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Preface 

This book contains papers first presented at the 4th International Workshop on Field- 
Programmable Logic and Applications (FPL'94), held in Prague, Czech Republic, 
September 7 - 9, 1994. 

The FPL'94 workshop was organized by the Czech Technical University and the Uni- 
versity of Kaiserslautern, in co-operation with IEEE Czechoslovakia Section and the 
University of Oxford (Dept. for Continuing Education), as a continuation of three 
already held workshops in Oxford (1991 and 1993) and in Vienna (1992). 

The growing importance of field-programmable devices is demonstrated by the 
strongly increased number of submitted papers for FPL'94. For the workshop in 
Prague, 116 papers were submitted. It was pleasing to see the high quality of these 
papers and their international character with contributions from 27 countries. The list 
below shows the distribution of origins of the papers submitted to FPL'94 (some 
papers were written by an international team): 

Austria: 7 Malaysia: 1 
Belgium: 1 Norway: 2 
Brazil: 1 Poland: 5 
Canada: 1 Republic of Belarus: 5 
Czech Republic: 5 Slovakia: 3 
Finland: 2 South Africa: 1 
France: 9 Spain: 4 
Germany: 17 Sweden: 2 
Greece: 2 Switzerland: 3 
Hungary: 2 Syria: 1 
India: 1 Turkey: 1 
Japan: 2 United Kingdom: 18 
Latvia: 1 USA: 19 

The FPL'94 Technical Program offers an exciting array of regular presentations and 
posters covering a wide range of topics. From the 116 submitted papers the very best 
40 regular papers and 24 high quality posters were selected. In order to give the indus- 
try a strong weight in the conference, there are 10 industrial papers among the 40 regu- 
lar papers. All selected papers, except one, are included in this book. 

We would like to thank the members of the Technical Program Committee for review- 
ing the papers submitted to the workshop. Our thanks go also to the authors who wrote 
the final papers for this issue. 

We also gratefully acknowledge all the work done at Springer-Verlag in publishing this 
book. 

July 1994 Reiner W. Hartenstein, 

Michal Z. Servit 
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Fault Model ing  and Test Generat ion for F P G A s  

Michael Hermann and Wolfgang Hoffmann 

Institute of Electronic Design Automation, 
Department of Electrical Engineering 

Technical University of Munich, 80290 Munich, Germany 

Abs t rac t .  This paper derives a fault model for one-time programmable 
FPGAs from the general functional fault model and an algorithm to 
perform test generation according to this model. The new model is char- 
acterized by the abstraction of functional fmflts from a set of possible 
implementations of a circuit. In contrast to other fmletional-level test 
generation procedures a fault coverage of 100% can be achieved regard- 
less of the final implementation of the circuit. 

1 I n t r o d u c t i o n  

As new technologies for the implementation of digital designs are developed 
there is also the need for adequate CAD tools to exploit new features or to 
address new problems. One of the most important new technologies that have 
been developed during the past few years is the Field Programmable Gate Array 
(FPGA). A FPGA generally consists of an array of programmable logic modules 
(LM) and a programmable interconnect area. 
Although architecture and complexity of FPGAs are similar to those of small 
gate arrays there are some important differences. In particular, test generation 
is affected by the lack of knowledge about the final physical implementation of 
the design. 
This is due to the fact that the last step of a design visible to the designer is a 
netlist of feasible modules. A module can be viewed as a black box with n inputs 
and m outputs. The behaviour of any output is given by a completely specified 
Boolean function of a subset of the n inputs. A module is called fe~asible, if it 
can be implemented by a single LM of the FPGA. 
Given a netlist containing only feasible modules a working FPGA can be ob- 
tained by the following two steps: personalization and programming. Person- 
alization is the process of choosing one of several possible configurations of a 
LM such that the LM performs the same Boolean functions as a given feasible 
module. Programming denotes simply the process of implementing the choosen 
personMization within the given FPGA. The actual personalization of the FPGA 
is choosen by the vendor's design tool without interaction or notification of the 
user. As the personalization is performed at the users's site a test of the per- 
sonalized FPGA can be only performed by the user after personalization and 
programming. 
For some types of FPGAs the manufacturer can test the device right after it has 
been manufactured. This way, the chance of a failure during programming can be 



eliminated or at least significantly decreased. As an example, for reprogrammable 
FPGAs like the Xilinx-FPGAs a large number of different personalizations can 
be tested at the factory and thus almost any programming problem the user 
could encounter can be anticipated. 
This method is not viable for one-time programmable FPGAs like the Actel- 
FPGAs [6]. In this case the manufacturer can test the circuitry of the device in 
its unprogrammed state only. Therefore programming faults can still occur [5]. 
Most programming faults can be detected on the fly by the programming equip- 
ment. However, some programming faults may still remain undetected that  cause 
the device to malfunction. Therefore, a test set for a personalized FPGA is still 
required. 
If a gate-level netlist of the circuit was available, a conventional gate-level test- 
pat tern generator could be used to generate the required test set. However, there 
is usually no information about the actual personalization available. Without 
this information it is not possible to generate a gate-level description of the per- 
sonalized FPGA even though the internal structure of the LM may be known. 
Therefore a gate-level testpattern generator can not be used to generate a test 
set for a personalized FPGA. 
This paper describes a method for deterministic testpattern generation in the 
absence of a gate-level description of the circuit. The paper is organized as fol- 
lows: 
In section 2 we will describe the fault model used for testpattern generation. Sec- 
tion 3 explains a method to generate the testpatterns according to this model. 
In section 4 we show some results of this approach and compare it to other 
approaches. 

2 Fault  M o d e l  

2.1 P r e v i o u s  W o r k  

Several approaches for test generation have been developed that deal with the 
lack of an exact gate-level description of a circuit [1] [2] [3] [5]. We will shortly 
discuss the application of those approaches to a netlist containing feasible mod- 
ules. 
In [2] each function g associated with a module is described in a two-level rep- 
resentation. A two-level AND/OR (or OR/AND) implementation of g is then 
generated. At this point a fictive gate-level description of the circuit is available. 
The stuck-at fault model is applied to all signals of the netlist and a gate-level 
test generator can be used to generate a test set. The reported results indicate 
that  the test set derived fl'om this fictive gate-level netlist yields a very high fault 
coverage for varying implementations of the module. However, this approach can 
not provide 100% fault coverage in a deterministic way. 
The approach described in [3] starts from the existing representation of g. Then 
a function f is derived by replacing some operations in the representation of g 
by other operations. At last a testpattern is selected that distinguishes g from f .  
For small circuits it has been shown that  taking the logic dual of small operators 



(like AND) in the representation of g is a good choice for varying implementa- 
tions of the module. However, this approach cannot provide 100% fault coverage, 
either. 
In [1] [5] any change in the truth table ofg  is considered. Therefore each possible 
input vector must be applied at the inputs of the module. This approach guar- 
antees 100% fault coverage of the module independently of the implementation. 
However, this approach can be used only for modules with a low number of in- 
puts due to its exponential complexity (2 '~ testpatterns for a function depending 
on n variables). 

2.2 Fau l t  M o d e l  fo r  F P G A s  

The fault model introduced for FPGAs is based on three assumptions: 

1. the unprogrammed LM is fault free 
2. the LM has n inputs and one output  
3. the number of feasible modules is far less than 22" 

An example for a FPGA containing this type of LM is the ACT1/2-architecture 
made by Actel [6]. 
Let a feasible function g be the completely specified Boolean function associated 
with a feasible module. The support sup(g) of g is the set of all variables g 
depends on. The set of all feasible functions is denoted by F. Then Py is the set 
of all personalization faults p with respect to g: 

Pg = {PIP E F \  {g} A sup(p) C_ sup(g)} (1) 

By the restriction of the support of p we do not allow a functional dependancy 
of p on arbitrary signals of the circuit. 
For the rest of the paper we will restrict ourselves to the single personalization 
fault model. This model assumes that only one module of the circuit is affected 
by a personalization fault. A module with an associated function g is affected 
by a personalization fault, if it implements a function p C Pg instead of g. 

The application of the personalization fault model requires the knowledge of 
Pg for every module. According to (1) this requires the knowledge of F which 
depends only on the LMs contained in a FPGA and the personalization facilities 
provided by the FPGA. The exhaustive enumeration of all personalizations of a 
LM delivers the complete set F for the LM. This computation has to be done 
only once for a given LM. 
As an example Figure 1 shows the LM used in the ACT1-FPGAs by Actel. 
This LM can be personalized by connecting an arbitary signal (vertical lines in 
Figure 1) including constant 0 (L) or 1 (H) to any input (horizontal lines). The 
LM in Figure 1 is personalized to implement the Boolean function g = xy. This 
can be done by establishing a connection at the highlighted crosspoints. 

One of the most important  characteristics of Pg is its size. The third column 
of Table 1 shows the size of Pg for this LM. The size of Pg depends only on the 
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Fig. 1. personalized ACT1 logic module 

Isup(g)l ! worst case IP~I lP-~l 
1 3 3 2 
2 15 15 11 
3 255 212 28 
4 65535 4,501 39 
5 4 • 109 45,481 43 
6 1 • 1019 268,443 47 
7 3.1038 1,132,370 51 
8 1 • 1072 3,806,057 57 

Table 1. Personalization fault set sizes 

number of elements in sup(g) but not on the truth table of g. The second column 
shows the size of Pg not taking into account the structure of the LM. 
As can be seen, the size of Pg does not explode exponentially even though there is 
no loss of information compared to a general functional fault model [1]. However, 
for more than five inputs the size of Pg is still too large for practical purposes. 
To reduce the size of Pg we now introduce the programming fault. 
A programming fault reflects a failure of the basic configuration element of the 
FPGA. Therefore the programming fault model requires knowledge about the 
technology of the FPGA. For the Actel-FPGAs the basic configuration element 
is the antifuse (AF). For an AF, a programming fault occurs if: 

1. an AF should connect two wires but does not 
2. an AF falsely connects two wires 



A programming fault does not necessarily cause a personalization fault. Further- 
more, some p E Pg may require a multiple programming fault to occur. Therefore 
a reasonable restriction on the number of programming faults that may occur 
simultaneously during the configuration of a LM may lower the size of Pg con- 
siderably. 
Let a denote a specific configuration of a LM. Let A denote the set of all possible 
configurations a. In case of the Actel- FPGAs a is a set of AFs that are pro- 
grammed. Then B C_ F x A contains all pairs (f ,  a) where a feasible function f is 
realized by the configuration a. Let X C A × A contain all pairs of configurations 
(a,, a2) that  differ by at most a single programming fault. Then 

Pg = { f [ ( f ,g )  E BX '~B -1 A f E Pg} 

is the set of all personalization faults with respect to g if at most n programming 
faults can occur simultaneously. This definition allows us to order the personal- 
ization fault sets according to n. 

(a) 

The last column of Table 1 shows the average size of P~ for the ACTl-architecture.  
The average has been calculated for all feasible functions, pg2 has been choosen, 
because it contains the case that AF1 has been programmed instead olAF2.  This 
is the most likely fault that  remains undetected by the programming equipment. 
As bridges between signal lines can be detected [6], these cases have been elimi- 
nated from p2 g '  

In Figure 1 the set al might be denoted by 

al = { (L ,1 ) , ( x , 2 ) , ( y ,  3 ) , ( L , 4 ) , ( L , 5 ) , ( L , 6 ) , ( L , 7 ) , ( L , 8 ) }  

Then the set 

a2 = {(H, 1), (x, 2), (y, 3), (L, 4), (L, 5), (L, 6), (L, 7), (L, 8)} 

is transformed into a p E pg2 with the LM now implementing the Boolean func- 
tion p = x + Y. However, it is not possible to find any set ai such that the LM 
implements the function g = ~ + ~ regardless of the initial personalization for 
g = xy if at most two programming faults are allowed. 

3 T e s t  G e n e r a t i o n  

In our approach, test generation is divided into two tasks: first, generation of 
testvectors using function identification, and secondly, testvector justification 
and fault propagation by testpatterns. The terms testpattern and testvector both 
denote an assignment of logic values to certain signals. A testpattern [ assigns 
signal values to all primary inputs t_ of the circuit, a testvector ~m to all inputs 
v m of the module m. 



3.1 T e s t v e c t o r s  

Let g(v) be a Boolean function and P = {. . .  ,pi(v), . . .} a set of Boolean func- 
tions p(v) (g ~ P) .  Then, funct ion  identification of g with respect to P is the 
process of calculating a set V of testvectors ~ E V that  uniquely distinguishes g 
from all p E P.  

We will now use function identification for test generation. For each mod- 
ule m, we calculate Vm by performing function identification of the associated 
function g,~ with respect to Pg. 

In order to obtain a small set of testpatterns, we try to minimize ]Vml. For 
that  purpose, we transform the problem of function identification to the well 
known problem of optimal matr ix  covering by constructing a coverage matr ix  
C,~ = (cij). A row i of C,~ corresponds to the i-th personalization fault pl, a 
column j to the j - th  testvector ~j. An element cij is set to 1, if personalization 
fault Pi can be distinguished from gm by applying testvector ~j to module m: 

{ lo i f  Pi(~J) ~ ffm(V--J) 
cij = else (4) 

A row i of the matr ix  is said to be covered by column j if eij = 1. Then V,~ 
can be directly derived from a minimal set of columns that covers all rows. Most 
often suboptimal heuristics are used to solve this problem, still guaranteeing a 
complete coverage of all rows, but possibly using slightly more columns than 
necessary. 

3.2 T e s t p a t t e r n s  

In most cases, the modules' inputs and outputs cannot be directly accessed. 
Therefore, testpatterns have to be found that justify the testvectors, and prop- 
agate fault effects from the module's outputs to primary outputs. Some FPGAs 
provide features that  allow direct observation of LM-outputs. However, this is 
not considered here to avoid loss of generality. 

A testpattern [ applies a testvector ~,~ on module m, if ~ justifies the signal 
lines v m according to V-m, and, at the same time, propagates a fault effect from 
the output  of module m to one or more primary outputs. A testvector +_',~ is 
available, if there exists at least one i that applies ~rn on m. 

Sophisticated methods for justifying lines and propagating fault effects are 
known from test generation for stuck-at faults on gate-level (e.g. [7]). Since all 
parts of the circuit except the considered module m are assumed to be fault-free, 
any gate-level representation of the circuit can be used to generate a testpattern 

that  applies a testvector ~-m on m. Thus, traditional test generators, like [7], 
can be easily adapted for this purpose. 
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3.3 Description of the Algorithm 

Figu re  2 shows the  bas ic  s teps  of  how we ca lcu la te  a set T of  t e s t p a t t e r n s  ~ which 
appl ies  a p p r o p r i a t e  t es tvec tors  on the  modules ,  such t ha t  funct ion  iden t i f ica t ion  
is p e r f o r m e d  for each m o d u l e  of the  circuit .  

p r e p r o c e s s i n g  
input circuit and Pg 
sort modules and initialize T = {} 
for each module m: initialize Vm = {} 

f u n c t i o n a l  t e s t p a t t e r n  g e n e r a t i o n  
for each module m 

initialize T m =  {} 
derive Cm from gm and P~ 
for each -Vrn E Vm 

remove a~ p covered by ~m from G'~ 
f u n c t i o n  i d e n t i f i c a t i o n  

while Cm not empty and still -vm unaborted 
calculate (sub-)optimal ~,~ 
Itry to generate t that  applies ~,,~ 

-vm available ? 
zes no ]unknown 
remove remove mark £m as 
all rows covered all rows only aborted 
by ~m from Cm covered by -vm 
V.~ = V,,, U {-vm} from Cm 
T~ = T.,  u { [ }  

Cm empty? 
yes no 

mark p corresponding to remaining 
rows as aborted faults 

f a u l t  s i m u l a t i o n  
for each module n # m 

for each _/C T,~ 
does / apply _~ ? 

yes no 
v,., = v,, u {_G} 

T = T u T m  
p o s t p r o c e s s l n g  

do final test set compaction 
output  T 

F ig .  2. steps of test generation 

Specia l  care has  to be taken  if a tes tvec tor  is found to be unava i lab le .  Such a 
£m m u s t  not  be used for funct ion ident i f ica t ion.  Therefore ,  approaches  like [4], 



which use a precalculated, fixed V,~ to determine T, cannot guarantee a complete 
coverage of all personalization faults. 

Instead, the availability of_vm must be considered already when calculating 
Vm such that V,,, contains only available testvectors. Since checks for availability 
are expensive in terms of CPU-time, we only check on demand. For this, we 
closely combine function identification and testvector application. 

The center part of Figure 2 illustrates our suboptimal heuristic for function 
identification considering availability of testvectors. We choose one (sub-)optimal 
covering column of Cm and immediately after that check the availability of its 
corresponding ~r~" If ~ is available, it is added to V,~, all rows covered by the 
chosen column are removed from Cm, and the testpattern ~ applying ~,~ is added 
to T. Testpattern ~ was already calculated when checking the availability of ~r~" 

If however ~m was found to be unavailable, ~rn must not be added to Vm, and 
the column corresponding to ~,~ is removed from Cm. In addition, all rows in Cm 
that  now contain only zeroes are removed. These rows correspond to redundant 
personalization faults, which can be distinguished from gm only by unavailable 
~rn and thus do not affect the behaviour of the otherwise fault-free circuit. 

This process of choosing a ~m, checking its availability and adjusting C,~ is 
repeated until Cm is empty or contains only columns corresponding to aborted 
~m" Hereby, a ~0~ is called aborted if its availability check could not be performed 
completely, e.g. due to limited computing resources. 

To keep ITI small, we take advantage of the fact that a single ~ justifies a 
testvector on every module of the circuit. Moreover, some ~n, including {)m at 
the module rn under test, are not only justified, but also applied by ~. For this, 

must also propagate a fault-effect from the output of module n to one or more 
primary outputs. Then ~n can be added to V,~ of module n at no expense in 
terms of additional testpatterns. 

When processing module n, the ~_~ E Vn applied in advance are considered 
before performing function identification by removing all rows from C,~ that  are 
already covered by the columns corresponding to ~,~ E V~. This most often re- 
duces the size of Cn significantly, requiring less additional ~,~ to completely cover 
Cn. Additionally, the effort to calculate these ~n is strongly reduced, especially 
when processing modules with many inputs. 

Since function identification is performed on a local basis, considering only 
one module at a time, and due to the global effect described above, the order in 
which the modules are processed influences ITI as well as the effort to calculate 
T. One possible criterion to sort the modules is their number of inputs Iv_.,,]. 
The later a module m is processed, the more testvectors ~rn are applied on m 
before actually starting function identification of gr~- Thus, modules with a high 
number of inputs should be processed last. 

After generation of testpatterns is completed, final test set compaction strate- 
gies, which are well known from traditional test generation, can be applied. For 
example, a testpattern simulation in reverse order of generation ([7]) often pro- 
vides test set compaction up to 30%. 



4 Implementation and Results 

The  previously described a lgor i thm has been implemented in C. We have used [7] 
as the required gate-level A T P G  system. Table 3 shows some results on several 
feasible netlists for Actel FPGAs .  For each circuit the number  of LM, the number  
of  inputs  (PI),  the number  of ou tpu ts  (PO) as well as the average number  of  
inputs  per LM (Ivl) are given in Table 2. 

circuit LM Ivl PI PO 

1 51 3.02 8 4 
2 166 2.83 22 29 
3 295 3.19 135 107 
4 440 3.32 38 3 

Table  2. Circuit statistics 

Table 3 shows the results of test set generat ion for several approaches.  Enu- 
meration refers to [1] where all possible testvectors for a given module  are enu- 
merated .  Stuckat assumes an arbi t rary  two-level representat ion for each module  
and performs tes tpa t te rn  generat ion according to the single s tuck-at  fault model.  
For this approach 100% fault coverage (FC) according to the underlying model  
was achieved for each circuit. 

circuit 

1 

2 
3 
4 

enumeration stuck-at p2 pg 

70 9.4 _1 _ 40 4.9 91.96 99.41 60 7.4- 99.92 63 8.7- - 
156 5I . i  88 24.7 93.49 99.80 119 39.0- 99.93 139 45.1 - - 
328 238.9 - -  140 91.6 96.64 99.81 221 152.6- 99.99 229 161.0- - 
921 1169.0 - - 366 434.9 93.47 99.80 699 843.4 - 99.98 738 913.0 - -I 

Table  3. Fault coverages 
a indicates 100 by defmition 

pg2 and Py use the single personalizat ion fault model  (SPFM) according to 
section 2. For each approach the four numbers  given for each circuit are: the size 
of  the complete  test set, the CPU- t ime  used, FC with respect to p2 and FC with 
respect to Pg. 
The  enumera t ion  approach achieves 100% FC independent ly  of the fault model .  
However, it requires significantly more  CPU- t ime  than  the other  approaches and 
it also generates the largest test sets. The  s tuck-at  model ,  on the other hand,  
produces small test sets and uses the least amoun t  of CPU-t ime.  However, the 
overall FC according to the S P F M  is quite low. 
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The results for pg2 show, that the restriction to at most two programming faults 
still yields FC exceeding 99.9% with respect to the full SPFM. 

5 C o n c l u s i o n  

We have developed a new fault model that is suitable for most one-time pro- 
grammable FPGAs. It is possible to achieve 100% fault coverage without the 
knowlegde of the actual implementation of the circuit. We have also developed a 
refinement of this fault model if some knowledge about the FPGA technology is 
available. An algorithm has been outlined to perform testpattern generation ac- 
cording to this model. The results show, that this approach is feasible for current 
FPGAs. It is also shown, that previous fault models either require a considerably 
larger test set even for modules with few inputs or are unable to achieve 100% 
fault coverage. 

R e f e r e n c e s  

1. Thirumalai Sridhar and John P. Hayes: "A Functional Approach to Testing Bit- 
Sliced Microprocessors". - In:IEEE Transactions on Computers, Vol. 30, No. 8. 
(1981) pp. 563-572 

2. Utpal J. Dave and Janak H. Patel: "A Functional-Level Test Generation Method- 
ology using Two-Level Representations". - In:26th ACM/IEEE Design Automation 
Conference DAC. (1989) pp. 722-725 

3. Chien-Hung Chao, F. Gail Gray: "Micro-Operation Perturbations in Chip Level 
Fault Modeling". - In:25th ACM/IEEE Design Automation Conference DAC. (1988) 
pp. 579-582 

4. Brian T. Murray and John P. Hayes: "Hierarchical Test Generation Using Pre- 
computed Tests for Modules". - In:IEEE International Test Conference. (1988) pp. 
221-229 

5. A. Zemva and F. Brglez and K. Kozminski: "Functionality Test and Don't Care 
Synthesis in FPGA ICs". - In:MCNC, Research Triangle Park, NC, Technical Report 
TR93-04. (1993) 

6. Khalet A. E1-Ayat, Abbas E1 Gamal, Richard Guo et ah "A CMOS Electrically 
Configurable Gate Array". - In:IEEE Journal of Solid State Circuits, Vol. 24, No. 
3. (1989) pp. 752-761 

7. M. H. Sehulz, E. Trischler and T. M. Sarfert: "SOCRATES: A Highly Efficient 
ATPG System". - In:IEEE Transactions on Computer-Aided Design Vol. 7, No. 1. 
(1988) pp. 126-137 



A Test Methodology Applied to Cellular Logic 
Programmable Gate Arrays 

Ricardo de O. Duarte 1 and Mihall Nicolaidis 

Reliable Integrated Systems Group IMAG/TIMA 
46 Av. Fclix Viallet, 38031 - GRENOBLE Cedex France 

Phone : (+33) 76 57 46 19, Fax : (+33) 76 47 38 14 
e-mail: duarte@ verdon.imag, fr 

Abstract.  This paper describes an approach for testing a class of 
programmable logic devices called Cellular Programmable Gate Arrays. The 
flexibility in the selection of logic functions and the high number of inter- 
connections in this class of devices turns test a complex task. It has led to the 
proposition of an cfficicnt tcst procedure based on some functioc= properties. 
The rcgularity of the proccdurc permits that all logic cells in the dcvice can bc 
tested completly for functional faults at the same time, whenever is possible. 
It providcs a reduced number of rcprogranlming times during test mode and a 
possibility of testing more devices in a defined period of time. 

1 I n t r o d u c t i o n  
Nowadays  there are a lot of  FPGAs  architectures moving the market  of  

PLDs, some of  them are cellular  logic based [1,2]. This means that the architecture 
is formed by a matrix of  basic logic cells,  able to he p rogrammed  to perform a 
combinatorial  or sequencial  logic function of  few inputs and outputs and at the 
same time transmit data to neighboors cells. Such kind of  devices  are suited for 

implemental ion of  dala paths circuits. 

The main concern of  EPGAs companies  is produce a f lexible  device 
sufficient to attend the costumer necessities.  Most  of  these devices  present  a high 
degree of testing complexi ty ,  because of the large number  of  connect ions  that they 
present and the large number of  pattern configurat ions that they can be 
programmed.  When the flexibil i ty increases, the device testing complexi ty  rises in 
the same direction. By the other side, the users want to program and test their 
circuit and want to be sure that no faults will  come from the p rogrammable  device.  
The guarantee that the device is fault free requires high costs in the final product  
and high t ime dedicated to test, if a suited test methodology  is not applied.  

The rel iabil i ty of  programmable  devices is an important  subject  that 
interest industries, university researchers and consumers.  Although the problem has 

I Under grant supported by RHAE-CNPq, Brazil 
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importance and difficulty to be treated, there are few works approaching test of 
programmable devices [5,6,7]. 

The proposal described in this work is to present an efficient test 
methodology generalized to all cellular logic based PGAs. The method consists in 
the minimization of the reprogramming times during off line test mode. It generates 
a set of testing configurations that when programmed, permit to test all logic cells in 
the matrix at the same time minimizing the final test duration by device. This 
approach proporcionate that a large number of devices can be tested in short period 
of time. 

2 Problem Illustration 
Cellular logic programmable gate arrays are basically composed by a 

flexible logic cell matrix, where each cell can be programmed with different 
configurations to perform small logic functions, they are also known as fine-grain 
architectures [3,10,12]. There are some companies that produce these devices. In 
order to turn clear and illustrate the problem description, we will fix our attention to 
one of these devices. 

The device comercialized by Algotronix Co. [1], is formed by logic cells 
arranged in form of matrix, programmable I/O circuits to perform the connection 
between logic cells and pins, decoders used to do the device address programming. 
The figure 1 represents well the array architecture at this hierarquical level. 

--~ O 
O 
O O 

o ,, 

2 

I/O block N 

ARRAY 

of 

CELLS 

col .  d e c o d e r  

I/O block S 

O" 

Iglob. ol 

Fig. 1. Logic Programming Device Architecture 

Each logic cell in this device, is formed by multiplexers and static RAMs. 
The multiplexers are mainly responsable by the data selection among the routing 
signals available to each logic cell during function execution. More specifically, they 
have three different tasks in the device: they are used to select which logic function 
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the cell will perform (OR, AND, XOR, etc...), the inputs that will take part in the 
function execution (Nin, Sin,Ein,Win, etc...) and the data that will be tranfered or 
not to a nearest neighboor cell (Nout, Sou t, Eou t and Wout). The two first tasks 
presented is refered as intra-cell routing (fig. 2a) and the last one as inter-cell 
routing (fig. 2b) [4,11]. The static RAMs are addressed by decoders and are used to 
program the multiplexers [ 1 l]. 

X1 

X2 

1 

0 

7,2 
1 

0 

13  

Fig. 2a. Intra-CeU Routing 

Xl X2 

N in 
$ in 
E in 

W in 

F out 
G1 
G2 

N out $ out E out W out 

Fig. 2b. Inter-Cell Routing 

Each cell can be programmed to implement one of the logic functions 
described in table 1, the function unit - FU responsable for this task is the Universal 
Logic Module (ULM) [11] - represented in figure 2a . Each one of these logic 
functions can be configured in many different ways depending on the combination of 
pattern inputs (X1 and X2). Such inputs come from the selection of inter and intra- 
routing multiplexers (N,N,S,S ,E ... .  ). 
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n ° 

0 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Table 1. FU Programming Table 
Ftmc Y1 Y2 Y3 
zero xl 0 0 
one x 1 1 1 
xl xl 1 0 

xl 0 1 
x2 x 1 x2 x2 

xl x--'2 72  
xl • x2 xl x2 0 
xl • x2 xl ~ 0 
x-I'. x2 xl 0 x2 
x--I'- x--'2- xl "0 x'x--'2 
xl+x2 xl I x2 
xl+ x'~2" xl 1 
x-T+ x2 x 1 x2 1 
x-'f+ x-'2" xl x'~ 1 
xlQx2 xl x-"2- x2 
xlOx2 xl x2 x'~ 
D clkl elkl D Fout 
I3 c~1 clkl "I3 Fout 
D elk2 elk2 D Fout 
D elk2 elk2 D Fout 

At this point, we can express the large number of  pattern configurations 
available by a basic unit in a cellular logic based structure in form of  a summing. In 
a general manner the following expression can represent the set of  pattern 
combinations (Z) in terms of available inputs and number of  logic functions - f(i) 
that the function unit can perform. 

nf 
Z = • f( i)  and f( i )  = cnnai(i) 

i=l nnpi(i) 
where: n npi (i) is the number of inputs of function f(i); 

nnai(i) is the number of available inputs to f(i). 

n f  is the total number of functions that the FU can perform. 

For the case of  CALl0242 - Algotronix Co. [1], we have this value " 

Z = 784 

Concerning the test of  cellular logic structures, we have to assure that every 
logic cell in the array is fault-free, in other words, that every cell can be 
programmed with whatever function input configuration C, (C ~ Z) accepted by the 
programming table, without presenting functional faults. Test the internal 
connections need programming to be applied, because the lack of  testing points 

2 CALl 024 is trademark ofA lgotronix Ltd, 
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within the logic cell causing a low degree of controlability and observability in array 
level. 

Find a group of test vectors that test the array completly could be easily 
made if the logic cells would be programmed as just one type of logic gate. We could 
use an ATPG program to do this efficiently. The reason that turns this procedure 
unacceptable for using in programmable devices is the large number of different 
logic gates that it can simulate when programmed. 

The problem of finding an optimized set of configurations that allows to 
test the whole array in a minimum time is a NP-complete problem [9]. The solution 
of problems of this class is heuristic. There are no classical algorithm that can solve 
or give an answer to the problem in a reasonable CPU time without applying some 
restrictions that simplify the problem. 

While architecture and synthesis in logic programming devices are subjects 
frequently in discussion, the programmable device testability are rarely rose. The 
research works come from people that take knowledge from the device architecture 
data sheets or come from people that work directly in companies that produce them. 
The approach presented in the next section, determine a regular methodology that 
can be applied in any cellular logic based architecture, without needing to spend 
time in finding programs or strategies to test completly the device in a minimum 
period of time. 

Besides the test all logic cells in the array at the same time, the method 
proporcionate the functional fault coverage in the I/O circuits that perform the 
connections between the pins and the logic cells. Once the group of configurations is 
found, the total test time per device can vary proporcionally direct with the number 
of logic cell that the array content. 

3 Description of the Method 
In order to become clear the solution proposed, the test of cellular logic 

architectures will be divided in two hierarquical levels: the logic cell and the array 
level. 

3.1 Logic Cell Level Considerations: 
The test in a logic cell level could be performed, through the programming 

of all pattern configurations (one after the other) and checking the cell outputs (by 
one primary output) for the application of appropriate test input vectors, when the 
configuration would be programmed. Although this kind of procedure are very 
efficient in terms of guarantee of device reliability, this is not feasible in practice due 
to high consuming time taken to program and test completly each device. The 
solution proposed is, select determined coiLfigurations satisfying certain conditions 
that will introduce considered reductions in the final off-line test per chip. 
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The objective in the logic cell level is to find this group of configurations 
that test all physical connections within a cell for functional faults. The advantage 
of this logical level fault model, is that it is not dependent on the implementation 
details. The logic cell can be illustrated by a general model that contains two 
blocks. One block consists of the functional unit - FU, which implements the 
expected function, while the second block (SB for Selector Block), selects the 
physical inputs to be applied to the functional unit. In some cases [1,4], a 
reconvergent path that brings back the output of the functional unit to the SB input, 
is included in the model for the representation of the sequential functions. 

Physical - -  
Inputs 

Ouwut 

Fig. 3. Logic Cell Test Model 

First, all the paths that link the elements contained in SB, have to be 
covered by the test in order to check any functional fault in this block. This means 
that any fault p/a, where p/a denotes a single fault on a path p with a logic level a, 
must be tested by a vector that produces the complement of a on p, and sensitizes p 
to a SB path. Then, we must ensure that the eventual errors are really propagated by 
the FU block, through the appropriate programming mode. The objective for 
reducing the test length, is to test the largest number of paths at the same time. In 
particular, it must be avoid the worst case occuring when a vector covers a single 
path. On the other hand, the FU block, has a reduced number of inputs and can be 
therefore, exhaustively exercised (i.e.application of the 2 n combinations of its n 
inputs). This will lead to the detection of all the targeted functional faults at the 
inputs or outputs of the FU block and also of all the faults which are located inside 
the logic cell. We also note that the interconnections between cells, which 
constitute in fact the extension of the SB most external paths, are automatically 
tested when all the paths of the SB are covered. Thus, the only requirement is to 
verify that all the SB paths are covered. 

The representation of Algotronix logic cell structure as the logic cell test 
model adopted (SB plus FU) is shown in figure 4. 
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_• xaJl 

] J 

SB 

Y F ~  Fout 

Fig. 4. Algotronix: Logic Cell Test Model 

3.2 Array Level Considerations: 
At the array level, the objective is find a way of applying the test to all 

cells at the same time minimizing the number of reprogramming times in the device 
test procedure. 

This can be done by choosing, whenever is possible, cells configurations 
that permit to test the logic cell and propagate the error through neighboor logic 
cells until an observable output of the array, Some functions make possible the test 
of several cells in a row or a column at the same time. Other functions allow only 
the test a single cell in a row or a column by time, since the test of another would 
stop the propagation of the eventual errors. In this case, the application of a test 
vector depends on the number of cells in the row and column (i.e. the number of 
columns or rows in the array). 

This situation introduces the requirement of classication functions that the 
logic cell can be programmed according with the propagation property: 

COMBREPI: combinational functions of one input and one output, that 
has as characteristic the good propagation considering the array level. Ex.: 
functions n ° 0 to 5 in table I - easy to be tested. 

COMBREP2: combinational functions, XOR based. In the specific case, 
functions n ° 14 and 15 of table I - easy to propagate and to be tested too. 

NONCOMBREP: functions like ANDs, ORs, NANDs, NORs, etc... 
Difficult to be tested or propagate errors, once arranged in array form. 
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SEQUENTIAL: latches and flip-flops. Easy to be tested (good 
propagation), The ceils are arranged as big shift-registers. 

In figure 5a and 5b, we can see that every logic cell in the array is 
programmed with a COMBREP1 or COMBREP2 function respectively. In figure 
5a, the application of the input combination {(1),(0)} to all the cells of a row (or 
column) will not stop the propagation of an eventual fault 1/0 in any cell, where the 
notation a/b means that under the presence of a fault the correct value a is 
transformed in a faulty value b. The same association can be done in 5b, with the 
possible set of inputs {(0,0),(0,1),(1,0),(1,1)} and the respectives output/fault 
{(0/1),(1[0),(1[0),(0[1)}. These functions present the property of good transmission 
of possible faults (in function of any inputs configuration) when arranged in arrays. 

Configuration: X1 = West 

{ ( I  . ,Oei/Fault)} = { (0 ,  0 /1 ) ,  ( 1 , 1 / 0 ) }  
W1 

Function: X1 ~ X2 => Configur.: East t~ South 

Tlsl T 

~0 .  
n l  

~ , Ig Icl 

T si 

{ (Isi, Iei, Owi,Oni/Fault ) } = { (0,0,0,0/1),(1,1,0,0/1), 
(0,1,1,1/0),(1,0,1,1/0) } 

Fig. 5a. Function Fout -- X1 Fig. 5b. Function Fout -- XI@X2 

On the contrary, in the logic array of figure 6, the application of the input 
combination {(0,0),(0,1),(1,0),(1,1)} to all cells of the row (or a column), will hind 
the propagation of fault 0/1. They are the NONCOMBREP functions. To test a cell 
with no observable outputs and controlable inputs using one of this functions, would 
be necessary to program logic cells to propagate inputs to the target(s) cell(s), 
program the target(s) cell(s) with the adequated configuration (NONCOMBREP 
function) and program the remaining cells to propagate the output to a primary 
output (output pin) of the array. 
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Target Configuration => North ̂  West 
Configuration for Transmission => X1 = West 

In2 

I .  

r 

, On2 

{( Iwi, In2 ' Oei ' On2/Fault) } = {(0,0,0,0/1),(0,1,0,0/1), 
(1,o,o,o/1),(1,1,1,1/o)} 

Fig. 6. Function Fout = XI^X2 

For the paths which are shared by the SEQUENTIAL and COMBREP 
functions, is preferable to perform the test by programming COMBREP functions 
first. Indeed, programming the cells to execute SEQUENTIAL functions results in 
the construction of shift registers, which require test length proportional to the 
number of rows or columns of the array like in the case of the NONCOMBREP 
functions. For that reason, the programmation of SEQUENTIAL functions during 
the test is done only if necessary, that is, if a path is only dedicated to a 
SEQUENTIAL function or if the COMBREP functions do not verify the conditions 
of propagating errors. By the way, there is a main advantage in testing a 
SEQUENTIAL function configuration (forming a big shift register) beyond testing 
specific paths, is the test of high working frequency operation in the device. 

3.3 The Suggested Proposition: 
For our luck, some considerations can be assumed turning the problem 

easier to be solved. The first consideration take into account is that some function 
configurations, are easier to be tested in array level (COMBREP1 and 2) than others 
due to the property of transmission faults when they occur [8]. The second 
consideration is that some configurations test a path or a set of paths that are not 
tested by the most remaining configurations. This lead us to conclude that they will 
certainly appear in the final solution of the problem. A way to distingt one 
configuration to another is to attribute ponderated weights, according to the paths 
set description that each one owns when executed. In the beginning an analyse of 
occurrence of each path in the logic cell model (SB + FU) is performed, after is 
calculated and attributed a weight wj for each path j, considering the total number 
of configurations C ~ Z. Then the general expression can be formulated as: 
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wj  = n__.C_C; where nc  is the number of occurence in configurations (C e Z) of path j, 
nT 

and nT is the total number of configurations C ~ Z 

The biggest weight would be: wj = 1 in the case of all configurations 
having this path j in its set of paths. And the smallest would be: 

wj = l /n ,  where n is the total number of configurations C in Z 

meaning that just one configuration C has the occurence of this path j in its paths 
set description. After calculating the path weigths, every configuration weight w C 
can be calculated: 

i n  

wC = 11 Wl; where are all weights of paths covered by each configuration C; 
1=1 

m is the number of paths in the set path description of C 

Once these simplifications are assumed, we reduce our problem of 
searching a minimum set of configurations that covers all paths in the logic cell, to 
a searching in specific sets of configurations (COMBREP1, COMBREP2, etc...). 
The problem is divided in small problems, where at the end, the solutions of each 
problem are took into account to find the optimized one. Therefore a greedy 
algorithm is well suited to be applied to produce the partial results of searching in 
each set of  configuration. In the context, we can summarize in a few lines below, 
the procedure adopted. 

Condition 1 to be satisfied: fill-up all paths in the logic cell (SB + FU). 
Condition 2: find the minimum group of configurations. 
Divide all configurations in specific groups (Combrepl, Combrep2, etc...) 
Calculate weights to the paths to be tested - wj. 
Calculate weights to all configurations - w C (weights calculed as a product of all 
paths) 
Start selection by Combrepl group { 

iflsatisfy condition 1) { 
.Find all the set(s) of configurations that satisfy the condition 1 
according with the following selection way (Greedy Algorithm): 
.Choose the configuration C E Z that has the greatest number of 
paths still not verified, in case of equality among many 
candidates, choose the one(s) with smallest(s) weights w C. 

J 
Select and store which set(s) has the smallest number of configurations to 
satisfy Condition 2 to this group of functions. 
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Do the same with Combrep2 group { 
if(satisfy condition 1) { 

.Find all the set(s) of configurations that satisfy the condition 1 
according with the following selection way (Greedy Algorithm): 
.Choose the configuration C ~ Z that has the greatest number of 
paths still not verified, in case of equality among many 
candidates, choose the one(s) with smallest(s) weights w C. 

Select and store which set(s) has the smallest number of configurations to 
satisfy Condition 2 to this group of functions. 

J 
Compare and choose the best set taking into account all previous configurations 
sets coming from the last group analysis, if  they exists - Condition 2. 

Do the same with Combrepl + Combrep2 
Do the same with Combrepl + Combrep2 +Sequencial 
Compare and choose the best set taking into account all previous configurations 
sets coming from the last group analysis, if they exists - Condition 2. 

iflstill not satisfy condition 1) 
- Choose between the noncomrep configurations, the one(s) that permit to 

satisfy the conditions and produce the results. 

4 Conclusion and Future Work 
At the present time, is being implemented the procedure described. It was 

tried an implementation of a greedy algorithm without previous selection or dealing 
with data configurations patterns and it led in a high consumming CPU time. Report 
of results of  this work applied to comercial devices will be published soon. 

The method presented in this paper open a wide area of industrial 
interesting and turn the attention of people involved with programmable devices to 
test and the reliability. 

As was explained, the method enable that cellular logic architectures can 
be tested in a regular manner, providing an optimized testing time to be applied in 
such devices. The final aim is to extend and try the method to other programmable 
devices. 
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Abs t rac t .  A new approach to the layout of FPGA's is presented. This 
approach integrates replacement and global routing into a compound 
task. An iterative algorithm solving the compound task is proposed. This 
algorithm takes into account restrictions imposed by the rigid carrier 
structure of FPGA's as well as the timing requirements dictated by the 
clocking scheme. A complex cost function is employed to control the 
iterative process in order to satisfy all restrictions and to optimize the 
circuit layout efficiency and performance. 

1 I n t r o d u c t i o n  

Field programmable  gate arrays (FPGA's )  provide a flexible and efficient way 
of synthesizing cornplex logic ill a regular structure consisting of predefined pro- 
gralnnlabte blocks and predefined programmable  routing resources (path pat- 
t.erus), l)ue to the easy access of CAD tools that  provide a fast turnaround time, 
the populari ty of F P G A ' s  is increasing. In comparison to the other implementa-  
tion styles (e.g. full custom, s tandard cells), the F P G A  layout design is simpler 
because of a rigid architecture. In spite of this the FPGA layout problem as a 
whole is intractable 1 [2], [6], [7], and is usually decomposed into subproblems. 
The typical sequence of subproblems is "initial p lacement -  replacement - global 
,'o,~.ing- (>tailed routing" [11, [21, [6], [71. 

The aim of the initial placement phase is to determine the non-overlapping 
(legal) loca.t, ions of all blocks on the chip area. 

The replacement is the optimization of an initial placement using tradit ional  
il:eral.ive techniques (displacement of a single block, pairwise interchanges, etc.) 
with respect to the cost function based on an estimation of the total  wire length 
and/or  local density of wires. 

The global routing is a preliminary planning stage for the detailed routing in 
channels. The aim of this subtask is to determine a macropath  for each net so 
thai. detailed routing can be accomplished efficiently. Global routers operate on 
interchannel connections and determine which segments of channels are traversed 
by a given net. The pr imary objective is to avoid channel overflow. 

The detailed routing phase specifies the detailed routes (physical connections 
of pins) for all nets. Channel routers or maze routers are often used for this 
purpose [1], [2], [7]. 

i NP-hard. 



24 

Traditionally, all these subproblems are solved independently using rather 
poor optimizing criteria based mostly on an approximation of the total length 
of wires [2], [3], [7]. Moreover, the rigid structure of routing resources is often 
not taken into account in the placement and global routing phases. This is why 
the results achieved often do not meet timing requirements and/or  are far from 
the global opt imum in spite of the fact that  many efficient techniques have been 
developed that provide near opt imum solutions to all the above subproblems. 

The rest of the paper is organized as follows: Section 2 outlines the main idea 
of our approach; in Section 3 there is a discussion of a routing model employed. 
Section 4 describes an integrated cost function. Sections 5 - 7 describe the basic 
steps of our approach, i.e. initial routing, replacement and rerouting. In Section 
8 we draw conclusions. 

2 M a i n  i d e a  o f  i n t e g r a t e d  a p p r o a c h  

In this article, we propose a new layout technique based on the overlapping of the 
replacement and global routing subtasks. The main idea of our approach can be 
briefly stated as follows. First, the initial placement is constructed independently 
using traditional techniques and a traditional cost function. Then, an iterative 
replacement combined with global routing simulation is performed. A precise 
estimation of a net topology respecting a carrier structure is employed to provide 
a sound basis for the subsequent detailed routing. 

We decided to integrate replacement and global routing into one compound 
task because of two reasons: 

• The results of global routing provide a good approximation of the final 
layout. 

• Computat ional  time can be held within reasonable limits because models 
employed (global graphs) are relatively small [5]. 

The task of replacement is naturally suitable for the application of iterative 
algorithms. The quality of a layout during the iterative process is measured by 
a cost function which should take into account two (often contradictory) objec- 
tives: 

• To satisfy restrictions imposed by the predefined routing resources. 
• To optimize a layout in terms of performance, i.e. to maximize the applicable 

clock frequency. 

Thus, we proposed an integrated cost function. In contrast to traditionally 
used cost functions, it originates from the estimation of the nets topology. The 
estimated topology of a net has to take into account the available routing re- 
sources (predefined paths on a carrier) which are expressed in terms of a global 
routing graph. According to our experience [5] a Steiner tree constructed in a 
global routing graph provides a good approximation of the final (detailed) topol- 
ogy of a net. Consequently, the delay of a signal can be estimated adequately. 
The proposed integrated cost function consists of two constituents. The first 
one is a nonlinear function measuring local congestion of wires with respect to 
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the channel capacity constraints. The second constituent is a nonlinear function 
based on an estimate of wiring delay with respect to the delay constraints. 

The idea of the integrated layout synthesis for FPGA's  can be described as 
follows: 

INTEGRATED LAYOUT SYNTHESIS 

1. [ Preliminary timing analysis ] Generate the bounds on the delays which 
the placement/global routing algorithms have to satisfy for all signals. 

2. [ Initial placement ] Determine the non-overlapping (legal) locations of all 
blocks on the chip area minimizing an estimation of the total routing length. 

3. [ Initial routing ] Build a global routing sketch for the initial placement 
and calculate its cost Q. 

4. [ Replacement ] Synthesize a legal placement permutation.  
5. [ Rerouting ] Modify the sketch and calculate a new cost Q'. 
(5. [ Selection ] If Q' < Q, accept the permutat ion (fix the current place- 

me,it and the routing sketch, set Q := Q' ). Otherwise restore the previous 
situation. 

7. [ ,flopping ,',ties ] If all placement permutations have been explored (or 
limits on number of explored permutations and/or  calculation time have 
been exceeded) then co~tinue. Otherwise repeat from Step 4. 

8. [ Global rouling ] Detail the current routing sketch up to the necessary 
level. 

9. [ Detailed routing ] Construct detailed routes through the available paths 
that comply with the global routes and that  obey detailed routing con- 
st.raints. 

Obviously, more complicated rules controlling the iterative process (see Step 6) 
can be employed, e.g. simulated annealing. 

leurther, we will focus our attention on the core of our approach that is 
rep,'oscnl;c'd by Steps 3 - 5. 

3 G l o b a l  r o u t i n g  g r a p h  

Over the last years, several companies have introduced a number of different 
l,ypes of FPGA's  [1]. To simplify the argument, we will further consider the 
so called "symmetrical array" architecture [1], [9]. The central part consists of 
au array of identical basic cells surrounded by vertical and horizontal routing 
cham/els. The I /O cells are located around the central part. 

The aim of global r'o~tling is to determine how wires maneuver around cells. 
\Vc umke this determinatio~ by finding paths in an appropriate global routing 
graph (7 = (V, E) which is a natural abstraction of the chip architecture. The 
vertices represent ceils and channel intersections. Edges represent channel seg- 
l~ems. ]';ach edge has two labels: one is called capacity, the other delay. 

The capacity C : E --~ }~+ is an estimate of the actual number of wires that 
call be placed in the corresponding routing channel segment. Normally, the edge 
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capacity is declared equal to the number of tracks. Notice that  may depend on a 
complex block placement because internal block layout may utilize some tracks. 

The delay L : E --+ ~+ is an estimate of the actual delay of wires in the 
corresponding routing channel segment. Notice that  we consider delays instead 
of traditionally used channel segment lengths. This is more appropriate because 
the length of a channel segment need not be proportional to its delay [9]. 

The task of global routing can be described more precisely when using the 
notion of the global graph. A set of nets N = {N1, N2, ..., J~k} is given, where 
each net is a subset V} C_ V of vertices of G. A global routing sketch, or sim- 
ply a global routing, is to be constructed. The global routing R is a collection 
of macropaths R = {$1,$2, ...,Sk}. A macropath for a net Ni is a connected 
subgraph Si of G containing all vertices from 1~, i.e. the corresponding Steiner 
tree. 

The amount of calculations required to construct a global routing sketch (and 
to modify it during the trial placement permutations) depends on the complexity 
of the global routing graph, i.e. on the level of abstraction. Anyway, the construc- 
tion of a macropath for each net is expected to require much more computations 2 
than the evaluation of a traditional placement cost function. Therefore, it is nec- 
essary to use a fairly simplified chip model to keep the amount  of calculations 
in reasonable bounds. 

According to our experience, it is possible to construct a "precise" global 
routing graph having a reasonable number of vertices and edges. The XILINX 
XC3000 family [9] can serve as an example. Fig. 1 shows a portion of XC3000 
architecture and the corresponding portion of the global routing graph. 

4 I n t e g r a t e d  c o s t  f u n c t i o n  

Tile primary objective of the placement and global routing in FPGAs is to 
guarantee routability. The secondary objective is to guarantee (and/or  maximize) 
the required performance in terms of clock frequency. 

Let us assume that a global routing sketch R has been constructed. The , ,  
it is easily possible to compute a demand C[ on edge ei E E as the number 
of rnacropaths 5'1, S'e, ..., Sk containing the edge el. The given routing sketch ig 
is often considered as routable (admissible) if (7/* _< C / fo r  any edge ei [2], [7]. 
Itowever, according to our observations [8], this condition need not be sufficient 
because C[ represents the global constraint but it may fail to capture local 
congestions inside the channel segment. Thus it is desirable to have some reserve 
of extra tracks to increase the probability of successful routing. 

Let us assume that a preliminary timing analysis generates the bounds on 
the delays 3 which the placement/global routing algorithms have to satisfy for 
all links, i.e. source-target connections. Each x- terminal  net is decomposed into 

2 The minimum Steiner tree problem is NP-hard. However, a couple of efficient heuris- 
tics is available [2], [7], [8]. 

z Further we will discuss the maximum delay constraints only because the majority 
of FPGA architectures support synchronized circuits and have dedicated routing 
resources intended to implement clocks and other signals that must have minimum 
skew among multiple targets. 



27 

m w 

tc.B  ,c.B t 
long line 

CLB'  

long lines 

3/2.3~~~" I N2/2"3 5 / 1 ~  
~ 2/2.3 

Fig. 1. A portion o[ XC3000 architecture and its graph model: circle vertices corre- 
spol~d to CLBs, square vertices correspond to switch matrices, full-circle vertices corre- 
spond to vertical and horizontal long lines, and edges are l~beled with c~pacity/del~y 
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x - 1 links and the m ax i m um  interconnection delay D : £ -+ ~+ is calculated 
for each link lj E 12. Notice that  this calculation can be ambiguous because 
only the max imum delay between a clocked source and a clocked target can 
be derived from the required synchronization frequency. Let us consider the 
situation described in Fig. 2 as an example. In this case only the sum (Dr + D2) 
can be calculated. We propose to distribute the available delay uniformly (i.e. 
D1 = D2 in our case) provided that  there are no hints support ing a different 
distribution. 

clocked 
block 

- [,, 
combinato- 

rial 
block 

D1 D2 

clock 

clocked 
block 

~ N  

i T 
Fig. 2. Maximum delay estimation. 

The actual delay D~ of a link lj E £ can be est imated as the sum of delays 
of edges forming the corresponding path  in R. The given routing sketch R is 
considered as admissible from the performance point of view if D~ <_ Dj for any 
link lj. 

Let us return to our example (see Fig. 2) and assume that  the value of D~ 
has been est imated as described above. This allows us to recalculate the value 
of D2 as follows: D2 = (D1 + D2) - D~. 

We propose to relax both the routability and delay constraints, i.e. to deal 
with the unconstrained global routing problem [2], [8] minimizing an appropriate  
cost function Q(R). Obviously, the cost function Q(R) has to minimize overloads 
max[O, (C'[ - Ci)] and overdelays max[O, (D;  - Dj)]. I f  there are no overloaded 
edges or overdelayed links, the performance expressed in terms of clock frequency 
should be maximized. 

Taking into account the above observations, the cost function consisting of 
two nonlinear constituents seems to be appropriate:  

O(R) : } 2  rl(e,) + r (lj) 
eiEE ljE£ 

(1) 
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where c~ is a constant and nonlinear functions F1, F2 are defined as shown in 
Fig. 3. 

F1 (ei) 

J 

5(1i ) 

( C *  i - C i )  

Fig. 3. Nonlinear functions F1 and F2. 

(D]'- D i ) 

5 Init ia l  g lobal  r o u t i n g  

All versions of the global routing problem are NP-hard  [2], [7]. Therefore, only 
approximate algorithms are of practical interest. A wide variety of such tech- 
niques has been developed. The ileralive approach [5] is adequate to our purposes 
because it combines initial routing (to construct an initial variant) and rerouting 
(to optimize the initial variant). Obviously, it allows us to associate replacement 
and global routing in a nat, ural way. 

The proposed initial global routing algorithm consists of two phases denoted 
here II{.1 and IR2. 

The IP~I phase starts from the empty solution/~ = 0 which has zero demands 
D~,. = 0 on edge capacities Cn. For each net Ni, a macropath Si is derived. An 
algorithm constructing suboptimal Steiner tree is employed for this purpose. The 
cosL of a Steiner tree is defined as the sum of delays over its edges. 

IR1 PHASE 

INPUT: Graph G = (V, E) labelled with edge capacities Ci and delays Li. 
Set. of nets 5 T = {N1, N2, ..., Nk). 
Sel; of links £ with associated maximum delays Dj. 

OU'FPUT: Initial solution /~ and its cost Q(/~). 
Used ro,,t.i,,g resources (demands) C/* and actual delays D; .  

1. Initialize: R := O. 
2. For each net Ni, 1 < i < k : 

(a) Construct a Steiner tree S~ = (V~, E~) interconnecting N~ in G and min- 
imizing the estimated total delay ~ j e E ,  L(ej).  
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. 
(b) Include Si into R. 
Compute the used routing resources (demands) C'/* for all edges and actual 
delays D~ for all links. Calculate the cost Q(R) according to formula (1). 

The IR2 phase aims at improving the initial solution. The at tempts  to opti- 
mize subgraphs Si for each net Ni in a new environment are made, i.e. the costs 
of Steiner trees are calculated taking into account the used routing resources 
and the actual link delays. 

IR2 PHASE 

INPUT: Graph G -- (V, E)  labelled with edge capacities Ci and delays Li. 
Set of nets N = {N1, N2, ..., Nk}. 
Set of links/2 with associated maximum delays Dj. 
Initial solution R and its cost Q(R). 
Used routing resources (demands) C* and actual delays D~. 

OUTPUT:  Improved solution R. 
Updated demands C/* and delays D~. 

1. For each net Ni E N calculate the cost of a current Steiner tree St according 
to the formula (1). Sort all nets in the ascending order of their costs 4. 

2. [ Iteration ] Consecutively for all nets do: 

(a) Remove Si from the current solution and update demands. 
(b) Construct a new Steiner tree S~ minimizing the cost function (1). Update 

demands. 

3. Compute the cost Q(R') of the new solution. If it holds Q(R') < Q(R), set 
R := R', Q(R) := Q(R') and repeat the iteration. Otherwise stop. 

6 R e p l a c e m e n t  

Let us assume that  a legal (non-overlapping) placement has been constructed 
(and optimized) using traditional techniques. We are looking for a replacement 
which: 

• transforms lega,1 placement into another legal placement, and 
• decreases the cost of the initial variant. 

The most popular elementary transformations used in the process of replace- 
a l e u t  a r e  5: 

• displacement of a single block, 
• pairwise interchange, and 
• rotation and/or  mirroring of a block. 

4 This order has been experimentally justified in [5] 
5 For designs incorporating blocks of different sizes and shapes, more complex trans- 

formations are used. 
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The evaluation of the integrated cost function Q(R)  requires significantly 
larger amount  of comput;ations in comparison to the evaluation of tradit ional  
length or cut-based functions. Let tp be the time required to synthesize a replace- 
meat and t¢ the time required to compute the change in cost. For traditional cost 
functions, t¢ is usually proportional  to IN'I, where N'  is a subset of nets with 
pins that  changed their locations, and tp ~ t~ . In our case, IN'I nets are to be 
rerouted. The complexity of rerouting a single net is proport ional  to IEI • loglV I 
[8], hence the evaluation of the new integrated cost takes O(IN'][E [ • togiV[) 
elementary operations and tp << t~. 

To reduce the amount  of computat ions,  it is necessary to use an effective 
t~echuique which generates t ransformations with a high probabil i ty of a success 
oldy. Unfortunately, the cost function (1) does not involve any part icular  features 
which could be used as a background in choice of successful t ransformations,  thus 
we llHist rely on some domain knowledge to maintain a reasonable probabil i ty of 
a success. Two analogies can be used here: force-directed relaxation and cutline- 
based interchanges [8]. 

According to our experience [3], [8], single block displacements and pairwise 
interchanges are easily and successfully applicable to minimize the integrated 
cost, function (1). Both transformations mentioned above can be treated in an 
uuil'orm way: a ca.ndidate block is selected first and than several alternatives 
ot' repositioning are explored. The knowledge of overloaded edges and overde- 
layed links is useful wh('.n selecting a candidate. The knowledge of so called 
e ~ ilcighborhood o~" the median of the selected block [8] may help to identify 
i~r(mlisiug ali ernatives o[" rel~osifoioning. 

7 R e r o u t i n g  

I,ct us assume that  a block /3 changed its location as a result of replacement.  
The following modifications concerning global routing (both the graph G and 
~,he solution h'.) must be introduced: 

1. [ Co~"rectio~. of e@e capacities (7i ] The routing resources occupied by 
inl.erm~l block layout (if" ally) are set free (the corresponding edge capacities 
arc iiiercascd) f"roin the old position and are utilized (edge capacities are 
decreased) in the new position. 

"2. [ Paclial rer'o.ati,,cj] I,et N ~ C N denote the subset of nets interconnecting 
the block /3. Obviously, corresponding macropaths  (Steiner trees) must  be 
reconstructed because the current global routing variant is no longer valid. 

The partial  rerouting call be accomplished by a modification of the 1l:1,2 al- 
gorii.hll,: 
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P A R T I A L  R E R O U T I N G  

INPUT: Graph G = (V, E) labelled with edge capacities Ci and delays Li. 
Set of nets N B C N. 
Set of links £ with associated maximum delays Dj. 
Initial solution R and its cost Q(R). 
Used routing resources (demands) C* and actual delays D; .  

OUTPUT:  Updated solution R. 
Updated demands C* and delays D; .  

1. For each net Ni E N 8 calculate the cost of its current Steiner tree 5'/ ac- 
cording to the formula (1). Sort all nets from N B in the ascending order of 
their costs. 

2. [ Iteration ] Consecutively for all nets from N B do: 

(a) Remove Si from the current solution and update demands. 

(b) Construct a new Steiner tree Si minimizing the cost function (1). Update 
demands. 

3. Compute the cost Q(R) of the new solution. 

8 C o n c l u s i o n  

Decomposition is a principal way to cope with problem complexity, but it has 
some disadvantages. Generally, decomposition of a problem assumes a decompo- 
sition of a.n available information as well. In layout design, this can be described 
in terms of inadequacy of cost functions for steps preceding the detailed routing 
[6]. 

In our work, we propose a novel approach to cope with the negative impact of 
decomposition. The approach is based on partial overlapping of placement and 
global routing subtasks which are usually treated as independent optimization 
problems. 

The proposed method is capable of providing a good delay estimation so that 
the timing specifications dictated by the clocking scheme can be checked and the 
iterative process of replacement and global routing can be timing-driven. This 
appears to be an important  feature of this technique because the delay due to 
the interconnecting wire plays a major  role in determining and optimizing the 
performance of the FPGA chip [1]. 

In comparison with traditional cost functions, the integrated cost function 
is more difficult to calculate. We use the most natural approach: an iterative 
replacement combined with rerouting in a global routing graph. 

Limited experimental investigation of our method does not enable us to draw 
any statistically convincing conclusions. Nevertheless, the results obtained are 
promising [8] and cannot be explained in terms of undirected random search in 
a configuration space. 
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A B S T R A C T  : Among the several FPGA technologgies available today, the 
comparison of tiiming performances is always device dependent.In order to 
compare accurately the performances of the logic block architectures used in 
FPGP/s families, we have implemented different functions.Using a layout 
synthesizer we evaluate post layout performances of these functions.A 
methodology to optimize the size of transistor gates in Look-up Tables is 
proposed 

1-  INTRODUCTION 

FPGA architectures often make use of complex cells to efficiently implement 
circuitry with the help of logic synthesis tools. Among the several FPGA 
technologies available today (Xilinx, Actel, Altera, etc...), the comparison of timing 
performances is always device (XC3000, XC4000, ACT1,...) and technology 
(dCMcOSt hPer ~C~Sy a~d pPt ~g~apem~s gnt et~hen~q~e)b dePkendc~ntte cF°[e ?t t~VnenLP rGA 

ld°e~ia~len~Cr~ssed s ~e~;~igede~yy~ass°cia~edtuandrtsheiI/hOu~ellnSy t eTheh~e~o~na~ 

information on the process parameters used. Consequently, the effect of the logic 
block structures on the speed of FPGA is quite hard to be analyzed. 

In order to focus on the effect of logic block architecture on FPGA timing 
performances, it is necessary to select a common CMOS process, and to implement 
a set of logic functions using the different logic blocks alternatives. A first complete 
study of logic blocks has been proposed in [1][2] : an experimental approach is 
taken, in which a set of benchmark logic circuits is synthesized into different 
FPG/Vs using a same CMOS process. It is shown that the fine grain blocks 
(Nand2,...) are slow, because they require many levels of logic and consequently 
require a large routing delay. Five and six look up tables and Actel muxes give the 
best performances because of the balance obtained between routing and logic 
delays.This study covers a large selection of combinational circuits, and show the 
effect of granularity on performance taking into account an approximation of the 
routing delays. However the limitations come from the evaluation performed at 
the transistor level without any consideration on the layout and the transistor sizes 
(always minimum). Moreover the routing delay is taken as a constant similar for 
each connection. 

The effect of logic block layout on the speed of FPG/Vs is studied in this paper. 
Using a layout generator, we evaluate the post- layout  performances of the basic 
cells taking into account the load capacitances and the transistor widths. To 
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generate the different CMOS logic functions, we use an efficient layout 
methodology, where the cells are implemented as an array of rows with different 
heights [4]. Optimized cells are generated in a two pass procedure: first the 
automatic generator transform the electrical netlist in a symbolic description, then 
this description is translated into a layout after technology interpretation and 
compaction procedures.The main differences with the traditional cell based 
approach are : no explicit routing channel between rows, variable row heights, all 
cells are vertically transparent to the second metal layer used to vertically cross the 
cells, technology independence, and optimization of the transistor widths 
depending on the user constraints. 

This paper is divided into 5 sections. Section 2 presents the logic block 
investigated, and the layout synthesis approach used. In section 3 we describe the 
experimental procedure used to evaluate the post layout performances of the 
different logic blocks, and the results obtained. In section 4, we discuss on the 
improvement of the look up table logic blocks using a methodology to size the 
transmission gates. Finally in section 5 we compare our results with the Xilinx 
devices. 

2 -  DESCRIPTION OF LOGIC BLOCKS 

The FPGA architectures consists in an array of identical cells separated by wiring 
channels. The Actel architectures implement 4 - t o - 1  muxes in a single level (mux 
A ,  f igure 1) [3]. The logic block of Xilinx XC series uses a programmed look up 
table ( LUT ) to implement boolean functions : 4 input look up table for the 
XC2000 series LCA (figure 2), 5 input look up table for the XC3000 and XC 4000 
series. 

AOA1 C~ Out 

-T"l 

2 to 1 MULTIPLEXER 

C1 
C2 

A1 AO- 

S [ " - - 7  t A1 B0 
B 1 A2- ut 

SB ~ i 
SO A3 
S1 

MULT1PLEXERA (Actel) 4 to 1 MULTIPLEXER 

Figure 1 : Multiplexer basic modules 
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Figure 2 : Four- input  Lookup  Table (LTK4) 

2.1 Layout methodology 

To generate the different CMOS logic functions, we use an efficient layout 
methodology, where the cells are implemented as an array of rows with different 
heights (Tropic generator) [4] [5]. Optimized cells are generated in a two pass 
procedure: first the automatic generator transform the electrical netlist m a 
symbolic description , then this description is translated into a layout after 
technology interpretation and compaction procedures. Interconnection is realized 
with two metal layers for intra-cel l  and in te r - row routing. 

The proposed layout style [4] is characterized by the placement of cells in 
horizontal rows, where the even rows are horizontally mirrored (figure 3a). The 
main differences with the traditional cell based approach are : no explicit routing 
channel between rows, variable row heights, all cells are vertically transparent to 
the second metal layer used to vertically cross the cells, technology independence, 
and optimization of the transistor widths depending on the user constraints. 

Figure 3a illustrates the organization of the layout, as a direct abutment of cells. As 
shown in figure 3b, each cell is divided into 5 parts : two parts dedicated to the 
diffusion rows for the transistor implementation, and three parts devoted to the 
routing regions. 

Figure 4 illustrates the automatic implementation of the logic block structures 
obtained with the Tropic generator from an electrical netlist (SPICE FORMAT). 
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3 - E X P E R I M E N T A L  P R O C E D U R E  

The experimental procedure is described in figure 5. Using the transistor level 
schematics (Spice netlist) of the logic blocks presented previously ([igures 1,2,4) we 
have implemented two logic functions : 

fl = abc+abd+acd, proposed in [1] 
f2 = ab + fcd + fbe+bdc 

The choice of simple functions avoid a shift in the results due to the quality of the 
logic synthesis tools. Our main objective in this first study is to analyzes the 
influence of the layout level. For more complex functions the results obtained at 
the electrical level in [1] can be used as a reference. 
As described infigure 5, different types of transistor widths have been analyzed (W 
minimum, and W = 16 ttm) and the output load has been fixed to Cin and 10 Cin, 
where Cin represent the input capacitance of an inverter). After layout generation, 
the extracted netlist contains all the parasitic capacitances (diffusion, routing,...). 

I Set °f functi°ns: I ~ l ~ [ l l l l l ~  I Test c°nditi°ns : f l ,  1"2 .... (Wn, Wp, Cload) 

~ f f  ~ -Wn= Wp=161tm 
-Load = lOCin = 90OFF 
-Load = Cin = 9OfF 

I Logic synthesis I 

~ Spice netlist 

Layout generation 

i P  'arout  ula on I I 

-Wn=21tm et Wp=4#m 
-Load = lOCin = 13OFF 

-Load = Cin = 13fF 

( Cin = input capacitance of an inverter ) 

Extraction (Cadence) 
Spice netlist 

post-layout Simulation 

~ l l , ~ t i m i z a t i o n  : transistor s i z i n g ~ j  

Figure 5 : Summary of the experimental procedure 

3.1 Results 

In order to don't overload this section, we present here some of the main results 
obtained with these experiments. As shown in the results given in figures 6 and 7, 
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the Mux 2/1 architecture exhibit the lowest delay before and after layout. The 
effect of the layout capacitances reverse the ranking between Nand gates and Mux 
A, Mux 4/1 gates. The timingperformances of the look up tables implementation 
is not as good as reported in [1]. One of the reason is that these modules are not 
optimally used in this test configuration. For more complex functions, the full 
capacity of the look up table will be used. However, at his level it is interesting to 
analyze the effect of the transistor sizing on the timing performances of the look 
up table modules. 
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Logic Blocks 

Figure 6 : pre- layout  evaluation of the delays for the logic function 1"2. 
(Wn=2~tm and Wp=4~tm and CL=130fF= 10 Cin) 
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Figure 7 : Post- layout  evaluation of  the delays for the logic function f2. 

(Wn=2~tm and Wp=4~tm and CL=130fF= I0 Cin) 
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4 - L O O K  UP T A B L E S  O P T I M I Z A T I O N  

Transistor sizing at layout level is necessary to improve the overall performance of 
integrated circuits. Based on a local optimization defined through an explicit 
formulation of delays [6], a sizing methodology has been applied to the look up 
table cells. A Typical critical path is represented in figure 8 where we separate a 
control block (Structure I) and a data block ( Structure II ). The optimization 
strategy begins by the sizing of the structure II from the output (where the load 
capacitance CL is fixed) to the data inputs. The local sizing rules used for this 
"ANDORI"  structure are given as follow [6] : 

1 
W h e r e  • 

, y -  CL 
Cr~f 

WN 
• XN - W,~f 

XN 
fY  (1 + 12K'(n2-1)) 

,un u?l I 
[1 + ~ + 12K'[(n2-1 ) + ~--~(nl,1)]]7 

X P  = I~n v/Y (1 + 12K'(nl -1))  
,un ~n ! 

/.tp [1 + ~-~ + 12K'[(n2-1 ) + ~--~(nl-1)]]i 

representsthe output load, with respect to a reference capacitance 

Cref  = Cox Lmin Wmin 

We , representsthe transistor size, with respect to a refernece 
Xp - Wref width (Wmin) 

* nl and n2 respectively represents the numbers ofparallel transistors in P and N array, 

vcc 8 V c c ( V c c  - Vr )  , K ' =  1 2 VT w i t h  K = 

24KY~_..¢c _ VT* 7Vcc  2 + 4 V  2 _ l Z V c c V  T 

where K is a slowly varying technological coefficient. 
For the 1.5~tm CMOS process under consideration the value of these coefficients 
are : Cref=4.4 fF, K =  1.274 and K' = 0.049. 

Depending on the logic level to be transmitted the structure of  the look up table 
has been replaced by an equivalent "ANDORI"  configuration allowing full 
application of the sizing procedure, as follows : low or high levels to be passed 
transform the structure in equivalent N or P serial arrays (figure 9), directly sized 
as for general "ANDORI"  configuration [6]. Then the P or N companion 
transistor is sized in the ratio of mobility of its partner ( ~t n / p.p = 2.4 ). 

For example, as shown in figure 8, with a given load of 130 fF the transistor width 
obtained for the transmission gates TG5, TG6, TG7, TG8, of the structure II are 
: WN = 5 ~tm and Wp = 13btm. 

After optimization of the structure II the input load of structure I is known (this 
is the input of inv3  - node "67; - in figure 8) .  T h e  same backward process is applied 
to the array of structure I from the output ( here node "6" ) to the inout ( node " IN"  
). Figures of the resulting transistor Sl'Zes are given in th6 correspo'ndihg buble of 
figure 8. 
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As shown in Table 1, where we compared Look up Table implementations of the 
function fl and t2 with different transistor sizes alternative, it appears clearly that 
sized solutions result in the fastest implementations of the look up table cells (up 
to 50% reduction of the delay). The comparison with the other logic block 
structures (figures 10 and 11) show that after optimization of the transistor widths 
the look up tables exhibit very good speed performances, 

Fixed 
width 

function 1 function2 

LTK3 LTK4 LTK6 

CL=130fF CL=900fF CL=130fF CL=900fF CL=130fF 

tilL tLH tilL tLH till tLH tilL tLH till tLH 

wWp=l~ 'i! 5.40 2.20 ii~i 1 3,96 2.25 ~ii~i ' !~i~ 

 06, 4 Wn:2~tm 5.33 3.6 3.53 2.87 
Wp=4 grn 

Optimization of tran- 
sistor width 

Benefits 

3.27 3.07 3.51 3.44 1.77 1.64 2.78 2.61 2.24 2.21 

39% 35% 50% 30% 50% 

Table 1 : Optimization results for the functions fl  and f2 implemented with differents 
look up tables (delays in ns) and transistor sizing alternative (minimum and constant 
sizes, optimized sizes for a given load). 
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Figure 10 : delays of the function f l  (with Wn=2~tm and Wp=4~tm and CL=130fF) and 
performance improvements of the look up table 314 implementation after transistor 
sizing 



Delays (ns) 

43 

14 

12 

10 

8 

6 

4 

2 

I 2 = a b + f c d + f b e + b c d  

after opt imisat ion  

0 
Mux2/1 LI-K6o nand2 Mux4/1 MuxA nand3 nand4 LTK6 

Logic Blocks 
Figure 11 : delays of the function 1"2 (with Wn=2~m and Wp=4pm and CL=130fF) and 
performance improvements of the look up table 6 implementation after transistor sizing 

5 - F P G A  I M P L E M E N T A T I O N  

We present in this section the implementation of fl and f2 functions with Xilinx 
devices : XC3020 and XC4002.The results obtained with XACT tools are 
summarized in table 2. 

Function 1 

Function 2 

XC 4002 

PAD IOB 
tpOr~ t O  Blk- Trout Nbr 

IOB LUT CLB 
. i t  , 

17.2 7.2 4.5 2.7 1 

2.03 10i3 7 3.3 1 

PAD 
t o  ~ I 

PAD 

14.7 

17.8 

XC 3020 

i O B  
to B|k- 

LUT Trout 

7.3 4.6 2.7 

1 0 . 5  2*4.6 1.3 

Nbr  
CLB 

1 

2 

"PAD to PAD" : delay between input and output PADs, "lOB to IOB" : delay between input and output 
lOB, "Blk-LUT" : delay through the CLB, "Trout" : routing delay, "Nbr CLB":Number o f  CLB used to 
implement f l  and f2. 

Table 2 : Delays obtained with xilinx devices. 
To compare the performances, we consider the delays between IOB to IOB, which 
represents the sum of the routing delay and the delay through the CLBs ( the "PAD 
to PAD" delay depends on the buffer size options). 
The results obtained for the implementation of functions fl and f2 with the 
XC4002 and XC3020 families are the same. As we can see in Table2, the function 
f2 needs two CLBs with the XC3000 and only one with the XC4000. In othe side, 
the routing delays are differents. 
If we compare the results given by the layout synthsizer (in Table 1 for 
Wn=Wp=16 ~tm and CL=9OOfF, we have a critical delay of 3.96ns) and xilinx 
Implementation, we observe approximatively 10% difference between then. This 
prove that our layout approach allows to characterize the performances of the 
different logic block architectures. 
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6 - C O N C L U S I O N  

We explored in this work the comparative performances of the different logic 
blocks taking into account the layout evaluation. The main conclusion is the 
confirmation of the good performances of the look up table and multiplexer 
modules. A significant reduction in delay is obtained by optimizing the transistor 
widths of the look up tables. The use of a layout generator is of great help to 
evaluate architectural alternatives as well as the fast migration of circuits in 
different processes. The high regularity of the layout style used, gives the 
possibility to parametrize the layout capacitances, allowing an accurate prediction 
of performances for logic synthesis tools. 
Selection of FPGA structures as a technology management alternative for 
performance driven design is a widely opened problem. Using automatic layout 
generator combined to transistor sizing and performance evaluation we were able 
to compare different logic blocks unit used to implement FPGAs. Examples are 
obtained in different logic paths and compared in terms of speed and area. As a 
surprising result evidence is given of LUT based high performance 
implementation, through the defimtion of optimal sizing for logic units. 
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Abst rac t .  In this paper, we propose an order-independent global rout- 
ing algorithm for SRAM type FPGAs based on Mean Field Annealing. 
The performance of the proposed global routing algorithm is evaluated in 
comparison with LoeusRoute global router on ACM/SIGDA Design Au- 
tomation benchmarks. Experimental results indicate that the proposed 
MFA heuristic performs better than the LoeusRoute in terms of the dis- 
tribution of the channel densities. 

1 I n t r o d u c t i o n  

This paper investigates the routing problem in Static RAM (SRAM) based Field 
Programmable Gate Arrays (FPGAs) [7]. As the routing in FPGAs is a very 
complex combinatorial optimization problem, routing process can be carried out 
in two phases: global routing followed by detailed routing [5]. Global routing de- 
termines the course of wires through sequences of channel segments. Detailed 
routing determines the wire segment allocation for the channel segment routes 
found in the first phase which enables feasible switch box interconnection con- 
figurations [5, 9, 10]. 

Global routing in FPGA can be done by using global routing algorithms 
proposed for standard cells [5]. LocusRoute global router is one of this type of 
router used for global routing in FPGAs [4] which divides the multi-pin nets into 
two-pin nets and considers only two or less bend, minimum distance routes for 
these two-pin nets. The objective in LocusRoute is to distribute the connections 
among channels so that  channel densities are balanced. In this work, we propose 
a new approach for the solution of global routing problem in FPGAs by using 
Mean Field Annealing (MFA) technique. 

MFA merges collective computation and annealing properties of Hopfield 
neural networks [2] and simulated annealing [3], respectively, to obtain a general 
algorithm for solving combinatorial optimization problems [1]. MFA can be used 
for solving a combinatorial optimization problem by choosing a representation 
scheme in which the final states of the spins can be decoded as a solution to the 
target problem. Then, an energy function is constructed whose global minimum 
value corresponds to the best solution of the target problem. MFA is expected 
to compute the best solution to the target problem, starting from a randomly 
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chosen initial state, by  minimizing this energy function. Steps of applying MFA 
technique to a problem can be summarized as follows. 

1) Choose a representation scheme which encodes the configuration space 
of the target optimization problem using spins. In order to get a good 
performance, number of possible configurations in the problem domain 
and the spin domain must be equal, i.e., there must be a one-to-one 
mapping between the configurations of spins and the problem. 
2) Formulate the cost function of the problem in terms of spins, i.e., 
derive the energy function of the system. Global minimum of the energy 
function should correspond to the global minimum of the cost function. 
3) Derive the mean field theory equations using this energy function, i.e., 
derive equations for updating averages (expected values) of spins. 
4) Select the energy function and the cooling schedule parameters. 

The FPGA model used in this paper are given in Section 2. The proposed formu- 
lation of the MFA algorithm for the global routing problem following these steps 
is presented in Section 3. The performance of the proposed MFA algorithm is 
evaluated in comparison with LocusRoute algorithm. Section 4 summarizes the 
implementation details of these two-algorithms. Finally, experimental results are 
presented in Section 5. 

2 G l o b a l  R o u t i n g  P r o b l e m  in  F P G A s  

The form of commercial FPGA consists of a two dimensional regular array of 
programmable logic blocks (LB's), a programmable routing network and switch 
boxes (SB's) [6, 13, 14]. Logic blocks are used to provide the functionality of a cir- 
cuit. Routing network makes connections between LB's and input/output pads. 
Routing network of FPGA consists of wiring segments and connection blocks. 
Wiring segments have three type of routing resources in the commercial SRAM 
based FPGA [13]: channel segments, long lines and direct-interconnections. A 
horizontal (vertical) channel segment consists of a number of parallel wire seg- 
ments connecting two successive SB's in a horizontal (vertical) channel. The 
SB's allow programmed interconnection between these channel segments. Direct- 
interconnection provides the connections between neighbor LB's. Long lines cross 
the routing area of FPGA vertically and horizontally. Connection blocks provide 
the connectivity from the input/output pins of LB's to the wiring segments of 
the respective channel segments. Each pin can be connected to a limited number 
of wiring segments in a channel and this is called as flexibility of connection 
block [7]. In this paper, it is assumed that each LB pin can be connected to all 
wiring segments in the respective channels. Therefore, we can omit the connec- 
tion block in our FPGA model. 

Since the direct-interconnections are used by neigbor LB's to provide mini- 
mum propagation delay and the long lines are used by signals which must travel 
long distances (i.e., global clock), these interconnection resources are not consid- 
ered in the global routing. Hence, our FPGA model for global routing considers 
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Fig. 1. The FPGA model used for Global Routing 

only the LB's, SB's and channel segments. An FPGA can be modeled as a two 
dimensional array of LB's which are connected to the vertical and horizontal 
channel segments, and SB's which make connections between the horizontal and 
vertical channel segments (Fig. 1). 

In this work, we divide all multi-pin nets into two-pin nets using minimum 
spanning tree algorithm [12] as in LocusRoute. Hence, a net refers to a two-pin 
net here, and hereafter. Consider the possible routings for a two-pin net with 
a Manhat tan distance of dh q-d~ where dh and d~ denote the horizontal and 
vertical distances, respectively, between the two pins of the net on the LB grid. 
The routing area of this net is restricted to a (dh+ l )×  (d~ +1) LB grid as shown 
in Fig. 2.a. Then, the shortest distance routing of this net can be decomposed 
into three i~depende~t routings as follows. Each pin of this net has only one 
neighbor SB in the optimal routing area. Hence, each pin can be connected to 
its unique neighbor SB either through a horizontal or a vertical channel segment 
(Fig. 2). Meanwhile, the optimal routing area for the connection of these two 
unique SB's is restricted to a dh ×dv SB grid embedded in the LB grid (Fig. 2). 
Hence, by exploiting this fact, we further subdivide each net into three two-pin 
subnets referred here as LS, SS and SL subnets (Fig. 2.b). Here, LS and SL 
subnets represent the LB-to-SB and SB-to-LB connections, respectively, and SS  
subnets represent the SB-to-SB connection for a particular net. Therefore, we 
consider only two possible routings for both LS and SL subnets and dh+d~-2 
possible one or two bend routings for SS subnets for routing the original net. 

We define an FPGA graph F(L, S, C) for modeling the global routing problem 
in FPGAs. This graph is a P x Q two-dimensional mesh where L, S and C 
denote the set of LB's, SB's and channel segments, respectively. Here, P and Q 
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Fig. 2. (a) The routing area of the two-pin net and its subnets, (b) The possible routes 
for each subnets 

is the number of horizontal and vertical channels in the FPGA. Each grid point 
(vertex) s m of the mesh represents the SB at horizontal channel p and vertical 
channel q. Each cell Lpq of the mesh represents the LB which is adjacent to four 
SB's sin, Sp,q+l, sp+l,q+l and sp+l,q. Edges are labeled such that the horizontal 
(vertical) edge Cq (c~q) corresponds to the channel segment between the two 
consecutive SB's s m and Sp,q+l (Sp+l,q) on the horizontal (vertical) channel p 
(q), respectively. Figure 3 displays a 8×6 sample FPGA graph. Then, the pins of 
the L S / S L  and S S  type subnets are assigned to the respective cell-vertex and 
vertex-vertex pairs of the graph as is in mentioned earlier. 

The global routing problem reduces to searching for most uniform possible 
distribution of the routes for these subnets. The uniform distribution of the 
routes is expected to increase the likelihood of finding a feasible routing in the 
following detailed routing phase. Hence, we need to define an objective function 
which rewards balanced routings. We associate weights with the edges of FPGA 
graph in order to simplify the computation of the balance quality of a given 

h (C~q) denotes h (W;q) of a horizontM (vertical) edge c m routing. The weight w m 
the density of the respective channel segment. Here, the density of a channel 
segment denotes the total number of nets passing through that segment for a 
given routing. Using this model, we can express the balance quality B of a given 
routing R as 

P Q - 1  Q P - 1  

p = l  q = l  q = l  io=l  

As is seen in Eq. (1), each channel segment contributes the square of its density to 
the objective function thus penalizing imbManced routing distributions. Hence, 
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Fig. 3. The Cost Graph for FPGA model 

the global routing problem reduces to the minimization of the objective function 
given in Eq. (1). 

3 M F A  F o r m u l a t i o n  

The MPA algorithm is derived by analogy to [sing and Ports models which 
are used to estimate the state of a system of particles, called spins, in thermal 
equilibrium. In Ising model, spins can be in one of the two states represented 
by 0 and 1, whereas in Potts model they can be in one of the K states. All 
LS/SL subnets are represented by Ising spins since they have only two possible 
routes. In Ising spin encoding of each LS/SL subnet m, u~ = 1 (0) denotes 
that the LB-to-SB or SB-to-LB routing is achieved through a single horizontal 
(vertical) channel segment. Each SS subnet n having Ks >_ 2 possible routes 
is represented by a K,~-state Potts spin. The states of a Ks-state  Potts spin is 
represented using a K~ dimensional vector 

= ( 2 )  

where "t" denotes the vector transpose operation. Each Potts spin Vn is allowed 
to be equal to one of the principal unit vectors el . . . .  , er, • •., eK,,, and can not 
take any other value. Principal unit vector er is defined to be a vector which 
has all its components equal to 0 except its r ' th  component which is equal to 1. 
Potts spin vn is said to be in state r if vn = e,.. Hence, a K~-state Potts spin vn 
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is composed of K,~ two state variables v,~l, . . . ,  v,~, , . . . ,  vnK~, where v,~r E {0, 1}, 
with the following constraint 

K s  

1 (a) 

If Ports spin n is in state r (i.e., v ~  = 1 for 1 _< r _< K~) we say that the 
corresponding net n is routed by using the route r. 

In the MFA algorithm, the aim is to find the spin values minimizing the 
energy function of the system. In order to achieve this goal, the average (ex- 
pected) values (urn} and {Vn} = [(v~,}, . . . ,  (v~r) , . . . ,  (V~K~}]t of all Ising and 
Potts  spins, respectively, are computed and iteratively updated until the system 
stabilizes at some fixed point. Note that for each Ising spin m, um C {0, 1}, i.e., 
u,~ can take only two values 0 and 1, whereas (u,~) E [0, 1], i.e., (u,~} can take 
any real value between 0 and 1. Similarly, for each Potts spin n, v,~ E {0, 1} 
whereas (v,~) E [0, 1]. When the system is stabilized, (u,~) and (v,,~} values are 
expected to converge to either 0 or 1 with the constraints ~ K .  (v~r} = 1 for the r = l  
Potts spins. 

In order to construct an energy function it is helpful to associate the following 
meaning to the values (Urn} for LS/SL subnets. 

(u,~} = P(subnet  m is routed by using the horizontal channel segment) 

1 - (urn) = P(subnet  m is routed by using the vertical channel segment) 

That  is, (urn) and 1-{u,~) denote the probabilities of finding Ising spin m at states 
1 and 0, respectively. In other words, (u.~) and 1-(urn} denote the probabilities 
of routing subnet rn through a single horizontal and vertical channel segment, 
respectively. Similarly, for S,5' subnets represented with Potts spins 

(v~} = P(subnet  n is routed through route r) for 1 < r < K,~ (4) 

That  is, {vn~} denotes the probability of finding Potts spin at state r for 1 _< 
r _< Kn. In other words, {v~,) denotes the probability of routing net n through 
route r. Here and hereafter, um and v,~ will be used to denote the respective 
expected values ((u,~} and (v~},respectively) for the sake of simplicity. Now, we 
formulate the total density cost of global routing problem as an energy term 

P Q - 1  O P - 1  

E (u, v) = + G ( v ) ]  + Z [ % ( u )  + %(v)]  

where 

p = l  q= l  q= l  p = l  

whq ( U ) =  E um and w ~ e ( V ) =  E E v ~  
m~c~q n~c~ reR~,~c~q 

% ( u )  = and % ( V ) =  
rn gc~q n g c~q r E R ~ , r  g c~q 

(5) 

Vnr  

where U = {u l ,u2 , . . . }  and V = { v l , v 2 , . . . }  represent the sets of Ising and 
Potts  spins corresponding to the LS/SL and SS subnets, respectively. For 
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LS/SL  subnets, "m 9 cvq" denotes "for each LS/SL  subnet m whose pair of pins 
share the horizontal or vertical channel segment Cvq". For SS subnets "n ~ Cpq" 
denotes "for each SS subnet n whose routing area contains the horizontal and 
vertical channel Cvq". Furthermore, "r G R~, r ~ %¢" denotes "for each possible 
route r of SS subnet n which passes through the horizontal or vertical channel 
segment Cpq". Here, Wpq(U) and Wpq(V) represent the probabilistic densities of 
the horizontal or vertical channel segment Cpq for the current routing states of 
LS/SL  and SS subnets, respectively. Hence, Wpq(U, V) = Wpq(U)+wpq(¥) rep- 
resents the total probabilistic density of horizontal or vertical channel segment 
Cpq for the overall current routing state. 

Mean field theory equations, needed to minimize the energy function EB, 
can be derived as 

¢ .~ (u ,  v )  = EB(U,  V)l.m=0 - E . ( U ,  V)l~m=l 

= - 2  [w~q(V, V)  - % ( U ,  V)  - 2(u~ - 0.5)] (6) 

where h v Cpq, Cpq C m 

for an Ising spin m and 

¢. ,~(u,  v )  = EB(U,  V)[vo=0 - E . ( U ,  V) [v  . . . .  (r) 

c~qEr c~qEr 

for 1 < r < K~ 

for a Ports spin n, respectively. Mean field values 4,~ and ¢,,. can be interpreted 
as the increases in the energy function EB(U,  V) when Ising and Potts spins 
m and n are assigned to states 1 and r, respectively. Hence, -4),~ and - ¢ ~ r  
may be interpreted as the decreases in the overall solution qualities by routing 
LS/SL  and SS subnets rn and n through the horizontal channel and route r, 
respectively. Then, u,~ and v~,. values are updated such that  probabilities of 
routing subnets m and n through horizontal channel and route r increase with 
increasing mean field values qS,~ and ~b~ as follows: 

e¢~/T 
um -- 1 + e¢-,/T (8) 

e¢~lT 
for r = 1 , 2 , . . . , K n  (9) Vnr - -  K ~  

Ek=l e ~ / T  

respectively. After the mean field equations (Eqs. (6-7)) are derived, the MFA 
algorithm can be summarized as follows. First, an initial high temperature  spin 
average is assigned to each spin, and an initial temperature T is chosen. Each 
u,~ value is initialized to 0.5 :t: ~,~ and each vnr value is assigned to 1/K~ 
5,~ where 5,~ and 5,~ denote randomly selected small disturbance values. Note 
that limT-~oo u,~ = 0.5 and limT~oo v ~  = 1/K,~. In each MFA iteration, the 
mean field effecting a randomly selected spin is computed using either Eq. (6) 
or Eq. (7). Then, the average of this spin is updated using either Eq. (8) or 
Eq. (9). This process is repeated for a random sequence of spins until the system 
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is stabilized for the current temperature. The system is observed after each spin 
update in order to detect the convergence to an equilibrium state for a given 
temperature.  If energy function EB does not decrease in most of the successive 
spin updates, this means that the system is stabilized for that  temperature. 
Then, T is decreased according to a cooling schedule, and iterative process is 
re-initialized. At the end of this cooling schedule, each Ising spin m is set to state 
1 if u m >  0.5 or to state 0, otherwise. Similarly, maximum element in each Potts 
spin vector is set to 1 and all other element are set to 0. Then, the resulting 
global routing is decoded as mentioned earlier. 

4 I m p l e m e n t a t i o n  

The performance of the proposed MFA algorithm for the global routing problem 
is evaluated in comparison with the well-known LocusRoute algorithm [4]. 

The MFA global router is implemented efficiently as described in Section 3. 
in i t  in the Average of each Ising spin m is initialized by randomly selecting u m 

range 0.45 _< um _< 0.55. Similarly, average of each Potts spin n is initialized 
by randomly selecting K,~ v,~r values in the range 0.9/K,~ <_ v,~r <_ 1.1/K,~ 

and normalizing v,~i'it = v , ~ r / ~ 1  vnk for r = 1, 2 , . . . ,  Kn.  Note that  random 
selections are achieved by using uniform distribution in the given ranges. 

The initial temperature parameter used in mean field computation is es- 
t imated using the initial spin averages values. Selection of initial temperature 
parameters To is crucial to obtain good routing. In previous applications of MFA, 
it is experimentally observed that spin averages tend to converge at a critical 
temperature. Although there are some methods proposed for the estimation of 
critical temperature,  we prefer an experimental way for computing To which 
is easy to implement and successful as the results of experiments indicate. We 
compute the initial average mean field as 

Nm N~ K,~ N,~ 

-m + E E  '°" E K o )  
rn-----1 n = l  k= l  n = l  

Note that  initial mean field values digit and ~init -m -,~r are computed according to 
init and init Here, N,~ and N~ Eqs. (6) and (7) using initial spin values u m vnr . 

denote the total number of Ising and Potts spins, respectively, where N = Nm + 
Nn denotes the total number of spins (subnets). Then, initial temperature is 

¢~,~init where constant C is chosen as 540 for all experiments. computed as To = v,-a~g 
The cooling schedule is an important  factor in the performance of MFA 

global router. For a particular temperature, MFA proceeds for randomly se- 
lected unconverged net spin updates until AE  < c for M consecutive iterations 
respectively where M = N initially and e = 0.05. Average spin values are tested 
for convergence after each update. For an Ising spin rn, if either um < 0.05 or 
um >_ 0.95 is detected, then spin m is assumed to converge to state 0 or state 
1, respectively. For a Potts spin n, if vnr _> 0.95 is detected for a particular 
r = 1 , 2 , . . . , K n ,  then spin n is assumed to converge to state r. The cooling 
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process is realized in two phases, slow cooling followed by fast cooling, similar to 
the cooling schedules used for Simulated annealing. In the slow cooling phase, 
temperature is decreased by T = a x T where a = 0.9 until T < T0/1.5. Then, 
in the fast cooling phase, M is set to M/2, oL is set to 0.8. Cooling schedule 
continues until 90% of the spins converge. At the end of this cooling process, 
each unconverged Ising spin m is assumed to converge to state 0 or state 1 if 
urn < 0.5 or Urn >_ 0.5, respectively. Similarly, each unconverged Potts spin n is 
assumed to converge to state r where Vnr = max{v,~k : k = 1, 2 , . . . ,  Kn}. Then, 
the result is decoded as described in Section 3, and the resulting global routing 
is found. 

