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Abstract Investigation into the innate immune response in leprosy has
provided insight into host defense and immunopathology in

human infectious disease. A key advance has been the delineation
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2 Dennis Montoya and Robert L. Modlin
of pattern recognition receptors that detect pathogen-associated

molecular patterns of the bacterium that causes leprosy,Mycobac-

terium leprae. From this knowledge, it has been possible to deter-

mine the cytokine responses as well as macrophage and dendritic

cell differentiation programs that contribute to host defense and

tissue injury in leprosy. These insights provide targets for therapeutic

intervention to modulate innate immune responses against microbial

infection in humans.
In 1884, when Metchnikoff discovered phagocytes (Metchnikoff, 1884)
and the process of phagocytosis, he created what is now the modern
concept of innate immunity, indicating that the host response against
foreign pathogens involves the (1) rapid recognition of pathogens,
(2) uptake, and (3) subsequent killing of the invaders, ‘‘Whenever the
organism enjoys immunity, the introduction of infectious microbes is
followed by the accumulation of mobile cells, of white corpuscles of the
blood in particular which absorb the microbes and destroy them’’
(Mechnikov, 1908). Immunologists have since linked phagocytosis to an
array of microbicidal and digestive mechanisms. The internalization and
subsequent killing of pathogens are not only key to the innate immune
response but also in promoting antigen presentation and initiation of the
acquired immune response. However, mycobacteria have evolved many
mechanisms to circumvent the innate immune response of host cells, in
fact surviving and proliferating within themacrophage (MF), the primary
phagocyte of the innate immune response. Through study of mycobacte-
rial disease, many details of the innate immune response have been
elucidated, this review will focus on the study of human leprosy to
contrast host defense versus pathogenesis at each stage of the innate
immune response.
1. LEPROSY AS A MODEL

Leprosy, caused by the intracellular pathogenMycobacterium leprae, offers
an attractive model for investigating the regulation of human immune
responses to infection. First, the disease itself still poses a significant
health and economic burden within developing countries and shows
clustering to limited geographical regions or ethnic groups within a
country (Bakker et al., 2002; Baumgart et al., 1993; Bloom, 1986; Britton
and Lockwood, 2004; Durrheim et al., 2002). Although treatment of lep-
rosy patients with multidrug regimens has reduced the number of active
cases to approximately 0.5 million, the number of new cases per year is
not declining (Britton and Lockwood, 2004). Furthermore, patients
‘‘cured’’ of the infection have permanent neurologic deficits, can relapse,



The clinical and immunologic spectrum of leprosy
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FIGURE 1.1 Clinical and immunologic spectrum of leprosy. Clinical manifestations

of leprosy correlate with the immunologic response from leprosy patients. Lepromatous

leprosy patients have a humoral (Th2) response ineffective at containing the

intracelluar pathogen resulting in disseminated infection. In contrast, tuberculoid

leprosy patients have a robust cell-mediated (Th1) immune response effective

at localizing the infection.
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and/or subsequently undergo tissue-damaging reactions, all leading to
functional impairment and disability. Secondly, leprosy is a disease that
presents as a spectrum (Fig. 1.1) in which the clinical manifestations
correlate with the nature of immune response to the pathogen (Ridley
and Jopling, 1966), providing an extraordinary opportunity to investigate
resistance versus susceptibility to a microbial pathogen in a human
disease. Here, we provide a comprehensive assessment of how investiga-
tion of leprosy histology, gene expression patterns, genetic polymorph-
isms, and cellular immune response have been utilized to investigate
mechanisms by which the innate immune system determines outcome
in human infectious disease. Although the focus of the present discussion
relates to the innate immune response in leprosy, in some instances, we
have included information from studies of the related mycobacterial
species M. tuberculosis.

Patients with tuberculoid leprosy (T-lep) are relatively resistant to the
pathogen as the infection is localized. The number of lesions is few and
bacilli are infrequently detected, although tissue and nerve damage are
both frequent. At the opposite end of this spectrum, patients with leproma-
tous leprosy (L-lep) are relatively susceptible to the pathogen as the infec-
tion is disseminated. Skin lesions are numerous and growth of the
pathogen is unabated, with numerous bacilli detected inMF. These diverse
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clinical presentations correlate with the level of cell-mediated immunity
(CMI) against M. leprae. The standard measure of CMI to the pathogen is
the Mitsuda reaction or lepromin skin test, a 3-week response to intrader-
mal challenge with M. leprae. The test is positive in T-lep patients
but negative in L-lep patients. Interestingly, serum antibody levels against
M. leprae are greater in L-lep patients, indicating that humoral responses do
not contribute to host defense against mycobacteria.

The mechanisms that contribute to the inverse correlation between
CMI and humoral immunity were initially investigated according to the
distribution and function of T cells at the site of disease. In leprosy skin
lesions, CD4þ T cells predominate in the T-lep form; whereas, CD8þ
T cells predominate in the L-lep form (Modlin et al., 1983). Furthermore,
the cytokine patterns of these T cell subsets show a striking correlation
with the disease type (Cooper et al., 1989; Yamamura et al., 1991, 1992).
CD4þ T cells that produce the type-1 or Th1 cytokine pattern including
IFN-g predominate in T-lep lesions; whereas, CD8þ T cells that produce
the type-2 or Th2 cytokine pattern including IL-4 predominate in L-lep
lesions. Subsequent investigation of cytokine patterns in leprosy lesions
revealed that the local expression of the innate type-1 cytokines IL-12,
IL-18, and GM-CSF predominate in T-lep lesions, whereas the type-2
cytokines IL-10 and IL-5 characterize L-lep lesions (Garcia et al., 1999;
Salgame et al., 1991; Sieling et al., 1994; Yamamura et al., 1991). The
biological relevance of the Th1 versus Th2 cytokines has been investigated
at each step of the innate immune response (Fig. 1.2).
2. RECOGNITION OF M. LEPRAE BY THE INNATE
IMMUNE SYSTEM

Cells of the innate immune system express germ-line encoded pattern
recognition receptors (PRRs), which recognize pathogen associated
molecular patterns (PAMPs) that are shared among groups of pathogens.
Several PRR–PAMP pairs have been shown to be involved in the innate
immune response to M. leprae and related mycobacteria.
2.1. Toll-like receptor 2/1 (TLR2/1)

From the study of mycobacteria, significant progress has been made
toward understanding the innate immune receptors that recognize and
mediate host responses to mycobacteria. Several Toll-like receptors
(TLRs) mediate innate immune recognition of M. tuberculosis and related
species. Experiments performed in the Modlin lab (Brightbill et al., 1999)
and others (Aliprantis et al., 1999) led to the exciting finding that microbial
lipoproteins trigger host responses via TLR2, requiring the acyl functions
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FIGURE 1.2 Leprosy as a model for host defense versus pathogenesis for the innate

immune response to mycobacterial infection. The spectrum of leprosy provides an ideal

human model to investigate each step of the innate immune response: recognition,
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Furthermore, the Th1 versus Th2 cytokines affect each step of the innate immune

response to further cause pathogenesis versus host defense, respectively.
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for activity. Subsequently, triacylated lipoproteins were found to activate
TLR2/1 heterodimers (Takeuchi et al., 2001), whereas diacylated lipopro-
teins were found to activate TLR2/6 heterodimers (Takeuchi et al., 2002)
and activate an inflammatory cytokine response (Brightbill et al., 1999;
Gehring et al., 2004; Pecora et al., 2006; Sieling et al., 2008). TLR2 also
mediates the response to the lipoarabinomannan (LAM) from rapidly
growing mycobacteria (Means et al., 1999). TLR2 has also been shown to
interact with a number of accessory molecules and receptors to modulate
their recognition of mycobacterial PAMPs. For instance, TLR2 physically
interacts with RP105, a PRR phylogenetically related to TLR4, in the
recognition of 19-kDa lipoprotein from M. tuberculosis (Blumenthal et al.,
2009). Furthermore, the C-type lectin receptor, Dectin-1, has been
reported to partner with TLR2 for recognition of avirulent mycobacterial
species, but not pathogenic species. The class A scavenger receptor,
macrophage receptor with collagenous structure (MARCO), is utilized
preferentially to ‘‘tether’’ the predominant cell wall glycolipid, trehalose
6,60-dimycolate (TDM) to the MF and activate the TLR2 in combination
with CD14. However, MFs that lack MARCO expression rely on scaven-
ger receptor A (SR-A), which is less effective at binding TDM, resulting in
markedly lower levels of pro-inflammatory cytokines (Bowdish et al.,
2009). These data help to explain the differential response to
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mycobacterial infection of various MF populations which differ in their
expression of scavenger receptors.

The expression and activation of TLRs was investigated in leprosy
(Krutzik et al., 2003). Initial studies indicated that activation of mono-
cytes/MF by killed M. leprae required TLR2–TLR1 heterodimers for
induction of cytokine responses, suggesting the presence of triacylated
lipoproteins in the pathogen. A genome-wide scan ofM. leprae detected 31
putative lipoproteins. Synthetic lipopeptides representing the 19- and
33-kD lipoproteins activated both monocytes and dendritic cells (DC) to
release pro-inflammatory cytokines. Additional studies demonstrated
that the M. leprae 33-kD lipoprotein (Yamashita et al., 2004) and the
M. leprae major membrane protein-II (Maeda et al., 2005), also a lipopro-
tein, triggered TLR2 responses, requiring the acyl functions and the
polypeptide region for optimal activity. The activation of the TLR2/1
heterodimer by M. leprae lipopeptides triggered the production of TNF-
a, as part of the acute inflammatory response and IL-12, which instructs
the adaptive type-1 or Th1 cytokine response (Krutzik et al., 2003).

Immunohistochemical analysis of leprosy skin lesions revealed TLR2
and TLR1 were more strongly expressed on MF in lesions from the loca-
lized T-lep form as compared with the disseminated L-lep form of the
disease. The type-1 and type-2 cytokine patterns differentially affected
TLR2/1 activation by an M. leprae lipopeptide. The type-1 cytokines
IFN-g, GM-CSF, IL-12, and IL-18 enhanced TLR2/1 activation, whereas
the type-2 cytokines IL-4 and IL-10 inhibited activation. Furthermore,
although IL-10 inhibited TLR2 and TLR1 activation it did not downregu-
late TLR2 or TLR1 expression as comparedwith IL-4, which inhibited both
TLR2 expression and TLR2/1 activation. In contrast, the type-1 cytokines
IFN-g, IL-12, and IL-18 upregulated TLR2/1 heterodimer responses and
IFN-g and GM-CSF increased TLR1 expression in monocytes. Thus, the
local cytokine pattern triggered during microbial infection regulates the
innate immune system through two different and independent mechan-
isms, one directly affecting TLR activation and the other modulating TLR
expression. These findings indicate that in humans, the regulated expres-
sion and activation of TLR2 and TLR1 contributes to the outcome between
the host response and the microbial invader.

A number of additional mechanisms have been identified, which
regulate TLR function in leprosy. Activation of LILRA2, which is more
highly expressed in L-lep versus T-lep lesions, inhibited TLR2/1-
induced IL-12 release but preserved IL-10 release (Bleharski et al.,
2003). Similarly, oxidized phospholipids inhibited TLR2/1-induced
IL-12 release but preserved IL-10 release (Cruz et al., 2008). The ability of
M. leprae to upregulate CORO1A, also known as tryptophan aspartate-
containing coat protein (TACO), known to be expressed in MF contain-
ing M. leprae in vitro and in L-lep but not T-lep disease lesions (Suzuki
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et al., 2006), was shown to downregulate TLR2-mediated signaling
(Tanigawa et al., 2009).
2.2. TLR2 and TLR1 SNPs

Several investigators have examinedwhether polymorphisms in the TLR2
and TLR1 genes contribute to the pathogenesis of leprosy. Initially, a
TLR2 SNP was found to be associated with susceptibility to the L-lep
form of leprosy (Kang and Chae, 2001). Investigation of this TLR2 SNP by
transfection of the mutant TLR2 into cells lacking the wild-type gene
revealed diminished innate responses (Bochud et al., 2003; Kang et al.,
2002, 2004; Schroder et al., 2003). However, this TLR2 SNP was subse-
quently identified in a pseudogene and found not to encode a TLR2
transcript (Malhotra et al., 2005b).

In contrast, there is compelling data to suggest that polymorphisms in
the TLR1 gene may contribute to diminished TLR2/1 responses to lipo-
peptides, and to the pathogenesis of leprosy. As reviewed previously
(Modlin, 2010), the TLR1 T1805G SNP (I602S), rs5743618 affects TLR1
surface expression and subsequent activation by mycobacterial lipopep-
tides (Johnson et al., 2007; Misch et al., 2008). The TLR1 I602S SNP was
associated with a decreased incidence of leprosy (Johnson et al., 2007) and
protection against reversal reaction (Misch et al., 2008). The TLR1 A743G
SNP (N248S) rs5433095 is in linkage disequilibrium with TLR1 1805, but
had little effect on function in transfection studies when separated from
the TLR1 1805 allele (Omueti et al., 2007). TLR1 248SS is associated with
protection against leprosy (Schuring et al., 2009). It would seem puzzling
that a polymorphism that would reduce TLR2/1 signaling would protect
against leprosy and reversal reaction. However, Johnson et al. reason that
the TLR response may be critical during the acute infection, but a mod-
eration of the innate response may be beneficial in chronic infectious
diseases such as leprosy (Johnson et al., 2007). Consistent with this
hypothesis is the finding that TLR2/1 activation can lead to tissue injury,
including nerve damage in leprosy (Oliveira et al., 2003).
2.3. Other TLRs and PRRs

As reviewed previously (Modlin, 2010), TLR4 has been reported to be
required for the host defense against M. tuberculosis (Means et al., 1999),
and shown to mediate the response to mycobacterial heat shock proteins
(Bulut et al., 2005), although these studies are frequently criticized because
the recombinant proteins used may contain amounts of endotoxin suffi-
cient to activate TLR4 (Gao and Tsan, 2003; Marincek et al., 2008). Two
TLR4 SNPs, TLR4 D299G and T399I were found to be associated with a
protective effect against leprosy (Bochud et al., 2009). Finally, TLR9 has a
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role in recognition of bacterial CpG DNA, participating in the response to
mycobacteria (Bafica et al., 2005). A polymorphism in TIRAP, a signaling
molecule downstream of the TLRs, TIRAP S180L has been associated with
protection against leprosy infection (Hamann et al., 2009).

A comprehensive study of TLR pathway gene polymorphisms in
susceptibility to tuberculosis analyzed 149 SNPs in 18 genes involved in
the TLR pathway (Davila et al., 2008). Four polymorphisms, all in the
TLR8 gene, showed statistical evidence of association with resistance to
tuberculosis and were prevalent in various populations. It is reasonable to
consider whether TLR8 polymorphisms play a role in the innate immune
response in leprosy infection.

Nucleotide-binding oligomerization domain 2 (NOD2) is a cytoplasmic
receptor belonging to the NOD-like receptor family, that recognizes pepti-
doglycan, including that derived frommycobacteria, by sensing muramyl
dipeptide (MDP) (Girardin et al., 2003; Yang et al., 2007). Triggering of
NOD2 by MDP activates NF-kB through the adaptor molecule, receptor-
interacting protein kinase RIP2. In addition, MDP can also activate the
inflammasome, by recruitment of caspase-1, leading to the proteolytic
cleavage and activation of IL-1b (Delbridge and O’Riordan, 2007). NOD2
deficiency in a mouse model of tuberculosis resulted in increased suscep-
tibility (Divangahi et al., 2008;Gandotra et al., 2007).NOD2polymorphisms
have been associatedwith susceptibility to tuberculosis in humans (Austin
et al., 2008). NOD2 was found to mediate the response to mycobacteria in
human monocytes and synergize with lipoprotein in activating monocyte
cytokine responses (Ferwerda et al., 2005), but also synergized with trans-
fected DNA in activating the IFN-b pathway that may be detrimental to
host defense against mycobacteria (Leber et al., 2008). Relevance of NOD2
in the pathogenesis of leprosy was demonstrated in a recent genome-wide
association study onHan Chinese which identified SNP variants of NOD2
and RIP2 that confer susceptibility to leprosy, regardless of disease classi-
fication. Furthermore, tests of heterogeneity of association between clinical
forms indicated that the SNPs rs9302752 of NOD2 and rs42490 of RIP2
were more strongly associated with L-lep versus T-lep patients; however,
further genetic polymorphisms may be found with a direct genome-wide
association study of the clinical forms of disease (Zhang et al., 2009).
3. PHAGOCYTOSIS OF MYCOBACTERIA

3.1. Evasion of phagosome–lysosomal fusion by mycobacteria

In Metchnikoff’s model of innate immunity, recognition of the microbial
pathogen was followed by phagocytosis (Metchnikoff, 1884). A key cell of
the mammalian innate immune system that mediates phagocytosis of
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microbial pathogens is the MF. Phagocytosis is a receptor-mediated pro-
cess that involves the ingestion of particulate material and microorgan-
isms into phagosomes. In general, phagosomes mature and subsequently
fuse with lysosomes for destruction of the pathogen. However, some
pathogens, such as mycobacteria, have adapted to block this fusion.

A number of studies addressing the MF surface receptors involved in
M. leprae or M. tuberculosis uptake have implicated the C-type lectin
receptors (Maeda et al., 2003) or the complement receptors (Kang and
Schlesinger, 1998). The C-type lectin receptors recognize specific carbo-
hydrate structures found in the components of the cell wall of pathogens
including those found in the mycobacterial cell envelope. CD209, also
known as DC-SIGN, and the mannose receptor bind the mannose-capped
lipoarabinomannan (ManLAM) on the cell wall of mycobacteria (Maeda
et al., 2003).

Another C-type lectin, the mannose receptor, in conjunction with the
complement receptors, CR1, CR3, and CR4 also promote uptake of
M. leprae by MF (Schlesinger, 1993). CR3 receptor can facilitate phagocy-
tosis of mycobacteria through complement opsonins or lectin-based
phagocytosis which requires cholesterol (Cywes et al., 1996; Peyron
et al., 2000). In fact many lipids are key to normal phagocytosis. Phospha-
tidylinositol (PI) constitutes approximately 10% of the total lipid on the
inner leaflet of the plasmamembrane (Yeung and Grinstein, 2007) and is a
major component of the forming phagosome. Phosphorylation of PI-3-
phosphate [PI(3)P] by the class III PI3K, hVps34 (Fratti et al., 2003) is
required for proper phagosome maturation. As a survival strategy,
M. tuberculosis secretes the glycosylated LAM to inhibit the production
of PI(3)P. Together, these effectors decrease vacuolar PI(3)P to arrest
phagosome maturation and effectively prevent fusion with the lysosome
(Vergne et al., 2003, 2005).

In leprosy infection, TACO, which is highly expressed in L-lep skin
lesions, is recruited, from the plasma membrane to the phagosomal mem-
brane to play an essential role in inhibiting the phagosome–lysosome
fusion, as well as in the survival of bacilli within MF (Suzuki et al.,
2006). The phagosomal localization is transient in MF exposed to dead
mycobacteria, whereas localization is quite stable when live bacilli are
used. TLR2 activation decreased TACO expression, which may affect
phagosome–lysosomal fusion; however, M. leprae infection inhibited
TLR-mediated TACO suppression (Tanigawa et al., 2009).
3.2. Pathogenic foam cell formation in mycobacterial infection

In addition to phagocytosis of microbial pathogens, MFs also have a
scavenger function to remove extracellular material, in particular, MF
phagocytosis of oxidized lipoproteins, such as oxidized low-density
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lipoprotein (oxLDL), maintains proper lipid homeostasis within tissues
(Greaves and Gordon, 2009; Mosser and Edwards, 2008), but can lead to
foam cell formation in a variety of chronic infectious and noninfectious
inflammatory disorders. In the different forms of leprosy, conventional
histology indicates a distinct difference in the lipid content of the MF.
In T-lep lesions, theMFs are thought to be activated, resembling epithelial
cells, and are therefore called epithelioid cells. In L-lep lesions, the MFs,
besides containing numerous bacilli, have a characteristic foamy appear-
ance, first described by Rudolf Virchow in 1863. ‘‘In the fresh state they
have one characteristic that is especially noteworthy, i.e., their tendency to
form a sort of vacuole, apparently from taking up water, so that under the
circumstances they acquire a wholly physaliferous appearance’’
(Virchow, 1863). It has generally been thought that such cells, termed
Virchow cells, lepra cells, or foam cells, areMFs containing large amounts
of lipids including phospholipids and fatty acids, presumed to be of
mycobacterial origin (Sakurai and Skinsnes, 1970).

By examining the gene expression profiles of T-lep and L-lep lesions
(Bleharski et al., 2003), host lipid metabolism genes were revealed to be
differentially upregulated in the L-lep versus T-lep lesions (Cruz et al.,
2008). Moreover, the lipid within the foam cells in the L-lep lesions was
found to include host-derived oxidized phospholipids. In vitro, mycobac-
teria induced in MF the intracellular accumulation of a specific host-
derived oxidized phospholipid, 1-palmitoyl-2-(5,6-epoxyisoprostane
E2)-sn-glycero-3-phosphorylcholine (PEIPC), providing a mechanistic
link to the foam cells found in atherosclerosis lesions. In atherosclerosis,
foam cells are derived from monocytes that enter the subendothelial
space, differentiate into MFs, and endocytose modified forms of LDL
(Navab et al., 2004). The foam cells in atherosclerosis are defined by the
intracellular presence of distinct components of oxLDL: oxidized phos-
pholipids, esterified cholesterol, and apolipoprotein B (ApoB); the latter is
also expressed in L-lep lesions (Ridley et al., 1984). Foamy, lipid-laden
MFs are also a frequent pathological observation in tuberculosis
(Cardona et al., 2000; Florey, 1958; Gunn, 1961; Hernandez-Pando et al.,
1997; Osler, 1892; Ridley and Ridley, 1987), with mycobacterial compo-
nents such as mycolic acid able to promote MF accumulation of choles-
terol ester and lipid body formation (D’Avila et al., 2006; Kondo and
Kanai, 1974, 1976; Korf et al., 2005). The ability of mycobacteria to promote
lipid body formation was also shown to involve TLR2 signaling (D’Avila
et al., 2006) and PPAR-g activation (Almeida et al., 2009). The accumula-
tion of lipids in phagosomes within MF in L-lep lesions involves lipid-
droplet associated proteins adipose differentiation-related protein
(ADRP) and perilipin (Tanigawa et al., 2008), further suggesting that the
foam cells in L-lep lesions represent a dysregulation of host lipid
metabolism.
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Complementary to the correlation of mycobacterial infection and an
increased amount of lipids, mycobacteria are critically dependent on the
use of host-derived lipids and enzymes. For instance,mycobacteria require
the isocitrate lyase genes as part of the glyoxylate shunt tometabolize fatty
acids for generation of ATP during in vivo growth (Munoz-Elias and
McKinney, 2005), and metabolism of host-derived fatty acids is required
for the synthesis of mycobacterial lipids and virulence factors including
phthiocerol dimycocerosate, sulfolipid-1, andpolyketidesynthase-derived
phenolic glycolipid ( Jain et al., 2007; Reed et al., 2004). Additionally, among
the mycobacteria, M. leprae is the most dependent on the host metabolic
pathways due to genomic decay. Sequencing of the M. leprae genome
showed massive gene decay as compared with M. tuberculosis; entire
metabolic pathways are purged from theM. leprae genome, and it has been
proposed thatM. leprae has retained only essential pathways in its adapta-
tion to intracellular survival (Cole et al., 2001). In summary, theaccumulation
of host-derived oxidized phospholipids, increased host lipid metabolic
pathways in L-lep lesions, and dependence ofM. leprae on host lipidmetab-
olism suggests a link between host lipid metabolism and innate immunity,
contributing to the pathogenesis of mycobacterial infection.
4. ANTIMICROBIAL ACTIVITY

4.1. Vitamin D and innate immunity

The ability of TLRs to trigger a direct antimicrobial activity is central to their
role in innate immunity. In mouse monocytes, TLR2-induced antimicrobial
activity is dependent on the generation of NO, but in human monocytes,
TLR activation did not induce NO, nor was TLR-induced antimicrobial
activity NO dependent (Thoma-Uszynski et al., 2001). By investigating the
gene expression profile of TLR-activated humanmonocytes andMFs, a key
antimicrobial mechanism was found to involve induction of the 25-hydro-
xyvitamin D3-1a-hydroxylase (CYP27b1), which converts the 25D into the
active 1,25D form, upregulation and activation of the vitamin D receptor
(VDR), and downstream induction of the antimicrobial peptide cathelicidin
(Krutzik et al., 2008; Liu et al., 2006, 2007; Martineau et al., 2007; Wang et al.,
2004). Themechanism bywhich TLR2/1 activation upregulated expression
of CYP27b1 and the VDRwas found to involve TLR induction of IL-15 and
its receptor components (Krutzik et al., 2005). TLR also induced the antimi-
crobial peptide DEFB4, by simultaneous triggering of IL-1b activity and
activation of the VDR (Liu et al., 2009). Induction of antimicrobial peptides
required the presence of 25D-sufficient human serumandwas not observed
with 25D-insufficient human serum or fetal calf serum, but could be
restored by the addition of exogenous 25D3.
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Low serum vitamin D levels are associated to both tuberculosis dis-
ease progression and susceptibility (Grange et al., 1985; Wilkinson et al.,
2000), and there is some evidence that indicates that the vitamin D
antimicrobial pathway may contribute to disease outcome in leprosy.
Several studies suggest that polymorphisms in the VDR are associated
with the type of disease, specifically the Taq I polymorphism (Fitness
et al., 2004; Goulart et al., 2006; Roy et al., 1999). Analysis of gene expres-
sion profiles in leprosy lesions indicated that the vitamin D antimicrobial
pathway gene signature was differentially expressed in T-lep versus L-lep
lesions (Montoya et al., 2009). The finding that a polymorphism in the NF-
kB1 putative binding site of DEFB1 (human b-defensin 1), DEFB1 G668C
is associated with L-lep (Prado-Montes de et al., 2009) further indicates a
role for antimicrobial peptides in host defense in leprosy.

A previously unappreciated innate immune defense mechanism,
autophagy is a fundamental biological process in which cytoplasmic
material is enclosed in a double-membrane vacuole called an autophago-
some,which promotes fusionwith lysosomes for degradation. Autophagy
induced via serum starvation or IFN-g promoted phagosome–lysosomal
fusion and autophagy has been demonstrated to contribute to intracellular
killing of mycobacteria (Alonso et al., 2007; Gutierrez et al., 2004). Interest-
ingly, the autophagic pathway also converges with the VDR-cathelicidin
program. Autophagy induced by 1,25D was dependent on cathelicidin
expression in the antimicrobial response to M. tuberculosis (Yuk et al.,
2009). Cathelicidin promoted the colocalization of mycobacterial phago-
somes with autophagosomes to promote antimicrobial activity.
4.2. Divergence of macrophage phagocytic and antimicrobial
programs in leprosy

In addition to their phagocytic function, MFs also mediate an antimicro-
bial activity against infectious agents. The mechanisms which regulate
these MF antimicrobial and phagocytic functions are central to our
understanding of innate immune responses against microbial pathogens.
Although MF infiltration is prominent in all lesions, MFs in the self-
healing T-lep form are well differentiated and rarely contain bacteria,
whereas, MFs in the disseminated L-lep form are characterized by abun-
dant intracellular bacilli and foam cell formation as the result of the
accumulation of host- and pathogen-derived lipids (Cruz et al., 2008).
Despite the histologic differences of MFs infiltrating T-lep versus L-lep
lesions, the frequency of CD209 expressing MF is similar across the
spectrum of disease (Krutzik et al., 2005).

Even though MF in both T-lep and L-lep lesions expressed CD209
(Krutzik et al., 2005), we thought it possible that these MFs were distinct
in their functional programs, and consequently differentially contributed
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to the pathogenesis of leprosy. The induction of these MFs functional
programs are known in part to be influenced by the distinct T cell cyto-
kine patterns at the site of infection (Jullien et al., 1997; Yamamura et al.,
1991), however, we reasoned that the cytokines produced by the innate
immune response have direct effects on the MF functional programs.

Of the innate immune cytokines known to regulate MF function, T-lep
lesions express IL-15 ( Jullien et al., 1997; Yamamura et al., 1991), whereas,
L-lep lesions are characterized by the expression of IL-10 ( Jullien et al.,
1997; Yamamura et al., 1991), prompting the comparison of the IL-15 and
IL-10 induced MF differentiation (Montoya et al., 2009). Both IL-10 and
IL-15 upregulated CD209 expression on monocytes, however, they
inducedMF functional programs. IL-10 induced the phagocytic pathway,
including a scavenger receptor program, resulting in the phagocytosis of
mycobacteria and oxLDL. IL-10 derived MF co-expressed CD163 and the
scavenger receptors SRA-I, CD36, and MARCO. In contrast, IL-15
induced the vitamin D-dependent antimicrobial pathway, yet the cells
were less phagocytic. IL-15 derivedMFs were CD163 negative and lacked
scavenger receptor expression (Fig. 1.3). The differential regulation of MF
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functional programs was confirmed by immunohistochemical and
expression array analysis of leprosy lesions: the MF phagocytic gene
expression signature was prominent in the clinically progressive L-lep
form, whereas the vitamin D-dependent antimicrobial pathway predomi-
nated in the self-limited T-lep form of the disease and in patients under-
going reversal reactions, in which there is clinical conversion from the
multibacillary to the self-limited form. Furthermore, the in vitro phenotype
of the MF programs correlated with the in vivo phenotype of leprosy skin
lesions. L-lep skin MFs were CD209þCD163þ and contained M. leprae,
lipoproteins, and host-derived phospholipids, while T-lep MFs were
CD209þCD163� (Cruz et al., 2008; Montoya et al., 2009).

Polymorphisms in the IL-10 locus have been investigated with
conflicting results (Fitness et al., 2004; Franceschi et al., 2009; Malhotra
et al., 2005a; Moraes et al., 2004; Pereira et al., 2009; Santos et al., 2002).
Paradoxically, one IL-10 promoter polymorphism, 819C/T, was asso-
ciated with susceptibility to leprosy, and could lead to decreased IL-10
production (Malhotra et al., 2005a; Pereira et al., 2009; Santos et al., 2002).
In summary, these data indicate that MF programs for phagocytosis and
antimicrobial responses are distinct and differentially regulated in innate
immunity in bacterial infections.
5. DENDRITIC CELL FUNCTION IN LEPROSY

The ability of the innate immune system to instruct the adaptive T cell
response is a part of an effective host defense against intracellular patho-
gens. This instructive role of the innate immune system is primarily
mediated by DCs, professional antigen-presenting cells (Martin-
Fontecha et al., 2003) that are highly efficient in activation of T cell
responses that provide CMI against the pathogen (Banchereau and
Steinman, 1998). DCs process antigens and present them to CD8þ T
cells via class I MHC molecules and to CD4þ T cells via class II MHC
molecules. In addition to the polymorphic MHC molecules, the CD1
family of nonpolymorphic antigen-presenting molecules presents non-
peptide lipid and glycolipid antigens to T cells (Moody and Porcelli,
2003). Like T cells reactive against peptide antigens, CD1-restricted
T cells are highly specific in their recognition characteristics, as they are
restricted by a single form of CD1. Three different classes of CD1b-
presented mycobacterial lipid antigens have been structurally defined,
and several lines of evidence support an important role for CD1 in micro-
bial defense. First, mycobacteria-specific group I CD1-restricted T cells
release high levels of IFN-g (Sieling et al., 1995), which is required for
effective CMI against such organisms. Second, mycobacteria-reactive
CD1-restricted T cells show a high degree of cytolytic activity in vitro
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against antigen-pulsed CD1þ mononuclear phagocytes (Beckman et al.,
1994; Sieling et al., 1995), and also recognize and lyse CD1þ targets
infected with live virulent M. tuberculosis bacilli (Stenger et al., 1997).
Therefore, the presentation of mycobacterial lipid antigens through
CD1þ DCs represents a major pathway effective in controlling mycobac-
terial infection. L-lep lesions are characterized by a marked deficit in
CD1bþ DCs, both in the dermis and epidermis (Miranda et al., 2007;
Sieling et al., 1999; Simoes Quaresma et al., 2009), a potential mechanism
for the reduced cell-mediated immune responses in these lesions (Ridley
and Jopling, 1966).

Through use of genetic profiling in leprosy lesions (Bleharski et al.,
2003; Lee et al., 2007), members of the LILR family were discovered to be
increased in the L-lep skin lesions; inhibitory receptors subsequently
found to interrupt DC differentiation from myeloid precursors. LILRA2
protein expression was increased in the L-lep versus T-lep skin myeloid
cells. Activation of LILRA2 on peripheral blood monocytes impaired GM-
CSF induced differentiation into immature DC, as evidenced by reduced
expression of DC markers (MHC class II, CD1b, CD40, and CD206), but
not MF markers (CD209 and CD14). Furthermore, LILRA2 activation
abrogated antigen presentation to both CD1b- and MHC class II-
restricted, M. leprae-reactive T cells derived from leprosy patients.
Impaired DC differentiation and function was also evident through
expression of oxidized phospholipids induced by mycobacterial infec-
tion. Oxidized phospholipids suppressed both lipid and protein antigen
presentation by CD1b and MHC class II, respectively. High-density
lipoprotein (HDL), through associated enzymes and reverse cholesterol
transport, is a physiological antagonist to oxidized phospholipids and
was able to rescue DC differentiation and antigen presentation normally
suppressed during mycobacterial infection. Interestingly, HDL from the
serum of L-lep patients is impaired and is not able to rescue DC differen-
tiation (Cruz et al., 2008). These data point to striking similarities in the
pathogenesis of foam cell formation in mycobacterial infection to athero-
sclerosis, implying a common metabolic and inflammatory process.

Establishing specific markers to distinguish DCs from MF has
remained controversial. Previously, CD209 was thought to be specifically
expressed by DC, based upon its induction by GM-CSF and IL-4 in vitro
(Sallusto and Lanzavecchia, 1994), expressing classical DC markers such
as CD1 molecules but also co-expressing CD209 (Krutzik et al., 2005).
However, cells co-expressing CD1 and CD209 could not be readily
detected in normal human tonsil, skin, and in leprosy lesions. Instead,
CD1 and CD209 were expressed on distinct nonoverlapping cell popula-
tions (Krutzik et al., 2005; Ochoa et al., 2008). CD209þ cells clearly
co-expressed MF markers including CD16, CD64, and CD68 but not
the DC markers CD1a, CD1b, DC-LAMP, CD11c, CD63, and CD83.
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Furthermore, a variety of studies demonstrate CD209 expression on tissue
MF, including skin (Ochoa et al., 2008; Zaba et al., 2007), lung (Soilleux
et al., 2002; Van denHeuvel et al., 1999), CNS (Fabriek et al., 2005), placenta
(Bockle et al., 2008), and adipose tissue (Zeyda and Stulnig, 2007). The
phenotypes of MF and DC found in situ can best be reproduced in vitro by
culturing peripheral blood monocytes with IL-15 which results in a
CD209þCD1� MF phenotype or GM-CSF alone, resulting in an imma-
ture DC phenotype, CD1þCD209� (Krutzik et al., 2005). Also, TLR acti-
vation via GM-CSF can induce a DC differentiation pathway, however,
peripheral monocytes from L-lep patients do not differentiate into CD1þ
DC following TLR activation (Krutzik et al., 2005). Furthermore, expres-
sion of the costimulatory protein, B7.1, is also decreased in L-lep lesions
(Santos et al., 2007), further suggesting impaired CMI. The activation and
maturation of DC can be directly inhibited by the pathogen itself, in
contrast to other mycobacteria (Murray et al., 2007), suggesting that the
pathogen specifically subverts the generation of functional antigen-
presenting cells. Together these studies suggest that M. leprae contributes
to reduced cell-mediated immune responses in leprosy by disrupting the
differentiation of DC and their antigen-presenting capacity.

In conclusion, leprosy provides an exciting model to investigate the
mechanisms by which the human innate immune system contributes to
host defense versus susceptibility tomicrobial infection. These insights not
only provide insights into the human innate immune response to micro-
bial pathogens, but identify potential therapeutic targets for intervention
in leprosy and other infectious diseases worldwide.
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Abstract Saposins or sphingolipid activator proteins (SAPs) are small, nonen-
zymatic glycoproteins that are ubiquitously present in lysosomes.

SAPs comprise the five molecules saposins A–D and the GM2

activator protein. Saposins are essential for sphingolipid degrada-

tion and membrane digestion. On the one hand, they bind the

respective hydrolases required to catabolize sphingolipid mole-

cules; on the other hand, saposins can interact with intralysosomal

membrane structures to render lipids accessible to their degrading

enzymes. Thus, saposins bridge the physicochemical gap between

lipid substrate and hydrophilic hydrolases. Accordingly, defects in

saposin function can lead to lysosomal lipid accumulation. In

addition to their specific functions in sphingolipid metabolism,

saposins have membrane-perturbing properties. At the low pH of

lysosomes, saposins get protonated and exhibit a high binding

affinity for anionic phospholipids. Based on their universal principle

to interact with membrane bilayers, we present the immunological

functions of saposins with regard to lipid antigen presentation to

CD1-restricted T cells, processing of apoptotic bodies for antigen

delivery and cross-priming, as well as their potential antimicrobial

impact.
1. INTRODUCTION

Cells perform endocytosis to capture extracellular material and to remove
used plasma membrane components. From endosomes, macromolecules
can be either recycled to the plasma membrane or delivered to lysosomes
for subsequent destruction. Lysosomes are acidic membrane-enclosed
organelles representing the terminal degradative compartment of the endo-
cytic pathway. They contain more than 60 different soluble hydrolytic
enzymes specialized in the degradation of macromolecules. In addition,
lysosomes are equipped with sphingolipid activator proteins (SAPs) that
belong to the large and divergent family of saposin-like proteins (SAPLIPs).
SAPLIP domains have been identified in relatively small proteins of about
80 amino acids in length, including the lung surfactant-associated protein B
(SP-B), the tumorolytic proteins NK-lysin and granulysin, cytolytic proteins
from amoeba, and several plant aspartic proteases. SAPs comprise the five
molecules saposins A–D and the GM2 activator protein. Saposins A–D are
produced in acidic endosomal compartments upon sequential proteolytic
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cleavage of their single polypeptide precursor termed prosaposin (pSAP).
Saposins are nonenzymatic, acidic, heat-stable, and protease-resistant
molecules of about 8–11 kDa with essential functions in sphingolipid
degradation andmembrane digestion. Themodes of action of SAPs include
binding and stimulation of glycosidases required for sphingolipid degra-
dation, as well as interaction with intralysosomal membranes to render
lipids accessible to their respective degrading enzymes. Thus, saposins
bridge the physicochemical gap between membrane lipid substrates and
water-soluble hydrolases. Moreover, the multimolecular association of
saposins, lipid bilayers, and CD1 glycoproteins facilitates the loading of
CD1 molecules with lipid antigens for subsequent activation of lipid-
reactive T cells. In this chapter, we present the current knowledge pertain-
ing to the biology of saposins in lysosomal sphingolipid degradation and
membrane digestion and highlight its implications for immunological pro-
cesses, such as lipid antigen presentation, processing of apoptotic bodies
for cross-priming, and direct antibiotic function.
2. SAPOSINS IN LYSOSOMAL GLYCOSPHINGOLIPID
DEGRADATION AND MEMBRANE DIGESTION

Glycosphingolipids (GSLs) are a class of lipids present in the plasma
membrane of eukaryotic cells (Kolter and Sandhoff, 2005). Structurally,
GSLs share a common hydrophobic ceramide moiety that acts as a mem-
brane anchor, which is coupled to a hydrophilic oligosaccharide chain.
GSLs play important roles in the structural organization of membranes
and cellular interactions with microbes or toxins (Hakomori, 1981;
Karlsson, 1989). GSLs are generated along the secretory pathway by the
sequential, combinatorial addition of monosaccharide units, starting with
the initial elongation of ceramide by glycosidic binding of either D-glucose
or D-galactose in b-configuration. In particular, b-D-glucosylceramide
undergoes elongation upon the stepwise action of specific glycosyltrans-
ferases to produce GSLs with complex oligosaccharide chains, such as
gangliosides, globosides, and cerebrosides (Ichikawa and Hirabayashi,
1998). Alternatively, the addition of a phosphorylcholine moiety to cer-
amide produces sphingomyelin, a major constituent of the membrane of
nerve cells and a dominant species among sphingolipids (Hooghe-Peters
et al., 1979). Eventually, sphingolipids reaching the plasma membrane
become a part of structural microdomains enriched in cholesterol
(Simons and Ikonen, 1997). Degradation of sphingolipids is initiated
upon internalization of membrane patches through diverse mechanisms
including endocytosis, phagocytosis, or autophagy, and commences in
acidified compartments of the endosomal route for terminal degradation
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in lysosomes (Luzio et al., 2007). In contrast to soluble molecules, degra-
dation of membranes is a more delicate process since the limiting mem-
brane of lysosomes must remain intact to avoid the leakage of potentially
hazardous enzymes into the cytosol. Thus, prior to reaching lysosomes,
sphingolipids are sorted to intraendosomal membranes and degraded on
the surface of intralysosomal vesicles (ILVs) upon exposure to soluble
glycosidases (Sandhoff and Kolter, 1996). Sphingolipid degradation pro-
ceeds in a sequential pathway that assures the stepwise removal of
monosaccharide units from the nonreducing end of the oligosaccharide
chain (Fig. 2.1). Ultimately, ceramide is disassembled to sphingosine and
fatty acid for subsequent reuse in metabolic pathways. As sphingolipid
degradation proceeds, the length of the sugar headgroup inevitably
shrinks in size, thereby becoming less accessible to water-soluble glyco-
sidases. To overcome this physicochemical obstacle and to bring sphin-
golipids and their respective enzymes in close proximity, mammalians
possess five saposins encoded by two genes (Rorman et al., 1992). The first
gene encodes pSAP, the common precursor to the four saposins A–D. The
second gene encodes the GM2AP. The physiological significance of sapo-
sins in stimulating sphingolipid degradation is underscored by multiple
reports of human sphingolipidoses with mutations in the pSAP gene
leading to deficiencies of saposin function (O’Brien and Kishimoto,
1991). The five SAPs share a high degree of structural homology. How-
ever, SAPs show diverse ligand-binding properties and exist in multiple
structural states that account for their distinct modes of action in sphin-
golipid degradation and membrane interaction.
2.1. Prosaposin

pSAP is a 524-amino acid glycoprotein that contains a 16-residue signal
peptide sequence and five glycosylation sites. Importantly, pSAP is the
common precursor to the four saposins A–D (Furst et al., 1988; O’Brien
et al., 1988). In humans, pSAP exists as an intracellular molecule of 68 kDa
and a major extracellular form of 73 kDa. Accordingly, pSAP is intracel-
lularly targeted to lysosomes either via mannose-6-phosphate receptors
or by sortilin (Lefrancois et al., 2003). Alternatively, pSAP can be secreted
and reendocytosed by mannose-6-phosphate receptors, low density lipo-
protein receptor-related protein (LRP), or mannose receptors (Hiesberger
et al., 1998). Expression of pSAP and individual saposins is virtually
ubiquitous and conserved among mammalian species (Kishimoto et al.,
1992). This is not surprising considering their important functions in
sphingolipid degradation. Protein expression analyses revealed high con-
centrations of pSAP in the adult liver and body fluids, especially in the
brain, semen, milk, serum, pancreatic juice, and bile (Kolter and Sandhoff,
2005). Further, pSAP and saposins are expressed in cells of hematopoietic



Globo-series

(Neo)lacto-series

Sialic acid

β-Hexosaminidase A
β-Hexosaminidase B

Sandhoff

β-Hexosaminidase A
β-Hexosaminidase B

Sandhoff

β-Hexosaminidase A
GM2-AP

Sandhoff, Tay–Sachs
AB variant

β-Hexosaminidase A
GM2-AP
Sandhoff

β-Hexosaminidase A

Sialidase
SAP-B

Sialidosis

β-Galactosidase
GM2-AP/SAP-B

GM1-gangliosidosis

α-Galactosidase A
SAP-B
Fabry

Acid ceramidase
SAP-D
Farber

Ga Cer-β-galactosidase
SAP-A
Krabbe

α-Galactosidase A
SAP-B
Fabry

β-Galactosidase
GM1-gangliosidosis

Arylsulfatase A
SAP-B

Metachromatic leukodystrophy

β-Glucocerebrosidase
SAP-C

Gaucher

β-Galactosidase
SAP-B/SAP-C

N-acetyl-galactosamine

N-acetyl-glucosamine

Galactose Sphingosine

Ceramide

β-GlcCer
Glcβ1,1Cer

LacCer
Galβ1,4Glcβ1,1Cer

GA1
Ga β1,3GalNacβ1, Galβ1, Glcβ1,1Cer

GA2
GalNacβ1, Galβ1, G cβ1,1Cer

Ga2Cer

Galα1, Galβ1,1Cer

β-GalCer

Galβ1,1Cer

Sul atide

O3S3Galβ1,1Cer

Glucose

Isoglobo-series Ganglio-series

Gb4
GalNacβ1,3Galα1,4Galβ1,4Glcβ1,1Cer

LC3
GlcNacβ1,3Ga β1,4Glcβ1,1Cer

iGb4
GalNacβ1,3Galα1,3Galβ1,4Glcβ1,1Cer

GM2
Ga Nacβ1, [NeuAcα2,3]Ga β1, Glcβ1,1Cer

GM1
Galβ1,3GalNacβ1,4[NeuAcα2,3]Galβ1,4Glcβ1,1Cer

GM3
NeuAcα2,3Galβ1,4Glcβ1,1Cer

GD3
NeuAcα2,8NeuAcα2,3Ga β1,4Glcβ1,1Cer

Gb3
Galα1,4Galβ1,4Glcβ1,1Cer

Gb3
Galα1,3Galβ1,4Glcβ1,1Cer

−O3S−

FIGURE 2.1 Pathways of GSL degradation. The graph depicts the degradative pathways of various GSL species, including the globo-, isoglobo-,

ganglio-, and (neo)lacto-series. The names, formula, and structural icons of the respective GSLs are shown in the boxes. The ovals contain the

enzymes (depicted in blue) and the saposins (shown in red) that are involved in the corresponding lipid degradation step. The associated

lysosomal storage disease due to enzyme or saposin deficiency or both is indicated in green.



