

Producing Flash CS3 Video
Techniques for Video Pros and Web Designers

This page intentionally left blank

Producing Flash CS3 Video
Techniques for Video Pros and Web Designers

John Skidgel

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Focal Press is an imprint of Elsevier

Senior Acquisitions Editor: Paul Temme
Publishing Services Manager: George Morrison
Senior Project Manager: Brandy Lilly
Associate Editor: Dennis McGonagle
Assistant Editor: Chris Simpson
Marketing Manager: Becky Pease

Focal Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2007, John Skidgel. Published by Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
E-mail: permissions@elsevier.com. You may also complete your request online
via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact”
 then “Copyright and Permission” and then “Obtaining Permissions.”

Recognizing the importance of preserving what has been written, Elsevier prints its
books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-240-80910-6

For information on all Focal Press publications
visit our website at www.books.elsevier.com

07 08 09 10 11 5 4 3 2 1

Printed in Canada

Dedication
This book is dedicated to Blanca Josephine Skidgel and Ava Josephine Skidgel.

Acknowledgements
The idea for this book came to me in July of 2004. Paul Temme of Focal Press was

instrumental in helping me hone in on this vision and patient enough to let me

pick the time to write it. I was lucky to have Scott Fegette as a technical editor. I

have valued his feedback, insight, and assistance. Whenever I’m in a pinch I know

Dan Cowles will be there to help with a shoot. I’m ever grateful for his assistance.

Lastly, I would not be able to write without support from my wonderful family.

Thank you, Allison, Beatriz, and Ava!

This page intentionally left blank

 vii

Contents

Dedication .. v

Acknowledgements .. v

Getting Started withFlash Video1 1

Video and the Web... 2

Flash Video and Web 2.0 2

Before You Begin .. 3

How This Book Is Organized 3

Required Software 4

Tutorial: Inserting Flash Video in Flash Professional .. 4

Tutorial: Inserting Flash Video in Dreamweaver ... 7

Wrapping Up .. 10

Video Production Tipsfor Flash Video2 11

Shoot with the Best Possible Format .. 12

Controlling Camera Motion ... 13

Avoid Quick Zooms and Whiplash Panning 13

Controlling Movement 13

Use a Tripod or a Stabilizer Wherever Possible 14

Don’t Sweat Title and Action Safe Zones .. 15

Simplify Backgrounds ... 15

Use Depth of Field to Your Advantage 15

Get Good Exposure and Light Softly ... 18

Shooting for Blue and Green Screen ... 19

Reduce or Turn Off Detail or Sharpening 19

Exposure Is Everything 19

Shooting Blue and Green Screen 21

Recording Room Tone and Effects .. 22

Wrapping Up .. 22

An Introduction to Flash Professional and ActionScript 33 23

Getting Acquainted with Flash Professional CS3 .. 24

Creating Flash Documents ... 24

New Document dialog 24

Tutorial: Creating a Reusable Flash Template 26

viii

Interface Overview ... 27

Timeline 29

The Stage, Shapes and Symbols 30

Tool Palette 31

Properties Panel 32

Library Panel 34

Components Panel 35

The Actions Panel 36

Compiler Errors and Output Panels 37

The Help Panel 38

Testing with the Preview Window 38

Wrapping Up .. 38

Encoding Flash Video4 39

Analog and Digital Theory ... 40

The Analog-to-Digital Process 40

Color Spaces 40

Color Sampling 41

Quantization 42

Data Rate 42

Compression .. 42

Lossy and Lossless Codecs 43

Intraframe and Interframe Compression 44

Compression Ratios 44

The Takeaway 44

Important Factors Regarding Compression ... 44

Internet Access Speed 45

Flash Player Versions and Video Codecs 45

Encoding Decisions .. 47

Pixel Dimensions 48

Frame Rate 49

Aspect Ratio 49

Interlaced and Progressive Frames 51

Frame Content 52

Bit Rate 53

Disk Space and Bandwidth Quota 54

Video Delivery Methods Supported by Flash Video 54

Flash Video Encoders 55

Flash Video Encoding Settings ... 56

The Settings Dialog 57

Encoding Tutorials .. 62

Tutorial: Encoding with the Import Video Wizard 62

Tutorial: Batch Encoding Several Clips 66

Tutorial: Setting Cue Points 67

Tutorial: Exporting Cue Points from an Existing FLV 68

Wrapping Up 70

Customizing5 Flash Video Players 71

Custom Player Development .. 72

Tutorial: Creating a Flash Video Text Banner .. 72

Tutorial: Skinning the FLVPlayback Component ... 77

Part 1: Adding Components to the Stage 78

Part 2: Skinning the Components 83

Part 3: Writing the ActionScript 96

Tutorial: Writing a Custom Player from Scratch .. 104

Writing the Base Video Player Class 105

Wrapping Up 110

Interactive Video Concepts6 111

Designing Navigation and Interaction .. 112

Flowcharts 112

Prototyping 113

Helpful Interaction Design Questions 115

Interaction Design Tips 115

Backgrounds, Loops and Flash Video ... 116

Tutorial: Repeating Loops ... 116

Part 1: Setting Up the FLA File 117

Part 2: Adding Text, Button, and Video Elements Elements 118

Part 3: ActionScript Code for Loops and Navigation 124

Tutorial: Intro, Exit, and Return Loops .. 128

Part 1: Setting Up the FLA File 129

Part 2: Adding Backgrounds, Buttons, and Video 130

Part 3: ActionScript Code for Intro, Exit, and Return Loops 133

Wrapping Up .. 136

Video Transparencyand Effects7 137

Flash Video and Transparency .. 138

Tutorial: Creating Flash Video with Transparency 138

Creating Transparent Video on a Web Page ... 144

Tutorial: Exporting Transparency from Flash 144

Masking Video ... 147

Tutorial: Masking Video 147

 ix

Applying Blend Modes and Effects to Video .. 149

Tutorial: Applying Blend Modes and Color Effects 149

Tutorial: Applying Bitmap Effects Directly 150

Tutorial: Applying Bitmap Effects Dynamically 152

Wrapping Up .. 156

Enhancing Flash Deployment8 157

Deploying Flash with HTML .. 158

How Flash Video Is Embedded ... 158

Browser Compatibility and Web Standards .. 159

What Are Web Standards? 159

Object and Embed Tags 161

Flash Player Version Detection ... 162

The EOLAS Patent and Active Content ... 163

Tutorial: Using SWFObject ... 163

Ensuring Your Web Site Can Serve Flash Video .. 167

Wrapping Up .. 168

More FlashVideo Applications9 169

Displaying Closed Captions ... 170

The FLVPlayback Captioning Component 170

Flash CS3 Support for Timed Text 172

Targeting Dynamic Text Fields for Use with Captions 178

Displaying Cue Points .. 180

Creating Video Playlists ... 183

Arrays 183

XML 187

The External API ... 195

Flash Player and Browser Communication 195

Flash Media Server andFlash Lite Video10 209

Serving Flash Video with a Streaming Server .. 210

Specifying a Streaming URL 210

Using Bandwidth Detection 211

Flash Lite 2 and Mobile Video .. 212

Preparing Video for Flash Lite 213

How To: Exporting Mobile Video from the Adobe Media Encoder 213

How To: Exporting Mobile Video from QuickTime Pro 214

Mobile Video Encoding Considerations 214

x

 xi

The ActionScript Video Object in Flash Lite 2 215

Previewing Video with Flash Lite Applications 215

Deploying Flash Lite Applications with Video 215

How To: Create a Template Using Device Central 216

Tutorial: Import an Illustrator File into Flash Professional .. 218

Importing an Adobe Illustrator CS3 File 218

Structuring the Movie’s Layers and Timeline 220

Confi guring Buttons 221

Importing and Bundling Device Video 224

Tutorial: Writing ActionScript and Testing inDevice Central ... 225

Testing the Movie in Device Central 229

Wrapping Up .. 230

xii

CHAPTER 1

Getting Started with
Flash Video

Flash Video offers unparalleled reach while offering

the most options for interactivity from any Internet

video format. This chapter introduces you to the

number one streaming video format.

Video and the Web 2 ...2

Before You Begin 2 ...3

Tutorial: Inserting Video in Flash Professional CS3 2 4

Tutorial: Inserting Video in Dreamweaver 2 7

Wrap Up 2 .. 10

2 Chapter 1: Getting Started with Flash Video

Video and the Web
File formats, such as HTML, GIF, and JPEG, have made distributing text and im-

ages over the World Wide Web common. The MP3 audio fi le format expanded the

Web to become a vehicle for audio distribution. It wasn’t until the introduction of

Flash Video (FLV) in Adobe Flash Player that video became viewable by the major-

ity of the general Internet audience.

In Web 1.0 (1994 – 2003), Web video was diffi cult to distribute because author-

ing support for integrating video with other Web content was nonexistent, few

formats were guaranteed to be ubiquitous across platforms, and few people had

broadband connectivity. These factors made for poor viewing experiences as video

plug-ins were not available or too bothersome to install and update.

Figure 1.1: A missing plug-in message frequently seen with other video formats.

Flash Video and Web 2.0

With Web 2.0 (2004 to present day), video is everywhere on the web thanks to

Flash Video: You Tube, Google Video, CNet reviews, The New York Times, and on

countless marketing and movie trailer sites. Designers, developers, and producers

choose Flash Video because it has the reach, performance, tooling options, and

potential for rich experiences that no other video format can match:

99% of Internet-connected PCs can play Flash Player 7 content and 80% of PCs 1

will be capable of playing Flash Player 9 content within one year of release.

The Flash Platform and Flash Video are truly cross-platform. Players exist for vari- 1

ous versions of Windows, Mac OS X, and Linux.

There are many tooling options for Flash Video: one can create sophisticated Flash 1

applications with Flash Professional or Flex. With about fi ve clicks, one can insert

Before You Begin 3

encoded Flash Video into a web page with Dreamweaver. There are several ways
to create Flash Video with third-party solutions from On2, Sorenson, Autodesk,

and the open-source community.

 This is all I’ll say about the strengths of Flash Video. If you need more information, go to
Adobe’s Developer Center website and view the Flash Video technology center:
http://www.adobe.com/devnet/fl ash/video.html.

Before You Begin
This book is not a book meant to replace the documentation that comes with

Adobe Flash Professional CS3. If it did, it would have to be a thousand pages or

more! It won’t cover how to do shape tweens, teach you how to develop compo-

nents, or use Flash to skin an Adobe Flex application.

This book is for video and design professionals who are not skilled at using Flash

Professional but want to learn how to develop Flash Video content. This book

can also help the Flash developer who is not aware of most video terms and best

practices and wants to improve the production quality of her video. I’m going to

cover how to create decent video for Flash Video distribution and teach you how

to create Flash applications with video. We’ll walk through code and you should

feel quite comfortable in working with ActionScript and how it pertains to video by

the end of the book.

How This Book Is Organized

This book has eight chapters. This chapter, Chapter 1, discusses the book’s organi-

zation and then presents two simple tutorials for working with Flash Video. Here

are the rest of the chapters:

Chapter 2: 1 This chapter reviews basic video production skills for Flash Video. It’s a
short crash course for the interactive developer with little to no video experience.

Chapter 3: Interactive video concepts 1

Chapter 4: 1

Chapter 5: 1 This covers video compression and includes background material on
video formats and compression technology. It includes tutorials for encoding a
single fi le, a batch of fi les, and embedding cue point in video.

Chapter 6: 1 Here we build two Flash Video players from scratch.

Chapter 7: 1 Here we get creative with Flash Video, alpha channels, and the Flash
Player’s bitmap and color effects.

Chapter 8: 1 This is a primer on embedding Flash Video in HTML pages. It discusses
several methods for embedding Flash Video.

Chapter 9: 1 In this chapter, we work with XML, closed-caption text, and integration
between the Flash Player and JavaScript.

4 Chapter 1: Getting Started with Flash Video

Chapter 10: 1 This last chapter discusses preparing video for streaming servers and
mobile devices.

Icon Glossary

Throughout the book are short relevant notes. To better distinguish between tips,

cautionary notes, DVD-ROM content, and useful resources on the Internet, the

book has the following icons:

On the DVD-ROM
Material on the book’s DVD-ROM.

Cautionary note
Production gotchas to avoid.

Web reference
Links to Internet resources.

Production tip
Keyboard shortcuts and
time-saving methods.

How to Use the Book and DVD

The DVD has three main folders: Additional Content, Completed Tutorials, and

Tutorials. When beginning any of the tutorials, you’ll be asked to copy folders from

the Tutorials folder to your local hard drive. The fi les in this folder are places to

start. In most cases they won’t compile to anything useful until you’ve completed

the tutorial. If you’d like to see how something was done, look inside the Com-

pleted Tutorials folder. The Additional Content folder has a few things you might

fi nd useful such as cheat sheets, additional code examples, and sample content.

When I buy a book, I make a backup of the DVD-ROM content. I also fi le the book’s CD or
DVD in a disc storage case. It’s often too easy to lose a disc or have it become damaged.

Required Software
You should have 1 Adobe Flash Professional CS3 to complete the book’s tutorials.

Adobe Dreamweaver CS3 1 is required for the short tutorial at the end of this chap-
ter. It or another HTML or text editor can be used for the XML and HTML tutorials
that are later in the book.

Adobe After Effects Professional 7 1 is required for the tutorials in Chapter 5.

To get a free trial version of these products, go to: http://www.adobe.com/downloads/ and
look for the trial links for Flash Professional, Dreamweaver, and After Effects.

Tutorial: Inserting Flash Video in Flash Professional
The Import Video wizard in Flash Professional provides several easy steps for creat-

ing Flash Video from an encoded FLV or nonencoded source video. In this tutorial

we’ll import a video that is encoded as Flash Video and add it to an existing Flash

document.

Tutorial: Inserting Flash Video in Flash Professional 5

Figure 1.2: The fi nished example.

Navigate to the 1. Tutorials > Chapter 1 folder. Copy the Insert in Flash folder to

your computer.

Open Flash Professional and choose 2. File > Open. Navigate to the Insert in Flash

folder and open the fi le, feet_traffi c.fl a.

Select 3. File > Import > Import Video. The fi rst step in the wizard appears.

Figure 1.3: Selecting a source video in the Import Video wizard.

Select 4. On your computer and click Choose. Select feet_traffi c.fl v in the Insert in

Flash folder and click Select (Windows) or Open (Mac OS X). Click Continue.

In the next step, select 5. Progressive download from a web server (it should already

be selected). Click Continue.

6 Chapter 1: Getting Started with Flash Video

Figure 1.4: Selecting a source video in the Import Video wizard.

The 6. Skinning step appears. Select SkinOverPlaySeekFullvcreen.swf from the Skin

dropdown. This skin offers play, pause, seek, and full-screen video controls.

Figure 1.5: Selecting a skin.

Click the 7. Color control, and at the top of the pop-up panel, set the Color to

#666677 and the Alpha to 50%.

Figure 1.6: Specifying the skin color and alpha (opacity).

You should see an instance of the FLVPlayback component on the stage. For best 8.

practice purposes, we should give the instance a name. Select the component and

Tutorial: Inserting Flash Video in Dreamweaver 7

in the Properties panel, name it myFlvPlayback. Naming the instance is important

if the component will be used with ActionScript. Now would be a good time to set

both the X and Y properties to 0 using the Properties panel too.

Figure 1.7: Name the instance of the playback.

Preview the movie by choosing 9. Control > Test Movie.

It looks good, but now let’s set the controls to fade away when the pointer is 10.

not over the video portion of the Flash movie. Close the preview by pressing

Control+W (Windows) or Command+W (Mac OS).

Select 11. Window > Component Inspector. Click the Parameters tab.

Select the 12. myFlvPlayback instance on the Stage. In the Component Inspector

panel, set the skinAutoHide property to true.

Figure 1.8: Adjusting properties for the myFLVPlayback instance.

Select 13. Control > Test Movie to preview the movie.

Tutorial: Inserting Flash Video in Dreamweaver
Dreamweaver includes the Insert Flash Video command, which is the easiest way

to get video onto an existing web page. Here’s how it works: after picking an

encoded FLV fi le, Dreamweaver inserts a playback SWF referencing the video and

includes the required HTML and JavaScript in the web page.

Dreamweaver does not convert raw video to Flash Video. If your video is not encoded as
Flash Video, you will need to process it with Flash Professional, Premiere Pro CS3, the
QuickTime export module for Flash Video, the stand-alone Flash Video Encoder, or a third-
party encoder.

8 Chapter 1: Getting Started with Flash Video

Figure 1.9: Previewing the page in a browser.

Navigate to the 1. Tutorials > Chapter 1 folder. Copy the Insert in Dreamweaver

folder to your computer.

Open Dreamweaver and choose 2. File > Open. Navigate to the Insert in Dream-

weaver folder and open the fi le, index.html.

Select the text, “remove this text and place video here” and delete it. 3.

Select 4. Insert > Media > Flash Video or select Flash Video from the Insert Flash

button in the Common toolbar.

Figure 1.10: Adding Flash Video from the Insert bar.

Tutorial: Inserting Flash Video in Dreamweaver 9

The 5. Insert Flash Video dialog appears. Select Progressive Download Video as the

Video type.

Set the movie to display. Enter 6. feet_traffi c.fl v in the URL fi eld.

Choose the 7. Corona Skin 2.

Click 8. Detect Size to properly size the SWF fi le. The dialog updates to show the

width as 640 pixels and the height as 360 pixels.

Note the remaining options that can be set, such as auto play, auto rewind, and a custom-
ized message that appears when Flash is not installed.

Figure 1.11: The Insert Flash Video dialog.

Click 9. OK when fi nished. Choose File > Preview in Browser and select a web

browser to preview the page.

If you need to change the settings, select the video object in the Design view and

change the settings in the Property Inspector (Window > Properties).

Figure 1.12: The Property Inspector palette showing the settings for a Flash Video element.

10 Chapter 1: Getting Started with Flash Video

Wrapping Up
While they are undoubtedly the easiest ways to get video into a Flash movie or a

web page, these two tutorials are barely scratching the surface of what’s possible

with Flash Video and the creative arsenal provided by Adobe. Luckily, there are

seven more chapters in the book.

CHAPTER 2

Video Production Tips
for Flash Video

A short primer on how to shoot video for

integration with Flash.

Shoot with the Best Possible Format 2 12

Controlling Camera Motion 2 ...12

Don’t Sweat Title and Action Safe Zones 2 16

Simplify Backgrounds 2 ... 16

Get Good Exposure and Light Softly 2 18

Shooting for Blue and Green Screen 2 20

Recording Room Tone and Effects 2 23

Wrapping Up 2 ... 24

12 Chapter 2: Video Production Tips for Flash Video

If you are new to video production, this chapter is for you. It covers best practices for shoot-
ing video for streaming media and blue and green screen compositing, as well as providing
small tips, like not forgetting to record sound effects.

If your only intention is to post a video clip on the Internet, it’s strongly recom-

mended that you tailor your production and editing methodology to optimize for

this delivery format. You want small, continuously playing media that loads quickly

and looks its best given the preceding constraints. While broadband is reaching

mainstream levels, there will always be the need for quickly loading video with a

small footprint, such as video for cell phones, or small talking-head instructional

videos that are part of rich Internet applications (RIAs). Following is a list of optimi-

zation tips to produce video that looks good and loads quickly.

Shoot with the Best Possible Format
If your camera supports progressive recording, always shoot in this mode when

you’re targeting Flash Video. Shooting in 24p or 30p preserves frame detail and

progressive footage is easier to compress than interlaced footage. Whenever

possible shoot in HDV, HD, or a higher quality standard defi nition format such as

DVC-Pro 50. These formats retain more picture information and afford more fl ex-

ibility in postproduction.

720 × 480 SD1280 × 720 HD1920 × 1080 HD

1×

~3×

~6×

Figure 2.1: With an HD-sized frame, you have more creative cropping options.

Shooting in 24p mode or 24 fps means the footage has six fewer frames a second

to compress. Using 24p cameras is an excellent choice for shooting process pho-

tography because they shoot in progressive mode, which makes compositing much

easier than interlaced footage. Since progressive footage keeps all the information

in a single frame intact, it’s easier to pull a decent key. When motion is split within

a frame across two fi elds of video, it’s much more diffi cult to pull a clean key since

the motion is slightly stuttered.

Controlling Camera Motion 13

An animated explanation of Panasonic’s variant of 24p for the DVX-100 can be found at:
http://www.skidgel.com/blog/2005/12/10/animation-explaining-24p-advanced/ and
http://www.skidgel.com/blog/2005/12/09/animation-explaining-24p-standard/.

Controlling Camera Motion
The job of the cinematographer is not just to make the audience say, “what amaz-

ing cinematography.” If the audience only talks about the cinematography, the

fi lmmakers have failed. The cinematography shold help tell the story, it should not

distract from it. Success is achieved when the cinematographer has developed her

skills, her workfl ow is smooth and facilitates rather than hinders her craft, and she

follows—but occasionally breaks for dramatic effect—the formal rules that are

grounded in narrative and cinematic guidelines.

Avoid Quick Zooms and Whiplash Panning

Fast, unmotivated zooms and indiscriminate whiplash pans are a clear sign of an

amateur fi lmmaker. First of all, this is never seen in professional video and cinema-

tography. Filmmakers almost always shoot with a fi xed-length lens. If they want

the camera to move more closely to the subject, they move the camera and not

the lens because it looks more natural, as if the audience is moving closer to the

subject. Quick zooms and pans often look blurry, and they can strobe. At 24 fps, a

quick pan looks even worse.

Not all zooms are bad, they just need to be motivated by the narrative needs

of the story. Instead of zooming in on a subject, cut from a medium shot to a

close-up. While this sounds counterintuitive, it is what fi lmmakers and editors

have been doing for over a century, because the viewers’ eyes along with their

imaginations, will connect the dots and create the rest of the zoom in their minds.

This is the real power of the language of fi lm, and you should employ it wherever

possible.

Controlling Movement

Excluding the movement of actors, movement that changes the view within a shot

is caused either by camera movement or by changing the focal length of the lens

(zooming in or out). Instead of whipping a camera around, controlled pans and

tilts make your video look more professional.

Pan and Tilt

Panning involves rotating the camera to the left or right on the y axis. This is best

done by rotating the camera using a pan and tilt head attached to a tripod. While

panning can be done while holding the camera, it’s not smooth and is best done

for short pans.

14 Chapter 2: Video Production Tips for Flash Video

Figure 2.2: Pan and tilt.

Two readily available styles of tripod heads are fl uid and fl uid-effect. Fluid head

gives the smoothest pans because the resistance created by pushing oil through

the internal mechanisms dampens jerky movements and softens horizontal and

vertical pans. A fl uid-effect tripod softens movement with two internal greased

plates arranged so that they work against each other to dampen vertical and

horizontal rotations. A fl uid-effect head is not as smooth as a pure fl uid head, but

it can do the job and is a lot less expensive.

PAN AND TILT GUIDELINES

There are several guidelines to remember when panning. A pan that is done too

quickly causes judder, noticeably long movements for elements within a frame. To

avoid judder, you simply need to:

Slow down your pans. 1

Turn off Optical Image Stabilization (OIS) when panning with a tripod. It will fi ght 1

you the entire length of the pan and create more judder.

If you want a fast pan, consider cutting between the two shots as it can often give 1

you the same visual effect, but remember to follow the 30-degree rule.

Use a Tripod or a Stabilizer Wherever Possible

Although handheld shots are great, they are not meant for all shots. If you video-

tape scenery, interviews, or other B roll (extra footage), a level tripod gives you

steady footage, smoother pans and tilts, and video that compresses better.

Motion in a shot is easily controlled by shooting on a sturdy tripod. Time your pans

correctly. Tighten the tilt head, or you could be in a for an unpleasant surprise if

you apply any pressure up or down during a pan.

Don’t Sweat Title and Action Safe Zones 15

Don’t Sweat Title and Action Safe Zones
If your only distribution medium is the Internet, there is no need to frame shots

to fall within the action-safe or title-safe areas because it does not get cropped

like video on a television. Likewise, titles or text do not need reside within the title

safe area when designing motion graphics for Flash Video delivery since the entire

frame will be seen on the web page.

Action Safe

Title Safe

Full frame of video

Figure 2.3: The guidelines for action and title safe do not apply to Flash Video.

Simplify Backgrounds
File size increases as there is more detail or motion in each frame. It goes without

saying that a frame with a subject in front of a solid color compresses more than

a frame with the same subject in front of moving machinery. However, a subject

in front of a static fi eld of color is boring to watch. One possible solution would

include an establishing shot of the subject in front of the machinery followed by

the subject in front of a simple background. Conversely, the edit could start with

the subject against the simple background with a few meaningful cutaways to the

complex scenery with the subject.

Shot 1 Shot 2

Figure 2.4: Two shots with simple backgrounds.

Use Depth of Field to Your Advantage

Another method for limiting detail is to use a shallow depth of fi eld. Bring the

subject into focus and have the background in soft focus. This will instruct the

16 Chapter 2: Video Production Tips for Flash Video

compression software to preserve detail in the foreground. Having the background

appear soft and out of focus reduces the chance of motion artifacts.

Depth of fi eld (DOF) is the area in front of the camera where elements look sharp

and in focus. Let’s assume you’re shooting a scene and the subject is 9 feet in front

of you. When you focus on the subject, the depth of fi eld could range from 8 to

11 feet. Anything within this area will be in focus, and anything outside of it will

be soft and out of focus. Realistically, only one infi nitely thin plane is truly in sharp

focus at any one time, but depth of fi eld is much deeper than this. The thin plane

in focus is about one third of the way into the entire depth of fi eld.

out of focus depth of field

focus

out of focus

1/3 2/3

Figure 2.5: Depth of fi eld is the area in front of the camera that is in focus.

When shooting extreme closeups in macro mode, the focus plane is closer to the middle of
the entire depth of fi eld.

To take full advantage of the relationships between focal length, aperture, and the

depth of fi eld with your camera, learn the following rules:

DOF Decreases as Focal Length Increases

Depth of fi eld is inversely proportional to focal length; that is, depth of fi eld de-

creases as focal length increases. This means that a telephoto lens has less depth

of fi eld than a normal lens. You can use this property of a telephoto lens to your

advantage when shooting with a zoom lens. First zoom all the way into a small

area on the subject, like the eyes. Focus the lens so that the eyes are sharp and

then zoom out to the desired framing. Since a zoom lens maintains the same focal

plane regardless of zoom, you are guaranteed sharp focus.

Conversely, depth of fi eld increases as focal lengths decrease. This means a wide-

angle lens has more depth of fi eld than either a telephoto or normal lens. In run-

and-gun situations, it is best to set focus quickly and then go wide, since depth of

fi eld is deeper at short (wide) focal lengths.

Simplify Backgrounds 17

out of focus depth of field

focus

out of focus

out of focus depth of field out of focus

The wider the angle of view,
the greater the depth of field.

The narrower the angle of view,
the shallower the depth of field.

Figure 2.6: Depth of fi eld decreases as focal length increases.

DOF Increases as Aperture Decreases

Depth of fi eld is also inversely proportional to aperture, so depth of fi eld increases

as the aperture closes. This means at f/8 there is more depth of fi eld than at f/2.

When you squint (close) your eyes to focus on an eye chart, you are essentially

doing the same thing.

out of focus depth of field

focus

out of focus

out of focus depth of field out of focus

smaller aperture yields a
greater depth of field

larger aperture yields a
shallower depth of field

Figure 2.7: Depth of fi eld increases as the aperture becomes smaller and decreases as it
becomes larger.

DOF and the Camera-to-Subject Distance

Depth of fi eld increases as the subject moves farther away from the camera and

decreases the closer he is to the camera. To get more depth of fi eld, move the

camera farther from the subject or move the subject farther from the camera. To

18 Chapter 2: Video Production Tips for Flash Video

get less depth of fi eld, move the camera closer to the subject or bring the subject

closer to the camera.

out of focus depth of field out of focus

out of focus depth of field out of focus

The farther the subject is from the
camera, the greater the depth of field.

The closer the subject is to the camera,
the shallower the depth of field.

focus

focus

Figure 2.8: Depth of fi eld increases as subject moves farther from the camera.

Racking Focus

Racking focus is a narrative fi lm technique where the focus is shifted from one sub-

ject to another within the same frame. This is seen a lot in over-the-camera dialog

shots. For example, while one man in the foreground smiles to himself, the camera

shifts focus from him to another man plotting against him.

Figure 2.9: An example of racking focus between two characters.

Get Good Exposure and Light Softly
Footage with soft, even light compresses better than footage with hard edges cre-

ated by shadows or overbright light values. Soft light can be achieved by applying

diffusion material to the lights or by applying a soft box to the key light. Important

information can be lost in dark exposures because compression will most likely

throw out any detail in dark areas.

Get Good Exposure and Light Softly 19

Key only Key, Fill, and Rim

Key and Fill Key, Fill, Rim, and Back

Figure 2.10: Four point lighting can dramatically improve the quality of video.

Reduce or Turn Off Detail or Sharpening

A camera’s detail or sharpening setting is often used to boost sharpness. While this

may be fi ne for footage that will not undergo any postprocessing, it is not recom-

mended if you plan to use a product, such as Red Giant’s Magic Bullet or Nattress

Film Effects, to deartifact and retime the video. When most codecs encounter

sharpening, they creates additional compression artifacts known as ringing, and

overly sharp images are a telltale sign of bad video. It’s hard to make bad video

look good.

To learn more about Magic Bullet, visit: http://www.redgiantsoftware.com.
To learn more about Nattress Film Effects, go to: http://www.nattress.com.

Exposure Is Everything

Unless you’re shooting 4:4:4 uncompressed, most camera codecs are not kind to

blown-out whites. While this may be the look you’re going for, you are far better

off doing this in postproduction, where you have more control over the entire im-

age. Keep your brightness values below 100 IRE or at least turn the zebras on your

camera. Shoot a stop or two down when the highlights begin to clip. In general, it

is better to shoot the image slightly underexposed (and I stress slightly) and crank

the brightness up later in postproduction.

20 Chapter 2: Video Production Tips for Flash Video

Figure 2.11: Monitor video levels with a waveform monitor.

You should use a graduated neutral-density (ND) fi lter when shooting outdoors in

bright sunlight. Shooting without one will blow out the sky and make the subject

appear to be backlit. Stopping the entire image down with the iris or the camera’s

ND fi lters will dull the image indiscriminately. A graduated ND fi lter contains a

translucent gradient in the glass that cuts the brightness progressively less from top

to bottom. This brings the sky under 100 IRE while not under exposing the subject.

If the subject still appears backlit, a bounce card or refl ective disc can serve as a fi ll

light.

Camera codecs are equally unforgiving when it comes to dark, severely under-

exposed images. When a dark image is recorded, the codec crushes the shadow

detail and creates dark artifacts that are both muddy and blotchy. When you try

to adjust the levels, these artifacts are impossible to repair. Again, look on the

waveform monitor and be prepared to throw another light on the set, or shoot at

a different time of day when more light is available.

It should go without saying that you want to get the best unadulterated expo-

sure you can and avoid having the camera’s codec, poor light, or a Gaussian fi lter

screwed onto the camera’s lens make the artistic decisions for you. If you shoot

an image that is balanced and properly exposed, you will have far more creative

options available to you in postproduction and your footage will look better when

compressed.

Get Good Exposure and Light Softly 21

Shooting Blue and Green Screen

Process photography is shooting a foreground element such as an object or talent

against a color, normally blue or green, for creating a composite with a back-

ground plate. For example, you cannot afford to shoot your talent in front of the

Eiffel Tower, so you shoot them in front of a green wall. In postproduction you key

out (remove) the green color, and you are left with only the talent, who you can

superimpose on top of a picture of the Eiffel Tower.

Backdrop Options

You can shoot talent against paper or fabric backdrops, against painted walls,

or you can use a combination of portable backdrops and walls. Backdrops are

smaller and transportable. They offer larger spaces but require more care to keep

clean and require dedicated space. Paper is cheaper than fabric, and paint is even

cheaper than paper if you are painting on an existing wall and are not building a

platform. Framed fl exible fabric backdrops will run from $150 – $400. Rolled fabric

will run $20 per yard for a roll that is 5 feet wide. A 9-foot by 3-foot roll of green

paper is about $50 dollars, but the stand for holding the paper costs about $150.

You can fi nd resellers of blue and green screen paint, backdrops, and kits online, by search-
ing the Internet for “blue screen material.”

Figure 2.12: A typical studio with a backdrop and painted sets pieces.

Lighting Issues

All lights should be the same color temperature. Lighting a green screen with vary-

ing color temperature will create subtle uneven color shifts on the screen that can

confuse the keying software. For example, if you mix tungsten and daylight bal-

anced lights, the screen will cast an orange-yellow tint. If you use tungsten lighting

on a shoot in broad daylight, it will cast a blue tint. In either case, you don’t want

the lights to add color to the screen. That will make things diffi cult to key, since the

22 Chapter 2: Video Production Tips for Flash Video

keying software is looking for blue or green, and not for some new color created

by mixing lights of different color temperatures.

The screens should also be lit as evenly as possible. An evenly lit screen is easier to

key because the screen appears as one solid color. When you don’t light the screen

evenly, you have to create garbage mattes and adjust the white and black points

before keying, which means more work and an overall decrease in the quality of

the matte. In short, do your best when shooting green and blue screen footage

and don’t assume it can be easily fi xed in postproduction.

Recording Room Tone and Effects
Room tone is 30 and preferably 60 seconds of audio recorded on set before sets

and equipment are broken down. It is used by the sound editor when doing

automatic dialog replacement (ADR) work or when patching over pops and clicks

in the sound track. It’s an important step in audio production and should not be

overlooked.

Figure 2.13: A single microphone recording room tone.

Any usable sound effects should also be recorded on set. This may be a door closing or
opening, footsteps, slaps, spills, car engines, horns, opening a jar, or anything else the inter-
face might need for a button click, slider drag, or screen transition.

Wrapping Up
This chapter covered just a few basic guidelines for producing video. If you can

follow these guidelines, your video will be greatly improved. To learn more specifi c

techniques for video, fi lm, and audio production, visit Focal Press’s web site at:

http://www.focalpress.com.

CHAPTER 3

An Introduction to Flash
Professional and ActionScript 3

A short primer on how to design compelling user

experiences for your Flash Video projects.

Creating Acquainted with Flash Professional CS3 2 24

Creating Flash Documents 2 .. 24

Interface Overview 2 ..27

Wrapping Up 2 ... 38

24 Chapter 3: An Introduction to Flash Professional and ActionScript 3

Getting Acquainted with Flash Professional CS3
This chapter is not a replacement for the offi cial documentation. It is an overview

illustrating what features are most used in creating Flash Video content. To learn

more about a topic that is covered here, select Help > Flash Help.

The primary way to author Flash Video content is with Flash Professional. While you can use
Flex Builder, the Flex SDK, or Flash Develop, this book and chapter focuses on Flash Profes-
sional CS3.

Creating Flash Documents
You can create a new document from either the Start Page window or the New

Document dialog. The Start Page window is shown when Flash Professional

launches. It has several shortcuts for creating different Flash document types or for

accessing recently open documents. It also has shortcuts to help as well as online

resources.

Figure 3.1: The Start Page for Flash Professional CS3.

New Document Dialog

Within the New Document dialog are the General or Templates tabs. Both of these

tabs offer several starting points for creating a Flash document. The General tab

contains blank documents with a few settings and the Templates tab has docu-

ments that are signifi cantly tailored for web advertising banners, mobile phones

and devices, quizzes, and presentations. We’ll create documents mostly from the

New Document dialog, but following this section is a short tutorial on creating a

document template.

Creating Flash Documents 25

Figure 3.2: In Flash Professional CS3, you can target either ActionScript 2 or 3 when you
create documents in the New Document dialog.

When you choose a new type in the New Document dialog, that type will be selected the
next time you invoke the dialog.

ActionScript is the scripting language in Flash that has many similarities to

JavaScript. At the time of this writing, Flash Player 9, which introduced ActionScript

3, is at 90% penetration and rising. That said, all the tutorials, except the Flash Lite

tutorial, will target ActionScript 3. So in most cases, when we create a new fi le for

this book, we’ll pick Flash File (ActionScript 3).

An editable Flash document has fl a as the the fi le extension and this book will refer

to one as an FLA fi le. A Flash document that has been compiled for deployment

has the swf fi le extension and this book will refer to one as an SWF fi le. While

a Flash document can contain most, if not all, the ActionScript code on a frame,

code can reside in seperate ActionScript fi les. An ActionScript fi le has an as fi le

extension and this book will refer to one as an ActionScript fi le. A Flash Video fi le

has an fl v fi le extension and this book will refer to one as an FLV fi le.

Editable Flash
authoring document

ActionScript
code file

Flash Video fileCompiled Flash file
for deployment

Figure 3.3: The icons used to represent FLA, SWF, ActionScript, and FLV fi les.

Note that when you deploy your project on a web server, you will deploy the SWF

and FLV fi les alongside any HTML and JavaScript fi les that are needed to properly

display the Flash Video content in a Web browser such as Internet Explorer, Firefox,

26 Chapter 3: An Introduction to Flash Professional and ActionScript 3

or Safari. The FLA and ActionScript fi les do not need to be deployed, as they are

combined when the SWF fi le is generated.

You will often hear these fi le types pronounced as a “fl ah fi le,” a “swif fi le,” or a “f-l-v fi le.”
Some people will say “a-s code” but most developers say “ActionScript code,” when it’s
internal to the FLA fi le or “ActionScript class fi les,” when the code is external to the FLA fi le.

Tutorial: Creating a Reusable Flash Template

If you plan to create a lot of Flash Video documents that will make use of the full

screen functionality added in a revision to the Flash Player 9, a document template

with this publishing option set can save you a lot of repeat steps. Let’s create a

template now.

Launch Flash Professional CS3. Choose 1. File > New.

In the 2. New Document dialog select Flash File (ActionScript 3).

Figure 3.4: An ActionScript 3-based Flash fi le is the fi rst in the list.

A new Flash document is created. Choose 3. File > Publish Settings. Click the HTML

tab at the top of the window.

Figure 3.5: Click the HTML tab to see the HTML publish options.

From the 4. Template menu, select Flash Only - Allow Full Screen. Click OK at the

bottom of the window.

Figure 3.6: Click the Template menu to select Flash Only - Allow Full Screen.

Interface Overview 27

Choose 5. File > Save as Template. The Save as Template dialog appears. In this

dialog enter information according to the following screen shot. By entering Video

Templates for the Category, the application will create a new template category

for the template and place it in the new category. Click Save.

Figure 3.7: Entering information for the new template.

Close the document used to create this template. Do not save it. To test this work, 6.

select File > New and click the Templates tab. Select the Video Templates category

and the dialog should resemble the following screen shot.

Figure 3.8: The template just created in the New Document dialog.

Interface Overview
Flash Professional CS3 has many user interface elements that you may have used

in graphic and video software. At a high level, the interface elements we’ll cover in

this section are the:

Stage 1 : It is like the monitor window in Premiere, the canvas window in Photoshop,
or the artboard in Illustrator. It’s where you draw, place, and animate elements.

Timeline: 1 It is optimal for cell-based animation but not as fl exible as the Timeline in
After Effects. It has layers that work like traditional layers in Adobe Illustrator.

28 Chapter 3: An Introduction to Flash Professional and ActionScript 3

Tool palette: 1 This has tools for drawing, coloring, and transforming elements as
well as creating text.

Properties panel: 1 It resembles the one in Dreamweaver the most, but there are
parallels to the Control palette in Illustrator or InDesign. It’s where you name ele-
ments and inspect and set properties such as scale, position, and opacity.

Library panel: 1 It is most like the Browser window in Final Cut Pro or the project
window in Premiere and After Effects. This is where you keep and organize assets
you create within Flash, such as movie clips and graphic symbols as well as exter-
nal assets, such as images.

Where Flash differs from traditional design and video applications is that it sup-

ports the creation of interactive content. The following interface elements are

crucial to creating interactivity:

Actions panel: 1 You write code in this panel. Best practice has most code on the fi rst
frame of a locked layer named “Actions.” Standalone ActionScript fi les do not use
the Actions panel, but have their own document window.

Components panel: 1 This lists the installed components in the application’s con-
fi guration folder. In Flash Professional CS3, Adobe changed the behavior of the
panel to show only the Components for the currently open document’s version of
ActionScript.

Components Inspector panel: 1 For any component, this panel shows all the param-
eters for the coponent. If you don’t set component parameters in code, this panel
is a more comfortable alternative to the Parameters tab that is docked with the
Properties and Filters tabs.

Figure 3.9: The default Flash Professional CS3 user interface.

Interface Overview 29

Timeline

Layers are shown on the left side of the Timeline window. To the right are the

frames for the movie. Layers run from top to bottom where bottom layers are in

the background and top layers are in the foreground. Time or duration runs from

left to right where the left most frame is the fi rst frame in the Flash document.

A B

L

KJIH
G

F
E

D

C

Figure 3.10: Layer visibility toggle (A), Lock toggle (B), Layer Outline Color (C), a normal
layer (D), a mask layer (E), a masked layer (F), New Layer button (G), Create Motion Guide
Layer button (H), New Folder button (I), Delete button (J), Non-editable layer icon (K), and
a Frame Script is marked with a lower case a and o (L).

Each layer has a name, an indication that the layer is editable, visibility and lock

toggles, and a selection outline color. A layer is editable when the layer is visible

and not locked. Double-click layer text to name a layer. Double-click layer icon to

display Layer Properties dialog. The types of layers are:

Normal layer: 1 It is the standard layer that is rendered when the movie is compiled
as a SWF.

Guide layer: 1 It is used to help with placing elements. Like horizontal and vertical
guides a guide layer is visible during authoring time, but is not visible during run-
time when the compiled SWF fi le plays. Anything can exist on a guide layer to help
with placement, but remember that it won’t be rendered in the fi nal movie.

Mask layer: It 1 is used to reveal portions of layers below it. Artwork on this layer
defi nes the area that is shown in the fi nal movie. This type of layer is useful for
creating video shapes that are non-rectangular and Chapter 6 features a tutorial on
masking video.

Motion guide layer: 1 This layer is like a null layer in After Effects or a 3-D program.
It is not shown but is used as the animation settings for another layer. This book
won’t cover how to use them, so look them up in Flash’s online help if you’d like
to learn more about them.

Below the list of layers are buttons for creating a new layer, a motion guide layer,

and a layer folder, and deleting a layer. At the end of this button strip is a resize

handle to increase the width of the Layer pane.

The Layer Properties dialog is accessed by selecting Modify > Timeline > Layer

Properties, double-clicking a layer icon, or context-clicking on a layer and choos-

30 Chapter 3: An Introduction to Flash Professional and ActionScript 3

ing Layer Properties. It is for changing any of the properties that can be set in the

Layer pane.