The LocusRoute algorithm is implemented as in [4]. As the LocusRoute de- 
pends on rip-up and reroute method, LocusRoute is allowed to reroute the cir- 
cuits 5 times. No bend reduction has been done as in [6]. Both algorithms are 
implemented in the C programming language. 

5 E x p e r i m e n t a l  R e s u l t s  

This section presents experimental performance evaluation of the proposed MFA 
algorithm in comparison with LocusRoute algorithm. Both algorithms are tested 
for the global routing of thirteen ACM S'IGDA Design Automation benchmarks 
(MCNC) on SUN SPARC 10 . The first 4 columns of Table 1 illustrate the 
properties of these benchmark circuits. 

These two algorithms yield the same total wiring length for global routing 
since two or less bend routing scheme is adopted in both of them. Last six 
columns of Table 1 illustrate the performance results of these two algorithms for 
the benchmark circuits. The MFA algorithm is executed 10 times for each cir- 
cuit starting from different, randomly chosen initial configurations. The results 
given for the MFA algorithm in Table 1 illustrate the average of these execu- 
tions. Global routing cost values of the solutions found by both algorithms are 
computed using Eq. (1) and then normalized with respect to those of MFA. In 
Table 1, maximum channel density denotes the number of routes assigned to the 
maximally loaded channels. That  is, it denotes the minimum number of tracks 
required in a channel for 100% routability. 

As is seen in Table 1, global routing costs of the solutions found by MFA 
are 3.1%-10.5% better than those of LocusRoute. As is also seen in this table, 
maximum channel density requirements of the solutions found by MFA are less 
than those of LocusRoute in almost all circuits except alu2 and terml. Both 
algorithms obtain the same maximum channel density for these two circuit. 

Figures 4 and 5 contain visual illustrations as pictures (left) and histograms 
(right) for the channel density distributions of the solutions found by MFA 
and LocusRoute, respectively, for the circuit C1355. The pictures are painted 
such that  the darkness of each channel increases with increasing channel den- 
sity. Global routing solutions found by these two algorithms are tested by using 
SEGA [5] detailed router for FPGA. Figure 6 illustrates the results of the SEGA 
detailed router for the circuit C1355 
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Tab l e  1. The performance results of the MFA and LocusRoute algorithms for the 
global routing of MCNC benchmark circuits 

Benchmarks Performance Results 
Circuits MFA LocusRoute 
number number FPGA global max. exec. globM max. exec. 

of of size routing] channel time routing channel time name 
I 

nets 2 -p inne t s  cost density (sec) cost density (sec) 

9symml 71 259 10x9 1.000 12.0 0.36 1,032 14 0.28 
too-large 177 519 14x13 1.000 16.0 0.88 1,071 17 0.64 

apex7 124 300 l lx9  1.000 14.0 0.42 1,073 16 0.29 
example2 197 444 13xll  1.000 15.0 0.64 1,097 16 0.72 

vda 216 722 16x15 1,000 17.0 0.42 1.055 18 0.10 
alu2 137 511 14x12 1.000 17,0 0,30 1.080 17 0.32 
alu4 236 851 18x16 1.000 17.0 0.68 1.073 19 0.50 

terml 87 202 9x8 1.000 14.0 0,34 1.093 14 0.27 
C1355 142 360 12xll  1.000 13.0 0.56 ].119 15 0.43 
C499 142 360 12xll  1.000 15.0 0.48 1.075 16 0.36 
C880 173 427 13xll  1.000 15.4 0,68 1.065 17 0.38 
[(2 388 1256 21x19 1.000 20.2 0,94 1.038 22 0.60 

Z03D4 575 2135 26x25 1.000 17.0 ]2.34 1.117 18 1.84 

6 C o n c l u s i o n  

In  this paper,  we have proposed an order - independent  global rou t ing  a lgor i thm 

for F P G A ,  based on Mean Field Anneal ing .  The  performance  of the proposed 
global rou t ing  a lgor i thm is evaluated in compar ison with the LocusRoute  global 
router  for 13 MCNC benchmark  circuits. Exper imen ta l  results indicate  t ha t  the 

proposed MFA heuristic performs bet ter  t h a n  the LocusRoute.  
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Fig. 4. Channel density distribution obtained by MFA for the circuit C1355 

Fig. 5. Channel density distribution obtained by LocusRoute for the circuit C1355 
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(b) 
Fig. 6. $EGA detailed router results of the circuit C1355 for the global routing solu- 
tions obtained by (a) MFA (b) LocusRoute 
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Abst rac t .  In this paper we address the problem of FPGA place and 
route for low power dissipation with critical path delay constraints. The 
presence of a large number of unprogrammed antifuses in the routing 
architecture adds to the capacitive loading of each net. Hence, a con- 
siderable amount of power is dissipated in the routing architecture due 
to signal transitions occurring at the output of logic modules. Based on 
primary input signal distributions, signal activities at the internal nodes 
of a circuit are estimated. Placement and routing are then carried out 
based on the signal activity measure so as to achieve routability with 
low power dissipation and required timing. Results show that more than 
40% reduction in power dissipation due to routing capacitances can be 
achieved compared to layout based only on area and timing. 

1 I n t r o d u c t i o n  

The Field Programmable Gate Arrays (FPGA's)  combine the flexibility of mask 
programmable gate arrays with the convenience of field programmability. The 
FPGA's  which were once used only for prototyping has found application in 
larger volume productions too. tlence, it is extremely important  to achieve high 
performance and lower power dissipation out of these devices. Depending on the 
technology, the FPGA based designs can have large interconnect capacitances. 
In this paper we will consider minimization of power dissipation due to wiring 
capacitances for the row-based FPGA's  under delay constraint. 

With the widespread use of portable systems, power dissipation of circuits 
have become a very important  design consideration for longer battery life and 
enhanced reliability. And if power dissipation is low enough, expensive ceramic 
packages can be replaced by plastic ones which cost about 25% less. There are 
various ways in which power dissipation can be minimized. One of the conven- 
tional ways of minimizing power comes from scaling down the supply voltage 
at the cost of larger circuit delays. Considerable improvement in power dissipa- 
tion can be achieved at the cost of higher circuit delays. Hence, lowering supply 
voltage make delay constrained power optimization even more desirable in view 
of the longer delay times. Recently there has been a lot of research effort to 
minimize power dissipation during different phases of a design such as high level 
synthesis, logic synthesis, and circuit synthesis [1, 2]. These synthesis procedures 
are based on average number of signal transitions on circuit nodes. Due to pres- 
ence of a large number of antifuses in the routing architecture, the FPGA-based 
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designs can have large wiring capacitance. In this paper we will model the  power 
dissipation due to interconnects using signal transitions and minimize power 
dissipation during placement and routing for FPGA's .  

Figure 1 shows a row-based FPGA architecture [4]. There are rows of Logic 
Modules (LM's) each of which can implement  a large number  of logic functions. 
The routing channels are in between the rows of logic modules and are used for 
routing of the nets. The routing tracks are laid out. The tracks are segmented 
and the adjacent segments are separated by horizontal antifuses (hfuses). In 
the unprogrammed state, the antifuses have a very large resistance and a small 
capacitance. However, programming these antifuses produces a low-resistance 
bidirectional connection between adjacent segments. The pins of the logic mod-  
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Fig. 1. Row-based FPGA Architect,re 

ules can be connected to the routing tracks using the vertical lines as shown in 
Figure 1. There is a cross antifuse (cfuse) present at the crossing of each hori- 
zontal and vertical line. The cruse have the same electrical characteristic as the 
hfuse. In the programmed state a low-resistance connection is obtained between 
a pin of the LM and a routing track. Figure 1 shows the routing of net 1 us- 
ing segments d and e by programming two cruses and all It fuSe. I f  there are T 
tracks in the channel, and M number of vertical lines, then at most  one cruse 
per vertical line gets programmed,  and hence, at least M ( T -  1) cruses remain 
unprogrammed in each channel. Each of the unprogrammed antifuses contribute 
a small capacitance, and due to the presence of large number  of such antifllses 
on each segment, the capacitive loading can be significant. Power dissipation 
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in CMOS circuits is associated with charging and discharging of LM load ca- 
pacitances, and hence, consideration of power dissipation during layout is very 
impor tan t  for FPGA's .  

The  paper is organized as follows. Section 2 on preliminaries and definitions 
introduces the reader to signal activity est imation at the output  of CMOS logic 
gates. Section 3 considers est imation of power dissipation due to layout capac- 
itances. The details of the power dissipation driven F P G A  layout algori thms 
are given in Section 4. Results of our analysis is given in Section 5, and finally 
conclusions are drawn in Section 6. 

2 P r e l i m i n a r i e s  and  D e f i n i t i o n s  

2.1 M u l t i l e v e l  logic  r e p r e s e n t a t i o n  

Multilevel logic can be described by a set S" of completely specified Boolean flmc- 
tions. Each Boolean flmction f E .T, maps one or more input and intermediate 
signals to an output  or a new intermediate signal. A circuit is represented as a 
Boolean network. Each node has a Boolean variable: and a Boolean expression 
associated with it. There is a directed edge to a node g from a node f ,  if the 
expression associated with node g contains in it the variable associated with f 
in either true or complemented form. A circuit is also viewed as a set of gates. 
Each gate has one or more input pins and (generally) one output  pin. Several 
pins are electrically tied together by a signal. Each signal connects to the output  
pin of exactly one gate, called the driver gate. 

2.2 S igna l  P r o b a b i l i t y  a n d  S igna l  A c t i v i t y  

Power dissipation can be estimated if signal transitions are accurately est imated 
for all the nets. Research on estimation of the average number of signal transi- 
tions has been reported in [3, 1]. Digital circuit signals can be represented as a 
steady state s tat ionary stochastic process [3], each signal being associated with a 
signal probability and an activity. Signal probability is defined as the probabil i ty 
that  a particular signal has a logic value of ONE, and signal aclivily is defined 
as the average number of signal transitions at the nets. We assume that  signal 
probabili ty and activity of the pr imary input signals are known, and can be 
obtained from system level simulations of the design with real life inputs. The 
signal activities at the internal nodes of a circuit can be efficiently and accurately 
est imated using the methods described in [1]. 

Let us consider a multi-input,  mult i -output  logic module M which imple- 
ments a Boolean function. M can be a single logic, gate or a higher level circuit 
block. We assume that  the inputs to M, gl, g2, ..g,~ are mutual ly independent 
processes each having a signal probabili ty of P(9~), and a signal activity of k(g~), 
i _< n. The signal probabili ty at. the output  can be easily computed using one 
of the methods described in [10]. For example,  if P1, P~, and Pa are the input 
signal probabilities to a three input AND gate, the output  signal probabil i ty 
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is given by P1P~P3, whereas, for an OR gate the output  signal probability is 
1 - (1 - P1)(1 - P2)(1 - P3). For an inverter, the ouput  signal probability is 
simply (1 - P1), where P1 is the input signal probability. The signal activity at 
any output  h j ,  of M is given by 

r~ 

A(hj)  = ~ P (Ohj "~ V(x i )  (1) 
i=1 k'-~-iffi l] 

Here xi, i = 1, .., n are the module inputs and cghlOg is the boolean difference of 
function g with respect to h and is defined by 

Oh 
0~ = h I,,=~ • h I.=0= h. m hy (2) 

Figure 2 shows the propagation of signal activity through AND, OR, and NOT 
gates. The signal probabilities and the circuit activities a.t the primary inputs to 
a circuit are assumed to be available. 

P , A  ~ A 

P1, A1 

P2, A2 

P1.A2 + P2.A1 

P1, A1 

P2, A2 

(1-P1).A2 + (1-P2).A1 

Fig. 2. Propagation of circuit activities through basic gates 

3 Calculation of Power Dissipation 

The three different sources of power dissipation in CMOS circuits are - leakage 
current, short circuit current, and signal transitions to charge or discharge load 
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capacitances. Of these three, the last is the most dominant one and will only be 
considered in the following discussions. The overall load capacitance that  each 
logic module or logic gate experiences is due to the routing capacitances, the 
number of fanouts of the LM, and the transistor gate capacitance per fanout 
connection. 

For the FPGA's ,  the segmented routing tracks are laid out, and each segment 
has a number of antifuses on it. Programming these antifuses produces a bidi- 
rectional low-resistance connection between the segment and the corresponding 
vertical line connected to a logic module pin (in case of c fuses) or between two 
segments (in case of hfuses). However, in the unprogrammed state each antifuse 
is associated with a small capacitance, and due to the presence of a large num- 
ber of such antifuses on each segment the capacitive loading can be significant. 
If the signal activity associated with a net having large wiring capacitance is 
high, larger power will be dissipated due to the interconnect. The average power 
dissipation can be given by: 

Powering = ~ V~D.A,.C, (3) 
i E all L M ' s  

where V D D  is the supply voltage, Ci is the capacitive load, and Ai represents the 
signal activity associated with each LM output.  The power dissipation internal 
to an LM has not been considered in the above equation. The capacitive load 
Ci that each logic module i experiences can be approximated by 

.f anout i  

c, : + cgj (4) 
/ = 1  

where the Cri represents the total wiring capacitance due to the metal line form- 
ing the track segment(s) and the unprogrammed cruses on it, fanoutl represents 
the number of fanout for logic module i, and Cg] represents the transistor gate 
capacitances associated with each fanout f .  If the wiring capacitance is com- 
parable to the the fanout gate capacitances considerable improvement in total 
power dissipation can be achieved if a signal activity based layout algorithm can 
be used. 

4 F P G A  Layout  

From the previous section it can be noted that power dissipation due to wiring 
capacitances can be minimized if it is possible to assign the nets with higher 
activity to routing tracks associated with lower capacitance. Logic synthesis to 
achieve low power dissipation has been considered in [1], where multilevel logic 
was synthesized based on signal activity measure. Previous research on F P G A  
layout mainly concentrated on routability and critical path delays [4, 5, 7]. In 
this research power minimization has been considered along with routabili ty 
and performance optimization during placement and channel routing. The sig- 
nal activities on different nets are determined from the signal probabilities and 
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activities of the primary input signal using Equation 1. We have developed tech- 
niques with efficient datastructures to accurately determine signal activities even 
in the presence of signal correlations, the details of the procedure is given in [1]. 

4.1 P l a c e m e n t  

The placement algorithm is based on simulated annealing [9]. The cost function 
not only considers timing and wire length penalty, but it also considers the 
activity measures of the signals. The FPGA architecture details and constraints 
are incorporated in the array template. Unlike the gate arrays, the feedthrough 
cells cannot be inserted for vertical routing. Whenever a pin cannot be reached by 
a module output  through its dedicated vertical tracks, uncommitted feedthrough 
segments have to be used. This appears as an extra cost in the cost function for 
placement optimization. 

The cost function (C) consists of total wire length (W), power dissipation 
penalty ( W *  A), timing path penalty (P),  and extra cost (F)  for using uncom- 
mitted feedthrough. The activity associated with the net, under consideration is 
represented as A. The complete expression for the cost, function is given by 

C~ = W + a(W * A) + bP + cF (5) 

where a, b, and c are the relative weights of the three terms in the cost flmction. 
The wire length of a net is estimated as half the perimeter of the minimum 
rectangle, a bounding box, that encompasses the net. The wire length W is 
proportional to the FPGA routing capacitances, and hence, W * A  is proportional 
to the power dissipated due to the routing capacitances. For each critical timing 
path, an upper bound is put on the wire length of all the nets in the path. A 
penalty is assigned for a path that  has the wire length beyond this upper bound. 

In order to provide a homogeneous cost factor, the extra cost (F)  of using 
uncommitted feedthrough segment is represented by the vertical distances be- 
tween module output  vertical span and the bounding box of the net. To facilitate 
calculation, a concept of module driver is introduced. A module driver is a pin 
that  drives the rest of the pins in a net. With the location of the module driver 
specified, F is readily available. For our timing and power dissipation driven 
placement, the identification of the driver for a net will help the accuracy of 
delay and power estimation. Global routing follows placement. It efficiently uses 
the scarce vertical routing resources or feedthroughs to connect same nets in 
different channels. 

4.2 D e t a i l e d  R o u t i n g  

A routing channel contains segmented routing tracks as shown in Figure 1. The 
channel routing problem is formulated as an assignment problem where each net 
within a channel is assigned to one or more unassigned segments. Each net within 
a channel is allowed to use at most one track due to a technology constraint which 
does not allow programming of antifuses connected in an L-shaped fashion [4]. 
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The programming of such antifuses can lead to programming two antifuses at 
the same t ime which can degrade the performance of the p rogrammed antifuses. 

The cost of routing is determined by the number  of segments used by the crit- 
ical nets in a channel, and the length of the segments assigned to different nets. 
The  number  (Hx) of hfuses to be p rogrammed is equal to the number  of segments 
assigned to the corresponding net (z) minus one. Depending on the technology, 
the resistance associated with programmed antifuses can be detr imental ly high. 
If  a net x of length Lx is routed with p (1 < p < K,  m a x i m u m  of K segments 
allowed) segments, each of length Lj (j = 1, ...,p), then {(~Y=I Lj) - L~} gives 
a measure of the wasted (or excess) length of segment(s). It  can be observed tha t  
the wasted segment is associated with unprogrammed cruses which increases the 
capacitive loading on the net. This has two detr imental  effects: a large segment 
wastage means a larger delay on that  net, and if the net is critical, t iming of the 
circuit might get affected. Secondly, if the net is associated with large activity, 
higher power will be dissipated due to higher capacitance. Besides, these two 
performance effects, the segment wastage is also associated with routabil i ty of 
the channel. For K-segment routing, in which a max imum of K segments can be 
used by each net, we define the cost C~ of routing a net x as 

where 
P 

j = l  

/3 = H~ 

The factor (~ is a product of segment wastage due to tile assignment of a net 
to a segment(s) and the activity of that  net. The factor fl is associated with 
routing performance, because tile programmed hfuses add to delays of a net. 
The weights wl, w'2 assigned to tile wastage factor, and the horizontal antifilse 
usage factor respectively, are determined by the technology under consideration. 
For example,  tile metal-metal  horizontal antifllse has a nmch lower p rogrammed 
resistance than a p rogrammed ONO [4] antifuse, and hence, w2 for the latter 
technology should be higher than tile meta l -meta l  antifilse technology. The total  
cost of routing all the nets in a channel is ~ p  Cp, 0 < p < V, where V is the 
total  number of nets in a channel. 

Green et. al. [8] have shown that  K-segment (I'( > 1) channel routing problem 
is NP-complete.  We use a routing algorithm based on net ordering. The nets are 
ordered in terms of their length in a channel times the activity associated with 
that  net (L~A,.), and the nets with higher length-activity measure is routed 
first, ttence, the nets which are routed first can be assigned to tile best possible 
segment with least segment wastage. All t iming critical net, can be routed first 
for t iming critical designs. If a net is unroutable, we resort to backtracking to 
determine if undoing a previous net-segment assignment can achieve routabil i ty 
[5]. If  exhaustive backtracking is unable to route the nets in the channel, then 
the channel is not routable. Average power dissipation due to channel routing is 
measured using Equation 3. 
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5 Implementat ion  and Results  

The power dissipation and performance driven FPGA layout algorithms have 
been implemented in C on SPARC 10 workstation: Table 1 shows the results of 
our analysis on two MCNC benchmarks (bw and duke2) from Microelectronic 
Center of North Carolina and some industrial designs. The primary input signals 
were assigned signal probabilities of 0.5. Signal activities of primary inputs were 
randomly assigned a number between 1 and 7. The logic was synthesized and 
internal node activities were calculated using our algorithm of [1]. The FPGA's  
used for experimentation had twenty-five routing tracks per channel with chan- 
nel segmentation of TPCI010. There were forty-four logic modules per row. For 
larger designs we increased the number of rows of logic module to fit the design. 
The second column of Table 1 shows the average percentage segment wastage 
over all nets of the design. The results have been compared with traditional lay- 
out for FPGA's  based on timing and routability (R), and our power dissipation 
driven layout (P). The number of hfuses to be programmed is shown in the next 
column. The last column shows the percentage change in power dissipation due 
to routing capacitances. Considerable improvement in power dissipation was ob- 
tained for all the examples satisfying all the critical path constraints. The nets 
were modeled as RC trees [7] and some of the nets were analyzed using SPICE. 
SPICE results indeed show a large improvement in average power dissipation. 

T a b l e  1. Layout results 

Design Wastage (%) 
R P 

Ibw 40.9 41.4 
duke2 45.8 46.3 
f104667 51.6 51.8 
f104243 44.9 45.2 
f104780 47.9 48.1 
[103918 43.8 44.3 
cf92382a 52.0 52.2 

for some examples 

Hfuses % Change 
R P Power 
0 0 34.3 
3 .7 29.7 
0 0 32.6 

i0 0 23.1 
8 9 37.2 
3 3 42.1 
0 0 22.0 

6 Conclusions 

Power dissipation and performance driven layout for row-based FPGA's  has been 
considered in this paper. Power dissipation in CMOS circuits is dependent on the 
nature of primary inputs. Hence, probabilistic measures were used to determine 
the signal activities. Experimental analysis shows the feasibility of achieving 
considerable improvement in power dissipation due to routing capacitances for 
FPGA's .  
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A b s t r a c t .  The technology mapping problem for lookup table-based FPGAs 
is studied in this paper. The problem is formulated as assigning LUTs to nodes 
of a circuit so as to minimize the total estimated power consumption. We show 
that the decision version of this problem is NP-complete, even for simple classes 
of inputs such as 3-level circuits. The same proof is extended to conclude that 
the general library-based technology mapping for power minimization is NP- 
complete. A heuristic algorithm for mapping the network onto K-input LUTs 
in polynomial time, aimed at minimizing the power consumption is presented. 
Despite the fact that the Boolean properties of the network are not exploited 
in the mapping procedure~ the experimental results show %14.8 improvement 
on the average power consumption compared to the results obtained from a 
mapping algorithm aimed at minimizing the number of LUTs. On the average, 
the number of LUTs is increased by %7.1. 

1 I n t r o d u c t i o n  

W i t h  the  r ap id  deve lopmen t  and advances  in VLSI  technology,  the  average t ran-  
s is tor  count  in a chip is increased enormously ,  a l lowing m o r e  soph i s t i ca t ed  func- 
t ional i ty .  Moreover ,  the  advent  of persona l  c o m m u n i c a t i o n  and  c o m p u t i n g  ser- 
vices has s t i r red  a g rea t  deal  of  in teres t  in bo th  the  c omme rc i a l  and  research 
areas.  T h e  m i n i m i z a t i o n  of  power c o n s u m p t i o n  in m o d e r n  circuits ,  is therefore  
of  g rea t  i m p o r t a n c e .  In pa r t i cu la r ,  b a t t e r y  o p e r a t e d  p roduc t s  such as p o r t a b l e  
compu te r s  and  cel lular  phones,  have come to a po in t  in which m i n i m i z a t i o n  of  
the  power  c o n s u m p t i o n  is a m o n g  the  mos t  crucial  issues. Due to the  i m p o r t a n c e  
of  power c o n s u m p t i o n  issue, there  has been a g rea t  shift  of  a t t en t i on  in the  logic 
and  layout  synthes is  areas  f rom the  delay and a rea  m i n i m i z a t i o n  issues towards  
th is  issue [18, 17, 9, 14]. 

An  F P G A  is an a r r ay  of  p r o g r a m m a b l e  logic b locks  (PLBs)  t h a t  can be inter-  
connected  in a fa i r ly  genera l  way. The  in te rconnec t ion  between these blocks are 
also user p r o g r a m m a b l e .  In a Lookup -Tab l e  (LUT)  based  F P G A ,  the PLB is 
a K- inpu t  L U T  ( K - L U T )  t h a t  can i m p l e m e n t  any Boolean  func t ion  of up to  K 

1This work has  been s u p p o r t e d  in pa r t  by the  Na t iona l  Science F o u n d a t i o n  
under  g ran t  M I P  9207267. 
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variables. The technology mapping  problem for LUT-based F P G A s  is to gener- 
ate a mapping  of a set of Boolean functions onto K-LUTs. Previous mapping  
algorithms have focused on three main issues: minimization of the number  of 
levels of LUTs in the mapped  network [4, 7, 11, 15] , minimizat ion of the num- 
ber of LUTs used in the mapping  solution [6, 10, 5], routabil i ty of the mapp ing  
solution [16, 3], or combinations of these. 

In this paper  we study the technology mapping  problem for LUT-based F P G A s  
for power minimization. We formulate the problem as assigning LUTs to ver- 
tices in the network so as to minimize the total est imated power consumption 
of the mapped  circuit. We show that  the decision version of this problem is 
NP-complete,  even for simple classes of inputs. We use the transit ion density 
metric for power estimation, and derive formulas for propagat ion of the transi- 
tion densities from pr imary inputs to all the nodes in the network for a general 
A N D / O R / I N V E R T  circuit. The rest of this paper is organized as follows. Sec- 
tion 2 sets up the notation. Section 3 describes the formulation of the power 
est imation for a circuit being mapped  onto LUTs. Section 4 summarizes  our 
NP-completeness results for the formulation presented in Section 3. Section 5 
presents rnodeling of a general A N D / O R / I N V E R T  combinational  circuit and de- 
scribes the transition density propagat ion formulas derived for this model.  A 
polynomial  t ime heuristic algorithm to solve the problem is presented in Section 
6. The experimentM results are presented in Section 7, and Section 8 summarizes  
the key features of this paper and provides directions for further research in this 
area. 

2 P r o b l e m  F o r m u l a t i o n  a n d  N o t a t i o n  

Consider the representation of a combinational logic circuit as a directed acyclic 
graph (DAG) G(V, £') where each vertex vi in V represents a boolean function, 
and each directed edge (vi, vj) represents a connection between the output  of vi 
and the input of vj. A primary iTtput (PI)  vertex has no in-coming edge and a 
primary outpul (PO) has no out-going edge. Given a vertex v C V, by input(v) 
we mean tile set of vertices that  supply inputs to vertex v i.e. input(v) = {u C 
Vl(u, v) C E}. In addition, given a subset V1 of V, not including any Pls or POs, 
by input(V1) we mean the set of vertices in V-VI that  supply inputs to vertices 
in V1 i.e. input(V1) = {u ¢ (V - V1){~v C V1 : (at, v) C E}, and by output(V1) 
we mean the set of vertices in V1 that  supply inputs to vertices in V-V1 i.e. 
output(V1) = {u ~ Vll?v E (V - V1) : (u ,v)  E E}. In case V1 contains Pls 
or POs, each PI in V1 will also be included in input(V1), and each PO in V1 
will also be included in output(V1). For a set S of elements, the notat ion IS I is 
used to denote the number of elements in S (i.e. cardinality of S). Vertex u is a 
predecessor of vertex v if there is a directed path  from u to v in the network. A 
K-feasible cone at v, denoted by Cv, is defined as a subgraph consisting of v and 
its predecessors such that  any path connecting a vertex in Cv and v lies entirely 
in C~, and linput(C~)[ < K. 
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A output .~ 
/ ~  .(. d~:S  
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a)l~oolean Network b)DAG after Technology 
Mapping Using 5-LUTs 

F i g u r e  1. D A G  R e p r e s e n t a t i o n  of a B o o l e a n  N e t w o r k  a n d  M a p p i n g  it o n t o  5 -L UT s  

A K-input lookup-table (K-LUT) is a programmable logic block capable of im- 
plementing any K-input (and single output)  boolean function. Therefore, each 
K-LUT can implement a K-feasible cone in the boolean network. The technol- 
ogy mapping problem for K-LUT based FPGA8 is to map a boolean network 
using K-LUTs, which can be viewed as covering the DAG representation of the 
boolean network with K-feasible cones. Figure 1 shows a boolean network, its 
corresponding DAG and its mapping onto 5-LUTs. 

Now, consider a DAG G(V, E) and a subset L of V. Assume that  corresponding 
to each vertex 1 in L, there is a LUT "placed at" this vertex in the graph 2, that  
is, the output  of vertex l will be supplied by this LUT. To simplify the notation, 
the corresponding LUT will also be denoted by I. The dependency yl of LUT l is 
defined as the number of PIs or LUTs that  feed vertex I. Tha t  is, Yt represents 
the number of inputs to the LUT l if the assignment of LUTs to vertices of G 
are as specified in L. This means that the LUT l corresponds to a K-feasible 
cone at vertex l (a K-LUT) if and only if Yl _< K. For a node v, the contribution 
quantity, denoted by Zv represents the contribution of node v to the dependency 
of its fanout nodes. That  is, Zv is equal to 1 or y~ f v is or is not assigned a LUT 
in the mapping, respectively. 

Intuitively, in technology mapping for LUT-based FPGAs for power minimiza- 
tion, we desire to map the circuit onto K-LUTs such that the activity at the LUT 
outputs, and hence the power consumption due to these activities are minimized. 
Tha t  is, a mapping would have low power consumption if the highly active signals 
(edges) are hidden inside the LUTs in this mapping. As in [12], let us model a 
logic signal by a function x(t), t 6 ( - ~ ,  + ~ ) ,  which only takes values 0 or 1. 
Note that  such a model ignores waveform details such as over/under-shoots and 
rise/fall times. The equilibrium probability (EP) and the transition density (TD) 

2Note that the terms network and graph are used interchangeably in this 
paper. 
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of a logic signal x(t), denoted by p(z)  and d(x) respectively, are defined as: 

f 
+T/2 

p(x) = lira 1/T x(t)dt (1) 
T-~c~ J-T~2 

d(x) = l i m  n~(T) (2) 

Where n~(T) represents the number  of transitions of x(t)  in the t ime interval 
( -T /2 ,  +T/2] .  It is shown in [12] that  under a reasonable model, the limit in 
(2) always exists. Consider a Boolean function y = f (x l ,  x2, ..., xn). Then the 
Boolean difference of y with respect to xi denoted by ~ is defined as: cox i , 

O y y _  
0X i Ylxi=0 @ Ylxi=i (3)  

Consider a logic module 3,t with inputs xl ,  ..., x,~ and outputs  Yl, ..., Y,~. If there 
is no propagation delay associated with module Ad, the module is known as a 
zero-delay logic module. The following theorem quoted from [12] relates the TDs  
d(y~) to TDs d(xi): 

T h e o r e m  1: If the inputs xi(t), i = 1,2, . . . ,n of a zero-delay logic module Ad 
are pairwise independent signals with TDs d(xi), then the TDs d(yj), j --- 1, ..., m 
are given by: 

d(y~) = ~ 'OY~d(x~) (4) P~ @xl" 
i=1 

This theorem provides a tool to propagate the TDs at the PIs into the network to 
compute the TDs at any point in the network. The assumption that  the inputs to 
a node are independent, however, may not be true for every node. Even though 
this independence holds for the PIs, the existence of reconvergent paths may 
cause correlation between the values of the inputs to a node in the circuit. It  has 
been mentioned in [12], however, that  if the modules are large enough so that  
tightly coupled nodes are kept inside the same module, then the coupling effect, 
outside the modules are sufficiently low to justify the independence assumption.  
In this paper we assume such an independence to simplify the propagat ion of 
TDs. The importance of TDs at different sites in a network is due to the fact 
that  the average dynamic power consumption in a CMOS gate with output  signal 
x(t) is given by: 

1 2 . ~ }  ~CV~dd(x ) (5) 

Where C and Vda represent the load capacity at the output  of the gate and 
the power supply voltage, respectively. Note that  for a CMOS gate, the static 
power consumption is negligible, so, to minimize the total  power consumption in 
a network, the summat ion  of the dynamic power consumption over all the nodes 
in a network should be minimized. Note that  at this stage of the design, the 
routing information is not available. A rough est imate for the length of a net 
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can be the number  of destinations of that  net, which is taken into account in our 
power est imation model when computing capacity of each net. In a LUT-based 
F P G A  environment,  since the only modules are the LUTs, the summat ion  should 
be minimized over all the LUTs used to map  the Boolean network. This idea is 
also in accordance with technical data  sheet information, e.g., [1] confirms that  
the power consumption is proportional  to the summat ion  of the average activities 
at the LUT outputs  in a mapped  network. 

In this paper, we address the LUT-based technology mapping  problem for min- 
imizing the total  power consumption of the mapping  result, to be referred to as 
K-input  LUT power minimization problem (K-PMP). This can be stated as map-  
ping a Boolean network onto K-LUTs such that  the average power consumption 
over the entire mapped  circuit is minimized. To simplify the problem, we assume 
tha t  linput(v)l for each vertex v in the boolean network is less than or equal to 
K (any circuit can be transformed to at tain such property).  We also assume 
tha t  the covering procedure is not allowed to decompose a node into its fanin 
a nodes. This restricted version of the problem will be denoted as K-RPMP, 
which can be viewed as assigning LUTs to the nodes of a network such that  
each LUT corresponds to a K-feasible cone, and tha t  the power consumption of 
the mapping  result is minimized. Let PMP denote the l ibrary-based technology 
mapping  targeted at minimization of the power consumption of the mapping  re- 
sult. This problem is studied in [17]. Under the simplified assumptions of the 
constant load model, this problem is NP-hard [2] 4. Note that  PMP, K-PMP 
and K-RPMP can each be formulated as an optimizat ion or a decision problem. 
Unless otherwise stated, in the rest of this paper,  PMP, K-PMP and K-RPMP 
refer to the decision versions of the problems. 

In our formulation of K-RPMP, we use the zero-delay model and TD for 
est imating the power consumption. Not only does this allow the application of 
Theorem 1 to compute the TDs at all nodes in the circuit, but it also simplifies 
the problem and allows us to focus on the mapping  algorithm rather than the 
transition density propagation.  

3 P o w e r  E s t i m a t i o n  M o d e l  

As mentioned earlier, the major  energy consumption term in CMOS circuits is 
due to dynamic power dissipation, which happens at transit ion times. In LUT- 
based FPGAs,  the same is true with the difference that  the transitions only take 
place at the inpu t /ou tpu t  of LUTs. Therefore, the average power consumption 

3For each node v, fanin(v) and input(v) represent the same set. 
4The decision version of this problem under the constant load model is NP- 

complete. 
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C e q  = Cou t  + n .  Cin 

F i g u r e  2. Load Capacity at the Outpu t  of a LUT 

in a network N" mapped  onto LUTs can be approximated by the following: 

1 C 

P I  pl L U T  Li  
(6) 

In this formula, the term [Co~t + fanout(Li)C~,~] accounts for the equivalent 
load capacity at the output  of LUT Li as shown in Figure 2, and the term rti 
represents the number of LUTs receiving input from the pr imary  input pi. Note 
that  by introducing the equivalent load capacity, we are in essence taking into 
account the power consumption at the inputs of the fanout LUTs as well as the 
power consumption at the output  of current LUT. 

4 C o m p l e x i t y  I s s u e s  

This section summarizes our results on the complexity of K - R P M P  ~. Consider 
the 3-Satisfiability problem (3-SAT). It is well-known that  3-SAT is an NP- 
complete problem [8]. It  is reported in [8] that  3-SAT remains NP-complete  if 
for each variable xi, there are at most 5 clauses that  contain either of the literals 
xi ,xi. We will refer to this version of 3-SAT as R3-SAT (restricted 3-SA7).  
Lemma 1 forms the foundation of our complexity results for K-RPMP. 

L e m m a  1. R3-SAT is polynomial t ime transformable to K-RPMP, for any 
value K > 5. 

Based on Lemma 1, and the fact that  K - R P M P  is in class NP we conclude the 
following: 

T h e o r e m  2. K-RPMP is NP-complete for K >_ 5. 

SSee Northwestern University, EECS Depar tment ,  Technical Report  June 1993 
for proofs. 
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F i g u r e  3. Candidate Gates in a Gate Library 

Furthermore, we can conclude the following, simply from the transformation 
presented in the proof of Lemma 1: 

C o r o l l a r y  1. K-RPMP with K > 5 remains NP-complete for the follow- 
ing ("simple") networks: 3-level networks, networks with bounded fanin and/or  
fanout, A N D / O R  networks, combinations of these. 

C o r o l l a r y  2. Let K-RLMP denote the technology mapping problem for LUT- 
based FPGAs targeted at minimization of the number of LUTs, under the same 
assumptions as K-RPMP. Then K-RLMP is NP-Complete for all K > 5 6 

An interesting observation here, is that  the same transformation can be used to 
show the NP-completeness of both K-RLMP and K-RPMP for all I (  > 5. 

C o r o l l a r y  3. General library-based technology mapping problem for power 
minimization (PMP) is NP-complete, even if our library consists only of the 
("simple") gates G1, G2,...,G6 shown in Figure 3. 

Note that Corollary 3 solves a previously open problem regarding the NP-completeness 
of the PMP under this model. 

We shall conclude this section by pointing out that  the same transformation does 
not work for values K < 5, due to technical problems. 

5 C i r c u i t  M o d e l  A n d  T r a n s i t i o n  D e n s i t y  P r o p a g a t i o n  

Consider a general Boolean network consisting of A N D / O R / I N V E R T E R  gates. 
We can view such a circuit as a network consisting of AND, OR gates with 
arbitrary input /ou tput  polarities for each gate . We shall refer to these gates 
as polarized gates. We will show how we can apply Theorem 1 to propagate 
the TDs from the PIs into such a network. Since every Boolean network can 
be transformed into such a representation, we can then use our technique for 
propagation of TDs into the network. A polarized AND gate can be modeled as 
an n-input AND gate with programmable inverter blocks at each input and output 
as shown in Figure 4. Define polarity function pol(x) for each input /output  as 

eThis has also been shown in [5]. 
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F i g u r e  4. Modeling Polarized AND Gate  

0 or 1 if the corresponding programmable  inverter block acts as an inverting or 
non-inverting buffer respectively . Now, consider such an AND gate with inputs 
az , . . . ,an  and output  f .  Associated with each input ai the polar input bi and 
associated with the output  f ,  the polar output  g are introduced. Then we have: 

p(ai), if pol(ai) = 1 
p(bi) = ~. 1 -  p(ai), i fpol(a i )  = 0 

= pol(ai)p(al) + [1 - pol(ai)][1 - p(ai)] (7) 

P(I)  = pol( f )p(g)  + [1 - pol(I)][1 - p(g)] (8) 

Then by applying Theorem 1, with the assumption that  the inputs ai are inde- 
pendent logic signals, we obtain: 

'~ Og d ~ ~-[ d ( f )  = d(g) = E p ( ~  ) (bi) = E [  ( J.J- p(bk))d(ai)] (9) 
i=1  i: :1 k=l,k~i 

p( f )  = pol( f )  r l P ( b i )  + [1 - pol(f)][l  - r lP(b i ) ]  (10) 
i : 1  i : 1  

A polarized OR gate is modeled similarly. By a similar analysis we obtain the 

following: 

p( f )  = pol( f)p(g)  + [ 1 -  pol(f)][1 - p(g)]; 

dO" ) = ~{[ (1-p(bk))]d(ai)} 
i=1  k=l,k¢i 

p(g )  --  1 - 1 - I [ 1  - p(b~)] ( 11 )  
i = 1  

(12) 

Where p(bi) is obtained from (7). This means that  we can easily propagate  the 
TDs at PIs into the network to compute  the TDs at any site in the network. 
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Tech_Map ping_for_Low_Power 
Input : DAG G(V,E) 
Output : A 5-feasible mapping of G with minimal power 
Begin 

Perform a topological sort on G(V,E) ; 
Compute TDs for all nodes in the network ; 

Starting from PIs towards POs for each node v do 
Compute dependency y(v) of v ; 
While (y(v) > K) 

Sv = Set of fanin nodes of v to which no LUT is assigned; 
Mv = Minimal_set (Sv) ; 
Find the element u of Mv with maximum priority ; 
Assign a LUT to u and update y(v); 

End. 

F i g u r e  5. Technology Mapping Algorithm for Power Minimization 

6 A H e u r i s t i c  M a p p i n g  A l g o r i t h m  

As mentioned in Section 2, our mapping  algorithm is restricted only to assigning 
LUTs to nodes in the network such tha t  the whole network is mapped  onto K- 
feasible cones (K-LUTs).  Our heuristic algorithm is shown in Figure 5.The main  
idea in this algorithm is to scan the network start ing f rom the PIs towards POs 
and make all LUTs K-feasible. At each node v, as we go along, if the dependency 
Yv of v is larger than K,  a fanin node of v is chosen and a LUT is assigned 
to it, thus lowering yr. This procedure gets repeated until y~ _< K.  The key 
point in the algorithm is to consider both the contribution and TD factors in 
the selection of fanin nodes for LUT assignment. Consider current node v, and 
assume 5'~ = {ul, u2, ...,urn} is the set of fanin nodes o f v  to which no LUTs are 
assigned yet. Let the ordered pair (Zu,, d~,) represent the contribution Zu, of ui 
to the dependency y~ of node v, and TD du. associated with ui respectively. We 
say ui dominates uj if d~,~ >_ duj and Z ~  _< Zuj. The minimal set of v is defined 
as the set of members  of Sv that  are not dominated by any other element in S~, 
and is denoted by M~. Figure 6 shows a set of points in two dimensional space 
(Z, d) and its corresponding minimal  set. The minimal  set of m elements in two- 
dimensional space can be found easily in O(m log m) t ime (see [13]). Suppose 
ul and u2 are members  of Sv. Note that  if ul dominates  node u2, from a local 
s tandpoint ,  we can claim that  assignment of a LUT to u2 is more beneficial 
for power minimization than assigning a LUT to ul. Tha t  is, for selecting a 
fanin node from S~ for LUT assignment, we can just  focus on elements in M~. A 
priority function priori ty(ul)  = P ~ ( u i )  × ( F ~ . Z ( u i ) -  1) is used to select the node 
in M~ for next LUT assignment. The parameter  F~, called contribution factor 
is introduced to allow control over the relative significance of contribution and 
TD factors. The t ime complexity of the algorithm can be shown to be O ( n K  2) 
where n is the total  number  of nodes in the network, and K is the m a x i m u m  
input capacity of the LUTs. 
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F i g u r e  6. Minimal-set of a Set of Points 

N e t w o r k  L e v e l - M a p  R e s u l t s  
n a m e  b U T s  - ( m W ~  p o w e r  m W  
5 x p l  25 187 
9 s y m  60 374 

9 s y m m l  56 385 
C 4 9 9  83 1410  
C 8 8 0  103 1177  
Mu2  127 894  

a p e x 6  235 1413  
a p e x 7  69 502  
c o u n t  31 226 
d u k e 2  175 526  
m i ~ e x l  18 121 

rd84  23 345 
~ot 211 1945  
vg2 25 159 

z 4 m l  5 80 
T o t a l  1246  10219  

C o m p a r i s o n  l + ~ 14.8  

P o w e r  M i n .  Alg .  R e s u l t s  
L U T s  P o w e r ( r o W )  

62 3 6 5  
58 376  
91 1076  

111 1060  
146 836  
237  1404  
77 459 
31 2 2 7  

190 478  
16 106 
27 344 

238  1749  
25 160 
g 80 

1339  8902  
+ % 7 . 1  1 

Table  1. Comparison of Power and LUT Minimization Algorithms 

7 E x p e r i m e n t a l  R e s u l t s  

The algorithm was implemented in C and tested using a number of MCNC Bench- 
mark circuits. The results were compared to Level-Map [5] algorithm which 
addresses LUT minimization. Both algorithms were run a nmnber of times with 
30 difl'erent wflues of F~ (/~) for Level-Map) in the range [0,20] and the best 
result for power consumption was recorded. The input /output  capacity for the 
LUTs were set at lOpF and the examples were run with constant EP p = 0.5 
and TD d = 10000 for all PIs. The algorithms were run for 5 input LUTs. On 
the average, our power minimization algorithm shows %14.8 improvement on 
the total power consumption. In addition, experiments show an average of %7.1 
increase on the number of LUTs, compared to the results obtained from Level- 
Map. These results are shown in Table 1. The running times of both algorithms 
on each of the benchmark circuits were less than 10 seconds on a SUN SPARC 
Station 1. Note that our main focus in this work has been on the mapping algo- 
rithm for power minimization, and not on the propagation of the TDs into the 
network. The propagation of the TDs into the circuit could be computed using 
other, perhaps more realistic, approaches, e.g., using binary decision diagrams as 
in [17], or could even be given as part of the input. In order to compare the de- 
lay of mapping results of different technology mappers, we have also performed 
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Network" Level-Map Results Power Min. Alg. Results FlowMap Results 
Delay Depth Delay Depth Delay 

(roW) (ns) (roW) (ns) (raW) 
70.6 5 73.4 3 64.3 
66.4 7 64.0 7 59.5 
61.7 6 54.1 5 94.7 
64.3 5 70.1 5 64.3 
56.4 6 73.3 3 78.6 
47.5 5 61.6 3 38.1 
80.2 8 62.9 4 75.5 
39.8 2 24.4 2 24.4 

44 483.8  32 449.4  

Depth 
(n9 

5xpl 5 
9sym 7 

9symml 7 
count 5 

misexl 5 
rd84 5 
vg2 6 

z4ml 2 
Total 42" 

Comparison +%31 
487.2  
+%0.8 +%37 1 1 +%3.1 

Table2. Comparison of LUT, Power, and Depth Minimization Algorithms 

placement and routing steps on a number of these benchmarks that would fit 
into the XILINX 3090 FPGA architecture. The depth of the mapping 7 and the 
delay of these benchmark circuits after placement and routing by XILINX tools 
are shown in Table 2. As you can see, minimizing depth does not necessarily 
correspond to minimizing the delay. This is mainly because of the fact that the 
applied placement and routing algorithms were not directed to minimize the de- 
lay as the primary objective, and that they used simulated annealing technique 
which is a probabilistic approach. 

8 C o n c l u s i o n  

In this work, we studied the technology mapping step for LUT-based FPGAs 
aimed at minimization of the power consumption of the mapping result. We 
showed that even restricted versions of the problem are NP-complete for values 
K > 5, where K is the input capacity of the LUTs. A polynomial time algorithm 
was presented to solve the problem using a greedy heuristic. Experimental re- 
suits show substantial reduction on the total power consumption on a number of 
MCNC Benchmark examples. This is a promising result as no Boolean properties 
were exploited in the mapping algorithm. Our future research in this area will 
be in the following directions: exploiting the Boolean properties of the circuit 
to achieve better results, intergating the technology mapping and the placement 
and routing steps to improve routability and taking into account the resistive and 
capacitive effect of the routing paths on the power consumption, improving the 
power estimation metric to allow taking into account the power consumption due 
to glitches, and finally recognizing and effectively exploiting reconvergent paths 
to improve the quality of the mapping algorithm. 

7The maximum number of LUTs on any PI to PO path  in the mapping solution. 
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Abstract. This paper describes the application of the experimental system 
LORTGEN for file technology-specific specification and synthesis of high 
performance arithmetic operators for FPGAs. Using multiplier and adder 
designs for the XC3xxx-LCA-family as example we demonstrate that the 
implemented architecture-specific techniques boost the performance and 
density of the designs. Consequently, LORTGEN enables the implementation 
of complex operators (e.g. multipliers) in one FPGA, frees the designers from 
device-specific implementation details and allows them to focus more on 
actually designing the application. 

1 Introduction 

The behavioral description of  complex systems using HDLs - e.g. VHDL - often 
contains arithmetic operators like addition or multiplication. During the synthesis 
step these operators have to be replaced by an implementat ion satisfying the design 
requirements. 
Usually commercial  synthesis tools like the Design Compiler  [1] or AutoLogic [2] 
synthesise operator implementations with a sufficient performance but they do not 
apply special methods for data path synthesis. However, i f  an extensive design space 
exploration is necessary to adjust the implementat ion to additional restrictions in 
time, area and so on, the synthesis process is often computationally infeasible for 
large datapath-intensive ASIC-designs 1) and involves the following difficulties: 

* This work is partly supported by the BMFT tinder the contract 01M3007C 
1) The optimisation of one 32x32 bit multiplier implementation with the Design Compiler 
takes about 8 hours on a SPARC10. 
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• Commercial synthesis systems do not support the mathematical decomposition of 
arithmetic operators into proper subfunctions [3]. Consequently, the designer must 
specify this decomposition in the specification which requires a great deal of 
VHDL and design knowledge. 

• The quality of the synthesis results depends largely on a suited specification style 
and optimisation strategy. 

• The synthesis of a certain implementation in the design space often requires 
several synthesis cycles. 

• The used synthesis and optimisation (mapping) techniques do not utilise all 
architecture-specific features of FPGAs. 

Consequently, 
• commercial synthesis tools produce suboptimum implementations of arithmetic 

operators for FPGAs, 
• the quality of the synthesis result (as well as the design effort) depends on the 

designer's experience, 
• the determination of the implementation best adjusted to the design requirements 

often results in a high design effort and consequently in a low design efficiency. 

To simplify and accelerate the synthesis of arithmetic operators CAD-tool vendors 
supply special tools often based on a library of technology-independent generic 
modules or module generators (e.g. Design Ware |4], AutoLogic BLOCKS [2[ or X- 
BLOX [5]). This results in a better performance but usually the number of design 
alternatives can explode so that the approach of a predefined library storing all 
possible implementations becomes disadvantageous. 
To handle this problem for arithmetic operators, the following goals must be 
achieved: 
( l )we need accurate and fast design space exploration methods to select the 

implementation best adjusted to the design requirements, 
(2) parameterisable and efficient generation algorithms are required instead of 

predefined libraries. 

Our main contributions are: 
- Presentation of new specification and synthesis strategies for arithmetic operators 

especially suited for FPGA design. 
- Implementation of the new strategies in a test version of a synthesis tool called 

LORTGEN. 
- Development of fast and accurate evaluation methods not only for design quality 

metrics like area or delay, but also for fuzzy criteria like regularity or modularity. 
- Improvement of the implementation performance and a considerable reduction of 

the design effort for arithmetic operators. 

Our basic ideas are as follows: 
- We integrate the evaluation of design alternatives into the specification process. 
- We use function- and technology-specific parameterisable generation algorithms 

which enable the prediction of synthesis results. 
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- The result of the specification process must be a unique, complete and consistent 
formal specification description of the design alternative best adjusted to the 
design requirements. 

- The fixed relation between the specification description and the (technology- 
specific) synthesis result is used to derive the evaluation models. 

- We apply fuzzy methods for the evaluation of circuit characteristics important 
for VLSI design like regularity or modularity. 

In the paper we present an approach that supports the interactive specification of 
arithmetic operators including a real (technology-specific) design space exploration 
without any synthesis activity as well as the following architecture-specific synthesis 
of the specified implementation for FPGAs. We ensure that only one specification 
and one synthesis process have to be carded out independent from the designer's 
experience and the design requirements. 

The paper is organised as follows. In section 2 we give a short description of our 
experimental system LORTGEN. Section 3 describes the application of LORTGEN 
for the specification of arithmetic operators using the example of a multiplier. 
Section 4 summarises the synthesis results for adders and multipliers and gives a 
comparison with other synthesis tools. 

2 L O R T G E N  

The synthesis tool LORTGEN (LOgic and Register-Transfer GENerator) was 
implemented based on the methods of "constraint-driven" specification and 
"parameter-driven" module generation [6, 7]. Figure 1 shows the system structure of 
the experimental system. LORTGEN supports the data path design in two phases of 
the design process: 

- the specification and modelling ofdatapath components in the system design phase 
and 

- the technology-specific synthesis of data path components in the realisation phase. 

It addresses the following aims: 

- to support the specification, evaluation and synthesis of arithmetic operators, 
- to provide the existing design alternatives, 
- t o  ensure that only one specification and synthesis step has to be carried out 

independent from the design requirements given in the design project and the 
designers experience, 

- to select the optimal design alternative before starting the synthesis process and 
without any synthesis activity, 

- to utilize the architecture-specific features of FPGAs, 
- to ensure that the quality of the final solution is independent from the designers 

experience. 

The consideration of realistically modelled design characteristics during the 
specification task results in two main advantages which can reduce the design effort 
drastically: 
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(1) It avoids that incomplete and abstract models could adversely affect the quality of 
the final solution or require to go through additional design iteration steps. 

(2)The designer has to specify and synthesise one design alternative only 
independent from the given constraints. 

I specification ] I circuit f evaluation 
description J [ results 1 l (description 

Fig. 1. System structure of LORTGEN 

Figure 2 illustrates the achieved design effort reduction and design efficiency 
improvement. 

The design flow using LORTGEN consists of two main steps. In a first step the 
constraint-driven specification produces a unique, complete and consistent 
specification description. The designer has to fix the function and the design re- 
quirements as input to LORTGEN, Using quantitative and fuzzy evaluation the 
suitable design alternative will be specified. The interactive specification process is 
controlled by the function-specific decision tree visualised as browser in the 
graphical user interface of LORTGEN, The nodes of the used decision trees do not 
represent the existing design alternatives but the functional and algorithmic 
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parameters to describe the different implementations. Thus we avoid the exponential 
growth of the specification effort with a growing number of design alternatives2). 

(i) 

(ii) 

(i) 

(ii) 

(i) 

(ii) 

: :  Specification 

:,::i~! Synthesis ] 

i : : : :~ Evaluationl 

I I 

1 number of design n 
alternatives 

(i) - conventional 
approach ] [ effort made 

(ii)- presented ~ necessary effort 
strategy 

Fig. 2. Comparison between different synthesis approaches 

In the second step the parameter-driven module generation transforms the 
specification description into a functional model (for the system verification) and/or 
into a technology-specific netlist (e.g. as structural VHDL-description or MAP- 
file3)). 

The integration of evaluation activities into the specification task allows the efficient 
and reliable selection of the design alternative best adjusted to the design 
requirements without any synthesis activity. Thus expensive design iteration steps 
can be avoided. 

3 Operator  Specif ication wi th  L O R T G E N  

3.1 Design example - Fuzzy-Pattern Classification Accelerator 

In recent years fuzzy technology has become an interesting alternative issue to cope 
with analysis and control of complex systems. It is especially used if the system 
model is described incompletely, inaccurately or there is only empirical knowledge 
about the system behavior. The fuzzy pattern classification (FPC) [9] - a non rule- 

2) Although the number of design alternatives significantly increases from about 100 for a 
16x16 bit multiplier to about 480 for a 22x9 bit multiplier the node number in the 
corresponding decision tree is constant. 
3) The MAP-file generation process includes transformation steps using tools described in [8]. 
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based fuzzy approach is being successfully applied for quality inspection, 
recognition of standardised objects or for process control. Up to now only software 
FPC systems were available which are too slow for many practical applications 
especially in the real-time domain. 
Therefore a special hardware FPC accelerator system was developed. Starting from 
the idea of rapid prototyping FPGAs (XC3xxx family from XILINX) were chosen for 
a first system implementation [10]. 
A complex multiplier contained in the accelerator determines the delay and area 
characteristics of the whole system. The specification of such a multiplier subcircuit 
is used to demonstrate the design process with LORTGEN. The multiplier design has 
to satisfy the following requirements: 

- operand word length: 22 and 9 bit 
- result word length: 31 bit 
- data format: unsigned (integer) 
- target technology: LCA 
- master: XC3090PG175-100 
- critical path length: 12 stages (CLBs) 
- maximum area: 280 CLBs (active area) 
- optimisation goals: fastest implementation, area efficient, regular and 

local connections. 

LORTGEN provides about 480 design alternatives 4) for such a 22x9 bit multiplier. 
The selection of the optimal design alternative using commercial synthesis systems 
would require to specify these alternatives using VHDL and to synthesise an 
implementation. The design process with LORTGEN can be carried out in one 
specification process (selection of the appropriate design alternative) and one 
synthesis process (generation of the netlist). 

3 . 2  S p e c i f i c a t i o n  w i t h  L O R T G E N  

LORTGEN uses hierarchical decision trees for the control of the specification 
process. Each decision tree node represents one or several specification steps which 
contribute to the setting of the functional and algorithmic parameters distinguishing 
between the different design alternatives. 
Figure 3 shows as example the two-operand integer multiplier decision tree. The 
figure includes short descriptions of the activities done in the decision tree nodes 
containing both the activity type and the activity description in italics (specification 
of parameters or selection of subtrees in branch nodes). The detailed explanation of 
these activity types using the multiplier design as example will be a part of the 
presentation. 

4) The nmnber of design alternatives corresponds to the nmnber of all possible combinations 
of three algorithms for generating (Shift and Add, Booth and Baugh-Wooley) and four 
algorittuns for adding partial products (CPA-field, CSA-field, Wallace tree, Dadda algoritlun) 
and 40 different implementations for the vector merging addder (considering different block 
sizes for carry select adders). 
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We distinguish between five activity types (examples are given in figure 3): 

(1) interactive setting of given values: 
The designer enters values for functional parameters (e.g. operand word length for 
multipliers) which are given by the design project. 

(2)fuzzy evaluation 
The designer makes decisions concerning the selection of the optimal design 
alternative basing on the results of a fuzzy evaluation of non-metric design 
characteristics (e.g. regularity or modularity) or of metric design characteristics of 
the existing design alternatives in early specification steps 5) . LORTGEN realises 
this design space exploration automatically using the according facts and rules from 
the fuzzy evaluation database considering design requirements given by the design 
project. 

[ multiplication 2_i ~1 

word fa~etl roun- 
(1)[ length~ding 

(I) format 

(2) (algorithm c la~  

special algorithms i 

fuzzy evaluation 
(result: Shifi&ddd) 

call of the decision 
tree addition n i 

given values (function) 
(fact l =22, fact2=9, 
prod=31) 

given values (function) 
(fact l =fact2 = "unsigned' 
prod= "unsigned'9 

fuzzy evaluation using 
optimisation criteria- 
fast, low area 
(resuh: conv. algorithms) 

! 

i conv, algorithms 

l generating (2) partial products I 

V 
I adding 

partial product_~ (4) 

V 
I addition n i I 

Fig. 3. Decision tree for two-operand integer multipliers 

5) The area of an incompletely specified design alternative can not be calculated. 
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(3) quantitative evaluation 
The designer makes decisions concerning the selection of the optimal design 
alternative basing on the results of a quantitative evaluation of metric design 
characteristics (e.g. delay or area) of the existing design alternatives. LORTGEN 
realises this design space exploration automatically using the according evaluation 
models [7, 111. 

Both evaluation activity types contribute to the specification of algorithmic 
parameters. Due to this evaluation support, the designer need not know the features 
of the different algorithmic parameters for each component type. 

(4) decision tree call 
The designer continues the interactive specification process in the called decision 
tree. The calling node will be set automatically after the specification in the called 
tree has been finished. 

(5) automatic setting of parameters 
LORTGEN analyses the already specified parameters and sets a not specified 
parameter automatically if the value of this parameter can be calculated uniquely 
from the already specified parameters. This contributes to the consistency of the 
specification without limiting the design space. 

In the following an example for a quantitative evaluation will be explained. After the 
specification of the algorithms for generating and adding the partial products as 
subfunctions of a multiplication the algorithm for the vector-merging adder (26 bit 
carry propagate adder) must be specified. The optimal adder will be selected using 
the results of a quantitative evaluation. The vector merging adder may occupy 64 
CLBs and the critical path delay is limited to 7 CLBs 6) . 

Table 1 summarises the evaluation results calculated by LORTGEN. It contains only 
carry-select adders composed of different sized blocks because all other design 
alternatives exceed the delay limit and therefore the main optimisation criterion 
could not be satisfied. 
All design alternatives in table 1 occupy more than 64 CLBs. The highlighted 
implementation with the block sizes 9/7/5/5 represents the smallest design and 
consequently it will be selected as the optimal one. It gives an example for the fact, 
that the fastest design can be the smallest as well. 
Table 1 simultaneously shows the fine resolution of the design space by the design 
alternatives available in LORTGEN. This enables a good adaption to the design 
requirements. 

The entire multiplier specification process comprises 19 decision tree nodes. Two 
nodes are necessary to specify the functional parameters. The evaluation of the 
existing design alternatives (about 480) and the selection of the appropriate one 
requires nine nodes (about 50 percent of the entire specification process) - four nodes 

6) This values are calculated by subtracting the area and critical path length of the already 
specified multiplier components for partial product generation and addition from the limits 
given in the design project. 
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use fuzzy and five quantitative evaluation methods. Six nodes (about 30 percent) will 
be set automatically by LORTGEN. The remaining two nodes are call nodes. 

carry-select delay area carry-select delay area 
block sizes (CLB) (CLB) block sizes (CLB) (CLB) 

12/10/4 7 74 11/8/7 7 67 

12/10/3/1 7 79 11/g/6/1 7 77 

12/10/2/2 7 79 1 I/8/5/2 7 74 

12/9/5 7 71 11/8/4/3 7 72 

12/9/4/1 7 77 11/8/4/2/1 7 77 

12/9/3/2 7 76 11/7/5/3 7 70 

12/8/6 7 70 11/7/5/2/1 7 75 

12/8/5/I 7 77 11/7/4/4 7 69 

12/8/4/2 7 76 11/7/4/2/2 7 73 

12/8/3/3 7 74 10/8/g 6 66 

12/7/7 7 68 10/8/6/2 6 75 

12/7/5/2 7 74 10/8/5/3 6 72 

12/7/4/3 7 72 10/8/5/2/1 6 74 

12/7/4/2/1 7 77 10/8/4/4 6 71 

12/6/4/4 7 71 10/8/4/2/2 6 71 

12/6/4/2/2 7 75 10/7/5/4 6 69 

11/9/6 7 68 10/7/5/3/1 6 74 

11/9/5/1 7 75 10/7/5/2/2 6 74 

11/9/4/2 7 74 9/7/5/5 ] ] 6 1 6 5  

11/9/3/3 7 72 9/7/5/3/2 [[ 1 6  70 

Table 1. Feasible design alternatives for 26 bit vector merging adder 

4 Synthesis Results 

This section summarises the results achieved for the XC3xxx-LCA-family. 
In a first experiment we compared 16-bit adders synthesised by AutoLogic [12] and 
LORTGEN, respectively, with manually optimised designs [13]. 

Table 2 summerises the results for three different optimisation goals. It shows that 
AutoLogic allows no adaption to the design requirements [12]. The manually 
optimised adder with 8 CLBs delay requires an additonal area of two CLBs 
compared with the adder generated by LORTGEN. As a result of this experiment we 
found a generation algrorithm producing a 16-bit adder with a delay of 3 CLBs. 
Secondly, we present the synthesis results of the multiplier design as described in 
section 3. In the synthesis step LORTGEN generates a 22x9-bit multiplier occupying 
281 CLBs with a critical path length of 11 CLBs (170 ns). The overall design 
(multiplier and some registers) uses 286 CLBs and was realised in an XC3090. 
Thus we realised a device utilisation of 88 percent compared with a lypical 70 
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percent device utilisation. This result could be achieved because the Dadda scheme 
used for adding partial products requires mostly local connections. The accelerator 
was successfully applied in two real-time applications (clock frequency 5 MHz). 

optimisation 
goal 

small design 

area~speed 
compromise 

fast design 

AutoLogic  [121 

delay [ area 
(CLB) (CLB) 

16 16 

16 16 

16 16 

L O R T G E N  

delay area 
(CLB) (CLB) 

16 16 

8 22 

4 42 

manually 
opt imised  [13] 

delay area 
(CLB) (CLB) 

16 16 

8 24 

3 41 

Table 2. Synthesis results for 16-bit adders 

bit x bit 

22x7 

22x9 

22x16 

tool from I14] 

delay ] area 
(CLB) (CLB) 

28 144 

30 189 

37 347 

L O R T G E N  

delay [ area 
(CLB) (CLB) 

11 217 

11 281 

13 407 

Compar i son  

delay area (%) 
(%) 

-61 +51 

- 63 + 49 

- 65 + 17 

Table 3. Synthesis results for different multipliers 

A comparison of LORTGEN with X-BLOX concerning the multiplier design was not 
possible because X-BLOX does support neither the XC3xxx-family nor the 
multiplier design. In [12] synthesis results of AutoLogic and AutoLogic BLOCKS 
for a 22x9-Bit multiplier are presented. However, the designs use at least 450 CLBs, 
so that they can not be integrated in one XC3xxx-LCA. 
Therefore, we compared LORTGEN with a generator presented at the EURO- 
DAC'93 [14]. Table 3 summarises the synthesis results for three different 
multipliers. The table shows that LORTGEN achieves a performance improvement 
ranging between 61 and 65 percent at the expense of up to 51 percent increase in 
area. 

5 S u m m a r y  

The results achieved with LORTGEN have shown that our approach could improve 
the performance and minimise the area of arithmetic operators for FPGAs. 
The presented techniques enable the integration of complex operators like 
multipliers in one FPGA. LORTGEN significantly improves the designer's 
productivity. We free the designers from device-specific implementation details and 
allow them to focus more on actually designing the application. 
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Moreover, we avoid expensive design iteration steps by ensuring that only one design 
alternative has to be specified and synthesised independent from the designer's 
experience and the given design constraints. 
Thus, in contrary to commercial synthesis tools, LORTGEN is especially suited for 
system designers because of the provided comprehensive design support. 
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Abs t rac t .  This paper presents a new technique for improving the per- 
formance of a synchronous circuit configured as a look-up table based 
FPGA without changing the initiM circuit configuration except for latch 
location. One of the most significant benefits realized by this approach 
is that the time-consuming and user-uncontrollable reconfiguration pro- 
cesses, i.e., re-mapping, re-placement and re-routing~ are unnecessary to 
improve circuit performance. 

1 I n t r o d u c t i o n  

Field Programmable Gate Arrays (FPGAs) have been widely used because of 
their usefulness. The circuit programming of FPGAs is often performed with 
CAD tools[i], and the execution speed of the programmed circuit really depends 
on the CAD tools. For example, if considering a look-up table (LUT) based 
FPGA, circuit programming requires the solution of the mapping and place- 
ment problems inherent in assigning the input logic onto LUTs, and the routing 
problem of interconnecting the LUTs. However, because the problems are known 
to be NP-hard, most CAD tools adopt some form of heuristics[2][3][4][5][6]. This 
means that  the CAD tools do not guarantee to produce optimal programming 
results. Thus, particularly with regard to the propagation delay, some tune-up 
is often necessary to improve the execution speed of the FPGA-based circuit. 

To improve circuit performance, several techniques have been developed. One 
of the most famous techniques is re~iming[7][8][9][lO]. It minimizes the combi- 
national circuit delay between two latches by only inserting and /or  removing 
the latches without changing the logic of the original circuit design. In another 
development, single-phase clocked synchronous circuits are often used in com- 
munication or digital signal transport  systems, and a common design technique 
is to insert latches into the original circuit at the cost of increasing the input 
clock frequency[11]. Compared to retiming, this technique does cause some clock 
responae delay, but it is often applied as a technique that  can reliably improve 
circuit performance. A similar technique can be found in the pipeline sequence 
design of CPUs[12][13]. 

All the above methods, unfortunately, do not pay much at tent ion to the upper 
limit of the number of latches inserted between two combination logic parts. With 
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FPGAs, however, it is very important  to consider this limitation because the 
number of usable latches is finite in an FPGA,  and the latch-insertion points are 
restricted given the condition that  the initial routing result remains unchanged, 
which is our major premise as described hereafter. Accordingly, existing design 
methods cannot directly be applied to the task of improving FPGA-based circuit 
performance. 

One solution to improve the performance of FPGA-based circuits is to op- 
timize the delay using try-and-error or pa~eh based approaches. This is because 
if placement and routing tools are invoked again, they often change the circuit 
configuration drastically and the designer cannot keep track of the delay informa- 
tion easily; after delay optimization, LUT placement and routing results should 
not be changed. Thus, a natural  question arises with regard to the performance 
improvement, is it possible to speed up the circuit without re-placement and 
re-routing ? 

In this paper, we present a method that answers this question. Here, we 
consider that  the FPGA has latches located at the output  of each LUT, and a 
mechanism is available to control latch usage without changing the initial circuit 
programming result. The basic approach of the method is to insert as many 
latches into the initial circuit as possible, under the latch limitation described 
before, to increase the input clock frequency. One of the most significant benefits 
of our method is that  the initial routing result is not changed because placement 
and routing are not re-executed. 

Kukimoto and Fujita[14] presented a method that  rectified a circuit pro- 
t rammed onto an FPGA by changing only the logic configuration of LUTs. This 
is, the netlist is not changed and the net delay in the original circuit is pre- 
served after modifying the logic of the circuit as in our method. However, there 
are few cases to which the method is applicable. Especially for logic optimized 
circuits, it is hard to apply their method because such circuits employ rather 
complex logic in each LUT and there is little room in which to rectify the logic. 
In addition, their method does not improve circuit performance itself~ Thus, it 
seems that  the method is not so useful in practice. Unlike their method, whether 
our approach is applicable to a circuit or not, depends on the topology of the 
nets connecting the LUTs, not the complexity of the configured logic in each 
LUT. Our technique is very effective for topologically simple circuits such as 
combination circuits which do not have any feedback loops. 

This paper is organized as follows: Section 2 formulates the problem ad- 
dressed. In Section 3, the speed-up method to solve the problem formulated in 
Section 2 is described in detail. Section 4 shows the experimental results gained 
using some benchmark data. Section 5 concludes this paper with a discussion of 
possible directions for future research. 

2 P r o b l e m  

We consider an LUT-based FPGA containing basic cells (BCs) as shown in Fig. 
1. Each basic cell has an LUT and a latch. An r~input LUT can implement 2 2~ 
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different Boolean functions[i], and the output  of the LUT can be p rogrammed 
freely as to whether it is latched or not. In addition, we assume tha t  the F P G A -  
implemented circuit does not contain any loops tha t  do not include any latches, 
i.e., the circuit has no asynchronous feedback. 

_ 

I 1 -  

L U T  

M U X  

Fig. 1. A basic cell in the FPGA. 

Under the above assumptions, we consider latch insertion without  changing 
the initial placement and routing results. If  some latches can be inserted in the 
critical path,  it is guaranteed that  the performance of the circuit is improved 
because the net delays are not changed. Here, our problem is defined as follows: 

Problem1. If  an F P G A  has a mechanism that  permits independent control of 
the latch located at the output  of each LUT, is it possible to realize a q-clock 
response delay circuit compared to the original circuit by controlling only the 
output  value of each LUT by latching it or unlatching it ? 

Here, q-clock response delay circuit is defined as follows[ill.  Suppose A is 
a synchronous circuit. Let YA(X,t=) be the output  vector at t ime t,~ ] n  > 0 
corresponding to the input signal X for all input pins of A. Suppose B is a 
synchronous circuit which has external pins corresponding to the external pins 
of A one by one. Here, let to be the initial time. If an integer value q I q > 0 
exists for every X and the following equation is satisfied 

Ys(X,t +q) : (1) 

we say "B is the q-clock response delay circuit of A." 

2.1 F o r m u l a t i o n  

Let G(V, E, s,t) be a circuit graph, where V is a node set representing BCs, i.e., 
pairs of an LUT and its latch, E is an edge set representing connections among 
BCs, s is the input node, and t is the output  node. Here, each edge is weighted 
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with the propagation delay. In addition, nodes s and t are dummy nodes that  
are connected to all input pins and from all output  pins, respectively, and the 
weights of all edges connected to s and t are zero. 

An example of the circuit graph is shown in Fig. 2(1). In the graph, a solid 
node indicates that  the corresponding BC is latched. 

G(V, E, s, t) G'(V',E' ,  s, t) 
' \ 

a e5 _ g a~ e5 '-- 

e ~  s t 
E 1 

81 J ..... 

[@Latchednode [ 
O Unlatched node 

(1) Original circuit graph (2) After shrinking loop 

Fig. 2. A circuit graph and a loop-shrunk circuit graph. 

It is known that  the number of latches in a loop cannot be changed by 
retiming[7]. Our approach is not to actually perform retiming, but  to simplify 
the latch insertion algorithm as described hereafter, we do not insert any latches 
into the nodes in the loops. Thus, shrinking the loops in G is used as a pre- 
process. In Fig. 2(1), nodes c, e and h form a loop so they are shrunk to node L 
and edges E l ,  E2, E3 and E4 are re-linked to the appropriate nodes as shown 
in Fig. 2(2). Let the loop-shrunk circuit graph be G~(W, E ~, s,t).  Problem 1 
becomes the problem of finding the nodes which should be latched, under the 
constraint that the number of the nodes on each path  from node s to node t 
must be the same in G ~. Finding such latch insertion points is equal to finding 
the articulation sets of graph G ~ in graph theory. Here, the articulation set A is 
defined as follows: 

D e f i n i t i on  1 ( A r t i c u l a t i o n  se t ) .  Let G'(V',  E', s,t) be a loop-shrunk circuit 
graph. Articulation set A is defined as satisfying the following conditions: A C V' 
and each path from s to t has only one element in A. In other words, if all nodes 
in A with connected edges are removed from G', G ~ is divided into two sub- 
graphs; one contains s and the other contains t. In Fig. 2(2), nodes {a,b,i~]} and 
{g,1} are the articulation sets. 

Changing all nodes in an articulation set into latched nodes means inserting 
a latch into each path from node s to node t in G ~. The addition of the latches 



An Efficient Technique for Mapping  RTL 
Structures  onto F P G A s  

A R Naseer~ M B a l a k r i s h n a n ~ A n s h u l  K u m a r  

Department of Computer Science and Engineering 
Indian Institute of Technology, Delhi 

New Delhi - 110 001 

Abs t rac t .  This paper presents an efficient technique for realizing Data 
Path using FPGAs. The approach is based on exploiting the iteratlve 
structure of the datapath modules and identifying 'largest' slices of con- 
nected modules that can be mapped onto each CLB. The mapping pro- 
cess employs a fast decomposition algorithm for checking whether a set of 
slices can be realized by a single CLB. Comparison with manufacturer's 
proprietary software for a set of High-level synthesis benchmark struc- 
tures show a significant reduction in CLB count. Another advantage of 
our technique is that CLB boundaries in the final design are aligned to 
RTL module boundaries providing modularity and ease in testing. Thus 
this technique is very suitable for integration as a technology mapping 
phase with a high-level synthesis package. 

1 I N T R O D U C T I O N  

Currently a number of technology options are available ranging from Fullcustom, 
semi-custom to the Field Programmable Gate Arrays (FPGAs).  FPGAs are 
rapidly gaining popularity due to the short design cycle time and low manufac- 
turing cost. There are two main classes of FPGAs[1] - Look-Up-Table (LUT) 
based FPGAs and Multiplexer (MUX) based FPGAs.  In this paper, we are pre- 
senting a methodology for mapping RTL structures onto Look-up table based 
FPGAs (as exemplified by XILINX[2]. A LUT based FPGAs typically consists of 
a 2-dimensionM array of CLBs (Configurable Logic Blocks). A variety of devices 
with similar architecture, but  differing in the number of inputs, outputs  and 
flipflops per CLB, are available. Further, the way in which each function genera- 
tor in a CLB can be configured to implement a logic function also varies. These 
differences are important  for both technology mapping and decomposition. In 
particular, these parameters define the limits on the portion of a network which 
can be realized by a CLB. 

Recently several different approaches for LUT based technology mapping 
have been reported, e. g . ,  Chortle[3], Chortle-err[4], MIS-pga[1], Hydra[5], X- 
MAP[6], VIS-MAP[7]. All these algorithms optimize the number of CLBs in 
the generated solutions. On the other hand some approaches like Chortle-d[8], 
DAG-MAP[9] and Improved MIS-pga[10], emphasize on minimizing the delay of 
the mapped solutions. In all these approaches, the input is a boolean network in 
which each node is a gate or a boolean function. 
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In the context of High level synthesis, the above approaches are suitable for 
implementing the control part of the design only. For synthesizing the data path, 
it is beneficial to take into account the iterative structure of data part modules. 
Further, there are some advantages in aligning CLB boundaries to RTL module 
boundaries for improving testability and enhancing modularity. 

The main objective of our work is to integrate RTL structure synthesis with 
mapping onto FPGA technology. In this paper, we present an approach (part of 
a system called FAST[14, 15]) which directly realizes an RTL structure (of data 
path) in terms of FPGAs. FAST forms a backend to a Data path Synthesizer[13] 
and is being integrated to IDEAS[12]. Starting from a VHDL like behavioral 
description language and a global time constraint RTL data path is generated 
automatically. As the RTL modules are generic in nature, they cannot be directly 
mapped onto a single CLB. We use a dynamic slicing technique based on the 
iterative structure of RTL modules to partition them into component parts. 
Each RTL module is viewed as consisting of slices of one or more bits. Closely 
connected slices of different modules are considered together and mapped onto 
one or more logic blocks. At each stage an attempt is made to maximally utilize 
the logic block. 

The rest of the paper is organized in five sections. Classification of RTL com- 
ponent cells and slicing structures are described in section 2. Section 3 presents 
the preliminary definitions and terms used in this paper and the expressions for 
computation of cost of nodes, cones and cost benefits. Algorithm for mapping 
RTL structures onto FPGAs is given in section 4 and decomposition technique 
used is briefly described in section 5. An example illustrating the technique used 
is presented in section 6. In section 7, results of technology mapping on XIL- 
INX devices alongwith conclusions for some high level synthesis benchmarks are 
presented. 

2 R T L  C O M P O N E N T S  A N D  C E L L S  

The approach proposed in this paper is especially suited for implementing the 
data path of the design because most of the data path modules are generic mod- 
ules with variable widths which cannot be mapped directly onto a single CLB. 
An important property of the RTL modules is that they are iterative structures 
of basic cells, where a cell is an indivisible part of a module that is iterated to 
form a module. Because of this, an RTL module can be partitioned into an array 
of single-cell or multi-cell slices, where a slice is an array of contiguous cells of a 
module. For example, a 16-blt adder can be expanded into an array of 16 one- 
bit cell slices or 8 two-bit cell slices or 6 three-bit cell slices and so on. Cells of 
different RTL components can be classified into two categories depending upon 
the nature of their inputs and outputs. 

i) Fixed Cell : A fixed cell has fixed number of inputs and outputs. An 
important characteristic of these cells is that though the component to which it 
belongs may be generic, but the number of inputs and outputs of the cell always 
remains the same in all instances of the component. For example, we can expand 
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an 8-bit or a 16-bit or a 64-bit adder into an array of single-bit cells but  in all 
these cases, the basic 1- bit cell has fixed number  of inputs and outputs  i. e. , 
3-inputs (including carry in) and 2-outputs(sum and carry out). 

il) G e n e r i c  Cel l  : As the name implies a generic cell has variable number  
of inputs and outputs.  For example, a basic 1-bit cell of an 8-bit 10-input mux  
and an 8-bit 16-input mux differ in the number  of inputs. 

Examples of RTL components with fixed cells are - adder, subtractor,  alu, 
comparator ,  register, counter etc. Examples of RTL components with generic 
cells are - MUX, AND, OR, XOR, NAND, NOR, Decoder, Encoder etc. 

An RTL component is composed of basic cells, arranged in the form of an 
array, a tree or a combination of these. For example - 

- a 16-bit ALU is an array of 16 ALU cells, 
- an 8-input AND is a tree of smaller (generic) AND cells, 
- a 10-input 8-bit wide MUX is an array of trees of smaller (generic) 1-bit 

wide multiplexers, 
- a 4 to 16 decoder is an array of 4 input partial  decoders. Larger decoders 

may be considered as arrays of trees of smaller part ial  decoders. 

Figure 1 illustrates some of these examples. It  is clear tha t  components  like 
Mux or decoder can be composed in more than one way because the basic cells 
are generic. These choices are explored by our algorithm. 

3 C O N E S  A N D  C O S T  B E N E F I T S  

The input network to FAST is an RTL structure (Data  p a t h )  obtained from 
High Level synthesizer and output  is an optimized network of CLBs. The input 
network is represented as a directed graph G(V,E) where each node represents a 
register or a functional module (ALU, Max, e t c .  , )  and directed edges represent 
connections between the modules. In the F P G A  architecture we have considered, 
flipflops appear  at the output  ends of CLBs. To facilitate mapping  of register 
slices to these flipflops, each register node in G is split into two nodes - a register 
input (RI)  node and a register output  (R0) node, not connected with each other. 
After this splitting RO nodes become source nodes in addition to Pr imary  Input  
(P I )  nodes and RI nodes become sink nodes in addition to Pr imary  Outpu t  
(P0) nodes. 

We use the te rm width to refer to the number of cells in a node or a slice. Let 
Width(n)  and Wid th(s )  represent width of a node n and slice s respectively. 
Sof2-slicing is a process that  dynamically determines slice width. 

Let n~ represent slice of node n with width k, then 

max_slice_width(n) = max k Ink is realizable in a CLB (I) 

For a slice s, node ( s )  denotes the corresponding node. Minimum number  of 
instances of slice s required to cover node ( s )  is given by 

[.idth(nods(,))] 
i st_c t(s)-- I I (2) 
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Fig. 1. RTL Component Structures 

Minimum number of CLBs required to realize a node n is given by 

min_CLB_co~t(n) = [, ,ieth(n) rnaz_slice_width(n)'] 
= inst_cnt(nk) 

where k is maximum slice width 

(3) 

As our intention is to minimize the number of CLBs required to realize the 
graph, we start with an upper bound on CLBs required. This can be easily found 
by adding the minimum number of CLBs required for realizing each of the nodes. 



103 

CLB_llpp er..bollztcl 1 = ~ mizt_CLB_co~l.llt (I~) (4) 
nEv 

Our algorithm is based on packing slices from multiple nodes into a single 
CLB. This is achieved by identifying cones. A Cone is a set of slices of nodes 
which lie on paths converging on a particular node called apex of the cone. A 
realizable cone is a cone that fits in a CLB. Note that  all slices are trivial form 
of cones and all slices of node n upto max_slice_width(n) are realizable cones. 
Naturally, in this context we consider only realizable cones. Further we consider 
only those cones which are beneficial i. e. , those which reduce the number of 
CLBs required. 

As a cone could consist of slices of different widths, the number of instances 
of a cone required would be decided by the minimum inst_cnt of its slices. 

min_inst_cnt(c) = min inst_cnt(s) (5) 
sEc 

Let C A ( c )  denote the cost of realizing the nodes of cone c individually, 
i. e. , without forming the cone. It can be computed by simply summing the 
min_CLB_counts of the individual nodes that make up the cone c. 

CA(c) = ~ min_CLB_count (n) (6) 
neltode_s et(c) 

Let CB(c)  denote the cost of realizing the nodes that  comprise the cone c, 
with cone c formed. As each cone is realized by a CLB, min_inst_cnt(c) gives the 
number of CLBs realizing cone of type c. Due to differences in bit width of nodes 
as well as slice width of slices in c, the nodes may not be covered completely by 
cones. The remaining part of nodes are covered by the max_slice_width slices. We 
have observed that this assumption is mostly not restrictive. Therefore, CB(c )  
is given by the following formula - 

. i d t h ( n o a e ( s ) )  -- 
CB(c) = mininst_cnt(c) + ~ mam_slice_vaidth(node(s)) 

sEc 
(7) 

Now we can quantify the benefit due to cone c as the difference between these 
two costs. 

Benef i t (c)  = C A ( c )  - C B ( c )  (8) 

We define a set of cones C as complete if it covers all the nodes in the graph. 
As per the above formulation, we consider only those cone sets in which non- 
trivial cones do not overlap. A non-trivial cone is one which contains slices from 
atleast two nodes. Cost of a cone set C denoted by CC is 

cc(c )  = CB(¢) (9) 
eGG 

1 In this paper we do not address the constraints imposed by limited number of inter- 
connection resources available on the device. 
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4 F A S T  M A P P I N G  A L G O R I T H M  

The algorithm described in figure 2 shows the major  steps involved in mapping 
RTL structure to FPGAs. Step 1 computes the CLB upper bound and step2 
traverses the network and generates cones. We traverse the network backwards 
starting from register inputs /pr imary outputs and generate 'realizable' cones 
with non-negative 'cost-benefit' by considering various soft slicing options and 
merging them till no more merger is feasible or register outputs /pr imary  inputs 
are reached. The feasibility of these cones are checked as they are generated and 
only 'realizable' ones are retained. Step 3 finds a cover which minimizes the CLB 
count following a greedy approach. 

iAlgorithm F I S T . . M A P  
1. C o m p u t a t i o n  of  CLB u p p e r  b o u n d  

1.1 fo r  each node n E n o d e s e t  Vofgraph  G 
I.I.I compute (i) max_slice_sidth(n) 

and ( i i )  min_CI3 count (n) 
1.2 compute CLB_uppsr_bound 

9.. Realizable Cone generation 
2.1 for all 'feasible slices' s of nodes in V do 

2.1.1 generate all 'realizable' cones 

using FAST decomposition .ith 
cost  benefit >_ 0 with s as apex 

3. Minimal  cone cover 
3 . 1  G e n e r a t e  c o m p l e t e  cone  s e t s  w i t h  minimum 

Cost in a ~gresdy' manner 

Fig. 2. Algorithm for Mapping RTL Structures onto FPGA's 

The 'Realizable Cone generation' algorithm is shown in figure 3. The Cone- 
generation algorithm considers each node from the nodes of G and generates 
variable-width slices of width varying from 1 to max_s l i ce_wid th  and checks 
whether each slice of that  node can be merged with a slice of the node at its fanin 
to form a cone. If the resulting cone is realizable and beneficial, then starting 
with this newly generated cone, it further checks whether it can be merged with 
slices of the node at its fanin. This process is repeated until no more slices can 
be packed into the cone. For each cone generated it computes the reduction in 
CLB count and rejects those for which no benefit occurs. 

Minimal cone cover procedure given in figure 4 follows a greedy approach. 
It begins by sorting the list of conesets in the decreasing order of the benefit. 
Initially a coverset containing the first coneset of the c o n e _ l i s t  is formed and 
the CLB_upper bound is taken as the minimal cost for covering the entire net- 
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)rocedureitea]izable_cone_generationO 

Conese t  = 

for all ~EVdo 
for i = I to =ax_slice_.idth(n) do 

{ 

c =  {.~} 
C o n e s e t  ffi C o n s s e t  + C 

gro._cone(C) 
} 

} 

procedure grow_cone(C) 
{ 

for all u 6 fanln~et(C) do 

if u is not a register output or a primary input 

then 

for j = 1 t o  max_slice_.idth(u) do 
{ 

C I = merge(C, uj) 
i f  C t is zealizable and benefi~al 

t h e n  
{ 

} 
} 

Coneset = Co~eset + C t 

gro~-co.e( C 1) 

Fig. 3. Realizable cone generation 

work. Next each coneset other than the first coneset is taken from the c o n e _ l i s t  
and checked to see whether it overlaps with the coversets already generated. If 
the coneset overlaps with all the coversets already generated, it creates a new 
coverset with this coneset. Otherwise, it is added to all the non-overlapping cov- 
ersets and minimal cost of realizing the network is made equal to the minimum 
of CLB_upper_bound and cost of newly formed complete coversets. All coversets 
exceeding this minimal cost are rejected. 

5 D E C O M P O S I T I O N  

During cone generation an important  check to be performed is whether a cone is 
realizable or not. A CLB is characterized by a fixed number of inputs, outputs  
and flipflops. Every 'realizable' cone should have number of inputs, outputs  and 
fiipflops less than or equal to those present in a CLB. But for realizability this 
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Procedure Minimal_cone_cover (coneset) 
{ 

C o n e _ l i s t  = S o r t _ c o n e s ( c o n e s e t )  
C r e a t e  a c o v e r s e t  = f i r s t ( c o n e _ l i s t )  
UB = CLB_upper_bound 
for all C q (cone_list except the first element) dc 

if(C overlaps with all coversets) then 

Create a new coverset with C 

else 
( 

} 

add C t o  t h e  n o n _ o v e r l a p p i n g  c o v e r s e t s  
US = m i n ( U B , c o s t  o f  n e w l y  formed 

complete  c o v e r s e t s )  

R e j e c t  a l l  c o v e r s e t s  e x c e e d i r ~ U B  c o s t  

Fig. 4. Minimalcone cover 

check is not sufficient because all FPGA structures are characterized by one 
or more function generators which cannot realize any arbitrary function of the 
inputs. Typically the set of inputs have to be decomposed into two or three parts 
to be mappable onto a CLB. 

Among the decomposition techniques employed by FPGA mapping systems, 
Roth-Karp[ll] is the most versatile but suffers from high computation com- 
plexity. The complexity arises due to the fact that all possible combinations of 
variables have to be exhaustively checked for decomposition. Heuristics for fast 
decomposition have been developed and reported in [14]. The technique is based 
on checking some simple necessary conditions which candidate partitions have 
to satisfy for 'feasible' decomposition. Thus during the decomposition process a 
large number of candidate partitions are quickly rejected to achieve a speedup. 
An average speedup of 51.64% over Roth-Karp method has been achieved for 
decomposing MCNC logic synthesis benchmarks. 

6 I L L U S T R A T I V E  E X A M P L E  

The technique presented in this paper is unique in terms of its ability to map RTL 
structures onto FPGAs. We illustrate this technique using a GCD RTL structure 
obtained from IDEAS Data Part Synthesizer[13] which takes behavioral descrip- 
tion of GCD(Greatest Common Divisor) High Level Synthesis Benchmark as 
input. Figure 5 a) shows the GCD RTL structure and figure 5 b) gives the CLB 
map of this structure for XILINX XC3000. In figure 5 b) the dotted rectangles 
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enclosing the node ( s )  indicate tha t  they can be realized using single CLBs and 
the number  in the smM1 square box associated with each node indicates the 
number  of slices of tha t  node packed to a CLB. 

We traverse the GCD network star t ing f rom a register node rega and generate 
realizable cones by merging re#a with slices of nodes at  its fanin, i. e. , muza.  
The table 1 shows the realizable cones rooted at rega, slices of nodes associated 
with these cones and CLB count. I t  is evident f rom the table tha t  cone C22 

Cone contents CLB Count 
Cll 1-bit slice of rega + 1-bit slice of muxa 16 
C~1 2-bit slice of rega + 1-bit slice of muxa 16 
C~ 2-bit slice of rega + 2-bit slice of muxa 8 

Table I .  Partial Cone list 

is beneficial as it requires only 8 CLBs whereas Cla and C22 bo th  consume 16 
CLBs and hence are rejected. Start ing with this newly generated cone C2~, we 
further check whether it can be merged with the slices of the nodes at  its fanin. 
Since no further merger is possible, this cone is added to the cone list. As it can 
be seen from the figure, that  the 1-bit slice of the alu node has 4 inputs  and 
2 outputs  and it cannot be merged with any other node and hence it forms a 
separate cone. Similarly, traversing the network from regb towards the pr imary  
inputs generates the next beneficial cone containing 2-bit slices of regb and muzb. 
Next the traversal is continued from pr imary  outputs  towards register inputs. 
The compara tor  node crop has 5 inputs and 3 outputs  and cannot be realized 
by a CLB, and hence it is decomposed into 3 sub-nodes, 1-bit slices of first two 
nodes occupy a single CLB whereas 2-bit slices of the third node get mapped  
onto one CLB. The register node regc is at the pr imary  output  and is realized 
using IOBs. 

7 R E S U L T S  A N D  C O N C L U S I O N  

The package FAST has been implemented on a workstation based on Motorola  
68030 running at 25 MHz. We have synthesized five structures corresponding 
to High level synthesis benchmarks : GCD,  Diff_eqn, AR_filter, Elliptic filter 
and Tseng structure. The mapping  onto XC2000, XC3000 and XC4000 device 
CLBs has been performed and is reported in table 2. For benchmarks containing 
multipliers, we have assumed tha t  multipliers are external to the design and are 
realized separately. 

Table 2 lists the total  number of CLBs required by FAST, X A C T  2 and 

2 XACT is a p~oprietary product of XILINX and interfaces with a Schematic Capture 
tool for mapping onto XILINX devices. 
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Fig. 5. GCD B.TL Structure and CLB Map 

FPGA 
device 
class 

XC2000 

XC3000 

Xc4000 

ITotM # of CLBs for HLS Benchmarks 
Mapper GCD Diif_eqn AR.filter Elliptic Tseng 

filter 
FAST 96 320 
XACT 104 338 
FAST 56 160 
XACT 62 168 
FAST 4O 120 
XACT 48 142 
XBLOX 40 136 

240 
264 

120 
126 
104 
113 
104 

656 630 
688 662 
328 317 
3~4 s2s 
256 294 
278 316 
272 304" 

Table  2. Total CLB count for HLS Benchmarks 
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XBLOX s for realizing the network after the mapping  process. The synthesis 
technique reported in this paper  results in a CLB count reduction of upto  16% 
over XACT and upto 12% over XBLOX. In addition to this, FAST has a much 
lower execution time. The details of the structure used are summarized in ta- 
ble 3. 