30 Alexandre Darmoise et al.
origin and nerve cells (Kondoh et al., 1993; Sano et al., 1989). pSAP is
sequentially processed from its N-terminal end, starting with the cleavage
of the SAP-A domain (Hiraiwa et al., 1993). The mechanism through
which pSAP is processed to the four saposins remains incompletely
understood. Early studies suggested that pSAP proteolysis occurs at
low pH and requires the action of proteases susceptible to inhibition by
pepstatin A (Hiraiwa et al., 1993). One of these candidate proteases was
later shown to be cathepsin D (Hiraiwa et al., 1997). In vitro, unprocessed
pSAP can stimulate the degradation of sphingolipids to a similar extent
like SAP-B, SAP-C, and SAP-D act on their respective enzymes
(Kishimoto et al., 1992). However, considering that pSAP proteolysis
occurs in acidic compartments, its contribution to lysosomal sphingolipid
degradation might be of limited physiological relevance. However, pSAP
has been proposed to represent a neurotrophic factor and might also be
involved in the transport of gangliosides (Hiraiwa et al., 1992; O’Brien
et al., 1994). Point mutations in pSAP have been identified in patients
lacking all four saposins, a disease referred to as combined SAP deficiency
(Harzer et al., 1989; Hulkova et al., 2001). pSAP-deficient individuals and
pSAP / mice show similar clinicopathological features and die during
the neonatal period or at the age of 3–4 weeks, respectively, due to
multiple organ failure (Fujita et al., 1996). Analysis of pSAP-deficient
cells reveals numerous electron-dense membrane inclusions, and
pSAP / mice show massive accumulation of GSLs such as ceramide,
b-glucosylceramide (b-GlcCer), b-galactosylceramide (b-GalCer), sulfa-
tides, galabiaosylceramide (Ga2Cer), lactosylceramide (LacCer), globo-
triaosylceramide (Gb3), and the ganglioside GM3 (Bradova et al., 1993;
Fujita et al., 1996).
2.2. Saposin A

SAP-A activates the hydrolysis of b-GalCer by galactosylceramide
b-galactosidase (Fig. 2.1) (Morimoto et al., 1989). Accordingly, mice that
carry a point mutation in the SAP-A domain of pSAP, and thus lack
SAP-A expression, show tissue accumulation of b-GalCer (Matsuda
et al., 2001). SAP-A deficiency forms the basis of a chronic late-onset
form of globoid cell leukodystrophy that resembles the disease of patients
carrying genetic deficiency in galactosylceramide b-galactosidase (Krabbe
disease) (Spiegel et al., 2005). Under acidic conditions, SAP-A mobilizes
lipids from liposomes in a reaction that is enhanced by bis(monoacylgly-
cero)phosphate (BMP) or decreased by cholesterol (Locatelli-Hoops et al.,
2006). The crystal structure of human SAP-A has been resolved in its
closed monomeric saposin-fold conformation and consists of four amphi-
pathic a-helices folded in the shape of an oblate ellipsoid (Ahn et al., 2006).
Charged residues are located on the surface of the molecule, whereas
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conserved hydrophobic residues are directed toward a small cavity.
Elucidation of the SAP-A structure in its open, lipid-binding conforma-
tion remains to be determined.
2.3. Saposin B

SAP-B has been the first activator protein identified (Mehl and Jatzkewitz,
1964). SAP-B is required to stimulate the breakdown of sulfatide by
arylsulfatase A, Gb3 and Ga2Cer by a-galactosidase A, and LacCer by
galactosylceramide b-galactosidase (Fig. 2.1). Accordingly, the latter GSLs
are present in abnormally high concentrations in the urine of SAP-B-
deficient patients and accumulate in the tissues of SAP-B / mice
(Li et al., 1985; Sun et al., 2008). Further, SAP-B cooperates with GM2AP
in the degradation of the ganglioside GM2 in vitro (Wilkening et al., 2000).
SAP-B can be considered as a nonspecific activator protein. Accordingly,
SAP-B stimulates the hydrolysis of ceramide-free glycolipids by diverse
glycosidases from animals, plants, and microorganisms (Li et al., 1988).
These special properties might explain as to why SAP-B stimulates the
degradation of a broader spectrum of sphingolipids compared to other
SAPs. Additionally, SAP-B binds and transfers the anionic phospholipid
phosphatidylinositol (PI) between biological membranes (Ciaffoni et al.,
2006). Inherited defects of SAP-B lead to an atypical form of metachro-
matic leukodystrophy (MLD) with late infantile or juvenile onset (Kretz
et al., 1990; Schlote et al., 1991; Wenger et al., 1989). The crystal structure
of human SAP-B displays a shell-like homodimer that consists of two
V-shaped monomers (Ahn et al., 2003). The concave inner surface of each
monomer is lined with hydrophobic residues that create a large lipid-
binding cavity when two monomers are associated. In its open conforma-
tion, the SAP-B dimer can directly interact with lipid membranes,
promote the reorganization of lipid alkyl chains, and extract lipid substrates
upon transition to the closed conformation.
2.4. Saposin C

SAP-C has been primarily described by O’Brien and colleagues as an
activator of b-GlcCer degradation by glucosylceramide b-glucosidase
(Fig. 2.1) (Ho and O’Brien, 1971). SAP-C might also stimulate the degra-
dation of ceramide, b-GalCer, and galactosylsphingosine (Harzer et al.,
1997). Inherited deficiency of SAP-C causes a variant juvenile form
of Gaucher disease (type III) with marked storage of b-GlcCer
(Christomanou et al., 1989; Matsuda et al., 2004; Schnabel et al., 1991).
SAP-C exhibits a characteristic dual mode of action in sphingolipid deg-
radation. Similar to SAP-A, SAP-C stimulates its respective enzyme part-
ner in an allosteric manner (Berent and Radin, 1981). In parallel, SAP-C
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can directly bind anionic phospholipids to destabilize membranes and to
promote the association of b-glucosylceramidase with its lipid substrate
for subsequent degradation (Vaccaro et al., 1993). At low pH, SAP-C
additionally triggers the fusion of vesicles containing anionic phospholi-
pids in vitro (Vaccaro et al., 1994, 1995; Wang et al., 2003). Using SAP-C
mutants, the fusogenic activity could be mapped to the lysine-rich amino-
terminal portion of the molecule, indicating that electrostatic interactions
between negatively charged lipids and positively charged saposin resi-
dues might be required (Qi and Chu, 2004). Finally, evidence suggests
that SAP-C functions as a neurotrophic factor by stimulating neurite out-
growth and increasing choline acetyltransferase activity in neurons
(O’Brien et al., 1995). The structure of SAP-C in its closed conformation
reveals a homodimer of boomerang-shaped intertwining monomers in an
open, extended conformation, with solvent-exposed hydrophobic pockets
(Hawkins et al., 2005; Rossmann et al., 2008). Accordingly, a ‘‘clip-on’’
model of vesicle fusion has been proposed. At lysosomal pH, SAP-C
dimers unfold their hydrophobic pockets to interact with anionic phos-
pholipids of membrane bilayers. Ultimately, SAP-C molecules, inserted
into opposing lipid vesicles, clip one another through domain swapping,
thus bringing the vesicles close enough for fusion.
2.5. Saposin D

SAP-D is the most abundant saposin in normal tissues with concentra-
tions threefold higher than other SAPs (O’Brien and Kishimoto, 1991).
SAP-D promotes the hydrolysis of ceramide by acid ceramidase in vivo
(Fig. 2.1), as demonstrated by the accumulation of a-hydroxyl fatty acid
ceramides in the kidneys and the cerebellum of SAP-D / mice (Matsuda
et al., 2004). Consequently, SAP-D-deficient animals show renal tubular
degeneration and hydronephrosis, as well as progressive loss of Purkinje
cells in the cerebellum, leading to ataxia. To date, inherited SAP-D defi-
ciency has not been identified in humans. Of note, the phenotype of SAP-
D / mice does not resemble human ceramidase deficiency (Farber dis-
ease) or its murine counterpart characterized by early embryonic lethality
(Li et al., 2002; Matsuda et al., 2007). Similar to SAP-C, SAP-D poorly binds
sphingolipids, but displays high affinity for anionic phospholipids at
lysosomal pH (Tatti et al., 1999). However, SAP-C and SAP-D are func-
tionally different. SAP-D is a membrane disrupter, whereas SAP-C fuses
lipid bilayers (Ciaffoni et al., 2001). SAP-D spontaneously binds to mem-
branes that contain anionic lipids, including BMP, PI, and phosphatidyl-
serine (PS), in a reversible, pH-driven fashion (Ciaffoni et al., 2003). By
destabilizing membranes, SAP-D allows the formation of small vesicles
derived from larger liposomes in vitro (Ciaffoni et al., 2001). Multivesicu-
lar or multilamellar bodies found in the lumen of acidic cellular



The Immunological Functions of Saposins 33
compartments are specifically enriched for BMP (Kobayashi et al., 1998,
2002). Therefore, it is tempting to speculate that SAP-Dmight regulate the
homeostasis of internal endolysosomal membranes. SAP-D exists as a
substrate-free closed helix bundle or in a V-shaped, open, and ligand-
bound configuration in the presence of lipids. Prior to interaction with
lysosomal membranes, SAP-D remains in a monomer–dimer equilibrium
in the closed conformation. The acidic pH of lysosomes dramatically
increases the surface hydrophobicity of SAP-D, thereby allowing the
positively charged amino acids at the bottom of SAP-D to associate with
the surface of intralysosomal membranes enriched in negatively charged
lipids. The top of SAP-D subsequently rotates by 180� along its axis, thus
positioning its hydrophobic residues into the membrane bilayer, and
exposing positively charged residues to the solvent. Thereafter, SAP-D
changes its configuration to the closed conformation, which forms the
mechanistic basis for lipid extirpation from the bilayer. Ultimately, SAP-D
leaves the membrane with bound lipid (Rossmann et al., 2008).
2.6. The GM2 activator

The GM2AP is the fifth member of the SAP family. GM2AP is larger than
saposins A–D, with a molecular weight of 20 kDa in its mature lysosomal
form (Furst and Sandhoff, 1992). To reach lysosomes, newly synthesized
GM2AP uses the major intracellular mannose-6-phosphate-mediated traf-
ficking route (Rigat et al., 1997). Mannose-6-phosphate receptors also
allow the endosomal recapture of GM2AP from extracellular fluids
upon endocytosis (Rigat et al., 1997). The saposin function of GM2AP is
required to stimulate the degradation of GM2 by b-hexosaminidase A
(Hex-A) in vivo (Fig. 2.1) (Conzelmann and Sandhoff, 1979). Deficiency in
GM2AP leads to the AB variant of GM2 gangliosidosis, an atypical form
of Tay–Sachs disease with characteristic tissue accumulation of GM2 and
related GSLs in neuronal lysosomes (Conzelmann and Sandhoff, 1978).
GM2AP acts as a lipid transfer protein in vitro as indicated by its capacity
to extract and carry GSLs from donor to acceptor liposomes (Conzelmann
et al., 1982). The structure of monomeric GM2AP consists of an eight
strand, cup-shaped, antiparallel b sheet (Wright et al., 2000). The mono-
mer contains a hydrophobic cavity with dimensions that can accommo-
date the ceramide portion of GM2 and other lipids, lined by surface loops
and a single short helix (Wright et al., 2003). The most flexible of the loops
contains the substrate-binding site and controls the entrance to the cavity
to facilitate an open or a closed conformation. Accordingly, open, empty
GM2AP binds to target membranes by using its hydrophobic loops and
penetrates into the hydrophobic region of the bilayer. Subsequently, the
lipid recognition site of the activator can interact with the substrate and
insert its ceramide portion into the hydrophobic cavity. At this point, the
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lipid-loaded activator may change to the closed conformation, allowing
the complex to leave the membrane in a soluble state. Finally, GM2AP
exposes GM2 to the water-soluble enzyme Hex-A for subsequent degra-
dation in the lysosomal lumen (Kolter and Sandhoff, 2005).
2.7. Topology

The inner leaflet of the limiting lysosomal membrane is covered with a
thick glycocalix composed of glycoproteins. This layer allows the lyso-
some to resist the low lumenal pH, and protects the inner limiting
membrane from digestion by acid hydrolases or destabilization through
lipid-binding molecules. Therefore, membrane constituents targeted for
lysosomal degradation have to be sorted to small lumenal vesicles formed
from endosomes by the inward budding of the limiting membrane into
the lumen. Vesicle-rich endosomes are referred to as multivesicular endo-
somes or multivesicular bodies (MVBs) (Piper and Luzio, 2001). This
topological transition exposes macromolecules originating from the
outer leaflet of the plasma membrane to the endosomal lumen. Hence,
the subsequent fusion of an MVB with a lysosome renders macromole-
cules accessible to hydrolases. Following this principle, intraendosomal
vesicles serve as important devices in the delivery of used plasma mem-
brane proteins and lipids to lysosomes (Futter et al., 1996; Sandhoff and
Kolter, 1996). Recently, the biogenesis and function of MVBs and ILVs has
become a major focus for cell biologists, especially since the discovery of
endosomal sorting complexes required for transport (ESCRT) (Luzio et al.,
2007). Yet, the sequence of events leading to their formation remains
poorly understood. Three lipids play critical roles in the biogenesis and
function of MVBs and ILVs. Firstly, phosphatidylinositol-3-phosphate is
enriched on the cytosolic face of endosomes, and evidence suggests that it
might be required for the formation of MVBs (Futter et al., 2001; Odorizzi
et al., 1998). Secondly, cholesterol is highly enriched on intraendosomal
vesicles, where it stabilizes the membrane (Hornick et al., 1985). By con-
trast, cholesterol is almost absent from ILVs as it is removed from lyso-
somes by the Niemann–Pick disease protein C1 (NPC1) and NPC2
(Friedland et al., 2003; Mobius et al., 2003). Considering the negative
impact of cholesterol on SAP-A- and SAP-B-mediated lipid mobilization
from liposomes, physiological depletion of cholesterol from ILVs might
favor lipid mobilization by SAPs (Locatelli-Hoops et al., 2006; Remmel
et al., 2007). Thirdly, the anionic lipid BMP plays a crucial role in the
topology of ILVs and is derived from mitochondrial cardiolipin during
the process of autophagy, or BMP is produced from phosphatidylglycerol
(PG) in the endoplasmic reticulum (ER) (Hullin-Matsuda et al., 2009). In
contrast to cholesterol, BMP is specifically enriched on ILVs, where it can
account for up to 70% of the total membrane phospholipid content
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(Kobayashi et al., 1998, 2002). BMP functions in the formation of ILVs
since BMP-containing liposomes can spontaneously form inward-bud-
ding profiles in a pH-inducible manner (Matsuo et al., 2004). Remarkably,
the presence of BMP in liposomes strongly enhances the stimulatory
capacity of all five SAPs (Chu et al., 2005; Ciaffoni et al., 2003; Locatelli-
Hoops et al., 2006; Remmel et al., 2007; Wilkening et al., 2000). Taken
together, these findings support a model in which the gradual depletion
of cholesterol and subsequent integration of BMP into ILVs renders them
more accessible for SAPs. Moreover, BMP enhances SAP-stimulated deg-
radation of GSLs by specific glycosidases. Notably, the membrane-per-
turbing properties of SAP-C potentially mediate the fusion of multiple
ILVs in order to promote their subsequent disruption by SAP-D.
3. SAPOSINS FACILITATE LIPID PRESENTATION TO
CD1-RESTRICTED T LYMPHOCYTES

The majority of studies on antigen presentation have concentrated on
molecules encoded by the major histocompatibility complex (MHC).
However, over the past two decades, it has become evident that other
molecules can also trigger T cell responses, including the family of lipid-
presenting CD1 molecules. In addition to proteins, lipid antigens extend
the spectrum of determinants that are potentially recognized by the
immune system, and thus amplify the diversity of immune responses to
fight intruders, for example, in the context of infection of the host with
lipid-rich pathogens. In contrast to protein processing to peptides, cellular
lipid acquisition challenges the host due to the physicochemical proper-
ties of fats. Accordingly, hydrophobic lipid antigens have to be extracted
from aggregates or membranes and solubilized for subsequent transport.
Subsequently, lipids are loaded onto specific antigen-presenting mole-
cules such as CD1 proteins. For both steps, helper molecules like saposins
are required (Fig. 2.2). On the other hand, some lipids have to be further
subjected to structural editing, or processing, to reveal antigenic epitopes
otherwise unavailable for recognition by T cells. In the following, we
highlight the predominant roles played by saposins and lysosomal gly-
cosidases in both processes.
3.1. Characteristics of antigen-presenting CD1 molecules

The organization of the CD1 complex is similar to MHC class I. Each CD1
gene contains three exons encoding separate extracellular domains (a1,
a2, a3) that noncovalently associate with b2-microglobulin (b2m) to form
a stable transmembrane heterodimer of approximately 50 kDa (Brigl and
Brenner, 2004). Five separate genes (CD1A, CD1B, CD1C, CD1D, and
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CD1E) are mapping to chromosome 3 in humans. In mice, CD1 maps to
chromosome 1 and consists of two genes (CD1D1 and CD1D2). On the
basis of sequence homology, CD1 proteins fall into one of two groups:
group 1 CD1 molecules (CD1a, CD1b, and CD1c) and group 2 CD1 mole-
cules (CD1d), with CD1e representing an intermediate. While CD1a-d
proteins are mainly expressed on the surface of antigen-presenting cells
(APCs), CD1e is exclusively found as a solublemolecule in lysosomes, and
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therefore cannot present antigens to CD1-restricted T cells (Angenieux
et al., 2005). The subdivision of CD1 molecules correlates with functional
differences. Accordingly, group 1 molecules present lipid antigens to T
lymphocytes, while group 2molecules display antigens toNatural Killer T
(NKT) cells. Structurally, CD1 molecules contain a main hydrophobic
groove that can be prolonged by further pockets (Moody et al., 2005).
Group 1 CD1 molecules are mainly expressed by cortical thymocytes
and myeloid cells, such as dendritic cells (DCs) and Langerhans cells
(Dougan et al., 2007a). In addition, CD1c proteins are also expressed by
marginal zone B cells and a fraction of peripheral blood B lymphocytes
(Delia et al., 1988). In humans, group 2 CD1d molecules are found on cells
of the myeloid lineage as well as on few nonlymphoid cells. However,
cortical thymocytes and mantle zone B cells in lymph nodes exhibit the
highest levels of CD1d expression (Exley et al., 2000). In mice, CD1d
expression depends on the CD1D1 gene. CD1d molecules are mainly
expressed by APCs, including hepatic stellate cells (Winau et al., 2007).
In addition, cortical thymocytes as well as some activated T cells express
CD1d proteins (Dougan et al., 2007a). Expression of CD1d on the surface of
APCs is enhanced by proinflammatory cytokines, such as interferon-b
(IFN-b), IFN-g, and TNF-a, as well as by toll-like receptor (TLR)-2 and
TLR-4 ligands (Skold et al., 2005). The peroxisome proliferator-activated
receptor-g (PPAR-g) controls CD1d expression by triggering retinoic acid
synthesis in human DCs (Szatmari et al., 2006). Furthermore, a number of
pathogens modulate the extent of CD1d expression. Viruses such as
Kaposi’s sarcoma-associated herpes virus (KSHV) andHIV downregulate
the expression of CD1d on the plasma membrane (Andre et al., 2005;
Sanchez et al., 2005). Finally, herpes simplex virus-1 (HSV-1) and vesicular
stomatitis virus (VSV) can cause downmodulation of CD1d by suppres-
sing CD1d recycling (Raftery et al., 2006; Yuan et al., 2006).
3.2. Intracellular trafficking of CD1 molecules

In analogy to MHC-I molecules, CD1 heavy chains are folded and asso-
ciated with b2m within the lumen of the ER, in a process that involves
calnexin and calreticulin, but excludes transporters associated with anti-
gen processing (TAP) (Kang and Cresswell, 2002; Sugita et al., 2007). At
this stage, the pocket formed by the a1 and a2 helices of the heavy chain
can be loaded with hydrophobic spacers such as neutral phospholipids to
stabilize the nascent CD1 molecule (Gadola et al., 2002). Accordingly, ER-
resident lipid exchange proteins such as the microsomal triglyceride
transfer protein (MTP) could fulfill this loading function (Dougan et al.,
2005, 2007b). From the ER, CD1 molecules transit along the secretory
pathway until they reach the plasma membrane, where they follow a
major pathway of internalization subdivided into distinct intracellular
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trafficking routes. The type of endocytic compartment through which
CD1 molecules transit largely depends on the presence of the amino acid
sequence Y-X-X-Z (tyrosine-X-X-bulky hydrophobic residue) in the cyto-
plasmic moiety of the heavy chain (Chiu et al., 2002). At the plasma mem-
brane, this motif mediates recruitment of the adaptor molecule AP-2 by
CD1b, CD1c, and CD1d molecules, and promotes their subsequent inter-
nalization through clathrin-coatedpits (Sever, 2003). Following their traffic
to endosomes, CD1b and CD1d molecules are further sorted to late acidic
endocytic compartments by the recruitment of AP-3 through the same
cytoplasmic motif (Sugita et al., 2002). CD1b is almost exclusively located
in lysosomes, whereas CD1c that does not bind AP-3 shows a broad locali-
zation throughout the endosomal pathway (Sugita et al., 2007). Notably,
there is no evidence for targeting motifs in the cytoplasmic tail of CD1a
proteins. Nevertheless, they are found in recycling endosomes and traffic
back to the plasmamembrane in anARF6-dependentmanner (Sugita et al.,
1999). Finally, CD1e displays unique features in comparison to other CD1
molecules. Upon assembly, CD1e molecules are targeted to lysosomes
without reaching the plasma membrane, where they exist in a cleaved
soluble form and participate in the processing of microbial glycolipid
antigens (de la Salle et al., 2005). Ubiquitination of the cytoplasmic tail is a
prerequisite for CD1e proteins to target lysosomes (Maitre et al., 2008). In
the endocytic system, CD1 molecules exchange lipids acquired in the
secretory pathway with self or foreign lipids, and, except for CD1e, traffic
to the plasma membrane where they display their lipid cargo to CD1-
restricted T cells. Hence, the divergent trafficking routes of CD1molecules
may reflect an evolutionary adaptation to face the diversity of intracellular
pathogen lifestyles through detection by the immune system.
3.3. CD1-restricted T cells

Michael Brenner and colleagues provided the first evidence that human
CD1molecules present lipid antigens to induce T cell responses (Beckman
et al., 1994). The cognate antigen presented in the context of CD1b proved
to be mycolic acid, a lipid contained in the cell wall of Mycobacterium
tuberculosis. Intriguingly, T lymphocytes restricted by group 1 CD1 mole-
cules demonstrate favored reactivity with lipid antigens originating from
the cell wall of mycobacteria. M. tuberculosis is the etiologic agent of
tuberculosis, one of the most ancient and life-threatening infectious dis-
eases worldwide (Kaufmann, 2006). Since humans represent the principal
reservoir of M. tuberculosis, it is tempting to speculate that group 1 CD1-
restricted T cells might have developed as a result of coevolution of host
and pathogen to provide specific protection against M. tuberculosis infec-
tion. Both hydrophobic peptides and lipids or glycolipids from
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mycobacteria can be presented by CD1 molecules. Accordingly, didehy-
droxymycobactin (DDM), a lipopeptide structurally related to sidero-
phores, is presented to T cells in the context of CD1a (Moody et al.,
2004). Mannosylated phosphatidylinositides (PIMs), including lipoarabi-
nomannan (LAM), and diacylated sulfoglycolipids (Ac2SGLs) activate
T cells when presented through CD1b (Gilleron et al., 2004; Sieling et al.,
1995). Further, glucosemonomycolate (GMM), produced upon interaction
of biosynthetic pathways of host and pathogen, activates T cells restricted
by CD1b (Moody et al., 2000a). Finally, hexosyl-1-phosphoisoprenoids
stimulate CD1c-dependent T cells (Beckman et al., 1996; Moody et al.,
2000b). Lymphocytes restricted by group 1 CD1 molecules are found in
all the major phenotypic subsets of T cells, including single-positive CD4þ

and CD8þ T cells, as well as double-negative (DN) CD4 CD8 T lympho-
cytes (Porcelli et al., 1992; Rosat et al., 1999; Sieling et al., 2000). Upon
activation, CD1-restricted T cell clones develop TH1 effector functions
dominated by the production of IFN-g and TNF-a (Rosat et al., 1999;
Sieling et al., 1999). In addition, DN and CD8þ CD1-restricted T cells
exert potent cytotoxic functions toward M. tuberculosis-infected macro-
phages through Fas–Fas ligand interactions or the release of granulysin,
respectively (Stenger et al., 1997). Using these mechanisms, CD1b-
restricted T cells effectively kill M. tuberculosis-infected macrophages in a
CD1b-dependent manner (Stenger et al., 1997). A feature shared by all
CD1-restricted T cells is the basal recognition of CD1 molecules in the
absence of foreign lipids (Porcelli et al., 1989). Autoreactive responses by
T cells can stimulate the maturation of DCs toward a proinflammatory
phenotype, which may play a critical role with regard to the ensuing
generation of adaptive immune responses (Spada et al., 2000; Vincent
et al., 2002). Recognition of sulfatide or GM1 by CD1-restricted T cells
could form the basis of this autoreactivity (Shamshiev et al., 2000, 2002).
In contrast to CD1b molecules, CD1a and CD1c are largely excluded from
acidic subcellular compartments, and their antigen-presenting functions
are not affected upon inhibition of endosomal acidification (Briken et al.,
2000; Porcelli et al., 1992; Sieling et al., 1995). Optimal binding of PIMs,
GMM, and LAM require an acidic environment in which the a-helices of
CD1b can partially unfold (Ernst et al., 1998). Although these findings
highlight an interesting mechanism that allows access of lipid antigens
to the CD1b groove only upon their trafficking to the proper compartment,
they cannot account for a model in which CD1b itself extracts lipids from
membranes and thus, chaperoning helper molecules have to fill this gap.
In this context, SAP-C has been identified as the critical saposin required
for recognition of microbial lipid antigens by CD1b-restricted T cells
(Winau et al., 2004b). Accordingly, human pSAP-deficient fibroblasts
expressing CD1b failed to present mycolic acid, GMM, and LAM for
activation of antigen-specific CD1b-restricted T cell clones. Moreover,
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T cell responses could be restored upon fibroblast reconstitution with
SAP-C but not other SAPs (Winau et al., 2004b). The underlying mecha-
nism involved SAP-C-mediated extraction of LAM from membranes and
subsequent transfer to CD1b (Fig. 2.2), as indicated by coprecipitation
experiments identifying a direct interaction between SAP-C and CD1b
(Winau et al., 2004b). These findings demonstrated saposins as a missing
link in antigen presentation of lipids to group 1 CD1-restricted T cells, and
suggest that SAP-C dysfunctions potentially have adverse consequences
concerning T cell immunity in infectious diseases like tuberculosis.
3.4. CD1d-restricted natural killer T cells

In contrast to humans, mice lack genes encoding group 1 CD1 molecules.
Therefore, their repertoire of lipid-specific T cells is solely represented by
lymphocytes restricted to CD1d molecules, namely NKT cells. Unique
features of NKT cells include usage of an invariantly rearranged T cell
receptor (TCR) a chain (Va14-Ja18 in mice, Va24-Ja18 in humans) paired
with a limited set of TCR b chains, expression of diverse surface receptors
characteristic for NK cells, and functional autoreactivity toward CD1d-
expressing APCs in vitro (Bendelac et al., 1995; Budd et al., 1987; Dellabona
et al., 1994; Fowlkes et al., 1987; Porcelli et al., 1993). Further, NKT cells
express intermediate levels of TCR at the cell surface and a phenotype of
activated/memory T cells in naive and germ-free mice, as well as in
human cord blood, which may reflect the consequence of continuous
basal TCR stimulation with self antigens (D’Andrea et al., 2000; Park
et al., 2000; van Der Vliet et al., 2000). NKT cells are a heterogeneous
population and dominated by a subset that reacts with the marine
sponge-derived GSL antigen a-galactosylceramide (a-GalCer) presented
by CD1d proteins (Chen et al., 1997; Kawano et al., 1997). By definition,
NKT cells that respond to a-GalCer are referred to as invariant NKT
(iNKT) cells. iNKT cells show exclusive usage of the TCR rearrangement
Va14-Ja18 coupled to Vb8, Vb7, or Vb2 in mice, or the rearrangement
Va24-Ja18 associated with Vb11 in humans, and promptly produce IFN-g
and interleukin-4 (IL-4) upon activation (Bendelac et al., 2007). By con-
trast, NKT cells that fail to respond to a-GalCer stimulation are referred to
as noninvariant NKT cells, or type II NKT cells. Notably, type II NKT cells
use diverse TCRs, and owing to the lack of specific markers to track them,
their biology remains poorly understood.

3.4.1. Invariant NKT cells
The relevance of iNKT cells to diseases such as cancer, infection, or
autoimmunity, has been extensively reviewed elsewhere (Bendelac
et al., 2007; Godfrey et al., 2004). One of the most exciting features in the
biology of iNKT cells pertains to the modes of their activation. In the face
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of infection, it has become evident that the host can use several pathways
to activate iNKT cells. Firstly, activation may result from direct, TCR-
mediated recognition of microbial lipid antigens presented in the context
of CD1d-expressing APCs. Known antigens include a-glucuronosylcera-
mides and a-galacturonosylceramides from Sphingomonas spp., diacylgly-
cerols from Borrelia burgdorferi, the causative agent of Lyme disease, and
phosphatidylinositol tetramannoside from M. tuberculosis (Fischer et al.,
2004; Kinjo et al., 2005, 2006; Mattner et al., 2005; Sriram et al., 2005).
Following a second pathway predominantly triggered by infection with
Gram-negative lipopolysaccharide (LPS)-positive bacteria, such as Salmo-
nella typhimurium, iNKT cells become activated upon recognition of self
antigens presented by LPS-exposed DCs in an IL-12-dependent manner
(Brigl et al., 2003). In addition to TLR-4-mediated activation of iNKT cells
triggered by LPS, several other axes of DC sensitization through TLR
ligation have been identified (De Libero et al., 2005). Accordingly, stimu-
lation of DCs through the nucleic acid sensor TLR-9 results in the
subsequent activation of iNKT cells (Paget et al., 2007). In the latter case,
neosynthesized b-linked self GSLs and type I interferons provided by
DCs were strictly required. Accordingly, stimulation of DCs through
TLR-4, TLR-7, or TLR-9, could influence the expression of various glyco-
syltransferases involved in the biogenesis of GSLs (Paget et al., 2007; Salio
et al., 2007). Importantly, blocking the de novogeneration ofGSLs abrogated
the responses by iNKT cells. Finally, increased expression of CD1d/GSL
complexes, representing ligands for the iNKT cell invariant TCR, could be
visualized at the surface of APCs stimulated with LPS or a TLR-8 agonist
(Salio et al., 2007). Thus, microbe-exposed APCs remodel the repertoire of
self GSLs to produce dominant species that can be recognized by iNKT
cells. How signals relayed through pattern recognition receptors can lead
to selective induction of GSL antigenswithout compromising cellular lipid
homeostasis remains to be clarified. Lastly, several recent studies indicate
that iNKT cells could become activated in a pure cytokine-driven fashion
without requirement for TCR tickling by CD1d–self-lipid complexes
(Montoya et al., 2006; Nagarajan and Kronenberg, 2007). Accordingly,
MCMV-infected DCs could activate iNKT cells in an IL-12-dependent,
but CD1d-independent manner (Tyznik et al., 2008). In analogy to human
CD1b, murine CD1d molecules primarily localize to lysosome-associated
membrane protein 1 (LAMP-1)-positive organelles, indicating a trafficking
route that includes late acidic compartments for acquisition of self lipids
(Chiu et al., 2002). Of note, deletion of the AP-3-binding motif in the
cytoplasmic tail of CD1d (CD1-TD) depletes the molecule from late endo-
somal and lysosomal compartments, while surface expression of the
mutant molecule is slightly increased (Chiu et al., 1999). This tail modifica-
tion leads to severe functional consequences specifically affecting iNKT
cells. Accordingly, CD1-TD-expressing APCs fail to present self lipids and
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exogenous a-GalCer to iNKT cell hybridoma, and CD1-TD knock-in mice
show impaired production of iNKT cells in the thymus, which results in
profound defects of iNKT cells in peripheral organs (Chiu et al., 2002).
Taken together, these findings identified late endocytic compartments as
primary sites where CD1d molecules acquire self lipids or exchange self
lipids with foreign antigens. Further, the endosomal route proved to be
essential in the generation of CD1d–self-lipid complexes that are recog-
nized by thymocytes, which ultimately facilitates iNKT cell development.
Finally, these findings also suggested that lipid exchanges between CD1d
andmembranesmight require helper molecules located in late endosomal
and lysosomal compartments. First evidence supporting this hypothesis
derived from studies performed with pSAP / mice, which are devoid of
all four SAPs and selectively lack iNKT cells (Zhou et al., 2004a). In vitro,
DCs and thymocytes from pSAP / mice failed to stimulate iNKT cell
hybridoma, but showed intact functions in the presentation of self lipids to
noninvariant NKT cell hybridoma, as well as a normal capacity to process
exogenous proteins for activation of various antigen-specific MHC-II-
restricted T cells. In cell-free assays, recombinant SAP-A and SAP-C
showed the highest efficiency in the exchange of trisialoganglioside GT1
loaded onto CD1d molecules with PS or sulfatide contained in liposomes,
using an experimental pH that corresponded to lysosomes. However,
SAPs alone could not extract GT1 bound to CD1d. By contrast, GM2AP
extracted the ganglioside from CD1d but did not replace it (Zhou et al.,
2004a). Using murine pSAP-deficient cell lines transduced with human
CD1d as APCs, another study concluded that recognition of a-GalCer by a
human iNKT cell line could be enhanced by reintroduction of human
pSAP. However, pSAP did not increase autoreactive responses by the
iNKT cell line (Kang and Cresswell, 2004). Finally, reintroduction of
mutant pSAP constructs, each lacking one of the four saposins, revealed
that SAP-B-expressing APCs most efficiently enhanced a-GalCer presen-
tation toNKT cells (Yuan et al., 2007). However, no individual SAP proved
to be absolutely essential in that process. In humans and mice, SAP-B
seems to play a dominant role in the exchange of CD1d-bound self lipids
acquired in the secretory pathway with self or foreign lipids present in
lysosomes.
3.4.2. Noninvariant NKT cells
Similar to iNKT cells, type II NKT cells show reactivity to CD1dmolecules
expressed by APCs. In contrast to iNKT cells, type II NKT cells recognize
CD1d-bound lipids that are loaded along the secretory pathway (Chiu
et al., 1999). The myelin-derived self GSL sulfatide, which previously has
been identified as a self antigen comparably presented by CD1a, CD1b,
and CD1c molecules, is specifically recognized by a subset of type II NKT



The Immunological Functions of Saposins 43
cells ( Jahng et al., 2004; Shamshiev et al., 2002). Identification of this
subpopulation using sulfatide-loaded CD1d tetramers revealed its spe-
cific enrichment in the central nervous system during experimental auto-
immune encephalomyelitis (EAE). Interestingly, sulfatide treatment
prevented antigen-induced EAE in wild type, but not in CD1d / mice.
The underlying mechanism involved sulfatide-reactive type II NKT cells
that prevented the production of IFN-g and IL-4 by pathogenic myelin
oligodendrocyte glycoprotein (MOG)-reactive T cells (Jahng et al., 2004).
More recent studies explored the requirements for type II NKT cell
hybridoma recognition of sulfogalactosylsphingosine (lysosulfatide), a
sulfatide derivative lacking the fatty acid constituent (Roy et al., 2008).
In this context and according to findings that type II NKT cells specialize
in the recognition of antigens acquired along the secretory pathway,
pSAP deficiency had no impact on the recognition of lysosulfatide by
type II NKT cell hybridoma. However, at acidic pH, SAP-C enhanced the
recognition of plate-bound CD1d molecules loaded with lysosulfatide by
noninvariant NKT cells (Roy et al., 2008).
4. SAPS STIMULATE THE PROCESSING OF LIPID ANTIGENS
BY LYSOSOMAL GLYCOSIDASES

The lysosomal system is of considerable biomedical importance since its
alterations are associated with numerous human diseases. To date, more
than 50 monogenic human diseases that are primarily associated with
lysosomal dysfunction have been identified, and the majority of these
conditions are classified as lysosomal storage disorders (LSDs). LSDs are
caused by deficiencies in membrane proteins that transport degradation
products out of the lysosome, or they are due to defects in molecules
involved in the processing or trafficking of lysosomal proteins and GSLs
(Fig. 2.1). Pathways of GSL production and degradation have recently
attracted the attention of lipid immunologists since analyses of mouse
models of human LSDs have uncovered unexpected antigen-processing
defects with major impact on CD1-restricted T cell responses.
4.1. Hexosaminidase B

The mouse model of Sandhoff disease that lacks the b-subunit of hexosa-
minidase A and hexosaminidase B (Hexb / mice) has been instrumental
in the elucidation of an endogenous antigen recognized by iNKT cells,
namely, the GSL isoglobotriaosylceramide (iGb3) (Zhou et al., 2004b).
In vivo analyses revealed a specific lack of iNKT cells in Hexb / mice,
which suggested that functions of hexosaminidases in the catabolism of
GSLs are required for the production of iNKT cell agonists in the thymus.
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In line with this postulate, APCs from Hexb / mice expressing CD1d
molecules failed to stimulate autoreactive responses by iNKT cell hybrid-
oma, whereas responses to a-GalCer were preserved. By testing the
potential antigenicity of several GSL species belonging to the globo-,
isoglobo-, and neolacto-series, which are produced in lysosomes upon
the action of hexosaminidases (Fig. 2.1), only iGb3 could stimulate murine
and human iNKT cells (Zhou et al., 2004b). Hence, by removing the
terminal N-acetyl-b-D-galactosamine residue from iGb4, Hex-B produces
iGb3 that is recognized by iNKT cells. Possibly due to missing self on
CD1d molecules, either by lack of generation (Hexb / ) or by deficient
CD1d loading (pSAP / ) of endogenous antigens, both knock-out strains
fail to develop iNKT cells. Therefore, potential iGb3–SAP–CD1d interac-
tions have been proposed. Accordingly, SAP-B could exchange CD1d-
bound GT1 with free iGb3 or iGb4 (Zhou et al., 2004b). However, while
immunological and novel biochemical evidence points toward iGb3 as the
natural self antigen, its physiological role remains vividly challenged by
several studies in humans andmice (Christiansen et al., 2008; Gadola et al.,
2006; Li et al., 2009; Porubsky et al., 2007; Speak et al., 2007). Recently,
SAP-B / mice were described to accumulate Gb3 in various tissues, which
is in agreementwith previous findings that SAP-B is required to activate the
degradation of Gb3 by a-galactosidase A (Sun et al., 2008). Since globosides
and isoglobosides use the same degradation pathway, SAP-B / mice
could provide an interesting model to test the possible accumulation
of iGb3 or other potential endogenous antigens for iNKT cells.
4.2. a-Galactosidase A

