

Lecture Notes in Computer Science
Edited by G. Goos and J. Hartmanis

849

Advisory Board: W. Brauer D. Gries J. Stoer

Reiner W. Hartenstein
Michal Z. Servft (Eds.)

Field-Programmable Logic
Architectures, Synthesis and Applications

4th International Workshop on Field-Programmable
Logic and Applications, FPL '94
Prague, Czech Republic, September 7-9, 1994
Proceedings

Springer-Verlag
Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

Series Editors

Gerhard Goos
Universit~tt Karlsruhe
Postfach 69 80
Vincenz-Priessnitz-StraBe 1
D-76131 Karlsruhe, Germany

Juris Hartmanis
Cornell University
Department of Computer Science
4130 Upson Hall
Ithaca, NY 14853, USA

Volume Editors

Reiner W. Hartenstein
Fachbereich Informatik, Universitat Kaiserslautern
Postfach 3049, D-67653 Kaiserslautern, Germany

Michal Z. Servit
Department of Computers, Czech Technical University
Karlovo mimfistf 13, 12135 Prague 2, Czech Republic

CR Subject Classification (1991): B.6-7, J.6

ISBN 3-540-58419-6 Springer-Verlag Berlin Heidelberg New York

CIP data applied for

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1994
Printed in Germany

Typesetting: Camera-ready by author
SPIN: 10475493 45/3140-543210 - Printed on acid-free paper

Preface

This book contains papers first presented at the 4th International Workshop on Field-
Programmable Logic and Applications (FPL'94), held in Prague, Czech Republic,
September 7 - 9, 1994.

The FPL'94 workshop was organized by the Czech Technical University and the Uni-
versity of Kaiserslautern, in co-operation with IEEE Czechoslovakia Section and the
University of Oxford (Dept. for Continuing Education), as a continuation of three
already held workshops in Oxford (1991 and 1993) and in Vienna (1992).

The growing importance of field-programmable devices is demonstrated by the
strongly increased number of submitted papers for FPL'94. For the workshop in
Prague, 116 papers were submitted. It was pleasing to see the high quality of these
papers and their international character with contributions from 27 countries. The list
below shows the distribution of origins of the papers submitted to FPL'94 (some
papers were written by an international team):

Austria: 7 Malaysia: 1
Belgium: 1 Norway: 2
Brazil: 1 Poland: 5
Canada: 1 Republic of Belarus: 5
Czech Republic: 5 Slovakia: 3
Finland: 2 South Africa: 1
France: 9 Spain: 4
Germany: 17 Sweden: 2
Greece: 2 Switzerland: 3
Hungary: 2 Syria: 1
India: 1 Turkey: 1
Japan: 2 United Kingdom: 18
Latvia: 1 USA: 19

The FPL'94 Technical Program offers an exciting array of regular presentations and
posters covering a wide range of topics. From the 116 submitted papers the very best
40 regular papers and 24 high quality posters were selected. In order to give the indus-
try a strong weight in the conference, there are 10 industrial papers among the 40 regu-
lar papers. All selected papers, except one, are included in this book.

We would like to thank the members of the Technical Program Committee for review-
ing the papers submitted to the workshop. Our thanks go also to the authors who wrote
the final papers for this issue.

We also gratefully acknowledge all the work done at Springer-Verlag in publishing this
book.

July 1994 Reiner W. Hartenstein,

Michal Z. Servit

vI

Program Committee
Jeffrey Arnold, IDA SRC, USA
Peter Athanas, Virginia Tech, USA
Stan Baker, PEP, USA
Klans Buchenrieder, Siemens AG, FRG
Erik Brunvand, U. of Utah, USA
Pak Chan, U. of California (Santa Cruz), USA
Bernard Courtois, INPG, Grenoble, France
Keith Dimond, U. of Kent, UK
Barry Fagin, Dartmouth College, USA
Patrick Foulk, Heriot-Watt U., UK
Norbert Fristacky, Slovak Technical University, Slovakia
Manfred Glesner, TH Darmstadt, FRG
John Gray, Xilinx, UK
Herbert Gruenbacher, Vienna U., Austria
Reiner Hartenstein, U. Kaiserslautern, FRG
Sinan Kaptanoglu, Actel Corporation, USA
Andres Keevallik, Tallin Technical U., Estonia
Wayne Luk, Oxford U., UK
Amr Mohsen, Aptix, USA
Will Moore, Oxford U., UK
Klaus Miiller-Glaser, U. Karlsruhe, FRG
Peter Noakes, U. of Essex, UK
Franco Pirri, U. of Firenze, Italy
Jonathan Rose, U. of Toronto, Canada
Zoran Salcic, Czech T. U., Czech Republic
Mariagiovanna Sami, Politechnico di Milano, Italy
Michal Servft, Czech T. U., Czech Republic
Mike Smith, U. of Hawaii, USA
Steve Trimberger, Xilinx, USA

Organizing Committee
Michal Servft, Czech Technical University, Czech Republic, General Chairman
Reiner Hartenstein, University of Kaiserslantern, Germany, Program Chairman

Table of Contents

Testing
Fault Modeling and Test Generation for FPGAs .. 1
Hermann, M.; Hoffmann, W.

A Test Methodology Applied to Cellular Logic Programmable Gate Arrays ,.. 11
Oliveira Duarte de, R.; Nicolaidis, M.

Layout

Integrated Layout Synthesis for FPGAs ... 23
Serv[t, M.Z.; Muzikd~ Z.

Influence of Logic Block Layout Architecture on FPGA Performance 34
Robert, M.; Torres, L.; Moraes, E; Auvergne, D.

A Global Routing Heuristic for FPGAs Based on Mean Field Annealing 45
Haritaoglu, I.; Aykanat, C.

Power Dissipation Driven FPGA Place and Route Under Delay Constraints 57
Roy, K.; Prasad, S.

Synthesis Tools

FPGA Technology Mapping for Power Minimization .. 66
Farrahi, A.H.; Sarrafzadeh, M.

Specification and Synthesis of Complex Arithmetic Operators for FPGAs 78
Brand, H.-J.; Mueller, D.; Rosenstiel W.

A Speed-Up Technique for Synchronous Circuits Realized as
LUT-Based FPGAs ... 89
Miyazaki, T.; Nakada, tl.; Tsutsui, A.; Yamada, K.; Ohta, N.

An Efficient Technique for Mapping RTL Structures onto FPGAs 99
Naseer, A.R.; Balakrishnan, M.; Kumar, A.

Compilation Research and CAD

A Testbench Design Method Suitable for FPGA-Based prototyping of
Reactive Systems ... 111
Hamann, V

Using Consensusless Covers for Fast Operating on Boolean Functions 114
Goldberg, E.; Krasilnikova, L.

Formal Verification of Timing Rules in Design Specifications 117
Bartos, T.; Fristaclcy, N.

viii

Trade-Offs and Experience
Optimized Synthesis of Self-Testable Finite State Machines (FSM) Using
BIST-PST Structures in Altera Structures ... 120
Hlawiczka, A.; Binda, J.

A High-Speed Rotation Processor ... 123
Lichtermann, J.; Neustadter, G.

Innovations and Smart Applications
The MD5 Message-Digest Algorithm in the XILINX FPGA 126
Gramata, P.; Trebaticky'P; Gramatovd, E.

A Reprogrammable Processor for Fractal Image Compression 129
Fagin, B.; Chintrakulchai, P

Implementing GCD Systolic Arrays on FPGA ... 132
Jebelean, T.

Formal CAD Techniques for Safety-Critical FPGA Design and
Deployment in Embedded Subsystems ... 135
Hughes, R.B.; Musgrave, G.

Direct Sequence Spread Spectrum Digital Radio DSP Prototyping
Using Xilinx FPGAs ... 138
Saluvere, T.; Kerek, D.; Tenhunen, 11.

FPGA Based Reconfigurable Architecture for a Compact Vision System 141
Nguyen, R.; Nguyen, P

FPGA-Based Computer Architectures
A New FPGA Architecture for Word-Oriented Datapaths 144
Hartenstein, R. W.; Kress, R.; Reinig, 11.

Image Processing on a Custom Computing Platform ... 156
Athanas, P. M.; Abbott, A. Lynn

A Superscalar and Reconfigurable Processor .. 168
Iseli, C.; Sanchez, E.

A Fast FPGA Implementation of a General Purpose Neuron 175
Salapura, V; Gschwind, M.; Maischberger, O.

High Level Design
Data-procedural Languages for l~-PL-Based Machines ... 183
Ast, A.; Becker, J.; Hartenstein, R. W..; Kress, R.; Reinig, 11.; Schmidt, K.

Implementing On Line Arithmetic on PAM .. 196
Daumas, M.; Muller, J.-M.; Vuillemin, J.

IX

Software Environment for WASMII: a Data Driven Machine with a Virtual
Hardware ... 208
Chen, X.-y.; Ling, X.-p.; Amano, H.

Constraint-Based Hierarchical Placement of Parallel Programs 220
Newman, M.; Luk, W.; Page, L

Prototyping and ASlC Emulators

ZAREPTA: A Zero Lead-Time, All Reconfigurable System for Emulation,
Prototyping and Testing of ASICs ... 230
Nj¢lstad, T.; Pihl, J.; Hofstad, J.

Simulating Static and Dynamic Faults in BIST Structures with a FPGA
Based Emulator ... 240
Wteler, R. W.; Zhang, Z.; McLeod, R.D.

FPGA Based Prototyping for Verification and Evaluation in Hardware-
Software Cosynthesis .. 251
Benner, Th.; Ernst, R.; KOnenkamp, I.; Holtmann, U.; Sch~ler, P; Schaub, H.-C.;
Serafimov, N.

FPGA Based Low Cost Generic Reusable Module for the Rapid
Prototyping of Subsystems .. 259
Dollas, A.; Ward, B.; Babcock, .I.D.S.

Commercial Devices - Prospects and Experience

FPGA Development Tools: Keeping Pace with Design Complexity 271
Fawcett, B.K.; Kelem, S.H.

Meaningful Benchmarks for Logic Optimization of Table-Lookup FPGAs 274
Kelem, S.H.

Educational Use of Field Programmable Gate Arrays .. 277
Lain, D.

HardWire: A Risk-Free Ft~A-to-ASIC Migration Path .. 280
Fawcett, B.K.; Sawyer, N.; Williams, T.

Reconfigurable Hardware from Programmable Logic Devices 283
Toon, N.

On some Limits of XILINX Based Control Logic Implementations 286
Katona, A.; Szolgay, P

Experiences of Using XBLOX for Implementing a Digital Filter Algorithm 289
Cadek, G.R.; Thorwartl, PC.; Westphal, G.P.

Continuous Interconnect provides solution to Density/Performance
Trade-Off in Programmable Logic .. 292
Toon, N.

A High Density Complex PLD Family optImized for Flexibility,
Predictability and 100% Routability ... 295
AgrawaI, O.P.

Design Experience with Fine-Grained FPGAs ... 298
Lysaght, P.; McConnell, D.; Dick, H.