RTL 
~omponents 

ALU 
COMP' 

..... REG 
AND 

(16-bit) 
OR 

(16-uit) 
MUX 

(le-bit) 

HLS Benchmarks examples 
GcD Diif-eqn hR..filter Elliptic Tseng 

width no width no width no width no width no 
16-bit 1 16-bit 1 16-bit 2 16-bit 1 16-biti 2 
16-bit 1 - - - 16-bit 1 

1-bit 1 
16-bit 3 16-bit 6 16-bit 5 16-bit 12 16-bit 17 

- 2-inp 1 

- 2-inp 1 

12-inp 2 5-inp 2 4-inp 3 116-inp 2 8-inp 1 
4-inp 2 2-inpl5 8-inp 1 4-inp 14 
2-inp 4 4-inp 4 2-inp 3 

2-inp 4 

Table 3. Component Details of HLS Benchmark Structures 

To conclude, we have presented an approach for mapping  RTL structures 
onto FPGAs.  The technique is primarily meant  for da tapar t  of the design and 
effectively utilizes iterative structure of the da ta  par t  components.  The slices of 
well connected components are generated and are called cones. These functions 
form the inputs to the decomposition process. The approach is flexible and can 
handle a variety of look-up table based FPGAs  and utilizes the architectural  
features of commercial devices(like intermediate outputs).  The synthesized CLB 
boundaries correspond to RTL component  boundaries which would imply ease 
in testabil i ty and simulation. 
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Abstract. As reactive systems are growing more and more complex, costs 
stemming from a misconception in early design phases like requirements 
analysis and system specification show a tendency to explode. This makes rapid 
prototyping inevitable for extensive simulation in early design phases. In this 
article, we investigate into the usability of field programmable logic for 
designing a "real-world" testbench suitable for simulating the environment of a 
prototype. We present a top-down design method which significantly reduces 
cffort, especially when FPGAs are also used as implementation technology for 
the system prototype. 

1 Introduction 

Each environment of a system can be seen as a system of its own. When verifying a 
system under development (SUD), it suffices to show that the interaction between the 
system itself and the system called "environment" at no time leaves the specification as 
long as certain constraints are fulfilled. Most of the time, this interaction is performed 
according to a state-oriented protocol. 

Statecharts IHar87] have proven to be a good capture and simulation basis for 
designing state-based reactive systems. Statecharts are not only suitable for designing 
such systems themselves but can also be used for specifying their working environment 
and thus may serve as a basis for testbench development. Instead of being bothered 
with the development of case studies and/or test vectors, the designer creates a model 
of the environment and steps down the design process in parallel with the SUD itself. 

Since the introduction of the FPGA technology, their power and consequently their 
field of usage have increased to a high extent. Several applications of medium to high 
complexity have been realized and lots of tools have been created supporting top-down 
synthesis from higher design levels like hardware description languages (e.g. VHDL 
[IEEE88]) or logic level encoding based on schematics [View91]. However, 
verification techniques have not been able to keep up with this development. Most 
simulation tools accept test vectors as input and produce either a kind of waveform or a 
"go-nogo" statement when comparing simulation results with expected results. 

Section 2 will describe a possible design flow supporting codesign of a system and its 
testbench. In Section 3 this method is being discussed and some results are presented. 
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2 Design Flow 

The design flow is shown in Fig. 1. The testbench as well as the SUD are modelled in 
quite the same way, possibly even in parallel. As a front end, a Statecharts tool like 
SPeeDCHART [Spd93] can be used. This tool offers a VHDL generation facility. Thus, 
the SLID can be simulated directly in Statecharts or in an VHDL environment, e.g. 
Synopsys [Syn92]. After refining the VHDL code with hand-written entities, which has 
proven to be useful when designing modules of higher complexity, it can be 
synthesized to logic level using e.g. the Xilinx [Xi193] backend available for Synopsys 
and downloaded into FPGAs. Here it is possible to make the connections between SUD 
and testbench by the internal routing channels of an FPGA, thus using the same chip 
for testbench and SUD. If, however, the design is too large, the connections are 
realized by external wiring between the various FPGA chips. 

Testboooh I ! SUD 

i  onoratevHDL I I  ooo'a oV L 

I V"DLSimula io° I 

+ 

~_~_ Statecharts 
Level  

I 
VHDL 

Behavioral 
Level 

Logic 
Level 

executable HV¢ 
specification 

Fig. 1: Co-ordinated Design Flow. 

3 Discussion and Results 

The proposed method has several advantages: 

1.) The designer is obliged to spend more thoughts on the environment of the system, 
almost as much as in a design method based on formal semantics. As he does so in an 
early design phase, costs for searching for the optimum solution can be kept small. 

2.) High level design tools like Statemate or SPeeDCHART encourage the usage of 
statechart models not only for the design itself but also for simulation testbenches, so 
why throw them away when stepping down to the next level? 

3.) When reaching the FPGA prototype level, it is much cheaper to test the system 
prototype by connecting it to another FPGA prototype of the system environment. 
Especially in an industrial environment where expensive machines are controlled by 
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electronic devices, erroneous behavior in the integration test stage may have disastrous 
consequences. 

4.) When a system consists of several submodules, a single submodule may see the rest 
of them as its testbench. By having a thoroughly designed testbench, at least parts of it 
can be reused for modelling other components of the system under development. This 
is especially true for interacting replications of equally structured entities. 

Of course, this method - if used stand-alone - will not be feasible for optimizations 
necessary for ASIC development based on processes different from FPL technologies. 
This is due to the fact that it views system and environment (or subsystem and other 
subsystems) very much as separate entities, neglecting behavior that they might have in 
common. Anyway, this is not really a need as long as a system is only prototyped. 
Also, the method will not be helpful when statemachine based design is out of question 
unless different front-end tools are empoyed. 

The method is currently being tested for feasibility in the design of a fuzzy controller. 
As far as we can see now, there is a significant improvement in design time and fault 
coverage compared to standard testing methods. Especially when designing the 
rulebase, the interactive testing and observation of the external behavior is eased in a 
considerable way [SH94]. The rulebase is first modelled with Statecharts and tested 
without fuzzifier and defuzzifier. Appropriate fuzzified input values are presented by 
the testbench, and output values are evaluated for soundness giving an idea how stable 
the system is and how sensible it reacts to changes of input stimuli. 

Afterwards, fuzzifier and defuzzifier models are created in VHDL and tested together 
with the "already designed rulebase. Logic synthesis and FPGA implementation finish 
the prototyping cycle. Along with the model, the testbench is refined and made more 
and more similar to the real operating environment and is finally also brought to 
FPGA level, allowing for "real-time" observations. 
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A b s t r a c t .  The paper presents a method for fast operating on covers 
of Boolean functions. The method develops the one based on the unate 
paradigm (UP)[1]. The proposed method differs from the UP one in two 
aspects (1) the initial cover is decomposed into a set of prime rather than 
unate subcovers, (2) prime covers are obtained by applying to each re- 
ched not prime subcover either branching by the Shannon expansion or a 
procedure of making the subcover consensusless in a variable by the con- 
sensus operation. Experiments on MCNC-91 two-level logic benchmarks 
and random functions show that operations based on the proposed method 
are less laborious than their UP based counterparts. 

1 B a s i c  D e f i n i t i o n s  a n d  P r o p o s i t i o n s  

To present the proposed method  we need to introduce some definitions and 
proposit ions.  

A subset C = $1 x .. x S,~ of  the Boolean n-space {0, 1}" is said to be a cube .A 
subset Si we shall call the i- th component  of  C. A cube C is called an implicant 
of a completely specified s ingle-output  Boolean function f if C C O N _ S E T ( f )  
where O N _ S E T ( f )  is the vertices of  the n-space in which f evaluates to 1. An  
implicant  C is said to be a prime if any cube strict ly containing C is not  an 
implicant.  A set of  implicants  of f which contain any vertex of O N _ S E T ( f )  
is called a cover of  f .  We shall call a cover prime if all primes of  the Boolean 
function specified by the cover are in the cover. 

Cubes C ~ , C "  are said to be orlhogonal in the k- th  variable if S~ N S~ ~ = 0 .  
Let cubes C' and C "  be or thogonal  only in the j - t h  variable. Then  a cube 
S~ N S~' x ,. x Sj U Sj: x S;  n S~: is said to be produced by the consensus operat ion 
[2]. We shall call a pair  of cubes which are or thogonal  only in one variable a 
consensus pair in the variable. We shall call a cover consensusless in a variable 
if any cube produced by the consensus opera t ion f rom a pair  of  cubes from F 
which are consensus pair  in the variable is contained in some cube f rom F .  

Denote by F~j and F~-j subcovers (sometimes called cofactors with respect 
to xj and gj  [2]) of  subfunct ions f ( x l ,  .., 1,..x~) and f ( x l , . . ,  O,..x,~) of  funct ion 
f ( x l , . . ,  x j , . . ,  xn) formed f rom a cover F of f .  
P r o p o s i t i o n  1 I f  a cover F is consensusless in M1 variables, F is prime. 
P r o p o s i t i o n  2 Let a cover F be eonsensusless in the j - th  variable. Then the 
covers Fxk and F ~  , k 7 £ j obtained by Shannon expansion or any cover F'  
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obtained by adding to F a set of cubes produced by the consensus operation are 
consensusless in the j - th  variable too. 
P r o p o s i t i o n  3 Let F be a cover and Fj be a set o f  all cubes produced from 
consensus pairs of  cubes from F orthogonal in the j - tb  variable. Then the 
equivalent to F cover F;  = F O F] is consensusless in the j - th  variable . 

The proofs of the propositions are omit ted for short. 

2 Formula t ion  of the  M e t h o d  

Tile UP method is to apply the Shannon expansion to the initial cover to 
decompose the cover into a set of unate subcovers. This allows one to subst i tute  
operating on the cover for doing on the unate subcovers. The main property 
of unate covers that  makes performing many operations trivial is that  a unate  
covet: is prime [2]. The key point of the method presented in the paper  is to 
decompose the operated cover into prime subcovers which, generally speaking, 
may not be unate. 

The method consists in recursive performing the following algorithm. (1) If  
there is a variable in which a subcover F is not unate and an ancestor of F 
was not made consensusless in the variable then step 2 is performed. Otherwise 
F is prime.(2) The subcover F is either decomposed by branching in a "not  
processed" variable or made consensusless in one of such variables. 

I~y making the subcover F consensusless in variable xj  is meant  the described 
in proposition 3 procedure of substituting F for cover /7~. To choose between 

,,,i.,,(IFt + n '{ ,  n j )  are calculated where n i and 'ha0 is the number of cubes f rom 
F the j - th  component of which is equal to {0} and {1} respectively. The value 
or 2 1 F I -  (~,.{ + ,.{;)is equal to IF~,I + IF~#I and. so a describes the most  effective 

w~y of branching. The value of I/~'1 + n{ * n~ is the upper bound of I U I  and 
so b describes the most effective way of making the cover F consensusless in 
a variable.if  a < b the branching in a variable minimizing 2IF I - (n{ + n j )  is 
chosen. Otherwise from F cover Fj* is obtained where j is the index of variable 

~o,. ,,q,i~b I~[ + ,,{ * ,~{ is minimum. 
Justification of the method is based on propositions 1-3. 

3 E x p e r i m e n t a l  Resu l t s  

To evaluate the efficiency of using the proposed method (further referred to as 
the EPC- (expansion plus consensus) method) programs EPC-Reduce and EPC-  
Decomposition have been written. EPC-Reduce implements Reduce operation 
used in the two-level logic minimizer Espresso [2]. The program was applied 
to a number of MCNC-91 two-level examples (table 1). When implementing 
the operation the extension of the EPC-method to the case of mul t i -output  
Boolean flmctions was made. The program EPC-Decomposi t ion is intended just 
to decompose the cover into a set of prime covers. The program was applied to 
sillgle-output covers obtained by the pseudorandom number generator (table 2). 
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Both programs were compared with their UP based counterparts  written in 
accordance with [2]. To compare the performance of operations based on the 
UP- and EPC- methods it is reasonable to use the total  number  of the varia- 
bles processed when reaching pr ime subcovers. For the UP-based operations 
the number is equal to the number of branchings and for the EPC-method  ba- 
sed ones the number is equal to the sum of the number of branchings and the 
number of variables in which subcovers were made consensusless. Programs 
EPC-Reduce and UP-Reduce were applied to covers obtained after performing 
Irredundant_Cover procedure during the first i teration of the minimization loop 
of Espresso [2]. When constructing a random cover the number  of components of 
a cube different from {0,1} was uniformly distributed in the range [rt, r=] shown 
in table 2. 

T a b l e  1 

Examp. nc ni  ~o nexp n c o n  nepc nup 
apex2 459 39 3 6749 2219 8968 13561 
apex5 308 117 88 1210 339 1549 1566 
alu4 360 14 8 4595 2624 6219 6310 
comic 1082 23 2 2824 2694 5518 51474 
cps 106 24 109 216 57 273 268 
ex4 141 128 28 584 344 928 1033 
seq 262 41 35 821 209 1030 1056 
misex3 70 14 14 1807 384 2191 2792 

T a b l e  2 

Examp.  nc ni rl r2 nexp ~con nepc nup 
1 100 10 3 4 310 311 621 851 
2 100 10 6 7 222 41 263 268 
3 50 20 4 4 403 249 652 5692 
4 50 20 3 5 446 305 751 7584 
5 60 20 3 5 1493 846 329 15241 
6 60 20 4 4 1173 576 749 14253 
7 100 30 8 18 2289 1556 845 3209 
8 100 30 6 7 15154 11027 2181 95789 

nc,nl,no - the number of cubes, inputs and outputs  respectively, n ~  v , n~on - 
the number of variables processed in EPC-based programs by expansion and 
consensus operation, n~p~, n~p- the total number of variables processed by EPC- 
and UP-based programs. 
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Formal Verification of Timing Rules in Design 
Specifications 

Tibor Bartos, Norbert Fristacky 

Abstract: 

An algoritlun for formal verification of the set of timing rules that express timing discipline 
in digital systems is described. It is based on a digital system specification model and notation 
transferrable to VHDL and concerns formal consistency verification at the design level of 
system specification development procedure. 

1. Introduction 

In the process of  top-down synthesis, developed system specifications have to be 
verified even during the specification refinement process, for it must be assured that 
the derived specification is consistent and correct, and that towards it any 
synthesised implementation can be formally verified. 

This paper concentrates on the formal verification of  specified t iming discipline 
that should hold in the system and its environment (i.e. it ignores the functional 
verification). The specifications are expressed in frame of  a higher-level specification 
model we employ. 

2. S p e c i f i c a t i o n  m o d e l  

We will represent time as a finite real interval TI and variables as functions of  type 
X: T I - + D X ~  ~ n~ where DX is a finite domain and u denotes all nnspecified value. 
A finite number of changes in TI is supposed. Variables are described as sequences 
of evems (changes of values). Two ~-pes of  e~ents exist: up(A,v,i) (X changes from 
ally value to v; i is an index used to distinguish betxveen different changes to the 
same value) and down(A;v,i) (X changes from v to any other value). For eve~'  
up(X,v,i), down(X,v,i) exists. Symbol tin(e) denotes the time xxhen event e occurs. 

A digital ,syxtem S is described b5 inpuL output and state variables. Let V. H. Q be 
sets of vectors of  input, output and state variable values, rcspeclively. The vectors are 
called input vectors, output vectors and states of S. Let v(t). h(t) and q(t) denote their 
values indicated in t ime point t. A timed input output word (shortly i/o word) of  
system S is a finite sequence w = ( v l , e l . h l )  (v2,e2,h2) ... (vN,eN.hN). Ever3 ~ 
(vi,ei,hi) is a timed mput~output vector (shortly i/o vector), where e i is an event, v i = 
v(tm(ei)) and h i = h(tm(ei)), t in(el) < tm(e 2) < ... < tm(eN). Events e i are called 
timing events. The last t iming event e N is called final timing event ef. 

The model [1] is based on entities named agents that spec ie  a partial behavionr of  
the system S over finite time interval. An agent specifies a particular set of  i/o 
communications (given by i/o words and initial states) taking place in a time interval 
and the final state at the end of  the interval. All agents reflect deterministic finite 
state machine behaviours. The timing discipline of  an agent is specified by a set of  



118 

predicates called timing rules [1], [2], [3]. To achieve the behaviour specified by an 
agent, all timing rules have to be fulfilled. The following types of rules exist: Delays 
specify that a difference between two event occurence times is equal to a given 
timing parameter, constraints specify that a difference between two event occurence 
times is not less than a given timing parameter. Stability ru&s specify that the value 
of a given variable is stable in an interval containing a timing event. They can be 
converted to constraints. Or-rules are disjunctions of previous types of rules. 

3. Verification algorithm 

As the timing of events is "closed" within tile agents, we can verify tile timing of 
every agent separately. The timing of an agent is correct if the timing rules are true 
for every i/o word w specified by the agent. Change of a variable in w generates an 
event. Let E(w) be the set of all these events and TR(w) the set of timing rules that 
deal only with events from E(w). Tile timing of w is consistent if for every event e e 
E(w) exists an occurence time tm(e) such that all timing rules from TR(w) are true 
and evem e I occurs in w before event e 2 if  and only i f tm(e l )  < tin(e2). 

An approach to verification of timing rules over a graph representing timing 
diagrams was developed in [5], [3], [2]. A timing diagram is semantically equal to a 
sequence of events together with the set of timing rules. We have concentrated on the 
question how the set of i/o words and timing rules can be transformed to a graph, in 
order to use the known approach. As a result, timing rules in an agent are verified if: 

I. All possible i/o words are generated from a regular expression that describes the 
set of i/o communications. 

2. For every i/o word, all events resulting from changes of input and output 
variables are added to the sequence of timing events at appropriate positions, 
creating so-called precedence graph. The precedence graph is a graph G where 
nodes represent events and oriented weighted edges represent the precedence (or 
relative time order and "distance") of events. The mapping from nodes to events is a 
one-to-one function, so we will use the names of events as names of nodes. The 
edges have two weights. There is an edge from e 1 to e 2 with weights p and s in G if 
either s = 0 and tin(e2) _> tin(el) + p or s = 1 and tin(e2) > tm(el)  + p. 

Whenever an "up" event is added to the graph, also the corresponding "down" is 
added and they are connected by an edge with weights p = 0 and s = 1. I f  an "up" 
event describing a change of variable X is added to the graph, an edge with weights 
p = 0 and s = 0 from last "down" event for X to this event is added. If  an edge with 
weights Po and s o is being added, but another edge with weights Pn and s n 
connecting given nodes already exists, only the weights of the existing edge are 
updated. The resulting weights will be Pn, Sn ifPn > Po" Po, So ifPn < Po or (Pn = Po 
and s n = 0); Po, 1 ifPn = Po and s n = 1. The graph G is initially empty. 

The precedence graph is created as follows: Let w = (vl ,el ,h  1) ... (vN,eN,h N) be 
the input i/o word, where e 1 ..... e N are timing events, v 1 ..... v N and h 1 ..... h N are 
vectors of values of input and output variables. For every i = 1 ..... N: 

a) the node representing the timing event e i is added along with an edge with 
weights p = 0 and s = 1 from previously added timing event to this event. 
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b) Evems generated by changes of values of every variable X (X(tm(ei)) ~ u) in 
vectors v i and h i are added. I f  X does not change its value, only an edge with weights 
p = 0 and s = 1 from e i to the last "down" event for X is added. If  the value of X 
changes, corresponding "up" and "down" events are added together with two edges. 
The first one connects the "up" event with e i and has weights p = 0 and s = 0 and the 
second one connects e i with the "down" event and has weights p = 0 and s = 1. 

3. Edges representing the set of tinting rules are added to the graph. Edges are 
added only if there exist both nodes they connect (so that only rules from TR(w) are 
added for i/o word w). For constraints, one edge with weight p equal to the timing 
parameter is added. For delays, two edges with weight s = 0 between given events e l, 
e 2 are added: an edge from e l to e 2 with weight p = x and an edge from e 2 to e l 
with weight p = -x. where x is the given timing parameter. 

It is possible to prove [3] that the set of tinting rules is inconsistent iff the 
precedence graph contains a positive cycle (a cycle in which either the sum of p- 
weights of edges is positive, or the sum of p-weights is zero and there is at least one 
edge with s-weight equal to I in the cycle). 

Satisfying one of the subrules contained in an or-rule suffices for the entire or-rule 
to be satisfied. If  one of the subrules causes existence of a positive cycle in the graph. 
adding another one calmot cancel it. As a result, the consistence of an or-rule can be 
verified by searching all graphs where exactly one of subrules contained in the or- 
rule is added. Therefore, after all "simple" rules have been added to the graph, one of 
subrules from evel 3. or-rule is added, and the graph is searched for positive cycles. 
The subrules are then removed from the graph and the process is repeated until all 
combinations of subrules are checked. The whole set of rules is consistent, if at least 
one consistent combination is found. 

4. Conclusion 

This algorithm is intended to be used in the process of specification design to 
ensure that the developed specification is correct. It ~as  implemented as a program 
in C. A simple language was defined as input notation for that program. Definition 
of the input notation and implementation details can be found in 14]. 
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Abs t r ac t .  The testing of PCBs containig ASICs, e,g., Altera FPGA is 
an important problem which needs consideration. One of the ideas of 
solving this problem is using BIST architecture for each ASIC. With 
the use of built-in testers, the additional cost, in the form of overhead 
of macrocells is added. A certain idea of built-in tester structures is 
BIST-PST [1]. The disadventage of this idea is, that the FSM memory 
block in form of MISR with a given characteristic polynomial may be 
realized only in form of: IE-MISR and EE-MISR. In our paper, the new 
kind of MISR registers consisting of D and T flip-flops has been used in 
BIST-FST. They make it possible for a given characteristic polynomial 
to achieve a wide range of possible realizations of MISR type memory 
block, ranging from tens to thousands. In effect, it is possible to choose 
the minimal excitation function saving a considerable number of Altera 
FPGA macrocells. 

1 Optimized Synthesis 

The idea of BIST-PST structures given by Wunderlich in [1], and presented 
in Fig. 1, didn' t  include the solution of problems concerning synthesis of self- 
testable FSMs using minimum cost, e.g., standard cells in Altera 7000 family. 
The main drawback of the theory proposed in [1] was used, for a given primitive 
polynomial,  only the Internal EXOR gates based Multi Input Signature Registers 
(IE-MISR) and External EXOR gates based MISR (EE-MISR). On the basis of 
the Wunderlich theory, the primitive polynomial, e.g., p ( x )  = 1 + x + x a has only 
two following realizations: D®DD and D D e D  (see Fig. 2). In effect the number  of 

In  

........... ~ z ~ " ~  ........ 

i ~ ] i .out  

I 

Fig. 1. The BIST-PST architecture 
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a) b) 

Fig. 2. Realizations of MISR: a - Dq~DD, b - DDOD 

different excitation functions fM of above mentioned MISRs is very small. So the 
chance of choosing the optimized new excitation function fM Ofs (fs - excitation 
function of sequential circuits) was too poor. This chance rapidly grows using 
new class of MISRs presented in [2]. The paper [2] deals with a uniform algebraic 
description of operations of M ISRs consisting of D and T flip-flops (DT) and their 
combinations with XOR gate based linear feedback path. Structures based on the 
internal (external) linear feedback path with new kind of D or T flip-flops have a 
huge number of possible realizations of MISR registers named IEDT-MISR and 
EEDT-MISR. The main point of the new theory is discovery the possibility of 
designing DT type linear registers using XOR gates contained in the T flip-flops 
(JK f/fs) instead of XOR gates placed in tile feedback path. The example of p(x) 
mentioned above obtain now new five realizations of IEDT-MISRs and EEDT- 
MISRs: DTT;  TDT;  TTD; T ¢ T T ;  TTOT.  Tile DT type registers operate faster 
than any of their equivalents with XOR gates in tile feedback path and what 's  
more are less complicated and use less number of cella ill some of PLDs, FPGAs 
etc. The more is tile number of MISR's stages the more rapidly increases the 
number of IEDT-MISR and EEDT-MISR realizations for given polynomial. For 
examl)le some of ten degrees polynomials have hundreds and some of seventeen 
degrees polynomials have thousands or more realizations of IEDT-MISRs and 
EEDT-MISRs. Discovering the rules of finding out IEDT-MISR (EEDT-M1SR) 
with primitive polynomial quaranteing the minimal or close to (quasi) minimal 
cost of realization of the fimction (fs q) f v )  q~ fM, was the main point of this 
new theory. According to the rules of creating the excitation functions of i- 
th stage of register of the BIST-PST memory block structure presented in [2] 
(f~i = fsi @ fMi), the new excitation function for i-th stages of the sequential 
circuit has been created. Owing to its compensation by the fMi in the MISR 
type memory block, the truth table of the sequential circuit is unchanged. The 
realization of such a fimction is fsi = (fsi q)fMi)®fMi = f~i®fMi. The main task 
of the optimization relied on finding out the type of IEDT-MISR register, having 
primitive polynomial and which fMi formula for each (i-th) stage warranty the 
minimal realization for every fsi ® fMi functions. Depending on values of Pi and 
ki factors (Fig.6 in [2]), the function fsi = fsi q~ fMi may be for tobit  register 
stated ill four formulas (1) 

f[si --~ f s i  @ q i -1  

f s i  z f s i  (710 q i -1  @ qn 

f~'i "= fS i  ~O q i - l  @ qi 

(1) 
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fsi  = fs i  (~ qi-1 0 qi q3 qn 

Every of (1) formulas carry in the different cost factors of the i-th stage of IEDT-  
MISR register 's realistation. To achieve the minimal fs i  function the minimiza- 
tion process based on Karnaugh maps must be done. Their number is s tated 
by the expression: Nn = 4 ( n -  1) where n denotes the length of the register. 
As a result is the complexity (the number of terms) of the i-th stage of IEDT- 
MISRs. Having the minimal complexity of the fsi  functions of the IEDT-MISRs  
i-th stages, the choice of the minimal cost IEDT-MISR register may be real- 
ized. This set of minimal f~i excitation functions of i-th stages, makes possible 
to determine the characteristic polynomial of the pointed IEDT-MISR register.  
If  achieved in this way polynomial is the primitive one, the designed register 
based on it is regarded as proper to realize the minimal BIST-PST structures. 
In other way, the next from the set of the f~i minimal realizations of the i-th 
MISRs stage is chosen. This process is repeated until the primitive polynomial  
is reached. Comparing the way of the IEDT-MISR realization to the IE-MISR 
ones, the following conclusions have been created: 

- there are only 2 '~-~ registers consisting of the D flip-flops, 
- there a r e  2 2 ( n - l )  = 4 ( n - l )  = 2(~-2)2n possible to achieve IEDT-MISR reg- 

isters based on the D and T flip-flops, 
- the number  of realizations of the IEDT-MISRs is 2 ~ times more than the 

number of realizations of the IE-MISRs. 

So the chance of finding out the possible minimal realizations of IEDT-MISRs  
in comparison to IE-MISRs grows rapidly, together with the length of the register 
(2n). Based on the concept of the new class of IEDT-MISR registers, a new 
family of FPGA circuits - Altera 7000 was taken to realize this theory. Thanks  
to existence of the XOR gates connected to programmable flip/flop and used to 
build internal (external) feedback paths, the idea of constructing the new kind of 
MISR registers based on the given primitive polynomial was realized. Owing to 
this new theory, one can reduce not only the number of macrocells used to realize 
project, but also to change the proportions between the number of macroeells 
used in realization of FSM and the number of macrocells used in realization of 
the BIST. 
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Abstract. We present a bigh-speed rotation processor for rotating digital images 
based on the backrotation algorithm. The design is part of our research project 
on real time volume visualization architectures. The processor is implemented 
on an Actel FPGA and the solution is compared to a Xilinx implementation. Per- 
formance measurements show a throughput of more than 360 images per second 
with 2562 pixels per image. Each pixel is represented with 12 bit data. 

1 Introduction 
Modern imaging techniques in medicine like computer tomographie or magnetic reso- 
nance imaging produce digital images, called slices, of  the human anatomy. Combin- 
ing adjacent slices of one scene results in a volumetric data set. Volume visualization 
methods, eg. raytracing directly throttgh the sampled data points, make it possible to 
compute images that show a perspective (313) view of these volumetric data sets. To 
achieve real time computation speed (20 pictures per second) wc scparate the entire 
visualization process into data volume rotation and raytracing with fixed observer 
position [2]. Therefore we can use a pipeline architecture for these computations. In 
this paper we present a high-speed rotation pr(yccssor for the first pipeline step [311. It is 
capable of  rotating 320 slices with 256 x 256 daU~ points with 12 bit intensity resolu- 
tion in one second, equivalent to 16 slices at the required rotation speed. 

l l  
Transformation 

Matrix 

+ = [-cosO-sinO 1 
M Lsine cos 0_] 

= {-cos0 sin0~ 
M- [_-sin 0 cos~ 

Fig. 1. MR picture of a head before and after 35 o rotation 

2 hnage Rotation 
The sample points in the slices are on a recmngttlar, evenly spaced grid. They can be 
described by integer coordinates in a source coordinate system. 2D-Rotation by angle 
0 can be described by matrix M ÷ for countcrclockwisc and M- for clockwise rotation. 
In the rotated slice, the new sampling points are described in a destination coordinale 
system. 
The backrotation algorithm enumerates all points in the destination slice and trans- 
forms their coordinates back into the source coordinate system by applying the invcrse 
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matrix of the rotation matrix. Enumerating these points in a regular fashion leads to 
simplifications in the algorithm because line drawing DDA algorithms can be used to 
easily compute the points in the source coordinate system [1]. The following algorithm 
(figure 2) enumerates the points in a slice column by column. 

/* transform the coordinates of the first point of first column p'(x',y') from the 
destination coordinate system into source coordinates p(x,y): */ 

Xba k : X ----- X '  " cos0+y' - sin0, Ybak = Y = Y' " cos0-x'  • sin0 
for all columns of the destination slice { 

for all points p'(x',y') in the column { 
compute the intensity at point p'(x',y') from the intensities of the neighborhood 
of point p(x,y) in the source slice (resampling) 
x = x + s i n 0 , y  = y+cos0 } 

X = Xba k : Xba k + COS0 , Y = Ybak  = Yb~k- sin0 } 

Fig. 2. Backrotation algorithm using line drawing 

The new sampling points p(x,y) generally do not exactly meet the integer coordinates 
in the source coordinate system. In a resampling step we use bilinear interpolation to 
compute the intensity i(p) at a point p(x,y) between grid points from the intensities of 
the four surrounding grid points. 

3 Rotation Processor 

The architecture of our rotation processor is shown in figure 3. The source memory 
source crossbar bilinear destination consists of four memory banks and 

memory switch interpolation memory is able to store 16 slices. Partition- 

- - ~ i  ] ~  . . . . .  - ~  . . . . . .  ing the source memory into four 
banks allows parallel access to all 

~ i ~  ]=~_]L i ~ f°ur values necessary f°r bilinear 
interpolation (memory interleav- 
ing). Data read from source mem- 

"~ q ' ~ i  i ~  ~ i [i ! ory is routed through a crossbar 
switch to the inputs of the bilinear 

,, interpolator. The result of the inter- 
e= polation is stored in destination 
~ tl"'][ i.!__..~_ 1 -~_..5 _ i~)at ~ memory which is of the same size 

"-" as the whole source memory. Cross- 
I (FPGA) bar switch and bilinear interpolator Proce~or 

are realized by a standard cell 
Fig. 3. Architecture of backrotation processor design (die size 40 mm 2) with ES2 

1.5~ cell library. 
The backrotation algorithm (figure 2) has been implemented in an Actel FPGA A- 
1280-1. The address generator traverses a slice column by column and computes the 
source coordinates of the four points necessary for bilinear interpolation. The source 
coordinates are split up into integer parts which give the addresses to access the inten- 
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sity values at the grid points and fractional parts which are the weights (dx, dy) for 
bilinear interpolation. Computation of the first point in the first slice takes seven clock 
cycles. After that, we are able to rotate one pixel within each 42 ns clock cycle. 

4 FPGA-Design Experiences 
The Actel A-1280-1 contains 1232 logic modules ( 8000 gate array equivalent gates). 
In our design we have a module utilization of about 80%. Therefore it was difficult to 
achieve our timing requirements. Our limit was a clock period of at most 47ns. Actel 
design tools predicted a probability of 94% for complete wiring. Only about half of the 
50 placement and routing attempts succeeded. Initial critical path analysis showed that 
the design would not reach the goal (30% too slow). Avoiding large fanouts by dupli- 
cating parts of the logic in critical paths and using additional buffers and gates with 
few pins improved the critical path by about 5ns. Another 5-10ns could be saved by 
marking nets more or less critical. We observed that the delay of one net differs 
between 8ns and 15us after distinct place and route attempts. Nets not marked critical 
driven by modules with a fanout of 8 or more can easily reach delays up to 50ns. 
Finally, after all improvements, critical path analysis tools reported a delay of 55ns for 
worst case process (chip fabrication) and operating conditions 75°C ambient tempera- 
ture at 4.75V supply voltage. For typical process conditions and 25°C ambient temper- 
ature at 5.0V supply voltage the result was 46us. 
The design was retargeted to the Xilinx XC4000 family. This was done by giving a 
VHDL description of the processor to the Mentor AutoLogic synthesis tool. Since the 
synthesized adders turned out to be much too slow (120 ns) we replaced them by hand 
designed adders. Xilinx place and route tools suggested an XC4008 with 324 config- 
urable logic blocks (approx. 8000 gates). After placement and routing the tools 
reported a CLB utilization of 82% and a critical path length of 52.9ns for an XC4008 
with speed grade -5 (5ns CLB delay). The critical path analysis reflects worst case val- 
ues over the recommended operating conditions. The current version of AutoLogic is 
not able to optimize the critical path length during technology mapping for Xilinx 
designs. Several place and route attempts led to comparable results. Even the attempt 
to use an XC4010 with more CLBs and routing resources did not improve the result. 
Thus we can conclude that both FPGA families, Actel and Xilinx, are suitable for our 
application and result in designs (Actel 55ns worst case versus Xilinx 52.9ns worst 
case) with similar speed. 
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Security algorithms are very often implemented by the FPGA technology 
because only a limited amount of circuits with these algorithms are necessary 
for production. 

This paper describes some possibilities for implementation of the MD5 Messa- 
ge-Digest Algorithm [1] by means of XILINX FPGA's.  A message digest algo- 
r i thm (one-way hash function generator) takes as input a message of arbitrary 
length and produces as output  say 128-bit "fingerprint" or "message digest" of 
the inputs. Such algorithms are often usefull for digital signature applications. 

Several algorithms of this kind are known. SNEFRU, FFT-Hash II, MD4, 
MD5 algorithms, or the I.S.O. proposal are among them [1], [2], [3]. 

We chose the MD5 algorithm for implementation for several reasons: 

- it was good accepted by experts, 
- it needs minimum ROM memory, so it can be fully implemented in one circuit 

(higher security), 
- it offers good trade-offs for implementation of hash functions with respect 

of development time and price, 
- only one small change ( new initial constants) allows to distinguish different 

users. 

The algorithm begins with the initial constant MD0 and processes n blocks 
of words by means of four round functions - FF, GG, HH and II as follows: 

MDi = MDi-1 + II (Mi ,HH(Mi,GG(Mi,FF(Mi,MDi_I))) ) .  (1) 

Each round consists of 16 steps, where in each step must be values of four 
registers A,B,C,D calculated according to formula: 

A = B + ((A + f (B ,C,D)  + x[s] + t[i]) < <  k ). (2) 

The XILINX XC4000 FPGA family was chosen for implementation of this 
algorithm [5]. Several experiments have been executed to find optimal architec- 
ture. Results of them are described in this paper. The main goal was to achieve 
a circuit, which can be "fed" by words of a message practically with the speed 
of the PC bus. Then, we can use the circuit as a peripheral device of a PC 
computer. 

XC4000 FPGA's  were chosen because of their possibility to implement very 
effectively ROM and RAM memories. ROM memory was used as a table instead 
of computing of function t [i] = 4294967296 * abs (sin (i)). Dimension of the 
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table is 64x32 bits. Another ROM tables contain values for shift- ing (32x5 bits) 
and initial constants (4x32 bits). As the architecture of such circuit is "heavy 
multiplexed", we have preferred XC4000 family to XC3000 one. 

RAM memory contains 16 32-bit words. Some experiments have shown, that 
this part of the circuit and substantial part of control block could be saved, when 
sequence of steps in the MD5 algorithm is modified by sequence of input words. 
But such modification of the algorithm gives lower security. 

RAM's and ROM's dimensions don't allow to implement them with a small 
amount of packages on board. Therefore for the full implementation of the algo- 
rithm, they can be put into one XC4004 package with 82 active i/o pins. This 
circuit is interfaced to another one, where all computational steps of the MD5 
algorithm are done. Content of the 16x32 data RAM, from which the fingerprint 
is being received, is defined by the controlling PC computer, i.e. final padding 
of the RAM is its task. Structure of the circuit is on Fig.1. 

The most critical part of the algorithm from the point of view of its per- 
formance was the summing of two 32 bit words. Implementation of dedicated 
carry logic in CLB's of the XC4000 FPGA's was really substantial advantage. 
All other sub-functions were implemented as synchronous with a clock signal. 

Trade-offs between price and performance of the implemented algorithm 
forced us to propose "modified MD5 algorithm". The main cause of the modifica- 
tion is based on the fact, that the original algorithm has 32-bit structure, which 
gives 128-bit fingerprint but it needs 32-bit buses which are limiting factor for 
routing. We have experimented with 8-bit and 16-bit structures, which offer 32- 
bit nad 64-bit fingerprints. Such fingerprints can be used in specific applications, 
where CFB mode of operation for ciphering is used. 

The main part of the control logic consists of 13-bit state shift register, which 
generates impulses for the basic function, described by equation (2). Control 
signals for 64 steps in 4 rounds, described by (1), are generated by another state 
machine. 

Table 1 shows possible implementation of these structures in XC4000 FPGA's 
without RAM and ROM memories. In these implementations was the limiting 
factor not the number of gates, but number of interconnections among blocks. 
As a final result, we received a class of circuits, containing MD5 algorithm or its 
modification with respect of their complexity and price. The simplest version is 
implemented into XC 4004A FPGA. 

Some experiments are running now to receive a circuit for message digest with 
fingerprint larger than 128 bits, based on a modification of the MD5 algorithm. 
In such circuit can be also other arithmetical functions used, to achieve better 
confusion for cryptoanalysts. Such circuit will be useful e.g. in an archiving 
system with high performance, where security and throughput are determined 
also by chosen hash function. 
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Figure 1. 
Block Structure of circuit 

Structure Number of gates Implementation 

8 bits 2 550 XC4004A 

16 bits 4 600 XC4005A 

32 bits 8 600 XC4010 

Table I. 
Implementation of different structures 

of the MD5 algorithm 
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Abstract. Fractal image compression appears to be a good candidate for 
implementation with a reprogrammable processor. It is computationally 
intensive, slow on existing technology, and employs a few basic, well- 
defined functions that are clear candidates for hardware implementation. We 
discuss our implementation of a reconfigurable processor for fractal image 
compression, used to evaluate the utility of different compression methods 
faster than a software-only approach. 

1 Introduct ion  

Fractal image compression has recently been proposed as an alternative to JPEG and 
other compression techniques [1,2,3]. By identifying an appropriate set of affine 
transformations, images can be stored as mathematical functions which can then be 
iterated on an arbitrary initial data set to approximate the original image. The 
challenge is to construct the transformation set. Recause the search space is large, 
fractal image compression is computationally intensive. Fractal image compression 
of a 128 x 128 color image can take over 4 hours on an RS/6000. 

The long turnaround time for a software-only implementation enhances the difficulty 
of experimentation with different search and comparison functions. We require both 
1) improved performance of frequently executed functions, and 2) the ability to 
evaluate different functions as candidates for use in fractal image compression. This 
suggests the use of a reconfigurable coprocessor. 

2 Archi tecture  

Our coprocessor system is designed to work with the Apple Power Macintosh 
computer using the NuBus interface [4], as shown in Figure 1: 
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Fig. 1. Coprocessor Architecture 

The coprocessor functions in either in compute mode or program mode. In program 
mode, the user feeds configuration data for a particular candidate function through the 
NuBus into the FPGAs. In compute mode, the host computer pumps input data 
through the NuBus which is then fed through the programmable functional unit. 
Output results are stored in the buffer memory. The functional unit is user- 
programmable and set up according to the directed acyclic graph (DAG) of the 
candidate operation. This DAG is the data flow pipeline of the candidate operation 
where many basic units can operate in parallel, Data dependency is the only limit for 
the degree of parallelism in each stage; results dependent upon the outputs of the 
current stage become the next stage of the pipeline. This way, we are able to exploit 
the parallelism both within a single stage of the pipe and across the entire pipeline 
where results are pumped out of the pipe every cycle after the pipe is filled. 

3 Candidate Operation 

Profile results gathered from running a fractal compression program on sample 
images on IBM RS6000/340 workstation show that the program spends more than 
80% of total run time computing the absolute error between image blocks. This 
suggests that this function is a good candidate for hardware implementation, 

Figure 2 shows the DAG for absolute error computation. Our calculations indicate 
implementation requirements of 123 CLB's and 64 I/O pins, easily within the limits 
of a Xilinx 4000-series FPGA [5]. Our results indicate that this routine can be sped 
up by approximately a factor of 50. Applying Amdahrs Law reduces the speedup to 
an approximate factor of 4, still a significant improvement. We are looking to 
incorporate other candidate functions into hardware, including genetic algorithms for 
searching the problem space and user-defined functions for determining similarity 
between portions of images. 

This work was supported by the National Science Foundation under award # MIP - 
9222643. 
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A b s t r a c t .  We implement on Field Programmable Gate Arrays from 
Amtel (old CLi) three systolic algorithms for the computation of grea- 
test common divisor of integers. The experiments show that elimination 
of global broadcasting significantly reduces both area and time consump- 
tion. We eliminate broadcasting by using a novel technique which is more 
suitable to arithmetic algorithms than Leiserson conversion lemma. 

This report is part of an on-going research aimed at speeding-up exact- 
arithmetic systems by adding a systolic dedicated coprocessor. Computation 
of the greatest common divisor (GCD) of long integers is an important and ex- 
pensive subalgorithm in exact arithmetic and in some cryptography schemes. 
Practically, the systolic approach has been so far the most successful in paralle- 
lizing this algorithm- see [BrKu85], [YuZh86], [Guyo91]. 

We compare three GCD systolic implementations using field programmable 
logic from Amtel (old CLi): a semisystol ic  parallelization of a variant of Brent- 
Kung plus-minus algorithm, using signed arithmetic and global broadcasting; a 
purely systolic algorithm previously described in [Jebe93], which is obtained 
from the first by eliminating global broadcasting; an improved  version of the 
purely systolic algorithm by halving the number of cells. 

We start from a simplified version of the plus-minus algorithm introduced 
by [BrKu85]. In the description in figure 1, A,B are the input integers and 
ao,al ,bo,  bl denote their least-significant bits. A termination and correctness 
proof of this algorithm are presented in []ebe94]. 

1 Systolic Algorithms 

In order to parallelize the plus-minus algorithm systolically, the operands are 
represented using signed-digits, for avoiding carry propagation. Each cell con- 
tains 9 registers (variables): the 3-bit signed-digit representation of each operand; 
one-bit"tags" la, tb which show the sign-bits of each operand; sa: the sign of A 
(finally of the result). Cell 0 (the rightmost) determinates the "instruction" to be 
executed, which is than broadcasted to all the other cells (there are 5 "instruc- 
tions"). The tags ta, tb are essential for termination detection in the presence 
of variable-length operands. The tags are set to 1 in those processors containing 

* Supported by Austrian FWF, project P10002-PHY. 
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while B ¢ 0 do 
if a0 = 0 and b0 = 0 then [shift both] 

(A, B) *-- (A/2, B/2); (As, Bs) ~ (A, B) 
if a0 = 0 and b0 = 1 then [interchange and shift] 

(A, B) ~ (B, A/2) 
if a0 = 1 and b0 = 0 then [shift B] 

(A, B) ~- (A, B/2) 
if a0 = 1 and b0 = 1 then [plus-minus and shift] 

if al = bl then (A, B) ~ (B, (A - B)/2) 
else (A, B) #-- (B, (A + B)/2) 

return A [the pseudo-GCD], As, Bs 

Fig. 1. The plus-minus algorithm. 

non-significant bits, and shifted rightward when possible. When tb reaches cell 
0, than we know B is null. Also, the value of the lowest tagged bit of A is shifted 
rightward using sa. At the end this will indicate the sign of the result. 

For the elimination of global broadcasting we do not use Leisersons systolic 
conversion scheme [Leis82]. This method would triplicate the number  of registers 
and the new circuit will inherit the complications of signed-redundant ar i thme- 
tic. Rather,  we us a novel technique, which is more suitable to least-significant 
bits first ar i thmetic algorithms: the carries/borrows are rippled along together 
with the "instruction" signal (which has now 8 values), and the operands are 
represented in the classical fashion. This reduces the number  of registers needed 
for operands by a factor of 3, compensating the registers added for buffering the 
instruction signal: only 8 registers are used now instead of 9. The details of this 
systolic algori thm are presented in [Jebe93]. 

Similarly to what happens in Leiserson systolic conversion method,  our broad- 
casting-elimination scheme also introduces a slow-down of 2: the array is used 
with only 50% efficiency. In order to improve this situation, we "pack" two cells 
in one: a new "double" cell will contain the registers of two old neighboring 
cells, but only one implementat ion of the transition function. The function is 
multiplexed alternatively between the two sets of registers. This brings the theo- 
retical efficiency to 100%, however from the practical point of view only a small 
improvement  in area consumption can be noted. 

Nevertheless our systolic algorithms represent a significant improvement  over 
Brent-Kung scheme [BrKu85]. While the old device needed 4n cells, for n-bit  ope- 
rands, each with 24 registers, our devices need n cells with 8 registers (respec- 
tively n /2  cells with 16 registers) - hence a reduction of 12 times. The running 
t ime of the old algori thm is 4n for any inputs, the running t ime of our a lgori thm 
is 4.34n in the average. 
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2 Practical  Exper iments  and Conclus ions  

The three designs were implemented for 8-bits operands using Amtel FPGA 
development system (successor of Concurrent Logic), which includes CAD from 
Viewlogic. The layout was done automatically on a 6005 CLi chip (has 56 * 56 = 
3,136 primitive cells), and was successful only for the purely systolic designs. For 
the first (semi-systolic) design, 97 nets out of 694 could not be routed. Figure 2 
presents the resulting data. 

semisystolic systolic improved 
macros 710 476 426 
registers 98 89 92 
gates 607 377 313 
equivalent gates 2,928 2,167 2,210 
cells used 
%efore layout 704 466 405 
after layout 2,649 1,889 1,576 
t ime/c lock  (ns) 
before layout 
after layout 
increase (times) 

60.8 56.4 64.0 
650 450 440 

11 8 7 

Fig. 2. Comparison of the three designs. 

The most important conclusion of the experiments is that  elimination of 
global broadcasting using our novel technique is benefic from all points of view: 
the purely systolic algorithm was s imp le  enough for the layout software to 
be able to process it successfully; the a r e a  c o n s u m p t i o n  of the semi-systolic 
device is bigger by 32% (equivalent gates), 73% (logic cells), 68% (layout cells); 
the t i m i n g  of the semi-systolic device is bigger by 8% (logic), 47% (layout). 
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A b s t r a c t .  In this short paper we describe the formal specification of inter- 
face chips which are used in embedded subsystems. The typical applications 
come from t lae areas of mission critical systems which are most commonly 
found in the avionics and space industries. Our application, by which we illus- 
trate our formal techniques for the design of an embedded FPGA controller 
is that of an ABS (anti-lock braking system) as used by the automotive in- 
dustry. We describe our innovative technological approach for ASIC design 
and show that it may equally well be applied to the area of FPGA design 
which are more cost-effective for small production runs or where the system 
specification may need to be changed at short notice. 

1 Introduction 

This paper  describes par t  of our on-going work[l ,  2, 3] to formally specify inter- 
face chips which are used in embedded subsystems. The typical  appl ica t ions  with 
which we i l lustrate  our technique are the use of F P G A s  in safety-cri t ical  applica- 
tions in avionics and space, which require extremely high levels of mission reliabili ty,  
extended maintenance-free operat ion,  or both.  The automot ive  indust ry  is also in- 
creasing its use of control and interface chips in engine management ,  cruise control 
and ABS subsystems.  The need for design assurance, increasingly of a contractual  
nature,  has led to the increa~sing use of formal  methods  in this  area[@ Our use of 
formal methods  is industr ia l ,  our indust ry-provided example being developed on a 
commercial ly  available formal  CAD toolset (LAMBDA),  and not purely academic.  
We show how the LAMBDA (Logic and Mathemat ics  Behind Design Automat ion )  
system, which very successfully exploits many years of academic research and whose 
logical core is based on ttOL[5, 6], can be used to address these problems.  

2 Overview of Technological Approach 

At the core of our approach is a theorem-proving tool in which a specification[7] can 
be t ransformed through a series of rule t ransformat ions  into a design which is correct 
by construction[8]. The  design decisions are made,  interactively,  by the engineer 
and the system au tomat ica l ly  introduces constraints  (e.g. on t iming,  connections of 
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inputs and outputs and wiring) as a result of the partitioning decisions made by the 
engineer. 

The current design state is represented as a rule which must keep track of formal 
relationship between four things, viz. the original specification, the implementation 
developed so far, the work which remains to be done and environmental constraints 
introduced by the system. Initially the rule is a tautology, which is valid, and this is 
transformed by the theorem prover as the designer makes implementation decisions. 

IF current_design + further_work ACHIEVES task_n 
AND ... 
AND current_design + further_work ACHIEVES task_l 
THEN current_design + further_work + constraints ACHIEVES specification 

We do not go into detail about the rule transformations, as these are not what 
the engineer needs, or wants, to work with. Such mathematical details need to be, 
and are, hidden from the engineer; all that the engineer sees is a graphical view of 
the current state of the implementation and a view of what design work remains to 
be done to provide an implementation which satisfies the specification. If details of 
the logical transformation process are of interest then see[l, 3]. 

The engineer makes a series of partitioning decisions(c.f. /9]), some of which 
are aided by the system, and transcends a design hierarchy. We advocate that this 
approach, which is currently being commercially used for ASICs, can be applied to 
the design FPL. The primitive elements, i.e. the leaves of the design tree, are the cells 
of the FPGA, the connections between them having been generated automatically in 
a mathematically rigorous formal manner This highly novel approach is illustrated by 
example for the design of an FPGA for deployment in an anti-lock braking system. 
An FPGA is worthwhile when the ideal specification of the FPGA system is not 
known. By this, we are referring to the possibility of a braking system in which the 
brakes may be independent or one in which front and rear are grouped together. 
These systems have different mechanical properties relating to yaw movement of the 
car. In some systems, including the phase II version of our development, the wheel 
angle is taken into account in the specification so that increased braking force may 
be applied to the wheels on the inside of the steering curve, thus increasing the 
ear's ability to corner while braking. To change the specification and reproduce a 
formal interconnect to the FPGA cells is much easier, and hence less costly, than 
redesigning and refabricating a dedicated ASIC. 

3 C o n c l u s i o n s  

In general, the theorem-proving research emphasis towards microprocessors has left 
the formal development of FPGAs relatively unexplored. This is extremely unfor- 
tunate since, as mentioned in the introduction, these are now being designed into 
safety-critical systems; it can also be argued that, because the user base for an FPGA 
is so much smaller than for a mature commercial microprocessor, a design design flaw 
in an FPGA is more likely to find its way into a deployed critical system. Clearly, 
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this s i tuat ion needs to be addressed. W h a t  we have shown is a thoroughly  prac t ica l  
approach for the formal  specification an'd formal  design of FPGAs .  The  a u t o m a t i c  
generat ion of firmware for embedded  microcontrol lers  has also been demons t ra t ed ,  
and provides a small  step in the direction of hardware /sof tware  codesign yet ad- 
dresses a very large sector (60-70%) of the software requirements of the  codesign 
market .  Fur ther  work in this area is certainly required. Our  approach is also sui table  
for h ighly-dis t r ibuted systems but  more "real-world" problems need to be tackled by 
industr ia l  designers adopt ing  our methods  in-house; it  is only from feedback gained 
by such experiences tha t  further refinement and customisat ion of our technique for 
the par t icular  problems of various niche areas can be achieved. 
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Abstract .  Spread spectrum digital radio receivers and transmitters are very diffi- 
cult to simulate for overall system performance evaluation. Reliable estimates 
for Bit Error Rates and effect of indoor and outdoor fading radio channels can be 
best studied via practical hardware measurements. In this work we propose a 
flexible CDMA spread spectrum radio architecture structure well suited for 
FPGA prototyping. FPGA based rapid system prototyping techniques provide 
complementary information than simulations and also facilities earlier system 
integration activities across different project groups. 

1 Introduct ion  

The design of future mobile communication systems requires thorough perform- 
ance analysis before the hardware can be built. Many of the design options can only be 
evaluated and characterised in real working environment making the analytical or 
completely simulation based approaches infeasible. Due to real radio environment 
with multipath fading, interference and interactions with natural noise sources, rapid 
system prototyping techniques need to be adopted as an integral part of the design 
cycle. Prototyping will not replace simulations, but will complement and identify spe- 
cific problem areas which need to be characterised in more detail with modelling and 
simulations. 
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Our work relates to testing system solutions in mobile high data rate communica- 
tion network and building the first testbenches in order to demonstrate the feasibility 
and application integration[l]. 

Mobile users expect global network connectivity, mobility transparent applications, 
and quality of services comparable to that of fixed networks. This will require the inte- 
gration of fixed, and mobile indoor local area and outdoor wide-area networks in order 
to provide global connectivity. In practice this will require from portable radio subsys- 
tems flexibility to handle multiple radio air interfaces based on availability and quality 
of services and air interfaces. Appropriate radio interfaces will be controlled and 
selected by a system management function (implemented as a software) to meet crite- 
ria such as achievable throughput and delay, real time requirements, usage cost, and 
impact of selected communication link battery lifetime and currently available radio 
transmission power. 

2 System overview 

2.1 Xilinx FPGA based digital receiver 

In order to have a configurable and flexible radio interface to the host-MINT [1] 
computer the main signal processing tasks for encoding transmitted and extracting 
received data are performed digitally using Xilinx FPGAs. For communication with 
analog world, 8-bit AD and DA video speed converters are used and, whole DSP itself 
is implemented on 4 XC4000 series PLCC84 chips to achieve also flexibility of availa- 
ble logic on the board (see fig.2). 

A/I~ I R h i t , t . , ~  Received Signal ~ "  I . . . . . . . . .  II \ 1  ~ , ,  I _ 
"J J - -  I . . . . . . . .  . / / ]  Acquisition ~ [ . . . . . . . .  I I  ~ " "  I - ~  

I I - - - - - / "  I and I ~ ,'-I I I  - J ( I  I 

. . . .  

Fig. 2. Xilinx XC4000 based flexible DSP for DS CDMA digital radio 

In general, there is 2 AD interfaced inputs to the board for I and Q channel and also 
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2 DA interfaced outputs. For communication with host computer DSP board is 
equipped with Xilinx download-readback and also with low - and high speed control 
interfaces. System partitioning is done in a way that the most extensive incoming sig- 
nal processing will normally be done in first chips directly connected to ADs thereafter 
extracted control information is passed to third chip which acts as a controller and is 
passing needed correction information back to the first two chips. The fourth chip is 
dedicated for transmitting and interfacing functions. Such an architecture is turned out 
to be universal enough to test out several different design solutions without need to 
alter PCB. Different modulation and access schemes, data transmission speeds and 
coding algorithms can be utilized just by downloading different chip configuration. 
Xilinx configuration data is possible to download in a daisychain way or every chip 
individually. 

The homodyne direct conversion receiver is used in the radio frontend. After mixing 
down and amplifying the received signal, the DSP is fed with[l]: 

I(0=data(t)*pn(0*cos(o~0 and Q(0=data(0*pn(0*sin(c00 

The actual data extraction and synchronization and received power estimation are 
done digitally. One of the non-trivial problems one must face with a DS CDMA sys- 
tem is the synchronization of the PN sequence in the receiver. Different solutions have 
been proposed from which Noncoherent Tracking Loop is used due to inherent sim- 
plicity for VLSI (Xilinx FPGA) implementation. 

PN early 

Sampled da~ ~ ~  2 

Control signal to NCO according to chosen channel 

fe..~ ~ ~  PN early 
PN late 
PN 

fN.t 

Fig. 3. Functional diagram of the digital receiver 

The received signal is multiplied with three shifted replicas of the PN sequence. 
Each of the PN sequence is shifted by half a chip in time from each other. Correlated 
input signals are integrated over the one bit arrival time T b and thereafter dumped. 

As shown in fig. 3, the data is extracted from the in time integrator, and by taking 
the difference of the late and early we get an error signal which is feed back to a digital 
variable oscillator. It is implemented with the help of an NCO and a PN generator. 
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Abs t rac t .  The EMFRI board is a set of hardware resources (FPGA. 
memories, communication links) for the rapid prototyping of control 
units dedicated to our home-made programmabIe artificial retinas. Its 
full on-line reconfigurability enables to load different architectures and 
softwares. We now project to use it as an "active" architecture. 

1 I n t r o d u c t i o n  

The original goal was to validate and compare different ideas of control unit 
architectures for the "NCP retina", a SIMD matrix of 500(} boolean processors 
A65X76) on a single chip, each of them including a photosensitive device, an 

/B converter and 3 bits of memory. The NCP retina was extensively described 
in [1]. Previous researches [2] on the top level architecture of a vision system 

; . . . .  - R e ~ i ~ 2 ~ ; ~ £ / o ~  . . . . . .  i 
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Fig. 1. Bi-Processor Vision System based on NCP retina 

based on the NCP retina led us to associate an undedicated scalar unit (80186 
or Spare) to the retina chip (Fig 1). In this framework, rather than building 
a new electronic board for each control unit we had in mind, we decided to 
design an unique FPGA-based re-programmable board. This platform proved 
itself so flexible that it led us to use it for other purposes, in particular as a co- 
processor for compilation of communication inside the P.E. network. Eventually, 
the concept of "active architecture" can be supported, that  is, the down-loaded 
architecture is changed according to the context, by the vision process itself. 

2 G l o b a l  S t r u c t u r e  

A s e t  o f  fu l ly  r e - p r o g r a m m a b l e  r e s o u r c e s :  The particular architecture of 
the NCP retina and its operating mode lead us to take into account hardware 
or software parameters: Bandwidth between control unit and smart retina data 
path (about 20 Mo/s), Latency delay between both processor request and execu- 
tion, "Real-time" control (due to the image flow), Control of the instruction flow, 
Execution model (CISC, RISC, independent thread), Diversity and specificity of 
operators. They might be strongly algorithm dependent, so we privileged flexi- 
bility and re-programmability features by interconnected resources: Memories, 
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Programmable Logic, NCP Retina, Fixed Communication links (wire). The most 
complex control unit requires 3 distinct memory spaces (ie, the C.I.S.C. HAR- 
VARD architecture). Besides, specific requirements for each memory space imply 
different bus widths and sizes. The FPGA chips are specialized and have priv- 
ileged links according to their allocation of a memory space (see Fig 2). Three 
buses are also broadcasted to all chips. Cohabitat ion of operative and routing 
part  in each F P GA avoids re-wiring. Unlike e.g. the B.O.R.G. system [3], and 
for speed reasons we have not used a specific FPGA for routing. 

All these fixed specifications relative to FPGA,memory,  fixed wiring, access 
protocols are derived into a platform skeleton, that defines the minimal descrip- 
tion of any new control unit. The platform can be swapped between two opera- 
tion modes: configuration and user mode. 

I n t e r - p r o c e s s o r  c o m m u n i c a t i o n s :  Processors communicate by sending 
messages through two resources : the shared memory with a dual port (extend- 
ing the local data memory, cf top-left of Fig 2) and the FPGA internal registers 
(providing an easy hardware solution for access conflict on shared data). 

3 C r e a t i o n  a n d  d e b u g g i n g  of  a v i s i o n  s y s t e m  

T h e  m e t h o d o l o g y :  The hardware and software co-description of the proces- 
sor (ie: program, instruction set and material architecture for a C.I.S.C. based 
system) is compiled by an extended chain (50 tools) of processes. The soft- 
ware description is based on our retina specific extended C language (RC). The 
hardware functionalities are described by logical schematics or by a behavioral 
language, even if it has proved possible to automatically deduce a data path 
directly from an algorithm (e.g.P.R.I.S.M. [4]). Our type of description enables 
us full control of control structures and signal paths. A specific loader (VxLoad) 
down-loads each resource with all hardware and software result objects. Fig 3 
summarizes the whole creation flow chart. 

D e b u g g i n g  faci l i t ies :  The debugging of an algorithm of vision and of its 
dedicated processor use both software and hardware facilities: debug procedures, 
specific debug instructions, added data paths. Like the "make" UNIX facility, 
only upgraded description needs to be compiled again. 
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Fig. 3. Design Flow for an EMFRI's vision system 

4 D e v e l o p e d  A p p l i c a t i o n s  

The following application examples emphasize on the diversity of implementable 
architectures on the EMFRI platform. Even if some operators or data  paths 
are added to the design to improve program efficiency, the basements of an 
architecture won't  be altered. So we have identified and studied three types of 
architecture which seem particularly interesting: 

- a C.I.S.C. like Control Unit 
- an Independent Thread Control Unit 
- an architecture for Compilation of R.I.S.C. smart  retina code 

Further research should address the fact that  some vision application involve 
distinct modes: e.g. target detection and target tracking need very different func- 
tionalities. The swapping between mode is performed by on-line reprogramming 
of our control platform. This gives birth to the concept of "active" architecture 
as a reminder of "active" vision for perception system. 

5 C o n c l u s i o n  

The main feature of the "EMFRI" platform is its great flexibility. It is aimed at 
providing a material support for a quick implementation of a control unit and 
additional data  path for the NCP retina. It could be considered as a step for 
abolishing the dependences to hardware (see a nice example in [5]). Hardware 
design and test become fully resolved by software. Retargett ing facilities from 
Xilinx to silicon designs is an other advantage of the platform. In this way, 
"EMFRI" provides a reconfigurable workspace to conceive and debug future 
control unit ASICs for upcoming versions of programmable artificial retinas. 

The authors are indebted to T.Bernard,  F.Devos and B.Zavidovique for their 
support and fruitful discussions. 
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Abstract. A new FPGA architecture (reconfigurable datapath architecture, 
rDPA) for word-oriented datapaths is presented, which has been developed to 
support a variety of Xputer architectures. In contrast to von Neumann machines 
an Xputer architecture strongly supports the concept of the "soft ALU" (recon- 
figurable ALU). Fine grained parallelism is achieved by using simple reconfig- 
urable processing elements which are called datapath units (DPUs). The word- 
oriented datapath simplifies the mapping of applications onto the architecture. 
Pipelining is supported by the architecture. It is extendable to almost arbitrarily 
large arrays and is in-system dynamically reconfigurable. The programming 
environment allows automatic mapping of the operators from high level descrip- 
tions. The corresponding scheduling techniques for I/O operations are explained. 
The rDPA can be used as a reconfigurable ALU for bus-oriented host based sys- 
tems as well as for rapid prototyping of high speed datapaths. 

1 Introduction 

Word-oriented datapaths are convenient for numerical computations with FPGAs. A 
recent trend in F / ~ A  technology moves toward the support of efficient implementa- 
tion of datapath circuits. The Xilinx XC4000 series [9] provides fast 2-bit addition at 
each logic cell by a special carry circuit. AT&T's ORCA [4] supports even 4-bit arith- 
metic operations. A 16 bit adder requires only four function blocks for example. Word- 
oriented datapaths are not directly supported by FPGAs currently available since these 
circuits are designed for both random logic control and datapath applications. Word- 
oriented datapaths in reconfigurable circuits have the additional advantage of operators 
being mapped more efficiently. 
The reconfigurable datapath architecture (rDPA) provides these word-oriented data- 
paths. It is suitable for evaluation of any arithmetic and logic expression. Statement 
blocks in inner loops of high performance applications can be evaluated in parallel. 
The rDPA array is in-system dynamically reconfigurable, which implies also partial 
reconfigurability at runtime. It is extendable to almost arbitrarily large arrays, 
Although the rDPA has been developed to support Xputer architectures it is useful for 
a wide variety of other applications for implementation of numerics by field-program- 
mable media. 
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First, this paper gives an overview on the rDPA. Section 3 explains a support chip 
which allows the efficient use of the rDPA in bus-oriented systems. Section 4 presents 
the programming environment for the automatic mapping of operands and conditions 
to the rDPA. The scheduling algorithm is described. Section 5 shows the utilisation of 
the rDPA within the Xputer hardware environment. Finally some benchmark results 
are shown and the paper is concluded. 

2 Reconfigurable Datapath Architecture 
The reconfigurable datapath architecture (rDPA) has been designed for evaluation of 
any arithmetic and logic expression from a high level description. It consists of a regu- 
lar array of identical processing elements called datapath units (DPUs). Each DPU has 
two input and two output registers. The dataflow direction is only from west and/or 
north to east and/or south. The operation of the DPUs is data-driven. This means that 
the operation will be evaluated when the required operands are available. The commu- 
nication between the neighbouring DPUs is synchronized by a handshake. This avoids 
the problems of clock skew and each DPU can have a different computation time for 
its operator. A problem occurs with the integration of multiple DPUs into an integrated 
circuit because of the high I/O requirements of the processing elements. To reduce the 
number of input and output pins, a serial link is used for data Iransfer between neigh- 
bouring DPUs on different chips as shown in figure 1. The DPUs belonging to the con- 
verters are able to perform their operations independent of the conversion. Using a 
serial link reduces the speed of the communication, but simulation results showed that 
by using pipelining, the latency is increased whereas the throughput of the pipeline is 
decreased only slightly. Internally the full datapath width is used. For the user this 
serial link is completely transparent. 
A global I/O bus has been integrated into the rDPA, permitting the DPUs to write from 
the output registers directly outside the array and to read directly from outside. This 
means, that input data to expressions mapped into the rDPA do not need to be routed 
through the DPUs. The communication between an external controller, or host, and the 
DPUs is synchronized by a handshake like the internal communications. 
An extensible set of operators for each DPU is provided by a library. The set includes 
the operators of the programming language C. Other operators such as the parallel pre- 

parallel to serial converter  serial to parallel conver ter  

f"%~...,s,:...,.%~..,.f.,:..,..'.:..~,....,. .......... :.~..,'~,..,.~.: D O l l  ii-:"~ ............... ~ .................. ~..:::~..:...:::..-:-%:: 
ii~i~: c h i p  1 : ', i - - ii ; : c h i p  2 ::i~ 

I/o bus " 1  ,, i ; : " 1  / 
,?"" = = ii, "'"%, 

2-- - ,  ° , i "r  .-.(: 

Fig. 1. The extendable rDPA architecture between chip boundaries 
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fix operator are provided [3]. For example a queue of 'scan-max' operators can be used 
for easy implementation of a hardware bubble sort [7]. The 'scan-max' computes the 
maximum from the input variable and the internal feedback variable and gives the 
maximum as result and stores the other value internally. In addition to expressions, the 
rDPA can also evaluate conditions. Each communication channel has an additional 
condition bit. If  this bit is true, the operation will be computed, otherwise not. In each 
case the condition bit is routed with the data using the same handshake. The 'false' 
path is evaluated very quick, because the condition bit has to be routed only. With this 
technique also nested if_then_else statements can be evaluated (see also 
figure 4). The t h e n  and the e l s e  path can be merged at the end with a merge opera- 
tor (m). This operator routes the value with the valid condition bit to its output. 
The operators of  the DPUs are configurable. A DPU is implemented using a fixed ALU 
and a microprogrammed control, as shown in figure 2. This means, that operators such 
as addition, subtraction, or logical operators can be evaluated directly, whereas multi- 
plication or division are implemented sequentially. New operators can be added by the 
use of  a microassembler. 
As mentioned before the array is extendable by using several chips of the same type. 
The DPUs have no address before configuration since all rDPA chips are identical. A 
DPU is addressed by its x- and y-location, like an element in a matrix. The x- and y- 
location are called addresses later for convenience. A configuration word consists of a 
configuration bit which distinguishes the configuration data from computational data. 
Furthermore it consists of the x- and the y-address, the address of the DPU's configura- 
tion memory, and the data for this memory. 
Each time a configuration word is transferred to a DPU, the DPU checks the x- and the 
y-address. Four possible cases can occur: 

• the y-address is larger than zero and the x-address is larger than zero 
• the y-address is larger than zero and the x-address is zero 
• the y-address is zero and the x-address is larger than zero 
• both, the y-address and the x-address are zero 
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Fig. 2. A datapath unit (a) and its implementation (b) 
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In the first case the DPU checks if the neighbouring DPUs are busy. If  the neighbour- 
ing DPU in y-direction is not busy, the y-address will be decreased by one and the 
resulting configuration word will be transferred to this DPU. If  the DPU in y-direction 
is busy and the DPU in x-direction is not busy the x-address will be decreased by one 
and the resulting configuration word will be transferred to this DPU. If  both neigh- 
bouring DPUs are busy, the DPU waits until one finishes. With this strategy an auto- 
matic load distribution for the configuration is implemented. Internally the 
configuration words are distributed over the whole array and several serial links are 
used to configure the rest of the chips. An optimal sequence of the configuration words 
can be determined since these can be interchanged arbitrarily. 
In the second case, the y-address will be decreased by one and the configuration word 
will be transferred to the next DPU in y-direction. In the third case when the y-address 
is zero and the x-address is larger than zero, the x-address will be decreased by one and 
the configuration word will be transferred in x-direction. In the last case when both 
addresses are zero, the target DPU is reached, and the address of the DPU's configura- 
tion memory shows the place where the data will be written. 
Because of the load distribution in the rDPA array, one serial link at the array boundary 
is sufficient to configure the complete array. The physical chip boundaries are com- 
pletely transparent to the user. The communication structure allows dynamic in-system 
reconfiguration of the rDPA array. This implies partial reconfigurability during runtime 
[6]. Partial reconfigurability is provided since all DPU can be accessed individually. 
The configurability during runtime is supported because each DPU forwards a config- 
uration word with higher priority than starting with the next operation. The load distri- 
bution takes care of that most of the configuration words avoid the part of the rDPA 
array which is in normal operation. Further the configuration technique allows to 
migrate designs from a smaller array to a larger array without modification. Even 
newer generation rDPA chips with more DPUs integrated do not need a recompilation 
of the configuration data. The configuration is data-driven, and therefore special timing 
does not have to be considered. 
With the proposed model for the DPA, the array can be expanded also across printed 
circuit board boundaries, e. g. with connectors and flexible cable. Therefore it is possi- 
ble to connect the outputs of the east (south) array boundary with the west (north) one, 
to build a toms. 

3 S u p p o r t  C h i p  f o r  B u s - O r i e n t e d  S y s t e m s  

With the rDPA, a programmable support chip for bus-oriented systems is provided. 
Together they form a data-driven reconfigurable ALU (rALU). The support chip con- 
sists of a control unit, a register file, and an address generation unit for addressing the 
DPUs (figure 3). 
The register file is useful for optimizing memory cycles, e. g. when one data word of a 
statement will be used later on in another statement. Then the data word does not have 
to be read again over the external bus. In addition, the register file makes it possible to 
use each DPU in the rDPA for operations by using the internal bus for routing. If dif- 
ferent expressions have a common subexpression, this subexpression has to be com- 
puted only once. If the rDPA does not provide the routing capacity for this reduction, 
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Fig. 3. The reconfigurable datapath architecture (rDPA) with the programmable support chip 

e. g. if three or more subexpressions are in common, the interim result can be routed 
through the register file. 
The address generation unit delivers the address for the DPU registers before each data 
is written into the rDPA over the bus. Usually the address is increased by one but it can 
also be loaded directly from the rDPA control unit. 
The rDPA control unit holds a program to control the different parts of the dam-driven 
rALU. The instruction set consists of instructions for loading data into the rDPA array 
to a special DPU from the external units, for receiving data from a specific DPU, or 
branches on a special control signal from the host. The rDPA control unit supports con- 
text switches between three control programs which allows the use of  three independ- 
ent virtual rALU subnets. The control program is loaded during configuration time. 
The reconfigurable data-driven ALU allows also pipelined operations. 
A status can be reported to the host to inform about overflows, or to force the host to 
deliver data dependent addresses. The input FIFO is currently only one word deep for 
each direction. The datapath architecture is designed for an asynchronous bus protocol, 
but it can also be used on a synchronous bus with minor modifications of  the external 
circuitry. 

4 P r o g r a m m i n g  E n v i r o n m e n t  

Statements which can be mapped to the rDPA array are arithmetic and logic expres- 
sions, and conditions. The input language for programming the rALU including the 
rDPA array is the rALU programming language, called ALE-X (arithmetic & logic 
expressions for Xputers). The syntax of the statements follows the C programming 
language syntax. A part of an ALE-X example is shown in figure 4. 
A data dependency analysis is performed to recognize possible parallelization and to 
find dependencies between the statements. The statements are combined to larger 
expressions and a data structure which is a kind of an abstract program tree is built 
(figure 5). Then the data structure is mapped onto the rDPA array structure. The map- 
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a = b + c * d; (i) 

if (e < i0) (2) 

f = g + h; (3) 

else (4) 

f = g - h; (5) 

i = c + f; (6) 

rt.-f 

Fig. 4. Part of an ALE-X program example mapped onto the rDPA array 

ping algorithm starts at the leaf cell nodes of the data structure for each expression. 
These nodes are assigned to DPUs in a first line of  the rDPA array. A second line starts 
if there is a node of higher degree in the data structure. The degree of a node increases 
if both sons of the node are of the same degree. After that the mapped structure is 
shrunk by removing the nodes which are used only for routing. There are several pos- 
sibilities for the mapping of each expression. Finally the mapped expression with the 
smallest size is chosen. Figure 5 shows an example of the mapping. Now the mapped 
expressions are allocated in the rDPA array, starting with the largest expression. If the 
expressions do not fit onto the array, they are split up using the global I/O bus for rout- 
ing. If  the number of required DPUs is larger than the number of DPUs provided by 
the array, the array has to be reconfigured during operation. Although this allocation 
approach gives good results, future work will be done in the optimization of this algo- 
rithm to incorporate the scheduling process for advance timing forecast. 
Due to the global I/O bus of the rDPA array, the loading of the data and the storing are 
restricted to one operation per time. An optimal sequence of these I/O operations has to 
be determined. For the example in figure 4, starting with loading the variables c and d 
is better than starting with h. The operators do not have to be scheduled, since they are 
available all the time. The operands have to be scheduled with the additional restric- 
tion that operands used at multiple locations have to be loaded several times at suc- 
ceeding time steps. For example, when the variable c is scheduled, the c of the 
multiplication and the c of the last addition have to be loaded in direct sequence. To 
find the time critical operations, first an 'as soon as possible' schedule (ASAP) and an 
'as late as possible' schedule (ALAP) are performed. No other resource constraints 

d e 

b + c (d + e) 

a' ~ y  

c 

Fig. 5. Example of the mapping process: a) data structure with the degree of the node, 
b) mapped structure, c) shrunk mapped structure 
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Fig. 6. ASAP and ALAP schedules for the program example 

(like only a single I/O operation at a time) are considered at this moment. For simplic- 
ity in our example, all operations, including the route operations (rt) are assumed to 
need a single time step for finishing in the worst case. The multiplication is assumed to 
need six time steps. The rALU compiler considers the real time delays in the worst 
case. Due to the serf timing of the data-driven computation, no fixed time step intervals 
are necessary. Figure 6 shows the ASAP and ALAP schedules for the program exam- 
ple. 
Comparing the ASAP with the ALAP schedule, the time critical path is found. It is the 
multiplication of c and d with the succeeding addition of b. The range of this opera- 
tion is zero. A priority function is developed from these schedules which gives the 
range of the I/O operations of the operands. This is the same as in a list based schedul- 
ing [2]. The highest priority i. e. the lowest range have the variables c and d. Since c 
has to be loaded twice, d is loaded first. The complete priority function is listed in 
figure 7b. 
When the variable c is scheduled twice in direct sequence the ASAP and the ALAP 
schedule may change because of the early scheduling of c in the addition operation. 
Then the schedule of ct, c, and c is kept fixed and a new priority function on the 
remaining variables is computed to find the next time critical operation. For simplicity 
this is not done in the illustration. Figure 7a shows the final schedule of the program 
example. 
In time step 10 no I/O operation is performed. If the statement block of the example is 
evaluated several times, the global I/O bus can be fully used by pipelining the state- 
ment block. The pipeline is loaded up to step 9. Then the variable d from the next 
block is loaded before the output variables et, i and f are written back. The statement 
block is computed several times (step 10 to 21, figure 7c) until the host signals the 
rALU control to end the pipeline. Step 22 to the end is performed, and the next opera- 
tors can be configured onto the rDPA array. 
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Fig. 7. The final schedule (a), the priority function (b) and the pipelined final schedule 
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The rDPA configuration file is computed from the mapping information of the process- 
ing elements and a library with the microprogram code of the operators. The configu- 
ration file for the rALU control unit is extracted from the final schedule of the I/0 
operators. 
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5 Utilisation with the Xputer Hardware Environment 

Although the proposed rALU can be used for any bus-oriented host based system, it is 
originally build for the Xputer prototype Map-oriented Machine 3 (MoM-3). The 
Xputer provides a hardware and a software environment for a rALU. The rALU has to 
compute a user defined compound operator only. A compiler for the Xputer supports 
the high level language C as input [8]. The rALU programming environment has to 
compile arithmetic and logic expressions as well as conditions onto the rALU. 
Many applications require the same data manipulations to be performed on a large 
amount of data, e. g. statement blocks in nested loops. Xputers are especially designed 
to reduce the von-Neumann bottleneck of repetitive decoding and interpreting address 
and data computations. In contrast to von Neumann machines an Xputer architecture 
strongly supports the concept of the "soft ALU" (rALU). The rALU allows for each 
application a quick problem-oriented reconfiguration. High performance improve- 
ments have been achieved for the class of regular, scientific computations [5], [1]. 
An Xputer consists of three major parts: the data sequencer, the data memory and the 
rALU including multiple scan windows and operator subnets. Scan windows are a 
kind of window to the data memory. They contain all the data words, which are 
accessed or modified within the body of a loop. The data manipulations are done by 
the rALU subnets, which provide parallel access to the scan windows. The scan win- 
dows are updated by generic address generators, which are the most essential part of 
the data sequencer. Each generic address generator can produce address sequences 
which correspond to nested loops under hardware control. The term data sequencing 
derives from the fact that the sequence of data triggers the operations in the rALU, 
instead of a von-Neumann instruction sequence. Generally, for each nesting level of 
nested loops a separate rALU subnet is required to perform the computations associ- 

II Control Memory I L 
I i Ilnstr. Sequencerl "- 
}1 Generic I 

1~ I Address I " "  I Generator I 

la I Generic Address Generator 

IL_|==II ScanWindow II 
t ~  rALU Subnet [ 

I Scan Wind°w I 
rALU Subnet 

l ScanWindow II 
rALU Subnet 

US 

I Bus interface I 

i ous 
Main Memory m Host 

Fig. 8. The Xputer prototype Map-oriented Machine 3 (MoM-3) 
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ated with that nesting level. The rALU subnets perform all computations on the data in 
the scan windows by applying a user-configured complex operator to that data. 
Pipelining across loop boundaries is supported. The subnets need not to be of the same 
type. Subnets can be configured for arithmetic or bit level operations. 
The Xputer prototype MoM-3 has direct access to the host's main memory. The rALU 
subnets receive their data directly from a local memory or via the MoMbus from the 
main memory. The MoMbus has an asynchronous bus protocol. The datapath architec- 
ture is designed for the asynchronous bus protocol of the MoMbus, but it can also be 
used by a synchronous bus with minor modifications. Figure 8 shows our prototype 
MoM-3. 
A complete rALU programming environment is developed for the rALU when using it 
with the Xputer prototype. The input language for programming the rALU is the 
ALE-X programming language. The syntax of the statements follows the C program- 
ming language syntax (see also figure 4). In addition, the language provides the size of 
the scan windows used and the next handle position which is the lower left comer of 
the boundary of the scan window. Providing the handle position gives the necessary 
infomaation for pipelining the complete statement block in the rALU. 
The ALE-X programming language file is parsed and a data structure like an abstract 
program tree is computed. Common subexpressions are taken into consideration. The 

(ALE-X Programming Language ) 

new 
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Fig. 9. The rALU programming environment 
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operators of each statement are associated to a DPU in the rALU array as described in 
section 4. Memory cycles can be optimized using the register file when the scan pat- 
tern of the GAGs works with overlapping scan windows. 
The rDPA configuration file is computed from the mapping information of the DPUs 
and a library containing the code of the operators. The configuration file for the rALU 
control unit and the configuration file for the GAGs is extracted from the final schedule 
of the I/O operators. The programming environment of the rALU is shown in figure 9. 

6 Results  

The prototype implementation of the rDPA array works with 32 bit fixed-point and 
integer input words. Currently the host computer's memory is very slow. The clock 
frequency of the system is 25 MHz. In a single chip of the rDPA array fits at least a 
3 × 3 matrix of DPUs. In many applications the coefficients in e. g. filter implementa- 
tions are set up in such a way that shift operations are sufficient and multiplications are 
not necessary. If  high throughput is needed the DPU processing elements can be linked 
together to implement a pipelined multiplier for example. Benchmark results are given 
in table 1. The performance figures are a worst case estimation of our prototype. They 
give the duration of the operation time per data word. The speed of the examples 2 to 5 
does not depend on the order of  the filter as long as the necessary hardware (number of 
DPUs) is provided. The same applies for exam )le 6. 

# Algorithms Opera- number of 
dons active DPUs 

1024 Fast Fou- 
* + , -  10 

1 rier Transform ' 

FIR filter, n th 
2 order *' + 2(n+ 1) 

FIR filter, n th 
3 order shift, + 2(n+ 1) 

n x m two dim. 
* + 2(n+l)(m+2)-I 4 FIR filter ' 

n x m two dim. 
5 FIR filter shift, + 2(n+l)(m+2)-I 

6 B ubblesort, scan- n- 1 
length n max 

number of 
necessary chips 

2 

-n+ 1" 
3 

In3----~l(m+ 2)]  

Time 
Perfor- 

Steps per 
Operation mance 

16" 10240 20 ms 

1800 ns / 
15 

data word 

500 ns / 
4 

data word 

1800 ns / 
15 

data word 

500 ns / 
4 

data word 

240 ns / 
2 

data word 

Table 1. Benchmark results 

a. ['x] = the smallest integer, which is greater or equal to x 

7 Conc lus ions  

An FPGA architecture (reconfigurable datapath architecture, rDPA) for word-oriented 
datapaths has been presented. Pipelining is supported by the architecture. The word- 
orientation of the datapath and the increase of the fine granularity of the basic opera- 
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tions extremely simplifies the automatic mapping onto the architecture. The extendable 
rDPA provides parallel and pipelined evaluation of the compound operators. The rDPA 
architecture can be used as reconfigurable ALU for bus-oriented host based systems as 
well as for rapid prototyping of high speed datapaths. It suits very well for the Xputer 
prototype MoM-3. The architecture is in-system dynamically reconfigurable, which 
implies also partial reconfigurability at runtime. 
A prototype chip with standard cells has been completely specified with the hardware 
description language Verilog and will be submitted for fabrication soon. It has 32 bit 
datapaths and provides arithmetic resources for integer and fixed-point numbers. The 
programming environment is specified and is currently being implemented on Sun 
SPARCstations. 
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Abstract. Custom computing platforms are emerging as a class of computing 
engine that not only can provide near application-specific computational 
performance, but also can be configured to accommodate a wide variety of 
tasks. Due to vast computational needs, image processing computing 
platforms are traditionally constructed either by using costly application- 
specific hardware to support real-time image processing, or by sacrificing real- 
time performance and using a general-purpose engine. The SPt~SH-2 custom 
computing platform is a general-purpose platform not designed specifically for 
image processing, yet it can cost-effectively deliver real-time performance on a 
wide variety of image applications. This paper describes an image processing 
system based on the SPLASH-2 custom computing engine, along with 
performance results from a variety of image processing tasks extracted from a 
working laboratory system. The application design process used for these 
image processing tasks is also examined. 

1. Introduction 

Many of the tasks associated with image processing can be characterized as being 
computationally intensive. One reason this is true is because of the vast amount of 
data that requires processing -- several million pixels need to be processed per 
second for images with respectable resolution. Another reason is that for many 
tasks, several operations need to be performed on each picture element within the 
image, and a typical image may be composed of more than a quarter of a million 
picture elements. To keep up with these capacious data rates and demanding 
computations in real-time, the processing engine must provide specialized data 
paths, usually application-specific operators, creative data management, and careful 
sequencing and pipelining. 

A typical design process necessitates extensive behavioral testing of a new concept 
before proceeding with a hardware implementation. For any task of reasonable 
complexity, simulation of a VHDL model with a representative data set on a 
respectable workstation is prohibited due the enormous simulation processing time. 
Days, or even weeks, of processing time are sometimes needed to simulate the 
processing of a single image. In many instances several seconds, or even minutes of 
image data, which may consist of hundreds or thousands of images are needed to 
make a fair subjective analysis, or to exercise the design sufficiently. Because of 
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this, the designer is often forced to into a trade-off on how much testing can be 
afforded verses an acceptable risk of allowing an iteration in silicon. 

An alternative approach discussed in this paper is the automated transformation of 
the structural representation (or the transformation of a behavioral model) into a 
real-time implementation. Using this approach, the prototype image processing 
platform would not only serve as a means to evaluate the performance of an 
experimental algorithm/architecture, but also may serve as a working component in 
the development and testing of a much larger system. The platform used to provide 
this capability is an experimental general-purpose custom computing platform called 
SPLASH-2[1]. SPLASH is a reconfigurable attached processor featuring programmable 
processing elements and programmable communication paths as the mechanism for 
performing computations. The SPLASH-2 system utilizes arrays of RAM-based 
FPGAs, crossbar networks, and distributed memory as a means of accomplishing the 
above goals. Even though SPLASH was not designed specifically for image processing, 
this platform possesses architectural properties that make it well suited for the 
computation and data transfer rates that are characteristic of this class of problems. 
Furthermore, the price/performance of this system makes it a highly competitive 
alternative to conventional real-time image processing systems. 

There are several aspects of image processing which distinguish it as being 
computationally challenging; these are identified in Section 2. Sections 3 and 4 
provide a synopsis of the pertinent architectural features of the SPLASH processor, 
along with a description of the laboratory image processing system. Section 5 
provides a narration of the application design process. Descriptions of some of the 
applications implemented on the laboratory system can be found in Section 6. 
Performance results are given in Section 7. 

2. Architectural Aspects of Image Processing 

Conventional general-purpose machines fail to manage the distinctive I/O 
requirements of most image processing tasks, nor are they equipped to take 
advantage of the opportunities for parallel computation that are present in many 
vision-related tasks. Parallel processing systems such as mesh computers or 
pipelined processors have been successfully applied to some image processing 
applications. Mesh architectures often provide very large speedup after an image is 
loaded, but overall performance often suffers severely from I/O limitations. 
Pipelined machines can accept image data in real time from a camera or other 
source, but historically they have been difficult to reconfigure for different processing 
tasks. 

Image processing is characterized by being computationally intensive, and often by 
the repeated application of a single operator. A typical edge detector, for example, 
may be implemented as a 3x3 (or 5x5, etc.) operator which is applied at every picture 
element (pixel) in an image, producing a new image as the result. Other examples of 
such neighborhood operations are template matching and morphological processing. 
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Other forms of image processing do not produce new images, but instead compute 
statistical information from the image data. Examples of this include histogram 
generation and the computation of moments. Furthermore, many applications 
require that sequences of such images be processed quickly. Image compression and 
motion compensation applications typically operate on sequences of two or more 
images. 

Image data are typically available in raster order -- pixels are presented bit-, byte-, 
or word-serially, left-to-fight for each image row, beginning with the top row. If a 
typical image frame is 512 rows by 512 colunms of 8-bit pixels, then the total data in 
a single frame is 256 kilo-pixels, or 2 megabits of data. The discussions in this 
paper will assume that data represent monochrome light intensity values. 

3. The SPLASH-2 C u s t o m  C o m p u t i n g  M a c h i n e  

SPLASH-2 is a second generation custom computing attached processor designed by 
the Supercomputing Research Center in Bowie, Maryland. SPLASH is intended to 
accelerate applications by reconfiguring the hardware functionality and processing 
element interconnections to suit the specific needs of individual applications. 

SPLASH is classified as an attached processor since it is intended to append a host 
machine through an expansion bus. It differs from a coprocessor in that it does not 
reside directly on the host processor bus. SPLASH-2 has been designed with an SBus 
interface, and currently serves a Sun SPARC-2 host. A SPLASH attached processor is 
comprised of an interface board (for formatting and buffering input and output data), 
and from one to fifteen processor boards. Each processor board contains 17 
processing elements and a crossbar network. A Xilinx XC4010 and a fast 256Kx16 
static RAM together make one processing element. The crossbar network contains 
sixteen 36-bit bidirectional ports for augmenting communications between processor 
elements. The crossbar switches present on SPLASH can be dynamically adjusted to 
support complex interconnection topologies. 

The SPLASH-2 system offers an attractive alternative to traditional architectures. With 
this computing platform, not only can the specific operations be custom designed (for 
function and size), but the data paths can also be customized for individual 
applications. Furthermore, these platforms can be completely reconfigured in just a 
few seconds. The reconfigurable nature of SPLASH provides the performance of 
application-specific hardware, while preserving the general-purpose nature of being 
able to accommodate a wide variety of tasks. A more complete description of SPLASH 
hardware and software development environment can be found in [1,2]. 
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Fig. 1: Components in the V]PLASH laboratory system. 

4. A Real-Time Image Processing Platform 

Performing the computations of a vision related task within the time permitted of a 
live video data stream is a challenging task, mainly because of: 

• the quantity of data involved -- 256 Kbytes for a single 512x512 
image frame, 
• the input / output data requirements (30 frames per second for 
RS-170), and 
• the high computational requirements (per pixel) for many image 
applications. 

The adaptive nature of the SPLASH architecture makes it well suited for the 
computational demands of image processing tasks, even though it was not 
specifically designed for such tasks. Furthermore, SPLASH features a flexible interface 
design which facilitates customized I/O for situations which cannot be 
accommodated by the host SPARC processor. There is sufficient memory distributed 
on each processor board to buffer several images for the processing of two or more 
frames simultaniously (if needed). A real-time image processing custom computing 
system has been constructed at Virginia Tech based on SPLASH-2. The VTSPLASH 
laboratory system is depicted in Figure 1. 

A monochrome video camera or a VCR is used to create an RS-170 image stream. 
The signal produced from the camera is digitized with a custom built frame grabber 
card. This card was designed not only to capture images, but also to perform any 
needed sequencing or simple pixel operations before the data are presented to SPLASH. 
The frame grabber card was built with a parallel interface which can be connected 
directly to the input data stream of the SPLASH processor. The SPLASH system used in 
this work consists of a modified interface board and two processor array boards. 
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The output of SPLASH, which may be a real-time video data stream, overlay 
information, or some other form of information, is first presented to another custom 
board for converting the data (if necessary) to an appropriate format. Once 
formatted, the data are then presented to a second frame grabber card (a commercial 
card: Data Translation DT2867LC). A new RS-170 signal is formed and presented 
to a video monitor. A Sun SPARC 2 serves as the SPLASH host, and is responsible for 
configuring the SPLASH arrays and interjecting run-time commands within the video 
stream. 

5. A p p l i c a t i o n  D e v e l o p m e n t  on  SPLASH-2 

While the programming environment for SPLASH-2 is one of the most advanced and 
automated for its class, there are a number of difficulties that exist that must be 
addressed before this type of machine can become accepted into mainstream 
computing. In this section, a brief summary of the application development process 
is given. 

Figure 2 illustrates the basic design flow for the development of a typical SPLASH 
application. This figure is somewhat simplified, and may not depict all of the 

possible iteration paths in the design process. 
The first step in the process is the definition of 
the problem. As in all hardware and software 
system design, a sound problem definition will 
facilitate the design process. Step two is the 
behavioral modeling of the problem. Typically, 
a V1-SPLASH programmer models the problem using 
C or with a behavioral VI-IDL model. Not only 
is the model verified to comply with the problem 
definition, but sample images are run through 
the model (when possible) for comparison with 
the results of the synthesized implementation. 

The next step in the process, and often a difficult 
step, is partitioning the model into a form that is 

suitable for the final implementation on SPLASH. 
The model is first mapped onto processor boards, 
and then partitioned more finely into individual 
processing elements. The three main factors that 

drive a partition are time, area and communication complexity. The time and area 
factors are familiar problems that are discussed in the high-level synthesis and 
silicon compiler literature[3]. Time relates to how much computation is desired per 
clock cycle. Area relates to how much of the reconfigurable resources should be 
allocated to a given computation, and to the total available reconfigurable resources 
within each processor board and within each of the I7 processing elements on each 
board. Even though SPLASH contains ample hardware support to aid signal 

C Integration ) 

Fig. 2: The application design 
process. 
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propagation between processing elements, not all communications are equal in cost 
and in bandwidth (communication complexity). There are finite limitations on the 
available communication resources that the designer must comply with in SPt~SH-2. 
Some of these are: 1 

• a maximum of 36 bits of input data and 36 bits of output data per 
processing element (72 bits if the crossbar network is used to 
augment these paths). 
• a 16 bit data path between a processing element and its 2 
megabyte RAM 
• several single-bit signals for global communications and 
broadcasts. 
• a 36 bit data path between processing boards, along with several 
1-bit global signals. 

While these numbers are quite generous, they represent realistic design trade-offs 
versus cost, and any upper bounds on these data paths will eventually disgruntle 
some designers. Not all applications easily map to these communications 
limitations, and tough design trade-offs must be considered. As it stands now, there 
are few quantitative up-front measures available to gauge partitioned alternatives. A 
designer must often wait until after the synthesis step before it is known whether a 
given problem partition is feasible. 