First evidence uncovering the antigen-processing component of a-galacto-
sidase A (a-Gal-A) derived from a study in which APCs from a-Gal-A /

mice (Fabry disease) failed to present the synthetic disaccharide antigen
Gala(1!2)a-GalCer to iNKT cell hybridoma (Prigozy et al., 2001). Accord-
ingly, removal of the terminal galactose residue by lysosomal a-Gal-Awas
required to expose the a-GalCer epitope to the invariant TCR. In the
catabolism of globosides, a-Gal-A functions downstream of Hex-B to
produce LacCer from Gb3 (Fig. 2.1). In addition, a-Gal-A degrades the
galactolipid Ga2Cer to b-GalCer (Ohshima et al., 1997). Interestingly,
a-Gal-A shows a broader substrate specificity than previously expected,
since it can also remove terminal galactose residues bound in the a(1!3)
configuration. Therefore, iGb3 that contains a terminal a(1!3)-branched
galactose could represent a physiological substrate for a-Gal-A. Conse-
quently, enzyme deficiency in a-Gal-A activity could lead to iGb3 accu-
mulation. Unexpectedly, a-Gal-A / mice demonstrated a lack of iNKT
cells (Prigozy et al., 2001; Zhou et al., 2004b). In contrast to Hexb / mice,
this deficit was only partial and specific for iNKT cells located in
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peripheral organs. Since Fabry and Sandhoff diseases have different etiol-
ogies and display diverse patterns of GSL storage, a generalized defect of
iNKT cell selection has been proposed in LSDmice. Analyses of knock-out
mousemodels of Tay–Sachs disease in which hexosaminidase A is lacking
(HexA / mice), Sandhoff disease (Hexb / mice), GM1 gangliosidosis
(b-Gal / mice), and mice deficient for the endosomal transmembrane
protein NPC1 involved in cholesterol homeostasis, revealed reduced fre-
quencies as well as functional defects of iNKT cells (Gadola et al., 2006;
Schumann et al., 2007). The hypothesis has been proposed that the degree
of iNKT cell deficiency in each mouse model could be related to the extent
of lipid stored, irrespective of specific lipid entities. Therefore, lipid stor-
age itself could exert a nonspecific negative impact on the selection of
thymic iNKT cell precursors. Upon immunological analysis of a-Gal-A /

mice, we found specific loss of peripheral iNKT cells in accordance with
previous reports (Zhou et al., 2004b). These defects were the direct conse-
quence of iNKT cells chronically exposed to self GSLs (unpublished obser-
vations).Moreover, DCs from a-Gal-A / mice inducedCD1d-dependent
production of IFN-g and IL-4 by iNKT cells in the absence of exogenous
antigen. Additionally, wild-type DCs treated with an inhibitor of a-Gal-A
elicited NKT cell activation. Further, reconstitution of a-Gal-A-deficient
DCs with recombinant enzyme, or iGb3 blocking in Fabry DCs, abrogated
iNKT cell responses. In a more recent study analyzing iNKT cells in
diverse animal models of LSDs, in which GSLs, glycosaminoglycans, or
both accumulate, defective iNKT cell development could only be observed
in mice affected by combined deficiency in sulfatase activity. However,
these defects were generalized to other T cell subsets. By contrast, mice
with single lysosomal enzyme deficiencies showed normal iNKT cell
development (Plati et al., 2009). In conclusion, constitutive or induced
deficiency in a-Gal-A activity leads to accumulation of endogenous self
antigens such as iGb3 for subsequent activation of iNKT cells.
4.3. a-Mannosidase

A decisive function of a-mannosidase in the processing of carbohydrate
antigens has been clarified in the human system. Accordingly, DCs from a
patient with congenital deficiency in a-mannosidase failed to present
mycobacterial hexamannosylated phosphatidyl-myo-inositides (PIM6) to
a CD1b-restricted T cell line (de la Salle et al., 2005). In detail, the enzyme
is required for the stepwise degradation of PIM6 to PIM species that
contain fewer mannose residues, including the stimulating antigen
PIM2. Importantly, the generation of stimulating PIM2 species required
assistance by soluble CD1e molecules (de la Salle et al., 2005). In contrast
to SAPs, which are ubiquitously expressed and primarily required in the
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catabolism of GSLs, CD1e is mainly expressed in immune cells, and could
therefore specifically act as an immunological lipid transfer protein
(Angenieux et al., 2005). In analogy to saposins, whether CD1e uses a
‘‘solubilizer’’ or ‘‘liftase’’ mode of action remains to be clarified.
5. SAPOSINS DISRUPT VESICLES RELEASED BY
APOPTOTIC CELLS

5.1. Implications for apoptosis

Upon hypoxia, trauma, or the effect of noxious substances, cells die by
necrosis, which involves depletion of the intracellular ATP stores asso-
ciated with cell swelling and rupture of cellular organelles (Winau et al.,
2005). Ultimately, necrotic cells burst and release their organellar and
cytosolic content into the surrounding tissue, which subsequently causes
inflammation. In sharp contrast to necrosis, apoptosis represents a regu-
lated form of cell death that prevents inflammatory responses under
physiological conditions (Winau et al., 2005). Accordingly, apoptotic
cells shrink, condense their DNA and organelles prior to fragmentation,
release membrane blebs, and finally disintegrate into apoptotic bodies.
Thus, apoptosis avoids cell leakage and secondary harmful inflammation,
and represents a ‘‘silent’’ way of death that cells undergo during devel-
opment and tissue homeostasis (Ravichandran and Lorenz, 2007). How-
ever, the silencing feature of apoptosis can be overridden in the context of
infection or cancer, when apoptotic bodies become vehicles for antigens
and tumor- or pathogen-associated molecular patterns that trigger
immune responses (Winau et al., 2004a). A hallmark of apoptosis is the
exposure of PS, which is normally confined to the inner leaflet of the
cytoplasmic membrane in living cells, on the surface of apoptotic cells
(Savill et al., 2002). Further, apoptotic cells release high amounts of che-
moattractant nucleotides and lysophosphatidylcholine (LPC), which sub-
sequently recruit phagocytes (Elliott et al., 2009). Capture and subsequent
internalization of apoptotic bodies involves specific recognition of exter-
nalized PS by diverse phagocytic receptors, including the scavenger
receptor CD36, brain angiogenesis inhibitor 1 (BAI1), T cell immunoglob-
ulin and mucin domain-containing molecule 4 (TIM-4), Mer tyrosine
kinase, and stabilin-2 (Ravichandran and Lorenz, 2007). Finally, apoptotic
bodies are incorporated into phagosomes, which subsequently mature,
and eventually fuse with lysosomes for terminal degradation. Elucidation
of these clearance pathways is of great interest since removal of apoptotic
cells by DCs bears important implications for the establishment of
immune tolerance (Albert et al., 1998a, 2001; Kawane et al., 2006). While
rapid progress has been made toward the understanding of molecular
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processes inherent to the delivery, recognition, and engulfment of apo-
ptotic bodies, the mechanism of the critical final processing step, describ-
ing their lysosomal disintegration, remains largely unexplored.
Ultrastructural examination of apoptotic vesicles by electron microscopy
reveals similar features to ILVs. Therefore, we anticipated that the special
mode of action of saposins on intralysosomal membranes could be used
to disrupt apoptotic vesicles located in lysosomes, following phagocytosis
by macrophages or DCs (Fig. 2.2). Of note, high content of anionic phos-
pholipids in ILVs favors their solubilization upon functional interaction
with specific SAPs in lysosomes (Ciaffoni et al., 2001). We propose that PS
on apoptotic bodies deploys its actual specific function inside the phago-
cytes, namely, as molecular target for saposins in lysosomes to facilitate
disintegration of apoptotic vesicles (Fig. 2.2, unpublished observations).
5.2. Saposins facilitate antigen cross-presentation

Presentation of peptide antigens by MHC molecules to T lymphocytes
classically comprises two major pathways. Following the MHC-I path-
way, endogenous proteins that are synthesized inside the cells, such as
antigens produced by viruses, are primarily located in the cytosol. Subse-
quently, the multienzyme complex of the proteasome degrades the pro-
teins into peptide fragments, which are translocated into the ER through
TAP (Goldberg and Rock, 1992; Shepherd et al., 1993). After loading of
MHC-I molecules in the ER assisted by the peptide-loading complex,
consisting of tapasin, calreticulin, and Erp57, MHC-I-peptide complexes
are transported to the cell surface of the APC for specific recognition by
CD8þ T cells (Degen et al., 1992; York and Rock, 1996). By contrast,
exogenous antigens derived from pathogenic bacteria, for example, are
endocytosed by APCs for subsequent degradation by cathepsins in late
endosomal / lysosomal compartments, prior to loading onto MHC-II
molecules. Subsequently, CD4þ T cells recognize complexes of MHC-II
and peptide exposed on the APC surface. However, exogenous antigens
can also be presented by MHC-I molecules in a process termed cross-
presentation (Vyas et al., 2008). Accordingly, the respective antigen
crosses from the endosomal route to the MHC-I pathway. The activation
of CD8þ T cells by cross-presented antigens is referred to as cross-
priming, and DCs are APCs uniquely equipped for cross-presentation
(Bevan, 1976; Guermonprez et al., 2002). To date, multiple mechanisms for
the cellular pathway of cross-presentation have been proposed, which are
likely not mutually exclusive (Vyas et al., 2008). Moreover, several antigen
vehicles have been described to have cross-priming abilities, including
proteins, peptides, and heat-shock proteins (HSP) chaperoning peptides
(Srivastava, 2002). In addition, apoptotic cells represent a potent device to
deliver antigens to the cross-presentation pathway. Notably, apoptotic
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bodies derived from tumors or host cells infected with viruses induce
vigorous CD8þ T cell responses (Albert et al., 1998b). Further, macro-
phages infected with mycobacteria release apoptotic vesicles that are
engulfed by uninfected bystander DCs for cross-priming of CD8þ T
cells (Schaible et al., 2003; Winau et al., 2006). Ultimately, immunization
with apoptotic vesicles released by mycobacteria-infected macrophages
elicits CD8þ T cell responses and protects against tuberculosis (Winau
et al., 2006). Therefore, apoptotic bodies as mediators of antigen cross-
presentation are part of a unique detour pathway that promotes T cell
responses in tumor and infection immunity (Winau et al., 2004a).However,
it remains unclear as to how antigens enclosed in apoptotic bodies become
accessible for cross-presentation to CD8þ T cells. Our previous findings
suggested that successful cross-priming requires pSAP-dependent proces-
sing of apoptotic vesicles in recipient DCs (Winau et al., 2006). Thus, we
propose that saposins unseal apoptotic bodies for antigen delivery in DCs
and subsequent CD8þ T cell responses (Fig. 2.2).
6. SAP-LIKE PROTEINS IN ANTIMICROBIAL DEFENSE

The family of SAPLIPs comprehends heterogeneous and functionally
divergent proteins that share a conserved motif of six cysteine residues
associated by three disulfide bonds (Munford et al., 1995). This motif
forms the characteristic ‘‘saposin fold’’ that allows SAPLIPs to interact
with lipids (Bruhn, 2005). The SAPLIP domain can be regarded as an
ancestral molecule since it is present both in humans and in one of the
most primitive eukaryotes, namely amoebozoans. Entamoeba histolytica is
a prototypical pathogenic amoebozoan that produces amoebapores.
These molecules belong to the family of SAPLIPs and exert cytolytic
activities against bacteria and human cells, by forming pores in the target
cell membrane as a killing principle (Leippe et al., 1994a,b). E. histolytica is
the etiologic agent of human amoebiasis, and recent evidence suggests
that amoebapores could be responsible for the tissue destruction upon
infection (Bracha et al., 2003). To date, 19 genes encoding SAPLIPs have
been identified in E. histolytica. Considering that the primary function of
amoebapores is the destruction of phagocytosed bacteria for nutritional
purposes, a diversity of SAPLIPs might be required for subsequent diges-
tive steps. Interestingly, SAPLIPs with similar lytic functions have been
described in humans and other mammals. These include human granu-
lysin and porcine NK-lysin that share the highest degree of homology
among members of the SAPLIP family. Similar to amoebapores, granuly-
sin and NK-lysin show a broad spectrum of antimicrobial activity, killing
parasites, bacteria, and fungi (Ernst et al., 2000; Leippe, 1995; Pena et al.,
1997; Stenger et al., 1998). In combination with perforin, granulysin
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released by T cells kills M. tuberculosis in macrophages by affecting the
integrity of its cell wall, leading to subsequent osmotic bacterial lysis
(Stenger et al., 1998). NK-lysin is predominantly stored by T cells and
NK cells in cytosolic granules, and is released upon activation (Andersson
et al., 1995). In addition, NK-lysin was found to be lytic against YAC-1
tumor targets, and especially potent at killing tumor cell lines that had
increased surface levels of PS (Andersson et al., 1995; Schroder-Borm et al.,
2005). By contrast, granulysin has been more extensively studied with
regard to its tumorolytic functions against human T cell lymphoma of the
Jurkat type (Kaspar et al., 2001). Moreover, several studies could unequiv-
ocally demonstrate the importance of granulysin and antimicrobial pro-
teins in various infectious diseases (Heusel et al., 1994; Kagi et al., 1994;
Lowin et al., 1994; Stenger et al., 1998). To date, the structures of six
SAPLIPs have been resolved, starting with the first crystal of NK-lysin
(Liepinsh et al., 1997). They all show the same a-helical fold of five helices
connected by three disulfide bonds. Surprisingly, the predicted modes of
action by lytic SAPLIPs suggest extremely diverse mechanisms used to
achieve membrane permeabilization. In its active state, the pore-forming
amoebapore A is a dimer stabilized by electrostatic interactions that
involve a unique, centrally positioned histidine residue (Andra and
Leippe, 1994). One side of the dimer is exclusively hydrophobic, which
allows its insertion into membranes. Once docked, the protein oligo-
merizes to create ring-like pores that resemble channels (Gutsmann
et al., 2003). The histidine residue functions as a pH-dependent switch.
Activation of this switch occurs at low pH and allows the dimerization
that is crucial for the cytolytic function (Andra and Leippe, 1994). Consid-
ering its function, it is therefore not surprising that this residue is highly
conserved among all amoebapore isoforms. By contrast, NK-lysin and
granulysin permeabilize membranes in a monomeric state through an
electrostatic process termed electroporation (Miteva et al., 1999).
Concerning both SAPLIPs, membrane recruitment occurs through inter-
actions of positively charged residues in the SAPLIP and negatively
charged phospholipids in the target membrane. Subsequent conforma-
tional changes allow the two halves of the molecules to slit the membrane
in a scissor-like fashion, ultimately causing osmotic lysis (Anderson et al.,
2003). In Naegleria fowleri, the SAPLIP naegleriapores are encoded in
larger multipeptide precursor structures, each potentially giving rise
to multiple glycosylated naegleriapore-like molecules (Herbst et al.,
2004). Finally, functional characterization of a novel SAPLIP in E. histoly-
tica, namely SAPLIP 3, revealed fusogenic activities similar to SAP-C in
mammalians (Winkelmann et al., 2006). Accordingly, we highlight the
possibility that saposins might possess conserved evolutionary traits of
ancient weapons which potentially mediate direct antimicrobial functions
(Fig. 2.2).
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7. CONCLUSIONS

Decades ago, saposins have been considered as negligible test tube acti-
vators of lysosomal glycosidases. Today, saposins emerge as critical com-
ponents of membrane homeostasis and unexpected actors on the scene of
immunology. In addition to their well-established capacities in sphingo-
lipid degradation and membrane digestion, saposins also fulfill impor-
tant immunological functions. Based on their universal principle to
interact with membrane bilayers in lysosomes, SAPs exert versatile helper
functions further defined by their respective interaction partners. In this
context, saposins can mobilize lipids from membranes and associate with
lipid-degrading enzymes, in order to degrade or generate antigenic epi-
topes. Further, saposins interact with antigen-presenting molecules to
facilitate the loading of lipid antigens onto CD1 proteins for subsequent
activation of lipid-reactive T lymphocytes. Additionally, the membrane-
perturbing properties of SAPs can mediate the disintegration of apoptotic
bodies for antigen delivery in APCs and subsequent cross-presentation.
Finally, saposins could have antimicrobial functions through direct mem-
brane attacks on pathogens.
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Abstract T-cell activation is mediated not only by antigen stimulation
through T-cell receptors but also by costimulatory signals through

costimulatory molecules. Among several costimulatory molecules,

the tumor necrosis factor (TNF) receptor family member OX40

plays a key role in the survival and homeostasis of effector and

memory T cells. According to the conventional understanding of

OX40 costimulation, an interaction between OX40 and OX40

ligand (OX40L) occurs when activated T cells bind to professional

antigen-presenting cells (APCs). The T-cell functions, including

cytokine production, expansion, and survival, are then enhanced

by the OX40 costimulatory signals. Over the last half-decade,

evidence has accumulated that OX40 signals are critical for

controlling the function and differentiation of Foxp3þ regulatory

T cells, indicating a new aspect of OX40-mediated autoimmunity.

Furthermore, the expression of OX40L by mast cells was shown to

be important for controlling inflammation through regulatory

T-cell function. Besides the essential role played by OX40 signaling

in generating memory CD4 T cells, recent reports show that it also

has a unique role in generating memory CD8 T cells. In addition,

recent genome-wide association studies have identified single-

nucleotide polymorphisms of the OX40L and OX40 genes that

are related to cardiovascular diseases and SLE, providing direct

evidence for the involvement of the OX40–OX40L interaction in

human diseases. Here, we review recent progress on how the

OX40–OX40L interaction regulates T-cell tolerance, peripheral

T-cell homeostasis, and T-cell-mediated inflammatory diseases.
ABBREVIATIONS
Ab
 antibody

Ag
 antigen

APC
 antigen-presenting cell

CTLA4
 cytotoxic T-lymphcyte antigen-4
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dsDNA
 double stranded DNA

EAE
 experimental autoimmune encephalomyelitis

GITR
 glucocorticoid-induced TNF receptor-related protein

HTLV-I
 human T-cell leukemia virus type I

IL-7R
 IL-7 receptor a chain

iTreg
 induced Treg

KLRG1
 killer cell lectin-like receptor G1

MCMV
 murine cytomegalovirus

MPEC
 memory precursor effector T cell

nTreg
 naturally occurring regulatory T cell

SLE
 systemic lupus erythematosus

SLEC
 short-lived effector T cell

Tcm
 central memory T

TcR
 T-cell receptor

Tem
 effector memory T

Th1
 T helper 1

Th2
 T helper 2
1. INTRODUCTION

Optimal T-cell activation requires not only T-cell receptor (TcR) signals
delivered by antigen (Ag) stimulation but also costimulatory signals
provided by antigen-presenting cells (APCs) (Lenschow et al., 1996;
Mueller et al., 1989). Although the interaction between CD28 expressed
on T cells and CD80/CD86 on the surface of APCs is the best-known
costimulatory signal, other costimulatory molecules, including tumor
necrosis factor (TNF) receptor superfamily molecules, such as OX40
(CD134, TNFRSF4), CD27 (TNFRSF7), 4-1BB (CD137, TNFRSF9), and
glucocorticoid-induced TNF receptor-related protein (GITR, TNFRSF18),
can potently augment the activation of T cells to achieve a full-fledged
response (Croft, 2003; Nolte et al., 2009; Sugamura et al., 2004; Wang et al.,
2009). In contrast to the other TNF receptor-type costimulatory receptors,
which are expressed by naı̈ve T cells to some extent before their activa-
tion, OX40 is not found on naı̈ve or memory T cells, but is transiently
induced upon Ag activation. Therefore, OX40 specifically provides a
costimulatory signal to activated effector T cells (Croft et al., 2009;
Sugamura et al., 2004).

The ligand for OX40 (gp34, OX40L, CD252, TNFSF4) was originally
termed glycoprotein 34 (gp34) and was identified as a protein expressed
on human T-cell leukemia virus type I (HTLV-I)-transformed T cells
(Tanaka et al., 1985). Cloning of the gp34 gene revealed that it belonged
to the TNF superfamily (Miura et al., 1991). Subsequently, gp34 was
found to bind OX40 (Baum et al., 1994; Godfrey et al., 1994). Apart from
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HTLV-I-infected T cells, OX40L expression was originally thought to be
limited to professional APCs, such as activated B cells (Stuber et al., 1995),
dendritic cells (DCs) (Murata et al., 2000; Ohshima et al., 1997),macrophages
(Weinberg et al., 1999), and Langerhans cells (Sato et al., 2002). Thus, the
interaction between OX40 and OX40L provides an important costimulatory
signal to activated T cells, mainly through a T-cell–APC interaction, that
leads to the expansion and survival of specific Ag-activated T cells.

However, OX40L is now recognized to be expressed far more broadly
than previously thought, including by vascular endothelial cells (Imura
et al., 1996; Matsumura et al., 1999), mast cells (Kashiwakura et al., 2004;
Nakae et al., 2006), activated NK cells (Zingoni et al., 2004), and the
responding CD4 T cells themselves (Soroosh et al., 2006). Similarly,
OX40 is now known to be expressed by Foxp3þ regulatory T cells
(Takeda et al., 2004; Valzasina et al., 2005), activated NKT cells
(Marschner et al., 2005; Zaini et al., 2007), and activated T cells. Thus,
new insight into the function of the OX40–OX40L interaction has been
gained in recent years. In this review, among the many OX40-mediated
physiological responses, we focus on the roles of the OX40–OX40L inter-
action in (1) the T-cell tolerance mediated by regulatory T cells, (2) the
generation and homeostasis of memory T cells, and (3) inflammatory
responses related to disease.
2. IMPACT OF THE OX40 COSTIMULATORY SIGNAL IN
IMMUNE RESPONSES

2.1. The OX40–OX40L interaction in effector T-cell function

The expression of OX40 on CD4 and CD8 T cells is induced by TcR
signaling, and peaks 48 h and 3–5 days after in vitro and in vivo Ag
stimulation, respectively (Calderhead et al., 1993; Gramaglia et al., 1998;
Mousavi et al., 2008; Salek-Ardakani et al., 2008). Unlike other costimula-
tory receptors, OX40 is not expressed by resting T cells, including naı̈ve
and memory T cells. Similarly, the expression of OX40L by APCs is
induced following stimulation with CD40, lipopolysaccharide, or TSLP,
and peaks 48–72 h after in vitro and in vivo stimulation (Ito et al., 2005;
Mousavi et al., 2008; Murata et al., 2000; Ohshima et al., 1997). Therefore,
significant interactions between OX40 and OX40L should occur 2 or
3 days after Ag recognition by T cells. This is later than the interactions
between other costimulatory receptors and their ligands; for example,
CD28 and its ligands interact earlier after Ag recognition, because CD28
is constitutively expressed by resting T cells (Coyle and Gutierrez-Ramos,
2001; Croft, 2003; Sharpe and Freeman, 2002). Consistent with the differ-
ent expression kinetics for CD28 and OX40, CD28 signals are essential for
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the activation of naı̈ve T-cells, which is in turn critical for the generation
of effector T cells. In contrast, OX40 mainly promotes the expansion
(late proliferation) and survival of effector T cells. This was demon-
strated by the observation that OX40-deficient T cells proliferate nor-
mally 2–3 days after TcR engagement, and differentiate into effector
T cells at almost normal levels. However, by day 12–13, there is a marked
reduction in their survival (Rogers et al., 2001; Song et al., 2004). These
observations indicate that OX40 has a unique role as a late costimulator
for the survival of effector T cells that have been recently activated.

In addition, several studies using various experimental settings have
documented roles for the OX40–OX40 interaction in regulating T helper 1
(Th1) and T helper 2 (Th2) responses. There is much in vitro evidence for
the preferential induction of Th2 cells by OX40 engagement (Flynn et al.,
1998; Ohshima et al., 1998), and the first in vivo evidence for the critical
involvement of OX40 in Th2 responses was demonstrated using an infec-
tion model with the parasitic protozoan, Leishmania major. Treatment of an
L. major-susceptible mouse strain with a blocking monoclonal antibody
(mAb) against OX40L to inhibit the OX40–OX40L interaction successfully
controlled the infection by suppressing the Th2 responses (Akiba et al.,
2000). Consistent with this finding, an excessive interaction between
OX40 and OX40L in OX40L-transgenic (Tg) mice in which OX40L is
constitutively expressed by T cells, rendered C57BL/6 mice, which are
normally resistant to L. major infection, susceptible to it by enhancing the
Th2 responses (Ishii et al., 2003). Recently, a functional association
between thymic stromal lymphopoietin (TSLP), a unique cytokine that
controls DC function, and OX40L has been extensively studied (Liu,
2009). Human myeloid DCs that were stimulated with TSLP effectively
primed naı̈ve T cells to produce the Th2 cytokines IL-4, IL-5, and IL-13
along with high levels of TNFa, leading to Th2-cell-mediated inflamma-
tion (Soumelis et al., 2002). Later, the same group identified OX40L as a
molecule that is specifically expressed on DCs stimulated with TSLP (Ito
et al., 2005; Wang et al., 2006). Furthermore, blocking OX40L with a
neutralizing Ab inhibited the production of Th2 cytokines and TNFa,
and enhanced the production of IL-10 by CD4 T cells (Ito et al., 2005).
Similar to the TSLP-DC-derived OX40L, the Th2 responses induced by
DCs stimulated with the helminth Ag, schistosome egg Ag (SEA) were
suppressed by the absence of OX40L (Jenkins et al., 2007).

However, this study also showed that although DC-derived OX40L
critically enhanced and maintained Th2 responses, it simultaneously
promoted IFNg-producing Th1-cell priming. Indeed, in the presence of
a certain Ag, complete Freund’s adjuvant, or IL-12, OX40 strongly
increases the Th1 responses by promoting the expansion and survival of
Th1 effector cells under various conditions (De Smedt et al., 2002;
Gramaglia et al., 2000; Ishii et al., 2003; Ito et al., 2005; Rogers and Croft,
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2000). Since OX40 signaling enhances the survival of effector T cells
whether the effector T cells are polarized or nonpolarized, the OX40-
mediated survival of Th2 effector cells might explain the enhanced Th2
responses mentioned above. In the case of TSLP-mediated Th2 inflamma-
tion, TSLP might induce factors in DCs responsible for Th2 polarization
apart from OX40L, which might then promote the survival and mainte-
nance of already differentiated Th2 effector cells, and accordingly lead to
the preferential induction of Th2 responses. In other words, a different
factor from OX40L might be critical for the TSLP-associated Th2 polariza-
tion. Taken together, these findings suggest that the OX40–OX40L inter-
action plays important roles in both Th1 and Th2 responses by promoting
the survival of effector T cells and the generation of memory T cells, rather
than in the polarization of the Th cells.
2.2. OX40L expressed by cells other than professional APCs

Studies using intravital two-photon imaging of the lymph nodes demon-
strated that by 24–48 h after Ag priming, interactions between naı̈ve CD4
T-cell and DCs have ceased (Mempel et al., 2004; Miller et al., 2004), and
that about half of the Ag-specific T cells leave the DCs and move into
the T-cell area in the deep paracortex of the lymph nodes (Shakhar et al.,
2005). Since the OX40 expression on CD4 T cells continues for up to
10 days after Ag stimulation, the T cells that leave the DCs might encoun-
ter other OX40L-expressing cells, which might also provide OX40 signals
to induce full-fledged CD4 T-cell responses. Supporting this notion, it
was demonstrated in vitro that OX40L expressed by responder CD4 T cells
themselves binds to OX40 on other responder CD4 T cells through T-cell–
T-cell contact, to enhance T-cell survival (Soroosh et al., 2006). Further-
more, in an adoptive transfer experiment in which TcR-Tg T cells were
transferred into congenic mice, Ag immunization induced a lower
survival of OX40L / TcR-Tg donor T cells than OX40Lþ/þ TcR-Tg
donor cells (Soroosh et al., 2006). These results indicate an important
role of OX40L expressed by the CD4 T cell itself. However, the same
report also showed that OX40L expression on both the APCs and the
responding T cells during T-cell activation was much more effective for
promoting the survival of Ag-specific T cells than OX40L expression on
either the APCs or the responding T cells alone. Therefore, these results
do not exclude the importance of OX40L expressed on APCs, but rather
support the idea that the OX40 signals to activated OX40þ T cells are first
provided by professional APCs during Ag recognition and then by other
OX40Lþ cells during the effector phase.

Consistent with this two-step OX40L costimulation model (Fig. 3.1),
several studies demonstrated that OX40L expressed by CD4þCD3 acces-
sory cells (Kim et al., 2003), B cells (Linton et al., 2003), and mast cells
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After leaving DCs, the OX40-expressing T cell may interact with an OX40L-expressing

cell other than DC, and receive an OX40 signal from the cell, which may provide

essential signals for the generation of memory T cells, the enhancement of Th2 response,

and the prolongation of inflammatory responses. Thus, the optimal interaction between

OX40 and OX40L might be formed in two steps. After first interaction during naı̈ve

T-cell and DC interactions; (1) OX40L expressed on activated CD4 T cells interacts

with OX40 expressed on other responder CD4 T cell, leading to the optimal generation

of memory CD4 T cells (Soroosh et al., 2006). (2) OX40L expressed on CD3�CD4þ

accessory cells, which may be identical to the lymphoid tissue-inducer cells, promotes

Th2 cell survival through the interaction with OX40 on Th2 cells (Kim et al., 2003).

(3) OX40L expression on B cells is required for in vivo Th2 development, but not Th1

development, under a certain condition (Linton et al., 2003). (4) OX40L-expressing

mast cells directly enhance effector T cell function through the interaction between

OX40 on T cells and OX40L on mast cells (Kashiwakura et al., 2004; Nakae et al., 2006).

(5) Endothelial cells also express OX40L (Imura et al., 1996). OX40L expression on

endothelial cells might be involved in vascular inflammation although any direct

evidence has not yet been demonstrated. Solid arrows represent possible functions

as demonstrated by experimental results, while dashed arrows represent hypothetic

functions.
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(Kashiwakura et al., 2004; Nakae et al., 2006) can also support T-cell
function during the effector phase. Since the interaction between OX40þ

T cells and these OX40Lþ cells occurs after the T-cell–DC interaction, all of
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these cells are potential candidates for critical components of this model.
However, since the OX40L-expressing responding T cells do not express
MHC class II (Ishii and Soroosh, unpublished result), whether the OX40
signals provided by the T cells themselves require Ag presentation is
unclear. In spite of the importance of OX40L on these cells, further
investigation will be necessary to verify the two-step OX40L costimula-
tion model.

Mast cells play important roles in a variety of immune processes,
such as pathogen clearance, inflammatory responses, and allergy. The
interaction between mast cells and T cells has been shown to have
a unique role in modulating T-cell function through the mast-cell expres-
sion of OX40L (Gri et al., 2008; Kashiwakura et al., 2004; Nakae et al., 2006;
Piconese et al., 2009). Nakae et al. (2006) found that OX40L is constitutively
expressed on mast cells in the BALB/c mouse strain, but not in the
C57BL/6 strain. The coculture of T cells with OX40L-expressing mast
cells that had been previously activated by stimulation with IgE and Ag
enhanced the T-cell activation induced by anti-CD3 Ab. Importantly,
blocking OX40L with a neutralizing mAb significantly suppressed the
mast-cell-dependent T-cell activation responses, including their prolifer-
ation and production of IFNg and IL-17.

More recently, the interaction between mast cells and Foxp3þ regu-
latory T (Treg) cells was demonstrated in vitro and in vivo to modulate
Treg-mediated immunosuppression and Th17-associated inflammatory
responses (Gri et al., 2008; Piconese et al., 2009). Since mast cells exist
in peripheral nonlymphoid tissues, these findings indicate an important
role for OX40L that is different from T-cell priming or memory T-cell
generation. If OX40-expressing inflammatory T cells interact with OX40L-
expressing mast cells at the inflammatory site, the T-cell-mediated inflam-
mation might be protracted by OX40 signaling. Therefore, the OX40L
expressed on mast cells might be a therapeutic target for T-cell-mediated
allergic diseases.
3. OX40 IN THE FUNCTION AND DEVELOPMENT
OF REGULATORY T CELLS

The OX40–OX40L interaction is involved in autoimmune and inflamma-
tory diseases in humans and mice. One of the mechanisms of the OX40-
mediated autoimmunity is a disruption of T-cell tolerance. Mounting
evidence suggests that immunological self-tolerance is maintained
by several distinct mechanisms. The dominant tolerance, mediated
by Foxp3þCD25þCD4þ Treg cells, is particularly critical for keeping
self-reactive T cells in check to avoid lethal autoimmunity in the periph-
ery (Sakaguchi et al., 2008). The first evidence that OX40 signals could
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affect the Treg-mediated tolerance was demonstrated in 2004 (Takeda
et al., 2004). Since that report, in vivo and in vitro studies have demon-
strated that the OX40–OX40L interaction can be an important regulator
of the Treg-cell subset. OX40 is constitutively expressed on
Foxp3þCD25þCD4þ T cells and is an attractive candidate for modulating
immunological self-tolerance. Below, we review the relationship between
OX40 and Foxp3þCD25þCD4þ T cells.
3.1. OX40 and the homeostasis of naturally occurring
regulatory T cells

Foxp3þCD25þCD4þ naturally occurring Treg (nTreg) cells are positively
selected in the thymus as a unique population with a relatively high
reactivity to self-antigens (Jordan et al., 2001). They suppress the activa-
tion of self-reactive T cells through TGF-b, IL-10, and unknownmolecular
mechanisms (Shevach, 2009). One of the characteristics of Treg cells is the
expression pattern of their surface molecules; their phenotype is similar to
that of effector T cells, for example, CD25þ, cytotoxic T-lymphocyte
antigen-4 (CTLA4)þ, GITRhi, CD44hi, etc. (Itoh et al., 1999; Shimizu et al.,
2002; Takahashi et al., 2000). Accordingly, a significant amount of OX40 is
also expressed on their surface (Takeda et al., 2004; Valzasina et al., 2005).

The interaction between OX40 and OX40L, however, appears to be
dispensable for the development of Foxp3þCD25þCD4þ nTreg cells,
because this population is still present in OX40- or OX40L-deficient
knockout (KO) mice (Takeda et al., 2004). Rather, the OX40 signaling
influences the homeostasis of this nTreg population. One paper demon-
strated that the number of CD25þCD4þ nTreg cells is significantly lower
in OX40-KO mice than in their wild-type littermates (Takeda et al., 2004).
In contrast, the forced constitutive expression of OX40L in Tg strains
increases the number of nTreg cells in both the spleen and thymus.
Because Foxp3þCD25þCD4þ nTreg cells proliferate constantly in an
IL-2-dependent manner in normal mice (Setoguchi et al., 2005), OX40
may serve as a costimulator for this turnover. This notion is supported
by a series of adoptive transfer experiments (Takeda et al., 2004).
The transfer of nTreg cells along with nonregulatory CD4 T cells from
wild-type mice into lymphopenic RAG2-KO mice induced the homeo-
static proliferation of the nTreg cells, whereas the absence of OX40L in the
recipient animals diminished their proliferation, and supplementation
with excess amounts of OX40L dramatically enhanced it.

The regulation of Treg cell homeostasis by other TNFR superfamily
members has also been reported. For example, a CD40 deficiency causes a
significant decrease in Treg cells, and the transfer of CD4þ T cells from
CD40-KO mice into athymic nude mice induces organ-specific autoim-
mune diseases, probably due to the insufficient number of Treg cells
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(Kumanogoh et al., 2001). In addition, the administration of an mAb
against GITR, which has high homology with OX40, into normal mice
enhances the proliferation of Treg cells (Nishioka et al., 2008). Therefore,
costimulation through TNFR superfamily molecules including OX40 can
regulate the size of the Foxp3þCD25þCD4þ nTreg subset by controlling
their homeostatic proliferation or the thymic production of these cells.
3.2. Role of OX40 in the function of nTreg cells

The effects of OX40 signals on the nTreg-cell-mediated immune regula-
tion have been extensively examined in vitro and in vivo (Takeda et al.,
2004; Valzasina et al., 2005; Vu et al., 2007). In in vitro systems in which
Treg cells, naı̈ve T cells, and APCs are cocultured in the presence of TcR
stimulation, Treg cells can suppress the activation and proliferation of
naı̈ve T cells (Fig. 3.2) (Takahashi et al., 1998; Thornton and Shevach,
1998). The addition of an agonistic mAb against OX40 in vitro elicits the
activation of naı̈ve T cells, despite the presence of Treg cells (Takeda et al.,
2004; Valzasina et al., 2005). Similarly, APCs from an OX40L-Tg mouse, in
which OX40L is ubiquitously expressed, can stimulate naı̈ve T-cell prolif-
eration even in the presence of Treg cells (Takeda et al., 2004).

To determine which cellular components were responsible for the
abrogation of the Treg cells’ suppressive effect, several groups have
used Treg and naı̈ve T cells from OX40-KO and wild-type mice or
rats in various combinations (Takeda et al., 2004; Valzasina et al., 2005).
However, the results of these experiments have not been consistent. One
group reported that an enhanced OX40 signal caused by cross-linking the
OX40 on naı̈ve T cells is sufficient to abrogate of the Treg-mediated
suppression (Takeda et al., 2004), whereas other reports showed that the
OX40 on both naı̈ve T cells and Treg cells is responsible for abrogating the
suppression (Piconese et al., 2008; Valzasina et al., 2005; Vu et al., 2007).
Differences in the experimental conditions could account for the inconsis-
tency. A similar situation has arisen, regarding the effect of GITR on
Treg-mediated suppression. While one group demonstrated that the
GITR signals in native T cells are responsible for the GITR-mediated
abrogation of Treg suppression (Stephens et al., 2004), another reported
that the GITR stimulation of Treg cells, but not of naı̈ve T cells, is essential
for the GITR-mediated abrogation (Shimizu et al., 2002). Because OX40
and GITR share high homology at the amino acid level, these two mole-
cules may use common mechanisms to break the Treg-mediated immune
suppression in vitro.

The mechanisms by which OX40 signals can render naı̈ve T cells
resistant to Treg-mediated suppression are unresolved. For the OX40
expression on naı̈ve T cells, OX40 signaling might induce robust IL-2
production by naı̈ve T cells at the early phase of their activation, before
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Treg cells start to exert their immune suppressive effects, thus abrogating
the Treg cells’ suppression. Alternatively, OX40 signals might provide
survival signals to the naı̈ve T cells that allow them to resist cytokine
starvation (especially the lack of IL-2) (Scheffold et al., 2005) and
the consequent apoptosis, which could be caused by nTreg cells in vitro
(Pandiyan et al., 2007).
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As regards signaling from OX40 on nTreg cells, one intriguing study
demonstrated that the expression of Foxp3 was turned off in Treg cells
when they were cultured with APCs from OX40L-Tg mice, although this
strong OX40 stimulation did not influence the proliferation or survival of
Treg cells (Vu et al., 2007). The decrease in Foxp3 expression in the
cultured Treg cells might account for the OX40-mediated abrogation of
their suppressive function. A similar downregulation of Foxp3 was
reported for TLR2 stimulation (Liu et al., 2006). The downregulation
of Foxp3 by OX40 signals, however, seems to contradict the higher fre-
quency of Treg cells observed in OX40L-Tg mice (Takeda et al., 2004). One
explanation for his discrepancy is that it may arise from the artificial
presence of OX40 and strong TcR stimulation in vitro, which does not
occur normally in vivo, and might be necessary to elicit the disappearance
of Foxp3 expression. Detailed studies exploring these molecular mechan-
isms are necessary. Recently, several groups reported the loss of Foxp3
expression in vivo using Foxp3 reporter mouse systems during inflamma-
tion in autoimmune conditions or during germinal center formation in the
intestinal lymphoid tissues (Komatsu et al., 2009; Tsuji et al., 2009; Zhou
et al., 2009). According to these reports, Foxp3þCD4þ Treg cells can
change their phenotype into that of pathogenic inflammatory T cells in
inflamed tissues or into that of follicular helper T cells in Peyer’s patches.
It is possible that OX40 or TLR2 signals are involved in this process.

The role of OX40 in vivo has been examined in various experimental
systems, including models of autoimmune disease, tumor immunity, and
allergic inflammation. Inflammatory bowel disease (IBD) experimentally
induced in lymphopenic mice, like RAG-2-KO mice, is frequently used as
a simple model for Crohn’s disease. The transfer of naı̈ve T cells from
wild-type mice into RAG-2 KO mice causes the disease in the recipient
mice, and the coadministration of nTreg cells inhibits the development of
the disease. One group demonstrated that strong OX40 signaling can
disturb this Treg-mediated immune regulation (Takeda et al., 2004).
They showed that when OX40L-Tg mice on a RAG-2 KO background
were used as recipients, the cotransfer of nTreg cells could not prevent the
disease. This result suggests that OX40 signals can overcome the immune
regulation by nTreg cells in vivo as well as in vitro.

As mentioned above, an interesting role of the OX40–OX40L interac-
tion in the relationship between Treg cells andmast cells was reported. Gri
et al. demonstrated that Treg cells suppress the degranulation of mast cells
through the OX40–OX40L interaction in vivo and in vitro. Using an experi-
mental system for inducing FcERI-mediated acute-systemic-anaphylaxis
in mice, which is dependent on mast cells, they compared histamine
release among wild-type mice, Treg-depleted mice, and OX40-KO mice.
Both Treg depletion and OX40 deficiency caused a similar, significant
increase in circulating histamine, compared with its level in wild-type
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mice, suggesting that Treg cells suppress the allergic reaction through an
interaction between their OX40 and the OX40L expressed by mast cells
(Gri et al., 2008). The same group further demonstrated that, conversely,
OX40L-expressing mast cells inhibited the Treg suppressive function, and
that activated mast cells directly induced Treg proliferation and IL-17
production in an OX40–OX40L interaction-dependent manner (Piconese
et al., 2009). Thus, in addition to APCs, mast cells may play important roles
in the OX40-mediated regulation of Treg cells.
3.3. Role of OX40 in tumor immunity controlled by Treg cells

This potent stimulatory effect byOX40onnot onlynaı̈veT cells but alsoTreg
cells can enhance the immune response to tumors. In themicroenvironment
of tumors, the frequency of Foxp3þCD25þCD4þ Treg cells is usually
increased (Curiel et al., 2004; Liyanage et al., 2002; Wolf et al., 2003; Woo
et al., 2001), and Treg cells often accumulate within the tumor mass. These
Treg cells include nTreg cells and a group of cells called adaptive Treg or
inducible Treg cells (iTreg cells). iTreg cells are induced from naı̈ve T cells
both in vivo and in vitro by exposure to TGF-b and relatively weak TcR
stimulation (Apostolou and von Boehmer, 2004; Chen et al., 2003; Cobbold
et al., 2004; Kretschmer et al., 2005). Both Treg cell types hamper the devel-
opment of effective tumor immunity (Ghiringhelli et al., 2005; Liu et al., 2007;
Valzasina et al., 2006; Zhou and Levitsky, 2007). Recent evidence suggests
that OX40may alter the Treg-cell-dominant environment to induce success-
ful tumor immunity. One paper showed that the engagement of OX40 on
both Treg cells and effector T cells was prerequisite for the successful
eradication of a tumor, and that the generation of iTreg cells was blocked
by the intratumoral injection of an agonistic anti-OX40mAb (Piconese et al.,
2008). Another paper demonstrated that cyclophosphamide treatment
along with the use of an agonistic OX40 Ab induced effective tumor immu-
nity against B16 melanoma (Hirschhorn-Cymerman et al., 2009). In this
setting, theOX40Abmight induce the expansion of Treg cells in the periph-
ery, and the apoptosis of Treg cells in the tumor.