N e w Tools
FPGA Routing Structures from Real Circuits ... 303
Leaver, A.

ATool-Set for Simulating Altera-PLDs Using VHDL ... 306
Klindworth, A.

A CAD Tool for the Development of an Extra-Fast Fuzzy Logic Controller
Based on FPGAs and Memory Modules ... 309
Hallas, J.A.; Mariatos, E.P.; Birbas, M.K.; Birbas, A.N.; Goutis, C.E.

CCMs and HW/SW Co-Design
Performance Characteristics of the Monte-Carlo Clustering Processor
(MCCP) - a Field Programmable Logic Based Custom Computing Machine 312
Cowen, CP.; Monaghan, S.

A Design Environment with Emulation of Prototypes for Hardware/
Software Systems Using XILINX FPGA ... 315
Bagel vom, G.; Nauber, P.; Winkler, J.

DSP Development with Full-Speed Prototyping Based on HW/SW
Codesign Techniques .. 318
Isoaho, J.; Jantsch, A.; Tenhunen, H.

The Architecture of a General-Purpose Processor Cell .. 321
Dan~ek, J.; Pluhd6ek, A.; Servft, M.Z.

Modelers
The Design of a Stack-Based Microprocessor .. 326
Gschwind, M.; Mautner, C

Implementation and Performance Evaluation of an Image Pre-Processing
Chain on FPGA ... 332
Akil, M.; Alves de Barros, M.

Signature Testability of PLA ... 335
Kalosha, E.P.; Yarmolik, EN.; Karpovsky, M.G.

Educational Experience
AFPL Prototyping Package with a C++ Interface for the PC Bus 338
Mat bin, L; Nora& J.M.

xI

Design of Safety Systems Using Field Programmable Gate Arrays 341
Rodrfguez-Andina, J.J.; Alvarez, J.; Mandado, E.

Novel Architectures and Smart Applications
A Job Dispatcher-Collector Made of FPGAs for a Centralized Voice Server 344
Debize, J.C.; Glaise, R.J.

An Optoelectronic 3-D Field Programmable Gate Array 352
Depreitere, J.; Neefs, H.; Van Marck, H.; Van Campenhout, J.; Baets, R.;
Dhoedt, B.; Thienpont, 14.; Veretennicoff, I.

On Channel Architecture and Routability for FPGAs Under Faulty Conditions 361
Roy, K.; Nag, S.

High-Performance Datapath Implementation on Field-Programmable
Multi-Chip Module (FPMCM) .. 373
Isshiki, T.; Dai, W.W.-M.

Applications and Educational Experience
A Laboratory for a Digital Design Course Using FPGAs 385
Gehring, S.; Ludwig, S.; Wirth, N.

COordinate Rotation Digital Computer (CORDIC) Synthesis for FPGA 397
Meyer-Base, U.; Meyer-Base, A.; Hilberg, W.

MARC: A Macintosh NUBUS-Expansion Board Based Reconfigurable
Test System for Validating Communication Systems 409
Kempa, G.J.; Rieger, P

Artificial Neural Network Implementation on a Fine-Grained FPGA 421
Lysaght, P.; Stockwood, J.; Law, J.; Girma, D.

Author I n d e x ... 433

Fault Model ing and Test Generat ion for F P G A s

Michael Hermann and Wolfgang Hoffmann

Institute of Electronic Design Automation,
Department of Electrical Engineering

Technical University of Munich, 80290 Munich, Germany

Abs t rac t . This paper derives a fault model for one-time programmable
FPGAs from the general functional fault model and an algorithm to
perform test generation according to this model. The new model is char-
acterized by the abstraction of functional fmflts from a set of possible
implementations of a circuit. In contrast to other fmletional-level test
generation procedures a fault coverage of 100% can be achieved regard-
less of the final implementation of the circuit.

1 I n t r o d u c t i o n

As new technologies for the implementation of digital designs are developed
there is also the need for adequate CAD tools to exploit new features or to
address new problems. One of the most important new technologies that have
been developed during the past few years is the Field Programmable Gate Array
(FPGA). A FPGA generally consists of an array of programmable logic modules
(LM) and a programmable interconnect area.
Although architecture and complexity of FPGAs are similar to those of small
gate arrays there are some important differences. In particular, test generation
is affected by the lack of knowledge about the final physical implementation of
the design.
This is due to the fact that the last step of a design visible to the designer is a
netlist of feasible modules. A module can be viewed as a black box with n inputs
and m outputs. The behaviour of any output is given by a completely specified
Boolean function of a subset of the n inputs. A module is called fe~asible, if it
can be implemented by a single LM of the FPGA.
Given a netlist containing only feasible modules a working FPGA can be ob-
tained by the following two steps: personalization and programming. Person-
alization is the process of choosing one of several possible configurations of a
LM such that the LM performs the same Boolean functions as a given feasible
module. Programming denotes simply the process of implementing the choosen
personMization within the given FPGA. The actual personalization of the FPGA
is choosen by the vendor's design tool without interaction or notification of the
user. As the personalization is performed at the users's site a test of the per-
sonalized FPGA can be only performed by the user after personalization and
programming.
For some types of FPGAs the manufacturer can test the device right after it has
been manufactured. This way, the chance of a failure during programming can be

eliminated or at least significantly decreased. As an example, for reprogrammable
FPGAs like the Xilinx-FPGAs a large number of different personalizations can
be tested at the factory and thus almost any programming problem the user
could encounter can be anticipated.
This method is not viable for one-time programmable FPGAs like the Actel-
FPGAs [6]. In this case the manufacturer can test the circuitry of the device in
its unprogrammed state only. Therefore programming faults can still occur [5].
Most programming faults can be detected on the fly by the programming equip-
ment. However, some programming faults may still remain undetected that cause
the device to malfunction. Therefore, a test set for a personalized FPGA is still
required.
If a gate-level netlist of the circuit was available, a conventional gate-level test-
pat tern generator could be used to generate the required test set. However, there
is usually no information about the actual personalization available. Without
this information it is not possible to generate a gate-level description of the per-
sonalized FPGA even though the internal structure of the LM may be known.
Therefore a gate-level testpattern generator can not be used to generate a test
set for a personalized FPGA.
This paper describes a method for deterministic testpattern generation in the
absence of a gate-level description of the circuit. The paper is organized as fol-
lows:
In section 2 we will describe the fault model used for testpattern generation. Sec-
tion 3 explains a method to generate the testpatterns according to this model.
In section 4 we show some results of this approach and compare it to other
approaches.

2 Fault M o d e l

2.1 P r e v i o u s W o r k

Several approaches for test generation have been developed that deal with the
lack of an exact gate-level description of a circuit [1] [2] [3] [5]. We will shortly
discuss the application of those approaches to a netlist containing feasible mod-
ules.
In [2] each function g associated with a module is described in a two-level rep-
resentation. A two-level AND/OR (or OR/AND) implementation of g is then
generated. At this point a fictive gate-level description of the circuit is available.
The stuck-at fault model is applied to all signals of the netlist and a gate-level
test generator can be used to generate a test set. The reported results indicate
that the test set derived fl'om this fictive gate-level netlist yields a very high fault
coverage for varying implementations of the module. However, this approach can
not provide 100% fault coverage in a deterministic way.
The approach described in [3] starts from the existing representation of g. Then
a function f is derived by replacing some operations in the representation of g
by other operations. At last a testpattern is selected that distinguishes g from f .
For small circuits it has been shown that taking the logic dual of small operators

(like AND) in the representation of g is a good choice for varying implementa-
tions of the module. However, this approach cannot provide 100% fault coverage,
either.
In [1] [5] any change in the truth table ofg is considered. Therefore each possible
input vector must be applied at the inputs of the module. This approach guar-
antees 100% fault coverage of the module independently of the implementation.
However, this approach can be used only for modules with a low number of in-
puts due to its exponential complexity (2 '~ testpatterns for a function depending
on n variables).

2.2 Fau l t M o d e l fo r F P G A s

The fault model introduced for FPGAs is based on three assumptions:

1. the unprogrammed LM is fault free
2. the LM has n inputs and one output
3. the number of feasible modules is far less than 22"

An example for a FPGA containing this type of LM is the ACT1/2-architecture
made by Actel [6].
Let a feasible function g be the completely specified Boolean function associated
with a feasible module. The support sup(g) of g is the set of all variables g
depends on. The set of all feasible functions is denoted by F. Then Py is the set
of all personalization faults p with respect to g:

Pg = {PIP E F \ {g} A sup(p) C_ sup(g)} (1)

By the restriction of the support of p we do not allow a functional dependancy
of p on arbitrary signals of the circuit.
For the rest of the paper we will restrict ourselves to the single personalization
fault model. This model assumes that only one module of the circuit is affected
by a personalization fault. A module with an associated function g is affected
by a personalization fault, if it implements a function p C Pg instead of g.

The application of the personalization fault model requires the knowledge of
Pg for every module. According to (1) this requires the knowledge of F which
depends only on the LMs contained in a FPGA and the personalization facilities
provided by the FPGA. The exhaustive enumeration of all personalizations of a
LM delivers the complete set F for the LM. This computation has to be done
only once for a given LM.
As an example Figure 1 shows the LM used in the ACT1-FPGAs by Actel.
This LM can be personalized by connecting an arbitary signal (vertical lines in
Figure 1) including constant 0 (L) or 1 (H) to any input (horizontal lines). The
LM in Figure 1 is personalized to implement the Boolean function g = xy. This
can be done by establishing a connection at the highlighted crosspoints.

One of the most important characteristics of Pg is its size. The third column
of Table 1 shows the size of Pg for this LM. The size of Pg depends only on the

HL

~ . - < , . . . q

) - - (~ ~

}. . . -~b ,

) - . ¢ t ;

2

3

645

Fig. 1. personalized ACT1 logic module

Isup(g)l ! worst case IP~I lP-~l
1 3 3 2
2 15 15 11
3 255 212 28
4 65535 4,501 39
5 4 • 109 45,481 43
6 1 • 1019 268,443 47
7 3.1038 1,132,370 51
8 1 • 1072 3,806,057 57

Table 1. Personalization fault set sizes

number of elements in sup(g) but not on the truth table of g. The second column
shows the size of Pg not taking into account the structure of the LM.
As can be seen, the size of Pg does not explode exponentially even though there is
no loss of information compared to a general functional fault model [1]. However,
for more than five inputs the size of Pg is still too large for practical purposes.
To reduce the size of Pg we now introduce the programming fault.
A programming fault reflects a failure of the basic configuration element of the
FPGA. Therefore the programming fault model requires knowledge about the
technology of the FPGA. For the Actel-FPGAs the basic configuration element
is the antifuse (AF). For an AF, a programming fault occurs if:

1. an AF should connect two wires but does not
2. an AF falsely connects two wires

A programming fault does not necessarily cause a personalization fault. Further-
more, some p E Pg may require a multiple programming fault to occur. Therefore
a reasonable restriction on the number of programming faults that may occur
simultaneously during the configuration of a LM may lower the size of Pg con-
siderably.
Let a denote a specific configuration of a LM. Let A denote the set of all possible
configurations a. In case of the Actel- FPGAs a is a set of AFs that are pro-
grammed. Then B C_ F x A contains all pairs (f , a) where a feasible function f is
realized by the configuration a. Let X C A × A contain all pairs of configurations
(a,, a2) that differ by at most a single programming fault. Then

Pg = { f [(f ,g) E BX '~B -1 A f E Pg}

is the set of all personalization faults with respect to g if at most n programming
faults can occur simultaneously. This definition allows us to order the personal-
ization fault sets according to n.