CREATING FRAME SCRIPTS
ActionScript can be placed on just about
anything; a button, a movie clip, or a frame.
While that is fi ne for informal interactive
development, it is not considered best prac-
tice because placing code throughout a FLA
fi le makes managing the code diffi cult.

What most developers use are frame scripts.
This is accomplished by creating a layer at
the top of the layer list named Actions or
ActionScript, selecting a frame in this layer

(usually the fi rst), and entering code in the
Actions panel. Any code entered when this
frame is selected is attached to the frame.

With the introduction of Flash Professional
CS3, a FLA can have a document class
fi le associated with it. This is a seperate
ActionScript document that contains all the
code for the movie. This is nice for seperat-
ing code from the design and for portability
and reuse. Document classes are covered in
Chapters 5 and 9.

The Stage, Shapes, and Symbols

The stage is where elements are drawn, placed, and animated. It is adjacent to the

Timeline and the two panes form one window. Like most modern graphic applica-

tions it sports rulers, guides, and the ability to zoom in and out. The Edit, View,

Insert, and Modify application menus help in placing and editing elements on the

stage.

A

B DC

Figure 3.11: A stage with rulers (A) and guides (C). Also notice the Edit bar (B) which is
used to navigate between the stage and nested movie clips and symbols. Setting the zoom
level (D) is at the left side of the Edit bar.

Interface Overview 31

Shapes and Symbols

Understanding the relationship between shapes and symbols will help you make

the most of Flash Professional. Let’s review the differences between shapes,

graphic symbols, button symbols, movie clip symbols, and instances.

A shape is a graphic element that is used once. While a shape can be copied and

pasted, the copy is not linked in any way to the original shape. A symbol, by con-

trast, is stored in the Library and instances of the symbol are placed on the stage.

When a symbol is edited, all instances of it are updated to refl ect the new appear-

ance. While an instance inherits its appearance from the original symbol, effects

can be applied directly to it to differentiate it from the original symbol. That said,

you will use three types of symbols in this book.

A 1. graphic symbol is artwork or text that is stored in the Library for reuse. An ex-

ample of a graphic symbol is an icon used multiple times in a button symbol. Sym-

bols do not exist on the stage, but instances of the graphic symbol do. A graphic

symbol does not have its own timeline and can only be animated inside the main

timeline or in a movie clip symbol. Sounds and interactivity are also not possible

inside a graphic symbol.

A 2. button symbol has a timeline with four frames: an Up frame for the normal state,

an Over frame for the hover state, a Down frame for the depressed state, and a

Hit frame used to defi ne the clickable area for the button. A button symbol can

generate events and integrate with ActionScript code.

A 3. movie clip symbol is like a graphic symbol but also has its own timeline, can

include sound, and can be accessed from ActionScript code. For this reason, a

movie clip can contain animation. Components, which we will use to play video

and create user interfaces, are movie clips with editable properties.

Creating Symbols

To create a symbol, select an element or elements on the stage you wish to make a

symbol and choose Modify > Convert to Symbol. In the Symbol Properties dialog,

you can set the symbol type as well as other properties.

Tool Palette

Like most graphic applications, Flash Professional has a tool palette with selection,

shape creation, color, transformation, and view tools. Let’s go over what’s unique

to Flash and what you will encounter when customizing video player skins.

Object Drawing Mode

To make shape creation more like Illustrator where the stroke and fi ll for a shape

are connected, turn on Object Drawing mode. You do this by clicking the Object

Drawing toggle button when the Pen or any of the shape tools are active.

32 Chapter 3: An Introduction to Flash Professional and ActionScript 3

BA

Figure 3.12: Object Drawing mode on (A) and off (B).

The Gradient Transformation Tool

The Gradient Transformation tool facilates directly scaling and rotating gradients.

It’s located underneath the Transformation tool. In Chapter 5, we’ll use the Gradi-

ent Transformation tool to scale and rotate the gradient fi lls of several buttons and

other user interface controls.

Figure 3.13: The Gradient Transformation tool.

Properties Panel

The Properties panel displays settings for the selected item on the stage. Since

there are many types of objects to select at any given time: a shape, a symbol, a

text object, or a component to name just a few, the Properties panel displays the

appropriate settings for the selected object. Settings that you will often set are x

and y position and the name of an instance. There are lots of other properties such

as symbol type, bitmap effects, color and gradient, or blend mode.

A

B

C

Figure 3.14: The Properties panel shown for a shape (A), component (B), and text fi eld (C).

Interface Overview 33

Instances have names so they can be referenced by ActionScript code. For instance when
playing a video, you need the instance name of the object that will play it.

By default, two other tabbed panels are docked with the Properties panel. They

are the Filters and the Parameters panels. The Filters panel is used to apply Flash

Player fi lters to a movie clip. Filters include drop shadow, glows, bevels, and blurs.

In Chapter 6 we’ll go into more detail about the fi lters and apply them using this

panel or ActionScript. The Parameters panel is used for setting component proper-

ties.

I personally prefer the Component Inspector panel to the Parameters panel since it is much
larger by default. I think this makes it easier to see and set component properties.

A component is a movie clip that has parameters that can be set using the Pa-

rameters tab, the Component Inspector panel, or via ActionScript. For example,

the FLVPlayback component which plays Flash Video has a skinBackgroundColor

property for setting the skin’s fi ll color. This property and all other component

properties appear in the Parameters panel. Components can often eliminate the

need to write code since their properties are exposed to the user through a user

interface. Some components can also be highly customized. The components that

are included when targeting ActionScript 3 are a big improvement over the V2

Components that shipped with Flash MX2004 and 8.

Adjusting Movie Properties and Publish Settings

When there is no selection the Properties panel shows the properties for the FLA

fi le. From here you can click the Size button to display the Document Properties

dialog or the Settings button to display the Publishing Options dialog. The Docu-

ment Properties dialog presents controls for setting metadata, the size of the FLA

and SWF, or the background color.

Figure 3.15: The Movie Properties dialog.

34 Chapter 3: An Introduction to Flash Professional and ActionScript 3

The Publish Settings dialog helps with generating the SWF, changing the target

player or ActionScript version, and setting HTML publishing options. The Publish-

ing Options dialog, like we learned in the template creation tutorial, is crucial for

setting web page parameters to correctly enter full-screen mode.

Library Panel

The Library panel stores symbols and assets imported into a FLA fi le. Elements in

the panel can be grouped into folders and in many ways, it is like a Mac OS X

Finder window or Windows Desktop Explorer window in table view. You are free

to drag and drop items from one folder to another and when you need to use an

item on the stage, you drag it from the Library panel directly to the stage. Like

most other Adobe products, it has a Panel options menu and a set of command

buttons along the bottom of the panel for creating symbols and folders, viewing

properties or deleting items from the Library.

Figure 3.16: The Library panel’s Panel Options button (A), Panel Options menu (B), and
Command buttons (C).

Creating a video object is a task you’ll have to do often. A video object is a box for

displaying video. It can be used to store embedded video that is synchronized with

a timeline or you can insert a blank video object, give it an instance name, and

write ActionScript code to display and control video.

Interface Overview 35

While you can import video into the Library panel, you should do this only when the clips
are small or when working with embedded device video for Flash Lite. Embedded video
clips dramatically increase a SWF’s size and they are not as network effi cient as external
video that uses a component or a video object that is ActionScript-controlled.

To create a video object using the Library panel, do the following:

Click the 1. Panel Options button. Choose New Video from the menu.

In the 2. Video Properties dialog, select the video type and click OK. The video

object is now stored in the Library panel and you can use it like any other imported

graphic or symbol.

B

A

Figure 2.17: Two versions of the Video Properties dialog showing embedded video (A) and
ActionScript-controlled video (B).

Components Panel

Components are movie clips with editable properties that you can set using the

Parameters panel or the Components Inspector panel. While component proper-

ties can be set with ActionScript, they also be set through the Parameters panel or

the Component Inspector panel without writing any code. To access components

choose Window > Components. To use a component, you drag it from the Com-

ponents panel to the stage.

When you create a FLA fi le for ActionScript 3, the Components panel will only

show you components that are written for ActionScript 3, such as the ActionScript

3 User Interface components and the FLVPlayback components for ActionScript 3.

36 Chapter 3: An Introduction to Flash Professional and ActionScript 3

Figure 2.18: The Components and Components Inspector panels in Flash Professional CS3.

Several chapters in the book will use the ActionScript 3 User Interface components

as well as the FLVPlayback components. We’ll set properties using both the panel

interfaces and ActionScript. We’ll also create Flash Video applications without

using components since that is a question Flash developers often have.

The Actions Panel

The Actions panel, not surprisingly, is where you enter ActionScript code. It is

shown by choosing Window > Actions. A few Actions panel features that I use

regularly are at the top of the panel.

I click the 1 Check Syntax button before testing a movie. It reports coding errors in
the Compiler Errors panel.

To the left of the 1 Check Syntax button is the Auto Format button. It reformats
code according to the settings in the Auto Format preferences. This is helpful when
I enter code quickly and want to have consistent indenting and spacing.

Be sure to check the Auto Format preferences fi rst though, so you can adjust them to your
coding style. Choose File > Preferences (Windows) or Flash > Preferences (Mac OS X) and
select the Auto Format category.

The 1 Code Collapse buttons collapse an arbitrary selection of code down to a
button. This feature is great when working on a section of code because you
can collapse the code blocks you’re not currently working on. Note that you can
also collapse code by clicking the collapse/expand controls to the right of the line
numbers in the gutter. To expand code that has been collapsed, click the collapse/
expand controls in the gutter or click the Expand All button.

To collapse code that exists outside of the current selection (inverse code collapse) press the
Option key (Mac OS X) or the Alt key (Windows) and click the Collapse Code button.

Interface Overview 37

Figure 2.19: Check Syntax (A), Auto Format (B), and Code Collapse command buttons
(C), and Collapsed Code button (D), Collapse/Expand controls (E), and Line and Column
Numbers (F).

Compiler Errors and Output Panels

The Compiler Errors and Output panels are used extensively when debugging

code. The Compiler Errors panel is automatically shown when errors occur in

code. There are times when the error description isn’t clear. What I usually do in

this case is right-click (Windows) or Control-click (Mac OS X) on the error listing in

the Compiler Errors panel and choose Copy Description. I will then paste the error

description into Google and search for it. The returned search results will often list

several blog or forum posts where someone has encountered the same error and

community members have responded with solutions.

Figure 2.20: The Compiler Errors dialog.

The Output panel comes in handy when trying to test a portion of code. When I

want to see if a method is being called properly, I will add a trace statement to the

38 Chapter 3: An Introduction to Flash Professional and ActionScript 3

method and test the FLA fi le. If the method is called properly, I will see the text I

traced in the Output panel.

The Help Panel

I use the Help panel a lot. It’s displayed by choosing Help > Flash Help. I spend

most of my time reading not about features, but about ActionScript. When I’m

using a class for the fi rst time, I will look the class up in Help and learn what its

methods and properties are and I will also read the sample code listings if they

exist for the class.

Testing with the Preview Window

To preview your work, you choose Control > Test Movie. By default, the Pre-

view window appears in a separate window. If you’d like to test movies in a new

tab in the Flash interface, follow these steps:

Choose 1. File > Preferences (Windows) or Flash > Preferences (Mac OS X).

Select the 2. General category.

Check 3. Open test movies in tabs and click OK.

Wrapping Up
This chapter presented highlights of the Flash Professional interface and how to

make best use of it when authoring Flash Video content. It certainly won’t be

the only introduction to user interface features. As we progress through each

tutorial, I will discuss the user interface or ActionScript concepts where appropri-

ate. With that said, let’s move on to the next chapter and learn about encoding

Flash Video.

CHAPTER 4

Encoding Flash Video

Understanding how video is encoded on your cam-

corder, decoded on your computer, and encoded for

delivery helps you get the best quality possible. It

also reinforces why best practices should be fol-

lowed when shooting video.

Analog and Digital Theory 2 .. 40

Compression 2 ...42

Important Factors Regarding Compression 2 44

Encoding Decisions 2 ...47

Flash Video Encoding Settings 2 .. 56

Encoding Tutorials 2 ...62

Wrapping Up 2 ... 70

40 Chapter 4: Encoding Flash Video

This chapter covers converting video from its original format to one of the Flash

Video codecs: Sorenson Spark or On2 VP6. It starts, however, with a brief intro-

duction to analog and digital theory. It’s meant to help you understand how digital

processing infl uences the quality of your video. It also discusses the factors outside

digital processing such as Internet access speed, site quota limits, and targeting a

specifi c version of the Flash Player.

Analog and Digital Theory
For something to be analog means that it is analogous, or similar to the original.

Let’s take an example of cymbals clapping. When they collide, sound vibrations are

produced. An analog microphone and recorder record the cymbals as an analog

waveform. The waveform reproduces sound vibrations that are analogous to the

vibrations of the original.

So one might ask, “When a digital recording of the cymbals plays back, the sound

it produces appears to be analogous to the original sound. What is the difference?”

The difference is in how each method represents the recording of the original

sound. An analog recording represents the sound as a smooth physical waveform.

A digital recording, by contrast, is a sampled, discreet, and often compressed

approximation.

The Analog-to-Digital Process

Another misconception is that digital video cameras are completely digital. This

is not true, because the charged coupled device (CCD) outputs an analog signal

measured in volts that the camera’s digital signal processor (DSP) converts into a

digital signal. This conversion involves two steps: color sampling and quantization.

These steps yield a data rate that then can be further compressed before the video

is stored or transmitted.

Color Spaces

Before we talk about color sampling, it is important to have a brief discussion

about color spaces. Digital pictures originate in the RGB (red, green, and blue)

color space. Computer-generated motion graphics and renderings also originate in

RGB. This color space has three discreet channels of color where color is distributed

across red, green, and blue. When the three channels are combined, they form a

full-color image.

Broadcast video, however, is broadcast in a different color space known as Y’CbCr.

You will also hear Y’CbCr referred to as YUV or possibly YIQ. This is incorrect.

Video software developers (or let’s blame their marketing departments) have

constantly referred to Y’CbCr as YUV. YUV actually refers to the way Y’CbCr

is represented in PAL, and YIQ is the actual way Y’CbCr is referred to in NTSC.

Analog and Digital Theory 41

Y’CbCr represents luma (Y) and chrominance (Cb and Cr). The Y channel contains

all green information as well as parts of the red and blue information. The Cb and

Cr channels contain the remaining red and blue information. Broadcast television

uses the Y’CbCr color space because it is easier to compress with little noticeable

difference (more on that in the next section) and because the luma channel, or Y,

offers compatibility with black-and-white televisions.

Color spaces may affect your material if you convert between color spaces in

postproduction. If your nonlinear editor (NLE) works in YUV, but your motion

graphics package works in RGB, there will be slight color shifts. If color consistency

is important, you should take the time to learn more about these issues. One way

is to search the Internet with the query string, “converting YUV to RGB.”

Color Sampling

The human eye is better at discerning between shades of gray than it is at discern-

ing between different colors. Video standards exploit this weakness by preserving

the luminance channel while taking fewer samples of the color information. Most

commonly, color sampling refers to the stored ratio of luminance to chrominance

across four lines of video.

4:2:24:4:4

Y Cb Cr

4:2:04:1:1

Figure 4.1: Color sampling.

4:4:4:(4) samples every pixel for color and luminance in the 4 × 4 array of pixels. 1

It is used when quality is of the utmost concern and storage space is not an issue.
Given a proper conversion, 4:4:4 Y’CbCr is nearly identical to the original RGB
source in picture and size and so it is the highest-quality sampling rate. It is nearly
identical because rounding errors can occur when converting between the two
color spaces. As a result, 4:4:4 is limited to high-end applications in production and
postproduction and is not used in broadcast or other means of distribution. The
fourth 4 represents the alpha channel or key when it is present.

4:2:2 samples every pixel in the fi rst and third columns for luminance and color but 1

samples only luminance for the second and fourth columns. Think of it as all of the
fl avor with half of the calories. 4:2:2 is used in DVCpro50 and 100 HD cameras.

4:1:1 samples every pixel for luminance but samples only the fi rst column for color. 1

It’s all the fl avor with a quarter of the calories. 4:1:1 is used in NTSC Mini DV.

42 Chapter 4: Encoding Flash Video

4:2:0 samples every pixel for luminance but alternates between sampling Cr and 1

Cb color information. Like 4:1:1, it’s all the fl avor with a quarter of the calories, but
some bites have pepper and some have salt and you chew to experience the fl avor.
4:2:0 is used for broadcast, PAL DV, and DVD, but it is also part of the prosumer
high-defi nition video (HDV) standard.

When working with video and computer-generated imagery, or even working be-

tween different video software packages, a noticeable color shift can result when

converting between RGB and YUV color space.

Quantization

The difference between a frame of digital video and a frame of fi lm is that the

digital video frame is described in discreet color values, whereas the color values

for a frame of fi lm are continuously variable and infi nite. For example, a pixel in an

8-bit video frame has a tonal value between 0 and 255 for each of its three chan-

nels Y’CbCr.

Quantizing each frame is the next step in analog-to-digital conversion. It involves

assigning a precise value to each image pixel based on the image’s bit depth. In

most cases, this is 8 bits per channel or 24 bits for all three. For this level of quan-

tization, a pixel is one of 16.7 million colors. The actual number can actually be

lower when shooting NTSC since its 8-bit gamut ranges from 16 to 235.

Data Rate

The data rate for a digital video format is calculated by multiplying the number of

horizontal pixels sampled for Y’CbCr by the number of vertical pixels and multiply-

ing this sum by the quantizing level (bit depth) and the frame rate. This calculation

is the raw or effective data rate. Applying a compression algorithm can get the

data rate even lower.

Compression
Compression decreases a video segment’s storage and bandwidth requirements

by removing or reducing redundant or less-important information. Compression

is not always a given with digital video. Depending upon the stage in production,

postproduction, or distribution, different compression schemes, or compression-

decompression algorithms (codecs), come into play. Codecs are written to solve

particular needs. For instance, the codec used for real-time teleconferencing is not

suffi cient for displaying a feature fi lm in a theater, and vice versa. In the fi rst case,

the result is akin to blowing up a one-inch postage stamp to 12 feet across. In the

reverse case, the teleconference never gets by the fi rst frame as the video signal is

hundreds of times larger than the recommended size.

Compression 43

The following list classifi es codecs by their place in the spectrum between produc-

tion and distribution:

Production codecs1. are used by the camera to store video onto media (in most

cases tape, but disc and solid-state memory are being used). A camera normally

only supports one codec, but higher-end cameras geared at fi lm and news produc-

tion are now capable of supporting a few codecs (some even employ little to no

compression). A production codec has to preserve as much information as it can

in the audio and video signals while still being economically stored on the camera

media.

Postproduction codecs2. are present, but most video producers simply use the pro-

duction codec they shot with in the postproduction process. Postproduction or in-

termediate codecs are used when the video producer needs to incorporate motion

graphics, special effects, or is required to transcode material into a specifi c format

for television or fi lm distribution. These codecs are used because they are better

at preserving more audio and video quality than production codecs and because

more storage and specialized processing power is available during postproduction.

Distribution codecs3. are used for delivering audio and video content quickly and

effi ciently. They squeeze the material to the smallest size possible and ensure that

the media doesn’t clog a network connection. While audio and video quality de-

creases signifi cantly, newer codecs and Internet speeds are improving to the point

that Internet video can be as good as DVD video. The Flash Player includes two

distribution codecs: Sorenson Spark and On2 VP6 and the VP6 codec can certainly

produce video that rivals DVD quality.

Lossy and Lossless Codecs

While some codecs are lossless or near lossless, most production, postproduction,

and distribution codes are “lossy” codecs. That is to say, some information is lost

in the encoding process. In general, you will use lossy codecs throughout your

project, but try to minimize their use.

By contrast, lossless codecs preserve most if not all of the information, but require

signifi cantly more processing power and available storage. There are also lossless

codecs that preserve most if not all of the original image information. They are

great for preserving high levels of quality, but they do not offer real-time de-

compression with normal computing hardware, which is important when you are

editing material. To make up for this, video producers working in this format often

purchase a video board that greatly accelerates the decompression and compres-

sion. Production and postproduction codecs can be either lossy or lossless. Distri-

bution codecs are always lossy and probably will continue to be until processing

power, access speeds, and storage become irrelevant.

44 Chapter 4: Encoding Flash Video

Intraframe and Interframe Compression

Intraframe compression looks for patterns within the same frame, and interframe

compression looks for patterns across frames. Intraframe compression offers bet-

ter quality than interframe compression because the integrity of each frame is

maintained with intraframe compression. Since interfame compression attempts to

remove redundant information across different frames, some unique information

is lost. Normally, codecs either are just intraframe or employ both intraframe and

interframe compression methods.

DV and HDV are two lossy codecs widely used in production. DV and its larger-

capacity siblings, DVCPro 50 and DVCPro 100, are intraframe codecs whereas

HDV is both an intraframe codec and an interframe codec. Both Flash Player co-

decs (Spark and VP6) are lossy codecs that employ both interframe and intraframe

compression. The keyframe interval setting in the Flash Video encoder specifi es the

amount of interframe compression.

Compression Ratios

Compression ratios represent how effi cient a codec is by relating the original size

to the compressed size. A compression ratio of 2:1 is considered lossless, and

higher compression ratios most likely involve sacrifi cing some image quality for size.

Hardware-based codecs tend to be high quality or lossless but require hardware

such as a board to work. Software-based codecs vary according to their purpose.

Streaming and real-time playback codecs tend to have high compression ratios,

and there are now almost completely lossless software codecs available for produc-

tion archiving and exchange. Many DV codecs are not hardware-based and have

a compression ratio of 5:1. Sorenson Spark and VP6 both have high compression

ratios (in the ballpark of 30:1).

The Takeaway

Compression is used from the moment you press record on the camera to the mo-

ment your audience presses play on your Flash movie. When producing video, you

will want to start with the best codec possible. This will be limited by your camera.

When going into postproduction, remain at this codec, but also consider keeping

material in a higher quality production codec if you are going to be combining

your source material with text, graphics, or effects. How you deliver your material

to your audience often dictates what distribution codec to use. In short, you main-

tain quality by not compressing the video to a distribution codec until it is ready to

go on your web site.

Important Factors Regarding Compression
How you encode your video is infl uenced by these two factors: your audience’s In-

ternet access speed and the Flash Player version you wish to target. The fi rst factor

Important Factors Regarding Compression 45

is important because not everyone has access to a high speed Internet connection.

The second is important because there are some people who have not updated

their version of the Flash Player.

Internet Access Speed

The speed at which your audience accesses the Internet will often dictate the

speeds at which you offer your material. If a signifi cant portion of your audience

accesses the Internet using low-bandwidth dial-up modems, you will certainly

want to publish a video with a total bit rate around 40k a second. Conversely,

users accessing the Internet over DSL or cable modems can handle a total bit rate

between 200k and 500k per second.

Flash Player Versions and Video Codecs

With Flash Video, there are two codecs to choose from: the Sorenson Spark codec

and the On2 VP6 codec. The former was introduced in Flash Player 6 and the lat-

ter was introduced in Flash Player 8.

Flash Player Version

Flash Professional Authoring Version

6

Sorenson Spark Codec

Embedded Video

Streaming Video

7

Progressive Video

8

On2 VP6 Codec

Alpha Channel Support

9

Full-Screen Support

MX MX 2004

Media Components

8

FLVPlayback Components

Custom Playback Component

Video Import Wizard

CS 3

Skin Full-Screen Support

Video Preview

Closed Captioning

Figure 4.2: Video features introduced across Flash Player and Flash Professional releases.

Sorenson Spark

When the Sorenson Spark codec was initially introduced in Flash Player 6, the

player only supported embedded video (which was usually small in size) or stream-

ing video. Embedded video has to be added to the SWF, which makes the SWF

ineffi ciently big and prone to sync issues since the frame rate for the SWF and the

FLV need to be the same or a multiple of the other. Having the FLV reside on a

server and streamed into a SWF is a much better option, but it requires the content

46 Chapter 4: Encoding Flash Video

producer to have a Flash Streaming Server (it was originally called Flash Communi-

cation Server but its name has since changed to Flash Media Server).

With the introduction of Flash Player 7, an FLV fi le could reside alongside a SWF

on a regular web site and be progressively downloaded into the SWF without

a streaming server. While this doesn’t always work as well as playback from a

streaming server, it allows anyone with a web site to easily host and deploy video

with their Flash content. Player 7 also improved playback performance, and as a

result of these two developments, the use of Flash Video increased dramatically.

The Spark codec is a paired-down version of H.263, a codec originally intended for

real-time video conferencing. It excludes some of H.263’s compression and decom-

pression features in order to keep its footprint small. While this seems unfortunate,

it was necessary, since Macromedia (now Adobe) has always strived for keeping

the Flash Player’s footprint as small as possible.

To learn more about the differences between the Spark and H.263 codecs, read Fabio Son-
nati’s blog at: www.progettosinergia.com/fl ashvideo/fl ashvideoblog.htm.

On2 VP6 Codec

The VP6 codec developed by On2 Technologies was licensed by Macromedia for

Flash Player 8. It was added to keep the Flash platform’s video offerings competi-

tive. The primary advantage VP6 has over Spark is that it offers the same quality at

a much lower bit rate (or signifi cantly increased quality at the same bit rate). This

difference can really be seen in scenes with motion, blur, or gradations. For ex-

ample, footage compressed with Spark will look choppy, pixelated, and have bands

of color, while the same footage compressed with On2 will appear much smoother

and preserve more detail.

A great tool for comparing codec and encoding software quality is the Flash Video FAQ site
put together by Roguish. It’s located at: http://www.fl ashvideofaq.com/.

The VP6 codec also introduced support for alpha channels. This allows the Flash

Video producer to seamlessly composite video on top of other elements inside a

Flash movie or on top of elements in a web page. An alpha channel is a separate,

grayscale layer of video that creates transparency in the video. Where there are

white or light pixels, the video will appear transparent, and where there are dark or

black pixels, the video will appear opaque.

Encoding Decisions 47

The foreground element is shot in front
of a green screen

The background element

An alpha channel is created from keying
the background color out

The alpha channel is used to overlay the
foreground element over the background
element

Figure 4.3: Alpha Channels

So the question people often ask is, “Which codec should I use?” In short, Soren-

son Spark is the way to go when you want the greatest reach. The On2 VP6 codec

is obviously the choice when you require better quality, increased size and perfor-

mance, and more creative options. Or if you look at Adobe’s published numbers on

market penetration, simply use On2 VP6 because 93% of users have Flash Player

8 or above. The question then really becomes: Does the user have Flash Player 8

or Flash Player 9? Flash Player 9 offers ActionScript 3, which is signifi cantly faster.

If you can identify your audience early in the game and what Flash Player the majority of
them have installed, your decision becomes much easier.

Encoding Decisions
With your target bandwidth and player version known, it’s time to look at the

video you wish to deliver and analyze its:

Pixel dimensions:1. Is it standard defi nition (roughly 720 × 480) or high defi nition

(1280 × 720 or larger)?

Frame rate:2. Is it 24, 25, or 30 frames per second (fps)?

48 Chapter 4: Encoding Flash Video

Aspect ratio:3. Is it normal video with an aspect ratio of 4:3, or is it widescreen video

with an aspect ratio of 16:9?

Frame format:4. Is it interlaced video with video fi elds interleaved to form a full

frame or is it progressive video that has full frames of video?

Content:5. Does it have a lot of motion, fast cuts, and transitions?

Pixel Dimensions

Pixels (picture elements) are the tiny squares of color arranged on a two-dimen-

sional grid that form an image. The aspect ratio of a single video pixel is its width

relative to its height. One would imagine that video pixels would be perfectly

square like the pixels on a computer screen. This could not be further from the

truth! The NTSC and PAL digital video formats have rectangular (also referred to as

non-square) pixels. A 4:3 NTSC video is 10% narrower than a computer’s square

pixel, whereas a 4:3 PAL video is roughly 7% wider than a computer’s square pixel.

These formats have rectangular pixels because of recent broadcast technology.

NTSC AND PAL VIDEO FORMATS
National Television Standards Committee
(NTSC) is the video broadcast standard used
in the United States, Canada, and Japan.
Phase Alternate Line (PAL) is the video
broadcast standard in Europe and parts of
Africa and Asia. NTSC video plays at 29.97
fps at a resolution of 720 × 480 pixels. PAL
video plays at 25 fps at a resolution of 720
× 576 pixels. Although NTSC has a slightly
higher frame rate, PAL has slightly greater
resolution and is closer to the frame rate
of fi lm, 24 fps. The two formats also have
different pixel aspect ratios.

The frame rate of fi lm is based on an
integer—24. This is to say that the time
base for fi lm accurately correlates to real
time. The frame rate for NTSC video, on the
other hand, does not accurately correlate

to real time because its frame rate is not
based on a whole number. The frame rate
for video is 29.97 fps. This discrepancy
originated when color television was intro-
duced in the United States. Black-and-white
television broadcasts ran at a whole frame
rate of 30 fps. When color was introduced
to the broadcast signal, the frame rate had
to be adjusted to maintain compatibility
with the black-and-white standard to keep
the picture and sound synchronized. As
a result, running video at 29.97 frames
per second without dropping frames does
not correspond to real time—in one hour,
there is a difference of 108 frames between
29.97 non-drop-frame video and real time.
Dropping, or not counting, a pair of frame
numbers every 66 seconds and 20 frames
keeps NTSC video in step with real time.

NTSC video used to be 640 × 480 or 648 × 486. In the 1990s, the NTSC D1 video

standard was defi ned to be 720 × 486. By packing more discreet blocks of resolu-

tion, more detail was made available. When DV and DVD were defi ned, however,

720 × 480 was considered preferable to 720 × 486 mostly because the compres-

sion algorithms used in DV and DVD rely upon DCT compression algorithms,

which work on 858 pixel blocks.

Encoding Decisions 49

Large frame sizes require higher bit rates and are larger in fi le size. When video

contains detail that is crucial to the viewer’s understanding, crop the video to focus

on the important area, because shrinking the entire image down makes it practi-

cally worthless. Interviews, or “talking head” video, can be much smaller since the

framing is usually tight on the subject and the audio is usually more important than

the image. Video shot using a high-defi nition (HD) camera will look better. HD

resolutions are either 1280 × 720 or 1920 × 1080.

720 × 576 (PAL) 720 × 480 (NTSC)1280 × 720 HD1920 × 1080 HD

32
0

×
 2

40
32

0
×

 1
80

Figure 4.4: Comparing the relative size of different video standards.

Frame Rate

Frame rate is the number of frames shown per second. Higher frame rates cre-

ate smoother motion but also larger fi le sizes, because there are more frames to

compress and higher bit rates are required. It is recommended that you work in

multiples of the source’s original frame rate. For example, with 24 fps video, you

can consider encoding at 24, 12, 8, or 6 fps, and with 30 fps video, you can con-

sider 30, 15, or 10. When there is little motion in the video (such as talking head

video), you can often get away with lower frame rates because the sound is often

more important than image.

Aspect Ratio

Nearly all NTSC and PAL video is created with a 1.33 aspect ratio. This aspect ratio

is referred to as the “standard” because it has been used for decades. Moving for-

ward to today, most plasma and LCD televisions that support high-defi nition video

50 Chapter 4: Encoding Flash Video

have a 16:9 or a 1.78 aspect ratio. This aspect ratio is referred to as “widescreen”

because it is closer to fi lm aspect ratios.

With the Mini DV and DVD-Video standards, standard-defi nition (SD) video can

also have a 16:9 aspect ratio. Shooting 16:9 also gives you more of a fi lm look,

and in the future, when televisions are mostly 16:9 rather than 4:3, your footage

won’t be pillar-boxed, with black bars on both sides of the frame, which is how

4:3 footage is fi t into a 16:9 display. Video footage at 16:9 is created by a video

camera with a native 16:9 CCD or with an anamorphic lens adapter. The anamor-

phic process compresses the video image horizontally to a 4:3 video fi le that is

stored on tape. During the capture process, you fl ag the video as anamorphic and

the nonlinear editor (NLE) stretches the video back to the 16:9 aspect ratio during

playback.

With Flash Video, you need not worry about action and title-safe margins because

computer displays do not have underscan and overscan issues. This also means

you can crop video to best suit your design or material. You may, however, want to

use one of the standard aspect ratios if you are going after a specifi c look.

16:9 (1.78:1) 4:3 (1.33:1)

1.85:1

2.40:1

16:9 (1.78:1)

4:3 (1.33:1) 1.85:1

2.40:1

Figure 4.5: Common aspect ratios used in fi lm and television production.

Encoding Decisions 51

Interlaced and Progressive Frames

The largest drawback for NTSC and PAL video from a production and aesthetic

standpoint is that their playback is interlaced. Video has been interlaced since the

beginning of television. Three factors determined the frame rate for NTSC video:

bandwidth constraints, AC current, and the introduction of color television.

ProgressiveInterlaced

Figure 4.6: Interlaced and progressive footage.

The initial goal for television was to have the frame rate be 60 fps, which easily

produces an image without fl icker. 60 fps was also chosen because it matches the

frequency of AC electrical current, which is 60 hertz or cycles per second. Since

cathode ray tube (CRT) televisions rely upon electricity to a great degree, having

the timing of the display match the electrical current simplifi es a lot of things.

Unfortunately, broadcasting 60 fps consumed too much bandwidth, and thus the

engineers went back to the drawing board and came up with the method known

as interlacing. Interlacing is the process of splitting each frame into two separate

fi elds. Each fi eld contains half of the vertical resolution of the original frame. It’s as

if the image is sliced horizontally into many layers, and the even slices create one

fi eld and the odd slices create the other. Since each fi eld has half of the original

resolution, it occupies half the bandwidth, and since the image is refreshed 60

times per second, fl icker is not as noticeable. NTSC video is broadcast at 29.97 fps

or 59.94 fi elds per second. PAL video is broadcast at 25 fps or 50 fi elds per second.

The Europeans went for consistency with their fi lm production methods, which call

for fi lm to be shot at 25 fps and to match the AC current in European countries,

which is 50 hertz.

While interlacing saves transmission bandwidth and produces smoother motion

due to its higher recording rate, it produces a less detailed image than progres-

sive video. Interlaced fi elds are interleaved and recorded 1/60 of a second apart

from one another. This shakiness is most noticeable when freezing on a frame of

interlaced video of a quick motion like a bouncing ball. Before cameras such as the

DVX100 and the XL2, most SD video cameras produced interlaced footage. With

these new cameras, progressive footage can be shot and is better for fi lm outs,

blue screen and green screen compositing, and compression for DVD and stream-

ing video.

52 Chapter 4: Encoding Flash Video

To produce better Flash Video, shoot using a progressive frame rate wherever your

camera supports it. It will compress better and faster since you will not have to

de-interlace it. If you shoot in 24p mode, which is 24 fps, your video will be 20%

smaller than if you shot at 30 fps. If you shoot interlaced video during production,

be sure to de-interlace it before encoding to Flash Video.

24P VIDEO
The 24p format satisfi es the needs of both
those going to fi lm and those requiring
progressive footage for more effi cient
streaming video.

The majority of low-cost 24p cameras shoot
in both interlaced and progressive modes.
Interlaced footage is shot at 59.94 fi elds
per second, or if you prefer to refer to the
footage in frames, 29.97 fps. Progressive
footage is shot at 29.97 fps or 23.976 fps.
In either mode, video is captured progres-
sively at 24 fps. Pulldown is then applied in
the camera to convert the frame rate from
24 fps to 29.97 fps before being recorded
to tape. The cameras offer two methods for
applying pulldown: 24p standard and 24p
advanced.

24p Standard
The 24p standard mode applies the same
3:2 pulldown cadence used when fi lm is
processed by a telecine for television broad-
cast. This mode is fi ne for video intended
to be broadcast, but if this is not your
goal, you are better served by shooting in
the advanced mode. Despite offering the
smoothest conversion between 29.97 and
23.976 fps, the integrity of the original pro-
gressive frames is sacrifi ced for compatibility
with 29.97 material. Looking at the cadence
diagram makes this more evident. The
standard mode compromises the integrity of

every third frame in the original progres-
sive source because the original progressive
frame has to be recreated by recombining
fi elds from two interlaced frames. This is
not as clean as the advanced mode because
both frames have to be decompressed
and then recompressed to create the third
frame.

24p Advanced
The 24p advanced mode employs a
pulldown method of 2:3:3:2. As with
the standard mode, or 3:2 pulldown, the
cadence begins by recording one frame
onto two fi elds and the second frame on
three fi elds. Instead of recording the third
frame onto three fi elds, it is recorded onto
two fi elds, and the fourth frame is recorded
onto two fi elds. When the original frames
are mapped to fi elds, the pattern is AA BB
BC CC DD. Now the excitement around the
advanced mode is that this cadence faith-
fully encodes the full progressive frames
into an interlaced signal. The advance
mode’s cadence, 2:3:3:2, is subtly differ-
ent than the standard pulldown of 2:3:2:3.
This difference in rhythm allows for all the
original frames to be recovered intact from
single interleaved 60i frames. An NLE that
understands the mode’s pulldown pattern
throws away the “23” frame and uses the
remaining frames to restore the original pro-
gressive footage.

Frame Content

In order for active video (think sports, dance, or action scenes) to look good en-

coded, great care is required in the encoding process. This is simply because active

video has more detail to preserve across multiple frames. By contrast, simpler video,

such as a talking head against a stationary background, requires less care since

there’s less new detail in each successive frame.

To make active video look good, the encoding will often employ a higher bit rate,

two-pass encoding, and variable bit rate encoding. The fi rst method makes the

Encoding Decisions 53

video larger since more bits per second add to the encoded video’s fi le size. The

second two methods can reduce the fi nal size while improving overall quality, but

they both increase the time to encode the video and sometimes they’re not avail-

able in the encoding software. Two-pass encoding means the encoder looks at the

video twice so it’s bound to take longer. Variable bit rate encoding takes longer

because the encoder has to more effi ciently pack the video based on the current

level of detail and the budgeted bit rate.

To help simplify the frame content, here are some things you can do during pro-

duction: shoot using a tripod and limit handheld shots, light the subject evenly, set

the proper exposure and white balance, and shoot in progressive mode if possible.

In postproduction, use transitions and effects wisely and don’t introduce intermedi-

ate compression steps.

Bit Rate

Bit rate is the amount of data (measured in bits or bytes) per second that the

encoded video and audio require for smooth playback. The bit rate you choose is

ultimately infl uenced by your audience’s Internet access speed and the process-

ing power of their computers, but it is also infl uenced by how you plan to deliver

your video (via a streaming server, by progressive download, or by local playback

on a DVD-ROM); the quality (inherent motion, frame size, and frame rate) of the

video; and the quality of the audio (number of discreet audio channels and sample

frequency). The more data footage occupies per second, the higher the quality and

the slower it is to download. If the footage does not contain a lot of motion, you

can choose a higher bit rate.

Voice-only recordings can also be heavily compressed if the original source audio

was cleanly recorded. With good audio, you can encode a 64 Kbps mono audio

track and everything will most likely be fi ne. If your soundtrack has important

nature sounds or is showcasing a musical performance, however, you should

devote more of the bit rate to the audio. In these cases, most viewers are willing to

sacrifi ce video quality for better audio.

Constant and Variable Bit Rate

With the constant bit rate compression method, the data rate is held constant

regardless of what is being compressed. Portions that do not require the full data

rate waste space. Portions that require more than the full data rate suffer in quality.

By contrast, the variable bit rate method analyzes content in multiple passes and

varies the data rate based upon specifi ed data rate targets. Portions that need de-

tail are given the maximum amount of bandwidth, and less detailed sequences are

given lower amounts. That all said, variable bit rate encoding is more effi cient and

tends to deliver better quality video but it takes longer to encode than constant bit

rate encoding.

54 Chapter 4: Encoding Flash Video

Maximum Data Rate

Minimum Data Rate

Average Data Rate

CONSTANT BIT RATE VARIABLE BIT RATE

Constant Data Rate

Figure 4.7: Comparing constant and variable bit rates.

Table 4.1: Recommendations for choosing a delivery method based upon your video.

Connection Speed Width Height FPS Keyframe Interval Video Bit Rate Audio Bit Rate

Source video includes a lot of motion, zooms, transitions, and action sequences

1.5 Mbps
(local area network)

320 240 30 60 750 Kbps 96 Kbps

768 Kbps
(fast DSL)

320 240 30 60 575 Kbps 64 Kbps

384 Kbps
(slow DSL)

320 240 30 30 340 Kbps 32 Kbps

56 Kbps
(dial-up modem)

160 120 10 20 40 Kbps 8 Kbps

Source video includes little to no motion such as “talking head” video

1.5 Mbps
(local network)

320 240 30 60 650 Kbps 96 Kbps

768 Kbps
(fast DSL)

320 240 15 30 230 Kbps 64 Kbps

384 Kbps
(slow DSL)

320 240 15 20 150 Kbps 32 Kbps

56 Kbps
(dial-up)

160 120 10 20 40 Kbps 8 Kbps

Disk Space and Bandwidth Quota

Disk space is the amount of data you can store on your web site at any given time.

Network transfer is the amount of data your site can transfer per month. Both of

these are set by your hosting provider as part of your hosting plan. While HTML

and optimized graphics and Flash movies are fairly small, Flash Video can occupy

a lot of space and can fi ll up your web site’s disk space quickly. When thousands

of users download videos from your site, once you have gone over the network

transfer quota, your hosting provider may block additional visitors or charge you

extra for any additional transfers. If you plan to serve a lot of video or if your site

becomes very popular, you either will want to compress your video more or pay

additional fees for a larger bandwidth quota.

Video Delivery Methods Supported by Flash Video

Flash Video supports three forms of delivering video: embedded, streaming, and

progressive download. Embedded video should only be used for very short and

Encoding Decisions 55

small video clips: usually no more than 10 seconds worth of video at thumbnail

resolution (80 × 60 pixels, for example).

Keeping FLV fi les external is considered a best practice since it offers better performance and
memory management. External FLV fi les and the main SWF fi le can also have frame rates
independent of one another.

Streaming Flash Video is delivered by sending the video directly to the desktop

from a server equipped with the Flash Media Server. This machine is dedicated to

streaming Flash content such as video. The server is suited for delivering video to

many users simultaneously. If you cannot install a Flash Media server on your web

site, Adobe has partnerships with a few Content Delivery Networks (CDNs) that

are licensing Flash Video Streaming Services for streaming Flash Video; Akamai,

VitalStream, and Mirror Image are a few. You may upload the FLV fi le to a server

and use one of their skins or use a skin on your server that references the FLV on

their server.

Progressive download is not to be confused with progressive video frames. With

progressive downloads, the client computer downloads the video content from

a web server. Progressive downloads are great when you don’t have access to a

Flash Media Server and simply want to put the fi les on your web site along with

HTML, images, and other web documents.

Table 4.2: Recommendations for choosing a delivery method based upon your video.