This pathway for controlling the conversion of naı̈ve T cells into iTreg
cells can explain the effective induction of robust immunity byOX40 stimu-
lation and further indicates the usefulness of OX40 as a molecular target,
particularly for tumor immune therapy. As mentioned above, the tumor
environment effectively induces iTreg conversion. Piconese et al. (2008)
demonstrated that the administration of an agonistic anti-OX40 Ab to
tumor-bearing mice prevented the accumulation of iTreg cells in the
tumor tissue in wild-type but not OX40-KO mice. Considering the results
byXiao et al., it is possible that theOX40 signaling created amilieu abundant
in IFN-g inwhich iTreg cellswerepoorly induced, resulting in the activation
of effector T cells and the subsequent eradication of the tumor.
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3.4. Effects of OX40 on the development of adaptively
induced Treg cells

During T-cell responses, naı̈ve T cells can differentiate into several dis-
tinct effector lineages, such as Th1 and Th2 cells, by expressing the
specific transcription factors, T-bet and GATA3, respectively, and they
can become iTreg cells if Foxp3 expression is induced in them by TGF-b
and weak TcR stimulation as described above. iTreg cells are generally
similar to nTreg cells (Curotto de Lafaille and Lafaille, 2009). For example,
they have common phenotypes with respect to their surface molecules,
for example, CD25þ, CTLA-4þ, GITRh, OX40hi, etc. They cannot produce
IL-2, and they proliferate poorly in response to Ag stimulation in vitro
(Chen et al., 2003). They also have immunosuppressive effects in both
in vitro and in vivo experimental systems, including IBD mice (Fantini
et al., 2006), experimental allergy to house dust mite Ag (Chen et al., 2003),
and a type I diabetes model (Belghith et al., 2003; Luo et al., 2007).

Several groups have reported that the induction of iTreg cells is affected
by costimulatory molecules, including OX40, in vitro (Benson et al., 2007;
So and Croft, 2007; Vu et al., 2007; Wang et al., 2008). The addition of an
agonistic anti-OX40 Ab to an iTreg differentiation culture inhibits the
expression of Foxp3 in the activated T cells, while the deliberate blockade
of OX40 signals facilitates their differentiation (So andCroft, 2007; Vu et al.,
2007). Although the molecular mechanisms accounting for OX40’s inhibi-
tory effects remain to be clarified, the AKT-mTOR axis was reported to
inhibit the production of iTreg cells from naı̈ve T cells (Haxhinasto et al.,
2008), indicating that the activation of AKT by OX40 signaling might
disturb the differentiation of iTreg cells (Song et al., 2004). These costimu-
latory signals could eventually interfere with the transcriptional networks
ofNF-AT, Smad2/3, and STAT3,which are known to be essential for the de
novo transcription of Foxp3 (Josefowicz and Rudensky, 2009).

The inhibitory effect of OX40 on the induction of iTreg cells was also
confirmed in in vivo systems. Using a model of respiratory tolerance in
which an Ag was given intranasally and the differentiation of iTreg cells
was induced from naı̈ve T cells, Duan et al. (2008) demonstrated that the
coadministration of LPS hampered the induction of tolerance. Their
detailed dissection of the mechanisms revealed that the expression of
OX40L by DCs stimulated with LPS was required to suppress the devel-
opment of the iTreg cells. In contrast, the administration of an anti-OX40L
blocking Ab or the use of OX40-KO naı̈ve T cells resulted in an enhanced
number of iTreg cells after Ag administration (So and Croft, 2007; Vu et al.,
2007). An interesting indirect role of OX40 in inhibiting iTreg generation
was also reported by Xiao et al. (2008). As mentioned above, OX40 reg-
ulates effector and memory T-cell formation. Xiao et al. demonstrated that
IFN-g derived from such effector or memory T cells could impede iTreg
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differentiation. In contrast, Ruby et al. (2009) recently reported that OX40
stimulation could not suppress iTreg differentiation, but rather promoted
iTreg expansion if IL-4 and IFN-g were absent from the milieu.
3.5. Perspectives

As discussed above, substantial evidence suggests that OX40 can modu-
late various aspects of Treg cells: the homeostasis of nTreg cells, the
effector function of nTreg cells, and the generation of iTreg cells
(Fig. 3.2). In contrast to the apparent roles of OX40 in controlling nTreg
function, its role in iTreg differentiation is still controversial, because of the
complexity of the direct and indirect effects of OX40 on both iTreg and
effector T cells. Nevertheless, by counteracting Treg-cell-mediated
immune suppression, OX40 can provoke extremely efficient immune reac-
tions, in addition to its well-known immunostimulatory effects on effector
T cells. Therefore, OX40 is an attractive and promising molecular target
for controlling immune responses. Further understanding of OX40’s func-
tions may lead to the development of effective clinical therapies.
4. OX40–OX40L INTERACTION IN THE GENERATION AND
HOMEOSTASIS OF MEMORY T CELLS

The T-cell response to any acute antigenic stimulation has three distinct
phases: expansion, contraction, and memory generation. Upon Ag stimu-
lation, Ag-specific naı̈ve T cells, which exist at a very low frequency,
proliferate and differentiate into a large population of heterogeneous
effector T cells (Blattman et al., 2002; Moon et al., 2007; Obar et al., 2008;
Obst et al., 2005). After Ag removal, most of the Ag-specific T cells become
senescent, terminally differentiated T cells that die by apoptosis, to pre-
vent the potential risk for immunopathology, but a subset of effector
T cells, which later differentiate into memory T cells, survives to confer
protective immunity on the host (Ahmed and Gray, 1996; Dutton et al.,
1998). Although CD4 and CD8 T cells share common differentiation pro-
grams in response to acute Ag stimulation for their expansion, contraction,
and differentiation into memory T cells, the efficiency and longevity of the
memory T cells they generate are different (Seder and Ahmed, 2003).
During acute viral infection, the magnitude of the expansion and conse-
quent generation of memory T cells is much greater for the CD8 than the
CD4 T cells (Homann et al., 2001). Although it has been suggested that the
initial CD8 T-cell responses and establishment of CD8 memory T cells
are less dependent on costimulatory signals than the CD4 T-cell responses
(Whitmire and Ahmed, 2001), recent studies clearly demonstrated that
several members of the TNF receptor superfamily can costimulate CD8
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T cells as well as CD4 T cells to generate memory T-cells. Among them,
CD27, OX40 (CD134), and 4-1BB (CD137) can greatly impact the genera-
tion of memory CD4 and CD8 T cells by promoting the survival of effector
T cells (Borst et al., 2005; Croft, 2003; Sabbagh et al., 2007; Salek-Ardakani
and Croft, 2006). This part of the review focuses on the functional roles of
the OX40 on T cells in the development, maintenance, and function of
memory CD4 and CD8 T cells.
4.1. Role of OX40 in the generation and reactivation of
memory CD4 T cells

OX40 promotes the expansion and survival of effector T cells. Since the
surviving effector T cells are thought to become memory T cells, a larger
pool of expanded effector T cells may directly lead to a larger pool of
memory T cells. In fact, the CD44hiCD62Llo effector memory population
of polyclonal CD4 T cells in OX40L-KO mice is significantly smaller than
that in wild-type mice (Murata et al., 2002; Soroosh et al., 2007). In contrast,
OX40L-Tg mice in which constitutive OX40 signals are provided to
OX40þ effector T cells demonstrated a marked increase in effector mem-
ory CD4 T cells (Murata et al., 2002). Similar to this result, the frequency of
CD44hiCD62Llo effector memory CD4 T cells was markedly increased
when Ag-naı̈ve mice were treated with an agonistic anti-OX40 mAb for
long time (Soroosh and Ishii, unpublished observations). Interestingly,
the CD44hiCD62Llo effector memory population of polyclonal CD8 T cells
in OX40L-Tg mice or mice treated with an agonistic anti-OX40 mAb is
comparable to that in wild-type mice (Murata et al., 2002; Ishii, unpub-
lished observations). In a polyclonal T-cell system, OX40 promoted the
generation of CD4 memory T cells preferentially over CD8 memory
T cells, probably because the OX40 expression on CD8 T cells is much
more transient than that on CD4 T cells (Croft et al., 2009). Additional
in vitro and in vivo studies using naı̈ve TcR Tg CD4 T cells demonstrated
that upon Ag stimulation, OX40-KO CD4 T cells divide normally and
accumulate in the early priming phase. However, the OX40-deficient CD4
T cells are unable to maintain high levels of antiapoptotic molecules such
as Bcl-2, Bcl-xL, and survivin (Rogers et al., 2001; Song et al., 2004, 2005),
and consequently, the majority of them do not survive for long (Song et al.,
2004, 2005; Soroosh et al., 2007). Collectively, these findings indicate that
OX40 signals promote the survival of effector CD4 T cells, leading to the
optimal generation of memory CD4 T cells.

Similar to the activation-induced OX40 expression on naı̈ve T cells,
OX40 is transiently expressed by memory T cells upon their restimulation
with Ag, although the resting memory T cells do not express OX40
(Soroosh et al., 2007). Therefore, the role of OX40 in the reactivation of
memory T cells has also been examined. One group demonstrated in a
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murine model of asthma that treatment with a blocking anti-OX40L mAb
at the time of Ag rechallenge completely suppressed memory T-cell
expansion and lung inflammation (Salek-Ardakani et al., 2003). Since
lung inflammation is considered to be mediated by the effector function
of reactivated Ag-sensitizedmemory CD4 T cells, this result indicates that
the blockade of OX40 signals at rechallenge is suppressive for the reacti-
vation of memory CD4 T cells. However, the mechanism for the OX40-
mediated reactivation of memory CD4 T cells, including whether or not it
was directly induced by signaling through OX40 expressed on the reacti-
vated memory CD4 T cells, was unclear.

In addressing this question, our recent study led us to propose a new
scenario for the role of OX40 in the reactivation of memory T cells by Ag
rechallenge. In an asthma model, the adoptive transfer of memory CD4 T
cells from Ag-sensitized mice, but not naı̈ve CD4 T cells, efficiently
induced Ag-specific airway inflammation in the recipient mice upon Ag
inhalation. Thus, this model is dependent on the Ag-specific reactivation
of memory CD4 T cells. However, if the recipient mice lacked OX40 or
NKT cells, Ag-inhalation failed to provoke the lung inflammation
(Damayanti et al., 2009). To investigate the effect of OX40 on NKT cells
in the challenge phase, Ag-sensitized NKT-deficient mice that had
received memory CD4 T cells were reconstituted with naive NKT cells
before Ag inhalation. The reconstitution of the NKT-deficient mice with
naı̈ve NKT cells from wild-type mice completely restored the airway
inflammation upon Ag challenge. By contrast, the transfer of NKT cells
from OX40-KO mice did not restore the allergic airway response. Thus,
OX40 expression by naı̈ve NKT cells is required for the airway inflamma-
tion that is mediated by reactivated Ag-specific memory CD4 T cells.
In addition, OX40 expression on NKT cells and OX40L expression on
MHC class IIþ cells were found in the lung tissues when Ag was inhaled,
suggesting a possible role of the OX40–OX40L system during NKT-cell–
APCs interactions. Although this study did not address the role of OX40
on memory CD4 T cells in inducing lung inflammation, it showed that
reactivation of the Ag-sensitized memory CD4 T cells requires the help of
NKT cells that receive OX40 signals.
4.2. Differential requirement for OX40 in the generation of
heterogeneous CD4 memory T cells

To understand how memory T cells develop, the lineage relationship
among naı̈ve T cells, effector T cells, and memory T cells still needs to
be clarified. Although some studies support a linear model of memory
T-cell differentiation, in which memory cells are derived directly from
homogeneous effector cells, other data suggest that memory T cells are
heterogeneous and generated by alternate pathways (Ahmed et al., 2009;
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Surh and Sprent, 2008). Recent studies have shown that, similar to CD8þ

memory T cells, CD4þ memory T cells are heterogeneous and can be
categorized into at least two subsets, effector memory (Tem) and central
memory (Tcm) T cells, based on their phenotype, function, and anatomic
distribution (Ahmadzadeh et al., 2001; Masopust et al., 2001; Reinhardt
et al., 2001; Sallusto et al., 1999). Tem (CD44hiCD62LloCCR7 ) cells reside
in both lymphoid and nonlymphoid tissues, where they initiate protection
immediately by producing high levels of effector cytokines at the site of the
Ag encounter, although they have little proliferative activity. Therefore,
Tem cellsmay alsomediate organ-specific autoimmune and inflammatory
responses. In contrast, Tcm cells (CD44hiCD62LhiCCR7þ), which lack full
effector function, mainly localize to the secondary lymphoid tissues,
where they mediate long-lasting protection through self-renewing cell
expansion, and thus play important roles in protection from systemic
infection (Ahmed et al., 2009).

The development of TCR-specific MHC class I/peptide-tetramers has
been a powerful tool for detecting and quantifying endogenous memory
CD8 T cells, and their use has provided considerable information on the
generation of the two subsets of memory CD8 T cells. However, because
MHC class II/peptide-tetramer reagents are not widely available, it is still
unclear how and when CD4memory T cells are generated. In this context,
understanding the mechanisms for the generation andmaintenance of the
two different subsets of memory CD4 T cells is critical, not only for our
basic knowledge about memory T-cell biology but also for clinical appli-
cations, such as designing novel vaccines and new therapeutics against
infections and autoimmune diseases.

Our recent studies using the adoptive transfer of OVA-specific TcR Tg
OX40-KO T cells following in vivo stimulation with cognate Ag demon-
strated that the absence of OX40 selectively reduces the generation of CD4
Tem cells but not Tcm cells in both lymphoid and nonlymphoid tissues.
Furthermore, when Ag-primed TcR Tg cells that were generated during a
5-day in vitro culture in the presence of a blocking anti-OX40L mAb were
transferred into untreated naive wild-type mice, the generation of the
Tem-cell population was prevented, whereas the Tcm cells developed
normally. Therefore, one of the major roles of OX40 signaling may be to
imprint signals for persistent survival on the Tem precursors, for the
optimal development of Tem cells (Soroosh et al., 2007). This scenario of
OX40-mediated imprinting is discussed in the section below on CD8
memory T cells.

The significant effect of OX40 signals during priming suggests that
effective OX40 signals may be provided before or during the Tem/Tcm
commitment, and that they preferentially induce the generation of Tem
cells. This raises the question of whether OX40 might contribute to the
Tem/Tcm commitment of effector CD4 T cells. To explain the process by
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which the two subsets of memory T cells develop, at least three different
models have been proposed (Ahmed et al., 2009). In the linear differentia-
tion model, naı̈ve T cells first differentiate into Tem cells, which then give
rise to Tcm cells. In the bifurcative model, following Ag recognition, one
T cell can give rise to two daughter cells; the distal daughter cell, which
leaves the APCs earlier, gives rise to Tcm cells, and the proximal daughter
cell, which remains attached to the APCs longer, gives rise to Tem cells.
In the third model, the self-renewing effector model, a naı̈ve T cell can
develop into a Tcm cell that can home to lymphoid tissues, where the Tcm
cells give rise to Tem cells that can migrate to sites of inflammation
(Ahmed et al., 2009).

According to the first model (linear differentiation model), an increase
in the Tem population should lead to an increase in the Tcm population;
therefore, the OX40-mediated selective increase in the Tem population
seems incompatible with this scenario. Among the three proposed
models, the bifurcative differentiation model appears to best fit the pref-
erential Tem generation by OX40. In this model, the asymmetrical divi-
sion of a naı̈ve T cell during T cell–APC contact yields Tem and Tcm
progeny at the same time (Chang et al., 2007). Thus, it is possible that the
less-differentiated Tcm precursors that originate from the distal daughter
cells never interact with the OX40L on the APCs, because OX40L is not
expressed by APCs immediately after the T-cell–APC interaction starts.
After Ag removal, the Tcm cells further undergo self-renewal prolifera-
tion; this process is highly dependent on homeostatic cytokines, which
robustly promote the generation of Tcm cells, whether or not the Tcm
precursor cells receive OX40 signals. In contrast, Tem precursor cells that
were derived from the proximal daughter cell, which remained attached
to the APC when the APC started to express OX40L, might proliferate in
an OX40-dependent manner. If this scenario is true, the OX40–OX40L
interaction might promote the survival of Tem precursor cells, but not
contribute to the Tem/Tcm commitment.

Recently, the frequency of Tcm precursors generated during priming
was shown to be closely correlated with the initial numbers of naı̈ve
T cells (Sarkar et al., 2007). Therefore, when using the adoptive transfer
of naı̈ve T cells to examine the generation of memory T cells, the number
of naı̈ve CD4 T cells transferred might affect the result. Indeed, we found
that if a larger number (>107) of naı̈ve CD4 TcR Tg T cells were trans-
ferred, the immunization with a specific Ag induced a sizable
Tcm cell pool (Ishii and Soroosh, unpublished observations). In contrast,
when naı̈ve TcR Tg CD4 T cells were transferred at physiologically
appropriate numbers (’104), they mainly developed into CD44hiCD62Llo

Tem phenotypic cells, rather than CD44hiCD62Lhi Tcm cells, following Ag
immunization, and they maintained the CD44hiCD62Llo phenotype
throughout the memory phase. Nevertheless, in both cases, the frequency
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of Ag-specific CD62Llo cells (phenotypical Tem cells) was severely
reduced by the absence of OX40 signals (Ishii and Soroosh, unpublished
observation). In these contexts, in spite of the important effect of the initial
number of naı̈ve T cells on the differential generation of CD4þ Tem and
Tcm cells, OX40 is a strong modulator for increasing the frequency Tem
cells, probably through the expansion and survival of Tem precursors
beyond the contraction phase.
4.3. OX40 potentiates the generation and maintenance
of memory CD8 T cells

Reports on murine models of viral infection have suggested that OX40 is
dispensable for CD8 T-cell responses, in terms of the expansion of effector
T cells, the generation of cytotoxic T cells, and viral clearance (Dawicki
et al., 2004; Hendriks et al., 2005; Kopf et al., 1999; Pippig et al., 1999).
However, in noninfectious models, such as contact hypersensitivity and
allogeneic responses, the CD8 T-cell responses are reportedly impaired
when the OX40 signals were absent (Chen et al., 1999; Murata et al., 2000;
Sato et al., 2002). OX40 was also shown to directly control primary and
secondary CD8 T-cell responses to Ag when adjuvant was used, or when
the Ag was expressed by tumor cells (Bansal-Pakala et al., 2004; Song et al.,
2005). Under more physiological conditions using acute viral infection,
several studies reported that a lack of OX40 signals diminishes the forma-
tion of viral Ag-specific memory CD8 T cells (Hendriks et al., 2005;
Humphreys et al., 2007; Salek-Ardakani et al., 2008). Hendriks et al. demon-
strated, using an influenza virus infection model, that the absence of OX40
signals diminished the formation of viral Ag-specific memory CD8 T cells
in both lymphoid and nonlymphoid tissues without affecting the primary
expansion of CD8 T cells (Hendriks et al., 2005). However, in a murine
model of vaccinia virus infection, OX40 critically promoted the early
expansion and subsequently impacted the generation of virus-specific
memory CD8 T cells (Salek-Ardakani et al., 2008). Thus, the mechanism
bywhichOX40 contributes to the early expansion of CD8T cells appears to
be different depending on the experimental models used.

Interestingly, Humphreys et al. demonstrated that, among several
epitopes of murine cytomegalovirus (MCMV), including M45, M57,
m139, and M38, the expansion of CD8 T cells specific for M45, M57, or
m139 was not affected by the absence of OX40, whereas the primary
accumulation of M38-specific CD8 T cells was significantly impaired by
the OX40 deficiency, in mice infected with MCMV (Humphreys et al.,
2007). Since these CD8 T-cell repertoires were activated to similar extents
under the same conditions, the impact of OX40 might vary depending
on each repertoire, which has an intrinsic affinity for the Ag/MHC
complex. Thus, the strength of the TcR signals in each T cell might affect
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its requirement for OX40 signals for its early proliferation. This notion
may be supported by in vitro studies, in which T cells were activated with
a different strength of Ag stimulation. For example, when T cells derived
from TcR-Tg mice were stimulated with an Ag-peptide that had a high
affinity for TcR (i.e., causing strong TcR signals), OX40 signals were not
essential for the early proliferation and expansion of Ag-specific T cells
in vitro (Rogers et al., 2001; Song et al., 2004, 2005; Soroosh et al., 2006,
2007). In contrast, when the T cells were suboptimally activated with Ag
(when polyclonal T cells were stimulated with anti-CD3 mAb or when
TcR Tg T cells were stimulated with an Ag-peptide that had a low affinity
for TcR), OX40 deficiency markedly suppressed the early proliferation
and expansion of T cells (Murata et al., 2000; Pippig et al., 1999; Soroosh
and Ishii, unpublished data). In this context, it is possible that strong TcR
signals compensate for the lack of OX40 signals in the early proliferative
response by T cells. Nevertheless, OX40 signals are essential for the
survival of effector CD8 T cells, which leads to the optimal generation of
CD8 memory T cells.

When using OX40 or OX40L-deficient mice are used to examine mem-
ory CD8 T cells, the CD4 T cells in these mice never receive OX40 signals
either. Therefore, whether the effect of OX40 on memory generation and
secondary responsiveness impacts CD8 T cells directly or affects them
indirectly through CD4 T cells was an important question. To dissect the
precise and exclusive role of OX40 in the development and maintenance
of memory CD8 T cells, we performed several types of adoptive transfer
experiments with OVA-specific TcR-Tg CD8 T cells following immuniza-
tion with recombinant Listeria monocytogenes expressing OVA (rLM-OVA)
as an acute bacterial infection.

First, to examine the direct effect of OX40 expressed on CD8 T cells,
wild-type recipient mice transferred with OX40-deficient TcR Tg naive
CD8 T cells were infected with rLM-OVA. The results showed that OX40
had only a minimal role in the early accumulation and effector function of
Ag-specific CD8 T cells, confirming the redundant role of OX40 signaling
during the effector phase, as previously shown. However, the absence of
OX40 receptor on donor CD8 T cells in wild-type recipients, which
expressed OX40 at normal levels on their other immune cells, severely
reduced the number of memory CD8 T cells derived from the donor cells.
This indicated that the OX40 expressed on CD8 T cells plays a critical role
in the development of memory CD8 T cells (Mousavi et al., 2008). This
conclusion is supported by another study in a model of vaccinia virus
infection (Salek-Ardakani et al., 2008).

With regard to the precursor cells for memory CD8 T cells, Kaech’s
group demonstrated that the expression profiles of the IL-7 receptor a
chain (IL-7R) and killer cell lectin-like receptor G1 (KLRG1) are useful for
distinguishing between short-lived effector T cells (SLECs; IL-7Rlo
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KLRG1hi) and the memory precursor effector T cells (MPECs; IL-7Rhi

KLRG1lo) ( Joshi et al., 2007). Using these markers in the above bacterial
infection model, we found that the targeted expression of OX40 in Ag-
specific CD8 T cells significantly decreased the frequency of IL7RhiKLR-
G1lo MPECs during the effector phase, which was followed by a reduction
in memory T cells. Furthermore, when MPECs derived from OX40-defi-
cient effector cells generated in a wild-type recipient were transferred into
a second host, the OX40-KO MPECs could neither survive nor differenti-
ate into memory T cells, although MPECs from wild-type donor cells
could (Mousavi et al., 2008). These results, similar to the OX40-mediated
survival of effector CD4 T cells, indicated that signals through the OX40
expressed by CD8 T cells play an important role in the survival of effector
CD8 T cells including MPECs, leading to the optimal generation of mem-
ory CD8 T cells.

One of the most important characteristics of memory CD8 T cells is
that they persist for a long time. Recent observations have demonstrated
that an Ag-independent self-renewal process called basal homeostatic
proliferation, which is considered to be mainly driven by IL-7 and IL-15,
contributes to the longevity of memory T cells (Becker et al., 2002;
Goldrath et al., 2002). In an adoptive transfer experiment, OVA-specific
memory CD8 T cells that had been generated in the absence of OX40
signals were unable to self-renew in a second host in spite of the normal
expression levels of the IL-7R, IL-2/15 receptor b chain, and gc chain on
these memory T cells (Mousavi et al., 2008). In other words, the blockade
of the OX40 signals during priming only (by treatment with a blocking
anti-OX40L mAb for 7 days after infection) was sufficient to suppress the
future self-renewal ability of memory CD8 T cells (Mousavi et al., 2008).
Thus, the self-renewal program of memory CD8 T cells appears to be
imprinted by OX40 signals onto the KLRG-1lo memory precursors during
priming. As mentioned above, the blockade of the OX40 signals in effector
CD4 T cells during priming was also sufficient to suppress the generation
of CD4 Tem cells (Soroosh et al., 2007). Similarly, Borst’s group observed
that when Ag-specific memory CD8 T cells generated in the absence
of OX40 signals during a primary infection with influenza virus were
transferred into a wild-type host, the memory cells could not expand
secondarily in response to infection in the host (Hendriks et al., 2005).
Thus, in a different infection model, the OX40–OX40L interaction may
program CD8 T cells during priming for their future capacity to respond
secondarily as memory CD8 T cells (Fig. 3.3). Since memory CD8 T cells
that developed in the absence of OX40 signals exhibit cell-cycle arrest
during basal homeostatic proliferation, which is mainly dependent
on IL-7 and IL-15, it is possible that OX40 endows memory precursor
cells with their constitutive responsiveness to these gc cytokines through
an epigenetic change. Future analyses using genomic profiling in memory
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FIGURE 3.3 Hypothetic role of OX40 on the generation of memory CD8 T cells.

When Ag-specific memory CD8 T cells generated in the absence of OX40 signals during a

primary infection were transferred into wild-type host, the memory cells could not

expand secondarily in response to infection in the host (Hendriks et al., 2005) and failed

to self-renew (Mousavi et al., 2008). Therefore, the OX40–OX40L interaction may

program activated CD8 T cells (probably KLRG1lo MPECs) during priming for their future

capacity as memory CD8 T cells. Since OX40-mediated immediate signals, such as

transient NFkB activation, cannot explain these phenomena, OX40 stimulation during

priming might induce an epigenetic change that destines memory T cells to functionally

survive for a long time.

OX40 OX40 Ligand Interaction in T Cell Mediated Immunity and Immunopathology 85
precursor cells generated in the presence and absence of OX40 signals
should provide important insight, which could further our understand-
ing of the molecular mechanisms of memory T-cell generation.
5. THE OX40 AND OX40L INTERACTION IN DISEASE

Associations between the OX40–OX40L interaction and disease have been
intensely studied using several animal models. The first evidence that
OX40 might be involved in the development of an immune-associated
disease was obtained in a rat model of experimental autoimmune enceph-
alomyelitis (EAE) (Weinberg et al., 1994). Autoantigen-specific CD4 T cells
isolated from the site of inflammation expressed high levels of OX40
(Weinberg et al., 1994), whereas T cells isolated from the peripheral
blood and spleen of the same animal expressed low levels of OX40.
The same group also provided the first evidence that OX40 could be a
therapeutic target for the autoimmune disease in the EAEmodel, in which
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the depletion of OX40þ T cells effectively suppressed the disease symp-
toms (Weinberg et al., 1996). Since these reports, several studies have
suggested that the OX40–OX40L interaction is involved in the develop-
ment of EAE, IBD, graft versus host disease (GVHD), contact hypersensi-
tivity, asthmatic airway hyperreaction, autoimmune diabetes, and
atherosclerosis in mice, and rheumatoid arthritis, multiple sclerosis,
Crohn’s disease, ulcerative colitis, GVHD, and polymyositis in humans
(Croft et al., 2009; Sugamura et al., 2004).

As discussed above, at least two mechanisms involving the
OX40–OX40L system may mediate the development of the above dis-
eases. One is the OX40-mediated break in T-cell tolerance caused by
inhibiting Treg-cell function. Another is the sustained inflammatory
response caused by the unwanted survival of effector T cells whose
persistence is caused by OX40 signals. Therefore, the deliberate blockade
of the OX40–OX40L interaction by using a blocking anti-OX40L mAb or
OX40:immunoglobulin (OX40:Ig) could be a promising therapy for these
diseases. Previous review articles have described well the possible thera-
peutic effect of targeting OX40L in each of these diseases (Croft et al., 2009;
Sugamura et al., 2004), and therefore in this section we will discuss the
general advantages of immunotherapy targeting OX40L, and the recent
identification of polymorphisms in the OX40 and OX40L genes related to
human autoimmune and inflammatory diseases.
5.1. Advantages of immunotherapy targeting OX40

Conventional immunotherapies using immunosuppressants, such as
cyclosporine, tacrolimus, and methotrexate for autoimmune inflamma-
tory diseases and organ transplantation are aimed at pathogenic T cells.
However, these therapies suppress not only the functions of the T cells
responsible for disease but also all the functions of the other T cells in the
host. Therefore, the induced immunosuppressive state in the patient often
results in the development of intractable infections, and sometimes leads
to the lethal consequences of severe infections and cancer. Although
second-generation immunotherapies targeting inflammatory cytokines,
such as TNFa and IL-6, that are responsible for disease pathogenesis
have been developed, the complications of pan-immunosuppression
have not yet been resolved. In contrast, the deliberate blockade of the
OX40–OX40L interaction can specifically suppress recently activated
pathogenic T cells, because only activated T cells, and not resting T cells
(naı̈ve T cells and memory T cells), express OX40. Indeed, several studies
in animal models of disease indicate that the blockade of the
OX40–OX40L pathway is effective for tempering autoimmune, allergic,
and inflammatory diseases, and for reducing tissue inflammation even
during viral infection, without global immunosuppression (Croft et al.,
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2009; Sugamura et al., 2004). A study in an influenza model of lung
inflammation provides convincing evidence of the relatively mild immu-
nosuppression by OX40L blockade compared with that from an overall
immunosuppressive regimen. The administration of OX40:Ig, which
binds to OX40L and neutralizes OX40L function, efficiently decreased
lung inflammation by suppressing effector CD4 T cells, without causing
any unwanted effects on either the generation of Abs against the virus or
the cytotoxicity of the killer T cells (Humphreys et al., 2003).

Apart from suppressing effector T cells, the blockade of OX40L could
also be therapeutic for several diseases by suppressing autoimmune
responses and preventing the rejection of transplanted organs. The
in vitro blockade of OX40L efficiently promotes the differentiation and
function of iTreg cells (Vu et al., 2007). Thus, if an artificial increase in Treg
cells might induce Foxp3þ iTreg-mediated T-cell tolerance, an established
autoimmune response would be suppressed by the reinduced tolerance.
Indeed, a recent study in an allo-transplantationmodel demonstrated that
the administration of a blocking anti-OX40L mAb to the host induced
long-term tolerance to an islet allograft (Chen et al., 2008), although the
details of the Treg cells in the host were not examined. Therefore, in
addition to suppressing effector T-cell function, OX40L blockade could
have a favorable effect by enhancing Treg-cell function. Since both the
OX40þ pathogenic effector T cells and iTreg cells are considered to be
Ag-specific, the targeting of OX40L might modulate only the autoantigen-
specific T-cell repertoire, without disrupting the function of the other
T-cell repertoires, resulting in many fewer immunosuppressive side
effects than are seen with the second-generation immunotherapies. Tar-
geting OX40L would thus be a third-generation immunotherapy.
5.2. Genetic evidence for the involvement of the OX40–OX40L
interaction in human disease

Recent gene association studies for human diseases have identified mul-
tiple genetic factors related to autoimmune and inflammatory diseases.
Among them, accumulating evidence has demonstrated that polymorph-
isms of the OX40L and OX40 genes may be risk factors for several
inflammatory diseases, including systemic lupus erythematosus (SLE)
(Chang et al., 2009; Cunninghame Graham et al., 2008; Delgado-Vega
et al., 2009), atherosclerosis (Wang et al., 2005), and age-dependent hyper-
tension (Mashimo et al., 2008).

The first genetic evidence implicating OX40L in human disease was
obtained in a study on atherosclerosis. Atherosclerosis is an inflammatory
disease in which immune mechanisms are involved. Wang et al. first
identified the OX40L gene as a susceptible gene for atherosclerosis
in mice by a conventional positional cloning method (Wang et al., 2005).
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In this study, OX40L-deficient mice were more resistant to diet-induced
atherosclerosis, while OX40L-Tg mice, in which OX40L was ubiquitously
expressed, showed a higher susceptibility to this disease compared to
wild-type mice. Importantly, the same report demonstrated that the less
common allele of a single nucleotide polymorphism (SNP) in the OX40L
gene was significantly more frequent in patients with myocardial infarc-
tion, which is mainly caused by atherosclerosis, than in control indivi-
duals in Swedish populations (Wang et al., 2005). Therefore,
polymorphisms in the OX40L gene also increase the risk of atherosclerosis
in humans. Based on the results from the mouse model, the indentified
polymorphisms might cause an increase in OX40L expression. Since
human umbilical vein endothelial cells can express OX40L in vitro
(Imura et al., 1996; Kunitomi et al., 2000), the OX40L expressed on endo-
thelial cells might interact with inflammatory effector T cells that express
OX40, to induce T cell-mediated inflammatory responses on blood ves-
sels. In support of this possibility, genetic variants in OX40 are associated
with myocardial infarction and essential hypertension in Swedish and
Japanese people, respectively (Mashimo et al., 2008; Ria et al., 2006). The
identified SNPs in the OX40 gene might also affect the OX40–OX40L
interaction in vascular homeostasis. Interestingly, the treatment of low-
density lipoprotein receptor-deficient mice with an anti-OX40L antibody
led to a 50% decrease in the formation of atherosclerotic lesions via
the suppression of Th2-mediated inflammation in diet-induced athero-
sclerosis (van Wanrooij et al., 2007). Therefore, the OX40–OX40L pathway
may be an excellent target for atherosclerosis therapy.

OX40L polymorphisms have also been found in SLE. SLE is a chronic
autoimmune disease characterized by the production of anti-double
stranded DNA (dsDNA) auto-Ab. In patients with SLE in the UK and
USA, a single risk haplotype for SLE, located in the upstream region of the
OX40L gene, was demonstrated (Cunninghame Graham et al., 2008).
Furthermore, the association of OX40L haplotypes with SLE was
observed in people from Germany, Italy, Argentina, and China in two
recent studies (Chang et al., 2009; Delgado-Vega et al., 2009). The same
SNP is correlated with an increased expression of both cell-surface OX40L
and the OX40L transcript (Cunninghame Graham et al., 2008). The
increased expression of OX40L may predispose an individual to SLE
either by quantitatively augmenting the T-cell–APC interaction or by
influencing the functional consequences of T-cell activation via OX40.
Although OX40 plays a dominant role in T-cell function, rather than in
B-cell function, T-cell-derived cytokines may direct B cells to produce
abnormal Ab levels. This notion is supported by the observation that
OX40L-Tg mice have a high level of serum autoAb against dsDNA
accompanied by an aberrant increase in Th2 responses (Ishii et al., 2003;
Murata et al., 2002). The interruption of OX40L binding in OX40L-Tg mice
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by using an anti-OX40L mAb successfully rescued the pathogenic Th2
response (Ishii et al., 2003). This finding suggests that a therapeutic strat-
egy for SLE that targets OX40L may be very beneficial.

These findings support the notion that ectopic or increased OX40L
expression, which may induce an adverse OX40 signal, might cause
inflammatory and autoimmune diseases in humans, and shed light on
the possibility of clinical interventions targeting the OX40–OX40L system.
6. SUMMARY AND FUTURE PERSPECTIVES

The OX40–OX40L interaction promotes effector T-cell survival and effec-
tively induces memory T-cell generation in a unique way. On the other
hand, excess OX40 signaling inhibits the suppressive function and differ-
entiation of Treg cells, leading to a break in T-cell tolerance. Both the
enhanced effector T-cell function and the breaking of T-cell tolerance are
implicated in the development of inflammatory and allergic diseases.
Indeed, recent evidence from genetic studies implicates OX40L in
human cardiovascular disease and SLE. An anti-OX40L blocking mAb
and OX40:Ig, both of which can neutralize OX40L function, are powerful
immune modulators and promising therapeutic molecules for these dis-
eases. One emerging theme of this therapeutic approach is that patho-
genic effector T cell responses and regulatory T cells are simultaneously
influenced by the effects of OX40, the effector T cells by its costimulatory
effects, and the regulatory T cells by its coinhibitory effects. Thus, choos-
ing the optimal timing for blocking OX40L could improve the treatment
strategy, in which a primary blockade of OX40L might suppress ongoing
inflammation, and a secondary treatment might reinduce Ag-specific
tolerance with minimal side effects due to immunosuppression. We
hope that this attractive therapeutic approach targeting OX40L will be
developed in the near future, accompanied by a more detailed under-
standing of the OX40–OX40L system.
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Abstract Regulatory T cells (Treg cells) play critical roles in the induction of
peripheral tolerance to self- and foreign antigens. Naturally occur-

ring CD4þCD25þ Treg cells, which characteristically express the

transcription factor forkhead box protein P3 (Foxp3), have

been studied intensively because their deficiency abrogates self-

tolerance and causes autoimmune disease. However, several lines

of evidence suggest that additional important mechanisms other

than the Foxp3 system are required to enforce immunological self-

tolerance in the periphery. Interleukin-10 (IL-10) is a regulatory

cytokine that plays a central role in controlling inflammatory

processes, and IL-10-secreting T cells may constitute an additional

mechanism that are responsible for peripheral tolerance. Type-1

T regulatory (Tr1) cells, CD46-stimulated IL-10-secreting T cells, and

IL-10-secreting T cells induced by vitamin D3 (VitD3) and dexameth-

asone (Dex) are induced populations with significant regulatory

activities. However, assessing the detailed physiological function

of these cells is difficult, because of the lack of specific markers

that can reliably differentiate the population of IL-10-secreting Treg

cells from other T cells. Recently, CD4þCD25�LAPþ T cells,

CD4þNKG2Dþ T cells, CD4þIL-7R� T cells, and CD4þCD25�LAG3þ

T cells have been reported as naturally present IL-10-secreting Treg

cells. Although the relationship between these induced and natu-

rally present IL-10-secreting Treg cells is unclear, elucidation of their

respective roles in modulating immune responses is crucial to

understand T cell-mediated tolerance. Furthermore, the identifica-

tion of specific markers and molecular signatures will enable the

purification or induction of IL-10-secreting Treg cells for the treat-

ment of patients having inflammatory diseases.
1. INTRODUCTION: THE ROLE OF IL-10 IN CONTROLLING
INFLAMMATION

Interleukin-10 (IL-10) was first reported as a soluble factor, cytokine
synthesis inhibitory factor (CSIF), produced by murine Th2 cells capable
of inhibiting activation and cytokine production in Th1 cells (Moore et al.,
1990). Human IL-10 was cloned from a T cell line derived from a severe
combined immunodeficient patient who had developed long-term toler-
ance to a stem-cell allograft (Vieira et al., 1991). A number of subsequent
reports revealed that IL-10 is a suppressive cytokine that plays a central
role in controlling inflammatory processes. Human IL-10 suppresses the
expression of MHC class II, costimulatory and adhesion molecules
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(de Waal Malefyt et al., 1991; Willems et al., 1994). IL-10 also inhibits the
production of inflammatory cytokines and the T cell-stimulating capacity
of antigen-presenting cells (APCs) (Allavena et al., 1998; Fiorentino et al.,
1991a). Moreover, IL-10 regulates T cells by inhibiting their ability to
produce cytokines (de Waal Malefyt et al., 1993) and to proliferate (Taga
et al., 1993). IL-10 is actually produced by many immunological cell types,
including T cells, B cells, mast cells, eosinophils, macrophages, and den-
dritic cells (DCs) (O’Garra et al., 2008).

The impact of the suppressive function of IL-10 was highlighted by
IL-10-deficient (IL-10 / ) mice, which developed severe colitis in associ-
ation with commensal bacteria in the gut (Kuhn et al., 1993; Sellon et al.,
1998). In contrast, transgenic mice expressing IL-10 under the control of
MHC class II promoter were highly susceptible to infections, andwere not
able to mount effective Th1 or Th2 responses (Rouleau et al., 1999). The
colitis in IL-10 / mice was reported to be mediated by Th1 cells
(Davidson et al., 1996). In another murine model of colitis in SCID mice,
cotransfer of pathogenic CD4þCD45RBhigh T cells together with a
CD45RBlow fraction prevented the induction of disease (Powrie, 1995).
However, CD45RBlow cells from IL-10 / mice were just as pathogenic as
CD45RBhigh cells (Powrie and Leach, 1995). This fact implied that T cells
with regulatory activity fail to develop or function in the absence of IL-10
(Rennick et al., 1997).

In 1998, Groux et al. demonstrated that ex vivo activation of human or
murine CD4þ T cells in the presence of high doses of exogenous IL-10
resulted in the generation of T cell clones producing IL-10 and TGF-b
(Groux et al., 1997). These T cell clones inhibited antigen-specific activation
of autologousT cells and colitis development via IL-10, andwere termed as
Type-1 T regulatory (Tr1) cells. Since then, several different populations of
IL-10-secreting regulatory T cells (Treg cells) have been described.

Naturally occurring CD4þCD25þ Treg cells, which characteristically
express the transcription factor forkhead box protein P3 (Foxp3) (Hori
et al., 2003), has been intensively studied because their deficiency abro-
gates self-tolerance and causes autoimmune disease (Sakaguchi and
Powrie, 2007). Mice with a frame-shift mutation of Foxp3, scurfy mice,
have massive lymphoproliferation and severe inflammatory infiltration
of the skin and liver (Brunkow et al., 2001; Godfrey et al., 1991). However,
many organs including the central nervous system, the joints, and the
small intestine remained unaffected in scurfy mice (Chen et al., 2005).
These results suggested the existence of additional important mechan-
isms other than the Foxp3 system to enforce immunological self-tolerance.
IL-10-secreting T cells may constitute such a complementary mechanism.
This chapter describes recent progress in the characterization of IL-10-
secreting CD4þ T cells.
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2. IL-10-PRODUCING T CELLS INDUCED IN VITRO

2.1. Tr1 cells

2.1.1. Biological features of Tr1 cells
Tr1 cells can be induced in vitro upon priming of naı̈ve T cells with an
antigen in thepresenceof IL-10. The cytokineproductionprofile ofTr1 cells
is their key feature (Groux et al., 1997). Upon activation via the T cell
receptor (TCR), Tr1 cells produce large amounts of IL-10, transforming
growth factor (TGF)-b and IL-5, but only small amounts of interferon
(IFN)-g and IL-2, and no IL-4. IL-10 secreted by Tr1 cells was detectable
within 4 h after activation and the highest concentration was reached
12–24 h after stimulation (Bacchetta et al., 1994). Tr1 clones were also
isolated from mice transgenic for a TCR specific for a peptide derived
from ovalbumin (OVA). In contrast to human Tr1 cells, murine Tr1 cells
rarely produce IFN-g. Tr1 cells are thought to regulate immune responses
involving both naı̈ve and memory T cells through the secretion of the
immunosuppressive cytokines IL-10 and TGF-b. The suppressive effects
of Tr1 cells on CD4þ T cellswere blocked by neutralizing anti-IL-10 or anti-
TGF-b antibodies (Bacchetta et al., 1994; Groux et al., 1997; Kitani et al., 2000;
Roncarolo et al., 2006). However, it is still unclear whether TGF-b secretion
should be included as part of the definition of Tr1 cells, because several
reports described an exclusive role for IL-10 (Battaglia et al., 2006a). Batta-
glia et al.proposed that the suppressive effectsmediated by IL-10-secreting
Treg cells should be attributed to Tr1 cells regardless of the production of
TGF-b, IL-5, and IFN-g (Battaglia et al., 2006a).