(a)

The last column of Table 1 shows the average size of P~ for the ACTl-architecture.
The average has been calculated for all feasible functions, pg2 has been choosen,
because it contains the case that AF1 has been programmed instead olAF2. This
is the most likely fault that remains undetected by the programming equipment.
As bridges between signal lines can be detected [6], these cases have been elimi-
nated from p2 g '

In Figure 1 the set al might be denoted by

al = { (L ,1) , (x , 2) , (y , 3) , (L , 4) , (L , 5) , (L , 6) , (L , 7) , (L , 8) }

Then the set

a2 = {(H, 1), (x, 2), (y, 3), (L, 4), (L, 5), (L, 6), (L, 7), (L, 8)}

is transformed into a p E pg2 with the LM now implementing the Boolean func-
tion p = x + Y. However, it is not possible to find any set ai such that the LM
implements the function g = ~ + ~ regardless of the initial personalization for
g = xy if at most two programming faults are allowed.

3 T e s t G e n e r a t i o n

In our approach, test generation is divided into two tasks: first, generation of
testvectors using function identification, and secondly, testvector justification
and fault propagation by testpatterns. The terms testpattern and testvector both
denote an assignment of logic values to certain signals. A testpattern [assigns
signal values to all primary inputs t_ of the circuit, a testvector ~m to all inputs
v m of the module m.

3.1 T e s t v e c t o r s

Let g(v) be a Boolean function and P = {. . . ,pi(v), . . .} a set of Boolean func-
tions p(v) (g ~ P) . Then, funct ion identification of g with respect to P is the
process of calculating a set V of testvectors ~ E V that uniquely distinguishes g
from all p E P.

We will now use function identification for test generation. For each mod-
ule m, we calculate Vm by performing function identification of the associated
function g,~ with respect to Pg.

In order to obtain a small set of testpatterns, we try to minimize]Vml. For
that purpose, we transform the problem of function identification to the well
known problem of optimal matr ix covering by constructing a coverage matr ix
C,~ = (cij). A row i of C,~ corresponds to the i-th personalization fault pl, a
column j to the j - th testvector ~j. An element cij is set to 1, if personalization
fault Pi can be distinguished from gm by applying testvector ~j to module m:

{ lo i f Pi(~J) ~ ffm(V--J)
cij = else (4)

A row i of the matr ix is said to be covered by column j if eij = 1. Then V,~
can be directly derived from a minimal set of columns that covers all rows. Most
often suboptimal heuristics are used to solve this problem, still guaranteeing a
complete coverage of all rows, but possibly using slightly more columns than
necessary.

3.2 T e s t p a t t e r n s

In most cases, the modules' inputs and outputs cannot be directly accessed.
Therefore, testpatterns have to be found that justify the testvectors, and prop-
agate fault effects from the module's outputs to primary outputs. Some FPGAs
provide features that allow direct observation of LM-outputs. However, this is
not considered here to avoid loss of generality.

A testpattern [applies a testvector ~,~ on module m, if ~ justifies the signal
lines v m according to V-m, and, at the same time, propagates a fault effect from
the output of module m to one or more primary outputs. A testvector +_',~ is
available, if there exists at least one i that applies ~rn on m.

Sophisticated methods for justifying lines and propagating fault effects are
known from test generation for stuck-at faults on gate-level (e.g. [7]). Since all
parts of the circuit except the considered module m are assumed to be fault-free,
any gate-level representation of the circuit can be used to generate a testpattern

that applies a testvector ~-m on m. Thus, traditional test generators, like [7],
can be easily adapted for this purpose.

7

3.3 Description of the Algorithm

Figu re 2 shows the bas ic s teps of how we ca lcu la te a set T of t e s t p a t t e r n s ~ which
appl ies a p p r o p r i a t e t es tvec tors on the modules , such t ha t funct ion iden t i f ica t ion
is p e r f o r m e d for each m o d u l e of the circuit .

p r e p r o c e s s i n g
input circuit and Pg
sort modules and initialize T = {}
for each module m: initialize Vm = {}

f u n c t i o n a l t e s t p a t t e r n g e n e r a t i o n
for each module m

initialize T m = {}
derive Cm from gm and P~
for each -Vrn E Vm

remove a~ p covered by ~m from G'~
f u n c t i o n i d e n t i f i c a t i o n

while Cm not empty and still -vm unaborted
calculate (sub-)optimal ~,~
Itry to generate t that applies ~,,~

-vm available ?
zes no]unknown
remove remove mark £m as
all rows covered all rows only aborted
by ~m from Cm covered by -vm
V.~ = V,,, U {-vm} from Cm
T~ = T., u { [}

Cm empty?
yes no

mark p corresponding to remaining
rows as aborted faults

f a u l t s i m u l a t i o n
for each module n # m

for each _/C T,~
does / apply _~ ?

yes no
v,., = v,, u {_G}

T = T u T m
p o s t p r o c e s s l n g

do final test set compaction
output T

F ig . 2. steps of test generation

Specia l care has to be taken if a tes tvec tor is found to be unava i lab le . Such a
£m m u s t not be used for funct ion ident i f ica t ion. Therefore , approaches like [4],

which use a precalculated, fixed V,~ to determine T, cannot guarantee a complete
coverage of all personalization faults.

Instead, the availability of_vm must be considered already when calculating
Vm such that V,,, contains only available testvectors. Since checks for availability
are expensive in terms of CPU-time, we only check on demand. For this, we
closely combine function identification and testvector application.

The center part of Figure 2 illustrates our suboptimal heuristic for function
identification considering availability of testvectors. We choose one (sub-)optimal
covering column of Cm and immediately after that check the availability of its
corresponding ~r~" If ~ is available, it is added to V,~, all rows covered by the
chosen column are removed from Cm, and the testpattern ~ applying ~,~ is added
to T. Testpattern ~ was already calculated when checking the availability of ~r~"

If however ~m was found to be unavailable, ~rn must not be added to Vm, and
the column corresponding to ~,~ is removed from Cm. In addition, all rows in Cm
that now contain only zeroes are removed. These rows correspond to redundant
personalization faults, which can be distinguished from gm only by unavailable
~rn and thus do not affect the behaviour of the otherwise fault-free circuit.

This process of choosing a ~m, checking its availability and adjusting C,~ is
repeated until Cm is empty or contains only columns corresponding to aborted
~m" Hereby, a ~0~ is called aborted if its availability check could not be performed
completely, e.g. due to limited computing resources.

To keep ITI small, we take advantage of the fact that a single ~ justifies a
testvector on every module of the circuit. Moreover, some ~n, including {)m at
the module rn under test, are not only justified, but also applied by ~. For this,

must also propagate a fault-effect from the output of module n to one or more
primary outputs. Then ~n can be added to V,~ of module n at no expense in
terms of additional testpatterns.

When processing module n, the ~_~ E Vn applied in advance are considered
before performing function identification by removing all rows from C,~ that are
already covered by the columns corresponding to ~,~ E V~. This most often re-
duces the size of Cn significantly, requiring less additional ~,~ to completely cover
Cn. Additionally, the effort to calculate these ~n is strongly reduced, especially
when processing modules with many inputs.

Since function identification is performed on a local basis, considering only
one module at a time, and due to the global effect described above, the order in
which the modules are processed influences ITI as well as the effort to calculate
T. One possible criterion to sort the modules is their number of inputs Iv_.,,].
The later a module m is processed, the more testvectors ~rn are applied on m
before actually starting function identification of gr~- Thus, modules with a high
number of inputs should be processed last.

After generation of testpatterns is completed, final test set compaction strate-
gies, which are well known from traditional test generation, can be applied. For
example, a testpattern simulation in reverse order of generation ([7]) often pro-
vides test set compaction up to 30%.

4 Implementation and Results

The previously described a lgor i thm has been implemented in C. We have used [7]
as the required gate-level A T P G system. Table 3 shows some results on several
feasible netlists for Actel FPGAs . For each circuit the number of LM, the number
of inputs (PI), the number of ou tpu ts (PO) as well as the average number of
inputs per LM (Ivl) are given in Table 2.

circuit LM Ivl PI PO

1 51 3.02 8 4
2 166 2.83 22 29
3 295 3.19 135 107
4 440 3.32 38 3

Table 2. Circuit statistics

Table 3 shows the results of test set generat ion for several approaches. Enu-
meration refers to [1] where all possible testvectors for a given module are enu-
merated . Stuckat assumes an arbi t rary two-level representat ion for each module
and performs tes tpa t te rn generat ion according to the single s tuck-at fault model.
For this approach 100% fault coverage (FC) according to the underlying model
was achieved for each circuit.

circuit

1

2
3
4

enumeration stuck-at p2 pg

70 9.4 _1 _ 40 4.9 91.96 99.41 60 7.4- 99.92 63 8.7- -
156 5I . i 88 24.7 93.49 99.80 119 39.0- 99.93 139 45.1 - -
328 238.9 - - 140 91.6 96.64 99.81 221 152.6- 99.99 229 161.0- -
921 1169.0 - - 366 434.9 93.47 99.80 699 843.4 - 99.98 738 913.0 - -I

Table 3. Fault coverages
a indicates 100 by defmition

pg2 and Py use the single personalizat ion fault model (SPFM) according to
section 2. For each approach the four numbers given for each circuit are: the size
of the complete test set, the CPU- t ime used, FC with respect to p2 and FC with
respect to Pg.
The enumera t ion approach achieves 100% FC independent ly of the fault model .
However, it requires significantly more CPU- t ime than the other approaches and
it also generates the largest test sets. The s tuck-at model , on the other hand,
produces small test sets and uses the least amoun t of CPU-t ime. However, the
overall FC according to the S P F M is quite low.

~0

The results for pg2 show, that the restriction to at most two programming faults
still yields FC exceeding 99.9% with respect to the full SPFM.

5 C o n c l u s i o n

We have developed a new fault model that is suitable for most one-time pro-
grammable FPGAs. It is possible to achieve 100% fault coverage without the
knowlegde of the actual implementation of the circuit. We have also developed a
refinement of this fault model if some knowledge about the FPGA technology is
available. An algorithm has been outlined to perform testpattern generation ac-
cording to this model. The results show, that this approach is feasible for current
FPGAs. It is also shown, that previous fault models either require a considerably
larger test set even for modules with few inputs or are unable to achieve 100%
fault coverage.