Video Embedded Progressive Streaming

is under 5 seconds x x

is over 30 seconds but infrequent viewing x

is over 30 seconds and frequent viewing x

requires instant start or playback x

requires protection x

is live video x

is variable based upon visitor’s bandwidth x

Flash Video Encoders

There are now several convenient ways to encode Flash Video. This chapter covers

the Adobe-provided encoding solutions.

The Import Video Wizard in Flash Professional CS3.1. It walks you through picking

a video, setting compression options, and picking a skin (a user interface) for play-

ing, pausing, skipping chapters, and adjusting sound.

The Adobe Flash Video Encoder.2. A stand-alone application for encoding a single

fi le or a batch of video fi les. This utility can be installed separately on a dedicated

video workstation.

56 Chapter 4: Encoding Flash Video

The Flash Video Encoding Settings Export Module for QuickTime.3. This module is

available to any product that supports QuickTime export modules such as Adobe

After Effects, Adobe Premiere Pro, or Apple Final Cut Pro.

Flix Standard and Flix Pro.4. These are the encoders offered by On2, the developers

behind the On2 VP6 codec available in Flash 8 and above. It has two-pass encod-

ing and variable bit rate encoding.

Sorenson Squeeze.5. Sorenson Media created the Spark codec used in Flash Player 6

and above. Like Flix, it has two-pass and variable bit rate encoding.

To learn more about these encoders, go to Adobe’s Developer Center and read “Selecting
a Flash 8 video encoder” by Elliot Mebane: http://www.adobe.com/devnet/fl ash/articles/
selecting_video_encoder.html.

Flash Video Encoding Settings
When you run the stand alone Flash Video Encoder, you see a window with a

table grid, several buttons, and a status area.

Figure 4.8: The stand alone Flash Video Encoder application window.

As you add videos to compress, they appear in the table that is referred to as the

encoding queue. The queue has columns listing the source fi le name and location,

the setting or encoding profi le, and the encoding status. By default the medium-

quality encoding profi le is applied to each video clip. This window also contains:

Flash Video Encoding Settings 57

Add button:1. This displays a Select dialog for choosing additional videos to add to

the queue. Note that you can also drag and drop video fi les from a folder on your

computer to the encoding queue.

Duplicate button:2. This does not physically duplicate the source video fi le. It dupli-

cates the settings and facilitates creating different encoded videos from the same

fi le. Typically you would create a high-bandwidth version, duplicate it in the list,

and adjust the duplicate for lower bandwidth delivery or using a different codec.

Sometimes you will want to experiment and try out different encoding settings for

quality, performance, and size.

Remove button: 3. This removes an instance from the queue. It does not remove the

original source fi le from your computer.

Settings button:4. This button displays the encoding settings for the selected item.

Start queue:5. This starts the rendering process and renders the fi rst item in the list

and goes through the list until all items in the list have been encoded.

Status group:6. This shows up-to-date information while the Flash Video Encoder is

processing clips.

The Settings Dialog

The Settings dialog is broken down into fi ve tabs: Profi les, Video, Audio, Cue

Points, and Crop and Resize.

Profi les

The Profi les tab lists the encoding profi les available inside the encoder. Profi les are

preconfi gured settings for video and audio compression, cue points, and crop and

resize settings. The dropdown menu contains the default list of encoding profi les.

Below the list of profi les is a summary of the currently selected profi le. If you have

altered any of the settings, the dropdown will display “custom” and the summary

will refl ect the changes you’ve made. To save the current encoding settings as a

custom profi le, click the Save button.

Note that custom profi les do not appear in the dropdown menu. To use a custom profi le,
press the load profi le button and select the profi le from a location on your computer.

58 Chapter 4: Encoding Flash Video

Figure 4.9: The Profi les tab.

Optimizing video for the Web shares similarities with optimizing graphics for the

Web in that optimization presets (or in this case, profi les) are a great way to get

started. You may fi nd better results, however, in creating your own—especially if

you need to custom sizes, cropping, or audio settings. My advice is to experiment

with a few profi les, tailor them to your requirements, and apply them to the same

video. You can then batch encode the variations and inspect the quality of each

profi le.

Video

Not surprisingly, settings for encoding the video are chosen in the Video tab. This

tab also contains:

Encode Video checkbox:1. This enables video encoding for the fi le. Turn it off and

there won’t be a video track in the FLV fi le.

Video codec:2. Options are the On2 VP6 codec, which is supported by Flash Player

8 and above, or the Sorenson Spark codec, which is supported by Flash Player 6

and above.

Encode alpha channel:3. Only available for the On2 VP6 codec. This will encode

and include an 8-bit alpha channel in the FLV fi le for compositing the clip over a

background Flash movie. An alpha channel needs to be present in the source video

fi le.

Deinterlace:4. New in Flash Professional CS3 is the ability to de-interlace video

shot in interlaced mode (such as 60i or 50i). Turn this on when the video you are

encoding is not progressive.

Frame rate:5. The frame rate for the movie. This defaults to the source’s frame rate,

but other rates are listed. Multiples of the frame rate works best.

Quality:6. Presets for the data rate fi eld that controls bit rate and quality.

Max data rate:7. The higher the bit rate, the better the quality.

Flash Video Encoding Settings 59

Key frame placement:8. Automatic or custom. Automatic allows the encoder to pick

the best interval for keyframes and custom allows you to pick the interval.

Key frame interval:9. The distance between unique frames. Lower numbers mean

better quality but increase fi le size.

Figure 4.10: The Video tab.

Audio

The Audio tab operates like the Video tab in that there is a checkbox for encoding

audio. If your source fi le has audio, this will be selected by default. Unchecking this

will not include audio in the encoded FLV. If the fi le does not have audio, the con-

trols in this tab are disabled. With Flash Video there is not a lot of choice when it

comes to audio compression. The only audio codec available is MP3. The data rate

pulldown menu lists the available data rates and stereo and mono combinations.

Figure 4.11: The Audio tab.

Setting Cue Points

Cue points are similar to chapter markers. A cue point marks a place in time and

makes the point a destination that can be accessed by clicking a button or link, or

it can be an event where ActionScript code is triggered. Setting cue points is done

in the Cue Points tab of the Flash Video encoding interface. To set a cue point,

position the playhead to a time in the video and press the Add Cue Point button.

Cue points appear in the list and show the name, time, and type. To delete a cue

point, select it and click the Delete button. The Save (folder icon) and Load (disk

icon) buttons save and load the current list of cue points out as a fi le. This fi le

can then be reimported later—handy if you have to encode the same clip again

months later.

60 Chapter 4: Encoding Flash Video

The tutorial, Exporting Cue Points from an Existing FLV, which is at the end of this chapter
(see page 69), covers how to reclaim cue points from an encoded fi le in the case when the
cue points were not saved as a list previously.

Figure 4.12: The Cue Points tab.

A cue point is a pointer to a specifi c time in a Flash Video fi le. Cue points facilitate

navigation, synchronization, and interactivity. There are three types of cue points:

ActionScript, navigation, and event.

ACTIONSCRIPT CUE POINTS

ActionScript cue points are added dynamically at run time via ActionScript. Since

they are not added during the encoding process, dedicated keyframes are not cre-

ated for them. This makes them less accurate. They are mentioned here merely for

convenience.

NAVIGATION CUE POINTS

A navigation cue point, like a DVD chapter marker, is a destination to seek and

navigate to. For example, a how-to video could have cue points for each instruc-

tional step. In most Flash Video interfaces, they are accessed via a next or previous

chapter button, or a User Interface (UI) component that lists the video’s existing

navigation cue points.

During the encoding process, keyframes are created for each navigation cue point.

By forcing a keyframe, viewers can more accurately access the time specifi ed by

the cue point. Cue points can be shown in a UI control once the metadata is fully

loaded. Like event cue points, an ActionScript listener can respond to the oc-

curence of a navigation cue point and trigger a function.

EVENT CUE POINTS

Like navigation cue points, event cue points are embedded in the FLV fi le during

the encoding process. Since they are not exposed to navigational controls, they

can be used exclusively for event-driven effects and interactivity.

Flash Video Encoding Settings 61

For example, a video may need a cue point to show or hide a dynamic text fi eld.

If you used two navigation cue points to show and hide the text fi eld, these cue

points would also be accessible to the next and previous cue point buttons and

would also show up in a list of cue points if there was one. This may not be de-

siraable if you want to keep your navigation cue points tidy. To work around this

issue, you can place event cue points at times when you want to show or hide an

element since they will not interfere with the navigation cue points.

While ActionScript can listen for and respond to either event or navigation cue points, event
cue points should be used in cases where navigation cue points would be overkill.

Cue Point Parameters

All cue point types can have parameters. For those that are embedded, the encod-

ing tools make it fairly easy to add parameters to individual cue points. Param-

eters are additional properties that can be added to a cue point. For example, a

movie could have several cue points where each cue point has a list of parameters

indexing the characters in each scene. It would then be possible to expose these

parameters in a user interface. Parameters are added to a cue point by selecting

the cue point and adding parameters to the Cue Point Parameters table, which is

to the right of the cue point list.

Crop and Resize

Trimming allows you to set in and out points for the exported FLV. If you don’t

have an NLE on the machine on which you’re encoding, or simply want to encode

a known portion of video, this is the simplest way to encode a small portion of the

source video.

Figure 4.13: The Crop and Resize tab.

The cropping options work exactly like cropping a photograph in Photoshop. If

you’re encoding footage that has been letterboxed, you can use the crop options

to remove the black bars that appear at the top and bottom of the frame.

62 Chapter 4: Encoding Flash Video

The resize controls include an option to maintain the source material’s aspect ratio,

or its height to width ratio. This should remain checked unless your source material

was shot anamorphic and that information is not available.

When preparing video for distribution over the Internet, you do not have to worry about ac-
tion and title safe areas that affect televisions. You can compose action and text close to the
edges without fearing they’ll be cropped off.

Encoding Tutorials

Tutorial: Encoding with the Import Video Wizard

The Import Video wizard in Flash Professional provides an effi cient and simple

interface for picking a video, encoding it, choosing a skin, and confi guring the

FLVPlayback component to properly play the video.

Figure 4.14: The fi nal video after using the Import Video wizard.

Navigate to the 1. Tutorials > Chapter 4 folder. Copy the Video Wizard folder to

your computer.

Open Flash Professional and choose 2. File > New. Select Flash File (ActionScript

3.0) and click OK.

Figure 4.15: Flash fi les for ActionScript 3 are the default document type.

Encoding Tutorials 63

Choose 3. File > Save and save the fi le as parkcity.fl a in the Video Wizard folder.

Select 4. File > Import > Import Video. The fi rst step in the wizard appears.

Select 5. On your computer and click Choose. Select festivalstreet.mov in the Video

Wizard folder and click Select (Windows) or Open (Mac OS X). Click Continue.

In the next step, select 6. Progressive download from a web server (it should already

be selected). Click Continue.

The Encoding step appears. Click the 7. Video tab and adjust the Max data rate to

300 kilobits per second.

Figure 4.16: Adjusting the video rate.

Click the 8. Audio tab and set the Data rate to 64 kbps (mono). Since the audio is

merely background noise from the town, it’s not that crucial.

Figure 4.17: Setting the audio data rate.

Click the 9. Crop and Resize tab. The video is currently 854 × 480, which is too large

for the video data rate set. Click Resize video, and with Maintain aspect ratio

selected, change the height to 240 pixels. The width should update to 427 pixels

and maintain the 16 × 9 aspect ratio.

Figure 4.18: Resizing the video while maintaining the aspect ratio.

64 Chapter 4: Encoding Flash Video

Click 10. Continue. The skinning step appears. In this step, you can pick from one of

many skins with controls that refl ect functional options you want to offer your

audience or you can specify the URL for the skin fi le. In the Skin dropdown select

SkinOverPlayStopSeekFullVol.swf. This skin offers play, pause, stop, seek, volume,

and full-screen video controls.

Figure 4.19: Selecting a skin.

Click the 11. Color control, and set the color to #CCCCCC and the alpha to 50%.

Figure 4.20: Specifying the skin color and alpha (opacity).

Click 12. Continue. You should now see a summary of the encode settings. Click

Finish and the Flash Video Encoding Progress dialog appears. It displays a status

of how long the encoding will take. Since a name was not specifi ed for the output

fi le, it has the same name as the source fi le but with “fl v” as its fi le extension. It is

also saved in the Video Wizard folder alongside the original fi le. After the encod-

ing is complete, the encoded fi le should be about 2.1 megabytes—a great reduc-

tion in size given the uncompressed version was close to 1 gigabyte!

If we were to deploy this fi le to a web server, we wouldn’t deploy the source fi le because it’s
not needed and it’s incredibly bigger than the output fi le.

Encoding Tutorials 65

Figure 4.21: The progress dialog displays a time estimate for the encoding process.

When the encoding process is complete, you should see an instance of the FLV-13.

Playback component on the stage. For best-practice purposes, we should give

the instance a name. Select the component and in the Properties Inspector panel,

name it myFlvPlayback. Naming the instance is important if the component will

be used with ActionScript. Now would be a good time to set both the X and Y

properties to 0 using the Properties Inspector panel too.

Figure 4.22: Name the instance of the playback.

More than likely, the size of the Flash movie and the video component are not 14.

the same size. In some cases this is fi ne, if there will be other content on the stage

such as text, a logo, or other interface controls. In this instance, we simply want to

publish the video and want the video to fi ll the stage. Select Modify > Document.

The Document Properties dialog appears. Select the Contents radio button in the

Match radio button group. This will quickly match the dimensions of the Flash fi le

to the size of the FLVPlayback component.

Figure 4.23: Matching the size of the fi le.

Preview the movie by choosing 15. Control > Test Movie.

66 Chapter 4: Encoding Flash Video

Tutorial: Batch Encoding Several Clips

Given the time it takes to encode a single video, batch encoding is a must-have

feature when you’re frequently producing a lot of Flash Video. It allows you to

select several fi les to encode, specify the settings, and have the software do the

work while you have lunch, accomplish other tasks, or take a nap. In fact, many

will batch process videos at night if they only have one machine while others will

dedicate a machine to encoding.

Navigate to the 1. Tutorials > Chapter 4 folder. Copy the Batch Encoding folder to

your computer.

Launch the 2. Adobe Flash Video Encoder. It’s a stand-alone application that is

included with Flash Professional CS3.

Figure 4.24: The application icon for the stand-alone Flash Video Encoder.

Now it’s time to add the videos we’d like to encode. Click 3. Add in the main applica-

tion window. Navigate to the Batch Encoding folder and select and open all the

fi les.

Figure 4.25: To add fi les to the queue, click Add.

You can also add fi les to the encoding queue by dragging fi les from the operating system to
the Flash Video Encoder’s main application window.

Now you could select individual fi les and adjust their encoding settings like the 4.

previous tutorial. Rather than covering the same ground again, let’s start a batch

encoding process using the default “Medium Quality” settings. Click Start Queue

and the status area at the bottom of the window will indicate to you when the fi les

are completely rendered. When a fi le has completely rendered, a green check ap-

pears in the Status column for each fi le.

Encoding Tutorials 67

Figure 4.26: The status area displays progress and a preview of the current frame.

Tutorial: Setting Cue Points

Cue Points are set in the Cue Points tab in the Flash Video Encoder. If you are

working with long form material and need to provide navigation or synchronized

interactivity, you will work in this part of the application probably more than you

thought you would. The following tutorial gets you acquainted to how this works

and suggests a few workfl ow enhancements. Following the tutorial is another

helpful tutorial on extracting cue points from an existing Flash Video fi le in the

event you need to encode the original material again but you don’t have a cue

point list.

Navigate to the 1. Tutorials > Chapter 4 folder. Copy the Setting Cue Points folder to

your computer.

Launch the 2. Adobe Flash Video Encoder.

Click 3. Add and navigate to the Setting Cue Points folder. Open gemini.mov.

Select the fi le in the queue and click 4. Settings.

Click the 5. Cue Points tab.

Move the 6. playhead until the current time is 00:00:03.504.

A

B

Figure 4.27: (A) Playhead, (B) Add Cue Point button.

Click the 7. Add Cue Point (looks like a plus symbol) button and name it ship. Enter

the name for the cue point in the table cell under the Name column.

68 Chapter 4: Encoding Flash Video

Set the cue point type to navigation. Click the cell under the 8. Type column and

choose Navigation from the pop-up menu.

Set the remaining cue points according to the following screen capture.9.

Figure 4.28: Names and time locations for the remaining cue points.

To move the playhead more precisely, press the left and right arrow keys with the

playhead selected. To move the playhead by ten-thousandths of a second, press

Shift and one of the arrow keys. Pressing an arrow key down for a period of time

will speed the seek substantially.

Click 10. OK to apply the cue points. Click Start Queue to encode the fi le.

In Chapter 9, we’ll cover a few tutorials that will take advantage of the cue points set in this
movie.

Tutorial: Exporting Cue Points from an Existing FLV

The following tutorial resulted from a problem I encountered while working on

a project. I had encoded three 20-minute videos for a client and each video had

several cue points. Originally I had encoded at a lower bit rate but the client felt

a higher bit rate would be okay. Unfortunately, I didn’t have a batch list or a cue

point list fi le saved for any of the videos and I didn’t want to enter all the cue

points again by hand.

My solution was to write a few lines of ActionScript to trace all of the cue points

in a video fi le. After a video had played through to the end, I would copy the trace

statements from the Output panel, paste them into a text editor, and save it as an

XML fi le that I could load in the Flash Video Encoder.

Figure 4.29: Viewing the XML generated by the video’s cue points in the Output panel.

Encoding Tutorials 69

Navigate to the 1. Tutorials > Chapter 4 folder. Copy the Cue Points to XML folder

to your computer.

Open the fi le, 2. TraceCuePoints.fl a in the Cue Points to XML folder.

Preview the movie by choosing 3. Control > Test Movie. Look at the text generated

in the Output panel. Close the Preview window.

Select all of the text in the output panel and choose 4. Edit > Copy. Launch the text

editor of your choice and choose Edit > Paste. Save the fi le as gemini_cuepoints.

xml in the Cue Points to XML folder.

To use this fi le, launch the 5. Adobe Flash Video Encoder. Add the uncompressed

movie, gemini.mov, that was used in the previous tutorial. It’s in the Tutorials >

Chapter 4 folder on the book’s DVD-ROM if you skipped over the last tutorial.

Click 6. Settings and click the Cue Points tab. Click the Load button, , above the

cue point list and navigate to gemini_cuepoints.xml. All the cue points appear in

the cue point list. Feel free to encode the fi le if you wish.

Returning to Flash Professional, select the fi rst frame in the 7. Actions layer and open

the Actions panel (Window > Actions). Below is a walkthrough of the code.

The script begins by creating a new video object and adding it to the stage:

e NetStream object.

var myVideo:Video = new Video();

addChild (myVideo);

It then creates an object that will handle the cue point events.

e NetStream object.

var customClient:Object = new Object();

customClient.onCuePoint=cuePointHandler;

The following six lines are typical of bare-bones ActionScript code for video. It

creates NetConnection and NetStream instances to load video into the movie and

connects the custom client created earlier with the video.

e NetStream object.

var nc:NetConnection = new NetConnection();

nc.connect (null);

var ns:NetStream = new NetStream(nc);

ns.client=customClient;

myVideo.attachNetStream (ns);

ns.play (“gemini.flv”);

70 Chapter 4: Encoding Flash Video

This function traces information each time a cue point occurs as structured XML

that the Flash Video Encoder can read.

e NetStream object.

function cuePointHandler (infoObject:Object):void {

 trace (“<CuePoint>” + “\n” + “ <Time>” + (infoObject.time*1000) + “</

Time>” + “\n” + “ <Type>” + infoObject.type + “</Type>” + “\n” +

“ <Name>” + infoObject.name + “</Name>” + “\n” + “</CuePoint>” + “\n”);

}

This event listener listens for the beginning and end of the video and generates the

XML required at the beginning and end of the XML fi le.

ns.addEventListener (NetStatusEvent.NET_STATUS, statusHandler);

function statusHandler (event:NetStatusEvent):void {

 switch (event.info.code) {

 case “NetStream.Play.Start” :

 trace(“<?xml version=\”1.0\” encoding=\”UTF-8\” standalone=\”no\”

?>” + “\n” + “<FLVCoreCuePoints>” + “\n”);

 break;

 case “NetStream.Play.Stop” :

 trace (“</FLVCoreCuePoints>”);

 break;

 }

}

Wrapping Up
While some may argue that encoding Flash Video is the least creative process of

authoring Flash Video, it’s crucial to producing high-quality video, and it’s not only

about transcoding video from one codec to another. Creating cue points and cue

point parameters as well as preserving an alpha channel occur at this time.

CHAPTER 5

Customizing
Flash Video Players

Using the stock FLVPlayback component is suf-

fi cient for most applications. However, there are

times when you want to change their appearance or

build your own player best suited to your needs.

Custom Player Development 2 ...72

Tutorial: Creating A Flash Video Text Banner 2 72

Tutorial: Skinning the FLVPlayback Component 2 77

Tutorial: Creating a Custom Video Player from Scratch 2 ... 104

Wrapping Up 2 ... 110

72 Chapter 5: Customizing Flash Video Players

Custom Player Development
In this chapter, we’re going to write three custom Flash Video players. We’ll start

off simple and create a Flash Video banner. We’ll architect the banner so it can be

fl exibly deployed in different web pages. Next we’ll create a custom player using

the FLVPlayback custom controls. We’ll skin the custom controls and hook every-

thing up using ActionScript. We’ll add a few additional controls such as a timecode

display and the ability to toggle the size of the video. Lastly, we’ll create a player

from scratch without using the components. We’ll write methods to play, pause,

and toggle full-screen playback. By the end of the chapter, you’ll have a decent

grab bag of knowledge and tricks when working with video, cue points, full-screen

events, and timing.

As with any tutorial covering a lot of code, it’s crucial that you double-check for typos and
use the naming suggested in the book. If things don’t compile correctly, check the completed
tutorials to double-check your work.

Tutorial: Creating a Flash Video Text Banner
In this tutorial, we’ll create a Flash movie that accepts two external variables, a

location for a Flash Video fi le, and text to draw over the video. Then this movie

will be embedded as the banner at the top of several web pages.

Figure 5.1: A web page with the Flash Video and text banner.

Navigate to the 1. Tutorials > Chapter 5 folder. Copy the Video Banner folder to your

computer.

Open Flash Professional and choose 2. File > New.

Tutorial: Creating a Flash Video Text Banner 73

In the 3. New Document dialog, select Flash File (ActionScript 3.0) and click OK.

Figure 5.2: The New Document dialog.

Select 4. Modify > Document. Set the dimensions to 766 × 72 and the movie’s back-

ground color to black. To set the background color, click the color picker, , and

pick black from the pop-up color swatch control. Click OK.

In the 5. Timeline panel above the stage, double-click the fi rst layer, Layer 1, and

rename it to Actions. Lock the layer by clicking the area below the Lock icon.

A B C

Figure 5.3: Double-click the layer (A), rename it “Actions” (B), and lock the layer (C).

Create two additional layers below the Actions layer and name them 6. Text and

Video. To create a layer, click the Insert Layer button.

A

Figure 5.4: Click the Insert Layer button to insert the Text and Video layers (A).

Select the 7. Text layer. Choose the Text tool, , and double-click the stage to cre-

ate a text object. Don’t worry too much about placement and size—we’ll fi x that

next.

With the text object selected, modify its properties using the 8. Properties panel.

Change the text to a Dynamic Text fi eld, set the name to bannerTxt, and set

the width, height, and x and y positions to the values indicated in the following

screenshot.

74 Chapter 5: Customizing Flash Video Players

Figure 5.5: The Properties panel.

Pick a nice font on your system. In this example, I’m using Myriad Pro, which is 9.

installed as part of the Creative Suite. To embed the font in the Flash movie, click

Embed and select both Punctuation and Basic Latin. Control-click (Windows) or

Command-click (Mac OS) to select both. Click OK.

Figure 5.6: Punctuation and Basic Latin is fi ne for Western languages.

Set the font size to 10. 24 point, and the font color to white.

Lock the 11. Text layer and select the Video layer.

Choose 12. Window > Library. Click the Panel Options button, which is on the right-

hand side of the tab area. Choose New Video from the menu.

A B

Figure 5.7: Click the Panel options button (A) and select New Video (B).

In the 13. Video Properties dialog, name the video object backgroundVideo and select

Video (ActionScript Controlled).

Drag an instance of the 14. backgroundVideo movie clip from the Library panel to the

stage.

Tutorial: Creating a Flash Video Text Banner 75

In the 15. Properties panel, give the instance the name, bgVideo, and use the Prop-

erties panel to adjust it’s properties to those shown in the following fi gure.

Figure 5.8: Set the video object, bgVideo, to have the same dimensions as the Flash movie.

With everything in place, it’s time to write the ActionScript. In the 16. Timeline, select

Keyframe 1 in the Actions layer, and open the Actions panel by pressing F9 (Win-

dows) or Option+F9 (Mac). If the panel is not large enough for coding, you should

resize and position it so coding is easier.

We fi rst need to create a network connection between the Flash movie and the 17.

video. To do that, we create an instance of the NetConnection class and we’ll call

it nc. Using nc as the instance name for the NetConnection instance, by the way,

is fairly common practice. The connect() method is used when connecting to

a Flash Media Server. Since this example is using progressively downloaded video,

we turn this property off by passing null as its setting.

var nc:NetConnection = new NetConnection();

nc.connect(null);

var ns:NetStream = new NetStream(nc);

We then create a 18. NetStream object, ns, and associate it with the nc NetConnec-

tion object. We then pass the ns object into bgVideo, the video instance on the

stage. Setting the source for ns is the last thing we do. In this case, we’re setting it

to a FlashVar, pageVideo, that we will set in the HTML code. By doing this, we

can reuse this Flash movie as much as we’d like since we’re not hard-coding the

video location into the movie.

bgVideo.attachNetStream(ns);

ns.play(root.loaderInfo.parameters.pageVideo);

76 Chapter 5: Customizing Flash Video Players

ABOUT FLASHVARS
A FlashVar is an external variable passed
to a Flash movie. It resides in the URL ref-
erencing the SWF, or it is part of the Flash
movie’s embed code. FlashVars facilitate us-
ing a single SWF fi le in multiple web pages
because variables are external to the SWF.

When a FlashVar is part of a URL, it’s in the
form of movie.swf?color=red.

A FlashVar can also be encoded in a
<param> tag: <param name=FlashVars
value="color=red"/>, or inside the
<embed> tag: <embed src="movie.
swf" type="application/

x-shockwave-flash"

FlashVar="color=red"

width="320" height="240"/>

The fi rst line in the next code block automatically resizes the left edge of the text 19.

fi eld, bannerTxt, to fi t the text we’ll pass in. The remaining code is a conditional

statement that tests to see if we set the pageHeader FlashVar in the HTML. If it

wasn’t set, it will display a message reminding you to set it, and if it was set, it’s

used for the text we’ll see on top of the video.

bannerTxt.autoSize = TextFieldAutoSize.LEFT;

if (root.loaderInfo.parameters.pageHeader == undefined) {

 bannerTxt.text = “Set the pageHeader flashVar in the HTML code.”;

} else {

 bannerTxt.text = root.loaderInfo.parameters.pageHeader;

}

Compile the movie by pressing 20. Ctrl+Enter (Windows) or Command+Return (Mac

OS). You won’t see any video play, but you will see the reminder to set the Flash-

Var. This is actually okay. The real text and video location are set in the HTML page.

In 21. Windows Explorer or the Mac OS Finder, open the Video Banner folder where

the fi les are for this tutorial. You’ll see a fi le named header.swf. This is the com-

piled version of the Flash document we’ll reference in the HTML fi le, index.html.

Open 22. index.html in the HTML editor of your choice. Dreamweaver, NotePad,

TextMate, or BBEdit are all excellent choices. On lines 27 and 28, enter the follow-

ing two lines of code and save the fi le. These two lines set FlashVars for the Flash

movie. The fi rst sets the text to use in the banner and the second sets the source

location for the Flash Video behind the text.

 so.addVariable(“pageHeader”, “About Us”);

 so.addVariable(“pageVideo”, “video/waves.flv”);

In this example, we’re using SWFObject, a JavaScript library for embedding Flash. We’ll
learn more about embedding Flash in HTML pages in Chapter 6.

Save the changes to index.html and preview it in a browser. You should see 23.

“About Us” and a short video animation in the banner.

Tutorial: Skinning the FLVPlayback Component 77

This tutorial covered the basic building blocks for working with Flash Video without

a component. The NetConnection and NetStream classes are the real workhorses

of any Flash Video project that doesn’t rely upon the FLVPlayback component.

Tutorial: Skinning the FLVPlayback Component
The FLVPlayback component is an amazing piece of engineering. The problem

most designers have with it though is that they don’t like the default skin, Corona.

Maybe it looks too dated, screams a canned look, or doesn’t has the Web 2.0

panache they’re looking for. Whatever the reason, Adobe provides a set of inde-

pendent playback controls that work with the FLVPlayback component that can be

heavily customized. You can quickly add the custom playback components to the

stage and open the component parts in the Library panel and change the shape,

color, and size for each control.

This tutorial covers creating a custom video player with:

A button that toggles between play and pause. 1

A Stop button for halting playback. 1

A buffering bar that indicates download progress and a seek bar to move the play- 1

head to different locations in the video.

Timecode text for the current time as well as total time. 1

An audio mute button. 1

A control that toggles between scaling and cropping the video to fi t the window or 1

maintaining the aspect ratio for the video.

A control for entering full screen. 1

A

B

Figure 5.9: A customized FLVPlayback player in normal (A) and full-screen mode (B).

The fully chromed FLVPlayback skins can also be customized. To skin these, go to your Flash
application folder and look inside Confi guration > FLVPlayback Skins > FLA. There are ver-
sions for both ActionScript 2 and 3.

78 Chapter 5: Customizing Flash Video Players

Part 1: Adding Components to the Stage

In this fi rst part of the tutorial, we will add all the elements required for the player

to the stage. The tutorial will cover naming component instances, embedding

fonts, and sizing controls.

Navigate to the 1. Tutorials > Chapter 5 folder. Copy the Custom Player (Compo-

nents) folder to your computer.

Open Flash Professional. Choose 2. File > New and create a new Flash File (Action-

Script 3). Save the fi le as customplayer.fl a in the Custom Player (Components)

folder.

Select 3. Modify > Document. Set the dimensions to 480 × 406 pixels.

For this player, several layers need to be created for structuring the player’s bezel, 4.

controls, and video. Create them according to the following screenshot.

Figure 5.10: The required layers for this custom player.

A 5. bezel is the background surface for controls. This bezel will have a light steely-

gray gradient and will have rounded corners at the bottom and be squared off at

the top. Click the control bezel layer in the Timeline to make it the active layer.

 Select the 6. Rectangle Primitive tool. It resides under the Rectangle tool. Draw a

rectangle that fi ts the lower 20 percent of the stage.

Figure 5.11: The Rectangle Primitive tool is new to Flash Professional CS3.

With the rectangle still selected, adjust its height, width, and x and y properties to 7.

match the following screen capture. To specify different rounding for the bottom

corners, deselect the Lock icon located between the entry fi elds for corner round-

ing. With the constrained rounding off, enter 0 for the top left and right corners

and 5 for the bottom left and right corners. Finally, set the rectangle’s stroke to a

1-pixel solid.

Tutorial: Skinning the FLVPlayback Component 79

Figure 5.12: The Properties panel.

Now let’s set the fi ll and stroke colors. With the rectangle selected, open the 8. Color

panel (Window > Color). Select the Stroke Color chip (Fig. 4.13 A), and enter

#999999 in its color fi eld (Fig. 4.13 B). Then select the Fill Color chip (Fig. 4.13 C),

and set its Type to Linear (Fig. 4.13 D). Select the start color for the gradient (Fig.

4.13 E) and set its color to #FFFFFF. Select the end color for the gradient (Fig. 4.13

F) and set its Alpha to 35% and its color to #CCCCCC.

Figure 5.13: Setting the colors for the stroke and fi ll.

With the bezel created, lock the 9. control bezel layer by clicking the area below the

Lock icon. Now select the controls layer.

Figure 5.14: Locking a layer

Let’s add the player controls to the stage. Open the 10. Components panel (Window

> Components) and open the Video category.

80 Chapter 5: Customizing Flash Video Players

Figure 5.15: The FLVPlayback custom components.

Click-drag the following components to the stage: PlayPauseButton, StopButton, 11.

BufferingBar, SeekBar, MuteButton, and FullScreenButton. Use the following table

and the Properties panel to name, scale, and position the components on the

stage. The BufferingBar component should appear on top of the SeekBar compo-

nent. If it isn’t, select the BufferingBar and choose Modify > Arrange > Bring to

Front.

Table 5.1: Settings for the Player Components

Component Instance Name X Y Width Height

PlayPauseButton playPausePlayback 13 372.5 24 24

StopButton stopPlayback 42 376.6 16 16

BufferingBar bufferPlayback 64 380 200 6

SeekBar seekPlayback 64 380 200 6

MuteButton mutePlayback 360 372.5 24 24

FullScreenButton fullScreenPlayback 450 372.5 24 24

In the 12. Components panel, open the User Interface category and drag a Button

component to the stage. Position it between the mutePlayback and fullScreen-

Playback buttons. Name the button fi tToStageButton and set its x and x position

to 422 and 372.5, respectively. Set both the width and height to 24 pixels.

Clear the text from the button. We’ll place an icon inside the button later. Select 13.

the button and in the Parameters panel (normally docked with the Properties

panel), delete the text from the Label attribute.

Tutorial: Skinning the FLVPlayback Component 81

Figure 5.16: Clearing the text label from the button component.

Lock the 14. controls layer and select the timecode layer.

Now let’s add a text fi eld for the current time. As the video advances, this text fi eld 15.

will update to show the current time. Select the Text tool and create a text box to

the right of the bufferPlayback instance. With it selected, adjust its settings using

the Properties panel. Set the text type to Dynamic Text and name the instance

currentTimeText. Select Trebuchet MS as the font, set the size to 14, and click

the Bold icon. Using the Color Picker control, , in the Properties panel, set the

color to #000000 and the opacity to 70%. The following screen capture shows the

Properties panel and settings for this text fi eld.

Figure 5.17: Properties for the currentTimeText text fi eld.

To embed the font Trebuchet MS in the document, click 16. Embed in the Properties

panel and select both Punctuation and Basic Latin. Control-click (Windows) or

Command-click (Mac OS) to select both. Click OK.

This player will also have a text fi eld displaying the video’s total time. Duplicate the 17.

currentTimeText text fi eld and rename it, totalTimeText. Set its x position to 316

and y position to 375. Set its font size to 12. Finally set its color to #000000 and

opacity to 35%.

Let’s create some additional separation between the two timecode displays by 18.

adding a vertical rule between them. From the Tools palette, select the Zoom tool,

, and click-drag a marquee in between the currentTimeText and totalTimeText

text fi elds.

From the 19. Tools palette, select the Line tool, . In the Properties panel, set the

stroke weight to 1 and the cap style to Round.

82 Chapter 5: Customizing Flash Video Players

Figure 5.18: Adjusting the Cap style.

In the 20. Color panel, select the stroke color and set the fi ll type to linear. Set the fi rst

color in the gradient to #CCCCCC and the last color in the gradient to #666666.

With the Line tool, drag a ling between the timecode fi elds. The line should be 21.

about 24 pixels tall and have an x and y position of 313, 376.

Figure 5.19: The vertical stroke separating the timecode text fi elds.

Lock the 22. timecode layer and select the video layer. Return the current zoom level

to 100% by double-clicking the Zoom tool in the Tools palette.

From the 23. Components panel, open the Video category and drag the FLVPlayback

component to the stage. Name the instance vidPlayback and set the x and y posi-

tion to 0, 0 and the width and height to 480 × 360.

Remove the FLVPlayback component’s default skin. Select the component, and in 24.

the Parameters panel set the Skin attribute to None.

Figure 5.20: Setting the skin to None in the Parameters panel.

Save the fi le by choosing 25. File > Save. The player’s visual design is not where it

needs to be, but we’ll soon change that as we begin to skin the components.

Tutorial: Skinning the FLVPlayback Component 83

Figure 5.21: The Custom Player after placing all the controls.

Part 2: Skinning the Components

Now it’s time to skin the components. In this tutorial, we’ll be using more of Flash

Professional’s design tools. If you haven’t worked with them before, I’ll provide

enough information in the form of step-by-step instructions and screen captures

to get you through the material. If you feel you need more guidance, seek out The

Focal Easy Guide to Flash by Birgitta Hosea.

We’ll also be working with the Library panel extensively, so I would recommend

increasing the panel’s width and increasing the width of the Name column because

we will be working with folders within the Library panel that are signifi cantly

nested.

Figure 5.22: A widened Library panel with a wide Name column.

84 Chapter 5: Customizing Flash Video Players

Skinning the Base Button Appearance

Choose 1. Window > Library to open the Library panel. Select the FLVPlayback Skins

folder and click the New Folder button, , at the bottom left of the Library panel.

Create a new folder named _CircleButton inside the FLVPlayback Skins folder.

Let’s create the round buttons. Rather than replace the contents of the _Square-2.

Button folder, we’ll create a new folder and set of movie clips to use as a basis for

our buttons. Select the _CircleButton folder and choose New Symbol from the

Panel options menu, , at the top right of the Library panel. Select Movie Clip

for the type and name the symbol CircleBgNormal. This will be the “normal” or

“up” state for a button.

The CircleBgNormal symbol should already be open. If it is not open, in the 3. Library

panel double-click CircleBgNormal. To facilitate button construction, create three

layers: one for the Stroke, another for the Highlight, and a third for the Fill. The

stroke should be the topmost layer and the fi le should be the bottommost layer.

Figure 5.23: The layer structure for the circular buttons.

Select the 4. Fill layer and select the Oval Primitive tool, , from the Tools palette.

Draw a circle that is 24 × 24 pixels and place it at 0, 0. Press and hold the Shift

key while drawing with the Oval Primitive tool to constrain the shape to a perfect

circle.

With the circle selected, open the 5. Color panel, set the stroke to none (Fig. 4.24

A), select the fi ll (Fig. 4.24 B), and set the fi ll type to Linear (Fig. 4.24 C). Select

the start color (Fig. 4.24 D) and set it to #EEEEEE (Fig. 4.24 E). Select the end color

(Fig. 4.24 F) and set it to #555555 (Fig. 4.24 G).

B

A

D

E

C

F

G

Figure 5.24: The Gradient fi ll.

Select the 6. Gradient Transform tool from the Tools palette. It’s grouped with the

Free Transform tool.

Tutorial: Skinning the FLVPlayback Component 85

Figure 5.25: The Gradient Transform tool.

We’ll rotate the gradient so it runs vertically with the light end on top and the dark 7.

end on the bottom. Click the circle and drag-rotate the gradient’s rotation handle

(Fig. 4.26 A) counter-clockwise from the lower-right corner to the upper-left corner

(Fig. 4.26 B).

A

B

Figure 5.26: Rotating the gradient.

Lock the 8. Fill layer and select the Highlight layer.

In the 9. Tools palette, select the Fill Color control and choose black as the fi ll color.

In a later step, we’ll change the fi ll to a semi-transparent gradient, but for now a

dark color will help with sizing, shaping, and positioning the highlight.

Figure 5.27: Select black or enter #000000 for the fi ll color.

Select the 10. Oval tool, . Turn Object Drawing mode off if it is currently on. The

button is in the Tools palette near the bottom. When this mode is on, it makes

shape creation work like it does in Adobe Illustrator or Fireworks, which we don’t

86 Chapter 5: Customizing Flash Video Players

need for this shape. We’ll use the default behavior for shaping the highlight, so

Object Drawing mode is better turned off.

Figure 5.28: Turn off Object Drawing mode.

Rulers and Grids will help to draw these shapes. Turn on 11. Rulers by selecting View

> Rulers. Turn on Grids by selecting View > Grid > Show Grid.

Use the 12. Oval tool to draw a circle that is 18 × 18. Pick the Selection tool, ,

double-click the circle, select the lower two-thirds of the circle, and press Delete.

Figure 5.29: Select the lower two-thirds of the circle.

With the highlight shape selected, open the 13. Color panel, select the fi ll (Fig. 4.30

A) and set the fi ll type to Linear (Fig. 4.30 B). Select the start color (Fig. 4.30 C)

and set it to #FFFFFF (Fig. 4.30 D). Select the end color (Fig. 4.30 E) and set it to

#B3B3B3 (Fig. 4.30 F) and the Alpha to 35% (Fig. 4.30 G).

A

C

GD

B

E

F

Figure 5.30: Adjusting the highlight’s fi ll style and colors.

Select the 14. Gradient Transform tool from the Tools palette. We’ll rotate the gradient

so it runs vertically with the light end on top and the dark end on the bottom. Click

the shape and drag-rotate the gradient’s rotation handle (Fig. 4.31 A) clockwise

Tutorial: Skinning the FLVPlayback Component 87

from the top-right corner to the lower-right corner (Fig. 4.31 B). Then select the

gradient’s scale handle (Fig. 4.31 C) and drag it to the bottom of the shape

(Fig. 4.31 D).

A

BC

D

Figure 5.31: Adjusting the gradient direction and scale.

Chose 15. Edit > Deselect All. Select the Selection tool from the Tools palette. Move

the cursor just below the highlight shape until the cursor changes to the reshape

cursor, . Click and drag the bottom part of the highlight shape up about 3 pixels

until the shape is crescent-shaped.

Figure 5.32: Reshaping the highlight.

Move the highlight into place. Position it near the top of the circle. Use the follow-16.

ing screen capture to help in positioning it.

Figure 5.33: Positioning the highlight shape.

Lock the 17. Highlight layer. Unlock the Background layer, select the circle, and chose

Edit > Copy. Lock the Background layer and select the Stroke layer. Chose Edit >

Paste in Place.

88 Chapter 5: Customizing Flash Video Players

In the 18. Color panel (Window > Color), select the Fill color control and select None

for the type. Then select the Stroke color control and select Linear for the type and

choose #999999 for the gradient’s start color and #717171 for the end color.

Figure 5.34: The fi nal button.

Choose 19. File > Save. Click Scene 1 in the Edit bar to close the CircleBgNormal

movie clip and return to the document’s default scene.

Figure 5.35: Use the edit bar to navigate within a Flash document.

In the 20. Library panel, duplicate the CircleBgNormal movie clip twice and rename

one CircleBgOver (the “over” button state) and the other CircleBgDown (the

“down” button state). To duplicate it, right-click (Windows) or Control-click (Mac

OS) on the movie clip and choose Duplicate from the context menu.

In the 21. Library panel, double-click CircleBgOver. The movie clip opens and occu-

pies the stage and timeline. Since we duplicated the normal state, we have all the

same layers—we just need to modify them visually.

