namely, BaeS, BasS, CpxA, EvgS, RcsC, and RscD), are involved in
response to the envelope stress. Two more, EnvG and KdpD, are responsible for
osmotic stress and adjustment of the magnitude of K+ gradient. Other perceived
signals include phosphate and/or its Ca2+ or Mg2+ salts (PhoQ, PhoR); nitrate and
nitrite (NarQ, NarX); oxygen and/or hydrogen peroxide (ArcB, BarA); heavy met-
als, such as Cu+/Ag+, (CusS) or Zn2+ and Pb2+ (ZraS); di- and tricarboxylates
(CitA, DcuS); glucose-6-phosphate (UhpB), glutamine (GlnL), and trimethylamine
N-oxide (TorS). One more histidine kinase sensor, QseC, is responsible for quorum
sensing.

It is remarkable how many histidine kinases are sensing either envelope and
osmotic stress or the redox state of the cell and the availability of terminal elec-
tron acceptors. The fact that these histidine kinases coexist in the same cell sug-
gests a certain degree of sophistication in their interactions, seen, for example,
in the complex division of functions between NarQ and NarX (Stewart 2003).
In most cases, however, the hierarchy between different sensors, if any, remains
unknown.

8.3.2 Two-component Transmitters: Response Regulators

Two-component response regulators are diverse proteins that share the common
phosphoacceptor REC domain, often referred to as the CheY-like domain, after its
best-known representative (Galperin 2006, Gao et al. 2007). This domain catalyzes
phosphoryl transfer from the His residues of the histidine kinase HisKA domains
to its own aspartate residues, as well as its own dephosphorylation (Thomas et al.
2008). The combination of these two activities in the REC domains of each par-
ticular response regulator determines the half-life of the phosphorylated form of
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Table 8.2 Two-component signal transduction in E. coli

Histidine
kinase

Response
regulator

Signal Regulated system or process
(genes)

ArcBa ArcAb Redox state of the respiratory
chain component(s)

Aerobic/anaerobic respiration

AtoS AtoCd Unknown (expression induced by
acetoacetate)

Short-chain fatty acid
metabolism (atoDAEB)

BaeS BaeRb Envelope stress Multidrug efflux (mdtABCD,
acrD)

BarAa UvrYc O2, H2O2, oxidative stress Carbon storage (csrB), catalase
(katE)

BasS BasRb Envelope stress (high Fe2+) Multidrug efflux
CheA CheY, CheB MCPs, PTS sugars Chemotaxis
CitA (DpiB) CitBc (DpiA) Citrate Citrate metabolism (citCDEFG,

citT)
CpxA CpxRb Envelope stress, misfolded

proteins
Protein degradation (htrA)

CreC (PhoM) CreBb Unknown (induced by growth in
minimal media)

Central metabolism

CusS CusRb Cu+, Ag+ Efflux transporters
DcuS DcuRc Fumarate, C4-dicarboxylates Fumarate respira-tion (dcuB)
EnvZ OmpRb Envelope stress Outer membrane (ompC, ompF)
EvgSa EvgAc Envelope stress Multidrug efflux
GlnL (NtrB) GlnGd (NtrC) Nitrogen starvation Glutamine metabolism
KdpD KdpEb Osmotic stress K+ transport (kdpABC)
NarQ NarPc Nitrite/nitrate Nitrate reductase (narGHIJ),

formate dehydrogenase
NarX NarLc Nitrite/nitrate Nitrate reductase (narGHIJ),

formate dehydrogenase
PhoQ PhoPb Low Mg2+ Various genes
PhoR PhoBb, PhoP Low phosphate Phosphate assimilation (phoA,

phoB)
QseC QseBb Cell density (autoinducer-2),

epinephrine, norepinephrine
Flagellar biosynthesis

RcsCa RscBc Unknown Colanic acid biosynthesis
RscD RscBc Unknown Colanic acid biosynthesis
RstB RstAb Unknown Acid resistance, flagellar and

capsular biosynthesis
TorSa TorRb Trimethylamine-N-oxide TMAO reductase (torCAD)
UhpB UhpAc UhpC, glucose-6-phosphate Hexose phosphate uptake (uhpT)
ZraS (HydH) ZraRd (HydG) Heavy metals (Zn2+/Pb2+) Efflux transporter
YedV Unknown Unknown
YehU YehTe Unknown Unknown
YfhK YfhAd Unknown Unknown
YpdA YpdBe Unknown Unknown

FimZc (YbcA) Unknown Fimbriae biosynthesis
RssB (Hnr) Unknown Proteolysis of RpoB by ClpXP

a A hybrid histidine kinase that contains a receiver domain at its C-terminus.
b DNA-binding transcriptional regulator, OmpR/PhoB (winged helix) family.
c DNA-binding transcriptional regulator, NarL/FixJ (helix-turn-helix) family.
d DNA-binding transcriptional regulator, NtrC (enhancer-binding) family.
e DNA-binding transcriptional regulator, LytR/AgrA family.
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the domain (CheY∼P or, more generally, REC∼P) and hence, the fraction of the
response regulator molecules that are in the active (phosphorylated) conformation
at any given time. A great majority of response regulators combine the REC domain
with some kind of a signal output domain. However, some response regulators, such
as the chemotaxis response regulator CheY, consist of a stand-alone REC domain.
Chemotactic signal transduction through CheY relies solely on protein-protein in-
teractions. Phosphorylation of CheY by phosphoryl transfer from the chemotaxis
histidine kinase CheA shifts the CheY molecule into the active conformation that
has an increased affinity to its target molecule FliM in the flagellar basal body.
Non-phosphorylated CheY is also capable of interacting with FliM, albeit not as
strongly. Thus, phosphorylation of CheY merely shifts the equilibrium of its two
principal forms (there appear to be intermediate forms as well (Dyer and Dahlquist
2006)), leading to a change in the rotation pattern of the flagellum, which is reflected
in an altered motility pattern of the whole cell.

With the exception of members of the CheY protein family, all other response
regulators are two-domain (or three-domain) proteins that combine the REC do-
main with a signal output domain, which is usually located at the C-terminus of the
polypeptide chain. Most of these proteins (in E. coli, 29 out of 32) are transcriptional
regulators that activate or repress transcription of specific target genes. Accordingly,
the most common output domains bind DNA, although some response regulators
have enzymatic or ligand-binding output domains. The most common DNA-binding
response regulators belong to the OmpR/PhoB family and have a winged helix-turn-
helix DNA-binding domain. In E. coli, this family includes 14 proteins of the total of
32 response regulators (Table 8.2). The second in abundance with 9 representatives
in E. coli is the NarL/FixJ family of response regulators with a typical helix-turn-
helix DNA-binding output domain. Less common DNA-binding response regulators
contain DNA-binding output domains of the Fis type (NtrC family) and LytTR type
(LytR/AgrA family) with 4 and 2 representatives, respectively, encoded in the E.
coli genome. Despite the differences in the structures of the DNA-binding response
regulators, they all appear to follow a general mechanism of activation in response to
the environmental signals. In each case, phosphorylation of the REC domain favors
its transition into an active conformation and/or its dimerization (Toro-Roman et al.
2005, Gao et al. 2007). Dimerization of response regulators is a key mechanism
of the transcriptional regulation by two-component systems, as response regulator
dimers have a higher affinity to the tandem (or palindromic) transcriptional regulator
binding sites on the chromosome. Within each family of response regulators, the
signaling specificity is determined by the tight interaction of the REC domains with
their cognate histidine kinases and of the HTH domains with the target sites on the
DNA. As a result, transcriptional regulators with similar sequences (e.g., OmpR
and PhoB) may have dramatically different biological functions. Some response
regulators consist of more than two domains. In transcriptional regulators of the
NtrC family (4 members in E. coli), the N-terminal REC domain and the C-terminal
DNA-binding Fis-like domain are separated by the central AAA-type ATP-binding
domain, whose ATPase activity is required for the DNA binding. In summary, bac-
terial response regulators contain a wide variety of output domains that put the
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histidine kinases at the top of signaling hierarchy, allowing the cell to control its
metabolism and behavior in response to various environmental challenges.

In some response regulators, the output domains are enzymatic. In E. coli, there
is only one such response regulator, CheB, whose output domain is a methyl esterase
of MCP proteins that takes part in chemotactic adaptation. Finally, E. coli and sev-
eral closely related bacteria encode an unusual response regulator RssB (or Hnr),
which regulates proteolysis of the stress sigma factor RpoS (Muffler et al. 1996,
Zhou et al. 2001, Hengge-Aronis 2002). Its C-terminal domain is a degraded version
of the Ser/Thr protein phosphatase domain which has apparently lost its catalytic
activity and participates solely in protein-protein interactions (Galperin 2006).

8.3.3 Methyl-accepting Chemotaxis Proteins

Escherichia coli K12 encodes 5 methyl-accepting chemotaxis proteins (MCPs). The
signals sensed by each of them have been experimentally characterized as follows:
Tsr – serine; Tar – aspartate, maltose; Trg – ribose, galactose; Tap – dipeptides; and
Aer – redox state of the respiratory chain (Szurmant and Ordal 2004). The last of
these MCPs, Aer, is obviously important for sensing the presence of usable termi-
nal electron acceptors, reflecting the choice between a respiratory and fermentative
metabolism (Repik et al. 2000, Zhulin 2001). All these MCPs appear to interact with
the chemotaxis histidine kinase CheA and transmit the respective signals thorough
the two-component phosphorelay to the chemotactic response regulator CheY.

8.3.4 Phosphotransferase System Components

An MCP-independent mechanism of regulating chemotaxis is provided by the
phosphoenolpyruvate-dependent sugar:phosphotransferase system (PTS), which cat-
alyzes uptake of certain sugars, coupling membrane transport of its substrates with
their phosphorylation (Postma et al. 1993, Deutscher et al. 2006). Transport of sugar
substrates by the PTS is coupled to signaling, both to the chemotaxis machinery and
to the adenylate cyclase. Like histidine kinases, PTS proteins are phosphorylated
on the histidine residue. However, in contrast to the ATP-His-Asp or ATP-His-Asp-
His-Asp phosphorelay, typical for the two-component signaling, the PTS phospho-
relay starts from phosphoenolpyruvate (PEP) and includes only His residues, (at
least, in EI, HPr and EIIA components). The high free energy of PEP hydrolysis
ensures that in the absence of carbohydrate substrates all PTS components stay in
the phosphorylated form. The limiting step in the whole phosphorelay appears to
be PEP-dependent autophosphorylation of the first component, EI. Therefore, in
the presence of carbohydrate substrates, phosphoryl flow through the PTS compo-
nents occurs at a higher rate than re-phosphorylation of EI by PEP. As a result,
EI, HPr and EIIA components become partly dephosphorylated, which serves as
a signal both for the chemotaxis machinery and for the E. coli adenylate cyclase.
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Although any direct interaction between PTS components and MCP or CheA re-
mains to be demonstrated, the available data suggest that unphosphorylated EI can
interact with CheA, modulating its activity and, hence, the cellular level of CheY∼P.
The second mechanism of signal transduction from the PTS involves EIIAGlc. This
protein has been shown to interact with the adenylate cyclase and other targets,
including the lactose permease. The E. coli cell encodes 23 membrane components
of the PTS, five of which (FruA, FrvB, FrwC, HrsA, and YpdG) are apparently
specific to fructose. The other ones, according to the existing experimental data and
sequence-based predictions, are specific to the following sugars: glucose (PtsG),
mannose (ManX/Y), mannitol (MtlA, CmtA), N-acetylglucosamine (NagE), cel-
lobiose (AscF, CelB), galactitol (GatC, SgcC), N-acetylgalactosamine (AgaC/D,
AgaW), sorbitol (SrlA), maltose (MalX), trehalose (TreB), �-glucosides (GlvC),
�-glucosides (BglF), ascorbate (SgaB), and N-acetylmuramic acid (YfeV).

Thus, E. coli carries in its genome genes encoding chemotaxis receptors for
almost any commonly found monosaccharide and several disaccharides. Whether
these genes are constitutively expressed at sufficient levels to contribute to the cell
behavior remains an open question. It appears that at least for some of the PTS
receptor genes need to be induced by the corresponding sugar.

8.3.5 Ser/Thr Protein Kinases and Protein Phosphatases

Reversible protein phosphorylation on serine, threonine, or tyrosine residues is a
key regulatory mechanism in eukaryotic cells. In the past several years, Ser/Thr
protein kinases have been recognized in a variety of prokaryotic cells but are still
often referred to as “eukaryotic-type” protein kinases. In certain groups of bacteria
(e.g., actinobacteria) and archaea, Ser/Thr protein kinases appear to be the principal,
if not the only (known) type of receptor proteins (Galperin 2005).

Most enterobacteria, including E. coli, encode just one or two Ser/Thr protein
kinases and phosphatases, which remain poorly characterized. One of the predicted
Ser/Thr protein kinases, UbiB, has been shown to be required for a hydroxyla-
tion step in ubiquinone biosynthesis and was initially thought to function as 2-
octaprenylphenol hydroxylase (Poon et al. 2000). However, this enzymatic activity
has not been experimentally demonstrated. In contrast, it has been identified as a
member of the Ser/Thr protein kinase superfamily and has all the key active site
residues intact. Thus, it remains unknown at this time whether UbiB is an enzyme
of ubiquinone biosynthesis or a Ser/Thr protein kinase that regulates this process.
The functions of the second predicted Ser/Thr protein kinase, YegI, also remain
unknown.

8.3.6 Adenylate Cyclases

Bacteria encode several different variants (referred to as classes) of adenylate
(adenylyl) cyclase, the enzyme that produces cAMP from ATP. The enzyme from
E. coli is considered class I adenylate cyclase. It is a soluble enzyme that does not
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appear to sense any environmental signals by itself. However, its activity is modu-
lated by the EIIAGlc component of the glucose-specific phosphotransferase system.
The phosphorylated form of EIIAGlc appears to activate adenylate cyclase, whereas
the dephosphorylated form, accumulating in the presence of extracellular glucose,
does not bind to the adenylate cyclase or even inhibits it (Krin et al. 2002, Park
et al. 2006). Thus, in the presence of glucose or other PTS sugars, adenylate cyclase
activity decreases, leading to a drop in the cellular level of cAMP. This is one of the
mechanisms contributing to the phenomenon of catabolite repression.

8.3.7 Diguanylate Cyclases and C-di-GMP Phosphodiesterases

A recently identified group of bacterial receptors includes proteins with so-called
GGDEF and EAL domains that, respectively, synthesize and hydrolyze the second
messenger c-di-GMP. Recent studies implicated c-di-GMP in regulating biofilm for-
mation, development of flagellar apparatus, and a variety of other processes. The
GGDEF domain has been shown to function as a diguanylate cyclase that produces
a c-di-GMP molecule from two molecules of GTP (Paul et al. 2004, Ryjenkov
et al. 2005). The EAL domain functions as c-di-GMP-specific phosphodiesterase,
hydrolyzing c-di-GMP to a linear pGpG, and, eventually, to two molecules of GMP
(Christen et al. 2005, Schmidt et al. 2005). Escherichia coli encodes 12 proteins
with the GGDEF domain, 10 proteins with the EAL domain and 7 proteins that
contain both of them and could potentially catalyze both reactions (Galperin et al.
2001, Galperin 2005). It appears, however, that in most of such fusion proteins, at
least one of the domains is enzymatically inactive and serves to regulate the catalytic
activity of the other one. In some cases, however, both domains appear to be active.

Our current knowledge of the functions of E. coli diguanylate cyclases and c-
di-GMP-specific phosphodiesterases is very limited. The sensed ligand, oxygen
(and/or CO and NO), has been established only for one of them, YddU, which was
accordingly renamed ‘direct oxygen sensor’, or Dos (Delgado-Nixon et al. 2000).
Several other GGDEF and EAL domain proteins, such as YaiC (AdrA), YdaM,
YciR, and YhdA, have been shown to regulate, respectively, cellulose biosynthe-
sis (Zogaj et al. 2001), production of curli fimbriae, and carbon storage, although
the signal they respond to remains unknown. For other GGDEF and/or EAL do-
main proteins (Rtn, YcdT, YddV, YdeH, YeaI, YeaJ, YeaP, YedQ, YegE, YfeA,
YfgF, YfiN, YhjK, YliF, YneF, YahA, YcgF, YcgG, YdiV, YhjH, YjcC, YlaB, YliE,
YoaD), neither the sensed signal nor the regulated process are known at this time.

8.4 A System-level Look at the E. coli Signal Transduction

8.4.1 Multiple Responses to Multiple Signals

The above discussion shows that signal transduction machinery of E. coli is a
complex network of interconnected pathways that underlie the ability of the cell
to respond to environmental challenges. These responses are elicited by a variety
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of environmental parameters and occur on several different levels, including the
level of individual genes and operons (changes in gene expression), at the level
of the whole cell (chemotaxis), and at the level of multicellular communication
(quorum sensing, biofilm formation). The regulation of gene expression, in turn,
is multi-faceted and can occur at the transcriptional level (changes in expression
of certain genes, operons, or even global regulons), and at the levels of post-
transcriptional (e.g. modulation of the mRNA decay rate) and post-translational
regulation (e.g. modulation of enzyme activity, protein stability, or protein-protein
interactions).

However, a closer look at the mechanisms actually utilized by E. coli shows
that most of the cell responses occur either at the level of transcriptional regula-
tion or at the level of whole-cell behavior (chemotaxis). The two-component signal
transduction in E. coli is primarily targeted towards transcriptional regulation (29 of
32 response regulators are DNA-binding). Chemotaxis involves just two response
regulators, CheY and CheB, and the single remaining response regulator (RssB or
Hnr) acts post-translationally, at the level of proteolysis of RpoS (Hengge-Aronis
2002), and ultimately affecting transcription of RpoS-dependent genes. Another
way transcription can be regulated by environmental signals is through the cAMP-
CRP system. As mentioned above, sugar uptake by the PTS affects the adenylate
cyclase activity and, hence, transcription from a variety of catabolite repression-
sensitive promoters. Predicted Ser/Thr protein kinase YegI contains a C-terminal
helix-hairpin-helix DNA-binding domain and is probably also involved in tran-
scriptional regulation. There is a distinct possibility that transcription can also be
regulated by signaling pathways leading from the cellular diguanylate cyclases.
However, there is currently no experimental data to support that possibility.

The whole-cell behavioral changes include (i) chemotaxis in response to a va-
riety of sugars, several amino acids, and/or changes in the redox state of the cell
and (ii) production of exopolysaccharide and curli fimbriae, eventually leading to
biofilm formation. This dichotomy might reflect the critical choice between “stay”
and “run” survival modes, which appears to be governed by the c-di-GMP-mediated
signaling.

The same cellular responses can be classified in terms of the environmental pa-
rameters that cause them. Although we still know very little about the signals sensed
by several histidine kinases, predicted Ser/Thr protein kinase, diguanylate cyclases,
and c-di-GMP-specific phosphodiesterases, the listing of the environmental parame-
ters sensed by experimentally characterized histidine kinases, MCPs, and membrane
components of the PTS shows two interesting trends. On one hand, the E. coli cell
monitors (or, rather, is capable of monitoring) a variety of environmental stress con-
ditions and extracellular concentrations of a variety of nutrients. The first group in-
cludes, among others, envelope stress, osmotic stress, presence of heavy metals, and
presence of membrane-penetrating acids, such as acetate or benzoate. The second
group includes a variety of hexoses, most disaccharides, di- and tricarboxylates, but
apparently only one pentose (ribose) and only a minimal selection of amino acids
(glutamine, serine, aspartate). While all these compounds are obviously important
for E. coli metabolism, it is hard to rationalize why E. coli senses primarily hexoses
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and not pentoses or these particular amino acids and not glutamate or asparagine.
Some of these traits probably reflect simplification of the effector panel during adap-
tation of E. coli and other enterobacteria to the high-nutrient intestinal environment.
Others might provide clues to the functional specialization of enteric bacteria within
that specific ecological niche.

8.4.2 Energy Expenditure Considerations

It is important to note that environmental sensing is almost never energy-neutral:
transmission of environmental signals requires significant energy expenditures, al-
though minor in comparison to the energy requirements for motility, transcription
of new genes (operons) or polysaccharide secretion,

As shown on Fig. 8.1, transmission of a signal through the two-component sys-
tem takes an ATP molecule to phosphorylate a single molecule of a response regula-
tor. Transcriptional regulation usually requires dimerization of response regulators,
so two ATP molecules are being spent to convert an inactive response regulator into
the active phosphorylated dimeric form. Autocatalytic spontaneous dephosphoryla-
tion of the receiver domains of response regulators weakens their protein-protein
interaction, leading to the dissociation of dimers and a significant decrease in the
DNA-binding ability. Therefore, the energy is spent here to achieve a rapid but
relatively short-term activation (or, in some cases, repression) of transcription of
certain genes (operons). Obviously, these energy expenditures are minor in compar-
ison to the energy requirements of the transcription process, not to mention protein
translation.

Transmission of the chemotactic signal includes a histidine kinase-response reg-
ulator pair and follows the same general principle as above. However, in case of
CheB, as well as in the methylation-demethylation cycle, additional energy is being
spent to regulate the adaptation time, i.e. to achieve a more precise timing of the
signal. Again, these energy expenditures are minor in comparison to the energy
spent on flagellar rotation that is required for motility of E. coli.

The lack of knowledge of the targets for Ser/Thr protein phosphorylation does
not allow us to calculate the energy costs of this type of regulation. Nevertheless,
they appear to be comparable to that of two-component signal transduction.

cAMP-mediated signaling requires a molecule of ATP to produce cAMP, which
is then hydrolyzed to AMP by various phosphodiesterases. Converting the result-
ing AMP back to ATP requires two more ATP equivalents. Thus, transcriptional
regulation of catabolite-sensitive operons requires at least 6 molecules of ATP per
cAMP-CRP dimer.

In contrast, signal transmission through the PTS is remarkably energy efficient.
As far as we know, chemotactic signaling by dephosphorylated EI and inhibition of
the adenylate cyclase by dephosphorylated EIIAGlc do not require additional energy
expenditure. However, the energy price here is paid in synthesizing all the com-
ponents of the PTS and keeping them phosphorylated in the absence of the sugar
substrate.
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Finally, formation of a single c-di-GMP molecule consumes two molecules of
GTP and four more ATP equivalents are required to restore these two molecules
of GTP from pGpG. Further, the available crystal structures of c-di-GMP bound
to proteins suggest that the active conformation of c-di-GMP is its dimer. The
mechanisms of c-di-GMP-mediated regulation are still not fully understood, but
both activation of cellulose biosynthesis through binding of c-di-GMP to the PilZ
domain of the cellulose synthase (Amikam and Galperin 2005) and inhibition of
flagellar formation through binding of the YcgR protein to the flagellar basal body
(Ryjenkov et al. 2006) seem to occur solely by conformational changes, without
any further energy-consuming reactions. Again, in these cases, energy expenditure
seems to be minimal compared to that of the regulated process, that is, cellulose
biosynthesis and export of flagellin.

In conclusion, despite the recent progress, there remain major puzzles in signal
transduction pathways of even such well-studied organism as Escherichia coli K12.
Determination of the range of signals sensed by this organism and the range of
cellular responses elicited by these signals is an important goal of the ongoing exper-
imental studies. A complete understanding of the signal transduction mechanisms
and full integration of these mechanisms into the metabolic pathway model of the
E. coli cell will probably remain a challenge for the nearest future.
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Abstract Since the release of the first genome-scale metabolic reconstruction of the
E. coli metabolic network in 2000, there has been a growing number of researchers
around the world adapting it for a broad range of studies (Feist and Palsson 2008).
The uses range from practical applications to obtaining basic biological understand-
ing of cellular behavior. This range of uses is further expected to expand as the
reconstruction broadens in scope and as new in silico methods are developed, im-
plemented, and put to use.

In this chapter, we will describe foundational concepts central to the recon-
struction process and model formulation, the history of reconstruction of the E.
coli metabolic network, the development of reconstruction technology, genome-
scale constraint based modeling with key exemplary case studies of uses of the
E. coli metabolic reconstruction, and insights into the future of the field. As such,
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this chapter should serve as a guide to those interested in either expanding the
application of the E. coli reconstruction or adapting established applications to other
organisms.

9.1 Foundational Concepts

The reconstruction of the E. coli metabolic network has led to the development of
‘bottom-up’ reconstruction technology, genome-scale modeling methods, and basic
and practical uses. A number of foundational concepts have also been developed
during the period that we introduce here and provide background and a conceptual
framework for the reader (see Palsson 2006, Price et al. 2004a).

Forming a BiGG knowledge base: A network reconstruction is based on a
highly curated set of primary biological information for a particular organism; a bio-
chemically, genetically and genomically structured (BiGG) knowledge base (Reed
et al. 2006a). Such a knowledge base represents a large body of experimental data
that is meticulously assembled and curated through the systems biology and recon-
struction approaches detailed herein.

Genome-scale network reconstruction (GENRE): An organism-specific BiGG
knowledge base is the basis for a GENRE. A GENRE is specific to a particular
organism, for example, GENRE of Escherichia coli (below we will see four of these,
specifically called iJE660, iJR904, iMBEL979, and iAF1260). A GENRE contains a
list of all the known (and some predicted) chemical transformations that are believed
to take place in the particular network (e.g. metabolic, transcriptional regulatory
network, etc.).

The central role of network reconstruction in systems biology: Systems bi-
ology research generally can be conceptualized as a four-step process (Fig. 9.1).
Foundational to the field is the generation of global, or genome-scale, data. The
growing number of available ‘omics’ data types has created the need for formal
and structured multi-‘omic’ data integration (Joyce and Palsson 2006). Omics data,
along with legacy information (i.e., the ‘bibliome’) and detailed small-scale experi-
ments, can be used to define the interactions among biological components that are
used to reconstruct networks in particular organisms (Reed et al. 2006a). Network
reconstruction is also an iterative, on-going process that continually integrates data
in a formal fashion as it becomes available (Reed and Palsson 2003). These char-
acteristics render the network reconstruction as a common denominator for those
studying systems biology. The reconstruction effectively represents a 2-D annota-
tion of a genome detailing not only the parts for an organism, but the interactions
between specific components (Palsson 2004). Genome-scale reconstruction tech-
nologies for metabolic (Reed et al. 2006a), transcriptional regulation (Covert et al.
2004, Gianchandani et al. 2006, Herrgard et al. 2004) and signaling networks (Papin
et al. 2005) have been established, and transcriptional/translational network recon-
struction methods are currently under development (Thiele et al. 2009). An in depth
review on the bottom-up reconstruction process (Palsson 2006) as well as a current
review of biological network reconstruction (Feist et al. 2009) have been generated.
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Fig. 9.1 Systems Biology as a 4-step Process. Step 1, the process is based on a variety of high-
throughput data sets (i.e., ‘omics’ data) and a comprehensive assessment of the literature (i.e., bib-
liomic data). Step 2, all of the data types are used to reconstruct the list of biochemical transfor-
mations that make up a network as well as their genetic basis (Reed et al. 2006a). In principal,
the network is unique. Step 3, the data contained in the reconstruction can be formally repre-
sented (i.e., in the form of matrices and logical statements) that can be mathematically charac-
terized by a variety of methods. Step 4, the computational model enables a broad spectrum of
applications, as reviewed in this chapter. Figure adapted from (Feist and Palsson 2008, Palsson
2006)

Constraint-based reconstruction and analysis (COBRA): COBRA is the over-
all philosophy and approach of applying constraints to limit the range of achievable
functional (phenotypic) states of GENREs (outlined below). A GENRE operates
under defined constraints. These constraints fall into at least four categories (Pals-
son 2006): physico-chemical, topological, regulatory, and environmental. Such con-
straints can be mathematically represented and imposed on the functional states that
a GENRE can take on. Functional states can be assessed using a variety of computa-
tional methods (Palsson 2006, Price et al. 2004a) and have been disseminated in the
form of a COBRA Toolbox (Becker et al. 2007) that is a MATLAB (The MathWorks
Inc., Natick, MA) based software package.

Converting network reconstructions into a Genome-scale Model (GEM):
A GENRE can be converted into a mathematical form (i.e., an in silico model)
and used to computationally assess phenotypic properties (reviewed in (Price et al.
2004a)). The COBRA approach is used to analyze the properties of GENREs by
assessing allowable functional states. Genome-scale reconstructions are thus a key
step in quantifying the genotype-phenotype relationship and can be used to ‘bring
genomes to life’ (Frazier et al. 2003). The availability of reconstructed metabolic
networks for microorganisms has increased rapidly in recent years and a growing
number of research groups are synthesizing GENREs for target organisms of interest
(see Fig. 9.4) (Feist et al. 2009, Reed et al. 2006a).

The conversion of a reconstruction (GENRE) to an in silico model (GEM), rep-
resented by the arrow from step 2 to step 3 in Fig. 9.1, involves a subtle, but critical,
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transition. The chemical transformations of which a GENRE is comprised can be
represented stoichiometrically (as well as other formats, e.g., a directed graph).
Stoichiometric representations form a matrix, the rows of which represent the com-
pounds, the columns of which represent the chemical transformations, and the en-
tries of which are the stoichiometric coefficients (see section below and Fig. 9.6)
With the definition of systems boundaries and other details, a network reconstruc-
tion can be converted into a mathematical format that can be computationally inter-
rogated. The process that this arrow represents is the bridge between the realms of
high-throughput data/bioinformatics and systems science.

9.2 History of the E. coli Metabolic Network Reconstruction:
An Ongoing and Iterative Process

The 18-year history of metabolic reconstruction for E. coli is outlined in Fig. 9.2
(Feist and Palsson 2008, Reed and Palsson 2003). E. coli served as a model or-
ganism in the era of discovery of metabolic biochemistry, and thus, comprehensive
metabolic reconstructions were developed before its genome sequence was available
(Varma et al. 1993a,b).With the publication of the E. coli genomic sequence in 1997
(Blattner et al. 1997), the development and use of the metabolic reconstruction in E.
coli grew rapidly in scope.
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Fig. 9.2 The ongoing reconstruction of the E. coli metabolic network. History of the E. coli
metabolic reconstruction. Shown are six milestone efforts contributing to the reconstruction of
the E. coli metabolic network. For each of the six reconstructions (Edwards and Palsson 2000,
Feist et al. 2007, Majewski and Domach 1990, Pramanik and Keasling 1997, 1998, Reed et al.
2003, Varma et al. 1993a,b) (see text for details), the number of included reactions (diamonds),
genes (triangles), and metabolites (squares) are displayed. Also listed is the expansion in scope in
each successive reconstruction. The start of the genome era in 1997 (Blattner et al. 1997) marked
a significant increase in scope. The reaction, gene, and metabolite values for pre-genomic era
reconstructions were estimated from the content outlined in each publication and in some cases,
encoding genes for reactions were unclear. Fig. adapted from (Feist and Palsson 2008)
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Pre-genome era: Beginning in 1990, a network reconstruction consisting of 14
reactions (characterizing primarily the TCA cycle and partially glycolysis) was gen-
erated to analyze the production and secretion of acetate during aerobic growth on
glucose (Majewski and Domach 1990). This example demonstrates the scope of
initial uses of network reconstructions of E. coli. Later, in 1993, a larger metabolic
reconstruction consisting of 146 reactions was generated, representing key catabolic
and anabolic metabolic pathways (Varma et al. 1993a,b). This reconstruction was
used for computing (Varma et al. 1993a, Varma and Palsson 1993, 1994, 1995):Op-
timal production of cofactors and biosynthetic precursors, Maximum allowable gen-
eration of amino acids and nucleic acids, and Internal network flux distributions for
optimal and sub-optimal growth.

The computational predictions based on the model were compared to experi-
mental data and found to be consistent with measurements under both aerobic and
anaerobic glucose minimal media conditions (Varma and Palsson 1994). The com-
parison of computation and experimental findings in this work demonstrated the
important concept of comparison to in vivo data as computational outcomes have to
be considered as hypotheses that need experimental confirmation.

Following these developments in the early 1990s, an expanded reconstruc-
tion consisting of 317 reactions was generated in 1997. It included cofactor and
cell wall biosynthesis, and other additional metabolic pathways (Pramanik and
Keasling 1997, 1998). This expanded reconstruction was used for computations
that incorporated measured metabolite uptake and secretion rates to predict cen-
tral metabolic fluxes which were found to be consistent with enzymatic flux values
determined from isotopomer-based measurements (Pramanik and Keasling 1997,
1998). These studies also incorporated a growth rate dependent biomass objective
function that had not been considered in previous studies. It should be noted that
isotopomer-based measurements are also network dependent and studies are cur-
rently emerging looking specifically at this issue (Suthers et al. 2007).

Note that these pre-genome era reconstructions of E. coli metabolism were based
solely on biochemical information and provided an important foundation for subse-
quent work at the genomic scale.

Genome era: The complete genome sequence for E. coli K-12 MG1655 was
published in 1997 (Blattner et al. 1997). Its availability fueled a significant increase
in network reconstruction content and scope as the genome sequence directly pro-
vided a list of parts (components) present in E. coli (Fig. 9.2). Utilizing the anno-
tated sequence, a genome-scale metabolic reconstruction was generated for E. coli
consisting of 627 unique reactions catalyzed by 660 gene products (Edwards and
Palsson 2000). This reconstruction, later titled iJE660, was initially used to:Predict
the phenotypes for knock-out mutants of the central metabolic pathways (Edwards
and Palsson 2000), Design quantitative experiments (Edwards et al. 2001), and Pre-
dict the outcome of adaptive evolution in the context of the metabolic machinery
available to the cell (Ibarra et al. 2002). These results demonstrated the utility of the
reconstruction to understand growth characteristics of E. coli, the effects of gene
deletions, and to point to areas of computational and experimental disagreement
that identify targets for further biochemical characterization (see below).



154 A.M. Feist et al.

An updated annotation of the E. coli K-12 MG1655 genome (Serres et al. 2001)
and continual functional characterization of E. coli metabolic content enabled an
expansion of the reconstruction in 2003, which consisted of 931 reactions catalyzed
by 904 gene products (Reed et al. 2003). This reconstruction, titled iJR904, was
an improvement over previous efforts in that contained both charge and elemental
balancing of all reactions, expanded the various carbon source utilization pathways,
contained a larger number of characterized transport systems and their encoding
genes, better accounted for quinone usage in the electron transport chain, and better
detailed the relationship between given genes, proteins, and reactions contained in
the reconstruction (the GPR associations).

This reconstruction has been utilized for a broad number of applications reviewed
later in this chapter. Utilizing the iJR904 (Reed et al. 2003) reconstruction, an ex-
panded reconstruction of E. coli was generated (containing 979 reactions and ti-
tled iMBEL979) for the purpose of designing overproducing strains in the software
framework MetaFluxNet (Lee et al. 2005).

The most recent metabolic reconstruction for E. coli, titled iAF1260, incorpo-
rates data from the most recent E. coli K-12 MG1655 genome annotation (Riley
et al. 2006) and consists of 2,077 reactions and 1,260 genes (Feist et al. 2007).
The advancements represented by iAF1260 over iJR904 lie in five main areas: an
increased scope with the inclusion of 357 additional ORFs; compartmentalization
into three distinct compartments (cytoplasmic, periplasmic and extra-cellular); the
detailing of all grouped, or lumped, reactions (most often associated with lipid and
lipopolysaccharide biosynthesis); the incorporation of reaction thermodynamics,
calculated Gibbs free energy (� G◦) values for 950 metabolites and 1935 reactions;
and alignment with the EcoCyc database (Keseler et al. 2005) which provided ex-
panded coverage for the network and content mappings for further computational
analyses.

This 18-year history of reconstruction of the E. coli metabolic network has cul-
minated in a network containing a total number of 1,260 metabolic genes covering
28% of the 4,453 identified ORFs on the E. coli genome. More importantly, the 1260
ORFs represent 48% of the functionally annotated ORFs that have been confirmed
by experimental data (Table 9.1). Thus, 92% of the 1,260 gene products included
in iAF1260 have been experimentally verified (Riley et al. 2006) with the balance
of 8% having a computationally predicted function which necessitate confirmation
with focused experimentation. Model-aided gap-filling and discovery will aid in
this process (see Section 9.5.2). In addition, protein structures (computed or ex-
perimental) are available for a large fraction of the proteins in iAF1260 (Berman
et al. 2000). Integration of protein structural data with the functional content of
the reconstruction will lead to a better understanding of structural motifs and their
properties.

Reconstruction of the E. coli metabolic network is thus approaching exhaustion
of known metabolic gene functions and is now being used in a prospective fashion
to discover new metabolic capabilities in E. coli (see below). As a result of this
endeavour, the reconstruction of the E. coli metabolic network represents the best-
developed genome-scale network to date.
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Table 9.1 Properties of the most current E. coli metabolic reconstruction

iAF1260 this study

Included genes 1260 (28%)d

Experimentally–based function 1161 (92%)
Computationally predicted function 99 (8%)

Unique functional proteins 1148

Multigene complexes 167
Genes involved in complexes 415
Instances of isozymesa 346

Reactions 2077

Metabolic Reactions 1387

Unique metabolic reactionsb 1339
Cytoplasmic 1187
Periplasmic 192
Extracellular 8

Transport Reactions 690

Cytoplasm to periplasm 390
Periplasm to extracellular 298
Cytoplasm to extracellular 2

Gene - protein - reaction associations

Gene associated (met./trans.) 1294/625
Spontaneous/diffusion reactionsc 16/9
Total gene associated and no 1310/634

association needed (met./trans.) (94%)
No gene association 77/56

(metabolic/transport) (6%)

Exchange reactions 304

Metabolites

Unique Metabolitesb 1039
Cytoplasmic 951
Periplasm 418
Extracellular 299

a tabulated on a reaction basis, not counting outer membrane non-specific porin transport.
b reactions can occur in or between multiple compartments and metabolites can be present in more
than one compartment.
c diffusion reactions do not include facilitated diffusion reactions and are not included in this total
if they can also be catalyzed by a gene product at a higher rate.
d overall genome coverage based on 4453 total ORFs in E. coli; iAF1260 contains 48% of the
ORFs in E. coli that have been characterized experimentally (2403 ORFs).

9.3 Continuing Development of Reconstruction Technology

Development of the reconstruction process for metabolic networks: As illus-
trated in the previous section, the reconstruction process for metabolic networks
is an iterative procedure that requires different types of experimental data and
techniques at each phase of reconstruction. The experience with E. coli has led to



156 A.M. Feist et al.

Curated
Reconstruction

Draft
Reconstruction

Genome-scale
Metabolic Model

Platform for
Discovery and Design

Similarity-based
Annotation

Known Metabolic
Functions

Genetic Data

Biochemical Data

Detailed
Physiological Data

Deletion Phenotyping
(Phenomics)

Fluxomics

Metabolimics

Proteomics

Transcriptomics

Genome Sequence

Data Needed End Product

Comparative
Genomics

Manual Curation

Phenotype
Prediction Methods

Discovery Methods

Bioinformatics

Tools Needed

Fig. 9.3 The phases and tools necessary to generate a metabolic reconstruction. The genome-scale
metabolic reconstruction process can be broken down into four major phases (center column),
with each of the latter phases building off the previous. This process is iterative and driven by
experimental data (primarily in the three latter phases). For each phase, specific data types are
necessary and these range from high-throughput data types (e.g., phenomics, metabolomics, etc.),
to detailed studies characterizing individual components (e.g., biochemical data for a particular
reaction). For example, the genome annotation can provide a parts list of a cell, whereas genetic
data can provide information about the contribution of each gene product towards a phenotype
(e.g., when removed or mutated). The product generated from each reconstruction phase can be
utilized and applied to examine a growing number of questions with the final product having the
broadest applications

the formulation of the workflows that underlie metabolic reconstruction. The four
phases of the reconstruction process are depicted in Fig. 9.3 and the product at
each phase can be used for different applications, with the number of applications
increasing with network development. This procedure represents the current status
of network reconstruction, and the most recent E. coli reconstruction, iAF1260, was
built accordingly (Feist et al. 2007) with the advantage of starting from an already
well-established reconstruction, iJR904. The end product of this reconstruction ef-
fort is a platform for design and discovery, and key examples of use are given later in
this chapter. More extensive descriptions exist, which outline the conceptual basis
(Reed et al. 2006a) and the detailed process to generate genome-scale biological
networks, (Feist et al. 2009) and these will not be repeated here.

Development of the reconstruction process beyond metabolism: The devel-
opment and use of genome-scale reconstruction was rapid and many computational
models were developed to address a growing spectrum of basic research and ap-
plied problems. Still, further development of reconstruction technology is necessary.
The scope of reconstructions is bound to grow, representing more and more BiGG
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knowledge in the structured format of GEMs (Breitling et al. 2008). Growth in scope
is likely to proceed in phases (Feist and Palsson 2008). Growth in scope in the near-
term will involve the transcriptional and translational machinery (Allen and Palsson
2003, Mehra and Hatzimanikatis 2006, Thiele et al. 2009, Thomas et al. 2007).
Such an extension will enable a range of studies including the direct inclusion of
proteomic data, fine graining of growth requirements, and the explicit consideration
of secreted protein products.

Another expansion in scope in the near-term is the reconstruction of the genome-
scale transcriptional regulatory network (TRN). Such reconstruction at the genome-
scale is now enabled by new experimental technologies, such as ChIP-chip (Lee
et al. 2002). Experimental interrogation of the currently available TRN suggests that
we know about one-fourth to one-third of its content (Covert et al. 2004), indicating
that there is much to be discovered. This expectation is being confirmed with high-
resolution ChIP-Chip data for E. coli (Cho et al. 2008). Once reconstructed, the
TRN will allow computational predictions of the context-specific uses of the E. coli
genome and the responses of two-component signaling systems.

Mid-term expansions in scope are likely to include the growth cycle, shock
responses (e.g. heat and acid shock), and additional cellular functions (e.g. DNA
replication and flagellar biosynthesis). Such a reconstruction should eventually be
a comprehensive representation of the chemical reactions and transformations en-
abled by E. coli’s gene products.

Longer-term reconstruction may begin to address the 3-dimensional organiza-
tion of the bacterial cell. In particular, high-resolution ChIP-chip data on the DNA
binding protein could enable the estimation of the topological arrangement of the
genome, and potentially elucidate the structure of the cell wall and other cellular
structures that will allow a full 3-dimensional reconstruction of E. coli.

The two near-term expansions in content will encompass the activity of approx-
imately 2000 ORFs in the E. coli genome. Clearly, quality-controlled reconstruc-
tions will help in guiding us to comprehensive genome-scale representation of all
major cellular processes in bacteria at the BiGG data level of resolution that, in
turn, enables GEMs of growing coverage and resolution. The scope of this effort
has been described as being; “. . . 10 times more ambitious and 100 times more im-
portant for mankind [compared with Human Genome Project]. . .” Hans Westerhoff
(Holden 2002).

Influence of the E. coli reconstruction on the in silico analysis of other
micro-organisms: The metabolic network reconstruction of E. coli has been influ-
ential in the generation of other organism-specific metabolic networks. The E. coli
metabolic reconstruction has served: As a content database where stoichiometrically
and charge balanced reactions, and even pathways, have been incorporated into new
reconstructions, As a database for defined metabolites, and as a source for a biomass
objective function to query network content and functionality.

This influence has sparked an increase in the number of genome-scale network
reconstructions that have been generated to formulate GEMs for a number of or-
ganisms. A detailed list of GEMs that have been developed, curated, and used
for computation is given in Table 9.2. This table is a current snapshot of the
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Fig. 9.4 Appearance of organism-specific genome-scale reconstructions and applications of the
E. coli metabolism reconstruction. The genome-scale reconstructions for metabolic networks that
have appeared every two years since the release of the first GEMs in 2000 (see Table 9.2) and the
number of published studies the have appeared utilizing the E. coli GEM (Feist and Palsson 2008).
Since the release of the first GEMs for E. coli (Edwards and Palsson 2000) and that of Haemophilus
influenzae (Edwards and Palsson 1999), there has been a significant increase in both the number of
genome-scale reconstructions and studies focused on the E. coli GEM for every time period

available reconstructions and a continually updated version can be found online
(http://systemsbiology.ucsd.edu/In Silico Organisms/Other Organisms). Addition-
ally, Fig. 9.4 shows the number of genome-scale reconstructions that have been
developed over two year periods (for the reconstructions listed in Table 9.2). The
number of reconstructions generated for each period has increased since the re-
lease of the first genome-scale reconstructions for Haemophilus influenzae in 1999
(Edwards and Palsson 1999) and E. coli in 2000 (Edwards and Palsson 2000). Fur-
thermore, the number of published studies utilizing the E. coli GEM has also in-
creased significantly over time resulting in the applications outlined in the sections
below (Feist and Palsson 2008).

Modeling strategy and philosophy: Models are a formal way of accounting for
our knowledge about the phenomena being described. When describing biochemical
reaction networks formally, we need to deal with the ‘links’ (i.e., the reactions) be-
tween ‘nodes’ (i.e., the compounds). Our knowledge about links between biological
molecules varies; from the abstract to the specific (Fig. 9.5). Statistical models are
built on correlations and a black box approach that is not mechanism based. Specific
mechanism-based models are based on knowledge of chemistry, kinetics, and ther-
modynamics. Given the fact that kinetic and thermodynamic information is hard to
obtain on a large-scale, stoichiometric models stop one step short of full specifica-
tion (in the spectrum conveyed in Fig. 9.5). The result is that we have chemistry (and
its genetic basis) and network structure used as the foundation for building a mathe-
matical description of network functions. Such models do not have a unique solution
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Fig. 9.5 The different levels of knowledge used to generate biological models. Our knowledge
about links in biochemical networks varies. At one extreme, the information is abstract and often
takes the form of black-box correlations. At the other, we have detailed chemical mechanisms with
kinetic and thermodynamic information. Stoichiometric models would be second from the right,
accounting for mechanisms, but not incorporating kinetic and thermodynamic information

(e.g., see (Palsson 2006) and below). The lack of kinetic information can be dealt
with by: (1) examining the properties of the entire set of solutions (i.e., the solutions
space) or (2) by using constraint-based optimization to find specific solutions in the
space (Price et al. 2004a). The latter can be successful if we know the prevailing
selection pressure on an organism. The combination of a network reconstruction
that is based on a knowledge-base at the genome-scale and the inherent optimality
properties of the selection process underlie the success of COBRA for a number of
applications.

Constraint-based modeling methods: Over the past quarter century, there has
been a growing number of computational tools developed to interrogate biological
networks and models (Breitling et al. 2008, Palsson 2006, Price et al. 2004a). Owing
to its early development, the E. coli reconstruction and model has been a popular
target for initial screening and development of a number of these methods. In this
section, we introduce basic concepts common to most of these methods and describe
in more detail those methods that were used in the studies presented in this chapter.
The interested reader is encouraged to refer to recently published reviews presenting
the constraint-based modeling methods in more detail (Breitling et al. 2008, Palsson
2006, Price et al. 2004a).

Mathematical description of the reconstruction: The metabolic reconstruc-
tion consists of a list of biochemical transformations known to take place in the
target organism. This reaction list can be readily converted into a mathematical,
computable format by using any available parser (e.g. in COBRA toolbox (Becker
et al. 2007)). Using a parser, the stoichiometric coefficients are extracted for the
individual reactions and entered in the cell of the stoichiometric matrix, also called
the S matrix (Fig. 9.6). In this S matrix, every row corresponds to a metabolite
and every column corresponds to a network reaction. Note that a typical S matrix
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Fig. 9.6 The structure and application of constraints to networks. Shown are the components
(Reaction network) and the engineering approaches and equations used to model a reconstructed
network. The stoichiometric matrix is a mathematical representation of a reconstructed network
and the steady-state assumption is used in a number of COBRA approaches, including flux balance
analysis. The bottom of the diagram depicts how an unbound space can be confided to a solution
space in which a network must behave by imposing the governing physiochemical constraints on
a system (e.g., thermodynamic constraints)

is very sparse (< 1% non-zero entries) as many biochemical transformations are
bi-linear, and the majority of metabolites appear only in few metabolic reactions.
Only a few metabolites, such as protons, water, and ATP, are highly connected in a
metabolic network, and participate in many metabolic reactions. Many studies have
concentrated on studying the topological features of metabolic networks and the S
matrix (see Section 9.5.4 or (Feist and Palsson 2008)).

The multiplication of this S matrix with a flux vector v, containing flux values
for all reactions v j in S, results in a vector listing the changes in concentrations of
all metabolites xi over time:

S • ν = dx

dt
(9.1)

The constraint–based modeling approaches are based on the steady state assump-
tion (Fig. 9.6), which assumes that the change of metabolite concentration over time
is zero:
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S • ν = dx

dt
= 0 (9.2)

This assumption is valid for the metabolic reactions as the time scale of the re-
action rates is much smaller (milliseconds range) than the doubling time of a cell,
which is on the order of hours. Due to this time-scale separation, the metabolic
network is essentially in a steady state during cell replication, and as a consequence,
intracellular metabolites are not allowed to accumulate. This restriction, imposed by
Equation (9.2), is known as the mass-balance constraint (Fig. 9.6).

Further constraints may be added to the reconstruction, leading to the conversion
of the reconstruction to a condition-specific model. Such constraints can include
thermodynamic (i.e., reaction reversibility), regulatory (e.g., expression of an en-
zyme), topological (i.e., composition and connectivity of network), and environ-
mental (e.g., presence/absence of a specific carbon source).

Interrogation of the steady state solution space: In most cases, the set of equa-
tions encoded in the S matrix are underdetermined, meaning that there are more
variables (fluxes v j for j = 1 . . . n) than there are equations (mass-balances for
each metabolite xi for i = 1 . . . m). As a consequence, there is no single solution
or flux vector v satisfying all the equations, but rather there are many possible flux
vectors. This set of possible flux vectors is called the steady-state solution space.
Each flux vector v, satisfying the given model constraints, is called a functional state
of the network. This term functional state can be seen as analogous to the traffic
pattern of the road mesh in a large city. The road mesh would correspond to the
metabolic network and the traffic pattern, which shows high traffic and low traffic
on the highways, corresponds to the functional state of the road system. Clearly this
traffic pattern will be very different in the afternoon during rush hour versus the
traffic pattern found late into the night. This example highlights the idea that one
network can have many distinct functional states.

Functional states of a network can be determined using different mathematical
approaches. In the COBRA approach, there is a distinction between biased and un-
biased methods. Biased methods require the statement of an objective function, such
as a biomass formation reaction or a byproduct secretion reaction by the metabolic
network. This objective function is then maximized (or minimized) to obtain a func-
tional state leading to the maximal (or minimal) flux value of the objective function.
In contrast, unbiased methods explore the entire steady state solution space by deter-
mining a representative subset of possible functional states that can be analyzed in
a statistical manner. Examples of unbiased methods are uniform sampling (Almaas
et al. 2004, Price et al. 2004b, Thiele et al. 2005a, Wiback et al. 2004) and extreme
pathway analysis (Papin et al. 2002, Price et al. 2003).

In many COBRA applications, it is assumed that the aim of a living cell is to grow
as fast as possible to outgrow competitors and thus to use available nutrients mainly
for biomass production. Hence, many COBRA applications are used in conjunction
with the maximization of the biomass production rate. For example, gene essential-
ity can be determined in silico where the essentiality of every gene is tested to see
whether the metabolic network is still able to produce biomass despite the in silico
disruption of a gene (see Fig. 9.9). Other examples in this chapter discuss metabolic
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engineering applications, where the metabolic network is modified in such way that
it produces a desired byproduct while maintaining a certain biomass production ca-
pability. Many industrially-interesting byproducts are produced by cells when they
cannot produce biomass (e.g., due to nitrogen or phosphate limitations). Thus, the
byproduct and biomass production are competitive, or ‘orthogonal’ to each other.
COBRA has been successfully used to couple the byproduct production with the
biomass production by deleting certain metabolic genes, thereby redirecting carbon
fluxes in the metabolic networks (see below). The byproduct coupling to biomass
production forces the organism to produce the desired byproduct in order to obtain
the cellular objective of biomass production.

9.4 Applications and Uses of the E. coli
Metabolic Reconstruction

Ask not what you can do for a reconstruction, but what a reconstruction can do
for you: The E. coli reconstruction and GEM has been adapted for a broad number
of uses by research groups around the world. Studies utilizing the reconstructed
E. coli network range from pragmatic to theoretical applications and address a wide
range of questions. These uses can be further categorized into five areas which in-
clude: (1) metabolic engineering, (2) biological discovery, (3) assessment of pheno-
typic behavior, (4) biological network analysis, and (5) studies of bacterial evolution
(Fig. 9.7). A more extensive review of these uses has recently appeared (Feist and
Palsson 2008), as well as an additional review on metabolic engineering efforts with
E. coli and other organisms (Kim et al. 2008). Here, key examples of uses of the
E. coli reconstruction in each of these fields will be presented to demonstrate the
utility of the reconstruction and modeling process.

Metabolic
Engineering

Biological
Discovery

Phenotypic
Behavior

Network
Analysis

Bacterial
Evolution

Practical Basic

Type of
Analysis:

Application:

Fig. 9.7 Spectrum of uses of the of the genome-scale E. coli metabolic network reconstruc-
tion. Uses of the E. coli metabolic reconstruction can be categorized into 5 different ar-
eas. Furthermore, these categories can be arranged in order of addressing more practical
(e.g., generating a production strain) or more basic (e.g., understanding horizontal gene transfer)
questions

9.4.1 Metabolic Engineering

Metabolic engineering efforts utilizing the GEM of E. coli have focused on ex-
ploring overproduction for a number of products. Three examples in which com-
putation and experimental construction were used to achieve overproduction will
be discussed here. The first two examples utilized the E. coli GEM to explore the
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production of the amino acids L-valine (Park et al. 2007) and L-threonine (Lee et al.
2007) in E. coli, and each has demonstrated the broad usage of GEM-aided compu-
tation for strain design.

Production of L-threonine: In the first study, GEM-aided modeling was emplo-
yed in three different areas to increase the production of L-threonine to industrial
titers (Fig. 9.8) (Lee et al. 2007). In one instance, in silico modeling was used
to identify the optimal activity of a key enzymatic reaction towards maximum L-
threonine production using a parametric sensitivity analysis that compared reaction
activity to L-threonine production rate. The optimal activity prediction was subse-
quently used to tune the over-expression of the gene that encodes for this enzymatic
reaction through comparison to base line activity, and the result was a production
increase. This method proved to be vital to the success of this strain, as a previous
transcription profiling guided attempt at over-expression resulted in an undesirable
surplus of activity that was detrimental to L-threonine production.

For the same strain, a GEM-aided flux analysis in conjunction with mRNA ex-
pression data levels guided the elimination of negative regulation on a gene, which
encoded for a reaction that channeled flux towards the final product. The third use
of the GEM for the design of this strain occurred when an unwanted byproduct was
observed in the culture medium and computation was utilized to divert the flux from
this byproduct to L-threonine (Lee et al. 2007) through over-expression of another
key gene encoded activity.
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Fig. 9.8 Three different areas where modeling was incorporated to increase strain production.
Areas of model-driven strain improvement utilized to overproduce L-threonine in E. coli (Lee
et al. 2007). (a) Shown is a graph that provides the computed relationship between L-threonine
production and the activity of particular reaction. This in silico parametric sensitivity analysis
guided the level of expression necessary for increased production of the amino acid in the strain.
(b) Given is a map of central metabolism representing the metabolic reconstruction of E. coli. In
the analysis, expression data was mapped onto the network to guide the elimination of negative
regulation and the network was used to overexpress a reaction that diverted flux away from a
byproduct (byproduct elimination) towards the desired product
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Production of lycopene: Lycopene is an important intermediate in the biosyn-
thesis of many carotenoids, and it is used for food coloring as it possesses a strong
color (bright red) and is non-toxic. To increase the production of an already high-
producing strain, a systematic computational search was developed (Alper et al.
2005b) to explore the E. coli metabolic network and report gene deletions that di-
verted metabolic flux towards the desired product. This process resulted in a knock-
out strain that, when constructed, showed a two fold increase in the production of
lycopene over the parental strain. In this analysis, the minimization of metabolic ad-
justment (MOMA) computational algorithm (Segre et al. 2002) and the IJE660 (Ed-
wards and Palsson 2000) E. coli GEM were utilized to sequentially examine additive
genetic deletions that would improve lycopene production while maintaining cell
viability. It was found that this computational approach yielded a twofold increase in
production rate over a previously engineered overproducing strain and an eightfold
increase over wild-type production harboring only a lycopene biosynthesis plasmid
(Alper et al. 2005b). In addition, the strain designs identified computationally were
compared to mixed combinatorial transposon mutagenesis, and it was found that
the maximum production observed could be designed solely using the systematic
GEM-aided computational method (Alper et al. 2005a,b). Furthermore, a deleteri-
ous effect was observed when targets identified in individual computational designs
were combined in an attempt to achieve an overall more desirable phenotype. Thus,
the overall systematic effects from individual designs were not additive and needed
to be interpreted in the context of the entire network.

Production of L-valine: This model-driven example of metabolic engineer-
ing demonstrates the use of applying a systematic computational search algorithm
(Alper et al. 2005b) to the updated E. coli GEM MBEL979 (Lee et al. 2005) (sim-
ilar to the iJR904 GEM (Reed et al. 2003)) to improve L-valine production. In this
analysis, the in silico computation of beneficial knock-outs to divert flux towards the
desired product once again resulted in a significant increase (greater than twofold) in
the production of the desired metabolite over an existing overproducing strain (Park
et al. 2007). A number of additional metabolic engineering approaches to increase
overproduction were performed by, (i) relieving feedback inhibition and regulation
through attenuation, (ii) removing competing pathways, (iii) up-regulation of pri-
mary biosynthetic pathways, and (iv) over-expression of export machinery. When
compared to each of the other individual strain modifications, the in silico GEM
aided interventions resulted in the greatest increase in L-valine production (Park
et al. 2007). Taken together, this and the previous study demonstrate the broad
applications for which GEMs can be utilized to design strains not only in a de
novo fashion, but to make further improvements on strains through integrating and
interpreting experimental data.

9.4.2 Biological Discovery

The GEM of E. coli can be used as a guide to discovery. There is still a significant
amount of information missing relating to gene functions in E. coli (Riley et al.
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2006), and the content contained in the E. coli reconstruction can be queried and
analyzed to first, determine the current gaps in our knowledge of the organism
and second, design experiments to specifically fill uncovered gaps in the knowl-
edge landscape. Two examples of model-driven discovery are presented, and these
studies should form the basis for further analysis. To uncover the genetic basis
for experimentally observed functions in E. coli, the studies combined GEM-aided
computation with guided experimentation.

Systems approach to refining genome annotation: The first study utilized an
iterative process (Reed et al. 2006b) in which, (i) differences in modeling predictions
and high-throughput growth phenotype data were identified, (ii) potential missing
reactions that remedy these disagreements were algorithmically determined, (iii)
bioinformatics was utilized to identify likely encoding ORFs, and (iv) resulting
targeted ORFs were cloned and experimentally characterized. Application of this
process led to the functional characterization of eight ORFs that are involved in
transport, regulatory and metabolic functions in E. coli (Reed et al. 2006b). The
discovery process was aided by a high-throughput growth phenotyping analysis
and the genome-wide single-gene mutant collection (Baba et al. 2006), along with
other characterization analyses such as targeted expression profiling. This work was
the first such example of model-driven discovery of genome content aided by a
metabolic network reconstruction.

Genetic basis of orphan reactions: The second GEM-based analysis that re-
sulted in ORF discovery utilized network topology to examine orphan reactions in
the E. coli network (i.e., reactions known to exist in E. coli that have not been linked
to an encoding gene) identified by network topology-based gap-filling algorithms
(Chen and Vitkup 2006, Kharchenko et al. 2006, 2004). The basic premise behind
these algorithms is the utilization of an orphan reaction’s network neighbors as con-
straints to assign metabolic function. With the resulting tentative ORF assignments,
biochemical characterization studies utilizing genetic mutants (Baba et al. 2006),
analysis of growth under different substrate conditions, and expression data were all
utilized to characterize and assign function to an orphan ORF that is responsible for
a metabolic conversion that has been known for 25 years (Fuhrer et al. 2007). These
two studies are early examples of how GEM computation can lead to the discovery
of new genetic and biochemical content in an organism.

9.4.3 Assessment of Phenotypic Behavior

Researchers have utilized the E. coli GEM to better understand the coordinated
functions of the cell and observed physiological outcomes. Computations seeking
to predict cellular phenotypes have been performed under a range of genetic and en-
vironmental conditions, and phenotypic assessment has received the most attention
in terms of publication and tool development. Here, we outline computational tools
developed to analyze the E. coli GEM in each of the two major areas of phenotypic
assessment, studies of (i) network perturbation/essentiality, and (ii) the incorpora-
tion of thermodynamic information.
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Gene Glucose Glycerol Succinate Acetate
aceA + / + + / + – / –
aceB – / –

aceEF – / +
ackA + / +
acn – / – – / –
acs + / +
cyd + / +
cyo + / +
eno – / + – / + – / – – / –
fba – / +
fbp + / + – / – – / – – / –
frd + / + + / + + / +
gap – / – – / – – / – – / –
glk + / +
gltA – / – – / –
gnd + / +
idh – / – – / –

mdh + / + + / + + / +
ndh + / + + / +
nuo + / + + / +
pfk – / +
pgi + / + + / – + / –
pgk – / – – / – – / – – / –
pgl + / +

pntAB + / + + / + + / +
ppc ± / + – / + + / +
pta + / +
pts + / +
pyk + / +
rpi – / – – / – – / – – / –

sdhABCD + / + – / – – / –
sucAB + / + – / + – / +
tktAB – / –

tpi – / + – / – – / – – / –
unc + / + ± / + – / –
zwf + / + + / + + / +

a b

Fig. 9.9 Gene-deletion analyses utilizing the E. coli GEM. Analyses of gene essentiality in the
E. coli metabolic network. (a) A table of results from an analysis performed using the iJE660
GEM of E. coli where experimental phenotypes were collected from bibliomic data. Results are
scored as + or − meaning growth or no growth determined from in vivo/in silico data. The ±
indicates that suppressor mutations have been observed that allow the mutant strain to grow. In
68 of 79 cases the in silico behavior is the same as the experimentally observed behavior. Each
column represents a different carbon source. (b) This heat map characterizes the agreement be-
tween ORFs predicted to be essential using the iAF1260 GEM of E. coli (Feist et al. 2007)
and those experimentally determined (Baba et al. 2006, Joyce et al. 2006). The enlarged region
details how each row corresponds to a computationally predicted essential ORF (188 total). A
dark row indicates the condition under which each ORF was found to be essential. For exam-
ple, folP was predicted to be an essential ORF for the biosynthesis of folate in iAF1260 under
these conditions, but was not identified as essential by Baba et al. (2006). The different columns
show at which level each gene in the overall column was found to be essential on. With the ad-
vancement of both experimental data and model coverage, analyses of this type have reached the
genomic scale

In silico perturbations: A set of distinct computational methods using GEMs
has been developed to determine the physiological state of E. coli (and other cells
for which a GEM exists) after genetic perturbations (Segre et al. 2002, Shlomi
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et al. 2005, Wunderlich and Mirny 2006). These methods were analyzed to exam-
ine the effectiveness of predictions when compared to experimental data (Fig. 9.9).
Whereas comparisons to flux data from wild-type and E. coli mutants reveals that
one of the computational algorithms, MOMA (Segre et al. 2002), provided bet-
ter predictions for transient growth rates (early post perturbation state), another
algorithm, ROOM (Shlomi et al. 2005) (and basic FBA), was found to be more
successful in predicting final steady-state growth rates and overall lethality (Shlomi
et al. 2005). These two algorithms have been utilized, in addition to basic FBA, for
genome-wide essentiality screens. Aiding the effort is the recent availability of a
comprehensive single-gene knock-out library for E. coli (Baba et al. 2006) which
has been utilized for comparison with GEM computation (Feist et al. 2007, Joyce
et al. 2006). Touching on the predictive capability of GEM computations, it was
found that the E. coli GEM was able to predict the outcomes of adaptively evolved
strains to a high degree (78%) when knock-out E. coli strains were grown in a num-
ber of different substrate environments by examining growth rates at the beginning
and end of adaptive evolution (Fong and Palsson 2004). Genetic perturbations have
played a key role in the study of the genotype-phenotype relationship in biology, and
GEMs can be used to mechanistically interpret the results and predict the outcomes
of such perturbations.

Adding thermodynamic information: The incorporation of thermodynamic in-
formation with GEMs is an effort that is progressing rapidly and should increase the
predictive capabilities of genome-scale modeling through the addition of further
governing physico-chemical constraints. Furthermore, the addition of thermody-
namics enables the analysis of metabolomic data in the context of a reconstruc-
tion. A study utilizing high-throughput metabolomic data and GEMs resulted in
the proposition of likely regulatory interactions by deciphering the metabolite con-
centrations in the context of overall network functionality (Kümmel et al. 2006).
Not only did the metabolomic data benefit computations by constraining the system
using physiological measurements, but the computational predictions were also able
to validate quantitative metabolomic data sets for consistency through providing a
functional context to relate metabolite concentrations. This application is one ex-
ample of how metabolomic data will directly influence modeling. Metabolite con-
centration data is likely to greatly influence future metabolic modeling due to its
intimate connection with GEM content.

9.4.4 Biological Network Analysis

Although there is still much to learn about the metabolism of E. coli and how
a model-driven approach can be used to uncover these unknowns, the wealth of
knowledge collected and represented in the current E. coli reconstruction makes it an
ideal platform for network analyses. Researchers have been taking advantage of this
fact and have centered network analyses on probing and uncovering the properties
of biological networks in general. In this section, we discuss a key analysis based
on the E. coli GEM and the implications drawn from such analyses.
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One noteworthy study utilizing the E. coli network examined thousands of dif-
ferent potential growth conditions and resulted in the observation of a ‘high-flux
backbone’ in E. coli that both, (i) carried high levels of flux across the different en-
vironmental conditions, and (ii) was composed of a relatively small set of enzymatic
reactions (Almaas et al. 2004). This result can be of practical importance for syn-
thetic biology efforts aimed towards manipulating flux within biological systems.
Furthermore, this finding was hypothesized to be a universal feature of metabolic
activity in all cells and was consistent with flux measurements from 13C labeling
experiments (Almaas et al. 2004).

Overall, studies of network analyses have a common systems biology theme:
the development and subsequent demonstration of methods that identify sets of
reactions or metabolites with correlated or coordinated functions and systematic
relationships. The systems biology that these methods enable and demonstrate has
the potential to influence the more practical applications already outlined. The role
that the E. coli GEM has taken is a comprehensive and curated set of up-to-date
metabolic knowledge that provides a scaffold for large-scale computations.

9.4.5 Studies of Bacterial Evolution

The GEMs of E. coli have been used to examine the process of bacterial evolu-
tion (Pal et al. 2005a,b, 2006). Specifically, the network reconstructions have been
used to interpret adaptive evolution events (Pal et al. 2005a), horizontal gene trans-
fer (Pal et al. 2005a,b) and evolution to minimal metabolic networks (Pal et al.
2006). These studies, which utilize the E. coli reconstruction as an organism-specific
genetic and metabolic content database and the corresponding GEM have been
able to provide insight into evolutionary events through combining known phys-
iological data (e.g., in various environmental conditions) with hypotheses and in
silico computation. Examination of the evolution of minimal metabolic networks
through simulation demonstrated that it was possible to predict the gene content
of close relatives of E. coli by examining the necessity of genes and reactions in
the overall context of the system functionality for a specific lifestyle (Pal et al.
2006). Similarly, by re-examining network functionality in a number of different
environments, and through the utilization of comparative genomics, it was shown
that recent evolutionary events (i.e., horizontal gene transfer) likely resulted from
a response to a change in environment (Pal et al. 2005a). Furthermore, computa-
tional analysis led to the additional conclusion that these horizontal gene trans-
fer events are more likely when the host organism contains an enzyme that cat-
alyzes a coupled metabolic flux related to the transferred enzyme’s function (Pal
et al. 2005a,b). Taken together, these studies demonstrate the importance of hav-
ing high-quality curated reconstructions to enable studies on an organism’s re-
sponse to environmental changes and on the fundamental forces driving bacterial
evolution.
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9.5 Need for New In Silico Methods and Applications

We now know how to represent BiGG data in either a stoichiometric format or in
the form of causal relationships (Gianchandani et al. 2006) and how to use this data
to perform several lines of computational inquiries. Computational query tools of
GEMs will continue to be developed. New advances in these query tools will likely
include, (i) modularization methods, (ii) use of fluxomic data, and (iii) eventually,
kinetic information.

Modularization: As the scope and content of the reconstruction grows, the need
to modularize its content becomes more pressing. Fine or coarse-grained views of
cellular processes are needed for different applications.