R e f e r e n c e s

1. Thirumalai Sridhar and John P. Hayes: "A Functional Approach to Testing Bit-
Sliced Microprocessors". - In:IEEE Transactions on Computers, Vol. 30, No. 8.
(1981) pp. 563-572

2. Utpal J. Dave and Janak H. Patel: "A Functional-Level Test Generation Method-
ology using Two-Level Representations". - In:26th ACM/IEEE Design Automation
Conference DAC. (1989) pp. 722-725

3. Chien-Hung Chao, F. Gail Gray: "Micro-Operation Perturbations in Chip Level
Fault Modeling". - In:25th ACM/IEEE Design Automation Conference DAC. (1988)
pp. 579-582

4. Brian T. Murray and John P. Hayes: "Hierarchical Test Generation Using Pre-
computed Tests for Modules". - In:IEEE International Test Conference. (1988) pp.
221-229

5. A. Zemva and F. Brglez and K. Kozminski: "Functionality Test and Don't Care
Synthesis in FPGA ICs". - In:MCNC, Research Triangle Park, NC, Technical Report
TR93-04. (1993)

6. Khalet A. E1-Ayat, Abbas E1 Gamal, Richard Guo et ah "A CMOS Electrically
Configurable Gate Array". - In:IEEE Journal of Solid State Circuits, Vol. 24, No.
3. (1989) pp. 752-761

7. M. H. Sehulz, E. Trischler and T. M. Sarfert: "SOCRATES: A Highly Efficient
ATPG System". - In:IEEE Transactions on Computer-Aided Design Vol. 7, No. 1.
(1988) pp. 126-137

A Test Methodology Applied to Cellular Logic
Programmable Gate Arrays

Ricardo de O. Duarte 1 and Mihall Nicolaidis

Reliable Integrated Systems Group IMAG/TIMA
46 Av. Fclix Viallet, 38031 - GRENOBLE Cedex France

Phone : (+33) 76 57 46 19, Fax : (+33) 76 47 38 14
e-mail: duarte@ verdon.imag, fr

Abstract. This paper describes an approach for testing a class of
programmable logic devices called Cellular Programmable Gate Arrays. The
flexibility in the selection of logic functions and the high number of inter-
connections in this class of devices turns test a complex task. It has led to the
proposition of an cfficicnt tcst procedure based on some functioc= properties.
The rcgularity of the proccdurc permits that all logic cells in the dcvice can bc
tested completly for functional faults at the same time, whenever is possible.
It providcs a reduced number of rcprogranlming times during test mode and a
possibility of testing more devices in a defined period of time.

1 I n t r o d u c t i o n
Nowadays there are a lot of FPGAs architectures moving the market of

PLDs, some of them are cellular logic based [1,2]. This means that the architecture
is formed by a matrix of basic logic cells, able to he p rogrammed to perform a
combinatorial or sequencial logic function of few inputs and outputs and at the
same time transmit data to neighboors cells. Such kind of devices are suited for

implemental ion of dala paths circuits.

The main concern of EPGAs companies is produce a f lexible device
sufficient to attend the costumer necessities. Most of these devices present a high
degree of testing complexi ty , because of the large number of connect ions that they
present and the large number of pattern configurat ions that they can be
programmed. When the flexibil i ty increases, the device testing complexi ty rises in
the same direction. By the other side, the users want to program and test their
circuit and want to be sure that no faults will come from the p rogrammable device.
The guarantee that the device is fault free requires high costs in the final product
and high t ime dedicated to test, if a suited test methodology is not applied.

The rel iabil i ty of programmable devices is an important subject that
interest industries, university researchers and consumers. Although the problem has

I Under grant supported by RHAE-CNPq, Brazil

12

importance and difficulty to be treated, there are few works approaching test of
programmable devices [5,6,7].

The proposal described in this work is to present an efficient test
methodology generalized to all cellular logic based PGAs. The method consists in
the minimization of the reprogramming times during off line test mode. It generates
a set of testing configurations that when programmed, permit to test all logic cells in
the matrix at the same time minimizing the final test duration by device. This
approach proporcionate that a large number of devices can be tested in short period
of time.

2 Problem Illustration
Cellular logic programmable gate arrays are basically composed by a

flexible logic cell matrix, where each cell can be programmed with different
configurations to perform small logic functions, they are also known as fine-grain
architectures [3,10,12]. There are some companies that produce these devices. In
order to turn clear and illustrate the problem description, we will fix our attention to
one of these devices.

The device comercialized by Algotronix Co. [1], is formed by logic cells
arranged in form of matrix, programmable I/O circuits to perform the connection
between logic cells and pins, decoders used to do the device address programming.
The figure 1 represents well the array architecture at this hierarquical level.

--~ O
O
O O

o ,,

2

I/O block N

ARRAY

of

CELLS

col . d e c o d e r

I/O block S

O"

Iglob. ol

Fig. 1. Logic Programming Device Architecture

Each logic cell in this device, is formed by multiplexers and static RAMs.
The multiplexers are mainly responsable by the data selection among the routing
signals available to each logic cell during function execution. More specifically, they
have three different tasks in the device: they are used to select which logic function

~out

the cell will perform (OR, AND, XOR, etc...), the inputs that will take part in the
function execution (Nin, Sin,Ein,Win, etc...) and the data that will be tranfered or
not to a nearest neighboor cell (Nout, Sou t, Eou t and Wout). The two first tasks
presented is refered as intra-cell routing (fig. 2a) and the last one as inter-cell
routing (fig. 2b) [4,11]. The static RAMs are addressed by decoders and are used to
program the multiplexers [1 l].

X1

X2

1

0

7,2
1

0

13

Fig. 2a. Intra-CeU Routing

Xl X2

N in
$ in
E in

W in

F out
G1
G2

N out $ out E out W out

Fig. 2b. Inter-Cell Routing

Each cell can be programmed to implement one of the logic functions
described in table 1, the function unit - FU responsable for this task is the Universal
Logic Module (ULM) [11] - represented in figure 2a . Each one of these logic
functions can be configured in many different ways depending on the combination of
pattern inputs (X1 and X2). Such inputs come from the selection of inter and intra-
routing multiplexers (N,N,S,S ,E).

14

n °

0

1
2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19

Table 1. FU Programming Table
Ftmc Y1 Y2 Y3
zero xl 0 0
one x 1 1 1
xl xl 1 0

xl 0 1
x2 x 1 x2 x2

xl x--'2 72
xl • x2 xl x2 0
xl • x2 xl ~ 0
x-I'. x2 xl 0 x2
x--I'- x--'2- xl "0 x'x--'2
xl+x2 xl I x2
xl+ x'~2" xl 1
x-T+ x2 x 1 x2 1
x-'f+ x-'2" xl x'~ 1
xlQx2 xl x-"2- x2
xlOx2 xl x2 x'~
D clkl elkl D Fout
I3 c~1 clkl "I3 Fout
D elk2 elk2 D Fout
D elk2 elk2 D Fout

At this point, we can express the large number of pattern configurations
available by a basic unit in a cellular logic based structure in form of a summing. In
a general manner the following expression can represent the set of pattern
combinations (Z) in terms of available inputs and number of logic functions - f(i)
that the function unit can perform.

nf
Z = • f(i) and f(i) = cnnai(i)

i=l nnpi(i)
where: n npi (i) is the number of inputs of function f(i);

nnai(i) is the number of available inputs to f(i).

n f is the total number of functions that the FU can perform.

For the case of CALl0242 - Algotronix Co. [1], we have this value "

Z = 784

Concerning the test of cellular logic structures, we have to assure that every
logic cell in the array is fault-free, in other words, that every cell can be
programmed with whatever function input configuration C, (C ~ Z) accepted by the
programming table, without presenting functional faults. Test the internal
connections need programming to be applied, because the lack of testing points

2 CALl 024 is trademark ofA lgotronix Ltd,

15

within the logic cell causing a low degree of controlability and observability in array
level.

Find a group of test vectors that test the array completly could be easily
made if the logic cells would be programmed as just one type of logic gate. We could
use an ATPG program to do this efficiently. The reason that turns this procedure
unacceptable for using in programmable devices is the large number of different
logic gates that it can simulate when programmed.

The problem of finding an optimized set of configurations that allows to
test the whole array in a minimum time is a NP-complete problem [9]. The solution
of problems of this class is heuristic. There are no classical algorithm that can solve
or give an answer to the problem in a reasonable CPU time without applying some
restrictions that simplify the problem.

While architecture and synthesis in logic programming devices are subjects
frequently in discussion, the programmable device testability are rarely rose. The
research works come from people that take knowledge from the device architecture
data sheets or come from people that work directly in companies that produce them.
The approach presented in the next section, determine a regular methodology that
can be applied in any cellular logic based architecture, without needing to spend
time in finding programs or strategies to test completly the device in a minimum
period of time.

Besides the test all logic cells in the array at the same time, the method
proporcionate the functional fault coverage in the I/O circuits that perform the
connections between the pins and the logic cells. Once the group of configurations is
found, the total test time per device can vary proporcionally direct with the number
of logic cell that the array content.

3 Description of the Method
In order to become clear the solution proposed, the test of cellular logic

architectures will be divided in two hierarquical levels: the logic cell and the array
level.

3.1 Logic Cell Level Considerations:
The test in a logic cell level could be performed, through the programming

of all pattern configurations (one after the other) and checking the cell outputs (by
one primary output) for the application of appropriate test input vectors, when the
configuration would be programmed. Although this kind of procedure are very
efficient in terms of guarantee of device reliability, this is not feasible in practice due
to high consuming time taken to program and test completly each device. The
solution proposed is, select determined coiLfigurations satisfying certain conditions
that will introduce considered reductions in the final off-line test per chip.

16

The objective in the logic cell level is to find this group of configurations
that test all physical connections within a cell for functional faults. The advantage
of this logical level fault model, is that it is not dependent on the implementation
details. The logic cell can be illustrated by a general model that contains two
blocks. One block consists of the functional unit - FU, which implements the
expected function, while the second block (SB for Selector Block), selects the
physical inputs to be applied to the functional unit. In some cases [1,4], a
reconvergent path that brings back the output of the functional unit to the SB input,
is included in the model for the representation of the sequential functions.

Physical - -
Inputs

Ouwut

Fig. 3. Logic Cell Test Model

First, all the paths that link the elements contained in SB, have to be
covered by the test in order to check any functional fault in this block. This means
that any fault p/a, where p/a denotes a single fault on a path p with a logic level a,
must be tested by a vector that produces the complement of a on p, and sensitizes p
to a SB path. Then, we must ensure that the eventual errors are really propagated by
the FU block, through the appropriate programming mode. The objective for
reducing the test length, is to test the largest number of paths at the same time. In
particular, it must be avoid the worst case occuring when a vector covers a single
path. On the other hand, the FU block, has a reduced number of inputs and can be
therefore, exhaustively exercised (i.e.application of the 2 n combinations of its n
inputs). This will lead to the detection of all the targeted functional faults at the
inputs or outputs of the FU block and also of all the faults which are located inside
the logic cell. We also note that the interconnections between cells, which
constitute in fact the extension of the SB most external paths, are automatically
tested when all the paths of the SB are covered. Thus, the only requirement is to
verify that all the SB paths are covered.