Tr1 cells proliferate poorly following TCR-mediated or antigen-specific
activation (Bacchetta et al., 1994; Groux et al., 1997). Activation of human
CD4þ T cells in the presence of IL-10 results in a state of functional unre-
sponsiveness without death, termed anergy (Groux et al., 1996; Steinbrink
et al., 1997). The autocrine effect of IL-10 is responsible, at least in part, for
the anergic state, because blocking of IL-10 partially restores proliferation
(Bacchetta et al., 1994; Groux et al., 1997).

An OVA-specific murine Tr1 clone showed suppressive capacity if the
mice were administrated the OVA peptide (Cottrez et al., 2000). This fact
indicated that Tr1 cells must be activated through TCR to exert regulatory
effects. Once activated, they could exhibit bystander suppressive activity
mediated by the local release of IL-10 and TGF-b regardless of their
antigen specificities (Groux, 2003). However, contact-dependent signals,
such as programmed death-1 (PD-1), glucocorticoid-induced TNF recep-
tor (GITR), membrane TGF-b, and cytotoxic T lymphocyte-associated
antigen 4 (CTLA-4), appear to be important in some situations (Akdis
et al., 2004; Meiler et al., 2008). The precise suppressive mechanisms of Tr1
cells still need to be investigated further.
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2.1.2. Mechanisms of suppression
The prominent role for IL-10 appears to be as an immunosuppressive
cytokine with broad anti-inflammatory properties, in particular by its
inhibition of macrophages and DCs functions (O’Garra et al., 2008). IL-10
downregulates the expression of MHC class II and costimulatory mole-
cules such as CD54, CD80, and CD86 (de Waal Malefyt et al., 1991; Ding
et al., 1993; Moore et al., 2001; Willems et al., 1994). Reduced expression of
these molecules significantly affected the T cell-stimulating capacity of
APCs (de Waal Malefyt et al., 1991; Ding and Shevach, 1992; Fiorentino
et al., 1991b). Moreover, IL-10 potently inhibited the secretion of IL-1a,
IL-1b, IL-6, IL-10 itself, IL-12, IL-18, and tumor necrosis factor (TNF)-a by
activated monocytes/macrophages (D’Andrea et al., 1993; Gruber et al.,
1994; Moore et al., 2001). IL-10 also inhibited production of CC (MCP-1,
MCP-5, MIP-1a, MIP-1b, MIP-3a, MIP-3b, and RANTES) and CXC chemo-
kines (IL-8, IP-10, MIP-2) by APCs (Kopydlowski et al., 1999; Moore et al.,
2001; Rossi et al., 1997),which influence T cell differentiation andmigration
(Pestka et al., 2004). These observations collectively suggest that IL-10
induces differentiation of APCs which limit inflammatory responses.

The IL-10 receptor (IL-10R) complex on cells is composed of four trans-
membrane polypeptides (Pestka et al., 2004). Two chains are ligand-binding
IL-10R1 and the other two chains are signal-transducing IL-10R2. While
Janus kinase 1 ( JAK 1) is constitutively bound to IL-10R1, Tyrosin kinase
2 (TYK2) constitutively associates with IL-10R2. Upon activation of the
IL-10 receptor complex by IL-10, JAK1 and TYK2 are activated by cross-
phosphorylation of two tyrosine residues on the intracellular domain of
IL-10R1 (Finbloom and Winestock, 1995). These phosphorylated tyrosines
mediate the interaction of STAT3 with the IL-10R complex. As a result,
phosphorylation of STAT3, STAT1, and STAT5 by JAK1 and TYK2 is
induced, and activated STAT proteins translocate to the nucleus. Among
genes activated by IL-10, SOCS-1 has been shown to silence JAK/STAT
signaling by binding to JAKkinases (Yasukawa et al., 1999). Thismechanism
may explain how IL-10 inhibits the effects of other cytokine signaling sys-
tem. Moreover, SOCS-3 activated by IL-10 inhibited many aspects of gp130
signaling initiated by IL-6 (Niemand et al., 2003). Other anti-inflammatory
properties of IL-10 could be explained by its effect of stabilizing IkBa in the
cytoplasm(Shames et al., 1998) and preventing lipopolysaccharide (LPS)-
induced NF-kB activation by inhibiting IkB kinase (Schottelius et al., 1999).

2.1.3. Induction of Tr1 cells by DCs
Tr1 can be induced in vitro during antigen presentation. Therefore, one of
important questions is whether there is a specific subpopulation or differ-
entiated status of APCs that promotes the differentiation of Tr1 cells.
Among the DCs, the professional APCs, immature DCs (iDCs) were
reported to induce tolerance through deletion of antigen-specific effector



104 Keishi Fujio et al.
T cells (Bonifaz et al., 2002; Hawiger et al., 2001) and induction of T cells
with regulatory activity (Dhodapkar et al., 2001). Repeated stimulation of
human peripheral blood CD4þ T cells with allogenic iDCs resulted in the
induction of IL-10-secreting Treg cells functionally similar to Tr1 cells
(Levings et al., 2005). In mice, a population of DCs expressing high levels
of CD45RB with immature phenotype secreted IL-10 and induced Tr1
cells (Wakkach et al., 2003). Plasmacytoid DCs (pDCs) is an unconven-
tional type of APCs characterized by the ability to produce type I IFN
upon activation (Asselin-Paturel et al., 2001). Repetitive stimulation of
naı̈ve CD4þ T cells with murine pDCs isolated from mesenteric lymph
nodes led to the generation of Tr1-like cells with regulatory activity
(Bilsborough et al., 2003). Moreover, IL-10 itself is a potent inducer of
tolerogenic DCs. DCs generated in the presence of exogenous IL-10
secreted high levels of IL-10, and IL-10 exposed DCs were more powerful
than iDCs in inducing Tr1 cells (Roncarolo et al., 2006).

2.1.4. Trials of in vivo induction of Tr1 cells
In vivo induction of antigen-specific Tr1 cells is a promising approach to
treat a variety of autoimmune diseases. Based on the multimodal anti-
inflammatory effect of IL-10, several clinical studies using systemic
administration of recombinant IL-10 were designed in patients with
inflammatory bowel disease (IBD) and rheumatoid arthritis (RA)
(Asadullah et al., 2003). Although early phase I and II studies showed
trends toward efficacy, larger blinded studies showed only modest
improvement accompanied with side effects such as headache and
fever. Higher concentrations of IL-10 induced the elevation of IFN-g levels
and inflammation markers in patients with IBD (Tilg et al., 2002). These
results suggested the potential dual roles of IL-10 in both anti-inflamma-
tory and immunostimulatory capacities (O’Garra et al., 2008).

The addition of immunosuppressive drugs to recombinant IL-10 may
enhance the anti-inflammatory properties of IL-10 by suppressing the
immunostimulatory capacity of IL-10. Coadministration of IL-10 and
rapamycin was reported to induce alloantigen-specific IL-10-secreting
CD4þ T cells in vivo in a murine model of pancreatic islet transplantation
(Battaglia et al., 2006b). Importantly, the antigen-specific tolerance was
transferred to naı̈ve mice by adoptive transfer of T cells from mice with
tolerance. Administration of IL-10 alone did not prevent allograft rejec-
tion, and addition of rapamycin was required for the effective induction
of tolerance. This result was intriguing considering the well-documented
association between in vivo administration of rapamycin and a pro-
nounced increase in the number of CD4þCD25þFoxp3þ Treg cells
(Coenen et al., 2007; Noris et al., 2007). PI3K-AKT-mTOR signaling, the
target pathway of rapamycin, may be a common pathway for the induc-
tion of Tr1 cells and CD4þCD25þFoxp3þ Treg cells.
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2.2. CD46-stimulated IL-10-secreting T cells

CD46, initially identified as a complement regulatory receptor for C3 and
as a receptor for several pathogens (Cattaneo, 2004; Kemper et al., 2005),
was found to be a potent costimulatory molecule in human T cells (Astier
et al., 2000; Zaffran et al., 2001). CD46 is a ubiquitously expressed type I
membrane protein. CD46 costimulated T cells in the presence of IL-2
acquired a Tr1-like phenotype and secreted large amounts of IL-10 and
granzyme B (Grossman et al., 2004; Kemper et al., 2003). In addition, CD3/
CD46-stimulated T cells secreted moderate quantities of TGF-b and
IFN-g. In contrast to poorly proliferative IL-10-stimulated Tr1 cells,
CD3/CD46-stimulated T cells showed a stronger and more sustained
proliferation as compared with CD3/CD28-stimulated T cells. C3b
dimers, a physiological ligand of CD46, could substitute for monoclonal
antibodies to CD46 in the induction of IL-10-secreting cells, thus
providing a mechanism for CD46 cross-linking by antigens coated with
complement fragments during antigen presentation (Kemper et al., 2003).
Interestingly, CD46 was also described as a ‘‘magnet for pathogens’’
(Astier, 2008). So far, several human pathogens have been found to bind
to CD46, including measles virus, human herpes virus 6, adenovirus,
Streptococcus pyogenes, andNeisseria gonorrhoeae. However, an endogenous
ligand may be expressed on DCs or other APCs, and the ligand for CD46-
mediated IL-10 secretion remains to be determined.

In multiple sclerosis (MS), a striking difference was observed between
healthy donors and patients, in that little to no IL-10 was secreted by CD46-
activated T cells fromMS patients as comparedwith healthy donors (Astier
et al., 2006). The defect was specific to CD46 costimulation, because IL-10
secretion upon CD28 costimulation was not affected. In addition, IFN-g
secretion by CD46-activated T cells was not affected and correlated with
the proliferation. Dysregulation of CD46 in MS patients was suggested
because an increased expression of Cyt2 cytoplasmic isoforms was
observed in T cells fromMS patients with impaired IL-10 secretion. Several
groups have demonstrated a defect in the CD4þCD25þ Tregs cells in
patients with MS, type I diabetes and RA (Bacchetta et al., 2005; Bluestone
and Tang, 2005; Haas et al., 2005; Viglietta et al., 2004). Another defect in IL-
10-secreting CD4þ T cells is consistent with the hypothesis that there are
multiple immunologic hits required to allow autoimmune disease to occur.
2.3. IL-10-secreting T cells induced by vitamin D3 and
dexamethasone

Activation of naı̈ve T cells in vitro in the presence of IL-10 alone, IL-10 and
IL-4 (Groux et al., 1997), or IL-10 and IFN-a (Levings et al., 2001) has been
reported to induce IL-10-secreting T cells. One important setback for the
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clinical application is that these cells also secrete Th1 and/or Th2 cyto-
kines, because they inevitably have the potential to induce or exacerbate
inflammation (Hawrylowicz and O’Garra, 2005). Barrat et al. described
that antigen-specific murine T cell stimulation in the presence of vitamin
D3 (VitD3) and dexamethasone (Dex) induced IL-10-secreting Treg cells
(Barrat et al., 2002). VitD3 affects DCs and macrophages functions as well
as lymphocyte function and inhibits the production of a variety of proin-
flammatory cytokines (Piemonti et al., 2000). Glucocorticoids, including
Dex, are among the most potent anti-inflammatory reagents in the treat-
ment of Th1- and Th2-associated inflammatory diseases. Furthermore,
VitD3 and Dex were reported to inhibit the activation of important
inflammation associated transcription factors, such as nuclear factor of
activated T cells (NFAT), activator protein-1 (AP-1), and NF-kB
(De Bosscher et al., 1997; Wilckens and De Rijk, 1997). The combination
of VitD3 and Dex inhibited the production of Th1- or Th2-cytokines in
activated IL-10-secreting T cells (Barrat et al., 2002; Vieira et al., 2004). The
in vitro induced IL-10-secreting Treg cells suppressed experimental auto-
immune encephalomyelitis (EAE). Moreover, their development and
function were IL-10 dependent (Barrat et al., 2002). It has been demon-
strated that IL-10-secreting T cells induced by VitD3 and Dex did not
express Foxp3 (Vieira et al., 2004). In a human study, Dex and calcitriol
induced IL-10-secreting cells that inhibited proliferation and cytokine
production by autologous CD4þ T cells in an IL-10-dependent way
(Xystrakis et al., 2006).
2.4. IL-27 and IL-21 in the induction of IL-10-secreting T cells

IL-12, a heterodimeric cytokine composed of p35 and p40, was character-
ized as an inducer of Th1 differentiation (Trinchieri, 2003). p35 is a
homolog of IL-6 and granulocyte-colony-stimulating factor (G-CSF) with
a four-a-helix bundle structure, while p40 is homologous to the extracel-
lular portion of IL-6 receptor a (IL-6Ra). Recently, IL-23, IL-27, and IL-35
were identified as heterodimeric cytokines functionally and structurally
related to IL-12 (Collison et al., 2007; Oppmann et al., 2000; Pflanz et al.,
2002). IL-27 is composed of Epstein-Barr virus-induced gene 3 (EBI-3)
(Devergne et al., 1996), a p40 related molecule, and p28, a p35 related
molecule.

In terms of T cell immunity, previous reports revealed that IL-27 has
both inflammatory and immunosuppressive properties. IL-27 promoted
naı̈ve CD4þ T cells to differentiate into Th1 cells by inducing IL-12Rb2
(Pflanz et al., 2002). WSX-1 is the a subunit of the IL-27R complex, and the
role ofWSX-1 in Th1 differentiation has been examined inWSX-1-deficient
(WSX-1 / ) mice. WSX-1 / mice showed impaired IFN-g production,
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and enhanced susceptibility to Leishmania major infection (Chen et al., 2000;
Yoshida et al., 2001). Because the reduced production of IFN-g was
observed only in the early phase of L. major infection, IL-27/WSX-1 signal-
ingwas only required in the initial phase of Th1differentiation. In contrast,
WSX-1 / mice produced increased levels of IFN-g compared with wild-
type mice and demonstrated cytokine-mediated liver damage during the
Trypanosoma cruzi infection (Hamano et al., 2003). Moreover, CD4þ T cells
isolated from T. cruzi-infected WSX-1 / mice showed hyperproduction
of IL-6 and TNF-a. In addition, WSX-1 / mice produced increased
amounts of various cytokines in an allergen-induced airway hypersensi-
tivitymodel (Miyazaki et al., 2005). These results revealed the novel role of
IL-27 as an attenuator of proinflammatory cytokine production.

Recently, three groups reported the promotion of IL-10-producing T
cell differentiation by IL-27 (Awasthi et al., 2007; Fitzgerald et al., 2007b;
Stumhofer et al., 2007). CD4þ T cells stimulated under nonpolarizing con-
ditions in the presence of IL-27 show significantly increased IL-10 produc-
tion (Stumhofer et al., 2007). Moreover, IL-27 induced IL-10 production in
differentiated Th1, Th2, and Th17 cells (Awasthi et al., 2007; Fitzgerald
et al., 2007b; Stumhofer et al., 2007). TGF-b amplified the generation of
IL-10-secreting T cells by IL-27 (Awasthi et al., 2007). Reduction in IL-10
production was also observed in Toxoplasma gondii infected WSX-1 /

mice (Hunter et al., 1997). Exogenous IL-27 ameliorated EAE by suppres-
sing Th17 responses via IL-10 (Fitzgerald et al., 2007a). Therefore, IL-27
converts inflammatory effector CD4þT cells into IL-10-secreting, immuno-
suppressive Tr1-like cells. The phenotype of IL-27-stimulated cells was
IL-10þIFN-gþFoxp3 IL-17 (Batten et al., 2008). Induction of IL-10 by IL-27
was dependent on the transcription factors STAT1 and STAT3 (Stumhofer
et al., 2007).

IL-21 is another pleiotropic cytokine that is required for normal immu-
noglobulin production (Monteleone et al., 2009). IL-21 signals through a
heterodimeric receptor containing IL-21R and the common cytokine
receptor g-chain gc, which is shared by the receptors for IL-2, IL-4, IL-7,
IL-9, and IL-15. Though expression of IL-21 was initially reported to be
Th2 specific, subsequent studies demonstrated that IL-21 is also produced
by Th1, Th2, Th17, and follicular helper T cells (TFH) (Korn et al., 2009).
Based on the observation that IL-21 and IL-10 levels increased with age
similarly in BXSB-Yaa mice with lupus-like disease, Spolski et al. unex-
pectedly found that IL-21 induces IL-10 mRNA and protein expression
(Spolski et al., 2009). Th1 priming with IL-21 led to the accumulation of
cells with immunosuppressive activity, and IL-21 overexpression
decreased specific antibody production after immunization. Furthermore,
Pot et al. showed that IL-27 was a potent inducer of three essential
elements; the transcription factor c-Maf, cytokine IL-21, and the costimu-
latory receptor ICOS (Pot et al., 2009). IL-27-driven c-Maf expression
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transactivated IL-21 production, which acts as an autocrine growth factor
for the expansion and/or maintenance of IL-27-induced IL-10-secreting
cells. Each of these elements was essential, because the loss of c-Maf, IL-21
signaling, or ICOS decreased the frequency of IL-27-induced differentia-
tion of IL-10-secreting T cells. Similar to IL-6, which induces IL-21 via
STAT3-phosphorylation, IL-27 also induces STAT3-phosphorylation and
IL-21, possibly due to the sharing of gp130 for signaling. Therefore,
cooperation of IL-27 and IL-21 may be an important pathway in the
generation of IL-10-secreting T cells.
2.5. IL-10-secreting anti-inflammatory Th1 cells

Interestingly, Th1 cells producing both IFN-g and IL-10 were reported
during certain infections and IL-10 produced by such Th1 cells played
important regulatory roles for host protection (Anderson et al., 2007;
Jankovic et al., 2007). In L. major infection to recombination activating
gene (RAG)-2-deficient (RAG2 / ) mice reconstituted with T cells, IL-10
production by antigen-specific CD4þCD25 Foxp3 cells, the majority of
which also produced IFN-g, was necessary for the suppression of
acquired immunity (Anderson et al., 2007). In mice infected with T. gondii,
IFN-g-secreting T-betþFoxp3 Th1 cells were the major source of IL-10
( Jankovic et al., 2007). The same IL-10þIFN-gþ population displayed
potent effector functions against the parasite. Though IFN-g expression
was imprinted and triggered with similar kinetics regardless of the state
of Th1 cell activation, IL-10 secretion was induced more rapidly from
recently activated than from resting cells. In human visceral leishmaniasis
patients, splenic CD25 T cells had elevated expression levels of both
IFN-g and IL-10 (Nylen and Sacks, 2007). These reports suggested that
IL-10 production by CD4þ T cells is not limited to a distinct Treg cell
population but can be generated even in Th1 cells as a part of the effector
response to prevent the inflammation induced pathology.

The molecular pathways leading to IL-10 expression in Th1 cells are
only just beginning to be understood. While IL-10 was induced by the Th2
regulating transcription factor GATA3 in Th2 cells (Chang et al., 2007),
Th1 cells generated in vitro in the presence of IL-12 contained only a few
IL-10-secreting cells. As mentioned above, another member of the IL-12
family of cytokines, IL-27, can induce IFN-g and IL-10 production in
T cells. Rutz et al. identified Notch as a potent inducer of IL-10 both in
developing and in established Th1 cells via a STAT4-dependent process
(Rutz et al., 2008). Notch signaling in the presence of IL-12 and IL-27
induced Th1 cells to produce large amounts of IL-10 without diminishing
IFN-g production. Notch-exposed Th1 cells completely lost their inflam-
matory capacity and instead were able to actively suppress the
Th1 cell induced delayed type hypersensitivity (DTH) reaction in an
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IL-10-dependent manner. DCs stimulated with various Toll-like receptor
(TLR) ligands acquired Delta-like 4 (DLL4) expression and concomitantly
induced IL-10 production by Th1 cells in vitro and in vivo. IL-27 and Notch
could be molecular switches between proinflammatory and anti-inflam-
matory Th1 cell function. These molecules may be a target for therapeutic
intervention in inflammatory diseases.

It is likely that IL-10 production by Th1 cells is associated with condi-
tions of high inflammation and antigenic stimulation. Saraiva et al.
reported that development of IL-10-secreting Th1 cells required strong
TCR ligation, sustained phosphorylation of ERK1 and ERK2MAP kinases,
and IL-12-induced STAT4 transcription factor activation (Saraiva et al.,
2009). Repeated TCR stimulation leads to enhanced IL-10 production by
Th1 cells, and continued IL-12 action and high-dose TCR signaling were
required for the development and maintenance of IL-10-secreting
Th1 cells. Notably, while high antigen dose and IL-12 drastically down-
regulated GATA-3 expression which can remodel the IL-10 locus, expres-
sion of c-Maf correlated with IL-10 expression. Because the activation of
ERK1 and ERK2 is a common requirement for the production of IL-10 by
Th1, Th2, and Th17 cells, all Th cells may share the mechanism for
controlling excessive inflammation by means of IL-10 production.
2.6. Exogenous signals in the induction of IL-10-secreting T cells

As mentioned in Section 1, the dominant suppressive function of IL-10 in
mucosal immunity was clearly reinforced by the phenotype of IL-10 /

mice (Kuhn et al., 1993), which developed colitis in the presence of normal
gut flora (Sellon et al., 1998). In addition, IL-10 / mice eradicated certain
intracellular pathogens efficiently. However, this was often accompanied
by lethal immunopathology (O’Garra et al., 2004, 2008). Therefore, IL-10 is
important in limiting the inflammatory responses to pathogens and pre-
vents damage to the host. Accordingly, there are a number of reports
showing the association between pathogen-derived signals and IL-10
secretion in CD4þ T cells.

Higgins et al. demonstrated that Bordetella pertussis LPS induced IL-10
production from DCs, through TLR4. Antigen-specific IL-10 production
by T cells was significantly reduced and inflammatory pathology was
enhanced in TLR4 defective mice, suggesting that TLR4-mediated IL-10
production promotes the generation of IL-10-secreting CD4þ T cells and
confers host resistance to the infection by limiting collateral damage in the
lungs (Higgins et al., 2003). Similarly, den Haan et al. described that LPS
induced antigen-specific suppressive CD4þ T cells that inhibit CD8þ

T cell priming via IL-10 (den Haan et al., 2007).
TLR2 also plays a pivotal role in the recognition of pathogen-derived

signals. Collaboration between TLR2 and dectin-1 resulted in the
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induction of proinflammatory cytokines aswell as robust IL-10 production
in DCs (Underhill, 2007). Intriguingly, zymosan conditioned splenic DCs
to secrete IL-10 and induced tolerogenic T cell responses (Rogers et al.,
2005; Slack et al., 2007). Recently, Manicassamy et al. reported that TLR2
signaling induced splenic DCs to express the retinoic acid metabolizing
enzyme retinaldehyde dehydrogenase type 2 and IL-10. TLR2-stimulated
DCs also metabolized vitamin A and induced Foxp3þ Treg cells
(Manicassamy et al., 2009). What is important was that, whereas zymo-
san-treated DCs in the presence of TGF-b induced both Foxp3þ Treg cells
and IL-10-secreting T cells, they inducedmostly IL-10-secreting cells in the
absence of TGF-b. These facts suggest that immune stimulus from
microbes significantly contributes to the induction of IL-10-secreting and
Foxp3þ Treg cells.

Mazmanian et al. reported that the prominent human symbiont Bacter-
oides fragilis protected animals from experimental colitis induced by Heli-
cobacter hepaticus, a commensal bacterium with potential pathogenesis
(Mazmanian et al., 2008). This protective activity required a single micro-
bial molecule, polysaccharide A (PSA). In animals harboring B. fragilis not
expressing PSA, H. Hepaticus colonization resulted in severe colitis and
proinflammatory cytokine production in the colon. Administration of
purified PSA to animals suppressed IL-17 production in the intestine.
Moreover, PSA protection from inflammatory disease was mediated by
IL-10-secreting CD4þ T cells. According to the ‘‘hygiene hypothesis,’’
reduced exposure to infections in early childhood may increase the risk
of allergic and autoimmune diseases (Strachan, 1989). In fact, this study
showed that bacteria residing in the gastrointestinal tract produced fac-
tors mediating normal immune controls and protected the host from
inflammation. Mazmanian et al. proposed that the mammalian genome
does not encode for all functions required for immunological develop-
ment but rather that mammals depend on critical interactions with their
microbiome for health (Mazmanian et al., 2008). This intriguing proposal
should be addressed further.

Not only pathogen-derived signals but also exogenous toxins were
reported to induce IL-10-secreting CD4þ T cells. Meiler et al. reported on
a multiyear study in which they examined allergen-specific T-cell
responses in beekeepers during and outside of the beekeeping season
(Meiler et al., 2008). Continuous exposure of nonallergic beekeepers to
high doses of bee venom antigens induced diminished T cell-related
cutaneous late-phase swelling to beestings in parallel with suppressed
allergen-specific T cell proliferation and Th1 and Th2 cytokine secretion.
After multiple beestings, venom antigen-specific Th1 and Th2 cells
showed a switch toward IL-10-secreting T cells. T cell regulation con-
tinues as long as antigen exposure persists and returns to initial levels
within 2–3 months after the cessation of beestings. Histamine receptor 2
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upregulated on specific Th2 cells displayed a dual effect by directly
suppressing allergen-stimulated T cells and increasing IL-10 production.
On the other hand, there was no change in the overall percentage of
CD4þCD25þ Treg cells in response to beestings. CTLA4 and PD-1 played
roles in allergen-specific T cell suppression. In contrast to its widely
accepted role in mucosal allergen tolerance, TGF-b did not seem to be
an essential player in skin-related allergen tolerance. Thus, the rapid
switch and expansion of IL-10-secreting T cells and the use of multiple
suppressive factors represent essential mechanisms in immune tolerance
to a high dose of allergens in nonallergic individuals. Collectively, these
findings indicate that transiently expanded IL-10-secreting T cell popula-
tions play an important role in keeping allergen-specific effector T cell
responses in check, which helps to explain how skin exposure to high
doses of allergen leads to a decreased immune response to subsequent
allergen exposures. Moreover, the data suggest that antigen persistence is
an essential condition for long-term tolerance.
3. NATURALLY PRESENT IL-10-SECRETING T CELLS

3.1. CD4þCD25þFoxp3þ Treg cells

A unique subset of CD4þ T cells known as CD4þCD25þ Treg cells has the
role in controlling tissue damage and inflammation in the context of both
innate and adaptive immune responses (Sakaguchi et al., 2008; Shevach,
2009). CD4þCD25þ Treg cells represent a differentiated cell lineage devel-
oped in the thymus and their phenotype and function are dependent
upon the expression of the transcription factor Foxp3 (Hori et al., 2003).
Deficiency of functional Foxp3 leads to a fetal lymphoproliferative auto-
immune disorder with multiple organ inflammation (Brunkow et al.,
2001). In humans, individuals lacking Foxp3 have an autoimmune disor-
der, immunodysregulation polyendocrinopathy and enteropathy,
X-linked (IPEX) syndrome (Bennett et al., 2001).

In spite of its significance, the mechanisms of suppressionmediated by
CD4þCD25þ Treg cells are poorly clarified. While a number of molecular
and cellular mechanisms of active suppression have been reported, the
emerging model is still confusing. It is not clear whether a single mecha-
nism can be responsible for various manifestations of CD4þCD25þ Treg
cell suppression. Although IL-10 was reported to play a significant role as
an effector molecule of CD4þCD25þ Treg cell-mediated suppression of
colitis (Annacker et al., 2003; Asseman et al., 1999, 2003), IL-10 was found
to be nonessential for in vivo suppression of autoimmune gastritis
(Shevach et al., 2001). Rubtsov et al. analyzed mice in which the Foxp3þ

Treg cell-specific ablation of a conditional IL-10 allele was induced by Cre
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recombinase knocked into the Foxp3 locus (IL-10 flox/flox x Foxp3YFP-Cre)
(Rubtsov et al., 2008). They found that the selective disruption of IL-10
expression in Foxp3þ Treg cells resulted in spontaneous colitis. The
stomach and small intestine were not affected by IL-10 deficiency in
Foxp3þ Treg cells. Moreover, these IL-10 flox/flox � Foxp3YFP-Cre mice
developed augmented immune mediated inflammation in the skin and
lungs. These results are consistent with the findings in IL-10-IRES-GFP
reporter mice (tiger mice) that the majority of IL-10-expressing T cells in
the small intestine did not express Foxp3 (Kamanaka et al., 2006). In tiger
mice, anti-CD3 treatment induced Tr1-like cells in small intestinal intrae-
pithelial lymphocytes (sIEL) and led to the accumulation of naturally
occurring Treg cells in colonic lamina propria lymphocytes (cLPL). In
contrast, CTLA-4 ablation in Treg cells resulted in systemic lymphopro-
liferative syndrome and hyperproduction of IgE, whereas the colon and
skin remained largely unaffected (Rubtsov et al., 2008; Wing et al., 2008).
These results indicated that IL-10 produced by Treg cells is required in the
suppression of inflammation at environmental interfaces such as colon,
skin, and lungs, but is dispensable for limiting systemic autoimmunity.
Treg cells may use multiple molecular mechanisms to suppress immune
responses and individual regulatory mechanisms could operate in a
particular tissue and inflammatory condition.

Interestingly, a subset of Foxp3-expressing Treg cells might secrete IL-
10. Maynard et al. reported a ‘‘dual reporter mouse (10BiT.Foxp3gfpmice)’’
system of the genes encoding IL-10 and the transcription factor Foxp3 to
track Treg subsets based on coordinate or differential expression of these
gene (Maynard et al., 2007). In 10BiT.Foxp3gfp mice, secondary lymphoid
tissues, lung and liver showed the enrichment of Foxp3þIL-10 Treg cells,
whereas the colon and small intestine exhibited the enrichment of
Foxp3þIL-10þ Treg cells. While each Treg cells subset developed in the
absence of IL-10, TGF-b  blockade inhibited the development of both
subsets. Therefore, Foxp3þIL-10þ Treg were induced by a mechanism
dependent on TGF-b  and independent of IL-10. In humans, Ito et al.
found two subsets of Foxp3þ Treg cells defined by the expression of the
costimulatory molecule ICOS (Ito et al., 2008). Whereas ICOSþFoxp3þ

Treg cells used IL-10 to suppress dendritic cell function and TGF-b to
suppress T cell function, ICOS Foxp3þ Treg cells used TGF-b only. pDCs
selectively promoted the proliferation of ICOSþFoxp3þ Treg cells in an
ICOS-dependent manner, whereas myeloid DCs (mDCs) preferentially
promoted the proliferation of ICOS Foxp3þ Treg cells through a CD80-
and CD86-dependent mechanism. Thus, DCs have been shown to play
key roles in the induction and maintenance of Treg cells (Tarbell et al.,
2006). Foxp3þIL-10þ and Foxp3þIL-10 Treg cells may be selected and
educated by different subsets of APCs.
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3.2. CD4þCD25 LAPþ T cells

Nakamura et al. showed that CD4þCD25þ Treg cells expressed TGF-b on
their surface and exhibited their suppressive function by presenting sur-
face TGF-b to the receptor on the target cells by cell-to-cell contact
(Nakamura et al., 2001). Latency-associated peptide (LAP) is the amino-
terminal domain of the TGF-b precursor peptide and forms a latent TGF-b
complex with the TGF-b peptide (Miyazono et al., 1993). CD4þCD25þ

Treg cells became positive for surface LAP after strong stimulation
in vitro (Nakamura et al., 2001). Weiner and colleagues reported Treg
cells that expressed surface LAP and suppressed murine colitis in a
TGF-b-dependent mechanism (Oida et al., 2003). CD4þCD25 LAPþ

T cells were positive for thrombospondin, which has the ability to convert
latent TGF-b to the active form. CD4þCD25 LAPþ T cells produced high
levels of TGF-b and IL-10. Notably, they exhibited regulatory activity in
the CD4þCD45RBhigh-induced colitis model of SCID mice in a TGF-b-
dependent manner.

Parenteral administration of CD3-specific monoclonal antibody is an
approved therapy for transplantation in humans and is effective in auto-
immune diabetes. Orally administrated CD3-specific antibody induced
CD4þCD25 LAPþ Treg cells that suppress EAE and diabetes in mice by
TGF-b secretion (Ishikawa et al., 2007; Ochi et al., 2006). Oral administra-
tion of a CD3-specific antibody may weakly signal to T cells in the gut,
and enhance the regulatory function of CD4þCD25 LAPþ Treg cells. The
exact relationship between CD4þCD25 LAPþ T cells and Th3 Treg cells
that appear after oral administration of antigens (Chen et al., 1994) is not
clear. In addition to TGF-b, anti-CD3-induced CD4þCD25 LAPþ T cells
produced significant amounts of IL-4, IFN-g, and IL-10 (Ochi et al., 2006).
The contribution of IL-10 to the suppressive effect of CD4þCD25 LAPþ

T cells remains to be determined.
3.3. CD4þNKG2Dþ T cells

Natural killer (NK) receptors control the activation and inhibition of NK
cells (Long, 1999). Among these receptors, NKG2D transduces directly
activating or costimulatory signals via the paired DAP10 adaptor protein
(Lanier, 2008; Wu et al., 1999). In humans, NKG2D ligands, including the
MHC class I-related chain A (MICA), were induced by microbial infec-
tions (Gonzalez et al., 2006), and were expressed in several autoimmune
conditions (Groh et al., 2003; Saikali et al., 2007). NKG2D also costimulated
the proliferation of CD4þ T cells with negative regulatory functions and
reduced chronic immune activation induced by MICA expression (Groh
et al., 2006). Small populations of CD4þ T cells with NKG2D expression
showed a biased cytokine profile toward IL-10 and TGF-b. CD4þNKG2Dþ
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T cells also produced Fas ligand (FasL) to cause growth arrest of bystander
T cells (Groh et al., 2006).

In tissues with inflammation, increased MICA expression might
induce the expansion of suppressive CD4þNKG2Dþ T cells. In this con-
text, CD4þNKG2Dþ T cells could have regulatory activity for inflamma-
tion. Recently, Dai et al. (2009) reported that normally occurring
CD4þNKG2Dþ T cells in healthy individuals were autoreactive and
ready to produce IL-10, but lacked proinflammatory cytokines. In contrast
to IL-10 production, which was associated with all T cell differentiation
stages, TGF-b production was detected with central and effector memory
CD4þNKG2Dþ T cells, but not naı̈ve T cells. Extensive expansions of these
T cells in patients with juvenile-onset SLE were inversely correlated with
disease activity, suggesting the in vivo regulatory effects of
CD4þNKG2Dþ T cells.

Though the normal CD4þ T cell compartment harbored small num-
bers of IL-10-producing CD4þNKG2Dþ T cells with regulatory activity,
the concept of regulatory CD4þNKG2Dþ T cells is complicated by the
occurrence of effector CD4þNKG2Dþ T cells in several inflammatory
situations. IFN-g and TNF-a producing cytotoxic CD4þNKG2Dþ T cells
occurred in RA patients (Groh et al., 2003), and the frequency of perforin-
expressing CD4þNKG2Dþ T cells correlated with the severity of Crohn’s
disease (Allez et al., 2007). Therefore, more specific markers for regulatory
CD4þNKG2Dþ T cells should be investigated.
3.4. CD4þCD25 IL-7R T cells

Recently, it was reported that human CD4þCD25þ Treg cells expressed
low level of CD127 (Liu et al., 2006; Seddiki et al., 2006), the IL-7 receptor
(IL-7R) a chain that is important for survival and homeostatic mainte-
nance of CD4þ T cells (Bradley et al., 2005). Based on these observation,
Haringer et al. speculated that adaptive Treg cells might be present
among CD4þCD25 IL-7R fraction. They reported that human blood
CD4þCD25 IL-7R cells were activated, effector-like cells that coproduce
IL-10 and IFN-g but not IL-2 (Haringer et al., 2009). In antigen-experienced
CD4þCD45RA T cells, the majority of the cells had a CD25 /loIL-
7RhiFoxp3 memory phenotype and CD25þIL-7Rlo phenotype identified
natural Treg cells with Foxp3 expression. The small fraction of cells
(around 1%), expressing neither CD25 nor IL-7R, were anergic and largely
Foxp3-negative. They expressed low levels of Bcl-2 but high levels of
Ki-67 and ICOS, suggesting that they have been recently activated
in vivo. They responded selectively to persistent foreign (cytomegalovirus
and candida) and self-antigens (Melan-A). When IL-7R cells were sti-
mulated strongly via TCR, they suppressed proliferation of naı̈ve and
memory T cells in an IL-10-dependent manner. Based on these
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observations, the CD4þCD25 IL-7R cells are regarded as a subset con-
taining human Tr1-like cells. However, the CD4þCD25 IL-7R cells
seems to be a heterogenous population, because only a part of
CD4þCD25 IL-7R cells (around 10%) produced IL-10 upon strong stim-
ulation. Identification of more sophisticated surface and molecular mar-
kers is required for clinical evaluation and application of this population.
3.5. CD4þCD25 LAG3þ T cells

As mentioned above, known Treg cells are closely related to anergy.
Anergy represents one of several tolerance-inducing mechanisms in T
cells. T cell anergy is defined by defective proliferation and impaired
IL-2 production of previously primed T cells upon restimulation, and is
reversed by the addition of exogenous IL-2 (Beverly et al., 1992; Schwartz,
2003). A set of functional restrictions characterizes the anergic state,
including cell division, cell differentiation, and cytokine secretion. Many
reports have implicated an important role for the activity of E3 ubiquitin
ligases in the regulation of T cell activation (Fathman and Lineberry,
2007). The E3 ligases c-Cbl, Cbl-b, GRAIL, Itch, and Nedd4 have been
linked to the promotion of T cell anergy (Heissmeyer et al., 2004; Mueller,
2004). The RING-type E3 ubiquitin ligase Cbl-b promoted ubiquitination
and degradation of signaling components such as phospholipase C-g and
PKC-y. Early response gene (Egr)-2 and Egr-3 were reported to be tran-
scription factors for the TCR-induced negative regulatory program
controlling Cbl-b expression (Safford et al., 2005). Egr-2 has been most
widely studied in the context of nervous system, and its targeting in
knockout mice resulted in early lethality concurrent to defects in hind-
brain patterning, peripheral nerve myelination, and bone formation
(Gillian and Svaren, 2004; Topilko et al., 1994). However, the role of
Egr-2 in the regulatory function of T cells has not been extensively
addressed.

We have identified recently that a Treg population expresses Egr-2 and
lymphocyte activation gene 3 (LAG-3) (Okamura et al., 2009). LAG-3,
which suppresses T cell proliferation (Workman and Vignali, 2003;
Workman et al., 2004), is required for maximal regulatory functioning of
murine CD4þCD25þ T cells. Ectopic expression of LAG-3 on CD4þ T cells
significantly reduced their proliferative capacity and conferred on them
regulatory activity toward effector T cells (Huang et al., 2004). However,
LAG-3 protein was hardly detected on the cell surface of CD4þCD25þ T
cells but was expressed by a certain population of CD4þCD25 T cells
(Workman et al., 2002). In accordance with the previous results, flow
cytometric analysis revealed that more than 90% of LAG-3-expressing
cells belonged to the CD4þCD25 CD45RBlow population (hereafter called
CD4þCD25 LAG3þ cells). These CD4þCD25 LAG3þ cells appeared to be
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conventional CD4þTCRabþ T cells. The frequency of CD4þCD25 LAG3þ

cells in the CD4þCD25 population was relatively low in the spleen
(around 2%), mesenteric lymph node (around 1%), and inguinal lymph
node (around 1%), but characteristically high in Peyer’s patch (PP)
(around 8%). Similar to most of other IL-10- secreting T cells, these cells
were anergic in vitro upon TCR stimulation. They produced large amounts
of IL-10, moderate amounts of IFN-g, and low amounts of IL-2 and IL-4.
CD4þCD25 LAG3þ T cells exhibited weak suppressive activity in
anti-CD3-stimulated cocultures of CD4þCD25 LAG3þ T cells with
CD4þCD25 CD45RBhigh T cells. In contrast, CD4þCD25 LAG3þ T cells
effectively inhibited colitis induced in RAG-1 / recipients by the transfer
of CD4þCD25 CD45RBhigh T cells. The failure of colitis suppression by the
transfer of CD4þCD25 LAG3þ T cells from congenic IL-10 / mice indi-
cated that the in vivo suppressive activity was IL-10 dependent.

Cytofluorometric analysis revealed that CD4þCD25 LAG3þ T cells
did not express Foxp3 protein. In addition, scurfy mice that lack func-
tional Foxp3 protein (Brunkow et al., 2001) contained significantly
increased number of CD4þCD25 LAG3þ T cells, which expressed
LAG-3 and IL-10 mRNA equivalently, and exhibited distinct in vitro
suppressive activity. The fact that CD4þCD25 LAG3þ T cells hardly
expressed CD103 (aE integrin) and LAP on the cell surface indicated
they were different from CD103þ Treg cells and CD4þCD25 LAPþ Treg
cells, respectively (Ochi et al., 2006; Zhu et al., 2009). Collectively, these
findings indicate that CD4þCD25 LAG3þ T cells exert regulatory activity
in an IL-10 dependent and Foxp3 independent manner.

Microarray analysis has revealed that the anergy-associated Egr-2
gene was significantly increased as well as the supposed signature
genes for CD4þCD25 LAG3þ such as Lag3, Il10, and Prdm1 (B lympho-
cyte-induced maturation protein (Blimp)-1). Because CD4þCD25 LAG3þ

T cells were anergic in response to TCR stimulation, the increased expres-
sion of Egr-2 was particularly notable. As mentioned above, Egr-2 was
recently reported as a key negative regulator of T cell activation and was
necessary to induce a full anergic state through the actions of genes
regulated by this transcription factor (Harris et al., 2004; Safford et al.,
2005). The high expression levels of Egr2, LAG3, IL-10, and Blimp-1 genes
in CD4þCD25 LAG3þ T cells were confirmed by quantitative real-time
PCR. These results were in line with the findings that T cell-specific
Blimp-1 conditional knockout mice developed spontaneous colitis and
naı̈ve Blimp-1-deficient CD4þ T cells were hyperproliferative in response
to TCR stimulation and produced less IL-10 than did their wild-type
counterparts (Kallies et al., 2006; Martins et al., 2006).