After the design is partitioned, a detailed structural design is produced and verified. 
Many different alternatives are available to the designer for "programming" an 
application, including FPGA design tools like XBLOX[4]; however, the best 
supported design environment for SPLASH is with the Synopsys VHDL simulation and 
synthesis tools. There is only so much one can simulate within a reasonable amount 
of time. The simulations for many of the image processing tasks discussed in this 
paper consumed several days of CPU time per run on a SPARC-10 -- in many cases, 
for just a small fraction of an image. Therefore, the stimulation input for a 
simulation run must be considered judiciously. 

The application simulations are based on VHDL models developed prior to 
placement and routing; hence, are barren of signal propagation annotation. Actual 
propagation delays in the Xilinx FPGAs are highly sensitive to the outcome of the 
placement and routing process, and can have a disturbing effect on the application 
behavior. To counter these problems, and to help cope with the limited functional 
coverage that can be achieved by the simulation tools, a powerful debugging 
environment has been built for SPLASH-2. T h e / 2  interactive debugger [5] provides 
the power of conventional high-level language debuggers by allowing such features 
as monitoring internal state variables and tracing. Debugging a hardware/software 
design adds new conceptual difficulties not found in traditional debugging 
environments. Once the image operations are performing satisfactorily, they must be 

1These numbers are rather simplistic. A better understanding of the SPLASH architecture is 
required to get a full appreciation of the available communication resources. 
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integrated within the body of application. A rich C library has been developed by 
SRC[5] which facilitates communication between a host program and the attached 
processor. 

As stated before, SPLASH is representative of the state-of-the-art in custom computing 
processors -- both in hardware capabilities and software support -- yet it requires a 
substantial time investment to develop an application. The authors observed that 
graduate students well versed in VHDL and hardware design required from one to 
four months to develop their first SPLASH application. This time decreased by half for 
the development of the second. To make this class of machinery more widely 
accepted and cost-effective, methods must be developed to reduce application 
development time. There are many promising endeavors that focus on this issue 
[6,7,8]; the main emphasis of these are to automate to some degree the portions of 
the shaded region of Figure 2. 

6. Image Processing Tasks 

Common image processing tasks can be classified into the following categories: 
neighborhood operations (both linear and nonlinear), statistical computations, and 
transformations. All of these types of operations have been implemented (with 
varying degrees of difficulty) on the ~SPt~SH laboratory system, and are briefly 
discussed in this section to illustrate the types of computations each require. 

6.1. Linear and Nonlinear Neighborhood Operations 

Two-dimensional filtering techniques are very common in image processing. The 
most common methods process small neighborhoods in an input image to generate a 
new output image. The'resulting image is often a smoothed or enhanced version of 
the original, or may comprise a 2D array of features that have been detected. 
Neighborhood-based filtering is characterized by the repeated application of identical 
operations, and often serves as a preprocessing step that is followed by higher-level 
image analysis. 

Neighborhood operations typically use a 2D template, usually rectangular, which is 
applied at every pixel in the input image. (The template is often called a mask 
operator, or filter.) In the linear case, applying a template means centering the 
template at a given pixel of the input image, multiplying each template pixel by the 
associated underlying image pixel, and summing the resulting products. The sum is 
used as the pixel value (for this template position) in the output image. 

In addition to the linear filtering described above, template operations can be 
nonlinear. For example, a median filter can be implemented by using a template. 
For every position of the template, the median value is chosen from the image pixels 
covered by the template, and is used as the new pixel value for the output image. In 
this case, the template simply serves as a window, and has no cell values. 
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Another form of nonlinear image processing is based on mathematical 
morphology[9]. This is an algebra which uses multiplication, addition (subtraction), 
and maximum (minimum) operations to produce output pixels. The filtering 
operations are known as erosion and dilation, and can be used to perform such tasks 
as low-pass or high-pass filtering, feature detection, etc. One advantage of this 
nonlinear approach is reduced blurring, as compared with linear filtering. 

6.2. Statistical Computations 

Unlike the previous types of processing, statistical analysis typically does not result 
in a new output image. Instead, the goal is to extract descriptive statistics of the 
input image. For example, the mean and standard deviation of pixel values in the 
image are often of interest. These and similar statistics can be computed using 
simple multiply-accumulate processing, where one such operation is required for 
each input pixel. 

Real-time histogram generation is another useful operation which is often used as an 
initial step for other applications, such as region detection and region labeling. In 
generating a histogram, the processor must maintain and update a one-dimensional 
array which records the number of occurrences of particular pixel values. In 
addition, histograms are often analyzed further and used to adjust parameters for 
image enhancement. 

6.3. 1-D and 2-D Transformations 

The 2-D discrete Fourier transform (DFT) is an extremely useful operation which is 
often avoided because of its large computational requirements. Although it is a 
linear operation, it differs from the neighborhood operations described above since 
every transformed output pixel depends on every pixel of the input image. The 
problem can be simplified somewhat, since the 2-D Fourier transform can be 
decomposed into multiple 1-D Fast Fourier transforms. For example, a 512x512 
DFT can be implemented as 512 one-dimensional FFT computations (one for each 
row) followed by 512 additional one-dimensional FFTs (one per column). This 
application was implemented using floating point arithmetic. 

The Hough transform, another 2-D transformation, can be appended after an edge 
detection task for the purpose of determining if a set of points lie on a curve of 
specified shape, namely a straight line. The coordinates of high-intensity points in 
the transform domain correspond to the position and orientation of best-fit lines in 
the original image. A more complete discussion on the Hough transform can be 
found in [12]. 

6.4. Other Image Transformations 

After an image has been appropriately low-pass filtered, the image can be 
subsampled without fear of violating the Nyquist criterion. If an image is recursively 
filtered and subsampled, the resulting set of images can be considered a single unit 
and is called a pyramid. This data structure shows promise in applications which 
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require complex image analysis, because analysis which begins at the lower- 
resolution portion of the pyramid can be used to guide processing at higher- 
resolution levels. For some tasks (such as surveillance and road following) this 
approach can greatly reduce the overall amount of processing required. 

In addition to low-pass pyramids, it is possible to generate band-pass pyramids, in 
which each level of the pyramid contains information from a single frequency band. 
A popular technique for generating these pyramids (known as Gaussian and 
Laplacian pyramids) is described in [10]. Reconfigurable data paths through the 
crossbar networks are used as the mechanism for dynamically restructuring and 
reconnecting the pyramid processing elements. 

7. Performance 

A diversity of image processing tasks have been completed on the VTSPLASH laboratory 
system. This section provides a quantitative summary of a representative number of 
these. Qualitative evaluation of the real-time visual results are absent; the interested 
reader can refer to contemporary texts on the subject[11][12]. Furthermore, example 
(stationary) pictures of the processed results are not included since they do not 
contribute to the major theme of this paper. 

Application Description Class 

Fourier 2-D transformation to / from spatial Repeated 1-D transformation. 
Transform domain. Implemented using floating 

point arithmetic. 

Convolution 8×8 window operation for linear filtedng. Neighborhood operator. 

Pyramid Repeated application of a Gaussian filter, 2-D transform, filtering, 
Transform Laplacian filter, and decimation, decimation, and reconstruction. 

Morphological Non-linear 3x3 window operator. Neighborhood operator. 
Operators 

Median Filter Non-linear 3x3 window operator. Neighborhood operator. 

H o u g h  Transform'ation of x-y coordinates into 2-D statistical operation and 
Transform angle and displacement. Useful for line transformation. 

finding. 

Region Uses point statistics to determine regions, Mixture of window operations, 
Detection and and then assigns a unique number to the point statistics, and pixel 
Label region, manipulation. 

Histogram Determines image intensity distribution. Statistical point operation. 

Table 1: A representative list of image processing tasks. 

Table 1 sununadzes a number of tasks that were discussed in the previous section, 
which have been implemented in the laboratory. Table 2 provides an estimate of the 
computational performance of each of these tasks. In Table 2, the application name 
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is listed in the first column. The second column provides a rough estimate of the 
number of general-purpose operations (operations that are likely to be found in the 
repertory of most common RISC processors) performed on average each pixel clock 
cycle. In the third column, an estimate of the number of (equivalent) storage 
references are given. The purpose of these two columns is to provide a basis for 
quantifying the computational load of each of the tasks. These numbers are used to 
produce a very rough estimate of the "MIPS" rating given in the fourth column of 
Table 2. 

Application Arithmetic~logical 
operations per 

second 

Memory operations 
per second 

Effective number of 
operations per 

second 

Median Filter 3.9x108 2x107 4.1×108 
Hough 2.6x108 8x107 3.4x108 
Transform 

1.8x108 4x107 2.2x108 

2.2x108 
(floating point) 

2.0x108 
(fixed point) 

3.8x10 8 

1.2x 108 
4.8x108 

Region 
Detection and 
Labeling 
Fast Fourier 
Transform 
(forward & 
reverse) 
Pyramid 
Generation 

2.0x 10 8 

6x 10 7 

2x 10 7 
2x 107 

Histogram 
Morphological 
Operators 

6.6x10 8 

4.4x108 

1.4x108 
5.0×108 

8x8 Linear 6.4x108 lx107 6.5x108 
Convolution 

Table 2: Estimated performance of image processing tasks. 

In many of the applications developed, a pipeline architecture was used. The 
pipeline accepts digitized image data in raster order, often directly from a camera, 
and produces output data at the same rate, possibly with some latency. 

8. S u m m a r y  

With the addition of input/output hardware, the SPLASH platform has proven to be well 
suited for many meaningful image processing tasks. Reconfigurable computing 
platforms, such as SPLASH, can readily adapt to meet the communication and 
computational requirements of a variety of applications. Real-time processing of 
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image data is an effective approach for demonstrating the potential processing power 
of adaptive computing platforms. 
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A Superscalar and Reconfigurable Processor 
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Abs t rac t .  Spyder is a processor architecture with three concurrent, re- 
configurable execution units implemented by FPGAs. This paper pre- 
sents the hardware evolution of the Spyder processor and its evolving 
software development environment. 

1 I n t r o d u c t i o n  

The performance (P) of a processor is usually measured as a function of the 
time (T) necessary for the execution of a given benchmark. This execution time 
is itself a function of three parameters: the number of instructions executed (Ni), 
the average number of cycles per instruction (Ci) and the clock frequency (F)  [1]: 
Performance = f (T -1) where T = Ni-  Ci- F -1. 

Assuming that  the clock period is mostly a technological parameter (even 
if it also depends on the processor organization), the designer is left with two 
parameters to optimize, so as to realize the highest-performance processor in the 
world. Unfortunately, however, these two parameters are in direct conflict: the 
optimization of one implies the deterioration of the other, and vice-versa. Pro- 
cessor designers are thus divided into two opposing schools: the CISC (Complex 
Instruction Set Computer) school emphasizes the optimization of the number of 
instructions, while the RISC (Reduced Instruction Set Computer) school, which 
at the moment is dominant, emphasizes the optimization of the number of cycles 
per instruction [1]. 

In a conventional scalar processor, at least three cycles (fetch, decode and 
execute) are necessary to execute an instruction: special techniques are thus 
needed to improve this value. At the moment,  the two most common techniques 
are pipelining (decomposition of the execution in independent phases, so as to be 
able to execute more than one instruction at the same time, each in a different 
phase) and superscalar design (entirely parallel execution of multiple instruc- 
tions, thanks to multiple processing units). 

However, some drawbacks are associated with these two techniques: 

- Pipelining introduces hazards of many types, which are difficult to handle, 
with repercussions notably on the compiler and on the handling of excep- 
tions. Moreover, if the number of stalls in the pipeline is very high, the 
performance gain is minor, given the added complexity of hardware and 
software. 

* FAX: ÷41 21 693 3705, E-maih Christian.Iseli@di.epfl.ch 
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- The multiple execution units of a superscalar processor, which are sure to 
cause an increase of the surface of the silicon and a deterioration of the clock 
frequency, are rarely used in full: it is very difficult for the fetch unit to find 
enough independent instructions capable of being executed in parallel. More- 
over, a large bandwidth is necessary to deliver the data  to all the units which 
request them. And, because of the fixed size of the data  in a conventional 
processor, a sizable portion of this bandwidth can remain unused. For these 
reasons, superscalar architectures very often imply an appreciable waste of 
silicon. 

Spyder (Reconfigurable Processor DEvelopment SYstem) is an alternative to 
these two techniques, proposing an improvement of superscalar design, called 
SURE (SUperscalar and REconfigurable): 

- the instruction is very large (128 bits), allowing, as with microprogramming, 
the direct control of the different execution units; 

- only three execution units are available in parallel, but, thanks to the use 
of F P GA circuits in their implementation, they are entirely configurable by 
the user, according to the application. The waste in the number of units 
and in the bandwidth (the configuration of the units includes not only the 
functionality but  also the size of the handled data) is thus avoided; 

- to increase the bandwidth, the large register bank shared by the three exe- 
cution units is multiple-access (four accesses: the three units plus the data  
memory). 

Right now, the configuration of the execution units is done "by hand" by 
the user, but the final goal is to endow Spyder with an "intelligent" compiler, 
capable of producing, in addition to the executable code, the configurations best 
suited for a given problem. 

The architecture of Spyder, together with a first implementation, has been 
described in [2]: here we plan to show mostly the evolution of its development 
software, as well as a second, extended, implementation. 

2 P r o c e s s o r  A r c h i t e c t u r e  

The overall architecture of Spyder, shown in figure 1, derives mainly from the 
architecture of VLIW processors [3] with some features of RISC processors. It is 
register-based and uses only load and store operations to communicate with the 
data  memory. The data  and program memory are separate (Harvard-type). The 
data  memory is dual-port, 16-bit wide and the program memory is 128-bit wide. 
The program consists of horizontal microcode that  drives all the components of 
the processor in parallel. There are three execution units that  can work in parallel 
and two register banks. Each execution unit has one separate bidirectional data  
bus connected to each register bank and can perform one read and one write 
operation during each clock cycle. Both register banks are connected to the data  
memory and one data transfer f rom/to  each register bank can occur during each 
clock cycle. 
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Fig. 1. Overall architecture 

A detailed description of the s t ructure  and execution of an instruction on 
Spyder can be found in [2]. The architecture of Spyder has undergone some 
modifications, described below, since it was presented in [2]. 

The structure of the sequencer is shown in figure 2. It  can perform the usual 
jump,  call and return operations, both  conditionally and unconditionally. It  now 
also includes a stack of counters. We soon discovered, by experimenting with the 
first version of Spyder, tha t  an execution unit often had to be used to implement 
a loop counter. The  counter also had to be stored in some data  register. We felt 
it was bet ter  to have the counting done where it was actually needed: in the 
sequencer. There is a stack of 32 16-bit counters to handle nested loops. 

The registers are accessed using a windowing system similar to the SPARC 
architecture [4]: four windows of 4 to 16 registers are accessible at  any given 
time: the global window which is always accessible (at the highest index), the 
current window, the previous window, and the next window. The  size of the 
register banks and the number  of windows has been increased, compared to the 
previous version of Spyder. Each bank consists of 2048 16-bit registers and there 
can be 128, 256 or 512 windows of, respectively, 16, 8 or 4 registers. The current 
window index is incremented by the subroutine call instruction and decremented 
by the return from subroutine instruction. It  now can also be incremented, decre- 
mented and reset at will. Indeed, the windowing mechanism is very valuable to 
temporari ly  store a few lines of pixels from an image or the s tate  of the cells of 
a cellular au tomata .  For example, if we configure Spyder to have 512 windows, 
we can store at most 8 lines (there are 2 register banks) of a 8192-pixel-wide 
black-and-white image in the registers. 

The operation of the sequencer and the increment,  decrement and reset of 
the window index are controlled by the same 4 bits of the microcode, as would 
be expected since the window index is modified by call and return instructions. 
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I t  is interesting to note that  there is no explicit increment operat ion for the 
sequencer: it is replaced by an explicit j ump to the next instruction. No problem 
is caused by this approach since we use horizontal microcode where the j ump  
address field is always available, and since it lowers the number of bits needed 
to control the sequencer. 

The execution units are now also connected in a ring by two 16-bit wide 
da ta  buses. This allows the use of the execution units in a pipelined mode and 
increases the data  transfer bandwidth available to the execution units. 

3 I m p l e m e n t a t i o n  

The  sequencer and tile register windowing controller are each implemented in a 
Xilinx 4005 chip [5]. Each execution unit is implemented in a Xilinx 4008 chip; 
a Xilinx 4010 chip could also be used, should tile need arise, without having to 
change the board. The whole Spyder processor is being realized on a double- 
Europe VME board. 

4 S o f t w a r e  

In classical superscalar processors, it is very hard to keep the n execution units 
available busy at all time. To keep them all busy, the dispatch unit would have to 
be able to read a large number of instructions in parallel and find among  them 
n independent instructions of different types.  For example, the PowerPC 601 
can execute up to 3 operations in parallel (an integer operation, a floating-point 
operat ion and a branch), chosen among 8 instructions stored in the execution 
queue, and its dispatch unit is very complex [6]. 
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opera tor  Add { 
input i l ,  i2 ,  i3 ,  i4; 

void output sum; 
Add(short a i ,  short  b i ,  phases { 

Phase ph, 1: ( i l , i 2 )  -> ( , ) ;  
1: ( i 2 , i l )  -> ( , );  short  &co, short  &bo) 

{ 2: (i3,i4) -> (sum,sum); 

2: (i4,i3) -> (sum,sum) ; 
static short temp; 

} 

switch (ph) { } 
case PIl_1: memory { 

short d[4] ; 
temp = ai + bi; 
break; short result ; 

case PH_2: } 
ao = bo = temp + ai + bi; main() 

break; { 
} Add.il = d[O]; Add.i2 = d[l]; 

} Add.i3 = d[2] ; Add. i4 = d[3] ; 

result = Add.sum; 
} 

Fig. 3. Example of operator Fig. 4. Example of microcode 

The Spyder architecture tries to provide two solutions to this waste of re- 
sources: 

1. The execution units are configured according to the application. They im- 
plement the operations actually used by the application in an opt imal  way. 

2. There is no dispatch unit. Each instruction commands  the execution units 
and all the other components of the processor in parallel. 

To summarize,  the Spyder architecture shifts the complexity from the hard- 
ware to the compiler. Ideally, the compiler should be able to produce the object 
code, the instruction set and the hardware to implement this instruction set. 

In other words, the functions of the ideal Spyder compiler are: 

- to analyze the source code for a given application, wri t ten in a s tandard 
high-level language like C + + ,  and extract  the hardware operators necessary 
to the application; 

- to classify these operators in three independent groups to be implemented 
each in one of the three execution unit; 

- to generate the configuration of the F P G A  circuits implementing the execu- 
tion units; 

- to generate the object code, maximizing the parallel use of the three execu- 
tion units. 
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class Spyder { 
public: 

unsigned long *ramPtr; 

unsigned char *ctrlPtr; 

virtual int WriteData(u_int start, u_int length, void *data) = O; 
virtual int ReadData(u_int start, u_int length, void *data) = O; 
virtual void Start(void) = O; 

virtual void Stop(void) = O; 
virtual void WaitAndStop(void) = O; 
virtual int RunningP(void) = O; 

}; 

Fig. 5. The Spyder interface class 

The design of such a compiler, if at all possible, is unfortunately beyond our 
reach. The added complexity of parallelizing a sequential algorithm and gener- 
ating the configuration of FPGA circuits from a behavioral description of their 
functionality, all described in a single high-level language, seems overwhelming. 

Moreover, considering the fact that  Spyder is a coprocessor, and thus is un- 
able to handle input /output ,  another program must run on the host computer  to 
complete the development system. This program, which can be called a monitor, 
feeds data to Spyder, reads back the results, displays them, etc. 

So, for the time being, a Spyder application is decomposed in several parts 
where more intelligence is provided by the programmer than by the tools. In a 
first phase, the programmer must decide which operators to implement in the 
execution units and describe them using a subset of C++.  Figure 3 shows tile 
description of an example operator implementing the addition of 4 numbers in 
2 phases. Tbis description contains the operator interface and the operations 
to be performed in each phase. From this description, a compiler generates a 
netlist which is then fed to the Xilinx placement and routing tools which in turn 
produce the configuration for the execution units. 

In a second phase, the programmer uses the operators defined in the first 
phase to write the program which solves a given problem. Again a subset of 
C++,  with a few extensions, is used to describe the algorithm. As shown in 
figure 4, first the available operators are described, followed by the data  memory 
organization and the program itself. The compiler handles the register allocation 
and schedules the operations to try to maximize the use of all the execution units 
in parallel. The compiler can also translate the source program in s tandard C++,  
in order to be able to simulate the program on the host computer,  and thus 
facilitate the debugging. 

Eventually, the programmer has to write the monitor program running on 
the host computer which handles the communication between Spyder and the 
host. A C + +  interface class, shown in figure 5, is provided to ease this task. All 
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the details of the hardware implementation of Spyder are thus hidden. Accesses 
to the data  memory of Spyder are performed through the ramPtr  pointer or 
the ReadData and Wri teData  methods. This class also allows to hide from the 
monitor whether the Spyder application is being simulated or run on the actual 
hardware. 

5 Conclus ion 

A first a t tempt  at implementing the Abingdon Cross Benchmark (an image pro- 
cessing benchmark) [7] shows that  the performance of Spyder for this benchmark 
is roughly an order of magnitude worse than the performance of the connection 
machine CM 1. But it seems our algorithm could be improved. It also turns out 
that  the performance of Spyder could very easily be improved by using wider 
data  words (32 or 64-bit wide data word). It is interesting to note that  the 
ability of Spyder to handle more that  one data  element per data  word (i.e., 16 
black-and-white pixels per 16-bit data word) in a meaningful manner allows an 
easy scaling of the computing power with the width of the data  words. This is 
usually not the case with regular (non-reconfigurable) processors. Who needs 
64-bit integers? 
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Abst rac t .  The implementation of larger digital neural networks has not 
been possible due to the real-estate requirements of single neurons. We 
present an expandable digital architecture which allows fast and space- 
efficient computation of the sum of weighted inputs, providing an efficient 
implementation base for large neural networks. The actual digital cir- 
cuitry is simple and highly regular, thus allowing very efficient space us- 
age of fine grained FPGAs. We take advantage of the re-programmability 
of the devices to automatically generate new custom hardware for each 
topology of the neural network. 

1 Introduction 

As conventional computer hardware is not optimized for simulating neural net- 
works, several hardware implementations for neural networks have been sug- 
gested ([MS88], [MOPU93], [vDJST93]). One of the major  constraints on hard- 
ware implementations of neural nets is the amount of circuitry required to per- 
form the multiplication of each input by its corresponding weight and their 
subsequent addition: 

where xj are the input signals, wji the weights and ai the activation function. 
The space efficiency problem is especially acute in digital designs, where 

parallel multipliers and adders are extremely expensive in terms of circuitry 
[CB92]. An equivalent bit serial architecture reduces this complexity at the cost 
of net performance, but  still tends to result in large and complex overall designs. 

We decided to use field-programmable gate arrays (FPGAs) to develop a 
prototype of our net [Xil93]. FPGAs can be reprogrammed easily, thus allowing 
different design choices to be evaluated in a short time. This design methodol-  
ogy also enabled us to keep overall system cost at a minimum. Previous neural 
network designs using FPGAs have shown how space efficiency can be achieved 
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[vDJST93], [GSM94], [Sa194]. The neuron design proposed in this paper makes 
a compromise between space efficiency and performance. 

We have developed a set of tools to achieve complete automatization of 
the design flow, from the network architecture definition phase and training 
phase to the finished hardware implementation. The network architecture is 
user-definable, allowing the implementation of any network topology. The cho- 
sen network topology is described in an input file. Tools automatically translate 
the network's description into a corresponding net list which is downloaded into 
hardware Network training is performed off-chip, reducing real estate consump- 
tion for two reasons: 

- No hardware is necessary to conduct the training phase. 
- Instead of general purpose operational units, specialized instances can be 

generated. These require less hardware, as they do not have to handle all 
cases. This applies especially to the multiplication unit, which is expensive in 
area consumption terms. Also, smMler I~OMs can be used instead of RAMs 
for storing the weights. 

As construction and training of the neural net occurs only once in an appli- 
cation's lifetime, namely at its beginning, this off-chip training scheme does not 
present a limitation to a net's functionality. Our choice of FPGAs as implemen- 
tation technology proved beneficial in this respect, as for each application the 
best matching architecture can be chosen, trained on the workstation and then 
down-loaded to the FPGA for operational use. 

2 R e l a t e d  W o r k  

The digital hardware implementations presented in literature vary from bit- 
stream implementations, through bit-serial and mixed parallel-serial implemen- 
tations to fast, fully parallel implementations. 

The pulse-stream encoding scheme for representing values is used in an ana- 
log implementation by Murray and Smith [MS88]. They perform space-efficient 
multiplication of the input signal with the synoptic weight by intersecting it with 
a high-frequency chopping signal. 

van Daalen et al. [vDJST93] present a bit-stream stochastic approach. They 
represent values v in the range [-1, 1] by stochastic bit-streams in which the 
probability that a bit is set is (v q- 1)/2. Their input representation and ar- 
chitecture restrict this approach to fully interconnected feed-forward nets. The 
non-linear behavior of this approach requires that new training methods be de- 
veloped. 

In [GSM94], we propose another bit-stream approach. Digital chopping and 
encoding values v from the range [0, 1] by a bit stream where the probability 
that a bit. is set is v are used. Using this encoding, an extremely space efficient 
implementation of the multiplication can be achieved. In this design, only 22 
CLBs [Xi193] are required to implement a neuron. This method enables the 
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construction of any network architecture, but constrains applications to those 
with binary threshold units. 

The approach in [Sal94] is based on the idea to represent the inputs and 
synaptic weights of a neuron as delta encoded binary sequences. For hardware 
implementation delta arithmetic units are used which employ only one-bit full 
adders and D flip-flops. The performance of the design is improved and some 
real-estate savings are achieved. The design can be used for assembling of feed- 
forward and recursive nets. 

GANGLION [CB92] is a fast implementation of a simple three layer feed 
forward net. The implementation is highly parallel achieving performance of 20 
million decisions per second. This approach needs 640 to 784 CLBs per neuron, 
making this implementation extremely real estate intensive. 

3 T h e  N e u r o n  

Each processing unit computes a weighted sum of its inputs plus a bias value 
assigned to that unit, applies an activation function, and takes the result as its 
current state. The unit performs the multiplication of 8 bit unsigned inputs by 
8 bit signed integer weights forming a 16 bit signed product. The eight products 
and a 16 bit signed unit-specific bias are accumulated into a 20 bit result. The 
final result is computed by applying an arbitrary activation function. This pro- 
cess scales the 20 bit intermediate result stored in the accumulator to an 8 bit 
value (see figure 1). 

We use the fact that multiplication is commutative, and instead of multiply- 
ing the input values with the weight, we multiply the (signed) weight with the 
(positive) input values. Thus, multiplication is reduced to multiplying a signed 
value by an unsigned value. This can be implemented using fewer logic gates. 

Multiplication is performed by using the well-know shift and add algorithm. 
The first synapse weight is loaded into the 16 bit shift register from the weight 
ROM, and the synapse input in the 8 bit shift register. Then, the shift and add 
multiplication algorithm is performed, using a 20 bit accumulator. 

After eight iterations, the first multiplication wji * x j  has been processed. 
To process the next neuron input, the input and weight values for the next 
multiplication are loaded into their respective shift registers and the process 
starts over. At the same time, the accumulator is used for implementing the 
accumulation of the multiplication result and adding the results of all eight 
multiplications. 

After the result ~ l < j < , ~  wji * zj has been computed, the activation func- 
tion is applied to this inte)mediate result. Depending on the complexity of the 
activation function, this can take 0 or more cycles. This activation function also 
scales the intermediate result to an unsigned 8 bit output value. This output 
value is either the final result or fed to a next layer neuron. 

As the constructed unit can have at most eight inputs and as the multipli- 
cation of one input requires eight cycles, a new computation cycle is started 
every 64 cycles (plus the time used for computing the activation function). This 
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Fig.  1. Schematic diagram of a neuron. 

condition is checked by a global counter, and distributed to all neurons. Upon 
receiving this signal, the neurons will latch their input state into an output  
register, load the bias into the accumulator and start  a new computation.  

51 CLBs are used for implementing the base neuron. Depending on the com- 
plexity of the activation function used, additional CLBs may be necessary to 
implement look-up tables or other logic. The ppr  tool [Xil92] reports the follow- 
ing design data for a single neuron: 

Packed CLBs 51 
FG Function Generators 102 

I 
H Function Generators 16 
Flip Flops 44 
Equivalent "Gate Array" Gates 1458 

4 T h e  O v e r a l l  N e t w o r k  A r c h i t e c t u r e  

The design of the neurons is such that any neural architecture can be assembled 
from single neurons. Users can choose an optimal interconnection pat tern  for 
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their specific application, as these interconnections are performed using F P G A  
routing. This neuron design can be used to implement a wide range of different 
models of neural networks whose units have binary or continuous input and unit 
state, and with various activation functions, from hard-limiter to sigmoid. The 
implementation of both feed-forward networks and recursive networks [Hop82], 
[Koh90] is possible. 

Any network can be implemented using the proposed units. The  design in- 
cludes a global synchronization unit which generates control signals distributed 
to the whole network. Figure 2 shows a feed-forward n(~twork with four neurons 
in the input layer, four neurons in the hidden layer and two neurons in the output  
layer. 

IIIllJll IIIlllll IIIllJJl 

outlall 

lllllll IIIllJll 
i 
G 
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I ° 

sync 

~ t 3  

Fig. 2. Example architecture: a feed-forward network with ten neurons. 

Several neurons can be placed on one FPGA. The exact number of neurons 
fitting on one F P G A  depends on the exact FPGA type and the complexity 
of the activation function. By using multiple FPGAs,  arbitrarily large, complex 
neural nets can be designed cheaply and efficiently. Having neurons as indivisible 
functionM units allows absolute freedom in choosing any topology required. 

5 A u t o m a t i o n  o f  t h e  D e s i g n  P r o c e s s  

To design a network for a ~aew application, a new network topology is selected. 
On this network, the training process is performed, yielding a set of new weights 
and biases. These new connections, weights and biases have to be mapped to the 
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logic of the LCAs. Embedding these parameters into the LCAs alters the routing 
within the LCAs. To customize the base LCA design for each new application, we 
have developed tools that  enable the fully automation of the designing process. 
The arbitrarily network topology with trained weights is described in an input 
file. Complete translation into LCAs and design optimization is then performed 
automatically, entirely invisible to the user. 

I I1 

I I2  

N SON0 0 
C I1 GND GND GND GND GND GND GND 

W 126 0 0 0 0 0 0 0 

N SON1 0 
C I2  GND GND GND GND GND GND GND 

W 126 0 0 0 0 0 0 0 

N S1N0 192 

C SONO SONI GND GND GND GND GND GND 

W 63 63 0 0 0 0 0 0 

N S2NO 64 
C SONO SONI GND GND GND GND GND GND 

W 63 63 -126 0 0 0 0 0 

0 S2NO 

Fig. 3. Example input file: a feed-forward network with four neurons. 

The input file contains all parameters needed. For illustration, a simple input 
file is shown in figure 3. It describes a small network with two inputs, two neurons 
in the first, one neuron in the second and third layers and one output. At the 
beginning of the file inputs are specified (denoted with I),  assigning a name to 
every input. Then, the neurons are described. The order of neurons in the file 
is irrelevant. Every neuron is defined with four parameters. Firstly, a name is 
assigned to every unit. Then, the bias value assigned to the unit is given: After 
that, the connections are specified: for each of the eight neuron inputs, the name 
of the input to the network or the name of the unit with which to connect is 
given. If an input of the unit is unused, it is connected to GND. Finally, the 
corresponding weights (signed integers) are given. At the end of the file, the list 
of the outputs is defined, containing the names of the units whose output should 
be used as outputs of the network. 

After the network has been defined and trained, our tool set generates a 
configuration net list for the FPGA board. The configuration bit-stream is used 
to initialize the Xilinx FPGAs. Figure 4 shows the phase model for the design 
of a neural net from training to hardware operation. 
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Fig.  4. Phase model of net development 

6 C o n c l u s i o n  

We propose a space-efficient, fast neural network design which can support  any 
network topology. Starting from an optimized, freely interconnectable neuron, 
various neural network models can be implemented.  

The simplicity of the proposed neuron design allows for the massive repli- 
cation of neurons to build complex neural nets. FPGAs are used as hardware 
platform, facilitating the implementat ion of arbi t rary  network architectures and 
the use of an off-chip training scheme. 

Tools have been developed to completely au tomate  the design flow from 
the network architecture definition phase and training to the final hardware 
implementation.  
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ABSTRACT. This paper introduces a new high level programming language for 
a novel class of computational devices namely data-procedural machines. These 
machines are by up to several orders of magnitude more efficient than the yon 
Neumann paradigm of computers and are as flexible and as universal as comput- 
ers. Their efficiency and flexibility is achieved by using field-progranmaable 
logic as the essential technology platform. The paper briefly summarizes and 
illustrates the essential new features of this language by means of two example 
programs. 

1 Introduction 

Usually procedural machines are based on the yon Neumann machine paradigm. (Data 
flow machines are no procedural machines, since the execution order being determined 
by an arbiter is indeterministic.) Both, yon Neumann machines, as well as yon Neu- 
mann languages (Assembler, C, Pascal, etc.) are based on this paradigm. We call this a 
control-procedural paradigm, since execution order is control-driven. Because in a 
yon Neumann machine the instruction sequencer and the ALU are tightly coupled, it is 
very difficult to implement a reconfigurable ALU supporting a substantial degree of  
parallelism. 
By turning the yon Neumann paradigm's causality chain upside down we obtain a data 
sequencer instead of  an instruction sequencer. We obtain a new machine paradigm 
called a data-procedural machine paradigm. This new paradigm is the root of  a new 
class of  procedural languages which we call data-procedural languages, since the exe- 
cution order is deterministically data-driven. This new data-procedural paradigm [l], 
[4], [5] strongly supports highly flexible FPL-based reconfigurable ALUs (rALUs) 
permitting very high degrees of  intra-rALU parallelism. That 's  why this paradigm 
opens up new dimensions of  machine architecture, reconfigurability, and hardware 
efficiency [4]. 
This paper introduces this new class of  languages by using a data-procedural example 
language. The language MoPL-3 used here is a C extension. Such data-procedural lan- 
guages support the derivation of  FPL-based data path resource configurations and data 
sequencer code directly from data dependences. The usual detour from data depend- 
ences via control flow to data manipulation, as practiced by yon Neumann program- 
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Fig. 1. Basic structures of Xputers and the MoM architecture: a) reconfigurable ALU 
(rALU) of the MoM, b) basic structure of Xputers 

ming, is almost completely avoided. The paper illustrates data-procedural language 
usage and compilation techniques as well as their application to FPL-based hardware. 

2 Summarizing the Xputer 
For convenience of the reader this section summarizes the underlying machine para- 
digm having been published elsewhere [1], [4], [5], [6], [9]. Main stream high level 
control-procedural programming and compilation techniques are heavily influenced by 
the underlying von Neumann machine paradigm. Most programmers with more or less 
awareness need a von-Neumann-like abstract machine model as a guideline to derive 
executable notations from algorithms, and to understand compilation issues. Also pro- 
gramming and compilation techniques for Xputers need such an underlying model, 
which, however, is a data-procedural machine paradigm, which we also call data 
sequencing paradigm. This section summarizes and illustrates the basic machine prin- 
ciples of the Xputer paradigm [9]. Later on simple algorithm examples will illustrate 
MoPL-3, a data-procedural programming language. 

2.1 Xputer Machine Principles 
The main difference to von Neumann computers is, that _X.puters have a data counter 
(as part of a data sequencer, see figure lb) instead of a program counter (part of an 
instruction sequencer). Two more key differences are: a reconfigurable ALU called 
rALU (instead of a hardwired ALU), and transport-triggered operator activation ([11], 
instead of the usual control-flow-triggered activation). Operators are preselected by an 
activate command from a residual control unit. Operator activation is transport-trig- 
gered. Xputers are data-driven but unlike data flow machines, they operate determinis- 
tically by data sequencing (no arbitration). 
Scan Window. Due to their higher flexibility (in contrast to computers) Xputers may 
have completely different processor-to-memory interfaces which efficiently support 
the exploitation of parallelism within the rALU. Throughout this paper, however, we 
use an Xputer architecture supported by smart register files, which provide a 2-dimen- 
sional scan windows (e.g. figure 2b shows one of size 2-by-2). A scan window gives 
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rALU access to a rectangular section of adjacent locations in data memory space. Its 
size is adjustable at run time. 
Scan Pattern.  A scan window is placed at a particular point in data memory space 
according to an address hold by a data counter (within a data sequencer). A data 
sequencer generates sequences of such addresses, so that the scan window controlled 
by it travels along a path which we call scan pattern. Figure 2a shows a scan pattern 
example with four addresses, where figure 2b shows the first and fourth location of the 
scan window. Figure 3 shows sequential scan pattern examples, and figure 9c a com- 
pound (parallel) scan pattern example. 
Data Sequencer. The hardwired data sequencer features a rich and flexible repertory 
of scan patterns [4] for moving scan windows along scan paths within memory space. 
Address sequences needed are generated by hardwired address generators having a 
powerful repertory of generic address sequences [2], [13]. After having received a scan 
pattern code a data sequencer runs in parallel to the rest of the hardware without steal- 
ing memory cycles. This accelerates Xputer operation, since it avoids performance 
degradation by addressing overhead. 
Reconfigurable ALU. Xputers have a reconfigurable ALU (rALU), which usually 
consists of global field-programmable interconnect (for reconfiguration), hardwired 
logic (a repertory of arithmetic, relational operators), and field-programmable logic 
(for additional problem-specific operators) [3]. Figure la  shows an example: the rALU 
of the MoM-3 Xputer architecture: 4 smart register files provide 4 scan windows. A 
rALU has a hidden RAM (hidden inside the field-programmable integrated circuits 
used) to store the configuration code. 
rALU Configuration is no Microprogramming.  Also microprogrammable von Neu- 
mann processors have a kind of reconfigurable ALU which, however, is highly bus- 
oriented. Buses are a major source of overhead [7], especially in microprogram execu- 
tion, where buses reach extremely high switching rates at run time. The intension of 
rALU use in Xputers, however, is to push overhead-driven switching activities away 
from run time, over to loading time as much as possible, in order to save the much 
more precious run time. 
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Fig. 3. JPEG Zig-Zag scan pattern for array PixMap [1:8,1:8], a) and its subpatterns: b) 
upper left triangle UpLzigzagScan, d) lower right LoRzigzagScan, c) full SouthWest- 
Scan 

Compound Operators. An Xputer may execute expressions (which we call com- 
pound operators) within a single machine step, whereas computers can execute only a 
single operation at a time. The rALU may be configured in such a way, that one or 
more sets of parallel data paths form powerful compound operators connected to one 
or more scan windows (example in figure 7). 
Execution triggering. A compound operator may be activated (sensitized) by setting a 
flag bit (and passivated by resetting this flag bi0. Each operator currently being active 
is automatically executed whenever the scan windows connected to it are moved to a 
new location. E.g. during stepping through a scan pattern of length n this operator is 
executed n times. 
Summary of Xputer Principles. The fundamental operational principles of Xputers 
are based on data auto sequencing mechanisms with only sparse control, so that Xput- 
ers are deterministically data-driven (in contrast to data flow machines, which are 
indeterministically data-driven by arbitration and thus are not debuggable). Xputer 
hardware supports some fine granularity parallelism (below inslruction set level: at 
data path or gate level) in such a way that internal communication mechanisms are 
more simple than known from parallel computer systems (figure 9d and e, for more 
details about Xputer see [4], [5]). 
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Source code example (see figure 5) Action described 

single step scan pattern EastScan: 
ScanPattern (See line (2)) 
EastScan is 1 step [i, O] ~ x  step vector: [1,0] 

Y~' 

~ c a n P a t t e r n  (seeline (3)) 
SouthScan is i step [0,11 

S . z a n p a t t e r n  (seeline (4)) 

SouthWestScan is 7 steps 

[-i,i] 

ScanPattern (seeline (5)) 

NorthEastScan is 7 s_teps_ [i,-11 

single step scan pattern SouthScan: 

- ~ x 1 '  step vector: 
y r 1 ~  [0,1] 

multiple step scan pattern: 

y7  x / 

step v e C ~ s t S c a  n 

like SouthWestScan (see above), 

but reversed order sequence 

Fig. 4. Scan patterns declared for the JPEG example (see also figure 5) 

3 A P r o g r a m m i n g  Language  for Xputers  

This section introduces the high level Xputer programming language MoPL-3 (Map- 
oriented Programming Language) which is easy enough to learn, but which also is suf- 
ficiently powerful to explicitly exploit the hardware resources offered by the Xputer. 
For an earlier version of this language we have developed a compiler [16]. MoPL-3 is 
a C extension, including primitives for data sequencing and hardware reconfiguration. 

3.1 MoPL-3: A Data-procedural Programming Language 
This section introduces the essential parts of the language MoPL-3 and illustrates its 
semantics by means of two program text examples (see figure 5 and figure 8): the con- 
stant geometry FFT algorithm, and the data sequencing part for the JPEG zig-zag scan 
being part of a proposed picture data compression standard. MoPL-3 is an improved 
version of MoPL-2 having been implemented at Kaiserslautern as a syntax-directed 
editor [16]. 
From the von Neumann paradigm we are familiar with the concept of the control state 
(current location of control), where control statements at source program level are 
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translated into program counter manipulations at hardware machine level. The main 
extension issue in MoPL compared to other programming languages is the additional 
concept of data location or data state in such a way, that we now have simultaneously 
two different kinds of state sequences: a single sequential control state sequence and 
one (or more concurrent) data state sequence(s). The control flow notation does not 
model the underlying Xputer hardware very well, since it has been adopted from C to 
give priority to acceptance by programmers. The purpose of this extension is the easy 
programming of sequences of data addresses (scan patterns) to prepare code genera- 
tion for the data sequencer. The familiar notation of these MoPL-3 constructs is easy to 
learn by the programmer. 

Function Name Corresponding Operation 

rod 
roll" 
rotu 
mirx 
miry 
reverse 

turn left 
turn right 
turn 180 ° 
flip x 
flip y 
reversed order sequence 

Table 1. Transformation functions for scan patterns 

3.2 Declarations and Statements 

The following Xputer-specific items have to be predeclared: scan windows (by win- 
dow declarations), rALU configurations (by rALUsubnet declarations), and scan pat- 
terns (by SeanPat tern  declarations). Later a rALU subnet (a compound operator) or a 
scan pattern may be called by their names having been assigned at declaration. Scan 
windows may be referenced within a rALU subnet declaration. 
Scan Window Declarations. They have the form: window <group_name> is 
<window_specs>';'. Each window specification has the form: <window_name(s)> 
<window_size> handle <point>. Figure 6 shows an example, where a 2-dimensional 
window named 'SWI '  with a size of 2 by 2 64-bit-words, and two windows named 
'SW2' and 'SW3' with the size of a single 64-bit-word each, are declared. The <point> 
behind handle specifies the word location inside the window, which is referenced by 
scan patterns. The order of windows within a group refers to physical window numbers 
within the hardware platform. E.g. the above windows 'SWI '  through 'SW3' are 
assigned to window numbers 1 through 3. 
rALU Configuration, A compound operator is declared by a rALUsubnet declaration 
of the following form: rALUsubnet <group_name> is <expression assignment(s)>, 
where the compound operators are described by expressions. All operands referenced 
must be words within one or more scan windows. Figure 7 illustrates an example of a 
group 'FFF' which consists of two compound operators with destination window 
'SW2', or 'SW3', respectively, and a common source window 'SWl ' .  
Scan Pattern Declarations. Scan patterns may be declared hierarchically (nested scan 
patterns), where a higher level scan pattern may call lower level scan patterns by their 
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names. Parallel scan patterns (compound scan patterns) may be declared, where sev- 
eral scan patterns are to be executed synchronously in parallel. Scan pattern declara- 
tions are relative to the current data state(s). A scan pattern declaration section has the 
form ScanPat te rn  <declaration_item(s)> '; '. We distinguish two types of declaration 
items: simple scan pattern specifications <simple_spec> (linear scan patterns only: 
examples in figure 4) and procedural scan pattern specifications <proc spec>. More 
details will be given within the explanation of the following two algorithm examples. 
Activations. Predeclared rALU subnets (compound operators) may be activated by 
apply statements (example in line (44) of figure 10, where group 'FFF' is activated), 
passivated by passivale  statements, and removed by remove statements (to save pro- 
grammable interconnect space within the rALU). Scan window group definitions can 
be activated by adjust statements (example in line (43) of figure 10). Such adjustments 
are effective until another adjust statement is encountered. 
Parallel Scan Patterns. For parallel execution (compound) scan patterns are called by 
a name list within a Darbeain block. See example in line (46) of figure 10, where the 
scan patterns 'SPI ' ,  'SP23' and 'SP23' are executed in parallel (which implies, that 
three different data states are manipulated in parallel). Pattern 'SP23' is listed twice to 
indicate, that two different scan windows are moved by scan patterns having the same 
specification. The order of patterns within the parbegin list corresponds to the order of 
windows within the adjustment currently effective (ThreeW, see line (43) in figure 10). 
E.g. scan pattern 'SPI '  moves window no. 1, and 'SP2' moves windows no. 2 and 3. 
Each scan pattern starts at current data state, evokes a sequence of data state transi- 
tions. The data state after termination of a scan pattern remains unchanged, until it is 
modified by a more l0  instruction or another scan pattern. 
Nested Scan Patterns. Predeclared scan patterns may be called by their names. A scan 
pattern may call another scan pattem. Such nested calls have the following form: 
<pattern_name> '( '  <pattern_definition>')' ' ; ' .  An example is shown in line (46) of 
figure 10, where scan pattern 'HLScan' calls the compound scan pattern definition 
formed by the parbegin block explained above. The entire scan operation is described 
as follows (for illustration see figure 9). Window group ThreeW is moved to starting 
points [0,0], [2,0], and [2,8] within array CGFI~ by line (45) - see initial locations in 
figure 9c. Then the (inner loop) compound scan pattern (parbegin group in line (46)) is 
executed once. Then the (outer loop) scan pattern 'HLScan' executes a single step, 
where its step vectors move the window group ThreeW to new starting points. Now 
again the entire inner loop is executed. Finally the inner loop is executed from starting 
points being identical to the end points of the outer loop scan pattern. After last execu- 
tion of the inner loop the windows have arrived at final locations shown in figure 9c. 

3.3 JPEG ZIG-ZAG SCAN EXAMPLE 

The MoPL-3 program in figure 5 illustrates programming the JPEG Zig-Zag scan pat- 
tern (named JPEGzigzagScan, see figure 3) being part of the JPEG data compression 
algorithm [10], [12], [15]. The problem is to program a scan pattern for scanning 64 
locations of the array PixMap declared in line (1) of figure 5 according to the sequence 
shown in figure 3a. Note the performance benefit from generating the 64 addresses 
needed by the hardwired address generator such, that no time consuming memory 
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/* assuming, that rALU configuration has been declared and set-up */ 

Array 
ScanPattern 

PixMap [1:8,1:8,15:0]; 
EastScan i__~s 1 ~ [ i, 0], 
SouthScan i_ss 1 ~ [ 0, i], 
SouthWestScan i_ss 7 steps [-i, i], 
NorthEastScan i_ss 7 steps [ i,-i], 

UpLzigzagScan i__ss 
beqin 

while (@[<8,]) 
beqin Eastscan; 

SouthWestScan until @[~i,]; 
SouthScan; 
NorthEastScan until @[,~i]; 

end 
end UpLzigzagScan; 

begin 

end 

JPEGzigzagScan i_ss 
beqin 

UpLzigzagScan; 
SouthWestScan; 
rotu (reverse(UpLzigzagScan)); 

end JPEGzigzagScan; 
/* end of declaration part*/ 

/*smtementpart*/ 
moveto PixMap [i,i] ; 
JPEGzigzagScan; 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) 
(ii) 
(12) 
(13) 
(14) 
{15) 
(16) 
(17) 
(IS) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 

( 2 5 )  
(26) 
(27) 
(28) 
(29) 
(30) 

Fig. 5. MoPL program of the JPEG scan pattern shown in figure 3 

access cycles are needed for address computation. Figure 3 shows, that the JPEG scan 
pattern may be partitioned into the three subsequences shown by figure 3b through d. 
Lines (2) thru (5) in figure 5 declare four scan patterns used later to synthesize the scan 
patterns shown in figure 3 and explained in figure 4. Scan pattern declaration state- 
ments have the following form: 
<name_of_scan_pattern> <maximum_length_of_loop> STEPs <step_vector>. 

Scan Pattern Declaration. The step vec tor  specifies the next data location relative to 
the current data location (data state) before executing a step of the scan sequence. A 
positive integer specifies the maximum length (maximum step count) of the scan pat- 
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Source code example: Size of the scan windows: 

window ThreeW is 

SWI [1:2,1:2,63:0] 
handle [i,i], 

SW2, SW3 
[I:i,i:i,63:0] 

handle [i,I]; 

handle [1,1] ~ ~ 2 

name of window: SW1 ~ . ~  ] 
word size [63:0] 2 

names of windows: SW2, SW3 
word size [63:0] 1 1 

' ~  I F - ' ]  

Fig. 6. Scan window declaration of the FFF example (see also figure 8) 

tern. A scan pattern may be terminated earlier than predeclared when an escape clause 
has become true (which will be explained later). 
Calling Scan Patterns. Predeclared scan patterns may be called by statements. The 4 
declared scan patterns (figure 4), which are needed for the JPEG zig-zag scan, are 
called in the two while loops at lines (9) thru (14) and at lines (18) thru (23) in 
figure 5, e.g. see line (10), where the scan pattern 'EastScan' is called (similar to a pro- 
cedure call in C). By an escape a scan may also be terminated before 
<maximum_length of_loop> is reached. 
Escapes. In this case there will be an escape from the scan pattern, when the boundary 
of the data map is reached or exceeded. E.g. see the until clause (escape clause) in line 
(11) indicating an escape on having reached a leftmost word within the 'PixMap' array 
(see figure 3: the first execution of 'SouthWestScan' at top left corner of the array 
reaches only a loop length of 1). The condition @ [_<1 ,] says: escape if within current 
a.tray a data location with an x subscript _<1 has been reached. The empty position 
behind the comma says: ignore the y subscript. 
Data State Initialization. Before the execution of the first scan pattern, you have to 
specify the starting point in the data map. For this purpose we use another data state 
manipulation statement, the moveto statement. With this statement (a data goto) you 
are able to realize absolute jumps of the scan window inside the data nmp. E.g. see line 
(28) in figure 5, where the scan window is moved to the upper left corner of the array 
'PixMap', which is the starting point of scan pattern 'JPEGzigzagScan' call at line 
(29). 
Hardware-supported Escapes. To avoid overhead for efficiency the until clauses are 
directly supported by the MoM hardware features of escape execution [4]. To support 
the until @ clauses by off-limits escape the address generator provides for each dimen- 
sion (x, y) two comparators, an upper limit register, and a lower limit register. 
Structured Scan Pattern. The above MoPL-3 program (figure 5) covers the follow- 
ing strategy. The first while loop at lines (9) thru (14) iterates the sequence of the 4 
scan calls 'EastScan' thrn NorthEastScan for the upper left triangle of the JPEG scan, 
from PixMap [1,1] to PixMap [8,1] (figure 3). The second while loop at lines (19) - 
(23) covers the lower right triangle from PixMap [8,1] to PixMap [8,8]. The "South- 
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Abs t rac t .  On line arithmetic is a computation tool able to adapt to the 
precision expected by the user. Developing a library of on line operators for 
FPGAs will lead in a near future to the spread of brick-assembled application- 
dedicated operators. In the implementation of the basic arithmetic operations 
(addition, multiplication, division and square root), we have met some new 
problems: our work has involved changes in the VLSI design methodology in 
order to achieve some effective performances. We shall present the modified 
on-line algorithms and their adaptation to the cell oriented FPGA archi- 
tecture. The correct integration of some retiming barriers has proved to be 
critical as far as speed is concerned. 

Introduction 

With the advances in programmable logic we observe a strong demand from the users 
for a library that  implements the arithmetic functions. The DEC PeRLe 1 board [3] 
is the perfect platform for developing, testing and prototyping such a library. The 
board is a configurable universal coprocessor built from 23 Xilinx XC 3090 chips 
[11]. 

On line arithmetic [5] operates on numbers flowing serially one digit at a time 
most  significant digits first. Digit serial arithmetic is widely used in signal processing 
where the communication links cannot handle the parallel transmission of the signal 
and whenever hardware area is critical. Some recent work about  on-line arithmetic 
on FPGAs can be found in [8]. 

We have described and thoroughly tested a fully optimized working prototype for 
the addition and multiplication. We have concluded the development of the division 
and the square root operation. The block architecture of the FPGAs has affected 
our design of an hardware efficient circuit; moreover, we have incorporated some 
retiming barriers in the algorithm to hide the circuit commuting time. 

In Section 1, we present a set of basic on line arithmetic operations and the PeRLe 
board architecture with the example of an on line adder configuration. Section 2 
describes the general architecture for the multiplication, the division and the square 
root operator. The Section 3 is dedicated to the modified algorithms that  incorporate 
some of  the needed retiming barriers. 
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1 E n v i r o n m e n t  

1.1 On l ine O p e r a t i o n  

The circuit uses a redundant number system such as Avizienis' signed digit systems 
[1], which include the radix 2 Borrow Save representation (BS) [4]. Any real number 
X can be written as follows with the BS notation. We define the value X{ from one 
decomposition of X truncated after the ith most significant digits. 

X =  ~ xk2 -k with xk E {--1, 0,1} 

i 
Xi --= ~ xk2 -k 

k=-oo 

Each on line operator S = X @ Y is characterized by its delay ~: the digit si of 
the result is computed just from the value of Xi+~ and Yi+~. Since one new digit of 
the operands is available at each clock cycle, a new digit of the result is produced 
each cycle after 6 initialization cycles (see Fig 1). 

,<= D e l a y  ~ '1  

i i 
i 

R e s u l t  . . ] . . . . . . . . . . .  s o . . S l  . s .2 .  . s .  3 . s. 4. . .ss. . .s .~ . s .7 .  . s . 8 .  . s . 9  . . . . . . . . . . . . . . . .  

digits i 
i . . . . . . . . . . .  

O p e r a n d . ,  . .  a . o . a . l  aft .  a 3  .a4. a 5  . a § . . a 7 .  a8_ a9. .a .19 . . . . . . . . . . . . . . . . . . . . . . . .  

 igit, ) ? ) ) ? i ? ) ) ? ) ) ) ? ) 

Time 
0 1 2 3 4 5 6 7 8 9 10  11 12  13  14  1S ( C l o c k  C y c l e )  

Fig. 1. Delay of an Operator 

Used in an adapted environment, a group of on line operators induces some 
parallelism by the pipeline at the digit level as presented Figure 2: an operation is 
initiated before all the digits of its operands are available. 

The on line basic operations have been defined in many references, including 
[2, 5, 7, 10]. We use the following sign function S(W) adapted from [5]. 

l i f  W ~ l / 2  
s(W)= 0i f  - 1 / 2 < W < 1 / 2  

-1  if W < 1/2 
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-->1 log ~-~ ~ ~ ~J Dolay 2 I~olay 4 

I - 1  U L J L J  
~,xay 4 Registres 

C s i n 2 a  + log b 
Q10bal Dolay 13 

Fig. 2. Sequence of On Line Calculations 

A d d i t i o n  The actual circuit is deduced from the carry free parallel BS adder. The 
addition has also been defined from the recurrence below: The size of W(J) is 
bounded and does not depend on the length of X and Y. 

w u )  = 2 ( w u - 1 )  _ s j_ l )  + ¼(~j + y~) 
s t = s ( w u ) )  

M u l t i p l i c a t i o n  To compute the product of two numbers on-line, we have to store 
both numbers Xj and Yj as their digits flow in. The multiplication algorithm is 
based on the shifting accumulator W. 

W(J) = 2(W0-1)  - p~_~) + y~X~ + z~Yj'-i 

v~ = s ( w 2  ~) 

Div i s ion  The natural division algorithm is W(J) = 2 W ( / - 0  - qj- lD.  The on line 
algorithm compensates for the incoming digits zj+3 and dj+3. Since the delay 
is 3, the difference between the on line algorithm and a natural division is small 
enough, the redundancy of the number representation allows some temporary 

1 3 errors. The divisor is presealed D E  [ , ~[. 

_ 1 1 W(J) - 2W(j-~) qj-lDj+2 - ~dj+3Qj + ~zj+~ 

S q u a r e  R o o t  This operation is very close to the division process. A second full 
length adder is needed to accumulate q] at the correct position into the accu- 
mulator. 

• 1 W (j) : 2W (1-1) - 2qj-lQj-1 + q~2 -~ + ~xj+2 

qj = s(w~o j~) 

1.2 B o a r d  A r c h i t e c t u r e  

The Xilinx XC 3090 chip [11] is composed of a core of 20 x 16 logic cells with some 
capabilities for signal routing and a ring of 72 input-output  buffers (see Fig 3). The 
signals are conveyed to the logic cells through the communication touters and the 
programmable wire connections. Although the commuting time of a router is very 
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small, a circuit involving neazest neighbor communication wi l |  mostly use the wi~e 
connections which are much taster. Whenever we had to broadcast an information. 
to a row or a column of cells, we have used a vertical or horizontal long lines. 
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Lon gline (Broadcas t ing)  

C o m m u n i c a t i o n  R o u t e r  

Inpu t  O u t p u t  Block ( lOB) 

Control  Logic Block (CLB) 

Wire Connect ions  

Fig.  3. Chip Internal Architecture (Logic Cell & IO Buffer) 

A logic cell (CLB) implements two functions of its inputs from a t ruth table 
and contains two registers to store any binary result (see Fig 4). There are some 
restrictions configuring an FPGA compared to building a VLSI: a cell has only 
two outputs ,  whereas both the registers and the logic unit may  produce two useful 
results; it is not possible to load both register with two different values and leave 
the two logical units for some other functions; the long lines are assigned a l imited 
number  of input and output  of each logic cell reducing the possibilities for routing 
and placement.  

The  DEC PeRLe 1 bourd gathers 23 Xilinx XC 3090 chips. In this work, we will 
focus on the 4 x 4 2D computat ion matr ix  (see Fig 5). Seven more p rogrammable  
chips are involved in the data  path for the user control and the communicat ions  with 
the host. 
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Fig. 4. Logic Cell Functionalities 

1.3 A d d i t i o n  

We have deduced the on line adder presented Figure 9 from the parallel adder 
described in [1] (see Fig 8). This architecture uses two rows of Plus Plus Minus cells 
(see Fig 6 and 7). In order to implement the on-line adder on the PAM we have used 
only 2 CLBs (see Fig 10). Four registers are available in the two CLBs of the adder, 
only three of them are used. 

2 G e n e r a l  A r c h i t e c t u r e  

2.1 Basic  Or ga n i za t i on  

The multiplication, the division and the square root operator share the same general 
organization: the intermediate result is accumulated and shifted with two other terms 
obtained from the product of a number by a digit (see Fig 11). The circuit computes 
the sum of the three operands, and possibly some local transformation / on W o). 

= 2 / ( w ( J ) )  + × + b} × 

We have implemented two of the adders presented Figure 8 and the operators for 
the digit products a~ x AU) and b~ x BU). The function / only involves a few of 
the most significant digits and is obtained by adding some logic to the data path for 
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Fig.  5. Computation Matrix and Surrounding Logic 
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Fig.  6. Addition Cell 
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Fig.  7. Representing the PPM Cell 

s 5 s~ ~4 ~4 

b:b+~:o+, b;b+~o;o~ 

~ 2~ ~~.; Z ~ I I 
b - b + a - a +  1 1 1 1 

c+  o 

Fig.  8. Borrow Save Adder 

these specific digits.  The  words A(j) and B (j) are constructed as follows for most  of 
the  operat ions:  the circuit  places the value of aJ at the posi t ion j + d in A(J). 

a(j+l)= (aj if k = j + d  

a~ j) otherwise 

The  circuit counts the i te ra t ion  number  j with a cursor: each segment  k of  the 
mul t ip l ier  stores one bi t  Stk. At i terat ion j ,  if Stk is set, i t  means  tha t  k = j ,  

÷ i:¸1+ s,+_~ 

Fig .  9. On Line Adder 
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Fig. 10. FPGA On Line Adder 

hence a (j+l) is set to the value of aj. The cursor controls the behavior of the cell j+d 
(j+l) regarding aj. For the square root operation, the algorithm only stores one aj+d 

operand. The other term is used to accumulate the value qj2 j .  The definition of B (j) 
is presented below, no register is needed. 

B(J) = qj 2 j 

ai 

/ 
Fig. 11. General Architecture of the Implemented On-fine Operators 

2.2 I m p l e m e n t a t i o n  Details  

We consider one segment of the operator: it works on one digit taking care of the 
incoming carry signals and propagating the outgoing carries. The length l of the 
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registers needed is fixed by the length n -- 2 x I of the inputs as detailed in [7]. The 
final circuit is obtained by repeating I times the segment. Using as much as possible 
the functionalities of each logic cell, we have optimized the segment down to 8 cells. 

, a(kJ) , b~J) The partial products aj × and bj × can be computed on one cell each; 
one BS adder uses 2 PPMs, the two adders are implemented with a total of 4 cells. 
This leads to the scheme proposed Fig 12. 

bj B (D , >> k 

204 

i k - l '  

Fig. 12. Low Level Map of a Segment 

All the segments of one chip are aligned on two columns to share the same signals 
on the vertical long lines. The cells of the first line of the chip generates the signals 
to be broadcasted as presented Figure 13. 

To incorporate the state counter in the segment, we have grouped the digit 
multiplication of a~ x a (j) and the first PPM cell (see the dotted box in Fig 12). 
The two output functions of the grouped cell have exactly 5 inputs: each one can 
be implemented with one logic cell generating only  one output signal. The first of 
the two cells obtained stores and propagates the state counter. The reset signal is 
used by many cells across the chip and is not assigned any vertical long line. To 
broadcasts the reset signal to all the circuit, we have used the second cell obtained 
to feed one of the horizontal long line on each segment. The reset signal is sent on 
the second vertical long line of this cell and repeated on one of the horizontal long 
lines of the segment. The arithmetic function of the second cell uses only the sign 
of a~: the signal sent on the first long line of the cell is the sign of a~ in the Signed 
Digit representation d = ( -1 )  s × m, the second long line is available for the fast 
transmission of the pre-reset signal to all the segments. 
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Fig. 13. Segments Organization in a Chip 
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Fig. 14. Longlines usage of one Segment 

3 E n h a n c e m e n t s  

3.1 M u l t i p l i c a t i o n  

P i p e l i n i n g  - -  The information in the multiplier moves from the left side to the right 
side of a segment (see Fig 12) and from the LSD segment to the MSD segment (see 
Fig 13). No information is sent in the opposite direction. Introducing a retiming 
barrier of latches between two parts of the circuit only involves a time change of 
one cycles between two areas. It is possible to introduce two retiming barriers in the 
segments and one just before the evaluation of pj. 

S c a l i n g  - -  A chip totally occupied by the multiplier produces 74 digits. A multiplier 
extended to the other chips of the board is able to generate a very large product. 
Going from one chip to another in the circuit adds two retiming barriers; this is 
possible because the information flows from the least significant digit segment to the 
most significant digit segment. The state signal propagates from the MSD segment 
to the LSD segment: the predicted signal is sent 4 cycles in advance from one chip 



206 

to the next one to cross the retiming barrier. To use a linear interconnection in the 
PeRLe board mesh architecture, we have routed the signals from the rightmost chip 
of each row to the leftmost chip of the row and then to the chips of the lower row 
(see Fig 15). 

LSD  DEC PeRLe1 Matrix 

Segments 454-605 

~V . . . . . .  r-q 

Segments 302-453 

Segments 150-301 

Segs. >> Segs. --> Segs. ~:~ Segs ~ MSD 
> 5- % 

112-149 74-111 36-73 0-35 

Fig. 15. Data Circulation on the PeRLe 1 Board 

3.2 Divis ion  and  Squa re  R o o t  

In the division and the square root operation, the digit qj is produced by the head 
of the operator and used by the partial product qj x Di+2. It is not possible to 
incorporate a retiming barrier due to the communications between the different 
parts of the circuit. The circuit predicts a digit of the quotient one cycle ahead with 
the following recurrence, adding one unity to the delay. The predicted digit of the 
quotient is send backward through the time barrier. 

W (j) : 2W (j-l)  - q j - l D j + 3  - l d j + 4 Q j  + ~xj+41 
v + l  = s ( w ~  i )  - q~D~) 

Conc lus ion  

The scheme used for our implementation of the BS on-line basic operators has been 
studied thoroughly. This work has lead us to a fast space-optimized scalable device. 
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The cell oriented architecture of the Xilinx XC 3090 chips has forced us to adop t  
some strategies in the design of the circuit. 

The  basic operat ions,  with no pipeline, run with a slow clock (50 ns); the  longest  
signal typical ly  involves 10 cells. The circuit obta ined for the mul t ip l ica t ion  with the 
3 barr iers  has a correct behavior  with a clock cycle of 33 ns (30 MHz). Two more 
re t iming barriers could have been included in the mul t ip l ier  with no change in the 
size of the segment.  W i t h  a clock cycle smaller  than 33 ns, the placement  and the 
rout ing are so crit ical tha t  most  of it  must  be exact ly  specified by the user. Yet 
the tools available from Xilinx on the XC 3090 chips do not  present ~ user interface 
comparable  to the P e R L e l D C  library. 

The  opera tor  for the mul t ip l icat ion computes the result  up to 1210 correct digits.  
The reasonnable  implementa t ion  of the division and the square root  produce results 
up to 72 digits. 
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Abs t rac t .  A data driven computer WASMII which exploits dynami- 
cally reconfigurable FPGAs based on a virtual haxdwaxe has been devel- 
oped. This paper presents a software system which automatically gen- 
erates a configuration data fbr FPGAs used in the WASMII. In this 
system~ an application program is edited as a dataflow graph with a 
user interface~ and divided into a set of subgraphs each of them is corre- 
sponding to the configuration data of an FPGA chip. These subgraphs 
axe translated into program modules described in a hardware description 
language called the SFL. From the SFL programs, a logic synthesis tool 
PARTHENON generates a net-list of logic circuits for the subgraphs. 
Finally~ the net-list is translated again for the Xilinx's CAD system: 
and the configuration data is generated. Here, the ordinary differential 
equation solver is presented as an example, a~ld the number of gates is 
evaluated. 

1 Introduction 

Tcchnologics around the FPGA (Field Pro.qrammablc Gate Array) have bccn 
rapidly established in these sevcrM years. Now: the FPGA which works at 
250MHz (togglc frequency) including more than I0000 gatcs is available, and 
a small scale microprocessor cart bc implemented on one FPGA chip. 

Reconflgurablc FPGAs represented with Xilinx's XC3000/4000 family[I] have 
been giving a largc impact to computer architectures because of their flexibil- 
ity. In these FPGAs,  logic circuits arc configured according to the configuration 
inibrmation stored in the configuration RAM inside the chip. By inserting thc 
configuration data again, the logic circuits call bc easily changed. 

With the bcst use of its flexibility, there arc many researches on "flexible 
computer architectures"[2][3][4]. However, since it takes a long time (ttSCCS or 
msccs) to change the hardware function on an FPGA for inserting the configura- 
tion data, application is limited. In order to cope with this problem, an extended 
FPGA chip was proposcd[5][6]. As shown in Figure 1, scvcral SRAM sets cach of 
which is corresponding to the configuration RAM for an FPGA chip arc added 
inside the chip. They arc switched by a multiplexor for changing the connection 
bctwccn the SRAM and the logic circuits. 
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Using this structure, multiple functions can be realized in a single FPGA 
chip, and changed quickly. This method is called a Multifunction Programmable 
Logic Device(MPLD). The configuration da ta  in a SRAM set is called a config- 
uration information page. Such a system can bc extensively used in the arca of 
image/signal processing, robot control; neural network simulation, CAD engines, 
and other applications which require hardware engines. 

Thc  MPLD, however, has two major  problems. First, if required configuration 
data  is larger than that  of the configuration RAMs on the MPLD,  the problem 
cannot be solved. This is similar to a computer  without  a secondary memory. 

Next, the s tate  of a sequentiM logic circuit realized on an F P G A  is disap- 
peared when a configuration RAM is replaced. I t  means tha t  da ta  in registers 
on an FPGA is also disappeared. As a result, it is diificult to control the t ime 
when a configuration RAM can be replaced. 

To cope with the former problem, techniques of virtual memory  are applied. 
A backup RAM unit is at tached outside the MPLD, and the configuration data  
can be carried into the unused configuration page inside the chip. 

For the lat ter  problem, a data  driven control mechanism is introduced into 
the MPLD. Each configuration RAM is replaced when all tokens are flushed out 
of the circuit. 

The chip structure with the data  driven control and the virtual hardware 
mechanism is called the Single-chip WASMII. A parallel system using the single- 
chip WASMII chips is called thc Multi-chip WASM[~7][8]. 

In this systmm an application program is edited as a dataflow graph with a 
user interface: and divided into a set of subgraphes each of them is corresponding 
to the configuration data of an FPGA chip. Then: these subgraphs must  be 
translated into a configuration data for an FPGA chip. 

In this paper~ a software system for generating a configuration da ta  is de- 
scribed. First, th(, WASMII syst('m is intr()(luced in the Section 2. The divided 
subgraphs are translated into program modules described by a hardware de- 
scription language called the SFL. From the SFL programs~ a logic synthesis 
tool PARTHENON g e n e r a t e s  a net-list of logic: circuits for the snbgraphs. In the 
Section 3, design alld imph'mentat ion of these translators are described. Finally: 
the number of gates which arc generated from an example application with the 
system is evaluated. 

2 W A S M I I  

2.1 T h e  v i r t u a l  h a r d w a r e  

First, the internal configuration information pages (RAMs)of the MPLD are 
connected with the offehip backup RAM through a bus. When an internal page 
is not used (not connected with dements  of the FPGA),  a new confgurat ion 
intbrmation can be carried from tim backup RAM. By replacing and preloading 
the configuration data fi'om the backup RAM, a large scale hardware can be 
realized with a single FPGA chip. 
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Fig. 1, The concept of MPLD. 

We call this mechanism the virtual hardware, and use the terms according to 
thc tcrminology in thc virtual memory. An internal configuration data RAM is 
just  callcd an intcrnal page, and thc behavior of loading configuration informa- 
tion from the backup RAM to thc internal pages is called the preloadin 9. When 
a pagc is conncctcd to elcmcnts in thc FPGA and forms thc rcal circuit, the 
pagc is callcd activated page. 

2.2 Introducing data driven m e c h a n i s m  

The next problem of the MPLD is tha t  it is difficult to managc this mechanism 
bccausc all s tates of sequential logic circuits realized on an FPGA arc disap- 
pcarcd when a page is replaced. In order to solve this problcm~ a data  driven 
control mechanism is introduced tbr the actiw~tion and prcloading of the page 
in the vir tual  hardware[7]. 

Thc targct  application is represented with a data-flow graph consisting of 
nodes which can bc any function like an addcr, multiplier: comparator:  or more 
complex functions. Although the node has a registcr ibr storing thc data  dur- 
ing its computat ion;  it must  not storc any information after its computat ion.  
Each nodc starts  its computat ion when tokens arrive at all input. Tha t  is; this 
mcchanism is a purc data-flow machine. 

In ordcr to rcalize the data-flow mechanism with the virtual hardware, the 
input tokcn rcgistcr with firing mechanism and token router are introduced as 
shown in Figure 2. 

- The foken-rout, eris a packet switching system ibr transferring tokcns bctwccn 
pagcs. I t  rcccivcs tokens from the activated page and sends them to thc 
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input  token registers. A high speed multistage packet switching network[?] 
is utilized. 

- lnput-token-regi.~ters store tokens outside pages. A set of registers is required 
to every page of the WASMII chip. 

Outside the WASMII chip, a scheduler, which is the only intelligent par t  of 
the system, is prepared. A small microprocessor system is used, and it will be 
connected with a host workstation. It  carries configuration da ta  from the backup 
RAM to internal pages inside the chip according to thc order decided by a static 
scheduling algorithm described later. 

t'|, / Router ~ I I , IIl r' 

rip oat~ 

laeg'steL~ .. U WASM' I 

.......................... [ I ............. 
Fig.  2. A sing;le-chip WASMII. 

We. call this chip architecture a single chip WASMII.  A target  dataflow graph 
is divided into subgraphs, each of which is mapped to a page of the virtual hard- 
ware. Using the current state of technology, only one or two floating calculation 
units can be implemented in an FPGA chip. However. several units will be im- 
plemented in the near futurc. Here. we assume that  several nodes of a dataflow 
graph can be executed with an FPGA chip. 

When all required input-tokens arrive at the input-token-registers,  the cor- 
responding page is ready to be activated. After all tokens are flushed out of the 
current activated page: one of ready pages is activated by the order assigned 
in advance. In an activated page~ all nodes and wires are i'calized with a real 
hardware on the FPGA.  Each nod~: starts  its computat ion completely in the 
da ta  driven manner. Tokens transfl-rred out of the ~etivated page arc sent to the 



212 

input registers through the token-router, and they enable the other pages to be 
ready. 

2 .3  M u l t i - c h i p  W A S M I I  

WASMII chips can bc easily connected together to form a highly parallel system. 
The token-router is extended so as to transfe.r tokens between pages in different 
WASMII chips. 

Each WASMII chip has its own backup RAM; and subgraphs arc statically 
allocated to each chip. Here: we adopt a simple nearest neighbor mesh connec- 
tion topology. In the multi-chip WASMI[, relatively large latency for the token 
routing in the mesh structure can be hidden by the data driven operation. In 
ordcr to avoid causing a bottleneck: schedulers must be distributed. Since the 
scheduling is fixed when the dataflow graph is generated~ each scheduler can 
execute its job independently. 

2 . 4  T h e  W A S M I I  e m u l a t o r  

In order to demonstratc the efficiency of the WASMII system, WASMII emulator 
is under-developing. 4 × 4 array of WASMII chip emulators are connected as a 
mesh structurc. Unfortunately, there is no FPGA chip with the virtual hardware 
mechanism. Therefore: all pages which are not activated arc stored in the backup 
RAMs, and transferred to FPGA chips when the page is activated. 

Each WASMII chip emulator consists of a main FPGA chip (XC3090), backup 
RAM, an input-token-registers and a token-router chip. Input-token-registers arc 
realized with a small scale FPGA chip(XC3042). A rm~tcr chip is a banyan type 
switch which works at 50MHz. Each clfip has 16 input /ou tput  lines. A single 
microprocessor board (the main CPU is 68040) connected with workstations via 
Ethcrnct  works as a scheduler. 

3 The  software sys tem for WASMII  

3.1 O v e r v i e w  o f  t h e  s o f t w a r e  s y s t e m  

WASMII is expected to bc utilized as a special purpose engine for signal/linage 
processing, image recognition, voice recognition: LS[ CAD, robot control; and 
other application fields. In these systems; a loaded program is repeatedly (or 
continuously) executed many times, and the time /'or preproccssing is not an 
important  problem. Now, three applications (ordinary differential equation solver 
(ODESSA), production system MANJI[9] and neural network simulator NEURO 
generate a datafiow graph for the WASMII system. 

Figure 3 shows an overview of the software system. The configuration data  
for each page is generated as tbllows: 

- The target dataflow graph is divided into subgraphs corresponding to a page. 
The cyclic structures which may cause the deadlock are also eliminated. This 
procedure is called the graph decomposition. 
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Fig. 3. Software system of the WASMII. 

- The execution priority of decomposed subgraphs is calculated as well ms 
the execution order of nodes ill a sttbgraph. This procedure is called the 
s c h e d u l i n g .  

- Program text for each page written in a hardware description language SFL is 
generated atttomatically with the translator.  The SFL node l ibrary consisting 
of various types of nodes are used for the generation. 

- The net-list of gates corresponding to each page is obtained by the logic 
synthesis tool PARTHENON,  and then it is translated into the Xilinx~s net- 
list format  for generating configuration data. 

3.2 G r a p h  d e c o m p o s i t i o n  a n d  s c h e d u l i n g  

From tile name of the node ill the dataflow graph, the number of gates required 
for the node is obtained with checking the SFL node library. The graph is divided 
into subgraphs so that  the total number of gates which required for the node are 
smaller than that  of the target  FPGA (xca090). 

Next, the execution priority of decomposed snbgraphs is calculated as well as 
the execution order of nodes in a subgraph. Although the execution of WASMII 
is basically done in the data  driven manner,  the following two operations are 
managed according to the. order or priority assigned in advance: 

- P r c l o a d i n g :  A page must be loaded from the backup RAM according to the 
order decided in advanco. 
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- Page activation: A page must be selected when there arc multiple pages 
whose input tokens are ready. This selection is done by the priority assigned 
in advance. 

In the preproccssing stage, decomposed subgraphs are anMyzcd: and the 
activity priority and prcloaxling order arc decided. A simple level scheduling 
algorithm called LS/M[10] is utilized for the ordering. 

3.3 Trans la to r  and  node  l ibrary  

SFL and  P A R T H E N O N  SFL/PARTHENON is used for hardware descrip- 
tion and logic synthesis of the target subgraph. PARTHENON is a VLSI design 
system developed by NTT[ll]; which consisting of the logic simulator SEC- 
ONDS, logic synthesis tool SFLEXP.. and optimizer OPTMAP. The SFL(Structurcd 
Function description Language) is a front-end hardware description language for 
PARTHENON. Although it is similar to the VHDL in a part~ the pipeline oper- 
ation is easy to bc described in the SFL. SFL/PARTHENON is widely used in 
Japanese universities and industries for education and fabrication of VLSI chips. 

In the WASMII software system, the data driven operation in the node library 
is described with the best use of pipeline description of the SFL. 

3.4 Genera t ing  SFL descr ipt ion 

The structure of the translator is shown as Figure 4. 
Here, as an example; solving Van Der PoFs equation (a non-liner system 

simulation) is introduced. The equation is represented with a connection graph 
like an old analog computer ms shown in Figure 5. "int"; "add"; "mid": "inv"; 
':con" arc integrator, adder; multiplier, sign reverse function, and constant value 
generator respectively. This connection graph can bc almost directly used as a 
dataflow graph for the WASMII software system. By using the front end system 
called ODESSA[10] 3, the graph is edited. After the graph decomposition, the 
dataflow graph shown in Figure 6 is generated. Here, this graph is divided into 
two subgraphs (responding to pagc_nol and page_am2 shown in Figure 7); and 
cyclic paths which may cause the deadlock arc eliminated in each page. 

From the subgraph "pagc_nol": the ibllowing SFL descriptions arc automat- 
ically generated by the translator: 

~i ''/plasma/wasmii/library/mul.sfl'' 
~i 'C/plasma/wasmii/library/add.sfl'' 

module page_no1 { 
submod_type mul { 

input input1<17>; input input2<17>; 
output output1<17>; instrin mul_instrin; } 

a ODESSA was developed ~r  a ffontend system ~r a multiprocessore~d ( S M )  2. 
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Fig. 4. Structllre of the Translator 

submod_type add { 
input input2<17>; input input2<17>; 
output outputl<17>; instrin add_instrin; } 

Like the VHDL and other hardware description languages; hierarchical de- 
scription is allowed in the SFL. The translator searches the SFL node library 
with the l mde name of the subgraph. Here; module "add" and '~mul" correspond- 
ing to the 16bit adder and multiplier are included. I n p u t / o u t p u t  interface is only 
described in this part.  

Them the following s tatements  are generated for each node: 

stage_name add_nol_stage { task 
stage_name mul_no2_stage { task 

add_nol_task() ; } 
mul_no2_task() ; } 

In the SFL: tasks performed in the pipelined manner  are defined with "task" 
s ta tcmcnt  in the pipeline stage named by '~stag.alamc" s tatements .  Here: each 
nodc in the subgraph is generated in their own stages. 

In WASMII, each node is activated when tokens arrive at all input  of the 
node. The arrivM of tokens are noticed with activation of tile inside control 
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Fig. 5. Connection Graph of Van Der Pol's Eqtlation. 

Fig. 6. Dataflow Graph of Vail Der Pol's Equation. 
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Fig. 7. Graph Decomposition for Pages 

terminals defined with "instrsclf" statements (add_nol_flag and muhno2_flag). 

instrself add_not_flag ; instrself mul_no2_flag ; 

any { (inv no2_flag)~(con_no1_flag): 
generate add not_stage.add_not_task(); } 

any { (add nol flag)a(con_no2_flag): 
generate mul_no2 stage.mul_no2_task(); } 

Using the statement "any", each task starts its computation when the fol- 
lowing conditions arc satisfied. Ill this case, the task starts when both flags arc 
scL that is; tokens arrive. 

Each node receives tokens from both inputs, and starts its computation. After 
computation; it set appropriate flag for activation of the successor nodes. Thus: 
each node consists of two states as follows: 

s t age  add n o l _ s t a g e  { 
s ta te_name s t a t e 1  ; s tate_name s t a t e 2  ; 
f i r s t _ s t a t e  s t a t e 1  ; s t a t e  s t a t e 1  par  { 

a d d _ n o l . a d d _ i n s t r i n  ( inv_no2_tmp,con_nol_ tmp) ;  
go to  s t a t e 2  ; } 

s t a t e  s t a t e 2  par  { 
add_no l_ tmp=add_no l . add_ ins t r i n  ( i n v _ n o 2 t m p , c o n _ n o l _ t m p ) . o u t p u t l ;  
a d d _ n o l _ f l a g ( ) ;  
finish ; } } 

stage mul_no2_stage { 
state_name statel ; state_name state2 ; 
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first_state statel ; state statel par { 
mul_no2.mul_instrin (add_nol_tmp,con_no2_tmp); 
goto state2 ; } 

state state2 par { 
mul_no2_tmp=mul_no2.mul_instrin (add_nol_tmp,con_no2_tmp).outputl; 
page_nol_outputl--mul_no2_tmp; 
mul_no2_flag(); 
finish ; } } 

In "statc 1", a node receives data from two inputs, and in "state 2": computa- 
tion is performed by calling the library modules. Then. flags arc set (addJml_flag0,  
mul_no2_flag()) tbr the successor nodes: and the task is finished. 

4 E v a l u a t i o n  resul ts  

Here, the number of gates generated from the WASMII software system are 
evaluatcd. Tablc 1 shows thc gcncration results of solving the Van Dcr Pol's 
equation shown in Figure 5. 

Table 1. The required ha.rdware for Van Der PoFs equation. 

Type Number of Gates Number of CLBs 

add 
mul 
int 
inv 
c o n  

..... page-no1 

849 
2005 
849 

1 

4 

149 
272 
149 
0 
0 

700 4860 
page-no2 4553 724 

total circuit 
for VanDerPol 9413 1429 

In this example, 17 bits (16 bits f , r  data and 1 bit for sign) fixed point number 
is utilized. While thc simple look ahead adder "acid" requires a small numbcr 
of gate, thc array-typc high spced multiplier '~mul" rcquircs a lot of gates. In 
this examplc; a quick multiplicr is required to avoid thc bcing bottlcncck of thc 
systcm. Thc intcgrator is complex node including multiply and add. Howcvcr, 
sincc thc multiplicand is just a fixed number (dt), the requircd gates arc the samc 
as that  of thc addcr. Only a few gatcs arc rcquircd for thc sign rcvcrse function 
(inv) and constant gcncrator (con). Since thcse gatcs arc actually included in 
the othcr node, they consume no CLBs. 
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Tablc 1 also shows the required CLBs (Configuration Logic Blocks) which is 
a unit PLD for XilinxSs XC3000/4000 family LCA. Since a XC3090 chip sup- 
ports 320 CLBss this cquation requires five configuration pagcs corrcsponding to 
XC3090s. 

5 C o n c l u s i o n  

Now: the framework of the software system has been developed: and the ordinary 
cquation solvcr is available. Other two applications, the neur',fl network simulator 
and the production system arc Under development. These applications will be 
cxccutcd on the WASMI[ emub~tor, which is now under implcmcntations for 
establishment of basis for futurc development of the real WASMII chip, 
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Abstract. This paper continues our investigation into the feasibility of exploiting 
the structure of a parallel program to guide its hardware implementadon. We review 
previous work, and present our new approach to the problem based upon placing 
neflists hierarchically. It is found that appropriate constraints Can be derived from the 
source code in a straight-forward way, and this information can be used to guide the 
subsequent placement routines. Comparisons with traditional placement procedures 
based on simulated annealing are given. 

1 Introduction 

The ability to compile programs written in a language such as occam with well-defined 
semantics and transformation rules facilitates the development of  provably-correct systems. 
By compiling such programs into hardware, we can extend this verifiability to cover systems 
containing both hardware and software. 

We have been investigating methods for compiling parallel programs into hardware, 
using FPGAs as our target technology [1, 2]. One of our goals is the rapid compilation of 
programs into hardware yielding faster implementations than traditional software compila- 
tion. A major bottleneck in this approach is in the automatic placement and routing of the 
netlists generated by our hardware compilers. We are currently looking at several methods 
which will speed up this process to acceptable levels. 

2 C o m p i l i n g  H a n d e l  i n t o  h a r d w a r e  

Several compilers have been developed for a variant of occam known as Handel, which 
includes the basic programming constructors such as: 

SEQ P Q (sequential composition - do P then do Q) 
PAR P Q (parallel composition - do P and Q concurrently) 
WHILE E P (while E is true, do P ) 
I F  E P Q (ifE then P else Q) 
v l  . . . . .  v-n : = E1 . . . . .  En (assign expression E± to variable v i ,  l < i < n  ) 
C l E (output expression E on channel C) 
C ? v  (assign value from channel C to variable v) 

Programs written in Handel are transformed into synchronous circuits using a token 
passing system. Each control block has signals called r e q u e s t  (abbreviated to r eq  or r) and 
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acknowledge (abbreviated to ack o.r a). As an example, the control circuitry for SEQ P Q 
must ensure that the process P has finished before the process Q can begin. This is achieved 
by simply connecting the ack signal from P to the req signal of Q. Our convention states that 
the req line of a block is raised for one clock cycle, at which time that block may begin its 
computations. When the block has finished it in turn raises its ack line for one clock cycle, 
after which it remains dormant until it receives another req signal. Initially there is a special 
STARTER block which has no req line, and raises its ack line for one clock cycle when the 
circuit is started. Figure 1 illustrates the control circuitry for some of the constructors. 

a 

(a) (b) (c) 

Fig. 1. Hardware for (a) SEQ P Q, (b) IF E P Q (if E then P else Q) and (c) WHILE E P (while 
E do P). The V-labelled component is an or-gate. The triangular-shaped component is a demultiplexer, 
which steers its horizontal input to either the T (true) or F (false) output depending on the boolean 
expression E. 

Traditionally one would take the flattened netlist, consisting of basic logic gates and 
latches, and feed it to an automatic place and route (APR) package for laying out into the 
FPGA. This results in generally acceptable layouts, but it often takes a large amount of time. 
Given that our netlist is not generated randomly, but rather from a piece of (hopefully!) 
structured code, we feel that there should be some way of exploiting the structure of the 
source program in guiding the placement phase of the layout process. 

3 Syntax-directed layouts 

We shall briefly review our first approach to this problem, details of which can be found 
in [2]. This approach adopts a deterministic procedure for laying out a circuit where the 
complete placement and routing information was derived from the structure of the source 
program. The layout scheme utilised parametrised Register, Constructor and Wiring blocks, 
as illustrated in Figure 2. 

The Constructor Block holds the control circuitry and expression evaluation hardware, 
while the Register Block contains the variables. The control information flows orthogonally 
to the data, and we avoid wiring through control circuitry by utilising a specific Wiring 
Block. The adopted convention specifies that the control circuitry has its req on the left 
and the ack on the right. While this compiler produces functioning circuits, these tend to 
have an inefficient layout with a poor aspect ratio: programs with many statements tends 
to have long and thin rectangular layouts. While such layouts are amenable to compaction 
techniques, we have decided to look at less rigid interpretations of  the source code structure 
in guiding the placement of circuits. 
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Fig. 2. Syntax-directed compiler layout template. 

One can think of  the two approaches outlined above as being at opposite ends in a 
spectrum of possibilities for circuit layout. At one end we use APR tools to generate a layout 
from a flattened netlist; this approach is suitable for designs containing mostly random logic. 
At the other end of the spectrum, we deterministically place and route the circuit using pre- 
developed macros, with relatively little flexibility. A complete picture of such a spectrum 
may include: 

- Use APR tools on the flattened netlist. 
- Use library modules for recognised pieces of code, use APR for the rest. 
- Use the structure of the source code to guide the APR software. 
- Use a fixed datapath architecture, and use APR for the control circuitry. 
- Have fixed datapath and control paths derived from the source code syntax. 

It is not clear that the above list is in any particular order in terms of  time to layout, quality of 
the resulting circuit and so on. Also one can imagine using combinations of  the techniques 
described. The approach studied here uses a combination of library modules and source code 
structure to guide an APR phase. 

4 M o d u l a r  compi lat ion  and constraints  

Certain pieces of circuitry are used many times when parallel programs are compiled into 
hardware, and the components comprising this circuitry are invariably placed near to each 
other in the final layout. This leads one to use library modules of hand:placed components for 
often-used circuits. One such example concerns variables which we implement as registers. 
In our compiler, the circuitry generated to implement a variable depends on two factors: 
firstly the width of the variable, and secondly the number of different sources for assignments 
to the variable. The second factor is a result of the need to multiplex the assigned data into 
the data-in lines of the registers implementing the variable. 

At present our compiler has a fixed library template for a multi-bit variable, and it 
produces individual gates for the multiplexing hardware whose layout has not yet been 
determined. This arrangement facilitates the optimisation of the multiplexing hardware at a 
later stage. We can assume however that for the majority of cases the multiplexing circuitry 
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should be placed near to the variable in an efficient layout scheme. We can thus specify 
constraints which tell the APR software to try to keep the multiplexing circuitry near to the 
corresponding variable. 

For our experiments we have devised a Constrained Hierarchical Netlist format known 
as Chopin, in which constraints between components can be expressed. As an example there 
is a Near relation, where Near (P,Q,s) specifies that the blocks P and Q are to be placed 
near to each other with a strength s. The weaker the strength, the more leeway the APR 
software is given in the relative placement; a default value can be used if  the strength is not 
specified. This constrained netlist can be produced by our hardware compiler with almost 
no additional computing cost. 

We have concentrated so far on generating constraints due to hardware being associated 
with a common component - a variable, a channel or a control block, "Communications" 
between components in our circuits can be utilised to provide an additional level of constraint 
information. Thus constraints are generated from the following types of program statements: 

X := y 

C?X 

C!y 

Op (x, y) 

Here Op is a binary operation, such as addition or a comparison operation. 
When we are compiling a program and we come across one of the above statements, 

a corresponding Near constraint is generated. For example the statement x : =y  causes the 
constraint Near (Var x, Var y, s) to be generated. For statements of the form Op ( x , y ) ,  
we need constraints to specify the relationship between the two variables and the operator 
hardware; for instance x + y  would result in the constraint Near (Var x, Var y, Add, s) where 
Add refers to a specific instantiation of an adder circuit. 

One feature of Chopin is its ability to capture constraints hierarchically: for a statement 
such as z : = x + y ,  the constraint generated when x + y  is compiled is referred to in the 
constraint associated with the assignment to z. 

5 U s i n g  t h e  c o n s t r a i n t s  

Once we have generated our netlist of hardware and constraints, we need to be able to 
utilise these constraints in guiding our placement tools when laying out the hardware. 
For algorithms involving cost functions, such as simulated annealing and the majority of 
other well-known heuristic placement algorithms, the "obvious" place to incorporate these 
constraints is in either the cost function or in the move generation procedure (for more details 
on the simulated annealing algorithm see [3]). 

It can easily be seen, however, that incorporating the constraints as additional features 
in the cost function will result in a slower algorithm than one without the constraints. This is 
because currently we assume that to obtain acceptable results, the constraint-based algorithm 
has to perform the same number of loop iterations, and to reduce the temperature parameter 
at the same rate, as the one without the constraints. Similarly, trying to replace a simple 
move generation procedure (such as "swap the contents of two random locations") with one 
which takes the constraints into account could result in longer run-times for the algorithm, 
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but hopefully with better final results. In this paper, however, we shall focus on methods for 
producing better results than traditional ones in comparable times. 

The approach we have taken is to split off segments of our total netlist into sub-netlists. 
These sub-netlists are then placed individually, using a standard simulated annealing ap- 
proach. The final placement of the sub-netlist is then used to define a fixed macro, which 
performs the function of  that sub-netlist. This macro contains all the port information nec- 
essary to connect it up to the rest of  the original netlist. Once these macros have been 
combined with the remaining circuitry into a final netlist, this too is then placed using a 
simulated annealing approach. Experimental software has been developed to implement this 
method, and we outline the results below. We shall also comment on some of  the ways in 
which it can be improved. 

In our experiments we used a simple model consisting of a rectangular array of cells, 
each of  which can either be a combinational gate or be a single-bit register. In order to 
compare our results with placements achieved using a simulated annealing algorithm over 
the flattened netlist, we allowed both methods the same amount of CPU time to produce a 
placement of the circuit on this array of cells. Both methods were given the same cooling 
schedule and the same design size in which to place the components. Components were 
selected to be moved with a probability inversely proportional to their area. This was done 
because in our current implementation, it is more costly to move large components than 
moving small ones. Hence the movement of a large component is likely to be rejected by 
the acceptance function especially at the later stages of the annealing procedure, and so we 
should not waste time examining such moves. 