The representation of Algotronix logic cell structure as the logic cell test
model adopted (SB plus FU) is shown in figure 4.

17

_• xaJl

] J

SB

Y F ~ Fout

Fig. 4. Algotronix: Logic Cell Test Model

3.2 Array Level Considerations:
At the array level, the objective is find a way of applying the test to all

cells at the same time minimizing the number of reprogramming times in the device
test procedure.

This can be done by choosing, whenever is possible, cells configurations
that permit to test the logic cell and propagate the error through neighboor logic
cells until an observable output of the array, Some functions make possible the test
of several cells in a row or a column at the same time. Other functions allow only
the test a single cell in a row or a column by time, since the test of another would
stop the propagation of the eventual errors. In this case, the application of a test
vector depends on the number of cells in the row and column (i.e. the number of
columns or rows in the array).

This situation introduces the requirement of classication functions that the
logic cell can be programmed according with the propagation property:

COMBREPI: combinational functions of one input and one output, that
has as characteristic the good propagation considering the array level. Ex.:
functions n ° 0 to 5 in table I - easy to be tested.

COMBREP2: combinational functions, XOR based. In the specific case,
functions n ° 14 and 15 of table I - easy to propagate and to be tested too.

NONCOMBREP: functions like ANDs, ORs, NANDs, NORs, etc...
Difficult to be tested or propagate errors, once arranged in array form.

18

SEQUENTIAL: latches and flip-flops. Easy to be tested (good
propagation), The ceils are arranged as big shift-registers.

In figure 5a and 5b, we can see that every logic cell in the array is
programmed with a COMBREP1 or COMBREP2 function respectively. In figure
5a, the application of the input combination {(1),(0)} to all the cells of a row (or
column) will not stop the propagation of an eventual fault 1/0 in any cell, where the
notation a/b means that under the presence of a fault the correct value a is
transformed in a faulty value b. The same association can be done in 5b, with the
possible set of inputs {(0,0),(0,1),(1,0),(1,1)} and the respectives output/fault
{(0/1),(1[0),(1[0),(0[1)}. These functions present the property of good transmission
of possible faults (in function of any inputs configuration) when arranged in arrays.

Configuration: X1 = West

{ (I . ,Oei/Fault)} = { (0 , 0 /1) , (1 , 1 / 0) }
W1

Function: X1 ~ X2 => Configur.: East t~ South

Tlsl T

~0 .
n l

~ , Ig Icl

T si

{ (Isi, Iei, Owi,Oni/Fault) } = { (0,0,0,0/1),(1,1,0,0/1),
(0,1,1,1/0),(1,0,1,1/0) }

Fig. 5a. Function Fout -- X1 Fig. 5b. Function Fout -- XI@X2

On the contrary, in the logic array of figure 6, the application of the input
combination {(0,0),(0,1),(1,0),(1,1)} to all cells of the row (or a column), will hind
the propagation of fault 0/1. They are the NONCOMBREP functions. To test a cell
with no observable outputs and controlable inputs using one of this functions, would
be necessary to program logic cells to propagate inputs to the target(s) cell(s),
program the target(s) cell(s) with the adequated configuration (NONCOMBREP
function) and program the remaining cells to propagate the output to a primary
output (output pin) of the array.

19

Target Configuration => North ̂ West
Configuration for Transmission => X1 = West

In2

I .

r

, On2

{(Iwi, In2 ' Oei ' On2/Fault) } = {(0,0,0,0/1),(0,1,0,0/1),
(1,o,o,o/1),(1,1,1,1/o)}

Fig. 6. Function Fout = XI^X2

For the paths which are shared by the SEQUENTIAL and COMBREP
functions, is preferable to perform the test by programming COMBREP functions
first. Indeed, programming the cells to execute SEQUENTIAL functions results in
the construction of shift registers, which require test length proportional to the
number of rows or columns of the array like in the case of the NONCOMBREP
functions. For that reason, the programmation of SEQUENTIAL functions during
the test is done only if necessary, that is, if a path is only dedicated to a
SEQUENTIAL function or if the COMBREP functions do not verify the conditions
of propagating errors. By the way, there is a main advantage in testing a
SEQUENTIAL function configuration (forming a big shift register) beyond testing
specific paths, is the test of high working frequency operation in the device.

3.3 The Suggested Proposition:
For our luck, some considerations can be assumed turning the problem

easier to be solved. The first consideration take into account is that some function
configurations, are easier to be tested in array level (COMBREP1 and 2) than others
due to the property of transmission faults when they occur [8]. The second
consideration is that some configurations test a path or a set of paths that are not
tested by the most remaining configurations. This lead us to conclude that they will
certainly appear in the final solution of the problem. A way to distingt one
configuration to another is to attribute ponderated weights, according to the paths
set description that each one owns when executed. In the beginning an analyse of
occurrence of each path in the logic cell model (SB + FU) is performed, after is
calculated and attributed a weight wj for each path j, considering the total number
of configurations C ~ Z. Then the general expression can be formulated as:

20

wj = n__.C_C; where nc is the number of occurence in configurations (C e Z) of path j,
nT

and nT is the total number of configurations C ~ Z

The biggest weight would be: wj = 1 in the case of all configurations
having this path j in its set of paths. And the smallest would be:

wj = l /n , where n is the total number of configurations C in Z

meaning that just one configuration C has the occurence of this path j in its paths
set description. After calculating the path weigths, every configuration weight w C
can be calculated:

i n

wC = 11 Wl; where are all weights of paths covered by each configuration C;
1=1

m is the number of paths in the set path description of C

Once these simplifications are assumed, we reduce our problem of
searching a minimum set of configurations that covers all paths in the logic cell, to
a searching in specific sets of configurations (COMBREP1, COMBREP2, etc...).
The problem is divided in small problems, where at the end, the solutions of each
problem are took into account to find the optimized one. Therefore a greedy
algorithm is well suited to be applied to produce the partial results of searching in
each set of configuration. In the context, we can summarize in a few lines below,
the procedure adopted.

Condition 1 to be satisfied: fill-up all paths in the logic cell (SB + FU).
Condition 2: find the minimum group of configurations.
Divide all configurations in specific groups (Combrepl, Combrep2, etc...)
Calculate weights to the paths to be tested - wj.
Calculate weights to all configurations - w C (weights calculed as a product of all
paths)
Start selection by Combrepl group {

iflsatisfy condition 1) {
.Find all the set(s) of configurations that satisfy the condition 1
according with the following selection way (Greedy Algorithm):
.Choose the configuration C E Z that has the greatest number of
paths still not verified, in case of equality among many
candidates, choose the one(s) with smallest(s) weights w C.

J
Select and store which set(s) has the smallest number of configurations to
satisfy Condition 2 to this group of functions.

21

Do the same with Combrep2 group {
if(satisfy condition 1) {

.Find all the set(s) of configurations that satisfy the condition 1
according with the following selection way (Greedy Algorithm):
.Choose the configuration C ~ Z that has the greatest number of
paths still not verified, in case of equality among many
candidates, choose the one(s) with smallest(s) weights w C.

Select and store which set(s) has the smallest number of configurations to
satisfy Condition 2 to this group of functions.

J
Compare and choose the best set taking into account all previous configurations
sets coming from the last group analysis, if they exists - Condition 2.

Do the same with Combrepl + Combrep2
Do the same with Combrepl + Combrep2 +Sequencial
Compare and choose the best set taking into account all previous configurations
sets coming from the last group analysis, if they exists - Condition 2.

iflstill not satisfy condition 1)
- Choose between the noncomrep configurations, the one(s) that permit to

satisfy the conditions and produce the results.

4 Conclusion and Future Work
At the present time, is being implemented the procedure described. It was

tried an implementation of a greedy algorithm without previous selection or dealing
with data configurations patterns and it led in a high consumming CPU time. Report
of results of this work applied to comercial devices will be published soon.

The method presented in this paper open a wide area of industrial
interesting and turn the attention of people involved with programmable devices to
test and the reliability.

As was explained, the method enable that cellular logic architectures can
be tested in a regular manner, providing an optimized testing time to be applied in
such devices. The final aim is to extend and try the method to other programmable
devices.

References

1. Algotronix Ltd.: "CALl024
Edinburgh, U.K., 1988.

- Preliminary Data Sheet". Algotronix Ltd. -

22

2. Concurrent Logic Inc.: "CLI6000 Series Field Programmable Gate Arrays".
Preliminary Information, Dec. 1991 - rev.: 1.3.

3. S. Hauck, G. Boriello, S. Bums and C. Ebeling: "Montage: An FPGA for
Synchronous and Asynchronous Circuits". 2nd. International Workshop on Field
Programmable Logic and Applications, Vienna - Austria. Springer pp. 44 - 51,
1992.

4. J.P. Gray and T.A. Kean: "Configurable Hardware: A New Paradigm for
Computation". Proceedings of Decennial Caltech Conference on VLSI, Pasadena,
CA. March 1989.

5. C. Jordan and W.P. Marnane: "Incoming Inspection of FPGA's". in European
Test Conference. pp. 371 - 376, 1993.

6. W.P. Marnane and W.R. Moore: "Testing Regular Arrays: The Boundary
Problem". European Test Conference, pp. 304 - 311, 1989.

7. Michael Demjanenko and Shambhu J. Upadhyaya: "Dynamic Techniques for
Yield Enhancement of Field Programmable Logic Arrays". IEEE International Test
Conference. pp. 485 - 491, 1988.

8. Hideo Fujiwara: "Logic Testing and Design for Testability". Computer System
series, the MIT Press, 1986.

9. Robert Sedgwick: "Algorithms". Addison-Wesley Publishing Company Inc.
1988.

10. Ricardo O. Duarte, Edil S. T. Fernades, A. C. Mesquita, A.L.V. Azevedo:
"Configurable Cells: Towards Dynamics Architectures". Microprocessing and
Microprogramming, The EUROMICRO Journal - North Holland Editor, vol. 38 N °
1 - 5 pp. 221 - 224, February 1993.

11. Kean, T.: "Configurable Logic: A Dynamically Programmable Cellular
Architecture and its VLSI Implementation". Ph.D. Thesis, University of Edinburgh,
Dept. of Computer Science, 1989.

12. J.Rose, A. El Gamal, Sangiovanni-Vicentelli: "Architecture of Field-
Programmable Gate Arrays". Proceedings of IEEE,vol. 81, n ° 7 - July 1993.

Integrated Layout Synthesis for FPGA's

Michal Z. SE[tVfT and Zden~k MUZIK~A~

Czech Technical University, Dept. of Computers
Karlovo n£m. 13, CZ - 121 35 Praha 2, Czech Republic

Abs t rac t . A new approach to the layout of FPGA's is presented. This
approach integrates replacement and global routing into a compound
task. An iterative algorithm solving the compound task is proposed. This
algorithm takes into account restrictions imposed by the rigid carrier
structure of FPGA's as well as the timing requirements dictated by the
clocking scheme. A complex cost function is employed to control the
iterative process in order to satisfy all restrictions and to optimize the
circuit layout efficiency and performance.