Select the 22. Stroke layer and then select the stroked circle on the stage. Change the

stroke color using the Color panel to #FF9900.

Double-click the 23. CircleBgDown movie clip. Lock the Stroke layer and unlock the

Fill layer. Select the fi ll shape and using the Color panel reverse the gradient. Drag

the start color to the middle, drag the end color to the start position, and then

drag what was the start color (but is now in the middle) to the end. We now have

the base shape for all the buttons.

Customizing the Playback Icons

The next several steps cover redrawing the icons used inside the FLVPlayback but-

tons. We’ll redraw the shapes and then move the circular button into the appropri-

ate movie clips. We’ll then align and center the icons within the button.

While you can follow the steps I’ve provided, feel free to simply copy and paste them from
the fi nished FLA fi le, customerplayer.fl a in Completed Tutorials > Chapter 5 > Custom Player
(Components).

Tutorial: Skinning the FLVPlayback Component 89

The icons used inside the buttons are fi lled with white, which we will be changing 1.

to black. To simplify editing, choose Modify > Document and set the document’s

background color to middle gray or #999999. Choose View > Grid > Edit Grid and

set the horizontal and vertical units to 1. This will create a tight grid that is excel-

lent for checking pixel-level accuracy and drawing icons sized for the screen.

Figure 5.36: Setting the document’s background color to gray.

In the 2. Library panel, open the FLV Playback Skins > Play Button > Assets folder.

Double-click the PlayIcon movie clip. Turn on Object Drawing mode in the Tools

palette. Delete the shape and redraw it with the Pen tool according to the follow-

ing screen capture. Set the fi ll color to #333333. The stroke should be set to none.

Figure 5.37: Redrawing the play icon.

Open the 3. FLV PLayback Skins > Pause Button > Assets folder. Double-click the

PauseIcon movie clip. Delete the existing shapes and use the Rectangle tool to re-

draw the icon according to the following screen capture. Each rectangle should be

3 × 8 pixels and about 2 pixels apart. When they are both selected, their combined

x and y coordinates should be 0, 0. Set the fi ll color to #333333.

90 Chapter 5: Customizing Flash Video Players

Figure 5.38: Redrawing the pause icon.

Open the 4. FLV Playback Skins > FullScreen Button > Assets folder. Double-click

the FullScreenIcon movie clip. Delete the existing shapes and use the Rectangle

and Pen tools to redraw the icon according to the following screen capture. Set the

fi ll color to #333333.

Figure 5.39: Redrawing the full-screen icons.

Open the 5. FLV Playback Skins > Mute Button > Assets folder. Double-click the

MuteOffIcon movie clip. Delete the existing shapes and use the Ellipse tool to

redraw the icon according to the following screen capture. Set the fi ll color to

#333333.

Open the 6. MuteOnIcon and redraw the icon according to the following screen

capture. Set the fi ll color for all the shapes to #333333.

Tutorial: Skinning the FLVPlayback Component 91

Figure 5.40: The mute off and mute on icons.

Open the 7. PlayButtonNormal movie clip in the Play Button folder. Select the button

layer and delete the existing movie clip. Drag a copy of the CircleBGNormal movie

clip from the _CircleButton folder to the stage. Position the new button shape at 0,

0. Center the play icon shape over the button shape—set the x position to 8 and

the y position to 7.

Choose8. Edit > Select All and then choose Edit > Copy. Open the PlayButtonDis-

abled movie clip. Delete the contents of the icon and button layers. Select the

button layer. Choose Edit > Paste in Place. Cut the PlayIcon movie clip and paste

it to the icon layer (using Edit > Paste in Place).

 Adjust the opacity of both movie clips using the 9. Properties panel. Select each

movie clip (Fig. 4.41 A) and then select Alpha (opacity) from the Color drop down

(Fig. 4.41 B) and set the alpha value to 50% (Fig. 4.41 C).

A

B C

Figure 5.41: Adjusting the opacity for the disabled state.

Using the same set of steps, update the remaining two button states. Use 10.

CircleBgOver for the PlayButtonOver and CircleBgDown for PlayButtonDown.

Once you have modifi ed the play button, update the pause, stop, mute, and full-

screen buttons using the same set of circle buttons with the redrawn icon movie

clips. Customizing these buttons may take a while, but hang in there.

92 Chapter 5: Customizing Flash Video Players

The Toggle Size Button

The toggle size button is not a native FLVPlayback component button like the play,

stop, or full-screen buttons. That said, we will use an ActionScript 3 button com-

ponent and simply copy and paste the circle button movie clips into the movie clip

skins for this button. The icon we’ll draw and assign using ActionScript, and we’ll

write the sizing code using sizing methods that were recently added to the new

FLVPlayback component class.

When we added an ActionScript 3 button component to the stage, the application 1.

automatically added the assets for the component to the Library panel. They’re in

a folder named Component Assets. Open that folder.

Figure 5.42: The Component Assets folder.

Create a folder and name it 2. Fit Assets inside the Component Assets folder. Create

two empty movie clip symbols named FitToStageOff and FitToStageOn. These two

symbols will be dynamically loaded into the fi t-to-stage button. To facilitate the

loading, both symbols need to be exposed to ActionScript as a class. In the Symbol

Properties dialog, select Export for ActionScript and use the default class name,

which is the same name as the symbol.

Figure 5.43: Exporting a symbol for ActionScript.

Open the 3. FitToStageOn movie clip. Using the Rectangle Primitive tool, draw a

rounded rectangle that is 15 × 12 pixels. Set the stroke color to #333333 and the

fi ll color to #666666. Set the corner radius to 2 and position the shape at 0.5, 0.5.

Tutorial: Skinning the FLVPlayback Component 93

Figure 5.44: The FitToStage icon.

Select the shape and copy it. Now double-click the 4. FitToStageOff movie clip.

Choose Edit > Paste in Place. Remove the fi ll color by choosing the no-color

swatch, , in the fi ll color picker control.

Draw a rectangle inside the larger rectangle that is 5. 8 × 5 pixels. Position it at 4, 4.

In the 6. Component Assets folder open the ButtonSkins folder. We will now “port”

the skin we created for the FLVPlayback components to the states for this button.

For each of these movie clips, turn off 9-slice scaling. You can do that by selecting 7.

the movie clip in the Library panel and clicking the Properties button, then at the

bottom of the panel, clicking the Advanced button in the Symbol Properties dialog

and deselecting Enable Guides for 9-slice scaling.

9-slice scaling uses two horizontal and two vertical guides to slice up a movie clip for
proportional scaling. The four guides create nine regions that preserve the proportions of the
four corners while scaling the remaining fi ve middle areas to fi t. For more information on
9-slice scaling, go to: http://www.adobe.com/go/vid0204 and http://www.adobe.com/go/
vid0205.

Open the 8. Button_upSkin movie clip and remove the contents. Open CircleBgNor-

mal, copy its shapes, and paste them into the corresponding layers in the But-

ton_upSkin movie clip.

Open 9. Button_selectedUpSkin, drag an instance of Button_upSkin, and position it

at 0, 0.

Open the 10. Button_downSkin movie clip and remove the contents. Open

CircleBgDown, copy its shapes, and paste them into the corresponding layers in

the Button_downSkin movie clip.

94 Chapter 5: Customizing Flash Video Players

Open the 11. Button_selectedDownSkin movie clip, remove the contents, drag an

instance of Button_downSkin, and position it at 0, 0.

Open 12. Button_overSkin, remove its contents, and copy the corresponding shapes

from CircleBgOver and paste them into Button_overSkin.

Open 13. Button_selectedOverSkin, remove its contents, drag an instance of But-

ton_overSkin, and position it at 0, 0.

Open the 14. Button_disabledSkin movie clip, remove the contents, drag an instance

of Button_upSkin to the stage, and position it at 0, 0. Set the Alpha property for

the movie clip to 35%.

Open the 15. Button_selectedDisabledSkin movie clip, remove the contents, drag an

instance of Button_downSkin, and position it at 0, 0. Set the Alpha property for

the movie clip to 35%.

Figure 5.45: If you open the Button component in the Library, you’ll see all the states.

Skinning the Seek Bar

A seek bar displays the position of the current frame in relation to the video’s

duration. It also provides a way to move playback to any point of the duration by

clicking in the seek bar or dragging the seek bar handle.

Open the 16. SeekBarProgress movie clip. Delete the contents. Select the Rectangle

Primitive tool. In the Properties panel, set the Stroke to none and the Fill to Black.

Draw a rectangle that is 200 × 6 pixels and position it at 0, 0. With the shape

selected, change the corner rounding to 3.5 in the Properties panel.

Tutorial: Skinning the FLVPlayback Component 95

Figure 5.46: The seek bar shape.

Use the Color panel (Window > Color) and set the Fill color to a 17. Linear gradient.

Use #333333 as the start color and #999999 as the end color.

Use the 18. Transform Gradient tool to rotate and scale the gradient. The gradient

should run vertically and the start (darker) color should be at the bottom and the

end (lighter) color should be at the top of the shape.

Figure 5.47: The gradient rotated and scaled.

Open 19. CircleBgNormal and copy the contents of all the layers at once (if neces-

sary, unlock layers). Open the SeekBarHandle movie clip, delete the contents, and

choose Edit > Paste. Group the collection of shapes by choosing Modify > Group.

Scale the collection of shapes to 8 × 8 pixels and position it at −4, −4. This nega-

tive offset will center the handle vertically upon the seek bar.

Skinning the Buffer Bar

The buffer bar displays a “barber shop poll” animation when the streaming is de-

layed. In this case, we won’t change the shape or animation. Instead we’ll modify

the color of the barber shop poll from nuclear day-glow green to a warm yellow.

In the 1. Library panel, open the BufferingPattern movie clip in the BufferBar folder.

The graphic is comprised of fi ve groups. Each group consists of fi ve diagonal

shapes. Select the fi rst group and choose Modify > Ungroup. With the shapes

selected, set the fi ll color to #FFCC00. Choose Modify > Group. Repeat this for the

remaining four groups.

Open the 2. Seek Bar folder and double-click the SeekBarProgress movie clip. Copy

the shape and then double-click the BufferingBar component in the Library panel.

Look at the layers in the movie clip.

Figure 5.48: The layer structure for the BufferingBar component.

96 Chapter 5: Customizing Flash Video Players

Select the mask layer and delete the contents inside it. Choose 3. Edit > Paste and

position the pasted shape over the pattern. The x and y position for the pasted

shape should be 1, 1.4. As a best practice, I like to fi ll shapes used as masks with

red. Select the shape and set the fi ll to #FF0000.

Figure 5.49: The mask shaped placed over the animated buffer pattern movie clip.

When fi nished, click 4. Scene 1 in the Edit bar.

Figure 5.50: To return to the player screen, use the Edit bar.

The player should now look like the following screen capture. Choose5. Modify >

Document to set the movie’s background color back to white. Choose File > Save.

Figure 5.51: The updated player.

If you’re doing a double-take on the ActionScript 3 button component, don’t be alarmed. It
doesn’t accurately show the updated skin at designtime. When the movie runs, it will load
the correct skins.

Part 3: Writing the ActionScript

Up to this point, we’ve laid out and customized the video player’s interface. In this

third section, we will connect code to the controls and add functionality missing

from the component such as a timecode display and the scaling toggle.

Tutorial: Skinning the FLVPlayback Component 97

Choose 1. File > New and in the New Document dialog, select ActionScript File.

Figure 5.52: Select ActionScript File from the Type list.

Save the fi le as 2. CustomPlayer.as in the Custom Player (Components) folder.

Document classes need to begin with the 3. package statement. Enter:

package {

}

Inside the 4. package statement, add the following fi ve import statements:

import flash.display.MovieClip;

import flash.events.*;

import fl.controls.Button;

import fl.video.*;

import flash.text.TextField;

A Flash movie fi le with a timeline requires the MovieClip class to be imported.

The fl.events class is used to listen for events triggered by interface controls.

The fl.controls.Button class is needed for the scaling toggle button. The

fl.video class contains the methods and properties for working with the FLV-

Playback component. Lastly, the flash.text.TextField class is imported for

the timecode text fi eld.

After the import statements, add the class declaration:

public class CustomPlayer extends MovieClip {

}

Note that the class name has to be the same name as the fi le name minus the fi le

extension. A document class normally extends the MovieClip class. All of the

methods and properties for this class have to reside within this declaration.

Choose 5. File > Save to save your work.

Return briefl y to the 6. customplayer.fl a fi le, and with nothing selected, show the

Properties Inspector. Enter CustomPlayer in the Document class text fi eld. This

98 Chapter 5: Customizing Flash Video Players

associates the CustomPlayer.as with the timeline in this movie. Note that the “.as”

extension is not needed.

Figure 5.53: Entering the Document class for the entire movie

Save the fi le and then click the 7. Pencil icon to the right of the Document class text

fi eld. This will switch to the FLVPlayback.as fi le.

ABOUT DOCUMENT CLASSES
A Document class is an external Action-
Script class fi le that is paired with an FLA
fi le. At compile time, the Document class
in included with the compiled SWF. At run
time, the Document class is constructed and
run when the SWF’s timeline is initialized.

Prior to ActionScript 3 and Flash CS3, the
best practice was to place code in a layer
named “actions” in the fi rst frame. While
this practice is better than having code
sprinkled across movie clips, it still requires
the code to reside in the FLA. When the
code is inside the FLA fi le, quick reuse and
version control is more diffi cult.

To set the Document class, make sure noth-
ing is selected (choose Edit > Deselect All),
and in the Property inspector for the Flash
movie, enter the path and name of the class
fi le in the Document class fi eld or in the
Publish Settings dialog (choose File > Pub-
lish Settings > Flash tab > Settings button).

To learn more about document classes, go
to the Flash Developer Center on Adobe.
com and read this article: http://www.
adobe.com/devnet/fl ash/articles/fl ash9_
as3_preview.html.

The next three lines of code create three variables for creating the timecode control.8.

private var currentTime:uint;

private var allTime:uint;

The video’s current time is stored in the currentTime variable. This variable is

declared as an uint, or an unsigned integer. An unsigned integer is essentially a

positive number and requires less memory than a variable declared as a number.

Likewise, the video’s duration is stored inside the uint variable, allTime.

After the variables are declared, we need to write the constructor function. This is 9.

code that is automatically run when the document class is constructed by the Flash

player. Add the following:

public function CustomPlayer () {

}

Inside the 10. CustomPlayer() function (between the curly braces), enter:

Tutorial: Skinning the FLVPlayback Component 99

vidPlayback.playPauseButton = playPausePlayback;

vidPlayback.stopButton = stopPlayback;

vidPlayback.muteButton = mutePlayback;

vidPlayback.seekBar = seekPlayback;

vidPlayback.bufferingBar = bufferPlayback;

vidPlayback.fullScreenButton = fullScreenPlayback;

vidPlayback.fullScreenTakeOver = false;

The FLVPlayback component that we added to the stage in Part 1 is named vid-

Playback. The fi rst six lines of code are all that are required to connect the custom

playback buttons and controls to the video. The last line in this code block will

keep the interface controls on screen when the video enters full-screen mode.

We now need to set the source for the video. The fi le, 11. fi lmmakers.fl v, is located in

the same directory as the customerplayer.fl a fi le, so enter:

vidPlayback.source = “filmmakers.flv”;

We can now test our efforts. Choose 12. Control > Test Movie. You should see a video

playing inside the player with several fi lmmakers briefl y introducing themselves.

Figure 5.54: The Flash Video Player running.

You can play, pause, stop, mute the audio, and scrub with the seek bar. The

timecode is not shown and you cannot enter full-screen mode. The timecode will

be shown after we write two methods to populate the timecode text fi elds in steps

16 and 17. We could enter full-screen mode if the movie was playing inside a web

page, so we’ll test that at the end of the tutorial when we publish the movie and

an HTML page with it.

100 Chapter 5: Customizing Flash Video Players

One of the properties available to the 13. FLVPlayback component is autoRewind.

By setting it to true, the player will automatically rewind the video when the

video reaches the end. To set it, enter:

vidPlayback.autoRewind = true;

Add an event listener to the video to listen for playhead updates:14.

vidPlayback.addEventListener (VideoEvent.PLAYHEAD_UPDATE, setTimeCode);

The PLAYHEAD_UPDATE occurs continuously as the movie plays. By listening

to this event, we can keep track of the current time. The addEventListner

method listens for the playhead to update, and when it does, it calls the set-

TimeCode method, which we will write shortly.

The button for scaling the video, 15. fi tToStageButton, is an ActionScript 3 component

and has the setStyle method to add symbols or movie clips as an icon inside the

button. Enter:

fitToStageButton.setStyle (“icon”, FitToStageOff);

fitToStageButton.setStyle (“selectedUpIcon”, FitToStageOn);

fitToStageButton.setStyle (“selectedOverIcon”, FitToStageOn);

fitToStageButton.setStyle (“selectedDownIcon”, FitToStageOn);

The setStyle method accepts two parameters: the button state in which to the

use the icon and a named movie clip or symbol in the Flash document’s Library to

use as the icon.

The next three lines turn the button into a toggle button, select the button (toggles 16.

it on), and add an event listener.

fitToStageButton.toggle = true;

fitToStageButton.selected = true;

fitToStageButton.addEventListener (MouseEvent.CLICK, toggleFitToStage);

The ActionScript 3 button component has a property, toggle, that turns a button

instance into a toggle button, a button that works like a switch. One click turns it

on and another click turns it off. When the movie loads, fitToStageButton.

selected = true runs and selects the button by default. The event listener

listens for every time the button is clicked. When the CLICK event occurs, the

toggleFitToStage method is called.

Place the cursor 17. after and outside the entire CustomPlayer function. We will

now write the fi rst of three public methods for the class. Write the setTimeCode

method:

Tutorial: Skinning the FLVPlayback Component 101

public function setTimeCode (evt:VideoEvent):void {

 currentTime = Math.round(evt.playheadTime);

 allTime = Math.round(vidPlayback.totalTime);

 currentTimeText.text = timeCode(currentTime);

 totalTimeText.text = timeCode(allTime);

}

This method accepts an event of type VideoEvent as a parameter. The event is

PLAYHEAD_UPDATE, which we wrote code to listen for in step 13. The method

uses this event to set the currentTime variable to the playheadTime prop-

erty. This property stores the playhead time in seconds. To simplify the processing,

it’s rounded to the nearest whole number using the Math.round() method, so

instead of setting currentTime to 1.25, it sets it to 1. You may have also noticed

that just before the opening curly brace, there is a colon followed by the keyword,

void. Since this function does not return a value after it is executed, we use the

void keyword.

The allTime variable is set in this method using the FLVPlayback component’s

totalTime property. This is a real convenience as it would normally require

several lines of code to determine if we were not using this component. Similarly,

allTime is rounded to the nearest whole number using Math.round().

The next two lines of code set the text property of the two timecode text fi elds,

currentTimeText and totalTimeText, to the result of passing current-

Time and allTime to the timeCode() method.

The timeCode function is going to accept an input of milliseconds and return 18.

a nicely formatted timecode string, tcString. Let’s begin writing this longer

method by entering:

public function timeCode (theTime:uint):String {

}

The function statement for timeCode() accepts a parameter declared as an un-

signed integer (uint), theTime, and returns a String once it completes.

Place the cursor inside the function and declare these three variables:19.

 var theMin:uint = Math.floor(theTime/60);

 var theSec:uint = theTime%60;

 var tcString:String = ““;

The fi rst line declares a variable, theMin, to store minutes. We set it to the result

of applying the Math.floor() method to the incoming parameter, theTime

divided by 60, or the number of seconds in one minute. Flooring a number rounds

102 Chapter 5: Customizing Flash Video Players

a number to the lowest available whole number. This ensures that the number of

minutes is accurate.

The second variable, theSec, is the number of seconds when the method is called.

Where the preceding function ignored the remaining seconds, this variable is all

about the remaining number of seconds. It uses the operator modulo (%) to set

theSec to the remainder of theTime divided by 60. For example, when the-

Time is equal to 119, the theSec will equal 59, or the remainder of dividing 119

by 60.

The tcString is a String or text-formatted variable for storing the timecode.

It’s a string and not a number because a timecode fi eld contains a non-numerical

character, the colon character (:), and is not a pure number.

After these internal variables are defi ned, enter the remaining code inside the 20.

method:

 if (theMin < 10) {

 tcString += “0”;

 }

 if (theMin >= 1) {

 tcString += theMin.toString();

 } else {

 tcString += “0”;

 }

 tcString += “:”;

 if (theSec < 10) {

 tcString += “0”;

 tcString += theSec.toString();

 } else {

 tcString += theSec.toString();

 }

 return tcString;

This series of if-else statements formats the time into a timecode string. It begins

by fi rst creating the minutes, appending a colon character, and by creating the

seconds. In each stage, the result is appended to the string, tcString. This value

is then returned to the function that called it.

The last bit of code we need to write is the code to toggle between displaying the 21.

video at actual size and scaling the movie to fi t within the video component. On

sites featuring Flash Video players, you will often see video that is scaled to fi t the

display area and a button to show the video at its smaller actual size. To create this

functionality enter:

Tutorial: Skinning the FLVPlayback Component 103

public function toggleFitToStage (event:MouseEvent):void {

 if (fitToStageButton.selected == true) {

 vidPlayback.scaleMode = VideoScaleMode.NO_SCALE;

 } else if (fitToStageButton.selected == false) {

 vidPlayback.scaleMode = VideoScaleMode.MAINTAIN_ASPECT_RATIO;

 }

}

This function is triggered when the toggleFitToStage button is clicked. It uses

an if-else statement to respond when the button is selected. If it’s selected, it sets

the vidPlayback object’s VideoScaleMode property to NO_SCALE. This pres-

ents the video at actual size. If the button is not selected, the VideoScaleMode

is set to MAINTAIN_ASPECT_RATIO. This scales the video to fi t the size of the

FLVPlayback component.

Switch back to the 22. customplayer.fl a fi le. Choose File > Publish Settings. Click the

HTML tab.

Choose 23. Flash Only - Allow Full Screen from the Template dropdown menu and

click OK at the bottom of the dialog.

Figure 5.55: Select Flash Only - Allow Full Screen.

ABOUT FULL-SCREEN MODE
Before Adobe introduced full-screen support
in Flash Player 9.027, a lot of custom Flash
Video players were implementing full-screen
functionality by switching to a new Flash
Video player in a web page scaled to fi t the
monitor.

When a SWF fi le enters full-screen mode
in a web browser, the allowFullScreen
parameter must be set to true, in the web
page’s embed code. If this parameter is not

set, an exception is thrown when a viewer
presses a button to enter the mode. The
Flash Only - Allow Full Screen publishing
template sets this parameter, but if you are
writing the embed code, you’ll need to set
this paramter.

Note that full-screen mode can only be
entered by a click or keyboard event. In ad-
dition, text fi elds cannot be modifi ed while
in full-screen mode. These limitations are to
protect viewers from malicious code.

Choose 24. File > Publish Preview > Default (HTML). Your web browser should

launch and display the Flash Video player. You should be able to click the full-

screen button to enter full-screen mode. When the player enters full-screen mode,

a message will appear saying that pressing the Escape key will exit full-screen

mode. This message cannot be altered or removed.

104 Chapter 5: Customizing Flash Video Players

To review the fi nal working code in case you run into errors, insert the book’s DVD-ROM
and look in the Completed Tutorials > Chapter 5 Complete > Custom Player (Components)
folder. Open the fi le CustomPlayer.as.

Tutorial: Writing a Custom Player from Scratch
In this tutorial, we will create a Flash Video player without the FLVPlayback com-

ponent. Instead, we will use two custom classes in ActionScript: one for basic video

control that we will write and another for presenting and controlling the interface

that is already written. This will give you more exposure to the methods and prop-

erties that are necessary for developing video applications with Flash. It will also

introduce you to working with classes and packages. Classes represent objects and

are the cornerstone of object-oriented programming. The key take-away, however,

is that classes facilitate reusable code and make it easy to write a class once and

use it for several projects.

I have already skinned the components so we can focus on the code. Feel free to

open up the movie clips in the Library and see how the components are structured

and to look at the changes I made to them. This tutorial’s Flash document uses the

new ActionScript 3 UI components—not the FLVPlayback components. They are

incredibly lightweight and they are easy to customize and skin. Also, I’ve included

the Adobe Illustrator CS3 document, symbols.ai, containing the icons used in this

player. It’s in the Custom Player (Classes) folder along with the other media for

this tutorial.

The VideoController class, the prewritten fi le, is fully commented and uses some of the same
code written in the previous tutorial. That said, we won’t walk through it step-by-step. Do
look at the source fi le, however, and look at the onMetaData method to see how it stores
cue points into an array and later a data provider for the cue point dropdown.

A

B

Figure 5.56: Player running within the browser window (A) and running full screen (B).

Tutorial: Writing a Custom Player from Scratch 105

Writing the Base Video Player Class

The base video class will handle loading the video and managing playback. It will

also provide methods to control the volume and share video metadata.

Navigate to the 1. Tutorials > Chapter 5 folder. Copy the Custom Player (Classes)

folder to your computer.

Launch 2. Flash Professional CS3. Choose File > New. In the New Document dia-

log, select ActionScript File. Choose File > Save. Navigate to the Custom Player

(Classes) folder you just copied. In the Save dialog, open the com folder and then

open the fl v folder. Save this ActionScript fi le here and name it VideoPlayer.as.

You should also see the VideoController.as fi le in this same directory. This is the prewritten
ActionScript fi le that will interface with the code you’re about to write and connects it to
the player’s user interface controls.

After saving the fi le, enter the package declaration:3.

package com.flv {

}

You’ll notice that the com.flv refl ects the directory structure of where the Ac-

tionScript fi les are located. This is a namespace for the package statement. When

you write your own ActionScript libraries consisting of several classes or when you

use several shared and open-source libraries, namespaces facilitate organization

and prevent confl icts between code that might have similar method and property

names.

It’s considered best practice to use your own domain name when packaging classes. For
example, if your domain was foo.org, you have a package starting org.foo.

Next, let’s import the Flash classes that are required to build our base functionality. 4.

Within the braces that defi ne our package, type the following import statements:

import flash.display.Sprite;

import flash.media.Video;

import flash.net.NetConnection;

import flash.net.NetStream;

import flash.events.NetStatusEvent;

import flash.media.SoundTransform;

The Sprite class is actually lighter weight than the MovieClip class because a sprite

doesn’t require a timeline. Since this class doesn’t need one, we’ll import it and

extend it when we write the class declaration.

The next three imported classes are prerequisite for working with video. In this

chapter’s fi rst tutorial, we worked with NetConnection and NetStream classes

and allow a Flash movie to open a connection to a video and play it.

106 Chapter 5: Customizing Flash Video Players

The NetStatus event class will be used to capture metadata such as duration and

cue points from the video fi le.

The video fi le we’ll be using for this tutorial does not have sound associated with it.

In the case you want to use a different video with audio, we’ll import the

SoundTransform class so we can use its methods to adjust the volume.

Now write the class declaration:5.

public class VideoPlayer extends Sprite {

}

Nothing new here. Remember that the class must have the same name as the fi le,

minus the “.as” fi le extension. Since we imported the Sprite class to use as the

basis for this code, we’re extending this class to inherit the functionality and meth-

ods available to the Sprite class.

Next, let’s declare the variables we’ll need for this class:6.

private var _vid:Video;

private var _ns:NetStream;

private var _nc:NetConnection = new NetConnection();

private var _vidUrl:String;

private var _vidClient:Object = new Object();

private var _vidVolume:Number = 1;

In this fi le, we’ll prefi x class variables with an underscore character. This is con-

sidered a best practice among some ActionScript developers. It also helps with

naming getter and setter methods that will allow other classes to access this class

fi le’s properties.

The _vid variable is a video object. It’s the video we’ll load and play. Back again to

the fi rst tutorial, we’re using the customary variable names _ns and _nc to refer

to the NetStream and NetConnection objects that will pipe the video into the

SWF.

The URL for the video is stored in _vidURL. We won’t set the location explicitly

in the fi le, but we’ll write a “setter” method so the VideoController class can

modify it. A setter is a method that sets an object’s property. To learn more about

setter and getter methods in ActionScript, search for “setter“ or “getter” in Flash

CS3 Professional’s help documentation.

When a Flash Video fi le has metadata inside it, one needs to create an additional

object to listen to it and optionally process the information. If one is not set, the

Flash Player will throw an exception and remaining code may not run and cause

additional errors. The _vidClient variable is the object we’ll defi ne to listen for

these events. Within the realm of this class, the object won’t do anything, but we’ll

Tutorial: Writing a Custom Player from Scratch 107

expose this object to the VideoController class so it can process the video’s

metadata.

Lastly, we create a number for the volume and set it to 1 or full volume.

Now enter the constructor function for the class:7.

public function VideoPlayer(vidW:uint, vidH:uint) {

 _nc.connect(null);

 _ns = new NetStream(_nc);

 _vid = new Video(vidW, vidH);

 addChild(_vid);

 _vid.attachNetStream(_ns);

 _ns.client = vidClient;

 vidClient.onMetaData = onMetaDataEvent;

 startVideo();

}

The constructor accepts two parameters, the video’s width (vidW) and height

(vidH). This means the user can set the height and width for the video exter-

nally and promote reuse. Both parameters are declared as unsigned integers since

heights and widths for video are always positive numbers.

The fi rst several lines of the constructor are similar to the code we wrote in the

fi rst tutorial. They create a connection to an external video fi le, and facilitate its

playback. What is unique however, are the addChild() method and the client

property. The addChild() method is the ActionScript 3 way of adding movies to

the display list, the stack of things currently on the Flash document’s stage. The

client property is a way to specify which object should be the recipient for the

metadata received by the NetStream instance, _ns.

Lastly, The constructor function doesn’t start video playback. Instead it calls the

startVideo() method that starts the video and pauses it at the fi rst frame.

Place the cursor outside and after the constructor function and create the fi rst 8.

function. This function sets the _vidUrl variable. Since the method is declared as

public, the VideoController class will be able to set the location easily.

public function set vidUrl(value:String):void {

 _vidUrl = value;

}

The 9. VideoController will want access to the NetStream instance _ns for it’s

seek bar functionality. Enter:

108 Chapter 5: Customizing Flash Video Players

public function get ns():NetStream {

 return _ns;

}

One thing you may have noticed about the past two functions are the words get

and set in between the function keyword and the method name. This is how get-

ter and setter methods are written in ActionScript 3. Getter and setters, as they are

often referred to, allow you to keep variables private to the class while providing

a simple and controlled way for other classes to read and write to these variables.

For example, the VideoController class creates a new instance of this class

and names it _myVideo. To access the ns object, one writes _myVideo.ns.

Let’s write a getter method that will return the client object, 10. _vidClient, at-

tached to the NetStream object, _ns. Enter:

public function get vidClient():Object {

 return _vidClient;

}

To see how the VideoController class will make use of this getter method,

look at the methods setupProgress(), getVideoTime(), and onEnter-

Frame() in VideoController.as.

Add the method to load the stream and show the fi rst frame of video:11.

public function startVideo():void {

 ns.play(_vidUrl);

 ns.seek(0);

 ns.pause();

}

The play() method begins playback of the video defi ned by _vidURL. It doesn’t,

however, make it appear on stage, the attachVideoStream() and

addChild() methods do that back in the constructor function.

Since it may not be desirable to have the video start playback automatically, we

use the seek() and pause() methods to go to the fi rst frame and pause when

the video has loaded.

To toggle between play and pause states, write the following method:12.

public function playVideo():void {

 _ns.togglePause();

}

There are two controls that will need the ability to seek to a portion of the video:13.

Tutorial: Writing a Custom Player from Scratch 109

public function seekToVideo(seekTime:Number):void {

 _ns.seek(seekTime);

}

The player’s user interface contains a slider User Interface component and a drop

down menu. The slider is extended to work like the seekBar FLVPlayback com-

ponent: as the user drags the slider, the player seeks to different parts of the video.

The dropdown or combo box User Interface component holds all the video’s cue

points and their corresponding location in time. It will use this method to move the

playhead to a cue point.

Write the method to adjust volume:14.

public function adjustVolume(newSoundVolume:Number):void {

 var st:SoundTransform = new SoundTransform();

 st.volume = newSoundVolume;

 _ns.soundTransform = st;

 _vidVolume = newSoundVolume;

}

The Video and NetStream objects do not have methods for controlling audio.

Instead, we need to create a SoundTransform object and associate it with the

_ns object using the soundTransform method to adjust the sound.

Write the dummy method for ignoring metadata:15.

private function onMetaDataEvent(info:Object):void {

 // Do nothing. Here to prevent errors.

}

This method will ignore metadata associated with the video. This will prevent pos-

sible errors when the player encounters the metadata. Two forward slashes, //,

create commented code that is ignored by the Flash compiler.

Save the fi le. Open the fi le 16. player.fl a in the Custom Player (Classes) folder you

copied to your computer. Choose Edit > Deselect All in case something is selected.

In the Properties panel, notice that the fi le has a document class associated with it.

It’s the prewritten fi le, VideoController.as.

Choose 17. Control > Test Movie to compile the movie. No video plays. That’s

because the video location is actually set in HTML in a FlashVar. To preview the

movie, launch a web browser and open the fi le index.html in the Custom Player

(Classes) folder.

In addition to looking over the VideoController.as fi le, check out the index.html fi le in the
text editor of your choice. If you encounter issues, look at the completed tutorial on the
DVD-ROM.

110 Chapter 5: Customizing Flash Video Players

Wrapping Up

By now, you should be more familiar with the methods and properties for the FLV-

Playback component class and the Video, NetStream, and NetConnection

classes. As you gain more experience with these, feel free to extend these project

fi les further.

CHAPTER 6

Interactive Video Concepts

A short primer on how to design interactive Flash

Video projects.

Designing Navigation and Interaction 2112

Backgrounds, Loops, and Flash Video 2 116

Tutorial: Repeating Loops 2 ... 116

Tutorial: Intro, Exit, and Return Loops 2 128

Wrapping Up 2 ... 136

112 Chapter 6: Interactive Video Concepts

Designing Navigation and Interaction
On one end of the spectrum, a Flash Video project is like putting in a video tape

and pressing play. Beyond that are players that have playback controls like a DVD-

remote: play, pause, next chapter, previous chapter, current time, etc... And be-

yond that are rich internet applications that involve presenting data with video or

video with data. This section guides you through designing Flash Video navigation

and interaction. I explain working methods and the tools used to create navigation

and point out things you can do to make your projects easier to use.

Flowcharts

A fl owchart or sitemap, shows all the links between every screen in your Flash

Video application or how Flash Video integrates within a larger website. It is a

bird’s-eye view of the your project, and it is crucial to interactive design and

production. For example, a Flash designer uses a fl owchart to design screens and

animations while an ActionScript developer uses it to write navigation and func-

tional code.

Figures 6.3 and 6.21 are examples fl ow charts for Flash Video applications. They were
drawn using Adobe Illustrator CS3, but OmniGraffl e or Microsoft Visio would have been
fi ne, too.

Figure 6.1: Whiteboard fl owchart.

Developing a fl owchart should begin soon after you understand the project’s

scope. I like to begin fl owcharts early. When talking with the client or team, I will

go up to a white board or use pen and paper and sketch a fl ow. As I draw the

diagram, I talk through it, asking questions as needed. When using a whiteboard,

Designing Navigation and Interaction 113

it’s easy to erase one idea and sketch a new idea quickly. When the session is done,

I take a picture of the whiteboard with a digital camera.

When you photograph a white board, be careful to not catch too much glare, or parts of the
whiteboard will be obscured. Also, write legibly and use markers that create solid lines.

Once you have the fl owchart recorded, draw it in a program like OmniGraffl e,

Microsoft Visio, or Adobe Illustrator. Having the fl owchart in a digital form allows

you to make updates quickly, and you can reuse fl owchart components. If you can,

always sketch the initial fl owchart. Although this sounds contradictory to the previ-

ous paragraph, a sketch is often faster to produce, it can be done anywhere and by

anyone, and it is judged fairly because of its rough appearance.

Prototyping

Prototyping is creating a functional version of the project for evaluation purposes.

The goal is to gain valuable feedback on the project’s features before production.

When prototyping a Flash Video project, you have the following options:

Create a prototype from sketches, Illustrator, Visio, or Omnigraffl e wireframes. 1

Author a small subset of the project and run it locally or post it on a site for testing. 1

Paper Prototyping

This option can be produced in a few hours. Usually, you want to test to see

whether people get the idea and purpose of the project, test your naming scheme,

and test overall functionality. You can create prototypes at any stage of develop-

ment, but prototyping with paper at the beginning has the most bang for the buck

because paper prototypes are produced quickly and cheaply, and yield a lot of

valuable feedback. There is no need to make huge investments in production and

design when an hour’s worth of sketching and a few interviews will do.

Figure 6.2: Paper prototype.

114 Chapter 6: Interactive Video Concepts

You can use either hand-drawn sketches or the wireframes for paper prototypes. I

usually conduct two to three rounds of quick testing with paper sketches before

moving to the more fi nished designs.

Authoring a Functionally Limited Prototype

Putting together a prototype that exhibits portions of the functionality you envi-

sion for your Flash Video application is a good way to test user experience, feasibil-

ity, or performance. Determine which and how much video content to show early.

If you include video for the sake of feedback on both the presentation and content

of the video, include as much as you need. If you are only testing design and navi-

gation, use short video clips to make moving between screens and video quick.

When you prototype a small test, your options are to run it locally on your

machine or deploy it your web site. Viewing the prototype locally on a computer

is faster than waiting for it to deploy to a site, but it won’t give you an accurate

indication of network latency and playback performance. If your material is time-

sensitive or shouldn’t be released just yet, a local prototype is a good alternative or

you could deploy the material to an unpublished or password protected directory.

Publishing to a site is also good for testing performance across several browsers,

operating systems, and older computers.

When testing a functionally limited prototype, you test for the same things—does

the viewer get the idea and purpose? More importantly, with the benefi t of de-

signing a few screens, you are testing whether the visual design makes interacting

with the content easy.

Usability Testing

Usability should not be left until the end because it is, hands down, the best

method for discovering potential interface problems. Ideally, it begins as up-front

research and continues throughout production with testing. By testing iteratively,

you learn from the viewers what makes the project easy to use and enjoyable. The

usability testing process involves the following steps:

Planning. 1. Write the screening questionnaire used in recruiting and the test plan,

which covers the goals and content of the usability tests.

Recruiting.2. Find test participants who match the audience criteria.

Testing.3. Run tests and make note of usability issues and opportunities to improve

interaction.

Analyzing.4. Examine and report test results and make recommendations for im-

provements.

Designing Navigation and Interaction 115

Helpful Interaction Design Questions

Designing navigation and interaction is not always straightforward. When I have a

hard time deciding what to design, I keep the viewer’s needs in mind and phrase

questions in terms of what they may need:

What is the most logical organization of the content? Does your project have one 1

video segment? Are there ways to break it into logical chapters? If there will be
more than one video, what is the best way to provide access to the video content?

What does the viewer see fi rst? 1

Does the user need to interact with the movie using the keyboard? What other 1

forms of rich interaction or assistive technology need to be supported? Will data
be used? Are closed captions needed?

On any screen, what is this most important button? Give it additional prominence. 1

How much time should the user spend on this screen? Is the screen still or
dynamic? Will it remain on screen until the user interacts with it, or will it time out
and display something else if no user-driven event occurs?

Interaction Design Tips

The following design rules can help put into practice your navigation and interac-

tion. They are not complete, and some can be broken, but they can bring order

and clarity to wayward designs.

Keep it simple. 1 Remember that often, less is more. A cluttered interface is hard to
use, and given limited screen real estate, you cannot provide links to everything.
Do not overload the screen with too much stuff.

Be consistent. 1 Place buttons in the same place. Keep selection and activation
colors consistent. Use the same wording for buttons that have the same link or
function.

Provide adequate feedback. 1 When a viewer rolls over a button, the visual state of
the button should change and appear different from the remaining buttons that
have not been selected. Treat selected buttons and nonselected buttons consis-
tently.

Use simple language that viewers understand. 1 Do not succumb to irony and use
clever wording that the viewer will not understand. For specialized projects, do
research and ask participants what terminology and wording is understood in their
community of interest.

Create logical cue points in videos and provide an interface to access them. 1 This
gives the viewer the ability to continue when they are not able to watch the entire
video in one session. If there are no logical cue points in the content, set them at
the same interval so the viewer can skip through the video more quickly.

116 Chapter 6: Interactive Video Concepts

Backgrounds, Loops, and Flash Video
If you can recall the menus for a Hollywood-produced DVD you enjoyed, you are

most likely familiar with looping video and how it can be applied to Flash Video.

When used as a background design element, looping video provides a continu-

ously animated background. Four common patterns for looping video are:

Loop continuously.1.

Loop a set number of times and then do something else.2.

Play once completely and then continuously loop back to a point other than the 3.

fi rst frame of video.

Play once completely and then do something else.4.

Tutorial: Repeating Loops
In this tutorial we’ll create a FLA with four screens. Each screen will have video in

the background but each screen will behave differently in each instance.

Loop video
endlessly

B C D

Loop video 4×

A

Play video

A

Play video

A

A

B C D

return to screen A
after fourth loop

return to screen A
after one play

play again from
loop point

Figure 6.3: The fl ow we’ll create in this tutorial.

On the fi rst screen, the video will loop continuously. In the second screen, the

video background will play four times and then return to the fi rst screen. In the

third screen, the video will play once and then go to a loop point, bypassing the

Tutorial: Repeating Loops 117

fi rst few seconds of the movie. In the fourth screen, the video will play once and

then return to the fi rst screen. In all screens there are navigation buttons that the

viewer could click at any time to go to another screen. On the fi rst screen, there

are buttons that link to each of the three other example screens and on each of

these three screens is a button that links back to the fi rst screen. Figure 6.3 shows

a fl ow diagram of this FLA fi le.

Part 1: Setting Up the FLA File

Open the DVD-ROM folder 1. Tutorials > Chapter 6. Copy the folder Looping Video

to your computer.

Launch Flash Professional. Choose 2. File > Open. Open the fi le looping.fl a in the

Looping Video folder on your computer.

In the 3. Properties panel, click the Background color chip button and enter A4B7EB

as the background color. This color is used in the background videos we will use

and setting this color now will help with creating the titles until we set a preview

frame. It also helps to set the background color in the case the video is loaded over

a slow connection and is not immediately viewable.

Figure 6.4: Setting the background color for the FLA fi le.

For this FLA fi le, several layers need to be created for structuring actions, labels, 4.

text, buttons, and video. Using the Timeline window, create them according to the

following screenshot.

Figure 6.5: The layer structure for this FLA fi le.

Layout the four screens across the timeline according to the following screenshot. 5.

Instructions follow it.

118 Chapter 6: Interactive Video Concepts

Figure 6.6: The timeline layout for the four screens.