Fluxomics: Currently, computational limitations force the reduction in network
size for the analysis of isotopomer data. Given the systemic nature of fluxomic data
and its phenotypic relevance, there is a pressing need to increase the size of the
networks that can be utilized for experimental measurement and estimation of flux
states. A network reconstruction will both guide the content that is needed for an-
alyzing fluxomic data and offer a starting point for a rational reduction to generate
relevant models in the meantime.

Kinetics/thermodynamics: Although detailed kinetic models of microbial func-
tions may currently be mostly of academic interest, they will most likely be able to
be constructed in the mid-term based on advances with metabolomic and fluxomic
data, in addition to the developments that are occurring with the incorporation of
thermodynamic information. Such large-scale kinetic models are likely to differ
from those resulting from traditional approaches for construction of kinetic models
as they come with different challenges.

9.6 Closing

The process underlying the E. coli metabolic reconstruction has pioneered many
approaches, methods, and studies in the systems biology of microbial metabolism.
This effort has effectively put a mechanistic basis into the genotype-phenotype re-
lationship. In fact, this relationship is now broken down into four steps:

(1) Components (a large knowledge base, BiGG), leading to networks (the recon-
struction process resulting GENRE), leading to In silico Models (GEMs), lead-
ing to Phenotypic States (estimated by COBRA methods).

(2) GEMs will allow for gap-filling and systematic biological discovery (Breitling
et al. 2008) and for understanding of complex biological processes (see
Chapter 15).

Predictive models also allow for experimental strain design. In fact, in engineer-
ing, there is ‘nothing more practical than a good theory.’ As this chapter demon-
strated, genomics and high-throughput technologies have enabled the construction
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of predictive computational models. The scope of such predictions is limited at
the moment, but with the growing scope and coverage of genome-scale reconstruc-
tions and advancements in the development of computational tools, this scope will
broaden. Not only will GEMs influence design in synthetic biology, but also their
help with discovering cellular content will provide a more complete picture of the
intra-cellular environment in which future synthetically engineered constructs and
circuits will be placed. The impact of GEMs on synthetic biology is thus likely to
be notable, ranging from the provision of the cellular context of a small-scale gene
circuit design to engineering of the entire genome-scale network towards fundamen-
tally new and useful (i.e., production) phenotypes.

Finally, we can speculate about the deep scientific impact that comprehensive
predictive GEMs will have on our understanding of the living process. A compre-
hensive view of cellular functions will allow us to study the fundamental properties
of both the underlying energy and information flows in living organisms. Such a
view is likely to deeply affect our understanding of both distal and proximal causa-
tion in biology.
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Abstract The metabolic network of E. coli is one of the most well studied biochem-
ical systems, with an abundance of in vitro and in vivo data available for quantitative
estimation of its kinetic parameters. In this chapter, we present our approach to
developing mathematical description of individual enzymatic reactions within bac-
terial metabolic networks. This description is based on the detailed consideration
of enzyme catalytic mechanisms and includes several stages: reconstruction of the
enzyme catalytic cycle, derivation of the reaction rate equation, and validation of
its parameters on the basis of available in vitro experimental data. We illustrate
our strategy with the models developed for three E. coli enzymes with rather com-
plicated regulatory mechanisms: allosteric tetramer phosphofructokinase-1, citrate
synthase with its regulation by ATP and pH, and �-galactosidase validated against
time dependencies of its substrates. The modeling results clearly demonstrate that
developing detailed enzyme kinetic models is essential to capture key regulatory
properties of enzymes. The kinetic models allow to integrate large sets of in vitro
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experimental data available for E. coli enzymes and to get insight into important
regulatory features of their catalytic mechanism.

10.1 Introduction

The last several years have seen substantial progress in molecular biology and ge-
netic research of E. coli (Han and Lee 2006, Ishii et al. 2007, Perna et al. 2001).
Sequence information on the genomes of hundreds of different organisms has stim-
ulated the emergence of functional genomics, a discipline that sets out to understand
the meaning of sequenced data using high throughput small molecule, gene and
protein expression data. Life scientists have transformed old-style protein chemistry
into proteomics, and traditional biochemistry into metabolomics. These new fields
provide essential clues to the underlying metabolic, gene regulatory and signaling
networks that operate in cells, tissues and organisms under different conditions.

Cellular metabolism of E. coli, the integrated interconversion of more then
two thousands of metabolic substrates through more then one thousand enzyme-
catalyzed biochemical reactions, is the most investigated system of intracellular
molecular interactions (Feist et al. 2007). When one has knowledge of most, or all,
of the major biological entities and stoichiometry of their interactions an illusion
could appear that this voluminous knowledge will enable us to predict whole cell
behavior for the purposes of mechanistic understanding and bioengineering control.
Indeed, in some cases, it is possible to make plausible predictions based on “static”
non temporal information without relying upon kinetic data (Edwards et al. 2001,
Kim et al. 2008, Price et al. 2004, Schütz et al. 2007). Recently, stoichiometric
metabolic models (SMM) and metabolic engineering techniques have been success-
fully applied to improve production of succinic acid, lactic acid, L-threonine, and
L-valine by E. coli. (Lee et al. 2007, Lee et al. 2005, Park et al. 2007). Unfortunately,
SMM techniques cannot predict cellular bahaviour in non-steady state conditions. It
results in high level of false positive predictions (Lee et al. 2006). Time series data
cannot be easily integrated to SM models as well, so it is difficult to validate SM
models, as steady state or chemostat cultures are reqired. It is difficult to incorporate
to SMM real data from batch or fed batch experiments, and time series after systems
perturbations (immediately or short after the intervention) (Ishii et al. 2007).

The discrepancy between SMM predictions and experimental data is usually ex-
plained by the statement that ultimately the real cell will mimic in silico behavior
after process of evolution. But, the questions why and how the process of evolution
itself is happening, which physico-chemical properties of proteins are subject of
selective pressure are not addressed at all.

Indeed, overall cellular behavior is determined not only by available biological
entities, but mainly by their dynamic interactions and individual properties. Activ-
ities of most if not all of the enzymes involved in cellular metabolism are often
regulated by the end products and intermediates of corresponding pathways. This
complex network of positive and negative feedbacks, as well as genetic regulation
of expression levels, provides flexible adaptation of the metabolic network to fast
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and slow changes in environmental conditions. It is the overall dynamic nature of
the whole cell that determines not only its present properties, but its future ones as
well. The cellular regulatory system is responsible for maintenance of homeostasis
and for transitions between different physiological states. That is why when mod-
eling cellular metabolism, it is essential to consistently describe its key regulatory
properties. The regulatory system of E. coli metabolism is known to have an hier-
archical architecture, including regulatory effects at the levels of enzyme activity,
gene transcription and translation. Consistent mathematical description of this com-
plex multilevel regulatory system requires accurate consideration of the regulatory
properties of individual components involved in the metabolic network – enzymes,
which further contribute to the regulatory properties of the whole system. This task
becomes extremely important with the recent expansion of a new discipline – syn-
thetic biology, the ultimate goal of which is to design and build engineered biolog-
ical systems with predefined properties (Barrett et al. 2006, Endy 2005).

In this paper we present kinetic modelling approach applied to modeling the
individual enzymatic reactions within metabolic networks of E. coli, which allows
capture of the key regulatory properties of these networks. Our approach is based on
the detailed consideration of the enzyme catalytic cycle and on the utilization of all
available experimental data characterizing the kinetics of the enzyme being studied.
This modeling approach includes several stages. The first is the reconstruction of a
catalytic cycle of the enzymes. This cycle represents both interaction of the enzyme
with substrates and products and the effect of different inhibitors and activators. The
second stage is the derivation of the reaction rate equation that defines quantitative
dependence of the rate of the enzyme performance on concentrations of substrates,
products and effectors. The third and last stage is the identification of the parameters
for into the rate equation based on the available experimental data. To illustrate our
approach and its stages, as well as to demonstrate how different types of experi-
mental data can be incorporated into the kinetic model, we present our developed
kinetic models for several E. coli enzymes which are known to have complicated
patterns of regulation of their activity: phosphofructokinase 1, �-galactosidase and
citrate synthase.

10.2 Methods

10.2.1 Basic Principles of Kinetic Description of Enzymatic
Reactions Using In Vitro Experimental Data

As a part of our strategy to make the models scalable and comparable with different
kinds of experimental data, we develop both detailed and reduced descriptions for
every appropriate biochemical process to make the models scalable and comparable
with different kinds of experimental data. The detailed reaction description includes
the exact molecular mechanism of the reaction, i.e. enzyme catalytic cycle. Usually,
the detailed kinetic model of an enzyme reaction represents a set of ordinary differ-
ential equations describing the totality of elementary reactions within the enzyme
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catalytic cycle, such as substrate binding, catalytic transformation of substrates into
products, product release, etc. It defines the dynamics of all possible enzyme in-
termediate states (free enzyme, enzyme-substrate, enzyme-product complexes), as
well the time course of substrates and products consumption/production. The re-
duced description represents the reaction rate as an explicit analytic function of the
concentration of substrates and products.

In our approach, for each active protein involved in the model of metabolic net-
work, i.e. enzyme with catalytic function, we identify from the literature or hy-
pothesize the catalytic cycle based on 3D structures and other relative biological
information. Basing on the developed scheme of the catalytic mechanism we can
construct a detailed kinetic model of the enzyme catalytic cycle. In most cases
such a detailed model can further be replaced with a reduced description of the
reaction rate. To derive the corresponding rate equations from the catalytic cycle,
we use quasi-steady state and rapid equilibrium approaches (Demin and Goryanin
2008). The catalytic cycle of each enzyme is described by non-linear differential
equations. Initially, concentrations of substrates, products and effectors (inhibitors
and activators) are assumed to be buffered, i.e. do not change with time.

The quasi-steady state of the system is calculated as a function of substrates,
products, inhibitors, activators, total protein concentrations and all kinetic constants
of the processes. The rate law for every process is derived as a flux from the catalytic
cycle for this quasi-steady state. Finally, the rate law depends on temporal changes
of the total concentration of the protein, concentrations of the effectors (activators,
inhibitors, agonists, and antagonists), substrates, products and the values of the ki-
netic parameters (Km, Ki, Kd and elementary rate constants).

The level of detailed elaboration of the catalytic cycles of selected enzymes and
subsequent derivation of rate equations are fully determined by the available exper-
imental data on the structural and functional organization of the enzyme. Indeed, if
the catalytic cycle of the enzyme is established and proved experimentally then we
use it to derive the rate equation. If the mechanism underlying enzyme operation is
unknown we infer a “minimal” catalytic cycle that

1. satisfies all structural and stoichiometric data available from literature
2. allows us to derive a rate equation describing all available kinetic experimen-

tal data
3. is the mathematically simplest catalytic cycle of all possible ones satisfying

clauses 1 and 2.

Another challenge in developing a mathematical description of enzyme catalysis
based on in vitro data is that the kinetic experimental data available from literature
are usually obtained under different conditions (pH, temperature). This means that
we should account for these parameters in our model, i.e.

4. construct such a catalytic cycle and derive such a rate equation that satisfies
available experimental data describing the dependence of enzyme activity on
pH, temperature and other experimental conditions
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5. the mechanism describing the dependence of the reaction rate on pH and tem-
perature should be taken into account in the catalytic cycle of the enzyme in the
simplest of all possible ways

Parameter estimation is the third stage of model development. To estimate the
kinetic parameter values we use the following sources:

1. literature data on the values of Km, Ki, Kd, rate constants, pH optimum, etc;
2. electronic databases; only a few databases with specific kinetic content are

available at the moment, in particular EMP (Selkov et al. 1996) and BRENDA
(Shomburg et al. 2002)

3. Experimentally measured dependencies of the initial reaction rates on concen-
trations of substrates, products, inhibitors and activators

4. Time series data from enzyme kinetics

However, many processes, such as enzyme reactions, have not been studied ki-
netically. Moreover, many kinetic parameters cannot be estimated from the literature
or databases due to a lack of available experimental data. One remedy is to express
these unknown or “free” parameters via other available measured kinetic param-
eters. The result is the establishment of functional relationships between “free”
parameters and measured kinetic parameters. Each parameter value, of course, is
constrained by physico-chemical properties and any other information available
from other organisms or related processes. The more constraints available, the more
defined is the system.

To illustrate the basic principles of construction of catalytic cycles and deriva-
tion of rate equations described above we present the results of the modeling of
three enzymes of E. coli metabolism: phosphofructokinase-1, �-galactosidase and
citrate synthase. We demonstrate how kinetic data measured at different conditions
(pH, temperature and others) can be taken all together to construct a quantitative
description of enzyme catalytic activity and its regulation. The method developed
in this section allows us to predict kinetic behaviour of the enzymes at any set of
experimental or cellular conditions.

10.3 Results

10.3.1 Kinetic Modeling of Phosphofructokinase-1 (pfkA)
from E. coli Cells

Phosphofructokinase-1 (PfkA) catalyzes the transfer of 
-phosphate from ATP to
fructose-6-phosphate (F6P) resulting in ADP and fructose-1,6-biphosphate (F16bP)
production (Babul 1978, Blangy et al. 1968, Kotlarz and Buc 1982):

AT P + F6P
P f k A−−−−−−→
Mg2+

AD P + F16bP
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This reaction is of importance in regulation of glycolysis and gluconeogenesis
(Ausat et al. 1997, Babul 1978, Berger and Evans 1991, Blangy et al. 1968, Deville-
Bonne et al. 1991a, Deville-Bonne et al. 1991b, Kotlarz and Buc 1982, Rye et al.
1995, Saier and Ramseier 1996, Saier et al. 1996, Waygood and Sanwal 1974).
E. coli cells contain two isozymes of this enzyme: PfkA and PfkB (Babul 1978,
Kotlarz and Buc 1982). PfkA, studied in this work, is considered to be a key phos-
phofructokinase in E. coli metabolism (Kotlarz and Buc 1977, Torres and Babul
1991, Vinopal and Fraenkel 1974, 1975).

Unlike PfkB, PfkA has a rather complicated regulatory profile: purine nucleotide
diphosphates, ADP (Babul 1978, Blangy et al. 1968, Kotlarz and Buc 1982) and
GDP (Ausat et al. 1997), are acting as activators, phosphoenolpyruvate (PEP) is the
inhibitor (Babul 1978, Blangy et al. 1968, Kotlarz and Buc 1982). In this case, all the
regulators of this enzyme are allosteric, by virtue of the fact that binding sites found
for effectors do not overlap with catalytic ones (Reeves and Sols 1973). Moreover,
phosphorylation of fructoso-6-phosphate is carried out in the presence of Mg2+ ions
(Babul 1978, Blangy et al. 1968, Kotlarz and Buc 1982).

The evidence in favor this protein being an allosteric enzyme is as follows: the
quaternary structure of the enzyme (tetramer); complex regulatory profile due to the
presence of complementary allosteric sites at the monomer; and sigmoid dependen-
cies of initial rates of the reaction on F6P concentrations (Babul 1978, Blangy et al.
1968, Kurganov 1978).

In this part we constructed the kinetic model of phosphofructokinase-1, that de-
scribes the majority of the experimental data known for this enzyme. This model
examins the properties of phosphofructokinase-1 such as substrate and product in-
hibition, cooperativity and competition at joint action of allosteric effectors.

10.3.1.1 Catalytic Cycle of Phosphofructokinase-1 Construction

An approach to modeling the kinetics of allosteric enzymes has been developed by
Monod, Wyman, Changeux (MWS) (Monod et al. 1965) and it is traditionally used
by a majority of modellers. At the same time this modeling approach is valid only
for the enzymes which catalyze the reactions of irreversible isomerization, since
enzyme-binding of only one substrate is taken into account and the catalytic stage is
thought to be irreversible. Moreover, MWS-based modeling includes several strong
assumptions that make it practically impossible to use it while modeling real en-
zymes (Kurganov 1978). There exist a number of generalizations for the MWS-
based modeling techniques, which allow the inclusion of allosteric regulation in
models of enzymes with more complicated mechanisms. We took a generalization
offered in (Ivanitsky et al. 1978), which assumes that the enzyme can exist in two
states: R (relaxed) and T (tense). Unlike standard MWS-based modeling, in this
approach the functional difference between R and T states is not only in different
affinities of substrates, products and effectors with respect to the enzyme, but also in
the catalytic properties of these states. In other words, not only Michaelis constants
and dissociation constants as in MWS-based modeling (Monod et al. 1965), but also
catalytic constants (Deville-Bonne et al. 1991b) are different for R and T states. One
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another important difference is as follows: a catalytic cycle of separate subunits is
taken into consideration in the generalization alluded. This gives us a possibility to
take into account detail kinetic mechanism of an enzyme and estimate a contribution
of product inhibition.

The rate of reaction may be modulated by variation of the relationship between
the states of the enzyme. By this means allosteric regulation is introduced, since
enzyme-binding of the effectors in a site, which is separate from catalytic one, will
disturb the equilibrium. For instance, activators (that demonstrate the best affinity
to R-form) shift the balance to the R-state; and vice versa, inhibitors (which bind
more with the T-form) shift the balance to the T-state. In this case, the action of
the effectors (activation or inhibition) will be determined only by the ratio of disso-
ciation constants of different forms of the enzyme (Kurganov 1978). The existing
experimental data on regulation of phosphofructokinase-1 hold that its regulation is
carried out in just this manner, since binding sites both for PEP, and for ADP (GDP),
have been found separately from the catalytic cycle (Ausat et al. 1997, Babul 1978,
Blangy et al. 1968, Reeves and Sols 1973).

Catalytic Cycle of Separate Subunit

Since we have found no unambiguous opinions as to the mechanism of action of
a single subunit in the literature on phosphofructokinase-1, we proposed that the
monomer of phosphofructokinase-1 and its isozyme PfkB have a similar mecha-
nism of action. In (Campos et al. 1984) the monomer of phosphofructokinase-2
was shown to operate by the mechanism of Ordered Bi Bi, in accordance with the
classification offered by Cleland (Cleland 1963). First F6P and then ATP binds with
the enzyme resulting in phosphorylation (Campos et al. 1984, Ewings and Doelle
1980, Guixe and Babul 1985). Furthermore, as ATPMg2− was a substrate of the
reaction, we added to the catalytic cycle a competitive inhibition of the free form
of ATP4−. This inhibition can be registered when the complete ATP concentration
increases in a system with a fixed Mg2+ concentration. The pH effect on the activity
of the enzyme has been taken into account in a standard way suggested by Cornish-
Bowden (Cornish-Bowden 2001), as was shown for the E. coli enzyme imidazole
glycerol phosphate synthase (Demin et al. 2004). Having summarized the above
material, it is possible to construct the profile of the catalytic cycle of a separate
subunit of phosphofructokinase-1.

10.3.1.2 Derivation of the Rate Equation of Phosphofructokinase-1

The rate equation, a generalization of MWS modeling by Popova and Sel’kov for
multisubstrate reactions is written as follows (Ivanitsky et al. 1978):

V = n · f
(

1 + ( f ′/
f )Q

)
/(1 + Q)

Q = L0

⎛

⎝

(
1 + I/

K t
i

)

(
1 + I/

K r
i

) · Er

Et

⎞

⎠
n

(10.1)
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where f is the rate equation derived on the basis of catalytic cycle of single subunit
in r-state, f ′ – the rate equation derived on the basis of catalytic cycle of single
subunit in t-state, Er – concentration of free enzyme in r-state, Et – concentration
of free enzyme in t-state, L0 – constant equilibrium for r/t-transition, I – allosteric
effecter, n – number of enzyme’s subunits.

Q is a function of a state, it determines the relation between R and T forms of
the enzyme. In order to write the function of a state of the enzymes under study, we
should, in accordance with a regulatory profile, take into account the action of all
allosteric effectors (Ivanitsky et al. 1978, Kurganov 1978):

f =
V f orward

mr ·
(

AT P Mg2− · F6P − AD P Mg− · F16bP/
K eq

)

Z R
S P · Z pH

;

Z pH = 1 + H+/
Kd H 1

+ Kd H 2
/

H+;

Z R
S P = Kir F6P · Kmr AT P Mg2− + Kmr AT P Mg2− · F6P ·

(
1 + AT P4−

Kir AT P4−

)
+

+ Kmr F6P · AT P Mg2− + AT P Mg2− · F6P+

+ Kmr F6P · AT P Mg2− · FbP/
Kir FbP

+

+ AT P Mg2− · F6P · AD P/
Kir AD P

+

+ Kmr F6P · AT P Mg2− · AD P · FbP/
Wr · Kmr AD P · Kir FbP

+

+ Wr/
K eq ·

⎛

⎝
Kmr FbP · F6P · AD P/

Kir F6P
+ Kmr AD P · FbP+

+ Kmr FbP · AD P + AD P · FbP

⎞

⎠ ;

(10.2)

f is the rate equation derived on the basis of catalytic cycle of a single subunit.
The expression of reaction rate (the reaction runs by the mechanism of Ordered
Bi Bi), borrowed from Cleland (Cleland 1963), was slightly modified, and com-
petitive inhibition of ATP4− and pH effects were added. Moreover, experimental
findings suggest that the reaction, catalyzed by phosphofructokinase-1, is virtually
irreversible (Babul 1978):

K eq = Wr
Kir F6P · Kmr AT P Mg2−

Kir FbP · Kmr AD P
= W t

Kit F6P · Kmt AT P Mg2−

Kit FbP · Kmt AD P
(10.3)

An expression for f ′ appears in much the same manner, with the only difference
from f that the expression for f ′ contains the constants of binding and catalytic
constants of the T-state.
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Er and Et is the expression for a free form of the enzyme in R-and T-states (Ivan-
itsky et al. 1978), respectively:

Q = Lo

⎛

⎜⎜⎝

(
1 + AD P

Kef t AD P
+ G D P

Kef t G D P

)(
1 + P E P

Kef t P E P

)

(
1 + AD P

Kef r AD P
+ G D P

Kef r G D P

)(
1 + P E P

Kef r P E P

) Er

Et

⎞

⎟⎟⎠

n

Er = Kir F6P · Kmr AT P Mg2− · Eo

Z R
S P

Et = Kit F6P · Kmt AT P Mg2− · Eo

Z T
S P

(10.4)

Substitution of expressions (10.2, 10.3, and 10.4) in (10.1) gives a complete equa-
tion of the rate of a reaction, catalyzed by phosphofructokinase-1.

10.3.1.3 Estimation of the Parameters of the Rate Equation
of Phosphofructokinase-1

As a result of the above, the model contains 20 parameters, two of which we could
take from the literature data – K d AT P Mg = 0.0588 (Taquikhan and Martell
1962), w p f k1 = 0, 08 (Babul 1978). In order to determine the remaining param-
eters appearing in the rate equation, we fitted the model with experimental data.
In total, the 11 experimental curves published in (Ausat et al. 1997, Babul 1978,
Deville-Bonne et al. 1991a) were used to determine 18 parameters. It should be
noted that the curves obtained in our model correlate rather well with the experi-
mental data (Figs. 10.1a–d, and 10.2a). In addition, the obtained parameter values
and analysis of behavior of the model may lead to the following conclusions:

1. Phosphofructokinase-1 has a distinct allostericity associated with different affini-
ties of substrates to states of the enzyme. At the same time, the difference be-
tween Michaelis constants of R- and T-states reaches several orders. The above
has a great influence on the shape of the curves of initial reaction rate dependence
on substrate concentrations (Figs. 10.1b, and 10.2a).

2. Figure 10.2a clearly shows that substrate inhibition appears in the experimental
in vitro system at a total ATP concentration of more than 10 mM and at a fixed
concentration of Mg2+ ions (10 mM); at a total ATP concentration of 20 mM,
the phosphofructokinase reaction rate in the in vitro system is only 20% of the
maximum. The mechanism of this inhibition is coupled with emergence in the
system of a free form, ATP4− (Fig. 10.2b), which, as mentioned above, acts as an
inhibitor by competing with the substrate, magnesium form ATPMg2−, for the
catalytic site. The values of identified parameters also point to a possibility of
substrate inhibition (Table 10.1). So, the ATP4− molecule free from magnesium
ions has better affinity to the enzyme than the magnesium form.
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Fig. 10.1 The comparison of experimental data on PfkA-1 and model results. (a) PfkA relative
maximal activity dependence on pH described by the model and experimental data (Park et al.
2007); (b) PfkA relative activity dependence on F6P concentration described by the model and
experimental data (Barrett et al. 2006): curve 1 (�) − ATP = 1 mM, Mg2+ = 10 mM, GDP =
0 mM, pH = 8.2; curve 2 (�) − ATP = 1 mM, Mg2+ = 10 mM, GDP = 2 mM, pH = 8.2; (c)
PfkA relative activity dependence on PEP concentration described by the model and experimental
data (Lee et al. 2005): ATP = 1 mM, Mg2+ = 10 mM, F6P = 1 mM, pH = 8.2; (d) PfkA
relative activity dependence on F6P concentration described by the model and experimental data
(Lee et al. 2005): curve 1 (�) − ATP = 1 mM, Mg2+ = 10 mM, ADP = 0.5 mM, PEP =
0 mM, pH = 8.2; curve 2 (�) − ATP = 1 mM, Mg2+ = 10 mM, ADP = 0 mM, PEP =
1 mM, pH = 8.2; curve 3 (�) − ATP = 1 mM, Mg2+ = 10 mM, ADP = 1 mM, PEP =
0.1 mM, pH = 8.2; curve 4 ( ) − ATP = 1 mM, Mg2+ = 10 mM, ADP = 1 mM, PEP =
1 mM, pH = 8.2

3. Another property of phosphofructokinase-1, the significant effect of which on the
kinetic curves we have shown, is that, besides allosteric ADP activation, there
is an apparent product inhibition by this metabolite. In other words, ADP can
compete with ATPMg2+ for the catalytic site. Although product inhibition has
no effect on reaction rate that would be noticeable under experimental condi-
tions, it shows up in the combined action of allosteric effectors (curves 2, 3, 4 on
Fig. 10.1d). Parameter values obtained from fitting also suggest the possibility
of significant inhibition by ADP. So, K mr AD P = 0.69 mM, evidencing fair
affinity of ADP molecule to phosphofructokinase-1.

4. The analysis of fitted parameter values for the binding of effectors in allosteric
sites shows that the activators ADP and GDP bind almost exclusively with the
R-state of the enzyme, while the inhibitor PEP binds with the T-state. This proves
that any significant synergy due to a combined action of allosteric effectors is
impossible, because it is impossible for antagonistic regulators to bind simulta-
neously with a single subunit.

5. Activation of phosphofructokinase-1 by GDP (Fig. 10.2b) is probably also mod-
ulated by competitive inhibition, provided that GDP is bound in the catalytic
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Fig. 10.2 Effect of PfkA
inhibition by ATP4−. (a)
ATP4−, Mg2+ and ATPMg2−

concentration dependence on
the total ATP concentration;
(b) PfkA relative activity
dependence on the total ATP
concentration described by
the model and experimental
data (Lee et al. 2005):
F6P = 1 mM, Mg2+ =
10 mM, pH = 8.2
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site instead of ATPMg2+. Such a situation is observed in some kinases that use
different nucleotide phosphates in their action, e.g., pyruvatekinase-1 from E.
coli (Waygood and Sanwal 1974). Most probably, GDP and ADP are bound in
the same regulatory site (Ausat et al. 1997), therefore competition is possible in
the presence of two effectors in the medium. The results of fitting (Table 10.1)
show that ADP has nearly two times better affinity to the allosteric site than
GDP: K ir AD P = 0.0737 mM, whereas K ir G D P = 0.122 mM. However,
the absence of experimental data prevents any unambiguous conclusions.

10.3.2 The Kinetic Model of β-galactosidase from E. coli Cells

�-galactosidase (EC 3.2.1.23) is an important enzyme of Escherichia coli involved
in sugar utilization. Together with lac-permease, this protein is encoded in the re-
gion of the lac-operon, which is the most popular model system for the study of
transcription regulation in prokaryotes.

The enzyme has a complex catalytic cycle and catalyzes several reactions in
a single catalytic site. As has been shown previously, the main catalytic activity
of �-galactosidase at the addition of lactose to the medium reverts to hydrolysis
of the latter with the formation of glucose and galactose monosaccharides (Huber
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Table 10.1 PfkA model parameters values estimated from experimental data

Model parameter Value (mM) Reference

Kmr ATPMg 8.13e-05 (Kim et al. 2008, Lee et al. 2006)
Kmr F6P 2.05e-05 (Kim et al. 2008, Lee et al. 2006)
Kir F6P 1.84 (Kim et al. 2008, Lee et al. 2006)
Kir ATP 3.17e-05 (Kim et al. 2008, Lee et al. 2006)
Kefr PEP 200 (Kim et al. 2008)
Kefr ADP 7.37e-02 (Kim et al. 2008)
Kefr GDP 0.197 (Lee et al. 2006)
Kir FbP 2.58e-02 (Kim et al. 2008)
Kmr FbP 5.5 (Kim et al. 2008)
Kir ADP 1000 (Kim et al. 2008)
Kmr ADP 0.69 (Kim et al. 2008)
Kmt ATPMg 3.35 (Kim et al. 2008, Lee et al. 2006)
Kit ATP
Kmt F6P 780 (Kim et al. 2008, Lee et al. 2006)
Kit F6P
Keft PEP 33.1 (Kim et al. 2008, Lee et al. 2006)
Keft ADP
Keft GDP 8.56e-03 (Kim et al. 2008, Lee et al. 2006)
Kit FbP 2.6e-01 (Kim et al. 2008)
Kmt FbP 1 (Kim et al. 2008)
Kmt ADP 61 (Lee et al. 2006)
Kit ADP 143 (Kim et al. 2008)
Lo 660 (Kim et al. 2008)
Kd H 1 1e+03 (Kim et al. 2008)
Kd H 2 1e+03 (Kim et al. 2008)

14.4 (Kim et al. 2008, Lee et al. 2006)
3.78e-12 (Park et al. 2007)
6.97e-05 (Park et al. 2007)

et al. 1976), as well as reaction of isomerization with the formation of allolactose
(Burstein et al. 1965, Jobe and Bourgeois 1972). This work (Huber et al. 1976) has
also shown that a certain amount of tri- and tetrasaccharides appear in the medium.

In this section we have constructed a kinetic model of �-galactosidase, which
describes both hydrolysis and transgalactosidase activity of the enzyme. On the
basis of experimental data available currently, kinetic parameters of the model have
been found. Using the constructed model, we analysed correlation between different
enzyme activities under different conditions.

10.3.2.1 Construction of �-galactosidase Catalytic Cycle

The catalytic cycle of E. coli �-galactosidase (Fig. 10.3) was constructed based on
the scheme proposed in (Huber et al. 1976), extended by the addition of trisaccha-
ride formation stages. The scheme describes both hydrolase and transgalactosidase
activities of �-galactosidase. Stages 1a and 2a show the binding of lactose (lac) and
allolactose (alac), respectively, with the catalytic center of free enzyme (E) with
the formation of enzyme-substrate complex (E lac and E alac, respectively). Stages
1b and 2b describe decomposition of disaccharides to glucose and galactose in the
catalytic center of the enzyme, which results in the formation of a ternary complex
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Fig. 10.3 The catalytic cycle
of �-galactosidase
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(E gal glc). According to the literature data (Huber et al. 1984, Huber et al. 1976),
the process of glucose (glc) and galactose (gal) dissociation occurs in sequence
(Stages 6, 3), via an intermediate enzyme form bound with galactose (E gal). It
follows from the scheme that the processes of lactose and allolactose hydrolysis are
described by stages 1a-1b-6-3 and 2a-2b-6-3, and the transgalactosidase reaction
proceeds through stages 1a-1b-2b-2a.

The reactions of galactosilation of lactose (4a-4b-4c) and allolactose (5a-5b-5c)
are shown to be the main reactions of oligosaccharide formation in E. coli (Reeves
and Sols 1973). We propose that, by analogy with glucose galactosilation (stages
6-1b-1a), these processes are realized through binding of lactose (stage 4a) or allo-
lactose (stage 5a) to the enzyme form E gal with the formation of trisaccharides X1
and X2 (specifying two types of trisaccharides: gal +lac = X1, gal +alac = X2).

10.3.2.2 Derivation of the Rate Equation of �-galactosidase

To simplify derivation and analysis of the equation for the rate of beta-galactosidase
functioning, each process of trisaccharide formation (4a-4b-4c and 5a-5b-5c)
was described by a single integral stage, neglecting intermediate enzyme forms
(Fig. 10.4). It was an enforced approximation, because at present rather little is
known about rate constants of these elementary stages, and the lack of kinetic data
prevented us from assessing the contribution of each of them.

Fig. 10.4 The reduced
catalytic cycle of
�-galactosidase used for
derivation of the rate equation
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The simplified scheme of the catalytic cycle for the enzyme is given in Fig. 10.4.
The corresponding rate as well as the rate or dissociation constant is indicated near
each arrow.

With approximation of quasi stationary concentrations (Cornish-Bowden 2001),
and entering a condition of the stationary for all the forms of the enzyme, the fol-
lowing system of equations was obtained

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(E lac)′ = v1a − v1b = 0,

(E alac)′ = v2a − v2b = 0,

(E gal glc)′ = v1b + v2b − v6 = 0,

(E)′ = v4 + v5 − v1a − v2a − v3 = 0,

(E gal)′ = v3 + v6 − v4 − v5 = 0,

(10.5)

where dash is a complete time derivative. Solving this system with respect to the
rate of reactions, we found that in a stationary (steady) state the rates of separate
stages of catalytic cycle correlate with each other as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v1a = v1b,

v2a = v2b,

v6 = v1b + v2b,

v3 = −v1b − v2b + v4 + v5.

(10.6)

Thus, it turned out that all rates of elementary stages can be expressed via four
velocities v1b, v2b, v4 i v5, hereinafter called «independent».

To derive the equation of the velocity of �-galactosidase, we formulated the
velocities for the elementary stages of the catalytic cycle using mass action law
assumption (Kotlarz and Buc 1977).

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v1b = k1 · E lac − k−1 · E gal glc,

v2b = k2 · E alac − k−2 · E gal glc,

v3 = k3 · E · gal − k−3 · E gal,

v4 = k4 · E gal · lac − k−4 · E · X1,

v5 = k5 · E gal · alac − k−5 · E · X2.

(10.7)

The expressions of the velocities (10.7) were substituted into the fourth equation
of the system (10.6) and the following equation was obtained:

k3 · gal · E + k1 · E lac + k2 · E alac + k−4 · X1 · E + k−5 · X2 · E−
− k−3 · E gal − k−1 · E gal glc − k−2 · E gal glc−
− k4 · lac · E gal − k5 · alac · E gal = 0.

(10.8)
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We also accounted for the law of mass conservation for the total enzyme
concentration:

E − E lac − E alac − E gal glc − E gal = E0. (10.9)

According to (Huber et al. 1984) the velocities of binding of lactose, allolactose
and glucose are well above the rates of catalysis. So, we used approximation of fast
equilibrium for stages 1a, 2a and 6. This allowed us, using the ratio of the constants
of equilibrium for all quasi equilibrium stages, to express concentrations of different
forms of the enzyme as concentrations of free form of the enzyme E and the complex
of the enzyme and galactose E gal:

E lac = E · lac

Kl
,

E alac = E · alac

Ka
,

E gal glc = E gal · glc

Kg
.

(10.10)

Substitution of the expression (10.10) in the formulae (10.8, 10.9) gives a system
of two linear equation with respect to E i E gal

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E

(
1 + lac

Kl
+ alac

Ka

)
+ E gal

(
1 + glc

Kg

)
= E0,

E

(
k3gal + k1

lac

Kl
+ k2

alac

Ka
+ k−4 X1 + k−5 X2

)
−

−E gal

(
k−3 + k−1

glc

Kg
+ k−2

glc

Kg
+ k4lac + k5alac

)
= 0.

Solving the system, the expressions for stationary concentrations of the enzyme
states E and E gal were obtained

E = E0

�

{
k−3 + glc

Kg
(k−1 + k−2) + k4lac + k5alac

}
,

E gal = E0

�

{
k3gal + k1

lac

Kl
+ k2

alac

Ka
+ k−4 X1 + k−5 X2

}
,

(10.11)

where

� =
{

k3 + glc

Kg
(k−1 + k−2) + k4lac + k5alac

}(
1 + lac

Kl
+ alac

Ka

)
+

+
{

k3gal + k1
lac

Kl
+ k2

alac

Ka
+ k−4 X1 + k−5 X2

}(
1 + glc

Kg

)
.
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The concentrations of other stationary forms of the enzyme can be expressed
using the formula (10.10). With knowledge of stationary concentrations of all the
forms of the enzyme, it is possible to calculate the velocity of any elementary stage.
Using (10.7, 10.10, and 10.11) we obtained the following

v1b = E0

�

{
k1

lac

Kl

(
k−3 + (k−1 + k−2)

glc

Kg
+ k4lac + k5alac

)
−

− k−1
glc

Kg

(
k3gal + k1

lac

Kl
+ k2

alac

Ka
+ k−4 X1 + k−5 X2

)} (10.12)

in much the same manner for other key velocities

v2b = E0

�

{
k2

alac

Ka

(
k−3 + (k−1 + k−2)

glc

Kg
+ k4lac + k5alac

)
−

− k−2
glc

Kg

(
k3gal + k1

lac

Kl
+ k2

alac

Ka
+ k−4 X1 + k−5 X2

)}
(10.13)

v4 = E0

�

{
k4lac

(
k3gal + k1

lac

Kl
+ k2

alac

Ka
+ k−4 X1 + k−5 X2

)

− k−4 X1

(
k−3 + (k−1 + k−2)

glc

Kg
+ k4lac + k5alac

)}
(10.14)

v5 = E0

�

{
k5alac

(
k3gal + k1

lac

Kl
+ k2

alac

Ka
+ k−4 X1 + k−5 X2

)
(10.15)

− k−5 X2

(
k−3 + (k−1 + k−2)

glc

Kg
+ k4lac + k5alac

)}

The foregoing presents equations of the velocities for all the elementary stages.
These expressions include the rate and dissociation constants. In order to describe
the behavior of the real enzyme, the parameters of equations should be determined
based on experimental data. In this case the experimental data were taken from
(Burstein et al. 1965). The experiment was as follows. To a solution, containing
0.5 M of lactose, at zero point of time, �-galactosidase was added in such a way
that its final concentration was equal to 130 �g per 1 ml. Concentration of lactose,
allolactose, galactose, glucose and total concentration of oligosaccharides measured
for 10 h have been measured parameters of the system.

Since the system described contains neither influxes nor effluxes of the mat-
ter, then in accordance with a kinetic profile depicted in Fig. 10.5 the change of
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Fig. 10.5 �-galactosidase
metabolites concentrations
dependence on time
described by the model and
experimental data (Saier and
Ramseier 1996): triangles
(1-lactose concentration),
rhombuses (2-allolactose
concentration), circles
(3-galactose concentration),
squares (4-glucose
concentration). Experimental
conditions: 130 �g of
β-galactosidase on 1 ml of
the solution, T = 30 ◦C,
pH = 7.2, MgSO4 6.7 mM,

NaCl 10 mM
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concentrations of the metabolites in time is determined only by the activity of the
enzyme and the following can be written

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(lac)′ = −v1a − v4,

(alac)′ = −v2a − v5,

(gal)′ = −v3,

(glc)′ = −v6,

(X1)′ = v4,

(X2)′ = v5.

(10.16)

In terms of the expression (10.6), which resulted from the approximation of qua-
sistationary concentrations for all the forms of the enzyme, the system transforms
into the following one

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(lac)′ = −v1b − v4,

(alac)′ = −v2b − v5,

(gal)′ = −v1b − v2b − v4 − v5,

(glc)′ = v1b + v2b,

(X1)′ = v4,

(X2)′ = v5.

(10.17)
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The given system is a system of differential equations with concentrations of
metabolites as variables. The system of Equations (10.18) represents two first linear
integrals which correspond to the mass conservation laws for two monosaccharides-
glucose and galactose:

glc + lac + alac + (X1 + X2) = const1,

gal + lac + alac + 2 (X1 + X2) = const2.
(10.18)

With the values of concentrations of metabolites in the system under study
at zero point of time, it is possible to determine the values of the parameters
const1 i const2. So, quantitative description of the above experiment reduces to a
solution of Cauchy problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(lac)′ = −v1 − v4,

(alac)′ = −v2 − v5,

(X1)′ = v4,

(X2)′ = v5,

glc = 0, 5M − lac − alac − (X1 + X2) ,

gal = 0, 5M − lac − alac − 2 (X1 + X2) ,

(10.19)

with initial terms

lac0 = 0, 5M,

alac0 = glc0 = gal0 = X10 = X20 = 0M.

10.3.2.3 Identification of the Parameters of ���-galactosidase Rate Equation

In order for the model to describe the behavior of the real system it is necessary to
identify the parameters included in the equation of the rate of an enzyme based on
experimental data. In our work we used as a criterion of adequacy of the model con-
structed to the real enzyme a sum of quadratic deviations of theoretical values, the
results of modelling from the experimental points from the work (Huber et al. 1976).
In this connection a search of optimal values of the model parameters determined
by the system of Equation (10.19) was in designating of such a set of constants,
where the criterion should reach a minimum. Minimization of deviation was made
according to the Hook-Jeeves technique within the wide range of possible values of
the constants of rate and dissociation.

All the algorithms used for solving the system of differential equations and
searching optimal values of the parameters were developed using the DBsolve soft-
ware 7.01 (Gizzatkulov et al. 2004). The parameters identified for �-galactosidase
are given in Table 10.2. Experimental estimates available for some constants are
given in brackets. Figure 10.5 represents the results of fitting of experimental data
with our developed model.
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Table 10.2 �-galactosidase model parameters values estimated from experimental data published
in (Huber et al. 1976)

Model
Model parameter Value parameter Value

k1 1, 0 · 104 min−1 k−1 0, 8 · 103 min−1

k2 4 · 104 min−1 k−2

1, 0 · 104 min−1

(2, 3 104 min−1

(Kurganov 1978))
k3 3 · 101 min−1 mM−1 k−3 1, 6 · 104 min−1

k4 2 · 101 min−1 mM−1 k−4 0, 8 · 103 min−1 mM−1

k5 2 · 101 min−1 mM−1 k−5 0, 8 · 103 min−1 mM−1

Kl

0,7 mM (1,3 mM (Kotlarz
and Buc 1977)) Kg

14 mM (17 mM
(Kurganov 1978))

Ka 0,8 mM

We used the model to study the ratio between different activities of an enzyme.
�-galactosidase has several activities: formation of glucose and galactose, transfor-
mation of lactose into allolactose and synthesis of trisaccharides. Which of these
activities are dominating and how does the contribution of each activity depend on
the concentration of the substrates and products? The answers to these questions
enable us to understand better how the functioning of an enzyme is controlled by
the substrate. To solve this problem we used the equations of the rates at fixed zero
values of the concentration of allolactose, galactose, glucose and trisaccharides and
changing concentration of lactose within the range of 0–5 mM (Fig. 10.6). It is pos-
sible to interpret this study as an attempt to forecast theoretically the experimental
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Fig. 10.6 The model fluxes distribution and their dependences on lactose concentration: 1- sta-
tionary rate of lactose consumption. 2,3,4,5-stationary synthesis rates of allolactose, galactose,
glucose, and trisaccharides correspondingly. The model conditions: alac = oligo = 0 mM, glc =
0–1000 mM, gal = 0–1000 mM
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data on measuring initial rates of lactose utilization and synthesis of various prod-
ucts depending on the concentration of the main substrate.

As seen from Fig. 10.6 the dependence of the rate of lactose consumption on the
concentration of the latter in the conditions has clear deviation from the classical law
of Michaelis-Menten, namely, at lactose concentrations higher than 10 mM a small
decrease of the consumption rate is seen. The rates of the synthesis of glucose and
galactose have a pronounced optima; at lactose concentration of 25 mM the yield
is maximal. The rate of allolactose synthesis under the same conditions increases
monotonically within the whole range studied. At a lactose concentration of 25 mM
the rate of allolactose synthesis becomes equal to the rate of monosaccharides syn-
thesis. It should be noted that the situation where the rate of allolactose synthesis can
exceed the rate of monosaccharides formation in vivo is most probably impossible,
since actual lactose concentration inside the bacterium is deliberately lower than the
modeled one.

Within the whole range of lactose concentrations the outflow of the substance
for the synthesis of byproducts (trisaccharides) turns out to be very low and does
not exceed 3% of the rate of lactose consumption. We can conclude that under
conditions close to the intracellular ones the substance outflow for the synthesis
of trisaccharides can be ignored without any loss in exactness described.

Besides the data shown in Fig. 10.6 we studied how the permanent reaction rates
depended on the concentrations of glucose and galactose (data are not available),
since metabolites could be in higher concentrations in actual bacteria. It turned
out that at concentrations up to 1 mM of each of the monosaccharides the values
of the fixed rates remained unchanged. It is possible to explain this by the fact
that equilibrium of lactose hydrolysis is significantly shifted towards higher values,
hence decomposition is, in fact, irreversible in the range studied resulting in weak
sensitivity of the enzyme to monosaccharides.

We constructed a kinetic model of E. coli �-galactosidase, and determined the pa-
rameters included in the rate expression. The model obtained enables us to describe
not only experimental data used for identification of the parameters, but to predict
the behavior of the enzyme for other conditions (for example in vivo). Besides we
showed in the work that the model used can “simulate” another type of experiment,
like measuring of initial rates at variable concentrations of one of the substrates.

10.3.3 Kinetic Model of the E. coli Citrate Synthase

Citrate Synthase (EC 2.3.3.1, gltA) is the key enzyme of the Krebs cycle – the central
part of the cell’s energy metabolism. It catalyzes the first step of carbon atoms en-
tering to the cycle, i.e. acetyl coenzyme A (AcCoA) condensates with oxaloacetate
(OAA) resulting in citrate (Cit) production and release of coenzyme A (CoA) (Nei-
dhardt and Curtiss 1996): AcCoA + OAA = Cit + CoA. The enzyme has complex
regulation by the key metabolites (ATP, NADH) which reflect energy state of the
cell. That is why it is so imprtant to obtain realistic description of the enzyme as a
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part of the whole model of E. coli central metabolism. To date there is no generally
accepted opinion in literature about the mechanism of the E. coli citrate synthase
reaction. There exists disagreement in assumptions about the mechanism of citrate
synthase reaction: whether substrates binding to the enzyme is arbitrary (Wright and
Sanwal 1971a) or ordered (Pereira et al. 1994). The order of substrates binding is
also disputed. In our model we have assumed AcCoA being the first substrate ac-
cording to ATP inhibition studies (Jangaard et al. 1968a). Citrate synthase is known
to have a complex regulatory pattern – the activity of the enzyme is pH-dependent
and is modulated by inhibitors – ATP, NADH, 2-ketoglutarate. We have accounted
for these regulators in our developed catalytic cycle for citrate synthase. We have
derived the rate equation, and estimated the enzyme’s kinetic parameters. Their val-
ues have been verified using an independent set of experimental data published in
(Jangaard et al. 1968a). The enzyme’s concentrations in E. coli cells grown under
aerobic conditions on acetate and glucose have been estimated from E. coli cell
extracts’ specific activities.

When constructing the model we have used the following facts about E. coli
citrate synthase functioning, known from literature:

1. Citrate synthase of gram-negative bacteria is a hexamer. Sigmoid dependence of
initial rate on AcCoA was obtained under zero concentration of KCl in (Pereira
et al. 1994). The effect was not observed under 0.1 M KCl addition (Pereira et al.
1994). As the concentration of 0.1 M KCl is physiological for E. coli we have
not described the sigmoid dependence observed under KCl = 0.

2. The reaction is practically irreversible with an equilibrium constant of 2.24∗106

(Guynn et al. 1973).
3. NADH and a-ketoglutarate are citrate synthase’s inhibitors noncompetitive to

oxaloacetate (Jangaard et al. 1968a).
4. ATP is the inhibitor competitive in respect to AcCoA and noncompetitive to

oxaloacetate (Jangaard et al. 1968a).
5. The enzyme’s maximal activity depends on pH without inhibitors and with ATP

addition (Jangaard et al. 1968a). It was shown that ATP moves the maximum of
the bell-shaped pH-dependence to the right and decreases the rate in its maxi-
mum (Jangaard et al. 1968a).

6. E. coli Citrate synthase kinetic parameters known from literature:

K AcCoA
m = 0.11 mM (Faloona and Srere 1969a);

K O AA
m = 0.021 (pH 8.1, t = 21◦C in the presence of 0.1M KCl)

(Faloona and Srere 1969a);

K AcCoA
d = 0.7 mM (pH 8.0) (Faloona and Srere 1969b);

kcat = 4860 l/ min (pH 8.0) (Donald et al. 1991);

pHopt = 7.3(Jangaard et al. 1968a). (10.20)
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10.3.3.1 Construction of Citrate Synthase Catalytic Cycle

As there is disagreement about citrate synthase’s mechanism we have used exper-
imental data on the enzyme inhibition by ATP. ATP was shown to be a competi-
tive inhibitor with respect to AcCoA and noncompetitive to oxaloacetate (Jangaard
et al. 1968a). This can be observed only when AcCoA is the first substrate. So
we have assumed that citrate synthase functions according to Irreversible Ordered
Bi Bi mechanism by Cleland classification (Cleland 1963), with AcCoA binding
first. The scheme of this catalytic cycle is presented in Fig. 10.7. We also have
taken into account inhibitors �-ketoglutarate and NADH which bind to two enzyme
forms – enzyme bound with AcCoA, and enzyme bound with AcCoA and OAA
(Fig. 10.7). This assumption allowed us to describe experimental data on enzyme
inhibition. ATP binding to free enzyme form was also included into the scheme
(Fig. 10.7). Moreover we have described dependence of the enzyme activity on pH
(pH-dependence). The classic assumption (Cornish-Bowden 2001) was applied that
enzyme can be protonated in its active site and the singly protonated form is active
whereas non protonated and doubly protonated forms are inactive (Fig. 10.7). To
describe ATP effects on pH-dependence (see clause 5) we have assumed that the
active form is ATP bound to doubly protonated enzyme as only in this case the
maximum could decrease and its shift to the higher values of proton concentration
could be observed.

10.3.3.2 Derivation of Citrate Synthase Rate Equation

Derivation of Rate Equation in Terms of Catalytic Cycle Parameters

As the reaction is almost irreversible (Guynn et al. 1973) we have described the en-
zyme working only in a forward direction in respect of rate dependence on substrates
and effectors concentrations. On the scheme (Fig. 10.7) the stages of substrates
binding are shown as reversible and the stage of product formation is irreversible
with rate constant k3. The rate equation has been derived based on the assumption
that stages of effector and proton binding are much faster than the catalytic stage

E-AcCoA

E-AcCoA-OAA

AcCoA OAA

E

E0

E2

H

H

K1

K2

E-AcCoA0 E-AcCoA 2

H
K1
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E-AcCoA-OAA 0E-AcCoA-OAA2

H
H
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E2-ATP

E-AcCoA-NADHE-AcCoA-KG
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k1

k–1

k2

k–2

k3
Cit

CoA

ATP
iK

KG
iK 1

NADH
iK 1

NADH
iK 2 KG

iK 2

Fig. 10.7 The scheme of E. coli citrate synthase catalytic cycle. Designations: E – Citrate Syn-
thase; E0, E-AcCoA0, E-AcCoA-OAA0 – deprotonated enzyme forms; E, E-AcCoA, E-AcCoA-
OAA – once protonated enzyme forms; E2, E-AcCoA2, E-AcCoA-OAA2 – twice protonated en-
zyme forms
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and the stages of substrates binding. The stages of protons binding were character-
ized by two parameters: dissociation constants for proton dissociation from doubly
and singly protonated enzyme forms. With these assumptions we have derived the
following rate equation for citrate synthase:

V = C S
k1k2k3 · AcCoA · O AA

(k−1k3 + k−1k−2 + k2k3 · O AA)

(
1 + K H

d1

H
+ H

K H
d2

(
1 + AT P

K AT P
i

))
+

+ AcCoA(k1k3 + k1k−2)

(
1 + K H

d1

H
+ H

K H
d2

+ K G

K K G
i1

+ N ADH

K N ADH
i1

)
+

+ k1k2 · AcCoA · O AA

(
1 + K H

d1

H
+ H

K H
d2

+ K G

K K G
i2

+ N ADH

K N ADH
i2

)

(10.21)

Here k1,−1, k2,−2, k3 are rate constants for corresponding stages of the catalytic
cycle, CS is the enzyme concentration, K H

d1, K H
d2, K AT P

i , K K G
i1 , K K G

i2 , K N ADH
i1 ,

K N ADH
i2 are dissociation constants for corresponding inhibitors and protons.

Derivation of Rate Expression in Terms of Kinetic Parameters (Michaelis
Constants, Inhibition Constants, Catalytic Constants etc.)

To express rate equation (10.21) in terms of experimentally measured kinetic pa-
rameters we have found their expressions from Equation (10.21):

Vmax = C S
k3(

1 + K H
d1

H
+ H

K H
d2

) ; K AcCoA
m = k3

k1
; K O AA

m = k3 + k−2

k2
(10.22)

Using these expressions (10.22) we could rewrite rate equation in the following
form:

V = C S
kcat0 · AcCoA · O AA

(K AcCoA
d · K O AA

m + K AcCoA
m · O AA)

(
1 + K H

d1

H
+ H

K H
d2

(
1 + AT P

K AT P
i

))
+

+ AcCoA · K O AA
m ·

(
1 + K H

d1

H
+ H

K H
d2

+ K G

K K G
i1

+ N ADH

K N ADH
i1

)
+

+ AcCoA · O AA ·
(

1 + K H
d1

H
+ H

K H
d2

+ K G

K K G
i2

+ N ADH

K N ADH
i2

)

(10.23)
here,

kcat0 = k3; K AcCoA
d = k−1

k1
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10.3.3.3 Estimation of the Citrate Synthase Kinetic Parameters

There were 12 parameters in rate equation (10.23): three of them were known
from literature, 8 parameters have been estimated from in vitro experimental data
whereas enzyme concentration in E. coli cells could not be found from in vitro
data and was estimated from E. coli cell extract specific activity. As the catalytic
constant of the enzyme was estimated in literature under fixed pH value conditions
(kcat = 4860 1/ min, pH 8.0 (Donald et al. 1991)), we have used it for parameter

kcat0 determination: kcat0 = kcat

(
1 + K H

d1
H + H

K H
d2

)
. So we have reduced the number

of unknown parameters to 7. Further, we have determined some of the parameters
from experimental data obtained in the absence of inhibitors. We have used initial
rate dependencies on substrate AcCoA from two sources (Faloona and Srere 1969b,
Wright and Sanwal 1971b): five curves with different concentrations of oxaloacetate
(Fig. 10.8a,b), two initial rate dependencies on oxaloacetate with fixed concentration
of AcCoA (Faloona and Srere 1969b) (Fig. 10.8c), and pH-dependence (Jangaard
et al. 1968b) (Fig. 10.8d). We have found such a set of parameters which allowed us
to describe all these data with a rate equation (10.23). Fitting results are presented
on Fig. 10.8 Here is the list of parameter values:

K H
d1 = 1e − 5 m M ; K H

d2 = 2e − 4 m M ; K AcCoA
m = 0.18 m M ;

K O AA
m = 0.04 m M ; K AcCoA

d = 0.1 m M ; K AT P
i = 0.58 m M
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Fig. 10.8 Citrate synthase initial rate dependence on substrates concentrations and pH described
by experimental points and rate equation (10.23): (a) OAA concentration: 1–0.1; 2–0.02; 3–
0.005; 4–0.01 mM (Ivanitsky et al. 1978); (b) OAA concentration was 0.5 mM (Ivanitsky et al.
1978); (c) AcCoA concentration: 1–0.5; 2–0.25 mM (Ewings and Doelle 1980); (d) AcCoA =
0.05 mM; OAA = 0.1 mM; ATP concentration: 1–0; 2–2 mM (Cleland 1963)
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Fig. 10.9 Citrate synthase initial rate dependence on concentrations of substrates in the presence
of inhibitors described by experimental points and rate equation (10.23)

To estimate the inhibition constants we have used experimental data on initial
reaction rate dependence on substrates concentrations in the presence of different
concentrations of the inhibitors �-ketoglutarate and NADH (Wright and Sanwal
1971b):

K K G
i1 = 0.015 mM; K K G

i2 = 0.256 mM; K N ADH
i1 = 3.3e − 4 mM;

K N ADH
i2 = 8.4e − 3 mM.

The results of fitting are shown on Fig. 10.9.
On the next stage we have verified our model of citrate synthase functioning on

experimental data which were not used for fitting. We have used the data on initial
rate dependence on substrates concentration in the presence of ATP (Jangaard et al.
1968b). It was shown that the rate equation (10.23) and estimated parameters values
allowed us to describe the independent set of experimental curves (Fig. 10.10).

Estimation of citrate synthase concentration depending on E. coli growth condi-
tions
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Fig. 10.10 Model verification. Citrate synthase initial rate dependence on concentrations of sub-
strates described by experimental points (Cleland 1963) and rate equation (10.23)
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Specific citrate synthase activity (SA) of E. coli cells extract grown on acetate
has been measured in (Cornish-Bowden 2001):

SA = 0.25 micromoles/min∗ mgextract protein

Assuming that 1 mg of E. coli cells protein corresponds to 5.5 microL of in-
tracellular volume (Jangaard et al. 1968b) we have calculated the enzyme’s max-
imal rate from the specific activity: Vmax = 45.5 mM/ min. Further citrate syn-
thase concentration can be calculated by dividing of maximal rate by catalytic con-
stant of the enzyme. In this case, however, we should use the value of catalytic
constant obtained at the same pH as the maximal velocity value, i.e. at physi-
ological pH of 7.3 (Padan et al. 1981). We have calculated the required value
of the catalytic constant in accordance with the obtained pH-dependence of the
enzyme:

k pH7.3
cat = kcat0(

1 + K H
d1

H
+ H

K H
d2

) = 9941(
1 + 1e − 5

1e − 4.3
+ 1e − 4.3

2.2e − 4

) = 6966 (1/ min)

So we could calculate citrate synthase concentration in E. coli grown aerobically
on acetate:

C Sacetate = V acetate
max /k pH7.3

cat = 6.5 (microM)

In the same way we have calculated the enzyme concentration which should be
observed in E. coli cell grown aerobically on glucose. We have used citrate synthase
specific activity measured on the extract of E. coli cells grown on glucose:

SA = 0,05 micromoles/min∗mgextract protein (Peng and Shimizu 2003).

Maximal velocity has been calculated as Vmax = 9 mM/ min, and citrate syn-
thase concentration in the cell in these conditions was estimated:

C Sglucose = V glucose
max /k pH7.3

cat = 1.3 (microM)

So we have constructed a kinetic model of E. coli citrate synthase functioning –
the rate equation has been derived and kinetic parameters have been estimated. We
have taken into account known inhibitory effects and pH dependence of the enzyme
activity. This allowed us to describe a set of experimental data obtained under dif-
ferent pH values. Plausibility of the model was confirmed by its ability to describe
an independent data set (Jangaard et al. 1968b) which had not been used for model
parameters determination. Citrate synthase concentrations in E. coli cells grown
aerobically on acetate and glucose have been obtained.
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10.4 Conclusion

We have illustrated our kinetic modeling approach using three E. coli enzymes.
We propose that only a detailed description of individual enzymes allows realistic
kinetic models of the whole pathways in the cell to be obtained. The ultimate goal is
to integrate all available in vitro experimental data in the description of the enzyme.
First, we use relevant data to reconstruct the enzyme’s catalytic cycle. Then we
derive the rate equation of the enzyme. The next and most complicated step is to de-
fine such values of kinetic parameters from the rate equation that would allow us to
describe all experimental dependencies measured in vitro. Here we have illustrated
our strategy with three non-trivial and rather complicated enzyme models: allosteric
tetramer phosphofructokinase-1, citrate synthase with its regulation by ATP and pH,
and �-galactosidase validated against time dependencies of its substrates.

Analysis of the phosphofruktokinase-1 model allowed us to predict new opera-
tional properties of phosphofructokinase-1, such as cooperative action of allosteric
effectors (PEP, ADP and GDP), competitive inhibition by free form of ATP and
influence of magnesium ions on the enzyme rate.

We used the modelling to study the ratio between different activities of β-
galactosidase. It turned out, that at lactose concentration of 25 mM the rate of al-
lolactose synthesis becomes equal to the rate of monosaccharides synthesis. Within
the whole range of lactose concentrations the outflow of the substance for the syn-
thesis of trisaccharides does not exceed 3% of the lactose consumption. We also
found that concentrations of glucose and galactose up to 1 mM did not change the
consumption and production rates.

The kinetic model of E. coli citrate synthase allowed us to get insight into some
important regulatory features of the enzyme catalytic mechanism. According to ATP
inhibition studies (Jangaard et al. 1968b) we have proposed Ordered Bi Bi citrate
synthase’s mechanism with AcCoA binding first. Inhibition experimental data al-
lowed us to accept the hypothesis that the inhibitors alpha-ketoglutarate and NADH
binds to two enzyme forms (the enzyme bound with AcCoA and with both AcCoA
and OAA). To describe ATP effects on pH-dependence (Jangaard et al. 1968b) we
have assumed that the active enzyme form corresponds to the complex of twice
protonated enzyme with ATP. With the use of our model we managed to estimate
the concentration of citrate synthase in E. coli cells grown aerobically on acetate
and glucose.

The models we presented in this paper prove that developing of detailed enzyme
kinetic models can be essential to capture the enzyme regulatory properties. We
illustrated how the detailed kinetic model of the enzyme can be further reduced to
derive a reaction rate equation which inherits key regulatory effects included in the
original detailed description, and allows to consistently approximate large sets of
in vitro experimental data. Individual reaction rates derived in such a way can be
further integrated into higher level kinetic models of E. coli metabolic pathways.
Pathway models will in their turn allow investigating higher level regulatory effects
in bacterial metabolic networks, observed in cellular extracts and in vivo. We hope
that the kinetic modeling approach in general, and three kinetic models of E. coli
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enzymes in particular, will be useful for future whole cell models of E. coli, and
practical applications in metabolic engineering and synthetic biology.
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Abbreviations

PfkA Phosphofructokinase-1
F6P fructose-6-phosphate
F16bP fructose-1,6-biphosphate
PEP phosphoenolpyruvate
ATPMg2− magnesium form of ATP
lac lactose
alac allolactose
glc glucose
gal galactose
oligo oligosaccharides
E gal, E lac, E alac �-galactosidase enzyme form bound with galactose,

lactose, allolactose
E gal glc ternary complex of �-galactosidase enzyme form

bound with galactose and glucose
gltA Citrate Synthase
CS Citrate synthase concentration
AcCoA acetyl coenzyme A
OAA oxaloacetate
Cit citrate
CoA coenzyme A
KG 2-ketoglutarate
H proton
SA specific activity of the enzyme
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and gene expression in the central metabolism, emphasis is given to the dynamic
modeling of regulation phenomena in the catabolism. The cra regulon which is
linked to the dynamic response of the metabolite fructose 1,6- bis(phosphate) serves
as an example to introduce a new concept, in which the binding constants are esti-
mated from DNA-binding site sequences of the regulatory proteins. By comparison
of the nucleotide frequencies within the DNA-binding sites for the individual target
genes of the regulon, it is possible to perform a reasonable estimation of the kinetic
parameters. Results of these estimations are compared with experimentally observed
transcript concentrations measured with the aid of quantitative PCR. In addition it
is shown how these outputs of the regulatory networks can be linked to the maximal
rates of the enzymes for the metabolic system of interest. The discussion of this
issue is embedded within a critical assessment of different conceptual frameworks
for modeling the metabolic network, which covers the spectrum of dynamic model-
ing at different levels of complexity, such as genome scale, modular approaches and
reduced models.

11.1 Introduction

Systems biology as an emerging field of research in bio-, engineering and sys-
tems sciences aims at a systems-level understanding of biological processes – and
ultimately whole cells and organisms. The grand, and currently unrealistic, hope
to even continue these efforts into a whole cell in silico model time and again
shapes the conceptual framework of this endeavour. There are several reasons
that the present state of affairs still falls short of this euphoric expectation. The
first is concerned with the fundamental question of a comprehensive definition
of a “whole cell model” and closely related to this uncertainty the query about
the purpose of such a model. Referring to the fundamental ideas and discussion
of Casti (1992a,b) about a model and its intended application, Bailey (1998) re-
minded us that “mathematical modeling does not make sense without defining,
before making the model, what its use is and what problem it is intended to help
to solve”. The second reason originates from a critical assessment of part of the
experimental work in the field of holistic measurements and related top down
approaches in inverse engineering for network inference. In spite of spectacular
developments in high-throughput technologies such as genome sequencing, tran-
scriptomics, metabolomics, fluxomics etc. – platforms which have monopolized
systems biology research in recent years – there is a tendency to fragment the whole
into various sub-omes and a great deal of arguments exists about what ome is more
important. However, due to multiple border crossings these omes are inseparable
parts of a single process – the complex and interwoven dynamics of the living
organisms.

Another issue to be addressed in the context of fragmentation is the often ob-
served focus on specific networks and treatment in separated and isolated territories,
such as metabolism, regulation and signal transduction. In the course of this partition
and kind of downward analysis, levels are reached where the whole meaning of the
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system is destroyed because of neglected interactions and missing integration. In
order to underline the systemic thinking, the exchanges of material and information
between the heuristically isolated modules of a system to be investigated may also
be termed “intra-actions”.

In this chapter we will highlight with a few examples the importance of inte-
gration of regulatory and metabolic networks in Escherichia coli and discuss the
framework of how this process of integration can be portrayed dynamically in the
structure of the mathematical model.

Taking up the aforementioned attenuation of the importance of defining first
the purpose of the mathematical model, the environmental changes triggering the
regulation of the metabolism have to be introduced. The example deals with the
regulation of the central metabolism of E. coli during a fed-batch process with con-
stant feeding rate of the carbon and energy source glucose (Fig. 11.1). This process
operation is important for technical processes for production of heterologous pro-
teins as well as bacterial metabolites. For large-scale applications, fed-batch, high
cell density cultivation strategies have proven suitable for considerably increasing
the volumetric productivity of these processes (Lee 1996, Yee and Blanch 1992).
Irrespective of more sophisticated closed-loop strategies, fed-batch cultivations are
usually carried out with open loop control via exponential or constant feeding. Expo-
nential feeding maintains the specific growth rate at a constant level. The maximum
biomass concentration that can be achieved with this strategy depends on sufficient

time [h]
–4 –2 0 2 4 6 8

gl
uc

os
e 

co
nc

n.
 c

gl
c [

g 
l-1

]

0

2

4

6

8

ac
et

at
e 

co
nc

n.
 c

ac
 [

g 
l-1

]

0,0

0,5

1,0

1,5

bi
om

as
s 

co
nc

n.
 c

X
 [

g 
l-1

]

0

5

10

15

sp
. g

ro
w

th
 r

at
e 

µ 
[h

-1
]

0,0

0,5

1,0

1,5

R
batch fed-batch

T1 T2 T3 T4 T5 T6 T7 T8

Fig. 11.1 Glucose limited fed-batch cultivation of E. coli K-12 W3110 with constant feed rate.
The vertical solid line at t = 0 indicates glucose limitation. The concentrations of biomass (filled
squares), glucose (triangles) and acetate (open squares) are given as well as the time course of the
specific growth rate (μ) (broken line). Arrows above the graph indicate the time when the samples
were removed for microarray analysis (R, reference; T1 to T8, time series samples)



212 T. Hardiman et al.

oxygen supply and heat transfer capacities. At a constant feed rate, the specific
growth rate gradually decreases due to declining carbon and energy source levels
(Dunn and Mor 1975). The proceeding carbon limitation also leads to a range of se-
rious starvation phenomena with manifold regulatory responses of the cells. These
processes macroscopically manifest themselves in a loss of viability, such as was
illustrated by Hewitt et al. (2000, 1999, Hewitt and Nebe-Von-Caron 2001).

Bacteria control metabolism and growth rate through global genetic regula-
tory systems, i.e. regulons and modulons (Lengeler et al. 1999, Neidhardt and
Savageau 1996). Prominent examples in E. coli are the catabolite repression (crp
modulon) and the stringent response (relA/spoT modulon), two processes that are
active under carbon-limiting conditions. During stringent response (reviewed in
Braeken et al. (2006), Cashel et al. (1996) and Lengeler et al. (1999)), the limita-
tion of nutrients leads to the intracellular accumulation of ppGpp (guanosine 3′, 5′-
bis(diphosphate)), which is supposed to bind to the RNA polymerase (Artsimovitch
et al. 2004).