Interestingly, forced expression of Egr-2 in naı̈ve CD4þ T cells con-
verted them to the CD4þCD25 LAG3þ phenotype. Egr2-transduced
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CD4þ cells showed significant upregulation of Egr2, LAG3, IL-10, and
Blimp-1 genes. In addition, Egr2-transduced CD4þ cells produced signif-
icantly higher amounts of IL-10 and lower amounts of IL-2, IL-4, and IL-5
proteins. In spite of the expression of LAG-3 and IL-10 proteins, Egr2-
transduced CD4þ cells failed to exhibit sufficient suppressive activity in
in vitro coculture with freshly isolated naı̈ve CD4þ responder T cells. On
the other hand, in the DTH reaction of BALB/c mice against chicken
OVA, Egr2-transduced BALB/c CD4þ cells significantly suppressed
DTH responses compared with empty-vector-transduced CD4þ T cells.
Moreover, OVA-specific DO11.10 CD4þ T cells transduced with Egr-2
significantly suppressed DTH responses more efficiently than
Egr2-transduced BALB/c CD4þ T cells. These results indicated that anti-
gen-specificity significantly contribute to the enhancement of suppressive
activity in Egr2-transduced CD4þ T cells.

One important question is whether CD4þCD25 LAG3þ T cells could
develop through the thymic selection process in a similar manner to
Foxp3þ Tregs, which require a high-affinity agonistic interaction with
self-peptide/MHCs expressed by thymic stromal cells (Coutinho et al.,
2005). RIP-mOVA/OT-II double-transgenic mice express a membrane-
bound form of OVA in the pancreatic islets and also in the thymus
together with a transgenic TCR (Va2 and Vb5.1) that recognizes the
OVA 323–339 peptide in the context of I-Ab. In these mice, the frequency
of CD4þCD25 LAG3þ T cells was not increased in the thymus and
spleen, in contrast with an increase in the frequency of CD4þCD25þ

Treg cells in these organs as reported previously (Coutinho et al., 2005).
Thus, unlike Foxp3þ naturally occurring Treg cells, the development of
CD4þCD25 LAG3þ T cells does not require high-affinity interactions
with selecting peptide/MHC ligands expressed in the thymus.

On the other hand, germ free (GF) mice contained fewer
CD4þCD25 LAG3þ T cells than specific pathogen free (SPF) mice in the
spleen and PP. Though GF mice are exposed to self-antigens, to food-
derived antigens, and to microbial particles from dead microorganisms in
the sterilized food or bedding, the absence of viable microbiota affects the
immune homeostasis (Tlaskalova-Hogenova et al., 2004; Wen et al., 2008).
This result suggests the exposure to viable microbiota affects the devel-
opment of CD4þCD25 LAG3þ T cells. The extrathymic development of
IL-10-secreting T cells has already been reported (Maynard et al., 2007).
The profound decrease of CD4þCD25 LAG3þ T cells in the spleen and PP
of GF mice showed the importance of environmental microbiota for the
extrathymic development of CD4þCD25 LAG3þ T cells (Fig. 4.1). As
discussed in Section 2.6, DCs exposed to microorganism-derived stimula-
tion, such as PSA, TLR2-ligand, and TLR4-ligand, might be involved
in the induction of CD4þCD25 LAG3þ T cells. The precise mechanisms



FIGURE 4.1 A model for the development of CD4+CD25-LAG3+ Treg cells.
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of the development of CD4þCD25 LAG3þ Treg cells by environmental
microbiota and APCs should be examined further.

Recently, two genome-wide association studies reported SNPs (single
nucleotide polymorphisms) on chromosome 10q21 with a strong associa-
tion to Crohn’s disease (Rioux et al., 2007; Wellcome-Trust-Case-Control-
Consortium, 2007), a common form of IBD. The associated intergenic
region is flanked by Egr-2, suggesting that this genetic variation could
regulate Egr-2 expression. The particularly high production level of IL-10
by Egr-2-controlled CD4þCD25 LAG3þ T cells suggests that this Treg
population may contribute to the regulation of organ inflammation, espe-
cially in gut. Furthermore, T cell-specific Egr2-deficient mice showed
enhanced expression of proinflammatory cytokines, increased Th1
and Th17 differentiation, and development of a late onset lupus-like
autoimmune disease (Zhu et al., 2008). By elucidating the function of
Egr-2-dependent CD4þCD25 LAG3þ Treg cells to produce a large
amount of IL-10, they can be used for antigen-specific treatment of
inflammatory disease. The features of CD4þCD25 LAG3þ Treg cells are
summarized in Table 4.1.
4. CONCLUDING REMARKS

Various kinds of IL-10-secreting CD4þ T cells have been reported
since the landmark report of Tr1 cells (Groux et al., 1997). Some of these
IL-10-secreting CD4þ T cells are clearly independent from Foxp3 in their



TABLE 4.1 The features of CD4þCD25�LAG3þ Treg cells

Characteristics of murine CD4þCD25�LAG3þ T cells:

1. Naturally present in the spleen, lymph node, and Peyer’s patch

2. Produce large amounts of IL-10 and moderate amounts of IFN-g
3. Suppress colitis in an IL-10 dependent manner

4. Express Egr-2, an anergy associated transcription factor, which confers

IL-10 production and in vivo suppressive activity on naı̈ve CD4þ T cells
5. Do not require high-affinity interactions with selecting peptide/MHC

ligands expressed in the thymus for the development

6. Develop preferentially by the exposure to viable microbiota
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function and development. Most IL-10-secreting CD4þ T cells are charac-
teristically associated with mucosal immunity, food tolerance, and anti-
microbial immunity. It has been speculated that IL-10-secreting CD4þ T
cells, which are induced in the periphery, are important for controlling
immune responses to nonself-antigens, while naturally occurring
CD4þCD25þ Treg cells originating from the thymus are mainly responsi-
ble for the maintenance of self-tolerance (Roncarolo et al., 2006).

The autoimmune regulator (Aire) is a gene responsible for autoim-
mune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED),
which influences the central induction of tolerance by regulating the clonal
deletion of self-reactive thymocytes (Liston et al., 2003). Aire regulates the
ectopic expression of a battery of peripheral-tissue antigens, for example,
insulin, fatty acid-binding protein, and salivary protein-1 (Anderson et al.,
2005). By an additional defect in central tolerance induction in scurfymice,
generated by crossing in a null mutation of the Aire gene, the range of
affected sites was not noticeably extended, and many organs remained
unaffected (Chen et al., 2005). This result suggests the existence of addi-
tional important mechanisms other than central tolerance and the Foxp3
system to enforce immunological self-tolerance in the periphery. IL-10-
secreting T cells may constitute such additional mechanisms that are
responsible for peripheral tolerance.

However, there are lines of evidence that IL-10-secreting CD4þ T cells
also control immune responses to self-antigens. IL-10-secreting CD4þ

T cells specific for Desmoglein 3 (Dsg3) were isolated from 80% of healthy
carriers of pemphigus vulgaris (PV)-associated HLA class II alleles but
only 17% of PV patients (Veldman et al., 2004). In the peripheral blood of
patients with autoimmune hemolytic anemia, IL-10-secreting CD4þ

T cells specific for the red blood cell autoantigen, RhD protein, were
detected (Hall et al., 2002). Thus, the relationship and respective role of
IL-10-secreting CD4þ T cells and CD4þCD25þ Treg cells in the mainte-
nance of self-tolerance has not been clarified sufficiently.
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Recent evidence has revealed that even CD4þCD25þFoxp3þ Treg cells
show heterogeneity in their gene expression profiles (Hill et al., 2007) and
functional stages (Miyara et al., 2009). Similarly, some IL-10-secreting
CD4þ T cells may represent a unique population of Treg cells arrested
at different stages in development. However, assessing the in vivo physi-
ological function of IL-10-secreting CD4þ T cells is difficult, because of the
lack of specific markers that can reliably differentiate a population of
IL-10-secreting CD4þ T cells from other T cells. LAP, NKG2D, IL-7R,
and LAG-3 might be valuable lineage markers of IL-10-secreting CD4þ

T cells, which could be used in combination with molecular signatures
such as Egr-2 and Blimp-1. In addition, the signaling pathways involved
in the regulatory activity of IL-10-secreting CD4þ T cells and the homing
receptors governing their trafficking in vivo need to be examined.
The identification of specific markers will enable us to purify and enrich
IL-10-secreting CD4þ T cells ex vivo and transfer them to the patients of
inflammatory diseases.
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Abstract Secondary lymphoid organs such as spleen and lymph nodes are
highly organized immune structures essential for the initiation of

immune responses. They display distinct B cell and T cell compart-

ments associated with specific stromal follicular dendritic cells and

fibroblastic reticular cells, respectively. Interweaved through the

parenchyma is a conduit system that distributes small antigens and

chemokines directly to B and T cell zones. While most structural

aspects between lymph nodes and spleen are common, the entry

of lymphocytes, antigen-presenting cells, and antigen into lym-

phoid tissues is regulated differently, reflecting the specialized

functions of each organ in filtering either lymph or blood. The

overall organization of lymphoid tissue is vital for effective antigen

screening and recognition, and is a feature which artificially con-

structed lymphoid organoids endeavor to replicate. Synthesis of

artificial lymphoid tissues is an emerging field that aims to provide

therapeutic application for the treatment of severe infection, can-

cer, and age-related involution of secondary lymphoid tissues. The

development of murine artificial lymphoid tissues has benefited

greatly from an understanding of organogenesis of lymphoid

organs, which has delineated cellular and molecular elements

essential for the recruitment and organization of lymphocytes

into lymphoid structures. Here, the field of artificial lymphoid

tissue engineering is considered including elements of lymphoid

structure and development relevant to organoid synthesis.
ABBREVIATIONS
aAPC
 artificial antigen-presenting cells

aLN
 artificial lymph nodes

APC
 antigen-presenting cells

DC
 dendritic cells

ECM
 extracellular matrix

ES
 embryonic stem

FDC
 follicular dendritic cells

FRC
 fibroblastic reticular cells

HEV
 high endothelial venules

HSC
 hematopoietic stem cells

iBALT
 inducible bronchus-associated lymphoid tissue

iPS
 induced pluripotent stem cells

LN
 lymph nodes

LT
 lymphotoxin

LTi
 lymphoid tissue inducer cells

LTo
 lymphoid tissue organizer cells

LTbR
 lymphotoxin-b receptor



Artificial Engineering of Secondary Lymphoid Organs 133
MCS
 multicellular spheroid culture

MRC
 marginal reticular cells

MS
 milky spot

MZ
 marginal zone

PEG
 polyethylene glycol

PP
 Peyer’s patches

RORg
 retinoic acid receptor-related orphan receptor g

SLO
 secondary lymphoid organs

TES
 tissue-engineered spleen

TFH
 follicular B helper T cells

TLO
 tertiary lymphoid organs

VEGF
 vascular endothelial growth factor
1. INTRODUCTION

The adaptive immune response is orchestrated by interactions between
antigen-presenting cells (APC) and effector T and B cells (Banchereau and
Steinman, 1998). Generation of immune responses occurs most efficiently
in secondary lymphoid organs (SLO) such as peripheral lymph nodes
(LN), Peyer’s patches (PP), and mucosal lymphoid tissues. Secondary
lymphoid tissues display highly organized immunoarchitecture includ-
ing conduit systems and T and B cell zones, which are conducive for
efficient antigen distribution, screening, and effector cell proliferation.
Numerous LN are strategically placed around the periphery to drain
antigen from major tissue sites via the lymphatic system. A diversity of
LN are present throughout the body that are distinct based on tissues sites
which they drain, such as skin and mucosa. On the other hand, spleen is
unique as an SLO that is not connected to the lymphatic system but is
specialized for directly filtering antigens from blood (Mebius and Kraal,
2005). The development of SLO has also been well documented and is
dependent on interactions between hematopoietic lymphoid tissue
inducer (LTi) cells and nonhematopoietic lymphoid tissue organizer
cells (LTo) (Drayton et al., 2006; Randall et al., 2008). Critically, SLO
development depends on LTi cells which express membrane-bound lym-
photoxin-a1b2 (LT) interacting with stromal LTo cells bearing the
corresponding LTb receptor (LTbR). This signaling leads to an upregula-
tion of adhesion molecules and chemokines on stromal organizer cells
that positively enforce interactions between LTi and LTo, also recruiting
new lymphocytes to the developing tissue forming organized cell clusters
(Cupedo and Mebius, 2005).

An understanding of lymphoid tissue structure and development has
advanced attempts to generate artificially synthesized lymphoid tissues.
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Since SLO provide highly efficient platforms for initiation of immune
responses, transplantation of artificially synthesized organoids is envi-
sioned to benefit multiple immunotherapies including restoration of
immune function in immunodeficient or aged patients, and enhancing
specific immune responses to tumors or chronic diseases. For example,
treatment of cancer is a contentious area with regards to the immunother-
apeutic benefits of lymphadenectomy over LN preservation in cancer
patients. Some reports suggest that specific cancer treatments, such as
inoculation with Mycobacterium bovis Bacillus Calmette-Guérin cell wall
skeleton (BCG-CWS), offers better survival to ovarian cancer patients
with preserved rather than removed LN (Hayashi et al., 2009). The appli-
cation of artificial LN in these circumstances may augment patient immu-
nity and afford prolonged survival. It is also known that LN inevitably
degenerate with age (Pan et al., 2008), such that artificial lymphoid tissues
could in future replace aging LN in elderly patients. However, despite the
promise for therapeutic application, the field of regenerative medicine is
relatively new and only a few reports have documented the successful
development of artificial lymphoid tissues in murine models (Grikscheit
et al., 2008; Okamoto et al., 2007; Perez et al., 2002; Suematsu and
Watanabe, 2004). Here, we review the structure and development of
SLO and consider factors important for artificial LN and spleen tissue
syntheses.
2. LYMPHOID STRUCTURE AND ELICITATION
OF IMMUNE RESPONSES

2.1. Stromal cell networks

The microarchitecture of secondary lymphoid tissues is critically impor-
tant in response to antigen challenge, thus loss of structure is typically a
hallmark of immune dysfunction (Scandella et al., 2008). Segregation of
cells into separate B and T cell compartments is considered dependent on
distinct nonhematopoietic stromal cells which secrete specific chemo-
kines for attracting B and T cells, respectively. Lymphocytes bearing
specific receptors migrate along these chemokine gradients to assemble
in discrete cellular compartments (Cyster, 1999). In the resting state,
follicular dendritic cells (FDC) are located in the center of primary B cell
follicles and function in both B cell organization and antigen presentation
leading to a selection of B cells expressing a high-affinity antigen receptor
(Cyster et al., 2000). Recruitment of B cells is mediated by the homeostatic
release of chemokine CXCL13 by FDC, which binds to CXCR5 expressed
on B cells (Ansel et al., 2000). Follicular DC are also believed to present
antigen to B cells in a native, unprocessed form that is complexed to
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antibody (Aydar et al., 2005). T cell zones are maintained by a network of
fibroblastic reticular cells (FRC) (Katakai et al., 2004b). A three-dimensional
reticular network in lymphoid tissues provides structural framework for
migrating T cells through secretion of CCL21 and CCL19 chemokines,
attracting T cells expressing the cognate CCR7 receptor (Forster et al.,
1999). Antigen-loaded cells such as DC thatmigrate from peripheral tissue
sites into LN through lymphatics also express CCR7, facilitating their
localization to T cell areas thus permitting antigen scanning by naı̈ve
T cells (Cyster, 1999; Gunn et al., 1999).
2.2. Conduit system

A conduit system also exists in LN (Gretz et al., 2000), spleen (Nolte et al.,
2003), and thymus (Drumea-Mirancea et al., 2006) which is specialized for
transporting small antigens rapidly to T and B cell zones (reviewed by
Roozendaal et al., 2008). The conduit system, which corresponds with the
FRC network, transports small antigens and chemokines through a lumen
formed from extracellular matrix (ECM) and collagen fibers enclosed in
ER-TR7þ FRC (Nolte et al., 2003). Only low-molecular weight antigens
gain access to the conduit system (Nolte et al., 2003; Roozendaal et al.,
2009), whereas larger molecules are selectively excluded and captured in
the spleen marginal zone (MZ) or subcapsular sinus of LN by APC. The
reticular network and conduit system extendmainly throughout the T cell
area of lymphoid tissue eventually connecting to high endothelial venules
(HEV) in LN (Katakai et al., 2004a), however, a less-dense network of
conduit also reaches B cell follicles transporting antigen directly to FDC
and B cells (Roozendaal et al., 2009). The inner lumen of the conduit
system is largely isolated from the external lymphoid microenvironment,
however, at intermittent intervals myeloid DC interrupt by extending
dendritic projections into the conduit, actively sampling and processing
antigen that is presumably presented directly to T cells (Sixt et al., 2005).
2.3. Lymphatics and blood vessels in lymph nodes and spleen

Cell entry into LN is regulated by unique vasculature deriving from both
blood and lymphatics. Naı̈ve lymphocytes circulating in the bloodstream
typically extravasate across specialized blood vessels called HEV that
open into the cortical ridge of LN surrounded by T and B cell zones
(Miyasaka and Tanaka, 2004; Mueller and Germain, 2009). Lymphocyte
migration across HEV is facilitated by the expression of vascular addres-
sins such as peripheral node addressin (PNAd) and chemokines includ-
ing CCL19 and CCL21, which attract lymphocytes expressing L-selectin
and CCR7 cognate receptors, respectively (Butcher et al., 1999). In mucosal
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lymphoid tissues and PP, HEV express mucosal addressin cell adhesion
molecule-1 (MAdCAM-1) enabling specific migration of lymphocytes
expressing a4b7 integrin (Nakache et al., 1989). In contrast, APC and
antigen can enter LN through afferent lymphatics which channel directly
into the subcapsular sinus of LN (Mueller and Germain, 2009).

Spleen is an organ which serves dual purpose in filtering blood for
damaged and aging erythrocytes, and in surveillance for blood-borne
foreign pathogens (Mebius and Kraal, 2005). These functions are reflected
in the structure of spleen which is grossly divided into red andwhite pulp
areas, the latter corresponding to the more immunologically active area of
spleen. Accordingly, spleen white pulp shares a high structural similarity
with LN, displaying organized T and B cell zones and a conduit system
(Mebius and Kraal, 2005; Nolte et al., 2003). However, in terms of cell
entry, differences emerge as spleen lacks afferent lymphatics and HEV,
but contains a distinct vasculature upon which immune cells and parti-
culates enter via blood. A central artery entering spleen divides progres-
sively into smaller branches and terminates in central arterioles in the MZ
and red pulp (Mebius and Kraal, 2005). The MZ interfaces between the
red pulp and white pulp and consists abundantly of phagocytic macro-
phages, MZ B cells and DC, serving as a prominent site for uptake and
surveillance of blood-borne antigens that drain into spleen (Kraal and
Mebius, 2006). This is important since spleen resident APC typically
collect and present blood antigens directly to T cells in the white pulp
(Villadangos and Heath, 2005), in contrast to LN-based antigen presenta-
tion where APC migrate from peripheral sites to regional LN to induce
T cell activation (Henri et al., 2001). Thus, while LN and spleen white pulp
share similar lymphoid architecture, subtle differences exist in cell entry
and antigen presentation which may be important to consider in design
and artificial construction of each tissue type.
3. ORGANOGENESIS OF SECONDARY LYMPHOID TISSUES

3.1. Organogenesis in embryonic stages

Lymphoid structures which mimic SLO are highly desirable in artificially
engineered tissues. Synthesis of lymphoid tissues therefore benefits from
an understanding of SLO development that essentially relies upon cell
organization into discrete compartments. The molecular signaling events
leading to secondary lymphoid tissue organogenesis have been well cov-
ered in a series of reviews (Blum and Pabst, 2006; Cupedo and Mebius,
2005; Mebius, 2003; Randall et al., 2008) and will be briefly discussed here,
with a larger focus on adult lymphoid tissue development. In general,
embryonic SLO organogenesis depends on two fundamental cell types,
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hematopoietic CD45þCD3 CD4þckitþLTþ LTi cells (Finke, 2005; Mebius
et al., 1997) and nonhematopoietic CD45 VCAMþICAMþLTbRþ stromal
LTo cells (Cupedo et al., 2004b). Clustering of both cell types in LN anlagen
and ligation of LTbR on stromal LTo by LT-a1b2 lead to activation of two
NF-kB signaling cascades that result in the stromal expression of adhesion
molecules such as VCAM-1 and homeostatic chemokines including
CCL19, CCL21, and CXCL13 (Dejardin et al., 2002; Honda et al., 2001;
Ngo et al., 1999). Chemokine feedback further enforces the expression of
LT-a1b2 on LTi creating a positive feedback loop between organizer and
inducer cells, also recruiting B and T cells to the developing LN anlagen
via chemotactic attraction. Endothelial cell differentiation forming HEV
and segregation of migrating lymphocytes into T and B cell clusters then
form the basis of secondary lymphoid structure.

Interactions leading to SLO organogenesis have been largely deli-
neated with the aid of gene-targeted mouse models. Both LT-a and LT-b
subunits of LT were established as essential molecules for peripheral LN
and PP development, with mice deficient in either subunit lacking both
LN and PP (Banks et al., 1995; De Togni et al., 1994; Koni et al., 1997). In LT-
b deficient mice, less severe defects were apparent with normal develop-
ment of mesenteric and cervical LN, in contrast LT-a deficient mice
largely lacked these tissues. In contrast, spleen was present in both
mouse models but displayed in abnormal white pulp structure with loss
of MZ and T and B cell segregation, defects which were less pronounced
in LT-b / mice (Banks et al., 1995; De Togni et al., 1994; Koni et al., 1997).
Consistent with these findings, mice deficient in LT receptor, LTbR, also
lacked LN and PP, and showed abnormal spleen white pulp organization
(Futterer et al., 1998). Other signaling molecules such as TRANCE are also
required for LN development. It has been reported that peripheral and
mesenteric LN are absent in TRANCE / mice (Kim et al., 2000). How-
ever, spleen exhibits less structural defects compared to LT- or LTbR-
deficient mice which possess typical T and B cell organization, but dis-
ruptions in MZ formation. Deficient TRANCE expression also correlates
with a reduction in LTi cells, which results in a lack of LN (Kim et al.,
2000). Transcription factors have also been identified which are crucial for
LN and PP development. Mice deficient in retinoic acid receptor-related
orphan receptor (RORg) completely lack LN and PP, however, spleen
white pulp structure is largely unaffected (Eberl et al., 2004; Sun et al.,
2000). Similarly, Id2 / mice also show an absence of LN and PP, while
spleen displays normal immunoarchitecture (Fukuyama et al., 2002;
Yokota et al., 1999). In both models, lack of LN and PP development is
associated with a failure to produce embryonic LTi cells which normally
express both RORg and Id2. Milky spots (MS) represent a unique, omen-
tum-based SLO mediating peritoneal immune responses (Rangel-Moreno
et al., 2009). Not only areMSdistinct to LN and PP in terms of structure and
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function, but also they develop independently LTi cells as demonstrated
by their presence in RORg / and Id2 / mice (Rangel-Moreno et al.,
2009). However, MS require both LT and CXCL13 expressions for devel-
opment, as they are smaller or even absent in CXCL13 / or LTa /

mouse models (Rangel-Moreno et al., 2009).
3.2. Adult-stage generation of lymphoid tissues

Organogenesis of adult lymphoid tissues appears to occur by the same
general mechanisms displayed in embryonic development (Cupedo and
Mebius, 2003). Adult CD3 CD4þ LTi cells have been identified in spleen,
which promote organization of T and B cell structures in secondary
lymphoid tissues (Kim et al., 2005, 2006, 2007). Compared to neonatal
LTi, expression of OX40L and CD30L which supports CD4þ T cell sur-
vival is evident on adult LTi counterparts (Kim et al., 2003, 2005, 2006).
Moreover, in contrast to the common view that LTi are characteristically
CD3 CD4þ cells (Finke, 2005; Kim et al., 2007), two populations of CD4
and CD4þ adult LTi have now been identified (Kim et al., 2008). Apart
from CD4 expression, both adult LTi populations share similar gene
and cell surface marker expressions, characterized as lineage negative
(CD3 CD8 CD27 B220 CD11c ) ThyþCD4 /þ cells, expressing
ckitþOX40LþCD30LþCD69þ markers (Kim et al., 2008). Adult organizer-
like stromal cells have also been identified in multiple SLO including LN,
spleen, and PP (Katakai et al., 2008). Designated marginal reticular cells
(MRC), these cells localize to a layer underneath the subcapsular sinus of
LNorMZof spleen, oftenadjacent toB cell follicles.MRCexpressVCAM-1,
ICAM-1, MAdCAM-1, and TRANCE markers, sharing high similarity
to embryonic LTo. Histological analysis of developing neonatal LN
and spleen white pulp also demonstrated an outward expansion of
MRC from LTo stromal cells in newborn tissue (Katakai et al., 2008).
However, the function of adult MRC is less clear and is presumably
involved in lymphoid structure maintenance rather than organogenesis.
Furthermore, MRC differ between SLO since inhibition of LTbR signaling
by LTbR-Fc treatment disrupts MRC structure in spleen white pulp,
whereasMRC in LN are largely unaffected (Katakai et al., 2008). Therefore,
the functional role of MRC between different lymphoid organs may also
differ.
3.3. Ectopic tertiary lymphoid development

Tertiary lymphoid organs (TLO) are adult-stage temporary immune
structures that display SLO organization but can develop in nonlymphoid
tissue sites (Drayton et al., 2006). Tertiary lymphoid development can be
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mimicked by ectopic expression of certain factors such as CXCL13,
CCL19, CCL21, CXCL12, and IL-7 (Fan et al., 2000; Luther et al., 2000,
2002; Meier et al., 2007). Transgenic mice expressing CXCL13 in the
pancreas attract B cells and lead to development of lymphoid-like tissue
with T and B cell clusters, HEV, and stromal cell networks (Luther et al.,
2000). A role for LT in ectopic lymphoid development was further demon-
strated by blocking signaling via LTbR-Ig fusion protein which reversed
formation of LN-like structures, a signal likely provided by B cells since
crossing mice to a B-cell deficient mouse strain also led to a reduction in
LN development (Luther et al., 2000). Expression of T cell chemokine
CCL21 in the pancreas also induced formation of ectopic lymphoid struc-
tures (Fan et al., 2000; Luther et al., 2002), a phenomenon also observed
with CCL19 expression in the pancreas albeit to a lesser extent (Luther
et al., 2002). Interestingly, expression of CXCL12, which induced only
small and infrequent pancreatic lymphoid infiltrates, displayed a prefer-
ential attraction for DC and plasma cells. A key cytokine for LTi cell
function is IL-7, which signals through IL-7R expressed on LTi to initiate
SLO organogenesis (Yoshida et al., 2002). Overexpression of IL-7 in trans-
genic mice led to enhanced survival of LTi and increased formation of PP
and ectopic LN (Meier et al., 2007). In addition, transfer of neonatal LN
single-cell suspensions into adult recipients also induced ectopic tertiary
lymphoid formation in skin, however, T and B cell segregation only
occurred after immune activation (Cupedo et al., 2004a). Consistent with
ectopic expression studies, hematopoietic cells present in tertiary lym-
phoid structures emigrated from the host, in contrast stromal elements
such as VCAM-1þICAM-1þ cells and MAdCAM-1þ HEV remained of
donor origin (Cupedo et al., 2004a).
3.4. Spleen development

Insight into the cellular requirements for spleen development has come
from transplantation of embryonic day 15 (E15) spleen into the kidney
capsule of adult mice (Glanville et al., 2009). Following transplantation,
normal white pulp formation was evident after 4 weeks containing hema-
topoietic cells segregated into distinct T and B cell zones. Interestingly,
comparable transplant of E15 inguinal LN into adult kidney capsules
failed to show lymphoid tissue development (White et al., 2007), indicat-
ing distinct host-derived cellular or molecular requirements between
spleen and LN organogenesis. To determine the requirement for LTi
cells and expression of LT for spleen development, embryonic spleens
from mutant LTa / mice were transplanted into wild-type hosts.
E15 LTa / spleen grafts displayed splenic development comparable to
wild-type grafts, indicating that LT signaling from adult host-derived
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inducer-like cells was sufficient to promote spleen organogenesis which is
initiated by embryonic stromal cells (Glanville et al., 2009). In terms of
artificial spleen engineering, donor spleen stromal cells alone appear to be
adequate to support spleen organogenesis, driven by host-derived, LT-
expressing adult inducer-like cells.

The adult inducer cells that promote spleen organization are likely to
correspond to CD11c CD3 CD4þOX40LþCD30Lþ adult LTi-like cells
(Kim et al., 2007, 2008), rather than B cells which also express LT. Transfer
of LTi-like cells but not splenocytes (including B cells) induces formation
of T and B cell compartments in spleen of LTa / mice (Kim et al., 2007).
Similarly, transfer of LTa / splenocytes into Rag / mice leads to B and
T cell segregation, indicating B cells expressing LT are not required for
initial cellular organization (Withers et al., 2007). In contrast, the mainte-
nance of spleen structure once assembled may differ in LT requirements.
In this case, a function for B cells expressing LT-a1b2 has been demon-
strated in maintaining signaling required for cellular organization. In
particular, spleen MZ organization is critically regulated by LT expressed
on B cells as demonstrated by mice with a B cell-specific deletion of the
LTb gene (B-LTb KO mice) (Tumanov et al., 2002). In these mice, reduc-
tions in B cells, MOMA-1þ metallophilic macrophages, and ER-TR9þ MZ
macrophages were observed compared to wild-type mice. A later study
also supported the importance of B cells in both MZ development and
maintenance (Nolte et al., 2004). Additionally, the presence of FDC was
also largely reduced in B-LTb KO mice, demonstrating a role for LTþ

B cells in FDC development. In contrast, B-LTb KO mesenteric LN immu-
nizedwith sheep redblood cells (SRBC) showedFDCclustering comparable
towild-typemice, indicatingdivergent roles forLTþBcells in spleenandLN
FDC development. Furthermore, lethally irradiated LTa / mice reconsti-
tutedwith amixture of bonemarrow (BM) from LTa / and either BCR /

or TCR / mice showed that B cells expressing LTa, but not T cells
are required for the development of spleen FDC clusters (Fu et al., 1998).

The tissue distribution of adult LTi-like cells has been reported in
various mouse models. Adult LTi-like cells are normally present in spleen
(Kim et al., 2008) but are absent in BM of Rag / mice and blood of CD3e-
transgenic mice (Glanville et al., 2009), mouse models that lack mature
lymphocyte subsets allowing more sensitive detection of LTi. Despite an
absence of LTi-like cells in BM, reconstitution of irradiated CD3e mice
with Rag / BM cells results in differentiation of donor adult LTi-like
cells, suggesting that they indeed derive from BM progenitors. These
observations can be interpreted through a model whereby adoptively
transferred BM progenitors engraft into spleen hematopoietic niches
where they are directed to develop by local signals into LTi-like cells.
Precedent exists for spleen microenvironments supporting hematopoiesis
from BM progenitors (Despars and O’Neill, 2006b; Periasamy et al., 2009)
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which could explain why adult LTi-like cells are selectively present in
spleen, but not BM or circulating in blood. Furthermore, E15 inguinal LN
grafted into adult mouse kidney capsules, which normally colonized
during embryogenesis by LTi (White et al., 2007), may not be supported
in adult mice due to a lack of circulating LTi-like cells and absence
of hematopoietic niches which sustain LTi progenitor development.
In contrast, spleen posseses a hematopoietic microenvironment (Dor
et al., 2006) that could support LTi differentiation.
4. ENGINEERING ARTIFICIAL SECONDARY
LYMPHOID TISSUE

4.1. In vitro synthesis of lymphoid structures

Tissue culture systems have provided an accessible means for studying
cell development and function in vitro. In this respect, traditional two-
dimensional tissue culture in plates or flasks has been successfully used
for maintenance of specific cell lineages (O’Neill et al., 2004). On the other
hand, recreation of complex multicellular interactions evident in second-
ary lymphoid structures requires development of alternative culture sys-
tems. In vitro culture systems for this purpose are largely concerned with
two main features, three-dimensional culture systems that promote more
physiologically relevant cell-to-cell interactions, and scaffold materials
that mimic ECM networks upon which cells can attach and migrate.
Multicellular spheroid culture (MCS) is a three-dimensional culture tech-
nique that takes advantage of the tendency for some mammalian cell
types to aggregate when cultured in suspension (Lin and Chang, 2008).
Cells grown in MCS display features distinct from equivalent monolayer
cultures in terms of gene expression and cell function, which more accu-
rately represent physiological tissue (Lin and Chang, 2008). A bioreactor
system has also been developed that comprises central and outer culture
spaces, the central culture space supporting matrix sheets that allow
three-dimensional cell adherence and migration. Using DC-loaded matri-
ces and following leukocyte inoculation, bioreactor-assisted cell culture
promotes effective leukocyte clustering that is responsive to LPS
treatment, demonstrating the development of functional lymphoid-like
structure (Giese et al., 2006).
4.2. Scaffold materials

The scaffold material used in culture systems including bioreactors has
been subject to much consideration. Scaffold materials tested in vitro in
cell culture include agarose, alginate, polyamide, polyethylene glycol
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(PEG)-based hydrogels, CellFoam, and collagen (Clark et al., 2005; Giese
et al., 2006; Gonen-Wadmany et al., 2007; Irvine et al., 2008; Poznansky
et al., 2000; Shapiro and Cohen, 1997; Stachowiak and Irvine, 2008;
Zimmermann et al., 2007). For bioreactor tissue culture, Giese et al.
(2006) reported that collagen and polyamide materials best supported
cell attachment, growth, and stability. The use of composite biosynthetic
scaffolds combining biological macromolecules with synthetic polymer
scaffolds is now being investigated (Dikovsky et al., 2006). One approach
combining PEG hydrogels with fibrillar collagen matrix infused into the
pores has proven efficient for supporting T cell and DC migration
(Stachowiak and Irvine, 2008). Moreover, naı̈ve T cell migration was
improved with CCL21 anchored to the PEG scaffold. PEG-conjugated
collagen and fibrin, but not albumin, were also shown to sustain smooth
muscle cell migration within a hydrogel network (Dikovsky et al., 2006;
Gonen-Wadmany et al., 2007). Composite scaffolds appear advantageous
for in vivo application since the biological activity of ECM proteins,
important for cell adhesion andmigration, is coupledwith the mechanical
strength of synthetic scaffolds prolonging otherwise rapid ECM
biodegradation.

The design and fabrication of scaffolds are achieving greater control
with the aid of computers and automated bioprinting techniques
(Hollister, 2005). Three-dimensional scaffold fabrication using layer-by-
layer nozzle-based printing has in some applications shown superior
efficacy to older processing techniques, such as murine cartilage regener-
ation using Bioplotter-fabricated PEG/PBT scaffolds compared with the
same scaffold fabricated by porogen leaching (Hollister, 2005). Organ
printing is a further approach to layer-by-layer scaffold fabrication
using tissue spheroid units rather than synthetic molecules as building
blocks. This process forgoes synthetic scaffolds altogether, instead relying
on close placement of cells and subsequent cell–cell fusion to form three-
dimensional structures (Boland et al., 2006; Mironov et al., 2003, 2009). An
advantage of direct cell printing is that controlled placement of multiple
cell types may in future facilitate construction of intraorgan blood vessels,
providing a possible option for vascularization of artificial lymphoid
tissues.

At present, an elegant study has demonstrated the immense potential
for synthetic scaffolds to encourage vascularization and development of
artificial tissue in vivo (Richardson et al., 2001). A polymer (polylactide-
coglycolide) scaffold was engineered to incorporate multiple vascular
growth factors that were released into the tissue microenvironment at
different rates. Vascular endothelial growth factor (VEGF) and platelet-
derived growth factor (PDGF) are distinct angiogenic growth factors,
supporting early and late stages of blood vessel formation, respectively
(von Tell et al., 2006; Yancopoulos et al., 2000). To incorporate these
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growth factors into scaffolds, polymer particles were mixed with both
lyophilized VEGF which permitted rapid release of growth factor, and
premicrosphere encapsulated PDGF designed to delay growth factor
release. Once scaffolds were processed and implanted into rats, controlled
release of each growth factor led to a stable and mature vasculature
formation, an outcome which could not be replicated by bolus injection
of both growth factors simultaneously, or by scaffold-released delivery
of either growth factor alone (Richardson et al., 2001). Therefore, artifi-
cially engineered lymphoid tissues which, like other avascular tissue
implants, are restricted by size due to limited oxygen diffusion, could
benefit greatly from induced blood vessel formation provided by scaf-
fold-incorporated controlled growth factor release (Griffith and
Naughton, 2002).
4.3. Trials to generate in vivo artificial lymphoid organs

The ability to engineer artificial lymphoid tissue is an attractive prospect
for immunotherapy, however, few reports have described successful
in vivo lymphoid tissue synthesis. In extension to in vitro culture systems,
one strategy for constructing in vivo artificial tissue involves the use of
biocompatible three-dimensional scaffolds, which provide a structural
basis for predonor cell attachment as well as subsequent space and
framework for lymphocyte emigration and tissue formation. Artificial
tissues successfully generated utilizing this technique include LN
(Okamoto et al., 2007; Suematsu and Watanabe, 2004), mucosal immune
tissues (Perez et al., 2002), and spleen (Grikscheit et al., 2008).

Synthesis of in vivo primary lymphoid tissue has yet been reported,
however, tissue-engineered thymic organoids have been successfully
generated in vitro (Clark et al., 2005; Poznansky et al., 2000). Artificial
thymic microenvironments were developed by seeding mouse thymic
stromal cells (Poznansky et al., 2000) or human skin-derived fibroblasts
and keratinocytes (Clark et al., 2005) onto a CellFoammatrix, a biodegrad-
able three-dimensional carbon matrix fabricated by high-temperature
precipitation of tantalum. These matrices possess an open pore structure
permissive for infiltration and integration of cells into engraftment sites.
Coculture with human BM-derived CD34þ hematopoietic progenitor cells
generate mature and functional CD4þ or CD8þ T cells after 2–3 weeks,
which importantly express a large repertoire of T cell receptors. In this
system, cell–cell associations provided by three-dimensional thymic
architecture critically gave rise to efficient T cell differentiation from
human hematopoietic stem cells (HSC). These studies offer promise for
artificial generation of diverse and functional T cell populations that can
be applied therapeutically in immunosuppressed patients.
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4.4. Artificial mucosal tissue

Tissue-engineered neogenesis of small intestine has previously been
investigated as a potential therapy for treating short bowel syndrome
(Choi and Vacanti, 1997), however, concurrent development of mucosal
immune tissue has also been demonstrated through neointestine synthe-
sis (Perez et al., 2002). This technique involves disaggregation of neonatal
3-day-old rat small bowel followed by seeding onto biodegradable poly-
mer tubes created from polyglycolic acid fibers coated with collagen.
Constructs are then implanted into the omentum of adult recipients and
anastomosed after 4 weeks to the native jejunum. After 20 weeks, the
presence of CD3þ T cells, CD32þ B cells, CD56þ NK cells, and CD68þ

macrophages was detected in tissue-engineered neointestines compara-
ble to that of native jejunum, confirming artificial mucosal tissue with
immune potential had developed.
4.5. Artificial spleen

Construction of artificial splenic tissue is a highly attractive prospect as
spleen autotransplantations are widely performed in splenectomized
individuals to preserve partial immune function to blood-borne infections
(Yamataka et al., 1996). However, transplantation of spleen fragments is
highly inefficient, associated with mass tissue necrosis followed by grad-
ual tissue regeneration (Pabst et al., 1991). To gain a better understanding
of the cellular processes involved in spleen regeneration, spleen trans-
plantations have been widely studied in animal and murine models
(Marques et al., 2002; Miko et al., 2007). Construction of tissue-engineered
spleen (TES) is a recent advancement in murine spleen transplantation
technology, where disaggregated spleen units from neonatal 6-day-old
rats are loaded onto a polyglycolic acid scaffold coated with collagen and
transplanted into the omentum (Grikscheit et al., 2008). Unlike spleen
fragment transplantation, organogenesis of TES proceeds without early
phase necrosis yet results in formation of normal spleen structure, includ-
ing red andwhite pulp areas. Furthermore, the immunological function of
TES has been demonstrated by higher survival rates of TES-transplanted
recipients upon challenge with pneumococcal infection compared with
splenectomized controls (Grikscheit et al., 2008).

The protective function of spleen autotransplants is a somewhat con-
tentious area although it is generally assumed to associate with donor age,
which in turn correlates with the successful development of organized
splenic white pulp structure (Willfuhr et al., 1992). Autotransplants
of neonatal origin that display immune function including tissue-
engineered (Grikscheit et al., 2008) and fragmented spleen (Willfuhr
et al., 1992) are associated with normal white pulp structure, whereas
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spleen transplants from older donors display poorly developed white
pulp structure and loss of immunological function (Willfuhr et al., 1992).
Therefore, it is important to dissect which cellular components in neona-
tal spleen tissue efficiently initiate white pulp formation, and translate
these findings to adult spleen tissue. Clearly, the majority of splenocytes
present in spleen transplants are not required for tissue regeneration. This
is evidenced by mass necrosis of spleen fragments after initial transplan-
tation, leaving behind a few surviving stromal cells, lymphocytes, and
macrophages (Westermann and Pabst, 1997). Similarly, transplanted-LN
undergo initial tissue destruction before regeneration of lymphoid micro-
architecture (Hammerschmidt et al., 2008). Transplantation with GFPþ

donor LN further demonstrated that tissue regenerates with host-derived
GFP hematopoietic lymphocytes, but importantly with donor origin
stromal cells as shown by GFPþ colocalization with FRC markers glyco-
protein podoplanin (gp38) and ER-TR7 (Hammerschmidt et al., 2008).
Furthermore, transplantation of embryonic spleen also suggests
that spleen stromal cells alone are sufficient to promote lymphoid regen-
eration via host-derived hematopoietic cells (Glanville et al., 2009).
As hematopoietic cells comprise an overwhelming proportion of whole
splenocytes, and considering that current artificial and autologous spleen
transplantation techniques are heavily restricted by graft size such that
only a fraction of spleen can be successfully transplanted, it is tempting to
speculate a technique which enriches total nonhematopoietic spleen cells
followed by implantation could improve the outcome of lymphoid tissue
development, especially from adult spleen. Considering the potential role
for stromal cells in spleen organogenesis, investigation of characterized
spleen stromal cell lines which support hematopoiesis (Despars and
O’Neill, 2006a) may be beneficial for future development of artificial
spleen.
4.6. Artificial lymph nodes

A more calculated approach to artificial LN construction that recognizes
the roles of stromal and hematopoietic cells in lymphoid tissue organo-
genesis was performed by Suematsu and Watanabe (2004). A thymic
stromal cell line, TEL-2, was initially selected as a stromal backbone for
supporting thymic organoid development (Nakashima et al., 1990). TEL-2
cells, which express LTbR and adhesion molecules such as VCAM-1, were
further transfected to express LT-a, mimicking signaling performed by
LTi cells in SLO neogenesis. TEL-2–LTa stromal cells embedded into a
collagenous scaffold prepared from freeze-dried bovine Achilles tendon
and implanted into the kidney subcapsule space of recipient mice suc-
cessfully generated a microenvironment conducive for attracting hema-
topoietic cells and forming secondary lymphoid structure (Suematsu and
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Watanabe, 2004). Moreover, inclusion of activated BM-derived DC into
the scaffold further augmented formation of lymphoid structure. Artifi-
cial organoids resembled normal SLO containing organized B and T cell
clusters, germinal centers, FDC networks, FRC networks (including con-
duit systems), and HEV-like structures. They also displayed effective
immunological function demonstrated by the production of high-affinity
antigen specific IgG1 antibody following inoculation and antigen restim-
ulation (Suematsu and Watanabe, 2004). Artificial LN were also trans-
plantable to immunodeficient SCID mice where they elicited strong
secondary immune responses, resulting in the enrichment of memory
B cells and production of large amounts of high-affinity antigen-specific
IgG class antibodies (Okamoto et al., 2007). In addition, a population of
CD44hiCD62Llo memory-type CD4þ T cells was also highly enriched in
aLN (Okamoto et al., 2007), which, by gene expression profile and flow
cytometry analysis, appeared to correspond with follicular B helper T
(TFH) cells (Akiba et al., 2005; Chtanova et al., 2004; Fazilleau et al., 2009;
Nurieva et al., 2008; Reinhardt et al., 2009; Yu et al., 2009). Overall, these
results demonstrate the feasibility of constructing artificial lymphoid
tissues from biocompatible scaffolds embedded with stromal cells
and DC which serve to attract host cells and form secondary lymphoid
structures.