Our cost function for these experiments was a simple estimated wire length (EWL) 
calculation, based upon the Manhattan metric: for each net we added half the edge length 
for the bounding rectangle of the net. Since we were doing comparative experiments we did 
not attempt to route our final placements. The issue of the routability of designs is covered 
in the final section. 

6 Some examples 

To demonstrate our approach we now outline three example compilations, and compare the 
process of placing the derived circuit firstly by running a simulated annealing algorithm 
over the flattened netlist, and secondly by running the algorithm presented in the preceding 
section. 

The first example is a very simple piece of code (see Figure 3) which illustrates the 
benefits of using macros for variables and operators. 

VAR x , y : 4 

SEQ 

X := 9 

y := 5 

X := X + y 

Fig.3. A simple example. 
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While it is clear that using pre-placed macros for the variables and the adder will result 
in nearly minimal wire lengths for the internal hardware of  these components, the majority 
of the wiring for such a circuit is in the data paths connecting the components together. Thus 
one might expect to lose some quality in the final placement due to the constraints over how 
the adder and variables are designed. In fact this is not the case, and as Table 1 shows there 
are significant gains as a result of using such macros (all timings are in seconds). 

Without macros With macros 
EWL Time EWL Time 

121 74 74 73 

Table 1. Results with and without hardware macros. 

An example as simple as that just given does not lend itself to a hierarchical style of 
compilation, since there is not much structure to exploit. In order to investigate hierarchical 
compilation we need a more complex example. 

The code given in Figure 4 implements a bubble sort routine. To identify subsets of 
components that can benefit from pre-placement, a data-flow analysis of the source code is 
performed to find out how components implementing variables and channels communicate 
with one another, and the result is shown in Table 2. An entry is placed in this table when 
an expression or a statement in the source program indicates a connection between two 
resources; for instance, the expression 

Tmp_crnt <= Trap_next 

and the statement 

Tmp_crnt : = Tmp_next 

indicate that the variables Tmp_crnt and Tmp_next have to communicate twice, hence 
the ( T m p . n e x t , T m p _ c r n t )  entry is 2. Using this table, subset of components with greater 
connectivity can be dealt with first in our hierarchical method. Note that the communications 
inside the inner WHILE loop will be executed more frequently than those outside, and we 
could weight them accordingly. At present all constraints are given an equal weighting. 

Three different derivative netlists were generated by our compiler from this program. 
Firstly, we generated a flattened gate-level netlist. Secondly, a netlist using macros for the 
variables and adders was produced; as expected, we were able to obtain better placements 
from the second netlist than from the first in the allotted time. Thirdly, we generated a 
sub-netlist comprising just those expressions involving the variable C r n t  and the channel 
A d d r ,  the pair which scores the highest value in the data-flow analysis. We then ran our 
simulated annealing routine on this netlist to produce a fixed-placement macro. Next, this 
macro was inserted into the netlist of the remaining components, and the resulting netlist 
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VAR Crnt, Last, Tmp_crnt, Trap next : 4 

CHAN Addr, Din, Dour : 4 

SEQ 

Last := 15 

WHILE (Last != 0) 

SEQ 

Crnt := 0 

PAR 

Addr ! Crnt 

Din ? Tmp_c rnt 

WHILE (Crnt != 15) 

SEQ 

PAR 

Addr ! (Crnt+l) 

Din ? Trap_next 

IF (Tmp_crnt <= Trap next) 

SEQ 

PAR 

Addr ! (Crnt+l) 

Dout ! Tmp_crnt 

PAR 

Addr ! Crnt 

Dour ! Tmp_next 

Tmp_crnt : = Tmp_next 

Crnt := Crnt+l 

Last := Last - 1 

Fig. 4. A bubble sort routine. 

Las t Crnt Tmp_crnt Trap_next Addr Din Dout ConsmnS 

Last 

Crnt 

Tmp_crnt 

Tmp_next 

Addr 

Din 

Dour 

Total 

l x x x x x x 2 

0 1 x x x x x 2 
0 0 0 x x x x 0 

0 0 2 0 x x x 0 

0 4 0 0 0 x x 0 
0 0 1 1 0 0 x 0 
0 0 1 1 0 0 0 0 
1 5 4 2 0 0 0 0 

Table 2. Data-flow analysis for bubble sort routine. 
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was placed. The times for placing the sub-netlist and the composite netlist were added to 
produce the final timings (incorporating the sub-netlist macro into the composite netlist takes 
negligible time). The averaged results from many such trials is given in Table 3. The results 
show that the hierarchical method always returns better circuits with shorter EWL than the 
versions with macros and with flattened netlists, over a range of  specified placement times. 

Flattened Macros Hierarchical 
EWL Time EWL Time EWL Time 

1 5 8 4  4 9 8  950 345 8 7 8  3 4 8  

- - 961 297 910 279 
- - 1016 232 938 235 

Table 3. Bubble sort results with and without hardware macros, and using hierarchical placement. 

As another example, the run-length encoder code given in Figure 5 was examined. Here 
the routine repeatedly accepts values on the D i n  channel until a new value is encountered, 
it then outputs the value and the number of occurrences (modulo 16) of that value on D o u t .  

VAR Crnt, Count, Prev: 4 

CHAN Din, Dout : 4 

SEQ 

Count := 0 

Prev := 0 

WHILE (TRUE) 

SEQ 

Din ? Crnt 

IF (Crnt =Prev) 

Count := Count + 1 

SEQ 

Dout ! Prev 

Dout ! Count 

Count := 1 

Prey := Crnt 

Fig. 5. A run-length encoder. 

Here a data-flow analysis reveals that the variables Prev and Crnt are involved together 
in two statements: one assignment and one comparison. This is a weaker connection than 
the four times that the channel A d d r  and the variable C r n t  were combined in the bubble 
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Flattened Macros Hierarchical 
EWL Time EWL Time EWL Tune 

455 148 292 119 296 117 
- - 314 100 312 100 

Table 4. Run-length encoder results with and without hardware macros, and using hierarchical 
placement. 

sort program, so it is no surprise that hierarchically compiling this circuit by pre-placing 
a sub-netlist based upon P r e y  and C r n t  does not do significantly better than placing the 
entire circuit in one go. Table 4 summarises the results for this circuit. 

7 F u r t h e r  c o n s i d e r a t i o n s  

Our work indicates that a hardware compiler can generate placement information at little 
extra cost. This information can be exploited by a layout routine to produce good results 
more quickly than a direct placement of the flattened netlist. Similar ideas are being explored 
for compiling other languages, such as Ruby [4], into hardware. 

It is clear that in order for our method to obtain good results, the program should contain 
appropriate subsets of components that can benefit from pre-placement. Identifying such 
subsets is at present achieved by simple data-flow analysis. It is open to future research to 
find other ways of discovering such subsets. 

There are two obvious ways to improve our placement routines. First, the sub-netlists 
are currently placed without regard to the remaining parts of  the circuit. As a result, gates 
connected to components outside of the sub-netlist may be placed in the interior of the 
created macro instead of at the periphery (this is similar to performing Min-Cut without 
terminal propagation). Making such cells more likely to be placed on the border of a macro 
is likely to improve the final estimated wire length. 

Second, our current macro generator produces a macro as a collection of individual 
components with fixed relative positions, as opposed to a single large component. Hence 
the movement of  a large macro is more costly than moving a small macro. Producing 
a homogeneous macro block should speed up the movement procedure in the simulated 
annealing algorithm. 

Future work will verify that improved placements are still achievable when routing is 
taken into consideration. One major stumbling block to most placement routines is that 
high congestion areas occur, and this leaves some nets without valid routings. The density 
of the macros we create will play a crucial part in ensuring routability. It would also 
be interesting to study the impact of device-specific features on the performance of our 
compilation approach. 

At present we use constraints derived from our circuits to guide placement in a hierar- 
chical fashion. It may be possible to use these constraints in other contexts, for example as 
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input constraints to the timing-based placement tool described in [5]. 
Clearly our approach can be used in developing any kind o f  hardware, from custom 

circuits to printed-circuit board designs. For implementation in partially-reprogrammable 
FPGAs, it would be desirable to constrain the layout to facilitate fast reprogramming of  
critical parts of the device. The size of FPGAs currently available means that only relatively 
small programs can be compiled into them. Our approach relies on the source program 
having discernible structures to exploit, and is thus more amenable to larger programs. As 
larger FPGA devices and boards populated with multiple FPGAs become available, our 
approach should prove useful in compiling programs of reasonable size automatically into 
hardware. 
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A b s t r a c t .  Primarily, our ZAREPTA system addresses the need for a 
low-cost static ASIC tester. By utilizing reconfigurable FPGA technol- 
ogy, the ZAREPTA's total functionality (and 400 DUT pins) can be 
configured, controlled and monitored by PC software. The main princi- 
ples of the tester, the block diagram, the software, and the FPGA designs 
will be explained. However, as a spin-off, the ZAREPTA system may also 
be used for emulation and fast prototyping of small ASICs. Recently, the 
ZAREPTA system has been extended with 4 FPIDs, to provide pro- 
grammable interconnect between the 13 Xilinx XC4005 of ZAREPTA. 
Bit-serial ASIC architectures with at most 120 external signal pins and 
20000 gates may be emulated. 

1 I n t r o d u c t i o n  

The digital tester  made by one of our students 12 years ago, has been used for 
testing of m a n y  of our CMOS VLSI prototypes.  However, after all these years, 
it is not reliable any more. In 1992, we therefore decided to build ZAREPTA,  
which primarily is a new static ASIC tester [I][2][3][4]. The ZAREPTA system 
is based on the XC4000-series FPGAs  from Xilinx, due to their very at t ract ive 
properties in this context: high source and sink current per output  pin, local 
RAMs, programmable  pull-up or pull-down resistors, Boundary Scan support ,  
fast reprogramming etc. The tester is implemented using 13 Xilinx XC4005. 
Each of these RAM-based FPGAs can be reconfigured from the PC bus at any 
time. It  should be noted, as explained below, that  only three different Xilinx 
configurations are required to implement  the tester. These three configurations 
are independent of the ASIC under test. 

The main features of the tester are: 

- Static testing of CMOS ASICs 
- DUTs (Devices Under Test) with at most  400 pins 
- Each pin selectable to be either IN ,OUT, I /O ,CLKn,VCC,GND,or  NC 
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Fig. 1. Photograph of the Zarepta system (prior to the FPID expansion). 

- No need for a test jig 
- Flexible implementat ion due to use of f ield-programmable gate arrays 
- PC based software to configure, control and monitor the tester 's  total  func- 

tionality 
- Interface to commercial automatic  test pa t tern  generators (ATPG)  
- Low-cost system compared to commercial ASIC testers 

2 S y s t e m  C o m p o n e n t s  

As shown in Fig. 2, the ZAREPTA board comprises a 20x20 pin grid array ZIF 
socket, thirteen Xilinx XC4005 FPGAs,  5 octal registers and bus interface to a 
personal computer.  The PC bus interface provides access to these control and 
s tatus  registers, to the byte-parallel configuration ports of the different FPGAs,  
and to the actual internal registers implemented in each FPGA.  18 out of the 
total  20 ICs on the ZAREPTA board comply with the IEEEl149.1 Boundary 
Scan standard.  They are connected in a Boundary Scan chain, to make the tester 
itself testable. The scan test chain is accessible through the PC bus. Every pin 
in the 20x20 socket are connected to a Xilinx I / O  pad and to a j umpe r  to 
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Fig. 2. System components. 

select whether this pin should be VCC, GND or a signal. In the latter case, the 
corresponding Xilinx pin will be set up by PC commands as an input, output or 
a specified clock, as explained below. 

3 T h e  T h r e e  X i l i n x  C o n f i g u r a t i o n s  f o r  t h e  S t a t i c  A S I C  

T e s t e r  M o d e  

The 400 jumpers facilitate connection of power and ground to the DUT. Un- 
less using a lot of relays, there is no way to automate this. However, with PC 
commands we check for wrong GND or VCC jumper settings, using two Xilinx 
configurations with input pull-up and pull-down options, respectively, as shown 
in Fig. 3. 

When the power supply is set up correctly and checked in the first two con- 
figurations as explained above, the third configuration is now downloaded in the 
FPGAs. Each pin may be a data pin or a specified clock, depending on the PC 
commands given to the different registers associated with each pin. When a pin 
is defined to be a data pin, the pin logic is as shown in Fig.4 (simplified for 
clarity). For each test clock cycle, the PC can write to FF1 and FF2 to define 
next data value and direction, and get current pin data value by reading TBUF. 
When the PC starts each new test clock cycle by a specified command, a pre- 
stored sequence of 16 bits specifies the time event for stimulus data setup and 
the response sampling time. 

When a pin is defined to be a clock pin, the clock pin logic (simplified for 
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Fig.  3. Input pull-up and pull-down are used to check GND and VCC. 

clarity) is as shown in Fig. 5. Here the 16 bits pre-stored sequence defines the 
time events for rising and falling edge of this particular clock. 

Since the appropriate 16 bits data and clock patterns may be downloaded 
for each pin, many different clocking schemes and clock/data  relationships are 
possible. 

4 I n t e r f a c e  t o  C o m m e r c i a l  T e s t  S o f t w a r e  

We have developed a C library of high level functions for controlling the tester, 
to make it easy to build test programs. The functions are accessible in the Lab- 
Windows/CVI [12] environment under Microsoft Windows, making application 
software development a simple task. We are also working with an interface to the 
TDS ASCII format, which is a widely accepted test pat tern standard [9] (e.g. 
optional output  from the TestCompiler from Synopsys [10]). 

5 F a s t  P r o t o t y p i n g  w i t h  Z A R E P T A  

As a spin-off, we believe ZAREPTA may be a suitable tool for so-called fast pro- 
totyping and in-circuit emulation. In order to efficiently utilize the 13 FPGAs, 
they need to be interconnected. Recently, the ZAREPTA system has therefore 
been augmented with 4 IQ-160 field-programmable interconnect devices (FPIDs) 
from I-Cube. Fig. 6 shows an overview on how ZAREPTA is used for fast pro- 
totyping. 

The 13 FPGAs may be configured individually from the PC to implement 
different parts of the functionality of the ASIC device under emulation (DUE), 
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Fig. 4. Data pin logic. 

and the FPIDs provide the required internal interconnections between the mod- 
ules of the DUE as well as connections to the external world. As can be observed 
in Fig. 7, all 4 FPIDs are connected to the 13 Xilinx FPGAs and to the I/O 
connector representing the external signal pins of the DUE (max. 120). Since 
only 32 I/O pins per Xilinx part are used, the system is primarily suited for em- 
ulating ASIC designs with bit-serial data paths. To be conservative, we expect 
that designs with up to 20.000 gates may be emulated by the ZAREPTA system 
(assuming 30% utilization of the CLB resources in Xilinx). 

Fast prototyping may be an alternative and a supplement to simulation for 
studying the functional behavior of a single module or a complete ASIC. By in- 
circuit emulation in the system environment, it is possible to detect and correct 
design errors and specification inconsistencies, which otherwise might not have 
been discovered before receiving the ASIC from the foundry. In system design, 
cooperating software and hardware may be developed and tested concurrently, 
even though no physical ASIC exists. Specifically, prior to layout and process- 
ing of an ASIC, its real-time behavior may be investigated. In adaptive signal 
processing, simulation may be too unrealistic, whereas in-circuit emulation can 
be invaluable. Also, when exhaustive simulation is required (e.g. for evaluation 
of subjective quality in audio and video codecs), emulation will speed up the 
computations. 

We have used Synopsys' Design Compiler and FPGA Compiler to provide 
synthesis from a technology independent level (VHDL) to the Xilinx target tech- 
nology. Exactly the same design descriptions may be used for the final standard 
cell or gate array synthesis as for the emulation. Obviously, the design descrip- 
tions need not adapt to a specific Xilinx-style, and we can always utilize the 
highest level of abstraction accepted by the synthesis tools. 
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Fig. 6. Fast prototyping with ZAREPTA. 
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Four different UNIX-cshell/Synopsys scripts have been developed to facilitate 
synthesis from VHDL to Xilinx configurations, which automate most of the 
procedure. These scripts are: 

- zest: Using Synopsys' VHDL Compiler the design is compiled from VHDL 
(IEEEl164) into Synopsys internal db-format. The Xilinx logic (CLBs) and 
I/O (IOBs) requirements, and the hierarchy are extracted from the design. 
The results from this script form the basis for further decisions on partition- 
ing. 

- zcon: For a given design, this script facilitates a query on connectivity. 
A report is generated on the connectivity between the subinstances of an 
instance in the design. 

- zpar t :A specified set of sub-modules (instances) are extracted from the de- 
sign, and partitioned into one Xilinx part. A report on Xilinx logic and 
I/O requirements is generated. Depending on the results of this script, the 
partition may be accepted or rejected. 

- zbui ld:  When the original design has been partitioned into between 1 and 13 
sub-designs, this script uses Synopsys' FPGA Compiler to generate Xilinx 
netlists (XNF files without pin number assignments) for each of the sub- 
designs. The first connectivity program, zcollect [8], is then run on the XNF 
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Fig. 8. Design flow for generating ZAREPTA configuration files from a VHDL design. 

files, zcollect inspects the signal names of in- and out-signals of each FPGA 
and identifies common names. The XNF files are annotated with feasible 
pin assignments which are given by the connecl, ivity restrictions imposed 
by ZAREPTA's hardware structure. This way, the Xilinx place and route 
tools are given largest possible freedom ensuring a good hardware utilization. 
An I/O pin definition file may be included to steer external ports (max. 
120) of the design to pre-determined I/O pins. The Xilinx software (ppr 
and makebi ts )  then places and routes each of the sub-designs, resulting 
in up to 13 loadable FPGA configurations (EXO files). Finally the second 
connectivity program, zconnect  is run to create the iCube configuration 
files and convert them to Boundary Scan bit streams which can be loaded 
into the FPIDs. 

The design flow using the scripts, is depicted in Fig. 8. The dashed lines 
indicate that the partitioning is semi-automatic, so that queries on connectivity 
and partitioning attempts is repeated until a satisfactory partition in terms 
of CLB and IOB requirements, is achieved. Thus, using the first three of these 
scripts, we may semi-automatically partition the VHDL design into the 13 Xilinx 
parts of ZAREPTA. Later on, we plan to automate the partioning process using 
a suitable algorithm. The two key ideas to be employed are: 1) Traverse the 
hierarchy to find the largest modules which fit into each FPGA without exceeding 
the 1/O restrictions. 2) The optimal solution is not the one which gives the 
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smallest CLB count, but the one which gives good enough resource utilization 
without spending too much effort on partitioning and building configuration 
files, since low development time is important .  

After the loadable configuration files for the FPGAs and FPIDs have been 
generated, the configuration files are transferred to the PC controlling ZAREPTA, 
and the files are down-loaded. The design is now ready for emulation on the 
ZAREPTA system. 

For DSP applications, the design can be specified at an even more abstract 
level with signal flow graphs (SFG), using Mentor's DSP Station. The synthesis 
tools of DSP Station produce bit-serial or bit-parallel solutions (VHDL netlists), 
suitable for further synthesis and mapping. 

6 E x a m p l e s  on U s e  of Z A R E P T A  for Fast  P r o t o t y p i n g  

As an example of the fast prototyping capability of ZAREPTA, the system was 
used to emulate a 48-tap FIR filter design. The filter is an analysis bandpass 
filter for a filter bank. The filter was specified at the SFG level and bit-serial 
synthesis was performed in DSP Station. To simplify the partitioning, prior to 
bit-serial synthesis the design was entered as 10 sub-designs, each implementing 
5 taps except the last one which implemented 3 taps of the FIR filter. A 5- 
tap FIR filter link is shown in Fig. 9. Output  signal y connects to the acc 
input of the following link. The filter has an internal word length of 20 bits and 
an inpu t /ou tpu t  word length of 16 bits. It was estimated that each of these 
10 sub-designs would fit into one FPGA.  A structural VHDL design was then 
manually created to reflect the connections between the 10 sub-designs as well 
as connections to external ports. Note that  since the implementation is bit- 
serial the interconnection requirements between the 10 sub-designs are very low. 
The partitioning specification was then prepared and a master script calling the 
four scripts above was written. The master script first calls zes t  on the design 
at the top level, then performs partitioning with z p a r t  using the partitioning 
specification (one call for each Xilinx part),  and finally calls zb u i l d  to create the 
FPGA and FPID configuration files. Approximately 3 man-hours was spent on 
developing the VHDL design description. Running the master script and down- 
loading the configuration files into ZAREPTA took approximately 3 hours of 
CPU time on a HP735 workstation. Note that  once the VHDL design description 
and the partit ioning specification has been created, the rest of the process is fully 
automatic. 

7 C o n c l u s i o n  

With the ZAREPTA system, a static ASIC tester has been implemented. By 
introducing programmable interconnection devices, the ZAREPTA system now 
has been extended to be a simple, but versatile tool for fast prototyping and 
in-circuit emulation of small bit-serial ASICs. 



xC2> 

acc 

239 

Fig. 9. 5-tap FIR filter link 

Just  like the old story from Sarepta about  the widow's jar,  which could 
never be emptied, the possibilities of our ZAREPTA are almost bottomless.  The 
ambit ious name is inspired by this old legend, but is of course also an acronym 
for what our ZAREPTA is: "A _Zero lead-time, All Reconfigurable sys tem for 
__Emulating, P rototyping, and --Testing of ASICs"! 

References  

1. T.Nj¢lstad & H.Dale: "ZAREPTA. An ASIC emulator and tester", Technical re- 
port, Norwegian Institute of Technology, Trondheim, Norway, 1992 (Norwegian). 

2. FI.Dale: "Test station for integrated circuits", M.Sc.thesis, Norwegian Institute of 
Technology, Trondheim, Norway, 1992 (Norwegian). 

3. S.M0ien: "ZAREPTA- emulator and tester for AS1Cs", Term project report, Nor- 
wegian Institute of Technology, Trondheim, Norway, 1992 (Norwegian). 

4. T.Nj01stad, J.E.Oye, H.Dale and S.M0ien: "ZAREPTA: A low-cost system for fast 
prototyping and testing of ASICs'. Proceedings on the fourth Eurochip Workshop 
on VLSI Design Training, Toledo, Spain, 1993, pp. 150-155. 

5. S.M0ien: "The interface between the ZAREPTA system and the PC", Technical 
report, Norwegian Institute of Technology, Trondheim, Norway, 1993 (Norwegian). 

6. S.M¢ien: "On digital design, fast prototyping and ASIC emulation of a digital 
filterbank', M.Sc.Thesis, Norwegian Institute of Technology, Trondheim, Norway, 
1993 (Norwegian). 

7. J.Hofstad: "Test of Altera EPS448 using ZAREPTA" Term project report, Nor- 
wegian Institute of Technology, Trondheim, Norway, 1993 (Norwegian). 

8. J.Hofstad: "Fast prototyping of ASICs using the ZAREPTA system", M.Sc.Thesis, 
Norwegian Institute of Technology, Trondheim, Norway, 1994 (Norwegian). 

9. TSSI: TDS Options Guide, August 1992. 
10. Synopsys Inc: TestCompiler and TestCompiler Plus Reference Manual, Version 3.0, 

December 1992. 
11. Xilinx Ine: The Programmable Logic Data Book, 1993. 
12. National Instruments: LabWindows/CVI, 1994. 



Simulating Static and Dynamic Faults in BIST Structures 
with a FPGA Based Emulator 

Richard W. Wieler, Zaifu Zhang and Robert D. McLeod 
Department of Electrical and Computer Engineering 

University Of Manitoba, Wpg, MB, Canada, R3T-2N2 

Abstract. Circuit emulation, using dynamically reconfigurable hardware is a high 
speed alternative to circuit simulation, especially for large and complex designs. 
Dynamic re.configuration enhances the ability to efficiently analyse the test of combi- 
national and sequential circuits by providing statistical information on fault grading, 
detectability, and signature analysis. In this paper we examine hardware accelleration 
of static and delay fault simulation, and the accelleration in simulating new BIST 
techniques. 

1 Introduction 
Emulation of circuits which are large or contain feedback loops, is desirable for several 
reasons. Emulation can considerably reduce the time taken in the analysis of  fault grading 
and signature analysis for combinational and sequential circuits of  small or large scale. A 
dynamically reconfigurable emulator, allows the user, to directly inject faults into a circuit 
for the purpose of  test analysis. Towards this end we have been investigating the use of a 
field programmable gate array ~PGA)  based platform. By using a FPGA platform, we 
allow for both rapid prototyping of  the end product as well as rapid prototyping of test 
schemes. 

Algotronixl[3] currently has a FPGA based computer using an array of CAL1024 
chips. This computer allows the user to download designs and control functions occurring 
on the computer. The ability to download large designs and have full control of  clocking 
functions, is an ideal concept on which to base a hardware emulator. 

Due to the increasing density of Integrated Circuits (IC) and ever increasing demands 
for high product quality in manufacturing and throughout the life cycle of an IC product, 
Built-In Self-Test (BIST) is becoming more and more popular[4][5][6][7]. All BIST tech- 
niques require two basic elements; test pattern generation and some form of test response 
compaction. These two components are equally important for obtaining high quality test. 
Test patterns generated are required to activate each fault's behaviour to at least one pri- 
mary output, and compaction is required to capture and retain the faulty behaviour[5][8]. 
In general, with BIST schemes that use pseudorandom test, test patterns are most corn- 

1. Algotronix was recently purchased by Xilinx. For the purposes of this discus- 
sion the implementation is sufficiently generic to apply to other FPGA environ- 
ments and particularly well suited to future technologies with increased support 
for dynamic reconfiguration. 
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monly generated by the use of  linear feedback shift registers (LFSR), or cellular automata 
(CA)[5][9], and compacted by LFSR or CA signature analyses. The problem with LFSRs, 
or CAs, is that they may introduce a hardware overhead which may be undesirable and 
degrade the performance. A proposed alternative to augmenting a circuit with LFSRs is 
Circular Self-Test Path (CSTP)[1][2]. CSTP is a similar idea to the simultaneous self- 
test(SST) approach, presented in [10]. With a CSTP technique, less silicon area overhead is 
incurred. In theory, on an ASIC the CSTP loop may span a significant portion of  the chip 
reducing the control overhead otherwise needed by more conventional scan based meth- 
ods. In addition, the quality of the test patterns appear very high with aliasing being similar 
to that of  traditional LFSR based signature analysis. 

CSTP is not being widely utilized at this time. One reason for this slow acceptance is a 
lack of a fast simulator to analyse the CSTP circuit under test. A fast simulator is needed to 
assess the quality of a test process[Ill like SST or CSTP. It is very expensive and time con- 
suming to simulate sequential circuits, SST, or CSTP circuits, and to analyse the detecta- 
bilities and aliasing probabilities of  the faults with serial computers. A fast simulator would 
be one that emulated the actual hardware, so a logical solution would be based on the use 
of reprogrammable devices. With this scheme it is possible to efficiently emulate both 
combinational and sequential circuits, on a large or small scale. 

The paper includes an overview of the Algotronix FPGA technology and issues such as, 
why dynamic reconfiguration makes it well suited for these types of problems. We also 
illustrate that FPGA technology can be used not only for rapid prototyping of systems, but 
also rapid prototyping and verification of test structures. We also look at results of fault 
grading, fault detectability and aliasing, for both the LFSR signature analysis as well as a 
CSTP scheme. As well, the results of [1][2] have been verified for the state coverage, and 
the probability of a 1 occurring in a CSTP register. 

2 A d v a n t a g e s  o f  C o n t r o l  S t o r e  R A M  A r c h i t e c t u r e  f o r  F P G A s  

The Algotronix type FPOA is ideally suited towards emulation type applications. The 
Algotronix chips are known as CALs (Configumble Array Logic). These FPGAs consist of  
an array of programmable cells. Each cell may be connected (input and output) to its near- 
est neighbours. 

The FPGA uses a static RAM control store. The control RAM controls multiplexers 
which in turn control both the functional blocks as well as routing. Only one mux in each 
functional block is controlled by data, instead of the control RAM. Because of this com- 
plete control over all aspects of the FPGA configuration, it is possible to change individual 
control RAM cells without affecting the remaining configuration of the chip. This enable 
the user to quickly and dynamically reprogram the FPGA. The dynamic reprogramability 
allows for efficient fault insertion. 

Another very useful feature of this architecture is the bit of control store, in each cell 
which allows the user to read back the output of each function block. This allows for con- 
tinuous monitoring of internal cells. Monitoring of cells internally, allows for I/O to be 
freed for other purposes, especially when cascading chips in an array configuration. 

The architecture of arrayed logic cells, allows for transparent boundaries when chips 
are cascaded in an array fashion. This creates simplicity when partitioning a design over 
multiple chips. This architectural feature is exploited with the Algotronix FPGA computer. 
It also makes further expansion quite simple. 
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Fig. 1.Array Structure 

3 E m u l a t i n g  Static  Faults  

The hardware emulator is derived from a FPGA based computer. The computer is made up 
of an array of  Algotronix CALl024 chips. The computer is on a board that fits into an AT 
compatible bus. It enables the user to download the design into the FPGA array and run the 
circuit in real time. The user may manipulate the control functions of the chip and the 
clocking, by way of  the pc interface[3]. The current system we have, has a capability of  
emulating a circuit of  several thousand gates. The actual hardware allows for 16,384, two 
input gate equivalents, although when implementing a CUT, the degree of  resource utiliza- 
tion is reduced, due to routing overhead. Two points should be noted: i) this is considered a 
first generation FPGA technology, and ii) sub-circuits to be analysed for test will not likely 
be larger than several thousand gates, due to functional partitioning of  large designs. 

The fact that the emulation is actually occurring in hardware, reduces the time it takes 
to perform a simulation or generate a signature. Because of the reprogramability of  the 
emulator, it is very easy to inject faults at crucial areas. The CALl024 allows the user to 
change individual cells during write cycles. This feature has been manipulated to further 
expedite the fault injection process, and enhance test point insertion. More conventional 
hardware emulators or those based on chip level reprogramability have been and will con- 
tinue to be important for hardware accelerated simulation. For applications such as BIST 
analysis, dynamic reconfiguration at the gate level is a definite asset. This is due to the fact 
that reconfiguration time is required to be minimal as the circuit is modified for each fault 
injected. To statistically evaluate the detectabilities and aliasing probabilities of  the combi- 
national circuit, the fault injection procedure could be further improved by simultaneously 
injecting faults which are in independent blocks. This is not possible on a serial machine 
simulation. 

A variety of methods are under investigation in the use of the reconfigurable computer 
for emulation. The most straight forward involves the sequential emulation of a fault free 
circuit, storing the final signature for comparison with signatures o f  the circuit with the 
fault(s) injected. The basic procedure is illustrated in Figure 2 (a) and is denoted method 1. 
This method would allow for the largest of circuits to be investigated but requires more 
time than the following methods. 

An improved method which still allows for maximum sized circuits consists of sequen- 
tial emulation of the fault free and faulty circuit but involves the recording of  multiple sit- 
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Figure 2 (a) Method 1: Sequential Emulat ion (left), (b) Method 2: Sequential  
Emulat ion with Multiple Signatures (right) 

natures. These multiple signatures may be at 100, 1000, 10K, or longer iterations of the test 
cycle. Signatures generated during the emulation of the faulty circuit are compared to the 
multiple signatures stored. This allows for the fault to be dropped early in the test cycle and 
reduces overall test time. This method is illustrated in Figure 2 (b) and is denoted method 
2. 

The final method discussed denoted method 3 and illustrated in Figure 3 allows for 
immediate fault dropping upon detection of a difference in output between the fault free 
and faulty circuit. This is accomplished by simultaneously emulating the both the fault free 
circuit and fault injected circuit. The comparison circuit is a simple XOR gate. Upon the 
receipt of a difference, the fault in question can be removed from consideration. 

Si rnu l ta~  Emulation: Faulty and Fa~t Free Circuit ~ Faull Detected 

R 

Modue Op~andi 

-Faults selected from Fault Ust 
-Sin'~Jtaneoue Fault-free and 
Fault in~ected dn::tJt em~al~.r~ 

-B~t Stmarrm Co~pared 
detecliotrl n~Xt fault injecled 

Figure 3 Method 3: Simultaneous Emulation 

In each of these methods a fault list would be generated, likely based upon a reduced 
single stuck-at fault subset through gate level fault collapsing[12][ll][13].  These stuck-at 
faults can be easily modelled (emulated). More sophisticate parametric fault models  likely 
cannot be accommodated with current technology. 
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4 C i r c u i t  U n d e r  T e s t  

The 74LS181, a four bit ALU[14] was chosen as the initial circuit used to test the emulator. 
The 74LS 181 is a combinational circuit that has been widely used as a benchmark for var- 
ious testing methodologies[15][16]. The procedures stated in this paper could easily be 
extended to larger and more complex circuits, however there is a physical limitations with 
the current emulator configuration, 1 so only slightly lager circuits can be emulated at this 
time. 

Initially when testing the 74LS181, the simultaneous emulation method (method 3) was 
used. Two identical circuits were downloaded to the emulator. Each circuit used a 16 bit 
maximum length LFSR as an input. There are 14 inputs on the 74LS181 so a maximum of 
214 input patterns were possible, with this configuration. The outputs of  the 74LS 181 were 
fed through a comparator circuit. 

The first task was to fault grade the ALU. The fault list consisted of  314 gate equivalent 
stuck-at faults. Since the Algolronix FPGA allows a maximum of two inputs per gate, the 
gates which are fed by more than three inputs were implemented with an appropriate type 
of  several cascaded two input gates when modelled for the emulator. This did not effect 
fault coverage however, as the 74LS181 has 100% fault coverage. When testing a circuit 
with an undetermined, or less than 100% fault coverage, possible faults arising from the 
cascaded version of the multiple input gates could be ignored when fault grading, thus 
more closely emulating the original model. A one to one map between the original circuit 
and emulation implementation could be generated to ensure that only the faults which cor- 
respond to those of  the original circuit are considered in the emulation procedure. 

Fault grading of the 74LS181 resulted in all faults being detected within about 350 
cycles for several different seeds. Once the fault had been detected, the circuit was reset 
and the next fault was injected. Using this process and running the computer, at a reduced 
bus speed of  8 MHz, the entire circuit was fault graded within one minute. This process 
would take longer if there were hard to detect faults or redundant lines in the circuit. How- 
ever the procedure takes the same time per fault regardless of  the complexity of the circuit, 
and increases slightly as the circuit size increases. This is a significant advantage of the 
emulator. 

The detectability of the faults was the next test performed. The test was implemented in 
the following manner. Each single fault was injected into the CUT. The circuit was then 
clocked for 214 cycles to insure the majority of possible input patterns were covered. Each 
time the comparator sensed the fault, it was recorded. The detectability profile of  74LS 181 
can be seen in Figure 4. 

1. Although system size can be almost tripled, the hardware is no longer available 
from Algotlonix. 
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Fig. 4. Detectability Profile 

5 Delay Fault Testing 
We have explored several models for testing transition delay faults[14][18]. The first 
scheme is described as follows (Figure 5). The proposed scheme would consist of  three 
similar circuits. One circuit would be the Golden circuit, another one would be the circuit, 
onto which the stuck-open faults would be implemented. The third circuit would also be a 
Golden circuit but would be delayed by one clock cycle. When a fault is detected from the 
test circuit, the delayed Golden circuit, is observed to find the delayed value of  the line 
under test. In this way if the delayed circuit test point, and the test circuit have the same 
value, the delayed fault should be detectable in a normal testing scheme. We have 
attempted to implement this scheme with our current emulator configuration. Unfortu- 
nately the current software can not translate a design of this size to the bit steam needed to 
program the emulator. 

I 
. . . . . . .  j 

SA0 
~- -Tes t  Point ~ T e s t  Point 

Delayed Circuit Testing Circuit 

Fig. 5. Delayed Model Test Scheme for Slow-to-Rise Transition Delay Faults 

Because of the constraints of our current system, we have implemented a second, less 
hardware intensive scheme for testing delay faults. The scheme involves adding flip-flops 
to the golden circuit. The flop-fops act as a shadow register of the previous state of  the line 
connected to it. Because of  the routing constraints of the circuit not all of the delay faults 
have been tested. Instead we took the 10 least detectable stuck-at-zero and the ten least 
detectable stuck-at-one faults, so that, transition faults corresponding to these faults will be 
hard to detect and have an impact on the necessary test lengths. 
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For the delay fault to be detected, it must be a slow-to-fall fault, when using the stuck- 
at-one fault to test. Likewise a slow-to-rise fault uses a stuck-at-zero fault to test for 
observability. If  the stuck-at-zero fault of line 1 is dectected there is a probability (deter- 
mined by the zero controllability of  line/) that the slow-to-rise fault is also detected, as the 
slow-to-rise fault must be in a low state, the clock cycle before, if it is to be detected. 

Our current method of testing shows that all of  the faults we tested were observable. 
This is as expected. We did not at the time this paper was written test for the actual detecta- 
bility of the faults. To test the detectability of the delay faults involves some minor modifi- 
cations to compensate for muting inversions which occur on the Algotronix FtK3As. 

The second scheme should be efficient enough for testing most delay faults, as it should 
only be necessary to test delay faults where the stuck-at fault has a low detectability, since 
the transition faults corresponding to those stuck-at faults, have a lower detectability [19]. 

Faulty Circuit Golden Circuit w. Flip-flop 

Fig. 6. Delay Fault Scheme #2 

6 Testing of the LFSR Signature 
Signature analysis on the 74LS181 ALU has been implemented, with both different cycle 
lengths and different seeds. Given that the CUT was 100% fault testable, there could be 
100% fauR detection with a suitable LFSR signature analyses. That is, aliasing was not 
anticipated to be problem. 

The testing methodology was changed to incorporate sequential emulation with multi- 
pie signatures (method 2). The golden circuit was clocked at multiples of  1000 cycles. 
After each clocking cycle of  the golden circuit the 16 bit LFSR signature was recorded. 
Following that, each fault was injected and the circuit cycled again. Each faulty signature 
was then recorded and checked against the good signature for aliasing. After this test, no 
instances of  aliasing occurred. This same procedure was then also extended to testing a 
CSTP scheme. 

7 Circular Self-Test Path 
CSTP links together registers into one circular path. Not all the registers in the circuit have 
to be utilized, but at least all the primary input and primary output registers must be used. 
The register acts like a simple D-latch or flip-flop when the circuit is in a normal mode of  
operation. When the circuit is under test, the bit from the previous latch is XOR'd  with the 
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incoming bit[l]. This process acts as a modulo 2 sum of the previous state. It is this proce- 
dure that generates the test vectors as well as performing the compaction for signature 
analysis. A schematic representation of  the basic scheme is shown in Figure 7. 

The most significant advantage of CSTP is the minimal amount of  additional hardware 
that is required. The additional hardware is illustrated in Figure 8.The ALU, using the con- 
figuration as shown in Figure 9, has been slightly changed to facilitate a CSTP test. Four of  
the primary outputs are fed back to four of  the primary inputs (F0-F3 and B0-B3 respec- 
tively) as "active inputs". The other primary inputs were set to a "0" value as "inactive 
inputs" to form an ALU CSTP configuration. 

~ ----~ircuit in Normal Operation 

Circular Self-Test Path 

Fig. 7. Schematic of the Basic CSTP Configuration 

The same emulation method that was used to test for aliasing (method 3) was used to 
find the LFSR signature. The bits which are as long as the number of  all the CSTP registers 
(22 total, 14 input, and 8 output), were used for representing the signature contents. No 
aliasing was found to be occurring. 

Other tests on the CSTP design included testing for state-space coverage on the inputs, 
and testing for the probability of any bit being set to one, on an input. Krasniewski and 
Pilarski[1] have stated that after a short periods, the probability of any bit being set to one 
on the input should approach 0.5. This was verified on our circuit as the probability of one 
on all the inputs was very close to 0.5 (0.49657) at 10,000 cycles. This figure remained 
close to 0.5 for increased cycle lengths. 

The state space coverage was implemented for three randomly chosen different 8 bit 
input taps, in which the chosen 8 bits include a hybrid of  "inactive input" and "active 
input" [1]. The state coverage at different cycle times are given, as shown in Table 1. The 
three randomly selected 8 bit words for this experiment are denoted Tapl, Tap2 and Tap3. 
We noted that after 1000 cycles, nearly 100.00% of states are generated on all three taps. 
This verifies that the CSTP registers are a very good technique for pattern generation. 
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Fig. 8. Hardware Required for CSTP 

Table 1: State Coverage of Inputs 

Cycles Tap 1 Tap 2 Tap3 Average 

100 37.81% 33.20% 32.03% 34.35% 

1000 97.27% 96.88% 96.48% 96.88% 

10,000 100.00% 99.61% 99.61% 99.74% 

It is important to note that the test performed on the CSTP scheme took the same 
amount of time as the tests performed on the LFSR scheme. This would not be the case if a 
simulator was used. The ability to develop and verify different BIST strategies such as 
CSTP, will not only increase their acceptance, but will also decrease the time for a system 
to be validated. Although the CUT being used was a very basic design, this methodology 
can easily be extended to larger and more complex designs. 

8 Recommendations for Future FPGA Development 

We have taken our work in emulation technology as far as our current system limitations 
will allow. It may be possible to port some of this work to other FPGA technologies, how- 
ever there are certain aspects of the current Algo~onix technology that would greatly 
enhance future FPGA architecture. The following paragraphs outline some of  the architec- 
tural aspects that could improve future emulation, based on FPGA technology. 

Emulation, as previously stated, is greatly enhanced by dynamic in circuit reprograma- 
bility. By this we mean, not chip level, but functional block level and routing level recon- 
figuration. Advancements in this area with FPGAs currently commercially available could 
be a great resource. 
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Fig. 9. 4 bit ALU CSTP Configuration 

Reprogramability on the scale stated above, usually comes with a reduction in clock 
speed (due to the increased delays through control multiplexers). However any FPGA 
technology should try to optimize the architecture for fast clocking of global signals. As 
well the feature of a controllable on board clocking scheme would also be a great asset. If 
the clocking must be controlled by software, there will be a great loss in the performance 
of the emulator, due to the communication bandwidth limitations between board I/0 and 
host IJO. There is no reason for this to occur if software can control an on board clock. 
If a current FPGA vendor could meet the architectural requirements above, it would also 
be fortuitous to develop a multi-chip board and control software. It would be advantageous 
if a board, as described above, could be a stand alone unit with I/O access to a number of 
hardware platforms. 
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Abs t r ac t .  COSYMA is a ttW/SW-cosynthesis system for small embed- 
ded controllers. The final simulation of the COSYMA output leads to 
impractical computation time. Therefore, we decided to employ a hard- 
ware prototyping system. The HW/SW prototyping system consists of a 
SPARC processor, an FPGA-based coprocessor with HW/SW debugging 
features realized with a high speed microcontroller. 

1 I n t r o d u c t i o n  

COSYMA (CoSYnthesis of embedded Micro Architectures) is one of the first 
systems for hardware-software cosynthesis [1]. It  is targeted to the design of 
small  embedded controllers. Given an input description in a superset of C, C *, 
consisting of one or more tasks with t ime constraints, and given a fixed core 
processor, COSYMA tries to map as much of the system as possible to software. 
When the t ime constraints cannot be met,  it automatical ly  parti t ions parts  of the 
system description to an application specific coprocessor such that  the t iming 
constraints are met  with minimum hardware overhead. The parti t ioning pro- 
cess regards and minimizes communication overhead. Significant speedups have 
been observed for real examples with more than 1000 lines of C code and a 
33MHz SPARC as core processor. Figure 1 outlines the design flow. Part i t ioning 
is done on the basic block level using simulated annealing based on speedup, 
communicat ion t ime and hardware overhead estimation. The software par t  is 
enhanced by a communication protocol, translated to C and compiled to object 
code. The hardware part  is generated by high-level synthesis. The approach is 
flexible enough to permit  the use of different high-level synthesis systems; cur- 
rently these are OLYMPUS [2] from Stanford taking a HardwareC description 
as input and our own synthesis system BSS [3] taking a CDFG as input. A run 
t ime analysis is able to accurately est imate the execution t ime of the resulting 
hardware-software system on a clock cycle basis [4] and thus show if the t im- 
ing constraints are met.  Currently, we are working on an approach to adapt  the 
es t imat ion in hardware-software parti t ioning to the actual results. Once the t im- 
ing constraints are met ,  the highqevel synthesis system generates a hierarchical 
netlist on the logic level consisting of the controller and the data  path  in SLIF 
format  (Stanford Intermediate Logic Format) .  In order to verify this netlist, we 
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currently use H W / S W  cosimulation. It turned out that  logic level simulation 
of the coprocessor and the communication hardware is only possible for small 
examples in acceptable computation time, even though the processor is simu- 
lated at the register transfer level. So, we decided that  for hardware-software 
co-verification a hardware prototyping system would be very helpful. 

C ~ 
system 

description 

communication SW HW/SW • • partitioning HW. communication protocol d e s ~ ~ . . ~ ; c r t p t l o n ~ p r o t o c o l  

~ HL.synthesi ~ ' ' , )  
f l l~ (~ (~ I / - t t  V ] ~ I [ D I  T~'t 

object code 
modelsALU ~ l o g i c  netlist 

logic synthesis 

\ 
transformation ] to ASIC design 

Fig.  1. The COSYMA experimental system 
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2 Prototyping System Requirements 

Because the generated hardware-software system uses memory  coupling, it seemed 
reasonable not to use a very expensive commercial  prototyping system, which 
would have to be extended by a SPARC core, anyway, but  to develop a spe- 
cialized system. Because the coprocessor typically is rather small, we concluded 
tha t  it should be possible to design the hardware-software prototyping system 
to run close to real t ime (33MItz SPARC clock) and so even use it for system 
evaluation in the real environment. Furthermore, symbolic debugging features 
with software breakpoints were considered essential for COSYMA verification. A 
major  requirement was that  the whole design flow from the high-level synthesis 
output  should work without manual  interaction. 

3 T h e  A r c h i t e c t u r e  o f  the Prototyping S y s t e m  

The prototyping system consists of three different boards. Figure 2 gives an 
overview of the system. The LSI SPARC processor ([5]) and the coprocessor 
board are memory  coupled by RAM A and RAM B of the coprocessor board. 
The arbiter separates the processor bus from the system bus, which enables the 
processor to fetch an instruction from its instruction RAM, while the coprocessor 
is fetching one or two 32 bit words in the same clock cycle. 

The F P G A  board contains four XILINX XC4010 ([6]). We chose the F P G A  
family, because of its sizes. For multiplications, we added an AMD 29C323. 

For the purpose of t ime measurement,  debugging and the connection to the 
host computer,  a Motorola MC 68332 ([7]) is used. 

3.1 T h e  F P C I A  B o a r d  

The major  function of the prototyping system is the emulation of an application 
specific coprocessor. A typical design generated by COSYMA could include up 
to five ALUs and 20 registers. This exceeds the capacity of one single FPGA.  
So, the design was parti t ioned into clusters. With  up to 5 arbitrari ly connected 
32 bit ALUs and 10 more rnore registers, we would quickly run out of pins when 
allocating complete ALUs and registers to FPGAs.  Instead we chose a bit slice 
architecture (fig. 3). The FPGA board consists of four XILINX XC4010, each 
handling an eight bit slice of all ALUs and registers. So, every F P G A  holds up 
to five 8-Bit-ALU slices and an application dependent number of 8 bit register 
slices. 

In order to handle the large number of control signals, a copy of the whole 
controller is included in each slice. Therefore it is ensured that  all impor tan t  
control signals are generated on each slice. The carry signal of the ALUs is 
handled by a carry look ahead logic on one of the slices (no. 3). Additional flags 
for comparison decrease the controller overhead. 

On every slice there are two RAM ports. Each of the ports is able to read or 
write 8 bits of the 32 bit word. Therefore, the control signals are generated on 
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micro controller board 

host interface 

SPARC board  

SPARC 

coprocessor  board  

coprocessor 

4 XC4010 

Fig.  2. The architecture of the prototyping system 

one of the slices (no. 2). The memory consists of two banks, whose address spaces 
can be mapped in two different ways. The address space of port  B can be mapped 
following port  A. Another possibility is to address port A and port B alternately 
in steps of four bytes for interleaving. The address modes are configured by the 
micro controller. 

3.2 C o m m u n i c a t i o n  B e t w e e n  t h e  S P A R C  a n d  t h e  F P G A  B o a r d s  

Currently, processor and coprocessor communicate through shared memory with 
mutual  exclusive access. In order to increase the parallelism in the future, every 
slice uses two separate memory ports. The coprocessor is able to fetch two 32 
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bit values concurrently. The two memory banks are mapped into the SPARC 
address space. 

Up to now, the SPARC receives a HOLD signal when the coprocessor is 
active. We are going to increase the performance of the design by allowing parallel 
execution in the SPARC and the coprocessor. Therefore, a separate instruction 
memory is inserted, allowing the SPARC to fetch an instruction during a data  
fetch of the coprocessor. 

3.3 Time  Measurement  and Debugging  

As mentioned above, a microcontroller is used for time measurement and debug- 
ging. One interrupt channel of the MC68332 is triggered by a tag RAM, which 
contains the addresses of up to eight breakpoints. Whenever one of eight mask- 
able tag breakpoint appears on the address bus, the microcontroller receives an 
interrupt while processor and coprocessor are stopped in the same cycle. Then, 
user is able to read the memory map. 

The hardware breakpoint are also used for the time measurement. One of the 
MC68332 timers is triggered by the tag RAM. Each can be used either for t ime 
measurement or for debugging. The state of the system bus during a breakpoint 
event is stored in a register which can be read by the micro controller. 

4 D e s i g n  F l o w  

The result of the partitioning process in COSYMA consists of software for a 
processor core, and a coprocessor. For the software parts, COSYMA generates 
ANSI-C code which is then compiled. 

As an output  of high-level synthesis ([2],[3]), the coprocessor is described as 
a logic level netlist in SLIF format. This netlist is a technology independent 
description which has to be partit ioned into the four bit-slices (fig. 4). Each slice 
uses a local copy of the hierarchical netlist description where all bits belonging 
to different slices are removed. This is currently done on text level by a script 
written in "perl".  While this works well for the data path, special care has to 
be taken not to remove signals entering or leaving the controller or crossing 
bit-slices. 

The description of modules like ALUs, RAMs, ... is extended by those signals 
necessary for the interconnection of the bit-slices. This happens already before 
partitioning. Because of a predefined set of interconnections, only a fixed set of 
signals (5) from data path is available in the controller. 

After a translation to Verilog, logic optimization is done by the Synopsys 
system on each of the FPGA-netlists separately. At this point VHDL models of 
the ALUs and the barrel shifter are included. The synthesized slices are mapped 
to the FPGAs. The output of the Xilinx tools is a bitstream, which is then 
downloaded to the FPGAs controlled by the MC68332. 
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logic-netlist (SLIF) I 

Bitstream ] I Bitstream I I Bit~tream I I Bitstream I 
Slice 1 Slice 2 Slice 3 Slice 4 

Fig.  4. The design flow 

5 Future Directions 
Now, the system is completed as wire-wrap prototype,  which is clocked at 10 
Mttz. We are going to build a 30 Mttz version using multilayer PCBs. One 
problem of the system is the capacity of the XILINX 4010. Using four XC 4025 
instead of XC 4010, an internal multiplier could be realized on the chips and a 
large no. of registers. 
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We are going to extend COSYMA to small heterogeneous multiprocessor 
systems. As a first extension, the Motorola DSP 96002 will be added to the pro- 
totyping system. The DSP-Board will be prototyped using Apt ix  interconneetion 
matrixes.  
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A b s t r a c t .  The development of a model for sub-system reuse and the 
evaluation of currently available rapid prototyping platforms has led to 
the development of a GEneric Reusable Module (GERM). The GERM is 
a low-cost, stand-alone, reprogrammable development tool designed for 
prototyping digital subsystems. The GERM, and associated templates, 
aid the designer in rapidly prototyping and reusing subsystem designs. 
The GERM addresses also the introduction of students to FPGA technol- 
ogy in an environment which they can continue to use for more complex 
designs. Extensions of the GERM include combining multiple GERMs 
together to prototype larger subsystems and systems. The system was 
used successfully in computer engineering courses at Duke University. 

1 I n t r o d u c t i o n  

Decomposit ion of a system into functional blocks, or subsystems, is one of the 
more common approaches used to manage  designs of complex systems. By di- 
viding a system into small functional blocks, multiple designers and /o r  groups 
can focus on developing and testing specific subsystems [5, 2]. Tested, verified, 
and documented subsystems are ul t imately integrated into a complete system 
for fabrication and delivery. 

The subsystems created for a design can, in many  cases, be reused in future 
systems and by other designers. Subsystems are often reusable in their original 
%nn,  but  in some instances, modifications to an existing design yield a newer 
and more applicable subsystem to meet a designer's requirements. The reuse of a 
subsystem will effectively save the designer t ime by eliminating the t ime needed 
to create the subsystem, and will ul t imately lead to more rapid prototyping 
of systems. In the context of well parametr ized design spaces, knowledge based 
CAD tools for rapid system prototyping have been successfully demonst ra ted  [3, 
4]. In an effort to establish the role of reusable subsystems in the more general 
case of rapid microelectronic system prototyping,  a model  of the design process 
was developed, shown in Figure 1. 

* Now at the Technical University of Crete, Greece, dollas~eed.tue.gr 
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Fig. 1. Flow Diagram of Subsystem Reuse 

At Duke University, we have studied issues of rapid system prototyping in 
academia [11, 10]. This paper presents results from an on-going research effort 
on rapid system prototyping through increased subsystem reusability. After de- 
veloping a model for subsystem reuse [16], we determined that we needed an en- 
vironment and hardware platform to rapidly prototype subsystems. We desired 
the option of designing subsystems using schematic capture, logic description, 
or behavioral code (such as VHDL [13, 6]), and then mapping the design into an 
FPGA based reprogrammable prototyping hardware system [15]. To determine 
the best platform to use in our research, we investigated and evaluated three 
FPGA prototyping environments. 

Of the available pro*otyping environments, we evaluated the Anyboard [8, 
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9], the BORG [7], and the Protozone [12]. These boards represent prototyping 
systems which provide a low to med ium level of reprogrammable  resources, as 
opposed to Quickturn [17] and Splash [1] which have a high level of resources. 
The results of the evaluations are shown in Table 1. The results are reported in 
terms of High, Medium, and Low. The Anyboard  and BORG boards are both  
mul t i -FPGA prototyping systems allowing for larger designs to be developed 
whereas the Protozone is a single-FPGA prototyping system. 

Criterion and Platforms 

Criterion Anyboard[ BORG [Protozone 

Expected Ease of Use 

Hardware Resources H 
Experimentat ion Tool H to M 

M 
M Use of Standard Software 

Cost M 
Availability L 

HW(SW) Support  L(M) 
Documentat ion H 

M t o H  L 
H t o M  tt 

H H 
H H 
M L 
M H 

H(H) M(H) 
H M 

H:High M:Medium L:Low 

T a b l e  1. Evaluation Results 

After evaluating available prototyping systems, we determined that  a hard- 
ware tool targeted specifically at subsystem development was needed to further 
study subsystem reuse. We desired a low cost, easy to use, and stand alone 
prototyping tool which would double as an educational aid in teaching under- 
graduates about  F P G A  technology and issues of reprogrammabi l i ty  and system 
prototyping.  The ease of use of the Intel FLEXlogic family and its development 
environment [14] at the entry level was coupled with a slow learning curve to 
transition to Xilinx FPGA technology, and we determined that  we needed a vehi- 
cle for easy introduction to FPGA technology in the Xilinx environment,  which 
we use in more advanced applications (and more advanced classes). Thus, the 
GEneric Reusable Module (GERM) was designed with minimal  components,  
connectors, and complexity as an experimental  platform to study subsystem 
reusability and as an educational platform to introduce students to F P G A ' s  at 
the sophomore level. 

2 C u r r i c u l u m  U s a g e  

The GERM has been used as an instructional tool for introductory digital design 
courses. We use it as a lab kit to introduce students to F P G A  technology, re- 
programmable  hardware, subsystem design, and rapid system prototyping.  The 
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GERM is also used to prototype and test subsystem designs which may then be 
connected together to prototype larger subsystems. The GERM board was de- 
veloped in prototype, wirewrapped form in 1993, and in small scale production 
with printed circuit boards in early 1994. 

GERMs have been used in undergraduate and graduate courses at Duke 
University, starting in the spring semester of 1994. The board supplements the 
current lab kit used in the sophomore level EEl51,  Introduction to Switching 
Theory and Logic Design, and it was also used in the senior/graduate level 
EE254, Fault-Tolerant and Testable Systems 2. There are plans to use it also 
in EE251, Advanced Digital System Design, and EE261, Introduction to VLSI 
Design. The GERM can aid research into reusability because it is simple enough 
to use at the entry level and it will facilitate understanding of reusability issues in 
a realistic environment on realistic projects. We expect the GERM, its tools, and 
its design procedures to further aid the undergraduate and graduate students in 
the upper level courses where complex hardware design projects are expected to 
be produced in a semester. More advanced tools and facilities available to these 
students include BORG II boards and a dedicated F P G A  laboratory. 

3 G E R M  Design 

A layout diagram of the GERM is provided in Figure 2, a list of the components 
in Table 2, and the header-pin designations in Figure 3. Although not shown in 
Figure 2, the board also has a header for serial downloading, which is very useful 
during design development and debugging. It turns out that  the serial download 
cable is also very useful for class usage due to the larger number of available 
development systems (workstations, PC's) than EPROM programmers. 

GERM Components 
1 XC3030PC-50 Xilinx FPGA 
1 AMD2764 Advanced Microdevices EPROM 
4 26 Pin Male Header Connector 
1 Red LED Power Indicator 
11 Green LED GO Indicator 
3i 5 kohm Resistor Pull-Up 
2 200 ohm Resistor Voltage Drop 
1 SPDT Switch Power Switch 
1 10uF Capacitor Bypass Capacitor for Power/GND Pins 

T a b l e  2. Components of the GERM 

2 For simplicity, the initial classroom use of the GERM was with the serial download 
cable and not the EPROM 
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Through the use of these standardized headers, connecting an array of GERMs 
or a GERM to another subsystem module is quick and well defined. A user may 
use 26 conductor ribbon cables with keyed header connectors, or single jumper  
wires. The Red LED indicates that  the power is ON and the Green LED indi- 
cates that  the FPGA has completed loading the configuration information from 
the EPROM. The GERM is approximately 3"x3.5" (7.62cm x 8.89cm). 

Some attributes of the GERM include the following: 

1. It has been designed primarily with the introductory level digital designer 
(the student) in mind. The GERM is to supplement current lab kits consist- 
ing of discrete T T L  and GAL chips and wires. 

2. It provides a simple development platform intended to prototype and emu- 
late subsystems. 

3. It is portable and low-cost, enabling students to potentially develop designs 
and circuitry in their dorm rooms as well as in the laboratory. 

4. Many of the GERMs (each with a different subsystem configuration) can be 
connected together to develop more complex systems. 

5. It provides a means of gradual transition from lower level subsystem design 
to higher level system design in the computer engineering curriculum. 

6. The use of a regular EPROM rather than the once-programmable serial 
PROM allows for standalone operation (without a download cable) and 
reusability of the board itself without the expense associated with the PROM's. 

4 G E R M  Design Process  

Some experimental designs, to be discussed in Section 6, have been developed 
to demonstrate the capabilities and applicability in teaching undergraduates 
reusability and digital design with FPGA's.  

Prototyping a digital design with a GERM board requires that  a user have ac- 
cess to a schematic capture package (e.g. DATA I/oWMFutureNet or Viewlogic T M  

Viewdraw) or a behavioral description language (i.e. VHDL). The user designs 
the subsystem and then compiles the schematic into a bit file through the Xil- 
inx Logic Cell Array suite of tools. The bit file is then programmed into the 
EPROM. Once the EPROM is programmed, it is placed in the ZIF socket on 
the GERM and power is turned on. The FPGA programs itself with the user 
design and the Green LED turns on to indicate that  the design is loaded and 
ready to be tested. The steps in using the GERM are summarized below. 

1. Schematic Capture or Logic Description of Circuit 
2. Define Input and Output  Pins 
3. Compile Design Using Xilinx Tools 
4. Program EPROM with . b i t  file 
5. Insert EPROM in ZIF on GERM 
6. Turn on Power 
7. Wait for Green LED "GO" 
8. Exercise Circuit Through Connectors 
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Alternatively to the last steps, the serial download cable option can be used 
on the GERM for downloading in a similar fashion to existing boards (e.g. the 
Xilinx demonstration boards). 

5 T e m p l a t e s  

We have found, in working with students and with other researchers, that  tem- 
plates (or prototype files) and tutorials are extremely valuable to the novice de- 
signer. Templates and basic tutorials greatly reduce the amount  of time typically 
required to "get up to speed" when using such tools as Powerview, ABEL TM, 
VHDL, writing code in C, documenting systems or subsystems in LATEX, and 
when reusing or creating new subsystems. Templates also provide a means for 
standardizing code design and documentation. 

The templates we provide designers are typically "generic" in nature and 
supply the user with basic information and examples that the user may quickly 
modify to match his/her needs. The templates include those for documenta- 
tion (LATEX), logic description (ABEL), behavioral description (VHDL), code 
development (C), and directory structure usage (tempdir).  These files and direc- 
tory structure can all be copied into the user's directory and modified, or they 
can be used as a reference for determining the proper usage of commands and 
struct.ures. Thus, consistency with other designers' documentat ion and coding 
tbrmats is maintained with little effort from the designer, and the time required 
to document and encapsulate designs is reduced as well. We have found that  
reusability at the subsystem level is hampered not only by the lack of proper 
tools, but also the mentality of the designers. The use of the GERM starting 
at the sophomore level and continuing through the senior level will facilitate 
reusability as designs will become of increasing complexity and thus require the 
use of previous ones (e.g. see experiment 2 in Section 6.2, which uses the circuit 
of experiment 1 in Section 6.1). 

Templates describing a subsystem can be quickly modified and mapped into 
hardware for testing. Using established and supported facilities from both View- 
logic and Xilinx, we are able to quickly define a subsystem, simulate it, and then 
map it into the GERM for evaluation and connection to other subsystems. 

6 E x a m p l e  D e s i g n s  

Two of the primary designs used as examples for introductory level digital de- 
signers are described below. The first is an entry-level laboratory exercise that  is 
designed to introduce the student to the schematic capture tools and the overall 
design process. The second is a more advanced laboratory exercise, designed to 
introduce the student to more complex circuitry and subsystem reusability. 
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6.1 E x p e r i m e n t  1: S i m p l e  Circuit  

A simple circuit with a binary to seven segment converter is designed, with a 
debounced switch to be used as a manual clock input, a counter, and combi- 
national circuitry to generate 7-segment LED display information. The circuit 
counts backwards through the sequence 3-2-1-0-3 etc. The binary data  from the 
counter is converted into segment display information and sent off chip to a 
7-segment LED display. The basic circuit schematic for the F P G A  is shown in 
Figure 4. 

Schematic for Simple Circuit 
Experiment #i 

p48 ~Dz 

, - b £  E , P o 3  

This circuit requires an input clock. 

TWO T--Flops a r e  used to create a counter. 

Combinational Logic is used to generate 

the correct outputs. 

The outputs are passed off the chip to --~ 

appDopriate LED's in a 7--segment display. -- 

Fig.  4. Schematic of a Simple Lab Circuit 

The circuit introduces a beginning student to the concepts of switch debounc- 
ing, counters, combinational logic, seven segment LEDs, FPGAs,  and rapid pro- 
totyping without requiring the student to spend an hour or so breadboarding 
the circuit using discrete chips. 

6.2 E x p e r i m e n t  2: A d v a n c e d  Circuit  

This more advanced circuit combines data  registers, LED multiplexing, BCD 
to seven segment decoders, timers, clocking, and switch debouncing. The cir- 
cuit also requires finite state machines, combinational logic, and requires power 
considerations when driving LEDs. 

The student is required to develop a display driver, taking as input (se- 
quentially) four 4-bit hex numbers, and driving four 7-segment displays in a 
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multiplexed fashion, as is typically done in calculators. The numbers  are entered 
in a four element deep, 4-bit wide FIFO. The student has access to a BCD to 
seven segment decoder from the parts  library. The inputs to the chip include 
4 bits of register data,  1 clock for clocking the registers (debounced), and one 
clock ( jmnpered) for either the user to manual ly  clock across the seven-segment 
LED's  or a 555 timer to clock across them. The  outputs  consist of seven bits 
to indicate values for the segments of the seven-segment displays, and four bits 
to provide power to the common anodes of each of the displays. The advanced 
circuit schematic for the F P G A  is shown in Figure 5. 

A deliberate goal of these exercises is to introduce reusability as a concept 
in rapid system prototyping.  Reusability is more than the existence of libraries 
of designs, and includes s tandardizat ion of documentat ion and the methodology 
that  new designs require the use of previous ones. Indeed, the design component  
in this exercise is "how" to use registers, 7-segment display drivers, and other 
designs, together with a newly designed finite state machine in order to complete 
the design. 

S c h e m a t i c  for A d v a n c e d  Circuit 

E~p~r~nr #2 

I[ ~:"" h 
. . . .  = " ° "  

, ii . . . . . .  , - . . :  , P ° .  

)p5~ 

W ~ o n  ~ ; h o  r e g i s t e r  c l o c k  r i s e s  a l l  r o q i . t o r  l ~ f o r m a t i o n  a d v a n c e s .  

r h ~  ~ a × a ~  D . ¢ o o ~ 8  t h e  B e D  t o  S . v . n  S o g m o ~ = .  

Fig.  5. Schematic of an Advanced Lab Circuit 

7 E v a l u a t i o n  

Due to its minimal  configuration, the GERM lacks many  of the advanced features 
of the larger systems. Some of the l imitations and capabilities of the G E R M  are 
discussed below. 
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GERM 
Criterion Evaluation 

Hardware Resources Low 
Potential  as an Exper imentat ion Tool High 

Expected Ease of Use High 
Use of Standard Software High 

Cost Low 
Availability Low 

Hardware Low 
Software Support  High 

Documentat ion High 

T a b l e  3. GERM Evaluation 

7.1 L i m i t a t i o n s  

- Users must  manually part i t ion large designs into multiple GERMs and then 
manual ly interconnect the GERMs to form larger networks. 

- The interconnection of the modules can be done using GERMs as routers, 
however, this process requires a separate design for each of the GERMs.  

- There is a small number  of inpu t /ou tpu t  signals on each cable (18), which 
may require multiple cables to be used between GERMs to fully implement a 
large design. The pin l imitation is more evident in da tapa th  and bus designs. 

- The GERMs do not have protective circuitry on the programmable  in- 
p u t / o u t p u t  pads, and therefore the user must be careful when intercon- 
necting modules. 

7.2 C a p a b i l i t i e s  

- The GERM can be programmed using either schematic or behavioral de- 
scriptions. 

- It  is easy to use, well-characterized, and needs little documentat ion to de- 
scribe its functionality and use. 

- The design of subsystems can be kept within the Xilinx design environment 
if desired or developed using Viewlogie tools and then converted through 
Xilinx utilities. 

- GERMs can be programmed to act as many  different subsystems and then 
connected together to form a larger subsystem or system. 

- In addition to the Viewlogic front end tools, the Synopsys synthesis tools can 
be used as an alternative design pa th  with language (VHDL) rather than 
schematic design entry. 

A s u m m a r y  evaluation of the GERM with the same criteria as other small  
scale F P G A  based boards is in Table 3. 
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8 Conclusions 

We have found the reuse of subsystems useful in rapidly prototyping new sub- 
systems and systems. The development and fabrication of the GERM board has 
facilitated research on reusability of subsystems. 

The GERM is portable,  small, and reprogrammable ,  and it serves an in- 
structor as a simple, low-cost introductory teaching tool. The behavior of the 
GERM can be quickly changed by swapping EPROMs and at tached modules. 
Thus, the GERM acts as a generic building block for subsystem prototyping and 
development. 

Although the boards are newly developed, they have already been used in 
two Duke University classes at the Depar tment  of Electrical Engineering during 
the spring semester of 1994. Initial usage was limited to the serial downloading 
of student designs, but in the future the EPROM downloading will also be used. 

In the filture, GERMs using XC4000 series chips will be constructed to pro- 
vide more user I /O  and more internal programming resources. The GERM may 
eventually be equipped with an on board selectable clock, manual  clock but- 
ton, and Electrically Erasable PROMs. Sample GERM boards are available for 
distribution and evaluation with tutorials, demonstra t ion designs, design files, 
teml~lates, and user manuMs from Duke University Electrical Engineering De- 
1)a.r tment. 
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FPGA Development Tools: 
Keeping Pace with Design Complexity 
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Abstract .  As the density and complexity of FPGA-based designs 
increases beyond 10,000 gates, highly-integrated and automated 
development tools are required. Several recent trends in development 
system capabilities are helping designers keep pace with growing design 
complexity, including FPGA-specific logic synthesis, increased design 
portability, improved design implementation tools, support for system- 
level simulation, and framework integration. 

FPGAs have created a unique requirement for CAE software; their tools must 
deliver the ease-of-design and fast time-to-market benefits that have popularized FPGA 
technology, must be capable of implementing high density logic designs on an 
engineer's desktop system, and, in order to service a broad market, must be easy-to-use 
and compatible with the user's existing design environment. Several recent trends in 
FPGA development system capabilities are helping designers meet the twin 
challenges of growing design complexity and increasing time-to-market pressures. 

As with other logic technologies, the basic methodology for FPGA design consists 
of three inter-related steps: entry, implementation, and validation (Figure 1). The 
design process is iterative, returning to the design entry phase for correction and 
optimization. Typically, generic tools are used for entry and simulation, but 
architecture-specific tools are needed for implementation. 

Design Entry ! 
I "  

Schematic Entry 

Text-Based Entry 

Functional Simulation 

Timing simulation 

(Back-annotation) 

Design Implementation 

b, , . ._  I 

Design Validation 

Simulation 

In-circuit Validation 

FPGAs EPLDs 

Map, Place, & Route  Partition, Map, & Interconnect 

Figure 1. The basic FPGA/EPLD design methodology consists of three steps: 
entry, implementation, and validation. 
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1 Design Entry 

Entry methods for FPGA design include schematics (using graphics-based schematic 
editors) and behavioral entry (requiring FPGA "fitters" - device-specific tools that 
optimize the logic to fit the target FPGA architecture). 

For high-density FPGA designs, gate-level entry tools often are cumbersome, and 
the use of logic synthesis and high-level description languages (HDLs), such a s  

VHDL or Verilog-HDL, can raise designer productivity. However, for a top-down, 
HDL-based design methodology to be useful, the synthesis tools must be effective in 
producing a gate-level design optimized for the target technology. Optimization 
algorithms for fan-in limited, lookup-table based architectures such as the Xilinx 
FPGAs are dramatically different than the algebra-based algorithms used for gate 
arrays. In this respect, logic synthesis for FPGAs is still an emerging technology. 

Most FPGA development systems support hierarchical design entry; these 
development systems can combine hierarchical elements that are specified with 
multiple design entry tools, allowing the most convenient entry method for each 
portion of the design. 

The ability to easily port a design to different device architectures provides several 
advantages to the system designer: the technology choice can be postponed until 
later in the development cycle when requirements are better defined, design migrations 
to reduce cost during the life of the product (such as migrating from an FPGA to a 
gate array) are simplified, and portions of the design can be easily re-used in future 
products, even if those products use different technologies. Ideally, new product 
development should be able to take advantage of the latest devices and technologies 
without having to duplicate earlier development efforts to re-use proven portions of 
previous designs. 

In the past, users often had to make the technology decision (for example, choosing 
between an EPLD and an FPGA architecture) as the first step in the design process at 
the beginning of the design entry phase. Two recent developments have changed this 
scenario: the advent of design synthesis tools optimized for programmable logic 
architectures, and the development of 'universal' schematic libraries that support 
multiple device architectures. A design described in an HDL can be 'technology- 
transparent', relying on synthesis compilers to map the logic into the targeted 
technology automatically. The "Unified Library" of the new XACT TM 5.0 
development system from Xilinx typifies the advances being made in the development 
of 'portable' schematic libraries. All primitives and macros common to two or more 
Xilinx device families are consistent in name and appearance. Thus, migration of a 
design from one family to another requires a change of only the compilation target 
and, if needed, the editing of any family-specific symbols used in the design. 

2 Design Implementation 

After the design is entered, implementation tools map the logic into the resources 
of the target FPGA's architecture, determine an optimal placement of the logic, and 
select the routing channels that connect the logic and I/O blocks, Design 
implementation tools apply a high degree of automation to these tasks. These tools 
tend to be unique to each FPGA architecture, but should have a smooth interface to 
their supporting cast of entry and validation tools. 
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Xilinx's automated implementation tools typify the advances being made in this 
field. An automatic design compilation utility, XMAKE, retrieves the design's input 
files and performs all the necessary steps to create the FPGA configuration program: 
translating the input files to the Xilinx Netlist Format (XNF), merging together the 
elements of a hierarchical design, deleting unused logic, mapping the design into the 
FPGA's logic resources, placing and routing the logic and I/O blocks, and generating 
the configuration program. 

The automated partition, place, and route algorithms are timing-driven; that is, 
timing analysis of the signal paths within the application is performed during the 
placement and routing of the design. Users can specify performance requirements 
along entire paths in an FPGA design (as opposed to the traditional method of 
assigning "net criticality" to individual nets), and the implementation programs use 
this information to guide the placement and routing process. 

Optionally, user-designated partitioning, placement, and routing information can be 
specified as part of the design entry process (typically, right on the schematic). The 
implementation of highly-structured designs can greatly benefit from the basic 
floorplanning techniques familiar to designers of large gate arrays. 

3 Design Validation 

Validation (testing) of FPGA designs typically is accomplished through a 
combination of in-circuit testing, simulation, and static timing analysis. The user- 
programmable nature of FPGAs allows designs to be tested immediately in the target 
application. However, as designs increase in density and complexity, the number of 
circuit paths that may have timing problems increases, and timing simulation 
becomes an invaluable tool. To support timing simulation, FPGA implementation 
tools include timing calculators to determine the post-layout timing of implemented 
designs, including the actual delays of routing paths. This information is annotated 
into gate level libraries for full timing simulation. To manage increasing design 
complexity better, a growing number of users employ board-level and system-level 
simulation spanning multiple device types, in addition to simulating each FPGA on 
its own. Alternatively, static timing analyzers examine a design's logic and timing to 
calculate the performance along signal paths, identify possible race conditions, and 
detect set-up and hold-time violations, without requiring user-generated input stimulus 
patterns or test vectors. However, most users limit the use of static timing analysis 
to fully-synchronous designs only; the technique is difficult to apply accurately to 
asynchronous circuits. 

4 F r a m e w o r k s  A n d  Too l  I n t e g r a t i o n  

The typical FPGA development environment includes a mix of generic design tools 
and architecture-specific implementation tools. Ideally, these tools are molded into an 
integrated, easy-to-use development environment. Most FPGA vendors provide their 
own design management software. However, more-tightly integrated tool sets are 
now available. For example, Viewlogic Systems, Cadence Design Systems, and Data 
I/O are among the CAE vendors that package, sell, and support design kits that 
provide full front-to-back design capabilities by melding FPGA vendors' 
implementation tools into their own frameworks. 
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Abstract. This paper discusses benchmarks for optimization to table-lookup 
FPGAs. We discuss a scientific method for systematically generating a set of 
benchmarks for measuring the effectiveness of a synthesis tool/algorithm for a 
particular F P G A  architecture. The benchmarks have the useful properties of 
being generated easily, having an a priori, known  best result, covering all the 
possible configurations of a lookup table, and yielding a simple metric. This 
metric can be used to compare different synthesis tools/algorithms for their effi- 
ciency in mapping to a given FPGA architecture. This is in contrast to the ad hoc 

sets of benchmarks, for which it is difficult to compare results of different opti- 
mization tools/algorithms. 

1 I n t r o d u c t i o n  

This paper discusses benchmarks for optimization to table-lookup FPGAs. We discuss 
a scientific method for systematically generating a set of benchmarks for measuring 
the effectiveness of a synthesis tool/algorithm for a particular FPGA architecture. 
Logic optimization is a technique (set of algorithms) that was originally developed for 
reducing the number of product terms in a PLA. These algorithms have been modified 
or re-designed to reduce the number of resources required to implement a circuit or set 
of equations in architectures other than PLAs. These include multi-level PLAs[1], fine- 
grained architectures such as gate arrays, and medium-grained architectures such as 
table-lookup FPGAs[2]. A minimal set, or "kernal", of 4-input functions have been 
discovered for technology mapping of FPGAs[3], but the results of thi s mapping has 
not yet been compared to existing techniques. 

To measure the effectiveness of an optimization tool/algorithm designs should be run 
through the tool/algorithm, once for delay optimization, and once for area optimiza- 
tion. Then the resulting circuit size and delay can be measured for each optimization 
criterion. Then a metric derived from these measurements can be used to compare dif- 
ferent optimization tools or algorithms, or to tune a given algorithm. 

The approach we take is a statistical one, where a large number of samples from the 
space of meaningful configurations for the tables in the table-lookup FPGA. This has 
the effect of not being biased towards any particular benchmarks, and thus more accu- 
rately predicts how an optimization tool will perform on real designs. 
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2 T a b l e - L o o k u p  F P G A  Arch i t ec tures  

The CLB in Xilinx' 4000-series FPGA contains two, independent, 4-input table- 
lookup Function Generators, F and G. The CLB can be configured so that the outputs 
of F and G are inputs to the 3-input Function Generator, H. (The third input to H may 
be a primary input to the CLB.) In this mode any function of five variables can imple- 
mented. Because the eight inputs to the two 4-input Function Generators are independ- 
ent of one another, some Boolean functions of up to nine variables can be implemented 
in one CLB. These include many useful functions, including the 9-input 
exclusive OR, which, without the TLU architecture, would be expensive to implement. 

2.1 Number of Unique Functions 

The number of functions that can be realized in the table-lookup architecture can be 
determined as follows. The n-input table-lookup function generator is a 2 n -bit RAM. 
The numbe~i of possible values, and therefore the number of possible functions, in the 

2 4 RAM is 2 . The -input funcUon generators can implement 65,536 functions, the 5- 
input function generators 4,294,967,296. The 4K CLB has 40 bits in the RAM CLB, 
and can implement 1,099,511,627,776 functions. 

The number of functions that the CLBs can implement is large, however, many of the 
functions are degenerate--some of the inputs to many of the n-input functions are not 
necessary. For example, the 5-input CLB can implement all Boolean functions of 1, 2, 
3, and 4 variables. In particular, a 5-input CLB with one unused input can implement a 
4-input function f as f(a,b,c,d), fla,b,c,e), f(a,b,d,e), f(a,c,d,e), or flb,c,d,e), depending 
on which of the five inputs to the CLB is not taking part in the function. 

Wc can calculate the number of degenerate and non-degenerate n-input functions for 
arbitrary n 1. Table 1 shows the number of degenerate and non-degenerate n-input func- 
tions for n from 0 to 6. 

Table 1, Numbers of Non-Degenerate n-Input Functions 

n 

0 

1 
2 

3 

4 

5 

6 

# degenerate # non-degenerate Total % degenerate 

0 2 2 0% 
2 2 4 50% 

6 10 16 37.5% 

38 218 256 14.8% 

942 64,594 65,536 1.44% 

325,262 4,294,642,034 0.00769% 

25,768,825,638 18,446,744,047, 
940,725,978 

4,294,967,296 

18,446,744,073, 
709,551,616 1.4x10 -7 

1. There is an elegant proof of this, but these margins are insufficient to hold 
it. Contact the author for details. 
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3 Generating Test Cases 

Because l~e number of possible functions realizable in a Table-Lookup Architecture is 
large (2 2 ), enumerating all of them is impractical. Our goal is to generate a large 
number of test cases by statistical means. We want to generate test cases for which we 
know the desired result a priori. First we generate all possible configurations of a sin- 
gle CLB in a TLU, then we see how to generate predictable multi-CLB configurations. 
From the analysis alluded to in the previous section, we know how many n-input func- 
tions are realizable, and how many of the functions are degenerate. Further, we wish to 
generate only/-input functions for an n-input CLB, for 0 _< i _< n. So it is important to 
be able to detect when a randomly-generated test case does not meet the desired condi- 
tions. 

Given a truth table for a n-input function, we wish to be able to detect which, if any, 
input variables are not used in the function. The method for doing this can be deter- 
mined by examining a truth table for symmetry. Symmetry can be detected in time pro- 
portional to size of the truth table. If T is the size of the truth table, this time is 
o (TlogT) • Because T = 2 n , the siz 9 of tl~e truth table is exponential in the number of 
inputs, n, to the CLB. This time is o~ n2").  

3.1 Generating Test Cases for a n-Input Function Generator 
The procedure for generating test cases for a n-input Function Generator is to generate 
n-input truth tables randomly. A truth table is represented as a 2" -bit configuration of a 
CLB. The first bit in this configuration corresponds to the truth table entry for all 
inputs=0, the last to the entry for all inputs=l. When an n-input function is desired, we 
use the symmetry-detecting procedure to check whether any of the input variables are 
unused. If any are unused, then the configuration is rejected and another is chosen ran- 
domly and subjected to the same test. Once a configuration is chosen which meets the 
desired conditions, the test case can be written in the desired format. 

4 Conclusion 

We have discussed a method for evaluating the complexity of a randomly-generated 
logic minimization test cases with an a priori optimal result. This provides a statistical 
basis for test cases that can be used to compare logic optimization programs. The 
results observed with these test cases correlate well with real logic designs. 
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Abstract. Traditionally, digital logic designs in undergraduate courses are 
described o n  paper and implemented with TTL SSI/MSI components. These 
standard logic devices have proven to be an inexpensive approach, but require 
"wirewrapping " and other similar means of circuit board assembly; as a result, a 
significant portion of  the students' effort is focused on completing and debugging 
the physical connections between devices. This paper describes an alternative 
approach using Field Programmable Gate Arrays that avoids these assembly 
issues, allowing the students to focus on the logic design process, with the added 
benefit o f  exposing the students to the use of modern CAE tools. 

Since its introduction by Xilinx in 1985, the FPGA has played a major role in 
revolutionizing digital system design. The flexibility of the architecture and the ease of 
use of the software make F l e a  devices an ideal choice for a wide range of applications. 
In undergraduate education, FPGAs are used in courses ranging from first-year 
introductory levels to senior design projects. Multiple TIT, components can be integrated 
into a single FPGA, eliminating the need for wirewrapping and allowing the students to 
focus on their designs. 

In the past, digital courses with labs required students to purchase kits that contained 
standard logic devices The purpose of the lab assignments was to reinforce the concepts 
learned during lecture and to actually build what was described on paper. For small 
design projects using less than a handful of components, the objective was normally met. 
The problem surfaced when building large designs using multiple components. The task 
of wirewrapping was excessively tedious and time consuming. Time spent on debugging 
the wirewrapped connections increased enormously. The emphasis of the project was no 
longer on digital design, but on wirewrap debugging techniques. 

Design Flow 

Traditionally, logic design was done with paper and pencil and implemented with 
discrete components and wires that connected the various devices in the system. The 
design flow required much attention to detail and was subject to a wide margin of error. 
Documentation was limited to the design on paper and any associated notes written by 
the designer. The FPGA allows designers to view their project from a system-level 
perspective. Designing with FPGAs eliminates the arduous task of debugging large 
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wirewrapped circuits. Designs are either entered using a text-based language or a 
schematic editor, or a combination of both. 

The FPGA design cycle consists of three basic steps: entry, implementation, and 
verification. The open architecture of the FPGA implementation software allows the use 
of various third-party design entry and simulation packages. The Xilinx Netlist Format is 
a standard format used to interface to these packages. The simplicity of the interface has 
prompted many universities to develop translation programs for their "homebrewed" 
CAE tools to take advantage of the technology. Entering the design using a commercial 
or public domain CAE tool set provides the designer with better documentation, a 
platform to functionally simulate prior to technology mapping, greater control over the 
entire design process, a short development cycle, and the realization of the final design 
in a standard, off-the-shelf device. 

Functional and timing verification is typically performed using third-party simulation 
packages and in-circuit testing. Report files and a static timing analyzer also are 
available in the implementation software. Designing an FPGA can be performed easily 
and quickly on a desktop computer, resulting in more complex projects done in a shorter 
period of lime. 

Prototyping Boards 

A pr°t°typing board is a valuable tool for measuring the success of a laboratory 
assignment. Student designs can be realized on a prefabricated board without having to 
breadboard their circuit. The same board can be used by various design groups to 
implemented projects without having to rewire the components. The enthusiasm of using 
Xilinx FPGAs has led to the development of many different custom prototyping boards. 

F P G A s  used in Academia  

There are many ways to use the FPGA technology in education. It is a perfect fit as a 
learning tool for computer science and electrical engineering courses that emphasize 
digital design. 

Hundreds of VLSI designs are sent to MOSIS each year from universities across the 
United States. MOSIS is a wafer fabrication facility funded by the National Science 
Foundation. Chips are fabricated, packaged, and returned to the respective university 
within eight week period. Unfortunately, a majority of the designs are not functional due 
to poor design methodologies. Often, student designs are not properly tested before they 
are sent to MOSIS. Turnaround time is also a problem; students may lose interest or the 
school term may end before the finished product is received. Using FPGAs to prototype 
designs can significantly improve yields. Every design can be fully tested in-system to 
ensure that it is functionally correct. The end result is a motivated student who 
understands the importance of good design practices. 

At a recent NSF "Summer Workshop on Microelectronic Systems Education," a 
behavioral description of a "Craps" game was described in VHDL and targeted for a 
Xilinx FPGA for rapid prototyping prior to MOSIS fabrication. The design was then 
compiled in ViewSynthesis with a target technology in mind. The first path was Xilinx 
FPGAs for rapid prototyping. The resulting netlist from the synthesis compiler was 
translated into the XNF format ready to be used by the Xilinx. The resulting binary 
representation of the design was downloaded to a demonstration board for in-circuit 
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testing. Using the same source after verification, the design was retargeted to a standard 
cell library and lXOcessed through the Lager/Octtools set. The Lager/Octtools public 
domain  tool set contains programs that translate the output file from the synthesis 
compiler to a format ~,cepted by MOSIS. 

Tufts University uses commercial CAE tools to enter FPGA designs in their 
Introductory Digital Logic Design course. The goal of the course is to teach students 
proper techniques encompassing the specification, analysis, design, and implementation 
of digital logic using industrial grade tools. Students fast  gained familiarity with the 
CAE tools and the top-level design approach by designing a 4-bit adder/subtractor 
accumulator. The second lab experiment required the students to design a traffic light 
controller and download it into an XC4000 demo board. The final experiment was a 
simple 4-bit microprocessor with a 4-bit data and address bus that could perform 16 
instructions. Code was generated and included in the microprocessor's ROM. The 
program and the design's operation were tested in-circuit. 

The University of California at Davis is offering an upper level course entitled 
"Synthesis Approach to Digital System Design" for graduate and senior level students. 
The entire course is devoted to the challenges of design complexity and fast turnaround 
time. Their choice of tools was Synopsys for VHDL synthesis and simulation and the 
Xilinx FPGA devices for rapid prototyping. The emphasis of this course is to gain 
"hands-on" experience with logic synthesis tools using circuits of reasonable complexity. 

In a Georgia Tech computer architecture course, the MIPS RISC microprocessor from 
Patterson and Hennesy's "Computer Organization and Design" text was successfully 
synthesized using VHDL tools from VIEWlogic. There are plans to implement the 
design in the XC4000-based BORG prototyping board in the next computer architecture 
c o u r s e .  

S u m m a r y  

The flexibility of the architecture, and the simplicity of the design tools, make F-PGAs 
the ideal technology for prototyping logic designs in the university environment. Design 
implementation software in the past several years has become highly automated. Third 
party tools are virtually integrated into user interfaces. A design may be prototyped by 
simply invoking a command that will take a third party netlist and create a configuration 
bitstream ready for downloading. Design changes can be implemented rapidly and 
efficiently, and students can get immediate feedback on those changes. Little knowledge 
of the FPGA architecture and implementation programs are needed to successfully 
implement designs. An entire digital design project can be completed within a term. The 
FPGA technology is significantly changing the way traditional logic design is taught. 
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A b s t r a c t .  HardWire LCAs are architecturally-equivalent, mask- 
programmed versions of Xilinx FPGA devices, where the programming 
elements have been replaced with fixed metal connections. Built-in scan 
test logic used in conjunction with automatic test vector generation 
software results in 100% fault coverage. Completed FPGA database files 
are  used to generate HardWire LCA masks and test programs, ensuring 
compatibility with the corresponding programmable device and 
minimizing the engineering resources required for the conversion. 

Field Programmable Gate Arrays (FPGAs) combine the density and flexibility of 
mask-programmed gate arrays with the convenience and time-to-market benefits of a 
user-programmable device. However, the 'overhead' of on-chip programming elements 
and the circuitry to support them results in FPGA die sizes that are significantly 
larger than the equivalent-density gate arrays. As a result, FPGA component prices 
tend to range anywhere from three to ten times the cost of equivalent mask- 
programmed gate arrays. In high-volume applications with a stable design, FPGA 
users often consider migrating the design to a gate array as a cost reduction path. 

However, such FPGA-to-gate array migrations are not without risk and cost. 
Converting designs to a different technology will change the timing of signal paths, 
and the gate array version of the design must be exhaustively simulated. Special 
features utilized within the FPGA, such as three-state buffers or dedicated carry logic, 
must be re-designed in the gate array implementation. Test vectors must be created 
for the gate array, a task often as time-consuming as the original circuit design. In 
short, the FPGA-to-gate array conversion process can be resource intensive, and 
exposes the designers to all the risks that were avoided by using an FPGA initially. 

These considerations led to the development of the HardWire TM Logic Cell Array 
(LCA TM) families. HardWire devices are mask-programmed versions of the popular 
XC2000, XC3000, and XC4000 FPGAs. In the standard FPGAs, the logic functions 
and interconnections are determined by configuration data stored in static memory 
cells. In the HardWire components, the memory cells and the logic they control are 
replaced by metal connections. All other circuitry in the HardWire devices is identical 
to the corresponding FPGA's internal circuitry. Thus, a HardWire LCA is a 
semicustom device manufactured to provide a specific functionality, yet is completely 
compatible with the FPGA it replaces. 

1 H a r d W i r e  L C A  A r c h i t e c t u r e  

The underlying architecture of the HardWire LCA devices is identical to that of their 
FPGA counterparts, with a matrix of Configurable Logic Blocks (CLBs) surrounded 
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with a perimeter of Input/Output Blocks (lOBs). All other architectural features of the 
FPGAs, such as global clock buffers, internal three-state buffers, carry logic circuitry, 
and boundary scan test logic, are also replicated in the HardWire LCAs. The 
interconnect topology is preserved; however, the programmable interconnect of the 
FPGAs is replaced by metal connections implemented in a single mask layer. 

Unlike the FPGAs, configuration data does not need to be supplied to HardWire 
parts. However, several 'configuration modes' are available to ensure compatibility in 
the target system. If the customer chooses the "instant-on" option, the device wakes 
up functioning like a programmed FPGA. Optionally, a HardWire device can emulate 
any configuration mode of the corresponding FPGA; this capability allows HardWire 
LCAs to function in configuration daisy-chains with standard FPGAs the HardWire 
LCA is an identical replacement for the programmable device. 

2 H a r d W i r e  L C A  T e s t  A r c h i t e c t u r e  

Test programs for HardWire devices are generated automatically with 100% 
guaranteed fault coverage; customer-generated test vectors are not required. Testing of 
HardWire devices is facilitated by special on-chip "scan test" logic. Dedicated test 
latches, called TBLKs, are included in each logic block and I/O block. For example, 
Figures 1 shows the CLB TBLK locations for the HardWire versions of the XC3000 
FPGA family. The placement of these test latches is critical, since signals exiting 
the CLBs and IOBs can fanout to multiple destinations. The TBLKs are completely 
transparent to the normal operation of the circuit. 

Scan testing allows the contents of all internal flip-flops to be serially shifted off- 
chip, and for automatically-generated test vectors to be shifted into the device, thus 
enabling all flip-flops to be initialized to any desired state. The TBLKs are connected 
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Figure 1. HardWire LCA test latch locations in the XC3000 CLB 
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Figure 2. TBLK block diagram 

together in a serial chain. The path begins at the Scan In pin, sequences through each 
CLB, then through each IOB, and exits at the Scan Out pin. Automatically-generated 
test vectors can be shifted into the device, initializing all internal flip-flops to known 
states. Similarly, the contents of all internal flip-flops can be shifted out of the 
device. 

The internal architecture of a TBLK is shown in Figure 2. In normal operation, 
switch SW1 is in the A position and all test latches are bypassed. The device is 
placed in Test Mode (SW1 is in position B) when unique conditions are present on 
several configuration pins and a "password" is serially shifted into the device. 
Depending on the position of switch SW2, a test latch can receive data from either an 
IOB or CLB output or the previous TBLK in the chain. Synchronized by a special 
test clock, the latches operate in two phases. The first phase serially loads all test 
latches to place a specified vector at the inputs to all blocks to be tested (SW2 = B). 
Next, all latches are stored in parallel with the expected output data from the CLBs 
and IOBs (SW2 = A). Then, phase one is repeated, serially clocking out the results 
while simultaneously loading the next test vector. 