The transcription of genes involved in the translation process – in particular of
ribosomal RNA and ribosomal proteins – is negatively regulated by ppGpp. As a re-
sult, the protein biosynthesis rate declines, which in turn also leads to a reduction in
growth rate (Cashel et al. 1996, Lengeler et al. 1999). During amino acid limitation,
the synthesis of ppGpp or guanosine pentaphosphate (pppGpp), collectively referred
to as (p)ppGpp, is mediated by RelA (GDP pyrophosphokinase/GTP pyrophospho-
kinase). Under amino acid-limiting conditions, the ribosome-bound RelA protein is
stimulated by uncharged tRNAs at the A site of ribosomes (Wendrich et al. 2002).
However, the accumulation of (p)ppGpp depends also on the dual activity of the
SpoT protein as (p)ppGpp-hydrolase or (p)ppGpp-synthetase. Although it is known
from a homologous protein of Streptococcus dysgalactiae subsp. equisimilis that the
opposing activities of SpoT are reciprocally regulated (Hogg et al. 2004, Mechold
et al. 2002), the regulation of the SpoT protein in E. coli is still hypothetical. The
most important issue for understanding growth control is the signalling mechanism,
which leads to accumulation of ppGpp under carbon-limiting conditions, an aspect
that is still not entirely clarified.

Besides various effects on growth-related functions (Cashel et al. 1996), the
alarmone ppGpp is known to be involved in the regulation of the sigma S factor
concentration (�S; rpoS gene) on the transcriptional and posttranscriptional level
(Hengge-Aronis 2002). As an alternative subunit of RNA polymerase, �S is in-
volved in the regulation of transcription in the general stress response in E. coli (also
designated as ‘stationary phase response’). It is assumed that elevated levels of �S

negatively regulate �D-dependent housekeeping genes, such as the TCA cycle genes
(Patten et al. 2004). Moreover, ppGpp influences the competition between different
stress-related sigma factors in the binding of the RNA polymerase core enzyme at
the expense of the sigma factor �D (Jishage et al. 2002) and the RNA polymerase
availability (Barker et al. 2001a,b, Cashel et al. 1996, Jensen and Pedersen 1990,
Traxler et al. 2006).
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The crp modulon belongs to a group of global genetic regulatory systems,
which can be subsumed under the term catabolite control. One basic feature of
these systems is that the presence or absence of an extracellular carbon source is
indicated by an intracellular metabolite (catabolite) that serves as a signal for dere-
pression (catabolite activation) or deactivation (catabolite repression) of catabolic
genes (Saier et al. 1996). The crp modulon includes catabolic operons for the
utilization of various carbon sources and is regulated by the Crp-cAMP complex.
The synthesis of the alarmone cAMP (cyclic 3′, 5′-AMP) by the enzyme adenylate
cyclase (CyaA) is stimulated by the phophorylated EIIAGlc protein, a component
of the E. coli phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS)
(reviewed in Lengeler et al. (1999) and Postma et al. (1993)). It is assumed that
a low glucose uptake rate by the PTS and a high ratio of phosphoenolpyruvate
and pyruvate concentrations (cpep/cpyr) lead to the phosphorylation of the EIIAGlc

protein (Hogema et al. 1998). Consequently, limited glucose availability leads to
the synthesis of cAMP and the transcriptional regulator complex Crp-cAMP is
formed. Catabolite control is also exerted by the catabolite repressor/activator pro-
tein Cra (formerly designated FruR), which regulates numerous genes involved
in the carbon and energy metabolism (the cra modulon) (reviewed in Ramseier
1996, Saier and Ramseier 1996, Saier et al. 1996). The regulator protein Cra is
inactivated by the catabolites fructose 1-phosphate and fructose 1,6-bis(phosphate)
(Saier and Ramseier 1996).

Most of the aforementioned investigations have been performed during the shift
from exponential to stationary growth phase in batch cultivations. The dynamic
perturbation during these experiments is characterized by a rapid drop of glucose
concentration to zero in a short time period. As distinguished from this very fast
perturbation the fed-batch cultivation with constant feeding rate prolongs the period
of declining glucose concentrations towards a time span of several hours. This pro-
longation of the proceeding carbon limitation initiates a process of transient adapta-
tion during which the organisms dynamically changes activities of enzymes in the
catabolism and regulates the anabolism to adjust the synthesis of macromolecules
and reduce growth rate. The result of this concerted action of global regulation
differs from the short term regulation during the transient period from batch to
stationary phase and the subsequent starvation as well as the behaviour of the or-
ganisms during steady state conditions at varying dilution rate during continuous
operation.

With the goal to obtain a more in-depth understanding of these complex
regulation phenomena and their impact on the flux distribution in the central
metabolism experimental work has been initiated which covers three main areas,
namely microarray analysis, flux analysis and selected quantitative measurements
of metabolites and mRNA via PCR analysis. Results of this work have been already
summarized in the papers of Hardiman et al. (2007a) and Lemuth et al. (2008). Part
of these results will be presented once more within this chapter to support the tight
link between experimental work and computational approach.
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11.2 Reconstruction of the Global Regulatory
Structure of Carbon Limitation

Current systems biology research in dynamic modeling of the central carbon metabo-
lism of Escherichia coli aims at the comprehensive understanding of its global reg-
ulation in response to carbon limitation. The long-term goal is of course the support
of rational producer strain optimization based on mathematical modeling. Much
knowledge about regulatory processes during carbon limitation has accumulated
and is available from literature and databases. However, it is not clarified which
regulators are dominant under these conditions and thus, which regulators must
be considered in a mathematical model. For the assembly of the global regulatory
network underlying and for explaining the transient metabolic response to carbon
limitation it is necessary to link this a priori knowledge with experimental obser-
vations in order to identify the relevant components of the network. As mentioned
above, observing a single ‘ome’ alone is not adequate when such complex dynamic
processes are being investigated.

The works of Hardiman et al. (2007a) and Lemuth et al. (2008) demonstrate
the simultaneous experimental observation of concentrations of signaling molecules
(cAMP and ppGpp) and a time series of metabolic flux and transcriptome analyses
of Escherichia coli K-12 W3110 in a fed-batch cultivation applying a constant feed
rate (Fig. 11.1). These omic approaches were employed for the reconstruction of the
model structure, focussing on the most relevant parts that must be considered when
dynamic modeling the regulatory and metabolic behaviour.

The constant feeding strategy applied, provided an appropriate approach for
separating the time-dependent events during the transition from exponential to
carbon-limited growth (Fig. 11.1). Both intracellular alarmones ppGpp and cAMP
accumulated in large quantities after the onset of nutrient limitation, subsequently
declining to basal levels (Hardiman et al. 2007a). The limited supply of the car-
bon and energy source glucose led to significantly decreasing fluxes in glycolysis,
pentose phosphate pathway and biosynthesis, whereas TCA cycle fluxes remained
constant (Fig. 11.2a,b). The flux redistribution resulted in an enhanced energy gener-
ation in the TCA cycle and consequently, in a 20 % lower biomass yield (Hardiman
et al. 2007a). From the correlations of gene expression levels with the metabolic
fluxes that were observed (Fig. 11.2), this behaviour can be interpreted as fol-
lows and transformed into a model structure (Hardiman et al. 2007a, Lemuth et al.
2008).

The flux through the upper part of glycolysis is favoured whereas the flux through
the pentose phosphate pathway is minimized, which is most likely due to the re-
duced synthesis of gnd mRNA. The flux entering the pentose phosphate pathway
is used for biosynthesis at the expense of the reflux into the glycolysis pathway,
which might be regulated by the RpiA/Rpe split ratio. The reaction rates in the lower
glycolysis decrease due to decreasing mRNA levels, thereby providing a sufficient,
though minimal, efflux into the pentose phosphate pathway. The regulation of pfkA,
fbaA, pgk, pykF, gapA and eno transcription by the Cra regulator protein (cra mod-
ulon) is suggested to lead to this behaviour (Fig. 11.3). Signalling occurs through
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Fig. 11.3 Reconstruction of the global regulatory and metabolic network of carbon limitation.
Left: Catabolite repression can be seen as an offensive strategy since various catabolic operons are
induced, which encode transporters and metabolic pathways for the consumption of sugars other
than glucose. Moreover, many genes of the TCA cycle, glyoxylate shunt (GS), PTS system and
glycolysis are regulated by the Crp-cAMP regulator complex (crp modulon). Additionally, the Cra
protein represses genes of glycolysis and activates transcription of GS genes (cra modulon). Fbp
inactivates the Cra protein. The fbp concentration reflects the availability of extracellular glucose.
Right: Stringent response is an defensive strategy since it regulates many components of the tran-
lational and transcriptional machinery, most prominently, the reduction of rRNA transcription by
ppGpp (relA/spoT modulon). The dedicated reader is referred to Hardiman et al. (2007a) for a
detailed analysis of the major mechanisms that lead to the accumulation of the alarmones cAMP
and ppGpp and to the reduction of the fbp concentration during carbon limitation. The major
negative feedback regulation mechanisms leading to a resetting of the signals are also discussed
therein

the metabolite fructose 1,6-bis(phosphate) (fbp; Fig. 11.3), whiches concentration
is proposed to reflect the availability of glucose. A reduction in the enzyme levels of
the lower glycolysis concomitantly with the observed decreasing flux levels might
be a hint for the control of metabolite concentrations (homeostasis). The carbon
flux entering the TCA cycle (influx is enhanced via gltA expression) is split into the
glyoxylate shunt (GS), the phosphoenolpyruvate(pep)-GS and the full TCA cycle.
GS and pep-GS provide a better pep, pyr and oac precursor supply. It is proposed
that the global regulation via the crp and cra modulons is the most relevant in this
respect – i.e. the Crp-cAMP regulator complex mainly induces the transcription of
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the TCA cycle genes, whereas the glyoxylate shunt (GS) genes are regulated by the
Cra regulator protein (positive) and the Crp-cAMP complex (negative) (Fig. 11.3).

In summary, the omic approaches reported by Hardiman et al. (2007a) and
Lemuth et al. (2008) demonstrate that the substrate is extensively oxidized in the
TCA cycle to enhance energy generation. However, the general rate of oxidative
decarboxylation within the pentose phosphate pathway and the TCA cycle is re-
stricted to a minimum. Fine regulation of the carbon flux through these pathways,
i.e. the EMP/PPP, RpiA/Rpe and TCA/GS/pep-GS split ratios, supplies sufficient
precursors for biosyntheses. The network topology regulating the central carbon
metabolism provided in (Hardiman et al. 2007a) is novel inasmuch as it compre-
hensively explains the obtained systems-level data of the metabolic transition from
exponential to carbon-limited growth typical of fed-batch processes – considering
not only signal transduction, transcriptional regulation and metabolic behaviour but
also the resetting of the signals (the two intracellular alarmones cAMP and ppGpp)
and the effect of the respective feedback mechanisms (ascribed to catabolite re-
pression and stringent response) on the dynamics in the central carbon metabolism
(Fig. 11.3).

Besides the reported correlating transcript levels and metabolic fluxes in the cen-
tral carbon metabolism, a picture of interesting interconnections between enhance-
ment and attenuation of further cellular functions is drawn in (Lemuth et al. 2008),
highlighting the importance of this adaptive behaviour for mathematical modeling
and optimizing biotechnical production processes. Most of the physiological rear-
rangements, if not all of them, can clearly be linked to the regulation of the intracel-
lular availability of precursors and energy, i.e., not only the supply and demand rates,
but also the (resulting) concentrations of precursors are discussed to be tightly con-
trolled. This physiologically highly important task is exemplified by the tempting
proposal that the global regulation of diverse functions such as chemotaxis, trans-
port and flagellar systems as well as glycolysis, TCA cycle and glyoxylate shunt are
interconnected in controlling the availability of the precursor phosphenolpyruvate
(pep). This and further major findings of Lemuth et al. (2008) are condensed in
the following: (i) A cluster of high-affinity transporters is synthesized, while the
activity of medium-affinity transporters is maintained. This is mainly due to their
regulation by the Crp-cAMP complex. The glucose flux entering the cell is directed
via transporters that do not use pep for phosphorylation. This preserves the pool
of this metabolite (homeostasis) and affects the EIIAGlc∼P-dependent activation of
cAMP synthesis through the enzyme adenylate cyclase (CyaA). (ii) These transport
systems in particular depend on a membrane proton gradient for proper function.
The expression of the proton gradient-dependent chemotaxis system is reduced,
thereby enabling the transport system effectively utilise the energy available. (iii)
Cellular growth is regulated predominantly by the stringent response (alarmone
ppGpp, relA/spoT modulon), however, no extensive induction of the general rpoS-
dependent response could be observed. This is attributed to the opposing regulation
via the crp and relA/spoT modulons (see also Lapin et al. 2006). It is expected that
slow substrate concentration changes do not trigger a strong starvation response
Teich et al. (1999). However, other stress responses were detected.
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Thus, a model topology has been reconstructed of the global regulation of the
E. coli central carbon metabolism through the crp, cra and relA/spoT modulons that
can be used for mathematical modeling metabolism and regulation (Fig. 11.3). In
a second step, physiological functions that are important for precursor and energy
availability (transport, chemotaxis, stringent and stress response) are suggested to
be implemented as further modules of the mathematical model.

11.3 Basic Principles of Deterministic Modeling
the Dynamics of Gene Expression

The development of deterministic models describing the regulation of gene expres-
sion (transcription, mRNA degradation and protein biosynthesis) has a long tradi-
tion. Already in a 1968 review, Rosen (1968) summarized important methods and
approximations essential for modeling and simulation of gene regulatory networks.
The majority of the models are similar in mathematical nature and more or less
rest upon the concept suggested by Yagil and Yagil (1971) and Yagil (1975). Based
on the operon model of Jacob and Monod (1961) these authors illustrated how to
derive the probability of transcription initiation if a gene is regulated by a repressor
or activation protein.

In the case of negative regulation it is defined as the ratio of the concentration of
operators free to be transcribed, cO , to the total concentration of operators, cO,t :

φneg = cO

cO,t
. (11.1)

Accordingly, the ratio of the concentration of activator proteins bound to DNA-
binding sites, cA.DN Sbs , to the total concentration of DNA-binding sites, cDN Abs,t ,
gives the probability:

φpos = cA.DN Sbs

cDN Abs,t
. (11.2)

The maximal rate of transcription can be achieved for φ → 1. In both cases the
probability is derived from the equilibrium assumption for the biochemical bind-
ing reactions of the regulator protein and its DNA-binding site. This is reasonable
because the initiation and the subsequent transcript and peptide elongation occur
on different time scales (McClure 1985, Stephanopoulos et al. 1998, Uptain et al.
1997). In case of effectors inhibiting or enhancing the binding activity of regulator
proteins (inducers or co-repressors), additional equilibrium reactions can be formu-
lated. Equation (11.3, 11.4) exemplify the inactivation of the repressor protein R by
binding the inducer molecule E and binding of the active repressor to the operator
DNA sequence O . Equation (11.5) depicts the equilibrium (binding) constants and
the derived probability of induction for negative regulation.



11 Dynamic Modeling of the Central Metabolism of E. coli 219

R + n · E
k+1�
k−1

R.En (11.3)

R + O
k+2�
k−2

R.O (11.4)

φneg = cO

cO,t
= 1 + K1cn

E

1 + K1cn
E + K2cR,t

(11.5)

with

K1 = k+1

k−1
= cR.En

cR · cn
E

and K2 = k+2

k−2
= cR.O

cR · cO

The transcription rate is then obtained from

rtc,m RN Ai = rtc,max

∏

j

φ j f (μ) − kDegradation cm RN Ai − μcm RN Ai (11.6)

and the translation rate of the protein of interest is calculated from

rT L ,Pr oteini
= rmax,T Lcm RN Ai − μcPr oteini . (11.7)

The term f (�) considers the impact of the specific growth rate on the transcrip-
tion rate. Roels (1983) suggested the following form:

f (μ) = a + bμ

a + bμmax
, (11.8)

which reflects the linear dependency between mRNA biosynthesis and the specific
growth rate.

The illustrated approach enables modeling of superimposed regulation mecha-
nisms by several regulators and can be extended by the binding of RNA polymerase
to the promoter DNA sequence. It is therefore suitable for implementation of gene
expression kinetics in large metabolic models.

With increasing amount of knowledge available about the details of catabolite
repression (reviewed by Deutscher et al. 2006) more sophisticated models have been
developed. Many of these modifications are based on the approach of Lee and Bailey
(1984a,b) in which a transcription efficiency is defined as:

η = ψP (1 − ψR) (1 + αψA) (11.9)

with the fraction of occupied promoters ψP , the influence of a repressor (1 − ψR)
and an activator (1 + ��A). In addition to the comprehensive models suggested by
Kremling et al. (2007, 2001, 2000) (Kremling and Saez-Rodriguez 2007, Kremling
and Gilles 2001) and Bettenbrock et al. (2006) this approach has been applied by
Wong et al. (1997) as well as Van Dien and Keasling (1998) to mention a few.
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In a different line of approaches Boolean networks are used for modeling reg-
ulatory phenomena. These models have been already introduced in the 1960’s by
Stuart Kauffman (1969). The conceptual framework of Boolean networks is based
on the assumption that binary on/off switches functioning in discrete time steps can
describe important aspects of gene regulation (Albert 2004, McAdams and Arkin
1998). In the context with the intended coupling of regulatory and metabolic net-
works, such a Boolean approach for description of the regulatory network would
eventually lead to a hybrid model in which the concentrations of metabolites are
expressed as continuous values and connected via enzyme kinetics to describe the
dynamics of the metabolic networks described by a system of ODEs.

An alternative option to avoid the computational effort with the hybrid models
is to approximate the switch like behavior of the expression with the aid of Hill
kinetics. In case of a repression the rate of transcription can be represented by

r = rmax,transcription
1

1 +
(

cR

K R

)nR
, (11.10)

whereas for the event of an activation

r = rmax,transcription
1

1 +
(

K A

cA

)n A
(11.11)

could be an appropriate approximation. A more generic formulation based on the
“general” Hill equation suggested by Cornish-Bowden (1995) and Hofmeyr and
Cornish-Bowden (1997) for reversible reactions in case of metabolic reactions leads
to a very useful rate expression for the concerted action of multiple activators and
repressors (Likhoshvai and Ratushny 2007):

dcT argetgene(s)
m RN A

dt

= rmaca,T C

k +
cAs,1∑
si1

(
Rsi1

Ksi1

)hsi1

+
cAs,2∑
si1,2

R
hs11
si1

R
hsi2
si2

K
hsi1 +hsi2
si1,2

+ · · · +
cAs,M∑

si1,...,siM

M∏
k=1

R
hsik
sik

K

M∑
k=1

hik

si1...M

1 +
cI s,As,1∑

s j1

(
Rsj1

Ksj1

)hs j1

+
cI s,As,2∑
s j1,s j2

R
hsj1
s j1

R
hsj2
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K
hsj1 +hs j2
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+ · · · +
N∑

s j1,...,s jN

N∏
w=1

Rhsiw
siw

K

N∑
w=1

hs jw

s j1...N

.

(11.12)

Here the binding of regulatory proteins R includes inhibition (binding sites Is)
and activation (bindig sites As). Figure 11.4 depicts the application of this equation
for an example of joint regulation of two genes through two repressors – and one
activator molecule. Starting from the framework of statistical mechanics Bintu et al.
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Fig. 11.4 Dynamic modeling
of gene expression regulated
by two repressors and one
activator based on general hill
kinetics (Ilya Peshkov,
Novosibirsk, Russia: personal
communication)
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(2005) derived various “regulatory factors” for several different regulatory motifs
very similar to the generic structure of Equation (11.12).

For portraying the sigmoid character of the dynamic response alternative appro-
aches are based on generic sigmoidal functions (Weaver et al. 1999), such as

f (x) = 1

1 + e−x
. (11.13)

With the aid of additional terms representing system and measurement noise,
Haixin et al. (2007) have used this approach in connection with Kalman Filtering
for the problem of genetic regulatory network inference from time series microar-
ray data.

Another powerful method in the context of sigmoidal functions is built on the
conceptual framework of neural networks (Vohradsky 2001a,b). The model has
the form

dzi

dt
= rmax

1

1 + exp

[
−

(
∑

j
wi j y j + bi

)] − kdeg radationzi (11.14)

with connection weights wi j , delay parameter bi and rate constant for degradation
k. zi is the target gene regulated by the genes y j connected to the target (predic-
tor genes).

The focus of application of most of the aforementioned approaches for dynamic
modeling of gene regulatory networks is on network inference based on time series
“profiles” of microarray data. A crucial point in the evaluation of the majority of
these applications is the missing distinction and the rigorous mathematical descrip-
tion of the two processes of transcription and translation. Using nonlinear stability
analysis Hatzimanikatis and Lee (1999) have shown that a combination of gene
expression information at the mRNA level and at the protein level is required to
describe even simple models of gene networks. This issue is all the more important
for coupling gene regulatory networks with metabolic networks because at least
the output of the regulatory network is linked at the protein level to change en-
zyme concentrations in the metabolic rate expressions. If balance equations for the
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translation process are neglected, the overall dynamics are corrupted by a mixture
of characteristic time constants for transcription and translation.

11.4 Dynamic Model for the Intra-actions Between
the Regulatory and Central Metabolic Networks
of Escherichia coli: Translation of Sequence
Information into Kinetic Parameters

The focus of this chapter is on the dynamic modeling of the intra-actions between
the regulatory and metabolic networks depicted in Figs. 11.2 and 11.3. The ulti-
mate goal of this approach is to quantitatively describe the dynamical changes of
traffic patterns and variations in flux distributions in response to the environment
changes caused by the diminishing supply of carbon and energy source glucose.
The kinetics to describe the dynamics of the regulation phenomena is modeled in
terms of probabilities of transcription as described in Section 11.3. The approach
is based on a translation of gene sequence information into parameters of bind-
ing constants for the individual regulator protein-DNA-binding site interaction of
interest. The methodology will be exemplified for the Cra-modulon, illustrated in
Fig. 11.3.

The usage of Equations (11.1, 11.2, 11.3, 11.4, and 11.5) for modeling gene
expression in large metabolic networks as illustrated in Fig. 11.3 requires the avail-
ability of the parameters K1 and K2 from literature, data bases or their identification
from experimental observations. For estimation of the binding constant K1 for the
reaction between the regulatory protein and its effector E (Equation 11.3) this is
of course feasible. However, K2,i has to be determined for each individual gene i
coding for the enzymes or regulatory proteins being components of the network.
For large networks or large regulons/modulons such an approach is not practica-
ble because of the experimental effort. This is one of the reasons that verification
of such models is most often dominated by identification methods for the estima-
tion of large sets of parameters. To circumvent this kind of problems we there-
fore choose an approach in which the individual binding constants are estimated
from the gene sequence information of the DNA-binding side (Hardiman et al.
2007b).

11.4.1 Decomposition of the Binding Reaction

For the purpose of derivation of K2,i from the DNA-binding site sequence, the reg-
ulator protein R is first assumed to bind to the mononucleotides, b ∈ {A, C, G, T },
of the binding site sequence and that these interactions are independent and additive
according to Stormo (1988, 1990):

R + b � R.b (11.15)
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Assuming again an equilibrium reaction, the binding constant is proportional to
the ratio of the bound pool to the unbound pool of bases:

Kb = cR.b

cR · cb
∝ cR.b

cb
= fb

pb
(11.16)

Equation (11.16) also illustrates that this ratio is equal to the ratio of the fre-
quency at which the base b occurs at the considered position in the DNA-binding
site sequence, fb, to the frequency of this base in the genome of the considered
organism, pb, which was proposed by Stormo (1988, 1990). Considering that the
binding to each nucleotide of the sequence is assumed to be independent, the binding
constant for the total DNA-binding site, K2, can be formulated as

K2 =
∏

n

Kb,n ∝
∏

n

fb,n

pb
(11.17)

where n corresponds to the position of the nucleotide b in the sequence. Various
scientific groups have investigated this relationship and found reasonable correla-
tions between calculated and experimentally determined binding affinities or the
equivalent free energy of binding (Equation 11.18). For instance, Berg and von Hip-
pel ((1987)) developed a statistical-mechanical theory based on the assumption that
specific DNA sequences have been selected according to their protein binding affin-
ity and that all sequences that show equal affinities are equally likely to occur in the
genome. The theory Berg and von Hippel (1987) was able to predict the correlation
between the activities (k2 K B values) of E. coli promoter sequences assuming that
nucleotides at different positions in the promoter sites contribute independently to
their activities. Many more contributions to the field demonstrated that there is a
strong linear relation between base frequency and binding strength (Berg and von
Hippel 1988, Fields et al. 1997, Stormo and Fields 1998, Takeda et al. 1989). For an
overview the dedicated reader is referred to (Stormo 1990, 2000).

�Gb = −RT ln Kb ∝ − ln

(
fb

pb

)
(11.18)

The findings of these authors are not surprising, because Equations (11.17, 11.18)
simply express that highly conserved DNA sequences are bound stronger than less
conserved ones by the respective regulator protein. Therefore, Equations (11.17,
11.18) provide a simple and valuable tool for the quantitative evaluation of any
DNA-binding site sequence with respect to a reference sequence.

11.4.2 Application to the cra Regulon of Escherichia coli

The regulator protein Cra is a major component of the global regulation of the
metabolic fluxes in glycolysis (EMP), the TCA cycle and the glyoxylate shunt (GS)
in glucose-limited fed-batch processes of E. coli (see Section 11.2 and Fig. 11.3).
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Binding of the Cra protein to the DNA-binding site of the transcription units i
(DN Absi ; Equation 11.21) of the cra modulon is inhibited by high concentrations
of fructose 1,6-bis(phosphate) (fbp; Equation 11.19).

Cra + fbp
K1� Cra . fbp (11.19)

4 Cra + DN Absi

K2,i� Cra4 . DNAbsi (11.20)

φneg
Cra.DNAbs,i

= cDN Abs,i(
cDN Abs,i

)
total

= 1

1 + K2,i

(
(cCra)total

1 + K1 c f bp

)4 (11.21)

φ pos
Cra.DN Abs,i

= cCra4.DN Abs,i(
cDN Abs,i

)
total

= 1 − φneg
Cra.DN Abs,i

(11.22)

rtc,m RN Ai = rtc,max

∏

j

φ j − kDegradationcm RN Ai − μcm RN Ai (11.23)

The probability of transcription initiation, φ, is determined by the fraction of
unbound (Equation 11.21) or bound (Equation 11.22) DNA-binding sites when tran-
scription is repressed or activated, respectively.

11.4.3 Comparison Between Model Prediction
and Experimental Observations

Figure 11.5 illustrates the mRNA concentrations of central carbon metabolism
genes measured using qPCR analysis during glucose-limited fed-batch cultivation
of E. coli (see Fig. 11.1) as well as concentrations predicted by the model described
by Equations (11.19, 11.20, 11.21, 11.22, and 11.23). The genes eno (encoding
enolase), pfkA (6-phosphofructokinase I) and pykF (pyruvate kinase I) are known
to be regulated by the Cra regulator protein (see Section 11.2). The repression of
their transcription (Fig. 11.5) results in a strong decrease of the respective mRNA
concentrations.

batch fed-batch

time [h]
–2 0 2 4 6 8

c m
R

N
A

,e
no

[M
]

10–11

10–10

10–9

10–8 batch fed-batch

time [h]
–2 0 2 4 6 8

c m
R

N
A

,p
fk

A
[M

]

10–12

10–11

10–10

10–9 batch fed-batch

time [h]
–2 0 2 4 6 8

c m
R

N
A

,p
yk

F
[M

]

10–11

10–10

10–9

10–8

(a) (b) (c)

Fig. 11.5 mRNA concentrations during glucose limited fed-batch cultivation of E. coli K-12
W3110. The concentrations of mRNA (�) were determined by qPCR analysis (standard deviation,
3 independent samples). Simulation data are indicated by solid lines. (a) eno mRNA (encoding
enolase), (b) pfkA mRNA (6-phosphofructokinase I) and (c) pykF mRNA (pyruvate kinase I)
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Obviously, the DNA-binding activity of the Cra protein is high due to the low
concentration of fructose 1,6-bis(phosphate) (fbp) during the fed-batch process
(Fig. 11.6). The strong decrease in fbp concentration (Fig. 11.6a,b) can be attributed
to the limited carbon supply (Section 11.2). However, according to Fig. 11.6a the
concentration of fbp apparently increases after two hours of fed-batch cultivation,
when the experimental data is related to the biomass concentration. Only when

Fig. 11.6 Fructose
1,6-bis(phosphate)
concentration during
glucose-limited fed-batch
cultivation of E. coli K-12
W3110. Concentrations were
determined after quenching
and extraction using
perchloric acid as published
in Hardiman et al. (2007a).
(a) Fbp concentration related
to biomass
[�mol (g dry weight)−1]. (b)
Fbp concentration related to
the cell volume
[mmol (l cytosol)−1] that is
obtained by deviding the
concentration given in (a) by
(c) the specific cell volume
vx [l cytosol (g dry weight)−1],
and which is in turn
approximated using the
growth rate-dependent
function

v̂X = 0.4860 · 2(1.144μ̂)

−0.636 + 0.635 · 2(0.718μ̂)

(Hardiman et al. 2007a)
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the growth rate-dependent variation of the cell volume is considered a meaningful
result may be obtained from the data (Fig. 11.6b). The time profile of the molar
intracellular concentration given in [mmol (l cytosol)−1] enables to explain the tran-
scriptome and metabolic flux data as described in Section 11.2. That is, the persist-
ing low concentration of fbp leads to the repression of glycolysis genes by the Cra
regulator protein and activation of transcription of glyoxylate shunt genes.

The model predicts the mRNA concentration satisfactorily during the batch and
the beginning of the fed-batch process and also at a later process phase where the
growth rate is very low (Figs. 11.1 and 11.6). Note, that the model used for the
simulations differs from the one introduced in Section 11.3. Equation (11.23) does
not take into account the growth rate dependence of transcription initiation, whereas
Equation (11.6) considers the impact of the specific growth rate on the transcription
rate. Although the Equations (11.19, 11.20, 11.21, 11.22, and 11.23) are sufficient
for a rough simulation of the mRNA concentrations (Fig. 11.5), the extension of the
model by growth rate dependent variables and further regulons/modulons is needed.
This is expected to make an important contribution to the understanding the global
regulation of the central carbon metabolism during carbon limitation.

11.5 Conceptual Framework for Dynamic Models
of Metabolic Networks of E. coli Suitable
for Links to Regulatory Networks

A multitude of approaches is available for dynamic modeling of the metabolism of
E. coli. Here, we shall limit our discussion on continuous and deterministic models,
which are derived by considering the balance equations of the individual metabolites
and can be represented in the compact form:

dx
dt

= Nr (x (t) , P) − μx. (11.24)

N is the m x n stoichiometric matrix an r is the n-dimensional rate vector.
Based on dynamic measurements of intra- and extracellular metabolites in res-

ponse to a perturbation of a continuous culture with a pulse of glucose Chassagnole
et al. (2002) derived a rigorous dynamic model of the central metabolism of E. coli
(Fig. 11.7). The model is based on kinetic rate expressions for the individual en-
zymes, the original structures of which have been derived from investigations with
isolated enzymes at in vitro conditions. The key to afterwards generate the dynamic
in vivo model is, to extract the kinetic parameters of the biochemical reactions from
the in vivo metabolite measurements and, as such, considering the reactions in their
“systemic” context (Reuss et al. 2007).

To describe the dynamic systems behaviour, deterministic kinetic rate equations
of the form

ri = rmax,i f (c, p) (11.25)
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Fig. 11.7 Structure of the metabolic model of glycolysis and pentose phosphate pathway in Es-
cherichia coli (Chassagnole et al. 2002)

are formulated, where the capacity of the reaction is characterized by its maximal
rate and the kinetic function f represents the kinetic properties of the reaction. Sub-
strates, products and other metabolic effectors influencing the rate of the reaction
are represented by the state vector of metabolite concentrations c. The parameters
of the reaction are summarized in the vector p.

If the maximal rate of reaction can be assumed to be proportional to the con-
centration of the enzyme, Equation (11.25) provides a simple way to integrate the
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output of the regulatory network with respect to the concentration of the individual
enzymes.

The first step to embed the behaviour of the subsystem into the metabolic network
as a whole is provided by the estimation of the maximal rates of the individual
reactions. Applying the rate Equation (11.25) to the steady state leads to

r̃max,i = ri,steady state

f
(
csteady state, p

) . (11.26)

Let us assume that reaction rate r̃i at steady has been estimated from metabolic
flux analysis. Let us further assume that a first estimate of the structure of the kinet-
ics as well as the parameter vector p is available from in vitro measurements. If the
components of the concentration vector c influencing the rate of the reaction have
been measured at steady state, the unknown maximal rates are given as depicted in
Equation (11.26).

If the stoichiometric model used for metabolic flux analysis has a genome scale
or a metabolic submodel in case of 13C analysis is linked to such a model (Schaub
et al. 2008), the maximal rates estimated from Equation (11.26) are invariant to
the scale of the submodule used for the dynamic model. As such, these rates are
intrinsic properties of the system as a whole and in a meaningful way only depend
on the physiological state of the system. Further details of the strategy to identify
the in vivo kinetics from the measured stimulus-response date are discussed in the
original papers (Chassagnole et al. 2002, Rizzi et al. 1997) and summarized in a
review (Reuss et al. 2007).

The model structure depicted in Fig. 11.7 accounts for the enzymatic rate ex-
pressions for the glycolytic enzymes and therefore allows for connection of the
most important output signals of the Cra and Crp modulon (Fig. 11.3). Apart of
the necessary model extension for incorporation of TCA and glyoxylate shunt reac-
tions, however, interactions between the regulatory and metabolic networks exceed
the central metabolism by far. Particularly the precursor demand via e. g. amino
acid synthesis and the subsequent polymerisation reactions are regulated through the
alarmone ppGpp (Fig. 11.3) and demand further extension of the model structure.

Aside from the possibility to assign the large number of additional reactions with
mechanistic enzyme kinetics, which is an excessively laborious and time consuming
approach, conceptual frameworks based on canonical formulations of rate expres-
sions leading to less detailed large- scale models may prove to be useful. Such an
approach has been introduced by Reuss et al. (2007) and successfully applied for a
large-scale dynamic model for E. coli. The dynamic model follows from the reaction
network model of Escherichia coli introduced by Chassagnole et al. (2002). The
network comprises both catabolic and anabolic routes with protein, DNA, RNA,
polysaccharides, murein, and lipids building up biomass. Sequential reaction steps
and parallel routes are lumped. With 129 reactions, 133 balanced metabolites, and
seven conserved moieties, the degree of freedom of the null-space of the network
is fixed to 129–133 + 7 = 3. Additional informations regarding inhibition and
activation (metabolic regulation) have been gathered from the MetaCyc data base



11 Dynamic Modeling of the Central Metabolism of E. coli 229

(www.metacyc.org, (Caspi et al. 2006)). The kinetic behaviour of the individual
reactions is assigned according to the universal linlog approach (Visser and Heijnen
2003, Visser et al. 2004, 2000):

r = J
cE

c0
E

⎛

⎝1+
∑

i

εS,i ln
cS,i

c0
S,i

+
∑

j

εP, j ln
cP, j

c0
P, j

+
∑

k

εA,k ln
cA,k

c0
A,k

+
∑

l

εI ,l ln
cI,l

c0
I,l

⎞

⎠ .

substrates products activators inhibitors
(11.27)

The variables are defined to the relative reference steady state, with concentration
levels state c0, fluxes J 0, and enzyme level c0

E . The parameters are the elasticity
coefficients

εM = cM

r

(
r

cM

)
. (11.28)

In total the network holds 921 kinetic parameters (elasticities). The dynamic sim-
ulation of the non-linear and stiff system of differential equations was performed
with the aid of the extrapolation solver LIMEX from the Konrad-Zuse-Centre for
Information Technology in Berlin (Ehrig et al. 1999). For estimation of the parame-
ters the evolutionary algorithm developed by the Computer Science Department of
the University of Tuebingen (Streichert and Ulmer 2005) has been applied. Results
of the comparisons between model simulations and experimental observation from
stimulus response experiments in which a pulse of glucose is added to the steady
state of a continuous culture have been presented by Reuss et al. (2007).

One key to understanding how these large scale models do compare with dy-
namic models based on mechanistic rate expression is to carefully examine the dif-
ferences between the simulation results of the two approaches. Visser et al. (2000)
compared the outcome of the linlog approach with the dynamic model of Chas-
sagnole et al. (2002). These authors noted a reasonable agreement for not to large
dynamic perturbations with respect to the external glucose concentration. An impor-
tant observation from this comparison and associated identification of the elasticity
coefficients in Equation (11.27) concerns the expected behaviour of the reversible
near-equilibrium reactions in the glycolysis. First, the individual elasticity coeffi-
cients of such reversible near-equilibrium reactions are not independent. Further-
more, it can be easily shown that the values of the elacticities must be very high
and, in consequence, the flux control coefficient tends to zero. In essence then, these
reactions are suited candidates for model reduction.

The issue of this model reduction should be always addressed in the context
of the purpose of the model as emphasized in the beginning of this chapter. A
first, well-proven concept for model reduction in metabolic engineering is based
on the time hierarchy of the metabolism. The kernel of this method is a model
analysis, which considers the eigenvalues and eigenvectors of the Jacobian asso-
ciated to the dynamic model (Heinrich and Schuster 1996). The application of this
time-scale separation for the Cassagnole model (Chassagnole et al. 2002) results
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in assumptions of quasi-steady state conditions for 11 eigenvectors possessing the
highest values.

The result of this reduction, which shows reasonable agreement between the dy-
namic response of the original and reduced model, yields, however, a differential-
algebraic system. Because the algebraic equations do not allow an explicit analytical
solution it is necessary to resort to advanced and efficient solver for differential-
algebraic systems.

As a promising alternative to the modal analysis we employed a sensitivity anal-
ysis based on the flux control coefficients (Lapin et al. 2006). These coefficients
relate the fractional change of the steady state fluxes to the infinitesimal changes in
the total enzyme concentrations (Heinrich and Schuster 1996). From the hierarchy
of these flux control coefficients predicted from the original model reactions with the
highest values in relation to the flux control coefficient of the glucose uptake were
selected. The resulting network is depicted in Fig. 11.8 Because of low flux control

Fig. 11.8 Reduced metabolic network model for the sugar uptake system, glycolysis and pentose
phosphate pathway. Reduction of the original model (Chassagnole et al. 2002) is based on the
hierarchy of flux control coefficients. The numbers alongside the enzymes depict the metabolic
fluxes related to glucose uptake rate 100
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coefficients the reactions for the phosphoglucoisomerase, the triose phosphate iso-
merase, the phosphoglycerate kinase, the phosphoglyceromutase and the enolase
could be neglected. The low flux control coefficients result from the reversibility of
aforementioned reactions leading to very high values of the elasticity coefficient. For
the purpose of model reduction a rapid equilibrium is assumed for these reactions
and the dynamics of the metabolites are linked via equilibrium constants.

To summarize the efforts for designing the dynamic model for the central
metabolism it is important to emphasize that systems biology modeling of these
networks should not be restricted to the task of aggregating and integrating quanti-
tative information on individual enzyme kinetics to “whole-cell models”. An equally
important challenge is to reduce the complexity and to tailor the model structure for
the intended application. Thus, depending on its specific objectives, a model may
involve details at different levels.

11.6 Conclusions

The framework for integration of regulatory and metabolic networks provides sig-
nificant insights on the dynamic response of microorganisms to perturbations of the
environmental condition with characteristic times relevant for variations in gene ex-
pression. This issue is of particular importance for process operations with dynamic
variations in the supply of the carbon and energy source with high relevance for
high cell density fermentations. The importance of these regulation phenomena in
response to increasing carbon limitation is not restricted to the catabolism of the
cell. The strong impact on anabolic reactions (Fig. 11.3) leads to serious variation
of the protein expression dynamics with consequences on specific productivities in
case of production of recombinant proteins. Future work in our group aims at the
extension of integration of regulatory and metabolic networks for these important
anabolic phenomena based on dynamic models for protein and ribosome synthesis
linked to precursor supply from the central metabolism (Arnold et al. 2005, Elf and
Ehrenberg 2005, Elf et al. 2005, Götz and Reuss 1997).

As far as the integration of regulatory networks with modules of the central car-
bon metabolism is concerned the main contribution of this chapter arises from the
fact that a plausible conceptual framework has been developed which enable us to
link existing dynamic models for the metabolism with simple models for regulation
of transcription and translation of important target enzymes. The approach contains
a concise method for the formulation of gene expression. It is demonstrated how
the necessary model parameters regarding the gene regulation, i.e. the binding con-
stants of regulator proteins to the DNA-binding site of the individual genes of the
regulon, can be derived from the DNA sequence of the sites and minimal literature
information.

The overall approach may also serve as an example of how to successfully bridge
the top down and bottom up approach for the purpose of modeling and simulation
in systems biology. After application of top down analysis for identification of the
target genes in the central metabolism, the modeling cycle of the bottom up ap-
proach is initiated. This includes quantitative measurements of concentrations of
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key compounds such as single mRNA molecules, metabolites and even incorpora-
tion of “reductionistic” sequence information. This quantitative information at the
compound level is afterwards used for the verification of the dynamic model. The
ultimate goal of such a hybrid approach is that the characterization of the behavior
of the parts of the system should be consistent with the expected and/or observed
behavior of the system as a whole.
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Abstract In this chapter we describe work stemming from the development of
a stoichiometrically-constrained model of Escherichia coli metabolism, to exper-
imental evolution of strains, to the analysis of the function of acquired adaptive
mutations with the goal of understanding their system-wide effect on phenotype.

12.1 Introduction

E. coli is among the most extensively characterized microorganisms (Feist et al.
2007, Karp et al. 2007), making it a good candidate organism to initiate studies
of how systems of biological molecules function and interact to produce an organ-
ism’s physiological behavior – an endeavor that falls under the umbrella of systems

B.Ø. Palsson (B)
Department of Bioengineering, University of California – San Diego, 9500 Gilman Drive,
La Jolla, CA 92093-0412 USA
e-mail: palsson@ucsd.edu

S.Y. Lee (ed.), Systems Biology and Biotechnology of Escherichia coli,
DOI 10.1007/978-1-4020-9394-4 12, C© Springer Science+Business Media B.V. 2009

237



238 M.K. Applebee and B.Ø. Palsson

biology. The study of systems with numerous interacting elements is often aided by
the development of computational models of the systems, both to facilitate calcula-
tions and to discover emergent properties (Cohen and Harel 2007). The models can
then be used to predict the cell’s simulated response to a perturbation, which can
be compared to the system’s actual response; failed predictions can be analyzed to
determine what may be missing or incorrect in the model and thus direct research to-
wards critical elements or interactions, creating an iterative process of model testing
and discovery.

12.2 Metabolic Models

Genome-scale in silico metabolic models simulate how nutrients are processed by
an organism’s metabolic network to harness energy and biomass, based on the set
of reactions the organism’s complement of enzymes can catalyze. The dynamics of
enzyme-catalyzed reactions are traditionally described using kinetic constants and
the concentrations of reactants and products. However, the catalytic efficiency of
many enzymes is sensitive to differences that exist between most assay conditions
and physiological cellular conditions, such as pH and ionic strength, making the
values reported in the literature unrepresentative of in vivo conditions. Addition-
ally, the concentration of many metabolites and enzymes within the cell are not
accurately known, and they are condition-dependent. These factors have hampered
efforts to construct robust metabolic models based on kinetic parameters (Pramanik
and Keasling 1997, Varma and Palsson 1994).

For this reason, many recent metabolic modeling efforts have focused on sim-
ulating flux states of metabolic maps using only stoichiometric constraints. In this
approach, metabolism is represented by a set of stoichiometrically-balanced equa-
tions of each metabolic reaction. This can be used to calculate all possible steady-
state flux distributions that can result from passing a defined supply of simulated
nutrients through the metabolic network. Additional algorithms can then be applied
to identify solutions that represent physiological behavior. For example, since the
exponential growth of bacteria has been hypothesized to optimize biomass (Lenski
et al. 1991), the model can be used to make predictions about the exponential growth
rate of the E. coli under specified growth conditions by searching the solution space
for flux distributions that use the simulated nutrients to produce the most biomass
(Pramanik and Keasling 1997), using a method known as flux balance analysis
(FBA). FBA uses linear programming to find flux states that maximize a determined
objective (Reed and Palsson 2003, Varma and Palsson 1994), such as biomass. Many
of these methods are discussed in more depth in Chapter 11 of this book, and else-
where (Feist and Palsson 2008, Reed and Palsson 2003).

FBA with the biomass objective function predicts the maximum growth rates
that can be produced given the specified availability of oxygen and other limiting
nutrients (usually the carbon source), represented as the oxygen and substrate uptake
rate (OUR and SUR, respectively) (Varma and Palsson 1994). The results of this
calculation can be visualized as a three-dimensional phenotypic phase plane (PhPP)
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Fig. 12.1 The Phenotype Phase Plane. This figure depicts the maximum growth rate that is pre-
dicted to be produced across the range of feasible oxygen and substrate uptake rates. This example
shows predicted optimized growth rates of E. coli grown aerobically on malate. The line of optimal-
ity (LO) is highlighted. White and dark grey circles represent the experimentally-observed growth
phenotypes of E. coli cultures, where open circles represent wild type cultures grown over a range
of malate concentrations (0.25–3g/L) and temperatures (29–37C). The filled circles represent wild
type before and after adaptive evolution on malate (2 g/L). Note that all experimentally-derived
measurements cluster on the line of optimality. OUR, oxygen uptake rate; MUR, malate uptake
rate. Figure originally published in (Ibarra et al. 2002)

(Fig. 12.1) that show the maximum growth rate across the range of allowable uptake
rates. These phase planes often have several faces, each of which represents a mode
of growth such as aerobic growth or fermentation of a byproduct (Ibarra et al. 2002).
The intersection separating oxygen-limited and carbon source-limited growth is
known as the line of optimality (LO), and represents the growth mode in which
the uptake rate of oxygen and the carbon source are stoichiometrically balanced,
producing completely aerobic growth without any energy loss to futile cycles (for
example, due to concurrent activity of glycolytic and gluconeogenic pathways). In-
terestingly, more than one set of uptake rates or even intracellular fluxes can produce
the same predicted maximum growth rate (Reed and Palsson 2004).

The growth rate predictions made by genome-scale metabolic models of E. coli
K12 MG1655 have generally been accurate when compared to growth rates of cul-
tures grown under the relevant conditions during exponential growth (Ibarra et al.
2002). Figure 12.1 shows the results of plotting the measured growth rate, SUR
and OUR of growing cultures onto the generated phenotypic phase plane. Cultures
were grown under various conditions, including variable temperatures, substrates
(glucose, malate, succinate, and acetate), and substrate concentrations in minimal
media. When the growth phenotypes of the cultures are plotted on the phenotypic
phase plane, most of cultures cluster around the line of optimality as predicted
(Ibarra et al. 2002).
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12.3 Adaptive Evolution

12.3.1 Adaptation to a Substrate Challenge

Experimentally-measured growth phenotypes do not always fall on line of opti-
mality predicted by biomass-optimized flux balance analysis. For example, E. coli
K12 MG1655 was found to grow significantly slower than the model-predicted
optimum on glycerol and lactate. These prediction failures were not believed to
be due to model errors, since the metabolic pathways for utilizing these sub-
strates have been well-characterized. Rather, the discrepancy was hypothesized
to be due the organism not being suitably adapted to maximally utilize these
substrates.

Given that the metabolic pathways for these substrates exist, the growth capacity
could be constrained by factors not included in the metabolic model that regulate
flux through the metabolic network, such as enzyme expression, kinetics, or feed-
back regulation. Such constraints, especially transcriptional regulation, are geneti-
cally malleable and are refined by evolution. The short generation time of E. coli
makes it possible to observe the evolution of adaptive traits in long-term cultures
(Lenski et al. 1991). If the prediction failures are due to the wild type strains not be-
ing well adapted, subjecting the strains to natural selection by long term exponential
growth on the challenging substrate should allow the strains to approach or achieve
the FBA-predicted optimal growth rates.

Such experiments, known as laboratory adaptive evolution experiments, were
conducted by culturing E. coli K12 MG1655 on each of the challenging substrates
for a prolonged (≥ 500 generations) period of time (Fong et al. 2003, Ibarra et al.
2002). The resulting strains all had increased growth rates on the targeted sub-
strate (Table 12.1) (Ibarra et al. 2002). Additionally, the growth profiles of each
strain migrated towards the predicted line of optimality, and once the growth phe-
notype aligned with the predicted line of optimality generally it only migrated
along it (Table 12.1, Fig. 12.2). Further growth rate increases were accomplished
by increasing both uptake rates proportionally so that the phenotype moved up the
line of optimality (Edwards et al. 2001, Ibarra et al. 2002). However, it should
be noted that several strains eventually increased their sugar uptake rates beyond
what could be fully aerobically metabolized, due to physical limits on the oxy-
gen uptake rate – these strains were driven by growth-rate dependent selection to
ferment the excess sugar, and consequently migrated off of the predicted line of
optimality.

Overall, the outcomes indicate that actual growth limits are captured by biomass-
optimized flux-balance analysis of the stoichiometric reconstruction of the E. coli
metabolic network. Additionally, they suggest that the cellular architecture is ef-
ficient at relieving constraints aside from those imposed by chemical or catalytic
limitations. Unfortunately, FBA alone cannot be used to determine how the evolved
strains metabolize nutrients, since each growth rate can be associated with multiple
flux distributions (Reed and Palsson 2004). Quantitative metabolomic profiling is
necessary to both identify and validate the flux distribution predictions, which is
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Table 12.1 Summary of substrate-challenged evolution experiments

Growth phenotype near predicted LO

Temp.
(◦C)

Generations
evolved

Wild type Evolved
strains

Percent of
GR
increase

Ref.

Glucose 37 500 Yes Yes 17 (Fong and
Palsson 2004)

Malate 37 500 Yes Yes 19 (Fong et al.
2005a)

Acetate 37 700 Yes Yes 20 (Fong et al.
2005b)

Lactate 30 950 No (acetate
sec.)

Yes 147

Lactate 30 950 No (acetate
sec.)

Yes 132

Glycerol 30 1000 No (futile
cycles)

Yes 140

Lactate 37 870 No (futile
cycles)

No (O2

maxed)
80

Pyruvate 37 1200 No (acetate
sec.)

No (O2

maxed)
69

Pyruvate 30 1000 Yes No (O2

maxed)
115

α-Ketoglutarate 37 625 Yes No 41
30 440 Yes No 48

This table compares outcomes of adaptive evolution experiments that challenged MG1655 wild
type E. coli to increase growth on a variety of substrates with in-silico flux-balance analysis (FBA)
growth rate predictions. The growth phenotype of wild type on some substrates did not meet the
FBA prediction because of carbon or oxygen uptake imbalance, that resulted in acetate secretion
(too much carbon uptake) or futile cycles (too much oxygen uptake). The growth phenotype of
some evolved strains did not fall on the LO because they increased their carbon uptake beyond the
limits of physiologically-available O2. LO – Line of Optimality. GR – Growth rate.

still a very challenging experimental endeavor. Additionally, these results do not
begin to identify the mechanics of the adaptation, which will be addressed later in
this chapter.

12.3.2 Adaptation to Deletion of a Metabolic Gene

In addition to growth on rarely-encountered carbon sources, strains can also be
perturbed from the optimal growth state by deletion of a metabolic gene. Delet-
ing a metabolic gene produces a strain with a different potential optimum growth
rate that can be predicted by removing the catalyzed reaction from the in silico
metabolic model, changing the solution space calculated by flux balance analysis
(Reed and Palsson 2003). The new line of optimality is composed of solutions that
most effectively redistribute the metabolic flux around the lost reaction to produce
the most biomass (deletion of essential genes are not considered since they have no
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Fig. 12.2 Migration of the growth phenotype of evolving E. coli strains towards the line of optimal-
ity. This example shows the growth phenotype three replicate experimental evolutions of wild type
on lactate (L1-L3), which all eventually migrate towards the line of optimality. Figure originally
published in Fong et al. 2003

solution space that supports growth). Strains of E. coli with single metabolic gene
deletions were adaptively evolved to test whether the predicted growth phenotype
reflects the actual potential of E. coli to adapt to gene loss (Fong and Palsson 2004).
These experiments test the plasticity of cell regulation to allow the redistribution of
metabolic fluxes.

One of six genes was deleted from strains of E. coli, (acetate kinase A (ackA),
fumarate reductase (frd), phosphoenolpyruvate carboxykinase (ppc), phosphoenol
pyruvate carboxylase (ppc), triosephosphate isomerase (tpi), or glucose 6-phospate-
1-dehydrogenase (zwf)). These genes encode enzymes required for gluconeogen-
esis, fermentation, or the pentose phosphate pathway (Fig. 12.3). Adaptive evolu-
tion experiments were performed with these strains across a set of substrates that
enter central metabolism at a variety of points (Fong and Palsson 2004). Approx-
imately 80% of the adaptively evolved gene-deletion strains made gains in growth
rate within 10% of their respective FBA prediction. This success rate further vali-
dates biomass-optimized flux balance analysis of the stoichiometrically-constrained
metabolic model, and indicates that the stoichiometric model captures many of the
physiologically-relevant constraints on growth. The results of both these and the
substrate-challenged adaptive evolution studies suggests that E. coli is fairly adept
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Fig. 12.3 Genes deleted in evolved gene-deletion strains described in Fong and Palsson, 2004.
Deleting zwf (glucose 6-phosphate dehydrogenase) prevents forward flux through the pentose
phosphate pathway. Deleting tpi (triosphosphate isomerase) interferes with glycolysis and gluco-
neogenesis. Deleting pck (phosphoenolpyruvate carboxykinase) can interfere with gluconeogenesis
from citric acid cycle intermediates. Deletion of ppc (phosphoenolpyruvate carboxylase) impedes
the ability to replenish oxaloacetate to the citric acid cycle. Deletion of frd (fumarate reductase)
obstructs utilization of the reductive pathway of the citric acid cycle. Deletion of ackA (acetate
kinase A) blocks a pathway needed to secrete acetate. These strains were experimentally evolved
on a variety of carbon sources to select for increased growth rate

at rerouting its metabolic flux to achieve the optimal growth phenotype available
within the limits of its metabolic chemical capacity.

12.3.3 Application of Experimental Evolution for Rational
Design of Production Strains (OptKnock)

A practical application for metabolic modeling is to assist the design of strains
that secrete desired product(s). A number of algorithms, which can be used to find
growth-coupled strains (including OptKnock (Burgard et al. 2003, Pharkya et al.
2003), OptStrain (Pharkya et al. 2004), and OptGene (Patil et al. 2005)), calculate
the predicted growth phenotype across all possible gene deletion strains and iden-
tify permutations of the metabolic network that maximize both biomass formation
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and production of the secreted compound. These two objectives are simultaneously
met when metabolic reactions that allow growth by secretion of alternative, more-
energetically favorable fermentation products are removed, making growth depen-
dent on secretion of the desired compound. Since these designs involve deleting
metabolic genes, adaptive evolution can be employed to drive the generated strains
to recover and to optimize their growth rate and secretion rate. Manual examination
of the metabolic network can also be used to predict gene deletions that will couple
growth to product secretion; however, the computational algorithms can identify
designs that are not intuitively obvious.

The accuracy of both intuitive designs and non-intuitive designs predicted by
the algorithm OptKnock to optimize the production of lactic acid were tested ex-
perimentally by generating the strains with the indicated gene deletions, and the
growth rates of the constructs were optimized by adaptive evolution (Fong et al.
2005a). Three strain designs were tested, (1) pta-adhE double deletion strain, (2)
pta-pfk double deletion strain, and (3) pta-adhE-pfk-glk quadruple deletion strain,
summarized in Fig. 12.4. The first strain design, pta-adhE, is an intuitive design
as it deletes reactions in the ethanol and acetate fermentation pathways. In the sec-
ond design, pta-pfk, the reason for deleting phosphofructokinase in not intuitively

Fig. 12.4 OptKnock strain designs. Strain designs 1–3 were generated by deleting the genes indi-
cated on the table. The reactions lost by each gene deletion are indicated on the diagram of central
metabolism. Figure originally published in Fong et al. 2005a
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obvious, but it promotes lactic acid production by increasing NADH and pyruvate
by forcing flux through the Entner-Doudoroff and pentose phosphate pathway. In
the third strain, the additional deletion of glucose kinase also contributes to lactate
secretion by increasing pyruvate production, via forcing all metabolized glucose to
be phosphorylated by the phosphotransferase system.

Adaptive evolution increased the growth rates of all four strain designs inter-
estingly to approximately the same rate (0.24–0.26 hr−1). Lactic acid production
increased with growth rate in each case, proving that all of the designs successfully
coupled lactate secretion to growth. The two-gene deletion strains agreed well with
the predictions made by OptKnock in terms of migration of both the growth rate
and lactate secretion rate; the quadruple gene-deletion strain, �pta-adhE-pfk-glk,
actually acquired slightly faster growth rates than predicted. However, even though
the lactic acid secretion rates in all three designs increased over the adaptation, the
final lactate titer in the media recovered after culturing did not, possibly suggest-
ing the existence of metabolic feedback mechanisms not included in the current
model that can arrest secretion beyond some threshold. Additionally, the intuitively-
designed strain, pta-adhE, produced the most lactic acid in terms of both secretion
rate and titer among the three designs, suggesting that the non-intuitive upstream
gene deletions (pfk and glk) may have more complex effects on metabolism than
those currently captured by the model – again, this could easily be attributable to
metabolic feedback mechanisms.

This study demonstrated that the OptKnock algorithm can successfully be used
identify gene deletions that couple a secondary objective, such as fermentation prod-
uct secretion, to growth. The useable set of solutions is of course limited to those
that do not require the loss of an essential gene or set of genes. And even though
in this case the intuitive design were the most effective, this may not always be
so – indeed, this tool allows researchers to search for designs that produce com-
pounds when there are none that are intuitively obvious. Additionally, the range of
compounds that can be produced by modeled organisms like E. coli can conceiv-
ably be increased by including reactions and pathways carried out by enzymes that
can be transferred from other microorganisms, as performed by the OptStrain algo-
rithm (Pharkya et al. 2004). Growth-coupling algorithms have the potential to allow
systems-scale models to be used to drive the development of strains for practical
applications.

12.4 Characterizing Intracellular Mechanisms of Adaptation

Beyond illustrating that selection during exponential growth produces optimized
phenotypes that converge with biomass-optimized FBA predictions, the intracellu-
lar changes that facilitate the phenotype shifts are also of inherent interest. Adap-
tations can act through many intracellular activities, including but not limited
to metabolism, transcriptional regulation, protein turnover, and intracellular feed-
back mechanisms. Thus identifying the mechanism through which adaptive mu-
tations act can require multiple high-throughput experimental methods, including
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mRNA transcription profiling, global metabolomic and flux profiling, and chromatin
immunoprecipitation-on-chip – and requires an integrated analysis of such data sets.
Additionally, the timescale required to change the growth phenotype implies the
adaptations involve genetic mutations, rather than an adjustment to an existing mode
of regulation. Therefore it is necessary to identify the acquired mutations in order
to pursue the fundamental goal of understanding the mechanism that underlies the
phenotypic change.

12.4.1 Phenotypic Characterization of Replicate Endpoints

As previously touched upon, flux balance analysis of an in-silico model cannot di-
rectly be used to assess the intracellular state. This is because the line of optimality
actually represents a set of flux states that produce the same, maximum biomass
(although, the differences between the solutions in the set are often restricted to
variation in flux among a small set of reactions (Reed and Palsson 2004)). The
existence of multiple metabolic states that can achieve the same optimal biomass
objective parallels the frequent observation that replicated adaptive evolution exper-
iments often achieve nearly identical growth rates and nutrient uptake rates in the
evolved environment, but have distinct phenotypes such as growth rate on alterna-
tive substrates and byproduct secretion rates (Fong et al. 2005b, Fong et al. 2003,
Fong and Palsson 2004). Such observations suggest these replicate lineages acquire
different adaptive changes that produce the same or similar adjustment to growth in
the environment of the evolution, but which have different (pleiotropic) effects on
growth under other conditions. To sample the range of genetically-distinct endpoint
strains that can be produced by replicate evolutions to the same metabolic challenge,
we have extensively characterized replicate endpoint strains adaptively evolved on
glycerol, lactate, or after deletion of various single metabolic genes (Fong et al.
2005b, 2006, Fong and Palsson 2004).

The glycerol- and lactate-adapted endpoint strains all achieved growth rates,
SURs, and OURs within 12% of each of the other replicates. Additionally, while
the replicate evolved strains generally had similar growth rates on other substrates,
there was sufficient variability to suggest each endpoint strain had acquired different
adaptations. The variation between replicate strains is even more pronounced be-
tween the mid-point evolution cultures (day 20) than between the replicate endpoint
strains, in terms of growth rate, and the oxygen and substrate uptake rate during
growth on the alternative substrates (Fig. 12.5). This variation may indicate that
there were multiple adaptive strategies available during the initial stages of adap-
tation that lead to divergence between replicate cultures, followed by a period of
more discriminate selection during the later period that caused the phenotypes of
the endpoints to converged towards a single optimal phenotype. Interestingly, the
endpoint strains generally grow faster than the wild type strain on many other car-
bon sources in minimal media, suggesting that some of the acquired changes were
generally beneficial.
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Fig. 12.5 Phenotypic variability between replicate lactate- and glycerol-evolved strains. (A) Lac-
tate Evolution. The top figure shows the trajectory of each replicate as it evolved from wild type,
in terms of changing growth, substrate uptake, and oxygen uptake rate. Note that most strains
begin to converge to the same growth phenotype. The bottom table lists the values of the measured
parameters for the wild type and the final (day 60) endpoint strains. (B) Similar to (A), except
applies to strains evolved to glycerol. Figure originally published in Fong et al. 2005b

12.4.2 Identifying Changes in Metabolic Pathway Utilization

Since increasing the growth rate involves increasing the efficiency with which avail-
able nutrients are metabolized, it is informative to determine how flux through vari-
ous metabolic pathways has changed over the course of adaptation. One method for
comparing functional flux states in microorganisms tracks the catabolism of 13C-
labeled substrates, and has been successfully used to access in-vivo reaction rates
(Fischer et al. 2004, Sauer 2004). This technique has been used to track flux changes
following adaptation to lactate and deletion of various single metabolic genes.

Results from the 13C-labeling experiments on the lactate evolutions (Hua et al.
2007) showed that the first major flux change was a dramatic (up to 80%) increase
in the uptake of lactate, and increased flux capacity through most metabolic reac-
tions, over the first 20 days of evolution. Additionally, though the replicate strains
showed significant phenotypic diversity at day 10 that later converged, their flux
profiles were relatively similar at day 10 relative to later in the evolution. During
this period, flux profiling showed that all of the strains shift more metabolites into
the TCA cycle rather than acetate fermentation, allowing the cells to generate more
energy and anabolic precursors, and thus achieve a faster growth rate. After day
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10 the flux changes among the replicate evolutions diverged, though an important
consistency was discovered across the course of all of the replicate evolutions – ap-
proximately two-thirds of the metabolized lactate was consistently partitioned to the
TCA cycle through pyruvate dehydrogenase, indicating that partitioning between
gluconeogenic and catabolic fluxes is tightly regulated – likely by feedback mecha-
nisms that recognize cellular concentrations of phosphoenolpyruvate (Chulavatnatol
and Atkinson 1973).

An additional 13C-labeling experiment was performed with adaptively evolved
gene deletion strains, though with deletion of different genes than those described in
Section 12.3.2. The genes deleted in this study encode metabolic enzymes that cat-
alyze key metabolic branch points in central metabolism, and were chosen because
their loss is expected to most dramatically change pathway utilization (Fong et al.
2006) (phosphoglucose isomerase (pgi), phosphoenolpyruvate carboxylase (ppc),
triose-phosphate isomerase (tpi), or phosphate transacetylase (pta)) (Fig. 12.6). As

Fig. 12.6 Map of metabolism highlighting the gene deletion strains that were adaptively evolved
on glucose in minimal medium. Deleting pgi (phosphoglucose isomerase) impedes glycolysis,
forcing flux to be rerouted through the pentose phosphate or Entner-Doudoroff pathway. Delet-
ing pta (phosphate acetyltransferase) impedes acetate fermentation. The tpi and ppc deletions are
described in the Fig. 12.3 caption. Figure originally published in Fong et al. 2006
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in the previous studies, the generated endpoint strains achieved near-wild type
growth rates, and replicate endpoints differed in terms of phenotypic traits like
byproduct secretion, suggesting they had acquired different specific adaptations.

The outcome of the 13C-labeling experiments revealed that most the flux changes
involved activating alternative pathways to locally reroute metabolites around the
lost gene function. This rerouting was accomplished by activating pathways typi-
cally used for growth under other conditions, such as the pentose-phosphate path-
way (pgi strains), glyoxylate shunt (ppc strains), and the methyl-glyoxyl bypass (tpi
strains) (Fig. 12.6). No evidence of new enzyme activities or metabolic pathways
was observed. The evolved gene deletion strains often utilized the same pathways
to circumvent the lost gene activity as those used in pre-evolved deletion strain, and
evolution involved increasing the flux capacity through those pathways – similar to
increasing lactate uptake in the previously described study. However, the outcome of
this study suggests that E. coli immediately responds to a breakdown in metabolic
capacity by activating repressed pathways to search for a way to redistribute flux
through the metabolic network (a process that may favor short routes that cause the
least disruption of the wild type flux configuration (Segre et al. 2002)). Thus the
adaptation process may often consist of refining the most easily established solu-
tions, rather than searching for.

However, this should not be taken to suggest that every replication of adaptive
evolution under the same conditions will eventually converge to the same flux con-
figuration. Although all of the evolved replicate strains circumvented their gene
deletions with the same latent pathway, there were several significant differences
in how some replicate strains utilized other pathways. For example, one evolved pgi
strain primarily utilizes the TCA cycle and secretes acetate while another has more
flux through the glyoxylate shunt and secretes no acetate. These outcomes suggest
that much of the variability between replicate evolutions may stem from variable
means of making downstream metabolic adjustments that are necessary to refine
usage of the major adaptive flux shift.

12.4.3 Gene Expression Changes

While growth rate increases are dependent on improving flux through the metabolic
network, those improvements are a result of refining the activity of metabolic ele-
ments. Metabolic activity is regulated at multiple levels, including allosteric control
of enzymes, turnover rates, and transcriptional regulation. We used mRNA tran-
scription profiling to identify the adaptive mechanism utilized in each strain, since
high throughput methods are not available to screen the other types of regulation,
such as feedback regulation.

We measured changes in genome-wide mRNA transcription levels of the repli-
cate glycerol- and lactate-evolved strains over the course of their evolutions, as well
as the cultures at day 1 and day 20 of each evolution, and wild type grown on glucose
(Fong et al. 2005b). Interestingly, the transcription state of each evolved endpoint
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Table 12.2 Number of expression changes across evolutions on glycerol and lactate

Glycerol
evolved

Lactate
evolved

re
la

tiv
e

to
w

ild
ty

pe
(g

lu
co

se
)

Day 1 39% 1687 genes 18% 756 genes

Day 20 18% 770 genes 4% 194 genes

Day 44 11% 498 genes 7% 323 genes

This table shows the average number of significant gene expression changes in
adaptively evolved strains relative to wild type grown on glucose at different time
points in the evolution experiments. Data from Fong et al. 2005b

was distinct, despite similarity in endpoint growth phenotypes, providing further
evidence that endpoint cultures result from acquiring different sets of adaptations.

Analysis of the transcription profiles revealed that the largest number of changes
in gene expression were between wild-type grown on glucose and wild-type grown
on the challenging substrate (day 1 cultures), and that the course of adaptive
evolution returned the expression of many of these genes to pre-evolution levels
(Table 12.2). This may be attributable to a large scale carbon-scavenging response
intended to allow metabolism of any “low-quality” carbon sources available in the
absence of preferred substrates (Liu et al. 2005), in which case the adaptation pro-
cess may involve refining the regulatory response to only activate genes specific to
glycerol or lactate metabolism.

Expression changes that developed over the course of evolution common across
replicate strains were also identified. Approximately 70 gene expression changes
were identified among the glycerol-evolved strains, and only two among the lactate-
evolved strains – a striking difference. The small number of genes identified across
multiple lactate strains may be due to their adaptive pathways being more di-
vergent compared to glycerol strains, which is also discussed later in this chap-
ter (Section 12.5). It appears to be very difficult to identify adaptive mechanisms
through examination of expression changes alone. Adaptation generally results in
changed expression of a large number of genes, and it is difficult without knowl-
edge of changes to other intracellular systems, such as metabolism or of specific
mutations, to identify critical expression shifts that mediate the adaptive mechanism
rather than result as a down-stream response.