Organogenesis of aLN may be further improved with growth factor
therapy to enhance lymphatic and blood vessel formation. Injection of
platelet-rich plasma was shown to enhance viability and regeneration of
transplanted LN fragments in rats, presumably due to undefined growth
factors which promote lymphangiogenesis (Hadamitzky et al., 2009).
Moreover, the specific expression of VEGF-C on LN prior to transplanta-
tion demonstrated a significant improvement in connections of trans-
planted LN to the host lymphatic vasculature (Tammela et al., 2007).
Scaffolds which control release of various angiogenic growth factors
could also find application in aLN organogenesis to promote blood vessel
formation (Richardson et al., 2001). The nature of stromal cells used in
aLN may also require consideration since stromal elements that direct
immune responses are distinct between different LN (Ahrendt et al., 2008;
Hammerschmidt et al., 2008). Finally, while stromal cells are well recog-
nized for providing a cellular backbone for lymphoid neogenesis and cell
organization, more consideration may in future be given to the role of DC
in promoting T and B cell clusters in artificial tissue (Suematsu and
Watanabe, 2004). Recently, TLO such as inducible bronchus-associated
lymphoid tissue (iBALT) were shown to require DC for structural main-
tenance, with selective depletion of CD11cþ DC using a diphtheria toxin
receptor (DTR) transgenic mouse model resulting in abolition of iBALT
(GeurtsvanKessel et al., 2009). Myeloid DC present in iBALT expressed
high levels of homeostatic chemokine mRNA CXCL12, CXCL13, CCL19,
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and CCL21 (GeurtsvanKessel et al., 2009), suggesting they play a role in B
and T cell organization, a function typically associated with stromal cells
in SLO. Moreover, these myeloid DC expressed high levels of LT-b
indicating that they may also signal to stromal organizer cells via LTbR
ligation, further supporting a role for DC in TLO organization. Consistent
with these observations, repeated intratracheal injections of GM-CSF-
cultured BM-DC also induced formation of iBALT structures
(GeurtsvanKessel et al., 2009). In light of this broader role for DC in
lymphoid organogenesis, multiple DC subsets and activation states
have been characterized (Tan and O’Neill, 2005) which may provide
further scope for optimization of artificially synthesized lymphoid tissue.
5. FUTURE PROSPECTS

Current progress into the generation of artificial lymphoid tissues is
promising highlighted by the development of artificial LN from highly
characterized stromal components and factors (Suematsu and Watanabe,
2004). Furthermore, there appears to be excellent promise for generation
of alternate lymphoid tissue such as artificial spleen (Grikscheit et al.,
2008). A translational step into the clinical setting is now timely but may
require several intermediate studies such as large animal modeling to
determine proper feasibility. However, one model to assess the develop-
ment and function of human artificial lymphoid tissues is transplantation
into ‘‘humanized mice’’ (Manz and Di Santo, 2009). Humanized mice are
murine chimeras possessing human hematopoietic cells generated by the
adoptive transfer of human stem cells into various immunodeficient
mouse strains (Ishikawa et al., 2005; Ito et al., 2002; Shultz et al., 2005;
Traggiai et al., 2004). These mouse models have historically suffered from
low levels of human leukocyte chimerism, however, in recent years the
efficiency has improved dramatically allowing humanized mice to
become an effective model for studying several aspects of human immu-
nology (Ishikawa et al., 2007; Legrand et al., 2009; Shultz et al., 2007;
Unsinger et al., 2009; Zhang et al., 2007). Development of human artificial
lymphoid tissue in these models may be one approach to demonstrate
immunological efficacy prior to consideration in human trials.

New developments in stem cell technology could facilitate the use of
induced pluripotent stem (iPS) cells for human artificial lymphoid tissue
engineering, owing to the potential for iPS to differentiate into multiple
cell lineages (Takahashi et al., 2007). Embryonic stem (ES) cells can also
generate multiple cell lineages (Cho et al., 1999; de Pooter et al., 2003;
Nakano et al., 1994; Nakayama et al., 1998; Schmitt et al., 2004), however,
iPS can be induced from adult cells ranging from HSC to differentiated
lymphocytes avoiding ethical concerns surrounding the use of ES cells
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(Eminli et al., 2009; Takahashi and Yamanaka, 2006). It is envisioned that
iPS can be induced from the patient and differentiated into all stromal and
hematopoietic components required for artificial tissue organogenesis,
bypassing issues with tissue incompatibility. However, iPS represent a
relatively new technology such that clinical use in human immunother-
apy will likely take several years (Yamanaka, 2009). Alternatively, estab-
lished human cell lines may be useful in the interim for trialling
construction of human artificial lymphoid tissue. APC, which have been
shown to be important for development of murine aLN along with stro-
mal organizer cells (Fig. 5.1A; Suematsu and Watanabe, 2004) are pres-
ently available as a human cell line (Butler et al., 2007).

Human artificial (aAPC) represent a K562 parental cell line engineered
to express HLA-A2, CD80, and CD83. Functionally, aAPC are capable of
inducing antigen specific cytotoxic T cell responses comparable to DC
differentiated and matured from human monocytes using GM-CSF/IL-4,
TNF-a, and double-strandedRNA (Butler et al., 2007). The future availabil-
ity of human stromal cell lines could facilitate development of artificial
human LN constructed from human stromal cells and APC, transplanted
into ‘‘humanized’’ mice (Fig. 5.1B). Eventually, the use of ES or iPS cells is
anticipated to supply both stromal organizer and hematopoietic inducer
cells for human artificial lymphoid tissue development (Fig. 5.1C).
6. CONCLUSION

SLO are specialized tissues that facilitate interactions between APC and
effector lymphocytes. Tissue-engineered lymphoid organs attempt to
recapitulate this structure by providing artificial tissue upon which adap-
tive immune responses can be initiated. The success of engineering artifi-
cial lymphoid tissue has benefited from a better understanding of
lymphoid organogenesis and molecular signaling events which are
required for lymphoid structure formation. Future challenges now lie in
the development of a diversity of secondary lymphoid tissues and appli-
cation of this knowledge to clinical immunotherapy.
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and coordinated through one protein, activation-induced deami-

nase (AID). AID produces diversity by converting cytosine to uracil

within the immunoglobulin loci. The deoxyuracil residue is muta-

genic when paired with deoxyguanosine, since it mimics thymidine

during DNA replication. Additionally, B cells can manipulate the

DNA repair pathways so that deoxyuracils are not faithfully

repaired. Therefore, an intricate balance exists which is regulated

at multiple stages to promote mutation of immunoglobulin genes,

while retaining integrity of the rest of the genome. Here we discuss

and summarize the current understanding of how AID functions to

cause somatic hypermutation.
1. INTRODUCTION

Diversity in antibodies is produced during two stages in B cell develop-
ment. In pre-B cells, rearrangement of variable (V), diversity (D), and
joining ( J) gene segments occurs to produce the primary repertoire of
immunoglobulin (Ig) receptors. In mature B cells, Ig receptors undergo
affinity maturation (AM) and class switch recombination (CSR) to pro-
duce the secondary, or memory, repertoire of antibodies. The latter event
occurs after antigen binds to the receptor, which initiates a dynamic
cascade of cell signaling events to cause cellular activation (Gauld et al.,
2002; Kurosaki, 2002; Niiro and Clark, 2002). The result of this activation is
the differentiation of B cells into plasma or memory cells, which now
express a large repertoire of antibodies to clear a plethora of different
foreign antigens.

Diversity in the secondary repertoire is created by modifying rear-
ranged V(D)J sequences and switching heavy chain constant genes (CH).
Alteration of the V gene sequence is achieved by either direct mutagenesis
or DNA strand breaks during gene conversion (GC), where strand breaks
are repaired using different pseudo-V gene segments in a templated
recombination mechanism. In either case, cells containing mutations
that increase antibody affinity will be selected to divide and further
mutate, while mutations that decrease affinity will be lost through apo-
ptosis. Alteration of the CH gene occurs by DNA strand breaks in the
switch (S) regions flanking the different CH gene exons. Breaks in two
different S regions are then repaired by nonhomologous end joining to
remove the intervening introns and exons. This recombination event
allows of production of a defined VDJ exon with different CH gene
isotypes to regulate antibody function.

A single enzyme is responsible for initiating diversity in V(D)J and CH

genes: activation-induced deaminase (AID), which is a cytosine deami-
nase that enzymatically converts cytosine to uracil. Uracil is mutagenic
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when paired with guanosine in DNA, since dU mimics dT during repli-
cation, and the U:G mismatch triggers error-prone DNA repair in B cells.
Thus, AID introduces somatic hypermutation (SHM) by converting dC to
dU. In this chapter, the initiating events caused by AID are referred to as
SHM, regardless of whether dU is found in the V or S regions. If dU
occurs in V(D)J genes, SHM can produce AM or GC. If dU occurs in S
regions, SHM can produce CSR. Furthermore, the proteins that process
dU, such as UNG, MSH2, MSH6, and DNA polymerases, have the same
activity whether dU is located in the V(D)J or S regions. Therefore, SHM,
caused by AID-generated dU, underpins the three mechanisms of AM,
GC, and CSR.

One key aspect of AID biology is the balance between mutagenic
diversity and genomic integrity. When AID functions at non-Ig loci,
both mutation and translocations can promote carcinogenesis (Ramiro
et al., 2007). Thus, it is imperative to the organism that AID activity will
be tightly controlled to inhibit possible oncogenic transformation, while
still allowing the production of a wide diversity of antibodies. In this
chapter, we highlight the intricate aspects of AID biology and regulation.
2. AID, THE MASTER CATALYST

The mechanisms of AM, GC, and CSR were significantly advanced by the
ground-breaking discovery of AID (Muramatsu et al., 1999) and its
subsequent genetic analysis in humans, mice, and chickens (Arakawa
et al., 2002; Rada et al., 2002b; Revy et al., 2000). Broader analysis of AID
indicates that an intricate network of regulatory mechanisms controls its
expression at the levels of gene transcription, mRNA stability, protein
localization, protein phosphorylation, and cell signaling.
2.1. Gene transcription

The Aicda locus, which encodes AID, is comprised of four regions which
control transcription (Yadav et al., 2006). Starting at the 50 end of the locus,
the first region is located about 8 kb upstream of exon 1 in the mouse, and
contains potential motifs for NF-kB, STAT6, C/EBP, and Smad3/4 pro-
teins (Tran et al., 2010; Yadav et al., 2006). This region may respond to
stimulation by the mitogen lipopolysaccharide (LPS) and the T-cell mimic
anti-CD40 antibody to upregulate expression of AID after stimulation.
The second region is located about 1 kb upstream of exon 1 and has sites
for NF-kB, Stat 6, Sp transcription factors, HoxC4, and Pax5 (Dedeoglu
et al., 2004; Gonda et al., 2003; Park et al., 2009; Yadav et al., 2006). The third
region is found in the intron between exon 1 and exon 2 and contains sites
for NF-kB, E proteins, Pax5, and several other factors (Gonda et al., 2003;
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Sayegh et al., 2003; Tran et al., 2010; Yadav et al., 2006). The fourth region is
located about 6 kb downstream of exon 5 in the mouse (Tran et al., 2010;
Yadav et al., 2006) and appears to function as an enhancer (Crouch et al.,
2007). Many of the sites in the first three regions bind to transcription
factors that are upregulated after B cell stimulation, so they likely play a
role in inducing AID in vivo.

Conversely, proteins Id1, Id2, and Id3 reduce CSR (Goldfarb et al.,
1996; Quong et al., 1999), potentially by inhibiting AID transcription
(Gonda et al., 2003; Sayegh et al., 2003). The Id proteins function by
binding to stimulatory factors such as E47 and Pax5, which prevents
their binding to DNA. Other factors inhibit transcription by binding to
sites in the third region (Tran et al., 2010), and may play a role in restrict-
ing AID expression to B cells, and not to other cell types.

Additional proteins that appear to function independently of antigen
stimulation bind to sites in the second region. For example, Sp1 and Sp2
proteins bind to sites in vitro (Yadav et al., 2006), but their in vivo role is not
known. Recently, the sex hormones estrogen and progesterone have been
found to regulate AID expression (Pauklin and Petersen-Mahrt, 2009;
Pauklin et al., 2009). Both estrogen and progesterone response elements
have been found within the second region, and they could have a poten-
tial role in upregulating AID in hormone-based cancers and autoimmu-
nity (Maul and Gearhart, 2009; Petersen-Mahrt et al., 2009). However, as
with the Sp-binding sites, further research is required to understand the
role these factors play during normal B cell development and activation.
Finally, B cells from oldmice and humans have less AID and reduced CSR
compared to B cells from young mice and humans. This may be due, in
part, to degradation of E47 mRNA, which encodes molecules that stimu-
late AID transcription (Frasca et al., 2008). In B cells from old mice,
tristetraprolin binds to E47 mRNA and degrades it, whereas in B cells
from youngmice, tristetraprolin is phosphorylated and cannot bind to the
mRNA (Frasca et al., 2007). Thus, by defining the factors that limit anti-
body diversity with age, it may be possible to increase the efficacy of
vaccines in the elderly.
2.2. mRNA transcripts

Once the Aicda gene is transcribed, the level of transcripts can be con-
trolled by regulation though microRNA molecules. Specifically, miR-155
binds to the 30 untranslated region of AID mRNA and destabilizes the
message to reduce SHM and CSR. However, in vivo analysis of miR-155
function in SHM is complicated by the global defects of miR-155 on other
cells that alter germinal center cell number and function (Kohlhaas et al.,
2009; Thai et al., 2007; Vigorito et al., 2007). To overcome the global effect,
specific mutants of the 30 untranslated region of AID, which prevent
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binding of miR-155, were utilized to examine SHM and CSR in vivo. As
predicted, AID expression was increased in splenic and Peyer’s patch
mutant B cells (Dorsett et al., 2008; Teng et al., 2008), and there was a
dramatic increase in chromosomal translocations between Myc and Igh
genes (Dorsett et al., 2008). However, the increased AID protein only
modestly elevated the level of SHM in the V or S regions and decreased
AM, suggesting that excess AID was not specifically targeted to the Ig
locus. This is consistent with earlier studies showing that overexpression
of AID does not always produce increased SHM or CSR, perhaps because
of inactivation of the protein by an unknown mechanism (Muto et al.,
2006). Another molecule, miR-181b, regulates AID expression in a similar
manner, by binding to the 30 untranslated region and lowering the levels
of AID and CSR (de Yebenes et al., 2008). Nonetheless, since both of these
miR molecules affect multiple genes as well as Aicda, their biological role
in AID expression remains unclear.
2.3. Protein localization

Extensive analyses have identified posttranslational mechanisms that
coordinate AID subcellular localization. Surprisingly, AID protein is far
more abundant in the cytoplasm than in the nucleus, as first seen in the
Ramos cell line using artificial AID-GFP constructs (Rada et al., 2002a) and
in primary B cells looking at endogenous AID (Schrader et al., 2005). Three
mechanisms appear to be involved in actively moving AID in and out of
the nucleus, and their respective amino acid residues are illustrated in
Fig. 6.1. First, high levels of AIDmay be retained in the cytoplasm through
an anchor sequence in the C-terminal region of AID (Patenaude et al.,
2009). This would be advantageous, as the protein is quickly degraded
when it is in the nucleus through polyubiquitination (Aoufouchi et al.,
2008). Second, AID is actively imported into the nucleus through the use
of an N-terminal nuclear localization signal (NLS); however, the exact
amino acids that form the NLS are currently unclear. Di Noia and collea-
gues speculated that a nonclassical NLS exists in AID (Fig. 6.1, NLSa)
(Patenaude et al., 2009), while Honjo and colleagues have identified a
classical bipartite NLS (Fig. 6.1, NLSb) (Ito et al., 2004; Shinkura et al.,
2004). In addition, it has also been proposed that AID may passively
diffuse into the nucleus (Brar et al., 2004; McBride et al., 2004). However,
the identification of an interaction of AID with importin-a suggests that
AID does contain a NLS for active nuclear import (Patenaude et al., 2009).
Third, a conserved nuclear export signal (NES) in the C-terminal residues
189–198 transports most of the protein out of the nucleus (Brar et al., 2004;
Ito et al., 2004; McBride et al., 2004). Treatment of B cells with leptomycin
B, a potent inhibitor of the CRM1 export receptor, increased the abun-
dance of AID in the nucleus. Further dissection of the C-terminal domain
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showed that export can be abolished by the single point mutation F198A,
resulting in increased SHM and CSR activities (McBride et al., 2004).
Therefore, these three mechanisms exquisitely regulate the amount of
AID in the nucleus, ensuring that there will be only low levels of the
mutagenic protein after cell activation. Perturbing any one of these path-
ways can affect the fine balance between antibody diversity and chromo-
somal mutagenesis.
2.4. AID phosphorylation

While subcellular localization and degradation coordinate the access of
AID to genomic DNA, phosphorylation regulates the activity of the pro-
tein. AID phosphorylation was first identified by examining catalytic
differences between protein purified from B cells (AIDBcell) or from 293
kidney cells (AID293). Alt and colleagues reported that AID293 was less
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active than AIDBcell when tested for deamination activity using an in vitro
transcription-based assay (Chaudhuri et al., 2004). Subsequent analysis by
mass spectroscopy identified four phosphorylation sites in AID: T27, S38,
T140, and Y184 (Basu et al., 2005; McBride et al., 2006, 2008; Pasqualucci
et al., 2006). Residues T27 and S38 are phosphorylated in a coordinated
fashion by protein kinase A (PKA), and they regulate protein–protein
interaction between AID and replication protein A (RPA) (Basu et al.,
2005; Pasqualucci et al., 2006). Mutation of these residues in B cells stimu-
lated ex vivo or in DT40 cells inhibits SHM, GC, and CSR (Basu et al., 2005;
Chatterji et al., 2007; McBride et al., 2006; Pasqualucci et al., 2006; Vuong
et al., 2009). Indeed, S38 appears to be the key phosphorylation site in vivo,
as mice with a mutation of this residue had reduced SHM and CSR
(Cheng et al., 2009; McBride et al., 2008). Recently Nussenzweig and
colleagues reported phosphorylation of AID residue T140 in mouse
B cells after activation with LPS and IL-4 (McBride et al., 2008). Unlike
S38, T140 is not a substrate for PKA phosphorylation but rather for
protein kinase C (PKC). Furthermore, mutation of T140 to alanine in
mice showed that SHM was affected more significantly than CSR, sug-
gesting that differential phosphorylation of S38 and T140 can produce
different biological outcomes. In contrast to residues T27, S38, and T140,
phosphorylation of Y184 may not play a significant role in AID function,
since replacement of the amino acid in B cells did not have an effect on
CSR (Basu et al., 2005).
2.5. Cell signaling

As implied in its name, AID is induced after activation by exogenous
stimuli, such as bacterial or viral molecules, CD40 ligand, and antigen or
anti-Ig. To study the signaling pathways for these activators, murine
splenic B cells can be conveniently stimulated ex vivo, and the levels of
AID and CSR can be measured. Abundant AID expression and CSR occur
after stimulation with LPS, which binds to toll-like receptor 4, or with
anti-CD40 antibody, which binds to the CD40 receptor. In contrast, AID
expression is delayed and CSR is ablated when cells are stimulated with
anti-IgM, which binds to the Ig receptor (Heltemes-Harris et al., 2008;
Jabara et al., 2008). Furthermore, AID expression and CSR are actually
suppressed when anti-IgM is added to cells stimulated with LPS or anti-
CD40 (Heltemes-Harris et al., 2008; Jabara et al., 2008; Rush et al., 2002).
This inhibition has been linked to upregulation of the phosphatidyl inosi-
tol 3 kinase (PI3K) pathway (Doi et al., 2008; Heltemes-Harris et al., 2008;
Omori et al., 2006). Indeed, balancing the levels of PI3K activation may
determine whether CSR is induced or suppressed. B cells treated with LPS
and IL-4 activate PI3K signaling,whichphosphorylatesAKT to a low-enough
concentration to allow CSR. In contrast, the addition of anti-IgM along
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with LPS and IL-4 enhanced AKT phosphorylation to a greater extent
to inhibit CSR (Heltemes-Harris et al., 2008). A recent report shows that
anti-IgM also inhibits AID expression through the calcium-signaling
pathway (Hauser et al., 2008). Taken together, these reports suggest that
IgM cross-linking ex vivo mimics the end of a germinal center response,
where B cells with high-affinity receptors stop SHM and are converted
into memory and plasma cells. However, the complete story has yet
to emerge, as another stimulator, 8-mercaptoguanosine, which binds to
toll-like receptor 7 located in endosomes, has the ability to work synergis-
tically with IgM cross-linking to promote AID expression and CSR
(Tsukamoto et al., 2009). Perhaps after B cell receptor cross-linking, stim-
ulation from different cellular microenvironments regulates the outcome
of B cell differentiation.
3. THE TARGETING ENIGMA

3.1. Global targeting to the Ig loci

The Ig loci are mutated in well-defined regions encoding rearranged V
genes on the heavy and light chain loci, and S regions on the heavy chain
locus. Sequence analysis has shown that mutation occurs in a 2-kb region
around V(D)J genes (Lebecque and Gearhart, 1990) and in a 4–7-kb region
around S regions (Xue et al., 2006). Thus, it can be assumed that AID
functions on 10 5 to 10 6 of the genome at a given time, suggesting that
precise levels of regulation target AID to such a small percentage of the
genome. Examination of the mutational pattern in both the V(D)J and the
S regions shows that mutation occurs in close proximity to either the V
gene promoter or S intron promoters, respectively. This has led to the
hypothesis that AID is recruited to the Ig region in association with the
transcriptional machinery. In fact, mice with transgenes that have been
altered to express different amounts of transcripts have mutation frequen-
cies that correlate with the level of transcription (Bachl et al., 2001; Fukita
et al., 1998; Sharpe et al., 1991). Transcription of the heavy and light chain
loci is coordinated by three well-characterized promoters/enhancers
shown in Fig. 6.2: V gene promoter, intronic enhancer (iE), and down-
stream enhancers (30E and hypersensitive (HS) sites). While all the three
elements and the V/S regions are involved in transcription and SHM, the
specific role for each has been harder to elucidate.

The V gene promoter can be replaced with other non-Ig promoters in
transgenes and still promote SHM, suggesting that the promoter may
serve to only maintain adequate levels of transcription (Betz et al., 1994;
Fukita et al., 1998; Shen et al., 2001; Tumas-Brundage and Manser, 1997).
However, this may not be the whole story since at least one promoter,
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human elongation factor 1-a, can induce high levels of transcription
without supporting SHM (Yang et al., 2006). Furthermore, substitution
of the V gene promoter has not been studied in the endogenous locus with
knock-in mice, so its requirement is not fully resolved.

The seeming lack of specificity for promoters would suggest that the
V(D)J sequence contains the information required for targeting. However,
when the VJ sequence is removed and replaced by different sequences in
Igk transgenes, the new sequence is still subject to SHM (Peters and Storb,
1996; Yelamos et al., 1995). Additionally, when a 750-bp insert is intro-
duced between the leader sequence and the VDJ sequence, the mutation
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window shifts �750 bp toward the promoter (Tumas-Brundage and
Manser, 1997). Interestingly, when the promoter is removed from the
leader sequence by insertion of 2 kb of l DNA, SHM is lost, indicating
that targetingmay be linked by the proximity of the promoter to the leader
sequence and/or the leader splice site (Winter et al., 1997). However, the
caveat still remains that replacement of the V(D)J sequence in the endoge-
nous context has not been studied, so its requirement is not certain.

Switch regions are also a target for SHM and sustain as high a fre-
quency of mutation as does the V region. Knockout mice with a partial
deletion of Sm tandem repeats had decreased CSR (Luby et al., 2001;
Schrader et al., 2007), and when the entire 4.6 kb region containing Sm
tandem repeat sequences was deleted, SHM and CSR were ablated
(Khamlichi et al., 2004). Thus, the repetitive sequences in Sm are a magnet
for AID activity and are required.

iEs are located in the intron sequence between either the VDJ sequence
and the S region for Cm, or the VJ sequence and C gene in the Igk locus.
A plethora of papers in the 1990s addressed the role of iE for SHM in
murine transgenes encoding rearranged V and C genes from the Igh and
Igk loci (Odegard and Schatz, 2006). Interpretation of the varying results
was complicated by the random location of transgenes in the genome,
which could affect transcription levels. As technology advanced, it
became possible to directly delete iE from the endogenous locus in knock-
out mice. These studies consistently showed that iE had no effect on SHM
in the Igh or Igk loci (Inlay et al., 2006; Perlot et al., 2005).

30 Enhancers are located downstream of the C genes on the heavy and
light chain loci and are important for transcription of rearranged V genes.
Interestingly, it now appears that all three loci have multiple 30 enhancers
which play a role in SHM. As in the iE studies, conflicting results were
obtained from transgenic mice, whereas more reliable data were found in
germline knockout mice. The IgH 30E is characterized by the presence of
four DNaseI HS sites downstream of the Ca gene (Dariavach et al., 1991;
Lieberson et al., 1991; Madisen and Groudine, 1994; Matthias and
Baltimore, 1993; Pettersson et al., 1990). Partial deletion of the HS sites
did not affect SHM (Le Morvan et al., 2003), whereas deletion of the entire
four sites in a 230-kb bacterial artificial chromosome mouse model
showed reduced transcription and SHM (Dunnick et al., 2009). The Igk
locus has a 30E (Meyer and Neuberger, 1989) and a downstream enhancer,
Ed (Liu et al., 2002). Deletion of 30E reduced transcription but did not
affect SHM (Inlay et al., 2006; van der Stoep et al., 1998), whereas deletion
of Ed reduced both transcription and SHM (Xiang and Garrard, 2008).
Likewise, the chicken Igl locus has a defined 30E (Bulfone-Paus et al.,
1995) and another downstream enhancer, 30RR (Kothapalli et al., 2008).
In the DT40 cell line, deletion of the 30E had no effect on SHM (Yang
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et al., 2006), but deletion of 30RR ablated transcription and SHM
(Kothapalli et al., 2008). Furthermore, the 30RR appears to contain a
site that recruits AID to the Igl locus (Blagodatski et al., 2009; Kothapalli
et al., 2008).

To summarize, transcription is necessary for SHM. The V gene pro-
moter may not be required; the V(D)J sequence may not be required; the S
region sequence is required; the iE is not required; and both the 30 E and
downstream enhancers are required. Finally, the downstream enhancer
may contain a motif that recruits AID to the Ig loci, although more work is
needed to establish this.

In addition to AID being recruited to the Ig loci, it has become increas-
ingly clear that AID is erroneously targeted to non-Ig genes throughout
the genome. In the absence of DNA repair proteins uracil DNA glyco-
slyase (UNG or UDG) and mismatch repair protein MSH2, Schatz and
colleagues found a high mutation frequency for several non-Ig genes that
was only 10-fold lower than in V genes (Liu et al., 2008). The handful of
different genes that might be targets for AID suggest that the promoters/
enhancers of Ig genes are not the only elements that attract AID. Interest-
ingly, the recent finding that Igl, Igh, and Myc are spatially contained in
close proximity in the nucleus suggests that nuclear organization affects
both Ig and non-Ig targeting (Wang et al., 2009a).

Other transcriptional events such as chromatin acetylation may play a
role in coordinating AID activity. Examination of the abundance of his-
tone acetylation upon stimulation in vivo or ex vivo suggests that the V and
Sm regions are maintained in a hyperacetylated (open) state independent
of cellular activation, and the C region had a lower level of acetylation (Li
et al., 2004a; Odegard et al., 2005; Wang et al., 2006, 2009b). Furthermore,
downstream S regions are maintained at a low level of acetylation until
stimulated with specific cytokines to promote transcription (Li et al.,
2004a; Nambu et al., 2003; Wang et al., 2006, 2009b; Woo et al., 2003).
While these events seem to be independent of AID, the difference in the
acetylation state might coordinate a functional window for AID activity in
the V and S regions, and block activity in the C region.
3.2. Regional targeting to V and S regions

Once recruited to the Ig loci, AID-generated mutations show a distinctive
bell-shaped pattern, suggesting increased activity in particular regions
(Fig. 6.2). This pattern of mutation is advantageous to antibody diversity
in that the peakofmutation is over either theVexonor the repetitive core in
the S regions. Thus, in the V region, SHMpromotesAMandGC, and in the
S region, SHM initiates double-strand breaks for CSR. This focusing of
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mutation in a defined region is determined by the nucleotide sequence of
the loci which coordinates transcription and AID activity.

Targeting to the V region is similar for rearranged V genes on the Igk,
Igl, and Igh loci. Mutations start just downstream of the V promoter,
proceed for about 2 kb, and then trail off (Lebecque and Gearhart, 1990).
The pattern is the same regardless of which J gene segment is being used.
For example, if a V gene rearranges to JH1, mutations cease 1550 bp before
the iEm, whereas if a V gene rearranges to JH4, mutations end just before
iEm. This indicates that the V gene promoter determines the start of
mutation, and the iE does not stop mutation. Rather, AID appears to be
recruited to the promoter, proceeds for 2 kb and then may dissociate from
the ongoing transcription complex. Indeed, one of the most perplexing
questions is ‘‘why do mutations start and why do they stop?’’ The fre-
quencyofmutations, about 10 2 to 10 3mutationsper bp, is similar in both
coding and flanking sequences around the V gene, and is higher in the
complementarity-determining regions because of selection during AM for
amino acids giving high-affinity interactions with the cognate antigen.

Targeting to the intronic S region promotes a high level of deamination
events in close proximity, which lead to double-strand break formation.
Mutations start downstream of the intronic exon promoter, accumulate
for about 4–7 kb depending on the length of the S region, and then fall off
(Xue et al., 2006). The pattern, although longer, is thus similar to that in the
V region, in that AID may assemble at the intronic promoter, proceed
through the S region, and then dissociate. The S regions in mammals are
unique in that they contain clusters of G nucleotides on the nontran-
scribed strand, and repetitive hotspot motifs for AID deamination,
WGCW (W ¼ A or T). The G clusters have been shown to form R-loops,
or RNA–DNA hybrids, in vivo (Yu et al., 2003) and in vitro (Roy and
Lieber, 2009). The corresponding C clusters on the transcribed strand
can stably hybridize to G-rich RNA. One effect of R-loop structure is
that the nontranscribed strand becomes single stranded in regions larger
than transcription bubbles to maximize deamination by AID. In contrast
to mice, switching in frogs is not all that efficient, since the Sm regions do
not have G clusters or R-loops (Zarrin et al., 2004).

A second effect of R-loop structure is to slow down RNA polymerase II
molecules as they move through the S region. It has been shown in vitro
that R-loops block transcription (Canugovi et al., 2009; Tornaletti et al.,
2008), because the polymerases may have difficulty in unwinding the
stable RNA–DNA hybrid. A recent study (Rajagopal et al., 2009)
measured the density of polymerases in vivo by nuclear run-on, and
found a 5-10-fold increase in polymerases located in close proximity to
the Sm repetitive core. These polymerases appeared to be piling up
because they encountered a road-block ahead caused by the RNA–DNA
hybrids. Once the polymerases slowly make it through the repetitive core,
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they speed up again as the R-loop density is lower. In addition to Sm,
R-loops are present in other S regions (Huang et al., 2006; Yu et al., 2003),
and RNA polymerase II has been shown to accumulate in Sg3 (Wang
et al., 2009b), which suggests a conserved mechanism for deamination
in S regions. If AID is associated with transcription, this model of
paused polymerases may allow AID more opportunity to deaminate
DNA, producing more mutations and strand breaks.

Is AID differentially targeted to V or S regions during certain cellular
responses? This may seem to occur during stimulation of B cells ex vivo
with mitogens, where mutations are found only in S regions and not in V
regions (Reina-San-Martin et al., 2003). Conversely, in B cell lines such as
Ramos and DT40, mutations accumulate in V regions and apparently not
in S regions, as the cells do not undergo switching. In addition, IgM
memory cells from humans (Klein et al., 1998; Rosner et al., 2001) and
mice (Dogan et al., 2009) have mutations in the V region, but have not
switched isotypes. This suggests that specific cofactors may guide AID to
the V or S regions; however, other interpretations are possible. Mutations
may occur first in S regions in cells stimulated ex vivo because of the
formation of R-loops and RNA polymerase II pausing, which magnifies
AID activity. Likewise, B cell lines or memory IgM cells may have muta-
tions in S regions but not switch because some proteins involved in NHEJ
are not functioning. It would be interesting to compare the time course of
mutations in V and S regions following immunization in vivo, to see
whether they occur simultaneously or differentially.
3.3. Local targeting to hotspots

As mentioned earlier, SHM occurs at a greater frequency in a defined
sequence motif, WRC (W ¼ A/T, R ¼ A/G) (Rogozin and Kolchanov,
1992). Prior to the discovery of AID, sequence analysis of V genes indi-
cated that the complementarity-determining regions are heavily biased in
using the serine codons AGC or AGT, while framework regions utilized
the TCN serine codons (Wagner et al., 1995). Additionally, SHM occurred
in AGY (Y ¼ C/T) codons at a higher rate than in TCN, indicating a bias
to focus mutation within the complementarity-determining regions for
AM. Further analyses using in vivo mouse models deficient for different
DNA repair enzymes have defined WGCW in V and S regions as the
mutational hotspot for SHM (Delbos et al., 2007; Ehrenstein and
Neuberger, 1999; Martomo et al., 2004; Rada et al., 1998). Characterization
of AID activity in vitro indicates that deamination events occur with a
high frequency within the WRC context (Bransteitter et al., 2004; Larijani
et al., 2005; Yu et al., 2004). As with AM in V genes, CSR has evolved to
utilize these hotspots to focus AID activity to the WGCWmotif within the
repetitive core repeat (Davis et al., 1980; Dunnick et al., 1980; Kataoka et al.,
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1981; Sakano et al., 1980). Additionally, the frequency and palindromic
nature of the motif allows deamination events on both strands to occur
in close proximity to promote double-strand break formation versus
mutagenic repair.

In addition to the catalytic residues in the AID protein, a loop at
residues 113–123 has recently been identified as the main determinant
in directing activity to the WRC hotspot (Fig. 6.1). Altering this loop to
resemble the homologous loop from APOBEC3 family members switches
the hotspot motif to that of the APOBEC3 enzymes (Kohli et al., 2009;
Wang et al., 2010). Taken together, this indicates a coevolution of both the
Ig loci sequence and the AID enzyme.
3.4. Access to both DNA strands

An additional phenomenon of AID activity within the Ig loci is the ability
of AID to access and mutate both the strands. Mutational analysis in
Ung / Msh2 / and Ung / Msh6 / mice indicates that both the tran-
scribed and nontranscribed strands are mutated at an equal frequency
(Rada et al., 2004; Shen et al., 2006; Xue et al., 2006). Most models for AID
deamination suggest that AID can access single-strand DNA within tran-
scription bubbles and R-loops. However, these models would only allow
deamination of the nontemplate strand as the template strand would be
either associated with the RNA polymerase or contained within an RNA–
DNA complex. To achieve access to both strands, it has been proposed
that antisense transcription occurs throughout the Ig loci. In support of
this model, RT-PCR has been utilized to identify low levels of antisense
transcripts in V and S regions (Chowdhury et al., 2008; Perlot et al., 2008;
Ronai et al., 2007). Although these findings have been called into question
(Zhao et al., 2009), the identification of �11 nt single-strand DNA patches
on both the strands of DNA in Ramos cells supports the presence of
transient transcription bubbles moving in opposite directions (Ronai
et al., 2007). However, the finding that cytosines are also mutated on
both strands in the S regions ((Xue et al., 2006) is particularly perplexing,
since the transcribed strand contains an RNA–DNA hybrid in the R-loop
structures. Two other theories have been proposed to make this strand
available for attack by AID. (1) The DNA upstream of an elongating RNA
polymerase II may be supercoiled and unwound, which allows AID
access to both the strands (Shen and Storb, 2004). (2) The DNA in
R-loops may be collapsed by endogenous RNase H digestion, which
would expose single-strand regions on the transcribed strand (Huang
et al., 2007). Taken together, this data suggest that the models for AID
activity within the Ig loci are still in a state of flux and require further
experimentation to fully define AID targeting.
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3.5. Protein cofactors

In addition to the mechanisms discussed earlier, extensive work has been
performed in an attempt to identify AID protein partners. It has been
hypothesized that targeting will be tightly regulated by protein cofactors
which coordinate the recruitment and activity of AID. With recent
advances in AID protein biochemistry, the intricate network of AID
interactions is just beginning to emerge.

As discussed in Section 2.4, AID is phosphorylated by PKA and PKC
(Basu et al., 2005; McBride et al., 2008; Pasqualucci et al., 2006). The
phosphorylation by PKA is required for interaction with RPA and dis-
ruption of this interaction inhibits AID activity (Basu et al., 2005; Cheng
et al., 2009; McBride et al., 2006; Vuong et al., 2009). While these interac-
tions are well characterized, the precise mechanism by which RPA assists
AID is unclear. Recently Chaudhuri and colleagues found that neither
PKA or RPA is required to physically recruit AID to DNA (Vuong et al.,
2009). In vitro analysis suggests that RPA stabilizes the transcription
bubble to allow AID activity on single-strand DNA (Chaudhuri et al.,
2004). Yet it remains unclear whether the interaction between the proteins
promotes a coordinated handoff of the DNA between the two proteins
andwhether the RPA–AID interaction exists during the deamination step.

While a genetic interaction between transcription and SHM has been
well documented, very little is known about the role of the transcrip-
tion complex in physically recruiting AID to the DNA. AID has been
shown to physically interact with RNA polymerase II; however, no
further analysis was done to examine which subunit is responsible for
this interaction (Nambu et al., 2003). Recently, Neuberger and collea-
gues identified an interaction between AID and CTNNBL1. Deletion of
CTNNBL1 or mutation of AID residues 39–42 abolished AID activity
(Conticello et al., 2008). Interestingly, CTNNBL1 physically interacts
with proteins associated with the RNA polymerase II spliceosome,
suggesting that AID may travel with the transcription complex. This
interaction also highlights the potential role for splice sites in initiating
AID activity on DNA. In a critical experiment, Radbruch and colleagues
(Hein et al., 1998) reported that switching was abrogated when the
splice donor site for Ig1 was deleted, even though Ig1 transcripts
were made. Another study showed that mice lacking the splice donor
site for the Im exon had switching, but splicing still occurred in tran-
scripts using pseudo-splice donor sites (Kuzin et al., 2000). Thus, AID
could be brought to the Ig loci through interaction with cis-acting
elements (potentially using E2A family members; Michael et al., 2003;
Schoetz et al., 2006; Tanaka et al., 2010), bind to the RNA polymerase II
spliceosome complex through CTNNBL1, and load onto DNA at donor
splice sites to interact with RPA and deaminate cytosine residues.
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This may explain why mutation is highest in V genes after donor splice
sites in the leader and V exons, and in S regions after donor splice sites
in intronic exons preceding Sm, Sg, and Sa (Fig. 6.2).
4. ROGUE URACILS

4.1. Deoxyuracil in DNA

Since the first identification of AID, extensive work has been performed in
an attempt to elucidate the mechanism of how it promotes genomic
mutation. Initial identification of the sequence similarity between AID
and APOBEC1 suggested that AID may function as an RNA deaminase
(Muramatsu et al., 1999). Honjo et al. (2005) proposed an RNA editing
model in which AID binds to an unidentified mRNA partner in the
cytoplasm and deaminates C to U. The edited mRNA would then pro-
duce a protein, perhaps an endonuclease, that cleaves DNA during the
immune response. Alternatively, identification of a mutational hotspot in
SHM (WRC, discussed earlier) suggested a mechanism in which altera-
tions occur directly at dC:dG basepairs (Rada et al., 1998). Neuberger and
colleagues proposed a DNA deamination model in which AID deami-
nates dC bases to dU, which initiates error-prone processing by some
proteins in the base excision repair (BER) and mismatch repair (MMR)
pathways. Support for direct deamination of DNA came from the finding
that UNG is required for CSR and GC, and alters SHM frequency and
mutational spectra (Di Noia and Neuberger, 2002, 2004; Petersen-Mahrt
et al., 2002; Rada et al., 2002b; Saribasak et al., 2006). The importance of
UNG to the mechanism of CSR is further confirmed by genetic mutations
in the human UNG gene that block CSR and cause hyper-IgM syndrome
(Imai et al., 2003; Kavli et al., 2005). During classical BER, UNG binds to
dU:dG mispairs in DNA, and the uracil base is cleaved to form an abasic
site. Abasic sites are then cleaved by apurinic/apryimidinic endonuclease
(APE1) to remove the abasic nucleotide, and DNA polymerase (Pol) b
resynthesizes the DNA strand. However, during SHM and CSR, the
canonical mechanism of BER is impaired by altering the resynthesis step
with low-fidelity polymerases, which introduce mutations and single-
strand DNA breaks. Consistent with this model shown in Fig. 6.3, deletion
or inhibition of UNG and APE1 results in decreased CSR (Guikema et al.,
2007; Rada et al., 2002b; Schrader et al., 2005). Alternatively, deletion of
Polb supports increased CSR and double-strand breaks by inhibiting the
faithful resynthesis step of canonical BER (Wu and Stavnezer, 2007).