Select the 6. Actions layer and click the dot in the Lock column. This will allow us to

enter code in the frame but will prevent us from inadvertly placing elements on

this frame.

Create the frame labels. Select 7. frame 1 in the Labels layer. In the Properties panel

enter continuously for the frame label.

Figure 6.7: Labeling the frame.

Select 8. frame 10 and choose Insert > Timeline > Blank Keyframe. Label this frame

play4x. Select frame 20 and insert a blank keyframe and label it playonce. Select

frame 30 and label it looppoint. Select frame 39 and choose Insert > Timeline >

Frame.

Lock the 9. Labels layer. Choose File > Save to save your work.

Part 2: Adding Text, Button, and Video Elements

Select 1. frame 1 in the text layer.

Click the 2. Text tool, , in the Tools panel. In the Properties panel, set the text op-

tions to static text. Set the font to Myriad Pro (this assumes the font was installed

with your copy of Flash Professional CS3. If it wasn’t installed, pick a font you like).

Set the size to 36 and the color to #FFFFFF (white).

Figure 6.8: Set the font properties.

Tutorial: Repeating Loops 119

With the 3. Text tool, click on the Stage and enter Loop Continuously. Click the

Selection tool, , in the Tools panel. Using the Properties panel, change the text

element’s x and y position to 18, 18.

Apply a drop shadow to the text element. Choose 4. Window > Properties > Filters.

In the Filters panel, click the Add Filter button and select Drop Shadow. Set the

drop shadow settings according to the following screen shot.

Figure 6.9: Apply a drop shadow fi lter to the text.

The Stage should now look like the following screen shot.

Figure 6.10: The fi rst screen with text.

Let’s use this text element on the three other screens. Select the text element and 5.

choose Edit > Copy. Select frame 10 in the Text layer. Choose Edit > Paste in Place.

Use the Text tool to change the text element to Play 4x. Using this same sequence

of steps, select frame 20 in the Text layer and change the text to Play Once. Select

frame 30 and change the text to Loop Point. Lock the Text layer.

Select 6. frame 1 in the Buttons layer.

We will now add navigation buttons to the screens. In the 7. Library panel is a button

symbol, Text Button, that shows a diamond and has up, over, and down states.

Drag the Text Button symbol from the Library panel to the Stage.

Use the Properties panel to name the button symbol 8. button1 and set the x and y

position to 48, 180.

120 Chapter 6: Interactive Video Concepts

Drag two additonal buttons to the 9. Stage and name them button2 and button3.

Set the x and y position for button2 to 48, 228. Set the x and y position for but-

ton3 to 48, 280.

Select the 10. Text tool and set the text properties according to the following screen

shot. The type should be Static Text, the font should be Myriad Pro Bold (or

another if it is not installed), the size should be 24, and the color should be 333333

(dark gray).

Figure 6.11: Text properties for the button text.

Create a text element next to 11. button1 (the top button) and enter Play 4x. Create

another text element next to button2 (the middle button) and enter Play Once.

Create a third text element next to button3 (the bottom button) and enter Loop

Point. The screen should now look like the following screen shot.

Figure 6.12: The fi rst screen with buttons.

With the buttons created for this screen, it’s time to create buttons for the remain-12.

ing screens. Select the Play 4x text and the button1 instance and choose Edit >

Copy.

Select 13. frame 10 in the Buttons layer and choose Edit > Paste in Place. Change to

the Text tool and change the text to Return. Select the button instance and change

the instance name to button4.

Select both the text element and the button and choose 14. Edit > Copy. Select frame

20 and choose Edit > Paste in Place. Select the button instance and change the

Tutorial: Repeating Loops 121

instance name to button5. Select frame 30 and choose Edit > Paste in Place. Select

the button instance and change the instance name to button6. We now have but-

tons across all the screens. Lock the Buttons layer.

The last elements we need to add to the screens are FLVPlayback components. 15.

Select frame 1 in the Video layer. Choose Window > Components. Open the

Video Category and drag the FLVPlayback component to the Stage.

Figure 6.13: The Video components category.

Select this instance of the FLVPlayback component. Using the 16. Properties panel, set

the component’s width to 480 and the height to 360. Set the x and y position to 0,

0. Name the instance myVideo.

Figure 6.14: Instance name and geometric properties for the FLVPlayback component.

Choose 17. Window > Components Inspector to open the Components Inspector

panel. With the myVideo instance selected, click the Parameters tab.

Set the 18. autoPlay property to true.

Click the 19. skin property and then click the magnify button on the right side of the

skin property’s attribute fi eld.

Figure 6.15: Click the magnify button to open the Select Skin dialog.

In the 20. Select Skin dialog, choose None from the Skin menu and click OK.

122 Chapter 6: Interactive Video Concepts

Figure 6.16: Setting the FLVPlayback to not use a skin.

In the 21. Component Inspector panel, click the source property and click the magnify

button on the right side of the source property’s attribute fi eld. This displays the

Content Path dialog. We’ll use this to pick a video to play. Click the folder button

at the right side of the fi eld and navigate to the Looping Video folder on your

computer. Select the fi le bluetile.fl v and click Open.

Figure 6.17: Set the source for the FLVPlayback component.

Now that the source is set, let’s improve the quality of the preview. New to Flash 22.

Professional CS3 is the author time preview of Flash Video. You can pick a frame

from the video and use that frame as a placeholder on the stage while you are

authoring your Flash Video content.

In the Components Inspector panel, select the preview property and click the mag-

nify button on the right side of the preview property’s attribute fi eld. This displays

the Select Preview Frame dialog. It has a video player with a controller to pick a

frame to use as the author time preview. Hover over the video and use the timebar

control to move the playhead to 2.500.

Tutorial: Repeating Loops 123

Figure 6.18: Selecting the Preview frame.

We can use the 23. myVideo instance with most of the same properties in the play4x

and playonce frames. Select the myVideo instance and choose Edit > Copy. Select

frame 10 in the Video layer and choose Edit > Paste in Place. Select the video

instance and change the instance name to loop4xVideo. Select frame 20 in the

Video layer and choose Edit > Paste in Place. Select the video instance and change

the instance name to play1Video.

The looppoint screen will use a different video with a cue point set as a loop point.

Before we do the next step, however, look at fi gure 6.19.

A B C

Figure 6.19: This represents one video loop. The fi rst part (A) is the opening part of the
animation. The point after which it ends is the loop point (B). The remaining portion of the
video (C) is the is played continuously when the video is played again, skipping over the
frames defi ned by (A).

Select 24. frame 30 in the Video layer. Drag another instance of the FLVPlayback com-

ponent from the Components panel to the Stage. Set the x and y location to 0, 0,

set the dimensions to 480 × 360, and name the instance loopPointVideo.

124 Chapter 6: Interactive Video Concepts

Using the 25. Component Inspector panel, set the autoPlay property to true and

the skin property to none. Set the source to clock.fl v (this FLV fi le is also in the

Looping Video folder on your computer). Set the preview property to 2.000. The

looppoint screen should now look like the following screenshot.

Figure 6.20: The looppoint screen.

Lock the 26. Video layer. Choose File > Save to save your work.

Part 3: ActionScript Code for Loops and Navigation

Select 1. frame 1 in the Actions layer. Choose Window > Actions to display the Ac-

tions panel. Our strategy is to have the video automatically rewind and play again.

In the Actions panel, enter the following code:

import fl.video.VideoEvent;

stop();

myVideo.autoRewind = true;

myVideo.addEventListener(VideoEvent.AUTO_REWOUND, loopVideo);

function loopVideo(event:VideoEvent):void {

 myVideo.play();

}

The fi rst line imports the VideoEvent class. This class contains events that

video objects trigger, like playing or rewinding, and it’s needed so we can listen

for the AUTO_REWOUND event. The stop() method holds the playback head

on this frame. The third line sets the myVideo’s autoRewind property to true,

which automatically rewinds the video when it fi nishes. The fourth line attaches

an event listener for the AUTO_REWOUND event to occur. This listener calls the

loopVideo() function when it does and this callback function plays the video

again.

Tutorial: Repeating Loops 125

After the 2. loopVideo() function, enter the following ActionScript for the buttons:

addEventListener(MouseEvent.CLICK, clickHandler);

function clickHandler(event:MouseEvent):void {

 myVideo.removeEventListener(VideoEvent.AUTO_REWOUND, loopVideo);

 switch (event.target.name) {

 case “button1” :

 gotoAndStop(“play4x”);

 break;

 case “button2” :

 gotoAndStop(“playonce”);

 break;

 case “button3” :

 gotoAndStop(“looppoint”);

 break;

 }

}

The fi rst line assigns an event listener to the entire stage and listens for mouse

clicks. When a CLICK event occurs, the clickHander() function is called. The

clickHandler function begins by removing the event listener from the video. This

prevents this event listener from causing an error when a similiar event occurs on a

different video object elsewhere in the FLA. The switch statement uses the name

of the item (the target) that was clicked and runs through the cases. The three

cases within the switch statement provide navigation commands to go to three

other frames in the FLA fi le.

Choose 3. Control > Test Movie to preview the FLA fi le. Notice that the movie does

loop continuously and clicking any of the buttons moves the playhead to one of

the three remaining screens. You’ll also notice that the Return buttons and the

loop interactivity do not work on the remaining screens. We’ll fi x that next.

Close the 4. Preview window. Select frame 10 in the Actions layer and choose Insert

> Timeline > Keyframe. In the Actions panel enter the following code:

126 Chapter 6: Interactive Video Concepts

var loopCounter:uint = 1;

removeEventListener(MouseEvent.CLICK, clickHandler);

loop4xVideo.autoRewind = true;

loop4xVideo.addEventListener(VideoEvent.AUTO_REWOUND, loopVideo4x);

function loopVideo4x(event:VideoEvent):void {

 loopCounter += 1;

 if (loopCounter == 4) {

 gotoAndStop(“continuously”);

 } else {

 loop4xVideo.play();

 }

}

This frame script begins by stopping the playhead on this frame. A counter,

loop4xCounter, is then set to 1. To avoid errors being thrown, the CLICK event

and clickHandler() function are removed using removeEventListener.

The loop4xvideo FLVPlayback instance is set to automatically rewind and an event

listener is attached to it that calls the loopVideo4x() function.

When then video rewinds, the loopVideo4x() function adds 1 to loop4x-

Counter and then tests to see if the counter equals 4. When it does, it returns to

the fi rst screen and if it doesn’t, it plays the video again.

Add an event listener for the 5. button4 instance. When button4 is clicked, the play-

head goes to the frame labeled continuously.

button4.addEventListener(MouseEvent.CLICK, click4);

function click4(event:MouseEvent):void {

 gotoAndStop(“continuously”);

}

Test the movie (6. Control > Test Movie). Click the Play 4x button on the fi rst screen

and notice how the video loops four times before returning to the fi rst screen.

Close the 7. Preview window. Select frame 20 in the Actions layer and choose Insert

> Timeline > Keyframe. In the Actions panel, enter the following code:

Tutorial: Repeating Loops 127

removeEventListener(MouseEvent.CLICK, clickHandler);

play1Video.autoRewind = true;

play1Video.addEventListener(VideoEvent.AUTO_REWOUND, play1x);

function play1x(event:VideoEvent):void {

 gotoAndStop(“continuously”);

}

This frame script begins by stopping the playhead on this frame. Like in the previ-

ous frame script, the CLICK event and clickHander() function are removed

and the autoRewind property is set to true. An event listener is attached to the

play1Video instance and calls the loop1x() function when it is rewound. The

function returns the playhead to the fi rst screen.

Add the event listener for button5. When 8. button5 is clicked, the playhead goes to

the frame labeled continuously.

button5.addEventListener(MouseEvent.CLICK, click5);

function click5(event:MouseEvent):void {

 gotoAndStop(“continuously”);

}

Test the movie (9. Control > Test Movie). Click the Play Once button on the fi rst

screen and notice how the video only plays once before returning to the fi rst

screen.

Close the Preview window. Select frame 30 in the 10. Actions layer and choose Insert

> Timeline > Keyframe. In the Actions panel enter the following code:

removeEventListener(MouseEvent.CLICK, clickHandler);

loopPointVideo.autoRewind = true;

loopPointVideo.addEventListener(VideoEvent.COMPLETE, playFromLoopPoint);

function playFromLoopPoint(event:VideoEvent):void {

 loopPointVideo.seekToNavCuePoint(“loop”);

 loopPointVideo.play();

}

This frame script begins by stopping the playhead on this frame. Like in the previ-

ous frame script, the CLICK event and clickHander() function are removed

and the autoRewind property is set to true. An event listener is attached to

the loopPointVideo instance and calls the playFromLoopPoint() function

when playback is complete. The function returns the playhead to the cue point

named loop and plays the video again.

128 Chapter 6: Interactive Video Concepts

Add the event listener for button6. When 11. button6 is clicked, the playhead goes to

the frame labeled continuously.

button6.addEventListener(MouseEvent.CLICK, click6);

function click6(event:MouseEvent):void {

 gotoAndStop(“continuously”);

}

Test the movie (12. Control > Test Movie). Click the Loop Point button on the fi rst

screen and notice how the video plays once before looping back to the loop point.

Close the 13. Preview window. Choose File > Save to save the fi le.

Tutorial: Intro, Exit, and Return Loops
Intro and exit loops (also called interstitials) add continuity to a Flash Video ap-

plication. For example, a longer introductory video plays fi rst. When a button is

clicked, another video plays in its place in response to the click before doing some-

thing else. Upon returning to the screen, a different video is played in place of the

introductory video.

Main Menu

no

no

yes

yes

yes

Play intro.flv

keep playing

no
play again

play exit.flv and go to destination

Play return.flv

button clicked?

Is user returning?

end of movie?

Figure 6.21: Menu with intro and exit loops.

If you want to create DVD-style Flash Video applications in a few clicks, look in Encore CS3.
It now offers Flash Video output in addition to DVD-Video and Blu-Ray output. To learn
more, go to: http://www.adobe.com/products/premiere/encore/.

Tutorial: Intro, Exit, and Return Loops 129

Part 1: Setting Up the FLA File

In this tutorial, we will author a news application called “Flash CS3 Video News.”

It will consist of a main menu and four news segments. When the main menu

plays for the fi rst time, it will play a longer video where the newscaster introduces

the show. This fi rst video clip is the intro loop. When a button is clicked, the main

menu plays a video in response to the clip before showing one of the news seg-

ments. This is the exit loop. After playing a news segment, the application returns

to the main menu and plays a shorter video clip prompting the viewer to select

another news segment. This is the return loop.

Figure 6.22: The Flash CS3 Video News main menu.

Open the DVD-ROM folder 1. Tutorials > Chapter 6. Copy the folder Advanced

Looping to your computer.

Launch Flash Professional. Choose 2. File > Open. Open the fi le newscast.fl a in the

Advanced Looping folder on your computer.

For this FLA fi le, several layers need to be created for structuring actions, labels, 3.

text, buttons, and video. Using the Timeline window, create them according to the

following screenshot.

Figure 6.23: The layer structure for this FLA fi le.

Layout the fi ve screens across the timeline according to the following screenshot. 4.

Instructions follow it.

130 Chapter 6: Interactive Video Concepts

Figure 6.24: The timeline layout for the four screens.

Select frame 1 in the 5. Actions layer and choose Insert > Timeline > Blank Keyframe.

Select frame 2 in the same layer and choose Insert > Timeline > Blank Keyframe.

Insert additional blank keyframes in frames 10, 20, 30, and 40.

Create the frame labels. Select 6. frame 2 in the Labels layer and choose Insert >

Timeline > Blank Keyframe. In the Properties panel, enter menu for the frame

label.

Figure 6.25: Labeling the frame.

Select 7. frame 10 and choose Insert > Timeline > Blank Keyframe. Label this frame

cloneFrame. Select frame 20 and insert a blank keyframe and label it quakeFrame.

Select frame 30 and label it monsterFrame. Select frame 40 and label it teleport-

Frame. Select frame 49 and choose Insert > Timeline > Frame.

Lock the 8. Labels layer. Choose File > Save to save your work.

Part 2: Adding Backgrounds, Buttons, and Video

Select 1. frame 1 in the Background Layer. Choose Window > Library and drag the

mainBackground movie clip from the Library panel to the Stage. Set its x and y

position to 0,0.

Figure 6.26: The background for the main screen in the Library panel.

Tutorial: Intro, Exit, and Return Loops 131

Select 2. frame 10 in the Background layer. Choose Insert > Timeline > Blank Key-

frame. Drag a copy of the GradientBackground graphic symbol from the Library to

the Stage. Set its x and y position to 0, 0.

Select 3. frame 2 in the Buttons layer. Choose Window > Components to open the

Components panel. Open the User Interface group and drag an instance of the

Button component to the Stage.

Figure 6.27: The User Interface components category.

Using the 4. Properties panel, name the button btnCloning. Set the button’s x and y

position to 24, 100 and set the width and height to 100 × 22.

Figure 6.28: Setting the button properties.

Choose 5. Window > Component Inspector. In the Parameters tab, set the Label

property to Cloning. This sets the button text.

Figure 6.29: Labeling the button in the Component Inspector panel.

Drag three additional buttons to the stage. Using the 6. Properties panel, name

these buttons btnQuake, btnMonster, and btnTeleport. Position them below the

btnCloning button and align their left edges. Use the Component Inspector panel

to set their labels to Earthquake, Sea Monster, and Teleportation. See Figure 6.22

for reference.

Select 7. frame 2 in the Video layer. Using the Components panel, drag an instance

of the FLVPlayback component from the Components panel to the Stage. The

FLVPlayback component is located in the Video category.

132 Chapter 6: Interactive Video Concepts

Figure 6.30: The Video components category.

Use the 8. Properties panel to adjust the settings for the component. Select the com-

ponent if the properties do not appear in the Properties panel. Name the instance

theVideo. Set the width and height to 480 × 270. Set its x and y position to 92, 0.

Figure 6.31: Setting properties for the FLVPlayback component.

Since this movie is a background design element, it doesn’t need a skin, or play-9.

back user interface. Choose Window > Component Inspector. In the Parameters

tab click the skin property and then click the magnify button on the right side of

the skin property’s attribute fi eld.

Figure 6.32: Click the magnify button to open the Select Skin dialog.

In the 10. Select Skin dialog, choose None from the Skin menu and click OK.

Tutorial: Intro, Exit, and Return Loops 133

Figure 6.33: Setting the FLVPlayback to not use a skin.

Select 11. frame 10 in the Video layer. Drag an instance of the FLVPlayback compo-

nent to the Stage. Name the instance myVideo. Set the width and height to 480 ×

270. Set its x and y position to 0, 0.

Repeat the last step for frames 12. 20, 30, and 40 in the Video layer. You should now

have video components for each of the news segments frames.

In each of the news segments frames, a unique video is displayed. Instead of set-13.

ting the source attribute for these videos with ActionScript, let’s set the attribute

using the Components Inspector panel.

In frame 10, select theVideo and using the Component Inspector panel, set the

source attribute to fl v/cloning.fl v. Select theVideo in frame 20 and set the source

attribute to fl v/quake.fl v. Select theVideo in frame 30 and set the source attribute

to fl v/monster.fl v. Select theVideo in frame 40 and set the source attribute to

fl v/teleport.fl v.

 Choose 14. File > Save to save your work.

Part 3: ActionScript Code for Intro, Exit, and Return Loops

Earlier in this tutorial, we inserted blank keyframes on the fi rst two frames in the 1.

Actions layer. Select frame 1 in the Actions layer, show the Actions panel (Win-

dow > Actions) and enter:

var returning:Boolean;

This variable is a Boolean and its possible values are either true or false. It’s set in

this frame and not the menu frame (frame 2) because establishing it in frame 2

would reset it everytime the playhead returned to frame 2 from one of the news

segments.

134 Chapter 6: Interactive Video Concepts

Select 2. frame 2, the frame that will contain the bulk of the ActionScript, and enter:

import fl.video.*;

import flash.events.*;

stop();

The fl.video package is imported because this frame script will play video as

well as respond to the COMPLETE event which is specifi c to video. The flash.

events package because the script listens for the CLICK event.

The stop() method stops the playhead on this frame.

After the 3. stop() method, create a new line and enter:

if (returning == true) {

 theVideo.source=”flv/return.flv”;

 theVideo.play();

} else {

 theVideo.source=”flv/intro.flv”;

 returning=true;

}

This conditional statement checks to see if the returning boolean we set in

frame 1 is true or false. When it is true, it plays return.fl v. If the boolean is false, it

plays intro.fl v and sets the returning variable to true, which will cause it to play

the return loop upon returning from one of the news segments.

For each of the buttons on stage, an event listener needs to be assigned. Add 4.

the event listeners to each button and use the same callback function, click-

Hander() for all of them.

btnCloning.addEventListener(MouseEvent.CLICK,clickHandler);

btnQuake.addEventListener(MouseEvent.CLICK,clickHandler);

btnMonster.addEventListener(MouseEvent.CLICK,clickHandler);

btnTeleport.addEventListener(MouseEvent.CLICK,clickHandler);

After the event handlers, create a new line and enter:5.

var destinationFrame:String;

function clickHandler(event:MouseEvent):void {

 destinationFrame=event.target.name;

 theVideo.source=”flv/cutaway.flv”;

}

The string variable destinationFrame stores the name of the button clicked.

The clickHandler() function sets destinationFrame to the name of the

button clicked and then plays the exit loop video, cutaway.fl v.

Tutorial: Intro, Exit, and Return Loops 135

After the 6. clickHandler() function enter the following lines of code.

theVideo.addEventListener(VideoEvent.COMPLETE,videoHandler);

function videoHandler(evt:VideoEvent):void {

 if (destinationFrame != null) {

 switch (destinationFrame) {

 case “btnCloning” :

 gotoAndStop(“cloneFrame”);

 break;

 case “btnQuake” :

 gotoAndStop(“quakeFrame”);

 break;

 case “btnMonster” :

 gotoAndStop(“monsterFrame”);

 break;

 case “btnTeleport” :

 gotoAndStop(“teleportFrame”);

 break;

 }

 destinationFrame = null;

 } else {

 theVideo.play();

 }

}

The fi rst line attaches an event listener to theVideo, the FLVPlayback component

on the stage. When the component fi nishes playing a video, the COMPLETE event

occurs. This event listener calls videoHandler() when the video fi nishes playing.

Inside the videoHandler() function are a few conditional statements. The if

statement checks whether or not the destinationFrame variable is set. Recall

that it is set once a button is clicked. If the variable is set, its value is used in a

switch statement to determine what frame to show next. For each button name is

a corresponding frame label to play. If the value is not set, it simply plays whatever

video (intro.fl v or return.fl v) is playing again.

Choose 7. Control > Test Movie to try the movie out. The intro.fl v video plays fi rst

and when you click a button, it plays the exit.fl v fi le before going to one of the

labeled frames. When the video fi nishes on any of these labeled frames, the play-

head does not return to the main frame. Close the Preview window. In the next

step, we’ll add code to return to the main frame from each news segment frame.

On frames 8. 10, 20, 30, and 40 in the Actions layer, enter the following frame script

in the Actions panel.

136 Chapter 6: Interactive Video Concepts

myVideo.addEventListener(VideoEvent.COMPLETE,cloneHandler);

function cloneHandler(evt:VideoEvent):void {

 gotoAndStop(“menu”);

}

This script checks to see if the video playing on each frame has fi nished playing.

When it has fi nished, it returns the playhead to the menu frame.

Choose 9. Control > Test Movie. The movie should now return to the main frame

from all of the labeled frames.

Close the 10. Preview window. Choose File > Save to save the fi le.

Wrapping Up
The concepts of looping and the steps required to make a video loop once, in-

fi nitely, or a set number of times can be applied to almost any project. Creative

combininations of video can make your Flash Video project take on a new level

of production value and experience. The topics in this chapter will help you make

your video truly interactive with Flash and a small amount of ActionScript.

CHAPTER 7

Video Transparency
and Effects

Flash Video can be creatively enhanced through

transparency, masking, and effects.

Flash Video and Transparency 2 .. 138

Creating Transparent Video on a Web Page 2 144

Masking Video 2 ..147

Applying Blend Modes and Effects to Video 2 149

Wrapping Up 2 ... 156

138 Chapter 7: Video Transparency and Effects

Flash Video and Transparency
An alpha channel facilitates combining a foreground element with a background

plate into a single image. A video with an alpha channel can be incorporated in a

Flash application by roughly following these steps:

An actor is shot in front of a properly lit green or blue screen (see Figure 7.1).1.

The footage is captured in an NLE, and sent to a compositing program such as 2.

After Effects, Fusion, Motion, or Shake. In the compositing application, the green is

removed, the remaining edges are softened, and secondary keys or mattes may be

created through the use of rotoscoping or garbage mattes. A fi nal matte is created

from these efforts and saved with the video footage as a separate channel along-

side the video’s three other color (red, green, and blue) channels. What remains of

the foreground element may require additional color correction to compensate for

color cast (referred to as “spill”) from the background.

This full-color video with alpha video fi le is compressed using the On2 VP6 codec 3.

and special attention is given to preserve the alpha channel in the encoding pro-

cess.

The encoded video fi le is incorporated in a Flash movie and the alpha channel’s 4.

transparency is used to composite the video on top of a background element.

Tutorial: Creating Flash Video with Transparency

For many years Adobe After Effects has been described as “Photoshop for video.”

It’s earned this title from its incredible power and the creative fl exibility it offers FX

artists and motion designers. In this tutorial, we’ll take HD footage shot in a green

screen studio, remove the background, and output a Flash Video fi le with an 8-bit

alpha channel.

Figure 7.1: The footage before the background has been removed.

Flash Video and Transparency 139

Section One: Chroma-Key Talent in After Effects

Navigate to the 1. Tutorials > Chapter 7 folder. Copy the superpowers folder to your

computer.

Launch 2. Adobe After Effects. A blank After Effects project fi le is created.

Choose 3. File > New > New Folder. Name this folder Source. We’ll place the source

QuickTime fi les in this folder. Create an additional folder named Comps.

Choose 4. File > Import. Navigate to the superpowers directory on your computer.

Inside the folder are two subfolders containing source video: DVC-Pro HD and

JPEG2000. If you have Final Cut Studio installed, open DVC-Pro HD and select

throw_dvcprohd.mov. If you do not have Final Cut Studio installed or are on a

Windows PC, open JPEG2000 and select throw_jpg2000.mov.

The footage was shot with the Panasonic AG-HVX200, which uses the DVC-Pro HD codec.
This codec is not part of QuickTime or QuickTime Professional. This codec is installed with
Final Cut Studio.

Click 5. OK. The fi les then appear in the Project window.

In the 6. Project window, drag the movie to the New Composition button at the bot-

tom of the window. This creates a new composition and places the movie inside it.

It also automatically sets the composition settings to use the size, frame rate, and

duration of the movie—a real time saver.

Figure 7.2: Creating a composition automatically from imported footage.

A composition is created, 7. throw 2. Rename it throw_comp. To rename a comp, se-

lect it and press Return (Windows) or Enter (Mac OS X). Drag these compositions

into the Comps folder in the Project window.

Double-click 8. throw_comp to open it. The composition now appears in the Compo-

sition and Timeline windows.

Display the 9. Effects & Presets palette. Choose Window > Effects & Presets. In the

Contains fi eld, type “Keyl.” The Keylight effect appears.

140 Chapter 7: Video Transparency and Effects

Figure 7.3: Filtering the Effects options by searching.

Click-drag the 10. Keylight fi lter to the Composition window and drop it on the throw

movie.The Effects Controls palette then appears. Click the Screen Colour (yes, the

plug-in developer is British) eyedropper and then click 20 pixels to the right of the

hand. The composition window updates and the green background is removed.

Figure 7.4: Picking a color to key out.

Keylight includes several options for previewing in 11. View, the fi rst effect setting.

As you work with this effect, change the View setting from Source to Combined

Matte to Final Result. For now, select the Combined Matte mode.

Open the 12. Screen Matte group in the Effects palette. Adjust the Clip Black to 13

and the Clip White to 95. This will increase contrast and remove noise in the

opaque and transparent areas of the matte.

In the 13. Screen Matte group, change the Screen Shrink/Grow to –1.0, and set the

Screen Softness to 1.0. These settings will improve the matte by bringing the

matte edges in slightly and by softening the edges.

Figure 7.5: Use the Screen Matte controls to fi ne-tune a matte.

When shooting foreground elements (actors and props) against a green or blue screen, “spill”
can occur. This results from the green/blue background refl ecting onto the foreground. To re-
move spill, use the Despill and Alpha bias settings. Pick a skin tone with the Despill option.
If the affected area becomes too transparent, use Alpha bias to remove the transparency.

Flash Video and Transparency 141

Choose 14. File > Save. Save the fi le in the After Effects and Flash Video folder. Name

the fi le FLV_Alpha.aep.

To export the movie, choose 15. File > Export > Flash Video (FLV). Click OK in the

dialog that appears.

In the 16. Flash Video Encoding Settings dialog, click the Video tab. The Video codec

selected should be On2 VP6, and if it isn’t, select it. Check Encode alpha channel.

Set the Quality Settings to medium, keep the Frame rate set to Same as source.

Figure 7.6: The Video Tab settings.

Click the 17. Crop and Resize tab. Check resize video. Since we want to preserve the

16:9 aspect ratio, set the dimensions to 480 × 270. Click OK.

Save the fi le as 18. throw.fl v in the superpowers folder.

Section Two: Using Transparent Video in Flash

In this section, we will write a small Flash Video application that will reference the

video exported from After Effects in the last section. In this application we will

layer two videos with transparency on top of the stage. Buttons next to the video

area will play different videos. The lower video will play one of two videos of an

arm shot in front of a green screen. The upper video will play one of four effect

videos. Instead of producing and loading eight videos, we will only need siz.

Figure 7.7: The Flash Video application.

142 Chapter 7: Video Transparency and Effects

On the DVD-ROM, copy the folder 1. Video Transparency to your computer. Launch

Flash Professional and open the fi le superpower.fl a.

In the Timeline, select 2. frame 1 in the layer named ActionScript. Choose Window >

Actions. Let’s begin by assigning graphics to each of the buttons on the side.

fireBtn.setStyle(“icon”, fireGlyph);

atomicBtn.setStyle(“icon”, atomicGlyph);

magicBtn.setStyle(“icon”, magicGlyph);

waveBtn.setStyle(“icon”, waveGlyph);

In the Library are four movie clip symbols: fi reGlyph, atomicGlyph, magicGlyph,

and waveGlyph. If you display the Symbol Properties dialog for any of these

movie clips, you will see that they have the Export for ActionScript Linkage prop-

erty set. Setting this property will create a class for it and expose this symbol to

ActionScript. These four lines of code reference each symbol and use the Button

classes’ setStyle() method for these symbols as icons inside the buttons.

Figure 7.8: The Symbol Properties dialog.

Attach event listeners for each of the four buttons.3.

fireBtn.addEventListener(MouseEvent.CLICK, clickBtn);

atomicBtn.addEventListener(MouseEvent.CLICK, clickBtn);

magicBtn.addEventListener(MouseEvent.CLICK, clickBtn);

waveBtn.addEventListener(MouseEvent.CLICK, clickBtn);

An event listener is code that watches for specifi c interactivity or processes to occur.

When the specifi ed interaction occurs, a method is called. This process of listening

for events and running code in response to the events is known as event handling.

Event handling requires three things: the event source, the event, and the response

the Flash application gives.

In this code block, an event listener is attached to each of the four buttons. Each

listener watches for the CLICK event and will execute the clickBtn method

when this event occurs on any of these four buttons.

Flash Video and Transparency 143

When attaching an event listener, the event that occurs, CLICK in this case, is also passed to
the response function. This allows the response function to use the event to alter or refer-
ence the object, one of these four buttons in this case, that created the event.

Write the method 4. clickBtn() that will respond to the CLICK event.

function clickBtn(event:MouseEvent):void {

}

In the method’s declaration, it begins by accepting a MouseEvent, which will be

referred to as event within the method.

Inside the method, enter the following 5. switch() statement:

switch (event.target.name) {

 case “fireBtn” :

 fxVideo.source = “fire.flv”;

 handVideo.source = “hold.flv”;

 fxVideo.play();

 handVideo.play();

 break;

 case “atomicBtn” :

 fxVideo.source = “atomic.flv”;

 handVideo.source = “hold.flv”;

 fxVideo.play();

 handVideo.play();

 break;

 case “magicBtn” :

 fxVideo.source = “magic.flv”;

 handVideo.source = “throw.flv”;

 fxVideo.play();

 handVideo.play();

 break;

 case “waveBtn” :

 fxVideo.source = “wave.flv”;

 handVideo.source = “throw.flv”;

 fxVideo.play();

 handVideo.play();

 break;

}

A switch statement establishes a high-level condition. In this example, the name

of the target creating the event (the button’s name) is the high-level condition.

Case statements within the switch statements instruct the Flash Player how to re-

spond to specifi c conditions. The fi rst case statement responds to the atomicBtn

being clicked. It sets the source of the fxVideo video object to fire.flv. It also

sets the source of the handVideo video object to hold.flv. It ends by playing

both video clips. The remaining case statements respond to the remaining buttons

being clicked.

144 Chapter 7: Video Transparency and Effects

Choose 6. File > Save to save the movie. Test the movie by choosing Control > Test

Movie. Click the buttons on the right to see the different effects. Notice how the

movies have transparency and the Flash Movie appears in the background.

Creating Transparent Video on a Web Page
Flash movies, like transparent GIF and PNG graphics, can have a transparent back-

ground. The overall effect is that the Flash movie has no solid background and its

elements seamlessly composite over the web page that contains it. Most modern

browsers support this feature, but the following list is what Adobe offi cially sup-

ports:

Internet Explorer 3.0 or higher (Windows) 1

Internet Explorer 5.1* and 5.2* (Macintosh OS X) 1

Netscape 7.0* 1

Mozilla/Firefox 1.0 or higher* 1

AOL* 1

CompuServe* 1

* Adobe Flash Player version 6,0,65,0 (Windows) or 6,0,67,0 (Macintosh) or higher

is required.

Transparency mode is not supported in Mac OS Classic (anything prior to OS X) or in a Flash
stand-alone projector. Transparency mode may affect your Flash movie’s performance. If
performance is poor, you could use the same background color in the Flash movie and the
web page.

Tutorial: Exporting Transparency from Flash

In this tutorial we’ll place video on the stage in Flash and export it using the trans-

parent window mode embed parameter.

Figure 7.9: Example web pages with transparent mode off (left) and on (right).

Creating Transparent Video on a Web Page 145

Open the DVD-ROM folder 1. Tutorials > Chapter 7. Copy the folder Web Page

Transparency to your computer.

Launch Flash Professional. Choose 2. File > New. Select Flash File (ActionScript 3).

Click OK. A new Flash document opens.

Choose 3. Modify > Document. Set the dimensions to 500 × 500. Click OK.

Figure 7.10: Setting the dimensions for the Flash movie.

Choose 4. File > Save. Save the fi le as transparency.fl a in the Web Page Transpar-

ency folder on your computer.

Choose 5. File > Import Video. In the Import Video dialog, select On your computer

and click Choose. Navigate to the Web Page Transparency folder on your com-

puter, select the fi le glow.fl v, and click Open. Click Continue.

In the 6. Deployment stage of the Import Video Wizard, select Progressive down-

load from a web server. Click Continue.

In the 7. Skinning stage of the wizard, select SkinOverPlaySeekStop.swf for the

player skin and set the color to #999999 and the alpha to 35%.

Figure 7.11: Selecting a color and transparency setting for the player skin.

In the last stage of the wizard, click 8. Finish. An instance of the FLVplayback compo-

nent appears on the stage. Select it and name it myVideo in the Properties panel.

146 Chapter 7: Video Transparency and Effects

Figure 7.12: Name the FLVPlayback component instance.

Choose 9. File > Publish Settings. Click the HTML tab.

Select 10. Transparent Windowless from the Window Mode menu. This sets an em-

bed/object parameter of wmode equal to transparent.

Figure 7.13: Setting the Window Mode in the HTML publishing options tab.

Choose 11. File > Save to save the document.

Choose 12. File > Publish Preview > Default. You should see the video in the page.

The video plays against a white page, but it’s not clear really if the background is

transparent.

Open the HTML or text editor of your choice and open the fi le13. transparency.html

that is located in the Web Page Transparency folder on your computer. Add the

following before the end </head> tag:

<style type=”text/css”>

<!--

body { background: #FF9900 url(stipple.gif); }

-->

</style>

This will set the web page’s background to use a Cascading Style Sheet (CSS) back-

ground color and image.

Masking Video 147

Save the fi le and open it14. in a web browser. Refresh the browser view if needed.

You should see the movie play against a stippled yellow-orange background.

If you are editing an existing web page, you need to add <param name=”wmode”
value=”transparent”> to the Flash movie’s OBJECT tag and add wmode=”transparent”
inside the EMBED tag.

Masking Video
A mask layer is like an alpha channel—it removes portions of an image. In Flash

Professional, a mask layer is placed above the content to be masked. Any fi lled

shape or text can be used on a mask layer.

Tutorial: Masking Video

In this tutorial, we’ll add video to an existing Flash movie and mask it.

Figure 7.14: Masking video.

Open the DVD-ROM folder 1. Tutorials > Chapter 7. Copy the folder Masking

Video, to your computer.

Launch Flash Professional. Choose 2. File > Open. Open the fi le maskedvideo.fl a in

the Masking Video folder on your computer.

Create two layers below the 3. text layer and name them mask and video. The mask

layer should be on top of the video layer.

Figure 7.15: The layer order is important when masking elements.

148 Chapter 7: Video Transparency and Effects

Lock the 4. mask layer and select the video layer. This will ensure that content we

add to the stage appears on the correct layer. Since a mask layer affects the layer

below it, it’s important to place content on the correct layer.

Open the 5. Components panel. Drag an instance of FLVPlayback onto the stage.

Using the Properties panel, name it myVideo.

Using the 6. Component Inspector panel, set the source parameter to feet_traffi c.fl v,

a fi le that is in the Masking Video folder.

Figure 7.16: Setting the source for the video playback component.

Lock the 7. video layer and unlock and select the mask layer.

Open the 8. Library panel. Drag an instance of the circle graphic symbol to the stage.

Position it at 0, 9.3 using the 9. Properties panel.

Right-click10. (Windows) or Control-click (Mac OS X) on the mask layer and choose

Mask from the context menu. Lock the mask layer and the preview can be viewed

at authoring time. Note that the mask layer and layer being masked both must be

locked in order for the mask effect to work.

Figure 7.17: Mask and masked layers must be locked.

To make the video more noticeable, let’s write an event listener to listen for the 11.

end of the video and a function to loop the video. Choose Window > Actions.

Select frame 1 in the actions layer. In the Actions panel enter:

import fl.video.VideoEvent;

myVideo.addEventListener(VideoEvent.COMPLETE, loopVideo);

function loopVideo(evt:VideoEvent):void {

 myVideo.play();

}

Choose 12. File > Save.

Applying Blend Modes and Effects to Video 149

Choose 13. Control > Test Movie. The video is now masked by the circle shaped layer.

Applying Blend Modes and Effects to Video
Flash Player includes three methods for composing images: blend modes, color

effects, and bitmap effects. Alone and combined, they offer nearly unlimited pos-

sibilities for tinting, overlaying, and blending graphic symbols, bitmap images, text,

and video.

Blend modes 1 in Flash are like transfer modes in Photoshop or After Effects. They
work by applying a compositing mode to a foreground element and its colors then
blend with the background element’s colors to create interesting visual effects.

There are nearly a dozen blend modes available in Flash. To see a full description of each,
look up “blend modes” in Flash CS3 Professional’s online help.

Color effects 1 can also be applied to any element on the stage. Color effects include
tinting, alpha, brightness, and an advanced mode that let you manipulate indi-
vidual red, green, blue, and alpha channels.

Bitmap effects 1 are fi lters that can be applied to text elements and movie clips.
They cannot be applied to graphic elements and groups. Flash includes fi lters for
creating drop shadows, blurring and image, creating glows, and creating custom
fi lters from convolution kernels.

Tutorial: Applying Blend Modes and Color Effects

In this tutorial we’ll modify a video’s blend mode and apply a color effect. The end

result will create transparency as well as color interaction between the video and

the background image.

Figure 7.18: Applying blend modes and color effects to a video clip.

Open the DVD-ROM folder 1. Tutorials > Chapter 7. Copy the folder Blend Modes

and Color Effects to your computer.

150 Chapter 7: Video Transparency and Effects

Launch Flash Professional. Choose 2. File > Open. Open the fi le blendcolor.fl a in the

Blend Modes and Color Effects folder on your computer.

On the stage is a video, 3. myVideo, on top of a background image. Select the

myVideo instance. In the Properties panel, select Screen from the Blend menu.

 With 4. myVideo selected, choose Tint from the Color menu. Set the Tint amount to

25% and the RGB color values to 153, 51, and 0.

Figure 7.19: Selecting a color and amount for the tint.

Choose 5. File > Save. Choose Control > Test Movie to preview the movie with the

blend mode and color effects applied to it.

Tutorial: Applying Bitmap Effects Directly

In this tutorial, we will apply a bevel and a drop shadow to a video component.

Figure 7.20: Bitmap effects can be applied to any movie clip symbol or text element.

Open the DVD-ROM folder 1. Tutorials > Chapter 7. Copy the folder Bitmap Effects

to your computer.

Launch Flash Professional. Choose 2. File > Open. Open the fi le bitmap.fl a in the

Bitmap Effects folder on your computer.

On the stage is an instance of an FLVPlayback component named 3. myFLVPlayback.

Select it and choose Modify > Convert to Symbol. In the Convert to Symbol dialog,

name the symbol myVideo and set the type to Movie clip.

Applying Blend Modes and Effects to Video 151

Figure 7.21: Creating a movie clip from the FLVPlayback component.

The component on the stage is replaced with the new movie clip. If you select it 4.

and look at the Properties panel, you’ll see that the object is now a movie clip and

an instance of myVideo and not FLVPlayback. Name the instance fxClip.

Figure 7.22: Name the movie clip.

Converting an element to a symbol in Flash is like precomposing a layer in After Effects. The
original element is placed inside a new timeline and can be reused in several places.

Select 5. fxClip and open the Filters panel (Window > Properties > Filters). Click

the Add Filter icon and choose Bevel. Set both the Blur X and Y values to 8, the

Strength to 50, the Quality to High, the Angle to 90, and the Distance to 8.

A

B

Figure 7.23: Choose Bevel (A) and the set the fi lter parameters (B).

Click the 6. Add Filter icon again and select Drop Shadow. Set the Blur X value to 16,

the Blur Y value to 8, and the Strength to 100%. Select High for the Quality set-

ting, enter 90 for the Angle, and enter 8 for the Distance.

Choose 7. File > Save. Choose Control > Test Movie to preview the movie with the

drop shadow and bevel fi lters applied to it.