Additionally, the expression profiles of the evolved deletion strains have also
been measured, and have been compared to the flux changes discussed in the pre-
vious section (Section 12.5.2) to try to identify gene expression changes respon-
sible for the metabolic and phenotypic adaptations. However, as previously stated,
not all of the flux changes are caused by expression changes since there are other



12 Genome-Scale Models and the Genetic Basis for E. coli Adaptation 251

mechanisms that regulate metabolism, such as post-translational regulation, enzyme
kinetics, and allosteric control. Additionally, not all gene expression changes di-
rectly alter the phenotype or metabolic flux, or their effects may not be adaptive but
rather are a secondary response to other changes. Wide-spread expression levels can
also be caused by altered mRNA stability or RNase activities. But both data sets can
be combined to identify adaptive flux changes that are caused by changes to gene
expression.

Many of the observed flux changes among the evolved deletion strains can be
linked to expression changes (Fong et al. 2006). Expression changes correlated well
to changes in flux through the glyoxylate shunt, methylglyoxylate shunt, and TCA
cycle, suggesting that these pathways are at least partially controlled at the transcrip-
tional level. On the other hand, no expression changes were identified that correlate
to observed flux changes through glycolysis or the pentose phosphate pathway,
suggesting that other mechanisms may predominantly regulate flux through those
pathways. Interestingly, no correlation was found between flux and gene expression
changes among the pre-evolved deletion strains. This may indicate that the major,
shared flux shifts were initially mostly dependent on other mechanisms of metabolic
regulation, and that evolution was necessary to acquire changes involving transcrip-
tional regulation.

Additionally, the flux and expression data collected from the evolved gene-
deletion strains has been used to inform the metabolic model to try to identify why
some strains failed to reach model-predicted growth rates (Herrgard et al. 2006).
The developed method, called optimal metabolic network identification (OMNI),
searches for metabolic reactions that, when eliminated, can produce flux distribu-
tions that are the closest fit to those actually measured in the relevant strains. The
enzymes of these reactions may act as bottlenecks to optimal growth, that for some
reason are disadvantageously regulated in a manner that had not been overcome by
the point at which the experimental evolution was terminated. The validity of this
approach is supported by the fact that expression of many of the genes identified
as possibly causing flux bottlenecks can be seen to have reduced expression in the
evolved strain compared to wild type.

The previously described studies successfully correlated flux change to shifts in
expression of several relevant genes, partially illustrating the adaptive mechanism.
It is likely that additional conclusions can be made from the expression profiling
data if it were analyzed with a more sophisticated view of cell regulation, possibly
facilitated by a comprehensive model of transcription regulation.

12.5 Genome Resequencing

Adaptive changes in the phenotype of evolved strains are ultimately caused by mu-
tations (and possibly epigenetic changes to the DNA), and a comprehensive under-
standing of the adaptation process requires their identification. Further, the effect
of each mutation on the DNA-encoded function must be determined, whether it
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effects regulation of nearby genes, causes an amino acid change in a protein that
affects its function or activity, or some other effect. Ultimately, we would like to
know how acquired mutations cause all of the observed changes in metabolic flux,
gene expression, and the overall systems dynamics that translate into the observed
phenotype. Such an accomplishment would significantly contribute to building an
understanding of how genetic structure produces phenotype.

Conclusively identifying all of the mutations acquired during adaptive evolution
requires a search of the entire genome that can find changes as small as of a single
nucleotide (or a single nucleotide polymorphism – SNP). Six of the glycerol-evolved
strains have undergone whole-genome resequencing (Herring et al. 2006). With one
exception, the strains acquired two to three SNPs within the coding region of an-
notated genes, as described in Table 12.3. All five resequenced strains acquired a
different mutation within glpK, which encodes glycerol kinase which catalyzes the
rate-limiting step in glycerol metabolism. Three of the strains also acquired mu-
tations in RNA polymerase subunits � and �’, encoded by rpoB and rpoC, which
was surprising given the extensive influence these genes may have on global tran-
scription regulation. Additionally, mutations were acquired by two strains that effect
peptidoglycan biosynthesis (within genes dapF and murE).

Table 12.3 Mutations identified in glycerol-evolved strains

Clone Gene Product/Function Mutation
Gene
position nt Region

Genome
Position

GB-1 glpK Glycerol kinase a-> t 218 Coding 4115028
rpoC RNA polymerase 27 bp deletion 3132–3158 Coding 4186504–

4186530
GC-1 glpK Glycerol kinase g-> t 184 Coding 4115062

n/a All genes between
insC-5 & insD6

1313 kb
duplication1

n/a n/a ∼3189209–
4497523

GD-1 glpK Glycerol kinase g-> a 816 Coding 4114430
rpoB RNA polymerase a-> t 1685 Coding 4180952
murE peptidoglycan

biosynthase
a-> c 8 Coding 93173

GE-1 glpK Glycerol kinase a-> c 113 Coding 4115133
rpoC RNA polymerase c-> t 2249 Coding 4185621
dapF Lysine/peptidoglycan

biosynthase
c-> a 512 Coding 3993293

G2-1 glpK Glycerol kinase 9 bp duplication 705 Coding 4114541
rph-pyrE RNAse

PH/pyrimidine
synthesis

82 bp deletion rph: 610-
end

Coding +
Intergenic

3813882–
3813963

pdxK-crr Pyridoxal
kinase/enzyme IIa
glucose

28 bp deletion pdxK:
833-end

Coding +
Intergenic

2534400–
2534427

Mutations identified by whole-genome resequencing of E. coli strains adaptively-evolved to in-
crease growth on glycerol minimal media. Previously published. 1. Evident in CGS mapping data;
not independently validated.
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The impact of individual mutations on the fitness phenotype was determined
by assessing strains that had been altered to carry one or more of the discov-
ered mutations using site-directed mutagenesis (Herring et al. 2006). Importantly,
the set of mutations identified in each strain have been proven to be responsi-
ble for the phenotype change, since the endpoint phenotype has been shown to
be reproduced by inducing the mutation sets into wild type by site-directed mu-
tagenesis. The phenotype of mutant strains carrying only single mutations in-
dicate that the rpoB/C mutations have the greatest impact on growth rate, fol-
lowed by the glpK mutations. Additionally, results of competitions between strains
with different induced mutations indicated that some of the glpK and rpoB/C
mutations may have cooperative (epistatic) effects (Applebee et al. 2008); possi-
ble mechanisms are still being investigated. Mutations to the peptidoglycan syn-
thesis genes (murE & dapF) were also only shown to have a significant effect
on growth rate in strains that also carried the co-acquired glpK and rpoB/C
mutations.

The rpoB/C mutations clearly perform a critical function in optimizing the
growth of E. coli on glycerol, and this function most likely involves adjusting tran-
scriptional regulation. These mutations have the greatest impact on fitness among
those acquired by glycerol-evolved stains, and they may additionally be responsible
for the increased growth capacity in minimal media on a wide range of non-glycerol
substrates (unpublished results). One hypothesis suggests that these mutations im-
prove growth by reducing the sensitivity of RNA polymerase to stress response sig-
nals, particularly ppGpp, that may be induced by the transition from rich to minimal
media. This may prevent the expression of unnecessary or detrimental proteins that
are associated with the stress response (Liu et al. 2005). The effect of these mu-
tations on RNA polymerase activity and global gene expression is currently being
investigated.

Strains evolved on lactate or in response to deletion of the pgi gene have also
undergone whole-genome resequencing (unpublished data). Interestingly, there was
more variation in the number of mutations these strains acquired (0–7 mutations per
strain, versus 2–3 in glycerol), and they appeared across a more diverse set of genes
than glycerol-evolved strains. It is not yet clear why these evolutions produced more
genetically divergent replicates compared to the glycerol-evolved strains, though it
suggests there may simply be more adaptive routes that these replicate evolutions
can sample.

A developing pattern seen across the different experimental evolutions is that
strains frequently acquire mutations to both a metabolic gene and a global tran-
scription factor. The function of mutations to metabolic genes (PEP synthase in
lactate-evolved strains, NADPH/NADH transhydrogenase genes in evolved �pgi
strains) is assumed to increase the activity of rate-limiting enzymes under the growth
conditions, as has been shown for the glpK mutations in the glycerol evolved strains
(Herring et al. 2006). The function of mutated global regulatory or transcription
factors is likely more complicated. Among the mutations discovered in lactate and
�pgi strains are mutations to crp, cyaA, and rpoS (unpublished data). This trend
suggests that the E. coli regulatory network is both robust to mutations that alter
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the function of major regulatory elements, and that these are more accessible or
advantageous than mutations that effect the transcriptional regulation of a smaller,
more specific set of genes.

12.6 Summary Remarks

This chapter has covered how stoichiometrically-constrained models of E. coli
metabolism have been used to predict optimal growth rates on a variety of car-
bon sources. The physiological relevance of these predictions has been validated
by demonstrating they approximate the actual growth phenotype observed on these
substrates in exponential growth phase. Not all substrates produce growth in wild
type that approximates the model-derived optimum, but adaptive evolution studies
have demonstrated that prolonged exposure to these substrates generates adaptations
that cause the growth phenotype to converge towards the predicted optimum. Ad-
ditionally, the models have been successful at predicting the optimum growth phe-
notype that E. coli will adapt to following loss of a metabolic gene function. These
outcomes suggest that the model captures the critical constraints on growth capac-
ity before considering metabolic regulation, without requiring kinetic constraints.
Additionally, it indicates that metabolic regulation is readily malleable to selection
pressure, to allow the optimum growth phenotype to be found in response to a wide
range of environmental or metabolic challenges.

Each evolution experiment was performed multiple times, and although each
of the replicate strains generally acquired the same growth phenotype (converging
towards the predicted optimum), they generally differed in terms of other pheno-
typic traits such as byproduct secretion or growth capacity on alternative substrates.
Significant differences between replicate strains were also validated by differences
between their flux and transcription profiles. The basis for those differences have
now been genetically identified – no two replicate strains have acquired identical
mutations. Thus different genetic changes can produce similar phenotypic changes.
The existence of multiple metabolic flux shifts that produce the optimal phenotype
is actually predicted from the results of flux balance analysis (Reed and Palsson
2004). The degree of variation among replicate evolved strains may indicate how
many adaptive routes exist to produce this phenotype.

Attempts to understand the intracellular changes causing the growth phenotype
changes have involved measuring changes in pathway utilization and transcription
expression over the course of evolution, and identifying acquired mutations. At this
point the challenge involves deducing the mechanism by which the discovered mu-
tations alter metabolic flux through regulatory mechanisms to produce increased
growth rate. Among the most intriguing discoveries are the mutations to so-called
“global regulators” like RNA polymerase subunits and elements of catabolite re-
pression, that appear to play a significant role in inducing the adapted phenotype. It
remains to be proven whether this truly is a general mechanism of adaptation, and
if so how it functions.
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These studies begin to highlight the potential of using adaptive evolution to dis-
cover important cellular dynamics that exist on the systems-biology level. The even-
tual goal is to be able to predict what regulatory and metabolic changes are necessary
to produce a desired phenotype. We will have accomplished a true understanding of
the relationship between phenotype and genotype when we understand the adaptive
function of acquired mutations – and are able to predict them.
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Abstract Promoters are locations on a chromosome that are responsible for the
recruitment of RNA polymerase to different transcription units. This recruitment
is tightly regulated and this chapter discusses how this regulation is effected at
the molecular level in Escherichia coli. Transcription factors play a major role in
this regulation and the different mechanisms by which they control transcription
initiation at simple and complex promoters are outlined. At some promoters, the
actions of transcription factors are modulated by nucleoid associated proteins. Two
examples where this occurs, the regulatory regions of the Escherichia coli nir and
dps genes, are described in detail.

13.1 Transcriptional Regulation in Escherichia coli

Gene expression in Escherichia coli is primarily regulated at the level of transcrip-
tion initiation, the point at which RNA synthesis begins. The enzyme responsible
for RNA synthesis is RNA polymerase and, predictably, it is the target for many
regulatory factors. This is mainly done by DNA sequence elements at promoters,
and by transcription factors that modulate promoter activity. In addition, a range of
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RNA polymerase-binding proteins, nucleoid-associated proteins, small molecules
and metabolites also intervene (Browning and Busby 2004).

The bacterial RNA polymerase exists in two states. One form, known as the core
enzyme, can catalyse RNA synthesis, but is unable to bind to promoter targets in
DNA. The second form, the holoenzyme, is capable of both RNA synthesis and
promoter recognition. The bacterial RNA polymerase is a multi-subunit enzyme
and both forms of RNA polymerase posses two � subunits, and the � and �′ and
� subunits. The holoenzyme form contains an additional subunit, �, and it is this
subunit that facilitates promoter DNA recognition directly. Following � mediated
DNA binding, transcription initiation occurs, the � subunit then dissociates from
the RNA polymerase-DNA-mRNA complex, and the core enzyme completes the
process of gene transcription (Helmann and Chamberlin 1988). It is estimated that
there are ∼ 5000 copies of RNA polymerase in growing Escherichia coli K-12 cells,
which must be distributed between ∼ 3000 transcription units. Everything we know
about bacterial transcription tells us that this distribution is not even and, thus, the
cell has to regulate the binding of RNA polymerase across its chromosome prudently
(Ishihama 1997).

Since the � subunit of RNA polymerase is responsible for DNA recognition, it
plays a pivotal role in managing the chromosome-wide distribution of the transcrip-
tional machinery. Escherichia coli, like most bacteria, contains one major � factor
(�70), responsible for the recognition of most promoters, and several alternate � fac-
tors, each present at lower levels. Each of the alternative � factors is responsible for
transcription of a subset of genes, usually in response to a stress. Thus, for example,
the stationary phase � factor (�38) controls the expression of many proteins needed
for the long-term survival of non-growing cells (Ishihama 1997).

Figure 13.1 illustrates our current understanding of how RNA polymerase holoen-
zyme recognizes promoters (Murakami and Darst 2003). Most bacterial � factors
contain several independently folding domains that recognize different promoter
elements. Thus, Domain 2 and Domain 4 recognize promoter −10 and −35 hex-
amer elements, that are located 10 and 35 base pairs upstream of the transcrip-
tion start site at most promoters. Other sequence elements recognized by RNA
polymerase are the extended −10 TG motif, immediately upstream of the −10
element, and the UP element, located upstream of the −35 element. Extended
−10 elements are recognized by Domain 3 of � subunits, whilst UP elements
interact with the C-terminal domains of the RNA polymerase � subunits. Con-
sensus sequences for these elements have been defined and the activity of any
promoter is primarily defined by the correspondence of these sequences to the
consensus. Note that it is rare for all 4 elements to be functional at a promoter,
and hence different bacterial promoters carry different combinations of functional
elements (Miroslavova and Busby 2006). Whilst these elements set the promoter
strength, regulation requires transcription factors. These are sequence-specific DNA
binding proteins that modulate the frequency of transcription initiation at target
promoters.

Transcriptional activators and repressors share many properties and often ex-
ert their effect in response to environmental cues (Perez-Rueda and Collado-Vides
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Fig. 13.1 RNA polymerase and its interactions at promoters. (A) Model based on crystallographic
studies of the initial docking of holo RNA polymerase to a promoter (adapted from Murakami
and Darst 2003). The �, �′, � and � subunits of RNA polymerase are indicated and the different
promoter elements are shown. Spheres indicate the binding locations of �CTD. (B) Cartoon illus-
tration of the above, showing the different interactions between promoter elements and RNA poly-
merase. Consensus sequences for the −35 (TTGACA), extended −10 (TGn) and −10 (TATAAT)
elements are shown

2000). A small number of transcription factors, termed ‘global’ regulators, influence
the expression of a large number of transcription units. Conversely, a large number
of ‘specific’ transcription factors each affect the expression of a small number of
transcription units. The expression of many transcription units is regulated by a
combination of both global and specific transcription factors and this allows bac-
teria to differentially regulate the gene expression in response to combinations of
different environmental stimuli.

13.2 Simple Repression and Activation at Bacterial Promoters

Some promoters are active in the absence of additional factors and when the genes
under their control are not required, they are silenced by transcription repressors.
However, most promoters lack a good match to the consensus elements for RNA
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polymerase binding, and many of these require ancillary proteins, known as tran-
scription activators, to function.

Repressor proteins reduce transcription initiation at target promoters and the text-
book view is that this is simple to understand. Thus, at some promoters, a single
repressor is involved and its binding prevents promoter recognition by RNA poly-
merase (Choy and Adhya 1996). In these instances, the repressor binding site is
located at, or close to, the core promoter elements (Fig.13.2A). Note that, in some
cases, the repressor may not prevent binding of RNA polymerase but, rather, inter-
feres with post-recruitment steps in transcription initiation (Rojo 2001). At other
promoters, multiple repressor molecules bind to promoter-distal sites, and repres-
sion may be caused by DNA looping, which shuts off transcription initiation within
the looped domain (Fig. 13.2B).

At some promoters, activation of transcription is simple, and involves the action
of a single activator (Busby and Ebright 1994, Rhodius and Busby 1998) Three gen-
eral mechanisms are used for ‘simple’ activation. In Class I activation (Fig. 13.3A),
the activator binds to a target located upstream of the promoter −35 element and
recruits RNA polymerase to the promoter by directly interacting with the RNA
polymerase �CTD. Because the linker joining the �CTD and �NTD is flexible,
activators that function using a Class I mechanism can bind at various locations

Fig. 13.2 Mechanisms of repression. (A) Repression by steric hindrance. The repressor binding
site overlaps core promoter elements. (B) Repression by looping. Repressors bind to distal sites
and interact by looping, repressing the intervening promoter
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Fig. 13.3 Activation at simple bacterial promoters. The figure illustrates the organisation of RNA
polymerase and activator subunits during activation. (A) Class I activation. The activator is bound
to an upstream site and contacts the �CTD of RNA polymerase, thereby recruiting polymerase to
the promoter. (B) Class II activation. The bound activator overlaps the promoter −35 element and
interacts with Domain 4 of �70. (C) Activation by conformational changes in promoter DNA. The
activator realigns the −10 and −35 elements

upstream of promoters. In Class II activation (Fig. 13.3B), the activator binds to a
target that overlaps the promoter −35 element and contacts Domain 4 of the RNA
polymerase � subunit. This contact also results in recruitment of RNA polymerase
to the promoter, but other steps in initiation can also be affected. The third mech-
anism for simple activation is found in cases where the activator alters the confor-
mation of the target promoter, to enable the interaction of RNA polymerase with
the promoter −10 and −35 elements. This requires the activator to bind at or very
near to the promoter elements (Fig. 13.3C). In the case of members of the MerR
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family, the activator binds between promoter −10 and −35 elements and alters
their relative orientation so as to facilitate interaction with holo RNA polymerase
(Brown et al. 2003).

13.3 Complex Repression and Activation
at Bacterial Promoters

Most bacterial promoters are regulated by more than one transcription factor and
this permits regulatory input from multiple environmental cues (Martinez-Antonio
and Collado-Vides 2003). At promoters that are co-dependent on two or more ac-
tivators, complicated mechanisms are brought into play, and the four mechanisms
so far discovered are illustrated in Fig. 13.4. These involve the repositioning of one
activator by another, independent activator-RNA polymerase contacts, co-operative
activator binding and anti-repression by an activator (Barnard et al. 2004, Browning
and Busby 2004).

For mechanisms involving repositioning, the role of the secondary activator is
to reposition the primary activator from a location where it is unable to activate
transcription to a location where it can activate transcription. This repositioning
can involve either shifting the primary activator from one DNA site to another or
altering the conformation of the DNA to allow the primary activator to interact with
RNA polymerase (Fig. 13.4A). A different mechanism operates at promoters where
activators must make independent contacts with RNA polymerase for transcription
activation. At some complex promoters, both activators function by a Class I mech-
anism, whilst at others, one activator functions by a Class I mechanism, with the
other using a Class II mechanism (Fig. 13.4B). These promoters (often referred to
as Class III promoters) contrast with simple Class I and Class II activator-dependent
promoters, where the interaction of RNA polymerase with a single activator is suf-
ficient for full activation (Fig. 13.3A,B). In most cases studied to date, where two
activators make independent contacts with RNA polymerase, the two activators bind
independently at the target promoter. Because, in these cases, the different activa-
tors are functioning independently, promoters of this type are easy to evolve and
hence are widespread. However, in some cases, activators bind co-operatively, and
this provides another mechanism for ensuring co-dependence, since one activator
is unable to bind in the absence of the other (Fig. 13.4C). Finally, in some cases,

�
Fig. 13.4 Mechanisms of promoter co-dependence on two activator proteins. (A) Repositioning
of the primary activator by a secondary activator. In (i), the secondary activator repositions the
primary activator from a location where it is unable to activate transcription to a location where
it can activate. In (ii), the secondary activator alters the conformation of the DNA by bending,
bringing the primary activator into a position from which it can activate. (B) Independent contacts
by both activators are required for optimal activation. In (i), both activators function by a Class I
mechanism. In (ii), one activator functions by a Class II mechanism, and the second by a Class I
mechanism. (C) Co-operative binding: the binding of one activator is dependent upon the binding
of the second. (D) Anti-repression. The binding of the secondary activator is required to counteract
the inhibitory effects of a repressor, in order to allow the primary activator to function
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Fig. 13.4 (continued)
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the role of the second activator is not to activate directly, but rather to prevent the
action of a repressor that is interfering with the function of the primary activator
(Fig. 13.4D).

13.4 Nucleoid Associated Proteins can Participate
at Complex Promoters

The Escherichia coli chromosome folds into a compact structure, the nucleoid,
and a set of nucleoid-associated proteins is involved in maintaining this (Dame
2005, Thanbichler et al. 2005). Many of these proteins are present at high levels
and sharply bend target DNA upon binding, and it is often thought that they bind
across the entire chromosome with little sequence specificity, like eukaryotic his-
tones. However, the activity of some promoters is modulated by nucleoid-associated
proteins binding at specific targets (McLeod and Johnson 2001). Also, it is now clear
that many of the ‘repressors’ responsible for conferring codependence of promot-
ers on two activators (Fig. 13.4D) are nucleoid-associated proteins or combinations
thereof. In this context, three of the best studied Escherichia coli nucleoid proteins
are Fis (Factor for Inversion Stimulation), H-NS (Histone-like Nucleoid-structuring
protein) and IHF (Integration Host Factor). To gain insight into the global roles of
these factors, chromatin immunoprecipitation was exploited to find their binding
locations (Grainger et al. 2006). To do this, the sequence composition of immuno-
precipitated DNA was analysed using high density microarrays. Figure 13.5 shows
a typical set of results illustrating the distribution of Fis, H-NS and IHF across the
chromosome of Escherichia coli K-12. Each scan shows enrichment (y-axis) for
DNA sequences at particular loci (x-axis) in the immunoprecipitated DNA sample.
As expected, each of the nucleoid-associated proteins binds at hundreds of targets,
but, surprisingly, analysis of the binding locations shows that ∼ 60% of the targets
are in intergenic regulatory regions. Since these regions cover less than 10% of the
total genome, it is clear that Fis, H-NS and IHF binding is highly focused, that
they are unlike eucaryotic histones, and that they must orchestrate DNA folding
from regulatory regions. Moreover their binding locations are completely consistent
with their known roles in transcriptional regulation. Analysis of the target locations
revealed many regulatory regions where Fis and H-NS both interact, compared with
smaller numbers of targets for Fis and IHF or H-NS and IHF. Interestingly, Es-
cherichia coli contains some targets where Fis, H-NS and IHF all bind together. As
a first step to understanding the rationale for this binding, and the molecular mech-

�
Fig. 13.5 Binding of Fis, H-NS and IHF across the E. coli chromosome. The figure shows
chromosome-wide DNA binding profiles for (A) Fis, (B) H-NS and (C) IHF, generated from
chromatin immunoprecipitation experiments in which immunoprecipitated DNA was analysed on
high density microarrays (Grainger et al. 2006). The x-axis indicate sequence coordinates on the
chromosome of E. coli K-12 strain MG1655 and the y-axis indicate the signal intensity at that
position in each experiment
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Fig. 13.5 (continued)
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anisms that are involved, we have made detailed studies of two of these targets,
the regulatory regions of the transcription units covering the nir operon and the
dps gene.

13.5 Regulation of the Escherichia coli nir Operon Promoter

The nir operon encodes a cytoplasmic nitrite reductase that catalyses the NADH-
dependent reduction of nitrite ions to ammonia (Harborne et al. 1992). Transcrip-
tion from a single startpoint is controlled by a promoter upstream of the nirB gene
(Jayaraman et al. 1988). At this promoter, H-NS is an overall repressor, whereas Fis
and IHF function in concert to confer codependence on two activators (Browning
et al. 2000).

Early studies had shown that the nir promoter is optimally active when cells are
grown in anaerobic conditions in the presence of nitrite or nitrate ions, and also that
higher activities are found in rich media (Bell et al. 1990). Induction in anaerobic
conditions is due to the activity of FNR, a global transcription activator responsible
for the induction of over 100 different transcription units in Escherichia coli in re-
sponse to low oxygen levels (Browning et al. 2002). FNR dimerisation, and hence
specific binding at target promoters, requires the formation of an iron-sulphur clus-
ter, and thus its activity is inhibited by oxygen. However as oxygen levels decrease,
FNR binds to target sites and activates transcription. In most cases, including the nir
promoter, the DNA binds to a target near position −41 and functions as a Class II
activator (Wing et al. 1995).

In addition to being dependent on FNR, expression from the nir promoter is
dependent on activation by NarL. NarL is a response regulator, that is activated by
nitrate or nitrite ions via sensor kinases, and it is this dependence which ensures that
nir operon induction is coupled to the presence of nitrate or nitrite ions as well as
the lack of oxygen (Tyson et al. 1993). NarL binds as a dimer to a DNA site just
upstream of the DNA site for FNR (Fig. 13.6). It was found that NarL binding has
no effect on FNR binding, and this raised the puzzle of why NarL is needed, and
why FNR, which is perfectly able to function as a Class II activator alone, is unable
to function without NarL at the nir promoter. The key to this is the observation
that the sequences upstream of the DNA site for FNR at the nir promoter carry
targets for Fis at position −142 and for IHF at positions −88 and −115 (Browning
et al. 2000, 2004). Genetic experiments have shown that FNR-dependent activation
is suppressed by the binding together of Fis at position −142 and IHF at position
−88. In vitro experiments with purified components demonstrated that FNR is able
to activate open complex formation at the nir promoter and that the complex is
destabilized by binding of Fis and IHF. The suppression mediated by Fis and IHF is
relieved upon binding of NarL, which displaces IHF from position −88 (Fig. 13.6).
Thus here, the role of the second activator, NarL, is not to activate directly, but rather
to prevent the action of repressors (Fis and IHF) that interfere with the primary
activator (FNR). Hence, point mutations that destroy the DNA sites for Fis and
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Fig. 13.6 Transcription regulation at the E. coli nir promoter. (A) Anaerobic conditions. The
binding of Fis to Fis I and IHF to IHF I inhibits FNR-dependent transcription (−ve), whilst occu-
pancy of the lower affinity IHF II site stimulates transcription (+ve). The mechanisms by which
upstream bound Fis and IHF modulate FNR-dependent transcription initiation at the nir promoter
are not understood. In addition, the binding of H-NS and FruR can down-regulate transcription
initiation at the nir promoter. (B) Anaerobic conditions plus nitrite or nitrate. The binding of NarL
(or its homologue, NarP) displaces IHF from IHF I, thus counteracting the repression mediated
by IHF and Fis, and enabling maximal FNR-dependent transcription. In contrast, NarL and NarP
have little effect on repression by H-NS and FruR, whose effects are modulated by temperature
and nutrient richness respectively

IHF at positions −142 and −88 respectively, release the requirement for NarL, and
convert the nir promoter into a simple Class II FNR-dependent promoter.

Further analysis has revealed three additional complications. First, IHF binding
to a weaker second site at position −115 promotes rather than suppresses FNR-
dependent transcription activation (Browning et al. 2004). Thus, IHF bound at two
adjacent sites (at positions −88 and −115) have opposite effects on nir promoter
activity (Fig. 13.6). Interestingly, the relative IHF binding affinities at the two sites
differ in diverse enteric bacteria and this sets the basal level of FNR-dependent
activation in the absence of NarL. Hence the basal NarL-independent activity of the
nir promoter is increased by mutations that improve IHF binding at position −115
and decreased by mutations that destroy binding (Browning and Busby, unpublished
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results). Second, H-NS, binds to a specific single target that overlaps the DNA site
for NarL and globally down-regulates nir promoter activity (Browning et al. 2000).
Finally FruR also represses the nir promoter by binding to a site centered at position
−15.5 (Tyson et al. 1997). Whilst the significance of repression by H-NS remains
unclear, the role of FruR appears to be to down-regulate nir expression in poor
media. FruR is a lac repressor family member that is displaced from its targets by
fructose diphosphate and thus it binds and represses nir expression when nutrients
are in short supply and glycolytic flux is low (Saier and Ramseier 1996).

13.6 Regulation of the Escherichia coli dps Promoter

Dps is a nucleoid associated protein that is absent in rapidly growing Escherichia
coli but accumulates as growth slows and cells enter stationary phase (Almiron et al.
1992). In non-growing cells Dps becomes the most abundant nucleoid-associated
protein and this is thought to be a key factor in maintaining the stationary phase
folded chromosome. Interestingly, levels of Fis, which is very abundant in growing
Escherichia coli cells, are reduced to near zero as cell growth slows upon entry
into stationary phase (Ali Azam et al. 1999). The expression of Dps depends on
a single promoter located just upstream of the dps gene and accumulation of Dps
requires the stationary phase � factor, �38. The observation that the dps promoter
can be served by RNA polymerase containing either �38 or the major � factor, �70,
raises the puzzle of what prevents dps from being expressed in rapidly growing cells
(Altuvia et al. 1994). The key to understanding this is the recent discovery of a DNA
site for Fis that overlaps the dps promoter −10 region, which suggested that Fis
binding might account for repression in rapidly growing cells (Grainger et al. 2008).
In vitro studies have confirmed this repression but have revealed a novel repression
mechanism in which bound Fis jams RNA polymerase containing �70 at the dps
promter. Thus, in rapidly growing cells, the dps promoter is silenced by a ternary
repression complex containing RNA polymerase with �70, Fis and promoter DNA.
Remarkably, Fis has little or no effect on the activity of RNA polymerase containing
�38, and thus Fis discriminates between different forms of RNA polymerase.

As well as being repressed by Fis, the dps promoter is also regulated by Fis, H-
NS, IHF and OxyR (Fig.13.7). Like Fis, H-NS acts as a repressor that discriminates
between RNA polymerase containing �70 and �38 (Grainger et al. 2008). H-NS dis-
places RNA polymerase containing �70 from the dps promoter, whilst not interfering
with RNA polymerase containing �38. Thus, together with Fis, H-NS confers �
factor dependence on dps expression. In contrast, a third nucleoid-associate protein,
IHF, binds upstream of the core dps promoter elements and functions as an activator
during �38-dependent transcription in stationary phase (Altuvia et al. 1994, Ohniwa
et al. 2006). Finally a second activator, OxyR, which is triggered by oxidative stress,
also binds upstream, and is responsible for transient induction of dps during oxida-
tive stress in rapidly growing cells (Altuvia et al. 1994, Ohniwa et al. 2006). In
these circumstances, the repression by Fis and H-NS must be overcome, but the
mechanism for this is unclear at present.
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Fig. 13.7 Selective regulation of the E. coli dps promoter. (A) Selective repression by Fis. During
rapid growth, transcription from the dps promoter is repressed by Fis, which binds to the promoter
in unison with E�70 and shuts down the promoter. (B) Selective repression by H-NS. Binding of H-
NS to the dps promoter blocks binding of E�70 but permits binding of E�38. Transcription by E�38

(but not E�70) can be stimulated by IHF. (C) Activation by OxyR. In response to oxidative stress,
transcription from the dps promoter by E�70 is enhanced by OxyR, which somehow overcomes
the negative effects of Fis and H-NS

13.7 Perspectives

Escherichia coli is found in many places, and most of these, such as the guts of ani-
mals and aquatic environments, are subject to rapid and frequent fluctuations. As for
most bacteria, survival depends on the selective expression of gene products to cope
with the environment, and thus, it is no surprise that Escherichia coli has evolved
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sophisticated systems to control transcription. This is most apparent in the high pro-
portion of its gene products that are dedicated to regulating transcription initiation
and in the complexity of even the simplest promoter. Thus, the nir operon promoter
is regulated by four transcription factors: by FNR, by NarL (and its homologue,
NarP) and by FruR and their activity is modulated by three nucleoid-associated
proteins, IHF, Fis and H-NS. Although we can assume that different combinations
of these factors are used in different conditions, most studies have been performed in
‘simple’ laboratory conditions, and the relative importance of the different factors in
‘real’ environments is still poorly understood. A quick glance at the Ecocyc database
will convince anyone that the simplistic models for promoter regulation that appear
in the textbooks are misleading. These models are mostly based on a small number
of paradigm promoters (such as the lac promoter) and were established early in
the history of this subject area. We now know that many, if not most, promoters
are very complicated, with multiple factors interacting and other factors such as
small ligands, the local chromosome landscape and DNA topology intervening. The
challenge now is for us to put all the facts together, to produce integrated models,
and, most important, to understand how systems are evolving.
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Abstract ColE1-type plasmids are multicopy extra-chromosomal vectors with
wide-spread applications in many areas of genetic engineering and biotechnol-
ogy. While the regulation of ColE1 replication is primarily effected by plasmid-
encoded factors, the continual discovery of new host-encoded factors modulating
ColE1 replication such as RNases and exoribonucleases reveals that the Escherichia
coli host could exert a considerable effect on plasmid replication as well. On the
other hand, the presence of plasmids also imposes a metabolic burden impeding
host growth and metabolism. The basis of this metabolic burden is multifaceted
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and appears to involve both the plasmid-related drain of cellular resources from
the host cell and the perturbation of cellular regulatory state mediated by global
transcriptional regulators. Through the systems-level analysis by “omics” tools and
in-silico modeling, we are gaining better understanding of plasmid-host interactions.
This chapter will discuss the interaction of host-encoded factors with the regulation
of ColE1-type plasmid replication and the systems-level effects of these multicopy
plasmids on metabolism of the E. coli host.

14.1 Plasmids and Its Biotechnological Applications

Plasmids are self-replicating extra-chromosomal DNA elements found in many bac-
teria and yeasts. Initially revealed as the F factor for conjugative gene transfer in
Escherichia coli (Hayes 1953, Lederberg 1998, Lederberg et al. 1952), later studies
on plasmids led to remarkable contributions to the field of molecular biology and
biotechnology (Cohen 1993). Figure 14.1 summarizes the major scientific impacts
arising from the studies of plasmids. The first replication origins were isolated and
characterized from plasmids (Lovett and Helinski 1976, Timmis et al. 1975), pro-
viding the foundation for the construction of artificial chromosomes and our present
understanding of DNA replication and topology. Subsequent analysis of plasmid-
derived genetic elements such as operon and replicon builds further fundamental
knowledge on DNA conjugation and fertility, gene expression, genetic recombina-
tion, gene transfer and transposable elements (Cohen 1993).

Early investigation of ColE1 type plasmid replication first led to the discovery
of antisense RNA and its control on gene expression (Tomizawa et al. 1981). Sub-
sequent studies on antisense RNA of ColE1 plasmid helped to clarify the mech-
anism of RNA decay (Lin-Chao and Cohen 1991, Xu et al. 1993). In addition,
these plasmids also play a critical role in the development of recombinant DNA
technology, gene cloning and genome evolution (Cohen 1993). The discovery of

Fig. 14.1 Major scientific impacts rising from the studies of plasmid. (Cohen 1993)
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Table 14.1 Commonly-utilized ColE1-type plasmids in biotechnology

Family Examples Application

pBR322 pBR322, pBR325, pBR328 Cloning
pBluescript pBluescript SK, pBluescript KS,

pBluescript II SK, pBluescript II KS
Cloning

pUC pUC18, pUC118, pUC19, pUC119 Cloning/Expression
pET pET3, pET5, pET7, pET9, pET11,

pET12, pET39
Expression

Others pVAC, pDNAVACCultra, pcDNA series,
pCMV series

DNA vaccination

restriction endonucleases and stable transformation of E. coli using plasmid DNA
led to the invention of recombinant DNA technology and gave rise to the present
field of genetic engineering (Cohen 1973, Cohen et al. 1972, Watanabe et al. 1966).

Plasmids used in genetic engineering and biotechnology are commonly known
as vectors. Plasmid-based vectors are important tools in biotechnology, where they
allow the efficient cloning of genes and expression of desired recombinant proteins
in E. coli and other microorganisms. Furthermore, there is also emerging interest
to apply plasmid DNA as non-viral vectors for delivery of therapeutic or antigenic
genes during gene therapy and DNA vaccination (Anderson and Schneider 2007,
Ledley 1995, Liu and Huang 2002, Weide et al. 2008). The majority of plasmid vec-
tors used in current recombinant DNA work were high-copy derivatives of ColE1-
type plasmids (or its close relative pMB1) (Bolivar et al. 1977, Kahn et al. 1979).
Examples of these are high-copy cloning vectors like the well-known pBR322,
pBluescript and pUC series (Balbas et al. 1986). Table 14.1 lists some common
ColE1-related plasmids currently in use. These high-copy plasmids are usually
smaller than low-copy plasmids and, when transformed into the E. coli host, are
routinely used for gene cloning, recombinant protein production and plasmid DNA
production. Despite their widespread utility, we are only beginning to comprehend
the complexity of plasmid-host interactions. A better understanding of plasmid-host
interactions would allow the design of enhanced plasmid vectors and host strains
for biotechnological processes. In view of this, the current review will discuss the
interaction of host-encoded molecules with the regulation of ColE1-type plasmid
replication, followed by the systems-level effects of these multicopy plasmids on
E. coli metabolism.

14.2 Host Factor-Mediated Regulation of ColE1
Plasmid Replication

14.2.1 Replication of ColE1 Type Plasmids

ColE1 type plasmids are small circular plasmids naturally occurring in members
of the family Enterobacteriaceae and they include plSA, pMB1, RSF1010 (NTP1),
CloDF13 (Selzer et al. 1983), NTP16 (Lambert et al. 1987), and other coligenic
plasmids (Zverev et al. 1984). The original ColEl is a 6.6 kb E. coli plasmid with
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a copy number of nearly 20 (Chan et al. 1985). It encodes for a 57 kDa colicin
E1 toxin which can kill other E. coli cells by depolarizing the bacterial membrane
and another protein (Imm), offering self-immunity to its colicin. The native plasmid
contains the following genes: cea, imm, kil, inc, RNAII, RNAI, rom, mob, cer and
exc; it also carries an origin of replication (oriV) and a region (bom) from which it
can be mobilized for transfer to other bacteria.

The fundamental regulation of ColE1 plasmid replication by plasmid-encoded
molecules has been extensively studied (Cabello et al. 1976, Davison 1984,
Panayotatos 1984, Schmidt and Inselburg 1982). A region of about 600 bp in the
ColE1 plasmid and several E. coli enzymes are involved in replication of ColE1. The
initiation of replication of ColE1 plasmid proceeds from 555 bp upstream of the oriV
and leads to the transcription of a pre-primer RNAII by RNA polymerase (Itoh and
Tomizawa 1979). The nascent RNAII transcript hybridizes with the DNA template
of ColEl and forms a DNA-RNA hybrid with a specific secondary structure which
can be recognized and cleaved by RNase H, resulting in a free 3′-OH end which
serves as a primer for DNA synthesis by DNA Polymerase I (Tomizawa and Som
1984). Plasmid replication proceeds by covalent extension of RNA primer (pRNA)
from the oriV region (Fig. 14.2).

The repression of Co1E1 plasmid replication depends on the inhibition of the
primer precursor, RNAII, by its plasmid-encoded antisense molecule, RNAI. RNAI
is a 108-nucleotide molecule which is transcribed from 445 bp upstream of the oriV,
in the opposite direction to RNAII, from a promoter located between the RNAII
promoter and the origin of replication of ColE1 type plasmids. As the sequence of
RNAI is complementary to the 5′-end of RNAII, RNAI can bind to RNAII and form
a stable RNA-RNA hybrid (Cesareni et al. 1991, Kues and Stahl 1989). The bind-
ing of RNAII to RNAI leads to a conformational change in RNAII, preventing the
formation of the DNA-RNA hybrid (Masukata and Tomizawa 1986, Polisky et al.
1990). Consequently, RNAII may not be able to function as a replication primer.
Thus, RNAI plays a key role in the control of ColE1 plasmid copy number as the
inhibitor of plasmid replication.

In addition to RNAI and RNAII, a third plasmid-encoded factor, Rom or Rop,
can also negatively control the replication of ColE1. Rom is a small protein which
has been proposed to accelerate the binding of RNAI to RNAII (Tomizawa and
Som 1984) and inhibit RNAII primer formation (Cesareni et al. 1982). Thus, the
expression of Rom protein reduces plasmid copy number and the rom gene is absent
in many high-copy plasmids like pUC or pET. In line with that, a point mutation in
RNAII that suppresses Rom was shown to increase plasmid copy number (Lin-Chao
et al. 1992). Figure 14.2 illustrates the mechanism of ColE1 replication by antisense
RNAI regulation.

14.2.2 Host-Mediated Regulation of ColE1 Plasmid Replication

Although copy number control of Co1E1-type plasmid in E. coli by plasmid-
encoded molecules has been studied at length, there is recent evidence that other
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Fig. 14.2 The mechanism of ColE1 plasmid replication by anti-sense RNA regulation. (a) A ge-

netic map of ColE1 plasmid replication. The blue arrows ( ) indicate the transcription direction

for RNAII (primer RNA, PP
P

PP
P ), RNAI (anti-sense RNA, PPPPPPPPP ) and Rom (RNA One Modu-

lator). The replication origin (ori, ) is indicated. (b–d) The pre-primer RNAII and anti-sense

RNAI are synthesized by the host RNA polymerase (RNAP, ). RNase H ( ) cleavage at the
DNA-RNA hybrid between RNAII and the DNA template at the origin region generates the 3′-OH
end of the RNAII primer (i.e. RNAII primer maturation) for initiation of leading strand synthesis
by DNA polymerase I. (e) When RNAI interacts with RNAII, the kissing complex is formed and

stabilized by the Rom ( ) proteins. This anti-sense and primer RNA interaction inhibits the
formation of DNA-RNAII hybrid, and prevents maturation of pre-primer RNAII. As a result, no
RNAII primer is available for plasmid replication

host-encoded factors also modulate overall plasmid copy number. In principle, any
host-encoded factors affecting the stability or secondary structure of RNAI and
RNAII will also interfere with the plasmid copy number. It has been shown that
some host-encoded enzymes regulate the degradation of RNAI by endo- or exo-
nucleolytic cleavage: (i) RNase E has been shown to have an endonucleolytic ac-
tivity in RNAI decay (Lin-Chao and Cohen 1991); (ii) RNase III plays a role in
turnover of RNAI (Binnie et al. 1999); (iii) polynucleotide phosphorylase is impli-
cated in degradation of RNAI (Xu and Cohen 1995); and (iv) poly(A) polymerase
I has been shown to play a role in the regulation of ColE1 plasmid copy number
and RNAI decay (Xu et al. 2002). Figure 14.3 shows how host-encoded proteins in-
terfering with the RNA-RNA interaction or regulating RNAI degradation can affect
ColE1 plasmid replication (e.g. r-protein L4; Singh et al. 2008).
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Fig. 14.3 Host-encoded proteins and tRNAs interfering with RNA-RNA interaction or regulating
RNAI degradation can affect ColE1 plasmid replication. (a) Owing to sequence homologies with

RNAII and RNAI, uncharged tRNA ( ) can interact with RNAII or RNAI and block kissing
complex formation. Thus, matured primer-RNA is produced which promotes initiation of plasmid
DNA replication. (b) When RNAII and RNAI form a kissing complex, RNase III can cleave the
double-stranded RNAs into single-stranded RNA. These substrates are degraded by endo- and
exo-ribonucleases (c) When RNAI is transcribed by RNAP, the tri-phosphate RNAI (ppp-RNAI)
phosphate groups are removed by RppH (pyrophosphohydrolase) proteins to form monophosphate
RNAI (p-RNAI). The p-RNAI substrates are cleaved by RNase E to form pRNAI−5. Some RNase
E modulators such as inhibitor L4 are also involved in RNAI metabolism. Poly(A) tails are added to
the pRNAI−5 substrates by PAPI (polyA polymerase 1) proteins. These intermediates of RNAI are
then degraded rapidly by endo- and exo-ribonucleases. When all RNAI intermediates have been
degraded, no kissing complex can form and replication starts

14.2.2.1 Role of RNases and Polyadenylation in the Regulation
of ColE1 Plasmid Replication

Several RNases encoded by E. coli have been shown to be implicated in ColE1
plasmid replication. The endoribonuclease RNase E, which is involved in the mat-
uration of 5S rRNA (Apirion 1978, Mackie 1998), has also been shown to have
an endonucleolytic activity in RNAI decay (Lin-Chao and Cohen 1991). It medi-
ates the cleavage of RNAI from the full length triphosphorylated pppRNA I108
to pRNA I105 (Lin-Chao and Cohen 1991). Later, Kaberdin and co-workers also
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identified multiple cleavage sites in the stem loops of RNAI by RNase E (Kaberdin
et al. 1996). RNase H recognizes and cleaves the RNAII–DNA hybrids at the origin
with a sequence of AAAAA of RNAII and then generates mature primer RNAII
(Naito and Uchida 1986). RNase III, an endonuclease which recognizes and cleaves
double-strand RNA, is a third implicated RNase. It is involved in both the processing
of rRNA and the degradation or processing of a variety of mRNA (Babitzke et al.
1993). It has been shown that RNase III is involved in the processing or degradation
of RNAI and RNAII during the formation of RNAI and RNAII complex (Binnie
et al. 1999).

More recently, polyadenylation has also been shown to be involved in regulating
the copy number of ColE1 plasmids (Xu et al. 1993). Polynucleotide phosphorylase
(PNPase) is an exoribonuclease which is implicated in mRNA degradation by re-
moving nucleotides from the 3′-end of the RNA(Donovan and Kushner 1986) and it
can also degrade RNAI (Xu and Cohen 1995). The degradation of RNAI by PNPase
is further promoted by its polyadenylation. When a poly(A) tail is added to the
3′-end of RNAI by poly(A) polymerase (encoded by pcnB), this facilitates further
exonucleolytic cleavage by PNPase after cleavage by RNase E (Xu et al. 2002).
Therefore, the addition of a poly(A) tail hastens the decay of RNAI. In contrast,
mutation in the pcnB gene stabilizes the RNA intermediate and reduces the copy
number of ColE1 plasmid (Masters et al. 1990, Sarkar et al. 2002).

14.2.2.2 Role of tRNA on the Regulation of ColE1 Plasmid Replication

Previous studies have reported that the sequence of the loop II of RNAI and the
dihydrouridylic loop of tRNA have close homologies (Yavachev and Ivanov 1988).
This therefore implies a possible role for tRNA in the regulation of ColE1 plasmid
replication. It has been shown that uncharged tRNA can interact with RNAI to reg-
ulate the replication of ColE1 plasmid (Wang et al. 2002, Wang et al. 2004, Wrobel
and Wegrzyn 1998). It was speculated that tRNA–RNAI interactions may interfere
with hybridization between RNAI and RNA II, thus allowing more maturation of
the pre-primer RNAII and initiation of plasmid DNA replication (Wegrzyn 1999).
Another effect of tRNA in the control of replication of ColE1-type plasmids, based
on the interaction of the 3′-CCA sequence of uncharged tRNA with RNAI, has also
been proposed (Wang et al. 2004). Understanding the role of uncharged tRNA in
regulating the replication of ColE1-type plasmid is important, because amino acid
starvation (which leads to the accumulation of uncharged tRNA) has been consid-
ered to be a more effective method than temperature shift for up-regulating the repli-
cation of ColE1-type plasmids (Wegrzyn 1999). Figure 14.3 illustrates how tRNAs
interference with RNA-RNA interaction can affect ColE1 plasmid replication.

14.2.2.3 Other Host Factor-Mediated Regulation
of ColE1 Type Plasmid Replication

Other host factors are also involved in regulation of ColE1 plasmid replication. It has
been shown that RraA, a regulator of ribonuclease A activity, interacts with RNase
E and inhibits RNase E endonucleolytic cleavage (Lee et al. 2003). Inhibition of
RNase E by RraA prolongs the half-life of substrates such as RNAI, and thus in-
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terferes with the replication of ColE1 plasmids. Moreover, the degradation of most
transcripts of E. coli proceeds through a 5′-end-dependent pathway and begins with
endonucleolytic cleavage. The endonuclease responsible is RNase E, whose cleav-
age is the initial, rate-limiting step of mRNA degradation in E. coli. Previous study
reported that the mechanism of the 5′-end dependent pathway for RNA decay is
triggered by 5′-pyrophosphate removal (Celesnik et al. 2007). RppH, an RNA py-
rophosphohydrolase which belongs to the Nudix protein family, has been reported
to initiate the degradation of mRNA by this 5′-end dependent pathway as it removes
the phosphates from the 5′-end of a triphosphorylated primary transcript (Deana
et al. 2008). Therefore, RppH triggers RNase E cleavage and controls the rate of
RNA decay (such as the degradation of RNAI) and also affects the ColE1 plasmid
copy number.

14.3 Systems-Level Effects of Plasmid on E. coli
Host Metabolism

14.3.1 Cellular Metabolic Burden from the Presence
of Multicopy Plasmids

Although multicopy derivatives of ColE1 plasmids are widely-used, the introduction
of these plasmids to E. coli often imposes a metabolic burden causing systems-level
perturbation to cellular metabolism (Glick 1995). Phenotypically, the metabolic bur-
den can be directly observed as reduction in cellular growth rate and final biomass
(Fig. 14.4). Growth rate of plasmid-bearing (P+) E. coli decline with increasing
plasmid copy number or size (Bentley et al. 1990, Cheah et al. 1987, Seo and Bailey
1985). Conversely, with increasing growth rate, the ratio of the RNAI inhibitor
of plasmid replication over the replication pre-primer RNAII has been shown to
increase correspondingly (Lin-Chao and Bremer 1986), suggesting the existence

Fig. 14.4 Growth of
plasmid-free (�) and
plasmid-bearing (�) E. coli
DH5α cells during 2-L batch
cultures. Due to the metabolic
burden of maintaining
multicopy plasmids, the
plasmid-bearing (P+) cells
showed a reduced growth rate
and final biomass relative to
the plasmid-free host cells
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of an intricate relationship between plasmid copy regulation and growth rate. The
majority of growth-related phenotypic changes from plasmid presence have been
extensively covered in two prior reviews (Glick 1995, Ricci and Hernandez 2000).
Other than growth retardation, plasmid presence could also incur additional physio-
logical changes, including elevation of oxygen uptake rates (Khosravi et al. 1990),
increased glucose uptake and ATP synthesis (Diaz-Ricci et al. 1992), co-localization
and presumed interaction with the host replication machinery at the cell membrane
(Pogliano 2002, Yao et al. 2007), and loss of viability and cell lysis during fed-batch
cultures (Andersson et al. 1996).

Conventionally, the basis of plasmid metabolic burden has been attributed to the
metabolic drain of biosynthetic precursors, energy and other cellular resources for
the maintenance of multicopy plasmids (Seo and Bailey 1985). As illustrated in
Fig. 14.5, plasmid DNA replication and plasmid-encoded mRNA and protein syn-
thesis share the same precursors, energy and enzymatic machinery as the analogous
host metabolic processes (Peretti and Bailey 1987). Accordingly, the maintenance
of plasmids would inevitably compete with the cellular growth for a limited pool
of cellular resources, including biosynthetic precursors like deoxyribonucleotides,
ribonucleotides and amino acids and high-energy molecules like ATP, GTP, NADH
and NADPH. All these precursors and high-energy molecules required for plasmid
maintenance are derived from the distribution of carbon fluxes through the cen-
tral metabolic pathways (CMP) into assorted branches of biosynthetic and catabolic
pathways (Holms 1996).

First proposed by Diaz Ricci and Hernandez (2000), an alternate proposition for
the metabolic burden is that the presence of plasmids distresses host metabolism by
perturbing the global transcriptional network. In other words, the E. coli host could
perceive plasmids or plasmid-encoded products as an intracellular stress stimulus,

Fig. 14.5 Schematic illustration of competition between plasmid DNA and the bacterial host for
cellular resources (Peretti and Bailey 1987). Copyright (1987, John Wiley & Sons, Inc.), reprinted
with permission of Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc
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triggering a cascade of stress signals affecting the E. coli transcriptional network.
That in turn could lead to substantial changes in global gene expression and cellular
phenotype.

14.3.2 Plasmid Perturbation of the Global Transcriptional
Regulatory Network in E. coli

In bacteria, transcription regulation is generally considered the main mode of gene
regulation. Figure 14.6 illustrates the multi-layer hierarchical structure of the E. coli
global transcriptional network (Ma et al. 2004). Of the 4280 transcripts identified in
E. coli, 267 are known or putative transcriptional regulators (Babu et al. 2004). The
overall regulation of transcription in response to environmental and physiological
changes is coordinated by a set of specific and global transcriptional regulators.
While specific transcriptional regulators mainly regulate single transcriptional units
consisting of genes with related functions known as operons, global transcriptional
regulators are pleiotropic proteins with the ability to regulate operons belonging to
several metabolic pathways or functional classes (Gottesman 1984).

There are now evidences suggesting that global transcriptional regulators play
a key role in mediating the plasmid metabolic burden response. The first global

Fig. 14.6 Multi-layer hierarchical structure of the E. coli global transcriptional network. In the
extended transcriptional regulatory network model containing 1278 genes and 2724 regulatory
interactions by Ma and co-workers, the top layer regulators tend to be global transcriptional regu-
lators, while the regulated metabolic enzymes are at the bottom layer (Ma et al. 2004)
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transcriptional regulator implicated in plasmid metabolic burden is the cyclic AMP-
response protein (CRP). The presence of plasmids is reported to lead to an increase
in intracellular concentration of cyclic AMP (cAMP) in three E. coli strains (Diaz-
Ricci et al. 1995). cAMP is a signal molecule responsible for activating the CRP, a
global transcriptional regulator that directly regulates the expression of 197 E. coli
genes including 22 other transcriptional regulators (Martinez-Antonio and Collado-
Vides 2003). The cAMP-CRP complex activates the expression of catabolic operons
in response to the availability of glucose and is also involved in cell division, motil-
ity, starvation function and anaerobiosis (Botsford and Harman 1992). During the
growth of E. coli HB101, DH1 and JM109 carrying 3 different plasmids (including
the ColE1 derived pUC19), an increase in intracellular cAMP concentration was
accompanied by the higher activity of the cAMP-CRP activated �-galactosidase
and an elevated rate of glucose uptake relative to the corresponding plasmid-free
cells (Diaz-Ricci et al. 1995). Thereafter, the authors proposed, “plasmids affect
host metabolism through the perturbation of the cAMP-CRP complex, which in turn
causes the alteration of the regulatory status of host regulations.” (Diaz Ricci and
Hernandez 2000). Despite the finding that plasmid presence is related to higher
cellular cAMP levels, the exact mechanisms involved remain unclear.

A second global regulator-like molecule that could be involved in the transcrip-
tion response to plasmid metabolic burden is guanosine tetraphosphate or ppGpp
(Magnusson et al. 2005). ppGpp is the effector of the stringent response to amino
acid starvation, widely-observed as the overall down-regulation of rRNA biosyn-
thesis and ribosome production (Stent and Brenner 1961). The intracellular level of
ppGpp rises in response to amino acid, carbon or energy depletion(Cashel et al.
1996) and is shown to correlate inversely with cellular growth rate (Joseleau-
Petit et al. 1994). Recently, ppGpp is proposed to be the master regulator coor-
dinating the binding of various sigma factors with RNA polymerase core enzyme
(Nystrom 2004); in doing so, ppGpp in turn regulates the transcription of various
stress-responsive genes mediated by alternative sigma factors, including �s (regu-
lator of stationary phase response), �32 (regulator of heat shock response) and �54

(regulator of nutrient limitation and alternative carbon utilization). In recombinant
plasmid-bearing cells under significant metabolic stress, ppGpp levels could be ele-
vated. An intracellular ppGpp level of 0.45 �Mol/gDCW was reported in uninduced
pET11ahSOD plasmid-bearing E. coli HMS174(DE3) cells not producing the re-
combinant protein product (Cserjan-Puschmann et al. 1999). The subtle metabolic
burden displayed by these plasmid-bearing cells was attributed to the replication and
expression of the plasmid and its marker protein.

At present, the sole global transcriptional regulator shown to directly affect the
metabolic burden-related retardation of cellular growth is FruR (fructose repressor,
also known as Cra or catabolite activator repressor). FruR is a global transcription
regulator of major catabolic enzymes using a cAMP-CRP independent mechanism
(Saier 1996). Primarily, FruR represses the transcription of catabolic enzymes in-
volved in the glycolytic pathway (pfkA, pykF, gapA, pgk, eno), Entner-Doudoroff
pathway (edd, eda) and alternative sugar catabolism (fruBAK, mtlADR). At the same
time, it positively activates genes in glyconeogenesis (fbp, ppsA), TCA cycle (acnA,
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icdA), glyoxalate shunt (aceBA) and electron transport chain (cydAB) (Ramseier
1996). Corresponding to FruR regulation of central metabolic pathways, knockout
of the fruR gene in E. coli was shown to enhance carbon flow though glycolytic
pathway and inhibit carbon flow though glyconeogenesis (Ramseier et al. 1995).

The inactivation of FruR by gene knockout was found to significantly improve
the growth rates of plasmid-bearing cells relative to the respective wildtype cells
(Ow et al. 2007). For E. coli DH5α carrying a ColE1-derived pcDNA3.1d/NS3 plas-
mid, the cellular growth rate during 2-L batch cultures improved from 0.75 h−1 to
0.91 h−1 after fruR knockout. This considerable growth rate recovery from plasmid
metabolic burden was accompanied by a corresponding up-regulation of glycolytic
enzymes and down-regulation of TCA cycle and stress proteins as revealed from
proteomic and transcriptional analyses (Fig. 14.7).

As revealed from these studies, there is mounting evidence that, mediated by the
action of global transcriptional regulators, the presence of plasmid leads to alter-
ations in the global transcriptional network. Two implicated global transcriptional
regulators, CRP and FruR, are both recognized to be major regulators of central
metabolic gene expression. This appears to point towards the prevailing role of
central metabolic gene expression in effecting the metabolic burden phenomenon.
In all, these findings do not disprove the former proposition of plasmid metabolic
drain. It is more likely that both the drain of cellular resources and the perturbation
of the cellular regulatory network act synergistically together to contribute to the
metabolic burden.

14.3.3 Central Metabolic Gene Expression
and Plasmid Metabolic Burden

As metabolic fluxes within pathways have to synchronize with biosynthetic de-
mands for precursors and energy during cell growth, they have evolved to be under
tight regulatory control (Nielsen 2003). Regulation of metabolic fluxes can occur
at the level of transcription (mRNA synthesis and degradation), translation (protein
synthesis and proteolysis) and enzyme activity (allosteric regulation; Table 14.2).
Due to the existence of various feedback loops and signaling cascades, these regu-
latory processes are interlinked to form a complex regulatory network (Vemuri and
Aristidou 2005). Despite our extensive knowledge on E. coli, the exact nature of
the regulatory network and its impact on central metabolism has not been clearly
elucidated.

Although many CMP enzymes are constitutively expressed (Fraenkel 1996) and
a few key enzymes are regulated by allosteric binding of effector molecules, the
transcription of CMP enzymes has been observed to vary in response to different
physiological condition (Sabnis et al. 1995). For instance, considerable transcrip-
tional changes were observed within the glycolytic, gluconeogenic and TCA cycle
pathways in E. coli during growth in acetate versus glucose media (Oh and Liao
2000). These transcriptional changes were found to qualitatively correlate to the
actual CMP metabolic fluxes, which indicate the existence of significant regula-
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Fig. 14.7 Central metabolic gene expression changes in plasmid-bearing DH5α cells after fruR
gene knockout. Values without brackets are protein expression fold changes, while values in brack-
ets are the transcriptional fold changes. A trend of down-regulated (green boxes) glycolytic genes
and up-regulated (red boxes) TCA cycle genes was observed. FruR mediated activation and repres-
sion are indicated by → or � respectively. (Figure from Ow et al. 2007)

tion in these pathways. During high cell density culturing of E. coli (Yoon et al.
2003), global transcriptional and proteomic studies showed a pattern of CMP gene
expression changes that relates to the various physiological growth phases. These
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Table 14.2 Allosteric regulation of enzyme activity in glycolysis and TCA cycle (compiled from
EcoCyc database, Keseler et al. 2005)

Enzyme Activator Inhibitor

Phosphofructokinase 1 ADP PEP
Fructose-1,6-biphosphate AMP
Pyruvate kinase 1 FBP
Pyruvate kinase 2 AMP
Citrate synthase NADH, OAA
Phosphoenolpyruvate carboxylase FBP, acetyl-CoA Aspartate, MAL
Phosphoenolpyruvate carboxykinase NADH

observations indicate that transcriptional regulation of CMP is also of physiological
importance (Sabnis et al. 1995).

The apparent role that the central metabolic gene expression plays in affecting
plasmid metabolic burden is further supported by another recent study (Flores et al.
2004), whereby the overexpression of the zwf gene (encoding for the first enzyme of
the pentose phosphate pathway, glucose 6-phosphate dehydrogenase) increased the
growth rate of plasmid-bearing E. coli JM101 from 0.46 h−1 to 0.64 h−1 (Fig. 14.8).
The growth rate recovery was ascribed to the potential increase in carbon flux to
the oxidative branch of the pentose phosphate pathway. Since the PP pathway pro-
vides: (1) NADPH, a source of reducing power for many biosynthetic reactions and
(2) precursors (ribose-5-phosphate and erythrose-4-phosphate) for nucleotide, histi-
dine, and aromatic amino acids biosynthesis, they hypothesized that the availability

Fig. 14.8 Specific growth rates of E. coli JM101 strains over-expressing the zwf gene (Flores et al.
2004). The overexpression of zwf (encoding for the first enzyme of the pentose phosphate pathway,
glucose 6-phosphate dehydrogenase) with IPTG led to an increase in growth rate from 0.46 h−1 to
0.64 h−1 in cells carrying plasmid pTRzwf04
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of some of these metabolites could be limiting for the biosynthesis of plasmids or
foreign proteins.

14.3.4 Global Transcriptional and Proteomic Studies
of Plasmid Metabolic Burden

The first semi-global proteomic study to investigate protein expression changes due
to plasmid presence in exponentially-growing E. coli was conducted by Birnbaum
and Bailey (Birnbaum and Bailey 1991). In the study, two ColE1-derived plasmids
that differ only by a mutated RNAI sequence were used to generate two plasmid
copy number mutants with: (1) a mid plasmid copy number of 56 (designated strain
P60), and (2) a high plasmid copy number of 240 (designated strain P120). Protein
expression trends of the P60 and P120 strains were compared with the plasmid-free
HB101 parental strain grown in minimal media supplemented with 20 amino acids.
From 93 polypeptides identified, 34 were examined.

It was found that the levels of TCA cycle enzymes increase as the plasmid copy
number increases initially from 0 to 56 (Birnbaum and Bailey 1991). Subsequently,
at the higher copy number of 240, an increase in the anaplerotic PEP carboxylase
expression was accompanied by a corresponding reduction in the expression of
pyruvate kinase I, pyruvate dehydrogenase complex and TCA cycle enzymes. This
indicates that, when grown on amino acids as the sole carbon source, cells carrying
more copies of plasmids replenish TCA intermediates for precursor generation at
the expense of TCA cycle flux. In additional, reduced expression of proteins of the
protein synthesis machinery (2 elongation factors, 9 ribosomal subunits, asparyl-
tRNA synthetase) and increased expression of 4 heat shock proteins were also seen.
Together with a decrease in total cellular RNA and ribosome content as revealed
from sucrose gradient profiles, the results denote a reduced translational capacity
and elevated metabolic stress for cells carrying more plasmid.

Subsequently, a global transcriptome-proteome study was conducted to exam-
ine gene expression changes from plasmid presence in E. coli DH5α grown on
glucose-containing complex media (Ow et al. 2006). The ColE1-type pcDNA3.1d/
NS3 plasmid used was a DNA vaccine carrying a non-expressing antigenic gene
against Dengue virus and has a copy number of approximately 100–150 during
exponential phase (Lee et al. 2006). In the study, pcDNA3.1d/NS3 plasmid-bearing
cells showed a 25% drop in growth rate over the plasmid-free host cells. Compar-
ison of the exponentially growing plasmid-bearing cells over the plasmid-free host
cells identified 364 genes and 18 proteins with more than 1.2 fold changes in gene
expression.

A general downregulation of biosynthetic and key aerobic respiratory genes was
observed (Ow et al. 2006). The downregulation of NADH dehydrogenase II (ndh)
and several aerobic terminal oxidases (cydA, cydB, cyoA, cyoB) indicated an over-
all repression of major respiratory energy pathways in the plasmid-bearing cells.
Among the upregulated genes were 6 stress-response heat shock proteins (lon,
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mopA, clpB, hslV, ibpB, ibpA). In particular, the upregulation of the heat shock clpB
chaperone and hslV protease have not been previously associated with plasmid pres-
ence. Consistent with reports of higher cAMP-CRP activity in cells carrying plas-
mids, most upregulated carbon transporters are activated by the cAMP-CRP global
regulator. Moreover, the downregulation of two key glycolytic genes, pfkA and pykF
was seen. Interestingly, the only known transcriptional repressor of pfkA and pykF
is FruR, another global regulator implicated with plasmid metabolic burden.

In the previous two studies, the comparison of gene expression was made on
plasmid-bearing and the host cells showing evident variations in growth rates dur-
ing exponential phase. As any variations in growth rates or physiological conditions
could affect the interpretation of gene expression studies, Wang and colleagues used
glucose-limited chemostat cultures to equilibrate the growth rates of two BL21
strains carrying a mid or a high copy ColE1 plasmid (copy numbers of 80 and
420) with the plasmid-free host (Wang et al. 2006). At the identical steady-state
growth rate of 0.20 h−1, glucose consumption rates for the plasmid-bearing cells
were higher by approximately 2.5–3 fold relative to the host. Correspondingly, the
acetate excretion rates for the plasmid-bearing cells were higher by 5–11 fold.

Microarray transcriptional analysis on these plasmid-bearing cells over the host
showed a clear gene expression trend of an increase in glycolysis and TCA cycle and
decrease in pentose phosphate pathway (Wang et al. 2006). These central metabolic
gene expression trends were found to be consistent with the corresponding data
from enzyme activity assays and metabolic flux analysis. In line with the experi-
mental observations of higher glucose consumption and acetate excretion rates, the
upregulation of ptsG for glucose uptake and acetate metabolic genes (ackA, pta) was
also reported. In contrast with previous studies, only subtle changes in expression
of genes related to cellular structure, DNA replication, and transcription/translation
processes were observed. The authors reported that only the CMP related genes
showed the largest expression changes. Hence, it appeared that, when growing at
the same physiological growth rate as the host, CMP gene expression changes in the
plasmid-bearing cells are dominant over other functional changes.

14.3.5 In-silico Simulation of Plasmid Metabolic Burden

It is now widely accepted that mathematical modeling and simulation of complex
biological systems play a pivotal role in further improving our understanding of
systems-level characteristics and functions. To date, various quantitative models
have been presented for describing host-plasmid interactions in E. coli. Once pre-
dictive models are developed, various simulations under different conditions can
be conducted by changing relevant parameters, thus allowing us to explore effects
of plasmid presence on metabolic burden. As discussed previously, the presence of
plasmids in the cell results in metabolic burden effects leading to retarded growth,
changes in gene regulation, enzyme activities and metabolic flux. Major mechanistic
processes involved in host-vector systems compose of plasmid replication, mRNA
transcription, and plasmid-encoded mRNA translation of the foreign protein. Thus,
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detailed kinetics and control structures describing those processes along with key
factors affecting host physiology can be formulated within plasmid-host interaction
models. Experimentally observed metabolic burden is then characterized through in
silico simulation of the models.

Plasmid replication is the first step in any plasmid-host interactions related to
plasmid metabolic burden. In order to understand the underlying strategy of plas-
mid replication control, many researchers have presented mathematical models for
describing the mechanism of ColE1 plasmid replication by anti-sense RNA regu-
lation (Brendel and Perelson 1993). Paulsson and Ehrenberg determined optimal
ColE1 copy number to achieve increased segregational stability, thereby reducing
metabolic burden to the host cell (Paulsson and Ehrenberg 1998). Peretti and Bai-
ley presented a mechanistically detailed single-cell model for E. coli, considering
various competitive interactions found in plasmid-host systems (Peretti and Bailey
1987). They simulated recombinant cell growth by changing the relevant factors
to metabolic activity, including plasmid copy number, promoter strength and ribo-
some binding strength. From these simulation experiments, strategies for enhancing
cloned-gene productivity or reducing metabolic burden could be evaluated.