1 I n t r o d u c t i o n

Field programmable gate arrays (FPGA's) provide a flexible and efficient way
of synthesizing cornplex logic ill a regular structure consisting of predefined pro-
gralnnlabte blocks and predefined programmable routing resources (path pat-
t.erus), l)ue to the easy access of CAD tools that provide a fast turnaround time,
the populari ty of F P G A ' s is increasing. In comparison to the other implementa-
tion styles (e.g. full custom, s tandard cells), the F P G A layout design is simpler
because of a rigid architecture. In spite of this the FPGA layout problem as a
whole is intractable 1 [2], [6], [7], and is usually decomposed into subproblems.
The typical sequence of subproblems is "initial p lacement - replacement - global
,'o,~.ing- (>tailed routing" [11, [21, [6], [71.

The aim of the initial placement phase is to determine the non-overlapping
(legal) loca.t, ions of all blocks on the chip area.

The replacement is the optimization of an initial placement using tradit ional
il:eral.ive techniques (displacement of a single block, pairwise interchanges, etc.)
with respect to the cost function based on an estimation of the total wire length
and/or local density of wires.

The global routing is a preliminary planning stage for the detailed routing in
channels. The aim of this subtask is to determine a macropath for each net so
thai. detailed routing can be accomplished efficiently. Global routers operate on
interchannel connections and determine which segments of channels are traversed
by a given net. The pr imary objective is to avoid channel overflow.

The detailed routing phase specifies the detailed routes (physical connections
of pins) for all nets. Channel routers or maze routers are often used for this
purpose [1], [2], [7].

i NP-hard.

24

Traditionally, all these subproblems are solved independently using rather
poor optimizing criteria based mostly on an approximation of the total length
of wires [2], [3], [7]. Moreover, the rigid structure of routing resources is often
not taken into account in the placement and global routing phases. This is why
the results achieved often do not meet timing requirements and/or are far from
the global opt imum in spite of the fact that many efficient techniques have been
developed that provide near opt imum solutions to all the above subproblems.

The rest of the paper is organized as follows: Section 2 outlines the main idea
of our approach; in Section 3 there is a discussion of a routing model employed.
Section 4 describes an integrated cost function. Sections 5 - 7 describe the basic
steps of our approach, i.e. initial routing, replacement and rerouting. In Section
8 we draw conclusions.

2 M a i n i d e a o f i n t e g r a t e d a p p r o a c h

In this article, we propose a new layout technique based on the overlapping of the
replacement and global routing subtasks. The main idea of our approach can be
briefly stated as follows. First, the initial placement is constructed independently
using traditional techniques and a traditional cost function. Then, an iterative
replacement combined with global routing simulation is performed. A precise
estimation of a net topology respecting a carrier structure is employed to provide
a sound basis for the subsequent detailed routing.

We decided to integrate replacement and global routing into one compound
task because of two reasons:

• The results of global routing provide a good approximation of the final
layout.

• Computat ional time can be held within reasonable limits because models
employed (global graphs) are relatively small [5].

The task of replacement is naturally suitable for the application of iterative
algorithms. The quality of a layout during the iterative process is measured by
a cost function which should take into account two (often contradictory) objec-
tives:

• To satisfy restrictions imposed by the predefined routing resources.
• To optimize a layout in terms of performance, i.e. to maximize the applicable

clock frequency.

Thus, we proposed an integrated cost function. In contrast to traditionally
used cost functions, it originates from the estimation of the nets topology. The
estimated topology of a net has to take into account the available routing re-
sources (predefined paths on a carrier) which are expressed in terms of a global
routing graph. According to our experience [5] a Steiner tree constructed in a
global routing graph provides a good approximation of the final (detailed) topol-
ogy of a net. Consequently, the delay of a signal can be estimated adequately.
The proposed integrated cost function consists of two constituents. The first
one is a nonlinear function measuring local congestion of wires with respect to

25

the channel capacity constraints. The second constituent is a nonlinear function
based on an estimate of wiring delay with respect to the delay constraints.

The idea of the integrated layout synthesis for FPGA's can be described as
follows:

INTEGRATED LAYOUT SYNTHESIS

1. [Preliminary timing analysis] Generate the bounds on the delays which
the placement/global routing algorithms have to satisfy for all signals.

2. [Initial placement] Determine the non-overlapping (legal) locations of all
blocks on the chip area minimizing an estimation of the total routing length.

3. [Initial routing] Build a global routing sketch for the initial placement
and calculate its cost Q.

4. [Replacement] Synthesize a legal placement permutation.
5. [Rerouting] Modify the sketch and calculate a new cost Q'.
(5. [Selection] If Q' < Q, accept the permutat ion (fix the current place-

me,it and the routing sketch, set Q := Q'). Otherwise restore the previous
situation.

7. [,flopping ,',ties] If all placement permutations have been explored (or
limits on number of explored permutations and/or calculation time have
been exceeded) then co~tinue. Otherwise repeat from Step 4.

8. [Global rouling] Detail the current routing sketch up to the necessary
level.

9. [Detailed routing] Construct detailed routes through the available paths
that comply with the global routes and that obey detailed routing con-
st.raints.

Obviously, more complicated rules controlling the iterative process (see Step 6)
can be employed, e.g. simulated annealing.

leurther, we will focus our attention on the core of our approach that is
rep,'oscnl;c'd by Steps 3 - 5.

3 G l o b a l r o u t i n g g r a p h

Over the last years, several companies have introduced a number of different
l,ypes of FPGA's [1]. To simplify the argument, we will further consider the
so called "symmetrical array" architecture [1], [9]. The central part consists of
au array of identical basic cells surrounded by vertical and horizontal routing
cham/els. The I /O cells are located around the central part.

The aim of global r'o~tling is to determine how wires maneuver around cells.
\Vc umke this determinatio~ by finding paths in an appropriate global routing
graph (7 = (V, E) which is a natural abstraction of the chip architecture. The
vertices represent ceils and channel intersections. Edges represent channel seg-
l~ems.]';ach edge has two labels: one is called capacity, the other delay.

The capacity C : E --~ }~+ is an estimate of the actual number of wires that
call be placed in the corresponding routing channel segment. Normally, the edge

26

capacity is declared equal to the number of tracks. Notice that may depend on a
complex block placement because internal block layout may utilize some tracks.

The delay L : E --+ ~+ is an estimate of the actual delay of wires in the
corresponding routing channel segment. Notice that we consider delays instead
of traditionally used channel segment lengths. This is more appropriate because
the length of a channel segment need not be proportional to its delay [9].

The task of global routing can be described more precisely when using the
notion of the global graph. A set of nets N = {N1, N2, ..., J~k} is given, where
each net is a subset V} C_ V of vertices of G. A global routing sketch, or sim-
ply a global routing, is to be constructed. The global routing R is a collection
of macropaths R = {$1,$2, ...,Sk}. A macropath for a net Ni is a connected
subgraph Si of G containing all vertices from 1~, i.e. the corresponding Steiner
tree.

The amount of calculations required to construct a global routing sketch (and
to modify it during the trial placement permutations) depends on the complexity
of the global routing graph, i.e. on the level of abstraction. Anyway, the construc-
tion of a macropath for each net is expected to require much more computations 2
than the evaluation of a traditional placement cost function. Therefore, it is nec-
essary to use a fairly simplified chip model to keep the amount of calculations
in reasonable bounds.

According to our experience, it is possible to construct a "precise" global
routing graph having a reasonable number of vertices and edges. The XILINX
XC3000 family [9] can serve as an example. Fig. 1 shows a portion of XC3000
architecture and the corresponding portion of the global routing graph.

4 I n t e g r a t e d c o s t f u n c t i o n

Tile primary objective of the placement and global routing in FPGAs is to
guarantee routability. The secondary objective is to guarantee (and/or maximize)
the required performance in terms of clock frequency.

Let us assume that a global routing sketch R has been constructed. The , ,
it is easily possible to compute a demand C[on edge ei E E as the number
of rnacropaths 5'1, S'e, ..., Sk containing the edge el. The given routing sketch ig
is often considered as routable (admissible) if (7/* _< C / fo r any edge ei [2], [7].
Itowever, according to our observations [8], this condition need not be sufficient
because C[represents the global constraint but it may fail to capture local
congestions inside the channel segment. Thus it is desirable to have some reserve
of extra tracks to increase the probability of successful routing.

Let us assume that a preliminary timing analysis generates the bounds on
the delays 3 which the placement/global routing algorithms have to satisfy for
all links, i.e. source-target connections. Each x- terminal net is decomposed into

2 The minimum Steiner tree problem is NP-hard. However, a couple of efficient heuris-
tics is available [2], [7], [8].

z Further we will discuss the maximum delay constraints only because the majority
of FPGA architectures support synchronized circuits and have dedicated routing
resources intended to implement clocks and other signals that must have minimum
skew among multiple targets.

27

m w

tc.B ,c.B t
long line

CLB'

long lines

3/2.3~~~" I N2/2"3 5 / 1 ~
~ 2/2.3

Fig. 1. A portion o[XC3000 architecture and its graph model: circle vertices corre-
spol~d to CLBs, square vertices correspond to switch matrices, full-circle vertices corre-
spond to vertical and horizontal long lines, and edges are l~beled with c~pacity/del~y
V~I I I1 (' S .

28

x - 1 links and the m ax i m um interconnection delay D : £ -+ ~+ is calculated
for each link lj E 12. Notice that this calculation can be ambiguous because
only the max imum delay between a clocked source and a clocked target can
be derived from the required synchronization frequency. Let us consider the
situation described in Fig. 2 as an example. In this case only the sum (Dr + D2)
can be calculated. We propose to distribute the available delay uniformly (i.e.
D1 = D2 in our case) provided that there are no hints support ing a different
distribution.

clocked
block

- [,,
combinato-

rial
block

D1 D2

clock

clocked
block

~ N

i T
Fig. 2. Maximum delay estimation.

The actual delay D~ of a link lj E £ can be est imated as the sum of delays
of edges forming the corresponding path in R. The given routing sketch R is
considered as admissible from the performance point of view if D~ <_ Dj for any
link lj.

Let us return to our example (see Fig. 2) and assume that the value of D~
has been est imated as described above. This allows us to recalculate the value
of D2 as follows: D2 = (D1 + D2) - D~.

We propose to relax both the routability and delay constraints, i.e. to deal
with the unconstrained global routing problem [2], [8] minimizing an appropriate
cost function Q(R). Obviously, the cost function Q(R) has to minimize overloads
max[O, (C'[- Ci)] and overdelays max[O, (D; - Dj)]. I f there are no overloaded
edges or overdelayed links, the performance expressed in terms of clock frequency
should be maximized.

Taking into account the above observations, the cost function consisting of
two nonlinear constituents seems to be appropriate:

O(R) : } 2 rl(e,) + r (lj)
eiEE ljE£

(1)

29

where c~ is a constant and nonlinear functions F1, F2 are defined as shown in
Fig. 3.