152 Chapter 7: Video Transparency and Effects

Tutorial: Applying Bitmap Effects Dynamically

Bitmap effects can also be applied using ActionScript. In this tutorial, we will create

a Flash movie that applies different bitmap effects using the filters class and

the ActionScript 3 user interface components. The Flash document is partially com-

plete: elements are on the stage and symbols and components have been added to

the document’s library. All that is left to do is write the ActionScript.

Figure 7.24: A sample application that applies different effects to video.

Open the DVD-ROM folder 1. Tutorials > Chapter 7. Copy the folder Bitmap Effects

and ActionScript to your computer.

Launch Flash Professional. Choose 2. File > Open. Open the fi le bitmap_actionscript.

fl a in the Bitmap Effects and ActionScript folder on your computer.

Choose 3. Window > Actions. Select frame 1 in the actions layer. Let’s begin by

importing classes we’ll be using.

import fl.controls.RadioButton;

import fl.controls.RadioButtonGroup;

import fl.controls.Label;

import flash.text.TextFormat;

import fl.managers.StyleManager;

import flash.filters.BlurFilter;

import flash.filters.DropShadowFilter;

import flash.filters.ColorMatrixFilter;

The fi rst three import statements facilitate working with the ActionScript 3 user

interface components: radio button, button group, and label. A radio button oc-

curs in a group of at least two radio buttons that are mutually exclusive of one

another. Within a group, only one can be selected, and selecting one deselects the

other. The RadioButtonGroup class enforces this exclusivity. The Label class is

for managing labels used for combo boxes, groups of controls, or text fi elds. In this

application, there is one label, Apply Effect, for the application’s four radio buttons.

The TextFormat and StyleManager classes are for setting typographic attri-

Applying Blend Modes and Effects to Video 153

butes for text fi elds and for text used in user interface components. The filters

class includes the bitmap effects classes we’ll use in this Flash application: BlurF-

ilter, DropShadowFilter, and ColorMatrixFilter.

Let’s add a 4. TextFormat object to change the font color, weight, and font family

for the label fxLabel. Enter:

var tf:TextFormat=new TextFormat;

tf.color=0x555555;

tf.bold=true;

tf.font=”Arial”;

fxLabel.setStyle(“textFormat”,tf);

The fi rst creates an instance, tf, of the TextFormat class. The next three lines

set the color to medium gray, set the label in bold, and change the font to Arial.

The fi fth line uses the setStyle() method to apply this new style to the label.

If you look at the stage, you’ll notice that there are no radio buttons on it. Instead, 5.

we’ll create them dynamically with ActionScript. Enter:

var noneRadio:RadioButton = new RadioButton();

noneRadio.label = “None”;

noneRadio.group = myRadioGroup;

noneRadio.move(20, 40);

addChild(noneRadio);

var dropRadio:RadioButton = new RadioButton();

dropRadio.label = “Drop Shadow”;

dropRadio.group = myRadioGroup;

dropRadio.move(20, 60);

addChild(dropRadio);

var blurRadio:RadioButton = new RadioButton();

blurRadio.label = “Blur”;

blurRadio.group = myRadioGroup;

blurRadio.move(20, 80);

addChild(blurRadio);

var toneRadio:RadioButton = new RadioButton();

toneRadio.label = “Film Look”;

toneRadio.group = myRadioGroup;

toneRadio.move(20, 100);

addChild(toneRadio);

Each block begins by creating a new instance of the RadioButton class. The

label, radio button group, and position are then set. Lastly, each button is added to

the stage’s display list by calling the addChild method.

With the label created, create a radio button group. Enter:6.

154 Chapter 7: Video Transparency and Effects

var myRadioGroup:RadioButtonGroup = new RadioButtonGroup(“options”);

myRadioGroup.addEventListener(Event.CHANGE, changeHandler);

This creates a radio button group named myRadioGroup and adds an event

listener to it. The change event will occur anytime a different button within the

group is chosen. When the event occurs, the changeHandler method will run.

We’ll write that function at the end of the tutorial.

The drop shadow fi lter in Flash has parameters for distance, angle, color and opac-7.

ity, blur settings for X and Y directions, strength, and quality.

The last two parameters, strength and quality, need additional explanation.

Strength is how much shadow color is used in the shadow. Higher values can

increase the contrast between the shadow and the background. Zero to 255.0 is

the range of possible values. Quality is the shadow’s rendering quality, but note

a value of 1 generates a low-quality shadow while 3 generates a higher-quality

shadow. Enter:

function addShadow(shadowDistance:uint, shadowAngle:uint,

shadowColor:uint, shadowAlpha:Number, blurX:uint, blurY:uint, strength:uint,

quality:uint, videoMC:MovieClip) {

 var myFilter:DropShadowFilter = new DropShadowFilter(shadowDistance,

 shadowAngle, shadowColor, shadowAlpha, blurX, blurY, strength, quality);

 videoMC.filters = [myFilter];

}

The function declaration includes all the parameters for the fi lter as well as the

movie clip that will receive the fi lter. The code inside the function begins with cre-

ating a new drop shadow fi lter object according to the parameters that are passed

to the function. Filters work by creating them, creating an array and adding the fi l-

ter object to the array, and then associating a movie clip’s fi lters property with the

array. By using an array, a movie clip can have more than one fi lter applied to it.

Next, let’s write the 8. addBlur method. It includes parameters for the distance to

blur a movie clip in X and Y and the quality.

function addBlur(x:uint, y:uint, bQuality:uint, videoMC:MovieClip):void {

 var myFilter:BlurFilter = new BlurFilter(x,y,bQuality);

 videoMC.filters = [myFilter];

}

This method accepts all the fi lter settings and the target movie clip as parameters

for the function. It creates a new blur fi lter object, creates an array and adds the

fi lter object to it, and associates the array with the movie clip.

The next fi lter uses the color matrix fi lter. The color matrix fi lter works by manipu-9.

lating the color and transparency values of every single pixel in an element. The

Applying Blend Modes and Effects to Video 155

red, green, blue, and transparency components of the pixel are manipulated by a

matrix or array of 20 numbers.

function addTone(a1:Number, a2:Number, a3:Number, a4:Number, a5:Number,

a6:Number, a7:Number, a8:Number, a9:Number, a10:Number, a11:Number,

a12:Number, a13:Number, a14:Number, a15:Number, a16:Number, a17:Number,

a18:Number, a19:Number, a20:Number, videoMC:MovieClip):void {

 var matrix:Array = [

 a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,

 a11, a12, a13, a14, a15, a16, a17, a18, a19, a20

];

 var myFilter:ColorMatrixFilter = new ColorMatrixFilter(matrix);

 videoMC.filters = [colorMatrix];

}

The add tone function, like the previous two functions, pass in the fi lter param-

eters and the target movie clip. Since there are 20 numbers in a color matrix, this

method has a lot of input parameters. Finally, like the other functions, it works by

creating a new fi lter object.

Many different effects can be created with the fi lter. To see a few examples, review the
Adobe Developer Center article at: http://www.adobe.com/devnet/fl ash/articles/matrix_
transformations.html.

Let’s write the function that responds when a radio button is selected. Enter:10.

function changeHandler(event:Event):void {

 var rg:RadioButtonGroup = event.target as RadioButtonGroup;

 switch (rg.selection) {

 case noneRadio :

 blurVideo(0, 0, 0, myVideo);

 vidDropShadow(0, 90, 0x000000, 0, 0, 0, 1, 1, myVideo);

 setTone(1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0,

myVideo);

 break;

 case dropRadio :

 vidDropShadow(8, 90, 0x000000, 0.75, 16, 8, 1, 3, myVideo);

 break;

 case blurRadio :

 blurVideo(16, 4, 3, myVideo);

 break;

 case toneRadio :

 setTone(0.8, 1.1, -0.7, 0, -77, 0.1, 0.9, 0.3, 0, -78, 0.8, 0, 0.4,

0, -78, 0, 0, 0, 1, 0, myVideo);

 break;

 }

}

This function accepts an event as a parameter and uses the event’s target to create

a radio button group for the switch statement that follows. Inside the switch state-

ment are conditions for each of the radio buttons created earlier. The radio button,

noneRadio, resets the effects and restores the video to its original state. The drop

shadow radio button, dropRadio, calls the addShadow() method that applies

156 Chapter 7: Video Transparency and Effects

a shadow to the video. The blur radio button, blurRadio, calls the addBlur()

method that blurs the video. Finally, the color matrix radio button, toneRadio,

calls the setTone() method that applies a fi lm processing treatment to the video.

Wrapping Up
In this chapter we covered the creative options a Flash Video developer can do

to blend, composite, and creatively enhance video. By combining several of these

techniques you can make your Flash Video applications more expressive and you

can use a lot of the same masking, fi ltering, and blend modes on nonvideo movie

clip symbols too.

CHAPTER 8

Enhancing Flash Deployment

While all the fun occurs while authoring Flash con-

tent and preparing video, integrating Flash with

HTML can’t be avoided. This chapter covers issues

you should know about when deploying to the

Web.

Deploying Flash with HTML 2 ... 158

How Flash is Embedded 2 ... 158

Browser Compatibility and Web Standards 2 159

Flash Player Version Detection 2 ...162

The EOLAS Patent and Active Content 2 163

Tutorial: Using SWFObject 2 ...163

Ensuring Your Web Site Can Serve Flash Video 2 167

Wrapping Up 2 ... 168

158 Chapter 8: Enhancing Flash Deployment

Deploying Flash with HTML
Let’s face it, Flash Video is primarily embedded in web pages. Given that relation-

ship, there are several issues to wrangle when publishing video on a web site: web

browser compatibility, ensuring the correct Flash Player is installed, making the

content search engine friendly, displaying alternative content for those who don’t

have Flash or JavaScript enabled, and overcoming the “click to activate experience”

caused by recent changes to Microsoft Internet Explorer. As a developer you can:

Use standards-compliant markup. 1

Use proprietary markup to solve browser compatibility. 1

Use JavaScript to dynamically embed the video. 1

Use combinations of the aforementioned methods. 1

None of these directions are perfect and there are several implementation ap-

proaches for each. In this chapter we’ll cover the issues that affect publishing Flash

on web pages and present tutorials that cover some of the popular methods.

How Flash Video Is Embedded
Flash Video (FLV) is “housed” inside a container Flash movie (SWF). The housing

SWF streams the FLV and provides methods to control playback (either on its own

or through a skin SWF). The housing SWF is embedded inside a web page (HTML).

When a viewer visits a page with Flash Video, the browser loads the Flash Player

plug-in and viewing begins.

The Flash Video and skin SWF files are external to the
container SWF that reference them. A skin SWF is
present when using the FLVPlayback component.

A Flash Video file (FLV), cannot be directly referenced in a web page. It actually needs
to be referenced inside a container SWF that is referenced by an HTML document.

The container SWF file is referenced in an HTML
page and presented to web site visitors.

Flash Video

Flash Video

Skin .SWF

Container .SWF HTML page

Container .SWF HTML page

Figure 8.1: Relationship between an FLV, SWF, and HTML document.

Browser Compatibility and Web Standards 159

Browser Compatibility and Web Standards
The Internet is not viewed by only one browser alone. Yes, Microsoft Internet

Explorer commands a large portion of the browser market share, but there are mil-

lions of viewers who also use the Firefox browser, Opera, or Safari on Mac OS X.

The problem is not in how each browser supports Flash, but really how they sup-

port non-HTML (or plug-in) content in general. Flash like QuickTime, Real Media,

or Windows media is placed on a web page using the <embed> tag, the <object>

tag, or both tags.

What Are Web Standards?

At the peak of the fi rst Internet bubble, most web pages were created by mixing

structure and presentation, did not use semantic markup, and used a variety of

proprietary, hack-derived, and inaccessible technologies. The result was sites that

worked for some and appeared broken to others. Coincidentally, many of these

hacked-together pages are not optimized for search engines. The term and move-

ment “Web Standards” grew from the desire for long-term universal access and

interoperability on the World Wide Web.

Figure 8.2: Visit http://www.webstandards.org to learn more best practices.

Web standards promotes the use of semantic markup, open standards (XHTML,

CSS, JavaScript, microformats, and XML), and accessibility among developers and

designers. The movement also works closely with browser manufacturers and web

tooling companies such as Adobe to increase standards support.

160 Chapter 8: Enhancing Flash Deployment

Semantic Markup

Semantic markup is the practice of marking web pages using appropriate HTML

tags in marking up content. For example, paragraphs are enclosed inside a para-

graph tag, <p>, a fi rst-level heading is placed inside a heading 1 tag, <h1>, and

a numbered list is marked up using the ordered list and list item tags, and

 respectively. When markup refl ects the organization and meaning of content,

it future-proofs the content, makes it easier to fi nd via a search engine, and greatly

facilitates changes and updates to both the content and the design.

The practice of applying semantic markup is a best-practice alternative to building

web pages completely with tables. While tables were an effective layout mecha-

nism in the early days of the Web, they should be avoided today. Tables should

only be used for displaying tabular data. Pages should use <div> tags along with

other block-level HTML tags and cascading style sheets (CSS) to create layouts.

Digital Web also has an excellent primer on writing HTML using semantic markup by Joshua
Porter and Richard MacManus. It’s at: http://www.digital-web.com/articles/writing_seman-
tic_markup/.

Open Standards

Open standards are web technologies such as HTML, CSS, and JavaScript. They

are standards because they are managed by international nonprofi t organizations

with representation from educational institutions, corporations, and the open

source community. These technologies have specifi cation and review processes

that are open to anyone. When a technology reaches a fi nal draft, browser manu-

facturers and tool developers are encouraged to support the specifi cations. By us-

ing open standards and avoiding proprietary markup, universal access is achievable.

A List Apart has many articles on designing web sites using standards. It can be found at:
http://www.alistapart.com.

While not an open standard, Flash, like all other rich-media technologies, has its

place when it is implemented responsibly. Responsible implementation means us-

ing unobtrusive techniques for inserting content and providing alternative content

and assistance for those who cannot view the material being presented.

Web Page Validation

Having pages validate is sort of like passing a grammar quiz. While there may be

a few correct answers to a question, there’s no doubt when an answer is wrong.

That said, it’s not surprising that many developers do not or conveniently forget to

validate their pages using the W3C’s (World Wide Web Consortium) page valida-

tor. To ensure your page passes validation, here are a few things your markup

needs to do:

Browser Compatibility and Web Standards 161

Properly declare a document type and character encoding. The document type 1

declares what version of HTML you are using. The character encoding is important
when using mathematical or foreign language characters.

All tags should be well-formed. This means items have opening and closing tags 1

such as a <p>A line of text</p>. For single tags such as the line break tag, a clos-
ing slash should be used:
 instead of simply
.

Avoid deprecated or nonstandard tags and attributes. Use 1 important
 rather than the deprecated important tag. If you do use
non-standard attributes and tags, be sure to namespace them.

Do not improperly nest tags. For example, an 1 <h2> tag should not be inside a <p>
tag.

To learn more about page validation, read Ethan Marcotte’s article, Where Our Standards
Went Wrong at: http://alistapart.com/comments/whereourstandardswentwrong/. To vali-
date a page, go to http://validator.w3.org/.

Accessibility

Accessibility has taken on two different but related meanings. Pages are acces-

sible to those with disabilities when they provide hooks for assistive technologies.

Pages are universally accessible when they are viewable by a wide range of user

agents, for example, computers, mobile phones, and consumer electronic devices

such as a Sony PS3 or Nintendo Wii.

To achieve accessibility, here are general things you can do:

Set properties such 1 alt and title on <image> and <link> tags. These make
the page easier to read by screen-readers for the visually impaired.

Include closed captions for video content. This makes it accessible to the hearing 1

impaired.

Properly set tab order and specify access keys on form elements and links. These 1

two things make it easier to control a web page using a keyboard.

Implement the page using standards-based markup. This will ensure that a wide 1

variety of user agents can display the content.

These are just some of the things you can do to make your web pages more accessible. To
learn more, visit: http://www.webstandards.org/action/atf/ and http://www.w3.org/TR/
WAI-WEBCONTENT/.

Making web pages accessible is not just for assisting those with disabilities, but

also for making content readable by machines. Setting alt and title properties as

well as metadata in SWF fi les help with indexing, search engine optimization, and

natural language search.

Object and Embed Tags

Flash is embedded with two tags: <embed> and <object>. The former is a non-

standard tag that originally found its way into HTML when Netscape introduced

162 Chapter 8: Enhancing Flash Deployment

browser plug-ins. The tag unfortunately never was adopted by the W3C, the body

that governs the HTML specifi cation.

The embed tag, however, has better cross-browser and cross-platform support

since it was fairly well defi ned at the beginning and all the browser manufactur-

ers implement it the same way. Besides having an unknown future, it invalidates

HTML because it’s not part of the HTML spec, and it has horrible support for

showing alternative content. Its <noembed> tag counterpart only works when the

client technology doesn’t support the tag, which is the case with some mobile web

browsers. When the client supports the tag (as is the case with all desktop web

browsers), it shows an outline with a broken plug-in and ignores the content set

inside the noembed tag.

The W3C instead developed the object tag because it was less prone to patent

issues (see EOLAS Patent and Active Content on the following page). The problem

with the object tag has been how browser manufacturers have implemented it. Ev-

eryone but Microsoft implemented it using the type property, which uses MIME

fi le-type descriptions to indicate the object’s fi le type and helper application or

plug-in technology. (MIME types have been used since the beginning of the Web

to describe fi le formats to web servers.) Instead of going with this standards-based

approach, Microsoft created the proprietary property, classid, to identify what

Active-X control to use when displaying the plug-in content.

Hopefully the day when Internet Explorer deprecates classid while supporting

the type property will come soon. While the support for the object tag is not as

good as the embed tag, it does support alternative content. Assuming the object

tag is used for inserting Flash, the content placed between the opening and closing

object tags is not rendered when browsers support Flash. When there is no support

available for Flash, the content appears. This content can contain a description of

the Flash movie and a picture serving as a preview. This content is, however, visible

to web crawlers and search engines.

Flash Player Version Detection
The Flash Player is updated with major releases every 12–18 months. When a new

release comes out, it takes less than a year for that version to be on the majority of

computers connected to the Internet. While Adobe improves the update process

with each new release, there is still the need to detect the player version when

serving content that relies upon the latest Flash Player release. For example, after

the release of Flash Player 8, player detection was crucial when serving Flash Video

that used the On2 VP6 codec as it is only available in Flash Player 8 and above.

Player detection is implemented by including JavaScript code that can detect the

version of the Flash Player installed on the viewer’s computer and comparing it to

a variable indicating the player version required to view the content. When the

The EOLAS Patent and Active Content 163

installed version is equal to or greater than the required version, everything works.

When the installed version is less than the required version, viewers see a message

communicating that they need to upgrade their player. For users using Microsoft

Internet Explorer on Windows, there is Express Install, an Active-X script that does

a seamless install for the Flash Player.

The EOLAS Patent and Active Content
This patent lawsuit caused Microsoft to alter the way active content (Active-X

controls and plug-ins) are experienced. To comply with the lawsuit, Microsoft

had to add a click-to-activate feature inside Internet Explorer. This speedbump, or

pane of glass, interrupts and complicates the Web experience for all viewers. To

circumvent the click-to-activate feature, web developers can insert the object and

embed tags dynamically using JavaScript. While this takes a bit more programming

effort, it is far better to do than to force users to have to click a few more times to

view content.

Figure 8.3: What happens when active content is not inserted dynamically.

Tutorial: Using SWFObject
The following tutorial covers inserting Flash content using the JavaScript library:

SWFObject. Back in Chapter 5, we published the custom video player using

the Flash Detection Kit, which is a part of Flash CS3. This tutorial will walk you

through using markup that is unobtrusive, preserves validation, and provides alter-

native content. For it we’ll use the custom player created in Chapter 5.

SWFObject is a JavaScript library created by Geoff Stearns. To use it, you down-

load the library from http://blog.deconcept.com/swfobject/, include it with your

164 Chapter 8: Enhancing Flash Deployment

web site, reference it in the page containing Flash content, and write a few lines of

JavaScript and HTML.

ADDITIONAL LIBRARIES
Besides SWFObject, there are other libraries
one can use for inserting Flash dynamically.
All these libraries help skirt the EOLAS issue,
can be applied using unobtrusive script-
ing, and can be used to replace alternative
content. Choosing one is akin to choosing a
wine: it partly depends upon your prefer-
ences and the entree (or project) you’re
about to have.

Here are a few other libraries you can
consider:

UFO.js, or Unobtrusive Flash Object, was
written by Bobby van der Sluis. It’s similiar
to SWFObject in practice and adoption.

http://www.bobbyvandersluis.com/ufo/

fl ash.jquery.js was written by web develop-
er and designer Luke Lutman. It’s a plug-in
for the popular Ajax framework, jQuery. If

you plan to work with Ajax, XML, or dy-
namic HTML, I recommend it. It’s frequently
updated, so check it out for revisions.

http://jquery.lukelutman.com/plugins/
fl ash/

Adobe’s Flash Detection Kit is good for
those who don’t want to write a lot of
JavaScript and HTML code and are not
concerned with validation and standards
compliance. It’s built into Flash Professional
CS3.

The SWFFix library, which is a collaboration
between Geoff Stearns and Bobby van der
Sluis to offer a best-in-class approach to
inserting Flash content. It’s still in develop-
ment, but might be available by the time
you read this book.

http://www.swffi x.org

Figure 8.4: Download SWFObject from Geoff Stearns’ blog, blog.deconcept.com.

Navigate to the 1. Tutorials > Chapter 8 folder. Copy the SWFObject Embed folder

to your computer.

Using the HTML editor of your choice, open 2. index.html.

Tutorial: Using SWFObject 165

Insert a new line after line 7 and enter the following script tag:3.

<script src=”js/swfobject.js” type=”text/javascript”></script>

This tag references the SWFObject JavaScript library. By including it in the page,

the page can access all the functionality defi ned within the library.

After the opening 4. <body> tag, insert:

<div id=”flashcontent”>

</div>

This <div> tag will contain the Flash movie as well as the alternative content. The

id (identifi er) attribute is a hook for the SWFObject script to replace the content

inside it with the Flash movie we will soon specify. For now, we’ll use an identifi er

of flashcontent.

Let’s now place the alternative content inside this <5. div> tag. Place the cursor

inside the <div> tag, and enter the following lines of code:

<p><img src=”assets/alternative_content.jpg” width=”480” height=”268”

alt=”video still from one interview”></p>

 <h2>The video is a short clip from several filmmaker interviews.</h2>

 <p>In order to view it, you need to enable JavaScript and install or

upgrade <a href=”http://www.adobe.com/go/getflashplayer” title=”Get Adobe

Flash Player”>to a newer version of the Adobe Flash Player.</p>

 <p>

 <img src=”http://www.adobe.com/images/shared/download_buttons/

get_flash_player.gif” title=”Get Adobe Flash Player” />

 </p>

The fi rst paragraph tag contains a graphic showing a still from the video and

includes a message stating that the video cannot be played. It instructs the user to

download the latest version of Flash Player and to enable JavaScript. The text that

follows essentially says the same and the code ends with Adobe’s Get Flash Player

button. With JavaScript off or when an obsolete browser is installed, the page will

appear like the following screenshot.

166 Chapter 8: Enhancing Flash Deployment

Figure 8.5: How the page appears when the browser cannot display the Flash content.

Now let’s insert the JavaScript to insert the movie. Place the cursor after the closing 6.

<div> tag (probably at the end of line 20 if all is going to plan) and insert:

 <script type=”text/javascript”>

 // <![CDATA[

 //]]>

 </script>

This script block will contain the JavaScript code for inserting the Flash content.

The two forward slashes are single-line JavaScript comments. They prevent the

JavaScript engine inside the web browser from interpreting the code on that line.

The brackets and CDATA statement instructs any HTML page validator to ignore

the content inside the statement and helps with validating the page against a par-

ticular document type. So this double-comment technique is a good snippet to use

whenever you’re writing JavaScript code inside the page.

Ideally most code should be written in an external fi le and referenced for clear separation of
structure and behavior. Since this is a small tutorial, however, it’s perfectly okay to mix them
up a little.

The code to insert the Flash video is quite simple, if not a little terse. Inside the 7.

CDATA block, enter:

Ensuring Your Web Site Can Serve Flash Video 167

var so = new SWFObject(“assets/customplayer.swf”, “flvplayer”, “480”,

“406”, “9”, “#FFFFFF”);

so.addParam(“allowFullScreen”, “true”);

so.write(“flashcontent”);

The fi rst line creates a new SWFObject named so. When it creates the object, it

specifi es the location for the Flash content it will use as well as its identifi er, width,

height, required Flash Player version, and background color. The second line adds

an additional parameter for allowing full-screen mode to work. The last line calls

the write method, which does the hard work of taking all the attributes we just

passed to it and dynamically writing this content to the web page when it loads

inside a capable web browser.

Figure 8.6: The page displays properly when JavaScript is enabled inside a capable browser.

On the DVD-ROM are examples of inserting Flash Video using the UFO.js and the
fl ash.jquery.js JavaScript libraries. Look in > Additional Content > Inserting Flash.

Ensuring Your Web Site Can Serve Flash Video
In the case your hosting provider or internal IT-supported web server hasn’t reg-

istered the Flash Video fi le format with its servers, you won’t be able to serve the

fi les. Flash Video, like JPEG, GIF, or SWF fi les, are complex fi le formats (anything

168 Chapter 8: Enhancing Flash Deployment

beyond simplifi ed text) and web servers need to be instructed on how to serve

them. That’s where MIME types (Multipurpose Internet Mail Extensions) come in.

A mail client, web server, or web browser uses MIME types to correctly interpret

complex fi le formats. The MIME type for Flash Video is video/x-fl v.

If you’re running Microsoft Windows 2003 and IIS Server 6.0 and cannot see Flash Video
correctly, check out: http://www.adobe.com/go/tn_19439.

Wrapping Up
This chapter covered the issues you’ll encounter when integrating Flash Video in

a web page. By following open standards, offering alternative content, and using

unobtrusive insertion techniques, you ensure that your content is future proof, bet-

ter optimized for search engines, and more accessible.

CHAPTER 9

More Flash
Video Applications

The tutorials presented in this chapter will improve

your ActionScript skills and take your Flash Video

skills to a new level. You’ll be ready to create a

variety of custom Flash Video applications by using

one or more of the concepts covered.

Displaying Closed Captions 2 .. 170

Displaying Cue Points 2 ... 180

Creating Video Playlists 2 ...183

The External API 2 ... 195

Wrapping Up 2 ..207

170 Chapter 9: More Flash Video Applications

Displaying Closed Captions
A lot of audio and video content on the Web today is distributed using the Flash

platform. To make this content more accessible, closed captions (CC) should be

used whenever the audio portion of the content contains essential information.

With Flash CS3, it’s much easier to produce video that is more accessible to the

hearing impaired with the FLVPlayback Captioning component.

WHAT IS ACCESSIBILITY?
As you produce and distribute content for the Web, you should consider how you can
make your content more accessible to those with disabilities. Closed captioning is just one
way video content can become more accessible. Other ways include: keyboard navigation,
context menus, or high-contrast modes.

To learn more about accessibility best practices, visit Adobe’s Developer Center at:
http://www.adobe.com/accessibility/.

The FLVPlayback Captioning Component

The FLVPlayback Captioning component displays closed captions in the Timed Text

(TT) XML fi le format for video played back with the FLVPlayback component. The

component works by dynamically creating ActionScript cue points for each caption.

Through ActionScript, the component can manage closed captions for more than

one video fi le and the display of the captions can be toggled on or off.

These cue points are prefi xed with “_caption_” to prevent any confl icts. When you add cue
points as part of the encoding process, it’s advised to not use this prefi x.

Tutorial: Adding Captions to Flash Video

In this tutorial, we’ll quickly add captions to video using the FLVPlayback and

FLVPlayback Captioning components and the Property panel. By the end of it, you

should have something that looks like the following movie.

Figure 9.1: Flash Video with closed captions.

Displaying Closed Captions 171

Navigate to the 1. Tutorials > Chapter 9 folder. Copy the Closed Captions folder to

your computer. Open the folder and double-click captions.fl a.

Once the fi le opens in Flash CS3, open the 2. Components panel by pressing F7

(Windows) or Command+F7 (Mac OS). Open the Video category and drag a FLV-

Playback component to the Stage.

Figure 9.2: The playback and captioning components.

If the 3. Properties Inspector is not open, press F3 (Windows) or Command+F3

(Mac OS). Select the playback component and enter vidPlayback for its in-

stance name.

Figure 9.3: Setting the instance name for the FLVPlayback component.

Click the 4. Parameters tab in the Properties Inspector and double-click the skin at-

tribute. In the Select Skin window, choose SkinUnderPlayStopSeekMuteVol.swf.

Figure 9.4: The Select Skin dialog.

In the 5. Parameters tab scroll the properties list until the source attribute is in view

and double-click it. In the Content Path dialog, click the Folder icon and select eric.

fl v in the Chapter 9 folder. Once the FLV fi le appears in the dialog, select Match

source FLV dimensions and click OK.

172 Chapter 9: More Flash Video Applications

C

A

B

Figure 9.5: Click the magnify icon in the source fi eld (A). Click the Folder icon to pick the
fi le (B). Check Match source FLV dimensions (C).

Set the 6. X and Y coordinates for vidPlayback to 0, 0 in the Properties panel.

From the 7. Components panel, drag a FLVPlaybackCaptioning component to a

location just off the Stage so it does not obscure the video during authoring time.

Using the Properties panel, give this instance a name of myCaptioning.

Select the captioning component, and open the 8. Parameters tab. Set autoLayout to

false, the fl vPlaybackName to vidPlayback, showCaptions to true, and the source

to captions.xml. Press Control+Return (Windows) or Command+Return (MacOS)

to preview the movie.

Flash CS3 Support for Timed Text

The last tutorial gave a quick introduction into using the captioning component,

but you probably noticed that the text was not styled. Beyond supporting timed

locations for captions, the captioning component’s support for the Timed Text

format includes attributes for:

Character formatting 1

Size with absolute sizes (in pixels) or with delta values (+2 or –2) 3

Color 3

Font 3

Normal, bold, or italic 3

Justifi cation 3

Paragraph formatting 1

Alignment: center, left, or right 3

Background formatting 1

Background color, or removing the background color entirely 3

Turning word wrap on or off 3

Displaying Closed Captions 173

How Timed Text Files Are Structured

A TT fi le intended for distribution with a captioned Flash Video fi le should include

a document declaration, a head section, and a body. The document declaration

section simply states the fi le is an XML fi le and follows the Timed Text standard.

You should never need to edit the declaration. The head includes optional styl-

ing information inside <styling> and <style> tags. If you decide to keep the

styling inside the TT fi le, you will edit the contents of this area a lot and you should

learn about style tags and inheritance. The body section includes languages inside

<div> tags and each language includes one or more captions inside separate

paragraph or <p> tags. If you prepare or style the captions, you will fi nd yourself

working frequently with this section of a TT document too.

To learn more about the Timed Text format, go to http://www.w3.org/AudioVideo/TT/ and
http://www.w3.org/TR/ttaf1-dfxp/.

Tutorial: Setting Timed Text Styling Options

In this next tutorial, we’ll tour a Timed Text fi le and then create and apply styles to

the captions. For this tutorial, you will need a text editor. On the PC, I’d recom-

mend using Dreamweaver or NotePad. On the Mac you could use Dreamweaver,

TextMate, BBEdit, or TextEdit. If an editor you like is not listed, feel free to use that

if it can edit plain text fi les.

Figure 9.6: Captions that have been styled.

Navigate to the 1. Tutorials > Chapter 9 folder. Copy the Caption Styling 1 folder to

your computer. Open the folder and open captions.xml in the text editing applica-

tion of your choice.

Beginning at line 4, you’ll see the 2. <styling> tag. It contains individual <style>

tags that defi ne the available caption styling. In this document, there is currently

one style, with an id (think identifi cation or name) of 1. It specifi es that any cap-

tion that references it will be centered and have a font size of 18 pixels.

174 Chapter 9: More Flash Video Applications

<styling>

 <style id="1" tts:textAlign="center" tts:fontSize="18"/>

</styling>

And if you look at line 9, the 3. <div> tag contains an attribute-value pair of

xml:lang="en". This means the following captions enclosed within the <div>

and </div> tags are in English. Additional languages are added by appending a

new <div> block with a different language. You can learn the language abbrevia-

tions in the cheat sheet on the DVD.

<div xml:lang="en">

Look at the fi rst paragraph tag on line 10. It has attributes for the caption’s begin-4.

ning, its duration, and the style it’s using. Between the opening and closing para-

graph tags is the text used for the caption. The begin attribute is in the form of

hours:minutes:seconds:frames where frames is measured in hundreds of a second.

The dur attribute sets the caption’s duration. The style attribute references a

<style> tag from the head of the document.

<p begin="00:00:00.00" dur="1400ms" style="1">

 The one thing I would recommend to

</p>

Now that we’ve looked at the basic structure of a Timed Text fi le, let’s get down to 5.

styling. Enter (replacing the existing <style> tag) in the following lines of code

between the <styling> tag that begins on line 4.

<styling>

 <style id="base" tts:fontFamily="Arial" tts:fontSize="14"/>

 <style id="left" style="base" tts:textAlign="left"/>

 <style id="center" style="base" tts:textAlign="center"/>

 <style id="right" style="base" tts:textAlign="right"/>

 <style id="bold" tts:fontWeight="bold"/>

 <style id="italic" tts:fontStyle="italic"/>

 <style id="red" tts:color="#ff0000"/>

 <style id="orange" tts:color="#ff9900"/>

 <style id="yellow" tts:color="#ffee00"/>

</styling>

These nine <style> tags are a basic set one could use for most captioning situa-

tions. The set includes a base style that sets the primary font and size, three styles

for alignment, two styles for emphasizing text with bold or italic text, and three

color styles. The Timed Text format includes a few conveniences for marking up

captions effi ciently. If you look at the alignment styles, you’ll notice that they

Displaying Closed Captions 175

reference the base style. While captions styled with each would appear to be left,

centered, or right aligned, they would all share the same font and size.

To make this point clear, let’s apply these styles to the paragraphs below. For the 6.

fi rst caption beginning at 00:00:00.0, type style="left" as the last attribute in

the opening paragraph tag. In the next caption, type style="right" as the last

attribute in the opening tag. You should now have something like:

<p begin="00:00:00.00" dur="1400ms" style="left">

 The one thing I would recommend to

</p>

<p begin="00:00:01.50" dur="1400ms" style="right">

 all filmmakers, short filmmakers,

</p>

To preview the changes made to the captions fi le, save the captions fi le. In the 7.

Captions Styling 1 folder, open captions.fl a. Test the movie to see the changes.

Double-click that fi le to open it in a Web browser. Notice how the captions shift

from the left to the right and they both have inherited the font and size informa-

tion from the base style.

Now we’re going to format spans of caption text. This is helpful to do when you 8.

want to emphasize a couple of words in a sentence. Inside the fi rst paragraph

node, place an opening and closing tag around one thing as follows:

The one thing I’d recommend to

The style attributes contain two values, bold and red, which set the text inside the

span to be bold and red. A space between them is all that is needed to indicate

that this text span should use both styles—commas are not needed.

In the 9. Captions Styling 1 folder, open captions.fl a. Test the movie.

176 Chapter 9: More Flash Video Applications

Code: Complete listing for captions.xml

<?xml version=”1.0” encoding=”UTF-8”?>

<tt xml:lang=”en” xmlns=”http://www.w3.org/2006/04/ttaf1” xmlns:tts=”http://www.w3.org/2006/04/

ttaf1#styling”>

<head>

 <styling>

 <style id=”base” tts:fontFamily=”Arial” tts:fontSize=”18”/>

 <style id=”left” style=”base” tts:textAlign=”left”/>

 <style id=”center” style=”base” tts:textAlign=”center”/>

 <style id=”right” style=”base” tts:textAlign=”right”/>

 <style id=”bold” tts:fontWeight=”bold”/>

 <style id=”italic” tts:fontStyle=”italic”/>

 <style id=”red” tts:color=”#ff0000”/>

 <style id=”orange” tts:color=”#ff9900”/>

 <style id=”yellow” tts:color=”#ffee00”/>

 </styling>

</head>

<body>

 <div xml:lang=”en”>

 <p begin=”00:00:00.00” dur=”1400ms” style=”center”>

 The one thing I would recommend to

 </p>

 <p begin=”00:00:01.50” dur=”1400ms” style=”center”>

 all filmmakers, short filmmakers,

 </p>

 <p begin=”00:00:03.00” dur=”1900ms” style=”center”>

 or people starting out as filmmakers,

 </p>

 <p begin=”00:00:05.00” dur=”2000ms” style=”center”>

 is to go to film festivals.

 </p>

 <p begin=”00:00:07.40” dur=”1900ms” style=”center”>

 Film festivals are the only place

 </p>

 <p begin=”00:00:09.40” dur=”1000ms” style=”center”>

 to see the work of your peers,

 </p>

 <p begin=”00:00:10.50” dur=”1900ms” style=”center”>

 people just like you,

 </p>

 <p begin=”00:00:12.50” dur=”1800ms” style=”center”>

 who want to break into filmmaking,

 </p>

 <p begin=”00:00:14.30” dur=”2000ms” style=”center”>

 that have a story they want to tell,

 </p>

 <p begin=”00:00:16.50” dur=”2400ms” style=”center”>

 or want to learn how to make films.

 </p>

 <p begin=”00:00:19.00” dur=”2800ms” style=”center”>

 Go there and see what other people are doing.

 </p>

Displaying Closed Captions 177

 <p begin=”00:00:22.00” dur=”1900ms” style=”center”>

 You see the really great things they did,

 </p>

 <p begin=”00:00:24.00” dur=”1900ms” style=”center”>

 and you see the really bad things that they did,

 </p>

 <p begin=”00:00:26.10” dur=”1200ms” style=”center”>

 so you know what to avoid.

 </p>

 <p begin=”00:00:27.50” dur=”2000ms” style=”center”>

 Plus, you get to hear other people’s war stories,

 </p>

 <p begin=”00:00:30.00” dur=”1700ms” style=”center”>

 things that they’ve already figured out.

 </p>

 <p begin=”00:00:31.80” dur=”2500ms” style=”center”>

 There are tens of thousands of people,

 </p>

 <p begin=”00:00:34.30” dur=”2500ms” style=”center”>

 probably hundreds of thousands of people,

 </p>

 <p begin=”00:00:37.00” dur=”2000ms” style=”center”>

 in this country that are out making

 </p>

 <p begin=”00:00:39.00” dur=”1500ms” style=”center”>

 short films every single day

 </p>

 <p begin=”00:00:41.60” dur=”1500ms” style=”center”>

 trying to tell stories visually.

 </p>

 <p begin=”00:00:44.00” dur=”1900ms” style=”center”>

 Be a part of that big community,

 </p>

 <p begin=”00:00:46.00” dur=”2000ms” style=”center”>

 join organizations, there’s always

 </p>

 <p begin=”00:00:48.20” dur=”1800ms” style=”center”>

 filmmaking organizations in your

 </p>

 <p begin=”00:00:50.30” dur=”2000ms” style=”center”>

 area through colleges, arts

 </p>

 <p begin=”00:00:52.50” dur=”2000ms” style=”center”>

 organizations, places like that.

 </p>

 </div>

</body>

</tt>

178 Chapter 9: More Flash Video Applications

Targeting Dynamic Text Fields for Use with Captions

For the times when you’d like to use a custom font, you can link the captioning

component to a dynamic text fi eld above the movie. The advantages to this are

that you can position the captions somewhere else on the stage and you can apply

a drop shadow fi lter.

Tutorial: Using a Dynamic Text Field for Captions

In this last tutorial on closed captioning, we’ll link the captions to a custom-posi-

tioned dynamic text fi eld that has a drop shadow fi lter applied to it.

Figure 9.7: Assigning captions to dynamic text with a fi lter applied.

Navigate to the 1. Tutorials > Chapter 9 folder. Copy the Caption Styling 2 folder to

your computer. Open the folder and open captions_styling2.fl a.

From the 2. Tool palette, select the Text Tool, , and draw a text box at the top of

the stage.

With the text box still selected, go to the 3. Property Inspector and change the text

type to Dynamic Text, name the instance, captionsText, and set the width, height,

x and y positions to the values shown in the following screenshot.

Displaying Closed Captions 179

Figure 9.8: Position the text fi eld at the top of the stage.

Now click the Filters tab and click the Plus button, 4. , to add the Drop Shadow

fi lter. Set the fi lter’s parameters to the values shown in the following fi gure.

Figure 9.9: Set the text fi eld’s Drop Shadow options.

Select the captioning component, and select the 5. Parameters tab. Set the caption-

TargetName attribute to captionsText. Save and preview the movie.

WHAT ABOUT OTHER FONTS?
In the cases where you want something
other than a default system font, you can
set the captioning component’s simpleFor-
matting property to true, and use a text
fi eld with the desired font, color, and size.
Be sure to embed the fonts by clicking the
Embed button in the Property Inspector
and selecting Uppercase, Lowercase, Nu-
merals, and Punctuation.

Note that if the captioning component’s
simpleFormatting property is set to true,

the following attributes are ignored in the
Timed Text fi le: backgroundColor, color,
fontSize, fontFamily, and wrapOption. The
following properties, however, are still used:
fontStyle, fontWeight, and textAlign. This
can work to your advantage because color
and font size are not meant to convey
emphasis, but font style, weight, and align-
ment are used to stress words or suggest
character changes through alignment. If
you go the custom route, these more im-
portant style settings will still work without
cramping your style.

180 Chapter 9: More Flash Video Applications

Displaying Cue Points
It’s often recommended to set navigational cue points in long-form material

because it helps the viewer quickly skip over previously watched material. It’s also

helpful to show cue points as they occur so the viewer knows she has reached that

section in the material.

Tutorial: Displaying Cue Points over Video

In this tutorial we’ll take an ordinary video with embedded cue points and add a

movie clip and ActionScript to display the names of each cue point as they occur.

In order to display the names of each cue point, we need to listen for them. This

is accomplished by writing an event listener that dutifully listens for cue points to

occur and triggers a function each time one is found. The function does the work

of displaying the cue point.

The footage contains snippets of a capsule recovery mission from the Gemini space

program. My father was stationed on one of the carriers doing the recovery work

and I had his 8mm fi lm telecined to 24 fps standard-defi nition digital video. In the

encoding process, I added several chapter points.

Figure 9.10: Displaying navigational cue points.

For a refresher on how to set cue points and name them, review Chapter 4.

Navigate to the 1. Tutorials > Chapter 9 folder. Copy the CuePoint Overlay folder to

your computer. Open the folder and open cuepoints.fl a. Preview the movie and

watch it. The stage contains an instance of the FLVPlayback component named

myVideo.