The second principal factor affecting metabolic burden is the expression of
plasmid-encoded protein, which is commonly the antibiotic resistance marker pro-
tein. A simple mathematical model was developed for guiding stable target protein
production and excretion (Togna et al. 1993). In the latter study, the empirical ex-
pression for the specific rate of plasmid production and less structured model of the
lac operon induction was included in the dynamic model formulation. Bentley and
co-workers presented a metabolically-structured kinetic model where expression of
foreign proteins such as chloramphenicol-acetyl-transferease (CAT) and resistance
marker protein (b-lactamase) was described based on plasmid content in addition
to replication and mRNA transcription (Bentley et al. 1990). They observed the
close corelationship between growth rate and foreign protein expression while the
effect of plasmid replication on the growth rate was negligible. This implies that the
metabolic drain of precursors and energy associated with the expression of proteins
prevail over that for the replication of plasmid DNA.

Most plasmid-host interaction models are kinetics-based dynamic models which
require extensive kinetic and regulatory information for modeling. Most often than
not, experimental measurements are not easily obtained for determining a large
number of kinetic parameters (e.g. intracellular reaction rates). The stationary mod-
eling approach is, therefore, a good alternative to the kinetic model for the simula-
tion of plasmid-bearing host metabolism. Assuming the pseudo-steady state, the ki-
netic model can be simplified into static representation, taking into account the net-
work’s connectivity and capacity as time-invariant properties of the metabolic sys-
tem. To investigate the effect of plasmid-directed synthesis on metabolic stoichiom-
etry, da Silva and Bailey calculated additional energetic and material requirements
caused by plasmids (da Silva and Bailey 1986), hence deriving an early stoichiomet-
ric model for plasmid synthesis. Subsequently, Ozkan and colleagues developed a
metabolic model for cell growth and recombinant protein overproduction in E. coli
that included precursor balances and energetic requirement for plasmid replication,
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and protein expression within the metabolic balance model (Ozkan et al. 2005).
Using some of these stoichiometric models for plasmid synthesis, the physiological
effect of plasmid metabolic burden on E. coli metabolism can be further explored by
constraints-based flux modeling (Ow et al. 2009). exploited a genome-scale E. coli
model using various linear-programming cellular objective functions to identify the
most plausible describer of the physiological state within the plasmid-bearing cells.
The study demonstrated that flux simulations by maximizing maintenance energy
expenditure showed good consistency with experimental data, suggesting that the
plasmid-bearing cells are less energetically-efficient and could require more main-
tenance energy.

Current models are still limited by insufficient knowledge on global regulation
and kinetic information. As there are now evidences of global regulatory changes in
plasmid-bearing cells, future modeling approaches should systematically combine
dynamic and stationary models with regulatory information and high-throughput
“omics” data analysis to characterize the metabolic burden, thereby identifying en-
gineering strategies for overcoming plasmid metabolic burden in E. coli.

14.4 Conclusions and Future Prospects

ColE1-type plasmids have been extensively characterized and widely applied in
biotechnology. Early studies of plasmids and the successive development of ColE1-
type plasmid vectors have contributed extensively to the present progress in molec-
ular biology and recombinant DNA technology. Studies on the basic regulation of
ColE1 replication have been initialized more than three decades ago. Although it
is now well known that the control of ColE1 replication is primarily regulated by
plasmid-encoded factors, the continual discovery of new host-encoded factors mod-
ulating ColE1 replication reveals that the E. coli host could exert a considerable
effect on the replication of ColE1 plasmids as well.

While E. coli host produces several factors modulating ColE1 replication, plas-
mids also impose a metabolic burden impeding host growth and metabolism. The
basis of this metabolic burden is complex and appears to involve both the plasmid-
related drain of cellular resources from central metabolism and the perturbation
of cellular regulatory state mediated by global transcriptional regulators. Through
the application of systems level “omics” tools and in-silico modeling, we are be-
ginning to gain better understanding of plasmid-host interactions. From the initial
discovery of plasmids, to successive vector construction and emerging applications
like genetic therapy and vaccination, it is anticipated that the current trend towards
systems-level studies of plasmid-host interactions will give rise to even more knowl-
edge and further biotechnological applications.
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Abstract Recombinant proteins produced in Escherichia coli often aggregate as
amorphous masses of insoluble material known as inclusion bodies. Being quite
homogeneous in their composition, inclusion bodies display amyloid-like properties
such as sequence-dependent protein-protein interactions, seeding-driven deposition
of their components and β-sheet intermolecular architecture. However, inclusion
bodies formed by different proteins and enzymes also show important extents
of native-like secondary structure and include significant proportions of properly
folded, functional protein, which makes them suitable to be used in catalytic pro-
cesses. Inclusion bodies are formed as a result of the incapability of the quality
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Barcelona, 08193 Spain
e-mail: antoni.villaverde@uab.es

S.Y. Lee (ed.), Systems Biology and Biotechnology of Escherichia coli,
DOI 10.1007/978-1-4020-9394-4 15, C© Springer Science+Business Media B.V. 2009

295



296 E. Garcı́a-Fruitós et al.

control cell system to cope with the non physiological amounts of misfolding-prone
proteins produced upon recombinant gene expression. Multiple cellular proteins in-
volved in the quality control, namely chaperones and proteases, participate in their
formation and co-ordinately determine the amount of aggregated protein, the size
of aggregates and the main structural and functional properties of the embedded
polypeptides, such as their inner molecular organization.

15.1 Recombinant Protein Production:
An Historical Overview

The discovery of restriction enzymes in the 70s offered one of the most power-
ful tools in molecular biology, dramatically fuelling the progress of recombinant
DNA technologies. Before the systematic use of restriction enzymes, genetic ma-
nipulation was restricted to poorly controlled genetic modifications such as those
caused in bacterial genomes by bacteriophages and plasmids. Restriction enzymes
permitted the isolation and cloning of genes and their regulated expression in het-
erologous cell hosts, such as bacteria. This allowed the production of polypep-
tides that, being of interest for scientific, pharmaceutical or industrial purposes,
occurred in low amounts in their natural sources and therefore, were difficult to
obtain. This simple gene-cloning-and-expression strategy offered a solid method-
ological background on which the modern biotechnology fully developed. The use
of cells (mainly microbial) as biological systems for the regulated production of
recombinant proteins (and also of natural substances of biotechnological interest)
originated the “Cell Factory” concept. This notion, underlying any man-driven,
cell-mediated production process in single cells, refers to the engineering of the
cell’s biosynthetic machinery and the supporting genetic programme for applied
purposes.

In early DNA recombinant times, it was believed that recombinant protein pro-
duction in microbial cells would be the source of any relevant protein of pharma-
cological interest with high added value (such as immunogens, hormones, enzymes
and complex molecular assemblies such as virus-like particles) as well as enzymes
of straightforward industrial applicability (such as lipases, glycosidases, proteases,
etc.). Therefore, the implementation of recombinant DNA technologies was pre-
dicted to result into a dramatic positive impact in biotechnology and biomedicine,
expanding the spectrum of protein products available in the market. However, those
expectations were rapidly frustrated since generally the quality of recombinant pro-
teins produced in bacteria was not comparable to that of those obtained from natural
sources, and therefore those recombinant proteins were not suitable for use. Es-
sentially, the major bottlenecks encountered during recombinant protein production
are proteolytic digestion by cell proteases (Enfors 1992) and aggregation as insol-
uble protein deposits known as inclusion bodies (IBs) (Georgiou and Valax 1996,
Marston 1986). Human insulin was among the first proteins for which the accumu-
lation in morphologically discrete aggregates in the bacterial cytoplasm was shown
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(Paul et al. 1983, Williams et al. 1982), which delayed its further development as a
pharmaceutical in human therapy.

The majority of proteins deposited as inclusion bodies are produced in non-
functional conformation, in particular if they are of eukaryotic origin and contain
disulfide bonds and, thus, require solubilisation and refolding for generation of the
biologically active version of the protein (Clark 2001, Fahnert et al. 2004, Jungbauer
and Kaar 2007, Middelberg 2002, Vallejo and Rinas 2004). Although inclusion
body formation in general leads to additional down-stream steps during protein
production and purification, inclusion body based production processes involving
solubilization and refolding are economically viable options for many biopharma-
ceuticals. For example, human insulin, nowadays produced as recombinant protein
in tons per year quantities, is produced using two major routes (Walsh 2005). One
route involves the production of proinsulin in form of inclusion bodies using E. coli
as expression host with subsequent solubilization and refolding procedures. The
other route involves the utilization of yeast-based expression systems leading to
the secretion of a soluble proinsulin into the culture supernatant. Both routes are
economically viable.

Both proteolysis and IB formation result from the unability of many recombinant
proteins to reach their native conformation in recombinant cells, and the efforts
addressed to minimize them have only resulted partially successful. Therefore, the
number of recombinant proteins that have entered the biotechnological market rep-
resents only a very minor fraction of those that have ever been produced in heterol-
ogous cells. At least partially, the incomplete exploitation of the recombinant DNA
technologies for protein production can be attributed to a limited understanding of
the cell physiology under the non-physiological cellular conditions associated to
recombinant gene expression.

15.1.1 Protein Production in Escherichia coli

Since the first experiments of gene cloning and expression, the gram-negative bac-
terium Escherichia coli has been universally used as a convenient host for protein
production. Despite other heterologous hosts have been progressively incorporated
into production processes (namely gram-positive bacteria, yeast, insect cells, mam-
malian cells, filamentous fungi and others) (Gasser et al. 2008), E. coli is still a main
cell factory for protein production, essentially because of its high growth rate, the
high cell densities reached in fed-batch cultures, the relatively inexpensive growth
media, the deep knowledge of its genetics and the availability of diverse genetic
tools, such as plasmids, transposons and viruses acting on this species. Although
recombinant proteins can be obtained in the cell periplasm if fused to secretion
peptides, E. coli is mostly used to produce proteins in the cytoplasm, which need to
be recovered from cell extracts after cell disruption.

However, many recombinant proteins produced in E. coli are unable to reach
their native conformation, especially if they have eukaryotic origins or require
posttranslational modifications such as disulfide bridge formation for their folding,
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and are rapidly degraded by cell proteases. Among the set of E. coli proteases, the
ATP-dependent proteases Lon and ClpP are responsible for the degradation of most
of the recombinant polypeptides (Maurizi 1992). Although the use of protease-
deficient mutants as cell hosts has been explored as a method to enhance the sta-
bility of recombinant proteins (Baneyx and Georgiou 1991, Gottesman et al. 1997,
Tomoyasu et al. 2001b), the issue appears progressively more complex as the physi-
ology of in vivo protein folding is better understood. In this regard, cell proteases are
an important arm of the quality control system, in which they act in cooperation with
folding assistant proteins to survey conformational quality (Fig. 15.1). Therefore,
minimizing proteolysis in protease deficient mutants leads to the accumulation of
misfolded protein species as IBs (Garcia-Fruitos et al. 2007a, Rosen et al. 2002, Vera
et al. 2005). During the growth of non recombinant E. coli cells at 37 ◦C, protein ag-
gregation affects only a background fraction of cell proteins (Gonzalez-Montalban
et al. 2006), being rather irrelevant from a quantitative point of view. However, both
cell growth at high temperatures and the production of recombinant proteins cause
aggregation of cell proteins or recombinant species, respectively, and trigger the
expression of heat-shock genes (many of which encode chaperones and proteases
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Fig. 15.1 Conventional model of protein folding, aggregation and proteolysis. A chain newly syn-
thesized on a ribosome may fold to a native state, can aggregate or can be proteolysed. In living
systems, environmental conditions and the quality control system highly regulate the transition
between the different states. (1) Chaperones assist protein intermediates and misfolded proteins
to reach their native state. (2) Proteases proteolyse misfolded proteins that have failed to reach a
native conformation
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for quality control). In recombinant cells, significant fractions of the recombinant
protein are often found as IBs. This indicates that the quality control is inefficient in
the processing of non-physiological amounts of heterologous proteins, what results
in production processes rendering insoluble and biologically unuseful material. Re-
combinant protein misfolding and aggregation is one of the major concerns when
facing in vivo protein production processes.

15.2 Molecular Basis of Protein Folding

Proteins have multiple and critical roles in all organisms, being the most abundant
molecules in biological systems other than water. Protein folding is the process
through which unfolded, nascent polypeptide chains convert into tightly folded com-
pact structures with biological functions. Pioneering studies on protein folding by
Anfinsen showed that the amino acid sequence of a protein encodes its functional
three-dimensional structure (Anfinsen 1973). The underlying mechanism by which
this complex process takes place is becoming progressively understood, because of
the development of both physicochemical techniques and computational methods.
In fact, understanding protein folding is not only relevant for biotechnological pur-
poses but also to solve the molecular mechanisms responsible for conformational
diseases such as Alzheimer, type II diabetes and Creutzfeldt-Jakob, among others.

Apparently, there is a common mechanism for the folding of the enormous spec-
trum of proteins in nature, irrespective of their native structure or amino acid se-
quence (Snow et al. 2002), in which the necessary information to reach a unique
native state in a finite time is defined (Karplus 1997). Among the total number of
possible conformations that a polypeptide could reach, finding a particular struc-
ture would take a length of time many orders of magnitude greater than the real
time required for proteins to fold. This inconsistency, known as Levinthal paradox
(Karplus 1997), has been solved with the development of the so called “new view”
(Yon 2001), in which folding is described as a stochastic search of conformational
space rather than as a series of mandatory structural transitions (Baldwin 1994, Dill
and Chan 1997, Matagne and Dobson 1998, Wolynes et al. 1995). In essence, the
inherent fluctuations in the conformation of an incompletely folded polypeptide en-
able the contact even of residues located at very different positions in the amino
acid sequence. Therefore, as correct (native-like) interactions are more stable than
non-native ones, this search mechanism is able to find the structure with the lowest
energy (Baldwin 1994, Dinner et al. 2000). As the native state is approached, the
conformational space accessible to the polypeptide chain is reduced (Wolynes et al.
1995). The fundamental mechanism of protein folding involves the formation of
a folding-nucleus of residues in the protein, around which the remainder structure
rapidly condenses (Otzen and Fersht 1998).

Small, single-domain proteins do not require many partially folded intermediates
to reach a native conformation, and usually only extreme conditions unfold them
(Jackson 1998). In contrast, folding of large, multidomain proteins involve several
intermediates prior to the formation of the completely folded native state. They usu-
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ally fold in modules that finally interact to conform the fully native structure (Khan
et al. 2003, Panchenko et al. 1996, Vendruscolo et al. 2003) but often require the
assistance of folding modulators, namely isomerases and foldases. The requirement
of such cell elements dramatically increases in the context of recombinant protein
production, in which the host cell receives an extremely dramatically high input
of de novo synthesized polypeptides. In fact, chaperones are considered limiting
factors in recombinant cells.

The term “misfolding” is used to describe the process that results in a protein
acquiring a sufficient number of persistent non-native interactions to affect its over-
all architecture and/or its properties in a biologically significant manner (Dobson
2004). Misfolded and incompletely folded molecules are susceptible to aggregate,
due to the exposure of hydrophobic regions that are buried in the native state (Fink
1998) (Fig. 15.1). To avoid aggregation, cells of living organisms have auxiliary
factors, including folding catalysts that accelerate rate-limiting steps, and molecu-
lar chaperones that assist protein folding (Gething and Sambrook 1992, Hartl and
Hayer-Hartl 2002). Moreover, such cell quality control mechanism targets for pro-
teolytic destruction any protein molecule that has not folded correctly (Fig. 15.1).
Protein misfolding in recombinant bacteria and other microbial cell factories is a
major concern in Biotechnology, as misfolding not only results in protein degrada-
tion and/or aggregation but also in a global conformational stress status that triggers
a set of cell responses.

15.3 The Escherichia coli Quality Control System

The protein quality control machinery is mainly based on the activity of chaperones
and proteases that co-ordinately act assisting protein folding, preventing accumula-
tion of misfolded species, removing protein from aggregates and degrading folding-
reluctant species (Bukau et al. 2006). Therefore, this system’s coordinated activity
promotes protein solubility by minimizing the amount of aggregated species. In the
biotechnological context, solubility is the parameter commonly used to evaluate the
quality of a recombinant protein in a production process (de Marco et al. 2007,
Schultz et al. 2006), and it is given as the amount of recombinant protein present in
the soluble cell fraction relative to the total amount of recombinant protein occurring
in the cell (usually expressed as percentage). In E. coli, this system is composed by
periplasmic and cytoplasmic arms, which control polypeptides secreted and retained
in the cytoplasm respectively. Periplasmic quality control has been extensively re-
viewed elsewhere (Miot and Betton 2004) and the next sections will mainly focus
on the cytoplasmic regulators of protein folding and quality.

15.3.1 Chaperones and Proteases

The term chaperone was first used to describe an activity associated with nu-
cleoplasmin in Xenopus oocytes (Laskey et al. 1978). Since then, the term has
been expanded to include more than 20 protein families with a central role in the
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conformational quality control of the proteome (Bukau et al. 2006, Ellis 1987,
Young et al. 2004). Specifically, molecular chaperones are a group of structurally
diverse proteins highly conserved in all kingdoms of life which form a complex net-
work to assist proper protein folding, prevent their deposition and dissolve deposits
of misfolded proteins (Kazemi-Esfarjani and Benzer 2000, Krobitsch and Lindquist
2000, Mogk et al. 1999, Muchowski et al. 2000, Warrick et al. 1999). Even though
chaperones are constitutively expressed under physiological conditions, many of
them are upregulated under conformational stress conditions. In E. coli, such regu-
lation is mainly controlled by the sigma factor �32, encoded by rpoH gene (Straus
et al. 1987). Since chaperone abundance increases in cells upon thermal stress, these
molecules have been traditionally named heat shock proteins (Hsps) (Lemaux et al.
1978), although not all chaperones are heat shock proteins and not all heat shock
proteins are chaperones. Molecular chaperones can be divided into three functional
subclasses based on their mechanism of action:

“Folding” chaperones mediate the folding of their substrates in an ATP-dependent
process. These cell molecules increase the yield of properly folded proteins but not
the folding rate. In the E. coli cytoplasm the three chaperone systems involved
in this process are trigger factor (TF) (Bukau et al. 2000), DnaK-DnaJ-GrpE and
GroEL-GroES (Grantcharova et al. 2001).

“Holding” chaperones maintain proteins partially folded on their surface to await
availability of folding chaperones upon stress conditions, preventing polypeptides
from aggregation (Ehrnsperger et al. 1997, Mogk et al. 1999, Veinger et al. 1998).
The most extensively characterized bacterial holdases are IbpA and IbpB, both be-
longing to the small Hsp family (Narberhaus 2002) and commonly found within IBs
(Allen et al. 1992) with a suspected role in its physiological disintegration (Lethanh
et al. 2005). Hsp31 (Sastry et al. 2002) and Hsp33 (Graf and Jakob 2002) are also
classified as holdases; while Hsp31 binds early unfolding intermediates in times of
severe stress, thereby preventing overload of the DnaK-DnaJ-GrpE system (Malki
et al. 2003, Mujacic et al. 2004), Hsp33 manages oxidative protein misfolding (Graf
and Jakob 2002).

Finally, “disaggregating” chaperones promote protein removal from IBs and
other aggregates (Rinas et al. 2007). Among them, ClpB is the best characterized. It
has a secondary role, assisting refolding and promoting the solubilisation of proteins
that have become aggregated as a result of stress (Ben-Zvi and Goloubinoff 2001,
Schirmer et al. 1996). This chaperone acts in cooperation with DnaK and IbpAB
chaperones (Mogk et al. 2003, Schlieker et al. 2004, Thomas and Baneyx 2000).

Moreover, at least several chaperones, including DnaK, ClpA and ClpX, work
in cooperation with proteases (Garcia-Fruitos et al. 2007b, Hoskins et al. 1998,
Matouschek 2003).

15.3.1.1 Trigger Factor

The ribosome-associated trigger factor (TF) is a three-domain protein that binds to
the large subunit of the ribosomes, in the vicinity of the peptide exit site, to inter-
act with nascent polypeptides and protect them (Bukau et al. 2000). Trigger factor
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exhibits both peptidyl-prolyl cis/trans isomerase (PPIase) and chaperone activity
(Hoffmann and Rinas 2004, Huang et al. 2000, Nishihara et al. 2000). Therefore,
this molecular chaperone supports the de novo folding by binding to nascent chains.
Once the substrate is released, trigger factor can cycle back to the ribosome, waiting
for the next substrate molecule (Bukau et al. 2000).

15.3.1.2 The Hsp70 System: DnaK, DnaJ, GrpE

Hsp70 family proteins are encoded in all living organisms’ genomes, being one
of the most conserved family in the evolution (Gupta and Singh 1994, Hunt and
Morimoto 1985, Lindquist and Craig 1988). In E. coli, there are three Hsp70 pro-
teins (namely DnaK, HscA and HscC), being DnaK the best characterized. DnaK
is a key element of the multichaperone network, having different recognized roles:
(1) it mediates ATP-dependent unfolding, (2) prevents aggregation, (3) stabilises the
substrates for refolding by GroELS (Goloubinoff et al. 1999, Gupta and Singh 1994,
Hoffmann and Rinas 2004, Hunt and Morimoto 1985, Lindquist and Craig 1988,
Nishihara et al. 1998, Thomas and Baneyx 1996a), (4) participates in proteolysis
(Bukau 1993, Yura and Nakahigashi 1999), cooperating in some cases with Lon
protease, (5) folds newly synthesized polypeptides (Hartl and Hayer-Hartl 2002,
Teter et al. 1999), (6) solubilises protein aggregates in cooperation with ClpB and
Ibps (Ben-Zvi and Goloubinoff 2001, Carrio and Villaverde 2002, Glover and Tkach
2001, Goloubinoff et al. 1999, Mogk and Bukau 2004, Mogk et al. 1999, Zolkiewski
1999), (7) protects proteins against oxidative damages (Echave et al. 2002, Fredriks-
son et al. 2005) and (8) negatively regulates the heat shock response (Nagai et al.
1994) minimizing the expression of the heat shock �32 regulon, which encodes the
main chaperones and proteases, including DnaK itself (Morita et al. 2000, Tomoy-
asu et al. 2001a, Tomoyasu et al. 1998).

DnaK has an N-terminal ATPase domain of 44 kDa, two β-sheets forming a sub-
strate binding site and a C-terminal domain of 27 kDa that can interact with partner
proteins to modulate chaperone function (Genevaux et al. 2007, Genevaux et al.
2001). DnaK partners are a J-domain protein (JDP) co-chaperone, belonging to the
Hsp40 family, termed DnaJ (Hennessy et al. 2005) and a nucleotide exchange factor
(NEF) named GrpE. When ATP is bound, DnaK binds the substrate through weak,
hydrophobic interactions and hydrogen bonds (Zhu et al. 1996). Upon ATP hydroly-
sis, there is a conformational change that stabilises substrate binding (Hoffmann and
Rinas 2004). In this process, the co-chaperone DnaJ has an important role accelerat-
ing the ATP hydrolysis rate, while the co-chaperone GrpE accelerates the exchange
of ADP with ATP, leading to substrate ejection. The released polypeptide may reach
a native conformation, undergo additional cycles in the chaperone system until it
folds, or be transferred to GroEL-GroES (Ewalt et al. 1997). The system formed by
DnaK chaperone and DnaJ and GrpE co-chaperones is usually abbreviated as KJE.

15.3.1.3 ClpB

ClpB is an ATP-dependent molecular chaperone, member of Hsp100 family. Specif-
ically, ClpB is a “disagregase” that works in cooperation with DnaK-DnaJ-GrpE
reverting aggregation (Carrio and Villaverde 2001, Hoffmann and Rinas 2004,
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Mogk et al. 2003, Parsell et al. 1994). This molecular chaperone has an impor-
tant role, in cooperation with DnaK, in dissolving protein aggregates, reducing the
aggregate size and exposing hydrophobic surfaces (Ben-Zvi and Goloubinoff 2001,
Goloubinoff et al. 1999, Zolkiewski 1999). However, the full recovery of the native
state cannot be achieved until the partially unfolded substrate is transferred from
ClpB to DnaK (Glover and Lindquist 1998, Goloubinoff et al. 1999, Mogk et al.
1999, Motohashi et al. 1999, Zolkiewski 1999).

15.3.1.4 Hsp60 System: GroEL and GroES

GroEL is a bacterial chaperonin of approximately 60 kDa that belongs to the Hsp60
family. This molecular chaperone, essential for growth at all temperatures (Fayet
et al. 1989), prevents aggregation (Kedzierska et al. 1999), acting as the main folder
element in the chaperone network (Grantcharova et al. 2001). GroEL is formed by
two stacked homoheptameric rings which define a central cavity in which incom-
pletely folded polypeptides up to around 60 kDa (Sakikawa et al. 1999) can properly
fold. When ATP is bound, a conformational change takes place (Ranson et al. 2001)
rendering GroEL competent to bind the 10 kDa accessory protein GroES (Hartl and
Hayer-Hartl 2002). The GroES-bound GroEL protein undergoes a second confor-
mational modification, allowing the folding of the non-native polypeptide. If the
protein has not reached the native state, a further round of binding and attempted
folding follows.

15.3.1.5 Small Heat Shock Proteins

The best defined small heat shock proteins (sHsps) in bacteria have been Inclu-
sion Body Proteins (Ibps), which are regularly associated to inclusion bodies (Allen
et al. 1992) and commonly organized in large oligomeric structures (Haslbeck 2002,
Narberhaus 2002). There are two different types of Ibps encoded on a single-operon
(Allen et al. 1992, Chuang et al. 1993), IbpA and IbpB of 14 and 16 kDa size,
respectively. Although IbpA is insoluble and IbpB is mainly soluble, IbpB comi-
grates to the insoluble fraction when produced with IbpA (Kuczynska-Wisnik et al.
2002). Even though Ibps function is not well understood, they seem to recognize
hydrophobic patches in unfolded proteins, remaining bound to these polypeptides
and protecting them from aggregation until they are transferred to DnaK or GroEL
for refolding (Kitagawa et al. 2002, Kuczynska-Wisnik et al. 2002, Shearstone and
Baneyx 1999, Thomas and Baneyx 1998). Moreover, it has been recently described
that IbpA and IbpB facilitate the disaggregation and refolding activity of ClpB
(Mogk et al. 2003).

15.3.1.6 Proteases

Proteolysis of misfolded proteins that have failed to reach a native conformation
plays a crucial role in the quality control system, preventing the aggregation of
abnormal polypeptides as well as allowing the amino acid recycling within the cell.
The main proteases of E. coli cytoplasm are ClpP and Lon (Gottesman et al. 1997,
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Maurizi 1992, Wickner et al. 1999). These heat-shock ATP-dependent proteases
recognize hydrophobic surfaces, as chaperones do (Wickner et al. 1999). Moreover,
these cell proteases degrade not only unprotected, misfolded polypeptides localized
in the soluble cell fraction (Carrio et al. 1999, Maurizi 1992), but also those found
embedded in protein aggregates (Corchero et al. 1997, Vera et al. 2005).

Lon is a tetrameric serine protease of 87 kDa subunits containing three functional
domains. Its N-terminus is involved in substrate recognition and binding, its central
domain is responsible for ATPase activity and its C-terminus domain has proteolytic
activity. In addition to being responsible for bulk protein degradation (Missiakas
et al. 1996, Tomoyasu et al. 2001b), Lon also exerts a regulatory function by de-
grading a class of proteins that are designed to be unstable.

ClpP is a protein organized as two stacked heptamers of 23 kDa each. Their sub-
strates are folded, misfolded or incompletely synthesized proteins that are targeted
for degradation. This protease forms a complex with two members of the Hsp100
family of ATPases (ClpA and ClpX) (Hoskins et al. 1998, Levchenko et al. 1995,
Wickner et al. 1994) to form a fully-competent degrading machinery. ClpA and
ClpX, which are flanking the rings of ClpP, act as molecular chaperones, unfolding
proteins in an ATP-dependent manner and translocating substrates into the ClpP
central channel (Matouschek 2003).

15.4 Composition of Inclusion Bodies

In general, the major component of IBs is the recombinant protein itself that can
reach up to around 95% of the deposited protein material (Villaverde and Carrio
2003). However, in addition to the target protein other plasmid or host cell derived
proteins or other cell components coprecipitate during IB recovery, adsorb to IBs or
can get even entrapped in vivo during IB construction. For instance, lipids, DNA and
outer membrane proteins are not integral IB components but coprecipitate after me-
chanical cell breakage with the aggregates during sedimentation by centrifugation
(Bowden et al. 1991). The outer membrane proteins, for example, are also found
in the particulate fraction after cell breakage prior to induction of recombinant pro-
tein synthesis and in cells not producing recombinant proteins (Hart et al. 1990,
Rinas and Bailey 1992, Rinas and Bailey 1993, Rinas et al. 1993, Schmidt et al.
1999). These outer membrane proteins can be removed from IB preparations by
detergent washing and other procedures that do not unfold proteins but solubilise
membrane proteins (Estapé and Rinas 1996, Hart et al. 1990). Other non-integral
macromolecular host cell contaminants of crude IB preparations, e.g. nucleic acids,
phospholipids, and lipopolysaccharides are also removed by washing procedures us-
ing buffers composed of detergents, EDTA as well as cell wall- and DNA-degrading
enzymes (Harris et al. 1986, Hartley and Kane 1988, Marston 1986, Marston and
Hartley 1990, Marston et al. 1984, Schoemaker et al. 1985, Sugrue et al. 1990). In
addition to the outer membrane protein OmpA, which constitutes the major portion
of contaminating proteins in crude IB preparations (Hart et al. 1990, Rinas and



15 Systems-Level Analysis of Protein Quality in Inclusion Bodies 305

Bailey 1992, Rinas et al. 1993), other host cell or plasmid-encoded proteins also
coprecipitate after mechanical cell breakage of IB-containing cells but also in cor-
responding control cells not producing the recombinant protein. Examples include
the other outer membrane proteins OmpF and OmpC (Hart et al. 1990, Rinas and
Bailey 1992, Rinas et al. 1993), other membrane proteins such as the flavoprotein
subunit of succinate dehydrogenase SdhA, and ribosomal subunit proteins L7/L12
(Rinas and Bailey 1992). Moreover, the plasmid-encoded cI857 repressor, a ther-
molabile protein used for controlling temperature-inducible lambda promoter based
expression systems, has been found in the insoluble cell fraction of IB-containing
cells but also in respective control cells suggesting that its aggregation is not related
to target protein production (Rinas et al. 2007).

However, there are also other proteins specifically associated with the aggregated
fraction of inclusion body producing cells which are not found in the aggregated
fraction of respective control cells. For instance, truncated versions of the recombi-
nant target protein, other plasmid-encoded proteins e.g. those conferring resistance
to antibiotics, and defined host cell proteins have been found entrapped within bac-
terial IBs (Hart et al. 1990, Jurgen et al. 2000, Neubauer et al. 2007, Rinas and
Bailey 1992, Rinas and Bailey 1993, Rinas et al. 1993, Wagner et al. 2007). In
particular, putative DnaK substrates such as the elongation factor Tu (ET-Tu) and
the metabolic enzymes dihydrolipoamide dehydrogenase (LpdA), tryptophanase
(TnaA), and D-tagatose-1,6-bisphosphate aldolase (GatY) have been identified only
in the aggregated fraction of inclusion body producing cells (Rinas et al. 2007).
GatY, in particular, a notoriously insoluble protein depending on GroEL (Chapman
et al. 2006, Kerner et al. 2005) and DnaK for proper folding (Mogk et al. 1999),
has also been found in other inclusion body preparations (Josef Lengeler and Peter
Neubauer, personal communication). In some cases entrappment of precursors of
membrane and periplasmic proteins into cytoplasmic IBs has been reported (Rinas
and Bailey 1993, Wagner et al. 2007)

The most prominent host cell derived protein contaminants of IBs were identified
as members of the heat-shock protein family (Allen et al. 1992). As their function
was completely unknown at that time these IB contaminants were named inclusion
body proteins (IbpA and IbpB). Since then, their presence within bacterial IBs has
been further reported (Lethanh et al. 2005, Wagner et al. 2007) but also their ab-
sence in IB preparations has been noted (Rinas et al. 2007). Today, their function is
still not completely understood. In vitro studies on thermal aggregates indicate that
both together efficiently stabilize thermally aggregated proteins in a disaggregation
competent state and allow more effective reactivation through the disaggregating
chaperones ClpB and DnaK (Kuczynska-Wisnik et al. 2002, Laskowska et al. 2004,
Lewandowska et al. 2007, Matuszewska et al. 2005, Veinger et al. 1998). Moreover,
in vivo studies revealed that the presence of IbpA and IbpB renders the aggregated
polypeptides in a conformationally more native state, with higher enzymatic activ-
ity compared to IBs produced in ibpAB deletion strains (Kuczynska-Wisnik et al.
2004). Other members of the heat shock protein family, namely the chaperones
DnaK and GroEL, have also been found associated with IBs (Carrio and Villaverde
2002). DnaK is localized preferentially on the surface of inclusion bodies (Carrio
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and Villaverde 2005) and, together with ClpB, is recovered with low density protein
aggregates during sucrose density centrifugation (Schrodel and de Marco 2005).
The presence of DnaK has also been verified in other inclusion body preparations
(Rinas et al. 2007, Wagner et al. 2007). GroEL, on the other hand, is homoge-
neously distributed in the cytosol, absent from the IB surface, but found in minor
amounts also inside the aggregates (Carrio and Villaverde 2005). During in vitro
recovery by sucrose density centrifugation, GroEL is recovered together with IbpB
with high density protein aggregates (Schrodel and de Marco 2005). However, other
researchers report absence or at most very small quantities of GroEL in IB prepa-
rations (Bowden et al. 1991, Carrio and Villaverde 2002, Rinas and Bailey 1992,
Rinas et al. 1993, Rinas et al. 2007, Wagner et al. 2007).

It has been long debated if intracellular protein aggregation as IBs is a specific
process between identical protein chains or is a process where different protein
chains interact with each other forming mixed aggregates. In vitro mixed refold-
ing studies using the P22 tailspike and coat proteins revealed that the two pro-
teins did not coaggregate with each other but only with themselves, suggesting that
aggregation is caused by specific interactions among protein chains (Speed et al.
1996). Moreover, in vitro seeding of pure soluble protein solutions with purified
IBs revealed that aggregation of the soluble protein was only induced when seed-
ing occurred with IBs composed of the same protein but not with IBs composed
of unrelated proteins (Carrio et al. 2005). Also, recent experiments using Fluo-
rescence Resonance Energy Transfer (FRET) indicated that coproduction of two
different aggregation prone proteins in E. coli does not lead to mixed intermolec-
ular interactions between the different protein chains (Morell et al. 2008). In this
line, in vivo studies using a human cell line (HEK293) revealed that coexpression
of two unrelated aggregation prone proteins did not lead to coaggregation but to
deposition in separate aggregates in the same cell, suggesting strong specificity
of protein aggregation (Rajan et al. 2001). On the other hand, kanamycin phos-
photransferase, a plasmid encoded protein conferring resistance to kanamycin, can
only be solubilized under conditions that also solubilize the plasmid-encoded target
protein, bovine growth hormone, strongly suggesting that both proteins are tightly
associated within IBs (Schoner et al. 1985). However, tight association of proteins
within bacterial IBs does not necessarily imply interactions between unrelated pep-
tide chains but could simply indicate colocalization of small protein aggregates
within inclusion bodies. This is not unexpected having in mind that the cellular
environment is a very crowded space (Ellis 2001), with protein concentrations in
the cytoplasm in the order of 200 g/L (Neidhardt and Umbarger 1996) and concen-
trations of all macromolecules together reaching more than 340 g/L (Zimmerman
and Minton 1993, Zimmerman and Trach 1991). Moreover, protein diffusion exper-
iments suggest that in solutions containing proteins at concentrations comparable
to those found in biological fluid media, the diffusive transport of larger proteins
and aggregates may be slower than in dilute solution by several orders of magnitude
(Muramatsu and Minton 1988). By using very strong expression systems, induction
leads to almost exclusive synthesis of the target protein (Schoner et al. 1985). For
example, temperature-induction of recombinant protein synthesis can increase total
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protein synthesis rates four fold (with 60% of protein synthesis dedicated to the
synthesis of the target protein) but leading only to 10% target protein accumulation
(Hoffmann and Rinas 2000, Hoffmann and Rinas 2001). Thus, during a limited
period of time very high protein synthesis rates can occur in protein producer cells
which can explain entrappment of normally soluble host cell or plasmid derived
proteins into bacterial inclusion bodies. In this line, high level expression of an ag-
gregation prone target protein can also lead to entrappment of another aggregation
prone plasmid-encoded protein into inclusion bodies although this other plasmid-
encoded protein is produced at lower rates during target protein synthesis compared
to respective control conditions without target protein overexpression (Neubauer
et al. 2007, Rinas and Bailey 1993). Thus, non-target but aggregation prone pro-
teins might directly aggregate where they are synthesized due to diffusive transport
limitations during high level target proteins synthesis thereby leading to inclusion
bodies of mixed micro aggregates.

15.5 Structural Properties of Bacterial Inclusion Bodies

IBs are protein aggregates with spherical or ovoid shapes, formed either in the cy-
toplasm or the periplasm, and that are observed as refractile particles (usually one
or two per cell) by optical microscopy (Bowden et al. 1991, Carrio et al. 2005)
and as electrodense masses by transmission electron microscopy (Bowden et al.
1991). Soluble polypeptides can be extracted in vitro from IBs by denaturation and
refolding sequential procedures (Rudolph and Lilie 1996, Vallejo and Rinas 2004),
that permit to obtain soluble protein species through protein-tailored protocols. In-
terestingly, the arrest of protein synthesis in recombinant bacteria promotes the fast
disintegration of IBs (Carrio et al. 1999) proving that they result from an unbalanced
equilibrium between protein deposition and cell mediated protein removal, in which
both chaperones and proteases are involved. This fact is also being considered when
designing in vivo protein recovery protocols (de Marco et al. 2007).

The inner molecular organization of bacterial IBs has been a matter of deep sci-
entific discussion. To date, some spectroscopic techniques have been developed or
fitted to the analysis of bacterial IBs, namely Circular Dichroism (Chiti et al. 1998,
Lewandowska et al. 2007, Plakoutsi et al. 2005, Umetsu et al. 2004, Umetsu et al.
2005), Raman Spectroscopy (Przybycien et al. 1994), Dynamic Light Scattering
(Grudzielanek et al. 2007, Plakoutsi et al. 2005), and Nuclear Magnetic Resonance
(Umetsu et al. 2004). However, Fourier-Transform Infrared Spectroscopy (FTIR)
has proven to be the most useful and powerful tool for this purpose (Ami et al. 2005,
Jevsevar et al. 2005), especially Attenuated Total Reflection-FTIR (ATR-FTIR)
(Gonzalez-Montalban et al. 2006, Gonzalez-Montalban et al. 2007b, Vera et al.
2007). FTIR, in contrast to other optical spectroscopic methods, resolves measure-
ments which are essentially unaffected by light scattering on residual protein-lipid
interactions or contaminant membrane fragments. For this reason, this technique
was originally developed for the study of structural characterization of membrane
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or lipid-associated proteins (Chapman and Haris 1989, Surewicz and Mantsch 1988,
Surewicz et al. 1988).

Infrared spectroscopy is a form of vibrational spectroscopy which reports di-
rectly on the secondary structure of the proteins. For this purpose, the major areas
of interest in the spectra are Amide I and Amide II bands. Amide I band arises
predominantly (about 80%) from the C = O stretching vibration of the amide func-
tional group which absorbs basically in the 1600–1700cm−1 region. The Amide
II band arises from N-H bending and C-N stretching vibrations which absorb in
the 1500–1600cm−1 region. However, structural studies on protein aggregation are
usually based on evaluations of Amide-I-band contour, since only this band is a
sensitive marker of secondary structure, being the analysis of Amide II band, in
general, less relevant.

Aggregation as IBs has been long thought to be an unspecific process driven by
the random interactions of hydrophobic patches, thus rendering protein aggregates
with no specific internal molecular architecture. However, more recently, evidences
against this view have been rapidly increasing (Mozell et al. 2008, Wang et al. 2008,
Ami et al. 2005, Ami et al. 2006, Carrio et al. 2005, Oberg et al. 1994, Przybycien
et al. 1994, Umetsu et al. 2004), picturing IBs as highly ordered structures. As FTIR
analysis reveals, IBs seem to build up through a constant type of intermolecular pro-
tein interactions, resulting in a molecular architecture characterized by the formation
of new β-sheet structures (Ami et al. 2003, Carrio et al. 2005, Garcia-Fruitos et al.
2007b, Gonzalez-Montalban et al. 2007b, Umetsu et al. 2005) at expenses of α-
helical structures (Fink 1998, Przybycien et al. 1994), even common to rich-β-sheet
native proteins (Oberg et al. 1994, Vera et al. 2007). In cases where the aggregation-
prone protein is an all-α-protein, as it happens with interleukin-4(IL-4) (Umetsu
et al. 2004), IBs are characterized by a sharp increment in β-sheet content and by
an almost undetectable α-helical moieties signal. These structural data suggest that
the new formed β-sheet structures may be interacting in a different way from native
β-sheet conformation, probably by a network of hydrogen bonds between differ-
ent chains creating a tightly packed extended, intermolecular β-sheet conformation
(Fink 1998). Altogether, these observations seem to point out that the interactions
leading to IB formation and the molecular reorganization that aggregated proteins
undergo within the deposit are not likely to be unspecific interactions.

Table 15.1 Common structural features of amyloid fibrils and inclusion bodies

Structural characteristics References

Structural homogeneity (Ami et al. 2005, Carrio et al. 2005, Fink 1998,
Garcia-Fruitos et al. 2007b, Vera et al. 2007)

Intermolecular, cross �-sheet
organization or enrichement
of �-structures

(Carrio et al. 2005, Garcia-Fruitos et al. 2007b,
Gonzalez-Montalban et al. 2006, Przybycien et al. 1994)

Amyloid-tropic dye binding (Carrio et al. 2005)
Cytotoxicity linked to

amyloid-like structures
(Gonzalez-Montalban et al. 2007b)
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Interestingly, all these secondary structural features greatly resemble to those that
have been proven to characterize amyloid fibril formation (Table 15.1). In the case
of amyloid fibrils, sequence determinants acting as aggregating “hot-spots” seem to
modulate the specific nucleation of amyloid proteins (Ivanova et al. 2004, Ventura
2005, Ventura and Villaverde 2006, Ventura et al. 2004). In fact, in recent years it
has been shown that IBs formation is a highly specific process since this kind of
protein aggregates are essentially formed by the recombinant protein (Carrio et al.
1998, Garcia-Fruitos et al. 2005a, Gonzalez-Montalban et al. 2006) and organized
in a very homogeneous architecture (Ami et al. 2005, Fink 1998). Furthermore, pre-
formed IBs can seed specifically misfolded counterparts promoting the deposition
of homologous but not heterologous domains (Carrio et al. 2005). As in the case of
amyloid fibrils, whose formation seems to be preceded by the formation of interme-
diate amyloid-like species linked to cellular toxicity (Bucciantini et al. 2002, 2004,
Stefani and Dobson 2003), IB structure is reported to be deleterious for mammalian
cells in a structural-dependent manner (Gonzalez-Montalban et al. 2007b).

Intriguingly, the increase in the newly formed, non-native �-sheet content does
not necessarily involve the full unfolding of the protein sequestered in IBs. In fact,
there is a significant number of reports indicating the occurrence of native-like sec-
ondary structure of IB polypeptides (Table 15.2).

The native structure of the soluble IL-2 and its IB counterpart is almost identical,
with only packing the degree and the nature of molecular β-sheet interaction being
the main differences (Oberg et al. 1994). In fact, the little variations in FTIR signals
seem to reflect subtle rather than significant changes in the secondary structure.
TEM β-lactamase IBs seem to retain about 60% of the native secondary structure
of the soluble protein (Georgiou et al. 1994). A particular example is represented
by recombinant hyperthermophilic archaeon proteins. At least 3 proteins (namely
PH0979, PH0628 and PH1830), when embedded in IBs, maintained some degree
of a native-like rigid secondary structure (Umetsu et al. 2004). These observations
were also made for IBs formed by Pseudomonas fragi lipase, human growth hor-
mone and interferon-alpha-2b (Ami et al. 2005, Ami et al. 2006). VP1LAC, a re-

Table 15.2 Coincidence of native-like structure and amyloid-like aggregation pattern in inclusion
bodies

IB-forming protein
Amyloid-like
structure

Native-like
structure References

K97V 1L-1β Yes Yes (Oberg et al. 1994)
hDHFR Yes Yes (Garcia-Fruitos et al. 2005b)
VP1GFP Yes Yes (Garcia-Fruitos et al. 2005b)
Aβ42(F19D)-BFP Yes Yes (Garcia-Fruitos et al. 2005b)
hG-CSF Yes Yes (Jevsevar et al. 2005)
LPF Yes Yes (Ami et al. 2005)
h-GH Yes Yes (Ami et al. 2006)
IFN-alpha-2b Yes Yes (Ami et al. 2006)
S65T GFP Yes Yes (Vera et al. 2007)
VP1LAC Yes Yes (Gonzalez-Montalban et al. 2006)
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combinant E. coli β-galactosidase, retained a great amount of native-like structure
when forming IBs in a mutant strain lacking a fully functional chaperone GroEL
(Gonzalez-Montalban et al. 2006). This trait is also common to recombinant fluo-
rescent proteins. The structural analysis by ATR-FTIR and fluorescence measure-
ments showed that green fluorescent protein (GFP) (Vera et al. 2007), VP1GFP
(a GFP fused to a foot-and-mouth disease virus capsid protein) and Aβ42(F19D)-
BFP (an amyloid peptide fused to blue fluorescent protein (BFP)) (Garcia-Fruitos
et al. 2005b) aggregated as IBs maintain native-like structure. This feature seems to
permit an easier solubilization of the embedded protein. In this regard, L-arginine
can easily disaggregate GFP (Tsumoto et al. 2003) and β2 microglobulin (Umetsu
et al. 2005) from IBs due to the retention of native-like structure of the embedded
polypeptides. Human granulocyte-colony stimulating factor (hG-CSF) produced in
E. coli at low temperatures enables the formation of “non-classical” IBs, which
contain high amounts of correctly folded hG-CSF. HG-CSF can be readily extracted
from these “non-classical” IBs by nondenaturing conditions and low concentrations
of polar solvents (Jevsevar et al. 2005).

15.6 Strategies to Minimize Inclusion Body Formation

In general, the refolding processes required to recover the protein in a native form
are complex, expensive and not always convenient from an industrial point of view
(Vallejo and Rinas 2004). For this reason, much effort has been invested to minimize
IB formation during the production process itself, aiming to improve the yield of
soluble protein species. Recombinant protein can account up to around 30% of the
total cell protein, producing an enormous metabolic load on the E. coli biosynthetic
machinery (Sahdev et al. 2008). Thus, as summarized below, some of the strategies
devised to minimize aggregation are based on a tight control of the E. coli cellular
milieu, while others are addressed to favour protein folding by either physicochem-
ical or biological approaches.

15.6.1 Media Composition

The folding of certain proteins requires the presence of specific cofactors in the
growth media, such as metal ions (e.g., iron-sulphur) or polypeptide-cofactors
(e.g., flavin-mononucleotide). By adding these factors to the growth media, both
protein solubility and folding rates can be enhanced (Apiyo and Wittung-Stafshede
2002, Bruser et al. 2003). The composition of growth media also affects the
levels of soluble protein. By optimizing media composition, reduced expression
times, increased soluble fraction yield and enhanced biological activity of enzymes
have been achieved. These modifications have been recently reviewed (Sahdev
et al. 2008).
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15.6.2 Protein Production at Low Temperatures

A number of proteins have been successfully produced in a soluble form in E. coli
by lowering the growth temperature of the culture (Chesshyre and Hipkiss 1989,
Niiranen et al. 2007, Schein and Noteborn 1988, Vera et al. 2007). As the hydropho-
bic interactions that determine IB formation are temperature-dependent, protein
production at temperatures below the optimal of 37 ◦C for E. coli growth usually
leads to increased stability and correct folding (Sahdev et al. 2008). Moreover, the
increased production of a number of chaperones also accounts for the better protein
quality obtained at lower growth rates (Ferrer et al. 2003). In addition, some of the
heat shock proteases induced during recombinant protein production are poorly ac-
tive at low temperatures. This accounts for the reduced degradation of recombinant
protein observed within a temperature range of 15–23 ◦C (Hunke and Betton 2003,
Spiess et al. 1999).

However, disadvantages are also present in the use of this strategy, as low tem-
peratures lead to reduced transcription and translation rates, which results in low
yields and poor turnover of the recombinant protein.

15.6.3 Genetic Modification of Producing Escherichia
coli Strains

Genetic background largely affects recombinant protein production. Ideally, host
strains should be deficient in the most harmful proteases, confer a stable main-
tenance of the expression plasmid and be compatible with the expression system
chosen by providing the genetic elements required (e.g., DE3 strain for the pET
expression system) (Sorensen and Mortensen 2005a).

E. coli BL21 (Novagen, USA) is one among the most common hosts. The non-
pathogenic E. coli B strains can grow in minimal media and are deficient in ompT
and Lon proteases, providing increased protein stability. The most important BL21
derivatives include:

� BLR RecA− for stabilization of target plasmids containing repetitive sequences.
� trxB/gor mutants for enhancement of cytoplasmic disulfide bond formation (No-

vagen Origami and AD494 strains).
� Rosetta-gami strains for overcoming codon bias associated problems through

the overexpression of a rare tRNA expression vector, in addition to the trxB/gor
mutation described above.

� lac ZY deletion mutants for uniform and adjustable protein expression in all the
cells (Novagen Tuner series).

� Origami-B strains derived from a lac ZY mutant of BL21, also including trxB
and gor mutations and OmpT and Lon deficiencies of BL21.

� Avidis C1(DE3) and C43(DE3) strains, for soluble expression of IB prone and
membrane proteins.
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15.6.4 Co-production of Folding Modulators

Molecular chaperones important for the control of protein quality are believed to be
limiting in bacterial cell factories. Therefore, co-production strategies have been
widely tested to overcome limitations due to IB formation during recombinant
protein expression, but to date the results obtained are in general controversial
and inconsistent (Baldwin 1986, Baneyx 2004, Thomas et al. 1997). Some suc-
cessful examples of improved solubility by coproduction of some of the ma-
jor cytosolic chaperones (namely the DnaK-DnaJ-GrpE system or the GroEL-ES
complex) are human ORP150, human lysozyme, p50csk protein tyrosine kinase,
phosphomannose isomerase, endostatin, transglutaminase and fusion protein
PreS2-S′-�-galactosidase (Amrein et al. 1995, Dale et al. 1994, de Marco et al. 2000,
Nishihara et al. 2000, Proudfoot et al. 1996, Thomas and Baneyx 1996a, Thomas
and Baneyx 1996b, Yokoyama et al. 1998). However, although a trial and error
approach is still needed to determine the best set of chaperones for a determined
target protein, so far the best results have been obtained by coexpression of several
sets of folding modulators.

Recently, a systematic analysis of the combined power of the major cytosolic
chaperone systems of E. coli (KJE, ELS, ClpB and IbpAB) was performed (de
Marco et al. 2007). Of the 50 proteins tested, the solubility of around 50% of them
was improved by chaperone co-overproduction, being KJE, ClpB and ELS the most
successful combination. The study also suggested an enhancement of the native state
acquisition due to chaperone overproduction.

Optimization of the procedure was done by allowing chaperone-assisted folding
in absence of protein synthesis, which was blocked by either inducer withdrawal
or chloramphenicol addition. Solubility yields increased in comparison to the one-
step procedure, with some of the proteins requiring the two-step procedure for any
solubilisation. Coproduction of IbpAB also improved solubility, even being the only
combination that solubilised some of the proteins tested.

15.6.5 Fusion Tags

A different strategy consists of fusion protein technology, in which a solubility “tag”
is fused to the target protein (Sahdev et al. 2008). Tags are proteins or peptides
that upon fusion, help to the proper folding of their fusion partners and lead to
enhanced solubility of the protein (Esposito and Chatterjee 2006). Some tags can
also be used for affinity purification, and provide advantages such as protection
from proteolysis or being expression reporters (GFP). When solubility tags do not
double as affinity tags, they may be combined with another hexahistidine (His6) tag,
this way allowing for purification. The use of small peptide tags called SET tags has
also been successful for some proteins (Zhang et al. 2004). The small size of these
tags (< 30 amino acids) may lead to less folding interferences, making the protein
suitable for structural studies without the need of removing the tag.
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Table 15.3 Commonly used tags for solubility enhancement

Tag Protein
Solubility
enhancement

Affinity
purification

MBP Maltose-binding protein Yes Yes
GST Glutathione-S-transferase Yes Yes
Trx Thioredoxin Yes No
NusA N-Utilization substance Yes No
SUMO Small ubiquitin-modifier Yes No
SET Solubility-enhancing tag (synthetic) Yes No
DsbC Disulfide bond C Yes No
Skp Seventeen kilodalton protein Yes No
T7PK Phage T7 protein kinase Yes No
GB1 Protein G B1 domain Yes No
ZZ Protein A IgG ZZ repeat domain Yes No
His6 Hexahistidine tag No Yes
FLAG FLAG tag peptide No Yes
BAP Biotin acceptor peptide No Yes
Strep-II Streptavidin-binding peptide No Yes
CBP Calmodulin-binding peptide No Yes

Table adapted from reference (Esposito and Chatterjee 2006)

This technique poses some technical disadvantages, such as the need for tag
removal and the question of whether the protein of interest remains in its native
state and active once the tag has been removed. Nevertheless, if the target protein
is linked to its fusion partner through a protease-specific recognition sequence, this
will allow for an easy separation of the purified recombinant protein by cleavage
with the specific protease. Because of its high specificity and ease of production,
one of the most commonly used proteases is TEV, from tobacco etch virus (Kapust
et al. 2002, Kapust et al. 2001).

Some commonly used tags, either for solubility enhancement or combined affin-
ity purification, are listed in Table 15.3.

15.7 Conformational Quality and Biological Activity
of Recombinant Proteins in Inclusion Bodies

Although it has been historically believed that proteins deposited as IBs were devoid
of any biological activity, independent studies of unrelated aggregating enzymes and
fluorescent proteins have demonstrated that IBs are enzymatically active or fluores-
cent respectively (de Groot and Ventura 2006, Garcia-Fruitos et al. 2005a, Garcia-
Fruitos et al. 2005b, Kuczynska-Wisnik et al. 2004, Tokatlidis et al. 1991, Vera et al.
2007, Worrall and Goss 1989). The functional protein species do not occur in the
IB interface but in the core of the aggregates, indicating that active polypeptides are
not mere contaminants from the soluble cell fraction but true structural components
(Garcia-Fruitos et al. 2007a). This is in agreement with the observation of native-
like secondary structure in IBs as discussed above, and indicates that solubility and
biological activity are not linked parameters. Therefore, aggregation of recombi-
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nant proteins as IBs does not split the population of recombinant polypeptides into
functional and non functional (Gonzalez-Montalban et al. 2007a), and aggregation
determinants must then be defined stretches instead of large protein segments, and
not necessarily linked to active sites or fluorophors. Probably, aggregation patches
coexist in a single polypeptide molecule, with properly folded regions and confor-
mational quality of protein embedded in IBs depending on how fast the aggregation
occurs after protein synthesis (de Groot and Ventura 2006, Waldo et al. 1999).
On the other hand, the occurrence in recombinant cells of “soluble aggregates”,
namely protein deposits present in the soluble fraction (Schrodel and de Marco
2005, Sorensen and Mortensen 2005b, Ventura and Villaverde 2006) is another in-
dicator that solubility is not matching conformational quality, and strongly suggests
that there is a wide spectrum of protein conformations in both soluble and insoluble
cell fractions (Ventura and Villaverde 2006). The fact that the biological activity of
both soluble and insoluble recombinant protein versions is favoured or impaired in
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Fig. 15.2 Novel model of protein folding, aggregation and proteolysis in the E. coli cytoplasm.
Several conformational versions of newly synthesized polypeptides, including those reaching na-
tive or native-like forms, can interact to form soluble aggregates, the putative precursors of inclu-
sion bodies. Both soluble aggregates and inclusion bodies are then expected to be heterogeneous
regarding protein folding status. The formation of insoluble inclusion bodies is highly favoured at
high concentrations of recombinant protein. Chaperones (1) regulate aggregation and disaggrega-
tion but also protease (2)-mediated digestion of both soluble and insoluble protein versions
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Table 15.4 Inclusion bodies used as biocatalysers

Inclusion bodies as biocatalysers References

β-Galactosidase Garcia-Fruitos et al. 2007a
Polyphosphate kinase Nahalka et al. 2006
D-amino acid oxidase fusion protein Nahalka and Nidetzky 2007
Maltodextrin phosphorylase fusion protein Nahalka 2008
Sialic acid aldolase fusion protein Nahalka et al. 2008

parallel by experimental conditions such as growth temperature (Vera et al. 2007) or
availability of chaperones (Martinez-Alonso et al. 2007), indicates that IBs are not
excluded from quality control but fully integrated in the cell processing of aberrant
proteins (Fig. 15.2).

Regarding practical issues, functional IBs (such as those formed by enzymes)
have been proposed as useful catalysts in bioprocesses without the need of pro-
tein removal and in vitro refolding (Garcia-Fruitos et al. 2007a, Garcia-Fruitos
et al. 2005b). This principle has recently been proven with a diversity of aggre-
gating recombinant enzymes such as D-amino oxidase from Trigonopis variabilis
(Nahalka and Nidetzky 2007), polyphosphate kinase (Nahalka et al. 2006), mal-
todextrin phosphorylase from Pyrococcus furious (Nahalka 2008) and sialic acid
aldolase (Nahalka et al. 2008), and opens new and challenging possibilities in the
biotechnological market of recombinant proteins (Table 15.4).

15.8 Complex Systems Control of Protein Quality,
Aggregation and IB Formation

Interestingly, the dramatic impact that different mutations in chaperone and protease
genes have on IB disintegration (Carrio and Villaverde 2003, Vera et al. 2005) in-
dicates that many components of the cell quality coordinately regulate the biology
of these aggregates. In this context, a recent study shows that the total or partial
intactivation of different genes of the E. coli quality control apparatus (including
dnaK, groEL, groES, clpA, clpP and lon) results, as expected, in less solubility,
but, surprisingly, in much more functional proteins in both soluble and insoluble
populations (Garcia-Fruitos et al. 2007b). In particular, a deficiency in the chaper-
one DnaK, which is essentially found on the IBs surface in wild type recombinant
cells (Carrio and Villaverde 2005), promotes the accumulation of high amounts of
highly fluorescent GFP in IBs. This and other intriguing recent findings, such as
the DnaK-inhibited activation and folding of �-galactosidase within IBs (Gonzalez-
Montalban et al. 2008), the negative effect of DnaK on GFP folding and fluo-
rophore activation (Garcia-Fruitos et al. 2007b, Martinez-Alonso et al. 2007), the
DnaK-mediated stimulation of Lon- and Clp-mediated recombinant protein degra-
dation (Garcia-Fruitos et al. 2007b) and the impact of DnaK on the partitioning of
recombinant proteins into soluble and insoluble cell fractions (Garcia-Fruitos et al.
2005a, Gonzalez-Montalban et al. 2006) show that the quality control in general and
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the particular role of DnaK as a chaperone might have been largely misunderstood,
specially regarding IB-forming recombinant cells.

By using GFP as a reporter recombinant protein, it has been determined that, in
wild type cells, proteolysis acts on aggregation-prone but functional (or suitable to
be activated) polypeptides. However, in cells deficient in chaperones such as ClpB,
DnaK or GroEL or proteases such as Lon and ClpP, protein stability significantly
increases. It seems that Lon and ClpP, in cooperation with DnaK, ClpB and others,
proteolyse polypeptides on the IB surface (Garcia-Fruitos et al. 2007b), probably as-
sociated to their release during the continuous in vivo IB reconstruction (Carbonell
and Villaverde 2002, Carrio et al. 1999, Carrio and Villaverde 2001, Carrio and
Villaverde 2002, Corchero et al. 1997, Cubarsi et al. 2005). On the contrary, IbpA
and IbpB play an antagosistic role, protecting recombinant proteins from proteol-
ysis (Garcia-Fruitos et al. 2007b, Han et al. 2004). Interestingly, the combination
of all these events and in particular, the unexpected role of DnaK in promoting
proteolytic digestion of functional protein species and impairing in situ IB protein
folding, results in a negative correlation between solubility and biological activity
(and therefore, conformational quality) of recombinant proteins (Martı́nez-Alonso
et al. 2008, and (Garcia-Fruitos et al. 2007b)). These observations point out that
solubility is not a parameter representative of protein quality, since in recombinant
cells conformational quality and solubility show a divergent genetic control. At least
under recombinant protein production conditions, the bacterial quality control sys-
tem tends to promote solubility at expenses of conformational quality, what could
partially explain the inconsistent results found under coexpression of particular
chaperones as discussed above. Also, the soluble and insoluble fractions, as virtual
cell compartments, do not have much biological sense regarding protein quality and
activity (Fig. 15.2).

To sum up, IBs, rather than being mere molecular “dust-balls” of the protein
folding pipeline, are transient but highly dynamic protein reservoirs, fully integrated
in the protein quality system, and whose formation and maintenance implies the
complex activities of multigenetic networks. From a functional side, IB formation
involves a tight cell control of protein folding and proteolytic stability.
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Abbreviations

IBs: inclusion bodies
TF: trigger factor
KJE: DnaK-DnaJ-GrpE system
Hsp: heat shock protein
sHsps: small heat shock proteins
Ibps: inclusion bodies proteins
FTIR: Fourier-transform infrared spectroscopy
ATR-FTIR: Attenuated Total Reflection-FTIR
GFP: Green fluorescent protein
BFP: Blue fluorescent protein
hG-CSF: Human granulocyte-colony stimulating factor
PPIase: peptidyl-prolyl cis/trans isomerase
NEF: nucleotide exchange factor
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Abstract Protein secretion and subcellular localization in E. coli has been under
investigation for more than 60 years. While many details about the molecular mech-
anisms of these processes have been revealed, several facets of protein translocation
still remain unclear. Bacteria secrete numerous proteins such as pathogenicity fac-
tors, toxins or degradative enzymes (Fernandez and Berenguer 2000). Six different
secretion mechanisms for extruding proteins into the extracellular environment have
been identified to-date. In Gram-negative bacteria such as E. coli, secretion into
the extracellular medium requires crossing of two biological membranes, the inner
and outer membranes of the cell. However, systems for protein translocation into
the extracellular medium are generally highly protein-specific and with very few
exceptions have not yet been engineered for the efficient export of recombinant pro-
teins. More relevant from a technical and engineering standpoint, is the translocation
of polypeptides from the cytoplasm into the periplasmic space, the main secretory
compartment which is equivalent to the endoplasmic reticulum of eukaryotic cells.
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In the first part of this chapter, we discuss export via the general Sec pathway
and the Twin-Arginine Translocase (Tat) pathway. Compartmentalized molecular
chaperones facilitate folding, impose a quality control step on the maturation of
certain secreted proteins, especially those exported via Tat, and further facilitate
the decision which protein export route should be chosen. The second part of this
chapter focuses on the design of genetic screens or selections that capitalize on
protein secretion to aid the screening of libraries of protein variants for molecular
recognition or catalysis. We will briefly summarize the major E. coli-based display
technologies and introduce new methodologies particularly those utilizing the Twin-
Arginine Translocase pathway.

16.1 Protein Transport in E. coli

Proteins are charged, bulky heteropolymers of which transport across, or insertion
into, the low dielectric barrier of a lipid bilayer membrane is thermodynamically
highly unfavorable. Hence, there are several different transport pathways that ex-
pend metabolic energy to overcome this physical barrier. The Sec protein translo-
case utilizes energy mainly generated by the hydrolysis of nucleoside triphosphates.
However, there are several different transport processes across biological mem-
branes which solely rely on ion gradients.

In gamma-proteobacteria, the main route for protein transport across the cyto-
plasmic membrane is through the Sec translocon, a set of transmembrane proteins
which form a hydrophilic channel. The SecYEG translocon is the bacterial homo-
logue of the Sec61��
 in eukaryotic cells. Sec protein translocation can be sum-
marized in a basic set of rules (Schatz and Dobberstein 1996): A precursor protein
containing a targeting sequence which is typically N-terminal, is maintained in an
unfolded state prior to export. This unfolded, export-competent state of the precur-
sor protein is either achieved by cytoplasmic chaperones (post-translational) or by
an immediate association of the protein-synthesizing ribosome with a receptor in
the membrane (co-translational export). For Sec substrates, folding and cofactor
assembly occur in the periplasm. Folding is assisted by periplasmic chaperones
such as DegP which functions as either protease or chaperone depending on the
growth temperature, Skp that binds to non-native forms of periplasmic or outer
membrane proteins preventing their aggregation, and four peptidyl-proline cis-trans
isomerases, PpiA, PpiD, SurA and FkpA. The periplasm is an oxidizing environ-
ment mainly due to the action of DsbA which oxidizes free cysteines, whereas the
isomerase DsbC rearranges disulfide bridges to their native conformation (Georgiou
and Segatori 2005).

In contrast, proteins exported via the Tat pathway first fold within the cytoplasm
(DeLisa et al. 2003). The cytoplasmic folding environment contains the general
chaperones GroEL, DnaK/DnaJ/GrpE, the trigger factor, ClpB and the small heat-
shock chaperones (IbpAB) among others. DnaK and possibly other chaperons play
a role in the folding of some Tat substrate proteins prior to export (Graubner et al.
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Fig. 16.1 Signal peptides.
Comparison between a Sec
and Tat signal peptides. N, H
and C region are indicated.
The positive charge within
the C-region of a Tat signal
peptide marks the Sec
avoidance signal

2007, Perez-Rodriguez et al. 2007). Further, for the incorporation of metal cofactors
into Tat substrates, complex protein maturation pathways involving several matura-
tion enzymes are necessary. For example, the incorporation of iron-sulfur cluster
requires at least 8 proteins (Tokumoto et al. 2002).

N-terminal signal peptides are evolutionarily well conserved. Signal peptides
have three distinct regions (Fig. 16.1). The N-region harbors a positive charge,
whereas the hydrophobic H-region comprises the center and the longest part of the
signal peptide. The H-region of Tat signal peptides has a less hydrophobic char-
acter and is typically longer than the one of Sec signal peptides. The N-terminal
positively charged region of Tat signal peptides contains the hallmark twin-arginine
amino acids with the consensus sequence S/T-R-R-x-F-x-K. The C-region of both
Sec and Tat signal peptides bears the signal peptidase cleavage site which is rec-
ognized by the type I signal peptidase. However, signal peptides of lipoproteins in
E. coli, which so far have been only found to be exported by the Sec pathway, are
cleaved by the type II signal peptidase (Paetzel et al. 2002). In general, Tat signal
peptides typically contain a lysine or arginine residue within the C-terminal region
which serves as Sec avoidance signal (Blaudeck et al. 2003). The more positively
charged the C-region together with the beginning part of the mature protein is, the
lower the likelihood that the precursor protein will be targeted to the Sec pathway
(Tullman-Ercek et al. 2007).