3 The Conversion Process 

The HardWire device is manufactured using the information from the FPGA design 
file, ensuring compatibility with the programmable device. Customers provide the 
routed and verified LCA file from the completed programmable design, Xilinx 
engineers perform a semi-automated design role check, test vectors are generated using 
an ATGP (automatic test generation program), and the custom mask layer is created. 
100% test coverage is guaranteed. Prototypes are fabricated using the same 
manufacturing lines as production devices, and can be supplied in four weeks time. 

In contrast, converting an FPGA design to a conventional gate array involves 
converting the netlist to the gate array vendor's format, possible design changes to add 
test logic or insure pin compatibility, a design rule check, functional simulation, 
placement and routing, back-annotation of timing parameters, full timing simulation, 
test vector generation, and the creation of two to four mask layers. 

HardWire devices typically cost 50% to 70% less than their FPGA counterparts. 
The combination of  FPGA and HardWire devices offer a fast and easy way to get 
electronic systems to market, while ensuring a subsequent low-risk, high-volume cost 
reduction path. 



RECONFIGURABLE HARDWARE FROM 
PROGRAMMABLE LOGIC DEVICES 

Nigel Toon 
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Reconfigurable hardware is an emerging technology that utilises SRAM based field 
programmable logic devices to implement functions in hardware to accelerate 
processing functions. Using the reconfigurable aspect of the programmable logic 
device this hardware function can then be changed allowing alternative functions to 
be implemented. This article will describe a hardware platform - the Altera Re 
configurable Interconnect Peripheral Processor (RIPP 10) that is now available to 
support research in this area. 

1. INTRODUCTION 

Imagine the leading edge personal computer that you would be able to buy in five years. 
High resolution graphics with 24bit 'True' colour for video reproduction; real-time image 
compression /decompression; voice recognition; handwriting recognition and with 
sufficient processing power to perform complex processing functions such as real-time 
video manipulation; high speed database transaction enquiries; or advanced scientific 
functions. It is possible to consider that some types of  processing functions currently 
performed by super computers could be performed on your desktop or notebook 
computer. The question is how? 

2. H A R D W A R E  C O - P R O C E S S O R S  

The concept of off loading specific processing task's to peripheral devices is commonly 
understood. A graphics co-processor can perform Bit-Bit functions for windowing 
graphic environments faster then the central processor; or a maths co-processor can 
perform arithmetic functions. This concept works by having specific hardware functions 
masked into custom silicon devices. These devices manipulate the data and perform an 
algorithm in hardware that would otherwise be performed by the processor executing a 
software program. In this way the data can be manipulated and processed in nano- 
seconds as opposed to milli-seconds or longer for the processor executing a software 
program. 

2.1 RECONFIGURABLE HARDWARE 
Now consider instead of  having a custom silicon device, that performs a fixed function 
to accelerate a processing task, that you have a Re configurable Hardware resource that 
can be programmed to perform a particular algorithm and then at some later point be 
reprogrammed to perform another function. A software program could be partitioned into 



284 

some functions that would be processed by the central processor and into functions that 
would be performed in hardware and as a result could either be many times more 
complex or could be performed many times more quickly. In a microprocessor there is an 
Arithmetic Logic Unit (ALU) which is 'programmed' by the instruction set to perform a 
simple task i.e. add two values, perform a bit shift, compare two values etc. In the same 
way you can consider having a much larger area of  re configurable hardware that can be 
'programmed' to perform a task but where the task is a graphics rending function, or an 
MPEG image decompression, or voice recognition, or analysis of meteorological data. 

3. I N - C I R C U I T  R E C O N F I G U R A B L E  L O G I C  D E V I C E S  

The concept of Re configurable Hardware has only become realisable with the 
emergence of high density In-Circuit Re configurable (ICR) Logic devices such as the 
SRAM based Altera FLEX devices. These devices use static RAM memory cells to store 
logic functions and interconnect connectivity information. The configuration data is 
typically held in an associated serial EPROM from which the device re-configures itself 
at power-up. Alternatively the configuration data can be held in any non-volatile memory 
source and can be down-loaded to the device. In this way different configuration files can 
be down-loaded to the device dynamically changing the function of the device. In 
mainstream applications, programmable device designers have held back from using the 
re configurable aspect and typically the device is configured once with a fixed function. 
However some people have recognised how this dynamically re configurable property 
could be used to investigate the concepts of re configurable hardware. 

4. R E C O N F I G U R A B L E  P R O C E S S O R S  

With-in the academic community and at some leading edge R&D centres a number of 
research projects are being undertaken to investigate and utilise this re configurable 
hardware concept. These projects tend to be focused on limited-purpose re configurable 
processing applications that are focused on specific compute intensive functions such as 
DNA pattern matching, seismic data analysis, database manipulation , and simulation 
projects. These re configurable hardware processing based solutions are easily 
outperforming super computers on the same tasks. These promising results have spawned 
other investigations and the whole concept of  re configurable hardware seems on the 
verge of rapid growth. 

4.1 ALTERA RIPP 10 BOARD 
To support these projects Altera Corporation has developed a PC Compatible ISA bus 
add-in card called the Re configurable Interconnect Peripheral Processor (RIPP 10) 
board. This board provides 100,000 usable gates of re configurable programmable logic, 
populated with Altera FLEX8000 programmable logic devices and I-Cube 
programmable Interconnect devices. Onto the board it is also possible to add SRAM 
devices allowing complete processing functions to be implemented. This board is being 
used by a number of  universities and research companies to investigate Re configurable 
Processing applications. 
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4.2 ALTERA RIPP 10 APPLICATIONS 
Currently Ceram Inc,USA a computer acceleration company together with a computer 
aided natural resources engineering company is utilising the RIPP10 board in the analysis 
of  Seismic data. Today analysis is constrained by processing resources, and re 
configurable hardware offers the opportunity to accelerate certain tasks. The project 
begins with an analysis of the software functions to identify the processing bottlenecks. 
The functions that significantly slow the overall processing task are mapped into the 
programmable logic off-loading the central processor from the task. These functions 
include post-stack seismic processing, mapping functions and database server functions 
for well and seismic access. Computer architecture simulation is another area with a 
number of  projects using re configurable hardware to simulate advanced computer 
structures this work includes investigations into stochastic processing (see insert) and 
also work being carried out at the University of  South Carolina on simulating new 
processing structures. The major problem that needs to be overcome is the issue of 
implementing algorithms in the programmable logic. It will be necessary to develop 
compilers that can take a high level software description and partition the code into target 
code for the microprocessor and into configuration data for the programmable devices so 
that they are able to implement the correct hardware algorithms. 

5. S U M M A R Y  

As the compiler problems are worked on and solved and specialised programmable logic 
architecture's evolve targeted at these Re configurable Processing applications it is 
possible to envisage a PCMCIA add-in Re configurable Processing card for your 
notebook computer that will provide a general purpose acceleration for a wide range of 
processing functions - enabling your notebook computer to perform processing tasks 
faster then a super computer. The technologies that will evolve have the potential to 
accelerate the processing capability of a desktop or notebook PC into new application 
areas and to add functionality that would otherwise not be possible. 



On some Limits of XILINX Based Control Logic 
Implementations 

Attila Katona and P6ter Szolgay* 
katona@miat0.vein.hu, szolgay@mars.sztaki.hu 

Department of Information Technology and Automation, University of Veszpr6m 
*Computer and Automation Institute of HAS, Hungary 

Abstract. In this paper we gave some methods how the complexity of a design 
description can be quantified and what is the largest complexity that can be 
implemented on a given type of XILINX chip using the standard XACT design 
system. These methods can be used to partition a large design task, given by 
either a circuit schematic or an algorithm, to smaller ones which can be 
implemented in FPGA chips. 

1.Introduction 
In digital systems built up from VLSI parts the component list follows the traditional 
computer architecture: Processor - Memory - Control unit. A typical design task uses 
standard processor and memory chips/blocks while the control logic part is specific 
to a given problem. Using PLDs (Programmable Logical Devices) or FPGAs (Field 
Programmable Gate Arrays) it is possible to integrate all the control logic functions 
in a few chips [4]. There is a wide design-software support to provide continuous 
help to the designer in the whole process. As an example, the XILINX FPGA chip 
and the XACT design package are considered here. We identify two basic problems 
concerning design methodology [5]: 
(i) partitioning a large design description, given by either a circuit schematic or an 

algorithm on a hardware description language, to smaller ones which can be 
implemented in FPGA chips; 

(ii) how the complexity of a design description can be quantified and further what is 
the largest complexity that can be implemented on a given type of XILINX chip 
using the standard XACT design support. 

Here we are going to present an approach to the second problem which, of course, 
may help to solve the first one, as well. 

2. On the Limits of Design Methods 

2.1. The Limits Originating from the Structure 
A design task may be given by a TTL level circuit diagram in which case it is auto- 
matically converted to logic-block-level circuit diagram. In the XC3020PC68 chip 
there are 58 user programmable I/O blocks and an array of 8x8=64 CLBs 
(Configurable Logic Blocks). Each CLB in LCA (Logic Cell Array) has five combi- 
natorial logic variable inputs and four other inputs: clock, enable clock, direct data 
in, and asynchronous reset. Each CLB has two outputs [2]. Table 1. shows the rout- 
ing resources of a kxl array of logic blocks inside the structure. A kxl array has 
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k rows and I columns of CLBs. The following constraints were considered: 
(i) a synchronous network design is assumed using the global clock net. 
(ii) the interconnections of a/crl size CLB array are realized through the border of 

the array. 
(iii) let us suppose that only the border problem can cause routing failure that means 

We do not examine now the routability inside and outside the kxl block. We sup- 
pose that there is no routing problem anywhere else. 

(iv) synchronous I/O blocks are supposed. 
Proposition 1. The 8x8 chip is routable under the above constraints if  there are less 
than 144 nets in the design (nets are the interconnections which connect CLB 
outputs to CLB inputs). 

k,1 

1 
2 
3 
4 
5 
6 
7 
8 

the number of possible the number 
connections (see of inputs and 

figure 1.) outputs 
9"k+9"1 10*k*l 

18 10 
36 40 
54 90 
72 160 
90 250 
108 360 
126 490 
144 640 
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.... I I  
- i ' [  i i i i i  [ i ~ i l l d l  : i 

i i[ii] P- 
"~-q IH-H~ i i l l l l l l t-rr---J.,._l 

.-' ii i i." L!L"[!!!  !11 ÷ 
m . .  I I I I I I I I I  I I I  , , 

Figure 1. 

!! i 
,ttl i 

--, ~[iii' 
iiiii[ 

" '  ~ " ' 1 1  

, ii!! 

The figure shows the routing resources around a CLB. Two horizontal long lines, 
three vertical long lines, four direct connections and five lines are running into each 
direction through the switching matrices. The proof of the proposition can be derived 
from the chip layout. 

2.1.1. Complexity Limits Derived from the Circuit Schematic to Implement 
There are some additional design requirements effecting the final results. The pre- 
scription of the bounding pads and the speed of the circuit are the most critical. 
There are certain limitations coming from the size of the used FPGA chip, namely 
the number of I/O pads, and flip-flops. These values of the circuit diagram can be 
obtained easily and may be compared to the target FPGA chip. There are not so 
simply computable limits characterising the complexity of a design task: 
(i) wire density, the number of nets in the schematic 
(ii) assigned cells (CLBs)/total cells 
(iii) the number of combinatorial inputs 
(iv) The maximal wire density along the one-dimensional layout model of a task can 

be a measure of complexity.J1] 

2.1.2. Complexity Limits Derived from the Algorithm to Implement 
The other possibility to specify a design task is the algorithmic level description - a 
high level description. For hardware specification the VHDL is a de facto standard. 
The VHDL description can be transformed into the .XNF type internal file of the 
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XACT system. It is allowed to come from other PLD design systems as CUPL or 
ABEL. In all these systems the tasks are described by an algorithm. Based on the 
Halstead method in [3] a complexity measure, was calculated from the number of 
distinct operators and operandi and from the total number of operators and oprandi. 

2.2. Design Experiences 
We have solved some examples with the XACT system. Certain designs were not 
possible to be realized on a single chip because of the limited number of CLBs. The 
number of CLBs is one of the most important constraints. We can easily count the 
number of flip-flops and I/O pads but not the number of CLBs in the schematic. In 
some examples both the algorithmic and the circuit schematic level description were 
given. The algorithmic level and circuit level complexity measures were composed 
for these examples. A close correlation were found between the two complexity 
measures. Table 2. shows the routing limits for an artificially generated test design 
family in which all the CLBs were used. The basic building block of the test 
schematics were similar to the LCA architecture because here we wanted to study the 
effect of routing to the complexity. After the automatic translation all the 64 CLBs 

Name lOBs Nets Unrouted pins 
CLBSN 0 223 0 

CLBSO I 25 248 1 
CLBSO II 25 248 9 
CLBSP I 24 247 11 
CLBSP II 24 247 8 
CLBSQ 20 243 7 
CLBSR 10 233 2 
CLBSS 0 223 0 

Table 2. Unrouted pins versus nets 

3. Conclusion 

were used. In the Nets column the 
number of the nets in the schematic is 
given. We did not count the 
combinatorial output to flip-flop input 
nets because their connection was 
made within the CLBs. When 223 nets 
were in the design then there was no 
unrouted pin. The number of unrouted 
pins can be different even in the case 
of the same design due to the fact that 
XACT design process starts from a 
random placement. 

Based on our experiences there is not a single parameter which can be selected to de- 
scribe the complexity of a task given by a circuit schematic, but a multidimensional 
parameter space is required. Nevertheless we identified the wire density as the most 
important parameter [5]. 
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Abst rac t .  A preloaded digital filter algorithm for filtering the out- 
put signal of a Germanium gamma ray detector was implemented on 
a XC4000 device using the XBLOX software from Xilinx. A system fre- 
quency of 20 MHz was achieved due to multiple pipeline stages and ex- 
tensive usage of the high speed carry paths. This paper describes author's 
experiences g~ined using XBLOX intensively. The strong and weak points 
of the tool will be discussed. 

1 T h e  Application 

For high-rate gamma spectrometry using a pre-loaded filter which automatically 
adapts its noise filtering time to the actual pulse interval is a proved method.  
Up to now this pre-loaded filtering of the charge pulse signal at the output  of 
the detector has been accomplished using conventional low noise analog circuitry 
[1]. A new concept was developed using a 20 Msamples/s 12 bit analog to digital 
converter in companion with a high speed customised digital signal processor. 
The resulting circuitry offers a better noise rejection ratio and drift performance 
than the analog circuitry. The digital filter consists of four blocks. The input 

G e  d e t e c t o r  
I "  . . . . . . . . . . . . .  I 

I Filter z e r o  a d i u s t  I 
I -  . . . . . . . . . . . . .  I 

to PC 

Fig. 1. Block diagram of the pre-loaded filter 

unit differentiates the digital input from the ADC. After performing integration, 
low-pass filtering with variable cut-off frequency has to be done. The results 
are stored into an on-chip 32word deep, 16bit wide FIFO. A standard PC data  
acquisition card reads out the FIFO for further processing. Additional circuitry 
inhibits drifting due to noise by a loop-back correction. First prototypes had to 
be available within one month. The digital circuitry had to accomplish: 
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1. 20 Mttz system clock 
2. 12, 16, and 24bit integer arithmetic 
3. two's complement notation 
4. 32x16bit on-chip FIFO 
5. about 250flip flops 

2 D e v i c e  a n d  T o o l  S e l e c t i o n  

Following our experience we decided to use a device from the Xilinx XC4000 
family. This was due to the on-chip RAM capability of the XC4000 series and 
due to our practical experience in implementing high speed pipelined arithmetic 
circuitry into these devices. We decided to use the XBLOX software to spare 
us boring gate-level data-path design. Design entry and the simulation task 
were done using Viewlogic's Viewdraw and Viewsim, respectively, on a PC. The 
XBLOX processing-, placement-, and routing-task was performed using the Xil- 
inx software on a SUN SPARC10. 

3 T h e  I m p l e m e n t a t i o n  

Design entry using XBLOX is very fast since you need not to worry about the 
implementation of a register, counter or adder. Some special adaptations of the 
circuit were made to meet the XC4000 architecture. The nine stage 12bit wide 
shift register was implemented using a 9x12 bit on-chip SRAM instead of using 
conventional registers. This solution requires only 8,5 CLBs compared to 108 for 
the conventional one. 

The first tool problems arose when we tried to connect busses of different 
widths. Since there is no XBLOX element available for this purpose, we had 
to convert the busses into Viewlogic ones which could easily be processed. The 
XBLOX bus conversion elements do not support the negative bus notation which 
was used for the right hand bits of the comma (fractional notation). 

Although the XBLOX library offers a big number of data path elements, 
there is no element for defining a barrel shifter. Since we used two's complement 
notation our barrel shifter needed to perform sign extension too. The problem 
was solved by converting the signals to Viewlogic ones where the definition of the 
24 bit0-7 digit shift-right barrel shifter required only one symbol. Despite these 
difficulties the design was defined within three days. The backannotation of the 
Xilinx netlist after inserting pre-layout timing information into the Viewsim 
netlist format was tedious and took about after a quarter of an hour. Due to a 
bug of the Xilinx to Workview interface xnfPwir you need to copy your design 
from the network drive to a local disk because a file is opened twice. 

During XBLOX processing another major bug was detected. If a hard macro 
like an adder is directly followed by a register stage, these registers will be im- 
plemented in the same CLBs. But if negative bus notation is used, the generated 
hard macro uses the register output FFX twice within a CLB for these nega- 
tive bits instead of using FFX and FFY outputs, respectively. This bug leads 
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to a fatal error during a PPR-run. So far this is only correctable by editing the 
*.hm-file after analysing the XBLOX output. 

Automatic global clock insertion is another weak point of the XBLOX soft- 
ware. If  the clock signal is fed only into one combinatorial input - this may be 
only an inverter - XBLOX does not use a global clock buffer automatically, which 
leads to enormous routing problems and a poor t iming performance. Thus the 
global clock must be handled manually by using the appropriate symbols. 

Since many net names have to be addressed with their hierarchical name, 
labelling all instances has been proved to be wise for simulation purposes. There 
is another simulation problem if art input signal is used both directly and reg- 
istered. Stimuli applied using the name of the signal will only drive the direct, 
non-registered input since the register will be moved into the IOB. The regis- 
tered input has to be fed directly from the pad signal which cannot be labelled 
in XBLOX since this signal is not available. You need to browse the *.lca file for 
the net name or you have to use conventional IBUF and IPAD symbols. 

Due to the feed-throughs automatically inserted by P P R  on heavily loaded 
signals, net names are changed so that  they are not visible for post-layout sim- 
ulation. So you again have to analyse the *.lea- or *.xnf-files after running PPR 
to get the appropriate information. This fact leads to the problem that  the 
pre-layout simulation stimuli cannot be applied to the post-layout simulation 
without changes introducing possible design inconsistencies. 

The design fits pretty nicely into a XC4006-PG156-5. The final routing lasted 
about half an hour on a SUN SPARC10. It took four weeks for designing the 
FPGA including tool installation, design corrections and bug fixing. 

4 C o n c l u s i o  

XBLOX has been proved to speed up the design definition but it does not relieve 
the designer of thinking about utilising special device structures. Bus manipula- 
tion is a tedious job. The usage of clock distribution circuits is not well supported 
until now. Since XBLOX parts use the fast carry path automatically, the result- 
ing circuits are very fast. Some problems were detected concerning applying 
pre-layout stimuli irt post-layout simulation due to changed net names. 

Besides testing a new tool by means of a real life design instead of a bench- 
mark circuitry, FPGAs have been proved to meet both the needs of advanced 
high speed signal processing and fast design cycles. Our further work will concen- 
trate on the acquisition time control unit around the customised signal processor, 
which is now realised using analogue circuitry. 

R e f e r e n c e s  
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CONTINUOUS INTERCONNECT PROVIDES 
SOLUTION TO 

DENSITY / PERFORMANCE TRADE-OFF IN 
P R O G R A M M A B L E  LOGIC 

Nigel Toon 
European Marketing Manager, Altera Corporation 

This article will discuss the trade-off between segmented and continous 
interconnect in programmable logic devices and the effect on performance 
and ease of use in logic design. The article will describe the effects on 
interconnect delay paths of both styles of programmable interconnect and 
will show how these affect overal performance. 

1. I N T R O D U C T I O N  

The major challenge in high density programmable logic devices is providing high 
density logic together with high performance. One of the most significant differences 
between Mask Gate-Array and a programmable logic device is that in a gate-array 
the logic elements are connected by metal connections created as part of the 
customer specific manufacturing process, whereas in programmable logic devices 
the interconnect between the logic elements must be implemented with a user 
programmable connection. This article will discuss the two main forms of 
interconnect used in programmable logic devices Continuous Interconnect and 
Segmented Interconnect. 

2 . S E G M E N T E D  I N T E R C O N N E C T .  

One concept used to implement programmable interconnect in high density 
programmable logic devices is to use short segments of metal lines that are 
interconnected by a programmable switch matrix which enables these short segments 
to be combined to create longer routing paths. This type of interconnect structure 
derives from the channel routed gate-array structures and has benefits in that these 
short segments can be combined in a wide variety of combinations making effective 
use of the metal lines available. As interconnect becomes used up in a particular path 
alternative routes can be found. 

2.1 CUMULATIVE DELAYS. 
Each switch matrix that a signal passes through in a segmented interconnect structure 
adds impedance to the path. As segments are joined together this loading builds-up 
and as a result interconnect paths will have different delays dependant on how many 
switch matrix elements the signal has passed through. In addition signal fanout will 
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also have an impact on the delay. Not only is an additional load impedance 
introduced by each signal destination but also additional load is introduced by the 
additional switch matrix elements that must be passed through to reach each signal 
end point. 

3 . C O N T I N U O U S  I N T E R C O N N E C T .  

In a simple PLD device the output from every logic element or macrocell is 
connected directly to the input of  every other logic element or macrocell. In addition 
each signal is provided as both a true and a compliment - doubling the number of  
macrocells has the effect of  increasing by a factor of  four the amount of  interconnect 
required. As a result it would be impractical in high density programmable logic 
devices to have logic element connected by a continuous line to every other element. 

However it is possible to extend this concept of  continuos interconnect by using a 
hierarchical structure where groups of logic elements are combined together into a 
block and then a continuous interconnect resource can connect signals from one 
block of logic elements to another. The Altera FLEX 8000 family of  high density 
programmable logic devices use this type of a routing technique for the 3- 
dimensional 'Fast-Track' interconnect structure. 

3.1 A L T E R A  FLEX 8000. 

The FLEX 8000 devices are made up from a fine granularity Logic Element which 
consists of  a four input look up table and a configurable flip-flop. Eight of  these 
logic element are combined together into a Logic Array Block (LAB) which 
provides interconnect from any Logic Element to any other Logic Element contained 
with-in the LAB. 

The Logic array blocks are connected by a Row and a Column Interconnect resource. 
These interconnect resources provide for each signal a continuous metal line that 
runs the complete length of the device in either the horizontal or the vertical. A 
multiplexing structure on the input to every Logic Array Block selects from the 
available signals in the Row or Column the signals required in that Logic Array 
Block. In this way any Logic Element can be connected to any other logic element 
with-in the device. 

3.2 FAST-TRACK INTERCONNECT DELAYS 

The continuous metal lines in both the Row and the Column interconnect resource 
run the complete length of the device. Each metal line is connected to every Logic 
Array Block through a multiplexer. When the device is configured the signal is either 



294 

connected or not by the selection that is set on the multiplexer. Irrespective of 
whether the signal is selected or not into one or all of  the Logic Array Blocks the 
loading on the line remains the same and as a result the delay remains the same 
irrespective of  where the signal routes too or the signal fan-out. In the case of  the 3- 
dimensional 'Fast-Track' interconnect - three predictable delays exist. A lnSec delays 
exists for Logic Elements that are connected with-in a Logic Array Block. A 6nSec 
delay exists for Logic Elements that are connected from one Logic Array Block to 
another through the Row Interconnect Resource and a 9nSec delay for signals that 
must pass through both the Row and the Column Interconnect Resource. 

In addition to these general purpose interconnect paths, specific connection paths 
are provided in the FLEX 8000 devices between adjacent Logic Elements. These 
paths are utilised to implement fast Carry-Chains and Cascade Chains. For Adders 
and Counters the Carry-Chain path is utilised to provide a dedicated path for the 
carry signal from one stage of the adder or counter to the next. For complex logic 
functions that require more then four variables the Cascade path is used to enable 
multiple Logic Elements to be cascaded together to provide for wider signal fan-in. 

The combination of these routing resources enable an 8bit Registered Accumulator 
to be implemented with a delay of 8nSec and a frequency of 125Mhz, or a 16bit 
loadable up/down counter with a worst case delay of 13nSecs and a frequency of 
75Mhz. A 24bit magnitude comparitor, a common function in video processing for 
example can be implemented with a worst case delay from data valid to the 
comparison result of 23nSec. Also a 24bit adder can be implemented with a worst 
case delay of  22nSec so it would be possible to implement a real-time 24bit image 
processing application that would be able to operate at approx. 40Mhz. 

4. S U M M A R Y  

Continuous interconnect enables high performance applications to be implemented 
with-in high density programmable logic devices. The predictable delays allow high 
performance to be achieved with the minimum of design effort. When designing 
with programmable logic devices with continuous interconnect it is not necessary to 
worry so much about the placement of the individual Logic Elements with-in the 
device because the overall performance will not be affected. As a result achieving 
high performance designs in these types of devices, commonly called Complex 
Programmable Logic Devices (CPLD's) is a much simpler process then with devices 
that utilise segmented interconnect such as FPGA's. 



A HIGH DENSITY C O M P L E X  PLD FAMILY OPTIMIZED FOR 
FLEXIBILITY, PREDICTABILITY and 100% ROUTABILITY 
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Abstract 

This paper describes the silicon architecture of  AMD's second generation Macro Array CMOS High Speed/High Density 
(MACH®) foanily of PLDs. With an advanced O.65um technology and an innovative architecture, the ruext generation MACH 
family offers gate density up to 10,000+ gates with 100% roatability, flexibility, and predictable worst-case pin-to-pin 
delays of  15ns. 

I n t r o d u c t i o n  

The MACIt 3 & 4 family is AMD's second generation Macro Array CMOS High Performance High density 
(MACH®) family. AMD's first generation MACH 1 & 2 family, introduced in 1990, set the industry standard for 
15ns worst case pin-to-pin delays for devices ranging from 900 to 3,600 gates, The 1st generation MACH family also 
pioneered the concept of fixed, predictable, deterministic, logic and routing independent signal delays. AMD's next 
generation MACH family raises the bar of "predictable speed standards" to 10.000 gates with significantly increased 
flexibility and 100% routability. 

Second  G e n e r a t i o n  M A C H  F a m i l y  

MACH 3 & 4 family consists of 4 devices. This family begins at 3,500 gates and extends up to 10,000+ gates 
offering predictable, path-independent worst-case delays of 15ns. These devices offer between 96 and 256 logic cells 
with 96 to 384 registers, and are available in 84 to 208 pins PLCC and PQFP packages. Designed with proven, 
advanced 0.65- micron double metal CMOS electrically erasable technology the MACH 3 & 4 family devices are 
100% testable and have 100% guaranteed programming and functional yields. The MACH 3 & 4 family also pioneers 
5V incircuit progrmnmability with full conformance to 1EEE 1149.1 JTAG standard for PQFP packages beyond 84- 
pi~s. A single set of dedicated pins are used for both in-circuit programmability and JTAG compatability. Table 1 
shows the members of the MACH 3 & 4 family and their capabilities, 

Device MACH 355 M A C H 4 3 5  M A C H 4 4 5  MACH465 

Gate Count 3,500 5,000 5,000 10,000 

Macro Cells 96 128 128 256 

IO Cells 96 64 64 128 

Registers 96 192 192 324 

St'x~cd 15ns 15ns 15ns 15ns 

Package 144-PQFP 84-PLCC 1 0 0 - P Q F P  208-PQFP 

Table 1 MACH 3xx/4xx Family 

Like the first generation MACH lxx/2xx family members, the MACH 3xx/4xx family consists of "multiple, 
optimized programmable logic blocks interconnected by high speed switch matrices." Retaining the fixed, predictable 
characteristics of the first generation MACH architecture, the 2nd generation MACIt 3 & 4 family locuses on 
significantly increasing density, flexibility, routability and programmable connectivity without compromising 
speed. Major innovations in next generation MACH family include: multi-tiered, high speed switch matrices to 
provide 100% routability; and significant architectural enhancements to PAL blocks and macrocells to provide 
density, flexibility; and predictable speed. 



296 

M A C H  3 & 4 F a m i l y  F l e x i b l e  P r o g r a m m a b l e  L o g i c  B l o c k  

Each programmable logic block of the MACH 3 & 4 family consists of: flexible Clock Generator, an enhanced AND- 
OR-XOR array, a more flexible logic allocator, and an array of logic and I t  macrocells, With 16 macroceils each 
logic block is designed to handle wide gating functions up to 33-34 inputs. This makes it ideal for emerging 32-bit 
microprocessors bus interfaces and address decoding applications. 

Each Logic Block has its own clock generator that can provide up to 4 different global, synchronous pin clocks for 
each block with programmable polarity. Accessibility to four different clock sources with programmable polarity 
helps to implement complex state machines inside a block. Each logic block contains a 33-34 inputs (true and 
complements) x 90 AND-OR-XOR product term array that form the basis of all logic implementation in a logic 
block. The product term array for each logic block consists of logic product terms and control product terms. Logic 
product terms are grouped in clusters. For control functions, product terms are not clustered-. For MACH 3 & 4 
family, each logic macrocen receives an average of 5 PT clusters from PT array. In addition, the logic allocator 
distributes up to 20 PTs of logic per macrocell in a more flexible fashion, with no speed penalty. The PT array also 
provides a separate output enable PT term for each I t  macroceU. In addition, flexible asynchronous Reset product 
term and a separate asynchronous Preset product term are provided for all logic macrocells initialization within a logic 
block. 

F l e x i b l e  S y n c h r o n o u s / A s y n c h r o n o u s  L o g i c  M a c r o c e l l s  with XOR F u n c t i o n s  

Macrocell enhancements for the MACH 3 & 4 family include more intelligent PT clustering, more PTs/macrocell, 
synchronous/asynchronous mode of operation, flexible clocking with pin or PT clocks with programmable polarity, 
flexible Reset/Preset swapping and built-in XOR capability. 

Each logic macrocell provides a AND-OR array based sum.of-products with flexible XOR capability. Each logic cell 
can provide base logic capability up to 5 PTs. The 5 PT logic for each logic cell consists of two lrl's clusters - one 
consisting of a 4 PT cluster and the other consisting of a single PT. The single PT is used as either logic PT for the 
OR gate or a logic input for the XOR. When used as a logic PT, the 5th PT can be steered to the 5-input OR-gate. 
In that situation it is not available as PT for the XOR gate. It can also be used as single PT controlling the XOR 
gate. The ability to use a single PT comes in handy for address decoder application - where single PT can be used and 
the 4 PT cluster can still be made available to adjacent macrocells. 

Each logic cell has access to the logic clusters of its three adjacent neighbors: one from above and two from below, 
via the logic allocator. With accessibility to 3 adjacent macrocells, each cell can provide logic capability up to 20 
PTs. An unique strength of the MACH 3 & 4 family architecture is that no additional speed penalty is imposed for 
this additional logic flexibility. 

The storage element inside the logic cell can be individually programmed to operate in either a transparent flow- 
through latch or as an edge-triggered D or T-type register, blow-through latching provides minimum input to output 
delays for speed critical functions such as chip-select decoding, while edge-triggering guarantees glitch-free outputs for 
applications needing synchronous counters and state machines. The built-in XOR gate in front of the macrocell, 
besides providing the polarity control of the signals going into the macrocell, can also be used for complex XOR 
arithmetic logic functions (comparators, adders etc) and for De Morgan's inversion for reducing the number of product 
terms (for logic optimization and synthesis). An important innovation of the MACH 3 & 4 family macroeell is its 
ability to support both synchronous and asynchronous logic capability on an individual macrocell basis, in the same 
macrocell with no speed penalty. 

In synchronous mode, all logic macrocells are initialized together with the common asynchronous Reset or Preset 
product terms. However, each macrocell has the capability to swap the Set/Reset function on an individual macrocell 
basis. In the asynchronous mode, each macrocell can receive its own independent product term dock, plus independent 
set/reset PT. Further, each macrocell has the ability to swap the Set/Reset function, on an individual macrocell basis 
in both the synchronous and asynchronous modes. In synchronous mode, each macroceli selects its clock from 4 logic 
block clocks. In asynchronous mode, the clocking is more flexible. Each cell receives two logic block pin clocks 
(generated from its block clock generator), one individual PT clock (generated from its array inputs) and one the 
inverted PT clock. This provides an individual and separate PT clock with programmable polarity for each macrocell. 

Flexible macroeell structures and intelligent PT allocation capability of the logic allocator with no additional speed 
penally, is a key feature differentiating the next generation MACH family from other complex EPLDs. The 
architectural flexibility of the logic allocator and the flexible macrocell structure, combined with each blocks ability 
to handle up to 34 inputs and better than 2:1 input to output ratio allows each programmable logic block of the 
MACH 3 & 4 family architecture to pack quite a bit of synchronous and asynchronous logic in a single block. 

The I/O macrocell for the MACH 3 & 4 family architecture consists of a three-state output buffer, control for the 
three-state buffer and an input macrocell. The three-state buffer can be configured in one of three ways: always 
enabled, disabled, or controlled individually by a separate PT. This gives designers the flexibility of configuring the 
I/O macrocell as an output, an input or bidirectional pin, or a three-state output for driving a bus. The input to the 
three-slate buffer comes from the output switch matrix. 
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100% Routability 

Another significant innovation of the next generation MACH family is its multi-tiered switch matrix structure. The 
multi-tiered switch matrices structures are designed to provide 100% mutability with fixed, predictable delays. The 
second generation MACH architecture consists of three types of switch malrices: Input Switch Matrix (ISM), Central 
Switch matrix (CSM) and Output Switch Matrix (OSM). 

Wilh multitiered switch matrices, the second generation MACH offers a "true programmable connectivity" between 
logic block and I0 pins.. The multi-tiered switch matrix structure completely decouples the internal logic block from 
external physical 10 pins and all internal feedbacks; and provides a uniform way for treating all signals with 
significantly increased routability. It significantly addresses the nuljor concern of design changes effect on old- 
pinouts. 

Each switch matrix structure has been optimized for speed, cost and flexibility. The ISM decouples the I t -pins  
feedbacks and logic block feedback signals from the internal logic block and provides multiple chances of signal entry 
to the global switch matrix. The CSM acts as the main signal routing structure to provide optimized global 
connectivity and is key for achieving fixed, predictable, deterministic, and path independent delays for the device. The 
OSM decouples the logic block from its I t  pins and its own inputs and is key for addressing the concerns of design 
changes while retaining prior pinouts. 

S o f t w a r e  S u p p o r t  

AMD's MACHXL TM design development system fully exploits the density and flexibility of MACH 3xx/4xx family 
architecture and provides a low-cost software environment. The MACHXL development system includes PALASM® 
comparability, Boolean equations, State machines and High Level languages design entry. It also includes an 
automated logic compiler, logic synthesis package, automatic device partitioner, placer and router, functional unit 
delay simulator, JEDEC generator and a report generator. This low-cost design system provides designers with high 
level design capability for fast, hands-off, automatic routability plus fine control for fine-tuning the device. AMD's 
Besides AMD's MACHSXL design environment, the MACH 3xx/4xx family is supported by broad third-party PLD 
tools vendors such as DATA I/O, MINC, OrCAD, Logical Devices and ISDATA. Support in the CAE environments 
such as CADENCE, MENTOR, VIEWLOGIC and SYNOPSYS is made available via existing agreements between 
third-party PLD tools and CAE vendors, lh'ogramming support is made available by third-party vendors such as 
DATA I/O, Logical Devices, BP Microsystems, SMS etc. 

S u n t m a r y  

The major strength of the next generation MACH 3 & 4 family are its architectural simplicity - multiple PAL-like 
AND-OR-XOR blocks interconnected by multi-tiered switch matrices with fixed, predictable, deterministic delays. A 
significant breakthrough for the MACH 3 & 4 family architecture is its combination of flexibility, programmable 
connectivity, and deterministic speed. The internal architecture of the MACH 3xrd4xx devices provides flexible 
global connectivity,with TRUE predictable speed. Delays are neither path dependent, placement dependent, fan-out 
dependent, nor logic and routing dependent. Logic block structures, logic macroceil structures, and multi-tiered switch 
matrices have been all optimized to give users a better optimal balance of speed, density, flexibility and 
programmable connectivity. Every macrocell communicates with every other macro cell along the same path and with 
the same, fixed predictable deterministic delays.With its simple, symmetrical, and optimal structure the next 
generation MACtt 3xx/4xx family is structured to raise the bar of "predictable speed standards" to 10,000 gates. 
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Abstract. The performance of fine-grained, cellular FPGAs is improving 
rapidly. In this paper, the experience of working with two relatively fine- 
grained FPGA architectures, the Atmel 6005 FPGA and the Dynamically 
Programmable Logic Device (DPLD) from Pilkington Micro-electronics Ltd, is 
described. 

1. Introduction 

This paper reports on the authors' experiences in designing with the Atmel 
AT6005 [1] and the Pilkington Micro-electronics Ltd. (PMeL) 3k6 Dynamically 
Programmable Logic Device DPLD [2]. The work began with a number of different 
logic designs implemented on the Atmel FPGA by undergraduate and postgraduate 
students at the University of Strathclyde. The subsequent porting of a representative 
sample of three of these designs to the DPLD architecture forms the basis of the 
paper. Aspects of the device architectures, CAD tools and their impact on the relative 
performance of the designs are considered. 

2. CAD Tools and Design Porting 

The authors have used a pre-release version of the CAD suite that PMeL is 
intending to release commercially. The software is PC based and consists essentially 
of physical design tools, i.e. placement and routing programs. Designs are imported 
via an EDIF interface and programs for device configuration and programming are 
also provided. At present, the only schematic and simulation libraries that are 
provided are for use with the Viewlogic CAD software. Post-layout delay 
information for back annotation is provided for the Viewlogic Workview simulator. 
The software also features a comprehensive on-line help facility. 

The Atmel CAD software is also PC based and the components of its tool set are 
practically identical to those offered by the PMeL software. The main differences are 
that the Atmel software can exchange files directly with the Workview software 
without using EDIF and that a fully interactive, manual design editor is supplied. 

The mechanics of design porting were quite straightforward. The Workview 
schematics of the Atmel designs were converted to DPLD designs by manually 
replacing all references to Atmel library primitives with the equivalent PMeL library 
primitives. The designs were then re-exported and the PMeL design tools were used 
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to automatically place and route them. The success of this approach relied heavily on 
the availability of equivalent or replacement design primitives in the target library. 
No special, architecturally specific design primitives were used in either design. This 
point is developed further in the next section. 

3. Architectural Issues 

The cell structure of the AT6005 offers an unusually large number of 
permutations of logic and routing functions: for 13 of the 44 logic functions available 
in a single cell there are multiple configurations for the same function. In the 
manufacturer's literature, the logic functions are referred to as logical primitives 
while the associated cell configurations are referred to as physical primitives. The 
logical primitive representing the simple inverter, for example, has six different 
physical primitives associated with it. Figure 1 shows two of the more complex 
Atmel logical primitives. During synthesis the user may wish to use such cell 
structures to realise smaller and hence faster designs. At present, designers are 
obliged to recognise the opportunity for deploying the more complex logic primitives 
within their circuitry and then to enter them manually into their schematics. 

B ~ B ~ A B ~ B A, 
A A, L o Lo 

Li 

Fig. 1. Complex Logic Primitives 

An analysis of the macro libraries provided an unexpected result. Neither of the 
complex logical primitives shown in Figure 1 are used in the construction of more 
complex macros in the system libraries. Furthermore, the same observation is true of 
approximately a quarter of the total of 44 logical primitives. One reason for the lack 
of use of the more complex logical primitives is that while they combine several logic 
functions into one cell, they can be extremely difficult to route efficiently. This 
restriction extends to some of the simpler logical primitives also. 

P ~ .  a o  
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Fig. 2. Implementations of AT6005 and DPLD Wide-input OR gates 
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Consider the example of the logical primitive for the 2-input OR gate. It is 
constructed by inversion of the inputs and outputs of a two-input AND gate (as is the 
case in the DPLD) but is so difficult to route that it is rarely used. Figure 2 shows the 
construction of the 8-input OR gates in the Atmel and DPLD libraries. The Atmel 
macros do not use the 2-input OR primitive and are highly asymmetric with respect to 
one another. The 8-input OR gate requires nine cells to implement and contains eight 
levels of logic. In contrast, the symmetrical DPLD implementation of the same 
function uses seven gates with four levels of logic. 

4. Designs 

Three in-house designs have been ported from the Atmel AT6005 to the PMeL 
DPLD. They are a one-hot encoded finite state machine, a content addressable 
memory (CAM) and a hardware implementation of a queue model. The finite state 
machine (DESIGN1)  had ten states and represents the control sequence for a 
"walkman" portable audio player (without recording facilities). It was the smallest 
of the three designs and also the least regular circuit. It consisted of 101 nets, 10 flip- 
flops, 112 gates and had an estimated equivalent gate count of 218.5 gates. 

The second design was a 4 by 4 bit content addressable memory (DESIGN_2). It 
was a highly regular design since each CAM cell is identical and was predominantly 
combinatorial in nature. It consisted of 206 nets, 8 flip-flops, 234 gates and had an 
estimated equivalent gate count of 328.5 gates. The final design to be described was 
a hardware implementation of a M/M/1 queue model (DESIGN_3). This design was 
comprised of two 32-bit, linear feedback shift registers (LFSRs) and two 16-bit, 
probabilistic bit-stream modulators which were very register-intensive. It also 
included an 8-bit up/down counter, a 24-bit ripple carry counter, three small finite 
state machines (encoded using one-hot techniques), an 8-bit data bus and some 
address decoding logic. It consisted of 312 nets, 147 flip-flops, 260 gates and had an 
estimated equivalent gate count of 1558.5 gates. The equivalent gate counts for the 
three designs are derived from the Atmel CAD tool reports. 

5. Design Performance 

The three designs were automatically placed and routed using both the Atmel and 
PMeL physical design tools as shown in Figure 3. The designs laid out on the Atmel 
FPGA occupy significantly more area that their counterparts on the DPLD array, even 
when the slightly larger zones of the DPLD are taken into account. This is partially 
the result of the autoplacement algorithm. It would appear that the Atmel algorithm 
adopts a strategy of dispersed component placement to make the task of the 
autorouter easier. In general, it was better to avoid using the autoplace software and 
to rely on manual placement. The designs were manually laid out on the Atmel array 
as shown in Fig. 4. An immediate improvement in the area utilisation is apparent for 
all three designs. In the case of the queue (DESIGN_3), the manually placed circuit 
did not successfully complete autorouting so it was manually routed. In the interests 
of comparison, DESIGN 1 and DESIGN_2 were also manually routed. 
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Fig, 3. APR of the FSM, CAM and Queue for the AT6005 and the DPLD 3k6 
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Fig. 4. Manually Placed FSM, CAM and Queue for the AT6005 

For the CAM and the Queue, the autoroute software performed better than the 
human designer as is indicated by the design summary statistics in Table 1. In the 
case of  each of the three designs the table indicates the resource utilisation first for the 
automatically placed and routed design (APR), then for the manually placed and 
automatically routed design (MPAR) and finally for the fully manual placed and 
routed design (MPMR). Even after manual placement and optimum routing, the 
DPLD designs are considerably more compact than the Atmel ones. Since greater 
area equates to increased delay in FPGAs, the designs are also substantially faster, by 
as much as a factor of four for the FSM and Queue designs. These figures were 
obtained from the Workview simulator for the Atmel designs and from the physical 
design tools' summaries in the case of the DPLD. The DPLD design tools on the PC 
do not support manual layout or interconnection, so no comparison is possible 
between the manual and automatic placement and routing• 
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AT6005 

No. of Turns 

N o .  of Buses" 

Local Buses 

Express Buses 

No. of Cells 

DESIGN_I:FSM 

APR MPAR MPMR 

102 100 67 

'337 '267 265 

305 242 230 

32 25 35 

319 252 318 

DESIGN_2: CAM 

APR MPARMPMR 

150 58 56 

765 327 355 

628 314 286 

137 13 86 

854 587 605 

DESIGN_3: Queue 

APR MPAR MPMR 

172 151 162 

613 701 628 

549 555 576 

, 64 146 52 

865 832 971 

Table  1. Summary of Layout Statistics for AT6005 

Neither set of summary statistics produced by the design tools report directly the 
number of cells used in through-cell routing. DESIGN _1 required 196 AT6005 cells 
and 115 DPLD cells for through routing, DESIGN_2 required 345 AT6005 and 278 
DPLD cells and DESIGN_3 required 425 and 441 cells respectively. For both 
architectures the cell usage figures quoted by the software statistics is misleading, if 
taken in isolation. Though nothing useful can be achieved with a large proportion of 
the cells in otherwise fully committed sectors or zones the CAD tool statistics do not 
report them as being in use or consumed. 

6. Conclusion 

It should be pointed out that the device architecture and CAD tools for the PMeL 
FPGA are probably as much as a design generation ahead of the present Atmel 
FPGA. How much of the superiority of the PMeL device and CAD tools can be 
attributed to this factor is at present impossible to quantify. The use of default design 
parameters was assumed throughout the work reported here, though different 
optimisations have been tried. Future work will address these considerations. 
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1 I n t r o d u c t i o n  

A typical field-programmable gate array (FPGA) consists of a mixture of rout- 
ing resources and logic resources, ideally with a balance between the two that  
matches that  required by the circuits to be implemented. It is not obvious what 
this balance is, or indeed whether there is a single ratio that  is suitable for a 
class or a set of classes of circuits. The work presented here a t tempts  to identify 
the common features of the routing in a set of example circuits. The approach 
taken is to generate layouts from a set of circuits picked to represent those we 
wish to implement on an FPGA and to analyse the routed layouts for common 
features. 

2 E x p e r i m e n t a l  Procedure  

E x a m p l e  C i r c u i t s  The routing patterns seen in the layouts will be strongly 
affected by the choice of example circuits. For the purposes of this work 
the example circuits were made up of twenty-one test circuits from the the 
Microelectronics Centre of North Carolina (MCNC), seven circuits generated 
using Rebecca, a functional language hardware compiler, and five generated 
using Handel, an imperative language hardware compiler. Both compilers 
were developed in Oxford. 

F P G A  Logic  B l o c k  In order to perform an experimental analysis of routing it 
is necessary to fix on a logic block. A large variety of logic blocks have been 
suggested and implemented in various FPGAs. It was desired that  the logic 
block chosen be simple and regular in order to facilitate automatic design 
generation. This led to a logic block consisting of a four-input look-up table 
and a D-latch, based on that proposed in [1]. The output  of the D-latch can 
be fed straight back into the look-up table. It is hoped that the simplicity 
of this logic block will make it possible to map the results onto other logic 
block architectures. 

T e c h n o l o g y  M a p p i n g  The example circuits were technology-mapped for the 
given logic block using SIS, a synthesis program from Berkeley. It would 
have been preferable to use a technology mapper that takes account of the 
routabili ty of the mapped designs and not merely the number of nodes but 
the lack of such a program prevented this. 

P l a c e m e n t  Hardware compilers require a fast placement algorithm in order to 
reduce the compile-generate-edit time. This led to the use of a rain-cut based 
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placement algorithm. When implemented this produced designs with 0% - 
25% greater routing requirements than the same designs placed using APR, 
the Xilinx XC3000 series placement tool. It is important to note that this 
step commits the architecture design to a fast, simple placement stage. For 
FPGAs intended to be placed using a better but slower algorithm such as 
simulated annealing these results will give too much routing by a factor of 
around 20%. 

Globa l  R o u t i n g  A typicM automatic routing procedure splits the process into 
two stages: a global routing stage during which wires are assigned to channels 
followed by a detail routing stage in which the wires in each channel are 
allocated to the particular routing segments available. It is not clear that this 
is as appropriate for FPGAs as it is for conventional gate arrays but it has 
the advantage that the global routing stage can be made almost architecture- 
independent. For the same reason the routing channels are chosen to be over 
the rows and columns of logic blocks rather than along the empty space 
"between the logic blocks. This moves some of the routing task from the 
global to the detail routing stage but frees the algorithm from dependence 
on a segmented channeled routing architecture. 

3 R e s u l t s  f r o m  Global Routing 

The procedure described above resulted in the generation of a globally routed 
layout for each of the thirty-three example circuits. For each circuit the distri- 
bution of segment lengths was plotted, a segment being a section of net between 
two pins. For example, a simple L-shaped net has two segments, a T-shape has 
three. A segment of length one spans the distance between two neighbouring 
logic blocks. The distribution seen in all cases was fitted well by the equation: 

Number  o f  wires = K × Number  o f  Logic Blocks × W i r e  length - a  

The measured values of G and K for the example circuits are given below. 

Circuits G Mean G Std. Dev. K Mean K Std. Dev. 
All 2.27 0.42 3.40 1.82 
MCNC 2.16 0.43 3.92 2.12 
Rebecca 2.53 0.34 2.51 0.42 
Handel 2.49 0.17 2.48 0.13 

This formula supports the design of hierarchical FPGAs as it says that a circuit 
with 2n logic blocks has the same distribution of short wires as a circuit with n 
logic blocks plus some additional longer segments. 

The parameter G measures the ratio of long segments to short segments. A 
small value of G indicates more longer segments. The results indicate that there 
is a strong similarity between the segment length distributions in a wide variety 
of circuits. 

Values of K show a wider variation, particularly for the MCNC circuits. The 
compiled circuits are much more consistent. 
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The layouts can also be used to determine channel densities and switching 
patterns. Lack of space precludes discussion of this data  here. It is presented 
along with more information on this work in [2]. 

4 Routing Architecture Generation 

A simple segmented routing architecture can be designed as follows. K is chosen 
to be 3.4 and G to be 2.0. The design will be a square array whose width is a 
power of two, and with segment lengths of powers of two only. We also choose 
to make the routing symmetrical and regular, so we need only design routing for 
one row which is then replicated over the array. The formula can be rearranged 
to give N S L  : 1.7 • x/-N-C/L 2 where N,_,CL is the number of segments of length 
L per row and N C  is the number of logic blocks. K halves to allow for the 
segments used for column routing. 

To determine the number of segments of each power-of-two length we break 
down the unused lengths, so that the number of segments of length 5 is added to 
the number of length 4 and the number of length 1. This gives for an 8x8 logic 
block array nineteen length 1, eight length 2, and four length 4 segments. These 
must be distributed among the switchboxes. Experiment suggests the segment 
arrangement is not critical. A randomly generated routing is shown in Fig. 1. 
This routing requires on average 40% more segments to connect two arbitrary 
pins than a fully-connected routing using only power-of-two segment lengths. In 
comparison the best hand-designed routing required 35% above the minimum. 
In practice the designer would wish to adjust this design before implementing 
to even out the number of connections per switchbox. 

Fig. 1. Randomised Routing for an 8x8 Logic Block Array 

A detail router for this architecture is currently being implemented. This 
will allow the propsed architecture to be tested against existing FPGA routing 
designs. 
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A b s t r a c t .  This paper presents a tool-set for simulating Altera-PLDs 
[1] using VHDL [2]. It has been successfully used in a graduate course 
on digital design with PLDs. The tool-set supports timing simulation as 
well as functional simulation of designs that have been designed with the 
Altera MAX+plusII development tool. 

1 B a c k g r o u n d  

Altera 's  P L D / F P G A  design tool MAX+plus l I  comes with an own hardware de- 
scription language (HDL) named AHDL [3]. Compared to s tandard HDLs like 
VHDL, AHDL is a low-level t tDL with support  for signals of type either bit or 
vector-of-bits only. The implicit signal types along with short-hand constructs 
for instantiat ing and interfacing of subdesigns allows very compact  hierarchical 
design descriptions. In addition, AHDL gives the user a direct control over tech- 
nology mapping  and design partit ioning. Both aspects let us choose AttDL ms 
the means of design entry in a first year graduate course on digital design for 
PLDs in which most  part icipants have little or no experience in using HDLs as 
well as PLDs. 

2 S i m u l a t i o n  R e q u i r e m e l ~ t s  

Validation by simulation is still the usual way verification of digital designs is 
done. The designer should have easy access to a powerfld simulator and the 
development tools of  PLD-vendors usually come with programs which generate 
a design description in a s tandard format  like EDIF,  Verilog, and/or  VHDL. 
Such a description then can serve as an input to a third-par ty  simulator.  

When simulation is considered, it is highly desirable that  the designers view 
of the design is structured in the same way as ill the original design description, 
that  is, design hierarchy, groups of signals (busses), and all symbolic names of 
instances, machine states, and internal as well as external signals should be 
preserved. MAX+plus l I  for workstations fails to meet  these d e m a n d s )  Netlist 
writers tha t  produce an EDIF, VHDL or Verilog description of a design are 
available, but they merely write flattened netlists. These netlists contain full 

1 The PC-version of MAX+pluslI comes with an integrated simulator, but the expres- 
sive power of the stimulus description language is limited. 
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t iming information, but neither the design hierarchy nor names (except for the 
primary inputs and outputs) are preserved. Functional debugging of a design 
has to be done by analysis of the primary inputs and outputs only. 

But before correct timing of a circuit is to be verified, the designer must check 
the functionality of the design. For this task, the exact t iming of the circuit is 
quite irrelevant and a fltnc~ional simulation suttices. This is especially true when 
the design is fully synchronous, as it is enforced by the structure of functional 
blocks in most PLDs. We believe that at this stage of the design process it is 
much more important to simulate a design that "looks" exactly the same as in 
the original description rather than using a modified model of the design with 
exact timing information. 

3 S i m u l a t i o n  P r o c e d u r e  

As a compromise between tim needs of the designer and what can be fulfilled 
with a reasonable effort, we developped a tool-set which eases t iming simulation 
and provides flinctional simulation of Altera PLDs that  have been designed using 
AHDL and the MAX+plus l l  compiler. For both types of sinnllation, VIIDL is 
used to interface MAX+plus l l  with a third-party sinmlator  which in our case is 
the powerful Synopsys VllDL-simulator  vhdlsim [4]. VIIDL is also used by the 
user to define stimuli for the simulation. For this purpose, our tool-set embeds the 
design-to-test in an automatical ly  generated VflDL testbench. This testbench 
is a Vt tDL entity with an architecture that  contains a component  declaration 
for the design, a signal declaration for each of its external connections, and an 
instantiat ion of the design, the ports of which are connected to the signals. Using 
such a testbench has been proposed in [5] and gives the user the full expressive 
power of VItDL to assign waveforms to the external inputs and t.o observe and 
evaluate the restllting responses of the design. 

Our tool-set supports  bot.h t.ypes of simulation: limi~g simTtlalion and fun.c- 
timbal simulaliom 

For limiT~9 simulat, io~, the VIIDL netlist written by the MAX+plus l I  com- 
piler is slightly modified and embedded in the testbench. Two script files named 
limege~ and lsim make the necessary calls to programs which 

- check that  the design project is up-to-date and has been successfully com- 
piled in MAX+plusI l .  

-- modify the VllDL-netl ist  t.hat has been written by MAX+plus l l .  Modifica- 
tions include regrouping of busses that  have been resolved by the compiler. 

- generate a VIIDL testbeneh for the design. 
- make the calls to the VIIDL compiler to generate simulat.ion models for the 

VIIDL description of the design itself and its testbench. 
call the sinnllator. 

For fundional simulatioT~., a VIIDL model of the design is generated directly 
from the original AIIDL description. This task is carried out by an AIII)L-  
to-VItDL compiler named agvhdl. The VIIDL code produced by a2vhdl fully 
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preserves the hierarchy of the design project as well as all signal groups (busses) 
and all symbolic names of instances, machine states and signals. This VItDL de- 
scription of the design is embedded in the same testbench as the timing model, so 
that  the same stimuli are used for both types of simulation. Changing between 
functional and timing sinmlation is done by simply configuring the testbench 
for using the timing architecture or the flmctional architecture of the design, 
respectively. Again, two script files named funcgen and fsim realize all the nec- 
essary steps to simulate an AIIDL design that has been succesfully compiled 
with MAX+plusII.  

To simulate an AHDL design using our tool-set, the designer has to follow 
the following procedure: 

1. Design entry with AtIDL. 
2. Compile design with MAX+pluslI.  
3. Call funcgen or timegen, respectively. 
4. Insert stimuli processes in the testbench. 
5. Call fsim or tsirn, respectively, to start the simulation. 

The VHDL code generated for the design is transparent to the user. When 
doing a timing simulation, all be sees from the VItDL model is tile testbench, 
containing the external connections of the design. In the case fimctional sim- 
ulation is chosen, the same testbench is used. In addition, the interior of the 
functional VHDL model is structured in the same way as the original AItDL 
description. All design objects the user defined in the original design description 
do also exist in the functional VIIDL model and have the same name. Internal 
signals may be traced during simulation using the original (hierarchical) node 
identifiers. 

4 C o n c l u s i o n s  

The tool-set as described in this paper proved to greatly simplify debugging of 
PLD designs. It combines the compactness of design description in AItDL with 
the expressive power of VHDL for the description of simulation stimuli and the 
monitoring capabilities of a powerfid VHDL sinmlator. 
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Abstract. A method for the development of an Extra-Fast Fuzzy Logic 
Controller is presented in this paper, using a CAD tool to utilize the potentials 
of programmable hardware [1]. This is accomplished by generating custom 
VHDL synthesizable code [2] that is targeted to an FPGA chip. The CAD tool 
produces, also, bit patterns that represent a compiled version of the fuzzy- 
logic controller [3]. These are stored in memory modules. The basic idea is 
simple but very efficient with respect to the achieved processing speed, the 
required hardware and the ease of programmability. 

1 Introduction 

Fuzzy logic control methods have been in wide use in a variety of application fields 
during the last years. The major advantage of these methods is the ability to develop 
a working system even when a strict mathematical model for the regulated process is 
not available. Observed patterns in the time-series of the input-output pairs or the 
knowledge of an expert can be exploited to formulate the membership functions and 
the rules of the fuzzy controller. Then, during the evaluation tests, the membership 
functions and the fuzzy rules can be trimmed to achieve the best results. 
The presented method consists of a CAD tool that accepts information regarding the 
fuzzy controller and produces a bit pattern that is stored in ROM or loaded in a 
RAM module. Apart from the memory-based part, the CAD tool queries the user 
about several hardware aspects and develops a VHDL synthesizable code that will be 
targeted to an FPGA chip. The proposed procedure is depicted in figure 1. The 
memory-based fuzzy-logic control method, the required programmable hardware and 
the CAD tool are presented in the subsequent sections. 

2 Memory-Aspects of Fuzzy-Logic Control 

The overall architecture of a fuzzy-logic control system is presented in figure 2. The 
input signals are fuzzified according to their resemblance to certain membership 
functions. The fuzzified values are fed to the inference engine which examines the 
contents of the Fuzzy Rules Matrix (FRM). The outcome of the inference process is 
a set of values that represent the grades of the results of each individual rule. The last 
step is the defuzzification process, where the set of output grades is transformed, 
back, to a crisp value. 
Many different methods exist both for the inference process and the defuzzification 
process and all of them are dependent on the number and the shape of the 
membership functions. It is obvious that to achieve an efficient hardware 
implementation for the aforementioned blocks, taking into account all the potential 
variations that might be requested, is a difficult task. Another approach for the 
development of a fuzzy-logic controller is to implement the algorithm in software 
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running in a conventional microprocessor. Although this is a flexible solution, there is 
an obvious drawback: the developed system is many times slower that a pure 
hardware approach. The proposed technique overcomes both of the aforementioned 
problems by following a middle-road approach as is explained below. 
The basic idea stems from the fact that most fuzzy-logic control systems need only 
two variables as input: a specific signal and its time-derivative. Since a conventional 
fuzzy controller's output is independent of its previous state (i.e. the controller 
presents combinatorial behaviour) the outputs for every input combination can be 
pre-computed (compiled) and stored in a contiguous part of a memory module [3]. A 
simple calculation shows that the required memory size for a two-input, one-output, 
eight-bit resolution (in both the input and output signals) is 8*2(8+8)'= 64 Kbytes. 
Although the idea of using the memory module as a universal function approximator 
is simple, the advantages are manifold: 
• There is no need to stick to a particular inference or defuzzification method. 
• The processing speed is inversely-proportional to the memory-module access time. 
• The inference time is independent on the size of the rule matrix or the methods for 

inference and defuzzification as well as independent on the particular input 
combination. This is essential for real-time systems. 

• There are no compromises to the number, shape and overlap of the membership 
functions, the size of the rule matrix or the methods of inference. 

• Each input or output can receive a different number of resolution bits. 
• The number of resolution bits for the membership grade axis does not affect the 

size of the memory. The CAD tool computes the result using maximum accuracy. 
• The fuzzy-logic controller designer can try various implementations without wasting 

resources either for writing software or for building hardware. 
The memory module is assisted by a number of logic blocks in order to build a 
complete controller. All aspects of those hardware elements are described next. 

3 FPGA-Aspects of Fuzzy Logic Control 

Since the memory module that holds the input-output data of the controller must be 
embedded in a host digital system, some interface issues must be resolved in external 
hardware using FPGAs as vehicles for their implementation. The logic blocks that 
can optionally be included in the FPGA are: 
• A divider of the host system's clock to meet the memory-module's timing. 
• A subtractor that may be used for the calculation of the Ax variable i.e. the time- 

derivative of the x input variable if this is required. A similar method may be 
necessary if an integral of an input variable is requested. 

• A multiplexing-demultiplexing scheme if the controller is used to regulate simul- 
taneously more that one similar systems. 

• An interface circuitry for the generation of Start_of_Convertion (SOC) and 
acknowledge of the EndofConvertion (EOC) signals to assist the linking of the 
fuzzy logic controller with ADCs. Also, a Convert signal should be generated to 
drive a DAC if the output variable is in the analog domain. 

• An adder that may be needed to trim the controller's output by a certain offset. 
• Additional adder/subtractor modules may be necessary if the controller is required 

to produce an incremental output instead of a direct one. 
• An additional clock divider may be useful if one of the inputs is used for timing. 
• Glue logic to assist the interconnection and/or addressing when more that one 

memory modules are used to hierarchically increase the number of inputs [3]. 
It is obvious that the aforementioned logic circuitry can be implemented in a small 
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FPGA. This way, the whole fuzzy-logic controller can be constructed using only two 
components: a memory chip and an FPGA chip. 

4 The FuFMeV (Fuzzy FPGA-Memory-VI-IDL) CAD Tool 

The FuFMeV CAD tool is developed using the C programming language. Its output 
consists of two ASCII files: 
a. A bit-pattern (BP) organized in words that are stored in ROM or loaded in RAM. 

This file contains the compiled version of the requested fuzzy-logic controller. 
b. Synthesizable VHDL-code (PC) that is targeted to a family of FPGAs using a 

VHDL-based synthesis tool. This portion of VHDL code serves for both 
simulation and synthesis purposes. 

The two-previous sections have covered most of the memory-aspects (associated with 
ASCII file BP) and thefpga-aspects (associated with ASCII file VC) that are handled 
by the CAD tool. The interactions between the FuFMeV tool and the designer are 
described below: 
In the memory-part of the tool, the user is queried about the number and the 

resolution of the input variables, the resolution of the output variable, the number of 
the membership functions and their shape, the number and type of fuzzy-rules, the 
methods of inference and defuzzification and the base-address of the memory 
module, If the number of input variables is greater than two then the tool asks if a 
hierarchical approach is preferred. On affirmative answer, the number of required 
memory modules, their inputs and their base-addresses are also requested. This 
information is sufficient to produce the BP ASCII file. 
In the FPGA-part  of the tool the user is queried about the existence or not of the 
logic modules that are described in the previous section. Parametrical and 
synthesizable VHDL code generators for these simple logic blocks are hard-coded in 
the CAD tool. When the user has entered all required information, VHDL entities 
for the required blocks are produced and linked together in a structural format 
(netlist). The result is written in the VC ASCII file. This code is then processed by a 
commercial synthesis tool to generate gate-level netlist optimized according to the 
basic configurable logic block of certain FPGA families. An FPGA-family specific 
tool transforms this netlist to the format required for the hardware programming. 

5 References 
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Abstract. A specialpurposeprocessororiginally designed for Monte-Carlo sim- 
ulation using Metropolis type algorithms has been reconfigured to allow the use 
of a new improved class of Monte-Carlo algorithm without compromising the 
processor's performance. 

1 Introduct ion  

In Monte-Carlo simulations and digital signal processing applications it has often proved 
advantageous to use specially constructed processors in place of general purpose com- 
puters. SRAM-based Field Programmable Gate Arrays (FPGAs) appear to be suited to 
applications in this area [ 1, 2] as they can be used to reduce both the practical difficulties 
and the cost of building special purpose processors. Although FI~As  may be slower 
than non-programmable devices, they provide much greater flexibility in allowing the 
hardware to be readily altered. This paper describes how a piece of hardware based 
on Xilinx 3000 series FPGAs[3], originally built to perform Monte-Carlo (MC) com- 
putations and simulations based on the Metropolis[4] and related algorithms, has been 
reconfigured to implement a recently discovered and very different class of Monte-Carlo 
algorithms. These algorithms were not anticipated by the designers of the original hard- 
ware but the flexibility provided by the FPGAs allows the same board to adapt to these 
new algorithms. The computational hardware can be modified and the processor is able 
to keep up with developments in algorithm design that often occur in the kinds of areas 
to which FPGAs can be currently applied. 

2 H a r d w a r e  P la t form 

The architecture of a simple PC hosted processor board, built to implement variants of 
the Metropolis algorithm is shown in Fig.1. 

In the original application this hardware platform was used as follows: an image 
represented by a string of pixels stored in SRAM1 is passed through sections of a FIFO 
implemented in FPGA2/SRAM2. The FIFO section in FPGA2 is tapped at the stages 
corresponding to a local processing window to provide the inputs to a processing element 
implemented in FPGA2/SRAM2. In the case of the Metropolis algorithm the processing 
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FPGA 1 1 / 1 FPGA 2 

! 

Fig. 1. FPGA/memory architecture 

element typically consists of a random number generator (RNG) and a comparator in 
FPGA2 and a look-up table (LUT) in SRAM2. A data address generator (DAG) in 
FPGA1 controls the flow of data between SRAM1 and the FIFO and the address 
sequence of this DAG is completely known at run-time. The Metropolis algorithm, 
implemented in this way, executes an order of magnitude faster than a similarly costing 
Digital signal processor (DSP) for a number of different simulations of physical systems 
at non-zero temperatures [5](Simulated Annealing). 

3 Cluster Algor i thm 

Cluster algorithms [6] consists of two stages. The first stage forms tree-like data structures 
(clusters), by linking neighbouring pixels according to a stochastic percolation process. 
The probability that adjacent cells will be linked is a function of the temperature of the 
simulated system. This clustering stage can be achieved via a pipelined arrangement 
similar to the above processor. The second, declustering stage consists of locating and 
updating each individual cluster of pixels separately by following the links to each pixel 
in the cluster. Since each pixel can be linked to more than one neighbour, a recursive 
method is used. The size, shape and number of these clusters will depend upon certain 
simulation parameters such as the system temperature and will vary throughout the 
simulation. This means that the sequence of the data addresses cannot be known prior to 
execution, and that a variable number of branches will take place during the declustering 
stage of the algorithm. It is not clear at first sight that these algorithms can be efficiently 
implemented in Fig. 1. 

3.1 MCCP architecture 

The MCCP architecture can be placed into this arrangement for small problem sizes, 
given the small memories used in the prototype. Refer to [7] for details of the MCCP 
architecture. Again, SRAM 1 is used to store the image, and the pipeline that performs the 
clustering stage is placed into F/a3A2 along with the RNGs and comparators. SRAM2 is 
used as a stack which means that FPGA2 must also contain the stack controller. FPGA1 
contains the DAG, which for cluster algorithms is larger, more complex and able to 
handle branch operations. FPGA2 also contains a finite state machine which generates 
the address sequence from cluster information. 
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4 P e r f o r m a n c e  o f  M C C P  architecture 

To obtain an appropriate performance measure of the MCCP architecture, a version of the 
cluster algorithm, was written in hand-optimised assembly language on a popular Digital 
Signal Processor(DSP) [8]. This exercise confirms that the same order of magnitude 
performance gain is obtained[7] as with previous processors. This is because, although 
the DSP provides some of the data addressing capability required for efficient execution 
of cluster algorithms, there are a number of important functions, such as masking, stack 
control and random number generators (RNGs), that require large software overheads 
and must be carried out sequentially. Such operations can be readily implemented in 
hardware and carried out concurrently. 

5 Conclusions 

A processor implemented in 3000 series FPGAs, originally intended for Monte Carlo 
simulations based on the Metropolis algorithm has been reconfigured to run a new and 
very different type of Monte-Carlo algorithm while the performance gain of an order of 
magnitude over a similarly priced DSP is maintained. No changes have been made to the 
non-reconfigurable connections in the processor indicating that at least within a given 
area of application, FPGA-based computing machines are flexible. The reconfigurability 
of the FPGA-based platform allows the MCCP architecture to be used in conjunction 
with other Monte-Carlo processor architectures, providing a wider range of options 
for investigating Monte-Carlo problems. The use of field programmable interconnect 
devices is likely to improve further the applicability of this type of processor. 
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Abs t r ac t .  The paper will present a Design Environment with Emula- 
tion of Prototypes (DEEP) for designing hardware/software systems. The 
CAE tool DEEP consists of an integrated workframe for designing hard- 
ware/software systems and the Rapid Prototype Co-Emulator (RPCE) 
for hardware/software co-emulation and verification. For a flexible reali- 
zation of the designed systems FPGAs by XILINX are widely used within 
the RPCE. Experiences in prototype realizations will be presented. 

1 Rapid-Prototyping and Design Verification by 
Emulation 

For bringing the realized system functionality and the requirements of the em- 
bedding enviromnent into line the design of microelectronic systems still requires 
the realization of the design as a prototype.  The method of Rapid Prototyping 
allows a fast realization of prototypes meeting the demands of ' t ime to mar-  
ket '  and product quality. DEEP supports this method by a 'soft-configurable '  
hardware. 

For verification by emulation a physical replication of the designed system 
or sub-sys tem is realized and embedded into its target application environment.  
The aim of such a physical replication is to get a flmctional and t iming identical 
prototype of the system to be implemented later. The functional behaviour of the 
system can then be verified in the target environment under real t ime conditions. 
In DEEP the emulation of digital hardware runs on XILINX FPGAs and the 
emulation of software on standard microprocessors. 

2 Components of DEEP 

DEEP consists of PC based software tools for design entry, design translation and 
emulation management  as well as tile DEEP hardware called Rapid Pro to type  
Co-Emula tor .  
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2.1 D E E P  Software 

The DEEP software is fitted out with a MS-Windows workframe acting as user 
interface for invoking and controlling the different design steps. DEEP starts 
with a system specification by the notation of cooperating function components 
(FC), where hardware FC are specified using VHDL or schematics and software 
FC using the programming language C. 

For the implementation on the RPCE the hardware FC may be divided into 
blocks which fit into the available FPGAs. For this a special software is used. 
It partitions the FPGA technology files and allocates the resulting blocks to 
the available devices. The partitioning process is user controlled with different 
selectable strategies. 

The RPCE is controlled by the MS-Windows workframe. All commands like 
configure, emulation start/stop and trace are invoked from the emulation control 
menu. 

The DEEP emulation system provides an integrated debugging environment 
to analyse the current system state of the emulated hardware and software. The 
hardware state is visualized by reporting the register values, got by reading back 
the LCA internal data, within the schematics. The software state is characterized 
in an extra window, showing the used registers and variables. 

2.2 D E E P  Hardware  

The Rapid Prototype Co-Emulator (RPCE) is a VMEbus based system exten- 
ded by different emulation modules (Fig. 1). Its modular structure facilitates 
a variety of extensions and a flexible adaption to widely differing application 
environments. 

Module Bus 

Fig. 1. DEEP Hardware Structure 
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The VMEbus itself acts as configuration and control bus mastered by a con- 
trol CPU board. To link the emulation modules within the RPCE as well as to 
the target environment a flexible module bus and I /O bus structure is provided. 

Until now, three types of modules are available: 

- Logic modules for emulation of digital FC, 
- Processor modules for emulation of software FC and 
- Converter modules to tie up analogous components as well as sensors and 

actors. 

In general the emulation modules consist of an interface board carrying the 
very emulation board. 

The main functionality of the interface board is realized on the basis of two 
XILINX LCAs 3090PGl75, one controlling the bus drivers of the module bus 
and I /O  bus and the other interfacing the VMEbus to the emulation boards. 
The necessary control logic for the bus drivers is generated automatically during 
the design translation. For the function of the VMEbus interface LCA standard 
configurations are provided, which can be modified or extended by the user for 
special applications. 

The logic emulation board consists of four XILINX LCAs 3090PG175 and 
3195PG175, respectively, used for the circuit to be emulated. They are connected 
via a hard-wired array according to a special developed scheme. Thus digital 
circuits with a complexity of up to 15,000 gates (or 20,000 gates using 3195 
LCAs) can be realized per module. 

The converter emulation board allows the connection to analogous compo- 
nents via A/D and D/A converter (12-Bit, 100kHz samples, 16/8 A/D channels, 
4 D/A channels). The specification of the converter interface is carried out within 
the DEEP workframe, where the configuration data for the module are generated 
afterwards. The configuration data are downloaded into the driver control LCA 
also facilitating various operating modes of the module. 

Processor modules are used for the emulation of software FC. The module 
is set up on a VMEbus compatible CPU board, that has been extended for 
the RPCE by a special interface board. The CPU board contains a MC68070 
CPU with RAM, EPROM and I/Os. The special interface board is mastered 
by a XILINX LCA 3090PG175 containing the control logic for the bus drivers 
which can be extended by logic for any necessary interface circuits. Additionally 
a plug-in interface for further CPUs (IMS2205, MC6805, 18051) is controlled by 
the LCA. In the same manner the integration of DSPs is under preparation. 

3 E x p e r i e n c e s  i n  P r o t o t y p e  R e a l i z a t i o n s  

Up to now three RPCE devices are used for prototype emulation at the IMS 
institutes. Experiences are gained by designing and emulating a highly parallel 
data decompression circuit and a knowledge based analytical controller ASIC 
both involving digital hardware as well as software components. 
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1 Prototyping Method 
Fie]d Programmable Gate Arrays (FPGAs) have been established as efficient tools for prototyping of 
various DSP algorithms in [3] and [6]. Quite often prototypes are implemented, because the algorithms 
have to be tested with huge amount of different kind of real test data. Developing new algorithms and 
approaches using VHDL-synthesis based prototyping typically means that algorithm design, filtering 
analysis, VHDL coding, simulation, synthesis, prototyping implementation and measurements have to 
be done. This normally takes several weeks of time requiring a lot of different knowledge from the algo- 
rithm designer and this approach is also very sensitive to human errors. 

To achieve more efficient systcm level design and analyses we propose a fast HW/SW codesign 
based method for Digital Signal Processing (DSP) algorithm development with "full-speed prototyp- 
ing". The real world data is collected into the memory of workstation via an FPGA based board, filtered 
using bit-true C-models and sampled back to the environment via the same board with a realistic data 
rate. The communication mechanism between hardware interfaces and C-models is generated automati- 
cally during compilation. This approach allows an accurate analyses and an efficient system level opti- 
mization of DSP functions for the target application without an actual implementation. Our hardware, 
which is connected to Sun Sparcstation IPX via SBus, is based on two Xilinx 4000 series devices. The 
algorithm can be modelled first with the full word lengths (32 bits) to achieve the worst case scaling 
requirements. This model is later used to generate the reference file for implementation optimization. 
During the implementation minimization optimal scaling factors, internal word lengths and the arithme- 
tic solutions can be selected. The output of the optimized model can be compared with the reference file, 
if no differences are found the model is acceptable and the optimization can continue. If differences are 
found the model has to be analysed in simulator or with prototyping to check the effects of distortion. 

2 Development Environment 
Filter modelling is done using C-language and thus allows the use of both floating-point and bit-true 
models. Basic signal analyses can be done in the Madab graphical environment. The software models 
are connected to the target and prototyping environment by means of HW/SW codesign techniques 
which allows to prototype the DSP algorithm with a full operating speed. During the compilation an 
assembler code is generated for the parts that will be executed on the workstation, and VHDL for the 
parts that will be implemented on the FPGA board [5]. In the early phase prototyping this normally 
means that only the interface functions are linked to the corresponding components on our interface con- 
figuration library for Xilinx. Afterwards, the codesign environment together with High Level Synthesis 
too/, like SYNT [2] [4], can be used for implementing the system after validation and sharpening of the 
specification. The new modules of the system can easily be coprototyped with the parts that are already 
implemented in the earlier systems. To implement large systems the same communication protocol can 
be used with the RPM logic emulator [8]. The compiler generates the additional code for handling the 
communication between the software and hardware parts. On the software side the device drivers are 
called to open and close the logical communication channel, to configure the Slave FPGA, to initiate the 
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application design and to serve interrupts from the board. For the hardware side a prespecified, parame- 
terizable VHDL entity is generated, which takes care of the handshaking with the controller FPGA and 
the address generation for the local memory. The prototyping board is based on two Xilinx 4000 series 
devices, one of the devices contains the SBus interface (Master) [1] and the other one application config- 
uration (Slave). The bottleneck which limits the overall data transfer rate to 4 Mbit/s for 8-bit data is 
located between the DVMA component and the XC4005 controller. If higher data rates are needed, the 
local memory, which is currently only 1 Mbit, can be used up to 25 MHz applications (32 bits). 

We demonstrate the possibilities and advantages of the development system with an audio sigma- 
delta D/A converter example [7]. The interpolated data is forwarded to a sigma-delta noise shaper. The 
output bit-stream of the noise shaper can be forwarded to a 1-bit D/A and an analog postfilter to allow 
the listening experiments of the algorithm performance. As at maximum 64 times oversampling ratio for 
the audio data is possible with our prototyping environment due to the data transfer limitations, the sec- 
ond order noise shaper topology is needed to replace with the fourth order one [3]. Of course, if the sec- 
ond order topology is preferred, the other possibility is to implement the high sample rate parts of the 
running sum intcrtx~lator and the noise shaper on FPGAs. It is possible even within our current hardware 
configuration as the interfaces require only some logic modules in Xilinx 4000 series architecture. 

The combined bit-modelling and prototyping approach is very advantageous with optimizing e.g. 
the nonlinear noise shaper, because the scaling always removes information and due to feedback loops 
this might cause also the system start to variate in the similar manner as a badly designed IIR filter. The 
optimized internal word lengths for the fourth order noise shaper topology are 20, 16, 13 and 8 bits. It 
means about 43% of savings in the size of the noise shaper compared to the full 25 bits of word length, 
which is the smallest usable common bit width if no input scalings before intergrators are used. Also, the 
effects of two's complement and saturative arithmetic Can be researched. In this case, the test data is 
generated using a CD player and read into the Xilinx board at the speed of 44.1 kHz (2 x 16 bits of data). 
This data is sampled into the memory of the Sparcstatlon. After filtering and noise shaping the data is 
sampled out with the stxzed of 2.8 MHz (M = 64). The output bit-stream can be forwarded to the loud- 
speaker using a 1-bit D/A and an ~malog reconstruction filter. The interface system configurations for 
collecting data ,and writing out the samples are presented in Figure 1. 
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Fig. 1. (a) Data collection configuration. (b) Data output configuration with sample clock. 

The prototyping board is connected to the CD player via a standard CD interface chip (YM3613B). The 
bit-serial data is [urther converted to the bit-parallel format in the Slave FPGA. The interface module 
acknowledges to the Master FPGA from which channel the data comes. As the system has different data 
lengths the 1-bit output of sigma-delta noise shaper is packaged in software for transmission into 16-bit 
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dataframes before writing the data into the memory. From the memory the data is sent to the SBus 
according to the requests of the Slave FPGA. The dataframes are unpacked in the Slave FPGA before 
outsampling. 

Using the fourth order noise shaper, we need to sample out filtered data at the rate of  176.4 kHz (16- 
bit frame). In the FPGA board, this 16-bit dataframe is decoded and 1-bit output data is sampled out 
from the system at the rate of 2.8224 MHz (maximum operating speed for one charmel solution due to 
the current communication hardware). At this speed we need 1.4 Mbytes of  16-bit memory for an 8 sec- 
onds one channel sample. As in our configuration there is about 20 Mbytes usable memory for applica- 
tions for one channel at maximum 112 seconds (M = 64) of  sample can be filtered with the system 
presented. In this case, the bit-true drive of the C-program which performs the whole filtering of 8 sec- 
onds of  sample can easily be completed on Sparcstation 10 within one hour (about two hours in a Sparc- 
station IPX) including the compilation and interface downloading, which is about the same time as 
needed for synthesizing and implementing a single filter which fits into a single XC4010. As comparison 
the FPGA implementation of  this converter structure requires 3-4 XC4010 devices for each channel. As 
C-models handle only samples, the corresponding VHDL models also need emphasis on timing and 
control. Therefore code generation, design verification and debugging is much faster with C-models. 
The simulation time with bit-true models in C is e.g. about 10-20 times shorter than using VHDL mod- 
els in Synopsys. Also, the hardware requirements are much slower. Synthesizing the filters required 
using our Sparcstation 1PX with 24 Mbyte central memory is not possible in this case. 100 - 160 Mbytes 
of central memory is a proper amot, nt for hierarchical synthesis approach in the Synopsys synthesis 
environment for our example converter system. 

3 Conclusions 
The automatic HW/SW tool provides an efficient tool for DSP system optimization. In addition to proto- 
typing, the filtered data can also b e closer analysed on Matlab with the real data collected from the sys- 
tem environment. The time to change the system takes only a few minutes to complete while the 
changing of  hardware prototype on FPGAs takes usually even with synthesis tools some days in com- 
plex changes. The proposed approach allows a fast search of  the best filtering solution with minimal 
effort for implementation. As no DSP functions are needed to implement it allows typically much faster 
operating speed than which is possible with normal FPGA prototypes or ASIC emulators and provides a 
very cost efficient environment for the system level development. Also, unlike in a full prototyping with 
FPGAs, the maximum operating speed and the system capacity is quite easy to approximate. 
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A b s t r a c t .  A general-purpose processor cell, called DOP, is presented. 
The DOP is a 16-bit stack oriented processor designed to support effi- 
ciently imperative programming languages like C or Pascal. The archi- 
tecture of DOP is a result of HW/SW co-design. The DOP is supposed 
to be used as a building block in a FPGA library. 

1 I n t r o d u c t i o n  

The architecture of a simple universal processor cell, called DOP, is presented. 
It is currently under implementat ion with the XILINX XC4000 family. Our mo- 
t ivation was to design a very simple yet still efficient processor which effectively 
supports High Level programming Languages (HLL's) like C or Pascal. We con- 
sidered the design of DOP as an example of H W / S W  co-design where the SW 
part is represented by a compiler (or rather by a code generator) and the HW 
part  is the resulting processor. Our pr imary goal was to propose such a proces- 
sor which would provide a simple and efficient compilation scheme, and which 
would keep the complexity of t tW within reasonable limits. This is why the 
tiLL requirements were investigated first [1], [2]. This analysis led us to the 
programming model and architecture of the DOP processor. 

The DOP processor is designed to support  efficient evaluation of address 
expressions and arithmetic operations with both signed and unsigned numbers 
of various length. The 2's complement representation of signed numbers and the 
small endian representation of multibyte data  stored in the main memory  are 
supposed. 

2 T h e  p r o c e s s o r  o r g a n i z a t i o n  

The DOP is a stack oriented processor with 16-bit internal bus (BUS) divided 
into low and high 8-bit part ,  16-bit external address bus, and 8-bit external data  
bus (see Fig 1). The memory  is byte organized and I / O  devices are memory  
mapped.  

The DOP contains six 16-bit programmer-visible registers: P C -  program 
counter, SP stack pointer, S source operand address, D -  destination 
operand address, PSW - -  program status word consisting of two 8-bit subreg- 
isters denoted L (Loop counter) and F (Flags), and W - -  working register. 
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The PC and SP are well known registers and theY are used in a common 
manner  which needs no comment.  

The S and D registers are designated to store source and destination ad- 
dresses (which can be evaluated in the ALU) - -  but they can be used for other 
purposes as well. The S and D registers have auto-post- inerementat ion capabili ty 
to support  mult ibyte  operations. 

The L register (the lower par t  of the PSW register) supports  p rogramming of 
loops. It  has auto-post-decrementat ion capabili ty and its content can be tested 
by conditional j ump  and interrupt instructions. 

The F register (the higher part  of the PSW register) contains the following 
flags: C F -  carry flag, O F -  overflow flag, S F -  sign flag, Z F -  zero flag, 
AF - -  auxiliary sign flag. 

The W register can be considered as a part  of the ALU (it can be loaded only 
through the ALU). The first operand (or the only operand) of an ari thmetic/ logic 
operation is always the content of the W register. As the second operand the 
data  from the BUS are used. 

m 

m 

I 
a d d r e s s  

' l i y , l  , ' .... 

d a t a  o u t  d a t a  i n  

I 

J I 

Fig. 1. The structure of the processor 

The outputs  of all the mentioned registers can be connected via BUS and 
Address Buffer (AB) to the external address bus. Using the BUS they can also 
be connected to the external data bus via DO (Data  Out) register to write the 
data, or via DIL or DIH (Data  In Low or High, respectively) registers to read 
data  or instructions. One byte (8 bits) or one word (16 bits) data  can be read 
or written. It  is obvious that  two bus cycles are needed to read or to write one 
word. When reading a word, the DIL register is used to store the lower byte 
temporally.  When reading a byte, the sign- or zero-extension can be used. 

The Instruction Register (IR) contains the just  performed instruction. 
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3 T h e  i n s t r u c t i o n  set  

The instruction set consists of 21 instruction types only covering all operations 
that  can be expected in a processor of this class (for details see [1]). Further we 
will focus our at tention on only "special" features of the DOP instruction set. 

All instruction codes (consisting of instruction type identification, operand 
type identification and addressing mode identification) are packed into one byte. 
An instruction code can be followed by one- or two-byte immedia te  operand 
when appropriate.  

The DOP supports  the following addressing modes: 
,, Register, in which operand(s) and /or  result reside in register(s) visible to 

the programmer.  Registers are implicit or must  be declared explicitly. 
• Immediate,  in which an operand follows instruction operation code. 
• Register indirect, in which operand(s) and/or  result reside in memory  loca- 

tion pointed to by register content. In certain cases auto-incrementing or 
auto-decrementing of register content is feasible. 

• Stack, in which operand or result resides on top of the stack or at the location 
determined by the offset to SP register, which is a part  of the instruction. 

Table  1. Possible data transfers 
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The functionality of most instructions can be described as a single data trans- 
fer  between registers, or between a register and memory,  or between a register 
and ALU. Instructions Load Local Address (LLA) consisting of two or three 
transfers are exceptional from this point of view. Possible data  transfers are 
summarized in the Table 1, where the following conventions are used: 

o Square brackets denote the content of corresponding memory  location(s). 
o Signs plus and minus denote pre- /post-  incrementation or decrementation,  

respectively; if the sign is in front of /behind a register name, pre- /post -  is 
true, respectively. 

o alu2 stands for the second ALU operand. 
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o s, b, and w stand for sign-extended byte (signed short integer), zero-extended 
byte (unsigned), and two-byte word, respectively. 

o 1, and 2 stands for one byte, and two bytes, respectively. 
o IntAddr stands for "Interrupt Address" that  is from the set: {0xFFC0, 

0xFFC4, .. . ,  0xFFFC}. 
The last line in Table 1 corresponds to instructions LLA. 

The following arithmetic and logic operations can be performed: addition, 
subtraction, AND, OR, XOR, rotate W left and right, NOT, and AAF (dis- 
cussed below). The W register content is used as the first operand of a b ina ry  
arithmetic/logic operation and as the only operand of an unary one. The pos- 
sible sources of the second operand are given in the Table 1 (see column alu2). 
The result is normally stored in the W register. However, the storing can be 
suppressed by a special instruction Suppress Write into W (SWW) that  must 
immediately precede the considered instruction. The only result is the new con- 
tent of the F register. In this way such operations as "compare" or "mask" can 
be performed. 

Any arithmetic/logic operation changes the flags (the content of the F reg- 
ister) [3]: 

* The CF flag is set by any addition or subtraction instruction if the carry 
from the most significant position is equal to 1 ( the subtraction is considered 
to be the addition of the opposite number - -  the CF flag is the inverse of 
the borrow). The rotate instructions are performed through CF which acts 
as the 17th bit of W. An instruction setting CF (called SCF) is included in 
the instruction set. By any logical operation the CF is cleared. 

• The OF flag is set by any addition or subtraction instruction if the overflow 
occurs assuming the 2's complement number representation. 

• The SF flag is changed to be equal to the most significant bit of the result. 
• The ZF flag is set if the result is equal to 0. 
• The AF flag is set by any addition and subtraction instruction if the second 

operand is negative or non-negative, respectively. 

The CF, OF, SF and ZF flags can be used in branch and interrupt instruc- 
tions. (Essentially, interrupt instructions are conditional fixed address calls.) The 
used flag is given as one parameter of the instruction. The second parameter  is 
the value of the flag which implies a branch. In such a way, for example, the 
branch "if carry" can be executed as well as the branch "if not carry". Similarly, 
the branch "if L = 0" or the branch "if L 7£ 0" can be executed. However, the 
L register is pre-decremented in this case. 

The CF and AF flags serve for other purposes as well. A special instruction 
Use Carry Flag (UCF) supports addition and subtraction of multibyte operands. 
If this instruction is used immediately before any addition or subtraction instruc- 
tion, the CF flag is added to the first operand when the corresponding operation 
is performed. In such a way, for example, the sequence UCF and ADD has the 
same functionality as the ADDC instruction known from other processors of this 
ClaSS. 

The AF flag allows the addition and subtraction of signed operands of differ- 



325 

ent lengths (e.g. addition of a 2-byte signed number to a 4-byte one). A special 
instruction called Add extended AF (AAF) serves this purpose. This instruction 
adds the CF value and "all zeroes" or "all ones" for AF = 0 or AF = 1, re- 
spectively, to the W register. When it is needed to add or to subtract  a shorter 
operand to or from a longer operand, the appropriate  addition or subtract ion in- 
struction (and UCF, if needed) is to be used for the lower parts  (words or bytes) 
of both operands and then the higher parts  of the first (longer) operand are to 
be loaded into the W register and to be modified using the AAF instruction. 
For unsigned operands, the UCF and the "add 0 to W" or "subtract 0 from W" 
instruction is to be used instead of AAF. 

The impor tant  feature of the suggested use of the CF and AF flags and 
the UCF and AAF instructions is that  the correct values of CF, OF and SF 
flags are received after performing the last instruction in the above mentioned 
sequence (e.g. after the last AAF). It  holds for both signed (2's complement  
representation) and unsigned operands. 

4 C o n c l u s i o n s  

The XILINX XC4005 chip is used for the implementat ion of the DOP processor. 
It is supposed that  the processor will be one of the XILINX XC4000 library 
elements. Certain parts of DOP, namely registers and ALU, were designed and 
simulated. Two VHDL models of the DOP have been written and debugged: the 
behavioral model and the register transfer model. 

Tile software support  of DOP has been developed. It includes the C compiler 
and the processor simulator. This software support  enabled us to compare the 
DOP with other processors in terms of the code size [2]. Surprisingly enough, 
the DOP code is shorter than the code of much more complex processors. 

The DOP processor is a result of H W / S W  co-design. It seems to be a good 
compromise between the complexity of HW and the simplicity and efficiency of 
the compilation scheme. 
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Abstract. This paper describes the design of a stack-based CPU using 
field-programmable gate array technology. The architecture to be imple- 
mented was already defined by a compiler, which had been implemented 
previously. We describe what tools and strategies were used to implement 
different parts of the processor, as well as the final integration process. 

1 I n t r o d u c t i o n  

FPGAs offer a unique opportunity to prototype chip implementations. To more 
closely study this option, we have built a prototype board based on Xilinx FP- 
GAs [Hub92] and conducted several implementation experiments. We imple- 
mented our first design, JAPROC, as part  of the JAMIE project. JAPROC is a 
micro-controller upwardly compatible to the PIC16C57 [GJ92]. 

Field programmable gate arrays (FPGAs) can be used to allow fast imple- 
mentation of chip designs [GAO92], [Gsc94]. This allows for a fast debug cycle, 
as designs can be altered and downloaded in a mat ter  of hours. As FPGAs are 
pretested, only logic functionality has to be validated, reducing the time to get 
a workable implementation of a chip considerably. 

Since this has proved to be a remarkable success, we have started to use 
FPGAs in student projects for logic design courses (building circuits such as 
multipliers and dividers) and to build more complex designs, such as the stack- 
based microprocessor presented here. 

The advantage of this approach is that  students do not have to deal with 
the electrical intricacies of silicon implementations or breadboarding. Also, the 
implementation cost is reduced dramatically. 