If it is not already shown, open the Library panel by pressing 2. Ctrl+L (Windows)

or Command+L (MacOS). Drag the cuePointRect movie clip to the stage. This

Displaying Cue Points 181

will create an instance of the movie clip on the stage. The cuePointRect movieclip

contains a black rectangle and a dynamic text fi eld named cpText.

Position it above the video playback controls and name it 3. cpOverlay. By giving

it a name, we will be able to access and manipulate it from ActionScript. Use the

Property Inspector to adjust its properties shown in the following screenshot.

Figure 9.11: Name the instance cpOverlay.

With everything in place, it’s time to write the ActionScript. In the 4. Timeline, select

Keyframe 1 in the Actions layer, and open the Actions panel by pressing F9 (Win-

dows) or Option+F9 (Mac).

Figure 9.12: Lock the Actions layer to prevent objects from being placed on it.

Let’s fi rst set the 5. cpOverlay instance to be fully transparent by default. To do

that enter the following comment and line of code:

cpOverlay.alpha = 0;

We can set the alpha property since cpOverlay is a movie clip and inherits all the

properties of the MovieClip class, including alpha transparency.

Write the event listener that will respond each time a cue point occurs:6.

myVideo.addEventListener("cuePoint", displayCuePoints);

myVideo is the playback component on the stage. We add an event to it by call-

ing the addEventListener method and instructing this method to listen for cue

point events and to run the displayCuePoints function when one occurs.

Now we will write the 7. displayCuePoints function.

182 Chapter 9: More Flash Video Applications

function displayCuePoints(videoObject:Object):void {

 cpOverlay.alpha = .72;

 cpOverlay.cpText.text = videoObject.info.name;

 var overlayTimer:Timer = new Timer(41, 36);

 overlayTimer.start();

 overlayTimer.addEventListener(TimerEvent.TIMER, fadeOverlay);

}

In the function declaration we’re passing in an object, videoObject:Object.

This object is the cue point that just occurred. It is passed to the displayCue-

Points function so its metadata will be accessible inside the function.

The fi rst line within the function sets the cpOverlay movie clip to .72 opacity.

This has the effect of turning the movie clip’s visibility back on when a cue point

occurs. The second line says, “In the movie clip cpOverlay, set the text property

of the dynamic text fi eld cpText to the name property of the cue point that just

occurred.” Cue point names are stored in the FLV fi le’s metadata and are accessed

using dot notation. The third line creates a new timer named overlayTimer and

tells it to have a countdown of 41 milliseconds (or roughly 1/24 of a second) and

to repeat 36 times. The fourth line starts the timer. This roughly equates to one

and a half seconds of 24 frames per second video, which is the frame rate of the

encoded video. The fi fth line has another event listener, but this time it is listening

for each time the overlayTimer resets and it calls the fadeOverlay function each

time this event occurs.

THE NEW TIMER CLASS
Prior to ActionScript 3, creating a timer
involved using the setInterval() or
setTimeout() methods. ActionScript 3
introduces the Timer class (fl ash.utils.Timer),
which is more object oriented and cleaner

to access than the older methods. Because
of its several advantages, Adobe also sug-
gests using the Timer class as a best practice
when creating countdown or other timer-
based functionality.

It’s time for the last function. Write the function that fades the cue point text.8.

function fadeOverlay(event:TimerEvent) {

 cpOverlay.alpha = cpOverlay.alpha - .02 ;

}

This function reduces the opacity of cpOverlay by subtracting two-hundreths of

a percent each time it is run. Since this function is run 36 times, the opacity level

will be reduced by 0.72 after the overlayTimer fi nishes. This will make the cue

point text disappear once again.

Save and test the movie.9.

Creating Video Playlists 183

Code: Complete listing for cuepoints.fl a

cpOverlay.alpha = 0;

myVideo.addEventListener(“cuePoint”, displayCuePoints);

function displayCuePoints(videoObject:Object):void {

 cpOverlay.alpha = .72;

 cpOverlay.cpText.text = videoObject.info.name;

 var overlayTimer:Timer = new Timer(41, 36);

 overlayTimer.start();

 overlayTimer.addEventListener(TimerEvent.TIMER, fadeOverlay);

}

function fadeOverlay(event:TimerEvent) {

 cpOverlay.alpha = cpOverlay.alpha - .02 ;

}

Creating Video Playlists
A common-use case is to have one video player play back several videos. A single

video player has several advantages: only one page URL for viewers to remember,

similarly you create one page rather than several, and adding another video can be

as easy as updating an XML playlist fi le and uploading new video without having

to republish the SWF fi le.

In the next two tutorials, we’ll cover playing back multiple fi les through an array

and through an XML fi le. Both implementations can present similar user experi-

ences, but they differ, however, in maintenance. An array-based video player

involves republishing when new movies are added and redeploying the SWF along

with the new videos. An XML-based video player is simpler to maintain because

anyone with a text editor and fi le transfer (FTP) application can add new videos

because XML fi les are relatively easy to edit. So, in general, if routine maintenance

is a concern, use XML. If the project will never be updated, use an array.

Arrays

You can think of an array as a container or a list. Contained within the array are

elements. For example, all elements within an array are URLs to video fi les. Arrays

behave like a list. You add items, you remove items, you sort items, and so on.

Tutorial: Playback Several Videos Sequentially with an Array

In this example, the array will be a playlist and its elements will be URLs to differ-

ent Flash videos. The compiled SWF will begin playback immediately and se-

quentially play the videos from the array. Since this use case as is does not require

anything fancy, we’ll simply use a video object. This will keep our fi le size down. In

the XML player tutorial we’ll use the FLVPlayback and user interface components

to make a player with playback controls and a select list to choose the video.

184 Chapter 9: More Flash Video Applications

Figure 9.13: The array-based player plays back several effects sample movies.

The code in this tutorial will: create the array, add elements to the array, feed ele-

ments from the array to a dynamically created video player, listen for the end of a

video, and then play the next video. After the last video plays, it will loop back to

the fi rst video in the array.

Navigate to the 1. Tutorials > Chapter 9 folder. Copy the Array Playlist folder to your

computer. Open the folder and open array_playlist.fl a.

In the 2. Timeline, Select frame 1 in the Actions layer, and open the Actions panel by

pressing F9 (Windows) or Option+F9 (Mac).

 Let’s begin by creating the array that will act as the video playlist. On line 3, enter:3.

var vidList:Array = new Array();

var vidInt:uint = 0;

The fi rst line creates a new array named vidList. This array will contain the four

videos used in this example. The second line creates a number (or a non-negative

integer to be more precise) called vidInt. It’s going to keep track of which video

is currently playing and we set it initially to zero since the fi rst element in an array

has an index value of zero.

Now we can add some items to the array. While we could add all the video loca-4.

tions when constructing the array, that isn’t too readable when potentially long

strings are involved. For this reason, I’m going to use the push() method of the

Array class to add the videos to the array. Press return to create a blank line after

the last two lines of code and add this:

vidList.push("video/poof.flv");

vidList.push("video/bubbles.flv");

vidList.push("video/random.flv");

vidList.push("video/smoke.flv");

Creating Video Playlists 185

These four lines add the four video locations as elements to the vidList array.

Each item that is pushed onto the array is appended at the end.

Since we’re using the basic video object, we need to wire it up to the 5. NetCon-

nection and NetStream classes so the movie can display streaming content.

Enter the following four lines of code:

var nc:NetConnection = new NetConnection();

nc.connect(null);

var ns:NetStream = new NetStream(nc);

ns.play(vidList[0]);

The fi rst line creates a new NetConnection object. It’s customary to simply call

this object nc. The second line instructs the Flash Player that the movie is not con-

necting to a streaming server such as Adobe Flash Media Server.

The next thing to create is a new video object (which is new as of ActionScript 3) 6.

and attach the NetStream ns object to it and attach it to the current timeline’s

display list. Add a carriage return and then type:

var vid:Video = new Video(320, 240);

vid.attachNetStream(ns);

this.addChild(vid);

When creating a new video object, the width and height are optional parameters.

The x and y position will default to 0, but you could specify a new position by

setting vid.x and vid.y properties. The Video class’s attachNetStream()

method is used to associate ns to vid. This portion of code ends with adding the

vid video object to the stage using the addChild() method.

This large block of code checks for the end of each video and plays the next video 7.

from the vidList array. Add a carriage return and then type:

The fi rst of two event listeners is added directly to the ns object.

ns.addEventListener(NetStatusEvent.NET_STATUS, onNetStatus);

function onNetStatus(event:NetStatusEvent) {

 switch (event.info.code) {

 case "NetStream.Play.Stop" :

 if (vidInt < (vidList.length - 1)) {

 vidInt += 1;

 ns.play(vidList[vidInt]);

 } else {

 ns.play(vidList[0]);

 vidInt = 0;

 }

 break;

 }

}

186 Chapter 9: More Flash Video Applications

Since we cannot explicitly listen for discreet NetStatus events, we use a switch

statement to run code if the ns object returns NetStream.Play.Stop. When

this is returned, it’s safe to assume that the playhead has stopped and a video has

completely played back. It is safe to assume this because no controls have been

added that would stop playback. Once this code is returned, a switch statement

checks to see what element from the array is playing. When the current element is

not the last one, the code plays the video for the next element. When the last ele-

ment from the array is being played, it loops back to the fi rst element.

This last code snippet is a bit of overhead due to changes in ActionScript 3. With 8.

ActionScript 3, the NetStream class requires a callback function for the onMeta-

Data event or a few errors will be thrown. The way to address this is to create a

generic object that will act as a client for the NetStream object. Add a carriage

return and then type:

var nsClient:Object = new Object();

nsClient.onMetaData = function(info:Object) {

 trace(info.duration);

};

ns.client = nsClient;

A generic object, nsClient, is created and then a function is created when this

object returns metadata. For simplicity’s sake we trace the duration. The trace

method is not necessary, but listening for meta data is. If there isn’t code present

to respond to the onMetaData event, the Flash Player will throw errors if it does

come across meta data and there is no function to respond to it.

Choose 9. File > Save. Choose Control > Test Movie to preview the movie.

Creating Video Playlists 187

Code: Complete listing for array_playlist.fl a

// ActionScript goes below

var vidList:Array = new Array();

var vidInt:uint = 0;

vidList.push(“video/poof.flv”);

vidList.push(“video/bubbles.flv”);

vidList.push(“video/random.flv”);

vidList.push(“video/smoke.flv”);

var nc:NetConnection = new NetConnection();

nc.connect(null);

var ns:NetStream = new NetStream(nc);

ns.play(vidList[0]);

var vid:Video = new Video(320, 240);

vid.attachNetStream(ns);

this.addChild(vid);

ns.addEventListener(NetStatusEvent.NET_STATUS, onNetStatus);

function onNetStatus(event:NetStatusEvent) {

 switch (event.info.code) {

 case “NetStream.Play.Stop” :

 if (vidInt < (vidList.length - 1)) {

 vidInt += 1;

 ns.play(vidList[vidInt]);

 } else {

 ns.play(vidList[0]);

 vidInt = 0;

 }

 break;

 }

}

var nsClient:Object = new Object();

nsClient.onMetaData = function(info:Object) {

};

ns.client = nsClient;

XML

Extensible Markup Language (XML) is a simple and very open tag-based language

for storing structured data. If you’ve ever written HTML by hand, you’re 95%

of the way there. Like HTML, XML has opening and closing tags like <cap-

tion> and </caption>, attributes inside of tags like <caption time="100"

type="dialog">, and text content inside of tags like <caption>Hello

World</caption>. An XML Document Type Defi nition (DTD) can be defi ned

for almost any kind of data.

For our purposes, we will want to create an XML fi le that defi nes a list of videos to

playback in succession. To create this using ActionScript, we use the URLLoader

class and the new XML class to load an external XML fi le, parse it into recognizable

chunks, and use those chunks to populate a list for selecting which video to play.

188 Chapter 9: More Flash Video Applications

XML IN ACTIONSCRIPT 3 AND 2
With ActionScript 3, the Flash Player has a
more powerful and easier way to work with
XML data. The new XML class follows the
ECMAScript for XML (EX4) specifi cation.
(ECMAScript is the standard upon which
JavaScript is based.) By implementing EX4,
the Flash Player makes XML a fi rst-class
data type that can be directly and natively
accessed and manipulated.

For example, in ActionScript 2, you would
often have to loop through child nodes to

access data. With EX4, you can use dot no-
tation to access data in a more specifi c and
targeted way. To learn more about EX4, you
can read the ECMAScript for XML (E4X)
Specifi cation on the Ecma web site:

http://www.ecma-international.org/
publications/standards/Ecma-357.htm

By the way, the old XML class from
ActionScript 2 is still around and has been
renamed the XMLDocument class for up-
dating legacy code to work in ActionScript
3 projects.

Tutorial: Create a Video Playlist with XML

In this tutorial, the XML fi le will be the playlist and its nodes will be unique videos

with attributes for the Flash Video document’s URL, label, and description. The

code will: load the XML, bind the XML’s data to a UI component, and have the UI

component interact with video and a text fi eld through event listeners.

Figure 9.14: An XML-based video player.

Navigate to the 1. Tutorials > Chapter 9 folder. Copy the XML Playlist folder to your

computer. Open the folder and open videos.xml in the text editing application of

your choice. Below are the contents of this fi le:

Creating Video Playlists 189

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<videos>

 <video url=”video/filmmakers.flv” title=”Filmmakers Trailer” description=”A trailer of interviews

with several filmmakers” />

 <video url=”video/bonjour.flv” title=”Jean-Paul Bonjour” description=”Jean-Paul Bonjour discusses

what he’s learned from working with 24p and how it has influenced how he produces his and friend’s

films.”/>

 <video url=”video/escobar.flv” title=”Eric Escobar” description=”Eric Escobar, a 24p filmmaker who

has been accepted at Sundance twice, gives advice on becoming a filmmaker and what makes a good short

film.” />

 <video url=”video/lucero.flv” title=”Anthony Lucero” description=”Anthony Lucero is an effects edi-

tor in the Bay Area who has edited visual effects shots for filmmakers such as George Lucas, Tim Bur-

ton, and Robert Rodriguez. He also also written, directed, or edited short films using several profes-

sional HD formats.” />

 <video url=”video/24p_standard.flv” title=”24p Standard” description=”An animation showing how 24p

Standard mode works.” />

 <video url=”video/24p_advanced.flv” title=”24p Advanced” description=”An animation showing how 24p

Advanced mode works.” />

</videos>

This XML fi le has a <videos> tag that represents the entire playlist. Each child

node, or <video> tag, within it is a unique video. With the opening <video> tag

are three attributes: the url or location of the video fi le, a title to use for dis-

play and selection purposes, and a description to give the viewer more context.

Close the 2. videos.xml fi le and open the fi le xml_playlist.fl a, which is in the same

tutorial folder.

This movie has three objects on the stage. A 3. FLVPlayback component named

vidPlayback, a static text fi eld that is the label for a list component named fl vList,

and a dynamic text fi eld, descText, that holds a description for each video. These

three elements will be referenced in the ActionScript that we’ll create next.

Press 4. Ctrl+N (Windows) or Command+N (MacOS). In the New Document dialog,

select the General tab, select ActionScript File, and click OK.

Figure 9.15: Select ActionScript File from the Type list.

190 Chapter 9: More Flash Video Applications

Save this fi le as 5. FLVPlayList.as in the same directory as the xml_playlist.fl a docu-

ment. This is going to be the class document fi le for this movie.

ABOUT DOCUMENT CLASSES
A document class is an external ActionScript
class fi le that is paired with an FLA fi le. At
compile time, the document class is in-
cluded with the compiled SWF. At run time,
the document class is constructed and run
when the SWF’s timeline is initialized.

Prior to ActionScript 3 and Flash CS3, the
best practice was to place code in a layer
named “actions” in the fi rst frame. While
this practice is better than having code
sprinkled across movie clips, it still requires
the code to reside in the FLA. When the
code is inside the FLA fi le, quick reuse and
version control is more diffi cult.

To set the document class, make sure
nothing is selected (choose Edit > Deselect
All) and in the Property panel for the Flash
movie, enter the path and name of the class
fi le in the Document class fi eld, or in the
Publish Settings dialog choose File > Publish
Settings > Flash tab > Settings button.

To learn more about document classes, go
to the Flash Developer Center on Adobe.
com and read this article: http://www.
adobe.com/devnet/fl ash/articles/fl ash9_
as3_preview.html.

Return briefl y to the 6. xml_playlist.fl a fi le and, with nothing selected, show the

Properties Inspector. If the Properties Inspector is not open, press F3 (Windows) or

Option+F3 (MacOS).

Enter 7. FLVPlaylist in the Document class text fi eld. This associates the FLVPlaylist.

as with the timeline in this movie. Note that the “.as” extension is not needed.

Figure 9.16: Entering the document class for the entire movie.

Save the fi le and then click the 8. Pencil icon, , to the right of the Document class

text fi eld. This will switch to the FLVPlayback.as fi le.

The document class needs to begin with the 9. package statement. Enter:

 NetStream object.

package {

}

Inside the 10. package statement, add the following six import statements:

Creating Video Playlists 191

e NetStream object.

 import flash.events.*;

 import flash.net.*;

 import fl.controls.SelectableList;

 import fl.video.*;

 import flash.text.TextField;

 import flash.display.MovieClip;

We need to import these classes because we’ll be writing code that uses meth-

ods and properties from them. Document class fi les (as opposed to code written

internally in an Actions frame) requires that you import all the classes your code

requires. Since we will code a few event listeners, the flash.events class is

required. The flash.net class is needed to import the external XML fi le. The

fl.controls.SelectableList class contains the methods and properties

for working with the list UI component. Likewise, the fl.video class contains

methods and properties for working with the FLVPlayback component. The

descText text fi eld requires that we import TextField. Lastly, any Flash movie

fi le with a timeline requires the MovieClip class to be imported.

After the import statements, add the class declaration:11.

e NetStream object.

public class FLVPlayList extends MovieClip {

}

Note that the class name has to be the same name as the fi le name minus the

fi le extension. A document class normally extends the MovieClip class. All of the

methods and properties for this class have to reside within this declaration.

To load an external XML fi le, create a 12. URLLoader object to load external data:

e NetStream object.
var flvListLoader:URLLoader = new URLLoader();

The class’s constructor method now needs to be written. This is code that is auto-13.

matically run when the document class is constructed by the Flash Player. Add the

following:

e NetStream object.

public function FLVPlayList() {

 flvListLoader.dataFormat = URLLoaderDataFormat.TEXT;

 flvListLoader.addEventListener(Event.COMPLETE, loadComplete);

 flvListLoader.load(new URLRequest(“videos.xml”));

 flvList.addEventListener(Event.CHANGE, playVideo);

 vidPlayback.addEventListener(“complete”, completePlayback);

}

The fi rst line inside the constructor sets the data format for flvListLoader to

plain text since XML fi les are plain text fi les. The next line adds an event listener

to it and points the listener to the loadComplete method, which we will write

192 Chapter 9: More Flash Video Applications

in a few steps. The third line uses the load() method to point to the playlist fi le,

videos.xml, which we looked at in step 1.

An event listener is also added to flvList, the list UI component that displays

the available videos from the list. It also is used for selecting which video to play.

Anytime the current selection in the list changes, the playvideo() method is

called.

The last event listener is for the FLVPlayback instance, vidPlayback. It listens

for when a video plays completely and calls the completePlayback() method.

The fi rst function to write is the 14. loadComplete() method. Add it after the FLV-

Playlist() constructor method.

e NetStream object.

function loadComplete(event:Event):void {

 var flvXML:XML = new XML(event.target.data);

 for each (var vid in flvXML..video) {

 flvList.addItem({label:vid.@title,

 data:vid.@url,

 info:vid.@description});

 }

 flvList.selectedIndex = 0;

 vidPlayback.source = (flvList.getItemAt(0).data);

 vidPlayback.play();

 descText.text = (flvList.getItemAt(0).info);

}

When the flvListLoader has completely loaded the videos.xml fi le, this

method creates a new XML object, flvXML, from the external XML fi le. The for

each statement creates a variable vid from each <video> element in the XML

and binds its attributes (title, url, and description) to flvList as the

label shown in the control, the data associated with each label, and as a longer

description that will be used to set the text of the descText dynamic text fi eld.

After the for each block, the fi rst item in the flvList control is selected and is

played inside flvPlayback.

When the selection changes in 15. flvList, the playVideo method needs to be

called. Enter the following:

e NetStream object.

function playVideo(event:Event) {

 vidPlayback.source = event.target.selectedItem.data;

 descText.text = event.target.selectedItem.info;

}

 It responds to the change event by setting the source of vidPlayback to use

the data property of the currently selected item in the list. It also sets the text

property of descText to use the info property.

Creating Video Playlists 193

The last event-handling method to write is the 16. playbackComplete() method.

It performs the task of playing the next video in flvList once a video completes

and loops back to the fi rst video once the last video fi nishes playing.

e NetStream object.

function completePlayback(eventObject:Object):void {

 var idx:uint = flvList.selectedIndex;

 if (flvList.selectedIndex == 5) {

 vidPlayback.source = (flvList.getItemAt(0).data);

 vidPlayback.play();

 flvList.selectedIndex = 0;

 idx = 0;

 } else {

 idx += 1;

 vidPlayback.source = (flvList.getItemAt(idx).data);

 flvList.selectedIndex = idx;

 vidPlayback.play();

 }

}

A variable, idx, is used to store the currently selected item in flvList. If idx is

equal to 5, or the last item in the list, the video player loops back to the fi rst video

in the list. If idx is equal to something else, its value is increased by one and the

video in flvList is selected and played back.

Save and preview the movie. A completed version is located in 17. Completed Tutori-

als > Chapter 9 > XML Playlist on the DVD-ROM.

194 Chapter 9: More Flash Video Applications

Code: Complete listing for FLVPlayList.as

package {

 import flash.events.*;

 import flash.net.*;

 import fl.controls.SelectableList;

 import fl.video.*;

 import flash.text.TextField;

 import flash.display.MovieClip;

 public class FLVPlayList extends MovieClip {

 var flvListLoader:URLLoader = new URLLoader();

 public function FLVPlayList() {

 flvListLoader.dataFormat = URLLoaderDataFormat.TEXT;

 flvListLoader.addEventListener(Event.COMPLETE, loadComplete);

 flvListLoader.load(new URLRequest(“videos.xml”));

 flvList.addEventListener(Event.CHANGE, playVideo);

 vidPlayback.addEventListener(“complete”, completePlayback);

 }

 function loadComplete(event:Event):void {

 var flvXML:XML = new XML(event.target.data);

 for each (var vid in flvXML..video) {

 flvList.addItem({label:vid.@title, data:vid.@url, info:vid.@description});

 }

 flvList.selectedIndex = 0;

 vidPlayback.source = (flvList.getItemAt(0).data);

 vidPlayback.play();

 descText.text = (flvList.getItemAt(0).info);

 }

 function playVideo(event:Event) {

 vidPlayback.source = event.target.selectedItem.data;

 descText.text = event.target.selectedItem.info;

 }

 function completePlayback(eventObject:Object):void {

 var idx:uint = flvList.selectedIndex;

 if (flvList.selectedIndex == 5) {

 vidPlayback.source = (flvList.getItemAt(0).data);

 vidPlayback.play();

 flvList.selectedIndex = 0;

 idx = 0;

 } else {

 idx += 1;

 vidPlayback.source = (flvList.getItemAt(idx).data);

 flvList.selectedIndex = idx;

 vidPlayback.play();

 }

 }

 }

}

The External API 195

The External API
The Flash Player’s External API facilitates communication between your Flash

movie and its container, which in most cases is a web page. An API is an applica-

tion programming interface, or a collection of exposed methods for how external

code openly communicates with an existing technology, such as the Flash Player.

The External API is of interest to Flash Video producers because it enables a whole

new set of interaction possibilities between your Flash Video content and the web

page that contains it. The External API is a good alternative when you want to:

Put branded elements or controls in the HTML and not the Flash movie 1

Have hyper-linked text referencing cue points or specifi c timed locations 1

Display HTML content when certain events occur in the video 1

For many developers the External API has replaced the fscommand() and

getURL() methods because it offers better compatibility across browsers and it

requires less code to implement in both the Flash movie and web page.

Table 7.1: Browser and platform support for the External API.

Browser Mac OS Windows

Internet Explorer 5.0 and above n/a yes

Netscape 8.0 and above yes yes

Mozilla 1.7.5 and above yes yes

Safari 1.3 and above yes n/a

Flash Player and Browser Communication

From ActionScript to the containing web page you can: call any JavaScript function

and pass arguments to it, pass data types, and receive a return value from the

JavaScript function. From JavaScript to the Flash movie you can: call an Action-

Script function, pass arguments using standard notation, and return a value to the

JavaScript function.

Tutorial: Control Video with HTML and JavaScript

In this chapter’s fi nal tutorial, we’ll cover the work required to enable communi-

cation between Flash Player and the browser. We’ll create a web page with an

embedded Flash Video. Ordinary HTML and JavaScript will be used to control

playback, access cue points, and respond to movie events.

196 Chapter 9: More Flash Video Applications

Figure 9.17: The example web page with JavaScript-controlled Flash Video.

This tutorial is a web page one might see for a show-and-tell session or a class

project. The techniques employed, however, could also be used for a sales or train-

ing presentation. We will begin by creating a near-empty FLA fi le. It will appear

to be empty because we won’t add anything to the stage. We will, however, add

the FLVPlayBack component to the Library and we will reference an external

ActionScript fi le as the movie’s document class.

Navigate to the 1. Tutorials > Chapter 9 folder. Copy the External API folder to your

computer.

Launch Flash Professional.2.

Choose 3. File > New. Select Flash File (ActionScript 3.0).

Figure 9.18: Select Flash File (ActionScript 3) from the Type list.

The External API 197

Select 3. Modify > Document and set the size to 320 × 240.

Figure 9.19: Set the width and height to same dimensions as the video fi le.

Save this fi le in 4. External API > assets folder and use fl vext.fl a as the fi le name.

Select 5. Window > Library. Keep it open. Select Window > Components. Open the

Video and drag the FLVPlayback component into the Library panel.

Choose File > Save to save the fi le. 6.

In order to create an FLVPlayback component through ActionScript, the component has to
be added to the document’s library.

Figure 9.20: Drag the FLVPlayback component from the Components panel to the Library

panel.

To create the document class, choose 7. File > New, select ActionScript File, and click

OK. Save the fi le as ExternalFlashVideo.as in the External API > assets folder.

198 Chapter 9: More Flash Video Applications

Figure 9.21: Select ActionScript File from the Type list.

The document class needs to begin with the 8. package statement. Enter:

e NetStream object.

package {

}

Inside the 9. package statement, add the following three import statements.

e NetStream object.

import flash.display.MovieClip;

import fl.video.*;

import flash.external.ExternalInterface;

A Flash movie fi le with a timeline requires the MovieClip class to be imported.

The fl.video class contains the methods and properties for working with the

FLVPlayback component. Likewise, the ExternalInterface class contains

methods for enabling Flash Player to web browser communication.

After the import statements, add the 10. class declaration:

e NetStream object.

public class ExternalFlashVideo extends MovieClip {

}

Create variables:11.

var vidPlayback = new FLVPlayback();

var vidCuePoint:String;

var vidContentPath:String = “gemini.flv”;

The fi rst variable creates an instance of the video component. The second creates a

string variable for the current cue point. The third is the URL for the video.

The class’s constructor method now needs to written. This is code that is automati-12.

cally run when the document class is constructed by the Flash Player. Add the

following:

The External API 199

e NetStream object.

 function ExternalFlashVideo() {

 vidPlayback.addEventListener(“cuePoint”, cp_listener);

 vidPlayback.x = 0;

 vidPlayback.y = 0;

 addChild(vidPlayback);

 vidPlayback.source = vidContentPath;

 ExternalInterface.addCallback(“controlPlay”, controlPlay);

 ExternalInterface.addCallback(“gotoCuePoint”, gotoCuePoint);

 }

The constructor function starts with setting the source for the vidPlayback

video component. It then sets the component’s x and y position and adds its

instance to the movie’s display list, which places it on the stage. An event listener is

added to the component to watch for cue points and to run the gotoCuePoint

function when one occurs.

The last two lines of code in the method expose two functions to the External

API: controlPlay() and gotoCuePoint(). The addCallback() method

accepts two parameters: the name of the function to expose and the name to use

externally. For simplicity’s sake, I’ve used the same for both the internal function

and the external name.

To pass the name of each cue point to an external JavaScript function, enter:13.

function cp_listener(eventObject:Object):void {

 vidCuePoint = eventObject.info.name;

 ExternalInterface.call(“cuePointInfo”, vidCuePoint);

}

The cp_listener method accepts a cue point event as a parameter and retrieves

the cue point’s name and assigns it to the variable vidCuePoint. The next line

passes vidCuePoint to an external JavaScript function, cuePointInfo(), us-

ing the call() method of the ExternalInterface class.

To expose cue point navigation, enter:14.

function gotoCuePoint(vidCuePoint):void {

 vidPlayback.seekToNavCuePoint(vidCuePoint);

}

This method advances the current frame to the cue point passed to it.

If you’ve received an FLV with embedded cue points and you don’t have the names handy
for entering later in the HTML page, you can see the embedded cue points in the Compo-
nent Inspector panel. Add the FLV to an FLVPlayback component and select the component,
click the Parameters tab in the Properties Inspector, and double-click the Cue Points fi eld.

200 Chapter 9: More Flash Video Applications

AB

Figure 9.22: Click the Magnify icon (A) to view the cue points (B).

To expose the playback controls to JavaScript, write the following case statement:14.

e NetStream object.

function controlPlayback(controlFunction):void {

 switch(controlFunction) {

 case “play”:

 vidPlayback.play();

 break;

 case “pause”:

 vidPlayback.pause();

 break;

 case “stop”:

 vidPlayback.stop();

 break;

 case “next”:

 vidPlayback.seekToNextNavCuePoint();

 break;

 case “previous”:

 vidPlayback.seekToPrevNavCuePoint();

 break;

 }

}

The External API 201

This method will receive a variable from JavaScript using the External API. The

JavaScript is going to pass the id element of the current link to this method as the

variable controlFunction. In the HTML there will be a link with an id for each

of the common playback methods. For example, the link around the word play will

have an id of play, and when that’s passed into the function, the function plays

the video.

Test the movie by pression 15. Ctrl+Enter (Windows) or Command+Return (Mac OS).

You should see the video play.

In 16. Windows Explorer or the Mac OS Finder, open External API > assets. You’ll see

a fi le named fl vext.swf. This is the compiled version of the Flash document we’ll

reference in the HTML fi le, index.html.

Open the 17. External API folder and open the js folder. Open the JavaScript fi le

fl v_external.js in the code editor of your choice.

In this tutorial, we’ll use a popular open-source JavaScript library, 18. jQuery. More

information about it follows this step. Write the event listener that will work when

the document becomes ready:

e NetStream object.

$(document).ready(function(){

 $(‘#cuepoint’).hide();

 $(“a.control”).click(function() { controlPlay(this.id); });

 $(“a.chapter”).click(function() { gotoCuePoint(this.id); });

});

The code, $(document), refers to the entire web page, or document. The ready

event occurs when the document is ready for manipulation by the web browser

and its JavaScript engine.

When the web page loads, the functions within the $(document).ready func-

tion run. The fi rst line temporarily hides the div, #cuepoint. The next two lines

act as event listeners. They listen for when an anchor tag (a web page link) with

the control or chapter class is clicked. In the fi rst case, it passes the anchor

tag’s id to the controlPlay() function. In the second case, it passes the id to

the gotoCuePoint() function.

Write the 19. controlPlay() function which will handle playback:

function controlPlay(controlFunction) {

 videoPlayer.controlPlay(controlFunction);

}

Back in step 14 we wrote controlPlayback(), an ActionScript function that

has a set of case statements. The controlPlay() function listed above forwards

202 Chapter 9: More Flash Video Applications

the id of the link to the controlPlayback() function, which then calls the

corresponding video playback method.

JQuery is a JavaScript framework that includes methods for AJAX and dynamic HTML. What
made it unique from the other Web 2.0 JavaScript frameworks is its XPATH and CSS-like
approach to selecting DOM elements, its terseness, and its chainability. If you’d like to learn
more about it, go to: http://www.jquery.org.

Write the 20. gotoCuePoint() function, which will handle cue point navigation:

function gotoCuePoint(vidCuePoint) {

 videoPlayer.gotoCuePoint(vidCuePoint);

}

In step 13 we wrote the ActionScript function, gotoCuePoint(). This JavaScript

function, gotoCuePoint(), forwards the id of the link that calls it to the

ActionScript function with the same name and advances to the corresponding cue

point.

Write functions for showing cue points events broadcast from the Flash Player.21.

function cuePointInfo(vidCuePoint) {

 $(‘#cuepoint strong’).html(vidCuePoint);

 $(‘#cuepoint’).fadeIn(‘normal’);

}

This function responds to the ActionScript function cp_listener(), which we

wrote in Step 12. When the name of the cue point is passed to cuePointIn-

fo(), it replaces the empty text node inside the tag with the name

of the actual cue point. This tells the view what the current cue point is when it

occurs.

Save and close the fi le.22.

Open the HTML fi le 23. index.html in the External API folder.

Reference the external JavaScript fi le. Insert the following bit of code on line 7 24.

below the <script> tag that references jquery.js.

<script type=”text/javascript” src=”js/flv_external.js”></script>

This has to come after jquery.js because its functions rely upon the jQuery library. If

it were placed above it, the functionality wouldn’t work.

Add the 25. id attributes to the playback controls. Starting on line 43, add the id at-

tributes marked in yellow to the following anchor tags:

The External API 203

e NetStream object.

« Previous

× Stop

Play ›

|| Pause

Next »

Add the 26. id attributes to the chapter links. Starting on line 58, add the id attri-

butes marked in yellow to the following anchor tags:

e NetStream object.

 Planes, <a id="ship"

href="#" class="chapter">destroyers, and <a id="helicopter" href="#"

class="chapter">helicopters searching for the capsule.

 The astronauts landing

on the carrier via a helicopter.

 Navy Seals recovering

the craft.

 The craft being secured

on the carrier.

Save the fi le.27.

Before this fi le can be previewed in the brower on your local machine, the Flash 28.

Player’s security settings need to be adjusted. This is because we’re testing a fi le

locally that uses the External API. Open a web browser and go to: http://www.

macromedia.com/support/documentation/en/fl ashplayer/help/settings_man-

ager04.html. Note that if you upload this to a web server to preview, you won’t

have to do this.

Figure 9.23: The Global Security Settings panel for Adobe Flash Player.

204 Chapter 9: More Flash Video Applications

Click the 29. Edit Locations dropdown menu and choose Add location.

Figure 9.24: The Edit locations dropdown menu.

A pop-up window appears for selecting a fi le or folder to trust. Click 30. Browse for

folder and pick the External API folder for this tutorial and click Confi rm.

Figure 9.25: Trust this location pop-up window.

You can now open the fi le,31. index.html in the browser and test the interaction.

If, for any reason, the movie doesn’t play, check your code against the code listings

on the following pages. Also, a completed version of this tutorial is on the DVD-

ROM.

The External API 205

Code: Complete listing for ExternalFlashVideo.as

package {

 import flash.display.MovieClip;

 import fl.video.*;

 import flash.external.ExternalInterface;

 var vidPlayback = new FLVPlayback();

 var vidCuePoint:String;

 var vidContentPath:String = “../flv/gemini.flv”;

 public class ExternalFlashVideo extends MovieClip {

 function ExternalFlashVideo() {

 vidPlayback.addEventListener(“cuePoint”, cp_listener);

 vidPlayback.x = 0;

 vidPlayback.y = 0;

 addChild(vidPlayback);

 vidPlayback.source = vidContentPath;

 ExternalInterface.addCallback(“controlPlay”, controlPlay);

 ExternalInterface.addCallback(“gotoCuePoint”, gotoCuePoint);

 }

 function cp_listener(eventObject:Object):void {

 vidCuePoint = eventObject.info.name;

 ExternalInterface.call(“cuePointInfo”, vidCuePoint);

 }

 function gotoCuePoint(vidCuePoint):void {

 vidPlayback.seekToNavCuePoint(vidCuePoint);

 }

 function controlPlay(controlFunction):void {

 switch(controlFunction) {

 case “play”:

 vidPlayback.play();

 break;

 case “pause”:

 vidPlayback.pause();

 break;

 case “stop”:

 vidPlayback.stop();

 break;

 case “next”:

 vidPlayback.seekToNextNavCuePoint();

 break;

 case “previous”:

 vidPlayback.seekToPrevNavCuePoint();

 break;

 }

 }

 }

}

206 Chapter 9: More Flash Video Applications

Code: Complete code listing for index.html

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>

<html lang=”en”>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>

<title>Flash Video Player and External API</title>

<script type=”text/javascript” src=”js/jquery.js”></script>

<script type=”text/javascript” src=”js/flv_external.js”></script>

<!--[if IE]><script type=”text/javascript” src=”js/fix_eolas.js” defer=”defer”></script><![endif]-->

<link rel=”stylesheet” href=”css/screen.css” type=”text/css” media=”screen” title=”no title”>

<!--[if IE]><link rel=”stylesheet” href=”css/ie.css” type=”text/css” media=”all” title=”no

title”><![endif]-->

</head>

<body>

 <noscript>

 <p>If the links to the movie’s chapters do not work for you, JavaScript is disabled

in your web browser.
Unfortunately, JavaScript is required to facilitate communication

between the Flash Player and HTML. Turn JavaScript on in your browser (which you can find in the pref-

erences or Internet Tools dialog).</p>

 </noscript>

 <div id=”wrap”>

 <div id=”header”>

 <h1>Gemini VI Recovery</h1>

 </div>

 <div id=”sidebar”>

 <p id=”player”>

 <!--[if !IE]> -->

 <object id=”videoPlayer” type=”application/x-shockwave-flash” data=”assets/swf/flvext.swf”

width=”320” height=”240”>

 <!-- <![endif]-->

 <!--[if IE]>

 <object classid=”clsid:d27cdb6e-ae6d-11cf-96b8-444553540000” width=”320” height=”240”

 codebase=”http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.

cab#version=9,0,0,0” id=”videoPlayer”>

 <param name=”movie” value=”assets/swf/flvext.swf” />

 <!-->

 <!--dgx-->

 <param name=”play” value=”true” />

 <param name=”menu” value=”true” />

 <param name=”allowScriptAccess” value=”sameDomain” />

 <param name=”quality” value=”high” />

 <param name=”bgcolor” value=”#000000” />

 <param name=”allowScriptAccess” value=”sameDomain” />

 <param pluginspage=”http://www.macromedia.com/go/getflashplayer”>

 <p>This movie requires Flash Player.</p>

 </object>

 <!-- <![endif]-->

 </p>

 <p id=”controls”>

 « Previous

Wrapping Up 207

 × Stop

 Play ›

 || Pause

 Next »

 </p>

 <p id=”cuepoint”>

 The last cue point was .

 </p>

 </div>

 <div id=”main”>

 <p>My father, Herbert Skidgel, served aboard the USS Wasp, an Essex-class carrier, during the

Sixties. During this time it was responsible for recovering three Gemini space crafts.</p>

 <p>He shot this footage with an 8mm camera. It shows several of the steps taken in recovering

the Gemini VI craft on December 16, 1965:</p>

 <p>

 Planes, <a id=”ship” href=”#”

class=”chapter”>destroyers, and helicopters

searching for the capsule.

 The astronauts landing on the carrier

via a helicopter.

 Navy Seals recovering the craft.

 The craft being secured on the car-

rier.

 </p>

<div class=”clearall”> </div>

</div>

</div>

</body>

</html>

Wrapping Up
This chapter introduced you to several topics: working with cue points, closed

captions, XML and arrays, and the External API class. You can now take these

techniques and apply them in practical ways in future video projects.

This page intentionally left blank

CHAPTER 10

Flash Media Server and
Flash Lite Video

The book’s last chapter covers the basics of working

with Flash Media Server and presents a tutorial on

creating a Flash Lite application with device video.

Serving Flash Video with a Streaming Server 2 210

Flash Lite and Mobile Video 2 ..212

Tutorial: Import an Illustrator File into Flash 2 218

Tutorial: Flash Lite ActionScript and Device Central 2 225

Wrapping Up 2 ... 230

210 Chapter 10: Flash Media Server and Flash Lite Video

Serving Flash Video with a Streaming Server
To stream fi les, you can set up a Flash Media Server from Adobe, or choose a third-

party server such as the open source Red5 server or the new commercial Wowza

Media Server Pro. If you cannot install a server, you can also have your video

hosted by a Flash Video Streaming Service. These providers offer content delivery

networks confi gured with Flash Media Server and can handle very high server

loads.

Table 10.1: Flash Video Streaming Options

Option Solution Web Site for More Information

Adobe Flash Media Server Server http://www.adobe.com/products/
fl ashmediaserver/

Red5 Server http://osfl ash.org/red5

Wowza Media Server Pro Server http://www.wowzamedia.com

Akamai FVSS Service http://www.akamai.com/html/
technology/products/streaming.html

Limelight Networks FVSS Service http://www.llnw.com/fl ash.html

VitalStream FVSS Service http://www.vitalstream.com/fl ash/

Mirror Image Internet FVSS Service http://www.mirror-image.com/

Despite the increased technical overheard, streaming video has several advantages

over progressive video:

It offers a persistent connection between the viewer’s computer and the streaming 1

server. This makes real-time video conferencing, video on demand, and multi-
player games possible.

When provisioned correctly, streaming servers can provide highly scalable distribu- 1

tion of content, which allows for hundreds and potentially thousands of simultane-
ous high-performance connections.

You can serve video that is appropriate to the viewer’s connection speed. 1

Streaming video usually starts to play faster than progressive video. 1

Users can seek to different locations in the video and that conserves both local and 1

remote computing resources because only the requested frames are sent to the
viewer’s PC.

Media fi les are more secure since streaming fi les are not stored in the local com- 1

puter’s cache.

You can track viewing and usage statistics. 1

Specifying a Streaming URL

Setting the source location for a video located on a streaming server is as easy as

setting one stored on an HTTP-based server for progressive download. The URL

will follow the pattern of: rtmp://www.yourservername.com/path_to/stream.fl v.

Serving Flash Video with a Streaming Server 211

This can be used as the source parameter for an instance of the FLVPlayback com-

ponent, or it can passed to the play() method of the NetStream object.

Using Bandwidth Detection

When using Flash Media Server (FMS), it’s possible to use FMS’s bandwidth detec-

tion features to serve fi les tailored to the bandwidth capabilities of each viewer.

This provides a better viewing experience for all viewers, because viewers with

slower connections receive video that is smaller, and viewers with faster connec-

tions receive video that is larger and not as compressed. In both cases, video loads

quickly and the perception of speed is roughly the same for both viewers.