16.1.1 The General Pathway for Secretion: The Sec Pathway

The Sec apparatus transports substrate polypeptides in an unfolded state through

a narrow pore of about 5–8 ´̊A minimally established by the SecY/E/G membrane
proteins. Translocation can occur in two different ways which have been referred
to as the co-translational and the post-translational export modes. Co-translational
export involves the signal recognition particle (SRP) which is composed of the pro-
tein Ffh (fifty four homologue, based on its similarity to the eukaryotic SRP version
in the endoplasmatic reticulum) and the 4.5S RNA unit (Luirink et al. 1992). The
co-translational mode is often also referred to as the SRP pathway and ubiquitously
found in all three kingdoms of life. The SRP complex binds to either a signal pep-
tide or to a highly hydrophobic peptide stretch corresponding to a transmembrane
domain of a integral membrane protein, as it exits the ribosome (Kim et al. 2001)
(Fig. 16.2A). The loaded SRP complex then binds to the membrane-bound receptor
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Fig. 16.2 Overview of protein targeting to the Sec translocon via the co-translational (A–C) and
post-translational route (D–E). (A) A hydrophobic signal peptide or transmembrane domain of the
nascent polypeptide chain is recognized by SRP (Ffh protein and 4.5S RNA unit). (B) SRP guides
the ribosome with the nascent chain to the membrane-embedded receptor FtsZ which ensures the
transfer of the nascent chain to the Sec apparatus. GTP hydrolysis is required for the release of
SRP and the receptor. (C) The membrane-associated ribosome proceeds to synthesize the protein
directly into the Sec system. (D) The signal peptide exiting the ribosome as a nascent chain is
recognized by SecB which prevents its folding. SecA associates with SecB. (E) SecB transfers
the preprotein to SecA and dissociates since it is not necessary for the translocation step. SecA
associates with the Sec apparatus and proceeds to insert around 20 amino acids at a time into the
translocation machinery; ATP hydrolysis is necessary for this motion. (F) Upon completion of
translocation signal peptidase I cleaves off the signal peptide

FtsY which mediates the interaction of Ffh with the Sec translocon (Fig. 16.2B);
GTP binding to both SRP and the receptor FtsY is a prerequisite for their interac-
tion. GTP hydrolysis is precisely timed to transfer the ribosome nascent chain to
the Sec translocon releasing the SRP from its receptor (Bange et al. 2007). In this
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manner the ribosome can resumes protein synthesis (Fig. 16.2C). Proteins following
the co-translational export route are typically inner membrane proteins, but a few
soluble proteins utilize this route as well. Probably the best studied SRP substrate
is the disulfide oxidase DsbA. DsbA appears to fold too rapidly to be maintained
in an unfolded state which is required for post-translational Sec transport (Schierle
et al. 2003). Other proteins that utilize the cotranslational route include TorT, TolB
or FlgI (Huber et al. 2005a). It is conceivable that the co-translational route could be
utilized for the expression of any protein which is otherwise prone to aggregation in
the cytoplasm.

The post-translational secretion mode normally involves the tetrameric chaper-
one SecB which binds to a nascent chain exiting the ribosome to prevent its im-
mediate folding (Fig. 16.2D). In a SecB mutant, other general chaperones such
as GroEL and/or DnaK can compensate for the loss of SecB (Kumamoto 1991).
The association with SecB maintains the protein in a transport-compatible state
since only the unfolded protein can be threaded through the membrane. SecB typi-
cally transfers its substrate directly to SecA to which it binds asymmetrically in its
dimeric form. Binding of SecB presumably results in the dissociation of one SecA
monomer, which may be important for the transfer step of the precursor protein
to SecA (Fekkes et al. 1997). The translocation through the Sec pore is a step-wise
event in which ATP hydrolysis by SecA allows the threading of around 20–30 amino
acids of the polypeptide at a time through the SecYEG pore (van der Wolk et al.
1997), (Fig. 16.2E). However, once the preprotein is inserted into the membrane,
translocation can be completed in the presence of solely a electrochemical potential,
even without SecA (Duong and Wickner 1997, Schiebel et al. 1991).

16.1.2 Transporting Folded Proteins: The Twin-Arginine
Translocase

The Tat pathway was discovered in bacteria 12 years ago (Berks 1996), and in the
thylakoids membrane of plants 16 years ago (Cline et al. 1992). Little is known
about the detailed molecular mechanism of protein translocation via Tat. The most
remarkable feature of the Tat pathway is that it exports completely folded and as-
sembled protein substrates. An unknown step in the translocation process serves as
proof-reading function allowing only native proteins to be exported (DeLisa et al.
2003). The energy for translocation is derived solely from the proton motive force
(Alder and Theg 2003, Bageshwar and Musser 2007) and so far no ATP require-
ment has been demonstrated. The Tat pathway is highly conserved in archaea, in
most bacteria and in the chloroplasts of plants. Tat signal sequences can be found
in most organisms and are partially interchangeable. Only a few protozoa encode
proteins with homology to Tat components in their mitochondrial genome (Gray
et al. 2004). The majority of the protein substrates for this pathway function in
alternative anaerobic respiration pathways and catalyze redox reactions. They typi-
cally require the assembly of a set of complex cofactors and are often composed
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of multiple polypeptide subunits. The incorporation of these cofactors often ne-
cessitates specialized chaperones which are only available in the cytoplasm. For
example, trimethylamine N-oxide reductase (TorA) contains a Fe-S cluster and a
bis-molybdopterin guanine dinucleotide (MGM) cofactor (Mejean et al. 1994). Next
to the advantage of having cytoplasmic chaperones assisting their folding matura-
tion, iron-sulfur clusters are sensitive to oxidants which can be easier avoided in
the reducing environment of the cytoplasm. Particularly, folding in the cytoplasm
is of great advantage for halophilic organisms, which had they relied on the Sec
pathway would have to fold their extracytoplasmic proteins under higher salt con-
centrations that favor protein aggregation. Hence these organisms often solely rely
on Tat-mediated export (Dilks et al. 2005, Rose et al. 2002).

The minimal composition of the Tat translocon consists of the membrane proteins
TatA, TatB and TatC. TatB is dispensable in some Gram-positive bacteria, and most
archaea or can be replaced by mutated TatA variants (Blaudeck et al. 2005). Tat
components can be found in two distinct subcomplexes in resting membranes (Or-
riss et al. 2007): a receptor complex composed of stoichiometric amounts of TatB
and TatC, which is responsible for the recognition of Tat signal peptides (Alami
et al. 2003, Kreutzenbeck et al. 2007, Strauch and Georgiou 2007b) and a sec-
ond subcomplex containing high-molecular weight complexes of TatA. TatA forms
pore-like structures of varying sizes in certain detergents, leading to the hypothesis
that it mediates the actual translocation step (Gohlke et al. 2005). Whether TatA
actually forms a channel or whether it is involved in lipid rearrangements that in turn
mediate translocation has yet to be clarified. TatC interacts with the twin-arginine
motif, whereas TatB associates with the hydrophobic stretch within the signal pep-
tide. Currently, the most favored model for Tat export proposes a “handing-over”
mechanism in which the signal peptide is first recognized by the TatB/C complex
followed by the recruitment of several TatA oligomers; the substrate is then “handed
over” to the TatA complex which mediates the actual translocation event (Fig. 16.3).

Fig. 16.3 Current translocation model for the export of proteins via the Tat pathway. TatB and
TatC establish the signal peptide recognition complex. Upon interaction with the signal peptide
(1), a possible conformational change occurs (2), followed by the recruitment of several TatA
oligomers (3). TatA oligomers assemble in complexes of variable sizes which might depend on the
dimensions of the substrate. TatA putatively mediates the actual translocation event
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The division of the translocation step into two separate events is reflected in the bio-
physical properties of the translocation event (Bageshwar and Musser 2007). The
question remains how does the receptor complex signal its interaction with the sub-
strate to TatA? A conformational change is probably the most plausible explanation
for this event. Gerard and coworkers suggested a pulling mechanism of the precursor
by TatC based on the observation that proteins can be exported when covalently
linked to the plant TatC homologue in the thylakoid Tat pathway (Gerard and Cline
2006). The fact that the translocon remains functional even when TatC is fused
to its substrate could indicate that TatC at least remains in close proximity to the
translocation step. Conformational changes could thus either serve as a trigger for
the onset of the translocation event or could provide an actual pulling mechanism.

The fact that the Tat pathway exports folded proteins, begs the question whether
there is a relationship between folding quality and export competence. Does the
pathway discriminate between folded and unfolded proteins? DeLisa and cowork-
ers (2003) showed that alkaline phosphatase, in which two intramolecular disulfide
bridges must form to assume its active dimer conformation, cannot be exported
when expressed in cells with a reducing cytoplasm that prevents disulfide bond for-
mation (DeLisa et al. 2003). Deletions of gor and trxB which inactivate the thiore-
doxin and the glutathione reduction pathways that normally maintain the cytoplasm
under reducing conditions allow disulfide bond formation in alkaline phosphatase
and result in export via Tat. Similarly, Fisher et al. (2006) reported that the export
rates of maltose binding protein variants (MBP-G32D, MBP-I33P, and MalE31-
G32D/I33P) correlates with their solubility and the in vitro folding kinetics. These
observations further support the notion that some step in the Tat pathway functions
as a filter to prevent the export of misfolded proteins. Richter and coworkers pro-
posed that it is the exposure of hydrophobic patches in unfolded proteins which
allows the pathway to determine whether a protein is folded or misfolded (Richter
et al. 2007). Notably they showed that an intrinsically disordered protein could be
translocated though Tat but insertion of short hydrophobic stretches in this protein
abolished export.

Several cofactor-containing Tat substrates have their own dedicated chaperone
that are referred to as redox enzyme maturation proteins (REMPs). REMPs behave
as specific proofreading chaperones escorting various oxido-reductases to the Tat
apparatus. The enzyme trimethylamine N-oxide reducatase, TorA, for instance, has
its own chaperone, TorD, which greatly facilitates the incorporation of its cofactors
and retards the export process (Pommier et al. 1998). TorD binds specifically to the
core region of the TorA signal peptide, but also to some parts of the mature enzyme
(Hatzixanthis et al. 2005). Once TorD is bound to the signal peptide, its affinity for
GTP increases. No GTP hydrolysis could be detected in vitro, indicating that the
role of GTP might be more regulatory than catalytic. Similar to TorA, the DMSO
reductase DmsA and the nitrate reductase NarG contain a molybdenum cofactor
and an iron-sulfur cluster, respectively. The insertion of the cofactor and folding
maturation is assisted by the small chaperones DmsD and NarJ (Chan et al. 2006,
Oresnik et al. 2001). Based on phylogenetic analyses, TorD and NarJ have been
classified as belonging to one group of maturation chaperones, whereas DmsD and
NapD, which assists the folding of the nitrate reductase NapA (Maillard et al. 2007)
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have been assigned to a second group. At least for NapD, it was recently demon-
strated that its molecular role is not only to camouflage the signal peptide, but also
to actively inhibit transport before folding maturation has been completed (Maillard
et al. 2007). A third group for Tat chaperones, the small chaperones HyaE and HybE
assist the folding maturation of the [NiFe]-containing hydrogenase 1 (HyaA) and
hydrogenase 2 (HybO/HybC), respectively (Dubini and Sargent 2003).

16.2 Expression and Folding of Exported Recombinant
Proteins in E. coli

E. coli is widely used as the host organism for preparative protein expression in the
laboratory and in the biotechnology industry (Baneyx and Mujacic 2004, de Marco
2007). Expression of heterologous proteins in secreted form is desirable when the
heterologous protein contains disulfide bonds or otherwise cannot fold in the cy-
toplasm and when periplasmic localization confers protection against proteolysis
or provides an advantage for downstream processing. Only a small set of E. coli
proteins are secreted into the extracellular space primarily by pathogenic strains
(Lawley et al. 2003, Pallen et al. 2003, Sandkvist 2001). Most naturally transported
proteins of non-pathogenic E. coli are localized either in the periplasmic space, or
associate with the outer membrane. Heterologous proteins secreted via Sec can be
expressed at very high levels in the periplasmic space of bacteria (Choi and Lee
2004, Mergulhao et al. 2005). Early reports suggested that Tat-mediated transport
results in lower protein yields than Sec transport (Berks et al. 2003, Sargent et al.
1998). However, it now appears that the efficiency of expression via Tat is depen-
dent on the protein of interest. Fisher et al. (2008) reported that the periplasmic
accumulation of different proteins such as alkaline phosphatase, GFP and a scFv
antibody fragment fused to MBP were comparable or at most two fold lower for
Tat-mediated export. Interestingly, the purity and activity levels of Tat exported
proteins in the osmotic shock fraction were higher than those exported via Sec
(Fisher et al. 2008). On the other hand, Tat export resulted in higher periplasmic
yields of thioredoxin variants compared to export via the Sec pathway (Masip et al.
2008). This is presumably because the rapid folding kinetics of thioredoxin render it
incompetent for Sec export, but favor secretion through Tat. Upon overexpression of
a protein, misfolding leading to polypeptide degradation, aggregation or cell toxicity
can occur. Precursor proteins that are exported slowly or that jam the Sec translocon
result in cell toxicity and accumulation of the precursor protein in the cytoplasm
(Feilmeier et al. 2000, Kiino and Silhavy 1984). However, this does not seem to be
the case for export via Tat. Unlike the Sec translocon, the Tat apparatus does not
appear to be prone to jamming, since the components of the translocon dissociate
from any stuck precursor polypeptides (Cline and McCaffery 2007). Ultimately, in
order to achieve higher yields of active proteins, the export pathway has to be chosen
carefully. Export rates, yields, purity and yield of active proteins depend strictly on
the amino acid sequence of the protein of interest.
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Protein folding is a central issue in the expression of secreted proteins. As was
discussed above, proteins secreted via Tat must attain a native-like conformation in
the cytoplasm whereas proteins exported by the Sec apparatus have to fold within
the periplasmic space. The co-expression of the proper set of endogenous chaper-
ones can facilitate the expression of secreted proteins for both transport pathways
(de Marco 2007). Cytosolic chaperones are often classified as folding, holding and
disaggregation chaperones. The first class includes the ribosome-associated trigger
factor (TF), the DnaK system (DnaK with its DnaJ and GrpE co-chaperones; KJE),
and the GroEL system (GroEL with its GroES co-chaperone; ELS). Collectively
these chaperones assist de novo protein folding. Both DnaK and GroEL are capable
of refolding host proteins that become unfolded under environmental stress. The
second class of cytosolic chaperones comprises of the holdases (the small heat-
shock chaperones IbpA and IbpB), the redox-regulated Hsp33 and the “emergency”
chaperone Hsp31. Holdases are active during severe stress and bind to early folding
intermediates to prevent overloading of the KJE and ELS system (Mujacic et al.
2004). If folding and holding of proteins fail to deter protein aggregation, the third
class of chaperones kicks in. Chaperones of this class promote aggregate solubiliza-
tion and include ClpB ClpA, ClpX and ClpY with the latter three being involved in
directing proteins to degradation. Disaggregation chaperones do not participate in
the refolding of solubilized proteins, but rather transfer them to DnaK.

Several cytoplasmic chaperones and other cytosolic factors have been shown to
increase the efficiency of export via the Tat pathway. For example the general chap-
erone DnaK aids the folding of several Tat substrates (Graubner et al. 2007, Perez-
Rodriguez et al. 2007), resulting in increased export. Improved export of fusions
to the TorA signal peptide has been observed upon overexpression of the chaper-
one TorD (Hatzixanthis et al. 2005, Jack et al. 2004, Li et al. 2006). In addition,
overexpression of proteins that do not have a chaperone function, including the Tat
pathway components TatABCE (Alami et al. 2003) and PspA (DeLisa et al. 2004)
that possibly affects the electron gradient, have been shown to enhance Tat export.
On the other hand, proteins translocated via the Sec pathway are released into the
periplasm in an unfolded conformation and must attain their native state in that
compartment. One of the major folding chaperones in the periplasmic space is DegP,
which exhibits two functions: At lower growth temperatures, this protein typically
acts as a molecular chaperone whereas at elevated temperatures its function as a
degrading enzyme becomes more pronounced (Spiess et al. 1999). It recognizes un-
folded proteins presumably via its PDZ domain (Iwanczyk et al. 2007, Wilken et al.
2004). Further, protein degradation in the periplasm can also involve the protease
III and Tsp and thus may be alleviated in strains carrying deletions of the respective
genes (Meerman and Georgiou 1994).

Many secreted proteins contain disulfide-bridges which need to be correctly
formed for the polypeptide to attain its native conformation. In E. coli periplasmic
protein thiol oxidation is catalyzed by the enzyme DsbA whereas isomerization of
misfolded disulfide bonds is mediated by DsbC and to a lesser extend by DsbG
(Bessette et al. 1999, Rietsch et al. 1996). Overexpression of DsbA and DsbC can
result in a marked increase in the yield of complex recombinant proteins such as
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the human plasminogen activator (Bessette et al. 1999, Qiu et al. 1998), human
nerve growth factor (Kurokawa et al. 2001), insulin-like growth factor-I (Joly et al.
1998) or horseradish peroxidase (Kurokawa et al. 2000). Additionally, overexpres-
sion of periplasmic chaperones such as Skp or the peptidyl-proline cis-trans iso-
merases, PpiA, PpiD, SurA or FkpA (Arie et al. 2001, Bothmann and Pluckthun
2000, Missiakas et al. 1996) have been shown to enhance the soluble yield of nu-
merous proteins including antibody fragments (Choi and Lee 2004, Hayhurst et al.
2003). Combinations of overexpressed periplasmic chaperones have been shown
to aid the folding of human plasma retinol-binding protein and of the extracellular
carbohydrate recognition domain of the dendritic cell membrane receptor DC-SIGN
(Schlapschy et al. 2006); for review (Choi and Lee 2004) (Fig. 16.4).

16.2.1 Protein Secretion and Display in Combinatorial
Library Screening

16.2.1.1 Phage Display

The display of proteins on the surface of viral particles or cells constitutes the foun-
dation of high throughput screening technologies for protein engineering purposes.
Display technologies describe a variety of methodologies for the presentation of
biomolecules onto a virus or cell. Protein display allows the screening of large com-
binatorial protein libraries for the isolation of ligand binding proteins, the engineer-
ing of protein stability (Kotz et al. 2004) and catalytic activity (Fernandez-Gacio
et al. 2003), the detection of interacting proteins, determining the substrate speci-
ficity of proteases (Matthews and Wells 1993) and for several other applications
(Hwang et al. 2007, Li et al. 2008, Matthews and Wells 1993). Viral, cell-based and
in vitro display systems, such as ribosome display (Lipovsek and Pluckthun 2004)
have been developed, but for the purposes of the present review we will focus only
on viral (bacteriophage) and bacterial cell display methodologies.

Phage display is the first genetic strategy developed for the isolation of ligand-
binding proteins from combinatorial libraries (Smith 1985). For filamentous phage
display, the phage particles harboring the protein of interest and the gene that en-
codes it are continuously secreted into the growth medium. The protein of interest is
typically displayed as a fusion to one of the coat proteins. Normally, the displayed
protein fusion is secreted via the Sec pathway and is incorporated onto the virion
during phage assembly in the periplasm. While lytic phages (such as T7 or lambda)
have been used for display, non-lytic filamentous phages such as f1, M13 or fd
are much more commonly employed. The displayed protein is either encoded in a
phagemid, a plasmid containing both an E. coli and a phage origin of replications or
it is directly integrated into the phage genome. With filamentous phage, the protein
of interest is typically fused to the N-terminus of protein pIII (Fig. 16.5A) allowing
the presentation of up to 5 copies, or to the major coat protein pVIII (Fig. 16.5A)
which allows more than 2700 copies to be displayed on the phage particle (Glucks-
man et al. 1992, Malik et al. 1996, Zwick et al. 2000).
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Fig. 16.4 Compartmental chaperones and their contribution to different export pathways. Cyto-
plasmic chaperones facilitate the export process of most precursor proteins. SecB and SecA bind
to the fully synthesized polypeptide to maintain it in its export-competent, unfolded state and
the guide it to the Sec translocon (post-translational). On the other hand, the signal recognition
particle, composed of Ffh and 4.5S RNA, associates with the nascent chain extruding from the
ribosome. The latter allows the recruitment of the translating ribosome to the membrane where
it resumes synthesis of the polypeptide directly into the Sec pore (co-translational Sec transport).
The presence of the general chaperone DnaK/J can be beneficial for the export of both Sec and
Tat substrates. Tat substrates fold prior to export and therefore their folding maturation can be
improved by the overexpression of various cytoplasmic chaperones. Additionally, the folding of
many Tat substrates requires the participation of specialized cytoplasmic redox enzyme maturation
proteins (REMPs). Tat substrates are translocated while in their correctly folded state, whereas
folding of Sec substrates takes place in the periplasmic environment. General periplasmic chap-
erones, such as Skp, SurA etc. improve the solubility or folding of the Sec secreted polypeptides.
DegP switches between its protease and foldase function depending on the temperature. DsbA
and DsbC catalyze oxidative protein folding in the periplasm. DsbA introduces disulfide bridges,
whereas DsbC re-shuffles their confirmation. DsbB and DsbD maintain these two crucial proteins
in their appropriate oxidation state.
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(a) (b)

Fig. 16.5 (A) Filamentous phage particle, (B) panning cycle for enrichment of binders. A
phagemid encoding the genetic information for the protein of interest is transformed into E. coli
cells, which amplify the virion. After purification of the phage particles from the culture super-
natant, protein displaying phage particles are applied to the immobilized ligand. Non-binding
phage particles are eliminated by washing. Bound phage is eluted, pooled and used to infect
new E. coli cells allowing a repetition of the panning cycle until interesting ligand binders are
identified

Phage displaying polypeptides that bind to a desired ligand are enriched by sev-
eral rounds of panning onto immobilized ligand. The ligand can be immobilized
either directly by adsorption onto a plastic surface or indirectly, e.g. by using a
biotin conjugate together with streptavidin-coated beads (Blazek et al. 2004).

Normally, proteins displayed on filamentous phage are secreted by the post-
translational Sec pathway (Rapoza and Webster 1993). Often however, limitations
associated with the post-translational Sec apparatus restrict the ability to display
certain kinds of polypeptides, especially proteins that fold quickly in the cytoplasm
or the export of which can block the early steps in the secretion process, e.g. by
tight binding to SecA. Employing co-translational Sec export using an appropriate
signal peptide such as the one for DsbA can alleviate these problems. For exam-
ple, the fast-folding designed ankyrin-repeat proteins (DARPins) can be transported
with high efficiency when switching the export signal to the co-translational DsbA
signal peptide resulting in a 700-fold increase in their display on filamentous phage
(Steiner et al. 2006). Export following this route prevents premature cytoplasmic
folding prior translocation.

For reasons that probably relate to the fact that coat proteins are embedded in the
membrane before they assemble onto the phage particle, it is not possible to export
pIII or pV fusions via the Tat apparatus. Export via Tat is desirable for the display
of proteins that require the incorporation of cytoplasmic cofactors, for proteins that
are unable to fold into the periplasm for other reasons (Feilmeier et al. 2000) or for
those that might fold too fast and cannot be maintained in a Sec competent state by
the cytoplasmic chaperone machinery. A system that capitalizes on the Tat pathway
for protein display is shown in Fig. 16.6 (Paschke and Hohne 2005; Strauch and
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Fig. 16.6 Display of proteins exported via Tat on phage. The phage particle binds to the F-pilus
and inserts its single stranded DNA into the bacterium where it uses bacterial enzymes and its own
proteins for second strand synthesis and replication. The phage pV protein sequesters the + single
strand away to enable its packaging into the phage particle that is assembled in its own secretion
apparatus and extruded through the outer membrane via a phage encoded channel formed by the
pIV protein. In the Tat-based phage display, pIII is expressed as a fusion of a leucine zipper domain
(here Fos) and exported via Sec. The protein of interest (POI) is expressed a fusion to the comple-
mentary leucine zipper (here Jun) and a Tat signal peptide. After folding in the cytoplasm, the POI
is exported via Tat and associates with the phage by non-covalently binding to the heterodimerizing
leucine zipper sequence fused to pIII

Tullman-Ercek, unpublished results). pIII with a N-terminal Sec signal peptide is
fused to half of a heterodimerizing leucine zipper sequence whereas the protein
of interest is fused to an N-terminal Tat signal peptide and to the complementary
leucine zipper sequence. The two gene constructs are expressed from a bicistronic
operon. The pIII fusion and the protein of interest are exported via separate routes,
namely Sec and Tat respectively, but once in the periplasm, their association is en-
sured by the leucine zipper dimerization and thus the target protein becomes non-
covalently attached to pIII on the surface of phage. Cysteine residues may be placed
at the ends of the leucine zipper halves to allow covalent disulfide linkages within
the oxidizing environment of the periplasm. This strategy has been successfully
employed to display fluorescent GFP (Paschke and Hohne 2005, Strauch 2007) that
necessitates folding in the cytoplasm to form the active chromophore.

16.2.1.2 E. coli-Based Protein Display

Bacterial display offers several distinct advantages relative to phage: (i) it is possible
to display many more protein copies on a bacterium compared to a phage particle:
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(ii) complex proteins consisting of multiple polypeptides or proteins containing co-
factors are more easy to display on cells; (iii) components of cells surfaces can
be exploited for the retention of fluorescent products of enzymatic reactions and
(iv) finally but most importantly, because of their larger size, bacteria are compati-
ble with methodologies that utilize fluorescent activated cell sorting (FACS). Using
multi-color fluorescence labeling strategies, it is possible to interrogate every clone
in a library for the level of expression of a target protein, ligand binding or catalytic
activity in a quantitative fashion. The advantages of FACS as a library screening
tool have been instrumental in the isolation of very high affinity (picomolar) binding
polypeptides and enzymes with high catalytic activity and selectivity from libraries
displayed on bacteria.

In E. coli proteins can be displayed either on the surface or on a subcellular lo-
cation that can be made accessible to extracellularly added fluorescently conjugated
molecules following chemical treatment. A variety of protein fusions have been
used for protein display on the surface of E. coli and the topic has been reviewed
recently (Daugherty 2007, Lee et al. 2003, Samuelson et al. 2002). Several native
outer membrane proteins (OMPs) such as FhuA, OmpA, OmpS, OmpX, and its
circular permutated variant CPX, have been utilized for the display of short pep-
tides with varying sizes typically between 12 and 28 aa long. In addition flagel-
lar proteins, such as the commercially available recombinant constructs FliTrx (Lu
et al. 1995, Westerlund-Wikstrom 2000) have been used for peptide display whereas
Lpp-OmpA fusions and autotransporter proteins from pathogenic E. coli have been
exploited for the display of several small proteins for ligand binding and enzymatic
activity selections (Becker et al. 2007, 2004, Jose et al. 2005, Wentzel et al. 1999).
However, surface display of intact proteins is often accompanied by changes in outer
membrane permeability and loss of viability. In addition, the display of multi subunit
proteins or proteins that contain multiple disulfide bonds is problematic since there
is no folding machinery on the surface of the cell (Stathopoulos et al. 1996). Finally,
it is not known whether large heterologous polypeptides fused to outer membrane
protein targeting sequences can engage the periplasmic folding chaperones (Adams
et al. 2005, Bos et al. 2007, Veiga et al. 2002) and the YaeT outer membrane protein
localization machinery that might be required for surface display (Kim et al. 2007).

Proteins anchored on the inner membrane or expressed in the periplasm are of
course not exposed to the extracellular fluid because the outer membrane of E. coli
presents a formidable diffusion barrier that excludes molecules larger than 600 kDa.
However, various chemical treatments can be used to increase the permeability of, or
to completely remove, the outer membrane thus allowing access to periplasmic pro-
teins with externally added ligands. Typically such ligands are fluorescently labeled
so that upon binding to an E. coli displayed protein they render the cell fluorescent
allowing its isolation by flow cytometry (Chen et al. 2001, Harvey et al. 2004). Li-
braries of scFv antibodies expressed in soluble form in the periplasmic space have
been screened for binding to fluorescently labeled low molecular weight ligands
that gain access into that compartment by incubating the cells in a high salt envi-
ronment. Incubation in a hypertonic solution allowed molecules up to 10–15 KDa
to diffuse into the cell without the release of the scFv proteins from the periplasm
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(Chen et al. 2001). Using the same approach (Ribnicky et al. 2007) isolated a mutant
scFv antibody that exhibited improved export via the Tat pathway, leading to greater
accumulation of functional protein and therefore increased binding of fluorescently
labeled antigen. Interestingly, the selected scFv variant exhibited faster folding ki-
netics in vitro, indicating that the rate of folding within the cytoplasm correlates
with competence for translocation via the Tat pathway (Ribnicky et al. 2007).

Access of larger ligands into the periplasm requires rupture of the outer mem-
brane and can be accomplished easily by treating the cells with a combination of
chelating agents and lysozyme. However, under these conditions soluble secreted
proteins, including the proteins to be displayed, are released from the periplasm
either partially or completely. To avoid this problem Harvey et al developed the
Anchored Periplasmic Expression (APEx) display system, in which the protein of
interest is tethered to the inner membrane by fusing it genetically to an appropriate
anchoring sequence. In principle any transmembrane α-helix can be used as an an-
choring sequence (Ki et al. 2004). However, fusion to a targeting sequence com-
prised of a signal sequence followed by the first few amino acids of an inner
membrane lipoprotein can be employed to convert the protein of interest into a
lipoprotein. This is advantageous because the fusion tag required for display is very
short and the expression of lipoproteins is better tolerated by the cell compared to
integral membrane proteins. APEx has been used for the isolation of proteins that
bind to extracellular ligands, for the engineering of variants that express better in the
periplasm and for the detection of protein-protein interactions (Jeong et al. 2007).
For the latter application, a bait protein is expressed in membrane-tethered form
whereas the prey is expressed solubly in the periplasm. Following permeabilization
of the outer membrane, the prey is released from the cell unless it captured by the
inner membrane-tethered bait. The resulting complex can be detected by fluorescent
anti-prey antibodies allowing isolation of the respective cell by FACS. Recently, a
variation of APEx was employed to screen libraries of full length IgG antibodies
in bacteria (Mazor et al. 2007). The ability to isolate and express full length IgG
in bacteria may allow the rapid generation of antibodies for many therapeutic and
diagnostic purposes. Finally our lab recently demonstrated that APEx can be carried
out in dsbA strains where the formation of disulfide bonds is compromised. In this
manner we were able to isolate mutant scFv antibody fragments that are stable and
can fold in the absence of disulfide bonds (Seo et al. unpublished). Such antibody
fragments are desired for gene therapy applications in which they would be ex-
pressed in the cytoplasm (where disulfide bonds cannot normally form) and can be
used to disrupt the function of proteins associated with disease (Fig. 16.7).

16.2.2 Exploiting the Secretion Machinery as a Solubility
and Folding Filter

As already mentioned, the folding state of a polypeptide is a major determinant
of export competence. Huber and coworkers demonstrated that thioredoxin, which



342 E.-M. Strauch and G. Georgiou

Fig. 16.7 E. coli-based display techniques. For simplicity lipopolysaccharides (LPS) and the pep-
tidoglycan layer are not shown. For filamentous phage display, the protein of interest (POI) is
exported into the periplasm of E. coli before it can be assembled on the phage particle. For surface
display, outer membrane proteins or autotransporters can be utilized as carrier proteins for the
polypeptide of interest (POI). For anchored periplasmicexpression (APEx), the POI can be either
tethered to the inner membrane by a N-terminal NlpA signal peptide fusion or by a fusion to a
transmembrane helix. In soluble periplasmic expression (PECS), any transport pathway can be
used to secrete the POI into the periplasm. The latter two display technologies require the fracture
of the outer membrane via lysozyme-EDTA treatment (APEx) or high salt concentrations (PECS)

folds very rapidly in vitro, cannot be secreted via the post-translational Sec pathway
but is efficiently translocated into the periplasm when fused to a signal peptide that
mediates co-translational export (Huber et al. 2005a). Huber et al. then selected for
thioredoxin variants that can be exported post-translationally and showed that these
proteins exhibit up to 30 fold slower rates in one of the critical steps of folding
(Huber et al. 2005b). In effect, this is the opposite selection to that of Ribnicky who
isolated faster folding proteins based on Tat export competence (Ribnicky et al.
2007). In other studies, the quality control feature of the Tat pathway was exploited
to select for variant proteins displaying greater solubility (Fisher et al. 2006). In that
system the protein of interest is expressed as a tripartite fusion with an N-terminal
Tat signal peptide and β-lactamase fused to the C-terminus. Growth on ampicillin
is employed to select for mutations in the protein of interest that allow export of
the fusion and localization of the β-lactamase moiety in the periplasm. Since the
export rates correlate with the solubility of a protein, fusion constructs that con-
ferred ampicillin resistance carried variants with better folding abilities. Utilizing
this approach, Fisher and coworkers were able to isolate higher solubility variants
of the aggregation-prone amyloid precursor protein A�42, a primary constituent of
the toxic plaques in Alzheimer disease (Fisher et al. 2006).

The Tat pathway is capable of co-transporting at least two folded protein subunits
at a time, only one of which has a signal sequence, via a “hitchhiker export” mecha-
nism (Rodrigue et al. 1999). This observation was recently exploited to develop a Tat
based 2-hybrid system in which one protein (bait) is expressed as a fusion to a Tat
signal peptide whereas the second protein (prey) is fused to a protein reporter that
can confer a phenotype only after export into the bacterial periplasmic space. Since
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the prey-reporter fusion lacks a signal peptide, it can only be exported as a complex
with the bait-signal peptide fusion which is capable of targeting the Tat translo-
con. Using maltose-binding protein as the reporter, clones expressing interacting
proteins could be identified on maltose minimal media or on MacConkey plates.
Alternatively, using cysteine disulfide oxidase DsbA as reporter, export of a signal
peptide-prey:bait-DsbA complex into the periplasm allowed complementation of
dsbA− mutants. The prey:bait-DsbA complex was able to restore the formation of
active alkaline phosphatase, an enzyme that can be easily detected by a chromogenic
assay (Strauch and Georgiou 2007a). The Tat two-hybrid system can be used as a
new tool to identify protein-protein interaction on a genomic scale by including two
libraries as bait and prey, or it can be utilized to identify protein interaction partners
for a protein of interest. Additionally, a 2-hybrid assay may be utilized as a tool for
the in vivo co-evolution of interacting protein pairs as has been demonstrated by
DeLisa and coworkers (private communication).

16.3 Conclusions

Protein secretion in E. coli is of enormous significance in biotechnology for appli-
cations ranging from preparative protein production to combinatorial library screen-
ing. After more than 30 years of study many of the mechanistic details of Sec protein
translocation have been elucidated. In contrast, the sequence of events that lead to
the export of proteins via the Tat pathway is not completely understood. A signifi-
cant difference between Sec and Tat pathways is that the former exports proteins that
are unfolded whereas the latter accepts only proteins that have attained a native-like
conformation. The Sec pathway has been used to express recombinant proteins at
high levels that can exceed 5 g/L. Periplasmic expression allows the engagement of
the post-translational modification apparatus enabling the introduction and refine-
ment of disulfide bridges which can be additionally optimized by the overexpression
of endogenous chaperones. Recent evidence suggests that high yields may also be
attained with the Tat pathway provided that the protein is compatible for export via
this route. However, g/L expression of Tat proteins needs to be demonstrated.

Protein secretion is an essential step for display and the screening of combina-
torial libraries. The export pathway inflicts an additional filter step onto the general
screening or selection scheme. For example the use of signal peptide that target dif-
ferent export pathways can lead to the isolation of distinct pools of protein variants
that exhibit different folding characteristics (Table 16.1).

Despite the fact that little is known about the actual molecular process of tar-
geting to and transport through the Twin-Arginine Translocase, it is a promising
candidate for periplasmic expression of heterologous proteins, including those that
otherwise would be incompatible with the Sec transport pathway. The use of the Tat
pathway does not only allow increased periplasmic yields of actual active proteins,
specifically those that fold fast, it further enables the refinement of existing screens
or selections, and even allows the launching of novel protein engineering platforms
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Table 16.1 Comparisons of current applications of different routes across the cytoplasmic mem-
brane

Post-translational Sec
export Co-translational Tat export

Typical signal sequence ssPelB, ssPhoA,
ssOmpA,

ssDsbA, ssTorT ssTorA,

Folding preference slow folding fast folding,
aggregation-prone
proteins

fast folding, containing
cytoplasmically
inserted cofactors,

Maturation disulfide bridges, fatty
acylation
(lipoproteins), heme
insertion (requires
periplasmic
reduction)

disulfide bridges cofactors, other protein
subunits, disulfide
bridges1

Current applications phage display, bacterial
display technologies,
protein expression,
screen for slower
folding variants,
protein expression

phage display, cell
display on the
inner membrane

screen for solubility
increase or faster
folders, Tat
two-hybrid, Tat-based
phage display, protein
expression

1 Non-native protein substrates containing disulfide bonds must be expressed in strains having an
oxidizing cytoplasm.

that capitalize on its proofreading mechanism and the possibility to fold the protein
of interest in the cytoplasmic environment of the cell.
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Abstract In engineering of Escherichia coli for the production of chemicals de-
rived from the central metabolic pathway and in using E. coli as a biocatalyst for
reactions involving externally supplied specific substrates, there is a need to consider
the redox balance and cofactor availability for optimization of the process. Several
examples of taking into account the systems biology complexity of redox processes
through consideration of gene expression effects, protein level and activity effects,
and the role of small molecule effectors of enzyme activity, as well as the role of
activation and deactivation of sensitive active site structures are described in the
chapter. The manipulation of the availability of reduced cofactors through genetic
means and the application of such altered strains for metabolic engineering pur-
poses for the improved production of specific reduced molecules for biofuels, chiral
pharmaceutical intermediates, unconjugated colored compounds, and other valuable
chemicals is presented.
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17.1 The Central Pathway of E. coli Metabolism, a Systems
View of the Network and Cofactor Considerations

17.1.1 Aerobic Considerations

Under aerobic conditions the level of reduced cofactors formed in glycolysis and
in the TCA cycle can be largely converted to energy for the cell via the electron
transport chain and the associated oxidative phosphorylation events. The removal of
excess reductant under partial aerobic conditions by an NADH oxidase, particularily
an enzyme that forms water, has been demonstrated and can aid flow to more oxi-
dized products in lactic acid bacteria (Lopez de Felipe et al. 1998, Neves et al. 2002).
The expression of an NADH oxidase from Streptococcus pneumoniae was studied.
Results showed that expression of NADH oxidase altered the NADH/NAD+ ratio.
In an arcA host acetate formation was reduced and the biomass yield increased
(Vemuri et al. 2006) suggesting that if the NADH level can be kept low, then the
TCA cycle can function efficiently even at a high glucose concentration to process
the carbon feedstock without build up of intermediates that generate acetate.

In aerobic processes however, if a redox process for the formation of the de-
sired product is required, the cofactor can be recycled and reduced through the
metabolism of a suitable precursor. One also has to consider that the possible uti-
lization of the reduced cofactor through the electron transfer system can compete
and limit the availability of the reductant for the desired reaction. In this biocatalyst
mode the cells are usually held in a non-growing state, and the aerobically generated
reductant can be used more fully in a desired microbial conversion reaction.

The contribution of microaerobic conditions to aid cell energetics and growth
properties while allowing more efficient use of carbon for products has also been
observed. Early enzyme analysis pointed to factors in the transition (Doelle and
Hollywood 1978, Thomas et al. 1972) that were important. It appears the ability
to respire oxygen under microaerobic conditions aids E. coli in intestinal growth
and colonization (Jones et al. 2007). In metabolic engineering practice, a similar
strategy is used in the formation of partially oxidized products or where the redox
balance would not be appropriate for complete anaerobic metabolism. A number
of studies have focused on the contribution that the presence of various oxygen
binding proteins such as Vitreoscilla hemoglobin can make to enhanced respiration
under microaerobic conditions and the effects on cell physiology, productivity, and
metabolic pattern (Andersson et al. 2000, Frey et al. 2000, Kallio et al. 1996). Stud-
ies of the relative expression of genes (Liu and De Wulf 2004, Overton et al. 2006,
Salmon et al. 2003) and metabolite patterns under conditions of limited oxygen
have been made with wild type and various metabolic and regulatory mutant strains
under defined oxygen conditions (Alexeeva et al. 2000, 2002, 2003, Becker et al.
1997, Partridge et al. 2007, Shalel-Levanon et al. 2005a,b,c, Zhu et al. 2006, 2007a).
Such measurements have allowed models of the shift between aerobic and anaerobic
conditions to be formulated and their general features to be evaluated (Govantes
et al. 2000, Peercy et al. 2006, Schramm et al. 2007). The metabolite pattern of
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products derived from pyruvate arising in various mutant strains under conditions
of low oxygen is complicated by many factors influencing the in vivo activities of
the various enzymes around this node. For example the activities of Pdh and Pfl
are affected by gene expression levels, the NADH level and the relative amounts of
activation, deactivation of Pfl as well as the YfiD interaction with Pfl. The levels of
other enzymes acting around the pyruvate node and the TCA cycle and cytochrome
oxidase enzymes also influence the level of small molecules that can affect in vivo
activity and metabolic flux through the competing routes. Some discussion of these
influences is given in (Peercy et al. 2006, Shalel-Levanon et al. 2005b, Zhu et al.
2007a) (Fig. 17.1).
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Fig. 17.1 (a) Comparison of metabolites and fluxes of cultures of MG1655 DarcA (arcA disrup-
tion) and MG1655 DarcA, Dfnr strains grown in chemostat under 5% oxygen in the headspace. The
difference in lactate flux is most apparent. Other fluxes are shown as indicated. The NADH/NAD+
ratio is also shown. In the parent, MG1655 the other metabolites were not observed see Fig. 17.1b.
(b) Metabolite fluxes as a function of the oxygen concentration in the headspace at steady state.
PFL, lactate, ethanol, and succinate. The fluxes in the individual strains are indicated: (purple, dark
gray diamond) MG1655, (red,dark gray squares) MG1655 [DarcA], (green, light gray x) MG1655
[Dfnr], (blue, light gray triangles) MG1655 [DarcA, Dfnr]. The error bars indicate the standard
deviation of three samples taken after 7, 7.5, and 8 residence times
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17.1.2 Anaerobic Considerations

Under anaerobic growth the reductant formed in glycolysis must be recycled by
reactions using available substrates. This process generates the reduced metabolites
derived from pyruvate in many bacterial species and the reduced products of the
mixed acid fermentation in E. coli. By limiting the alternative pathways for cofactor
recycling, the metabolic course of the flux into the downstream parts of the central
pathway is affected. The dissipation of the reducing equivalents can also be han-
dled through the formation of hydrogen either directly or through the release of a
compound such as formate which can easily be converted to hydrogen and carbon
dioxide. Bacteria have elaborate sensing mechanisms for oxygen and regulate the
specific cytochrome oxidases as well as many other genes through transcriptional
regulators such as ArcA and Fnr. The area of aerobic/anaerobic gene regulation
mechanisms will not be covered here as it is reviewed elsewhere in this volume
and in other reports (Gunsalus and Park 1994, Sawers 1999). The various electron
carriers; flavins, nucleotide cofactors, quinones and ferredoxins, act with specific
enzymes and while there is interconversion among the reduced compounds the re-
dox potential and relative quantity of each within the cell suggests a distinct role
for the individual carriers in the cell. The efficiency of rapid equilibrium among the
pools of reduced electron carriers is dependent on a number of factors including the
relative location in the cell, association of key molecules with other cell components,
and specific binding constants and kinetic parameters of competing reactions. These
factors can be adjusted by engineering but the physiological response of the cell is
often complicated.

17.2 Strategies for Engineering Metabolic Outputs
from Specific Branches

17.2.1 Multiple Deletions in Alternative Pathways

17.2.1.1 Pyruvate and Acetate

Pyruvate is formed under aerobic conditions when it is desired to produce it in high
quantity (Causey et al. 2004, Sakai et al. 2007, Tomar et al. 2003, Zelic et al. 2006,
2004a,b). Some similar features have been implemented in the high production of
acetate by E. coli (Causey et al. 2003). The general strategy for high production
of these compounds involves high glycolytic fluxes and the removal of competing
pathways, either for the carbon or for the reductant in order to minimize the poten-
tial formation of further metabolism of the compound (e.g. pyruvate conversion to
lactate). In the case of acetate production, the elimination of reactions involving a
key precursor (e.g. pyruvate conversion to other products) can affect the yield and
culture performance. Since these compounds are dealt with elsewhere in this volume
the specifics of metabolic engineering of E. coli for production of these products will
not be discussed here.
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One area of interest related to industrial production is the reduction of acetate
formation that can inhibit growth and limit productivity in a variety of processes
including recombinant protein production. Several strategies have been investigated
to avoid acetate formation. In cultures, limited glucose addition can avoid some of
the problems but requires careful control of the culture. These engineering strategies
have become widely practiced as computer controls and sensors have become more
sophisticated but are still a concern for optimization and reproducibility in large
scale processes. The reduction of glucose uptake and the avoidance of build-up of
the glycolytic intermediate, pyruvate, can be accomplished via genetic changes af-
fecting the glucose transport system (Backlund et al. 2008, Chen et al. 1997, De
Anda et al. 2006, Hernandez-Montalvo et al. 2003, Lara et al. 2008, Picon et al.
2005, Wong et al. 2008, Yi et al. 2003) or the presence of modified sugars (Aristidou
et al. 1999, Chou et al. 1994). A large number of studies on the effects of ptsG
mutations on production of acetate and other compounds, recombinant proteins,
and growth have shown the importance of coordination of glucose uptake with
downstream metabolism to avoid excessive acetate production and performance
limitations.

The inactivation of genes that encode the major acetate formation pathway en-
zymes (acetate kinase, ack and phosphotransacetylase, pta; and pyruvate oxidase,
poxB) can relieve acetate formation (De Mey et al. 2007) although such mutations
may reduce the growth rate under some conditions or in certain genetic backgrounds
(Abdel-Hamid et al. 2001, Flores et al. 2004, Vemuri et al. 2005). The effects of
fluctuations in oxygen on the formation of acetate and recombinant proteins has
been examined with the observation that the genes of fermentative metabolism can
be removed with accompanying improved performance (Lara et al. 2006). The dif-
ferences in E. coli strains have been studied and the flux through the glyoxyate
pathway, acetate uptake and synthesis, and gluconeogenesis were different among
some widely used laboratory strains and accounted for the differences in acetate
formation in cultures of E. coli B and JM109 (Phue et al. 2005) and the extent of
flux through anaplerotic pathways influences acetate excretion (Farmer and Liao
1997). Acetate formation can also be addressed through diversion of the precursor,
pyruvate, to a non-toxic compound such as acetoin by incorporation of the gene
encoding an acetolactate synthase from another organism (Yang et al. 1999).

17.2.1.2 Lactate

While lactate is readily formed by lactic acid bacteria and other microbes, it is
formed naturally in differing amounts by various E. coli strains. Lactate formation
in E. coli has been engineered, with either stereoisomer being formed depending on
the particular characteristics of the lactate dehydrogenase employed (Chang et al.
1999, Dien et al. 2001, Fong et al. 2005, Hua et al. 2006, Zhou et al. 2003a,b,
Zhou et al. 2005, Zhu et al. 2007b). In this case the fermentation is anaerobic and
the other pathways that could use the reduced cofactor formed in glycolysis are
removed (e.g. pyruvate conversion to acetyl-CoA and subsequently on to ethanol).
Efficient natural production of this compound by other organisms is available and
several engineered E. coli strains also perform well.
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17.2.1.3 Succinate

In the case of succinate production, the conversion of glycolytic intermediates to
oxaloacetate is a key step and in order to obtain high conversion enzymes capa-
ble of forming OAA or malate (Hong and Lee 2001, Kim et al. 2004, Lin et al.
2004, 2005e, Sanchez et al. 2005b, Stols et al. 1997, Vemuri et al. 2002) are usu-
ally overexpressed either through recombinant techniques or by enhancement of the
natural system. There is a two fold problem in attaining the highest possible molar
yield from glucose; one is the limitation of reductant (Hong and Lee 2002), if the
2 molecules of NADH formed in glycolysis are used to reduce the oxaloacetate,
only one molecule of succinate can be formed. There is an alternative way to form
succinate that does not consume NADH, i.e. through the glyoxylate route of the
TCA cycle. This route also is limited to production of one molecule of succinate
from one glucose due to loss of carbon in this normally aerobic pathway (Lin et al.
2005a,c,d). The correct partitioning of oxaloacetate between the reductive and ox-
idative routes can increase the overall yield while maintaining the NADH balance
(Cox et al. 2006, Sanchez et al. 2006).

A variety of mutations to route the products of glycolysis to succinate have been
investigated with the effects of redox systems (Yun et al. 2005) and the sugar uptake
system (Chatterjee et al. 2001, Wang et al. 2006) showing a significant effect in
some backgrounds due to the effects on pyruvate formation. Performance on var-
ious hexose and pentose sugars have been studied with glucose generally offering
the highest yield compared to fructose or xylose (Andersson et al. 2007, Lin et al.
2005b). Computational methods have also been employed to identify high yielding
strains (Lee et al. 2005) or model the immediate metabolic network (Cox et al.
2006). Strains made with an idea of optimal succinate production have included
those with a number of defined mutations (Sanchez et al. 2006) and evolved strains
derived from a defined parent (Jantama et al. 2008). In the studies various experi-
mental conditions have been examined with the key factors of yield from feedstock,
rate of production, productivity per cell mass, and final titer being components of
the calculation of the potential of the process.

17.2.2 Alteration of Cofactor Availability (NADH)

Efforts to modify the NADH availability for cell metabolism have been undertaken
for many years and have been based on observations of differing metabolic prod-
ucts formed using similar sugars with different oxidation levels such as glucuronic
acid, glucose, and sorbitol. In these cultures the pattern of products formed, acetate,
ethanol, formate, lactate, and succinate changes with the more oxidized products
dominating in the culture from the oxidized substrates and the more reduced prod-
ucts being enhanced upon culture growth on sorbitol, a more reduced substrate.
More oxidized products can be formed by depleting the NADH by an NADH oxi-
dase as mentioned above. Here we will consider the changes in metabolites when an
effort is made to augment the normal amount of NADH produced by the wild type
E. coli strain.
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Manipulation of the conversion reaction of pyruvate to acetyl-CoA and the sub-
sequent release of formate, if formed, can alter the amount of reductant available to
the cell. The production of NADH will favor the formation of more reduced prod-
ucts. There are three general enzymes that can catalyze this reaction each giving its
own reduced product; pyruvate dehydrogenase that forms NADH and acetyl-CoA
(Cassey et al. 1998, Guest et al. 1981, 1989, Guest and Stephens 1980, Haydon
et al. 1993), pyruvate ferredoxin oxidoreductase that forms reduced ferredoxin or
flavodoxin and acetyl-CoA (Blaschkowski et al. 1982, Reed et al. 2003, Serres et al.
2001), and pyruvate formate lyase that forms formate and acetyl-CoA (Birkmann
et al. 1987, Knappe and Blaschkowski 1975, Knappe et al. 1984, Knappe and Sawers
1990, Pecher et al. 1982, Sauter and Sawers 1990, Sawers and Bock 1988, Varenne
et al. 1975) with a number of articles describing the free-radiacal enzyme and its
activation under anaerobic conditions and inactivation under aerobic conditions and
the participation of proteins such as AdhE, YfiD and PflA in defining the activity
of the protein (Becker et al. 1997, 1999, Chase and Rabinowitz 1968, Hoover and
Ludwig 1997, Knappe and Wagner 1995, Kulzer et al. 1998, Nnyepi et al. 2007,
Reddy et al. 1998, Sawers et al. 1998, Sawers and Watson 1998, Wagner et al. 2001,
Zhang et al. 2001, Zhu et al. 2007a). If the reaction gives rise to NADH directly
the reduced nucleotide cofactor can be used for production of a desired reduced
product. The pyruvate dehydrogenase is generally the active enzyme under aerobic
conditions and it is replaced by the pyruvate formate lyase under limiting oxygen
conditions. The pyruvate dehydrogenase can still operate under anaerobic condi-
tions, however high NADH is often inhibitory to the reaction (Snoep et al. 1993,
Zhu et al. 2007a). The role of PdhR in regulating the Pdh system and effects of
mutations of pdhR on expression and metabolism have been studied (Haydon et al.
1993, Kim et al. 2007, Ogasawara et al. 2007, Quail and Guest 1995, Zhou et al.
2008). As an added feature, the production of formate, while the final step under
neutral pH conditions by Pfl, formate is further hydrolyzed to hydrogen and carbon
dioxide under acidic conditions by the formate hydrogen lyase system (Bagramyan
and Trchounian 2003, Birkmann et al. 1987). This reaction thereby removes the
acidic metabolite formate but does not generate any useful reductant or energy for
the cell but could reduce some acid stress due to formate accumulation. The effect
of formate hydrogen lyase and other hydrogenases has been studied with regard to
hydrogen production (Maeda et al. 2007a, Redwood et al. 2008, Yoshida et al. 2005,
2007). In some cases an uptake hydrogenase can recapture a portion of the hydrogen
released and it can thereby affect the pattern of metabolites (Francis et al. 1990,
Laurinavichene and Tsygankov 2001, Maeda et al. 2007b, Redwood et al. 2008).

The reducing equivalents available in formate can be recaptured to NADH rather
than be released to hydrogen by incorporation of a NADH-dependent formate dehy-
drogenase (Berrios-Rivera et al. 2002a,b, Galkin et al. 1997, Sanchez et al. 2005a,
Slusarczyk et al. 2000). Such NADH coupled enzymes are known in a number of
organisms and those of Candida have been used in vitro and in vivo for regeneration
of the NADH pool. Optimal enzymes from Candida boidinii and Mycobacterium
vaccae that are more stable have been generated by mutation (Slusarczyk et al. 2000,
Tishkov and Popov 2006, Yamamoto et al. 2005) and NADH-dependent formate
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B
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Fig. 17.2 (a) NADH coupled formate dehydrogenase pathway. The native NAD independent for-
mate hydrogen lyase pathway uses (FDHF: formate dehydrogenase, NAD independent) to convert
formate to hydrogen and carbon dioxide. The newly added NAD+ dependent pathway (in blue,
light gray) uses (FDH1: NAD+ dependent formate dehydrogenase, FDH1 encoded by fdh1 from
Candida boidinii) to convert formate to carbon dioxide and the reduced cofactor NADH. (b) Effects
on ethanol formation of expression of a NADH-dependent formate dehydrogenase in E. coli. The
E. coli strain GJT001 is a W3110 derivative parental strain and BS1 has an inactivated fdhF gene.
The plasmid pDHK29 is the vector and pSBF2 contains the fdh1 gene from Candida boidinii.
Growth was in L-broth plus 20 g/L glucose

dehydrogenases from other organisms have been isolated (Nanba et al. 2003a,b).
Such enzymes are used to recycle NADH for use in formation of valuable com-
pounds such as the pharmaceutical precursor, ethyl (S)-4-chloro-3-hydroxybutanoate
(Yamamoto et al. 2005). The formation of chiral pharmaceutical intermediates using
NADH regeneration has been reviewed (Patel 2000) (Fig. 17.2).

17.2.2.1 Ethanol

The capture of all available reducing power from glycolysis and present in pyruvate
is needed for optimal formation of 2 molecules of ethanol from glucose. In E. coli
such high formation of ethanol has been achieved through the addition of the pdc
and adh genes from Zymomonas mobilis (Ingram et al. 1987, 1999, Jarboe et al.
2007). The recapture of the reductant in formate via a NADH-dependent formate
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dehydrogenase can also give essentially complete conversion of glucose to ethanol
(Berrios-Rivera et al. 2002b, 2004) and chemostat cultures have shown the effect on
metabolites using different carbon sources (Sanchez et al. 2005a).

17.2.2.2 E. coli Cells as Single Step Biocatalysts

The use of regenerated NADH to carry out a reduction by a whole cell biocatalyst
has some advantage over using a purified enzyme in that the cell takes care of the
recycling step and the cofactor is confined within the cell. Several papers have used
such recycling systems in roles as cellular biocatalysts for amino acid (Galkin et al.
1997) and mannitol production (Kaup et al. 2003, 2004, 2005).

17.2.3 Alteration of Cofactor Availability (NADPH)

The pentose phosphate pathway, zwf and isocitrate dehydrogenase, icd are generally
considered to be the major sources of reductant NADPH which is used in many
biosynthetic reactions. The preference for NADPH can limit the production of the
desired product since the NADPH pool is considerably smaller than the pool of
NADH. Efforts to enhance the equilibration between the two reduced nucleotide
cofactors has been investigated. There are two transhydrogenases in E. coli, udhA
(sthA) and pntAB. The proton-translocating transhydrogenase PntAB was identi-
fied as the major source of NADPH under aerobic growth with the pentose phos-
phate pathway contributing almost as much and isocitriate dehydrogenase making
up most of the remainder. While the energy-independent transhydrogenase UdhA
(SthA), seemed to be essential under metabolic conditions with excess NADPH
formation suggesting it played more of a role in dissipating NADPH to NADH
(Sauer et al. 2004). Alterations of the transhydrogenase do indeed increase the level
of NADPH-dependent products that are formed (Weckbecker and Hummel 2004).
Another strategy to produce more NADPH for a conversion is to use a biocatalyst
with a special system and substrate for producing NADPH based on the oxidation
of the specific exogenous added substrate by a NADPH-dependent redox enzyme
and the use of the NADPH for synthesis of the desired reduced product (e.g. a
chiral alcohol). Another approach is to guide more metabolism through the pentose
phosphate pathway where NADPH is formed in an early step. Several papers have
analyzed the effects of mutations affecting glycolytic enzymes or overexpression
of glucose-6-phosphate-1-dehydrogenase, zwf, in the context of NADPH usage. A
discussion in consideration of the effects on PHB production is given below.

A more recent strategy is to incorporate a NADPH-utilizing step to replace a
natural NADH-dependent step in glycolysis. This approach of using an NADPH-
utilizing enzyme from another organism can provide additional NADPH for use by
an added pathway that consumes high amounts of the cofactor (a NADPH sink).
Several pathways utilize NADPH in high amount such as those for the biodegrad-
able polymer, polyhydroxybutyrate and many unsaturated colored compounds and
terpeniod compounds derived from the isoprenyl pyrophosphate pathway. Naturally
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existing pathways in E. coli or specialized pathways can be introduced to assess
the effects of manipulation of NADPH on the production of these compounds. Fre-
quently NADPH is used as a recycling compound in combination with oxidative
metabolism, such as with P450 type enzymes and monooxygenases, and studies can
examine the efficiency of NADPH recycling systems on processes catalyzed by such
enzymes (Fig. 17.3).

17.2.3.1 PHB

The pathway to PHB and other polyhydroxylalkanoates uses NADPH in the reduc-
tion step of the individual monomers (Saito et al. 1977) and since a large amount of
this product can be formed in engineered E. coli, it can serve as a useful test system
for accessing the effects of attempts to alter NADPH availability. There have been
many studies of the production of PHB type molecules in E. coli (Fidler and Dennis
1992, Lee et al. 1994, Peoples and Sinskey 1989, Schubert et al. 1988, Slater et al.
1988, 1992, Timm and Steinbuchel 1992) and recent reviews have appeared (Dias
et al. 2006, Keenan et al. 2006, Nomura and Taguchi 2007, Rehm 2007, Steinbuchel
2005, Steinbuchel and Hein 2001). The influences of various approaches are dis-
cussed below.

The inactivation of the talA gene increased PHB content and effect was thought to
arise from effects on supplies of the intermediates NADPH and acetyl-CoA (Song
et al. 2006) and a similar effect was noted upon overexpression of the tktA gene
(Jung et al. 2004). Directly overexpressing zwf encoding glucose-6-phosphate de-
hydrogenase increased PHB accumulation (Lim et al. 2002). These alterations of
the pentose pathway would promote increases in the major precursors. Efforts have
been made to engineer additional NADPH availability by processing more of the
glucose through glucose 6-phosphate dehydrogenase by using a mutation causing
pgi gene inactivation. NADPH overproduction through the pentose phosphate path-
way in the pgi mutant strain causes some reducing power imbalance that ultimately
can affect the cell growth (Kabir and Shimizu 2003a,b). Experiments analyzing the
concentrations of intermediates and coenzyme ratios acetyl-CoA/CoA, total CoA,
and NADPH/NADP ratios showed that the PHB flux was highly sensitive to the
acetyl-CoA/CoA ratio (response coefficient 0.8), total acetyl-CoA + CoA concen-
tration (response coefficient 0.7), and pH (response coefficient −1.25) (van Wegen
et al. 2001). It was less sensitive (response coefficient 0.25) to the NADPH/NADP
ratio. The total NADP(H) concentration (NADPH + NADP) had a negligible effect.

�
Fig. 17.3 (a) The pathway diagram shows the formation of NADPH in the pentose phosphate
pathway and the modification of the glycolytic pathway by replacement of the normal gapA by a
gapC gene from C. acetobutylicum. The GapC can form NADPH and lead to increased availability
of NADPH. (b) Metabolic flux distribution in control and modified E. coli strains. The data in
the figure indicate the net flux values in E. coli strains calculated from steady state cultures and
C-13 labeling experiments. In the top row is shown the values for E. coli MG1655 (pDHC29, the
vector) and the corresponding values from cultures of the E. coli gapA mutant strain harboring the
plasmid pHL621 containing gapC from Clostridium acetobutylicum are shown in the second row.
The values in brackets represent the exchange coefficients of the fluxes (Martinez et al. 2008)
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The effect of pta inactivation on PHB synthesis was studied in cultures grown on
several media with the observation that a decrease in Pta activity probably causes
some increase in acetyl-CoA as substrate for the PHB synthesis pathway, resulting
in increased PHB accumulation (Miyake et al. 2000). The effects of ack-pta and
pgi mutations on PHB synthesis was studied (Shi et al. 1999) and the improved
performance of the strain with the pgi mutation was observed, however the effect of
the alteration of acetyl-CoA suggested it was not so important in that situation.

A strain with altered NADPH availability was tested for PHB production. In this
strain the normal NADH-utilizing E. coli GAPDH was replaced with a NADPH-
utilizing enzyme from Clostridium acetobutylicum (Martinez et al. 2008). PHB ex-
periments were performed at 32 ◦C and 37 ◦C until glucose was exhausted. Cells
grew slower at 32 ◦C but higher amounts of PHB were produced. After 48h, the
modified E. coli produced 26% of PHB/DCW compared to 6.8% of PHB/DCW
of the control, showing an increase of 3.8-fold. The mutant strain of E. coli also
produced a significantly higher amount of PHB at 37 ◦C compared to the control
(11-fold) but the final concentration was lower than at 32 ◦C. These results showed
that the gapA mutation and introduction of the gapC gene did increase the PHB
production and further indicated the key role of NADPH availability in allowing
high PHB production (Fig. 17.4).

17.2.3.2 Lycopene

Lycopene, a highly unsaturated compound of interest for its color and food in-
gredient properties, consumes a large amount of NADPH during its biosynthesis.
Lycopene synthesis has been studied in E. coli with overexpression and engineering
of genes of the pathway (Alper et al. 2006, Cunningham et al. 1994, Kim et al.
2008, Kim and Keasling 2001, Linden et al. 1991, Misawa et al. 1990, Misawa
and Shimada 1997, Sandmann et al. 1990, Vadali et al. 2005, Wang et al. 2000,
Yoon et al. 2006, 2007a,b) and chemical variations of the basic carotenoid com-
pounds have also been formed in E. coli (Gallagher et al. 2003, Kajiwara et al.
1997, Lee et al. 2003, Schmidt-Dannert et al. 2000). A variety of approaches have
been used to improve production. These include the overexpression of chromoso-
mal genes of E. coli by the insertion of strong promoters to direct high level of
expression of selected genes (Alper et al. 2005a) or addition of plasmids bearing
these genes (Kang et al. 2005). The idea of balance among the levels of various
gene products in generating high flux through the pathway while avoiding build-
up of any toxic intermediates is a factor in this sort of pathway (Farmer and Liao

�
Fig. 17.4 (a) The pathway for production of PHB. The diagram shows the requirement for NADPH
in reduction of the intermediate for polymerization of the PHB precursor. (b) Aerobic PHB pro-
duction by control and gapA mutant E. coli strain overexpressing the gapC gene from C. aceto-
butylicum, both control and modified strains harbor the phb operon from Alcaligenes eutrophus
for PHB synthesis. Control strain: GJT001 (pDHC29 + pAeT29); gapC containing mutant strain:
MBS100G (pHL621 + pAeT29)
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2000, Farmer and Liao 2001, Matthews and Wurtzel 2000, Smolke et al. 2001).
As an example Farmer and Liao (Farmer and Liao 2000) manipulated precursor
availability to increase lycopene production, they showed the G3P pool could be
a limiting factor in their system. The effects of mutations on the synthesis of
lycopene have been investigated by computational and experimental approaches
(Alper et al. 2005b, Alper and Stephanopoulos 2008, Hemmi et al. 1998, Jin and
Stephanopoulos 2007). In recent studies, a large number of individual mutations
were screened and several genes were overexpressed in the host. Then combi-
nations of mutations with improved performance were genetically combined to
generate a strain with substantially greater production. This type of survey of
the metabolic landscape identified the best-engineered strain (T5(P)-dxs, T5(P)-
idi, rrnB(P)-yjiD-ycgW, delta gdh delta aceE delta fdhF, pACLYC), Further study

B

A

Fig. 17.5 (a) Lycopene synthesis by the non-mevalonate pathway requires a high amount of
NADPH. (b) Effect of increased NADPH availability on lycopene production. The final lycopene
concentration of control and modified E. coli strains after aerobic culture is shown. The cultures
were grown in LB or 2YT medium supplemented with 20 g/L of glucose for 24h at 30 ◦C and
250 rpm. The data shown are the average of three replicate experiments where the error bars rep-
resent the standard deviation. Control strain: MG1655 (pDHC29, + pK19-Lyco); modified strain:
MSM (pHL621 + pK19-Lyco). pDHC29 is the control vector and pHL621 carries the gapC gene
coupling NADPH formation to the glycolytic pathway. pK19-Lyco carries the lycopene biosyn-
thetic pathway genes (Cunningham et al. 1994)
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with a large number of mutations demonstrated the complexity of mapping only
one genotype to one phenotype. The investigation of combinations identified a
particularly interesting mutant, the �hnr�yli E genotype, that exhibited a dras-
tically improved lycopene production (Jin and Stephanopoulos 2007, Alper and
Stephanopoulos 2008).

The effects of the above manipulation of NADPH forming pathway, GAPDH
alteration, on the levels and productivity of the strains has also been explored.
The cell growth of the altered E. coli strain was comparable to the parental con-
trol and no growth impairment was detected. A significant difference was found in
lycopene production between the two strains. The NADPH altered strain produced

B

A

Fig. 17.6 (a) Synthesis of �-caprolactone in recombinant Escherichia coli expressing cyclohex-
anone monooxygenase (CHMO) from Acinetobacter sp. (b) Effect of increased NADPH availabil-
ity on conversion of cyclohexanone to the lactone. The final lactone concentration of control and
modified E. coli strains after aerobic culture is shown. The cultures were grown in LB medium
and the expression of CHMO was induced with IPTG. After reaching stationary phase the cells
were was re-suspended in 20 ml of non-growing medium containing glucose and 30mM cyclohex-
anone and incubated for 20 h. Concentrations of cyclohexanone and �-caprolactone were analyzed.
Control strain: BL21 (DE3) contains (pDHC29, + pMM4); the BL21 gapC modified strain: MBS
100B contains (pHL621 + pMM4). pDHC29 is the control vector and pHL621 carries the gapC
gene coupling NADPH formation to the glycolytic pathway. pMM4 carries the cyclohexanone
monooxygenase (CHMO) from Acinetobacter sp (Walton and Stewayt 2002)
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lycopene equivalent to 2.5-fold that of the control in concentration. The overex-
pression of the NADPH-utilizing GAPDH from C. acetobutylicum together with
the knockout of the native NADH-dependent GAPDH improved lycopene syn-
thesis confirming that cofactor availability is a limiting factor for the system
(Fig. 17.5).

17.2.3.3 Single Step Biocatalyst

In the area of using engineered E. coli as a whole cell biocatalyst for a specific
conversion, the emphasis has been on placement of an oxidizing step into the cell
and supplying the cell with the substrate. In optimal cases the product of the oxi-
dation step is easily removed from the reaction. The NADPH formed in this step is
then used to provide the reductant for the synthesis of the desired product. A useful
example of this has been studied using the recycling of mono-oxygenases to form
lactones particularly chiral derivatives. In this kind of test system using a strain in
which the replacement of a normal glycolytic step using NAD with one capable of
using NADP, a positive effect was seen on the production rate and the amount of
desired compound formed per mole of glucose consumed. The mutant host strain
containing the clostridial GAPDH gene showed a higher �-caprolactone yield that
of the control strain, 2.97 compared to 1.72 mole �-caprolactone/mole glucose. One
mole of NADPH is consumed per mole of � -caprolactone produced; therefore the
mutant strain produced 73% more NADPH than the control strain under the condi-
tions examined (Fig. 17.6).

17.3 Conclusions

In a variety of studies, it has been shown that considerable changes in metabolic pat-
tern can be achieved by manipulation of the availability of the oxidation-reduction
cofactors, NADH and NADPH. The alteration in availability of CoA compounds
has also indicated that this approach can offer improvements in the synthesis of
compounds derived from central pathway CoA containing intermediates. The addi-
tion of these cofactor manipulations to the arsenal of metabolic engineering tools
should expand the sophistication of cell engineering as well as allow a greater un-
derstanding of the role of the various redox carrier systems and activated carriers in
cell metabolism and physiology.
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Abstract Escherichia coli is the main bacterial producer of heterologous proteins.
The current production strategies aim at growing the bacteria to high density in order
to achieve high levels of desired proteins. The major obstacle for reaching high cell
densities with high product titers is the tendency of the bacteria to accumulate ac-
etate during the unrestricted growth on glucose. Moreover, the high demand for pre-
cursors and energy required for the biosynthesis of the heterologous protein causes
the cells to readjust their anabolic and catabolic reactions which, most often, aggra-
vate the acetate problem. Implementing fed-batch protocols and employing more
robust strains, such as E. coli B instead of K, can reduce acetate formation. Another
approach is to implement metabolic engineering to minimize acetate formation by:
(a) turning off genes which directly lead to the formation of acetate, (b) introducing
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genes that channel the carbon flow away from acetate towards other pathways, and
(c) by reducing the glucose uptake through deleting or replacing genes of the sugar
uptake system. Results show that a more general approach that focuses on global
regulators and/or gene sets, encoding multiple pathways will be required to con-
struct a robust strain capable of efficiently executing the production of recombinant
proteins at high growth rates without the formation of toxic byproducts such as
acetic acid.