F1 (ei)

J

5(1i)

(C * i - C i)

Fig. 3. Nonlinear functions F1 and F2.

(D]'- D i)

5 Init ia l g lobal r o u t i n g

All versions of the global routing problem are NP-hard [2], [7]. Therefore, only
approximate algorithms are of practical interest. A wide variety of such tech-
niques has been developed. The ileralive approach [5] is adequate to our purposes
because it combines initial routing (to construct an initial variant) and rerouting
(to optimize the initial variant). Obviously, it allows us to associate replacement
and global routing in a nat, ural way.

The proposed initial global routing algorithm consists of two phases denoted
here II{.1 and IR2.

The IP~I phase starts from the empty solution/~ = 0 which has zero demands
D~,. = 0 on edge capacities Cn. For each net Ni, a macropath Si is derived. An
algorithm constructing suboptimal Steiner tree is employed for this purpose. The
cosL of a Steiner tree is defined as the sum of delays over its edges.

IR1 PHASE

INPUT: Graph G = (V, E) labelled with edge capacities Ci and delays Li.
Set. of nets 5 T = {N1, N2, ..., Nk).
Sel; of links £ with associated maximum delays Dj.

OU'FPUT: Initial solution /~ and its cost Q(/~).
Used ro,,t.i,,g resources (demands) C/* and actual delays D; .

1. Initialize: R := O.
2. For each net Ni, 1 < i < k :

(a) Construct a Steiner tree S~ = (V~, E~) interconnecting N~ in G and min-
imizing the estimated total delay ~ j e E , L(ej).

30

.
(b) Include Si into R.
Compute the used routing resources (demands) C'/* for all edges and actual
delays D~ for all links. Calculate the cost Q(R) according to formula (1).

The IR2 phase aims at improving the initial solution. The at tempts to opti-
mize subgraphs Si for each net Ni in a new environment are made, i.e. the costs
of Steiner trees are calculated taking into account the used routing resources
and the actual link delays.

IR2 PHASE

INPUT: Graph G -- (V, E) labelled with edge capacities Ci and delays Li.
Set of nets N = {N1, N2, ..., Nk}.
Set of links/2 with associated maximum delays Dj.
Initial solution R and its cost Q(R).
Used routing resources (demands) C* and actual delays D~.

OUTPUT: Improved solution R.
Updated demands C/* and delays D~.

1. For each net Ni E N calculate the cost of a current Steiner tree St according
to the formula (1). Sort all nets in the ascending order of their costs 4.

2. [Iteration] Consecutively for all nets do:

(a) Remove Si from the current solution and update demands.
(b) Construct a new Steiner tree S~ minimizing the cost function (1). Update

demands.

3. Compute the cost Q(R') of the new solution. If it holds Q(R') < Q(R), set
R := R', Q(R) := Q(R') and repeat the iteration. Otherwise stop.

6 R e p l a c e m e n t

Let us assume that a legal (non-overlapping) placement has been constructed
(and optimized) using traditional techniques. We are looking for a replacement
which:

• transforms lega,1 placement into another legal placement, and
• decreases the cost of the initial variant.

The most popular elementary transformations used in the process of replace-
a l e u t a r e 5:

• displacement of a single block,
• pairwise interchange, and
• rotation and/or mirroring of a block.

4 This order has been experimentally justified in [5]
5 For designs incorporating blocks of different sizes and shapes, more complex trans-

formations are used.

:31

The evaluation of the integrated cost function Q(R) requires significantly
larger amount of comput;ations in comparison to the evaluation of tradit ional
length or cut-based functions. Let tp be the time required to synthesize a replace-
meat and t¢ the time required to compute the change in cost. For traditional cost
functions, t¢ is usually proportional to IN'I, where N' is a subset of nets with
pins that changed their locations, and tp ~ t~ . In our case, IN'I nets are to be
rerouted. The complexity of rerouting a single net is proport ional to IEI • loglV I
[8], hence the evaluation of the new integrated cost takes O(IN'][E [• togiV[)
elementary operations and tp << t~.

To reduce the amount of computat ions, it is necessary to use an effective
t~echuique which generates t ransformations with a high probabil i ty of a success
oldy. Unfortunately, the cost function (1) does not involve any part icular features
which could be used as a background in choice of successful t ransformations, thus
we llHist rely on some domain knowledge to maintain a reasonable probabil i ty of
a success. Two analogies can be used here: force-directed relaxation and cutline-
based interchanges [8].

According to our experience [3], [8], single block displacements and pairwise
interchanges are easily and successfully applicable to minimize the integrated
cost, function (1). Both transformations mentioned above can be treated in an
uuil'orm way: a ca.ndidate block is selected first and than several alternatives
ot' repositioning are explored. The knowledge of overloaded edges and overde-
layed links is useful wh('.n selecting a candidate. The knowledge of so called
e ~ ilcighborhood o~" the median of the selected block [8] may help to identify
i~r(mlisiug ali ernatives o[" rel~osifoioning.

7 R e r o u t i n g

I,ct us assume that a block /3 changed its location as a result of replacement.
The following modifications concerning global routing (both the graph G and
~,he solution h'.) must be introduced:

1. [Co~"rectio~. of e@e capacities (7i] The routing resources occupied by
inl.erm~l block layout (if" ally) are set free (the corresponding edge capacities
arc iiiercascd) f"roin the old position and are utilized (edge capacities are
decreased) in the new position.

"2. [Paclial rer'o.ati,,cj] I,et N ~ C N denote the subset of nets interconnecting
the block /3. Obviously, corresponding macropaths (Steiner trees) must be
reconstructed because the current global routing variant is no longer valid.

The partial rerouting call be accomplished by a modification of the 1l:1,2 al-
gorii.hll,:

32

P A R T I A L R E R O U T I N G

INPUT: Graph G = (V, E) labelled with edge capacities Ci and delays Li.
Set of nets N B C N.
Set of links £ with associated maximum delays Dj.
Initial solution R and its cost Q(R).
Used routing resources (demands) C* and actual delays D; .

OUTPUT: Updated solution R.
Updated demands C* and delays D; .

1. For each net Ni E N 8 calculate the cost of its current Steiner tree 5'/ ac-
cording to the formula (1). Sort all nets from N B in the ascending order of
their costs.

2. [Iteration] Consecutively for all nets from N B do:

(a) Remove Si from the current solution and update demands.

(b) Construct a new Steiner tree Si minimizing the cost function (1). Update
demands.

3. Compute the cost Q(R) of the new solution.

8 C o n c l u s i o n

Decomposition is a principal way to cope with problem complexity, but it has
some disadvantages. Generally, decomposition of a problem assumes a decompo-
sition of a.n available information as well. In layout design, this can be described
in terms of inadequacy of cost functions for steps preceding the detailed routing
[6].

In our work, we propose a novel approach to cope with the negative impact of
decomposition. The approach is based on partial overlapping of placement and
global routing subtasks which are usually treated as independent optimization
problems.

The proposed method is capable of providing a good delay estimation so that
the timing specifications dictated by the clocking scheme can be checked and the
iterative process of replacement and global routing can be timing-driven. This
appears to be an important feature of this technique because the delay due to
the interconnecting wire plays a major role in determining and optimizing the
performance of the FPGA chip [1].

In comparison with traditional cost functions, the integrated cost function
is more difficult to calculate. We use the most natural approach: an iterative
replacement combined with rerouting in a global routing graph.

Limited experimental investigation of our method does not enable us to draw
any statistically convincing conclusions. Nevertheless, the results obtained are
promising [8] and cannot be explained in terms of undirected random search in
a configuration space.

33

R e f e r e n c e s

1. Brown, S.D., Francis, R.J., Rose, J., Vranesic, Z.G.: Field-Programmable Gate Ar-
rays. Kluwer, Boston, 1992.

2. Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley-
Teubaer, Stuttgart-New York, 1990.

3. MuzikM', Z., Schmidt, J.: Experiments with Placement Algorithms on Gate Arrays.
APK'92: Proc. of Design Automation Conference, Kaunas, 1992, pp. 86-91.

4. Sapatnekar, S.S., I<ang, S.M.: Design Automation for Timing-Driven Layout Syn-
thesis. Kluwer, Boston, 1992.

5. Servlt, M.: Iterative Approach to Global Routing. J. Semicustom ICs, Vol.8, No.3,
1991, pp. 18-24.

6. Serv/t, M.: Algorithmic Problems of VLSI Layout. CTU Workshop'92, Praha 1992,
pp. 91-92.

7. Sherwani, N.A.: Algorithms for VLSI Physical Design Automation. Kluwer, Boston,
]993.

8. Tomkevi~ius, A., Muzik~.~', Z., Servit, M.: Integrated Approach to Placement and
Global Ronting in Gate Arrays. Research Report DC-94-04, Czech Technical Uni-
versity, Dept. of Computers, Prague, 1994.

9. XILINX The Programmable Gate Array Data Book. San Jose, 1992.

T]ds rcsea~'ch was supporled by lhe Czech Technical University under 9rani
,o. 8095 and by lhe Czech Grant Agency under granl no. 102/93/0916.

Influence of Logic Block Layout Architecture
on FPGA Performance

M. ROBERT, L .TORRES, E MORAES and D. AUVERGNE

UNIVERSITE MONTPELLIER II, Sciences-LIRMM, UMR 9928 CNRS/UMII.
161 rue Ada (case 477)

34392 Montpellier cedex 5, FRANCE
e-mail : robert@lirmm.lirmm.fr

A B S T R A C T : Among the several FPGA technologgies available today, the
comparison of tiiming performances is always device dependent.In order to
compare accurately the performances of the logic block architectures used in
FPGP/s families, we have implemented different functions.Using a layout
synthesizer we evaluate post layout performances of these functions.A
methodology to optimize the size of transistor gates in Look-up Tables is
proposed

1- INTRODUCTION

FPGA architectures often make use of complex cells to efficiently implement
circuitry with the help of logic synthesis tools. Among the several FPGA
technologies available today (Xilinx, Actel, Altera, etc...), the comparison of timing
performances is always device (XC3000, XC4000, ACT1,...) and technology
(dCMcOSt hPer ~C~Sy a~d pPt ~g~apem~s gnt et~hen~q~e)b dePkendc~ntte cF°[e ?t t~VnenLP rGA

ld°e~ia~len~Cr~ssed s ~e~;~igede~yy~ass°cia~edtuandrtsheiI/hOu~ellnSy t eTheh~e~o~na~

information on the process parameters used. Consequently, the effect of the logic
block structures on the speed of FPGA is quite hard to be analyzed.

In order to focus on the effect of logic block architecture on FPGA timing
performances, it is necessary to select a common CMOS process, and to implement
a set of logic functions using the different logic blocks alternatives. A first complete
study of logic blocks has been proposed in [1][2] : an experimental approach is
taken, in which a set of benchmark logic circuits is synthesized into different
FPG/Vs using a same CMOS process. It is shown that the fine grain blocks
(Nand2,...) are slow, because they require many levels of logic and consequently
require a large routing delay. Five and six look up tables and Actel muxes give the
best performances because of the balance obtained between routing and logic
delays.This study covers a large selection of combinational circuits, and show the
effect of granularity on performance taking into account an approximation of the
routing delays. However the limitations come from the evaluation performed at
the transistor level without any consideration on the layout and the transistor sizes
(always minimum). Moreover the routing delay is taken as a constant similar for
each connection.