Not all streaming providers support native bandwidth detection. In the case your

FMS installation does not come with this support, you’ll need to upload an Action-

Script Communication fi le (main.asc in this case) to the application folder residing

on the streaming server.

You can download a sample main.asc fi le to use at: http://www.adobe.com/go/learn_fl _
samples. Download the Samples.zip fi le, unarchive the fi le, and look in \ComponentsAS2\
FLVPlayback.

When providing multiple instances of the same video at different sizes and

bit rates, you specify a SMIL (Synchronized Multimedia Integration Language,

pronounced “smile”) fi le. It is an XML-based fi le format listing a server location,

unique fi les for target bandwidths, and the duration for each fi le:

<smil>

 <head>

 <meta base=”rtmp://www.yourservername.com/videoapp/streams” />

 <layout>

 <root-layout width=”320” height=”240” />

 </layout>

 </head>

 <body>

 <switch>

 <video src=”video_low.flv” system-bitrate=”56000” dur=”3:00.1”>

 <video src=”video_med.flv” system-bitrate=”128000” dur=”3:00.1”>

 <ref src=”video_hi.flv” dur=”3:00.1”/>

 </switch>

 </body>

</smil>

Also, to confi gure the Flash movie to work with streaming servers that support

bandwidth detection natively, you need to add the following two lines of Action-

Script to your client-side code:

import fl.video.*;

VideoPlayer.iNCManagerClass = fl.video.NCManagerNative;

212 Chapter 10: Flash Media Server and Flash Lite Video

When using the FLVPlayback component with Adobe Flash Media Server, follow

these steps on your local computer and on your installation of Flash Media Server.

On the Flash Media Server

Create a folder inside the Flash Media Server application folder. For example pur-1.

poses, let’s call it videoapp.

If needed, upload the 2. main.asc fi le to the videoapp folder.

Create another folder, 3. streams, inside the videoapp folder.

Upload all Flash Video fi les for this application to the 4. streams folder.

On Your Local Computer

Select 1. File > Import > Import Video.

Select 2. Stream from Flash Video Streaming Service (FVSS) or Stream from Flash

Media Server (FMS). Enter the URL for the fi le on the server.

Figure 10.1: Using the Flash Video wizard.

Go through the rest of the 3. Import Video wizard. Save and compile the fi le. Upload

the compiled SWF fi le to your web server and test.

Flash Lite 2 and Mobile Video
Native Flash Video using the Sorenson or On2 codecs will not be supported by

Flash Lite until Flash Lite 3 is released. In the meantime, Flash Lite 2 supports de-

vice video, that is, video supported natively by the target device. For the best way

to determine what video formats your target device supports, check the device

specifi cations for the target device or use ActionScript to determine the supported

formats. You can also use Device Central to view video formats supported by the

target device.

Device Central may not list your target device, but device profi les are updated as new
devices supporting Flash Lite are introduced. To check for new device profi les, launch Device
Central and choose Devices > Check for Device Updates.

Flash Lite 2 and Mobile Video 213

Figure 10.2: Click the Video tab to see which formats are supported by a device.

Preparing Video for Flash Lite

The mobile video types typically found on Flash Lite-enabled mobile devices are

3GP, 3GP2 (also known as 3GPP2), AVI, MOV, MPEG-4, and WMV. Again, the

best way to fi nd out what format to use is to look at the device’s specifi cations or

browse the device’s information in Device Central. To export a video for a mobile

device, you have several options for converting video to a device-supported format

shown in the following table.

Table 10.2: Mobile Video Compression Options

Option Web Site for More Information

Adobe Media Encoder http://www.adobe.com/products/creativesuite/produc-
tion/

Apple QuickTime Pro http://www.apple.com/quicktime/pro/

Apple Compressor http://www.apple.com/fi nalcutstudio/compressor/

IMTOO 3GP Video Converter http://www.imtoo.com/3gp-video-converter.html

Total Video Converter http://www.effectmatrix.com/total-video-converter/

Xilisoft 3GP Converter http://www.xilisoft.com/3gp-video-converter.html

Sorenson Squeeze Compression
Suite

http://www.sorensonmedia.com/pages/?pageID=2

Telestream Episode (Mac OS X)
or FlipFactory (Windows)

http://www.telestream.net/products/ff_transworkfl ows.
htm

How To: Exporting Mobile Video from the Adobe Media Encoder

The Adobe Media Encoder is available in all of Adobe’s dynamic media applica-

tions: Premiere Pro, After Effects, Encore, and Sound Booth. To export device video

such as 3GP using the Adobe Media Encoder, follow these steps:

214 Chapter 10: Flash Media Server and Flash Lite Video

Launch a project created in 1. Premiere Pro.

Select a sequence or clip to export. Choose2. File > Export > Adobe Media Encoder.

Select 3. H.264 from the Format menu.

Select a device preset from the 4. Preset menu. This will use the default encoding

settings, but you are free to experiment and adjust the settings in the Video and

Audio tabs.

If you’d like to preview the encoded video in Device Central, check 5. Open in

Device Central.

How To: Exporting Mobile Video from QuickTime Pro

Apple QuickTime Pro is a paid upgrade to the cross-platform media technology

by Apple Inc. For about $30, you can export to any video and audio codec that is

bundled with QuickTime. To export a mobile device video format from QuickTime,

follow these steps:

 Launch 1. QuickTime Player. Open a movie you’d like to export.

Choose 2. File > Export. Choose Movie to 3G from the Export drop down. Select a

mobile video preset from the Use drop down. Consult with the device specifi ca-

tions on which presets are compatible with your phone. Click Save to export the

video.

Figure 10.3: Exporting a QuickTime movie as a mobile device video.

Mobile Video Encoding Considerations

As powerful as handsets are becoming, it should be obvious that they still lack the

processing power, high-speed Internet connections, storage, and memory capacity

found on desktop and portable computers. Given all this, video for mobile devices

cannot have the same duration, frame size, fps, and data rate as desktop video.

That said, you may have to edit video down, crop, and encode at a lower frame

rate and bit rate. Find out what is best for your device and test various encoding

settings before deploying your project.

Flash Lite 2 and Mobile Video 215

The ActionScript Video Object in Flash Lite 2

Controlling video playback with Flash Lite is a bit different than controlling video

playback with Flash Player for PCs. The main difference is that you do not work

with the NetStream object and attach it to the video object. With Flash Lite, you

use the Video object’s playback methods directly. The following fi ve methods are

for controlling video playback in Flash Lite 2:

Video.play() 1

Video.stop() 1

Video.pause() 1

Video.resume() 1

Video.close() 1

The other difference between the two Flash implementations are methods and

properties available to the desktop implementation that are not supported by Flash

Lite 2. They are:

Video.attachVideo() 1

Video.clear() 1

Video.deblocking 1

Video.height 1

Video.width 1

Video.smoothing 1

Video._visible 1

Previewing Video with Flash Lite Applications

Given the variety of possible video formats, previewing video is not currently sup-

ported while authoring content in Flash Professional CS3. To preview a Flash Lite

SWF fi le with video, you need to load and view the SWF on the target device or

you can use Adobe Device Central if the target device’s profi le is installed. I have

to say that Device Central is an incredible application for previewing Flash Lite

content and its integration with Flash Professional CS3 and the other Creative Suite

applications is superb.

Deploying Flash Lite Applications with Video

You have two options for deployment: embedding the video in the SWF fi le’s

library (referred to as “bundled video”) or loading it from an external location such

as the phone’s available memory or from a networked location (referred to

as “external video”).

216 Chapter 10: Flash Media Server and Flash Lite Video

Bundled Device Video

Embedding or bundling device video with the deployed SWF guarantees that

handset users can view your video content because it resides on the phone and

not on the network. It does, however, greatly increase the size of the SWF since it’s

embedded into the SWF fi le.

External Device Video

External device video is not embedded inside the deployed Flash Lite SWF. It

resides outside the SWF fi le and can be stored on the phone in available memory

or it can be streamed from a network address. To play external video, you pass the

location of the video to the Video.play() method. The following are example

use cases of referencing external video given a video object with an instance name

of myVideo and a 3gp-formatted video fi le named products.3gp.

When the video is in the same directory as the SWF fi le, write:

myVideo.play(“products.3gp”);

When the video is in a directory relative to the SWF fi le, write:

myVideo.play(“videos/products.3gp”);

For devices that support the fi le:// protocol, you can also write:

myVideo.play(“file://c:/videos/products.3gp”);

For devices that support network access, you can place the fi le on an RTSP server

(Real Time Streaming Protocol) and pass this to the play() method:

myVideo.play(“rtsp://serverAddress/videos/products.3gp”);

How To: Create a Template Using Device Central

Device Central integrates with Creative Suite to facilitate creating and previewing

mobile content. You can create a blank Illustrator, Flash, or Photoshop fi le tailored

to a specifi c mobile device supporting Flash Lite. This section will cover creating an

Illustrator document for a Motorola Razr phone. After adding content, it can be

imported into Flash Professional and made into a Flash Lite application.

Launch 1. Adobe Device Central. The Start page for Device Central appears. From

the Create New Mobile list, click Illustrator File. If the Start page is not present

after launching Device Central, choose File > New Document In > Flash.

Flash Lite 2 and Mobile Video 217

Figure 10.4: The Start page for Device Central.

In Device Central’s main application window, click the 2. Group By button, , and

choose Carrier. This button is on the right side of the Available Devices header bar.

Figure 10.5: You can sort the Available Devices profi les a number of ways.

In the 3. Available Devices list, Open the Verizon category (Fig 8.6 A), select Mo-

torola RAZR V3m (Fig 8.6 B), and click Create (Fig 8.6 C). The new document will

open in Illustrator.

A

B

C

Figure 10.6: Creating an Illustrator fi le in Device Central.

218 Chapter 10: Flash Media Server and Flash Lite Video

Tutorial: Import an Illustrator File into Flash Professional
The next two tutorials will cover creating a Flash Lite application. We’ll start by

creating a Flash Lite application from Device Central and then import an Illustrator

fi le that has symbols that we can use for buttons. In the second tutorial, we’ll write

the application’s ActionScript and test the document using Device Central. The ap-

plication will use footage from Chapter 5, but formatted for a mobile device.

Figure 10.7: The Flash Lite application running inside Device Central.

Importing an Adobe Illustrator CS3 File

Navigate to the 1. Tutorials > Chapter 8 folder on the DVD-ROM. Copy the Flash

Lite Video folder to your computer.

Launch 2. Adobe Device Central. When the Start page appears, click Flash File under

the Create New Mobile list. If the Start page is not present after launching Device

Central, choose File > New Document In > Flash.

The 3. New Document tab appears. At the top are the settings for the document.

Choose Flash Lite 2.1 from the Player Version menu, ActionScript 2.0 from the

ActionScript Version menu, and Application from the Content Type menu.

Figure 10.8: The Flash Lite Document Settings panel.

From the 4. Matching Size Presets panel, double-click Motorola RAZR V3m.

Device Central opens 5. Flash Professional CS3 and creates a Flash document with

document settings matching this targeted device.

Tutorial: Import an Illustrator File into Flash Professional 219

Choose 6. File > Save. Name the fi le superpower.fl a in the Flash Lite Video folder.

Choose 7. File > Import > Import to Stage. Navigate to the Flash Video folder on

your computer. Select the Illustrator fi le chsp_home.ai and click Import.

If you own a version of the Creative Suite 3 with Illustrator CS3, open chsp_home.ai and
chsp_video.ai. Working with symbols in Illustrator CS3 feels a lot like Flash Professional.

Collapse all the high-level layers. Afterwards, the layers panel should look like the 8.

screen portion on the right (A) of the following screenshot.

A

Figure 10.9: The Illustrator import dialog.

With the layers collapsed, we can now adjust how the high-level layers are im-9.

ported. Select the controls layer and uncheck Create movie clip if it isn’t already.

Repeat this for the SoftKeyBG layer. This will preserve the layer but allow the ele-

ments on these layers to be independent of one another.

In the options below the layers list, check 10. Import unused symbols. There are a

few additional buttons we’ll use for the individual video screens. They are included

as symbols in the fi le, but are not currently used in the Illustrator fi le’s art board.

Check Set stage to same size as Illustrator art board.

Click 11. OK. The fi le is imported directly to the stage and movie clips are automati-

cally added to the Library.

This fi le uses the typeface Myriad. It’s installed with most Adobe applications. If it isn’t
installed on your computer, replace it with a font such as Arial or Helvetica.

Choose 12. File > Save.

220 Chapter 10: Flash Media Server and Flash Lite Video

Structuring the Movie’s Layers and Timeline

In the 1. Timeline window add two layers at the top: Labels and Actions.

Figure 10.10: The additional layers to create.

Select the 2. Labels layer, click frame 1, and in the Properties panel enter Home.

Figure 10.11: Frame labels in the Timeline are modifi ed in the Properties panel.

Click 3. frame 10 in the Timeline window. Choose Insert > Timeline > Blank Key-

frame. Select frame 10 and enter fi re for the frame label in the Properties panel.

The remaining frame labels should also be created in the Labels layer.

Click 4. frame 20. Choose Insert > Timeline > Blank Keyframe. Select frame 20 and

enter waves for the frame label in the Properties panel.

Click 5. frame 30. Choose Insert > Timeline > Blank Keyframe. Select frame 30 and

enter magic for the frame label in the Properties panel.

Click 6. frame 40. Choose Insert > Timeline > Blank Keyframe. Select frame 40 and

enter atomic for the frame label in the Properties panel. Select frame 49 and

choose Insert > Timeline > Frame to provide enough room to see the atomic

frame label.

Select the 7. SoftKeyBG layer. Click frame 49 and choose Insert > Timeline > Frame

to extend the contents of this layer throughout the movie. Select the Screen BG

layer and repeat the same steps to extend the background gradient throughout

the movie.

Select the 8. Actions layer. In frames 1, 10, 20, 30, and 40 insert a keyframe by

choosing Insert > Timeline > Blank Keyframe.

Figure 10.12: Key frames set for the layers in this movie thus far.

Tutorial: Import an Illustrator File into Flash Professional 221

Now it’s time to work on the controls for the 9. home frame. Lock all the layers ex-

cept the controls layer. Select the fi reButton.

Choose 10. File > Save.

Confi guring Buttons

You’ll notice that the button has a proper instance name in the Properties panel.

In Illustrator, I was able to give instance names for each instance of the BgBut-

tonUpBg symbol. I could not, however, set this symbol as a button clip in Illustra-

tor. We’ll use the Library panel to change it into a button, and we’ll add a rollover

state to it. Looking at the Library panel, notice that the imported Illustrator docu-

ment is organized into folders based on the original fi le’s layers and the settings

chosen in the Import dialog.

Figure 10.13: Library hierarchy.

 In the 1. Library panel, open chsp_home.ai > Illustrator Symbols. Double-click the

BgButtonOverBg movie clip. Choose Edit > Select All and then Edit > Copy. This

graphic is the overstate for the movie’s buttons.

Select the 2. BgButtonOverBg movie clip and click the Symbol Properties button, ,

at the bottom of the Library panel. In the Symbol Properties dialog, check Button

as the symbol’s type. Click OK.

Double-click the 3. BgButtonOverBg movie clip. In the Timeline, click the Over

frame and choose Insert > Timeline > Blank Keyframe. Choose Edit > Paste in

Place. The button now has an overstate.

222 Chapter 10: Flash Media Server and Flash Lite Video

Figure 10.14: The overstate added to the button movie clip.

On a mobile phone, the user will press the fi ve-way buttons on the phone, and as the selec-

tion moves to a new button, this graphic will indicate the currently selected button.

Convert the 4. PlayBtn, PauseBtn, and StopBtn movie clips to button symbols by

selecting each one, clicking the Symbol Properties button, , and checking Button

in the Symbol Properties dialog.

Double click the 5. SmButtonOverBg movie clip in the Library panel. Choose Edit >

Select All and then Edit > Copy. This graphic is the overstate for the movie’s play,

stop, and pause buttons.

In the 6. PlayBtn, PauseBtn, and StopBtn button symbols, create a blank keyframe

in the Over frame (Insert > Timeline > Blank Keyframe) and paste the rollover

graphic using Edit > Paste in Place.

Note that this graphic is only the button background. You still need to copy and paste the
play, stop, and pause shape icons. If you don’t copy and paste them, the icon at the center
of each button will disappear when the button is in the rollover state.

For each of these buttons, select and copy the shape icon in the 7. Up frame and

paste it into the Over frame using Edit > Paste in Place.

Using the 8. Time bar, click Scene 1 to return to it.

Figure 10.15: Navigating back to Scene 1 via the Time bar.

Select the 9. FIRE button on the stage. Make sure you select the button shape and

not the button text, which are separate elements. When you see a selection rect-

angle around the entire button shape, you have selected the button.

Figure 10.16: The FIRE button selected.

In the 10. Properties panel, change the button’s instance type to Button from Movie

Clip. Also set the tracking option to Track as button. If you don’t set this properly,

Tutorial: Import an Illustrator File into Flash Professional 223

the buttons will fl icker because the Flash Lite player will treat them like movie clips

instead of buttons and play through the Up and Over frames continuously.

Figure 10.17: Set the fi reButton as a Button symbol.

Follow the previous step to change the 11. WAVES, MAGIC, and ATOMIC buttons.

They should all be Button clips and tracking as a button. When you are fi nished,

lock the controls layer in the Timeline.

Unlock the 12. SoftKeysBG layer. Choose Edit > Select All and then choose Edit >

Copy. Choose Edit > Deselect All. Delete the HOME text since this is the home

screen and it’s only needed on the other screens.

Select 13. frame 10 in the same layer and choose Insert > Timeline > Blank Keyframe.

Choose Edit > Paste In Place. Then select frame 49 and choose Insert > Timeline

> Frame. This will extend HOME and EXIT, the two phone soft keys across the

remaining frames in the movie. Soft keys are the buttons controlled by the two left

and right select buttons below a phone’s screen and above the phone’s fi ve-way

navigation buttons.

A

B

Figure 5.18: The left and right soft keys (A) and the fi ve-way navigation buttons (B).

Lock the 14. SoftKeys layer and unlock and select the controls layer again. We will

now place the play, pause, and stop buttons we modifi ed in steps 2–5.

Select 15. frame 10 for the controls layer. Insert a blank keyframe. Drag the StopBtn,

PlayBtn, and PauseBtn buttons from the Library panel to the stage. Use the fol-

lowing table and the Properties panel to name and position each instance.

224 Chapter 10: Flash Media Server and Flash Lite Video

Table 8.3: Name and Position Information for the Play, Pause, and Stop Buttons

Button Symbol Name X Y

PlayBtn playButton 68 160

StopBtn stopButton 20 160

PauseBtn pauseButton 116 160

Select 16. frame 49 and insert a frame (Insert > Timeline > Frame) to extend these

buttons across the rest of the movie. Lock the controls layer.

Insert a new layer named 17. video and place it above the controls layer but below

the text layer. To insert a new layer, choose Insert > Timeline > Layer.

Importing and Bundling Device Video

With the user interface elements in place, let’s add the video. In the 1. Library panel

click the Panel Options button, , and choose New Video. In the Video Proper-

ties dialog, name the symbol, fi re. For Type, select Video (ActionScript-controlled)

and check Bundle source in SWF for mobile and devices. Check Export for

ActionScript and keep the Identifi er set as fi re. Click Import and navigate to the

Flash Lite Video folder on your computer. Open the video folder and import the

fi le, fi re.3gp.

Figure 10.19: The Source property will refl ect the location of the video on your computer.

Remember that device video can either be linked to externally or bundled inside the com-
piled SWF fi le. In order to control video playback with ActionScript, the video needs to have
an indentifer exported for ActionScript.

Import the other three video fi les in the 2. Flash Lite Video > Video folder repeating

the previous step. Use the fi le name (minus the fi le extension) as the Symbol and

Identifi er names for each of the videos.

Select 3. frame 10 in the video layer and insert a blank keyframe. Drag the fi re video

from the Library panel to the stage. In the Properties panel, name the instance

fi reVideo and set its position to 8, 8.

Tutorial: Writing ActionScript and Testing in Device Central 225

Select 4. frame 20 in the video layer and insert a blank keyframe. Drag the waves

video from the Library panel to the stage. Name the instance wavesVideo and set

its position to 8, 8.

Select 5. frame 30 in the video layer and insert a blank keyframe. Drag the magic

video from the Library panel to the stage. Name the instance magicVideo and set

its position to 8, 8.

Select 6. frame 40 in the video layer and insert a blank keyframe. Drag the atomic

video from the Library panel to the stage. Name the instance atomicVideo and set

its position to 8, 8.

Choose 7. File > Save. The structure, layout, and visuals for the Flash movie are now

complete. You’ve learned how to import Illustrator artwork, construct buttons from

Library assets, and import and place video for Flash Lite applications. In the next

tutorial, we’ll write the ActionScript to control both navigation and playback.

Figure 20: A screen from the application after completing the fi rst part of the tutorial.

Tutorial: Writing ActionScript and Testing in
Device Central
The ActionScript used in Flash Lite 2.x is based on ActionScript 2.0. This means if

you had never used ActionScript before reading this book, the code may look a

little different than what you’ve seen in the previous chapters. Rest assured, how-

ever, the code we’ll cover is a lot simpler than the code in the previous chapters.

In the 1. Timeline select frame 1 in the ActionScript layer. In this layer we’ll write

code that will set global settings for the movie and create navigation between this

screen and the different frames containing video.

226 Chapter 10: Flash Media Server and Flash Lite Video

Choose 2. Window > Actions to open the Actions panel. Enter the following:

fscommand2(“FullScreen”, true);

fscommand2(“SetQuality”, “high”);

fscommand2 (“SetSoftKeys”, “”, “Exit”);

_focusrect = false;

stop();

The fi rst three lines of code use the fscommand2 function. The fscommand2

function facilitates communication between a Flash Lite SWF and the Flash Lite

player or an application on the mobile device. The function is different than

fscommand in that it accepts multiple arguments rather than one, it runs immedi-

ately rather than the end of frame, it can return a value, and it only works in Flash

Lite—it does not work with the desktop Flash players.

The fi rst line enables full-screen mode, the second turns on higher quality render-

ing, and the third line sets the right soft key label to “Exit” and sets the left soft

key label to be blank.

Setting _focusrect to false turns off the yellow outline the Flash Lite player

draws around selectable interface elements. Since we created overstates for all the

buttons, setting this to true, the default, would be overkill and not improve the

design.

The stop() method stops playback and keeps the player on this frame until the

user triggers the navigation code we’re about to write.

When the Flash Lite application initially runs, the fi rst button, 3. fireButton,

should be selected by default. Enter:

if (selectedItem == null) {

 Selection.setFocus(fireButton);

} else {

 Selection.setFocus(selectedItem);

}

This if-else statement selects the fi rst button, fi reButton, when there is no selection.

This occurs when the SWF begins to play. If there is a selection, it preserves the

current selection.

Tutorial: Writing ActionScript and Testing inDevice Central 227

Let’s write the navigation code:4.

fireButton.onPress = function() {

 selectedItem = this;

 gotoAndStop(“fire”);

};

wavesButton.onPress = function() {

 selectedItem = this;

 gotoAndStop(“waves”);

};

magicButton.onPress = function() {

 selectedItem = this;

 gotoAndStop(“magic”);

};

atomicButton.onPress = function() {

 selectedItem = this;

 gotoAndStop(“atomic”);

};

There are event listeners for each of the four buttons on the stage. In each of these

onPress event listeners, a function is assigned to move the playhead to a frame

with one of the labels we created in the last tutorial.

Choose 5. File > Save.

The last code that needs to be written for this frame is an event listener that will 6.

respond when the user clicks the right soft key and wants to exit the application.

Enter:

Key.removeListener(softKeyListener);

var softKeyListener:Object = new Object ();

softKeyListener.onKeyDown = function () {

 var keyCode = Key.getCode ();

 if (keyCode == ExtendedKey.SOFT2) {

 fscommand2 (“Quit”);

 }

};

Key.addListener(softKeyListener);

This application will use soft keys in several frames and all frames will use an event

listener with the same name to simplify removing and reattaching it across frames.

The fi rst line removes the event listener from the Key object so one with the same

name but different navigational instructions can be attached to it.

The next seven lines create an object, softKeyListener, that will listen for keys

that are pressed and will quit the application if the SOFT2 key or right button is

pressed. The last line reattaches the listener to the Key object.

228 Chapter 10: Flash Media Server and Flash Lite Video

This frame contains the fi re video. The code in this frame can also be used in the 7.

remaining video frames with slight modifi cations. Select frame 10 in the Action-

Script layer. In the Actions window enter the following code:

stop();

fscommand2(“SetSoftKeys”, “Exit”, “Home”);

fireVideo.play();

Selection.setFocus(pauseButton);

The stop() method parks the playhead on this frame. It will stay here until the

navigational code that is part of the soft key event listener runs. The next line of

code sets the soft keys for the current frame. The third line of code plays the video

instance, fireVideo. Since the video begins playing, the focus is moved to the

pause button for convenience.

The three button symbols on the stage, 8. stopButton, playButton, and

pauseButton, need to be connected to the video object. Enter:

stopButton.onPress = function() {

 fireVideo.stop();

 Selection.setFocus(playButton);

};

playButton.onPress = function() {

 fireVideo.resume();

 Selection.setFocus(pauseButton);

};

pauseButton.onPress = function() {

 fireVideo.pause();

 Selection.setFocus(playButton);

};

These three event listeners listen for the onPress event. This occurs when the

center button on the phone’s fi ve-way control is pressed.

The stopButton code stops playback by calling the stop() method. It conve-

niently sets the focus to the playButton so the user can play the video again.

The remaining three buttons work in similar ways. The playButton button

resumes playback and sets the focus to the pause button, and the pauseButton

button pauses the video and sets the focus to the play button.

The last several lines of code address the phone’s soft keys. The code works a lot 9.

like the event listener written earlier with the exception that it listens for an ad-

ditional soft key, SOFT2.

Tutorial: Writing ActionScript and Testing inDevice Central 229

Key.removeListener(softKeyListener);

var softKeyListener:Object = new Object();

softKeyListener.onKeyDown = function() {

 var keyCode = Key.getCode();

 if (keyCode == ExtendedKey.SOFT1) {

 fscommand2(“Quit”);

 } else if (keyCode == ExtendedKey.SOFT2) {

 gotoAndStop (“home”);

 }

};

Key.addListener(softKeyListener);

It begins by removing the listener, recreating the listener object, and creating a

function for the listener. The function listens for either soft key to be pressed. The

left soft key still exits the application. The right soft key returns the user to the

home screen.

Now you can copy and paste this code in frames 20, 30, and 40 in the ActionScript 10.

layer. In each frame you’ll have to change all instances of fi reVideo to the instance

name of the video placed in the frame. In frame 20, use wavesVideo, in frame 30

use magicVideo, and in frame 40 use atomicVideo.

Choose 11. File > Save.

Testing the Movie in Device Central

Choose 1. Control > Test Movie. Adobe Device Central should launch. If you see the

following warning in the Message panel, change the Content Type to Application

and make sure the target device supports Flash Lite 2.

Figure 10.21: Change the content type to Application.

You should now be able to navigate to the different video frames; play, pause, and

stop the video; and return to the home frames. Use the buttons on the device that

appears in the center panel. They are live. Device Central offers many ways to pre-

view Flash Lite content. For example, you can preview the content on any number

of devices that support the Flash Lite and ActionScript versions you are targeting. It

230 Chapter 10: Flash Media Server and Flash Lite Video

also includes preview controls to see how backlighting, environmental refl ections,

and gamma can affect the appearance of your content.

A

C

D

B

Figure 10.22: The Device Central application user interface.

The Output window, (Fig 8.22 A) (View > Flash Output > View), shows trace

statements and device messages. You can preview content as it would appear on

similar devices by double-clicking a device in the Available Devices list (Fig 8.22

B). You can stop the movie, pause it, and restart it as well as zoom and rotate the

device (Fig 8.22 C). Change the appearance and simulate various display condi-

tions using the options in the Display panel (Fig 8.22 D).

Wrapping Up
This chapter introduced you to streaming video basics and to device video with

Flash Lite. If you’ve completed all the tutorials in the book, you should have a solid

foundation to work with Flash Video in Flash applications on web pages and now

on alternative devices.

Index

232

A

Accessibility, best practices, 170
Action safe zone, irrelevance in Flash, 15
Actions panel, Flash Professional, 36
ActionScript
 bitmap effects, 152–156
 cue points, 60
 Device Central, 225–229
 Flash Lite video object, 215
 Flash player customization, 96–104
 intro, exit, and return loop codes, 133–136
 loops and navigation codes, 124–128
 XML and software version, 188
Active content, dynamic insertion, 163
addBlur(), 154–156
AddCallback, 199
addchild(), 107–108, 153, 185
addShadow(), 155
Adobe, see After Effects Professional 7; Device Central; Dream-
weaver CS3; Flash Professional CS3; Illustrator
After Effects Professional 7, creating Flash video with transparency,
138–144
Alpha
 channel incorporation into Flash application, 138
 setting, 91
Analog-to-digital conversion
 color sampling, 40–42
 quantization, 40, 42
Aperture, depth of fi eld relationship, 17
Array, playlist creation tutorial, 183–187
Aspect ratio, standards, 49–50
attachNetStream(), 185
attachVideoStream(), 108
AUTO_REWOUND, 124

B

Background
 blue screen, 21

 233

 simplifi cation in shooting, 15
Bandwidth quota, encoding decisions, 54
Base button, customization, 84–88
Bitmap effects
 overview, 149
 tutorials
 direct application, 150–151
 dynamic application, 152–156
Bit rate
 constant versus variable, 53–54
 defi nition, 53
 Internet connection speed and video delivery, 54
Blend modes
 overview, 149
 tutorial, 149–150
Blue screen
 backdrops, 21
 creating Flash video with transparency, 138–144
 shooting
 detail/sharpening setting turn off, 19
 exposure, 19, 20
 lighting, 21–22
Bundled device video, deployment in Flash Lite, 216, 224–225
Buttons
 adding to loops, 120–122
 confi guration for mobile video, 221–224
 customization
 base button, 84–88
 toggle size button, 92–94

C

call(), 199
Captioning, see Closed captions
CC, see Closed captions
clickBtn(), 143
clickHandler(), 126–127, 134
Closed captions (CC)
 accessibility, 170
 dynamic text fi eld tutorial, 178–179

234

 FLVPlayback Captioning component tutorial, 170–172
 fonts, 179
 timed text
 attributes, 172
 fi le structure, 173
 tutorial for styling option setting, 173–177
Codecs
 distribution, 43
 lossy versus lossless, 43
 overview, 42, 44
 postproduction, 43
 production, 43
 Sorenson Spark, 45–47
 VP6, 46–47
Color effects
 overview, 149
 tutorial, 149–150
Color panel, Flash Professional, 79, 82
Color sampling
 overview, 40
 schemes, 41–42
Color spaces, 40–41
Compiler Errors panel, Flash Professional, 37
Component Inspector
 cloning, 131
 repeating loops, 124
Components panel, Flash Professional, 35–36, 80
Compression
 codecs, see Codecs
 considerations
 Flash player version and codecs, 45–47
 Internet access speed, 45
 intraframe versus interframe, 44
 mobile video, 213
 ratio, 44
controlPlay(), 199, 201
controlPlayback(), 201–202
cp_listener(), 202
Cropping
 After Effects, 141

 235

 encoding, 61, 63
Cue points
 ActionScript cue points, 60
 display over video tutorial, 180–183
 event cue points, 60–61
 exporting from existing Flash video, 68–70
 navigation cue points, 60
 parameters, 61
 setting, 59–60, 67–68
cuePointInfo(), 199, 202
CustomPlayer(), 98–99

D

Data rate, calculation, 42
Depth of fi eld (DOF)
 aperture relationship, 17
 camera-to-subject distance relationship, 17–18
 defi nition, 16
 focal length relationship, 16
Device Central
 ActionScript writing, 225–229
 button confi guration, 221–224
 movie layer and timeline structuring tutorial, 220–221
 movie testing, 229–230
 target device compatibility, 212
 template creation, 216–217
Disk space, encoding decisions, 54
Document class, ActionScript, 97–98
DOF, see Depth of fi eld
Dreamweaver CS3, importing video tutorial, 7–9

E

Effects Control, After Effects, 140
Embedded video
 approaches, 158
 browser compatibility, 159
 embed tag, 161–162
 Flash player version detection, 162–163

236

 object tag, 161–162
 selection factors, 54–55
 Web standards
 accessibility, 161
 open standards, 160
 overview, 159
 semantic markup, 160
 Web page validation, 160–161
Encoding
 Adobe Flash Video Encoder batch encoding of several clips, 66
 encoders, 55–56
 Flash Professional CS3 encoding with Import Video wizard, 55,
62–65
 mobile video considerations, 214
 settings
 Audio tab, 59
 Crop and Resize tab, 61–62
 Cue Points tab, 59–62
 overview, 56–57
 Profi les tab, 57–58
 Video tab, 58–59
EOLAS patent, lawsuit, 163
Event cue points, 60–61
Exposure, blue screen shooting, 19, 20
Extensible Markup language (XML)
 playlist creation tutorial, 187–195
 tags, 187
External API, Flash player
 applications, 195
 browser and platform support, 195
 video control with HTML and JavaScript, 195–207
External device video, deployment in Flash Lite, 216
ExternalInterface class, 199

F

Flash Detection Kit, dynamic insertion of Flash, 164
fl ash.jquery.js, dynamic insertion of Flash, 164
Flash Lite
 ActionScript video object, 215

 237

 Device Central, see Device Central
 encoding considerations, 214
 previewing video, 215
 version and codec compatibility, 212
 video deployment
 bundled device video, 216, 224–225
 external device video, 216
 overview, 215
 video export
 Adobe Media Encoder, 213–214
 compression options, 213
 QuickTime Pro, 214
Flash Media Server (FMS), bandwidth detection, 211–212
Flash player customization
 ActionScript writing, 96–104
 base button, 84–88
 playback icon , 88–91
 seek bar, 94–96
 skinning, see Skinning
 text banner creation, 72–77
 toggle size button, 92–94
 writing from scratch
 base video player class, 105–109
 overview, 104
Flash Professional CS3
 encoding with Import Video wizard, 55, 62–65
 Illustrator fi le import, 218–219
 importing video tutorial, 4–7
 interface elements
 Actions panel, 36
 Compiler Errors panel, 37
 Components panel, 35–36
 Help panel, 38
 Library panel, 34–35
 Output panel, 37–38
 overview, 27–28
 Properties panel, 32–34
 stage, shapes, and symbols, 30–31
 timeline, 29–30
 tool palette, 31–32

238

 New Document dialog, 24–26
 Preview window, 38
 template creation tutorial, 26–27
Flix, Flash encoder, 56
Flowchart, development, 112–113
FLVPlayback Captioning component, tutorial, 170–172
FMS, see Flash Media Server
Focal length, depth of fi eld relationship, 16
Frame content, simplifi cation, 52–53
Frame rate, encoding decisions, 49
fscommand(), 195
Full-screen mode, 103

G

getURL(), 195
gotoCuePoint(), 199, 201–202
Gradient Transformation, Flash Professional CS3, 32, 84, 86, 95
Green screen, see Blue screen

H

Help panel, Flash Professional, 38
High defi nition, advantages in shooting, 12

I

id attributes, 202–203
Illustrator
 button confi guration for mobile video, 221–224
 fi le import into Flash Professional, 218–219
Importing video tutorials
 Dreamweaver CS3, 7–9
 Flash Professional CS3, 4–7
Interaction design, tips, 115
Interfaced frames, 51–52

 239

J

JavaScript, video control with external API, 195–207

L

Label class, 152
Library panel
 Flash player customization, 83–84, 89
 Flash Professional, 34–35
Lighting
 blue screen shooting, 21–22
 soft light advantages, 18
load(), 192
loadComplete(), 192
loop1x(), 127
Loops
 guidelines, 116
 intro, exit, and return loop tutorial
 ActionScript code, 133–136
 adding backgrounds, buttons, and video, 130–133
 FLA fi le setup, 129–130
 overview, 128
 repeating loop tutorial
 ActionScript code for loops and navigation, 124–128
 element addition, 118–124
 FLA fi le setup, 117–118
loopVideo(), 124–125
loopVideo4x(), 126

M

Masking, tutorial, 147–148
math.fl oor(), 101
math.round(), 101
MIME, see Multipurpose Internet Mail Extensions
Mobile video, see Device Central; Flash Lite
Multipurpose Internet Mail Extensions (MIME), Flash compatibility,
168

240

N

National Television Standards Committee (NTSC), video format, 48
Navigation cue points, 60
NetConnection class, 105–106, 185
NetStatus event class, 106
NetStream class, 105–106, 109–110, 185–186
NTSC, see National Television Standards Committee

O

Object Drawing, Flash Professional CS3, 31
Object tag, 161–162
Output panel, Flash Professional, 37–38
Oval tool, Flash Professional CS3, 85–86

P

PAL, see Phase Alternate Line
Panning, guidelines, 13–14
pause(), 108
Phase Alternate Line (PAL), video format, 48
Pixel, dimensions, 48–49
play(), 108, 211
playbackComplete()195
Playback icon, customization , 88–91
Playlist
 advantages, 183
 array tutorial, 183–187
 Extensible Markup language tutorial, 187–195
playvideo(), 192
Preview window, Flash Professional, 38
Progressive frames, 51–52
Progressive video, selection factors, 54–55
Properties panel, Flash Professional, 32–34, 132
Prototyping
 functionally limited prototype authoring, 114
 paper prototyping, 113–114
 usability testing, 114
push(), 184

 241

Q

Quantization, analog-to-digital conversion, 40, 42
QuickTime
 Flash encoder, 56
 mobile video export, 214

R

Rack focus, technique, 18
RadoiButtonGroup class, 142, 153
Rectangle tool, Flash Professional CS3, 89
Resizing
 After Effects, 141
 encoding, 62–63
Room tone, recording, 22

S

Screen Matte, After Effects, 140
Script tag, 202
seek(), 108
Seek bar, customization, 94–96
setStyle, 100, 142, 153
setTimeCode, 100
setTone(), 156
Skinning
 Flash Professional CS3 imported videos, 6
 tutorials
 ActionScript writing, 96–104
 adding components to stage, 78–82
 base button, 84–88
 overview, 77
 playback icon , 88–91
 seek bar, 94–96
 toggle size button, 92–94
Sorenson Spark, compression considerations, 45–47
Sorenson Squeeze, encoder, 56
SoundTransform, 106, 109
Sprite class, 106

242

Stage, Flash Professional CS3, 30–31
StartVideo, 107
stop(), 124, 134, 226, 228
Streaming video
 advantages over progressive video, 210
 Flash Media Server and bandwidth detection, 211–212
 options, 210
 selection factors, 54–55
 streaming URL specifi cation, 210–211
Style tag, timed text tutorial, 173–177
StyleManager class, 152
SWFFix, dynamic insertion of Flash, 164
SWFObject, tutorial, 163–167
switch(), 143

T

tcString, 102
Text, adding to loops, 118–120
Text banner, creation in Flash video, 72–77
TextFormat class, 152–153
Tilt, guidelines, 13–14
timeCode(), 101
Timed text, see Closed captions
Timeline, Flash Professional CS3, 29–30
Title safe zone, irrelevance in Flash, 15
Toggle size button, customization, 92–94
Tool palette, Flash Professional, 31–32
Transform Gradient, see Gradient Transformation
Transparency
 After Effects creating Flash video with transparency, 138–144
 alpha channel video incorporation into Flash application, 138
 masking tutorial, 147–148
 Web video creation
 browser support, 144
 transparency export from Flash, 144–147
Tripod, importance, 14
24p format
 interfaced versus progressive frames, 52
 selection factors, 12

 243

U

UFO.js, dynamic insertion of Flash, 164
URLLoader class, 187, 191
Usability, testing, 114

V

VideoController class, 106–108
VideoEvent class, 124
videoHandler(), 135
Video playlist, see Playlist
Video tag, XML, 189
VP6, compression considerations, 46–47

W

Web 2.0, Flash popularity, 2
Web server, Flash compatibility, 167–168

X

XML, see Extensible Markup language

Z

Zoom, guidelines, 13

This page intentionally left blank

	Producing Flash CS3 Video: Techniques for Video Pros and Web Designers
	Copyright Page
	Contents
	Dedication
	Acknowledgements
	Chapter 1 Getting Started with Flash Video
	Video and the Web
	Before You Begin
	Tutorial: Inserting Flash Video in Flash Professional
	Tutorial: Inserting Flash Video in Dreamweaver
	Wrapping Up

	Chapter 2 Video Production Tipsfor Flash Video
	Shoot with the Best Possible Format
	Controlling Camera Motion
	Don’t Sweat Title and Action Safe Zones
	Simplify Backgrounds
	Get Good Exposure and Light Softly
	Shooting for Blue and Green Screen
	Recording Room Tone and Effects
	Wrapping Up

	Chapter 3 An Introduction to Flash Professional and ActionScript 3
	Getting Acquainted with Flash Professional CS3
	Creating Flash Documents
	Interface Overview
	Wrapping Up

	Chapter 4 Encoding Flash Video
	Analog and Digital Theory
	Compression
	Important Factors Regarding Compression
	Encoding Decisions
	Flash Video Encoding Settings
	Encoding Tutorials
	Wrapping Up

	Chapter 5 CustomizingFlash Video Players
	Custom Player Development
	Tutorial: Creating a Flash Video Text Banner
	Tutorial: Skinning the FLVPlayback Component
	Tutorial: Writing a Custom Player from Scratch

	Chapter 6 Interactive Video Concepts
	Designing Navigation and Interaction
	Backgrounds, Loops and Flash Video
	Tutorial: Repeating Loops
	Tutorial: Intro, Exit, and Return Loops
	Wrapping Up

	Chapter 7 Video Transparency and Effects
	Flash Video and Transparency
	Creating Transparent Video on a Web Page
	Masking Video
	Applying Blend Modes and Effects to Video
	Wrapping Up

	Chapter 8 Enhancing Flash Deployment
	Deploying Flash with HTML
	How Flash Video Is Embedded
	Browser Compatibility and Web Standards
	Flash Player Version Detection
	The EOLAS Patent and Active Content
	Tutorial: Using SWFObject
	Ensuring Your Web Site Can Serve Flash Video
	Wrapping Up

	Chapter 9 More FlashVideo Applications
	Displaying Closed Captions
	Displaying Cue Points
	Creating Video Playlists
	The External API

	Chapter 10 Flash Media Server andFlash Lite Video
	Serving Flash Video with a Streaming Server
	Flash Lite 2 and Mobile Video
	Tutorial: Import an Illustrator File into Flash Professional
	Tutorial: Writing ActionScript and Testing inDevice Central
	Wrapping Up

	Index