18.1 Introduction

Escherichia coli is the major bacterial platform for producing heterologous proteins,
which is usually done by growing the recombinant microorganism to high density
on glucose as the carbon source. This topic has been the subject of numerous stud-
ies since the early 1970s, exploring the limits of bacterial culture density in order
to achieve maximum productivity. Research strategies have focused on improving
cultivation conditions, process related approaches and manipulation of the bacteria’s
physiology. The developed growth strategies, together with optimization of media
composition, application of fed-batch and dialysis culture techniques have made it
possible to grow E. coli to cell densities of up to 190 g/L dry cell mass (Shiloach
and Fass 2005). High-cell density culture techniques have been successfully em-
ployed for large-scale production of recombinant proteins with high yield and high
productivities (Choi et al. 2006).

The biosynthesis process exposes the bacteria to metabolic stress which is being
reflected in the operation of their Central Carbon Metabolism and is associated with
higher acetate production (Dittrich et al. 2005a, Tao et al. 1999). Acetate accumula-
tion is considered an obstacle to enhanced recombinant protein production; it is also
considered as one of the factors responsible for the reduced biomass yield in large
scale fed-batch cultivation (Enfors et al. 2001, Phue and Shiloach 2005). Research
is currently being directed to understand this behavior and the response of various E.
coli strains to the growth conditions during the cultivation and production process.
Few factors, among them, the overloading of the TCA cycle and limitations around
the pyruvate node as well as local pockets of oxygen limitations in large-scale cul-
tures, are considered to be the main reason for this phenomenon; therefore, concen-
trated effort is being directed to prevent the overloading and the related processes
and to allow the uninterrupted oxidation of the carbon source. This chapter describes
the operation of the Central Carbon Metabolism, possible explanations for the ac-
etate production and ways for its reduction, in particular during the recombinant
protein production process. It includes the following sections: a general description
of the Central Carbon Metabolism of E. coli, a review of acetate production and
consumption, a Systems Biology approach to the Central Carbon Metabolism in
E. coli K (JM109) and B (BL21), the effect of recombinant protein production on
glucose catabolism, and metabolic engineering approaches to overcome bottlenecks
in primary metabolism.
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18.2 The Central Carbon Metabolism in E. coli – General
Description

The Central Carbon Metabolism of E. coli in general and specifically the glucose
metabolism are well-known, well-studied and well-characterized topics (EcoCyc
2008, EcoSal ASM 2008, KEGG 2008, Nelson and Cox 2003). This metabolism
can be described by several interconnected metabolic pathways as seen in Fig. 18.1.

The major pathways are glycolysis (Embden-Meyerhof-Parnas EMP), TCA
cycle, glyoxylate shunt, pentose-phosphate pathway, anaplerotic reactions, acetate
production, and acetate assimilation.

Glucose assimilation starts with its uptake into the cell via the phosphotrans-
ferase system (PTS). D-Glucose is transported by PTS and ultimately enters the cell
as glucose-6-phosphate with the concomitant consumption of phosphoenolpyruvate
(PEP) and the release of pyruvate. Although the PTS is the dominant transport sys-
tem it is important to mention that there are alternative high-affinity glucose trans-
port systems (e.g. mgl) which are activated at low glucose concentrations (Death

Fig. 18.1 Simplified view of the Central Carbon Metabolism of E. coli comprising (A) glycol-
ysis and gluconeogenesis, (B) anaplerotic reactions, (C) acetate formation and assimilation, (D)
TCA cycle, and E. glyoxylate shunt. Arrows with broken lines indicate removel of metabolites for
biosynthesis. The arrow with the dotted line indicates an anaplerotic reaction catalysed by pyruvate
carboxylase (an enzyme not present in wildtype E. coli)
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and Ferenci 1994, Franchini and Egli 2006, Wick et al. 2001). Glucose transport
can also occur via the galactose-proton-symport system (galP)(Chen et al. 1997).
In these cases, phosphorylation of glucose is carried out by the cytoplasmic enzyme
glucokinase (glk) (Meyer et al. 1997)

The glucose-6-phosphate can then be directed into three different routes: it can
enter the glycolytic pathway through conversion to fructose-6-phosphate via the
phosphoglucose isomerase (pgi) reaction, it can enter the oxidative branch of the
pentose-phosphate pathway (zwf), or it can be converted by phosphoglucomutase
(pgm) to glucose-1-phosphate for sugar nucleotide synthesis. When entering the gly-
colytic pathway, the fructose-6-phosphate is converted to fructose-1,6-bisphosphate
by 6-phosphofructokinase (pfkA and pfkB), and then undergoes reversible aldol
condensation by fructose bisphosphate aldolase (fba) to glyceraldehyde-3-phosphate
and dihydroxyacetone-phosphate. The continuation of this pathway is the inter-
conversion of glyceraldehyde-3-phosphate and dihydroxyacetone-phosphate by
triosephosphate isomerase (tpiA), followed by oxidative phosphorylation of glyceral-
dhyde-3-phosphate to 1,3-bisphosphoglycerate by glyceraldehyde-3-phosphate
dehydrogenase (gapA) and the synthesis of ATP by phosphogylcerate kinase (pgk)
producing 3-phophogylcerate. The two evolutionarily unrelated phosphoglycerate
mutases (gpmA, gpmM) convert the 3-phosphoglycerate to 2-phosphoglycerate.
Enolase (eno) catalyzes the dehydration of 2-phosphoglycerate to phosphoenolpyru-
vate (PEP), which contains a high-energy phosphate group that is used both for
ATP synthesis and glucose transport by PTS. PEP is converted to pyruvate by two
distinct pyruvate kinases (pykF and pykA). The reverse reaction, the conversion
of pyruvate to PEP during gluconeogenesis is catalyzed by phosphoenolpyruvate
synthase (pps).

Pyruvate is the end-product of glycolysis; it is oxidized to acetyl-CoA and CO2

by the pyruvate dehydrogenase complex (composed of pyruvate dehydrogenase
E1, dihydrolipoamide transacetylase E2, and dihydrolipoamide dehydrogenase E3;
aceEF, lpd).

Acetyl-CoA is a pivotal molecule which can participate is several reactions: it
can enter the TCA cycle, it can be used for fatty acids and triglycerides biosynthesis
and it can be diverted towards acetate production. Accumulation of acetyl-CoA can
affect the glucose utilization by causing accumulation of pyruvate and enhancing
acetate production.

The TCA cycle plays two essential roles in the carbon metabolism: it is respon-
sible for the total oxidation of acetyl-CoA, and serves as a source of intermediates
for the biosynthesis of several amino acids. The general flow of the TCA cycle is as
follows: Acetyl-CoA, formed by the oxidation of pyruvate condenses with oxaloac-
etate to form citrate by citrate synthase (gltA). The citrate is transformed to isocitrate
by two genetically distinct aconitases (acnA and acnB). Next, isocitrate dehydroge-
nase (icdA) performs the oxidative decarboxylation of isocitrate to �-ketoglutarate
with generation of NADPH. Following is another oxidative decarboxylation step in
which �-ketoglutarate is converted to succinyl-CoA and CO2 by the �-ketoglutarate
dehydrogenase complex (sucAB, lpd). The succinyl-CoA is converted to succinate
by succinyl-CoA synthetase (or succinate thiokinase; sucCD). Succinate is oxidized
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to fumarate by succinate dehydrogenase (sdhABCD); the fumarate is reversibly hy-
drated to malate by three distinct fumarases (fumA, fumB, fumC). In the last reaction
of the citric acid cycle, NAD-linked L-malate dehydrogenase (mdh) catalyzes the
oxidation of malate to oxaloacetate.

The TCA cycle is interconnected to the glyoxylate shunt which is essential for
growth on carbon sources such as acetate or fatty acids. This pathway allows the net
conversion of acetyl-CoA to metabolic intermediates. In the glyoxylate shunt, isoc-
itrate is cleaved by isocitrate lyase (aceA), forming succinate and glyoxylate. Isoc-
itrate lyase competes with the TCA cycle enzyme isocitrate dehydrogenase (icdA)
for isocitrate. The bifunctional enzyme isocitrate dehydrogenase kinase/phosphatase
(aceK) regulates the activity of isocitrate dehydrogenase to allow isocitrate lyase to
effectively compete for isocitrate. The formed glyoxylate condenses with a second
molecule of acetyl-CoA to yield malate in a reaction catalyzed by malate synthase
(aceB). The malate is subsequently oxidized to oxaloacetate, which can condense
with another molecule of acetyl-CoA to start another turn of the TCA cycle. The
operation of the TCA cycle can be affected by the removal of the cycle intermediates
for biosynthesis of various cell compounds; this can cause accumulation of acetyl-
CoA that potentially can affect also the activity of the glycolytic pathway. On the
other hand, an active glyoxylate shunt can reduce the accumulation of acetyl-CoA
and eliminate interference with both glycolysis and TCA cycle activities.

The role of the anaplerotic reactions is to replace intermediates. These reactions
are considered part of the Central Carbon Metabolism and they include: the conver-
sion of PEP to oxaloacetate by PEP carboxylase (PPC shunt, ppc), the conversion
of oxaloacetate to PEP by PEP carboxykinase (pck), the conversion of pyruvate to
oxaloacetate by pyruvate carboxylase (not present in wildtype E. coli; pyc), and the
conversion of malate to pyruvate (and vice versa) by the malic enzyme (sfcA). The
glucoenogensis, the conversion of pyruvate to glucose, can also be considered as
anaplerotic reaction in which the organism converts excess glucose to glycogen.

Acetate production and assimilation are also part of the Central Carbon Meta-
bolism. Acetate is produced from pyruvate and acetyl-CoA and consumed by con-
version back to acetyl CoA. This component of the Central Carbon Metabolism
includes the following reactions: acetate production from pyruvate by pyruvate
oxidase B (poxB), acetate production from acetyl-CoA via acetyl phosphate by
phosphotransacetylase (pta) and acetate kinase (ack), acetate consumption through
acetyl-AMP by acetyl CoA synthetase (acs), and by the reverse action of acetate
kinase (ack) and phosphotransacetylase (pta).

Lastly, the Central Carbon Metabolism also includes the pentose-phosphate
(PP) pathway. The PP pathway serves several metabolic functions which include
catabolism of pentoses, glucose, and gluconate, synthesis of pentoses, and pro-
viding precursors used in the biosynthesis of lipopolysaccharide, nucleotides, sev-
eral amino acids and vitamins. This pathway includes two branches: oxidative and
nonoxidative. In the oxidative branch, glucose-6-phosphate (G6P) is first oxidized
by glucose-6-phosphate dehydrogenase (zwf) and then further converted by a series
of enzymes to ribulose-5-phosphate (Ru5P) and CO2. Two molecules of NADP are
reduced in the dehydrogenase reactions of this process and can be used for reductive
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biosynthesis, maintenance of redox balance, and regeneration of oxidative damage.
The nonoxidative branch of the pathway comprises reversible reactions that perform
the interconversion of the pentose phosphates ribulose-5-phosphate (Ru5P), ribose-
5-phosphate (R5P), and xylulose-5-phosphate (Xu5P), and the transfer of either a
glycoaldehyde group (transketolase) or a dihydroxyacetone group (transaldolase)
among sugar phosphates.

18.3 Acetate Production and Consumption

As was mentioned in the previous section, acetate occupies an important place in
the Central Carbon Metabolism of E. coli. Acetate accumulation can affect both
the bacterial growth and the production of recombinant protein, and serves as an
indicator that something went “wrong” in the glucose assimilation process. Acetate
accumulation phenomenon has been reviewed comprehensively in the last few years
(De Mey et al. 2007, Eiteman and Altman 2006, Shiloach and Fass 2005, Wolfe
2005) and, therefore, it will be described here with an emphasis on how several
pathways affect acetate concentration and the possible role of few global controllers.

A genome-scale analysis of the integrated metabolic and transcriptional regula-
tory networks of E. coli shows that the genetic regulatory network responds primar-
ily to the available electron acceptor and to the presence of glucose as the carbon
source (Barrett et al. 2005). When carbon flux into the cells exceeds the amphibolic
capacity of the central pathways, the flux is diverted to acetate excretion which
diminishes the efficiency of carbon conversion to biomass (El-Mansi and Holms
1989). Inverse flux analysis has been used to predict the flux distribution based on
the stoichiometries of the reactions in the metabolic network. This approach has
been also applied to analyze acetate excretion in aerobic E. coli cultures (Delgado
and Liao 1997, Farmer and Liao 1997). The results suggest that the anaplerotic path-
ways, including the reactions catalyzed by PEP carboxylase (ppc) and the glyoxylate
shunt, are the most likely factors affecting acetate excretion in E. coli.

Similar to other metabolites, acetate concentration is the result of production and
consumption. The main route for acetate production is from acetyl-CoA through
acetyl-phosphate by the two enzymes: phosphotransacetylase (pta) and acetatek-
inase (ack). Another minor route for acetate production is directly from pyruvate
by pyruvate oxidase B (poxB). Although the function of pyruvate oxidase B is not
fully understood it is clear that it contributes significantly to aerobic growth effi-
ciency (Abdel-Hamid et al. 2001, Flores et al. 2004a). Any reaction that affects the
concentration of acetyl-CoA and pyruvate will, in turn, affect acetate production
and hence concentration. Acetyl-CoA concentration is the result of production from
glucose through the glycolytic pathway by the conversion of PEP to pyruvate by the
reversible enzyme pyruvate kinase (pyk), and the conversion of pyruvate to acetyl-
CoA by the irreversible reaction catalyzed by the pyruvate dehydrogenase complex
(aceEF, lpd). Acetyl-CoA concentration is also affected by its consumption through
the TCA cycle and its consumption for fatty acid biosynthesis. The anaplerotic en-
zyme PEP carboxylase (ppc) converts PEP to oxaloacetate, reducing acetyl-CoA



18 Glucose and Acetate Metabolism in E. coli – System Level Analysis 383

accumulation as a result of higher turnover of the cycle. Anaplerotic reactions can
also reduce the acetyl-CoA concentration by lowering the pyruvate concentration
through the conversion of PEP back to glucose and glycogen accumulation.

Acetate formation is also affected by the NADH/NAD ratio. Vemuri et al. (2006a)
showed that several genes involved in the TCA cycle and respiration are repressed
as the glucose consumption rate increases. Deletion of the gene coding for the reg-
ulatory protein ArcA (arcA) resulted in acetate reduction and increased the biomass
yield due to the increased capacities of the TCA cycle and respiratory chain. Acetate
formation was completely eliminated by reducing the redox ratio through expression
of NADH oxidase (from Streptococcus pneumonia) in an arcA mutant, even at a
very high glucose consumption rate (Vemuri et al. 2006b). NADH and NADPH
can be converted into each other through reversible transfer of reducing equivalents
between NAD and NADP. The pentose-phosphate pathway and isocitrate dehydro-
genase (icdA) catalyzed reaction are generally considered as the major sources of
the anabolic reductant NADPH which can be converted by the two native E. coli
transhydrogenases (pntAB and udhA) into NADH and vice versa (Boonstra et al.
1999, Hoffmann et al. 2002, Sauer et al. 2004). Both transhydrogenases have diver-
gent physiological functions: energy-dependent reduction of NADP with NADH by
PntAB (Rydstrom 1977, Sauer et al. 2004), and reoxidation of NADPH by UdhA
(Boonstra et al. 1999, Hoffmann et al. 2002, Sauer et al. 2004) thus providing E.
coli primary metabolism with a high flexibility to cope with changing catabolic and
anabolic demands.

Acetate assimilation is done by the enzyme acetyl-CoA-synthetase (acs) that
converts acetate to acetyl-CoA through the intermediate acetyl-AMP. This route
is being utilized when acetate is the carbon source and when there is a need to
reabsorb the acetate formed when the bacteria grow at high rate, the latter is also
known as the “acetate switch”(Wolfe 2005). The components of this switch are
phosphotransacetylase (pta), acetate kinase (ack), and acetyl CoA synthetase (acs).
This switching behavior is essential for alternating between periods of rapid growth
in the presence of abundant nutrients and growth periods where these nutrients
are in short supply. Kumari and co-workers (2000) showed that this switch oc-
curs primarily through the induction of acs, and that the timing and magnitude of
this induction depend, in part, on the direct action of the carbon regulator cyclic
AMP receptor protein, synonym: cAMP-catabolite activator protein (crp or cap)
and the aerobic/anaerobic transcriptional regulator (fnr). It also depends, probably
indirectly, upon the glyoxylate shunt repressor (iclR), and its activator the tran-
scriptional regulator of fatty acid metabolism (fadR). During aerobic growth of
E. coli on acetate, phosphotransacetylase (pta) and the �-ketoglutarate dehydro-
genase complex (sucAB, lpd) are in direct competition for their common co-factor,
HS-CoA. This competition can create a bottleneck at the level of �-ketoglutarate
dehydrogenase in the TCA cycle. Addition of pyruvate, glucose or any glycolytic
intermediate to acetate-grown cells relieves the bottleneck by reversing the carbon
flow through phosphotransacetylase to supply acetyl-phosphate and much-needed
HS-CoA (El-Mansi 2005). Growth of E. coli on acetate as the sole source of car-
bon and energy requires operation of the glyoxylate shunt in connection with the
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expression of the polycistronic ace operon (Cortay et al. 1989). Expression of the
aceK gene is essential for growth on acetate (El-Mansi et al. 1987). The compe-
tition at the junction of isocitrate between isocitrate lyase (aceA) and isocitrate
dehydrogenase (icdA) is resolved by the reversible phosphorylation/inactivation of
isocitrate dehydrogenase and the operation of the glyoxylate bypass, the expres-
sion of which is subject to regulation at the transcriptional and translational levels
as well as being dependent on growth rate (El-Mansi et al. 2006). The adapta-
tion to acetate is connected to complex metabolic changes and alterations in gene
expression in E. coli (Kirkpatrick et al. 2001, Oh et al. 2002, Rosenthal et al.
2008). For example, growth on acetate also induces expression of genes encoding
malic enzymes (maeA, sfcA) and phosphoenolpyruvate synthase (pps) while caus-
ing repression of glycolytic and glucose phosphotransferase genes (Oh and Liao
2000).

Another mechanism that can affect acetate concentration is the carbon catabolite
repression. It allows E. coli to alter its metabolism in response to the availability of
specific sugar sources. The cAMP-catabolite activator protein (cap) complex regu-
lates a number of E. coli genes involved in carbon metabolism (Krin et al. 2003).
Kao et al. (2005) demonstrated that the gluconeogenic genes in E. coli provide a
feedback loop to this global regulator in carbon source transition. PTS also plays a
role in the carbon catabolite repression; inactivation of PTS components has been
applied successfully as a strategy to abolish carbon catabolite repression, resulting
in E. coli strains that use sugar mixtures more efficiently, such as those obtained
from lignocellulosic hydrolysates (Gosset 2005).

A cAMP-independent catabolite repression mechanism found in E. coli involves
the catabolite repressor/activator (cra), which formerly was designated as the fruc-
tose repressor (FruR), a pleiotropic transcriptional regulatory protein that controls
the direction of carbon flux through metabolic pathways (Ramseier et al. 1993).
When catabolites bind to Cra, it dissociates from the DNA, causing both catabo-
lite activation and catabolite repression (Saier 1996). Cra controls the expression of
genes encoding key enzymes of major pathways of carbon metabolism (Ramseier
et al. 1995). Cra exerts a negative effect on the expression of genes encoding gly-
colytic and Entner-Doudoroff enzymes, while exerting a positive effect on genes
encoding the TCA cycle, the glyoxylate shunt and gluconeogenic enzymes (Bledig
et al. 1996, Kaga et al. 2002, Negre et al. 1996, Ow et al. 2007).

Based on the above information, several genetic modifications were implemented
with an effort to reduce acetate accumulation. These methods are described in more
details in the final section of this chapter.

18.4 Systems Biology Approach to the Central Carbon
Metabolism in E. coli K (JM109) and B (BL21)

E. coli B (BL21) and E. coli K (JM109) respond differently to glucose concentration
in their growth media, especially when the glucose concentration is 10 grams per
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liter or more. E. coli B is not sensitive to the high glucose concentration, its growth
is not affected, and there is very low acetate accumulation. In contrast, E. coli K is
sensitive to the high glucose concentrations, produces elevated levels of acetate and
grows at a slower rate (Shiloach et al. 1996). Investigation of the difference between
these two strains can serve as an excellent tool for understanding the regulation and
control of the Central Carbon Metabolism when utilizing glucose as sole carbon
substrate.

The traditional approach for evaluating and understanding the regulation and the
operation of the Central Carbon Metabolism was to concentrate on specific enzymes
and genes and sometimes on a specific pathway. More information on the interre-
lationship between the various pathways will allow a better understanding of the
processes controlling glucose utilization, reducing acetate production and improv-
ing growth and recombinant protein production.

With the development of new methodologies - especially the high-throughput
measurements of DNA, RNA and proteins, and the new mathematical modeling and
algorithms - it is possible to examine simultaneously various pathways and to have
a sense of the regulation and the operation from a broader perspective. The term for
this global approach is Systems Biology (Barrett et al. 2005, Kitano 2002). One of
the popular definitions of Systems Biology is the investigation of complex biological
processes in a way that aims to understand how individual molecular components
combine on a global scale to yield particular structure function relationships and be-
have in response to specific perturbations. Attempts to utilize global understanding,
although in a rather limited way, were implemented long before the term Systems
Biology was coined in 2002. The continuing research of the difference between
the Central Carbon Metabolism of E. coli K and B can serve as an example for
implementing the System Biology approach. During the past years several method-
ologies were implemented to evaluate the relationship between the various pathways
of the Central Carbon Metabolism, and the overall response of the system to glucose
and acetate concentrations. With the introduction of each new method additional
information was obtained and more details became available. Although no powerful
mathematical approaches, which currently are part of the Systems Biology, were
implemented, better understanding of the metabolism was achieved.

Several factors could be responsible for the different behavior of E. coli B com-
pared to E. coli K: reduced glucose transport into the cell, increased respiration/O2

transfer rate, decreased flux from pyruvate to acetate, increased anaplerotic flux
from PEP to oxaloacetate, increased flux through the glyoxylate shunt and increased
TCA cycle flux. The initial assumption was that perhaps the glyoxylate shunt is fully
operational in E. coli B and may not be operational or operates at a low rate in E. coli
K. This assumption had to be proven.

The first attempt to look at the glyoxylate shunt question from a “Systems Bi-
ology perspective” was done by metabolic flux analysis together with measuring
the concentration and activity of several key metabolites and enzymes, respectively
(van de Walle and Shiloach 1998). Metabolic flux analysis (Savinell and Palsson
1992) compares fluxes through specific pathways by using the following assump-
tions: use known reaction stoichiometries, ignore nonlinearities in kinetics, ignore
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regulations and assume that the network has been correctly drawn. In this particular
case of evaluating the flux through the glyxoylate shunt, the calculations were based
on measuring specific glucose uptake rate, specific acetate production rate, growth
rate, CO2 production rate, O2 uptake rate, cell monomers content, and assuming
an ATP/oxygen (P/O) ratio of 1.33 and pseudo steady state concentrations for the
intracellular metabolites (van de Walle and Shiloach 1998). The purpose was to de-
termine the flux through the TCA cycle and the glyoxylate shunt; however, because
of the singularity of this methodology (Vallino and Stephanopoulos 1990), it was
impossible to calculate simultaneously the flux of the two pathways and to receive
a direct answer. For E. coli B we were able to determine independently the flux
through the TCA cycle and the flux through the glyoxylate shunt. But for E. coli
K only the flux through the TCA cycle could be calculated as this bacterium has
only negligible amounts of isocitrate lyase (aceA). The results of this initial phase
can be summarized as follows: the flux through isocitrate dehydrogenase (icdA) was
higher in E. coli B than in E. coli K, isocitrate dehydrogenase was highly active in
B and the flux to acetate through the acetate kinase-phosphotransacetylase system
(pta-ack) was higher in K (van de Walle and Shiloach 1998). In addition, E. coli
B had a higher internal isocitrate concentration and a lower pyruvate concentration
(van de Walle and Shiloach 1998).

The second attempt was to measure simultaneously the flux through the glyoxy-
late shunt and the TCA cycle using 13C labeled glucose (Noronha et al. 2000). This
was done by measuring the distribution of the 13C isotopomers of oxaloacetate and
acetyl-CoA. It was concluded that in E. coli B, the glyoxylate shunt is active at 22%
of the flux through the TCA cycle and is inactive in K. Additionally, in E. coli B
the flux through the TCA cycle equals the flux through the PPC shunt, while in E.
coli K the flux of the TCA cycle is only third of the flux through the PPC (Noronha
et al. 2000).

The third attempt in utilizing the “Systems Biology perspective” to gain better
understanding of the Central Carbon Metabolism was made possible due to the de-
ciphering of the E. coli genome and the availability of DNA microarray technology
(Blattner et al. 1997, Richmond et al. 1999). By using Northern blots and DNA mi-
croarrys, it was possible to simultaneously follow the transcription of genes which
are part of several metabolic pathways, and to identify the activated pathways at
different growth conditions (Phue et al. 2005, Phue and Shiloach 2004). Although
this method allowed the identification of up-regulated and down-regulated genes, it
did not provide information on the flux through the various pathways. The results of
this study are shown in Fig. 18.2a and b.

In E. coli B, the various pathways of the Central Carbon Metabolism are activated
whether the glucose concentration is low or high, at both concentrations the tested
pathways operate similarly. In contrast, E. coli K was responding differently to the
various glucose concentrations; its gene activity profile was similar to E. coli B only
at a low glucose concentration.

The latest step in this effort was done by comparing the transcription level of
a group of genes that compose specific metabolic pathways by the semiparametric
algorithm using oligo-microarrays (Phue et al. 2007). It was found that as a group,



18 Glucose and Acetate Metabolism in E. coli – System Level Analysis 387

Fig. 18.2 Proposed glucose
metabolism during growth of
(a) E. coli K12 (JM101) and
(b) E. coli B (BL21) under
glucose excess conditions.
The red arrows with broken
lines indicate the activated
pathways utilized by the
different strains
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the following pathways were transcribed differently in the two strains: glyoxylate
shunt, TCA cycle, fatty acids biosynthesis, gluconeogensis, and anaplerotic path-
ways. There was no difference between the groups comprising transcription of ei-
ther glycolysis or the pentose-phosphate pathway genes. This finding confirmed the
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previous observation that the difference is not the result of a single gene but most
likely the effect of one or more global controllers that influence the transcription of
complete pathways.

With the information available so far, it is possible to have some explanation
why E. coli B is producing less acetate when being exposed to high glucose con-
centration, and why it is utilizing glucose more efficiently than E. coli K. But it is
impossible to point out why this is happening, why the TCA cycle flux in E. coli
B is higher than in E. coli K, why the glyoxylate shunt is inactive at high glucose
concentration in E. coli K and why the gluconeogenesis is active in E. coli B and not
in E. coli K. The expectation is that high glucose concentration should activate the
glyoxylate shunt; increase the TCA cycle activity, increase the acetate uptake and re-
duce the acetate concentration. All these actions are observed in E. coli B regardless
of glucose or acetate concentration; it is puzzling that there is no activation in E. coli
K, and there is constant activation in E. coli B, especially puzzling is the fact that
poxB is less active in E. coli B. Perhaps, additional global analysis of the Central
Carbon Metabolism will provide a better explanation. In the meantime, there are
numerous efforts to improve E. coli K behavior by modifying the Central Carbon
Metabolism. These approaches are described in the last section of this chapter.

18.5 Effect of Recombinant Protein Production
on Glucose Catabolism

Escherichia coli is still the most prominent bacterial host for recombinant protein
production with glucose as the common carbon substrate in recombinant protein
production processes. This process can induce a variety of stress reactions in the
bacterial host including flux alterations in primary metabolic pathways (Hoffmann
and Rinas 2004). Calculations by Stouthamer revealed that protein synthesis is
the most energy consuming process of all anabolic activities (Stouthamer 1977,
Stouthamer 1980, Stouthamer 1986). According to these estimations, more than
50% of the ATP required for the formation of microbial cells during growth on
defined medium with glucose as sole carbon and energy source is used for the poly-
merization of amino acids into proteins while only 4% is required for the synthesis
of amino acids (Stouthamer 1986). Experiments by Anderson and von Meyenburg
(1980) suggested that growth of E. coli in aerobic cultures under glucose excess
conditions is limited by the rates of both respiration and ATP generation through
oxidative phosphorylation. Thus, recombinant protein production might be poten-
tially limited by bottlenecks in the energy-generating pathways. Under conditions
of glucose excess, part of the glucose is not used for biomass and energy generation
through the respiratory chain and proton motive force, rather is diverted towards
the formation of overflow metabolites, mainly acetate, causing a reduction in the
efficiency of glucose utilization.

Early experiments with genetically modified E. coli strains indicated that ex-
tracellular accumulation of acetate (Brown 1985, Jensen and Carlsen 1990, Meyer
1984, Shimizu 1988) or other overflow metabolites like glutamate (Rinas 1989) are
associated with reduced yields of the recombinant protein produced. The recent
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developments in the recombinant DNA technology and the widespread utilization
of E. coli as a microbial protein production factory stimulated research associated
with the understanding and solving of the “acetate problem”. Although we still do
not completely understand the complexity of acetate formation and are far from
a non-acetate producing, metabolically balanced and robust E. coli designer strain,
there has been progress in overcoming this difficulty and improving the recombinant
protein production process (see following section). Early hypothesis suggested that
metabolic bottlenecks leading to the formation of acetate are localized at the level of
TCA cycle activity and in the respiratory chain (Anderson and von Meyenburg 1980,
Majewski and Domach 1990). Therefore, acetate formation would be an alternative
way for generating ATP, although at reduced efficiency. In fact, acetate formation
is observed under conditions of energetic stress/deficiency when the carbon flux
into the cells is bigger than the amphibolic capacity of the central pathways, for
example, caused by artificially induced futile cycling (Chao and Liao 1994, Patnaik
et al. 1992) or at rapid growth in glucose-limited chemostat cultures (Kayser et al.
2005).

It has not only been shown that recombinant protein synthesis is reduced during
acetate accumulation, but also that induction of recombinant protein synthesis can
lead to enhanced acetate excretion (Akesson et al. 1999, Wittmann et al. 2007).
Also reported has been the enhanced pyruvate excretion as a result of recombinant
protein synthesis, suggesting an alteration in the pyruvate oxidation pattern (George
et al. 1992). An elevated intracellular pyruvate pool, together with enhanced pyru-
vate excretion was observed during recombinant protein production under glucose
excess conditions using a temperature-inducible expression system (Wittmann et al.
2007). These observations suggest that enhanced acetate formation during recombi-
nant protein production results from limitations around the pyruvate node.

Proteomic analyses of inclusion bodies, composed mainly of the recombinant
protein product, revealed that dihydrolipoamide dehydrogenase (lpd), the common
component of the pyruvate and the �-ketoglutarate dehydrogenase complexes, coag-
gregates during recombinant protein production. This probably leads to additional
aggravation of the limitation around the pyruvate node (Rinas et al. 2007) and at
the level of TCA cycle activity where �-ketoglutarate dehydrogenase activity is
considered as a major bottleneck (El-Mansi 2004, Rinas 1989). Dihydrolipoamide
dehydrogenase might be a critical protein since lpd knockout mutants of E. coli pro-
duced significantly more pyruvate and glutamate under aerobiosis (Li et al. 2006).
Moreover, E. coli strains with deletion of both acetate producing pathways (ack-pta
and poxB) accumulate pyruvate (Dittrich et al. 2005b). Pyruvate excretion in these
strains can be prevented by overexpression of genes encoding the pyruvate dehydro-
genase complex (Dittrich et al. 2005b) suggesting this complex enzyme as a poten-
tial metabolic engineering target for the generation of low acetate producing strains.

As indicated, recombinant protein synthesis driven by strong promoters is a
high-energy consuming process potentially limited by bottlenecks in the energy-
generating pathways. An example is recombinant protein production using
temperature-inducible expression systems. This process caused an immediate drop
of the adenylate energy charge, which serves as an indicator of the energetic status
of the cells. This occurs at glucose limiting (Hoffmann et al. 2002) as well as at
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glucose excess growth conditions (Wittmann et al. 2007). Under glucose excess con-
ditions, protein synthesis, driven by the temperature-inducible lambda promoters,
caused enhanced excretion of acetate and other byproducts (Wittmann et al. 2007)
while protein synthesis under balanced carbon-limited conditions caused redirec-
tion of substantially more glucose into the energy-generating respiratory pathway
(Hoffmann and Rinas 2001, Schmidt et al. 1999a). Thus, when recombinant pro-
tein synthesis is induced under carbon-limiting balanced growth conditions, which
do not lead to the formation of acetate, a greater portion of glucose is diverted to
carbon dioxide production compared to non-producing conditions (Hoffmann and
Rinas 2001, Schmidt et al. 1999b). In balanced fed-batch conditions, about 40–45%
of the glucose carbon is converted to carbon dioxide, which increases to 70% after
temperature-induced recombinant protein production (Hoffmann and Rinas 2001).
During IPTG-induced protein production in balanced carbon limited fed-batch cul-
tures, the flux towards carbon dioxide formation increased from 44–46% of glucose
carbon before induction to 50–52% after the onset of recombinant protein produc-
tion (Schmidt et al. 1999b). An increased respiratory activity upon induction of
recombinant protein synthesis has also been noted for other expression systems
(Bhattacharya 1997, Lin and Neubauer 2000). The increase in protein synthesis rates
upon induction in balanced carbon-limited fed-batch cultures correlated directly
with an increase in respiratory activity (Hoffmann and Rinas 2001) together with
enhanced glycolytic and TCA cycle activity and reduced pentose-phosphate path-
way flux (Luo et al. 2008, Weber et al. 2002). In contrast to the catabolic response
in balanced carbon-limited fed-batch cultures, cells reduce TCA cycle activity upon
recombinant protein production under glucose excess in batch culture conditions
(Wittmann et al. 2007).

Changes in the respiratory activity in response to recombinant protein production
are primarily caused by changes on the level of catabolic enzyme activity and not
on the amount of catabolic enzymes as the respiratory response is instantaneous
(Hoffmann et al. 2002, Schmidt et al. 1999a,b). The cellular response towards re-
combinant protein production on the level of transcription and translation of genes
encoding catabolic enzymes appears to be complex and very specific with respect to
the recombinant protein produced and the conditions of induction. General conclu-
sions are difficult to obtain; the most common observations include down-regulation
of transcription of genes involved in energy generation, such as TCA cycle, respi-
ration and AcrA-dependent genes (Durrschmid et al. 2008, Haddadin and Harcum
2005, Harcum and Haddadin 2006, Oh and Liao 2000). Proteome analysis indicated
both decrease (Wagner et al. 2007) and increase in synthesis rate, or level of proteins
(Durrschmid et al. 2008, Hoffmann et al. 2002, Jurgen et al. 2000) encoded by these
genes. Contrasting findings, such as decreased transcript levels of TCA cycle and
glyoxylate shunt enzymes associated with increased protein levels, have also been
reported (Durrschmid et al. 2008).

Global transcriptome analysis of the cellular response towards recombinant pro-
tein production indicated that many genes of the glycolytic pathway (e.g. fba, eno)
and PTS (e.g. ptsG and crr) were downregulated while the gene encoding glucok-
inase (glk) was strongly upregulated (Haddadin and Harcum 2005, Oh and Liao
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2000). A strong upregulation of glucokinase in response to recombinant protein
production has been noted not only through increased transcription but also through
elevated enzyme levels (Arora and Pedersen 1995), indicating a shift in the uti-
lization of the glucose uptake pathway in response to recombinant protein produc-
tion. The impairment of glucose uptake during recombinant protein production (Lin
et al. 2001, Neubauer et al. 2003) might be reflected by the transition from the
utilization of the more common PTS towards alternative pathways for supplying
overproducing cells with glucose-6-phosphate. On the other hand, reduced synthe-
sis and leakage of periplasmic binding proteins involved in high-affinity glucose
uptake (mglB) might also contribute to an impairment of glucose uptake under
protein production conditions in high-cell density cultures (Rinas and Hoffmann
2004).

18.6 Metabolic Engineering Approaches to Overcome
Bottlenecks in Primary Metabolism

The formation of acetic acid is a disturbing side reaction during rapid growth of E.
coli on glucose (Luli and Strohl 1990). As a result, efforts have been undertaken
to reduce the formation of acetic acid either by process control strategies or by
metabolic engineering approaches. When implementing process control approaches,
the aim is to reduce glucose uptake rate, generally done by limiting the glucose sup-
ply through fed-batch culture techniques (Korz et al. 1995, Lee 1996, Shiloach and
Fass 2005). This approach has been successfully applied for recombinant protein
production in high-cell density fed-batch cultures leading to recombinant protein
levels in the range of 5–10 g L−1 with E. coli strains having tendency towards acetate
formation under glucose excess conditions (Hoffmann and Rinas 2004, Schmidt
et al. 1999a, Vallejo et al. 2002).

Metabolic engineering efforts have been implemented to generate strains which
produce less acetate in protein production processes (for recent review refer to
(Eiteman and Altman 2006)). Three major metabolic routes or combinations thereof
have been applied to reduce acetate accumulation; (i) knocking out genes that di-
rectly lead to the formation of acetate, (ii) introducing genes that lead to redirection
of the carbon flow away from glycolysis and acetate formation towards other path-
ways and metabolites, and (iii) reducing glucose uptake by deleting or replacing
genes of the PTS.

Initial approaches focused on mutation or deletion of enzymes that lead to the for-
mation of acetate, in particular blocking the acetate kinase-phosphotransacetylase
(ack-pta) pathway (Bauer et al. 1990, Hahm et al. 1994). For example, a phos-
photransacetylase mutant selected by classical mutagenesis techniques showed im-
proved protein production properties in bioreactor cultures (Bauer et al. 1990).
The downregulation of the acetate-generating pathway that includes the enzymes
phosphotransacetylase (pta) and acetate kinase (ack) by using an antisense RNA
strategy also improved recombinant protein production (Kim and Cha 2003). Most
of these strains have been tested in laboratory-scale shake flask experiments and
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did not show the robustness required for industrial application. E. coli strains that
carry single mutations (e.g. ack, pta, acs, poxB) do not exhibit the robustness in
high-cell density fed-batch cultures compared to the corresponding control strain
(Contiero et al. 2000). Inactivation of the poxB gene results in slower growth rates
and also leads to a reduced carbon conversion efficiency (percentage carbon flux to
biomass)(Abdel-Hamid et al. 2001, Li et al. 2007), probably as a result of the acti-
vation of energetically less favorable metabolic pathways such as activation of glk
and repression of PTS genes ptsG and crr (Li et al. 2007, Vemuri et al. 2005). The
deletion of genes that lead to acetate formation (e.g. ack, pta, poxB) results in strains
that secrete pyruvate (Chang et al. 1999, Diaz-Ricci et al. 1991, Dittrich et al. 2005b,
Tomar et al. 2003) and other unusual by-products such as glutamate (Chang et al.
1999) into the culture medium. Taking advantage of this phenomenon, an E. coli
strain that was engineered for optimal acetate production (Causey et al. 2003), was
transformed into an efficient pyruvate producing strain by simply disrupting two
genes that lead to acetate formation (ack, poxB)(Causey et al. 2004). The reduction
of pyruvate formation through inactivation of the pyruvate kinase encoding genes
(pykA and pykF) was also considered as a way to reduce acetate formation. The
resulting strains metabolized glucose mainly via the PP pathway (Ponce et al. 1998,
Siddiquee et al. 2004) and produced less acetate (Ponce 1999, Zhu et al. 2001), but
also exhibited reduced growth rates when grown under glucose excess conditions
(Ponce 1999, Ponce et al. 1995, 1998, Zhu et al. 2001).

Results obtained by inverse flux analysis suggested that increased flux through
anaplerotic pathways (PPC shunt and glyoxylate bypass) should reduce acetate for-
mation (Delgado and Liao 1997, Farmer and Liao 1997). In fact, deregulation of
the glyoxylate bypass by disrupting fadR, reduced acetate formation without neg-
atively effecting the growth rate (Farmer and Liao 1997, Peng and Shimizu 2006).
Increasing the flux through the PPC shunt by overexpressing PEP carboxylase (ppc)
further decreased acetate formation without impairment of the growth rate (Farmer
and Liao 1997). On the other hand, deletion of ppc also reduced acetate formation
but at the expense of a slower growth rate and a reduced glucose uptake rate (Peng
et al. 2004).

Another approach for reducing acetete formation includes the generation of
strains overexpressing heterologous genes that encode anaplerotic enzymes that
replenish the TCA cycle, for example pyruvate carboxylase (pyc). These strains
showed better performance in glucose excess batch culture (March et al. 2002) and
also revealed reduced acetate production and higher cell yields in controlled chemo-
stat cultures (Vemuri et al. 2005). Directing excess pyruvate away from acetate
towards less toxic products through coexpression of other heterologous enzymes
(such as acetolactate synthase (alsS) from Bacillus subtilis which finally leads to
the formation of acetoin instread of acetate) also resulted in strains which pro-
duced less acetate and performed better as protein producers in batch and fed-batch
cultures (Aristidou et al. 1994, 1995). Overexpression of the glucose-6-phosphate
dehydrogenase encoding gene (zwf), which leads to an increased flux towards the
pentose-phosphate pathway (by decreasing the glycolytic flux), resulted in a better
performing production strain under carbon excess conditions (Flores et al. 2004b).
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In this line, deletion of zwf resulted in elevated glycolytic flux and enhanced excre-
tion of acetate and pyruvate (Hua et al. 2003).

Another approach to reduce formation of acetate and to improve protein produc-
tion under carbon excess conditions involves the reduction of glucose uptake via the
PTS (Backlund et al. 2008, Chou et al. 1994, Gosset 2005, Picon et al. 2005, Ponce
1999, Wong et al. 2008). As glucose uptake via the PTS is connected to the gener-
ation of pyruvate from PEP, the reduced pyruvate formation might lead to reduced
acetate production. The majority of strains with modifications of the PTS produce
less acetate, however, they do it at the cost of reduced growth rates (Backlund et al.
2008, Chou et al. 1994, Flores et al. 2002, Picon et al. 2005, Ponce 1999, Wong et al.
2008). Another approach to reduce acetate formation involves the inactivation of the
PTS while forcing glucose transport through the galactose-proton symport system
composed of the membrane localized galactopermease (galP) with subsequent glu-
cose phosphorylation through cytoplasmic glucokinase (glk)(De Anda et al. 2006,
Flores et al. 2007, Hernandez-Montalvo et al. 2003, Lara et al. 2008). These strains,
when carrying multiple copies of galP and glk genes, exhibit growth rates similar to
the PTS wildtype strains, in particular those with an arcA background (Flores et al.
2007, Hernandez-Montalvo et al. 2003), but at the same time exhibit increased ac-
etate production rates compared to the PTS wildtype strains (Hernandez-Montalvo
et al. 2003). Reducing the glucose uptake rate by fine-tuned expression of galP in a
PTS mutant strain, reduced acetate formation, but this was associated with a slower
growth rate compared with the PTS wildtype strain (Lara et al. 2008). Compara-
tive studies on acetate formation by single global regulator gene knockout mutants
(e.g. arcA, arcB, cra, crp, cya, fnr, and mlc) also revealed that reduced acetate for-
mation is always connected to reduced glucose uptake and growth rates and vice
versa (Perrenoud and Sauer 2005). In this way, avoiding utilization of the PTS by
replacing glucose with fructose as carbon source also reduced acetate formation and
improved protein production, but again at the cost of reduced growth rate (Aristidou
et al. 1999).

In summary reducing acetate formation by metabolic engineering or any other
means such as reduced glucose feeding or alternative carbon substrates without
shifting the carbon flow to other unwanted by-products (e.g. pyruvate) is mainly
achieved by reducing the glucose uptake rate concomitant to growth rate reduction.

To successfully generate robust strains producing significantly less acetate in car-
bon excess conditions it might be necessary to further consider the impact of global
regulators, e.g. ArcA (Flores et al. 2007, Vemuri et al. 2006a,b) or FadR (Farmer
and Liao 1997, Peng and Shimizu 2006) and the deletion or the introduction of
whole gene sets that encode multiple pathways instead of focusing on single genes
or pathways. For example, the reduction of the redox ratio in an arcA− background
through expression of an heterologous NADH oxidase eliminated acetate formation
even at high glucose consumption rates (Vemuri et al. 2006a). Moreover, eliminating
native transcriptional control of a set of TCA cycle enzymes by chromosomal pro-
moter mutation (sdhCDAB-B0725-sucABCD), resulted in a strain which produced
less acetate and instead directed more glucose to carbon dioxide while maintaining
high growth and glucose consumption rates (Veit et al. 2007).
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18.7 Concluding Remarks

Enabling recombinant E. coli to grow to high density and to produce proteins
without severely affecting its metabolism, its growth characteristics, and its protein
biosynthesis capabilities is currently an important research and development topic.
Comprehensive analysis of the Central Carbon Metabolism, among other metabolic
pathways, is on-going in an effort to identify bottlenecks in the metabolism that
might affect the growth and production process. So far, this analytical approach
has yielded several targets that alleviate some of the growth constraints, especially
improving the glucose oxidation process. It is likely that a System Biology approach
that takes into account the relationships not only between the metabolic pathways
of the Central Carbon Metabolism but also between others metabolic pathways and
their relationship with global regulators and other effectors, may improve our un-
derstanding of the bacterial behavior under stress, and will result in improving the
growth and production process. Although our knowledge of the E. coli metabolism
and its regulation covers many aspects, at this point, there is not enough informa-
tion to predict the possible response to different changes and different conditions.
The goal is to have a global physiological overview of the E. coli metabolism and,
accordingly, to construct a robust strain capable of efficiently executing the produc-
tion of recombinant proteins.
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Abstract The behavior of E. coli can be reprogrammed by the introduction of for-
eign segments of DNA. Three classes of genetic parts, termed sensors, circuits and
actuators comprise the DNA programs. Sensors are gene products which allow the
cell to detect physical or chemical information in its environment. Genetic engineers
can use sensors directly from nature, modify them in some manner, or design them
de novo to control cellular processes with extracellular or intracellular signals. Ge-
netic circuits act to process information from sensors in order to dictate the behavior
of the cell. They can be designed with combinations of “off the shelf” regulatory
parts such as transcription factors and promoters, or in some cases can be used “as
is” from nature. Finally, genetic circuits govern the expression of actuators, genes
whose products perform some physical function to alter the state or the environment
within which the cell exists. Using recent DNA synthesis and assembly technolo-
gies, genetic sensors, circuits and actuators can be combined to create programs that
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command cells to perform a series of tasks. This approach will transform the way
that genetic engineers approach problems in biotechnology. This review covers the
construction of genetic sensors and circuits for use in E. coli, as well as genetic
methods to perturb their performance features.

19.1 Introduction

To program novel behaviors into E. coli, handfuls of genetic parts, or segments
of DNA with defined functions, are introduced into the cell. In the background,
thousands of regulatory and metabolic reactions operate simultaneously and in di-
rect physical contact with the heterologous parts. The engineered components can
operate as insulated modules or can be functionally integrated with the preexist-
ing networks of the host cell. Despite what would appear to be long odds, sur-
prisingly complex behaviors with medical, industrial or academic relevance can be
achieved.

In this chapter, we will discuss some of the principles which guide the pro-
gramming of E. coli. We define biological programs as strings of genetic parts
encoded on segments of DNA which are introduced to the cell on plasmid vectors
or integrated into the genome. The designed DNA fragments carry three classes
of parts which we will refer to as sensors, circuits and actuators (Voigt 2006).
Each of these functions is encoded on a piece of DNA. When combined they
create a genetic program that provides a set of instructions that the cell can read
and execute. Though the sensor/circuit/actuator construction paradigm can be ap-
plied to program any number of genetically tractable organisms (Drubin et al.
2007, Greber and Fussenegger 2007, Sia et al. 2007), this chapter will be lim-
ited to a discussion of E. coli where much of the foundational work has been
accomplished.

Sensors transmit information to genetic circuits. Genetic circuits are groups of
regulatory molecules which control gene expression to program the cellular re-
sponse to sensory inputs. Genetic circuits are ubiquitous in the genomes of nat-
ural organisms and the characterization of their input-output ranges and dynamic
and steady-state responses, or performance features, can inform the construction
of synthetic analogs with defined properties. In some cases the entire DNA segment
encoding a natural circuit can be used “out of the box”, or as found in nature, simply
being connected to user defined sensors and actuators. Synthetic genetic circuits are
built by designing a piece of DNA which carries a series of regulatory parts which
interact in a defined manner.

Genetic circuits drive actuators which act to change the state or behavior of
the host cell or its environment. Actuators range from simple reporters like Green
Fluorescent Protein (GFP) to entire organelles. The programming of reliable and
sophisticated behaviors in E. coli will require actuator expression and function to
be tightly governed by environmental, physiological or metabolic signals which are
transmitted through genetic circuits via sensors.
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Fig. 19.1 A hypothetical E. coli program to convert biomass to liquid fuel. Complex plant material
requires that multiple enzymes be exported in a timed sequence. The enzymes need to be exported
from the cell, in this case using a type III secretion system imported from Salmonella. The build
up of simple sugars induces a pathway to break them down into glucose and covert a metabolic
product into a fuel. This is an example of integrated bioprocessing, where multiple steps of a
manufacturing process are programmed into a single organism. This requires the combination of
sensors, circuits, and actuators to control and respond to a sequence of events

Programs written from sensors circuits and actuators can coordinate sophisti-
cated multistep behaviors with applications in biotechnology (Fig. 19.1). This type
of integrated bioprocessing includes, for example, sensing, integrating and respond-
ing to media conditions or cell growth stages or densities within a fermenter for
optimized yields of an industrially relevant natural product.

Historically limited to piecemeal stitching of naturally occurring DNA frag-
ments, modern DNA synthesis and assembly methods allow the arbitrary connection
of sensors, circuits and actuators. Very large (genome scale) biological programs
can now be written in silico and constructed commercially (Endy 2008, Gibson
et al. 2008). The reprogramming of genomes will enable streamlining of the cell
through the wholesale addition, deletion or modification of regulatory and metabolic
pathways. This will in turn increase the stability, efficiency and productivity (Posfai
et al. 2006) of engineered cellular processes.

19.2 Sensors

Genetic sensors typically receive information from the extracellular environment
or internal cell state, which is then transmitted to gene regulatory networks. Envi-
ronmental sensing in E. coli largely comprises three strategies: classical regulation,
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two-component sensing and riboregulation. We will discuss some of the best studied
and most widely engineered examples of these sensors throughout this section.

Sensors can receive myriad physical and chemical inputs including small or
macromolecules, pH, temperature, light and even signals from other cells. This
chapter will focus only on small molecule signals which are the most widely used
inputs for engineering E. coli.

19.2.1 Classical Regulation

Classical regulation is the control of promoter activity by ligand binding proteins
(Fig. 19.2A). The sensor is a cytoplasmic transcription factor which receives an
environmental signal by directly binding to a small molecule ligand. Ligand bind-
ing triggers a conformational rearrangement which results in increased or decreased
affinity of the transcription factor for cognate DNA operator sequences. The sen-
sory output can be transmitted in two ways, by activation or the relief of repression.
Activation typically occurs by transcription factor-mediated recruitment of the RNA
polymerase complex at the promoter while repression occurs by its occlusion (Wag-
ner 2000).

Classical transcription factors are the most widely used sensors for programming
E. coli. This is due to the simplicity of their components, their rapid output (strong
transcriptional responses occur on the order of 1 minute (Guzman et al. 1995)), the
ease with which their input and output specificities can be re-engineered, and the
availability of their inducer compounds (Wagner 2000). Here, common strategies
are outlined for re-engineering the specifities and performance features of classi-
cally regulated transcription factors. Throughout this section we will focus on a
particularly well elaborated example, the tetracycline responsive TetR protein.

19.2.1.1 Re-engineering Classically Regulated Sensors

The steady-state quantitative relationships between the concentration of input signal
and output gene expression, or transfer functions (Canton et al. 2008, Weiss et al.
1999, Yokobayashi et al. 2002), have been characterized for many classically reg-
ulated systems. The features of transfer functions arise from the rate of occupation
of promoters by transcription factors and RNA polymerases at different input con-
centrations (Bintu et al. 2005b). The transfer function of a circuit can be measured
by linking it to a sensor, varying the amount of input and measuring the output with
a reporter gene (Fig. 19.3). Transfer functions are useful in the design of cellular
behaviors because they define the minimal and maximal amount of sensory input
which generate circuit responses, the magnitude of induction at any given input
concentration and the sensitivity of the circuit to input (Bintu et al. 2005a).

The dynamic range of induction, or magnitude of output in the fully activated
(ON) state divided by that of the inactive (OFF) state, is a critical feature of any sen-
sor. In many cases, a large dynamic range of induction is desirable because it more
clearly differentiates the absence and presence of an environmental input. Increased
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Fig. 19.2 (A) Classical transcriptional regulation. In classical systems a cytoplasmic transcription
factor protein regulates the target genes in response to the presence of input ligand (grey dots). Clas-
sical regulation can occur in two forms, repression or activation. With repression, the transcription
factor binds to the promoter in the absence of ligand (left) and undergoes a conformational change
upon ligand binding which causes it to dissociate from the DNA, activating transcription (right).
With activation, the transcription factor does not associate with the promoter in the absence of
ligand (dashed), but does in its presence, increasing the rate of transcription. (B) Two-component
sensing. A membrane associated sensor-kinase protein associates with an extracellular ligand at its
sensor domain, which drives a structural change in its cytoplasmic kinase domain. This triggers
autophosphorylation of the cytoplasmic domain. The phosphate group (light grey dot) is then
transferred to the receiver domain of a cytoplasmic, diffusible response regulator protein. When
phosphorylated, the response regulator changes conformation and binds to its cognate operator
sites near promoters, activating or repressing gene expression. (C) An engineered riboswitch.
A constitutive promoter drives the expression of a gene with an engineered RNA hairpin occluding
its ribosome binding site (RBS, grey) and blocking translation. The hairpin also carries an aptamer
sequence upstream of the RBS, which can bind to a cognate ligand (large dot), triggering a struc-
tural rearrangement which liberates the RBS for productive translation. Adapted from Topp and
Gallivan, 2007
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Fig. 19.3 Performance Feature Specification Sheet (from Canton et al. 2008)

dynamic ranges can be achieved by increasing the transcription rate of the ON state,
decreasing the transcription rate of the OFF state, or both. The ON state can most
easily be increased by strengthening the −35 and −10 RNA polymerase recognition
sequences while the repressed state can be lowered by changing the configuration
of operator sites around the promoter (Cox et al. 2007, Lutz and Bujard 1997,
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Lutz et al. 2001). The sensitivity, or rate of increase in transcriptional output as a
function of ligand concentration (Fig. 19.5) is largely proportional to the cooperativ-
ity of binding of the transcription factor at the promoter. We will discuss strategies
for programming cooperativity in Section 19.3.

19.2.1.2 Increasing Dynamic Range

The dynamic range of classical transcription factor systems can be increased by
changing the architecture of the output promoter. Traditionally this been accom-
plished by the addition, deletion or reorganization of the operator sites (Brosius
et al. 1985, de Boer et al. 1983, Guzman et al. 1995, Lutz and Bujard 1997). In this
section we will discuss efforts specific to the TetR protein.

TetR has been used as the basis for engineering a more tightly repressed and
strongly inducible sensing system. To accomplish this two high affinity operator
sites were added to an otherwise strong promoter. TetR was then constitutively
expressed to repress the promoter in the absence of the input ligand. The system
showed virtually no expression in the OFF state, was sensitive to very low levels
of input and showed a ∼5000-fold dynamic range of induction (Lutz and Bujard
1997). The performance features of the re-engineered system were all marked im-
provements over the naturally occurring version from which it was derived (de la
Torre et al. 1984, Kleckner et al. 1978) and as a result TetR has become one of the
most widely used sensors for programming E. coli.

19.2.1.3 Changing Operator Specificity

Novel transcription factor:promoter pairs can also be derived from natural systems.
The introduction of two mutations within the TetR operator sequence can reduce
the affinity to levels insufficient for in vivo repression. Rational redesign of DNA
binding domains or directed evolution can then be used to re-establish the affinity
of the transcription factor for the mutant operators. Indeed, such methods have gen-
erated novel transcription factor:promoter pairs based on the TetR (Helbl and Hillen
1998, Helbl et al. 1998) LacR and lambda Cro (Backes et al. 1997) systems as well.
Importantly, these novel specificities can be generated with very small numbers of
amino acid substitutions in the transcription factors, allowing the rapid generation
and screening of many new orthogonal sets in the cellular context. Similar strategies
are likely to be amenable to virtually any classically regulated promoter system
in E. coli.

19.2.1.4 Changing the Input Ligand

The input specificities of classically regulated systems can also be reprogrammed.
This is typically accomplished by randomly mutating amino acid residues around
the ligand binding pocket and screening variants in functional assays in vivo (Collins
et al. 2005, 2006, Hawkins et al. 2007). We will discuss efforts to reprogram the
ligand specificity of the TetR protein in this section.
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TetR has been evolved to recognize an alternate ligand with strong preference
over the natural ligand (Henssler et al. 2004). Importantly, the novel inducer is
not recognized by the wild type TetR protein, a feature which gives rise to two
orthogonal sensors. The combination of novel input and output specificities has the
potential to generate completely orthogonal sensing systems which can be used in
parallel with one another. Indeed, two TetR variants which sensed different ligands
and activated different promoters were recently introduced into the same E. coli cell
to control the expression of two separate genes (Kamionka et al. 2004). This work
demonstrates the value of classically regulated sensing systems as a platform for the
construction of genetic control elements with broad applications in biological de-
sign.

19.2.2 Two-Component Sensing

A common strategy for environmental sensing in bacteria is a process known as two-
component sensing. The canonical two-component system consists of a membrane-
bound sensor protein that receives an environmental signal at an extracellular sen-
sory domain and passes the information to a cytoplasmic response regulator protein
(Fig. 19.2B). This occurs via the transfer of a phosphate moiety from the cytoplas-
mic kinase domain of the sensor protein to the receiver domain of the response
regulator protein, which can then bind to DNA operator sites at a DNA binding
domain to activate or repress gene expression (Hoch and Silhavy 1995).

These sensors are slower to respond than their classically regulated counterparts.
For example, the well studied EnvZ/OmpR system of E. coli reaches half maximal
response to the presence of an input signal in about 5 minutes but requires much
longer (on the order of 1 hour) to reach steady-state (Batchelor and Goulian 2006).
This happens despite the fact that the phosphotransfer event occurs on a seconds
time scale at most (Laub et al. 2007).

The re-engineering of two-component systems has been aided by the modularity
of the protein structure. Modular systems are those that are composed of multiple
interchangeable subcomponents, or modules. In two-component systems, the extra-
cellular sensory domain of the sensor kinase protein can be replaced by the sensor
module from a similar protein. Likewise, the kinase domain of a given sensor pro-
tein can be swapped with another to change its specificity for a response regulator
(Fig. 19.4). Similar to the classically regulated systems, the specificity of the sensor
kinase for its input signal can be altered by computational design methods.

19.2.2.1 Domain Swapping

Sensors can easily be rewired to new outputs by domain swapping. This involves
fusing non-cognate sensor and kinase domains at a splice site in a linker region.
Most two-component engineering efforts to date have been based on domain swap-
ping, a design process by which chimeric proteins are built from the subdomains
of two or more pre-existing proteins (Fig. 19.4). This type of engineering allows
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Fig. 19.4 Domain Swapping.
The sensory domain of EnvZ
receives inputs and transfers
information to the response
regulator OmpR through the
kinase domain. OmpR then
activates the expression of the
output gene from a target
promoter. Other sensory
domains can replace the
naturally occurring EnvZ
sensory domain to create
chimeric sensor proteins
which activate output
promoters in response to
different inputs

the sensing pathway to be rewired such that, for example, the output promoter will
respond to a completely different input ligand.

The early discovery of a convenient module boundary (Utsumi et al. 1989) made
the osmo-responsive EnvZ/OmpR two-component system of E. coli a favorite target
for many engineering efforts (Baumgartner et al. 1994, Levskaya et al. 2005, Looger
et al. 2003). In the natural configuration, the sensor kinase EnvZ phosphorylates
the response regulator OmpR in response to changes in osmolarity. Phosphorylated
OmpR then binds to operator sites at a promoter, activating or repressing gene ex-
pression (Aiba et al. 1989, Aiba and Mizuno 1990, Forst et al. 1989). In the pioneer-
ing domain swapping effort, Inoyue and co-workers fused the cytoplasmic domain
of EnvZ with the sensory domain of the transmembrane aspartate receptor (TAR),
thus rewiring the EnvZ/OmpR pathway to be activated by the amino acid aspartate
(Utsumi et al. 1989, Fig. 19.4).

The sensory domain of the chemoreceptor protein Trg has similarly been fused to
the cytoplasmic domain of EnvZ (Baumgartner et al. 1994). The Trg sensory domain
interacts with periplasmic sugar binding proteins only when they are bound to their
ligands to direct E. coli chemotaxis. The hybrid Trg-EnvZ protein allowed control
of the EnvZ/OmpR pathway with the unnatural ligand ribose via the ribose binding
protein (RBP) (Baumgartner et al. 1994).

The sensory domain of a other sensor kinases have also been used to control
a chemotactic signaling. NarX is a histidine kinase which senses nitrate and ni-
trite (Williams and Stewart 1997). Replacement of the sensory domain of the TAR
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protein with the sensory domain of the NarX kinase has programmed E. coli to
chemotax away from extracellular nitrate and nitrite (Ward et al. 2002).

In 2005, the osmosensing domain of EnvZ was replaced with a light sensing
domain from the Synechocystis phytochrome protein Cph1 to program E. coli to
respond to light (Levskaya et al. 2005). This also required the introduction of a
two gene metabolic pathway to produce the chromophore PCB, which binds to the
engineered sensor kinase (Gambetta and Lagarias 2001). A confluent lawn of the
engineered E. coli could then be used as a high resolution film capable of directly
converting a two-dimensional light input pattern into a pigment output pattern.

19.2.2.2 Redesigning Ligand Specificities

Other efforts have used computational methods to redesign of periplasmic sugar
binding protiens to sense ligands as varied as trinitrotoluene (TNT), L-Lactate,
(Looger et al. 2003) and Zn2+ (Dwyer et al. 2003) for control of gene expres-
sion through the Trg-EnvZ/OmpR pathway. Unlike domain swapping strategies,
these studies required detailed knowledge of the three-dimensional structure of the
parental proteins. The structural information guided the authors to consider between
5 and 17 amino acids residues as candidates for mutation, and the computational
searches typically yielded small lists of candidate protein sequences which were
directly amenable to experimental evaluation.

19.2.2.3 Designing the Histidine Kinase-Response Regulator Interface

There are at least 32 natural two-component systems in E. coli, all of which have
similar structures at the sensor/response regulator interface (Ulrich et al. 2005). To
maintain the fidelity of signal transmission through any one of these pathways the
sensors and response regulators have evolved a great deal of pairwise molecular
specificity (Skerker et al. 2005). Knowledge of the specificity determinants of the
histidine kinase-response regulator interactions could allow rewiring of input-output
relationships.

Bioinformatic algorithms have recently been used to elucidate regions of the his-
tidine kinase proteins responsible for response regulator specificity. This informa-
tion enabled the rewiring of two-component pathways by mutating sensor/response
regulator interaction domains. The substitution of as few as three amino acid resides
within a cytoplasmic subdomain of EnvZ reprogrammed its specificity away from
OmpR to numerous other response regulators (Skerker et al. 2008). The ability to
redesign protein/protein interfaces adds a valuable degree of freedom which will
greatly increase the number of possible alternative two-component signaling path-
ways that can be constructed in E. coli.

19.2.3 Riboregulators

RNA molecules can sense inputs, often through interactions with small or macro-
molecular ligands, and transmit the information to control gene expression. This
typically occurs via the formation of a ligand binding pocket within the regulatory
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RNA (riboregulator) which triggers an overall change in its secondary structure.
These structural rearrangements can hide or liberate regulatory domains which can
then modulate gene expression in cis or in trans (on the same or another gene). To
date, 16 E. coli genes have been shown to be subject to cis-acting regulation by
ligand binding riboregulators termed riboswitches (Barrick and Breaker 2007).

Bacterial riboswitch sensors convert ligand binding into a change in the tran-
scription or translation rate of the mRNA within which they are embedded (Winkler
and Breaker 2003). Though not as widely utilized as their protein counterparts, the
structural and functional simplicity of RNA makes it a very attractive platform for
the engineering of sensing in bacteria (Isaacs et al. 2006). This is because secondary
structure, which governs much of the overall shape and function of RNA, can be
computationally predicted with good accuracy (Mathews et al. 1999) and experi-
mentally verified much more rapidly than can three-dimensional protein structures
(Soukup and Breaker 1999c). This allows realistic in silico design of riboregulators
de novo, a monumentally difficult task in the protein world.

19.2.3.1 Reprogramming

Riboregulation is also compelling because simple base pairing rules and robust
directed evolution methods allow the construction of many orthogonal regulators
based on a single parent structure (Bayer and Smolke 2005, Isaacs et al. 2004, Jose
et al. 2001, Koizumi et al. 1999, Soukup and Breaker 1999a, Soukup and Breaker
1999b, Soukup et al. 2001, Tang and Breaker 1997). The modular structure of ri-
boregulators also allows them to be introduced into many different genes and even
ported between vastly different organisms with surprising ease (Yen et al. 2004).
Moreover, unlike in two-component engineering, the sensory domains of riboreg-
ulators need not bear any structural or evolutionary relationship to the regulatory
domains to which they are fused (Bayer and Smolke 2005, Buskirk et al. 2004, Jose
et al. 2001, Soukup and Breaker 1999b).

As a concise demonstration of the design advantages of riboregulators, a ribo-
switch was recently designed de novo to reprogram E. coli chemotaxis (Topp and
Gallivan 2007). In this work an antisense RNA domain was engineered to base
pair with and occlude a ribosome binding site (RBS) upstream of the open read-
ing frame of a chemotaxis-dependent gene, inhibiting translation and subsequently
chemotaxis (Fig. 19.2C). A ligand binding (aptamer) domain for the small molecule
theophylline was included within the riboregulator such that when theophylline was
present, a local base pairing rearrangement occurred which liberated the ribosome
binding site, allowing translation. In this way, the engineered riboswitch guided E.
coli to swim up a gradient of a chemical that does not normally function as an at-
tractant. Though domain swapping and directed evolution have enabled the rewiring
of chemotaxis at the protein level as well (Derr et al. 2006, Ward et al. 2002), the
benefits of riboregulation are manifest in this example as high throughput efforts
have allowed rapid increases in the dynamic range of induction in response to ligand
(Lynch et al. 2007, Topp and Gallivan 2008).
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19.2.4 Cell-Cell Communication

Cells also have the ability to sense the presence of other cells in the environment.
In bacteria this often occurs through a process known as quorum sensing (Miller
and Bassler 2001). In short, cells produce membrane-diffusible signals which dif-
fuse into other cells and function as ligands for classical transcription factors. This
type of sensing can drive coordinated decision making in cell communities, which
enables more sophisticated behaviors.

Cell-cell communication sensors have been used in E. coli to control the density
of a bacterial population (You et al. 2004), coordinate the timing and magnitude
of gene expression between two different cell types (Brenner et al. 2007), drive
multicellular pattern formation (Basu et al. 2004, 2005), coordinate the invasion
of a malignant mammalian cell (Anderson et al. 2006) or even create a synthetic
ecosystem (Balagadde et al. 2008). Each of these circuits was constructed from the
Lux-type quorum sensing circuit of V. fischeri. A full review of the engineering
applications of this type of cell-cell communication system is reviewed elsewhere
(Salis et al. 2009).