2 A r c h i t e c t u r e  

To maximize the understanding of the interaction of all levels of computer design 
(hardware, compilers, OS), we emphasize integration of system design consider- 
ation in student designs. Thus, the architecture presented here was used earlier 
in a compiler construction class [BF92]. 
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The processor implements a stack machine, with all operands being addressed 
relative to the top-of-stack pointer or a frame pointer (local-pointer) which is 
used to access local variables [Mau94]. The memory model is that  of a Harvard 
architecture, i.e. separate data and program memories. Memory addresses, as all 
other data, are 16 bit wide. Thus the processor can address 216 = 64k words in 
each memory segment. The data memory is 16 bit wide, and instruction memory 
uses 24 bit. This allows each instruction word to encode a full 16 bit immediate 
constant or address. 

Instruct ion  Descr ipt ion  
NOP no operation 
PSHc const 
PSH1 offset 
PSHli 
STO1 offset 
STOli 
MVTc const 

push const 
push value at (FP + offset) 
pop offset, push value at (FP + offset) 
pop value and store at (FP + offset) 
pop offset, pop value and store at (FP + offset) 
move top-pointer (SP) by const 

MLT 
PSL 
PPL 

local-pointer (FP) := top-pointer (SP) 
push local-pointer (FP) 
pop local-pointer (FP) 

GET read value from I/O port and push 
PUT write top stack element to I /O port 
ADD add 
SUB subtract 
MUL multiply 
SWP swap the top elements 
JMP address 
JPE address 
JPG address 
JSR address 
RET 
STP 

jump 
jump on equal 
jump on greater-than 
jump to subroutine - push PC+l ,  jump 
return pop return address and jump 
stop execution 

Table 1. Instruction set architecture 

3 I m p l e m e n t a t i o n  

3.1 C o n t r o l  U n i t  

The stack machine was implemented using a finite state machine (FSM) con- 
trolling the data path (see figure 1). The finite state machine was modeled using 
a microprogram-like mnemonic representation (see figure 2). We decided to au- 
tomatically generate the controller part from a high-level description. This had 
several advantages: 

- The high-level description can be used as specification of the controller be- 
havior. 
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- No inconsistencies can arise between the specification and the actual im- 
plementation, as the implementat ion is automatical ly generated from the 
specification. 

- If  the specification changes, a new implementat ion can be generated with 
little effort, whereas a manual  translation process such as used for J A P R O C  
requires a complete re-design of the controller. 

i n 5  

instr-mem I I 
data bur addr bur 

l 

I 

I i e°ntrol 
signals 

E 

internal bus 

data-mem 1 
data buf 

I . 
Fig .  1. Block level diagram of stack machine 

LABEL (ADD) 
COM( top_to_dmemadd I dmeraadd_le I dmem_rd I dbus to_alu_a ) 
COM( top_direct_down I top_clk_en ) 
COM( top_to_dmemadd I dmemadd_le I dmem_rd I dbus_to_alu_b ) 
COM( top_to_dmemadd I dmemadd_le I dmem_wr ~ alu_e_to_dbus I \ 

alu_cntrl_add i pc_inc I fetch ) 

Fig. 2. FSM code for adding the top two stack elements 

To describe the design, we used a simple language with two primitives, one 
to define the output  signals to be generated in a particular state, a second 
primitive to symbolically name state numbers. The language primitives have C 
macros associated with them, so tha t  the formal specification of the FSM can 
be executed. By executing the specification, a bit s t ream is generated which 
describes the control unit [Gsc93]. 

To implement the control unit, we use a ROM storing all s tate transitions 
and control signals. This ROM is implemented using the Xilinx memgen tool 
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[Xi192], which allows automatic  generation of ROM- and RAM-like structures 
for FPGAs.  The bit s t ream generated by the formal specification is used to 
initialize this ROM. 

For JAPROC,  we used espresso optimized random-logic to generate the FSM 
controlling the da ta  path. As a result, the complete s tate  machine had to be spec- 
ified as a set of boolean equations and changes to the original control s t ructure 
were much harder to achieve. 

Due to the simplicity of the instruction set we implemented, each instruction 
is implemented by a linear sequence of two to eight states. Each s tate  has exactly 
one successor state. The only time when control is not transferred to a well 
defined next state is during the decoding stage of a new macro-instruction: to 
decode a macro instruction, the opcode is fed to a decoder (also implemented 
as ROM and automatical ly generated from the same executable specification) 
which decodes an instruction by setting the controller s tate to the beginning of 
the state sequence which implements the macro instruction. 

3.2 Data Path 

The design of the data  path  was straight-forward, using Xilinx-supplied macros 
(soft- and hard-macros),  the T T L  emulation library and our own, generic bit- 
slice ALU. 

Integration of the design was seamless, but the the usage of hard macros and 
of multiple XNF modules complicated things somewhat:  to generate an F P G A  
description which can be simulated, the design has to be translated first to XNF 
level where all XNF modules were merged. 

The merged design was then translated to the LCA level where hard macros 
could be integrated. Then the whole translation process was reversed to generate 
a VSM-type file for simulation. This lengthy translation process showed a number  
of interfacing bugs in the Xilinx software and between the Xilinx and ViewLogic 
environments which have to this date not been resolved. 

The simulation was largely successful, but exhibited occasional unexpected 
behavior, like erroneous incrementing of the PC - this was tracked down to 
hazards in the automatically generated ROM. The control signals had been 
stabilized by latching the current state, allowing hazards to propagate  to all 
functional units in the data  path. By latching the control signals of the current 
s tate instead, these hazards were masked out. After this final verification, the 
original compiler was adapted to reflect the changes made to the architecture 
at the beginning phase of the project. Thus, a fully functional microprocessor 
environment was available, including a compiler and a hardware prototype,  im- 
plemented on one Xilinx XC4006 FPGA.  

4 R e s u l t s  a n d  E x p e r i m e n t s  

We simulated a whole system by integrating this CPU design in a ViewLogic 
schematic which also contains instruction and da ta  memories, and all the nec- 
essary glue logic. This board level design was then simulated using ViewSim. 
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Simulation shows that  the CPU designed here will run at 12.5 MHz, and that  
the processor speed is limited by the memory subsystem. The circuit itself could 
operate at a much higher clock rate. 

The XC4006 F P G A  showed 100% utilization of CLBs, with a huge degree of 
flip-flops being unused. It is interesting to note that  more than a third of the 
available CLBs were used for implementing the two ROMs used in the control 
unit. For larger designs, CLB-based FPGAs should probably not be used to 
implement large look-up tables. An alternative is to used dedicated parts for 
memory-type resources, as described in [KNZB93]. 

5 R e l a t e d  W o r k  

Intel Corp. used 14 Xilinx-based Quickturn RPMs to fully simulate its current 
top-of-the=line Pentium T M  microprocessor as part  of the Pentium T M  pre-silicon 
validation process [KNZB93]. The simulated Pentium T M  microprocessor achieved 
an emulation speed of 300 kHz and booted all major operating systems for Intel's 
x86 processor family. 

6 C o n c l u s i o n  a n d  F u t u r e  w o r k  

We have shown that  FPGAs are a useful tool for CPU prototyping. We are 
currently embarking on a project to model the MIPS R3000 CPU using FPGAs 
as target  technology and VHDL for design specification. This design will be 
targeted towards and enhanced board featuring multiple Xilinx FPGAs and 
local static RAM. 

7 A c k n o w l e d g e m e n t  
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1. In troduct ion  

In image processing domain, many applications need their implementation 
respect both flexibility and real time constraints. Tasks in low level image processing 
are characterised by a great operation regularity and recursivity, as well as a large 
data density (image pictorial format). These low level tasks, according to their high 
computing requirements, have led to design specific architectures and Application 
Specific Integrated Circuits (ASICs) as hardware solutions. 

The programmable technology today gives FPGA circuits with considerable 
performance and integration capacity [Xil 92]. The Xiinx XC4010 circuit used in 
this work is a two-dimensional array with 400 Configurable Logic Blocks (CLBs), 
160 In-Out Blocks (IOBs) and a programmable interconnection network. The CLB is 
a basic element of the circuit effective area. 

This work is based on MODARC (MODular reconfigurable ARChitectures) 
approach [Alves93]. MODARC methodology was conceived to allow synthesis, 
implementation and system test of specific operators for low level image processing 
real time applications, with a low cost of development. In this environment an 
application is represented by a data flow graph and a set of graph transforming 
procedures are used to adapt algorithm and architecture graphs to the MODARC 
hardware support graph. The hardware model consists of a cascade of basic operators 
placed on a linear array of physical modules composed of SRAM based FPGA 
circuits and interconnected memory resources. 

2. Eva luat ion  o f  p e r f o r m a n c e s  and  area costs  

The evaluation approach is adapted to the technology characteristics and to the 
proposed architectural model, i.e. pipelining basic operators in a data-flow operation 
mode. Let Ecc, Emm and Eint be the quantities representing respectively the 
"energy" of computing, memory and interconnections of the specific architecture. 
The term "energy" is used to express the amount of the several different components 
present in the architecture, belonging to these three classes of architectural resources. 
Let Acc, Atom and Aint be the quantities representing respectively the area cost of the 
computing, memory and interconnection elementary components. In MODARC 
approach an architectural elementary component library is defined in order to 
represent low level image processing (8 or 16-bit adders, comparators, bus, registers, 
etc.). The cost of these components is given as a number of CLBs. The algorithm 
architecture whole area cost can be calculated by the expression: 

A:(~Ecci.Acq~Emm-Amm+Emr.Amr+Eint.Aint Eq.] 
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where Ecc i is the energy of the i-th computing component of the architecture, Acc i 
its the area cost and Emr and Amr represent respectively the energy and the area of 
an elementary register component. The critical data-path of a basic operator or a 
pipeline stage is evaluated by: 

Tc=Nccts(Tct. +L.T~)+ Tcr.s + Tcx ~ Eq. 2 

where: Nccu : number of CLBs layers (logic levels); Tcu propagation delay of a 
CLB; L : interconnection length in the circuit for each CLB layer; T~r : propagation 
delay per unit of interconnection length; Tcxs : propagation delay from clock to 
registers outputs; Tcx~z: dispersion delay (skew) of the clock in the circuits. 

For the proposed model, the architecture latency is determined by the number of 
pipeline layers used. The maximum system frequency, Fmax, is defined by the 
slower pipeline stage propagation delay. Fmax is given by: Fmax=l/max[Tc] (Eq. 
3), where Tc is the i-th pipeline stage propagation delay. 

3. Implementing an image pre-processing chain 

The pre-processing chain is part of an image-recognition system showed in 
Figure 1. The aim of the pre-processing tasks (shaded block in Figure 1) is to 
generate accurate edges for the extraction of the object features such as area, 
perimeter and curvature, after contours closing and region labelling. These features 
are compared to objects models by a pattern matching algorithm to identify the 
current object. The desired implementation on FPGA include the algorithms from 
noise reduction until contour detection. 

Edge Detector 

~ H~ogram 
I Equatizng North 

~ ~\\\\\\\\\\\\\\\\\\N~ 

Cor~tou rs 
Closing 
and Reg~ 
Labd~g 

Figure 1. An image pre-processing chain (shaded area). 

The median filter is used to reduce the image noise. The algorithm proposed is a 
variation of the original median algorithm, named separable median, for 3x3 
windows. This non-linear algorithm reduces noise preserving edge information [Nat 
85]. For an image l(m,n), the processed pixel O(m,n) is given by the expression: 

O(m,n) =median[medianti(k,n-1),l(k,n),l(k,n + 1)]], 

where: k=m-1, m, m+l, n=l ..... L, and L is the size of the image. This operator 
requires ~f~'(~C~_ 1) comparing/exchanging elementary operations (UCE), where 
N is the number of pixels in the window (N=9 for 3x3 windows). The histogram 
equalizer reduces sensitivity to illumination variations. It is performed by a look-up 
table. This function corresponds to a memory reading operation. The Sobel operator 
is used to enhance the edges of the images. The algorithm corresponds to convolving 
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the image by two ortogonal differential masks and choice the maximum absolute 
value of the two convolutions. This operator can be performed by 12 
additions/subtractions and a comparison/exchanging step. 

The median is composed of two one-dimensional pipelined filters performed by 
two 3-way sorters (Median3 modules). The vertical filter sorter processes the 3 pixels 
of a column in the 3x3 window and gives the median. The second filter (horizontal 
median3) sorts the last 3 outputs of the vertical median3 module and computes the 
median. 

The linear-logarithmic converter look-up table is performed by a 256x8-bit 
"ROM" (Read Only Memory) integrated in the FPGA. The input image pixels are 
used as the address of the "ROM". In order to avoid implementation of the 
convolvers, the Sobel architecture is adapted to a 3-stage pipeline made of adders 
and subtractors. This adaptation is based on filter separability and power of two 
coding of its coefficients. Separability, as in the case of the median filter, reduces the 
original algorithm to the application of two one-dimensional filters (/1 0 -11 and [1 2 
1]), respectively to the columns and to the lines of the 3x3 windows. Power of two 
coding reduces the multiplications to a shifting of a bit in the input of the adders. 

From equations 1, 2 and 3, and considering the XC4010-5 circuit, we have area 
costs (A) and time estimation (7) as shown in Table below, for each function. Third 
column shows results from implementation by use of Xilinx place and routing tools. 

hZxo~ith,,~ i F_~ti,.~ed 
Separable Median ] A=I02 CLBs 
, , (~D) I r=3S ns 
Histogram Equalizer I A =69 CLBs 
~QV) ! r =35 n~ 
Sobel Operator A =67 CLBs 
(SOB} T=MAXIT"c l ; Tc2; Tc3 ]= MAX[26; 49,'38 ]=49ns 

I Implemented 
A=102 CLBs 
T=39 ns 
A =69 CLBs 
T =35 ns 
A =68 CLBs 
T=49ns 

The overall pre-processing chain architecture uses 239 CLBs corresponding to 
60% of the available area in the FPGA. 72 IOBs are needed for communications with 
external FIFO memories (46% of available I/O resources). The maximum internal 
frequency allowed is Fmax-=l/49 ns - 20 MHz. 

4. Conclusions 

An efficient implementation of a low level image processing algorithm on FPGA 
requires to consider the particularities of the device architecture in the design of the 
application architecture and different optimization levels. The proposed evaluation 
method allows to study the feasibility on Xilinx circuits to implement low level 
image processing tasks at video rate. 
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A b s t r a c t .  This paper deals with the design of a Built-In Self Test 
(BIST) environment for the Programmable Logic Arrays that minimizes 
the aliasing probability. The signature testability condition is developed 
that prove criteria to compare the BIST environment aliasing. An im- 
portant feature of the developed approach is that the criteria proved by 
signature testability allows to design both pseudo-random test pattern 
generator (PRPG) and signature analyzer (SA). 

1 I n t r o d u c t i o n  

The aliasing is an impor tant  problem in the compact  technique. The  al iasing 
occurs when the fault s ignature is identical to the fault-free one. The  al iasing 
probabi l i ty  of the compact  technique has been studied by coding theory frame- 
work [1]. In [2], the  detection propert ies  of the BIST environment for the  errors 
tha t  can be expressed as a single product  term has been discussed. I t  has been 
shown tha t  the BIST schemes based on the PRTG and the SA with the  same 
feedback polynomial  detect  almost all cases of the above errors. Fur thermore ,  
the BIST environment with reciprocal polynomials  have the poor  error  detect ion 
capabil i ty.  

Here, we propose a s ignature  tes tabi l i ty  condit ion tha t  allows to de te rmine  
the error  detect ion capabil i ty  for all combinat ions of PRTG-  and SA-polynomials .  
We 'also propose a new error model  generalized the one in [2]. The  s ignature  
tes tabi l i ty  condition is derived to analyze the aliasing for proposed  error  model.  

2 S i g n a t u r e  T e s t a b i l i t y  

Consider  an algebraic model  of a test ing configuration tha t  is shown in Fig. 1. 
Let g(x) denote the primit ive feedback polynomial  of the  P R T G  and let h(x) 
denote the irreducible feedback polynomial  of SA. It  is assumed tha t  deg g(x) = 
deg h(x) = m. In this paper ,  a denotes the pr imit ive element over G F ( 2  "~) defined 
by the pr imit ive polynomial  g(x). The irreducible polynomial  h(x) defines the  
element fl over GF(2m) .  Let fl = ak.  We assume here tha t  the  ini t ial  s ta te  of SA 
is zero. Ini t ial  s ta te  of PRTG is 0 . . .  010 and can be described by the  e lement  a .  
Let PRTG generate 2 m - 1 test  pat terns ,  tha t  are appl ied to the  CUT.  

Now consider the s ignature  value for an Boolean function f t ha t  describes 
CUT. Let ] (7 )  denote the value ] ( g i n _ l , . . . ,  go) of the Boolean function f ,  where 
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7 G GF(2 m) and G = (g in- i , . . .  ,go) is the vector form of the element 9' in the 
bases 1,¢xl , . . . ,  ~m-1.  Then [2],[3] 

2 m - - 2  

Sg( f )  = ~ f(cx') O~ -ik. (1) 
i = 0  

In this paper, the criteria to estimate the aliasing of the BIST  environment 
is discussed that  based on the following error model. 

Let f ( x )  and re(x) denote the Boolean function of the fault free and faulty 
CUT, respectively. The error function is given by e(x) = f ( x )  + re(x), where 
+ denote the modulo two sum. We consider the Reed-Muller canonical form of 
the error function that  is the modulo two sum of the terms. Let r be the literals 
number in the term with the maximum multiplicity. 

Let the fault be called a signature testable fault if 

2 m - -2  

Sg(e)  = # o. (2) 
i = 0  

Let us consider a set F of Boolean functions that  have no more then r literals 
in the term with maximum multiplicity. For each function f E F the following 
vector can be formed: v[f] -- [f(a2m-2),  f(o~ 2 m - 3 ) , ' ' "  f ( O ~ 0 ) ] .  The set of vectors 
forms a vector subspace over GF(2) .  This vector subspace is the r- th  order 
Reed-Muller code R(r, m) [4]. For each vector v[f] can be formed polynomial 

2 m - 2  
P ( f )  = ~-~.i=o f ( a i ) x  i. Common to all polynomials roots form a set of code 
nulls. The nulls of the r th-order Reed-Muller code have the following property. 

The a k is a root of the generator polynomial of the rth-order Reed-Muller 
code R(r ,m)  if and on ly / f0  < w2(k) < m - r ,  where w2(k) is the binary weight 
of integer k [~]. 

Let error multiplicity be r. Then, the error sequence belongs to the r th-order 
Reed-Muller code R(r, m). The set of the nulls of the code corresponds to a set 
of the SA for tha t  the code word is an error causes the fault masking. Thus, the 
error with the multiplicity r is undetectable for all SA that  have the feedback 
polynomial with root/~ = a k and m - w2( -k )  > r. 

Let a[g,h ] = m - w2(- loga/~) ,  where a, fl are roots of 9(x) and h(x), 
respectively. 

S i g n a t u r e  t e s t a b i l i t y  c o n d i t i o n .  The error with multiplicity r is signature 
testable if a[g, h] < r. 

Hence, the BIST environment has the good error detectability when a[g, h] is 
small. The PRTG-SA pair has the minimum aliasing if a[g, hi = 1. That  is when 
g(x) = h(x). The worst error detectability is when a[g, hi = m -  1. The feedback 
polynomials of P R T G  and SA are reciprocal in this case. 

Now, we apply the signature testability condition to design the BIST envi- 
ronment. Let us analyzed the circuit error distribution over the error multiplicity 
r. We assume that  in the digital circuit the errors with multiplicity r > p occure 
only. Thus, feedback polynomials with a[g, hi <_ p must be used. 
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Fig. 2. Aliasing probability of BIST 

3 E x p e r i m e n t a l  R e s u l t s  

Some simulation experiments were performed to test the signature testability 
condition. Fig. 2 presents the results of one such experiment. The sinmlation 
experiments were done on the (12,103,12)-PLA. The aliasing probability was 
calculated for all cross-point-faults. The plot shows that primitive polynomi- 
als of the same degree can have the significantly different aliasing. The obtained 
a-dependence of the aliasing probability supports the signature testability condi- 
tion proposed. The experimental results show that the BIST environment with 
the a[g, h]value close to m have the low error detection capability. The feed- 
back polynomial h'(x) of the 6 degree can have the lower aliasing than the 
12-polynomial h"(x) when a[9, h'] > a[g, 1~"]. 

4 C o n c l u s i o n  

In this paper, the signature testability technique is developed that can be used 
to analyze aliasing of the BIST environment for Programmable Logic Arrays. 
The proposed approach is a first technique to estimate aliasing of both PRTG 
and SA, what have not been available yet. 

The group of the BIST environment with the good error detection capability 
can be obtained by the signature testability condition. By using the property 
of the error distribution and the testability condition, the design procedure for 
BIST environment is proposed. 
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Abstract. Even though student projects generally have severe constraints of time 
and other resources, they should aspire to reach ambitious targets. One way of 
giving suitable projects a flying start is to build on the PC bus. In this paper 
we outline a package which aids the rapid development of FPL-based systems 
within a reliable and powerful interface of hardware and software. This 
removes the need for an initial phase studying the details of bus protocols. 

1 Introduction 

One important practical use for field programable logic devices is the rapid 
prototyping of systems. This is particularly useful in education, where low cost and 
re-usability are gratefully accepted. It is very helpful to have simple demonstration 
download boards, for example with push-buttons and LEDs, but greater scope is 
readily available: [1,2]. Quite sophisticated, "serious" designs can be investigated with 
FPL-based systems, and for research and advanced" undergraduate projects it is 
desirable to have a prototyping framework that supports the full potential of emerging 
technologies, with real-time testing. Many complete systems can be targeted to cards 
sitting on the PC bus, so that their rapid and easy development would be a 
contribution to a wide range of research and learning. Also student projects should 
be ambitious, and not curtailed by routine detail, re-inventing and testing wheels. 

With these aims in mind, we have produced a set of hardware templates and C++ 
interface routines to aid the reliable development of  hardware attached to the PC bus. 
We chose this environment because it is affordable and is in common use, with many 
application areas. This work started as an M.Sc. project at Bradford University. 

2 System overview 

In this section we set out the attributes that we perceive as most useful in a general- 
purpose prototyping and evaluation system [3], describe the design and test process, 
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and the features available at present. The programmable hardware used is 
manufactured by Xilinx [4]. This is not the only possibility, but was readily available 
and provided satisfactory flexibility, speed and power. 

2.1 System specification 
We aimed to supply the following: 

1) A PCB template with integral bus-lines, interfacing and block addressing, 
to which users could add their particular designs; 
2) A library of macros, programmable in FPL hardware on the PC card to 
give interface functions for host-application communication; 
3) Software routines to link high-level programs with application cards; 
4) A user guide to the above features. 

This permits users to implement designs without first having to study the details of PC 
interfacing, but to progress directly to interesting problems. If subsequent work 
requires deeper knowledge of the interface, by then the user will have a grasp of the 
main task in hand. Designs are testable from the PC host at realistic clock and data 
rates - a great advance on the use of static testing for hardware development. 

2.2 Implementation 
A major hazard of development of original PC peripheral cards is damage to the host 
computer during the early learning phase, so our first design used basic discrete 
components in order to prove the hardware ideas, only then going on to a second 
system using programmable logic. This provided an useful tutorial aid, as the card 
using FPL had simpler routing and much smaller area, as expected. PCB design using 
double-sided construction was done with the Boardmaker package and Orcad 
schematic capture software was used for the programmable logic. Software 
development used Turbo C++ routines in modular form for ease both of testing and 
of subsequent adoption by users. Much time went into testing to avoid damage due 
to errors and to ensure that this work would be a reliable platform for later designs. 

2.3 Present features 
Two demonstration cards have been produced and tested: the first with discrete logic 
only was a prototype for the second card. This contains some discrete logic to enable 
card initialisation, but all other interfacing functions are provided using a FPL device. 
These permit bi-directional data transfer with 8-bit or 16-bit word lengths. Together 
with interface routines written in C++ the card has the following features: 

1) Setting the block I/O address with a 4-bit DIP switch; 
2) Initialising for 8-bit or 16-bit operation with a SPST switch; 
3) Configuring the FPL chip on power-up; 
4) Resetting the FPL chip by: 

a) push button, 
b) a PC system reset, or 
c) a software reset; 

5) Activating a reprogramme signal to clear the FPL configuration, prior to 
reprogramming. 
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For tutorial purposes the card has 16 LEDs and 16 DIP switches. Under menu-driven 
commands, 8-bit or 16-bit data can be read to the host PC screen from the DIP bank, 
data can be written to the LEDs from the host PC. 

For prototyping use we provide a PCB template in Boardmaker form. This has the 
tracking for the hardwired initialisation and block-addressing logic, connections to all 
the required bus-lines, and for the correct location of one Xilinx chip. We supply the 
Xilinx code to allow users to programme the chip with the interfacing functions 
specified above. The user is also given information about available free resources 
within the programmable chip, and about which pins on this chip are uncommitted. 

3 Summary and continuing work 

We have built and tested a system of hardware and software which permits the rapid 
and reliable development of PC-based peripheral hardware for I/O processing and 
custom coprocesser cards. With this system, we have carried out student projects 
which concentrate on applications, taking our environment of hardware and software 
as a reliable and pre-existing starting point. Present development concerns FPL library 
components to permit DMA and interrupt communication between card and host. The 
card will retain a hardwired 8-bit part for system initialisation, but users will have 
Xilinx macros for the full range of bus features. A new PCB design template has 
connections for the additional PC/AT bus signals. Supporting software is being tested. 
All communication software will be written in assembly code device-drivers for 
efficient control and data transfer, as well as convenience for users. 

This prototyping framework permits users to concentrate on the novel features of their 
applications, and removes early delays in hardware construction and testing. This 
environment will encourage novice designers to tackle projects that would otherwise 
be too daunting. 
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Abstract. This paper presents a design methodology to implement fail-safe 
circuits (i.e. circuits whose output is at any moment correct, or fails in a safe 
manner) in Field Programmable Gate Arrays. 
In order to be fail-safe, a circuit must include redundant elements. We consider 
the time redundancy technique called alternating logic, that is based on the use 
of a given function and its dual function in two consecutive time intervals. 

1 I n t r o d u c t i o n  

Fail-safe systems can be defined as those that, in the presence of faults, avoid the 
propagation of errors to other systems and, in addition, their outputs are in a correct 
state or can be forced to a safe one. 

A circuit is called totally self-checking (TSC) if, for every fault from a prescribed 
set, there exists at least one input which produces a noncode-space output, and there 
exists no input which produces an erroneous code-space output. In other words, a 
TSC circuit is self-testing and fault-secure. TSC circuits can be used as basic blocks 
in the design of fail-safe systems. Fault-security provides the fault contaimnent 
capability, and the self-testing condition allows the system to force its outputs to a 
safe state when a noncode-space output is to be produced. 

This paper presents a method to implement fail-safe logic controllers by using time 
redundancy. The method is based on the interconnection of several predefined safety 
parts to form a fail-safe circuit. 

2 A l t e r n a t i n g  Circu i t s  

Alternating logic [1] is a design technique that utilizes time redundancy to achieve 
its fault detection capability. It is based on the implementation of self-dual 
combinatorial functiotts. A function F of a set of  binary variables X is self-dual if 
F(X') =F'(X), where X'  and F '  are the complemented values of X and F respectively. 

An alternating variable is one that takes its true value during one time interval, 
followed by its complemented value during the next time interval. An alternating 
circuit produces a logic function F at time t, and the function dual of  F at time t +  1 
[i.e, a pair (y, y') of binary complemented values] if the inputs are alternating. 
Therefore, the output of the circuit is an alternating variable if the inputs are 
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alternating. Time intervals are determined by the true and false intervals of a clock 
ck. An alternating variable is equivalent to a logic value ' 1' i f  it equals ck and to a 
logic '0'  if  it equals ck'. 

Alternating circuits are TSC for single permanent and intermittent stuck-at faults 
if they are irredundant (self-testing condition) and do not include any line that takes 
a non-alternating, but correct, value for an input vector (X, X') (fault-secure 
condition). To demonstrate the latter condition (that is alternative to the ones proposed 
in [1], and more suitable for our purposes) let us assume, by way of contradiction, 
that the circuit produces an erroneous alternating output [(y',y) instead of (y, y')] 
when line n within it is stuck-at-d. If  an erroneous alternating output is to be 
produced, both X and X' must sensitize the fault, but then the fault-free value of  line 
n is d '  for both input combinations. Therefore, line n takes a non-alternating, but 
correct, value for (X, X'), a contradiction by hypothesis, q.e.d. 

This condition implies that all functions that depend on both X and X' must be 
alternating. For instance, the combinatorial functions implemented in a look-up table 
in an SRAM-based FPGA [2] must be alternating, while the values stored in 
individual SRAM cells can have a correct non-alternating value without compromising 
fault security, because each one of them depends only on X or X', not on both. 

3 D e s i g n  Methodology 

Figure 1 shows the general structure of a fail-safe alternating logic controller, 
whose components are available in an user library, to facilitate the design. 

CONTROLLER 
INPUTS 

CKS --  

STATE 

CONTROL 

OUTPUT 

CONTROL 

ALTERNATING ALTERNATING 
, , INPUTS ] [ OUTPUTS ~ C O N T R O L L E R  

= - COMBINATIONAL = ] INPUT I ~ . . . . . . . . . . . . .  I CK _1 OUTPUT I - OUTPUTS 
|INTERFACEI CK I - |  . . . . . . . . . . . . . .  | -IINTERrACEI ERROR 

[ ' [ ~  CIRCUIT ~ ]  ~ ' ~  . . . . . . . . . . . .  ~ OUTPUTS 
] CURRENT STATE I " " t 
/ BITS / I 

I ' , S *TE RITS I 

Figure 1: Fail-safe alternating logic controller. 

The input interface transforms input variables in alternating ones. It is a modular 
block, consisting of as many input adapter cells as the number of inputs. 

The state register consists of one two-stage shift register (clocked at twice the 
frequency of clock ck, by clock ck~, to accomplish the proper alternation of  the 
current-state variables) and a load block (that allows to force the system to an 
arbitrary state) per state variable. 

The output interface transforms alternating variables in non-alternating ones by 
means of output adapter cells. It includes additional logic to force the outputs to a 
safe state, if necessary, and a TSC code checker that indicates, by means of one or 
more error signals, if all the outputs of the combinatorial circuit alternate. Both the 
adapter and checker blocks are modular. 
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Finally, the combinatorial alternating circuit generates the next-state and output 
functions of the controller. 

The transformation of a behavioural representation of a logic controller in an 
alternating fail-safe circuit is straightforward. The idea is to automatically add some 
elements to the unsafe design, to transform it in a fail-safe one. The necessary 
information to be obtained from the behaviour of the system is detailed on the 
following paragraphs. 

Number of  inputs. This information is used to generate the input interface using the 
library part input adapter cell. 

Number and safe state(s) of the controller. This information allows us to generate 
the state register from the library parts two-stage shift register and load state. In order 
to force the state of the system (for instance, at power-on) it is necessary to generate 
the state control inputs. This function is realized by an external auxiliary circuit, 
whose consideration exceeds the limits of the present work. 

Number and safe state(s) of the outputs. With this information it is possible to 
build the output interface block utilizing the library parts output adapter cell, safe 
output logic and alternating TSC checker. The output control inputs are generated by 
the above mentioned external auxiliary circuit. 

Next-state and output functions. These functions are generated by a combinatorial 
altermating circuit. The first step in the design of this circuit is to obtain the truth 
tables of the functions. If a function F is self-dual, it remains unchanged. In other 
case, it is modified to build an equivalent self-dual function F* by adding the clock 
ck as an input variable [1]. If the function is to be implemented in a set of n-input 
LUTs, the function is partitioned, if necessary, in a set of self-dual m-input (m <_ n) 
sub-functions, to meet the fault-secure condition presented in the previous section. 

It is important to notice that no changes are needed in the behavioural description 
of the system in order to implement it as a fail-safe circuit, except that a list of safe 
states has to be provided. The fail-safe design procedure can be totally automated and, 
therefore, transparent to the designer. 

4 Conclusions 

A method has been presented that allows to automatically implement fail-safe logic 
controllers in FPGAs from standard behavioural descriptions. The increment in design 
time is negligible, because the only additional information needed consists of a list of 
safe states. The method is based on the use of time redundancy, but it can be 
extended to the use of other forms of redundancy, such as information redundancy. 
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Abstract. It is the purpose of this paper to describe a specific applica- 
tion made of XILINX XC4000 series Field Programmable Gate 
Arrays (FPGA's). 
The application takes advantage of a feature of this RAM based 
device where logic is implemented under the form of an array of small 
look-up tables which may be as well used as an array of small RAMS. 
The paper shows how this array of RAMs is well suited to do the 
function that dispatches and collects, over a bunch of Digital Signal 
Processors or DSP's, Digitized Voice Packets that need to be com- 
pressed (decompressed) before (aRer) transmission on a Tele Proc- 
essing line to realize a V o i c e  Server function that saves a significant 
amount of the transport medium bandwidth. 
The paper tends to demonstrate that the availability of xl organized 
independent internal RAM devices permits to simply carry out the 
function, at the nominal speed, in a couple of FPGA s while the equiv- 
alent function would only be achievable in a standard gate array at the 
expense of the use of many Flip Flops. 

1. What is to be done: 

The function to realize, depicted on the Figure 2, assumes it is possible at a 
node of  a digital network to dispatch over a bunch of DSP's, at regular inter- 
vals, "packets" of  digitized samples of  phone conversation in progress. The 
packets are compressed within the DSP s then, transported through the digital 
network thus saving a signitican.t portion of  the medium bandwidth. De- 
compression of the received votce packets is done by the same bunch of  
DS P s so to sustain a transparent full duplex phone conversation between two 
parties at both ends of  a network as shown in Figure 1 
The packets are typically 160 byte large before compression representing 20 
milliseconds of  a phone conservation (digitized voice channel at 64 kbits/sec). 
After processing the source sampling of  the phone conversation is compressed 
into only 32 bytes. The compression and decompression algorithm are 
running  on a bunch of  Motorola DSP s 56166 capable of handling several 
voice channels each. Thus, the role of  the dispatcher is to be able to contin- 
uously feed the DSP's from an Inbound Buffer and collects the compressed or 
decompressed packets to the Outbound Buffer while more than 100 phone 
conversations are in progress. 
The source and sink of the packets brought to the Voice Server is a port of  a 
switch representing a particular node in the digital network through which the 
phone communications are established. 
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Figure 1. A phone conversation through a Digital Network 



2. How it is done: 

3 4 6  

The Motorola DSP 56166 is equipped with two serial ports to load or fetch 
packets. To permit a complete decoupling between loading and fetching one 
port is used to load the data to process while fetching may go on independ- 
ently on the second port when a processed packet is ready to go. Therefore, 
there is no contention possible between the two operations. The collector is 
informed that a job is ready to go because an interrupt is raised by a DSP 
while loading rate of the jobs, from the dispatcher, must stay compatible with 
the total processingcapability of each DSP (35 MIPS). 
The other end of the dispatcher is a 4 byte interface (DMA-like) with a buffer 
memory, managed by a specialized controller. It receives through the inbound 
switch port the remote compressed packet (to be de-compressed) or the local 
packets that need to be compressed before they are sent at the remote node 
through the network. 

i : : : i :  ?:iiii: : i:i:.i: From/To Switch :i .... : .  i .... : 
INBOUNDPORT i .... , : i:. ...... " i i  : : . .  ..... .: OUTBOUND PORT 

. ! 

[INBOUND: BUFFER 

i:!:i:i 

f [DATA MOVEMENT [ I OUTBOUND BUFFER 
(OMA) .... ~ROCESSOR.  ) 

~ o s  ~ , B~E O U S ~  

Figure 2. The Voice Server function 

2.1 A Buffer Serializer for Dispatching the Jobs 

The heart of  the dispatcher function is a buffer serializer whose principle is 
shown in Figure 3. A 4 byte word fetched from the buffer memory is first 
latched into an interface register then immediately after temporarily stored, at 
two consecutive addresses, into a set of sixteen 16xl internal RAMs. The 32 
bits are then, soon after, unloaded serially to a DSP through a serial port in 
two consecutive 16 bit frames as DSP 56166 serial port mode of operation 
calls for. 
The parallel loading and the serial shifting are done alternatively. Every 
second cycle (the system clock is running at 60 Ns or 18 Mhz.) there is an 
opportunity to load in parallel two bytes into one buffer while the other half 
o f  the cycles are used to serialize the data on all the serial links at a rate of 1 
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bit every 120Ns which is the maximum frequency at which the DSP serial 
ports may be operated. 

AL LINK 

Figure 3. Dispatcher Buffer Serializer 

2.2 Buffer Serializer Cell Mode of Operation 

The way a buffer-serializer cell (in the dotted area of Figure 3) is operated is 
summarized in Table 1. The 16xl RAM may be loaded either from the upper 
or lower half of the data input register. 
To actually write into the RAM 'WE" strobe must be active. Otherwise the 
buffer serializer is in standby although the shift clock is free running. Shifting 
of the data occurs by writing the RAM contents from one device to the next 
one through the latches with following timing: 

I 1 16 SHIFT CLOCK PERIODS AT 120 NS 
: I z 3 4 s s 7 e g l e  1 I  lz  1314 

Figure 4. Shift Timing 

The address where the shift occurs must obviously be stable. 'WE' strobe 
must be ON and the RAM input multiplexer selects the previous RAM 
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output into the chain so the data shift from left to right from one 16xl RAM 
to the other at clock rate. The first bit to go out on the serial link toward a 
DSP is the one from the most right device. The most left device is idled with 
O's (tie down). At the end of the shift the corresponding row (16 bit wide ) is 
cleared since O's have been pushed in while a 16 bit word has been transferred 
to the DSP's. 

Table 1. Serializer mode of operation 

X X 0 STANDBY 

I lilLo D.xrs i5 
1 0 1 LOAD BITS 16-31 

~ "  . . . .  . . .  ' I . . . . .  ' . . . .  I . . . .  . I " "  - • 

• 0 ! [ : X  1 

2.3 RAM Buffering Organization 

The temporary buffering of  data is organized within the RAMs as shown in 
Table 2. For a given user 8 bytes are pre-fetched before serialization may 
occur. This leaves enough time to pre-fetch data while serialization goes on 
on all the links. Serialization and prefetching are alternatively done on a per 
(60 Ns) cycle basis in such a way that both interfaces are active together thus 
implementing a pseudo dual port (one parallel, one multi serial) scheme. 
The Figure 2 and Table 2 show that there are two DSP rows one EVEN and 
one ODD that are alternatively fed through a common set of serial ports. The 
chief reason for this is that DSP's are unable to sustain a continuous stream of 
bits. A pause must be observed between two strings of 16 bits. Thus the 
application rather toggles between ODD and EVEN DSP's to keep the serial 
links continuously busy. 
Therefore, the temporary buffering is organized in a such a way that while 
data are fetched on the upper interface and stored in the "FLIP" port serializa- 
tion goes on on the bot tom serial links from the "FLOP" portion. And vice 
v e r s a .  
Whenever there are no data to be transferred to a DSP (just because there are 
no Voice Packets to process) the corresponding temporary buffering portion is 
not fed and the validation bit contained in a 17th bit is not set. Thus, when 
serialization will later occur the Serial Port for this data string will not be actu- 
ally started (Frame Synchro line is OFF. See references [1] and [2]). 
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Table 2. RAM organization ,. 
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2.4 Configurable Logic Blocks (CLB) count 

Logic implemented in XILINX F P G A  must fit into a certain number of  
Configurable Logic Blocks or CLB's. A basic dispatcher cell is shown in 
Figure 3 fit in one XC4000 series CLB. This includes the input multiplexer, 
the 16xl RAM itself and the output flip flop. Thus, an array of fourteen 17 
bit buffer serializer (the 17th bit is the validation bit) which is the core of  the 
function, requires only: 
One serializer ..................................................................... 17xl = 17 CLB's 
Fourteen Serializer ............................................................ 14x17 = 238 CLB's  
Plus the input reg with MPX ......................................... 238+16 = 254 CLB's  
which easily fits into a XC4013 (576 CLB's) with the rest of the control logic 
not discussed in this paper. Then, the buffer serializer array represents a total 
14x17x16 or almost 4 k bits of static R A M  that would need to be done 
entirely with F /F  in a standard gate array. 
Furthermore the wiring of the cells is straightforwards from the CLB struc- 
ture. Each CLB needs only to be connected to its neighbor one (down in a 
column) with only one wire as shown in Figure 5. All the other controls 
signals and the data inputs are distributed using the metal "Long Lines" 
another feature of  Xilinx FPGA's.  Keeping the wiring simple is the key factor 
to get the product running at 60 Ns in worst case conditions. 
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Figure 5. A few Buffer serializer cells 

3. Job Collector 

The collection of the packets after processing by the DSP's is just the opposite 
of what has been described up to now. Reading is done one bit at a time on 
the serial links and enter a similar array of RAMs in the Collector FPGA. 
Whenever enough data has been assembled they are transferred, 4 byte at a 
time, to the outbound buffer. When a complete packet is ready it is routed to 
the network through the Voice Server outbound port. 
This part is very similar to the dispatcher and is not be further described. 

4. Summary and Conclusion 

It is a purpose of this paper to demonstrate that, taking advantage of the 
internal RAMs of a RAM based FPGA, like the 4000 Series of XILINX, it 
becomes possible to carry out a function that otherwise would require a too 
large amount of flip flops to be feasible in a FPGA or would require a 
standard gate array as large as 50 kcells to do the equivalent. 
Although FPGA are expensive devices the approach retained permits to go 
through the engineering and pre-production phases with a re-programmable 
device while the production phase will use a less expensive hard wired sol- 
ution. The important point is that both real estate and performance of  the 
FPGA phase need to keep up with the hard wired solution. 
The use of  the internal RAMs was the answer to this challenge in this partic- 
ular application. 
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Abs t rac t .  Traditional Field-Programmable Gate Arrays suffer from a 
lack of routing resources when implementing complex logic designs. This 
paper proposes two possible improvements to the FPGA structure that 
could alleviate these problems. We suggest extending the FPGA class 
to 3-D architectures. The 3-D architectures could be constructed of a 
stack of optically interconnected 2-D planes. Furthermore, we suggest 
a hierarchical distribution of routing resources that closely matches the 
wire length distributions of the intended class of applications. 

1 Introduction 

Field-Programmable Gate Arrays (FPGAs) are a rapidly growing class of elec- 
tronic components. They offer a low-cost, off-the-shelf solution for implementing 
or prototyping a broad range of digital designs. This is achieved by using pr o- 
grammable logic blocks interconnected via programmable routing resources. 

Although routing resources consume the major  part  of the chip area, com- 
plex designs remain difficult to implement.  Due to routing problems, logic block 
utilization seldom achieves more than 50% and critical paths are forced into 
more indirect routes [1]. This has a negative impact on the performance of the 
implemented circuit. We are looking at ways to overcome these problems. 

One way to model circuit complexity is by using Rent's rule [2]. Rent consid- 
ers hierarchical models of circuit interconnection graphs. At every level, nodes are 
grouped into modules, to form the nodes of the next higher level. The  grouping is 
such that  the total number of pins emerging from the modules is minimal. This 
results in the following relation between the average number of pins emerging 
from the modules and the average number of (basic) nodes inside the modules: 

P = C B ' ,  O ~ r < l  , (1) 

where P is the average number of pins emerging from the modules, B is the 
average number of (basic) nodes inside the modules, O is a constant related to 
the average fanout of the nodes and r is the Rent exponent. The value of r = 0.5 
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represents 'easy' to route, planar-like circuits. Complex, highly interconnected 
designs are characterized by larger values of r. Studies about  placement of digital 
logic [3, 4] show that  circuit complexity - characterized by the Rent exponent 
- and wire lengths of the implemented circuits are strongly correlated. Further- 
more, it is dear  that  the wire length of the implemented circuits and the routing 
area are also correlated. 

An analysis of the interconnection lengths of designs implemented in three 
dimensional structures [5] shows that  interconnection length is significantly lower 
compared to two dimensional implementations. The gains are most pronounced 
with high-Rent designs. The availability of integrated optoelectronic compo- 
nents, allowing massive parallel free-space interconnections, holds the promise 
of constructing three dimensional systems. Hence, we consider building a 3-D 
optoelectronic FPGA structure consisting of a stack of 2-D electronic planes 
that are optically interconnected. 

Furthermore, the design of routing resources in traditional FPGAs seems 
rather ad hoc. We state that  routing resources could be more efficient when they 
are more closely matched to the needs of the logic designs that  would be imple- 
mented in FPGAs. Based on a study [3] we make some suggestions that  could 
offer an alternative for the seemingly ad hoc nature of existing interconnection 
structures. 

2 I m p r o v e m e n t s  t o  t h e  F P G A  A r c h i t e c t u r e  

2.1 Us ing  3-D F P G A  i n t e r c o n n e c t i o n s  

The construction of isotropic three dimensional FPGAs,  having the same inter- 
connection density in all three dimensions, would lead to a massive increase of the 
number of interconnections. It seems obvious that  routing problems would thus 
be decreased. However, the technical requirements may preclude the realization 
of such architectures in the foreseeable future. 

Therefore, we propose an architecture with an anisotropic interconnection 
structure (see Fig. 1). We create a 3-D system as a stack of interconnected 2- 
D electronic planes. Each horizontal plane consists of a large FPGA structure. 
The FPGA's  logic blocks are grouped into rood lles. In between these modules, 
we place interconnections to the next plane. These interconnections between 
planes could be either electrical (through vias [6]) or optical. It is clear that  such 
architectures will exhibit a smaller gain in routing resources than truly isotropic 
3-D systems. Hence, one should carefully investigate the cost/benefit  ratio of 
varying degrees of sparseness of the interconnections in the third dimension. 

Van Marck [5] has studied the average interconnections lengths of designs 
implemented into 2-D and 3-D architectures. He examined isotropic Manhat tan  
grids - i.e., grids where the interconnection density is the same in all three 
dimensions - as well as anisotropic grids (see Fig. 2). Although the model is 
still quite simple and does not take routing problems into account, the study 
shows that  the reduction in average wire length is sufficiently large to arouse 
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one's interest. This indicates that anisotropic 3-D systems will offer advantages 
over 2-D systems. 
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Fig. 1. Proposed architecture for the 3-D FPGA 
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Fig. 2. Anisotropic grid: one layer of a cubic grid with sparse interconnections to the 
next layer 

2.2 I m p r o v e d  2 - D  i n t e r c o n n e c t l o n  t o p o l o g y  

General-purpose FPGAs (e.g. Xilinx FPGAs [7]) have a rather small number of 
local interconnections, i.e., interconnections between near-by logic blocks. Long- 
line interconnections provide large fanout interconnections that cross the entire 
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width of the chip. All other routing resources can be programmed to interconnect 
any two blocks. However, this flexible way of routing is not very area-efficient 
and causes large delays. Furthermore, when implementing complex designs in 
such structures, one very often finds that  there is a lack of routing resources. 

To avoid this problem, we should approach the routing resource architecture 
;form a different point of view. The routing architecture of an F P G A  should 
match the "needs" of a large class of logic designs. Studies about  wire lengths [3, 
4] have examined placements of digital logic on square grids. From these studies 
it follows that  optimally placed logic designs have a wire length distribution 
function that  is given by: 

fk  = g / k  7, l < k < L 
0, > L ,  (2) 

where fk is the fraction of wires with length k; g is a normalization constant; L 
is a constant related to the size of the array and the adequacy of the placement; 
and 7 is related to the complexity of the circuit architecture (based on Rent 's  
rule [2]). 

Consequently, an FPGA should have a hierarchy of routing resources lead- 
ing to an interconnection distribution given by (2). First, FPGAs  should have 
more local routing resources, which could be hard-wired and will thus be faster. 
Secondly, there should be a smaller number of longer routing resources. These 
longer interconnections need not be general; i.e., they need not to be able to 
interconnect any two blocks, but they should have a distribution according to 
(2). 

The structure of the routing resources of the Triptych F P G A  [1] has emerged 
from reflections about  the inherent fanin/fanout  trees of logic designs. It there- 
fore comes as no surprise that  the resulting structure satisfies (2). 

These suggestions should lead to architectures in which implemented designs 
are faster and easier-to-route. A first step towards such systems has been made 
and has resulted in the design of a 3-D optoelectronic F P G A  demonstrator .  

3 T h e  D e m o n s t r a t o r  

3.1 G o a l  

The current complexity of the optoelectronic F P G A  demonstrator  and its phys- 
ical form are n o t  geared towards demonstrat ing the at tainable routing gains. 
It is aimed at establishing the feasibility of free-space optical interconnections 
- at the logical circuit level - between traditional planar subsystems. We have 
chosen to use optical interconnections because of the increasing availability of 
optoelectronic interconnection devices such as LEDs (Light Emit t ing Diodes) 
and VCSELs (Vertical-Cavity Surface Emit t ing Lasers). Among others, optical 
interconnections hold the promise of high-bandwidth data  transfers in galvani- 
cally isolated subsystems. Furthermore,  the use of f r e e - s p a c e  interconnections 
allows a much easier cooling of the subsystems. 
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In view of the technological capabilities at hand in our research teams, we have 
chosen to construct the demonstrator  as shown in Fig. 3. It consists of a stack 
of three robust, metal  frames. Each metal frame holds a PCB and a small glass 
plate. The PCB carries the FPGAs, while the glass carries the optics-related 
components, i.e., the LEDs, driver chips, detector diodes and receiving amplifiers. 
The metal  frame has two fittings through which a reproducible positioning of 
the planes relative to each other is realized. The lateral positioning accurax:y 
between two adjacent planes should be better  than 10#m. Proper  functioning of 
the optical links necessitates an accuracy of 50/~m. The layer separation is 5 mm,  
while the lateral measures are 150 x 140mm. On each PCB we put  4 CMOS 
FPGA chips. These chips are fabricated in a 1.5 pm ES2 process. They  measure 
8518/~m x 6300pm. On the glass there are a LED array, two driver chips, one 
detector array and two receiver chips. The LED array has integrated diffractive 
lenses [8] and contains 16 LEDs. The infrared LEDs are used at a bitrate of 
50 Mbit/s.  The LED arrays are bonded using solder bumps or gold bumps. The 
detector arrays are fastened with anisotropic conducting axthesive film (ACAF). 
Receiving lenses, enhancing light collection and reducing cross-talk, are provided 
on the bot tom of the glass. 

glass carriers, 
/ .  containing optics-related 

FPGA chips ~..~... chips 

C=__ 
~ m e t a l  frame PCB 

Fig. 3. Physical form of the demonstrator 
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3 . 3  T h e  2 - D  F P G A  s t r u c t u r e  

Each layer of the stack contains a 2-D F P G A  structure, consisting of an array of 
two by two smaller FPGAs.  One small  F P G A  contains an array of four by four 
logic blocks. Hence, one layer of the three dimensional F P G A  contains an array 
of eight by eight logic blocks. So, the full 3-D F P G A  contains 3 × 8 × g, or 192 
logic blocks. 

R o u t i n g  R e s o u r c e s .  The routing resources of the small FPGAs  were inspired 
by the structure proposed in the Triptych architecture [1]. The purpose of  the 
routing scheme is to match,  as closely as possible, the routing requirements of a 
hierarchically designed circuit, as explained in section 2.2. The routing resources 
consist of interconnections through the logic blocks, direct interconnections, the 
so called long line interconnections and  interconnections to the optical  devices. 

Routing through logic blocks. Beside comput ing a logic function, the logic blocks 
of both  the Triptych and our architecture can be used to route signals (see Fig. 
4). This allows a more versatile use of  the routing resources. Furthermore,  since 
a trade-off can be made between routing and logic, less area remains unused due 
to routing problems. 

Direct interconnections. The structure of the F P G A  consists of logic blocks hav- 
ing unidirectional diagonal direct interconnections between logic blocks (see Fig. 
5(a)). The resulting scheme is then mirrored bo t t om to top and overlaid on the 
original scheme. In this way we get an upward and a downward da ta  flow. Fi- 
nally, the data  flow direction can be changed by using the so called feedback 
connections. The direct interconnections are hard-wired and therefore should be 
used for local high-speed communicat ion between logic blocks. 

Long line interconnections. The long line interconnections are longer range con- 
nections and have a larger fanout (see Fig. 5(b)). As with the direct intercon- 
nections, the long line downward da ta  flow is obtained by mirroring the scheme 
of Fig. 5(b) bo t tom to top and overlaying it on the original scheme. There are 
two types of long line interconnections: 

- intra-chip long line interconnections, which connect one logic block with the 
next row of logic blocks inside the chip. This type of long line interconnec- 
tions is hard-wired. Due to the limited number  of logic blocks in the chip, 
these long line interconnections have a fanout of two. 

- inter-chip long line interconnecfions, which can be p r o g r a m m e d  to connect 
one logic block with the next row of logic blocks inside the chip as well as 
with the next row of the neighbouring chips. These long lines can have a 
larger fanout. 
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Optical ir~terconaec~ioas. The output of the logic functions of the logic blocks 
are hard-wired to the optical transmitters. The data of the four logic blocks of 
one row are multiplexed. By multiplexing the data from the four logic blocks on 
the same row, wc can take advantage of the large bandwidth of the optical con- 
nections. After transmission and demultiplexing, the data can be interchanged, 
in fact providing us with a simple space/time routing switch. By doing so, the 
data from a logic block can be connected with any block of the row of logic blocks 
above it. This leads to factor four decrease of the number of optical components 
(see Fig. 5(c)). 

Logic Block Architecture. The structure of the logic blocks is shown in Fig. 
4. This LUT-based logic block is capable of simultaneous function calculation and 
signal routing, as in the Triptych architecture. Two functions of four inputs can 
be calculated or one function of five variables. Studies on the routing resources 
of LUT-based FPGAs indicate that 4-input LUTs are the most area-efficient [9]. 
Nevertheless, it is not clear if this holds for our type of routing resources. 

Every input of the logic block can be programmed to feed the two LUTs. 
The outputs of the LUTs can either be latched or unlatched. Furthermore, the 
outputs of the flip-flops can be fed back and used as inputs of the LUTs. By 
doing this, wc can implement finite state ma~hincs. 

At present, the electrical and mechanical parts of the demonstrator are being 
assembled and tested; the final integration with the optoelectronic components 
is expected to take place within the coming months. 
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Fig. 5. Routing resources: (a) direct interconnections of upward (black) and down- 
ward (grey) data flow; (b) long line interconnections of upward data flow direction; (c) 
interconnections to optoelectronic devices for one row of logic blocks 

4 C o n c l u s i o n s  

In this paper we have presented a possible way to alleviate routing problems 
in FPGAs.  We have proposed to introduce a third interconnection dimension, 
effectively reducing estimated interconnection length of implemented complex 
designs. We have suggested to realize this additional interconnection dimension 
using free-space optical interconnections. We have also touched upon more ap- 
propriate ways to provide suitable interconnection structures in future FPGAs.  

Our theoretical research effort is being complemented by the design and 
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realization of a prototype 3-D optoelectronic FPGA demonstrator, the purpose 
of which is to establish the feasibility of the proposed optical interconnection 
technique. 
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Abst rac t .  The Field Programmable Gate Array (FPGA) routing re- 
sources are fixed and their usage is constrained by the location of Pro- 
grammable Connections (PC's) such as antifuses. The routing or the 
interconnect delays are determined by the length of segments assigned 
to the nets of various lengths and the number of PC's programmed for 
routing of each net. Due to the use of PC's certain unconventional faults 
may appear. This paper models the PC faults and analyzes the perfor- 
mance of FPGA channel architecture under faulty conditions to achieve 
100% routability with graceful degradation in performance. A channel 
architecture has been synthesized to achieve routability and performance 
even under faulty conditions. Results on a set of indllstrial designs and 
MCNC benchmark examples show the feasibility of achieving routat)ility 
and performance under a large number of faults in the channel. 

1 I n t r o d u c t i o n  

Field Programmable Gate Arrays (FPGA's)  combine the flexibility of mask pro- 
grammable gate arrays with the convenience of field programmability. Figure 
1 shows the row-based FPGA architecture [1, 2]. Each row of logic modules is 
separated by channels. Each channel has a fixed number of horizontal routing 
tracks which are segmented. For example, Figure 1 has 3 tracks per channel. The 
topmost track is divided into two segments a and b separated by a horizontal 
antifuse (hfuse). In the unprogrammed state the antifuse offers a very high resis- 
tance, and hence, there is no electrical connection between the segments. A low 
resistance electrical connection between the segments can be established by pro- 
gramming the antifuse. Dedicated vertical lines through each input and output  
pin of a logic module connect the pins to the routing tracks. Vertical feedthroughs 
pass through the modules, serving as links between different channels. There is 
a cross antifuse (cruse) located at the crossing of each horizontal and vertical 
segment. Programming these antifuses produces a bi-directional connection be- 
tween the horizontal and vertical segments. Let us again consider Figure 1. Due 
to the different choices available during routing, it may be possible to achieve 
100% routability even under the presence of a large number of faults. One can 
also notice that there are a large number of both cross and horizontal anti- 
fuses present in the channel to achieve flexibility in routing. However, most the 
antifuses remain in the unprogrammed state even after FPGA programmation.  
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An alternate scheme replaces antifuses by switches, making the architecture 
reprogrammable. This is achieved at the cost of larger area required for the 
switches. An antifuse is of the size of a via, and requires very small area. 
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Fig. 1. FPGA Channel Architecture 

For such an F P GA architecture, it is not adequate to consider only the stuck- 
at faults for the logic modules. The unconventional PC short and open faults in 
the channel will also have to be considered to determine the complete function- 
ality of the chip. In this paper we model the PC faults and address the design 
and routability of the FPGA Channel architecture to achieve 100% routing with 
minimum performance penalty in the presence of PC faults. 

The paper is organized as follows. Section 2 considers the possible faults 
in FPGA's  and models the faults. The routability of a channel and the t iming 
performance associated with routing are described in Section 3 along with the 
routing algorithm. Section 4 considers channel routabili ty under the presence of 
faults. Section 5 deals with automatic synthesis of channel architecture to achieve 
routabili ty and performance under the presence of faults. Section 6 presents the 
results of injecting faults into the synthesized architecture and the conclusions 
are drawn in Section 7. 

2 F a u l t  M o d e l i n g  a n d  F a u l t  L o c a t i o n  

Let us first consider antifuse technology for PC's. Routabili ty of the FPGA's  
requires the presence of a large number of cfuses and hfuses in the channel. An 
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antifuse requires multiple p rogramming  pulses to successfully form the electrical 
connection between logic modules or segments. And depending on the circuit 
size and device type, 3,000 to 20,000 antifuses are typically p rogrammed  [3]. 

Two types of faults in the antifuses are considered. The first type of fault  can 
be diagnosed a priori i.e. before p rogrammat ion  and are called typel (or short) 
faults. A shorted (or already programmed)  cruse or hfuse is an example  of type1 
fault. Such faults can be easily detected by the p rogramming  circuitry which is 
able to address each antifuse individually. For example,  p rogramming  a cruse 
X1 in Figure 1 requires charging the vertical line crossing X1 to a voltage VPP 
and the segment d to GND (0V). VPP is determined by the antifuse technology 
under consideration. A voltage stress of VPP across the antifuse for a certain pe- 
riod of t ime creates a low resistance (technology dependent) connection between 
the vertical line and the horizontal segment. All other vertical and horizontal 
lines are charged to a voltage of VPP/2. It  can be noted that  the other unpro- 
g rammed  cruses experience a voltage stress of 0 volts or VPP/~ volts, and hence 
remain unprogrammed.  The above programming  concept can be used to stress 
any unprogrammed cruse to a VPP/2 volts to detect if a low resistance short 
exits or not. Type2 (or open) faults cannot be diagnosed a priori. Let us consider 
an antifuse which shows a normal behavior (open) in the unprogrammed  state  
but after p rogrammat ion  does not produce a low resistance connection. Such a 
fault cannot be diagnosed before the F P G A  is programmed.  It can be noted tha t  
if reprograrnrnable PC's are used instead of antifllses then both open and short 
faults are detectable before FPGA programmat ion.  After programming,  a faulty 
antifuse may produce an electrical connection between the horizontal and verti- 
cal line or between two horizontal segments having a resistance higher than the 
nominal  value. In such cases, the path  which includes that  p rogrammed antifllse 
in it may experience larger than normal  delay, producing delay or t iming error. 

The h fuse faults can also be classified into typel and type2 categories. The 
type1 faults can be detected by precharging the horizontal segment adjacent to 
any unprogrammed hfuse. A lypel fault on the hfuse would also charge up the 
other adjacent segment, As in the case of cruses, both typ(:1 and type2 faults may  
produce a moderate ly  high resistive connection between two adjacent segments 
producing a t iming fault. It should be noted that  each horizontal segment can 
be separately precharged by the programming circuitry. This helps in vertical 
line and channel truck testing. The test charges up each track, and after a pre- 
determined t ime needed to maintain the level, the charge must  still be high to 
allow a pass. 

All the inputs and ouput  to each logic module can be individuMly addressed 
and accessed through serial shift registers. And the inputs can be toggled through 
all the test vectors required to test, each combinational  and sequential modules 
completely for any stuck-at faults. 
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3 Routing 

The channel routing problem is formulated as an assignment problem where each 
net within a channel is assigned to one or more unassigned segments. A net in 
a channel can use at most  one track due to a technology constraint which does 
not allow programming of antifuses connected in an L-shaped fashion [1]. 

Consider K-segment routing for a net x of length Ls which uses p segments 
(I  < p < K)  and Hs  horizontal PC's .  We define the cost of routing net x as 

(E~=I  Lj)  - Ls H= 
C= : Wl .~  + w2.fl, where  c~ = and  fl = - -  P L ( ~ j = l  J) g 

¢r and fl are penalties for segment length wastage and horizontal P C  usage, 
respectively, and are both positive and less than 1. The factor a is associated 
with both routabil i ty and performance because the unprogrammed antifuses 
add to capacitive loading, while fl is associated with routing performance. The 
weights wl, w2 assigned to the wastage factor, and the horizontal P C  usage 
factor respectively, are technology-dependent. 

Green et. al. [5] have shown that  K-segment ( K  > l)  channel routing prob- 
lem is NP-complete.  For K-segment routing, each net is allowed a m a x i m u m  
of K adjacent segments (on the same track) for routing. For our purposes, we 
use a fast, greedy routing algorithm. The nets within a channel are ordered in 
decreasing order of length. We assume that  the longer nets are more critical, 
and hence, they are routed first. However, each net can be assigned a criticality 
value and depending on that  the nets can be ordered. Let the leftmost and the 
right most  coordinate of a net x (or a segment i) be given by lef t= and r igh t s  
( l e f t i  and r ight i )  respectively. Net x is routable using segment i if the segment 
has not been previously assigned to any other net and the following conditions 
are met:  

l e f t s  > l e f t i  , right= < r ight i  

Such conditions can be easily extended when two or more adjacent segments are 
required for routing the net on a given track, 

4 R o u t a b i l i t y  u n d e r  t h e  P r e s e n c e  o f  F a u l t s  

For the FPGA architecture of Figure 1, 100% routabil i ty may be achieved even 
under the presence of faults in the channel. Let us first consider the cross P C a n d  
the horizontal PCfau l t s  in the channel. The cross PC' s  are located at the crossing 
of each vertical line, which connects to a pin of a logic module, and the horizontal 
routing tracks. Typically, the router connects each pin to one horizontal track. 
The rest of the cross P C ' s  on that  vertical line remain unprogrammed.  Similarly, 
most of the horizontal PC's  also remain in the unprogrammed state because only 
a few of the nets require more than one segment for routing. So it may be possible 
to route nets such that  the P C  faults do not cause an error to occur during the 
normal  operation. 
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After detecting the type l  faults as shown in Section 2, routing can be per- 
formed around the faulty cross PC or the horizontal PC', if possible. Type2 faults 
for antifuses cannot be diagnosed a priori, and hence, routing reconfiguration 
is not possible. However, if reprogrammable  PC technology is used, then bo th  
short and open faults are detectable before p rogrammat ion  (in the test mode),  
and hence, routing around both the open and the short faults might be possible. 

Let the probabil i ty that  a cross PC is faulty (both type1 or type2 faults) be 
given by f .  Each vertical line in a channel has T number  of cross PC's, where 
T is the number  of tracks. There are T number  of segments going across any 
vertical line in a channel. The vertical line is connected to either a pin i in a 
logic module or is a feedthrough across channels. The  number  of available tracks 
that  p in / ,  and therefore net i, can be assigned to is given by N/, where N/ < T. 
N/ is a function of the number  of nets routed in the channel before routing net i 
and the segments assigned to those nets. We assume that  pin / can be assigned 
to any one of the available N/ tracks. Therefore, the probabil i ty that  net i uses 
the j t h  available track is given by 1/Ni. If we assume exactly one cross P C f a u l t  
per vertical line within a channel, then the probabil i ty that  net i gets assigned 
to a track segment having a faulty cross PC on that  vertical line is given by 

P l  ---- ~ i . f - ( 1  --  
f)N,-1 

It  follows from the above discussions that  the probabil i ty of 100% routabil i ty of 
the net in the presence of u p t o n  faults on a vertical line in a channel is 

rl 

1 E j . f J . ( 1  _ j.),,¢,_j (1) R = l - ~ i  " 
3 = I  

= 1 - P (2) 

where P is the probabili ty of an error occurring with at most n faults on a ver- 
tical line. It should be observed that  a typel fault  on a cflLse can be handled by 
assigning net i to the corresponding track segment. Any type.2 faults on unpro- 
g rammed cross PC's can also be tolerated. Therefore, in reality, the probabil i ty 
of 100% routabili ty of a net in the presence of faults is greater than R. 

The above fault types can also be considered for horizontal PC's to come 
up with analytical expressions for routability. Let the probabil i ty that  a net i is 
routed using one segment be given by all. ai~ is a flmction of net length and its 
spatial  location within a channel for a given channel segmentation. Let (tip be 
the probabili ty of routing net i with p segments requiring the  p rogrammat ion  of 
(p -- 1) horizontal PC's. Let us also assume that  a m a x i m u m  of (K  + 1) segments 
(K h fuses) be allowed for routing of any net within a channel. The mlmber  K 
is user defined, and is associated with the routing performance, because each 
programmed antifuse contributes positively toward critical path  delay. Such a 
routing scheme is defined to be (I(+l)-segment routing. If we only consider 
horizontal P C  faults, then the probabili ty of faulty routing for net i using exactly 
2 adjacent segments (one horizontal PC) is given by 

Qi2 ~- OG2.f2 
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where f2 is the probability of type2 fault on a horizontal PC. Note that  it is 
possible to tolerate a type1 fault if two or more segments are used for routing. 
Similarly, for exactly 3-segment routing for net i 

Q,3 = + - / 2 ) 1  

where C~ represents n choose m. It can be shown that  

P 
p J Q,i,p+l = c~i,p+l. ~ C~_j .f2 .(1 - f2) p-j (3) 

j=l  

From the above analysis it is clear that the probability that  net i can be routed 
using one or more segments (upto K hfuses) is 

K 

V~ = 1 -  ~_, Qij .c~ij 
j=l  

The unprogrammed horizontal PC's can potentially have typcg faults without 
causing any routing error. As the majori ty of the nets use a single segment for 
routing, most of the lype2 faults can be tolerated. The lypel horizontal PCfau l t s  
associated with unassigned segments can also be tolerated. However, in order to 
achieve 100% routability, nets might get assigned to longer and/or  large number 
of segments which in turn can increase critical path delays, 

5 F a u l t - T o l e r a n t  C h a n n e l  A r c h i t e c t u r e  

A routing solution is dependent on the existing placement which defines the 
routing requirements, the channel architecture which defines the available routing 
resources and the routing algorithm which efficiently uses these routing resources 
so that the final routing solution meets some performance requirements. Apart  
from the usual performance requirements of 100% routability with critical path 
delay constraints, our router described in the previous section also addresses 
the issue of routing under faulty conditions. Evidently, such a router 's ability to 
meet such performance criteria will be dependent on the channel architecture in 
addition to the routing algorithm used. Therefore, in order to improve routing 
solutions under faulty conditions, it is imperative to design the architecture with 
such a performance requirement in mind. 

The primary difference between handling faults at the routing level and at 
the architecture design level is that while at the routing level, the information 
regarding the faults is used to determine the routing solution, at the architec- 
ture design level, no information is available regarding the location of faults. 
Therefore, we assume that the PC faults are randomly distributed across the 
channel. One of the other characteristics of the faults are that, they are found 
to be clustered around some particular areas of the circuit [8]. Hence, we also 
consider clustered nature of faults in our analysis. 
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As pointed out in Section 1, the routability, performance,  and fault handling 
capacity of a channel depends largely on the channel segmentat ion scheme. In- 
tuitively, a strong correlation between the segment length and the net length 
distributions within a channel is very desirable so tha t  the single channel ar- 
chitecture is able to handle different types net distributions. However, the mere 
existence of a unique segment of acceptable length for every net in a channel 
does not guarantee 100% routability, or required performance and fault toler- 
ance. This is due to the fact that  an additional factor, the location of a segment 
with respect to a net span in a channel is also impor tant  in determining whether 
that  segment can be used for routing that  net. It is imperative,  therefore, to 
consider the spatial distribution of nets. The set of benchmark net distributions 
were obtained from Texas Ins t ruments '  gate array designs. 

We extend our architecture design scheme originally targeted towards wirabil- 
ity and t iming [6] so as to include the fault-tolerant capabil i ty for random and 
clustered fault distribution models. The basic approach used in our scheme was 
to generate an opt imal  architecture with respect to wirability and tinting for 
a large set of sample net-lists. Our extension therefore also addresses the fault  
handling capability of such an architecture with respect to the large number  of 
sample net-lists. The optimization technique used was simulated annealing [9] 
which explores a plethora of possible architectures and selects the opt imal  one 
based on a cost-fimction. 

The routing cost for channel i, having the set of nets Ni, and a set S of 
already laid out segments is given by 

Ok.q + 

kENi,, k E N , ~  

Z G 

The original cost-function targeted wirability and timing, using the first three 
terms of Equation 4. We have added a fourth and a fifth term for addressing the 
fault-handling capability. We will describe these terms following a brief discussion 
of the first three terms which address the issues of wirability and timing. I Niu I 
in Equation 4 represents the cardinality of set Ni,,, and is equal to the number  
of 1-segment unroutable nets in channel i. The set Nit, is the set of unroutable 
nets in channel i. For the set of 1-segment routable nets Ni,. in channel i, the 
segment wastage factor ak for each net k is calculated (refer to section 3). 0kg 
corresponds to the m a x i m u m  overlap of net k with an unassigned segment g, 
and is a measure of n-segment routabili ty of a 1-segment unroutable net k. The 
left and the right coordinates of segment g are given by .ql and g~ respectively, 
and hence, g,. - gl represents the length of segment g. The weights L,~, Vw, and 
Vo are associated with the corresponding factors. The routal)ility weight t,~ is 
much higher than ~'w or ~'o as it relates to both routability and performance. 
The I-segment routable nets with very low segment wastage usually have lower 
interconnect delays than nets requiring two or more segments for routing due 
to the presence of p rogrammed horizontal antifllse(s). In fact, the exact routing 
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delay depends on the number  of unprogrammed cruses on the segment(s),  the 
length of the segment(s), the resistance of any p rogrammed h fuse(s), and cruses. 
The weight Uo associated with the overlap factor is a small negative number.  For 
unroutable  nets we consider a larger overlap to be bet ter  - the net has a higher 
probabil i ty of getting routed using two or more segments. For p different channels 
(p sets of nets, Ni, N2, .. Np), the total  cost of routing, C, using the same set 
of segments S is given by C P = ~ = 1  Ci. The usage of 1-segment routability and 
the overlap factor represents a novel way of efficiently predicting the K-segment 
routabil i ty of a segmented channel architecture. 

The fourth term measures the fault-handling capabili ty of the architecture. 
For a particular net-list, 1-segment routing is done. This results in a set of nets 
that  are unroutable (using one segment) and a set of segments that  are free or 
available for routing. The information on free tracks for every zone is stored. 
The unrouted nets would have to be routed using multiple segments. These nets 
would require tracks at least in the zones denoting the nets '  span. We use this 
measure to est imate ~ : a lower limit on the number  of free tracks at each zone 
after complete routing. If a is negative for a particular zone, this would guaran- 
tee unroutability. If a is zero for a particular zone, there is a high probabil i ty of 
routabil i ty problems in that  zone. These cases are therefore penalized (although 
indirectly) by the wirability related terms. However, an interesting observation 
here is tha t  the larger a is for a zone, the larger would be the number  of tracks 
free for that  zone. Therefore after complete routing, if some faults exist in tha t  
zone, larger ~f implies larger fault-tolerance. In other words, a larger & in a par- 
ticular zone implies a larger probabil i ty that  a channel router can achieve 100% 
routabili ty in that  zone despite the existence of faults in that  zone since it would 
have extra  free tracks to use in place of the faulty one. 

Assuming random faults, the smaller the 6 is in the zones, the less fault- 
tolerant the architecture would be. Specifically, the zonal fault-intolerance FT~ 
of a zone z is a function of 6 for that  zone. This function was derived empirically 
based on the observation that  routabil i ty problems star ted appearing with (f val- 
ues less than 3 .7 ,  which is the fault-intolerance of the architecture is calculated 

as ~-,~ez FT~. 
Assuming clustered faults (the clusters themselves being randomly located 

anywhere in the chip), existence of clusters of adjacent zones with small 
would result in a less fault-tolerant architecture. Specifically, assuming clusters 
of length L, and a total  of C such possible clusters in a channel, the cluster 
fault-intolerance FTC~ of a cluster c is a function of the FTz of the zones form- 
ing the cluster c. If  the FT~ values for multiple zones are large, then FTCc is a 
large number depending on how many zones in cluster c have high FTz values. 
7, in this case, is calculated as ~ c e c  FTCc. v] is the weight factor used for the 
fourth term. 

In any zone, if a fault causes the inability to use a particular segment, the 
usage of an identical segment of similar length would result in the min imum 
deviation of t iming and segment wastage due to the fault. Therefore it is in- 
tuitively desirable to have in each zone, a few large segments, a few medium 
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segments, a few small segments etc. To achieve this, the segments are divided 
into G groups based on their lengths, each segment group comprises segments of 
length between a certain group-specific range. Constraints are provided in each 
zone in the form of a min imum number  of elements (Mg) required to be present 
for group g. Evidently there could be G such constraints. 

For each zone, it is tested if all these constraints have been met.  The  fifth 
term measures the summat ion  of all the violations of these constraints in different 
zones. For zone z, Pzg is the number  of segments belonging to group g in that  
zone. If Pzg >_ Mg, it implies the constraint k has been met  for zone z and 
function f returns 0. However if Pza = Mg - a, it implies tha t  constraint k has 
been violated by an amount  a in zone z, and / returns a 2 in this case. The 
superlinear function is used to heavily penalize large deviations. Pl is the weight 
factor for the fifth term. 

Due to the complex nature of the cost function, simulated annealing was used. 
Given a large set of sample net distributions, annealing starts  by assigning an 
arbi t rary segmentation for a channel of given width and a given number  of tracks. 
Two moves are allowed in this specific annealing algorithm - -  merging of two 
adjacent segments in a track and breaking of a segment within a track into two 
segments such that  the broken segments add up to the original segment length. 
The segments are randomly selected for either merging or breaking. Merges or 
breaks are also determined randomly. It is not possible to break a segment of 
length equal to the width of a single logic module. After each move the cost Ci is 
calculated for each of the given sets of net distributions, Ni ,....Np. If C decreases 
from its previous value the move is accepted. However, a move with a higher C 

is accepted with a probabili ty e , where 16(C)1 is the absolute value of the 
change in cost C and Temp is the annealing temperature.  

6 R e s u l t s  

The Mgorithms for fault-tolerant routing and architecture synthesis were im- 
plemented in C on a Sparc 10 workstation. We present below the results of our 
experiments with 7 MCNC and industrial examples from Texas Instruments  with 
900 to 2300 gates. The designs were logic synthesized and placed on TPC1010 
[3] type templa te  having 44 logic modules per row. Each channel had 25 seg- 
mented routing tracks. Table 1 shows the effect of injecting cross P C s h o r t  faults 
in the channels. The number of logic modules (LM's) and the number  of chan- 
nels required to implement  each design is also shown in the table. The columns 
show tha t  0, 15, 20, and 25 cross PC short faults were randomly injected into 
each channel of each design. The total  number of cross PC's present in each 
channel is Number'Tracks x NumberVerticalLines, which is 25 x 572 = 14300 in 
our case. Results show that  as the number of injected cross PC short faults de- 
creases, the routabili ty increases and so does performance. The total number  of 
horizontal P rogrammable  Connections (PC's) used and the average percentage 
segment wastage over all the channels (refer to Section 3) are measures of rout- 
ing performance and routabili ty and are shown in the table. With 15 randomly 
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injected faults per channel, routabi l i ty  was obta ined  for all the designs. For the 
unroutable  designs there is a " -"  entry in the column for percentage segment  
wastage.  

Tab le  1. Routing results with cross P C  short faults 

Design No. No. Number of Horizontal Avg. % Seg. 
Name LM's Channels I Unrouted Nets Prog. Conn. Wastage 

01151201 25 0 115120125 ] 0 I 15 I 20 I 25 
bw 144 8 0 0 0 0 0 0 0 1 38.4 38.7 38.9 39.0 

duke2 318 9 0 0 1 2 6 7 6 12 42.7 42.6 - - 

f104667 262 9 0 0  0 0 0 0 1 1 46.846.946.947.2 
f104243 512 15 0 0  0 0 0 0 0 0 41.842.342.142.7 
f104780 671 19 0 0  0 1 12114162340 .541 .241 .5  - 
f103918 782 19 0:0  0 0 4 5 5 4 38.839.039.139.4 
cf92382a 1668 19 010 0 0 0 0 0 2146.646.746.746.6  

Horizontal  P C  short  faults were also r andomly  injected into each channel. 
Table 2 shows the rout ing results with 0, 7, 8, and 10 horizontal  P C  short  faults 
injected r andomly  into each channel. All designs were routable  with 7 r andomly  
injected faults in each channel. However, routabi l i ty  a n d / o r  segment  wastage 
deter iorated with the increase in the number  of horizontal  P C  short  faults in 
each channel. 

Tab le  2. Routing results with horizontal P C  short faults 

Design Number of Horizontal I Avg. • Seg. 
Name Unrouted Nets Prog. Conn. Wastage 

017181 10 0 7 8 10 0 7 ] 8 I 10 

0 0 0  0 0 o o l o  3 43 740,,01 
duke2 0 0 1 1 16 8 1 0 1 1  42,7 42.7 - - 

f 1 0 4 6 6 7 0 0 ' 0 0  0 ' O I 1 : 2 4 6 . 8 4 6 . 9 4 6 . 9 4 8 . 0  

f104243 0 0 0  0 0 ~4118181 41.841.841.941.9 
f104780 00!0 1 ,,2 40.540.741.2 - 
f103918 0!010 0 4 1 6 1 8  6 38.838.838.839.0 
zf92382~ 0!010 0 0 I 010 2 46.6 46.9 46.9147.2 

Table 3 shows the rout ing results when cross P C  open faults  were r andomly  
int roduced into the channel. The  rout ing results are compared  with 0, 4%, 12% 
and 20% r a n d o m  cross P C  faults. Even with 12% (1716) cross P C  faults per 
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channel ,  the  rou te r  could rou te  all the  designs.  I t  can be observed  t h a t  as m o r e  
cross PC faul t s  were in t roduced ,  the  r o u t a b i l i t y  and pe r fo rmance  de t e r io r a t e s  
which is reflected by the larger  number  of  ho r i zon ta l  ant i fuse  usage,  and  h igher  
segment  was tage .  I t  should  be no ted  t h a t  for ant i fuses  such open  faul t s  are  no t  
a priori known and can only  he de tec ted  while t ry ing  to  p r o g r a m  the  ant i fuse .  

T a b l e  3. Routing results with cross PC open faults for reprogrammable PC's  

Design Number of Horizontal Avgl % Seg. 
Name Unrouted Nets Prog. Conn. Wastage 

0 4% 12% 20%1i 0 [4%112%120% I 0 [4% [12%[20% I 
bw 0 0 0 0 0 0 3 6 38.4'38.7 38.9 42.0 

i 

duke2 0 0 0 7 6 8 11 38 42.7 42.9143.1 - 
f104667 0 0 0 0 0 0 3 4 46.847.3 47.4 48.9 

,f104243 0 0 0 1 IO 2 7 12 41.842.7142.9 - 
f104780 0 0 0 9 '12 191 27 92 40.5 4(}.943.2 - 
f103918 0 0 0 3 !4 9 27 49 38.8139.2~40.1 - 
cf92382a 0 0 0 2 ,0 0 4 32 46.6 46.8 46.9 - 

Tab le  4 shows the resul ts  of i n t roduc ing  open faul ts  for t i le hor izon ta l  PC's  
when r e p r o g r a m m a b l e  technology is used. The re  were 20 and 40 open fau l t s  
respect ive ly  in t roduced  in each channel  for e x p e r i m e n t a t i o n .  Resu l t s  show t h a t  
a large number  of  such open faul ts  can be to le ra ted .  Th i s  is due to the  fact  
t ha t  mos t  of the  nets  in a channel  are rou ted  with  single segments .  Tile rou t ing  
resul ts  for all the  designs r ema in  unchanged  f rom the 0 faul t  case except  for 
design f10,~780 and  duke2. However,  all the  nets  were r o u t a b l e  for t h a t  des ign 
even wi th  the  presence of  a large number  of open faul ts .  

The  a rch i t ec tu re  synthes ized  for rou tab i l i ty ,  pe r fo rmance ,  and  faul t  to ler -  
ance was c o m p a r e d  to  the  a rch i tec ture  t h a t  we deve loped  only  for p e r f o r m a n c e  
and  r o u t a b i l i t y  [6], The  resul ts  show tha t  the  new a rch i t ec tu re  can hand le  a b o u t  
20% more  r a n d o m  faul t s  wi th  s imi la r  pe r fo rmance  for the  designs t h a t  we exper -  
i lnen ted  with.  E x p e r i m e n t s  were also conduc ted  wi th  r a n d o m  c lus tered  faul ts .  
S imi la r  resul ts  were also o b t a i n e d  for c lus tered  faul ts .  

7 C o n c l u s i o n s  

This  pape r  shows the feas ib i l i ty  of achieving r o u t a b i l i t y  and pe r fo rmance  under  
the  presence of P C  faul t s  in F P G A  channel  a rch i tec ture .  A channel  a rch i t ec tu re  
has  been synthes ized  which not  only  considers  r o u t a b i l i t y  and  pe r fo rmance ,  b u t  
also enhances  the  r o u t a b i l i t y  of the a rch i t ec tu re  under  the presence of  P C  fau l t s  
w i t hou t  sacrif icing per fo rmance .  Resul t s  show tha t  a large n u m b e r  of fau l t s  can 
be to l e ra t ed  in the  new a rch i tec tu re  using a channel  rou t ing  a l g o r i t h m  which can 
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T a b l e  4. Routing results with horizontal PC open faults with reprogrammable tech- 
nology 

Design 
Name 

bw 
duke2 

f104667 
f104243 
f104780 
f103918 
cf92382a 

Number of Horizontal 
Unrouted Nets Prog. Corm 

o12o I 40 1°12°14° I 
0 0  0 0 0 0 

0 0  0 4 6  8 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 12 12 12 
010 0 4 4 5 
0i0 0 0 0 0 

Avg. % Seg. 
Wastage 

0 120 140 
38.4 38.5 38.5 
42.7 42.7 42.6 
46.8 46.8 46.8 
41.8 41.8 41.8 
40.5 40.5 4(}.7 I 
38.8 38.8 39.0 
46.6 46.6 46.6 

rou te  nets  under  the  presence of faul ts .  T h e  antifl lse faul t s  have been charac te r -  
ized into  two categor ies  - those t h a t  can be de tec ted  before  p r o g r a m m a t i o n ,  and  
those  t h a t  can be only de tec ted  after  p r o g r a m m a t i o n .  I t  has also been shown 
tha t  some of  the  PC open and shor t  faul ts  m a y  also a p p e a r  as de lay  faul ts  due 
to  open or shor t  res is tances  being m o d e r a t e l y  large.  
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Abst rac t .  In this paper, a new design style for multi-FPGA system 
is proposed. It fills the large gap between high-level synthesis and the 
FPGA logic design by providing datapath circuit module library which 
can contain high-level s imulation models as well as low-level circuit netlists. 
Some bit-serial circuit modules have been designed which are easy to par- 
tition and place within multiple FPGAs. Also, we have describe our novel 
work on Field-Programmable Multi-Chip Module which demonstrates its 
ability in reducing hardware size, reducing power consumption, reducing 
packaging cost and providing with high density chip-to-chip connections. 

1 I n t r o d u c t i o n  

The potential of Field-Programmable Gate Array technology (FPGA) has been 
demonstrated by many researchers in this field to provide an alternative ap- 
proach to computation intensive applications. Custom chips which are optimized 
for some specific applications are possible only if they promise a high volume 
production. Parallel processing using general purpose microprocessors or digital 
signal processors can be effective if a wide range of applications is targeted. FP- 
GAs take in the advantages from both sides: an efficient and high-performance 
datapath implementation of a custom chip and the programmabili ty of a mi- 
croprocessor. Researches on this FPGA-based custom computing have been ac- 
tive on both aspects [1][2][3], however, often failing to merge the two together. 
Engineers can implement an efficient, high-performance design on this FPGA- 
based system with a design methodology similar to custom chip design requiring 
extensive knowledge of digital system and experience [3]. On the other hand, 
efforts in making the FPGA-based systems easy to program has come to a point 
where designers can write VHDL-like programs and the tools will automatically 
generate the FPGA configuration data [4][5]. Here, the problem is that  the au- 
tomatically generated designs are often inefficient in terms of resource usage 
and performance. Also, these hardware description language still requires basic 
digital design skills. 

This paper at tempts to solve these problems by proposing a new design style 
which integrates the digital system design knowledge and experience into the 

* This work is supported in part by ARPA under ONR Grant N00014-93-1-1334. 
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design environment to guarantee the quality of performance and efficiency, and 
still regain the user-friendliness for the programmers without the knowledge of 
digital system designs which the majority of the potential users would not have. 
Our design style consisting of bit-serial arithmetic module library eliminates the 
large gap of high-level synthesis and logic design on FPGAs, bringing the de- 
sign decision process to the highest level of abstraction while providing accurate 
tradeoff measures. 

One other aspect in FPGA-based system is that in order to effectively and 
efficiently tackle such computation intensive applications, a large amount of logic 
resources are needed, in the order of millions of gate counts. Decreasing the phys- 
ical size of the hardware of the FPGA-based systems is not only important by 
itself, but also critical in increasing the performance, cutting power consumption, 
and cutting the overall cost. Our novel work on Field-Programmable Multi-Chip 
Module (FPMCM) clearly demonstrates a feasible and effective solution to this 
hardware compaction problem of the FPGA-based custom computer systems. 

2 F P M C M  - A n  I n t e g r a t i o n  o f  F P G A  a n d  M C M  
T e c h n o l o g y  

FPGAs suffer from low logic density and slow circuit speed. Fortunately, the 
recent advancement in device technology is making these problems less critical. 
The gate capacity of a single chip is growing close towards 100K gate counts. The 
circuit speed has being improving where 4-input logic functions can be computed 
in less than 3ns. Whereas for the multiple-FPGA systems, there are some more 
problems: 

- Existing FPGA chips may be IO limited when used in multiple-FPGA con- 
figuration. 

- IO drivers are designed to drive large load, therefore often slow. Chip-to-chip 
communication penalty is large. 

- Multiple-FPGA hardware results in large size and requires large power. 

We have address the first problem, discussed in the later section, by using bit- 
serial datapath modules where IO limitation is not a problem. We have actually 
demonstrated in our multiplier design example that the chip-to-chip communi- 
cation penalty is indeed critical. 

In the following section, we will describe our current work on Field-Programmab] 
Multi-Chip Module (FPMCM) which will help us deal with those problems using 
the new packaging technology. 

2.1 Overv iew of  M C M  

A Multi-Chip Module (MCM) has several bare chips or dice mounted and inter- 
connected on a multi-layer substrate which functions as a single IC. Usually, a 
silicon substrate consists of a ground plane, a power plane, and two signal rout- 
ing layers. The power and ground plane form a good decoupling capacitance. 
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If necessary, additional processing steps can be added to produce intergrated 
floating capacitors, thin-film resistors, inductors, and bipolar transistors. 

The most promising assembly technique for MCM is the flip-chip at tachment  
[7]. In flip-chip, dice are attached with pads facing down via solder bumps which 
form the mechanical and electrical connections. The flip-chip technology pro- 
vides area pads through solder bumps which are distributed over the entire chip 
surface, rather than being confined to the periphery as in conventional packaging. 

The resulting assembly is attached, wirebonded, and encapsulated in a second 
level package. The second level package, used for insertion into the final system, is 
typically a pin or ball-grid array (BGA). This process is well suited to FPMCMs 
because the substrates can accommodate a high density of interconnect; There 
are two layers with a wire pitch on the order of 1.5 mils. The process has also 
been carefully optimized to minimize cost without sacrificing the performance 
of digital circuits. 

2.2 F P M C M - I  A r c h i t e c t u r e  

We have designed and are in the process of manufacturing a first generation 
FPMCM (FPMCM-I) [9]. The purpose of the first generation device is to fully 
exercise the MCM fabrication and assembly technology, quickly familiarize our- 
selves with the technical problems of FPMCM design, uncover any pitfalls, and 
try out an initial architecture. 

Fig. 1. Physical Design First Generation FPMCM. Outer dimensions of the module 
are 30.6 mm square. The device contains 12 Xillnx XC3042's and a single Aptix FPIC. 
Four ceramic chip capacitors are provided to stabilize the on module power and ground 
planes. The figure shows the three metal routing layers. The first two (X and Y) 
layers shown are on the silicon substrate, while the third consists of an identical I/O 
redistribution pattern for each XC3042 and the solder bump grid of the FPIC which is 
necessary because the bond pad pitch on the 3000 series is too small for inexpensive, 
reliable flip chip assembly. 

The FPMCM-I consists of 12 Xilinx XC3042s encircling a Field-Programmable 
Interconnect Chip (FPIC),  the Aptix PIC-R. This FPIC die has an array-IO of 
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32 x 32 resulting in 1019 IO pins including 976 user-IOs which can be treated al- 
most like a crossbar network. Four surface mount chip capacitors provide power 
decoupling on the substrate. Each FPGA has 12 pins connecting to each nearest 
neighbor in the ring and 22 pins connecting to external bondpads. Four global 
signals are shared by all FPGAs. For testability purposes every signal net on 
the MCM substrate connects to a PIC pin. There are a small number of direct 
connections from the pins of the MCM to the PIC for diagnostic purposes; this 
is in addition to the connections needed for the configuration and control lines. 
To summarize, the FPMCM-I has 268 user IO in addition to numerous power, 
ground and control signals [9]. 

2.3 Advan tages  of  M C M  

MCMs have many advantages over traditional packaging: lower electrical para- 
sitics between packages, smaller size, increased interconnect resources, and re- 
duced packaging cost. 

1. Power consumption reduction: 
All other things being equal, the lower capacitive loads of shorter MCM 
interconnect provide substantial power savings. The power savings for MCMs 
are typically fifty percent lower than conventional packaging. This power 
savings is increased dramatically when the drivers are specifically designed 
for the MCM interconnects that they drive. Low power is an important 
feature of MCM, especially when applied to portable systems and add-on 
cards which are power-limited. 

2. High-speed high-density chip-to-chip communication: 
High wiring density of the silicon substrate allows communication between 
chips to be very dense. And since the parasitic capacitance is significantly 
lower compared to on-board communications, fast drivers can be built in 
the die. AT&T Bell Laboratory has designed a set of low voltage, high- 
speed IO buffers optimized specifically for MCM. The results show that 
these new buffers reduce power consumption 6x and increase performance 
2.5x compared to conventional CMOS buffers and they can operate at up 
to 400MHz [8]. 

3 F P M C M  D e s i g n  E n v i r o n m e n t  

3.1 P r o b l e m s  of  Cur ren t  F P G A  Design E nv i ronmen t  

The existing FPGA design tools are provided with the thought that the FPGA 
users are engineers with experience and patience. And they are specially tuned to 
implement random logics efficiently as possible. Tools such as logic minimization, 
logic partition, technology mapping, and automatic placement and routing are 
therefore designed under the assumption that the circuit has a random structure. 
There are several problems in applying this design environment to datapath 
implementation: 
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1. Datapath  circuits such as ALUs, registers, ROMs, RAMs, adders, counters 
and multipliers are regularly structured and their statistical characteristics 
vary between each other. Synthesizing datapath  circuits as random logics 
using the existing tools will often result in poor implementation in terms of 
logic size and circuit speed. 

2. Design change, in order to make the design fit in the available F P G A  hard- 
ware or to speed up the circuit to meet the given specification, is difficult 
and time consuming. 

3. Design verification including functionality and timing is also time consuming. 
4. Design entry requires digital system design skills which will greatly discour- 

age the programmers without the skill to use the system. Simply attaching 
a high-level synthesis tool which translates high-level behavioral description 
like C and PASCAL into structural description would result in poor im- 
plementation since the decisions made in the high-level synthesis can only 
be based upon some unreliable information about the hardware size and 
performance of the datapath components [6]. 

5. Each design iteration takes too long. A time to compile a structural descrip- 
tion into configuration data takes tens of minutes, possibly hours. This also 
discourages the users. 

Based on these observations, we now propose a new FPGA design style very 
similar to the high-level synthesis approach. 