In opposition to the existence of uracil in DNA, several reports from
Honjo and colleagues have suggested that UNG is important for CSR
through an alternative mechanism not requiring DNA glycosylase
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activity (Begum et al., 2004). Mutants of active site residues in UNG had
no detectable glycosylase activity in vitro, but they were proficient for CSR
when complementing Ung / cells (Begum et al., 2004, 2009). Addition-
ally, the identification of normal gH2AX foci formation and strand break
junctions in the absence of UNG supports a model by which UNG is
involved in resolving the double-strand breaks, perhaps as a scaffold for
other proteins, but not in the direct formation of the breaks (Begum et al.,
2007). However, these results have been called into question because of a
possible dissociation between in vitro UNG glycosylase activity and
in vivo CSR (Di Noia et al., 2007; Kavli et al., 2005; Stivers, 2004). It has
been shown that several UNG active-site mutants with severally dimin-
ished in vitro activity still retain enough glycosylase activity in vivo to
promote CSR. Honjo and colleagues also report that deletion of either
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APE1 or APE2 had no effect on CSR (Sabouri et al., 2009), in contrast to an
earlier finding by Stavnezer and colleagues (Guikema et al., 2007). Fur-
thermore, the results looking at gH2AX and strand breaks did not take
into account the interplay between BER and MMR in causing double-
strand breaks and CSR in the S region, since it is possible that breaks were
still being formed because of cleavage during MMR (Di Noia et al., 2007;
Rada et al., 2004; Shen et al., 2006).

Additional evidence for AID acting as a DNA deaminase comes from
direct analysis of the purified protein in vitro. Using specific single-strand
DNA substrates, recombinant AID is able to convert a single dC residue to
dU, creating a UNG/APE1-sensitive substrate (Bransteitter et al., 2003;
Dickerson et al., 2003). Additionally, looking at whole cellular extracts
from either splenic B cells or HEK293T cells expressing recombinant AID,
single-strand DNA oligomers containing multiple hotspot motifs become
susceptible to treatment with UNG and APE1 (Chaudhuri et al., 2003).
Furthermore, double-strand DNA substrates were protected from AID
deamination except in the presence of transcription, which explains the
requirement for a single-strand DNA substrate (Chaudhuri et al., 2003;
Ramiro et al., 2003). However, in these experiments, AID was able to bind
to RNA molecules, albeit with lower affinity than the single-strand DNA
template, allowing the slight possibility that AID may also function on
RNA (Dickerson et al., 2003). Additionally, the known RNA editing
enzyme APOBEC1 has residual activity on single-strand DNA in similar
assays, suggesting that these enzymes might act promiscuously (Harris
et al., 2002). Taken together with the genetic data, most evidence suggests
that AID functions as a DNA deaminase. However, the true test of AID
activity would be to directly detect the accumulation of dU residues in
genomic DNA during an immune response, which has yet to be charac-
terized at this time.
4.2. Mismatch repair and DNA polymerases

In addition to being processed by UNG, deoxyuracil can be recognized by
some proteins in the MMR pathway (Fig. 6.3). The canonical role of MMR
is to remove DNA mismatches and repair DNA in an accurate manner.
The MSH2–MSH6 or MSH2–MSH3 heterodimer binds to a mismatch and
recruits MLH1–PMS2 to the site. This nicks the DNA downstream of the
mismatch and attracts exonuclease 1 (Exo1) to remove the strand contain-
ing the mismatch. The gap is then filled in by high-fidelity Pold to restore
the original sequence. However, during the immune response, deficiency
in some MMR proteins resulted in decreased, not increased, mutation
frequencies, suggesting that these proteins actually generate mutations.
Extensive analyses have examined the roles of these proteins in proces-
sing mismatches in the V and S regions (Bardwell et al., 2004; Ehrenstein
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and Neuberger, 1999; Ehrenstein et al., 2001; Frey et al., 1998; Jacobs et al.,
1998; Kim et al., 1999; Kong andMaizels, 1999; Li et al., 2004b, 2006; Martin
et al., 2003; Martomo et al., 2004; Phung et al., 1998, 1999; Rada et al., 1998,
2004; Schrader et al., 2003; Shen et al., 2006; Wiesendanger et al., 2000;
Winter et al., 1998). The prevailing model is that MSH2–MSH6 binds to a
U:G mismatch and recruits DNA PolZ (Wilson et al., 2005), a low-fidelity
polymerase that preferentially synthesizes mispairs when copying T
nucleotides (Matsuda et al., 2001). This explains why the frequency of
mutations at A:T bp drops dramatically in the absence of MSH2, MSH6,
and Exo1, which interact with PolZ. In contrast, mice deficient for the
other MMR proteins had no alteration in the SHM spectra.

Throughout evolution, specialized DNA polymerases have evolved to
copy DNA with low fidelity to bypass DNA damaging lesions. To see
whether these polymerases are recruited to the Ig loci to increase
sequence diversity, SHM was examined in mice deficient for eight poly-
merases. Pols b, m, l, and i are not involved in SHM (Bertocci et al., 2002;
Esposito et al., 2000; Martomo et al., 2006; McDonald et al., 2003), while the
role of Poly is currently unclear because of conflicting results (Martomo
et al., 2008; Masuda et al., 2005, 2006, 2007; Zan et al., 2005). However, there
is well-defined evidence that Polz, Rev1, and PolZ have distinct roles
during SHM. Conditional inactivation of Polz in mice resulted in �2–3-
fold decrease in mutation frequency without altering mutation spectra,
consistent with a role for Polz in extending DNA mismatches (Diaz et al.,
2001; Schenten et al., 2009; Zan et al., 2001). However, due to the embry-
onic lethality and genomic instability seen in Polz-deficient mice and
B cells, the full extent for a role of Polz has yet to be defined. Rev1 is a
cytidyl transferase which causes G:C to C:G transversions in SHM
(Arakawa et al., 2006; Jansen et al., 2006; Masuda et al., 2009; Ross and
Sale, 2006). More recently, a catalytically inactive Rev1 mutant has been
examined and suggests a minor role for mouse Rev1 contributing to
transition mutations as well (Masuda et al., 2009); however, this was not
seen in DT40 cells (Ross and Sale, 2006).

Compared to the modest roles of Polz and Rev1, PolZ has been shown
to contribute significantly to diversity during SHM. Genetic mutation of
PolZ in humans with xeroderma pigmentosum variant disease or deletion
of the gene in mice resulted in a dramatic decrease in mutations at A:T
residues with a modest decrease in the overall mutation frequency
(Delbos et al., 2005; Faili et al., 2004; Zeng et al., 2001, 2004). Significantly,
the decrease in A:T mutations is similar to the effects seen in mice with
deficiencies in MSH2, MSH6, and Exo1, suggesting that they all act in the
same pathway. Additionally, the MSH2–MSH6 heterodimer interacts
physically and functionally with PolZ, suggesting a shared role in pro-
ducing A:T mutations during SHM (Wilson et al., 2005). However, close
examination of the spectra from Msh6 / mice or double deletion of both
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MSH2 and PolZ indicates that the effects are not completely overlapping
(Delbos et al., 2007; Martomo et al., 2005). Individually, Polh / (which
encodes PolZ) or Msh2 / mice display �15% residual A:T mutations,
while the double knockout shows only�1% A:T mutations. This suggests
that while PolZ and MSH2 function together, they are also able to con-
tribute to SHM independently of each another. Interestingly, a recent
paper by Reynaud and colleagues analyzed a Polk / Polh / mouse
strain that shows �7% mutations at A:T, suggesting that Polk may func-
tion during SHM and contribute a modest amount of mutations to the
overall spectra (Faili et al., 2009). The identification of Polk-dependent
mutations is significant as previous reports failed to identify such a role
(Schenten et al., 2002; Shimizu et al., 2003, 2005). However, it is difficult to
differentiate between the possibility that Polk function is obscured by the
highmutation rate of PolZ, or whether the normal presence of PolZ blocks
Polk access in wildtype mice. The residual A:T mutations seen in the
absence of both PolZ and Polk also suggest that a third polymerase can
function in SHM. The total lack of A:T mutations in the Polh / Msh2 /

mice indicates that MSH2 is responsible for recruiting PolZ, Polk, and
perhaps other polymerases.

One key aspect that promotes error-prone replication is the role of
proliferating cell nuclear antigen (PCNA) monoubiquitination. PCNA is a
replication accessory factor which functions in recruiting, tethering, and
switching DNA polymerases at the primer-template junction. To coordi-
nate these events, PCNA is posttranslationally modified at residue K164
to initiate either error-free or error-prone repair (Ulrich, 2009). Mutation
of the K164 residue, or deletion of PCNA ubiquitin ligase Rad18, resulted
in a dramatic decrease in A:T mutations during SHM (Arakawa et al.,
2006; Bachl et al., 2006; Langerak et al., 2007; Roa et al., 2008). This suggests
that PCNA modification is regulated to cause DNA synthesis by PolZ in
activated B cells. Additionally, loss of PCNA ubiquitination in DT40 cell
lines, but not mice, showed a decrease in overall mutation frequency,
indicating an increased utilization of PCNA-Ub in DT40 (Arakawa et al.,
2006; Bachl et al., 2006). Interestingly, in DT40 cells, the combination of a
PCNA mutant and deletion of Rev1 showed almost complete loss of
SHM, suggesting a potential inability of the canonical DNA replication
machinery to bypass dU (Arakawa et al., 2006). Therefore, it would be
interesting to further understand the role of PCNA modification in SHM,
as the K164 mutation also effects other modifications such as sumoylation
and polyubiquitination.

Finally, do the UNG and MSH2–MSH6 pathways shown in Fig. 6.3
operate at the same time and compete for the same dU? Some models
suggest that they do (Rada et al., 2004; Schanz et al., 2009), whereas others
propose that the pathways are temporally separated during the G1 and
S phases of the cell cycle (Krijger et al., 2009; Weill and Reynaud, 2008).
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A noncompetitive model is appealing in that MSH2–MSH6 could recog-
nize U:G in double-strand DNA during G1 and UNG would be most
active on single-strand DNA in replication during S phase. The latter
model is based on the recent finding that UNG is weakly expressed
during G1 and is upregulated during early S phase (Hagen et al., 2008).
However, Stavnezer and colleagues show that UNG is fully active during
the G1 phase and that double-strand DNA breaks are produced during
G1 (Schrader et al., 2007). This process of breaks is dependent upon both
UNG and MSH2–MSH6, suggesting that both pathways function in G1.
Taken together, it is currently unclear when and by what nature UNG
and MSH2–MSH6 function in relation to each other when processing
AID-generated uracils.
5. CONCLUSION

Even with the shear girth of information on AID biology, it is still unclear
how the cell fully coordinates deamination events with mutagenic repair.
As mentioned earlier, the mechanisms of AM, GC, and CSR start with a
single protein, yet require extensive cellular coordination to produce the
initiating deamination. It has been established thatAID is tightly regulated
at the levels of transcription, translation, phosphorylation, ubiquitination,
cellular localization, protein stability, and protein–protein interaction.
While much has been discovered, many components are still unknown.
It is clear that cis-regulatory elements and transcriptionare involved, yet no
true recruiting factor has been identified forAID.AID specifically interacts
with RPA, yet it is unclear how or whether this interaction assists in AID
localizing to single-strand DNA. Does AID travel with the transcription
machinery in association with CTNNBL1 alone or is it more complicated?
Thesequestions andmanymore require further studies tounderstandhow
AID is targeted to the Ig loci to cause SHM.

In addition to regulation of AID deamination, the processing of dU
also plays a significant role in achieving efficient antibody diversity. Of
specific interest is how a B cell can manipulate DNA repair to function
either less efficiently or less faithfully at the Ig loci, while still maintaining
overall genomic integrity. Does the frequency and/or proximity of deam-
ination events overwhelm the faithful capacities of BER and MMR? Is
DNA repair specifically inhibited at the Ig loci during an immune
response, or does repair become error-prone throughout the cell? It has
been reported that DNA repair can be more or less efficient in different
regions of the genome (Alrefai et al., 2007; Liu et al., 2008); however, it is
not known what mechanisms coordinate this phenotype. Therefore, it
remains to be fully understoodwhat role DNA repair plays in transforming
AID-dependent uracils into mutations.
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Abstract BCL6 is a transcriptional repressor which has emerged as a critical
regulator of germinal centers (GC), the sites where B cells are

selected based on the production of antibodies with high affinity

for the antigen. BCL6 is also a frequently activated oncogene in the

pathogenesis of human B cell lymphomas, most of which derive
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role of BCL6 in normal B cell development and lymphomagenesis

depends upon the identification of the full set of genes that are

targets of its transcriptional regulatory function. Recently, the

identification of BCL6 targets has been implemented with the use

of genome-wide chromatin immunoprecipitation and gene expres-

sion profiling approaches. A large set of promoters have been

shown to be physically bound by BCL6, but only a fraction of

them appears to be subjected to transcriptional repression in GC

B cells. This set of BCL6 targets points to a number of cellular

functions which are likely to be directly controlled by BCL6 during

GC development, including activation, survival, DNA-damage

response, cell cycle arrest, cytokine-, toll-like receptor-, TGFb-,
WNT-signaling, and differentiation. Overall, BCL6 is revealing its

dual role of ‘‘safe-keeper’’ in preventing centroblasts from respond-

ing to signals leading to a premature exit from the GC and of

contributor to lymphomagenesis by allowing the instauration

of conditions favorable to malignant transformation.
1. GERMINAL CENTER: THE SITE OF BCL6 EXPRESSION
IN B CELLS

The immune system is dedicated to the recognition of foreign antigens and
to the defense from invading microorganisms. B lymphocytes are critical
players of the humoral immune responses being involved in the production
of antibodies. The differentiation process leading to the generation of effec-
tor B cells startswhenmature naı̈ve B cellsmigrate from the bonemarrow to
the secondary lymphoidorganswhere, upon encountering the antigen, they
are stimulated to proliferate and further differentiate into centroblasts (CB).
The high rate of cell division occurring at this stage of development leads to
the formationof characteristic histological structures calledgerminal centers
(GCs). The GCs provide the environment where B cells undergo genetic
modifications of their immunoglobulin (Ig) genes and are then selected
according to their newly acquired ability to recognize with high-affinity
the antigen. At the CB stage, B cells are subjected to the somatic hypermuta-
tion (SHM) of the Ig variable region locus, a keymechanism for the genera-
tion of high-affinity antibodies. Highly proliferatingCB further differentiate
into centrocytes that undergo class switch recombination (CSR), a somatic
recombination mechanism that allows the expression of different Ig classes
associated todistinct effector functions.At the endof theGC reaction, B cells
that acquired the ability of expressing high-affinity Ig receptors are posi-
tively selected and further differentiate intomemory B cells or plasma cells.
Plasma cells are the effector cells dedicated to the production of a high
amount of antibodies, while the immunological memory is maintained by
memory B cells that are the effectors of rapid immunological response upon
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later exposure to the same antigen (Klein and Dalla-Favera, 2008).
The inability of inducingGC reactions in response to an antigenic challenge
is associated with severe immune deficiency syndromes consistent with
the critical role of this stage of B cell differentiation for humoral immune
response (Durandy et al., 2007). Moreover, each stage of B cell development
can be associated with malignant transformation giving rise to different
types of lymphoma and leukemia. However,mostmature B cellsmalignan-
cies, including Burkitt lymphoma (BL), diffuse large B cell lymphoma
(DLBCL), and follicular lymphoma (FL) originate frommalignant transfor-
mation of GC B cells. The physiologic genetic modifications occurring dur-
ing the GC reaction appear to have a role in the process of malignant
transformation, suggesting that a tight regulation of B cell differentiation is
critical. Thus, considerable effort has beenmade to investigate the role ofGC
in physiology andmalignancy.
2. BCL6 AND ITS FUNCTION

A major player of the GC reaction is represented by BCL6, a transcrip-
tional repressor identified in 1993 as the target of chromosomal transloca-
tions affecting band 3q27 in DLBCL (Baron et al. 1993; Ye et al., 1993a).
Then, it was shown that BCL6 is a key regulator of the GC reaction since
BCL6-null mice are characterized by lack of GC formation and the inabil-
ity to produce high-affinity antibodies (Dent et al. 1997; Ye et al. 1997).

The BCL6 gene encodes a 95-kD nuclear phosphoprotein belonging to
the BTB/POZ/ZincFinger (ZF) family of transcription factors (Ye et al.,
1993b). The N-terminal BTB/POZ domain is linked to a central region,
including three PEST motifs and to six C-terminal ZF DNA-binding
motifs. BTB domain dimerization is required for the activities of the
BTB-ZF proteins, implying that BCL6 works as dimer. BCL6 functions
as a transcriptional repressor via its C-terminal ZF domain that binds to
specific DNA sequences in the promoter region of target genes, and two
transcriptional repression domains (Chang et al., 1996) that interact with
distinct corepressor complexes (Dhordain et al., 1997, 1998; Fujita et al.,
2004; Huynh and Bardwell, 1998) (Fig. 7.1A).

The BCL6 repression activity involves the recruitment of class I and II
histone deacetylase complexes (HDAC) directly or through corepressors
(Lemercier et al. 2002; Wong and Privalsky, 1998). Several corepressors
have been reported to interact with BCL6, including NCOR2 (SMRT)
(Dhordain et al., 1997; Huynh and Bardwell, 1998; Wong and Privalsky,
1998), NCOR1 (Huynh and Bardwell, 1998), BCOR (Huynh et al., 2000),
MTA3 (Fujita et al., 2004), and CTBP1 (Mendez et al., 2008). At least three
of BCL6 corepressors (NCOR1, NCOR2, and BCOR) bind in a mutually
exclusive way to the BTB domain of BCL6 (Ahmad et al., 2003; Huynh
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et al., 2000), MTA3 binds in the middle portion and CTBP1 appears to
interact with both the BTB and the middle domains of BCL6 (Fig. 7.1A).
The recruitment of corepressors through the BTB domain or through the
BCL6 middle portion appears to be associated with the regulation of
different subset of targets (Parekh et al., 2007).

The C-terminal portion of BCL6 binds to DNA and recognizes specific
DNA motifs. BCL6-binding motifs were initially identified based on the
binding of recombinant BCL6 protein to synthetic oligonucleotides
in vitro (Chang et al. 1996; Kawamata et al. 1994). More recently, the use
of Chromatin Immunoprecipitation (ChIP)-on-chip technology led to the
identification of promoters bound by BCL6 in vivo and allowed the redef-
inition of its consensus-binding motif in normal B cells under physiologic
conditions (Basso et al. 2010; Ci et al. 2009). In particular, an extensive
analysis of BCL6 ChIP-on-chip data generated from GC B cells showed
that motif combinations (modules) had a stronger predictive value for
BCL6 binding compared to single motifs. The most significantly reported
module included: (i) the M00424 motif, a consensus sequence for the
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NKX-homeobox family of transcription factors; (ii) the novel motif M2,
which mimics an M00424 half site; and (iii) the M0 motif, which is similar
but not entirely compatible with previously in vitro identified BCL6-
binding motifs. Further experimental validation demonstrated that
BCL6-mediated transcriptional repression is dependent on the M0 site,
but not on M00424 and M2, which may represent sites for the binding of
other transcription factors complementing the biological activity of BCL6
or facilitating its transcriptional function by appropriately modifying
chromatin (Basso et al., 2010).

Though direct binding to DNA is generally required for BCL6 tran-
scriptional repression, at least two targets (CDKN1A and BCL2) have
been shown to recruit BCL6 to their promoters through ZBTB17 (miz1)
binding to Inr elements (Phan et al., 2005; Saito et al., 2009). The presence
of Inr elements in BCL6-bound regions, as detected by ChIP-on-chip, in
the absence of other BCL6-binding motifs, suggests that the repression of
a fraction of BCL6 targets occurs via ZBTB17 (Basso et al., 2010).

In conclusion, BCL6 is a transcriptional repressor which recruits the
repression machinery directly or through several corepressors into the
regulatory regions of its targets by binding to specific DNA motifs or
through interaction with ZBTB17.
3. REGULATION OF BCL6

BCL6 expression is restricted to the GC B cells in the B cell lineage,
suggesting the presence of a tight regulation (Fig. 7.1B). Indeed, several
signaling pathways, known to have a role during GC reaction, have been
shown to modulate BCL6 expression both at the transcriptional and
protein level (Fig. 7.2).

Activation of B cell receptor (BCR) by the antigen induces MAP
kinase-mediated phosphorylation of BCL6 protein which leads to BCL6
degradation by the ubiquitin–proteasome pathway (Niu et al., 1998).
Stimulation of the CD40 receptor by CD40 ligands expressed on T cells
leads to transcriptional downregulation of BCL6 (Allman et al., 1996;
Basso et al., 2004; Niu et al., 2003). Recently, the downregulation of BCL6
by CD40 stimulation has been shown to be linked to a signaling pathway
that involves NF-kB-mediated transcriptional activation of IRF4, which
directly represses BCL6 transcription (Saito et al., 2007). Both BCR and
CD40 signaling pathways are involved in the selection of cells which
acquired the ability to express high-affinity Ig receptors occurring at the
late stages of the GC reaction. At this stage of B cell differentiation, BCL6
needs to be downregulated to enable the cells to further differentiate.

Another layer of BCL6 regulation is represented by the DNA damage
which induces BCL6 protein degradation through a pathway which is
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independent from the one induced by BCR signaling. DNA-damage
accumulation leads to ATM-promoted BCL6 phosphorylation, followed
by its interaction with the isomerase Pin1 and BCL6 degradation by the
ubiquitin–proteasome system (Phan et al., 2007). This regulatory pathway
is likely to represent a failsafe mechanism in order to grant BCL6 degra-
dation in the event of massive DNA damage and assure that the damaged
cells undergo apoptosis.

BCL6 function is also impaired by acetylation, which triggers BCL6
dissociation from corepressor complexes (Bereshchenko et al., 2002). Inter-
estingly, acetylation has a negative effect on BCL6 activity while it posi-
tively affects the function of TP53, one of the well-characterized BCL6
targets, suggesting a coordinated action between functional silencing of
BCL6 and activation of its targets.

BCL6 expression is also modulated during the GC reaction through an
autoregulatory circuit. Indeed, BCL6 binds to its promoter and likely acts
to monitor its own expression levels. This autoregulatory circuit is dis-
rupted in a subset of DLBCL by the SHM mechanism which introduces
mutations which impair BCL6 binding to its promoter (Pasqualucci et al.,
2003).

Overall, different layers of BCL6 regulation acts coordinately to assure
a safe level of expression in CB and to grant an efficient switch-off in the
late stages of the GC reaction, an essential requirement to move further
into the differentiation process.



BCL6: Master Regulator of the Germinal Center Reaction 199
4. DISCOVERY OF BCL6 TARGETS

A full understanding of BCL6 role in normal B cell development and in
lymphomagenesis relies on the identification of the complete set of genes
which are targets of its transcriptional regulatory function.

Initial target discovery was based on educated guesses (Niu et al.,
2003) and on the use of gene expression profiling (GEP) to identify on a
large scale the genes whose expression is affected by the variations of
BCL6 expression (Shaffer et al., 2000). The latest approach has the advan-
tage of producing a relevant number of candidates; however, it cannot
distinguish between direct and the presumably very large set of second-
ary targets whose expression is indirectly affected by BCL6. Using these
approaches, BCL6 has been shown to modulate the expression of genes
involved in B cell activation, differentiation, cell cycle arrest, and apopto-
sis (Niu et al., 2003; Polo et al., 2004; Shaffer et al., 2000; Tunyaplin et al.,
2004). Since normal GC B cells undergo apoptosis within hours of ex vivo
culture and therefore cannot be experimentally manipulated in vitro, the
discovery of BCL6 targets has been performed mainly on cell lines estab-
lished from GC-derived tumors, leaving open the possibility that BCL6
function may be altered in lymphoma cells. A small set of genes has also
been fully validated as functionally and physiologically relevant targets
in normal cells, including the gene encoding the coactivator molecule
CD80 (Niu et al., 2003), genes involved in the sensing and response to
DNA damage (TP53, ATR, and CHEK1) (Phan and Dalla-Favera, 2004;
Ranuncolo et al., 2007, 2008), the cell cycle arrest gene CDKN1A/p21
(Phan et al., 2005), and the plasma cell differentiation master gene
PRDM1 (Tunyaplin et al., 2004).

More recently, a few studies based on genome-wide ChIP-on-chip
have identified a large set of genes whose promoter regions are bound
by BCL6 in vivo using cell lines (Polo et al., 2007) or purified GC B cells
(Basso et al., 2010; Ci et al., 2009). ChIP-on-chip analysis is critical to
identify which promoters are occupied by a transcription factor in vivo;
however, the physical binding does not necessarily imply functional
activity, as shown for other transcription factors (Fernandez et al., 2003).
Therefore, the combination of GEP and ChIP-on-chip technologies has
been instrumental toward the identification of the complete set of BCL6
targets. Two studies have been performed using this approach on normal
GC B cells. The first one aiming at the comparison of the BCL6 transcrip-
tional program in normal and malignant B cells reported that BCL6 binds
to the promoter of almost 2000 genes and approximately 180 of them (out
of 900 for which GEP were available) also showed downregulation in GC
B cells (Ci et al., 2009). The second study relies on a different platform and
analysis method of ChIP-on-chip data as well as on a more recent whole
genome GEP array and reports over 4000 promoters being targeted by
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BCL6, a quarter of which display lower expression in GC B cells repre-
senting the largest set of BCL6 physiologic targets identified (Basso et al.,
2010). Based on these studies, the BCL6 transcriptional program is unfold-
ing and becoming available to be fully interpreted.
5. CELLULAR PATHWAYS REGULATED BY BCL6

The discovery of a large number of BCL6 targets in normal GC B cells led
to a broader and more complete picture of BCL6 physiologic function and
opened the path to unveil its role in GC-derived malignancies.

The over 1200 gene targets found to be bound in their promoter by
BCL6 and downregulated in normal GC B cells are clearly enriched in
genes belonging to multiple functional pathways (Basso et al., 2010). The
current large set of novel targets confirmed the activity of BCL6 in mod-
ulating B cell activation, differentiation, and apoptosis and significantly
extended the role of BCL6 in controlling DNA-damage sensing and
response via the identification of a number of additional genes regulated
by BCL6 in the same pathway. Moreover, BCL6 function appeared to be
relevant on a number of not previously considered cellular pathways by
modulating signaling through toll-like receptors, INF-R, a variety of
cytokines, TGF-R, and WNT signaling. An intriguing feature of BCL6
function appears to be the broad control of several targets along the
same pathway, often involving the simultaneous modulation of expres-
sion of cell surface receptors, signaling molecules, and nuclear effectors.

The criteria used in the target identification include not only binding of
BCL6 to the promoter target but also evidences of transcriptional down-
regulation of the targets and mutually exclusive expression in vivo. None-
theless, BCL6 has been shown to be part of an autoregulatory circuit by
which it modulates its own expression binding to its promoter. Interest-
ingly, unbiased genome-wide promoter binding studies revealed that
BCL6 binds to the promoters of several genes which are highly expressed
and play essential roles in GC B cells, including AICDA, MYB, CD38, and
PAX5. Moreover, BCL6 binds to the promoters of its own corepressors
(NCOR1, MTA3, CTBP1) (Basso et al., 2010). Taken together, these observa-
tions suggest that BCL6 may act not only as a strong repressor impairing
expression of its targets but also as a general modulator of transcription
that allows a controlled expression of molecules critical for GC functions.
5.1. BCL6 modulates GC B cell activation and differentiation

B cell activation occurring in the late stages of the GC reaction is essential
for the selection of B cells based on their Ig receptor affinity and to
stimulate the positively selected cells toward further steps of



BCL6: Master Regulator of the Germinal Center Reaction 201
differentiation. The engagement of the BCR by the antigen in combination
with costimulatory signals is required to deliver survival signals rescuing
from apoptosis B cells which display high-affinity Ig receptors on their
surface. In this rescuing process, a critical role is also played by the B–T
cell interaction which contributes to B cell activation through the engage-
ment of receptors by T cell surface-bound ligands. A well-characterized
interaction occurs between the CD40 receptor on B cells and its ligand
(CD154) expressed mainly on activated CD4þ T cells (van Kooten and
Banchereau, 2000). CD40 signaling in B cells is required for a proper
immune response as shown by patients affected by hyper-IgM (HIGM)
syndrome in which mutations in CD154 lead to a severe immunodefi-
ciency characterized by elevated levels of IgM, low levels of other Ig
classes, absence of GC, and inability to mount a T-cell dependent humoral
response (Aruffo et al., 1993; DiSanto et al., 1993; Korthauer et al., 1993). The
characteristics of HIGM syndrome have been recapitulated in CD40- or
CD154-deficient mice (Kawabe et al., 1994; Renshaw et al., 1994; Xu et al.,
1994). These observations suggest that CD40 signaling is required for
T-cell dependent Ig class switch and GC formation. Evidences of CD40
signaling are not traceable in the bulk of the GC cells, but only in a small
subset of centrocytes which indeed downregulate BCL6 expression (Basso
et al., 2004). CD40 signaling activates different mediators and pathways
whose outcome is the activation of multiple transcription factors, includ-
ing NF-kB, NF-AT, and AP-1 (Berberich et al., 1994; Francis et al., 1995).
BCL6 acts onmodulating a number of molecules involved in both the BCR
and CD40 signal transduction from the surface to the nucleus, including
Ca2þ-mediated signaling, MAPK, and NF-kB pathways, assuring that
none of these pathways is prematurely activated (Fig. 7.3).

The B–T cell interaction is also dependent on the presence of costimu-
latory molecules such as those belonging to the B7 family. CD80 (B7-1)
and its related molecule CD86 (B7-2) are expressed on antigen-presenting
cells, including B cells, and their interaction with CD28 and CD152 mole-
cules is required for T-cell activation, GC formation, and Ig class switch-
ing (Borriello et al., 1997). The discovery of more members of the B7:CD28
family has revealed additional costimulatory pathways that have broad-
ened the concept of costimulation (Dong et al., 1999). CD274 (B7-H1,
PDL1) has been shown to bind CD80, and to regulate the balance of
activation and inhibition of the T cell response (Keir et al., 2008). Both
CD80 and CD274 are reported to be actively repressed by BCL6 in GC B
cells (Basso et al., 2010; Niu et al., 2003), suggesting that BCL6 intervenes in
modulating the presence of costimulatory molecules involved in the B–T
cell interaction (Fig. 7.3).

B cells producing high-affinity antibodies are destined to differentiate
into memory B cells and plasma cells. Although the molecular mechan-
isms leading to these final steps of differentiation are mostly unknown,
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a few transcription factors, including PRDM1, XBP1, and IRF4, have been
identified, the regulation of which is crucial for plasma cell commitment.
PRDM1 (BLIMP1) is expressed in a subset of centrocytes and in plasma
cells (Angelin-Duclos et al., 2000) and it is required for the formation and
maintenance of Ig-secreting B cells (Shapiro-Shelef et al., 2003). PRDM1
has been shown to act upstream of XBP1, a transcription factor that is
required for the secretory phenotype of plasma cells (Shaffer et al., 2004).
IRF4, a transcription factor expressed in a subset of centrocytes in the GC
and in plasma cells (Falini et al., 2000), is required for the generation of
plasma cells and plays a critical function in CSR (Klein et al., 2006). IRF4
has been suggested to act upstream of (Sciammas et al., 2006) or in parallel
to (Klein et al., 2006) PRDM1 for the generation of plasma cells. Consistent
with their pattern of expression restricted in GC to BCL6-negative cen-
trocytes, PRDM1 and IRF4 have been reported to be transcriptionally
repressed by BCL6 (Basso et al., 2010; Shaffer et al., 2000; Tunyaplin
et al., 2004), supporting a role for BCL6 in blocking the differentiation of
GC B cells (Fig. 7.3).

BCL6 direct targets include an increasing number of genes pointing to
several signaling pathways which may have a role in GC B cell activation
and differentiation. Multiple interferon-type and interleukin receptors
that lead to the activation of JAK/STAT are broadly represented among
BCL6 targets. Furthermore, STAT family members were also found to be
directly repressed by BCL6 (Basso et al., 2010; Ding et al., 2008).
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Interestingly, a deficiency of STAT3 expression has been associated with a
defect in the generation of plasma cells that produce IgG subclasses
(Fornek et al., 2006). A modulatory activity on the toll-like-receptor path-
way has been also suggested by the presence among BCL6 target genes
of those encoding both toll-like receptors and transducers of the toll-
derived signals. Since this pathway has been reported to have a role in
T-dependent immune response and the development of memory B cells
(Meyer-Bahlburg et al., 2007; Pasare and Medzhitov, 2005), these findings
suggest that its silencing by BCL6 may also be necessary to avoid activat-
ing stimuli during the proliferative stage of GC reaction. BCL6 appear to
have a modulator action on the ability of TGFb to regulate post-GC
differentiation targeting genes encoding TGFb-type receptors, a ligand
(BMP2), and nuclear effectors. Previous studies in TGFb / mice showed
the role of TGFb in promoting the differentiation of IgA-secreting plasma
cells and in attenuating B cell response to low-affinity antigens (Cazac and
Roes, 2000). The WNT-signaling pathway also appears to be affected by
BCL6 through the control of genes encoding its receptors, signal transdu-
cers, and downstream transcription factors. In conjunction with the report
that mice bearing B cell-specific deletion of b-catenin show defective
plasma cell formation in vitro (Yu et al., 2008), these results suggest a
role of WNT signaling in the late stage of B cell differentiation and
support the silencing of this pathway by BCL6 in the early stage of the
GC reaction (Fig. 7.3). Together, these findings point to a broad function of
BCL6 in modulating a variety of incoming signals that may prematurely
activate CB in the GC and indicate that while BCL6 is required for GC
formation, its downregulation may be critical for B cell exiting from the
GC and differentiation toward memory and plasma cells.
5.2. BCL6 controls the DNA damage and apoptotic responses
in GC B cells

The role of BCL6 in protecting cells against DNA-damage-induced apopto-
sis has been unveiled by the initial discovery of TP53 being a direct BCL6
target (Phan and Dalla-Favera, 2004). Following this discovery, several
more genes (CDKN1A, ATR, and CHEK1) involved in the DNA-damage
response were accounted among BCL6 targets (Phan et al. 2005; Ranuncolo
et al. 2007, 2008). The application of genome-wide ChIP-on-chip technology
in association with GEP has further consolidated the role of BCL6 in
modulating the sensing and execution of responses to DNA damage by
the identification of a large set of BCL6 targets involved in this pathway
(Basso et al., 2010) (Fig. 7.3). The modulation of the DNA-damage sensing
and response pathway also appears to be functionally correlated with the
broad control that BCL6 has on the apoptotic machinery in which it affects
multiple genes, encoding both pro- and antiapoptotic proteins.



204 Katia Basso and Riccardo Dalla Favera
The transcriptional profile of GC B cells is characterized by a down-
regulation of multiple antiapoptotic genes and upregulation of proapop-
totic genes (Klein et al., 2003), resulting in the well-known high
susceptibility to apoptosis displayed by CB. This represents a critical
phenotype ensuring that GC B cells will be eliminated by apoptosis if
not rescued by efficient BCR engagement and other signaling pathways.
Of note, among BCL6 direct targets involved in apoptosis was recently
identified BCL2, a key antiapoptotic molecule with oncogenic functions in
DLBCL and FL (Ci et al., 2009; Saito et al., 2009).

These findings collectively suggest that BCL6 may prevent normal cell
cycle arrest and apoptotic responses in GC B cells to allow the execution of
DNA-remodeling processes (SHM and CSR) without eliciting responses
to DNA damage.
6. BCL6 AND LYMPHOMAGENESIS

BCL6 was identified in virtue of its involvement in chromosomal translo-
cations affecting band 3q27 in DLBCL (Baron et al., 1993; Ye et al., 1993a,b).
Further studies confirmed that rearrangements of BCL6 were detectable
in �40% of DLBCL and 5–10% of FL (Butler et al., 2002; Kerckaert et al.,
1993; Lo Coco et al., 1994; Ye et al., 1993a). The translocations involving the
3q27 locus affect the 50 regulatory region of BCL6 juxtaposing its coding
sequence to heterologous promoters derived from other chromosomes
(Ye et al., 1995) (Fig. 7.4A). The common denominator of these promoters
is their constitutive activity in the B cell lineage, and in particular, their
persistent activity in post-GC cells, such as immunoblasts and plasma
cells, contrasting with the GC-specific activity of the BCL6 promoter
(Chen et al., 1998). Indeed, the GC-restricted expression of BCL6 in the B
cell lineage is altered by the promoter substitution. A different mecha-
nism leading to BCL6 deregulation was later found to be associated with
the SHM occurring on BCL6 50 regulatory region. BCL6was reported to be
the first non-Ig target affected by SHM, a mechanism thought to be
restricted to Ig genes (Pasqualucci et al., 1998; Shen et al., 1998). Further
investigations identified a subset of DLBCL (�14% of the cases) carrying
in BCL6 50 regulatory region-specific mutations which lead to its deregu-
lated expression by disrupting an autoregulatory circuit (Pasqualucci
et al., 2003; Wang et al., 2002) or impairing IRF4-mediated repression
(Saito et al., 2007) (Fig. 7.4B). The link between BCL6 deregulation and
its oncogenic function was conclusively demonstrated in mouse models
in which BCL6 deregulated expression leads to the development of lym-
phomas (Cattoretti et al., 2005).

The large number of BCL6 targets involved in the DNA damage
responses suggests that an important function of BCL6 is to allow
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GC B cells to tolerate the physiologic DNA breaks required for SHM and
CSR. However, this state of tolerance for genomic instability is likely to
play a role in lymphomagenesis. A direct link between physiologic DNA-
remodeling events and GC lymphoma development has been shown in
mice lacking AICDA, the enzyme required both for CSR and SHM
(Muramatsu et al., 2000). In AICDA-deficient mice, the development of
BCL6-driven GC-derived lymphomas is impaired, but no effect is
observed on pre-GC lymphomas (Pasqualucci et al., 2008). The BCL6-
driven unresponsiveness to DNA-damage checkpoints may allow the
instauration of genetic aberrations introduced by AICDA errors, includ-
ing those affecting BCL6 itself and leading to its deregulated expression.

The dissection of the role of BCL6 in DLBCL pathogenesis is compli-
cated by the characteristic heterogeneity of this disease. Indeed, GEP-
based class discovery was able to identify novel molecular subtypes in
DLBCL suggesting that this disease is unlikely to be a single entity.
A GEP-based classification (Cell Of Origin, COO, classification) led to
distinguish at least two distinct groups of DLBCL, including GCB and
ABC types (Alizadeh et al., 2000). The first group has been associated with
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cells in the GC stage and display high expression of BCL6, CD10, and
other GC markers. The ABC subgroup resembles cells in a later stage of
differentiation when BCL6 is downregulated and displays a transcrip-
tional signature mimicking the activation signature obtained in B cells
upon in vitro stimulation. Although the GCB type of DLBCL is usually
associated with BCL6 activity, translocations affecting the BCL6 locus
occur more frequently in the ABC subtype, suggesting that BCL6 deregu-
lation may also play a role at the stage of post-GC differentiation, impair-
ing BCL6 downregulation (Iqbal et al., 2007). The COO classification does
not fully recapitulate the heterogeneity of DLBCL which appear to hide a
larger number of molecular entities. Indeed, a study using multiple data
analysis methods to recognize robust gene clusters in GEP datasets iden-
tified three DLBCL biological subtypes not related with the COO, but
associated with tumor microenvironment and host inflammatory
response as defining features of DLBCL (Monti et al., 2005). The first
cluster (oxidative phosphorylation, OxPhos type) was enriched in genes
involved in mitochondrial functions, the second cluster was marked by
genes involved in the BCR signaling and proliferation (BCR type), the
third cluster was defined mainly by an associated host response gene
signature. The COO classification applied at the same dataset was able to
discriminate between GCB and ABC subtypes, suggesting that the two
classification systems appear to capture different aspects of DLBCL biol-
ogy. The BCR-typeDLBCL showed an enrichment for BCL6 targets among
downregulated genes compared to the OxPhos-type of DLBCL (Ci et al.,
2009). Inhibition of BCL6 activity by BPI, a peptide which inhibits the
interaction between BCL6 and its corepressors, was shown to be effective
in a subset of DLBCL cell lines belonging to the BCR-type, suggesting that
the inhibition of BCL6may bemore effective in this subset of DLBCL (Polo
et al., 2007). These data suggest that BCL6 may play distinct roles in the
pathogenesis of different molecular subtypes of DLBCL.

BCL6 targets the transcription of at least two critical oncogenes for GC-
derived lymphomas, MYC and BCL2, which are affected by translocations
representing the hall mark of BL and FL, respectively. The t(8;14) or its
variants t(8;2) and t(8;22) translocations are found in all cases of BL and
cause the substitution of the 50 regulatory region of MYC with different
regions of the Ig genes, leading to MYC deregulated expression. As conse-
quence of the translocation, the BCL6-driven downregulation of MYC is
impaired. In FL, different mechanisms have been shown to be involved in
the ZBTB17-mediated BCL6 repression of BCL2, including chromosomal
translocations of the BCL2 gene, somatic mutations in the BCL2 promoter
region, and deregulated expression of ZBTB17 (Saito et al., 2009).

Overall, BCL6 is genetically targeted and plays a role in the pathogen-
esis of DLBCL and in a fraction of FL, however, it is likely to have a
function in all GC-derived tumors. BCL6 expression grants to the tumors
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a certain resistance to genomic damage and apoptosis and impairs the
differentiation processes. Moreover, as observed in FL and BL, it appears
preferable to impair BCL6 repression on a subset of its targets (i.e., MYC
and BCL2) than lose the advantages provided by BCL6 expression in GC-
derived tumor cells.
7. CONCLUSIONS

The essential role of BCL6 in GC development and its involvement in GC
lymphomagenesis have been widely explored using a number of comple-
mentary approaches and recently in a genome-wide fashion. The discov-
ery of the large set of its targets suggests that BCL6 controls B cell
activation, differentiation, susceptibility to DNA damage, and apoptosis
during the proliferative phase of the GC reaction. BCL6 is expressed in all
GC-derived malignancies, including BL, FL, DLBCL, and a subset of
Hodgkin lymphoma. A large fraction of the BCL6 physiologic functions
is likely to be maintained in the malignant cells, suggesting that all
lymphoma subtypes expressing BCL6 may be relatively insensitive to a
variety of activation and differentiation stimuli. Therefore, direct target-
ing of BCL6 (Cerchietti et al., 2009) may represent a strategy to comple-
ment other therapeutic approaches aiming to the induction of apoptosis,
activation, and/or differentiation.
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