19.3 Circuits: Processing Sensory Information

Genetic circuits, or networks of interacting regulatory molecules, can integrate one
or more sensory inputs into logical and dynamic genetic outputs (Hasty et al. 2002,
Kaern et al. 2003, Wall et al. 2004). Circuits have previously been constructed in E.
coli which generate memory (Atkinson et al. 2003, Gardner et al. 2000), oscillations
(Atkinson et al. 2003, Elowitz and Leibler 2000) or pulses (Basu et al. 2004) of gene
expression. Other circuits have been designed to function as logic gates, capable of
integrating information from multiple sensors to produce a single output (Anderson
et al. 2007, Guet et al. 2002, Yokobayashi et al. 2002). Genetic circuits can also co-
ordinate cell-cell communication and community-level decision making (Balagadde
et al. 2008, Basu et al. 2005, Brenner et al. 2007, You et al. 2004) This section
provides an overview of the performance features and engineering considerations
for some of the best characterized and most useful genetic circuit motifs.

19.3.1 Classical Regulation

The simplest genetic circuits are the classical ligand-inducible transcription systems
described in Section 19.2.1. In these simple circuits, the presence of input signal
positively influences the transcription of an output gene. The transfer function of
classically regulated circuits is important because it describes the level of gene
expression out of the circuit in response to a given concentration of input signal.
This is important when linking multiple circuits in series, because if the output of
one circuit is not quantitatively matched with the input of another, then informa-
tion transfer through the system breaks down. It is of particular interest to discuss
the performance features of classically regulated circuits here as they constitute the
foundation of many more complex circuit designs.



19 Performance Characteristics for Sensors and Circuits Used to Program E. coli 413

19.3.1.1 Simple Promoters

In classically regulated circuits the output abundance typically varies as a positive
sigmoidal function of the input concentration (Bintu et al. 2005a) (Fig. 19.5A). This
relationship arises because there are two input ranges where the system is non-
responsive and one input range under which it is. At low input levels, well below the
KD of the transcription factor for the ligand, there is virtually no change in output.
As the input ligand concentration approaches the KD of the transcription factor, there
is a monotonic increase in output protein abundance proportional to input.

Fig. 19.5 (A) Transfer function. Classically regulated promoters typically show sigmoidal re-
sponse profiles to the concentration of inducer. In the range of inducer (small dot) concentrations
well below the KD of the transcription factor, output changes little changes in input. In the respon-
sive region the concentration of output increases steadily and continuously as a function of input
concentration. At inducer concentrations well above the KD of the transcription factor there is no
further increase in output. (B) Regulatory cascade. An input signal inactivates repressor protein X,
resulting in the derepression of repressor Y. Upon accumulation of Y, repressor Z is repressed and
its levels decline, increasing the concentration of the output. (Lower left) Cascading results in ul-
trasensitivity and lower sensing thresholds. A single repressor version of the above circuit (dashed
line) shows a standard sigmoidal response. The 3 repressor cascade amplifies signal, reducing the
absolute concentration of inducer required to activate the circuit and increasing the sensitivity of the
response. (Bottom right) Cascading generates lags in response time. The single repressor circuit
(dashed line) responds instantaneously to introduction of inducer while the 3 repressor cascade
generates a significant latency in the response
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The sensitivity (Wall et al. 2004), or slope of the response curve, in this range
is largely determined by the cooperativity of binding of the transcription factor
at the promoter of interest. Cooperativity refers to an effect where the affinity of
a transcription factor for its DNA operator site increases as a consequence of a
previous binding event by another transcription factor at a nearby operator (Bintu
et al. 2005a, Ptashne and Gann 2002). This is often the result of protein-protein
interaction domains which drive multimerization of the transcription factors on the
DNA. Finally, as ligand concentrations increase well above the relevant KD, the pool
of transcription factors or relevant DNA operators become saturated and the output
does not increase with further increases in input (Fig. 19.5A).

Certain features of the transfer function can be altered by changing the number
and type of operator sites near the output promoter in a classically regulated sys-
tem. For example the sensitivity, or log-log slope of the input-output function in
the responsive range, is less than or equal to 1 for promoters with a single operator
site. This is true whether the system is regulated by an activator or repressor (Bintu
et al. 2005a,b). The addition of a second operator which enables cooperative bind-
ing can significantly increase sensitivity, typically ∼2–4 fold (Bintu et al. 2005a,b).
DNA looping can also be used to increase the sensitivity of the response (Vilar and
Leibler 2003).

In activator systems, if binding is not cooperative, the sensitivity of the response
remains the same with the introduction of a second operator, but the dynamic range
of induction increases multiplicatively. In repressor based systems, additional op-
erators which do not result in cooperative binding can still increase the sensitivity
because the presence of a repressor at any the first site can significantly occlude the
RNA polymerase, inherently facilitating binding of a repressor at the second site
(Bintu et al. 2005a).

Continuous Response

Classically regulated transcriptional systems have the property of continuous re-
sponsivity. Continuous response means that the abundance of the output gene prod-
uct in a single cell scales proportionally to the concentration of input signal in the
environment. This allows the homogenous “fine-tuning” of output expression levels
across an entire population. The fine-tuning of expression also allows the control
of protein variance between individual cells, which has been shown to naturally
decrease as protein abundance increase (Bar-Even et al. 2006). As we will discuss
in Section 19.3.2.2, many natural genetic circuits lack continuous responsivity and
some have even been intentionally modified to acquire it.

Speed of Response

An important performance feature of any circuit is the rise time, or time required
after the addition of an input for the output to reach 50% of its steady-state value.
This value, which has been measured for several systems in E. coli is approximately
1 cell cycle (45–135 minutes in these studies) (Mangan et al. 2006, Rosenfeld



19 Performance Characteristics for Sensors and Circuits Used to Program E. coli 415

et al. 2002). The time required for an E. coli cell to fully respond to an envi-
ronmental stimulus via the classical mode of regulation is therefore greater than
the time required for it to produce a complete copy of itself. The response time
of classically regulated circuits can be increased by adding protease tags (Ander-
sen et al. 1998) to speed degradation of regulatory proteins. The slow response
times of classically regulated circuits will be compared with those of more complex
circuits below.

19.3.1.2 Complex and Biphasic Promoters

Promoters bearing multiple operator sites which activate and repress gene expres-
sion can result in non-monotonic behavior in response to a monotonic increase in
input signal. For example, the PRM promoter of phage � has three operator sites
for the transcription factor CI. CI initially binds at two high affinity sites and has
an activating effect on promoter output. When CI reaches higher concentrations,
however, it binds to a low affinity site and functions as a repressor. A circuit wherein
CI is expressed proportionally to an input can therefore result in an output which is
OFF at both low and high input and ON only at intermediate inputs (Michalowski
et al. 2004).

The operator for the AraC activator has been added to the E. coli lac promoter
to generate a two-tiered activation response (Lutz and Bujard 1997). In this design,
transcription increases proportional to the concentration of the first input IPTG but
saturates at an intermediate level. This response is solely a function of promoter
derepression. When provided saturating IPTG, the promoter can then undergo a
second tier of activation proportional to the concentration of the activator arabinose.
This occurs as a result of AraC mediated recruitment of RNA polymerase at the
derepressed promoter. Many mutants of this promoter have also been constructed
which offer different performance features as well (Lutz et al. 2001).

19.3.1.3 Regulatory Cascades

Multiple classically regulated circuits can be linked in series such that the output
of one circuit serves as the input to the next (Fig. 19.5B). Cascades can be used
to temporally order the expression of many different output genes in response to
a single input stimulus (Kalir et al. 2001), allow cells to respond to increasingly
small amounts of input (Hooshangi et al. 2005) and filter out transient or noisy
input signals.

There are several inherent trade-offs in the use of regulatory cascades. For exam-
ple, inducer sensitivity and signal amplification can be increased with the number
of regulatory steps, but this occurs at a cost to response time. Moreover, lengthening
can oftentimes require the redesign of upstream elements to ensure that the output
ranges of the existing segment are matched to the input ranges over which the down-
stream segment can respond (Basu et al. 2004, Hooshangi et al. 2005, Yokobayashi
et al. 2002).
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Signal Amplification and Ultrasensitivity

To directly measure the performance features of genetic cascades, Weiss and cowork-
ers constructed several synthetic genetic circuits that systematically increased the
length of a cascade. This included circuits with 1, 2, and 3 repressors connected in
series (Fig. 19.5B). As repressors were added to the cascade, the authors observed
that the output reached half-maximal response at lower inducer concentrations;
about 40% lower inducer per repressor added. Signal amplification allows cells to
respond to inputs which are present in the environment at concentrations below the
limit of detection of the natural sensory apparatus.

As with other circuit designs that we have discussed, regulatory cascades can in-
crease sensitivity to the input (Hooshangi et al. 2005, Pedraza and van Oudenaarden
2005) (Fig. 19.5B). In the Weiss example, the range of inducer concentrations re-
quired to generate a full response decreased approximately 5-fold upon the addition
of the second repressor and 8-fold upon addition of the third. Moreover, a math-
ematical model indicated that sensitivity would continue to increase as more than
three repressors were added to the chain (Hooshangi et al. 2005).

Activation Delays

The relaying of an input signal through a multi-step regulatory cascade results in a
temporal lag in response (Fig. 19.5B). Whereas a single repressor showed near im-
mediate response and reached a steady-state output at two hours, the two repressor
system took greater than six hours to reach steady-state (Hooshangi et al. 2005).
The addition of the third repressor delayed signal transmission dramatically. This
circuit showed no response to inputs at times less than two hours, and took 10 hours
to reach steady-state. Furthermore, the model showed that with every two additional
repressors added the rise time would continue to increase two-fold.

Cascade-Mediated Control of Complex Cellular Processes

The expression of many genes can be temporally ordered if they are regulated by
cascades. The E. coli flagellum is encoded within 14 operons which contain its
structural and regulatory genes. Upon induction, each operon is activated in an order
commensurate with the sequence of assembly of the proteins which make up the
flagellar apparatus (Kalir et al. 2001). The regulators in this cascade are able to
activate each of their target operons in sequence with minutes long lag times in
between. This highly regulated sequence of events is probably encoded at the DNA
level by variable operator sequences at each promoter for which the regulators have
slightly different binding affinities (Kalir et al. 2001). In this scenario, free floating
cytoplasmic regulator proteins will occupy stronger operator sites before occupying
any given lower affinity operator, allowing rank ordering of gene expression.

Quantitative measurements of gene expression in this system allowed the de-
velopment of a rigorous computational model which could then be used to make
predictive perturbations to circuit behavior (Kalir and Alon 2004). Similarly de-
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tailed measurements of the regulatory interactions and their effect on gene expres-
sion will be invaluable in the troubleshooting, manipulation and optimization of
forward engineered systems as well. Though synthetic biology is far from reliably
designing structures as complex as the flagellum, one can envision many smaller
scale applications where cascades could be used to time orders of expression in
complex processes. For example, timed protein expression could facilitate the step-
wise biosynthesis of novel antibiotics (Pfeifer et al. 2001), boost drug production
(Keasling 2008) convert agricultural waste into fuel (Service 2007) or even coordi-
nate the expression of existing complex cellular machines (Temme et al. 2008).

19.3.2 Feedback and Feed Forward Regulation

Linking the output of a classically regulated circuit back to its input or forward
through intermediate regulators can dramatically alter its dynamic and steady-state
properties. In this section we review the most common natural and engineered feed-
back and feed forward circuits, focusing on the impact of overall architecture and
key parameters on circuit performance.

19.3.2.1 Negative Feedback

Negative feedback occurs when the output of a given circuit represses its own pro-
duction (Fig. 19.6). Circuits controlled by negative feedback have unique response
characteristics which are critical for certain biological design applications. Though
negative feedback can be implemented as an inhibitory step at any point between
production and decay of a gene product this section focuses on transcriptional feed-
back, which has been widely employed in the construction of synthetic circuits.

Response Accelerators

The response times of negative feedback circuits are markedly reduced compared
to their analogous classically regulated counterparts (Savageau 1974). Using engi-
neered variants of the tet system, Alon and coworkers experimentally demonstrated

Fig. 19.6 Negative Transcriptional Feedback. A repressor protein is encoded under the control of
the promoter which it regulates. The shape of the input/output curve is the same as in Fig. 19.5A
above, but the system reaches equal or less output at any given concentration of input. The rise time
(t(1/2)), or time required for the circuit to reach 50% of its steady-state output is significantly de-
creased in negative feedback (solid line) as compared to classically regulated (dashed line) systems
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a reduction in rise time from over two hours to 15 minutes upon the introduction
of negative feedback (Rosenfeld et al. 2002) (Fig. 19.6). The acceleration of the
response is proportional to the strength of repression, a parameter which can be
engineered by altering the number, strength or location of operator sites (Basu et al.
2004, Cox et al. 2007). Acceleration also increases with the cooperativity of binding
of the repressor protein to the promoter (Rosenfeld et al. 2002, Savageau 1974). This
term can be changed by the addition or removal of operator sites (Bintu et al. 2005a)
or by the selection of repressor proteins with different oligomerization properties
(Ninfa and Mayo 2004).

Though the negative feedback component reduces response time it also reduces
the steady-state output of a circuit (Bashor et al. 2008, Rosenfeld et al. 2002). The
rise time acceleration in negative feedback circuits occurs because shortly after
induction the promoter is not repressed. Only after the accumulation of repressor
does the activity of the promoter decrease to steady-state. This is in contrast to the
classically regulated promoter which is active at a high level at all times after induc-
tion, resulting in a higher steady-state output which takes more time to achieve. The
negative feedback circuit architecture is only useful, therefore, if the circuit output
is operational at reduced steady-state expression levels.

Noise Buffering

Stochastic fluctuations, or noise, in gene expression is inevitable in genetic circuits
and can reduce the fidelity of signal transmission and cellular decision making
(McAdams and Arkin 1997). Moreover, as the number of components in an en-
gineered circuit increases, the effects of noise in any one component can be com-
pounded (Hooshangi et al. 2005, Pedraza and van Oudenaarden 2005).

It has long been recognized that negative feedback circuit architecture can reduce
noise in output gene expression (El-Samad and Khammash 2006, Savageau 1974).
To experimentally validate this effect, Becskei and Serrano constructed a synthetic
circuit wherein a repressor protein inhibited its own transcription in E. coli (Becskei
and Serrano 2000). Negative feedback reduced noise, measured as the coefficient of
variation in protein expression across a population of cells, up to 70% over a circuit
without feedback. Moreover, and as predicted (Savageau 1974), the magnitude of
noise buffering was proportional to the strength of feedback.

The reason that negative feedback circuits buffer fluctuations is intuitive. In
classically regulated transcriptional systems, fluctuations in any step of protein ex-
pression (transcription, mRNA decay, translation, etc.) are amplified by subsequent
steps and cause variation in protein abundances between individual cells. In negative
feedback circuits, fluctuations that cause increases in the output protein concentra-
tion are quickly dampened by increased repression while fluctuations that cause the
output levels to decrease reduce repressor abundances and increase transcription
rates. The result is that the system returns to steady state more rapidly after random
fluctuations.

There is a caveat to the use of negative feedback as a safeguard against noise in
engineered circuits. Though noise decreases proportional to feedback strength over
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a large range of protein abundances (Becskei and Serrano 2000, Thattai and van
Oudenaarden 2001), noise can actually increase if the strength of negative feedback
becomes too strong (Shahrezaei et al. 2008). This is due to a phenomenon known
as the “small number effect” where the impact of intrinsic fluctuations in chemical
reactions increases rapidly as the concentration of reactants becomes very small
(Bar-Even et al. 2006, Kaern et al. 2005). That is, at smaller protein concentrations
each random protein production or decay event has a larger impact on the mean
concentration. This highlights the general biological design principle that increas-
ing the number of proteins in a cell reduces noise in protein abundance (Bar-Even
et al. 2006).

19.3.2.2 Positive Feedback

Positive feedback occurs when the output of a circuit activates its own production
(Fig. 19.7A). Circuits with positive feedback can have many features which are
valuable in the engineering of more robust, decisive cellular behaviors including
ultrasensitivity, bistability, hysteresis and memory (Fig. 19.7B–D). This section

Fig. 19.7 Positive transcriptional feedback. (A) A self activating protein is expressed under control
of the input. (B) Positive feedback circuits with lower kinetic orders of transcription factor binding
and cooperativity result in ultrasensitive responses to inducer. Sensitivity is measured as the slope
of the relationship between output and input. This increases from the classically regulated system
(right most line) to 2 positive feedback systems with increasing kinetic constants of activation
(left most lines). (C) Positive feedback circuits with very high kinetic orders of activation can
achieve bistability. In these circuits, cells rest at low output levels or high output levels but never at
intermediate output levels. (D) Hysteresis. When starting at low inducer concentrations and moving
higher the circuit requires some amount of inducer to switch ON. When starting in the ON state and
reducing the concentration of inducer available to the circuit, the switch happens at a significantly
lower concentration
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describes the performance features of positive feedback loops and how they can
be changed by modifying the underlying circuit parameters.

Response Delays

In contrast to negative feedback circuits which accelerate response times, positive
feedback circuits are thought to slow the rise to steady-state. Though it has not been
measured in a well-controlled experimental setting, the magnitude of the rise time
delay is predicted to be proportional to the strength of the positive feedback step
(Savageau 1974). For a transcriptional circuit, feedback strength is governed by the
binding affinity of the output transcription factor for its DNA operators, the mode by
which the transcription factor interacts with RNA polymerase and its cooperativity
(Bintu et al. 2005a, Ninfa and Mayo 2004).

The most direct strategy for manipulating the magnitude of delay in a positive
feedback circuit is to vary the DNA operator sites at the promoter to which the
activator binds. This can be done by varying the number, spacing and sequence of
the operators. Single nucleotide mutations within operator sites can significantly
reduce the affinity of a transcription factor for its operator (Basu et al. 2004, Falcon
and Matthews 2000, Frank et al. 1997, Takeda et al. 1989). Increasing or decreasing
the spacing between multiple operators can affect both binding affinity (Chen and
Kadner 2000) and cooperativity of binding (Smith and Sauer 1995).

The introduction of positive feedback increases the steady-state output level of a
classical transcriptional circuit. To compensate, one can decrease the production or
increase the decay rate of the circuit output. For example, weakening the strength
of the self-activating promoter or adding a degradation tag to transcription factor
would reduce the steady-state and serve to more closely match the expression levels
of a the two circuits.

Ultrasensitivity

It has been demonstrated that regulatory systems with positive feedback are more
sensitive to inducer than systems without feedback (Fig. 19.7B) (Savageau 1974).
Positive feedback has since been experimentally verified to impart ultrasensitivity
in both natural and engineered circuits (Ferrell and Machleder 1998, Bashor et al.
2008). Ultrasensitivity occurs in positive feedback circuits where the strength of
the feedback is not so large that the system loses the ability to occupy intermediate
output states. The level of ultrasensitivity can be controlled by manipulating the
strength of feedback. This can be achieved by changing the stability of the activator
protein or its cooperativity or binding affinity at the promoter.

Bistability

Positive feedback can also create a bistable switch (Ferrell 2002). Bistable circuits
can occupy only one of two states, canonically an OFF and an ON state, in response
to a continuous range of input concentrations (Fig. 19.7C). This can be very useful
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in circuit design and will be discussed further in Section 19.3.3. It is challenging
to design bistable circuits based on positive feedback (Ajo-Franklin et al. 2007)
because if either of the states is quantitatively off balance with the other, the system
will only be able to occupy one state (Ferrell 2002). For example, leaky transcription
of the positive feedback element is often sufficient to trip the switch and keep the
circuit in a monostable ON state under all conditions.

A bistable switch based on positive transcriptional feedback has been con-
structed in E. coli (Isaacs et al. 2003). This circuit was composed of a temperature-
sensitive transcriptional activator expressed under the control of the promoter which
it activated. High kinetic constants of dimerization and transcriptional activation
provided the non-linear responsivity required for bistability. At permissive tem-
peratures, leaky transcription tripped the feedback switch driving all cells in the
population to reach a stable ON state. At destabilizing temperatures, a lack of ac-
tivator accumulation kept all cells in the OFF state. At intermediate temperatures
the population bifurcated such that individual cells occupied either the ON or OFF
state. This digital response occurred because intermediate protein expression states
in any cell are unstable and small fluctuations are amplified to drive cells to quickly
settle in either of the stable states (Ferrell 2002, Isaacs et al. 2003).

Bistable circuits have a unique property in that they can achieve different steady-
state output responses under identical input conditions depending on their history
(Fig. 19.7D) (Ferrell 2002, Ninfa and Mayo 2004). That is, if the circuit begins in
the OFF state it requires a greater input concentration to switch than if it began
in the ON state. This characteristic, known as hysteresis, is useful in the engineer-
ing of robust cellular decision making. This is because hysteresis makes circuits
with switch-like behaviors less sensitive to fluctuations in input signal near the
switch point.

Ninfa and coworkers designed a transcriptional positive feedback circuit with
a dominant repressor protein to construct a bistable switch in E. coli (Atkinson
et al. 2003). In the absence of inducer, the repressor inactivated the feedback loop
and the switch was OFF. At activating concentrations of inducer the circuit rapidly
switched to the ON state. If the circuit had previously been exposed to high levels
of inducer, however, it switched ON at ∼ 70% lower inducer concentrations. Two
key circuit parameters drove this system to exhibit hysteresis. First there was very
high sensitivity within the switching range making intermediate expression states
unstable. Second, the dynamic range of induction was large, on the order of 20-fold.
These are the two most critical design requirements in the construction of positive
feedback circuits with hysteretic properties (Angeli et al. 2004, Ferrell 2002, Ninfa
and Mayo 2004).

Controlling Feedback Saturation

In a bistable switch, the magnitude of output gene expression in the ON state is
determined by the protein production and decay parameters of the circuit. The level
of gene expression in an activated bistable switch can therefore not be fine tuned.
Because the steady-state output level is often an important design consideration in
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genetic engineering applications, we will discuss several strategies for controlling
the magnitude of the ON state, or point of feedback saturation here.

In a simple positive feedback circuit, where an activator protein drives its own
promoter, the steady-state output of the fully activated circuit is determined by the
maximal rate of production and decay rate of the protein. In the synthetic circuit con-
structed by Collins and coworkers, the per cell output of the fully activated switch
decreased continuously as the activator protein was destabilized (Isaacs et al. 2003).
It is likely though that other circuit parameters such as promoter or RBS strength,
or mRNA stability could be modified to achieve a similar result.

Eliminating Bistability to Generate a Continuous Response

Sugar inducible systems like lac and ara are the most widely used elements for
engineered genetic control in E. coli. They are bistable because sugar-mediated tran-
scriptional activation increases the rate of sugar uptake from the environment, gen-
erating a positive feedback loop. For many engineering applications this bistability
is undesirable. Bistability creates discontinuous jumps in output as inducer is added.
This hampers the freedom of the genetic engineer to set the circuit at intermediate
output phenotypes. Moreover, at intermediate inducer concentrations the population
can bifurcate such that some cells occupy the OFF state, some the ON state and none
occupy an intermediate state. In many applications in biotechnology it is beneficial
for all cells in a population to behave identically. Fortunately, the bistable feedback
circuits which nature provides can be modified for continuous input-output control
and population homogeneity.

Several groups have shown that by expressing sugar uptake genes constitutively
the positive feedback loops can be broken and bistability eliminated, allowing con-
tinuous induction over a large range of inducer (Khlebnikov et al. 2001, Khlebnikov
and Keasling 2002, Khlebnikov et al. 2000, Morgan-Kiss et al. 2002). The dele-
tion of the sugar catabolic genes from the host also aids in the homogeneity of the
response (Morgan-Kiss et al. 2002).

19.3.2.3 Feed Forward Loops

A common genetic circuit in E. coli is the feed forward loop (FFL), where an input
is split into two pathways, which then reconverge on an output (Milo et al. 2002,
Shen-Orr et al. 2002). In its simplest form, an FFL consists of two regulatory genes
(canonically X and Y) and one output gene (Z). Feed forward architecture results
when X regulates the production of Y and both in turn regulate the production of Z
(Fig. 19.8).

There are two major classes of FFLs. In the first class, termed coherent FFLs, the
sign of the regulatory interaction remains the same all the way through the circuit.
That is X regulates Y and Z in the same manner that Y regulates Z. Coherent FFLs
therefore regulate outputs similarly to single transcription factors, but introduce
several quantitative performance differences. In the second class of FFLs, termed
incoherent FFLs, the regulatory effect changes after the circuit splits, resulting in
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Fig. 19.8 Feed Forward Loops (FFLs). FFLs are genetic circuits composed of three proteins, X,
Y and Z. X and Y are transcription factors which regulate the expression of Z. The “feed-forward”
connectivity refers to the fact that X also regulates Y. Coherent FFLs result when the regulatory
relationship between X and Z is the same as that between X and Y. Incoherent FFLs arise when
these two relationships are opposite

opposing regulation at the output. As we will discuss below, this type of circuit
can result in interesting dynamic behaviors such as overshoots or pulses of gene
expression.

Coherent FFLs: Activation Delays

A FFL is coherent if the regulatory effect of X on Z is the same as the effect of
X on Z through Y (Fig. 19.8). Coherent FFLs have been shown to act as sign-
sensitive delays in E. coli signal processing networks (Kalir et al. 2005, Mangan and
Alon 2003, Mangan et al. 2003). “Sign-sensitive” refers to the fact that the circuits
generate a lag in the transcriptional response to either the introduction or removal
of an environmental signal, but not both. Activation delays can function as noise
filters in that they prevent the circuit from responding to transient pulses of signals.
Coherent FFLs are useful tools then for the engineering of sense-response behaviors
in which the cell must parse sustained signal from input noise in the environment.

The basis of the delay in this type of FFL is intuitive. Z depends on the presence
of X and Y for expression. Though the presence of input signal immediately acti-
vates X, Y cannot be expressed until X first accumulates. From that point, Y must
then accumulate to a concentration sufficient to activate Z. Indeed, increasing the
basal expression level of Y decreases the length of the delay (Mangan et al. 2003).
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The basal expression rate of an activator protein in a synthetic circuit is simple to
tune with promoters or RBSs of different strengths, for example.

The natural arabinose responsive circuit of E. coli is a coherent FFL. This is
not true, however, for the minimized pBAD circuit from which one of the natu-
ral regulators has been removed (Guzman et al. 1995). The natural arabinose FFL
circuit generates a delay in the activation of transcription after induction (Mangan
et al. 2003). In E. coli, the absence of glucose increases intracellular cyclic adeno-
sine monophosphate (cAMP) levels which activate the transcription factor CRP (X).
CRP activates the expression of the araC (Y) gene, the product of which is a tran-
scription factor whose function is dependent upon arabinose. The output araBAD
(Z) promoter functions as a logical AND gate, requiring the presence of cAMP:CRP
and arabinose:AraC for productive transcription. This FFL results in a ∼0.2 cell cy-
cle or 10–20 minute delay in activation of the Z promoter after the onset of inducing
conditions. The delay is shown to be sign sensitive as the removal of the stimulus
does not result in a delayed inactivation response as compared to a simple AND gate
promoter without a feed forward connectivity between the two transcription factors.

Deactivation Delays

The sign sensitivity of a FFL mediated delay can be changed by changing the activa-
tion logic of the Z promoter from AND to OR (Mangan and Alon 2003). Alon and
coworkers proofed this concept by demonstrating that part of the E. coli flagellar
apparatus is expressed under the control of a coherent FFL in which Z is expressed
as a SUM function of X and Y (Kalir et al. 2005). SUM is a modified OR where the
influence of X and Y on Z output is additive. Moreover, SUM is a simple operation
to engineer in E. coli. SUM can be achieved by simply placing two different promot-
ers in series. In this configuration, the first or second promoter can drive expression
of the output gene, and if both are active, the rate of production of mRNA is greater.

In the flagellar example, X activates Y and the two transcription factors addi-
tively activate the operons that produce the flagellar motor (Kalir et al. 2005). If the
input signal is removed and X is transiently inactivated, the circuit prolongs flagellar
expression because Y levels linger. The authors show that the delay occurs under a
wide range of circuit parameters, and that manipulation of the kinetic parameters of
regulation can alter the length of the delay (Kalir and Alon 2004). A similar effect
was shown for the Salmonella SPI-1 Type III Secretion System, which contains both
a feed forward and split positive feedback loop (Temme et al. 2008).

Incoherent FFLs

An incoherent FFL consists of a circuit where X activates Y and Z but Y represses Z
(Fig. 19.8). There are over 100 examples of incoherent FFLs in the E. coli genome
(Mangan et al. 2006). This circuit generates several interesting and unique dynam-
ical outputs such as pulses of gene expression and time-derivative sensing (Basu
et al. 2004). In this section we will discuss the performance features of incoherent
FFLs in E. coli, the effect of key molecular parameters on their function, and their
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application in the construction of some of the most sophisticated synthetic cellular
behaviors to date.

ON Accelerators

Because X first activates and then indirectly represses the expression of Z, inco-
herent FFLs result in “overshoot dynamics” in the expression of Z (Mangan and
Alon 2003). This means that Z temporarily reaches abundances greater than the final
steady-state. Also, because the strength of a partially repressible promoter driving
Z must be stronger than that of a non-repressible promoter capable of generating
the same steady-state, the rise time of the output Z is necessarily increased in an
incoherent FFL of this form (Mangan and Alon 2003). This property is similar to
the accelerated response of negative feedback loops as described above. In a nat-
ural example, Alon and coworkers have demonstrated that the incoherent FFL in
the galactose utilization network of E. coli results in a 1.75-fold overshoot of the
steady-state output and an approximately 3-fold acceleration in rise time (Mangan
et al. 2006).

In incoherent FFL circuits, important performance features such as the magnitude
of response acceleration, the steady-state output and the size of the overshoot are
particularly sensitive to the parameters associated with the repressor Y. In general,
the higher the expression level of Y and the greater its repressive effects, the greater
the acceleration of the circuit (Mangan and Alon 2003).

Pulse Generators

A pulse generator is a genetic circuit capable of activating and then completely
repressing output gene expression in response to the addition of an input. Inco-
herent FFLs can generate pulses of gene expression if the repression of Z by Y is
very strong. In 2004, Weiss and coworkers constructed a synthetic incoherent FFL
in E. coli. In their design X was the transcription factor LuxR which is activated
by the membrane permeable quorum sensing compound AI-1, Y was the strong
transcriptional repressor CI and Z was the reporter gene gfp.

Because the circuit was constructed de novo, the authors could easily investigate
the effects of genetic parameters such as the rate of synthesis of Y, and the strength
of repression Z by Y. The authors noted that if either of these two parameters was
too great, the circuit could never be activated by inducer (Basu et al. 2004). Under
a range of permissive kinetic parameters, however, the circuit showed robust pulse
generation after addition of inducer. The true pulse of gene expression occurred
because the Y protein CI is a very strong repressor of its target promoter, capable of
bringing output expression back to zero.

Critical pulse features such as amplitude and duration could be controlled by
varying the kinetic parameters of the Y protein or the rate or concentration at which
inducer was added. Specifically, the stronger the RBS or the affinity for the out-
put promoter the shorter and smaller the resulting pulse. Furthermore, at fixed Y
kinetic parameters, the pulse amplitude varied proportionally to both the absolute
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concentration and the rate of increase of inducer. This synthetic circuit is an elegant
demonstration of the level of behavioral sophistication that can be designed de novo
and optimized to the specifications of the engineer.

19.3.2.4 Dynamic Circuits

Several genetic circuits have been engineered which drive dynamic responses. A
striking example is the three protein transcriptional ring oscillator known as the
“repressilator” (Fig. 19.9A) (Elowitz and Leibler 2000). In this circuit, protein A
represses protein B, protein B represses protein C and protein C represses protein
A. Oscillations occur because the addition of an input signal can cause one of the
proteins, say A, to become abundant and repress the next protein in line (B). Because
B is repressed, C begins to rise in abundance and can then in turn repress A. This
process continues until A rises again, and in this manner the circuit encodes genetic
oscillations. The repressilator was capable of generating three to four oscillations in
a given cell, but showed a notable lack of uniformity across the population.

In another example, Ninfa and coworkers constructed a two-component tran-
scriptional oscillator in which a transcription factor first activates itself and then
activates its own repressor (Fig. 19.9A) (Atkinson et al. 2003). In this circuit an
input triggers the activator to initially accumulate. After some time the activator is
repressed by the accumulating repressor. As activator levels subsequently fall, so
do repressor levels, triggering another round of activator accumulation. This circuit
drove dampened oscillations over four periods, which spanned almost 60 hours.

A circuit based on cell-cell communication has been constructed to program pop-
ulation level oscillations in E. coli (Balagadde et al. 2005). In this design a gene

Fig. 19.9 Dynamic genetic circuits. (A) Genetic circuits composed of three transcriptional repres-
sors in a closed loop or a self activating protein which also activates its own repressor can cause
oscillations in gene expression. (B) Pulse Generator. An incoherent Feed Forward Loop produces
temporal pulses of gene expression. The strength of expression or the kinetic order of repression
of the repressor Y can change the duration and amplitude of the pulse (dashed lines)
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which triggered cell death was expressed under the control of a quorum sensing
circuit. The circuit was OFF at low cell densities but switched ON at high density.
Microscopic monitoring demonstrated that E. coli expressing this circuit regularly
oscillated in density from 1 to 3 cells per picoliter of media with a period of about
20 hours.

As discussed in Section 19.3.2.2, Weiss and coworkers also constructed a dyna-
mic circuit capable of generating a temporal pulse of gene expression in response
to a single, step introduction of input signal (Fig. 19.9B) (Basu et al. 2004). The
amplitude and duration of the pulse could be programmed by changing the strength
or production rate of the repressor in the circuit. Moreover, because the circuit input
was a membrane diffusible quorum sensing compound, a cell could be triggered to
pulse by production of the activator in a nearby cell.

19.3.3 Switches and Logic

Genetic switches are circuits which rapidly transition between discreet states in
response to input. Logical devices are circuits which interpret the states of multi-
ple switches to produce a single, unified output. Switches and logic are useful be-
cause they aid the programming of desirable IF/THEN behaviors in E. coli. Genetic
logic is carried out by circuits which can be rationally designed or combinatorially
screened.

Extensibility, or the ease with which a switch or logic device can be connected
to a different input or output is a desirable trait in switches and logic devices. Ex-
tensibility requires knowledge of the transfer functions of the parts. For example,
the output range of a given switch or switches must be matched to the input range
of a given logic device in order for signal transmission to proceed properly through
the circuit. If expression in the OFF state of a switch is leaky and it is interpreted as
ON by the downstream logic gate, then the circuit will not properly respond to input
signals. If the transfer functions of switches and logic gates are well documented,
however, they can be used “off the shelf” and connected to other well characterized
parts.

NOT Gate

One of the most useful and frequently constructed genetic logic operations is the
Boolean NOT gate. Commonly referred to as an inverter, the NOT gate inverts the
sign of the regulatory relationship between the input and output of the circuit. In
the simplest system, this is accomplished by the introduction of a transcriptional
repressor between the input and output (Fig. 19.10A). An input signal which would
otherwise activate expression of the output therefore inactivates it via the activation
of a repressor. Besides inverting the input/output logic, NOT gates are also known
to increase input sensitivity (Hooshangi et al. 2005, Karig and Weiss 2005, Pedraza
and van Oudenaarden 2005) and lower sensing thresholds (Karig and Weiss 2005).
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Fig. 19.10 Transcriptional Logic (A) NOT gate. Also known as a genetic inverter, the NOT gate
encodes a repressor under the control of the environmental input. The repressor inactivates expres-
sion from an otherwise active output promoter. The inverter device (dashed box) comprising the
repressor protein and the output promoter is an independent module which can be placed between
any input promoter and output gene. The logic of the NOT circuit (upper right) is shown in the truth
table (bottom right). (B) AND gate (dashed box) comprises an untranslatable T7 RNA polymerase
mRNA bearing two stop codons (asterisks) in the open reading frame and a suppressor tRNA
which incorporates amino acids at the stop codons to allow productive translation. Only when both
halves are transcribed is T7 RNAP produced and does the output promoter become active. Each
half of the AND gate can be driven by any inducible promoter, activated by its cognate input signal.
Adapted from Anderson et al., 2007

Many genetic circuits containing NOT gates fail to function properly when con-
structed. This often occurs because basal expression of the repressor in the absence
of input can be sufficient to inhibit the output promoter, constitutively trapping the
inverter in the OFF state. The abundance of the repressor protein can then be reduced
to match the relevant sensitivity of the output promoter. This can be accomplished
by weakening the RBS on the repressor mRNA, weakening the operator sites at the
output promoter (Hooshangi et al. 2005, Weiss 2001, Yokobayashi et al. 2002) or
randomly mutating the repressor to reduce its strength (Yokobayashi et al. 2002)

Switches and Memory

Memory is required for many sophisticated functions in electronic systems and is
also ubiquitous in molecular biology, forming the basis for the burgeoning field
of epigenetics. One popular biological design goal which relies on memory is to
construct cells that can count how old they are or how many times they and their
ancestors have been exposed to some signal over a long period of time. Memory
can be implemented as an extreme form of hysteresis in circuits with strong positive
feedback. In such systems, previous exposure to high input signal triggers a circuit
to remain active even when the signal goes to zero (Ferrell 2002).
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In 2000, Collins and coworkers constructed a memory switch in E. coli (Gardner
et al. 2000). The switch was comprised of two cross-inhibiting transcriptional re-
pressors. If repressor A was expressed, it repressed B and the switch was OFF. If an
input was added which inactivated A, B accumulated and in turn, repressed A. This
turned the switch ON. This switch generated stable memory over at least 22 hours,
allowing a cell many generations away from the ancestor which had received the
signal to maintain a stable response. This switch required proper matching of the
transfer functions of its two subcomponents. If the expression level of one repressor
was too strong in the OFF state the system became monostable. This required the
screening of several combinations of promoters and RBSs of different strengths.

Arkin and coworkers have also constructed a memory device based on a per-
manent genetic rearrangement event. This circuit makes use of the recombinase
encoded by the fimE gene to flip an improperly oriented promoter into alignment
with an output gene (Ham et al. 2006). The DNA reorganization event is permanent,
resulting in stable long-term circuit memory. Moreover, because the fimE gene can
be expressed as the output of any sensor, the fimE switch is modular and can poten-
tially generate memory of any input stimulus capable of activating gene expression.
An advantage of this circuit is that it produces virtually no basal expression when
the promoter is in the opposite orientation from the gene it controls.

AND Gate

The logical AND operation, where the presence of two inputs (A and B) are required
to activate output expression, is a useful concept for biological design and can be
applied to the construction of many more sophisticated logical operations. The most
parsimonious strategy for the construction of a genetic AND gate involves two inter-
dependent genetic components which, when expressed simultaneously can initiate
a downstream gene expression step. Such a system was recently implemented at
the transcriptional level in E. coli (Anderson et al. 2007). In this setup, inducible
promoter A drives the expression of an mRNA encoding the T7 RNA polymerase
(RNAP) gene. The mRNA is non-functional, however, as two specific stop codons
are introduced into the coding sequence. Inducible promoter B drives the expression
of a tRNA which encodes an amino acid at those stop codons, rescuing translation of
the RNAP. The circuit output is a promoter which is only transcribed by T7 RNAP
protein such that it requires the presence of the two inputs A and B (Fig. 19.10B).
Importantly, this system was designed to be modular such that any two inducible
promoters could be used to drive the AND gate. This modularity allowed the cir-
cuit to integrate signals from four different promoters and drive two separate out-
put genes.

In the initial circuit design, the two components of the AND were not properly
matched. The basal, or leaky expression rate of the T7 mRNA was significantly
high that the circuit produced positive output in the presence of only one input.
To reduce leaky expression, the authors randomly mutated the RBS preceding the
T7 open reading frame and screened a library for variants dependent upon both
inputs for activation. A majority of the variants in the library showed significant
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dependence on both inputs, indicating that the design was quite robust to variable
expression levels. When the promoter driving the T7 mRNA was replaced, however,
the new RBS failed to generate enough mRNA to activate the AND gate even when
the promoter was fully active. To restore functionality an RBS library was again
screened and again produced a viable circuit.

Other Logic

To construct other types of genetic logic, Leibler and coworkers randomly connected
five promoters to three classical transcription factors which either activated or re-
pressed them. Two ligands were chosen as inputs and one of the transcription factors
was chosen to repress an output reporter gene. Several switch-like logical responses
including NAND, NOR and NOT IF arose repeatedly from the circuit library (Guet
et al. 2002). Interestingly, circuits with similar connectivities, or profiles of regu-
latory contacts between components, were capable of generating different logical
responses while networks with different connectivities were capable of generate the
same logic. Many of the constructed circuits also produced intermediate or “fuzzy”
logic.

A large number of intermediate logical operations were also observed in a related
study wherein four different transcription factor binding sites were randomly placed
in three locations around a single promoter (Cox et al. 2007). This combinatorial
approach revealed that activator sites function most effectively when placed directly
upstream of the −35 site and function poorly if at all when placed downstream of it.
Repressor sites are more tolerant to different locations but are most effective when
placed between the −35 and −10 sites. These efforts demonstrate the power of
screening random combinations of regulators to achieve a desired logical operation.

19.4 Actuators: Interfacing Cells with the Environment

A fundamental motivation for programming cells is that they have the ability to
modify the chemistry and biology of their surrounding environments. Actuators are
defined as gene products which carry out any type of cellular process or behavior
from an enzyme capable of synthesizing drugs or fuels to the synthesis and control
of entire organelles and molecular machines. This section is meant to only briefly
outline some of the things that E. coli can do.

State Reporters

State reporters are molecules whose only function is to be observed or measured.
When linked to genetic circuits, reporters can provide a “print-out” of information
coming in from cellular sensors and circuits. In biosensing applications the acqui-
sition of information about the presence, absence, concentration or temporal profile
of an input signal in the environment or the cell is itself the goal of the system.
Reporters can also provide a physical read out of the solution of computations
performed by genetic circuits. The most common reporters are proteins such as
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�-galactosidase or Green Fluorescent Protein (GFP), the abundances of which can
easily be measured by standard molecular biological techniques.

Metabolic Engineering

Metabolic engineering involves the expression of enzymes which divert cellular
metabolites into alternative pathways to produce desired output products (Lee and
Papoutsakis 1999). The enzymes used in metabolic engineering are therefore actu-
ators which can be expressed as the outputs of genetic circuits. A typical metabolic
design might employ sensors which detect the presence of upstream metabolites to
time the expression of the biosynthetic enzymes which act upon them.

One application of metabolic engineering is the production of liquid fuels (Jarboe
et al. 2007, Keasling 2008, Mielenz 2001, Service 2007). To this end, Liao and
coworkers recently re-engineered E. coli amino acid metabolism for the production
of branched chain alcohols, compounds which have desirable fuel properties (At-
sumi et al. 2008). This required the expression of one of several two-enzyme clusters
which converted intermediate metabolites from amino acid biosynthetic pathways to
the various alcohols. Endogenous amino acid metabolic genes could also be over-
expressed as complementary actuators to increase flux through the pathways and
bump up fuel yields.

Metabolic actuators can be used to reprogram E. coli for the production of ther-
apeutic compounds as well (Pfeifer et al. 2001, Swartz 2001, Zhang et al. 2006).
For example, Keasling and coworkers have introduced a large number of non-native
isoprenoid biosynthetic enzymes into E. coli to efficiently convert the ubiquitous
metabolite acetyl-CoA into artemisinic acid, a direct precursor to the potent and
otherwise prohibitively expensive anti-malarial compound artemisinin. Optimiza-
tion of enzyme expression levels and compensatory engineering to eliminate toxic
byproducts has resulted in profound improvements in yield, approximately 1 million
fold increase in a 4 years span (Keasling 2008). These efforts are likely to reduce
the cost of artemisinin orders of magnitude, to prices compatible with its utilization
in many underdeveloped countries with high malarial death rates.

Most metabolic engineering efforts to date have expressed the actuators under the
control of classically regulated circuits. These have been chosen for their simplicity
and the continuous fine-grained control that they offer over enzyme expression lev-
els. The construction of more sophisticated sensor-circuit-actuator systems should
facilitate the design of increasingly ambitious microbial factories and help to opti-
mize yields.

Organelle Transfer

Clusters of genes encoding entire organelles can also be used as actuators. His-
torically, the ability to manipulate such large fragments of DNA has required the
presence of fortuitous restriction sites in the natural organelle sequences or spe-
cialized polymerase chain reaction (PCR) based methods. Improved DNA synthesis
technologies now allow the de novo fabrication of organelle scale fragments.
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In the initial demonstration of organelle transfer, 11 genes responsible for the
synthesis of cytoplasmic gas vesicles in B. megaterium were moved into E. coli (Li
and Cannon 1998). Expression of this gene cluster from a classically regulated cir-
cuit on a standard expression plasmid resulted in the formation of functional vesicles
capable of significantly increasing the buoyancy of E. coli in aqueous media.

Similar strategies have resulted in the transfer of the fully functional nitrogen
fixation (nif) (Dixon et al. 1976) and O antigen lipopolysaccharide (Bastin et al.
1991) enzyme clusters from Klebsiella and enteropathogenic E. coli, as well as the
Type III protein secretion organelle from Salmonella (Wilson et al. 2007) and the
cryptic Type II organelle from E. coli itself (Francetic et al. 2000). These efforts
used unmodified, contiguous genomic DNA fragments which were recombined into
plasmids and introduced into E. coli “as is”. These strategies therefore relied on ex-
pression from the natural promoters and RBSs of the relevant genes, and necessarily
introduced the possibility of regulation by undefined control elements. The utility
of organelle actuators will undoubtedly benefit from control through sensors and
circuits.

Building Genetic Programs

Sensors, circuits and actuators are true modular engineering components only when
they can easily and arbitrarily be linked together. Several methodologies have re-
cently been developed which allow the combination of multiple stretches of DNA
without the need for inherent restriction sequences. One example is a universal,
iterative cloning method for the assembly of standardized “Biobrick” parts (Shetty
et al. 2008). In this method, a DNA part is computationally designed to internally
lack several specific restriction sites. These restriction sites are then added to the
upstream and downstream regions of the part and used as universal handles for
the iterative, arbitrary connection of any two Biobricks. This standardized strat-
egy increases the efficiency and ease with which any two parts can be combined
(composability).

A PCR-based strategy termed SLIC has recently been developed for the “one-
pot” assembly of up to 10 unrelated stretches of DNA in a specific order (Li and
Elledge 2007). This method uses oligonucleotide primers to add specific linker se-
quences to any piece of DNA which then guide the order of assembly. The benefits
to this approach are that no specific restriction sites need be avoided in the internal
sequence of any part and that more than two parts can be combined in one step.
Other advanced assembly strategies based on large scale oligonucleotide synthesis
and polymerase chain reaction (PCR) assembly have allowed the construction of
complete viral (Cello et al. 2002, Smith et al. 2003, Tumpey et al. 2005) and even
bacterial (Gibson et al. 2008) genomes from computationally designed DNA infor-
mation.

Standardization and assembly technologies are already helping eliminate bar-
riers between the design and physical construction of DNA (Endy 2005), a pro-
cess which has been the historical rate limiting step in genetic engineering. A true
leap in biological design will occur when these technologies become more widely
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available and less expensive, allowing true modular assembly of sensors, circuits
and actuators. In an early watershed example, Collins and coworkers linked a DNA
damage sensor to a bistable genetic switch to drive an actuator which triggered
biofilm formation in E. coli. In this bottom up programming effort, the E. coli could
stably and strongly switch ON biofilm formation phenotype in the presence of DNA
damaging environmental inputs such as UV light or a chemical mutagen (Kobayashi
et al. 2004).

Finally, when genetic parts are linked together in a design, their quantitative
input/output properties must be properly matched (Yokobayashi et al. 2002). As
discussed in Section 19.3.3 above, if the OFF state of a sensor is sufficiently leaky
to activate a downstream genetic circuit, the circuit will not be capable of receiving
signaling information from the sensor. There are many strategies for matching the
transfer functions of multiple parts, but until universal metrics of genetic activity
can be established (Endy 2005, Canton et al. 2008) there will always be a significant
troubleshooting component in the assembly of functional systems.

19.5 Conclusions

The vast molecular genetic literature on E. coli has made it the subject of choice
for many early efforts in synthetic biology. Five decades of work have given genetic
engineers a rich repository of parts, often sensors and actuators, which can be taken
out of their natural context and used for new, user-defined purposes. More recent
efforts have established useful circuit design principles that have further pushed the
level of sophistication of behaviors that can be designed.

Complementing the scientific contributions, DNA synthesis and sequencing tech-
nologies have become increasingly high throughput and less expensive in the past
few years. Further advances will bolster biological design by allowing researchers
to bypass the arduous process of physically constructing designed DNA sequences.
In the end, E. coli synthetic biology serves two major purposes. It enables the goal-
oriented engineering of strains which can carry out novel functions of medical, in-
dustrial or academic interest and it serves as a bottom-up complement to top-down
systems approaches for the elucidation of the molecular principles which govern
cellular behavior.
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Abstract Metabolic engineering can be defined as purposeful modification of
metabolic pathways and other cellular network to achieve desired cellular phenotype
and performance. Rational metabolic engineering developed a couple of decades
ago changed the way strains have been developed, which had traditionally been
performed by random mutagenesis and selection. Now, we are observing another
paradigm shift towards systems-level metabolic engineering, powered by the meth-
ods and tools developed in the discipline of systems biology. Systems metabolic
engineering allows whole-cell-wide metabolic engineering based on the findings of
systems biological studies including omics and computational analyses. Not only
the metabolic network, but also gene regulatory and signaling networks can be en-
gineered to develop an optimal strain. Also, it is important to consider fermentation
and downstream processes during the upstream strain development. In this chapter,
the general strategies of systems metabolic engineering are reviewed with relevant
examples recently reported.
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20.1 Systems Biology and Biotechnology

Advances in genomics and functional genomics opened up new possibilities of
better understanding of biological systems as a whole. Systems biology emerged
towards this goal is also advancing rapidly by integrating mathematical and com-
putational analyses with biological experiments. The so called ‘omics’ technologies
including genomics, transcriptomics, proteomics, metabolomics and fluxomics are
providing us with unprecedentedly large amounts of data which allow data-driven
discovery of biological phenomena. Unlike classical molecular biology, which deals
with individual cellular components, systems biology looks at the cells at the
systems-level. The genome-wide high-throughput analysis by using various systems
biological tools has been proved to be beneficial for elucidating the cell physiology
from global point of view. This benefit can thus be employed to study biotechnologi-
cally important microorganisms as well, which generated a new research field called
systems biotechnology (Lee et al. 2005b). In the field of metabolic engineering, the
emergence of systems biology has greatly contributed to the increasing number of
successful applications by utilizing the expanding number of systems biological
tools available (Stephanopoulos 2007, Tyo et al. 2007). Application of systems bi-
ology and biotechnology to real bioprocess development has been recently reviewed
(Lee et al. 2005b, Park et al. 2008).

Escherichia coli remains one of the most widely used microorganisms, due to
the extensive knowledge on its metabolism, well-established omics and molecular
biological techniques, fermentation techniques including high cell density cultiva-
tion technique, and availability of the complete genome sequence. Thus, E. coli
is an important model organism for systems biology, which can be extended to
other organisms. Also, systems-level engineering of E. coli based on genome-wide
high-throughput data and computational analyses has emerged as an important strat-
egy for developing bioprocesses in industry. Recently, several notable achievements
were reported, which demonstrated the successful application of systems biology
and biotechnology to developing superior E. coli strains (Lee et al. 2007, Park et al.
2007, Wang et al. 2006). In this chapter, the overall strategy for systematic engineer-
ing of E. coli is introduced and its industrial importance is discussed with relevant
examples.

20.2 Systems Metabolic Engineering Roadmap

Because systems biology is a relatively new field, guidelines for the construction of
superior industrial strains are still being refined and perfected. These guidelines are
continuously updated to satisfy the increasing demands of metabolic and biochemi-
cal engineers. In this regard, here we present a roadmap of systems metabolic engi-
neering based on currently available various omics and computational tools, which
will guide us to develop improved strains suitable for industrial-scale production of
target bioproducts starting from the wild-type strain (Fig. 20.1). The details for each
of those tools are covered in the following chapters of this book.
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Fig. 20.1 Systems metabolic engineering roadmap starting from a wild-type strain to the final
strain suitable for industrial-scale production. Factors to be considered in each step are listed

In the first step, a so-called base strain is constructed by intuitive rational
metabolic engineering of a wild-type strain using conventional strategies of strain
improvement. Some of the general strategies that can be employed are removal
of negative regulations and competing pathways by site-specific genome engineer-
ing, and the amplification of rate-controlling (limiting) biosynthetic pathways by
plasmid-based or chromosomally integrated gene overexpression.

Next, additional metabolic engineering target genes are selected by genome-wide
omics analysis using the microorganism’s genome, transcriptome, proteome, flux-
ome and metabolome data. Notably, integration of these omics analyses and com-
putational simulation results might be able to provide additional information on the
cellular status at various hierarchical levels, thereby allowing us to identify new
targets suitable for further improvement of the strain. Various methods of compu-
tational analysis, including construction of biological networks and databases and
subsequent data mining and simulations, are becoming essential tools for the effi-
cient integration of these data.

After this initial engineering of the cellular metabolism to construct the base
strain and subsequent strain improvement based on multi-level genome-wide high-
throughput analysis, the engineered strain can undergo lab-scale fermentation,
through which various fermentation performance data including the product yield,
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productivities and byproduct formation are evaluated. The resulting data are used
to refine the strain design by repeating the above procedure in a feedback man-
ner and can be iterated until the satisfactory performance is observed. All these
procedures can also be repeated for the development of industrial-scale processes.
The details of each step and relevant examples are described in the following
section.

20.2.1 Genome Engineering

Before stepwise metabolic engineering, all things that affect the biosynthesis of tar-
get bioproducts need to be manipulated by genome engineering based on genome
sequence data and biochemical characterization studies. Important factors that affect
target biosynthesis are feedback inhibition and transcriptional attenuation regula-
tion, which need to be removed by site-specific genome engineering (Lee et al. 2007,
Park et al. 2007). If the product is toxic to the cell, it is not possible to overproduce
this product without killing the cell unless toxicity is removed. Several strategies
have been employed to reduce toxicity, which include the manipulation of genes
related with transporter if the product is secreted into the medium, adaptive evo-
lution, which enables cells to increase tolerance against the toxic product through
continuous exposure (Guimaraes et al. 2008), and global transcription machinery
engineering (gTME) which uses error prone PCR to engineer transcription factors
affecting expression of multiple genes, the consequence of which results in product
tolerance (Alper and Stephanopoulos 2007).

Once the above problems are solved, it is often necessary to amplify the rate-
controlling biosynthetic pathways and to delete competing pathways by overex-
pressing the corresponding genes and knocking out the corresponding genes, re-
spectively. To amplify the relevant genes, two methods can be considered, plasmid-
based overexpression or chromosomal integration, depending on the desired expres-
sion level of the corresponding genes and stability (Lee et al. 2007). Deletion of
competing pathways can also be carried out by two different methods, complete
gene knock-out or attenuation mutation. Complete deletion of competing pathways
might result in an auxotrophic strain for certain nutrients (Lee et al. 2007, Park et al.
2007), thus requiring supplementation of these nutrients. If this becomes a problem,
the competing pathway can be attenuated instead of being completely knocked-out
(Lee et al. 2007).

Another important modification carried out by genome engineering that can be
considered is to have the minimal set of genes needed to sustain bacterial life, which
potentially redirect more cellular resources to the desired product. It has been re-
ported that an E. coli strain with genome reduction up to 15% still maintains good
growth profiles and protein production (Posfai et al. 2006). However, genome dele-
tion needs to be carefully performed as deletion of a large part of genome might
cause unwanted physiological changes during actual industrial-scale fermentation
including cell lysis, byproducts formation, and strain instability.
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20.2.2 Omics Analysis

For further characterization of cellular status and identification of additional tar-
gets to be engineered, various omics analyses can be utilized (Table 20.1). For
example, the transcriptome, proteome, and nucleotide sequences were compared
between the parent strain E. coli W3110 and the rationally engineered L-threonine-
overproducing base E. coli strain TF5015 to understand regulatory mechanisms of
L-threonine production and the physiological changes in the base strain (Lee et al.
2003). As a result, genes involved in the glyoxylate shunt, the tricarboxylic acid
cycle, and amino acid biosynthesis, were identified to be significantly upregulated,
whereas ribosomal protein genes were found to be downregulated. Furthermore, two
important mutations in the thrA and ilvA genes were identified as essential for the
overproduction of L-threonine.

Identification of new engineering target genes based on transcriptome profiling
has been reported for the enhanced production of recombinant protein. Transcrip-
tome profiles before and after induction during the high cell-density culture re-
vealed several target genes down-regulated (Choi et al. 2003). Overexpression of
the prsA (encoding phosphoribosyl pyrophosphate synthetase) and glpF (glycerol
transporter) genes, which were selected among the down-regulated genes, allowed
a significant increase in IFG-If production (from 1.8 to 4.3 g/L).

Another recent report suggests that transcriptome analysis is effective for the ini-
tial screening of target genes for molecular breeding. A xylitol-producing strain was
constructed by inserting genes of NADPH-dependent D-xylose reductase and D-
xylose permease into the E. coli chromosome. Analysis of the recombinant strain’s
transcriptome under xylitol-producing and non-producing conditions revealed that
xylitol production down-regulated 56 genes, among which the yhbC gene was se-
lected as a target gene to be engineered. Deletion of the yhbC gene resulted in a
2.7-fold increase in xylitol production (Hibi et al. 2007).

Proteome analysis can also be a powerful tool for the systems-level analysis
and engineering of strains. For example, the importance of Eda (2-keto-3-deoxy-
6-phosphogluconate aldolase) in poly(3-hydroxybutyrate) production in an engi-
neered E. coli was identified by comparative proteome profiling (Han et al. 2001).
In another study, increased expression of the 30S ribosomal protein S1 in poly(3-
hydroxybutyrate) producing E. coli lacking the pgi gene was also identified by com-
parative proteome profiling (Kabir and Shimizu 2003).

Also, proteome profiles of E. coli in response to the overproduction of human
leptin, a serine rich protein (Han et al. 2001). It was found that the levels of en-
zymes involved in the biosynthesis of serine family amino acids significantly de-
creased. Based on this result, the cysK gene (encoding cysteine synthase A) was
overexpressed, resulting in a 4-fold increase in the specific leptin productivity. This
strategy was extended successfully to enhance production of another serine-rich
protein.

In another example, overexpression of the ppsA gene (encoding phage shock pro-
tein A) was suggested as a good strategy based on proteome profiling for increasing
the yield of soluble antibody by 50% (Aldor et al. 2005). These results show that
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proteomics can be successfully used to identify target genes to be engineered to-
wards enhanced bioproducts formation.

20.2.3 Computational Analysis

As systems metabolic engineering is practiced with omics analysis as discussed
above, computational analysis plays a critical role in integrating the data and in-
formation extracted (Fig. 20.1). Accordingly, many computational frameworks are
actively being developed and applied. In particular, the genome-scale stoichiometric
modeling and simulation by metabolic flux analysis have become one of the most
representative computational methods applicable in systems metabolic engineering.

Genome-scale stoichiometric modeling and optimization-based flux analysis
techniques have become popular because of their relative simplicity and ability to
predict the flux distributions under various genotypic and environmental conditions
(Kim et al. 2008). The details on the construction and applications of genome-scale
metabolic models are described in a chapter by Prof. Palsson in this book. Brifely,
the number of genome-scale metabolic models is continuously increasing. Also, the
size and coverage of these models are also expanding to become more realistic mod-
els as in the case of E. coli (Edwards and Palsson 2000, Feist et al. 2007, Reed et al.
2003), Helicobacter pylori (Schilling et al. 2002, Thiele et al. 2005), Haemophilus
influenza (Edwards and Palsson 1999, Schilling and Palsson 2000) and Mannheimia
succiniciproducens (Hong et al. 2004, Kim et al. 2007). This expansion enables
more precise simulation of the metabolic characteristics, and thus enables identifica-
tion of target genes for obtaining improved phenotypes. Recently, the development
of so far the most comprehensive metabolic model of E. coli has been reported (Feist
et al. 2007). This model composed of 2077 reactions and 1039 metabolites describes
the metabolism of E. coli in much more expanded manner than the previous models
in terms of the number of genes (1260 genes) incorporated in the model.

Notable improvement in the production of various chemicals in E. coli was
achieved by engineering the target genes identified by the genome-scale metabolic
simulations (Alper et al. 2005a,b, Lee et al. 2007, Park et al. 2007, Wang et al.
2006). Different methods of simulation have also been developed for other applica-
tions such as identifying indispensability of genes and understanding adaptive evo-
lution (Fong and Palsson 2004, Reed et al. 2003). The true power of genome-scale
metabolic simulation lies in its ability to systematically predict flux distributions in
diverse situations, in particular, to predict the effects of genotypic alterations, thus
saving time and effort of performing actual experiments, which are numerous if one
is to consider all possible scenarios.

20.2.4 Downstream Process

Strain needs to be further improved by considering the factors identified during the
actual midstream and downstream industrial processes. Omics and computational
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analyses of the production strain under actual fermentation condition might pro-
vide additional engineering targets that are essential to eliminate any unforeseen
fermentation problems, such as unexpectedly high concentration of byproducts that
hinder cell growth and production. As an example, computational analysis has been
employed to identify pathways responsible for the increased acetate production dur-
ing the high cell density fed-batch fermentation of L-threonine producing E. coli
strain. From this analysis, the production strain was further engineered to recycle
the byproducts to biomass formation and/or energy production, resulting in a 20.4%
increase in a volumetric productivity (Lee et al. 2007).

The presence of any byproduct together with the desired product increases the
cost of recovery and purification. As cells naturally produce both desired and unde-
sired bioproducts, it is necessary to remove pathways that lead to the formation of
undesirable byproducts. For example, E. coli B strain produces only ethanol when
biosynthetic pathways for other byproducts including lactate, formate, and succinate
were removed (Zhou et al. 2008). In another example, removal of pathways leading
to the formation of L-isoleucine, pantothenate, and L-leucine increased the flux to-
wards a desired product L-valine (Park et al. 2007). These examples emphasize the
importance of considering midstream and downstream processes during the strain
development for the overall optimization of the bioprocess.

20.3 Successful Applications of Systems Metabolic Engineering

Recently, several excellent examples of systems metabolic engineering for the con-
struction of superior strains of E. coli have been reported. These examples are sum-
marized in Table 20.1. Development of 100% rationally designed E. coli strain over-
producing L-valine (Park et al. 2007) is one of the examples that follow the systems
metabolic engineering roadmap described above. First, a base strain was constructed
by removing all the known negative regulations and competing pathways that hinder
the L-valine production, and amplifying the local biosynthetic pathways. Next, tran-
scriptome analysis and computational gene knock-out simulation were employed to
identify more target genes engineered. At the end, a superior E. coli strain producing
L-valine with a high yield of 0.378 g L-valine per g glucose was successfully devel-
oped from the initial wild-type strain producing ‘zero’ g L-valine per g glucose.

Another good example that follows the roadmap is the development of L-
threonine overproducing E. coli strain (Fig. 20.2b). The L-threonine overproducing
strain was developed by following almost the same procedure as that for developing
L-valine producing strain (Lee et al. 2007). Additionally, the desired expression
level of target genes selected by transcriptome analysis was determined using a
computation method called in silico flux response analysis. They went one step fur-
ther to optimize the downstream process by removing the severe problem of acetate
accumulation observed during the fed-batch fermentation, by in silico flux response
analysis. The final engineered strain was able to produce L-threonine with a high
yield of 0.393 g L-threonine per g glucose by batch culture. This strain was capable
of producing 82.4 g/L L-threonine by fed-batch culture.
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Fig. 20.2 Schematic presentation of stepwise strain improvement for the production of L-valine (a)
and L-threonine (b). Successive engineering along the roadmap (Fig. 20.1) gradually increases the
product yield. Results from each experiment indicated by box are reflected in the block near the cor-
responding box. Values of 0.066 and 0.202 represent the yields of L-valine and L-threonine, respec-
tively, obtained with the corresponding base strains, in which negative regulations were removed
and the rate-controlling biosynthetic enzymes were amplified. Values of 0.152 and 0.213 indicate
the yields of L-valine and L-threonine achieved by additional engineering based on the transcrip-
tome analysis for L-valine and the transcriptome analysis combined with in silico flux response
analysis for L-threonine, respectively. Values of 0.378 and 0.393 are the final yields achieved for
L-valine and L-threonine after in silico knock-out simulation for L-valine and transcriptome-based
transporter engineering for L-threonine. For L-threonine, fed-batch fermentation was additionally
carried out, during which accumulation of significant amounts of byproduct (acetic acid) was ob-
served. In silico flux response analysis was performed again to engineer the acetate uptake system.
The final concentration of L-threonine achieved by fed-batch fermentation of the final engineered
strain is 82.4 g/L. The gray boxes in the left side of each figure represent mutations introduced
into the genome to remove feedback inhibition and lacI gene. The ‘X’ marks for L-threonine
indicate deletion of the iclR and tdcC genes to remove negative regulation by IclR and to block
L-threonine uptake, respectively. Ptac indicates the replacement of transcriptional attenuator with
the tac promoter. Ptrc indicates the replacement of native promoter with the trc promoter. The thick
leading to L-valine or L-threonine arrows indicate increased fluxes by directly overexpressing the
corresponding genes or by knocking out the genes suggested by in silico simulation. The lines
around ‘Lrp’ indicate the global regulation by Lrp. The plus (+) and minus (−) symbols indicate
activation and repression of corresponding regulation by Lrp, respectively. These figures were
re-drawn from Park et al. (2007) and Lee et al. (2007)

In another example, systems metabolic engineering approach was taken to deve-
lop succinic acid overproducing E. coli strain through comparative genome scan-
ning and metabolic flux analysis with a natural succinic acid overproducer M. suc-
ciniciproducens (Lee et al. 2005a). Comparative genome analysis of E. coli and M.
succiniciproducens predicted five candidate genes to be manipulated for overpro-
ducing succinic acid in E. coli. Then, metabolic flux analysis was carried out to find
an optimal combination of the selected genes that provide the strain with the max-
imum biomass and succinic acid production capability upon their knock-out. This
resulted in the selection of genes which enhanced the succinic acid production by
more than 7-fold (Lee et al. 2005a). In a different study, an E. coli strain capable of
producing succinic acid with a yield of 1.29 mol succinic acid per mol glucose was
developed by engineering the strain based on genome-scale metabolic flux analysis
(Wang et al. 2006). Likewise, metabolic flux analysis and genome-wide transposon
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library search were performed for the development of E. coli strain overproducing
lycopene (Alper et al. 2005b). Although knock-out of gene targets predicted by
metabolic flux analysis allowed increased production of lycopene, the amount pro-
duced was below the stoichiometrically maximal value. This limit was overcome
by ideally combining gene targets with transposon method, some of which led to
8.5-fold higher production of lycopene. These examples demonstrate that systems
metabolic engineering is a powerful and essential strategy for developing improved
strains for the production of various bioproducts.

20.4 Future Perspectives

The importance of systems biology in strain development has just begun to be
validated with a series of successful reports. By combining multiple omics data
and integrating them with computational analysis, systems biology provides us
with valuable information on cellular physiological status, and consequently new
strategies for strain improvement. However, it is true that we are not yet capable
of truly integrating these omics data for understanding the biological systems as
a whole. Research on inter-relating the omics data at various hierarchical levels is
needed. One of the most successful applications of computational analysis in sys-
tems metabolic engineering is genome-scale metabolic flux analysis as described
above. Much effort is being exerted to refine the genome-scale metabolic models
and simulation methods. For the latter, various algorithms to predict gene knock-out
and amplification targets are being developed. Also, better constraints to be applied
during the genome-scale metabolic simulations are being developed for more accu-
rate prediction of metabolic flux distributions. Genome-scale metabolic models thus
far employed are rather limited as they lack regulatory constraints. Thus, complex
regulatory circuits controlling overall cellular metabolism needs to be deciphered to
understand the regulatory mechanisms governing the metabolism (Akesson et al.
2004). Besides stoichiometric modeling and simulation, research on developing
other methods such as dynamic modeling, data mining and machine learning meth-
ods will also be more actively performed to integrate gene regulatory and signaling
networks together with metabolic network (Bonneau et al. 2007, Friedman 2004).
Furthermore, one should not give up using so-called random approach yet. Even
though it will be always nice to develop 100% genotypically-defined strain, our
ability to develop a satisfactory strain might be limiting in many cases. Evolution of
strains under rational selective pressure, engineering regulatory proteins, and even
random mutagenesis can be combined with systems metabolic engineering to further
improve the strain performance.

In this chapter, systems metabolic engineering strategies for the development of
strains were presented together with successful examples of developing superior E.
coli strains capable of overproducing various bioproducts. It is expected that more
fine-tuned strategies of systems metabolic engineering will be developed as our
knowledge on cellular metabolism and regulation advances and more experimental
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and computational tools for systems biological studies are developed. It is believed
that more successful examples of systems metabolic engineering will appear in the
near future.
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