3.2 A N e w  De s ign  S ty l e  B a s e d  on  H i g h - L e v e l  S y n t h e s i s  

High-level synthesis, first called silicon compilation, have gained a great attention 
since the early 1980s, where VLSI technology has advanced to a point where 
the time it took to design chips became as long as chip lifetimes, leading to a 
bottleneck in the product development cycle. High-level synthesis are programs 
that generate layout data from some higher-level description. 

The essential building block for the high-level synthesis is the module com- 
ponents. Modules is defined in high-level synthesis environment as microarchi- 
tectural entities that  perform one or a few specific functions and consist of one 
or more arrays of cells or tiles of a specific type. Examples of modules are PLAs, 
ROMs, RAMs, register stacks, multipliers, ALUs, and counters. Modules are 
compiled from cells which are single-bit logics or storage functions of some mi- 
croarchitectural components or circuits of SSI or MSI complexity. The important  
feature here is that modules are associated with high-level models such as func- 
tional, logic, timing, power, and testability models to be used by verification, 
analysis, and optimization tools such as functional and logic simulators, t iming 
and power analyzers, and layout compactors. In this way, designers are able to 
identify at high and abstract level which part of the design is causing the er- 
ror, or which parts need to be reworked in order to meet the requirements of 
performance and hardware size. 

Fig.2(b) shows the high-level synthesis design style applied on FPGA de- 
signs. The description can either be behavioral or structural. From a behavioral 
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Fig. 2. Conventional and proposed design flow on FPGA 

description, a architecture synthesizer generates structural description. This part 
of high-level synthesis consists of data dependency analysis, register allocation, 
scheduling, memory allocation, and so on. This process requires accurate infor- 
mations about hardware complexity and performance measures in order to gen- 
erate area-efficient high-performance datapath structure. In conventional FPGA 
design style, these information are not provided until the design has been al- 
ready mapped, placed and routed, at the lowest level of abstraction. This made 
it almost impossible to incorporate high-level synthesis in the FPGA design 
environment. 

A structural description consists of ALUs, registers, multipliers, counters and 
other arithmetic functions. These modules are defined in the module library with 
wide varieties of functions. Each module is described in logic block functions for 
a particular FPGA, therefore the amount of logic blocks needed for the design 
is already known at this stage. A timing model is also provided for each mod- 
ule, therefore the performance of the design is also predictable. By completely 
relying on the module library, the designers are able to eliminate the lengthy 
process of logic minimization, logic partition, and technology mapping which 
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are tuned to work well on random circuits but not on datapath circuits. A va- 
riety of design verification is done at this structural level, which makes it very 
easy to detect design errors, timing errors, feasibility of actual implementation, 
and performance. 

In order for this design style to be realistic, the module library has to meet 
the following requirement. 

1. Module library should provide with wide choices of components, at least 
include decoders, register stacks, multipliers, ALUs, counters, etc. 

2. Following models for each module have to be provided in high-level descrip- 
tion. 
(a) Functional model 
(b) Timing model 
(c) Testability model 

3. Each module has to be physically compatible with other modules in terms 
of placement and routing. 

4. The routability and the propagation delays of inter-module connections have 
to be highly predictable. 

We have to note that the prediction of routability and propagation delays 
is extremely difficult in FPGA architecture. In custom chip design which is one 
of the original targets for the high-level synthesis, routing propagation delays 
are only caused by wiring capacitance. Also, routing has maximum flexibility in 
custom chips, designer has the freedom of assigning enough routing resources to 
congested regions. Therefore, the nets are almost always routable. Whereas in 
FPGA architecture using pass-transistors for connecting routing channels, drain 
capacitance of the pass-transistors is significantly larger than wiring capacitance. 
Routing propagation delays totally depend on the number of pass-transistors the 
net has to go through. Furthermore, the limited routing resources per channel not 
only make the routing more difficult but also force routing nets in the congested 
region to scatter to other routing channels. This makes the prediction of the 
routing delays even harder. 

We have realized that the last two critical requirements are the keys to high- 
level synthesis. Our decision of using bit-serial arithmetic which will be discussed 
in the next section is the result of this observation. 

4 B i t - S e r i a l  A r i t h m e t i c  M o d u l e s  

Computer arithmetic schemes and datapath implementation techniques have a 
large impact on performance, circuit complexity and power consumption. We 
have to be particularly careful in designing datapath circuits on FPGA. Since 
the logic density is lower and circuit speed is slower, we cannot afford to waste 
the resources or misuse them which may severely affect the performance. And 
we also have to be more careful about the routing than we would normally do 
on custom chip designs since the routing penalty is very high due to the high 
capacitance of the pass transistors on the routing channels. This directly links 
with the concerns on module-based methodology of FPGA design. 
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Fig. 3. Systolic array implementation of bit-serial modules 

4.1 Examples  of  Bit-Serial  A r i t h m e t i c  Modules  

Bit-serial arithmetic modules can be implemented in systolic array fashion (Fig.3). 
Each cell contains several combinational logics implementing single bit function 
plus several storage elements. We have designed some bit-serial modules on Xil- 
inx XC3000 architecture. Each systolic array cell is typically implemented using 
1 to 5 configurable logic blocks (CLBs) with logic depth of I or 2 CLBs. Each bit- 
serial module consists of a single cell as in adders and shifters, or multiple cells 
proportional to the word length as in multipliers and registers. Inter-cell connec- 
tions and inter-module connections are sparse, typically 2 to 6 wires, which are 
independent of the word length (Table 1). 

4 . 2  Compar i son  Between Bit-Serial  and  Bi t -Para l le l  Modules  

Let us compare this bit-serial arithmetic modules with a bit-parallel modules in 
terms of partition, placement and routing which are the key factor in creating a 
realistic module library for high-level synthesis. 

1. Partition: 
(a) Bit-parallel modules are often hard to partition over multiple FPGAs 

since partitioning such circuits often leads to I/O pin limitation problem. 
Also, performance is critically affected by the partition, thus making 
the performance measures at the high-level unreliable. It is therefore 
not practical to partition bit-parallel modules. Also, design partitioning 
is difficult and may result in poor logic resource usage because of the 
coarse granularity of the module circuit composed of tens of CLBs and 
pin limitation problem. 

(b) Bit-serial modules are easy to partition since inter-cell connections are 
sparse. Performance degradation by partition can be totally eliminated 
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Table 1. Statistics of bit-serial datapath modules. Word size ---- N 

Modules Area Logic depth 
Multiplier 
(1-input 1-constant) 4N CLBs 1 CLB 
i(2-inputs) 5N CLBs 2 CLBs 
Adder 
I(single precision) 1 CLB 1CLB 
(double precision) 3 CLBs 1 CLB 
Rounder 
(truncate) 
(round-to-nearest-even) 
Absolute operator 
Max-min selector 
(least-significant-bit-first) 
(most-significant-bit-first) I 

1 CLB 1 CLB 
4 CLBs 1 CLB 

2 + N/2 CLBs 1 CLB 

1 + N/2 CLBs 1 CLB 
4 CLBs 1 CLB 

by inserting additional flip-flops on the parti t ioned inter-cell connections 
under the assumption that the chip-to-chip delay is smaller than the 
internal critical path of the systolic array cells. Design partit ioning is 
also easy because of the fine granularity of the cell circuit composed of 
only several CLBs and no pin limitation problem, and result in a very 
high logic resource usage, as high as 100%. 

2. Routing: 
(a) Bit-parallel modules tend to be large in hardware, may have a large fan- 

in and fan-out, may have a vast area of dense connectivity. And as a 
result, wiring distance can be considerably long for some nets. Routabil- 
ity of such modules are hard to predict, and their routing delays are also 
unpredictable. Therefore, in order to construct a useful module library 
for the high-level synthesis, bit-parallel modules have to be placed and 
routed as seen in Hard-Macros. This physical restriction of the module 
will affect the routability of the other parts of the chip. 

(b) Bit-serial modules consisting of systolic array cells only has local con- 
nections. Since the distance of those wires are all short, the propagation 
delays of those wires can be highly predictable. Therefore, unrouted mod- 
ules can still provide with reliable performance measures. Also because 
of the local connections, routing wires tend to be evenly distributed 
throughout the chip, naturally avoiding routing congestions. 

3. Placement: 
(a) Since bit-parallel modules have to be placed and routed in order to pro- 

vide the information needed in high-level synthesis, physical compati- 
bility between modules tend to be poor. Locking the relative position 
of CLBs within the module, locking the routing wires, locking the posi- 
tion of I /O nodes, all these reduce the feasible placement search space 
significantly. 
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(b) Bit-serial modules can afford to be unrouted as long as the CLBs within 
a cell and adjacent cells within a module is placed close enough, to make 
the routing wires short and to make the routing delays predictable. This 
flexibility increases the physical compatibility between other modules, 
which minimizes the affect of the routability from the other circuits in 
the same chip. 

input . CLB multiplier cell output 
p~d flip/-flop / / pad 
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(b) Schematics 

Fig. 4. Bit-serial multiplier layout on XC3042 

To support the above argument, we have provided one actual design example to 
demonstrate the high logic resource usage of the bit-serial arithmetic modules. 
In Fig.4, actual layout example of a bit-serial multiplier on XC3042 is shown. 
We were successful in mapping 6 × 6-bit multiplier on one chip using up all of 
the 144 CLBs. The internal critical path (flip-flop to flip-flop) was 17.0ns. The 
placement was done by hand, and routing was done by Automatic Placement 
and Routing (APR). The maximum internal routing delay was 5ns. However, 
the external critical path (flip-flop to flip-flop via chip pads) was 31.5ns. Taking 
in account of clock skew between chips (,~2ns) and chip-to-chip interconnect 
delay (<~10ns), the overall critical path is around 45ns. We can see that by 
using bit-serial datapath modules whose logic depth is very small, clock period 
can be reduced significantly to a point where the delays from the IO pad drivers 
become dominant in the critical path. In Table 2, estimated performance and 
area of several applications on our FPMCM chip are shown. There are two clock 
frequencies assumed. 20MHz is the upper bound imposed by the IO pad buffer 
delays (,~ 45ns). 50MHz is the upper bound when the IO pad buffer delays are 
ignored, and the internal critical path is the overall critical path (17ns). The 
reason for ignoring the IO pad buffer delays is that by using MCM packaging 
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technology for mult iple-FPGA system which is discussed in the next section, IO 
pad buffers can be made significantly smaller and faster. 

Table 2. Estimated performance measures on FPMCM chip. Multiplication, ad- 
dition, rounding, max-selector, and rain-selector are all counted as 1 operation. 
min-max-selector are counted as 2 operations. Others are not counted as operations. 
The assumed clock frequency is 20MHz and 50MHz. 

# of word size sampling rate Ops 
CLBs (20MHz) (50MHz) /cycle 

8-point IDCT 1064 16 bits 1.25MHz 3.125MHz 56 
FIRfilter (25 taps) 1675 16 bits 1.25MHz3.125MHz 51 
FIR filter (49 taps) 1715 8 bits 2.5MHz 6.25MHz 99 
8-point bubble sort 126 8 bits 2.5MHz 6.25MHz 40 

Ops per second 
(20MHz) (50MHz) 
70 MOPS 175 MOPS 
63 MOPS 159 MOPS 

247 MOPS 618 MOPS 
100 MOPS 250 MOPS 

5 P a r t i t i o n ,  P l a c e m e n t  a n d  R o u t i n g  f o r  F P M C M  

For our proposed design flow, we have to provide an automatic part i t ion and 
placement algorithm to map the bit-serial arithmetic modules onto multiple 
FPGAs. 

1. Parti t ion algorithm would consist of assigning bit-serial systolic array cells 
to each FPGA chip while assuring a feasible placement inside the chip and 
a feasible routing inside the FPIC, retiming of data due to the insertion of 
flip-flops at the chip boundary and back-annotating to the functional model. 

2. Placement algorithm would consist of assigning each CLB to physical loca- 
tion while assuring that CLBs of the same cell is placed adjacent to each 
other, placing adjacent cells as close as possible to make the routing de- 
lay below the predicted margin, and placing boundary cells, cells which is 
connected to cells in a different FPGA chip, closest to the I /O blocks. 

3. Routing algorithm would consist of routing the FPIC to provide the required 
connection between FPGAs while keeping the chip-to-chip delay within the 
tolerant margin, that  is, the critical path within the FPGA.  Routing of 
the individual FPGA has to be done by the routing tools provided by the 
FPGA vendors since this requires extensive knowledge of the F P G A  routing 
architecture. 

These three tasks has to occur simultaneously in order to obtain the best results 
since these tasks are dependent of each other. However, since we are dealing 
with a very special class of circuits with only local connections and very limited 
fan-in and fan-out, simultaneous partition, placement and routing should be a 
lot easier than the ones for random circuits. 

These algorithms are currently under development. 
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Abstract. In our digital design laboratory we have replaced the 
traditional wired circuit modules by workstations equipped with an 
extension board containing a single FPGA. This hardware is 
supplemented with a set of software tools consisting of a compiler for 
the circuit specification language Lola, a graphical layout editor for 
design entry, and a checker to verify conformity of a layout with its 
specification in Lola. The new laboratory has been used with 
considerable success in digital design courses for computer science 
students. Not only is this solution much cheaper than collections of  
modules to be wired, but it also allows for more substantial and 
challenging exercises. 

1 Introduction 
In order to demonstrate that what had been learnt in the classroom can actually be 
materialized into useful, correctly operating circuits, digital circuit design courses are 
accompanied by exercises in the laboratory. There, students select building elements 
from an available collection and assemble circuits by plugging them together, by 
wire-wrapping, or by soldering. We have replaced this setup by workstations used in 
programming courses [1] and equipping them with an FPGA on a simple extension 
board. Not only is this replacement substantially less expensive, but it allows for the 
implementation of considerably more realistic and challenging designs. This is due to 
the large number  of available building elements in the form of FPGA cells. Instead of 
plugging units together, cells are configured and connected using a graphical circuit 
editor. Indeed we consider this laboratory as the application of SRAM-based FPGAs, 
where their inherent flexibility is not merely an advantage, but a simple necessity. 
After all, a design is not only changed for correction or improvement, but also 
discarded upon successful completion, whereafter the FPGA is reused for a next 
exercise. Our experience also shows that learning effect and motivation surpass our 
expectations, and that simulation by software can no longer be justified as a 
substitute for actual circuit implementation. Furthermore, the concurrent design of 
test programs on the host computer helps to bridge the perceived gap between 
hardware and software, and is a strongly motivating factor, in particular for 
Computer Science students. 

Whereas the construction of the FPGA-board was a rather trivial matter, most of 
the project's efforts were spent on the design of adequate software tools. They 
comprise not only a graphical layout editor, but also a small circuit specification 
language called Lola a n d i t s  compiler (Sect. 2). A typical exercise starts with the 
formulation of the informally described circuit in terms of this (textual) notation. 
The second step consists of mapping it onto the FPGA, i.e. of finding a layout and 
entering it with the aid of the layout editor (Sect. 3). Before testing the circuit with 
test programs, a second tool, the Checker is applied to verify the consistency of the 
layout with the circuit's specification in terms of Lola (Sect. 4). 

We stress the fact that these tools have not only proved most useful in digital 
design courses, but also adequate and effective in practice. 
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2 The Circuit Specification Language Lola 

In the design of Lola we have made a deliberate effort to let the basic notions of 
digital circuits be expressed as concisely and as regularly as possible, making use of 
constructs of programming languages, while omitting unnecessary and redundant 
features and facilities. The similarity of its appearance (syntax) with that of 
structured programming languages is intentional and facilitates the learning process. 
However, the reader is reminded that "programs" describe static circuits rather than 
algorithmic processes. Although the entire language is defined in a report of some six 
pages only, we here choose to convey its "flavor" by showing a few examples rather 
than by presenting a comprehensive tutorial. 

2.1 Declarations, Expressions, and Assignments 

Every variable (signal) is explicitly declared. Its declaration specifies a type (binary, 
tri-state, open-collector) and possibly a structure (array dimension). Variables occur 
in expressions defining new signal values. The available operators are those of 
Boolean algebra: not (~), and ( , ) ,  or (+), and xor (-) .  Expressions are assigned to 
variables, thereby defining their value depending on other variables. The frequently 
encountered multiplexer operation is defined as 

MUX(s:x,y) = ~ s , x  + s , y  

The following basic operators allow the specification of storage elements and 
registers, and thereby of (synchronous) sequential circuits. 

SR(s', r') 
LATCH(g, d) 
REG(en, d) 

set-reset flipflop 
transparent latch 
D-type register with enable and implied clock 

2.2 "l~ype Declarations 

If a certain subcircuit appears repeatedly, it can be defined as an explicit circuit type 
(pattern), whereafter it can be instantiated by a simple statement. Declaration and 
instantiation resemble the procedure declaration and call in programming languages. 
Inputs appear in an explicit list of parameters. Outputs do not. Instead, they are 
treated like local variables, with the difference, however, that they can also be 
referenced in the context of the instantiation, namely by their name qualified by the 
instance's identification. 

Of particular value is the easy scalability of declared types. This is achieved by 
supplying a declaration with numeric parameters, typically used to indicate array 
dimensions. This kind of parametrization embodies the most essential advantage of 
textual specifications over circuit schematics. 

2.3 Examples 

The first example is a binary adder consisting of N identical units of type ASElement. 
Input cin denotes the input carry, and s controls whether z is the sum o fx  andy  or 
their difference (Fig. 1). 
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Cl 
cout 

Fig. 1. Add-Subtract Element 

TYPE ASElement; 
IN x, y, ci, s: BIT; 
OUT z, co: BIT; 
VAR u, h: BIT; 

B E G I N u : = y - s ; h : = x - u ; z : = h - c i ; c o : =  ( x * u ) + ( h * c i )  
END ASElement; 

TYPE Adder(N) ;  
IN cin, sub: BIT; 

x,y:  [N] BIT; 
OUT cout: BIT; 

z: IN] BIT; 
VAR AS: [ N ] ASElement; 

BEGIN AS.0(x.0, y.0, sub, sub);  
FOR i := 1 .. N-1 DO AS.i(x.i, y.i, AS[i-1 ].co, sub) ;  z.i := AS.i.z END ; 
cout := AS[N-1 ].co 

END Adder  

The second example shows a multiplier with N-bit inputs x a n d y  and a 2N-bit output 
z. The circuit consists of a matrix of identical adder  elements (Fig. 2). The first 
parameter  is the product of multiplicand and multiplier. 
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",\ 
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z2 
- - 0  
\ 

z4 z3 

x0 

xl 

x2 

x3 

Fig. 2. Multiplier 
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TYPE AddElement; 
IN x, y, ci: BIT; 
OUT z, co: BIT; 

BEGIN z :-- (x-y)  - ci; co := (x * y )  + ( ( x -y )  * ci) 
END AddElement; 

TYPE Multiplier(N); 
IN x,y: IN] BIT; 
OUT z: [2,N] BIT; 
VAR M: IN] IN] AddElement; 

BEGIN 
FORj := 0 .. N-1 DO M.0.j (x.0 *y.j, '0, '0) END ; 
FOR i := 1 .. N-1 DO 

M.i.0 (x.i ,y .0 ,  M[i-1 ].l.z, '0); 
FORj := 1 .. N-2 DO M.i.j (x.i ,y . j ,  M[i-ll[j+l].z, M[i][j-1].co) END ; 
MIll[N-I] (x.i ,y[N-1], M[i-llIN-1].co, MIi][N-2].co) 

END ; 
FOR i := 0 .. N-2 DO z.i := M.i.0.z; z[i+N] := M[N-1]  [i+l].z END ; 
z[N-11 := M[N-1].0.z; z[2*N-11 := M[N-1][N-11.co 

END Multiplier 

Our last example is a binary up~down counter with the three ~control inputs en 
(enable, carry input), clr' (clear), and up (indicating the counting direction). 

TYPE UpDownCounter(N); (*with load, enable and clear,) 
IN ld', en, clr', up: BIT; x: IN] BIT; 
OUT Q: [N] BIT; 
VAR cu, cd: IN] BIT; 

BEGIN 
Q.0 := REG(MUX(Id': x.0, Q . 0 ,  clr' - en));  cu.O := Q.O • en; cd.0 := ~Q.0 • en; 
FOR i := 1 .. N-1 DO 

Q.i := REG((MUX(Id': x.i, Q.i - MUX(up: cd[i-1 ], cu[i-1 ] ) ) )  • clr'); 
cu.i := Q.0 • cu[ i -1] ;  cd.i := ~Q.i * cd[i-1 ] 

END 
END UpDownCounter 

2.4 The Compiler 

Unlike a compiler for a programming language, which generates executable code, the 
Lola compiler generates a data structure representing the circuit that is most 
appropriate for further processing by various design tools, ideally by an automatic 
layout generator. Other tools are timing analyzers, fanout checkers, and simulators. 
In our case, the most important tool is the Checker, which verifies a given layout 
rather than generating one. The data structure generated by the compiler consists of a 
binary tree for each variable occurring in the design. Hence the compiler flattens the 
structured description. It also applies obvious simplification rules. They take effect, 
for example, at the edges of  the matrix of  the second example above, where some of 
the input parameters are zeroes. 

3 The Layout Editor 

A graphical editor is used to enter and modify circuit specifications implemented on 
an FPGA. It presents the FPGA at a low level, as close to the real hardware as 
possible. We  first present the used FPGA architecture and then give a description of 
the editor's mode of  operation and its implementation. 



389 

3.1 The Hardware 

In our laboratory, an extension board containing an FPGA of Atmel (formerly 
Concurrent Logic Inc.) is used [2]. The AT6002 chip in an 84-pin package consists of  
a matrix of 32 by 32 identical cells. A cell implements two functions of up to three 
inputs (A, B, and L). These functions can be combinational  and sequential  (i.e. 
involving a register). Two outputs (A and B) of a cell are connected to the inputs of 
its four neighbors (north, south, east, and west).  In addit ion to the neighbor 
connections, there is a bussing network connecting bus inputs and outputs of eight 
cells in a row or column. These so-called local busses are used to t ransport  signals 
over longer distances between cells. They can be connected to other local busses or to 
additional express busses via repeaters at 8-cell boundaries.  Surrounding the array of 
cells are 16 programmable IO pads on each side. These connect to the bus of  the host  
workstation and to components  on the extension board, such as an SRAM and an 
RS-232 line driver. 

3.2 Des i~ l  Representation and Modification 

The editor presents the gate array in a viewer as an excerpt of the 1024 cells (Fig. 3). 
Every eight cells, a repeater column or row is displayed, and surrounding the array, 
the programmable  pads are shown. Each componenrs  contents reflect the 
implemented function as closely as possible - e.g. an Exclusive-Or in a cell with a 
constant one input is displayed as a Not-gate. To show the signal flow, connections 
between cells and to and from local busses, and connections with repeaters are 
displayed as arrows. 13y giving neighboring connections a different color (yellow) 
than local (green) and express busses (red),  a visual feedback on the speed of a 
specific connection is suggested. Inside a cell, the same picture is displayed 
regardless of the source and destination direction of signals. For instance, even if 
signals enter a cell from below and flow to the top, the picture inside the cell 
suggests a flow from top to bottom. The reason for this will be explained in Sect. 
3.3.2. To give signals a meaningful name - and to enable a link to a Lola description 
of a circuit (see Sect. 4) - textual labels can be placed at cell and pad outputs. 
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Fig. 3. Editor View with Cells, Pads, Repeaters, and Labels 
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The mouse is used as the primary input device to change a design. Cells, pads, and 
repeaters can be edited using popup menus (Figs. 4, 5). The top row of the menu in 
Fig. 4 shows the six different routing modes possible in a cell, and the four items on 
the left of  the bottom row show the state of a cell [2]. The two multiplexers on the 
right are an often used combination of  routing mode Mux and states Xor or Xor with 
register. Similarly, all possible configurations for repeaters (Fig. 5) and pads (not 
shown) are presented through a menu. The current configuration of the edited 
resource is highlighted in the menu with a frame. Connections between cells must be 
entered manually as no automatic router is provided. Thus, students learn about the 
problems of placement and routing in FPGAs. Fast replication of data path elements 
is available by selecting and copying bit slices of  the layout. Cells can also be moved 
or copied across viewer boundaries in which a different design or a different excerpt 
of  the same design is shown. 
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Fig. 4. Cell Menu 
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Fig. 5. Repeater Menu 
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3.3 Implementation 

The editor consists of five modules comprising roughly 65KB of object code. The 
following sections discuss some of the finer points of the implementation. 

3.3.1 Data Structures 

We use a straight-forward data structure to represent the various resources on the 
FPGA. A two-dimensional array of cell records represents the matrix of cells. This 
allows for fast iteration over the data structure when displaying it. Similarly, the 
repeaters and pads are represented as arrays of records. The labels, however, are a 
linked list of records containing the position and caption of a label. Designs are 
saved to disk using a portable data format. A simple run-length encoding of empty 
cells, pads, and repeaters compresses typical files to 23% of their original size. Even 
large designs take up only 8KB, whereas smaller designs remain well under 1KB. 

3.3.2 Drawing Operations 

For drawing the contents of a cell, we use a special font containing only the patterns 
of signals flowing from top to bottom. Thereby, we get fast drawing of a design 
without having to distinguish between the 384 possible signal flow directions, but at 
the cost of a fixed aspect ratio and non-optimal print output. Making the distinction 
and drawing a cell's contents with multiple lines and dots slows down the 
performance by 50% and increases the program size by 100%. Repeaters are drawn 
using a font as well, but here, a special pattern exists for each possible signal flow. 
Despite the disadvantages when using a font, the chosen solution works well in 
practise. A special display option can be set where only used cells and busses are 
drawn. Not only does this improve display speed, but it also avoids a cluttered view. 

3.3.3 Editing Operations and Undo 

The problem of displaying three different menus has an elegant solution using a 
generic procedure. This procedure takes two procedure variables as parameters, one 
for displaying the contents of each menu item, and one for updating the data 
structure according to the chosen item. Thereby, the code for configuring cells, pads, 
and repeaters remains the same, only the procedure variables and the number of 
rows and columns in the menu change. 

Each editing operation can be undone. This is accomplished by backing up the 
data structure before executing the operation. Then, a simple swap between the 
backup and the primary data structure implements the undo (and redo) operation. 

3.4 Command Module and Queries 

Operations that are not frequently used are provided through a command module 
[3]. Clock and reset lines are set with commands. Labels, cells according to their 
coordinates, and whole arrays according to a prefix, can be located in a design. 
Statistics on the design are also provided, with which different implementations of 
the same specification can be compared against each other (according to bus 
utilization and the number of cells used for routing, logic, and registers). 
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3.5 Downloading to the Extension Board 

Once a design is finished, it can be downloaded onto the FPGA in a few 
milli-seconds. Only during this step, simple electrical consistency checks are 
performed, such as multiple sources writing to a bus unconditionally, and 
incompletely configured cells. 

3.6 Discussion 

For the intended purpose the chosen implementation worked out very well. The fast 
adaption of all users to our system was encouraging and the positive feedback very 
rewarding. In the future, we will provide configurability of the editor to support 
various chip sizes and IO configurations. Research-wise, we intend to develop design 
automation tools that support a seamless integration between the specification of a 
circuit and the automatically laid out design. 

4 The Checker and Analysis Tools 

4.1 The Checker 

In a digital design laboratory, a typical design cycle might look as in Fig. 6. After 
initial design entry with the editor, the designer downloads the design onto the 
FPGA. By configuring the FPGA, the circuit is implemented and can be tested 
subsequently. If the test fails, the design is corrected, downloaded, and tested anew. 

No 

Fig. 6. Design Cycle 

While downloading and testing a design is usually a matter of seconds or minutes, 
correcting a faulty design can be very tedious. Mostly, this comes from the fact that, 
while it is easy to detect an error, it is hard to find its location in the design. In 
traditional laboratories with electronic components being plugged together, the 
designer must verify manually that each component is properly wired. Our 
software-based approach, by contrast, offers the opportunity to construct a circuit 
checker program that helps the designer not only to detect, but also to locate 
implementation errors. 

4.1.1 Representing and Checking Designs 

A digital circuit is characterized by its inputs, outputs, and a set of Boolean functions 
combining the inputs. Each circuit output is associated with the result of such a 
function. The function can be represented as a binary tree with nodes consisting of 
Boolean constants, operators, variables, and units composed of several operators 
(e.g. multiplexers, registers). Each output forms the root of such a binary tree. A 
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complete circuit can thus be represented as a set o f  trees, one for each output. Inner 
tree nodes represent operators with edges pointing towards the node's inputs, while 
leaf nodes represent constants and input variables. 
Fig. 7 illustrates the equivalence between a Boolean function represented as a set of 
interconnected gates, a binary tree, and a Boolean formula. 

Schematic 
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e - -  

Tree Lola 

Fig. 7. Circuit Representations 

z := u*v + REG(e, x) 

Since the above representations of a circuit are equivalent, both a circuit layout and a 
Lola program can be transformed into a set of trees. Corresponding trees can then be 
compared to detect inconsistencies. Under the assumption that the Lola program 
describes the circuit correctly, i.e. it properly reflects a circuit specification, 
inconsistencies between corresponding pairs of trees are interpreted as errors in the 
layout, i.e. the circuit implementation. 

The checker strives to find a structural equivalence between the specification and 
the implementation trees. It starts at the roots of two respective trees and, in parallel, 
traverses both trees from the roots towards the inputs. At each pair of nodes, the 
checker verifies that the two nodes match. If they match, the nodes' subtrees are 
checked for equivalence recursively. The procedure terminates when all nodes have 
been visited or a mismatch is detected. 

Existing verifiers, such as automated theorem-provers [4], attempt to find an 
equivalence between Boolean equations by transforming them until equivalence (or 
its opposite) is inferred. This scheme is more flexible than matching for structural 
equivalence and allows for different levels of abstraction between the specification 
and the implementation. While such verifiers are well suited to detect inconsistencies, 
they typically fail in pinpointing the fault in the layout. The information needed for 
this purpose is either left out or lost during the transformations applied to the 
Boolean equations. This loss makes it impossible to locate an implementation error 
automatically and leaves the designer with the labor of locating it in the layout 
manually. 

The checker, by contrast, keeps the information required to locate a part in the 
layout within each node. With this information available, an implementation error 
can not only be detected but also located in the faulty layout. 

4.1.2 Using the Checker 

The first step in the checking process is writing a Lola specification for the circuit. 
This program is compiled by the Lola compiler which generates a set of trees as its 
output. The trees can be viewed in a textual format as a set of Boolean equations. The 
output can be used as a reference in the next step when entering the design with the 
editor. The checker is then invoked to check the implementation for compatibility 
with the specification. Inconsistencies between the two are displayed textually and 
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graphically in the layout. The checker can check complete layouts but may also be 
used during design entry to check partial layouts (e.g. for checking bit slices of a data 
path). 

4.1.3 Implementation 

In order to make the implementation of the checker simple and extensible, the 
architecture-dependent extraction part is decoupled from the architecture- 
independent matching part. The extractor converts the FPGA-dependent re- 
presentation of circuits used by the editor into an architecture-independent set of 
trees. The matcher then verifies compatibility with the set of trees generated by the 
Lola compiler. This separation allows easy adaption to a new FPGA architecture by 
simply exchanging the extractor component. The extractor follows the signals from 
the output towards the inputs. Extraction stops at labels and constants found in the 
layout. When returning from the leaf nodes, the tree is constructed. Already during 
extraction certain checks are performed, such as detecting unconditional outputs to a 
tri-state bus or reading from an undefined source. The extractor also recognizes 
certain combinations of  gates and converts them to more abstract operators, such as 

q := MUX(en: q, x) -> q := LATCH(en, x) 
q := ~ ( s ' .  ~(r' * q))  -> q := SR(s', r') 

Once the trees are extracted, the matcher checks corresponding pairs of trees for 
compatibility. The trees generated by the Lola compiler are used as a reference while 
the trees extracted from the circuit are examined. 

Earlier, we mentioned that the checker searches for a structural match between 
two corresponding trees. Demanding an exact structural match would require the 
designer to specify the circuit exactly the same way as it is later implemented. As this 
is too restrictive, the checker allows a number of transformations being applied to 
the trees. Since the goal is still to locate detected errors in the layout automatically, 
transformations must preserve the information needed for this purpose. The 
structural matching rules are relaxed and allow the following transformations: 

1. Inverters. Architectural constraints imposed by FPGAs sometimes require the 
designer to connect parts of a circuit through successive inverters. For example, if 
an AND gate is implemented with a NAND gate, an inverter must follow the 
NAND gate, hence there are two inverters in series. The checker allows an 
arbitrary number of inverter nodes between any two nodes. 

x = ~ ( ~ x )  

2. DeMorgan's Laws. The checker applies the laws of DeMorgan when necessary. 
For instance, the AT6002 FPGA cell lacks an OR gate. An OR gate is therefore 
usually implemented as a NAND gate with inverted inputs. This 
architecture-dependency should, however, not reflect in the specification where 
the OR operator is used instead. 

x + y  = ~ ( ~ x , ~ y )  x , y  = ~(~x+~y)  

3. Commutativi(y. The representation of a dyadic Boolean operator as a node of  a 
binary tree introduces an inherent order, by which its subtrees are compared 
(e.g. "compare left specification subtree with left implementation subtree"). For 
commutative operators (AND, OR, XOR), this order cannot be determined 
beforehand and the checker potentially matches both possibilities. Since the trees 
generated by the Lola compiler have a typical height of less than five, there is no 
apparent performance penalty associated with commutativity. 

x , y  = y * x  x + y  = y + x  x - y  -- y - x  
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4. Associativity. As with commutativity, associativity i s  an inherent property of 
binary trees. The checker supports only simple cases of  associativity. 

y , ( x , ( u + v ) )  = ( u + v )  * ( x , y )  

5. MUX selectors. For greater flexibility, multiplexers may be implemented with an 
inverted selector signal and accordingly exchanged input signals. 

MUX(s: x ,y)  = MUX(~s:y, x) 

6. OR/AND with MUX. It is sometimes more convenient to implement OR gates or 
AND gates using multiplexers. The checker recognizes the MUX representations 
as equivalent. 

x + y  = MUX(x:y , ' I )  x , y  = MUX(x: '0, y)  

All of  these transformations can be applied to trees without losing information 
needed to locate errors in the layout after a mismatch. 

Combined, the transformations make the checker a flexible and efficient tool for 
checking layouts. Its speed and its capability to check only parts of a design make it 
well suited for interactive use during design entry. 

Design AT6002 Cells Used 

UART 240 
8x8 Multiplier 440 

Microcontroller 770 

Lola Variables Total Checking Time 
100 < 1 s 
230 < 2 s 

240 < 4 s 

Table 1. Checking Performance (80486, 33MHz) 

4.2 The Timing Analyzer 

Once a circuit is designed with the editor and its correct layout verified with the 
checker, the question about the circuit's performance arises. To determine the 
maximum operating speed of a given synchronous circuit a timing analysis tool is 
required. We have developed a timing analyzer which is capable of  analyzing 
combinational and sequential circuits efficiently. It can be used interactively from 
within the editor during design entry but also provides a simple programming 
interface which can be used by future design automation tools. It provides 
commands to determine the maximum input delay between a given output and all of 
its inputs or only a specific input. If a circuit contains parts with fan-outs greater than 
one ("common subexpressions") their input delays are calculated only once to save 
computation time. 

5 C o n d u s i o n s  

We presented an FPGA system consisting of an extension-board with an Atmel 
AT6002 FPGA and a set of simple and efficient software tools used to develop circuits 
for the board. The software consists of a compiler for the Lola language, a small 
hardware description language for synchronous digital circuits, an easy-to-use 
graphical editor with which layouts are entered with simple mouse manipulations, 
a n d a  loader to configure the FPGA with layouts entered with the editor. Additionally, 
a circuit checker was implemented which performs a consistency check between a 
circuit specification in the form of a Lola program and its implementation within the 
editor. Inconsistencies are not only detected but also located within the layout 
displayed in the editor. 
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The software part was designed and implemented in Oberon [3] by three people in 
three months and consists of 13 modules containing about 6500 lines of code. Two 
weeks were spent developing the extension-board. 

We have been using the system successfully in a laboratory for introductory 
courses in digital design. Due to its simplicity, the students learned to use the system 

~ uickly and were able to solve the given exercises. The exercises range from simple 
inary counters to a UART. At the Institute, we use the same system for experiments 

with programmable hardware. 
All in all, we can only recommend using FPGAs in education. Their flexibility and 

quick reprogrammability allow interesting and diverse problem statements. By using 
real hardware instead of a simulator, the students also have to cope with the "real" 
problems of digital design such as good placement, economical routing, timing, and 
synchronization between components. Last, but not least, the chosen solution is an 
order of magnitude more cost effective than conventional laboratories using discrete 
MSI components and physical wiring. 
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COordinate Rotation Digital Computer 
(CORDIC) Synthesis for FPGA 
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A b s t r a c t .  An universal CORDIC processors is able to compute a wide variety 
of functions, for example conversion between polar and cartesian coordinates, 
trigonometric (sin,cos,tan and vice versa), division, hyberbolic and exponential 
flmctions. Because CORDIC needs only simple add/subtract  and shift opera- 
tions, it is easy to realize it with FPGAs. We explain the CORDIC synthesis 
in different architecturs and of different accuracies. We examine the CORDIC 
synthesis for coordinate conversion from cartesian to polar 12, y ~ R, 0 and for 
computing the exponential function with the CORDIC processor supporting a 
former inlplemented artifical neural network. With our optimization the hard- 
ware effort of the CORDIC could be reduced, so that each processors may be 
implement each with one XC3090 FPGA from Xilinx. 

1 The  C O R D I C  Algori thm 

Ill 1959 Volder [Vo159] developped the CORDIC algorithm (Coordina te  Rota t iona l  
D ig i t a l  Computer ) ,  to convert between polar and cartesian coordinates.  CORDIC is 
an i terat ive algori thm to compute the coordinate of a vector rotat ion or to c o m p u t e  
radius and the phase of a vector. 

The method explained by Volder to compute tr iogonometric  functions was expan- 
ded by Wal ther  [Wal71]. With  the aid of these extension, it is possible, to compute  

also very effective~ hyperbolic and exponential functions using the same hardware as 
for the t r igonometr ic  functions [Sch74, t).162-176,181-193]. 

For the generalized CORDIC algorithm the i terat ive equations in the hyperbolic  
(m = --1), in tile linear (m = 0), and in tile circular (m = 1) coordinatat ion approach 
are shown in figure l (b) .  

The CORDIC algori thm can be operate in either a vector "rotat ion" mode,  or an 
angle accumulat ion mode ("vectoring"). Table 1 shows the various functions [H HB91], 
which can be realized with tile CORDIC algorithln depending on the initial values of 
the register xi , , ,  yi,~ and zi,~, the coordinate system, and the two modes. 

2 Examples  of C O R D I C - P r o c e s s o r  Synthes is  

After a brief summarize  of the CORDIC algorithm and same using terminology, we 
will point  our a t tent ion on two typical synthesis apl)lications , and we will show that  

i Insider says that HP use the CORDIC techniques in their scientific calculators [Sch74]. 
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i 
i 

ira----0 s "S 

. . . .  . m = l  ~ . ' "  m=-I  

R '  , , ' I  k 

(a) 

xi+i ] = [ 1 mSiai 
Yi+i - 51ai 1 

zi+l = z i + S i 0 i  

t a n h - l ( a i )  

Oi : ~i 
tan -1 (~i) 

][::] 
: m ~  - - 1  

: m = 0  

: 7D.= 1 

R x with i as the index for each i teration.  
(u) 

Figu re  1 (a) CORDIC modi (b) Definition of the rotation angle. 

(1) 

(z) 

(3) 

hype rbo l i c  

m = --1 c~i ----- 2 - i  

( i=1 ,2 ,3  . . . . .  N) 

( repea te  I ter .  4,13,40, . . . )  

- -  ~ 1 : x i y l  >_ 0 

X N.{. 1 ~ IX'h ~ Y~n 
z g + l  = z ln  + t a n h - X ( Y l n / x i n )  

I tanh-~ (u~./~.)l _< 1.11s~ 
- -  ~ 1 : z i _ < 0  

: ~ 0  o i = ~  - 1  z i > O  

X N +  1 = Kh[Xin cosh(zin) 

+llin slnh(zin)] 

YN+I = Kh[Xin s i n h ( z i . )  

lZinl < 1.1187. 

l inear  

m = 0 c~i = 2 - i  

( i=1 ,2 ,3  . . . . .  N) 

1 : x iY i  :> 0 

--1 xiYi  < 0 

XNq-I = gin 

ZN+ 1 = Zin + Yin/Zin 

lui,/z,d _< l 
1 : zi < 0  

- 1  zl _> 0 

YN+I = Yin q'XinZin 

c i rcu la r  

m = 1 ~ i  = 2 - i  

( i=0 ,1 ,2 ,3 , . . . ,N)  

1 : yi _>0 

- 1  ~ < 0  

x~,,+l = Kc V~,2n + Y~n 

ZN+I = Zln "1" atan2(yln,Xin) 

]a tan2 (y i . ,  x l n ) [  < 1,7433(99.9") 

1 : z i _ < 0  

- 1  zi >_ 0 

Y N + I  = K¢[xin sin[zin) 
+v, . . . .  (~,-)l I 

I=~.1 _< 1-7433(99.9 °) 

Tabu la r  1 CORDIC-table with ~i, XN+l, YN+I, ZN+l and the range of convergence (ROC). 

the CORDIC F P G A  solution is more efficient than the conventional signalprocessor 
(DSP) solution. 

A conventional DSP solution is to prefer, if the function, which should be com- 
puted,  may be developped in a (short) Taylor series to util ize the very fast hardware 
multiplier.  Interest ing and efficient applications of a DSP are F I R  filter and au to -  or 
cross-correlation. Unfortunately this concept will not properly work in computat ion 
of t r igonometric functions. E.g., the Taylor series of the arctan function is linear 
convergent in dependence with the nmnber of i terations,  this means, doubling the 
iterations,  we call get a gain of 1 bit .  The CORDIC algoritlm~ - in contrast  - has a 
gain of 1 bit  per  i terat ion [Hah91, p.81-83]. 

In the following, we will show the synthesis of CORDIC-processors  by explaining 
two applications in detail .  
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2.1 D e m o d u l a t i o n  o f  B a n d p a s s  S i g n a l s  U s i n g  t h e  CO1R.DIC 
A l g o r i t h m  

For an universal incoherent receiver resul ts the inphase and quadraturphase after a 
mixer or sampler, whose complex sum constitute an analytic signal. The aim of a 
demodulator is to recover the original signal for all possible types of modulations. We 
will see that  the CORDIC algorithm will solve this problem in an efficient manner. 

2.1.1 Basis of COordinate Rotation Digital Computer ( C O R D I C )  

When we construct a demodulator, we use the binary CORDIC because the 
result of an A/D converter is normally binary (K2). Additionally we use 
the CORDIC-algor i thm as a coordinate converter from rectangular to polar 
( X , Y  --+ R,O), because we get directly AM- and PM-demodulat ion,  respectively. 
As we have seen in the last section tile conventional computat ion R = ~ + y2 
und t) = arc tan(Y /X)  is expensive and could dramatically be reduced with tile COR- 
DIC [Hah91, p.81-83]. 

I [ ~ I I g e n e r a t i ° n ~  X,Y~R, 0 ~'-ll---I f--I f--I ['-J 

Figure 2 Hilbert sampling receiver with CORDIC demoduh~tion. 

2.1.2 F u n c t i o n a l l y  D i sc r ip t i on  of the  C o n v e r t i o n  (X, Y + t{,0) 

The CORDIC algorithm is an iterative procedure, which rotates a vector in the 
X, Y-plane by a defined angle :}:c~i. We distinguish between vectoring (X,  Y --+ R, 0), 
representing demodulation, and rotation ( R, 0 --+ X ,  Y) ,  representing modulation. 

In the following, we will only exalnine the vectoring mode, because we will get 
only demodulation (R, O) [MB93c]. With tile help of figure 3 we explain tile principle. 
Starting with vector "1", which is received as X -  and Y coordinate, this vector will 
be rotated in each iteration about :i:o'i, so that he lies finally oil tile X axis. Tile 
sum of the angles ~i--'~ a~ represent the phase, where we are looking for. The final 
value of X,~ is tile belonging radius. It can be shown how the rotation can be reduced 
to simple add and shift opperations [MB91, p.30-32]. 

Understanding the concept of Voider [Vo159], means choosing an angle, which 
rotates either in positive or negative sense, see figure 3(a). 
With this choose of the rotation angle, the equations for the rotations becolne 

Xi+l = Xi =t= ki2 -(i-2} (4) 

!ei+l - Y~ + X~2 -t~-2) (5) 
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Y 

1 

~l = arctan(cw) = 90 ° _~ 

c~ 2 = arctan(2 ° ) - - 4 5  ° 
~ 3  = arctan(2_l) = 26,5 o I 
(~4 = arctan(2_2) = 14,0 o -1.0 -0.2 

~i = arctan(2 -(;-2)) Yi > 1 

1.0 

0.523 

6 2 

3 

-1.0 

(a) (b) 

Figure  3 (a) Definition of the angle ai. (b) Example for vectoring. 

We see, that  to compute Xi+a and Vi+l, we only need very simple arithmetic (shift 
and add) operations, which can be very efficient realized with FPGAs. We are free 
in choosing the bit width. The parameter depends on the available complexity of the 
FPGA and the required accuracy.  The reachable accuracy for R in effective bits may 
be calculated with the theoretical calculation by [HHB91]. 

d~r = log.2( 1 ) 
2- , ,+ , , '  I~(0)1 + 2-~-o .~  (c.,(,,)/~¢,. + a) - a (6) 

This equation is shown in figure 4(a) for 8 to 20 iterations and bit width of 8 to 20 
bit for the X/Y  register and full scale 1~7(0)1 ...... 

e,. b, , . . . . - ; ~  ¢ontou, line 14 b, 
~ ' > - . , ( ( . c o n t o u r  line 12 bit 

16 . ~ ~ F . > - . j < c o n t o u r  line 8 bit 

"~  . . . .  " ~ 20 

20 1 iterations n 

bit width b ~ 12 1 0 ~ - " ¢ ~ 8  

11.5 

11 

10.5 

10 

9.5 
g 

8 5  

3 

7.5 
7 

6,5 
10 

. Y  

,.../ [Hug2]mean - -  . . . . . .  
,,," m ~ i t r ~ m  - - - .  

/ , "  

' '3 ' ' '6 ; 11 12 1 14 15 I 1 18  
Z r~ster Width 

(a) (b) 

Figure 4 (a) Effective bit following (6). (b) Dependence of the Z-register width to the 
accuracy Z with 13 bit X/Y-resolution and 8 iterations. 

The examination in [Hi]92]'shows, that unlike to the available literatur [Hu92], 
the Z accuracy (0) depends not only on the number of iterations, radius of input, 
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the resolution in the X/Y-path, but also on the rounding errors in the  Z - p a t h  and 
the rounding error in Z, because of the existing rounding errors in the X/Y-path. 
Especial ly our s imulat ion results proof, that  the accuracy of Z reaches only asympto t ic  
the radius accuracy, see figure 4(b). 

Final ly  we point  out the fact, that  the resulting resolution for radius in the range 
25% - 100%, which use the AM modulat ion of the central  european radio control 
watch s tat ion DCF77, has a comparable accuracy as the P M / F M - s i g n a l s  with used 
LF-FAX stat ions like DCF37 or DCF54 with radius 100%. A por tab le  universal 
LF receiver [Hi192],[BB92],[HK92] was designed with the CORDIC demodula to r  with 
accuracy as shown in table 2. 

range minimum 

radius 25% - 100% 10,160 

phase 2 5 % -  100% 9,143 

radius 50% - 100% 10,160 

phase 5 0 % -  100% 9,277 

radius 

phase 

lOO% 

100% 

10,161 

9,538 

11,160 

11,071 

11,121 

t 1,080 

variance lit. [Hu92] 

0,470 9,648 

1,306 9,000 

O,453 9,648 

1,309 9,000 

0,414 9,648 

1,286 9,000 

Ta bu l a r  2 Effective bit width of an experimental CORDIC processor with 13 hit 
X /Y-pa th ,  15 bit Z-path and 8 iterations. 

2.1.3 H a r d w a r e  R e a l i z a t i o n  of t h e  C O R D I C  D e m o d u l a t o r  

The CORDIC algorithm may be realized as a "stage machine" or with a full pipelined.  
processor [Hi192],[No191]. 

Both architectures can be efficiently realized with Field p rogrammable  Gate  Arrays 

( F P G A )  :~. If the main aim is speed, then each i terat ion equation may be realized in 
special Hardware - -  and we need for b bit width and ( [ b -  1]-stages of the pipeline 
x3 x b)-CLBs. By b = 8 bit we need so 168 CLBs and for b = 12 bit  we need 396 
CLBs, which are to match for the greatest F P G A  (XC3090 ~ 320 CLB). 

In figure 5 we present a s tate machine, which may be preferred, if the space in 
the F P G A  is critical. An additionally reduction in complexi ty  would be reached, if 
the "full parallel architecture" [Tim90, p.63] from figure 5 is reduced to the "lean 
s t ructure"  (only one shifter and/or  one accumulator) .  Addi t ional ly  it is possible to 
replace the expensive barretshifter (BS) by a seriell right shifter (RS) or a seriell 
lef t / r ight  shifter (LRS). For this three different archi tectures the resulting space for 
the X/Y-path in a F P G A  can be seen from table 3. 

As a good compromise between low latency t ime and space in an F P G A  appears  
the "lean s tructure" with one barrelshifter and one accumulator .  

In figure 6 the resulting expense is shown for a realization of the CORDIC processor 
in the "lean s tructure" (1BS+IAC)  if8 to 16 bits accuracy are nesessary. From figure 

The specified CLB mm~bers (ConfigurabIe Logic Block) refere t.o the XCa000 of Xilinx. 
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X-register I K-register 

tl ll 
Xi ~ 2-(i-2)Ki Yi 4- 2-(i-2)Xi ] 

II 

4 
Z-register 

j j ,  i 

tabular al 

I 

' 1  

Figure 5 Realization of the CORDIC algorithm through a "flfll parallel" state machine. 

structure 

2BS+2AC 

2RS+2AC 

.LRS+2AC 

1BS+2AC 

1RS+2AC 

1LRS+2AC 

1BS+IAC 

1RS+IAC 

1LRS+IAC 

2*7 

2*7 

2*7 

7 

7 

7 

multiplexer 

3*7 

3*7 

3*7 

2*7 

2*7 

2*7 

2"14 

2"14 

2"14 

2"14 

2"14 

2"14 

2"19,5 

2*6,5 

2*8 

19,5 

6,5 

8 

81 

55 

58 

75,5 

62,5 

64 

tilne 

12 

46 

:39 

20 

56 

74 

20 

92 

74 

Tabular 3 CLBs for a 13 bit plus sign bit X/Y-Pfad ofa CORDIC processor. (Abbrevia- 
tions:AC=accumulator; BS=barre]shifter; RS=serieU right shifter; LRS=seriell 
left/right shifter) 

6 it can be seen, that if the Z accuracy increases linearly, the expense behaves also 
linear. In contrast, the example of the full pipelined processor shown at the beginning 
of this section, which shows a square expense. The jmnp between 14 and 16 bit 
accuracy is established from the fact, that each CLB has at most 5 input variables. 

The comparison between a conventional universal demodulation with a DSP and 
the CORDIC-FPGA realization arise as follows [MB91, p.33-37]: The direct algebraic 
computation of the I /Q demodulation equation with a DSP for AM, PM or FM 
signals is expensive for PM, less for FM and AM modulated signals. On the other 
side, the CORDIC algorithm needs for iterative computation for b bit accuracy only 

b iterations and it is possible to realize a pipeline structure, with which (with a 
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16 

Figure 6 Expense for different requirement accuracy of Z result. 

short delay) a conversion I/Q to R, 0 (AM and PM demodulation sinmlaniously) may 
be performed in one cycle. For the FM demodulation only one differentiation must 
be computed after the CORDIC conversion. 

Conclus ion:  Except for binary ASK signals the above examination shows, that 
the CORDIC realization with FPGA may be preferred before the direct computation 
with a DSP, because the CORDIC processors offer essential speed and computational 
advantage. 

2.2 I m p l e m e n t a t i o n  o f  an G P F U  N e u r a l  N e t w o r k  w i t h  A i d .  
o f  F P G A  

Artificial neural networks with radial basis functions realize an universal approximator 
with a three layer structure [HKK90],[MB+93a], see figure 7. The hidden neurons, 
also called "Gaussian Potential Function Units" (GPI:U) [MB+93b], compute the 
euclidean distance between input and reference vector. 

The main computational effort is: 

N 

i = 1  

The aim of a hardware implementation is to increase the computational speed 
of the gaussian potential function through FP(IAs. On these programmable logic 
the computation of the exponential function should be performed. In the existing 
DSP/FPGA realization the DSP won't waste a lot of time computing the time ex- 
pensive exponential function. 

To compute the exponential function the CORDIC processor must work in hyper- 
bolic/rotation mode. For the X and Y register we get from table 1 with m = -1  the 
following equations: 
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) ) 

-- I_ (~:_m", ] T.KJ . f ~ - -m  ~ ) 
g l j = e  2 .  j ,  • ~, 

Figure  7 Three layer GPFU artificial neural network. 

• ,~+~ = K, ,  ( ~ , ,  cosh(z.d + w,~ ~inh(~.d) (8) 
Y,~+l = I(h (xi,~ cosh(zi,,) + Yi,~ sinh(zi,~)) (9) 

with the aid of the hyperbolic function the exponential function is defined as 

e ~ = sinh(x) + cosh(x) (10) 

To get directly e ~ from the iteration, both X and Y register nmst be initialized with 
1. Now we see, that  the iteration equations for X and Y are the same. This fact, as 
we can see, dramatically reduce the complexity of the CORDIC architecture. 

For the hyperbolic CORDIC the range of convergence (ROC) for rotation mode is 

[zi,~[ < 0 ..... ~ 1, 1182 (11) 

To get a greater ROC we must use negative iterations with the rotation angles 0i = 
tanh-l(1 - 2 -2-I+~) instead of 0; = tanh- l (2- i ) ,  because the norma.l rotation angle 
deliver for negative i complex angles. 
The expanded range of convergence results in 

0 N 

0 . . . .  = ~ t a n h - l ( 1 - 2 - 2 - ' + l ) + [ t a n h - a ( 2 - N ) + ~ - ~ t a n h - l ( 2 - i ) ]  (12) 
i = - M  i=1  

The needed ROC depends mainly on the parameter of the neural net. With M = 2 
the ROC of the exponent x is [-6.92631; 6.92631]. Simulation results shows [Sch92], 
that  the ROC of M = 2 is sufficient for our net configuration. With the increased 
ROC we get slightly different iterative equations: 
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With  the "lean s tructure" the equation for Y must  not be expl ici te ly computed  and 
it follows for m = - 1  

xi+l = xl - xi(5i(1 - 2 -2- '+ ' )  (14) 

Analyzing equation 14, we can see, that  we get for (51 two cases ((5 = - 1  or 1) for the 
nonshift par t  of the  i teration equation and a third case for the conventional i tera t ion 
with posit ive rotat ion.  These three possibilities changed the archi tecture  so far as the 
X path  needs an addit ional ly 3:1 multiplexer before the a dd / sub  uni te  [HK93], see 
figure 8. 

X-register 

I1 

2-0-2) i 

3:1 MPX 

Xi~2 4i'2) X i ~ - ~  

4- 
(a) 

~-~'. . ' . . .~:. . .~.. '~. '~. L_...~ cont our line 12 bit 
effectiv* bit ,c. ::,::>.~.::. ::.:::.C:. ". 

~5-  / : - . . ""r : ' "~ '~  ":'Q~:'" ""Q"<~'" e-"" c°nmur line I 0 bi~ 

11~12 ' { ~ ~ ~ . " . " ~ i ~ . ~ . :  " ' " / ' " " ~ '  " ' 1 ~ / ' " ' ' ' $ ' × " "  " " ' " ~ : < " ' " : > * ~ " "  " " "  

.," --:/---.-/.._.¢.. ;/.....:>~..::..-::~--:~.~....:2~:..:...2;.~..:..::..::~ 
~ ..... , . . . . . . . .  ::.,.~. -......Q:.-::.::..:..,:.-.*.:.:-..~:::.-.-- 

----...-.:..:.-...-.:-.....-..-.. 

25 23 20 i tetalions 
21 15 

17 

(1,) 

Figu re  8 (a) CORDIC stage machine with ROC expansion and with a "lea.n structure" 
(0 see figure 5). (b) Error estimation of the CORDIC algorithm with 1000 test. 
values z~,~ for each point. 

2.2.1 S e l e c t i o n  of  t h e  A p p r o p i a t e  C O R D I C  P a r a m e t e r s  

In the former section we introduced tile new efficient s t ructure of the processor, and 
now we want to select all appropria te  bit width and tile number  of the necessary 
iterations. These two parameters  depend on tile acceptab]e hardware  complexi ty  and 
the required accuracy. The simulation of the ( ;PFU recognition rate shows that  10 
bit fractional accuracy will be sufficient. The integer accuracy is 6 bit  resulting in 
a total  accuracy of 16 bit. The accuracy of the CORDIC computa t ion  depends on 
the quantization error of the X/Y path,  the Z quantizat iou error, the number  of 
i terations,  and the scaling. In contrast to the circular CORDIC algori thm [MB93c] 
the effective resolution of the hyperbolic CORDIC may not be computed  analyt ical ly,  
because II B,,,(j) I[ &pends  mainly on the value of z(j) during tile i terat ion,  see 
[Hu92, p.837, Lemma 2]. 

~'z--1 

II Bin(j)[[= 1-Ik-l(i)el:IJl-={'~ll m = --1 (1.5) 
/=j 
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Figure 8(b) shows the minimum accuracy with the estimation equation by [Hu92], 
which is computed over 1000 test values zi~ for each combination bit width/number 
of the possible iterations. A comparison of the CORDIC results of the 1000 values 
with an exact (floating point computation) shows [HK93], that this results are ca. 1 
bit better than the estimation with the equation by [Hu92]. So the estimation results 
of [Hu92] are quite realizable. 

number of CLBs 

250 

200 

150 

100 

50 
t 

i11 ! II 
21/18 22115 23/1,1 24114 21118 22/15 23114 2-1/M 

1 bit RCA 2 bit RCA 

ii iiiiiiii ..... l i  

i! ii ' 

21118 22115 23/1-1 2-1/1,1. 

carry look ahead. 

[ ]  X/Y-path 

[ ]  Z-path 

~[~ control unit 

bit width X ] number of iterations 

Figure 9 Realization of the CORDIC processors with Xilinx XC3000 FPGA depending on. 
different register width, number of iterations, and the architectures. 

For the appropriate accuracy of 10 bit, four different solutions exist. Under use of 
the fastet shifter (barrelshifter) the computational time depends only on the number 
of iterations, and the kind of accumulator. Beside the conventional "ripple carry 
adder" (one CLB for each bit), we also examined double speed adder (2 bit in 3 
CLB) and a "carry look ahead" adder, see figure 9. Finally we choose the "carry 
look ahead" adder with 22 bit width and 15 iterations, because only 320 CLBs are 
available and this combination would be faster than the three other ones. 

3 F u r t h e r  D e v e l o m e n t  

Our further examination will be a full pipelined CORDIC processor with the new 
XC4020 FPGA. These FPGAs have a "fast carry logic" to implement 2 bit per CLB 
of a fast adder/subtract realization. With this pipeline architecture, we get a great 
increase in speed compared with the stage machine. 

Also a future aim would be an universal CORDIC stage machine, which should 
realize all 6 modes (3 coordinate systems each with rotation and vectoring mode). 
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This processor is with the existing FPGA in the required accuracy not realizable 
nowadays, so we hope of future devices with more complexity. 
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Abstract. In this paper a test system based on a Macintosh NUBUS-expansion 
board is presented. The test system is termed MARC. MARC is a reconfigurable 
test system which can be applied in the simulation loop. The primary benefit of 
MARC is that technology independent VHDL code can be mapped onto its re- 
configurable components, thus allowing a fast real-world validation of the fun- 
ction described by the VHDL code instead of time consuming logic simulation. 
The different parts of this tool are introduced and the benefits of using it in the 
VHDL based design process are depicted. Using an exemplary communication 
system represented by a digital wireless microphone system, the aforementioned 
benefits are validated. 

1 I n t r o d u c t i o n  

The hardware description language VHDL [1] has become accepted as a viable tool for 
the use in the design process. In the Microelectronics Centre of the University of Kai- 
serslautern, VHDL is used in the design process of components required in communi- 
cation systems [5]-[9]. The functionality of parts of these systems is verified by the 
logic simulation of automatically synthesized schematics. However, it is not possible 
to verify the whole system in this way for the following reason. To demonstrate and 
validate the performance of a communication system, usually the achievable error per- 
formance in terms of bit error rates is determined by considering large numbers of in- 
put data. By using a logic simulation tool, this validation procedure is extremely time- 
consuming. It would be desirable to carry out such a validation procedure in real time. 

One of the benefits of using VHDL is the technology independent design [2]-[4]. 
For instance, it is possible to map the VHDL code on FPGAs by logic synthesis for 
prototyping or evaluation purposes. In order to exploit the benefits of the prototyping 
and evaluation capabilities by deploying FPGAs, a universal FPGA based expansion 
board as part of a test system for evaluating the performance of components of com- 
munication systems was developed. The test system including the developed evaluati- 
on board is termed MARC. By using MARC, on the one hand the functionality of the 
component under investigation can be verified in hardware and on the other hand the 
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performance of that component can be quickly determined, e.g. in terms of bit error ra- 
tes. The application of such an evaluation board leads to a significant reduction of de- 
velopment time. 

In order to allow a flexible test of various components required in a communication 
system or even the whole system itself, MARC is reconfigurable. An overview of 
MARC and details of some hard- and softwareparts are presented in the following 
section. Section 3 introduces a digital wireless microphone system as an example of a 
communication system to be evaluated. The results of the validation procedure of this 
digital microphone system by deploying MARC are presented in section 4. 

2 M A R C  

2.1 Overview 

NUBUS 

Test program 

Interface 
program 

Fig. 1 MARC 

Fig. 1 gives an overwiev of MARC. MARC is subdivided into a software part, contai- 
ning both the "Test program" and the "Interface program" respectively, and a hardware 
part represented by the implemented NUBUS-expansion board and a clock synthesizer 
board, cf. Fig. 5 and Fig. 8. The "Test program" controls the running of the test with its 



411 

system parameters, provides the configuration data for the FPGA and the correspon- 
ding netlist file (.XNF file), creates and provides the stimulus files, simulates the envi- 
ronment of the system under test and interprets the results. The "Interface program" 
facilitates the connection between the "Test program" and the NUBUS-expansion 
board and controls the board. The NUBUS-expansion board is the platform to include 
any VHDL coded and XILINX FPGA mapped system parts in the simulation process. 
For this the board takes the operating data of each system part and prepares the confi- 
gurable parts of the board for simulation. 

2.2 Software of MARC 

In Fig. 2 the petri net of the "Test program" is depicted. 

I 
request und get status I 

I / 

installed~ NUBUS expansion board not installed 

create stimulus file for ] 

I whole system 

6 print error-message: 
"install NUBUS-expansion 

transfer I board an i re-boot" 
LCA-Configuration file, 
.XNF-file and clock rate 

of a system part 

transfer a stimulus 

recieve and store 
the result 

complete t 

I 
l 

I 
verification of systempart 

not complete 

l 

verification of whole 
system not complete 

complete 

I read and interpret results 

validation ready 

Fig. 2 Petri net of the "Test program" 
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In the beginning of a test run it is checked whether the hardware part of the test sy- 
stem, namely the NUBUS-expansion board, is installed. If the NUBUS-expansion 
board isn't detected, the programm puts out an error message. In this case the user has 
to install the NUBUS-expansion board and has to re-boot the computer. 

If the NUBUS-expansion board is detected, the "Test program" creates the sti- 
mulus file for testing the system under investigation. The next task of this "Test pro- 
gram" is the initialization of the NUBUS-expansion board. During this initialization, 
the configuration of the FPGA has to be achieved once at the beginning of a test cycle 
if smaller systems or only parts of a complex system are to be studied. If  larger sy- 
stems are tested, the "Interface program" has to reconfigure the FPGA repeatedly. In 
this case, the FPGA's interface has to be reconfigured as well. Therefore, the "Test pro- 
gram" sends the LCA configuration data and the I/O data included .XNF file to the "In- 
terface program". Additionally the "Test program" transfers some important system 
parameters, e.g. the clock rate of the system part to be studied, to the "Interface pro- 
gram". In the following the system part can be tested. The stimuli are transferred to the 
NUBUS-expansion board in sequential order and the computed results are received 
and stored. After receiving the last result it is checked whether other system parts are 
to be tested. If such parts are found, the described actions are repeated. Otherwise the 
verification of the system is completed. Finally the "Test program" interprets the sto- 
red results. 

The main task of the abovementioned "Interface program" is the initialization of 
the NUBUS-expansion board. Therefore, the "Interface program" takes the I/O data 
included in the .XNF file and sends a port description to the NUBUS-expansion board. 
According to this port description, the "Interface program" configures the interface of 
the system under test. By doing so the FPGA is automatically protected against dama- 
ging by inadvertently forcing of outputs. 

2.3 Hardware of MARC 

2.3.1 NUBUS-expansion board 

The structure of the NUBUS-expansion board is shown in detail in Fig. 3. The "NU- 
BUS-Interface" connects the units of the board to the NUBUS. A XILINX XC4010 -5 
PG191C FPGA is used as the configurable part of the NUBUS-expansion board [10]. 
This unit is clocked by a "NUBUS-Interface" controlled "Frequency Synthesizer". 
Due to this circumstance, the system is running independently of the NUBUS clock at 
a user defined speed. A universal interface consisting of latches provides the possibili- 
ty to model different interfaces, cf. Fig. 3. The "Declaration ROM" is needed to iden- 
tify the NUBUS-expansion board in order to distinguish it from other boards on the 
NUBUS. 
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In Fig. 4 the structure of the abovementioned "NUBUS-Interface" is depicted. The 
"NUBUS-Interface" is subdivided into four functional units. The unit "Adressdecode" 
monitors the NUBUS adress/data lines ADx and identifies if the "Interface program" 
wants to access to the NUBUS-expansion board. 

@ 

NUBUS expansion board 

DI~,t , , 
Handshake (Stimuli/Result) 

I I 

NUBUS- ~ - ~  . . . .  " . ~ . ~ . . . ~  ConfigurableGate Array 
Interface * Int~ hal ~ (LCA) 

XC4010 

reset  

,0 
Handshake (LCA-Configuration) 

)O* 

Fig. 3 Overview of the NUBUS-expansion board 

The identifier/CLK is an abbreviation of the NUBUS clock signal. I f  a request is 
detected the unit "Adressdecode" activates with a control signal the "Interface con- 
trol". It controls the NUBUS protocol, which is neccessary for the data transfer. There- 
fore, the "Interface control" can access the unit "Dataflow" in order to transfer the data 
between the NUBUS and the other units of the NUBUS-expansion board. Using the 
port description included in the .XNF file the functional unit "Latcharbiter" controls 
the latches which build the universal interface to the reconfigurable part of the NU- 
BUS-expansion board. The unit "Latcharbiter" is controlled by the units "Adressdeco- 
de" and "Interface control" as well. 

The realized NUBUS-expansion board is shown in Fig. 5. The NUBUS-interface is 
realized as part of the FPGA on the right of the board. The NUBUS driver is realized 
with the parts in the foreground of Fig. 5. The "Latches" and the "Declaration ROM" 
are positioned in the middle. The FPGA on the left side is the aforementioned FPGA 
which can be reconfigured. 
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2.3.2 Clock synthesizer board 

To improve the performance of MARC the application on the NUBUS-expansion 
board can be clocked independently from the NUBUS clock. Therefore the NUBUS- 
expansion board can be extended by a clock synthesizer board, which allows to adjust 
the clock rate ranging from 1 MHz to 40 MHz in 500 kHz increments. Thus it is possi- 
ble to run the system under test up to its maximum clock rate. In Fig. 6 the structure of 
the clock synthesizer board and its interface to the NUBUS-expansion board is de- 
picted. On the top level the clock synthesizer board is subdivided into two functional 
units. One of this units, a digital frequency synthesizer circuit, is realized by an 
ACTEL A1020B FPGA [11]. The other functional unit contains voltage controlled 
oscillators (VCO) combined with low-pass filters to form a phase-locked loop (PLL) 
[12]. In addition the unit contains digital control logic required for this special appli- 
cation. 

NUBUS-expansion board 

Frequency 
Synthesizer 

VCO. 
low-pass filters 

and 
control logic 

Fig. 6 Clock synthesizer board (principle design) 

In the beginning of a simulation run the frequency setpoint is transferred to the 
clock synthesizer board. By using the control signals depicted in Fig. 6 the NUBUS- 
expansion board resets the clock synthesizer board and initiates the clock synthesis. 
The "Frequency Synthesizer" compares the frequency of the VCO output with the fre- 
quency setpoint by using a stable reference clock and performs a signal to drive the 
VCO. If the clock frequency matches the frequency setpoint, an active lock detect si- 
gnal indicates a stable synthesized clock. If the NUBUS-expansion board receives this 
signal, the simulation starts. 

The aforementioned frequency range cannot be realized by a single VCO. Therefo- 
re the frequency range is subdivided into smaller ranges wich are realized by several 
VCO circuits. The lock detect signal is used to switch between the several ranges du- 
ring a particular definable time interval. In Fig. 7 an example of the functionality of the 
board is depicted. The frequency setpoint is shown as constant clock. The synthesized 
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clock, depicted below the frequency setpoint trace, has to match this dock. In the be- 
ginning of the simulation any VCO circuit and therefore any base frequency is chosen, 
in this case a frequency which is lower than the frequency setpoint. The frequency syn- 
thesizer now drives the VCO to increase the clock frequency, cf. Fig. 7. 

frequency 
setpoint 

synthesized 
clock 

lock 
detect 

I I I 

I I I i 

i i [ 

[t O It I ! ~t 2 

Fig. 7 Clock synthesis 

The realized PLL circuits adjust the specified clock frequency after 2.53 ms at the 
latest. If the frequency setpoint is not within the chosen frequency range, the frequency 
range is automatically changed, based on the lock detect signal, see Fig. 7 at the time 
t 1. After changing the frequency range to a higher frequency as the setpoint, the fre- 
quency adjustment is initiated again. In the example shown in Fig. 7 the frequency of 
the synthesized clock is decreased to match the frequency setpoint, indicated by the ri- 
sing lock detect signal at the time t 2. From time t 2 onward the simulation runs on the 
NUBUS-expansion board. 

In Fig. 8 the realized clock synthesizer board is shown.The abovementioned "Fre- 
quency Synthesizer" is realized in the Actel FPGA on the fight-hand side of the board. 
The timer, a predivider and the operational amplifier with the items to realize the low 
pass filter are positioned in the middle of the board. The parts on the left-hand side are 
the aforementioned VCO and the multiplexer to switch between the different frequen- 
cy ranges. 

Fig. 8 Clock synthesizer board 
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3 Digital wireless microphone system 

Fig. 9 depicts the structure of  a digital wireless microphone system applying frequency 
division multiple access (FDMA) [16]. 

mobile 1 

mobile K 

I 
i 

T 
K'R indoor mobile 
radio channels 

el(t) 

e_R(t) 

base station 
receiver 

~nl(t) 

mK(t) 

Fig. 9 Digital microphone system 

The system consists of  K mobiles and one immobile base station. In the system, the 
transmitters are always concentrated in the K mobiles whereas the base station repre- 
sents the receiver. Each of the K mobiles contains a microphone. The analogue voice 
signals picked up by the microphones in the mobiles are converted into digital signals 
which are then source and channel encoded and mapped onto DQPSK (differential 
quadrature phase shift keying) symbols. Based on these DQPSK symbols, digital si- 
gnals mk, k = 1...K, are generated at the K mobiles which are then modulated and 
converted into corresponding analog signals _a k (t) ,  k = 1...K. The analog signals 
_a k ( t) ,  k = 1...K, are then transmitted over time-variant mobile radio channels. Since 
the considered digital wireless microphone system is designed for indoor applications, 
the time-variant mobile radio channels have flat fading characteristics. Besides the 
time-variant distortion of  the transmitted signals _a k (t) ,  k = 1...K, the distorted ver- 
sions of  _a k (t) ,  k = 1...K, are corrupted by additive white Gaussian noise (AWGN) 
[14]. 

At the immobile base station, antenna diversity is applied. The distorted and cor- 
rupted versions of  the transmitted signals _a k (t) ,  k = 1...K, are received over R recei- 
ver antennas. Based on the R received signals _er(t), r = 1...R, the base station 
receiver determines estimates L~I k, k = 1...K, of  the digital signals m k, k = 1...K, 
which contain DQPSK symbols by applying differentally coherent detection. The qua- 
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lity of  the performance achieved with the base station receiver can be quantified in 
terms of  bit error rates [15]. 

4 Validation 

The introduced digital wireless microphone system was simulated with MARC to 
evaluate its digital parts. The digitally processing namely the performing of  the recei- 
ver functions of  the system is carried out on the NUBUS-expansion board. The o ther  
parts of  the system and the indoor mobile radio channel are simulated by the "Test pro- 
gram" on the Macintosh PC. 
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Fig. 10 Bit error rate curves 

Fig. 10 depicts the simulation results in terms of  bit error rates versus the average 
signal-to-noise ratio Eb/N 0 obtained for the considered digital wireless microphone sy- 
stem by various test runs deploying MARC. In order to obtain the 47 depicted bit error 
rate values represented by asterisk (*) and circles (o), the transmission of  approximate- 
ly two million DQPSK symbols per bit error rate value, i.e. 94 million DQPSK sym- 
bols in total, was simulated. The results obtained by deploying MARC are in perfect 
agreement with results obtained by simulations carried out on a Siemens/Fujitsu 
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VP100 super computer which are represented by the dashed lines [16]. Therefore, the 
viability of MARC is obvious. 
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Abstract This paper reports on the implementation of an Artificial Neural Net- 
work (ANN) on an Atmel AT6005 Field Programmable Gate Array (FPGA). The 
work was carried out as an experiment in mapping a bit-level, logically intensive 
application onto the specific logic resources of a fine-grained FPGA. By exploiting 
the reconfiguration capabilities of the Atmel FPGA, individual layers of the network 
are time multiplexed onto the logic array. This allows a larger ANN to be imple- 
mented on a single FPGA at the expense of slower overall system operation. 

1. Introduction 

Artificial neural networks, or connect ionis t  classifiers,  are massively parallel com- 
putation systems that are based on simplified models of the human brain. Their com- 
plex classification capabilities, combined with properties such as generalisation, fault- 
tolerance and learning make them attractive for a range of applications that conven- 
tional computers find difficult. Examples of these include video motion detection, 
hand-written character recognition and complex control tasks. 

Traditionally, ANNs have been simulated in software or implemented directly in 
special-purpose digital and analogue hardware. More recently, ANNs have been im- 
plemented with reconfigurable FPGAs. These devices combine programmability with 
the increased speed of operation associated with parallel hardware solutions. One of 
the principal restrictions of this approach, however, is the limited logic density of 
FPGAs resulting from the intrinsic overhead of device programmability. 

This paper presents an alternative approach to previously reported neural network 
implementations on FPGAs [2][3][7]. The novelty of the design is achieved by ex- 
ploiting several design ideas which have been reported previously in different designs 
and by combining them to form a new implementation. The design is based on a fine- 
grained FPGA implementation of an ANN in contrast to most of the FPGA implemen- 
tations reported to date. It emphasises careful selection of network topology and 
methods of realisation to produce a circuit which maps well to the special require- 
ments of fine-grained architectures. These include the realisation of the ANN using 
digital pulse-stream techniques and the choice of a feedforward network topology. It 
further exploits the use of run-time device reconfiguration to time-multiplex network 
layers to offset the logic density limitations of current devices. These topics are intro- 
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duced in section two, where a reconfigurable pulse-stream ANN architecture [5][6] 
that is well suited for implementation on fine-grained FPGAs is described. Section 
three reviews some of the physical design issues that arose when mapping the ANN 
onto the AT6005 architecture, and in section four the performance of the network is 
appraised. 

2. Reconfigurable ANN based on Pulse-Stream Arithmetic 

2.1 Overview 

ANNs employ large numbers of highly interconnected processing nodes, or neu- 
rons. Each neuron contains a number of synapses, which multiply each neuron input 
by a weight value. The weighted inputs are accumulated and passed through a non- 
linear activation function as illustrated in Fig. 1. These arithmetic-intensive opera- 
tions and numerous interconnections are expensive in terms of logic and routing re- 
sources when implemented on an FPGA. Typically, as a result of these restrictions, 
expensive arrays of FPGAs have to be employed to implement "useful" networks [2], 
or alternatively, a single neuron is placed on the FPGA and used to emulate a network 
serially [3]. 

X 0 

W f = Activation Function 

~r y=f(~=oWiXi) 

XN'I ~ wN 

X N 

Fig. 1. The components of a simple artificial neuron. 

The reported ANN incorporates three approaches to overcoming logic density 
limitations. First, pulse-stream arithmetic is used to provide an efficient mapping of 
the network onto a fine-grained FPGA. This technique is discussed in more detail in 
section 2.2. 

Second, a reduction in the number of inter-neuron connections, which consume 
valuable routing resources, is made by adopting a layered, feed-forward network to- 
pology. As Fig. 2 shows, in contrast to the fully-interconnected network, the layered 
topology has connections only between nodes in adjacent layers. Further, supervised 
training is used to eliminate the need for feedback connections. This makes for easier 
partitioning of the network, since data flow through the network is uni-directional, 
from the input layer to the output layer. 

Finally, by exploiting the reconfigurability of static memory-based FPGAs, the 
ANN can be t ime-multiplexed so that one physical layer is reconfigured to perform the 
function of all the other network layers. This makes it possible to implement a much 
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larger design than would otherwise be possible on a single device. However,  for this 
strategy to be successful it is important that the time spent reconfiguring the FPGA is 
relatively short, otherwise the speed of  the overall network is severely degraded. 

Fully Interconnected Layered Network 
Network 

( ) 
Fig. 2. Fully interconnected and layered ANN topologies 

The ANN is implemented on an Atmel AT6005 (formerly Concurrent Cli6005). 
This is a fine-grained FPGA which is presently the only commercially available de- 
vice capable of being dynamically reconfigured, i.e. selectively reconfigured while 
the logic array is active [4]. It will be shown that by exploiting this capability, and 
only reconfiguring those parts of the array which differ between network layers, it is 
possible to dramatically reduce the amount of system processing time that is lost dur- 
ing reconfiguration. 

2.2 Pulse Stream Arithmetic 

Pulse Frequency Modulation (PFM) is a coding scheme where circuit state values 
are represented by the frequency of narrow constant-width pulses. Fig. 3 shows an 
example of PFM, where the fractional value 7/16 is represented by the presence of 7 
pulses in a 16-pulse window. Signals encoded in this manner can be summed and 
multiplied using simple logic gates. This technique, known as pulse-stream arithme- 
tic [5], maps well onto fine-grained FPGAs such as the Atmel AT6005 which contain 
a large number of  low fan-in gates. 

System 
Clock 

Pulse 
Stream 

( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i Window Size = 16 Pulses 

i Number of Pulses = 7 

i M B  L_q 
Pulse Stream Value = 7/16 

Fig. 3. Example of a Pulse Frequency Modulated signal. 
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2.3 Pulse Stream Neuron 

In Section 1 the principal components of an artificial neuron were introduced. 
Here, the digital pulse-stream implementation of synaptic weight multiplication, post- 
synaptic summation and non-linear activation are described. 

The inputs to the ANN are encoded as a constant stream of narrow pulses. Within 
each synapse, this pulse stream must be gated so that only a certain proportion of the 
pulses are allowed to pass through to the summation stage of the neuron. This pro- 
portion represents the value of the synaptic weight. A suitable gating function can be 
constructed by selectively ORing together a series of chopping clocks [5]. These are 
synchronous, non-overlapping binary clocks with duty cycles of 1/2, 1/4, 1/8 and so 
on. Fig. 4 shows a 4-bit chopping clock generator which can be used to construct 
weights in the range 0 to 15/16. Multiplication of the input pulse-stream by the 
weight value can be achieved by simply ANDing the input and the gating function, as 
shown in the diagram. 

t if2 I _. I I Pulse Addition Pulse Multiplication 
I 1/4 ~ Gating Signal Chopping 

Generator ~ u I"1_ 
/ 1 6 1  I1. I . IIIIIlllllllllll . IIIII 

Pulse Stream Weighted 
Pulse-Stream 

Fig. 4. Pulse arithmetic using simple logic gates 

A synapse output is either excitatory, i.e. it increases the chance of the neuron fir- 
ing, or inhibitory. In the pulse-stream neuron, positive and negative synaptic weights 
are accomplished by feeding excitatory and inhibitory synapse outputs to separate up 
and down inputs of a binary counter. 

The neuron activation function is a simple binary step function, rather than the 
sigmoid function that is often used. There are two principal reasons behind this 
choice: 

1. The sigmoid function is considerably more complex to implement, and requires 
neuron outputs to have a range of values rather than a simple binary output. 

2. The binary step function's primary limitation applies to networks which em- 
ploy back-propagation learning, which are less likely to converge on a correct 
solution without the smoothing effect of the sigmoid. The ANN reported here 
uses supervised learning, so this restriction is less relevant. 

The output of the neuron is therefore calculated using a simple thresholding op- 
eration based on the most significant bit of the counter. Fig. 5 shows a block diagram 
of the complete digital pulse-stream neuron. 
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Chopping 
Clock 

Generator 

Excitatory I 
Pulse-Stream I 

Neuron I Up/Down 
Output ~ I Counter 

elective Combination 
f Chopping Clocks 

R~Inhibitory 
Pulse-Stream 

I 
Fig. 5. Pulse-Stream Neuron 

2.4 Pulse Stream Artificial Neural Network 

Fig. 6 shows pulse-stream neurons connected together to form a single layer of the 
ANN. A layer consists of a maximum of four neurons, each with four synapses to 
allow full connectivity between successive network layers. The restriction to four 
neurons is imposed by the need to lay out the design on a single AT6005 device, and 
is discussed more fully in the following sections. 

Inputs to the circuit are latched and encoded into non-overlapping pulse-streams 
so that on any given system clock cycle a pulse appears on only one input line. This 
ensures that pulses are processed one at a time by the neural counter. The chopping 
clocks are distributed to every synapse, where they are selectively combined to repre- 
sent the weight value. Synaptic weights have a resolution of four bits. Higher resolu- 
tion weights require more chopping clocks to be distributed to the synapses. 
Moreover, each additional weight bit doubles the number of pulses needed to repre- 
sent circuit values and hence halves the processing speed of the network. Four bit 
weights were therefore chosen as a compromise between speed of operation and accu- 
racy. 

After processing of a network layer is complete, the neuron outputs are latched, 
and the FPGA is reconfigured to load the next layer. Any unused neurons in a layer 
can effectively be "switched off" by assigning them zero-valued weights. This means 
that the only parts of the circuit to be reconfigured are the OR gates in each synapse 
which are used to combine chopping clocks. 

After reconfiguration, the previous layer's outputs are fed to the input latches and 
the next layer processed. When the final layer is completed the network outputs can 
be sampled. 

To implement the complete circuit within the FPGA, it is important that both the 
input and output latches, and the FSM which controls reconfiguration, retain their 
state during device reprogramming. This requires dynamic reconfiguration, i.e. partial 
reconfiguration while the logic array of the FPGA remains active [4]. Note that in this 
particular system no datapath processing takes place on the logic array during recon- 
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figuration. This limited form of dynamic reprogramming, where the logic array re- 
mains active only to maintain storage values, constitutes a sub-class of the wider class 
of dynamic reconfiguration. Currently, the only commercially available FPGAs ca- 
pable of dynamic reconfiguration are the Atmel AT6000 series [1]. 

Synap 

Synap 

-n 
S~nal~ 

Pulse-Stream ~ sy.~ 
Encoder \ 

Feedforward Path 

Fig. 6. Single Layer of Pulse-Stream ANN 

3. Implementat ion on the Atmel  AT6005 

3.1 AT 6000 Series Architecture 

The Atmel AT6005 FPGA comprises an array of 54 x 54 fine-grained cells, each 
of which can implement all common 2-input functions, or certain functions of 3 inputs 

toc~_ - -  

~ t o u 

Fig. 7. Atmel AT6000 Series Architecture 
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along with a single storage register (see Fig. 7). Routing resources are split between 
slower through-cell connections and fast long-range busses, a limited number of 
which are available to each block of 8 x 8 cells. The equivalent gate capacity of this 
architecture is quoted by the manufacturer as 5000 gates. 

3.2 Circuit Layout  on the AT6005 

The pulse-stream ANN circuitry was manually placed and routed on the AT6005 
FPGA for the following reasons: 

• The Atmel APR tool employs a generous placement algorithm with respect to 
inter-component spacing. This appears to be optimised for maximum routing 
flexibility, but makes it difficult to achieve the degree of macro clustering re- 
quired for this design. 

• Timing is critical when implementing pulse-stream circuitry, as excessive sig- 
nal skew can result in errors due to two or more pulses overlapping. Sub- 
circuits therefore have to be placed symmetrically such that delays on the sig- 
nal lines which distribute pulse-streams and chopping clocks are well bal- 
anced. These special timing requirements are difficult to achieve with the 
current Atmel tools, which use a simple ordered list of nets to enable the de- 
signer to prioritise routing. A more advanced timing-driven layout tool such 
as that supplied by Xilinx would be needed to provide the necessary flexibility 
[8]. 

• The layout of the synapse circuits has to be optimised to minimise the time 
needed to reconfigure the device between layers of the network. 

An Interactive Layout Editor is shipped with the development system, and this was 
used for manual design layout. Fig. 8 shows the floorplan of the FPGA with the first 
layer of the ANN after placement and routing. 

The diagram does not fully indicate the extensive amount of long-range routing 
consumed by the design. Considerable areas of the logic array had cells which could 
not be used for logic because the adjacent routing busses were already heavily com- 
mitted. The only way into and out of such areas is via through-cell routing, which is 
in general inappropriate for anything but short nets. 

A potential shortcoming of the Atmel architecture was encountered during circuit 
layout. As with most designs, the ANN requires a large number of OR-gates, includ- 
ing a number with wide inputs. Unfortunately, both the 2-input OR-gate macros have 
limitations - one is slow and takes up three cells, while the single cell version is fast 
but has inflexible connections. Furthermore, the Atmel literature indicates that it is 
not possible to implement a totally glitch-free single cell OR function, due to the na- 
ture of the internal cell structure. The provision of a wired-OR capability would have 
been a considerable advantage for this design. 
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Fig. 8. Layout of a single network layer on the AT6005 

The equivalent gate count calculated by the Atmel software for a single network 
layer (see Fig. 9) equates to a utilisation figure of  24.3%. It is clear from the table that 
routing forms a very significant proportion of  the layout - nearly as many cells are 
used for routing as for logic (462 routing cells versus 476 logic cells), while 529 local 
and 68 express buses are also used. 

Utilization Summar~¢ 
Number of Macros 

Utilized 
273 

Number of Flip-Flops 59 
Number of Gates 417 
Number of Turns 65 
Number of Buses: 597 
Local Buses: 529 
Express Buses: 68 
Number of IO's: 13 of 64 
Number of Cells: 938 of 3136 
Number of Equivalent Gates: 1216.5 

Fig. 9. Design utilisation summary produced by Atmel software 
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3.3 Reconfiguration of the AT6005 

To fully reconfigure the Atmel chip takes a minimum of 808gs, although this is 
only necessary when loading the first network layer. For subsequent layers partial 
reconfiguration can be used since the only changes to be made are to the synaptic 
weights. 

Partial configurations are loaded into the device as a series of one or more win- 
dows, each of which contains programming data for a single contiguous block of cells 
along a row of the device. Every reconfiguration has an overhead of 10 bytes for pre- 
amble and control information, and each separate window within the bitstream carries 
an additional overhead of 5 bytes. In order to maximise reconfiguration speed, there- 
fore, the following rules apply: 

• The number of cells reconfigured should be the absolute minimum necessary to 
effect the required circuit changes. 

• Configurations should be loaded at the maximum permissible rate, which in the 
case of the AT6005 is 10MHz. This typically requires some form of direct 
memory access. 

• The number of configuration windows should be kept to a minimum. This has 
implications for circuit layout, since the reconfiguration of contiguous blocks 
of cells is faster than a "fragmented" reconfiguration. 

It is worth noting that if any two windows are separated by less than three cells 
(i.e. 6 bytes of configuration data) it is faster to merge the two windows and overlay 
the intervening cells with an identical configuration. Experiments suggest that any 
stored results in these cells are unaffected by the reconfiguration operation, although 
this is not specified in the Atmel documentation. 

4. Results  and Performance  

To date, the ANN has only been tested with the binary XOR function. This simple 
problem is non-linearly separable, which means that it requires a network with at least 
one hidden layer. The appropriate synaptic weights were calculated manually and 
subsequently incorporated into the FPGA configurations as detailed in section 2.4. 

Testing of the ANN took place with the aid of an FPGA prototyping system which 
was developed in-house. This is based around a pair of Inmos Transputers which 
handle communications between the FPGA and a host computer, and also provide 
control over reconfiguration of the AT6005. Whilst this system is highly flexible, it is 
currently unable to match the maximum configuration loading rate of the AT6005, 
which would require a write cycle of lOOns. A mechanism to allow the FPGA to di- 
rectly access fast memory to achieve full reconfiguration speed is under development 
at the time of writing. 

With a 20MHz system clock, each layer of the ANN takes 6.5gs to produce an 
output. Reconfiguration between network layers for the XOR problem takes 17.6gs 
when a 10MHz configuration loading clock is applied. This is faster than the general 
case, however, since for this specific problem some weights are the same in successive 
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network layers. The initial full configuration, for the first network layer, takes 808gs. 
This only takes place when the network is first initialised and so has not been included 
in the performance calculations. 

The three-layer ANN can produce results for the XOR problem at a rate of 24kHz, 
when reconfiguration overhead is taken into account. This corresponds to a network 
performance of 0.77M CPS (Connections Per Second). In comparison, the same net- 
work implemented using full static reconfiguration, again at the maximum configura- 
tion loading rate, would produce results at a rate of only 625Hz, or 20k CPS. Thus, 
for this network, partial reconfiguration gives a speedup of 38 over full reconfigura- 
tion, as well as a reduction in the amount of external configuration storage needed. 

The reported network is considerably slower than "static" FPGA-based ANNs 
such as the GANGLION, which is reported to operate at 4.48G CPS [2]. It should be 
borne in mind, however, that this impressive performance is achieved at considerable 
expense, using an array of more than 30 large Xilinx devices in a fixed configuration. 
Where the technique of time-multiplexing offers benefit is as a cost-effective solution 
to ANN implementation which uses limited logic resources. 

5. Conclusions 

The authors have a particular interest in investigating potential application areas 
for dynamically reconfigurable FPGAs. Since the only FPGAs capable of dynamic 
reconfiguration to date are fine-grained devices, the technology mapping of reconfig- 
urable designs onto fine-grained FPGAs is a valuable experiment. The ANN imple- 
mentation reported here has provided useful information about mapping this type of 
circuit onto the particular resource set of fine-grained FPGA architectures such as the 
Atmel AT6005. Further, the use of reconfiguration, and in particular dynamic recon- 
figuration, has led to the implementation of a considerably larger ANN than would 
otherwise be possible on a single FPGA. Whilst the current system is limited to the 
time-multiplexing of whole network layers, the extension of the technique to allow 
individual layers to be partitioned for time-sharing would offer the potential of larger 
networks and is currently under consideration. 

The work done in developing the pulse-stream ANN has highlighted certain re- 
strictions in both the reconfiguration mechanism of the AT6005 and the CAD tools 
used to produce designs on it. When compared to the system speeds possible on the 
logic array, reconfiguration is currently very slow. If the advantages of device recon- 
figuration are to be exploited in real-time applications, it is important that this situa- 
tion is improved. In addition, no vendor yet provides software for the simulation of 
reconfigurable designs, or floorplanning tools to optimise design layouts for fast re- 
configuration. 

Architectural changes to the AT6005 have been identified which would increase 
the density and performance of the pulse-stream ANN. These include the provision 
of wired-OR capability, dedicated fast carry logic for counters, increased bussing re- 
sources and a faster reconfiguration mechanism. 

These observations point to a possible future direction for the development of new 
FPGA architectures. Most design classes implemented on FPGAs would benefit in 
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some way from having the logic and routing resources available on the device tailored 
to the particular application. Moreover, many designs which exploit reconfiguration 
contain a proportion of logic that is always static. Performance and integration levels 
could be further increased by providing dedicated resources to perform some of these 
static functions. This approach is a natural extension of the special purpose "hard 
macros" used in the Xilinx 4000 series devices for wide decoding functions. In the 
case of the pulse-stream ANN, dedicated pulse-stream and chopping clock generation 
could be combined with the architectural changes outlined previously to produce a 
Field Programmable Artificial Neural Network (FPANN). Such a device would lose 
the capability to implement large amounts of general-purpose logic, but would be 
particularly well suited to the efficient implementation of ANNs. 

In general, it is conceivable that the optimisation of logic and routing resources to 
specific application classes could help to bridge the performance gap between FPGAs 
and ASICs, whilst retaining the benefits of reconfigurability. 
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