The effect of logic block layout on the speed of FPG/Vs is studied in this paper.
Using a layout generator, we evaluate the post- layout performances of the basic
cells taking into account the load capacitances and the transistor widths. To

35

generate the different CMOS logic functions, we use an efficient layout
methodology, where the cells are implemented as an array of rows with different
heights [4]. Optimized cells are generated in a two pass procedure: first the
automatic generator transform the electrical netlist in a symbolic description, then
this description is translated into a layout after technology interpretation and
compaction procedures.The main differences with the traditional cell based
approach are : no explicit routing channel between rows, variable row heights, all
cells are vertically transparent to the second metal layer used to vertically cross the
cells, technology independence, and optimization of the transistor widths
depending on the user constraints.

This paper is divided into 5 sections. Section 2 presents the logic block
investigated, and the layout synthesis approach used. In section 3 we describe the
experimental procedure used to evaluate the post layout performances of the
different logic blocks, and the results obtained. In section 4, we discuss on the
improvement of the look up table logic blocks using a methodology to size the
transmission gates. Finally in section 5 we compare our results with the Xilinx
devices.

2 - DESCRIPTION OF LOGIC BLOCKS

The FPGA architectures consists in an array of identical cells separated by wiring
channels. The Actel architectures implement 4 - t o - 1 muxes in a single level (mux
A , f igure 1) [3]. The logic block of Xilinx XC series uses a programmed look up
table (LUT) to implement boolean functions : 4 input look up table for the
XC2000 series LCA (figure 2), 5 input look up table for the XC3000 and XC 4000
series.

AOA1 C~ Out

-T"l

2 to 1 MULTIPLEXER

C1
C2

A1 AO-

S [" - - 7 t A1 B0
B 1 A2- ut

SB ~ i
SO A3
S1

MULT1PLEXERA (Actel) 4 to 1 MULTIPLEXER

Figure 1 : Multiplexer basic modules

36

al " a2

p,,

Read

= programmable memory = In

Read

Read

Out

Out

Figure 2 : Four- input Lookup Table (LTK4)

2.1 Layout methodology

To generate the different CMOS logic functions, we use an efficient layout
methodology, where the cells are implemented as an array of rows with different
heights (Tropic generator) [4] [5]. Optimized cells are generated in a two pass
procedure: first the automatic generator transform the electrical netlist m a
symbolic description , then this description is translated into a layout after
technology interpretation and compaction procedures. Interconnection is realized
with two metal layers for intra-cel l and in te r - row routing.

The proposed layout style [4] is characterized by the placement of cells in
horizontal rows, where the even rows are horizontally mirrored (figure 3a). The
main differences with the traditional cell based approach are : no explicit routing
channel between rows, variable row heights, all cells are vertically transparent to
the second metal layer used to vertically cross the cells, technology independence,
and optimization of the transistor widths depending on the user constraints.

Figure 3a illustrates the organization of the layout, as a direct abutment of cells. As
shown in figure 3b, each cell is divided into 5 parts : two parts dedicated to the
diffusion rows for the transistor implementation, and three parts devoted to the
routing regions.

Figure 4 illustrates the automatic implementation of the logic block structures
obtained with the Tropic generator from an electrical netlist (SPICE FORMAT).

37

GND

row3

row2

rowl

n l n2

cl Ic21 a 1c4c5

s l s2 s3

VDD VDD

(a) circuit structure : direct aboutement of rows
without channel routing between them (b) cell sixucuture

F i g u r e 3 : Trop ic l ayou t style

usion

~g channel

'usion

gates

[] d i f fus ion

Q po lys i l i c ium

• m e t a l l

Nand2 Nand3 Nand4

Multiplexor 2/1 Multiplexor 4/1 Multiplexor A

Look up Table 3 Look up Table 4

F i g u r e 4 : Layou t s of logic b locks o b t a i n e d wi th the t rop ic g e n e r a t o r

38

3 - E X P E R I M E N T A L P R O C E D U R E

The experimental procedure is described in figure 5. Using the transistor level
schematics (Spice netlist) of the logic blocks presented previously ([igures 1,2,4) we
have implemented two logic functions :

fl = abc+abd+acd, proposed in [1]
f2 = ab + fcd + fbe+bdc

The choice of simple functions avoid a shift in the results due to the quality of the
logic synthesis tools. Our main objective in this first study is to analyzes the
influence of the layout level. For more complex functions the results obtained at
the electrical level in [1] can be used as a reference.
As described infigure 5, different types of transistor widths have been analyzed (W
minimum, and W = 16 ttm) and the output load has been fixed to Cin and 10 Cin,
where Cin represent the input capacitance of an inverter). After layout generation,
the extracted netlist contains all the parasitic capacitances (diffusion, routing,...).

I Set °f functi°ns: I ~ l ~ [l l l l l ~ I Test c°nditi°ns : f l , 1"2 (Wn, Wp, Cload)

~ f f ~ -Wn= Wp=161tm
-Load = lOCin = 90OFF
-Load = Cin = 9OfF

I Logic synthesis I

~ Spice netlist

Layout generation

i P 'arout ula on I I

-Wn=21tm et Wp=4#m
-Load = lOCin = 13OFF

-Load = Cin = 13fF

(Cin = input capacitance of an inverter)

Extraction (Cadence)
Spice netlist

post-layout Simulation

~ l l , ~ t i m i z a t i o n : transistor s i z i n g ~ j

Figure 5 : Summary of the experimental procedure

3.1 Results

In order to don't overload this section, we present here some of the main results
obtained with these experiments. As shown in the results given in figures 6 and 7,

39

the Mux 2/1 architecture exhibit the lowest delay before and after layout. The
effect of the layout capacitances reverse the ranking between Nand gates and Mux
A, Mux 4/1 gates. The timingperformances of the look up tables implementation
is not as good as reported in [1]. One of the reason is that these modules are not
optimally used in this test configuration. For more complex functions, the full
capacity of the look up table will be used. However, at his level it is interesting to
analyze the effect of the transistor sizing on the timing performances of the look
up table modules.

Delays (ns)
18

16

14

12

10

8

6

4

2

0

18

m _ _

f 2 = a b + f c d + f b e + b c d

Mux2/ l nand2 Mux4/1 MuxA nand4 nand3 LTK6 LTK4 LTK3 LTK5
Logic Blocks

Figure 6 : pre- layout evaluation of the delays for the logic function 1"2.
(Wn=2~tm and Wp=4~tm and CL=130fF= 10 Cin)

Delays (ns)

16

14

12

10

8

6

4

2

0
Mux2/1 nand2 nand3 nand4 MuxA Mux4/1 LTK6 LTK4 LTK3 LTK5

Logic Blocks
Figure 7 : Post- layout evaluation of the delays for the logic function f2.

(Wn=2~tm and Wp=4~tm and CL=130fF= I0 Cin)

40

4 - L O O K UP T A B L E S O P T I M I Z A T I O N

Transistor sizing at layout level is necessary to improve the overall performance of
integrated circuits. Based on a local optimization defined through an explicit
formulation of delays [6], a sizing methodology has been applied to the look up
table cells. A Typical critical path is represented in figure 8 where we separate a
control block (Structure I) and a data block (Structure II). The optimization
strategy begins by the sizing of the structure II from the output (where the load
capacitance CL is fixed) to the data inputs. The local sizing rules used for this
"ANDORI" structure are given as follow [6] :

1
W h e r e •

, y - CL
Cr~f

WN
• XN - W,~f

XN
fY (1 + 12K'(n2-1))

,un u?l I
[1 + ~ + 12K'[(n2-1) + ~--~(nl,1)]]7

X P = I~n v/Y (1 + 12K'(nl -1))
,un ~n !

/.tp [1 + ~-~ + 12K'[(n2-1) + ~--~(nl-1)]]i

representsthe output load, with respect to a reference capacitance

Cref = Cox Lmin Wmin

We , representsthe transistor size, with respect to a refernece
Xp - Wref width (Wmin)

* nl and n2 respectively represents the numbers ofparallel transistors in P and N array,

vcc 8 V c c (V c c - Vr) , K ' = 1 2 VT w i t h K =

24KY~_..¢c _ VT* 7Vcc 2 + 4 V 2 _ l Z V c c V T

where K is a slowly varying technological coefficient.
For the 1.5~tm CMOS process under consideration the value of these coefficients
are : Cref=4.4 fF, K = 1.274 and K' = 0.049.

Depending on the logic level to be transmitted the structure of the look up table
has been replaced by an equivalent "ANDORI" configuration allowing full
application of the sizing procedure, as follows : low or high levels to be passed
transform the structure in equivalent N or P serial arrays (figure 9), directly sized
as for general "ANDORI" configuration [6]. Then the P or N companion
transistor is sized in the ratio of mobility of its partner (~t n / p.p = 2.4).

For example, as shown in figure 8, with a given load of 130 fF the transistor width
obtained for the transmission gates TG5, TG6, TG7, TG8, of the structure II are
: WN = 5 ~tm and Wp = 13btm.

After optimization of the structure II the input load of structure I is known (this
is the input of inv3 - node "67; - in figure 8) . T h e same backward process is applied
to the array of structure I from the output (here node "6") to the inout (node " IN"
). Figures of the resulting transistor Sl'Zes are given in th6 correspo'ndihg buble of
figure 8.

41

Read

WNinv2 = 81zm WIv = 61~m TM

Wpiav2 = 24pro Wp = 15pro STRUCTURE I

TG1 TG2
TG4

~ ~_ inv3
WN=SU m

Wp = 13,urn

Critical path
TG7 TG8

CL

d a t a

S T R U C T U R E H

Figure 8 : Critical path for the implementation of the function 1 in a Look up Table 3

of level 0
W' n=2Wn ou-y-

-'-'-" C-'~ 4 t t , r - t 4 - - t o u t e ~ l lZ Z,. 'v~ II "1- CL
I 1 ' , l v ~ .] ' - - [- ~ - C2~]~ E L q l ~ ' ~

TG2"~_..J ,~2~ "5 ''~"
WpTG it J3 TG4

(a) "NAND3" configuration
Vcc

" ~ Transmission o l ~ v e l 1
v

p=2Wp

'P= P 'P= T EL

(b) "NOR3" configuration

Figure 9 : Optimization procedure

42

As shown in Table 1, where we compared Look up Table implementations of the
function fl and t2 with different transistor sizes alternative, it appears clearly that
sized solutions result in the fastest implementations of the look up table cells (up
to 50% reduction of the delay). The comparison with the other logic block
structures (figures 10 and 11) show that after optimization of the transistor widths
the look up tables exhibit very good speed performances,

Fixed
width

function 1 function2

LTK3 LTK4 LTK6

CL=130fF CL=900fF CL=130fF CL=900fF CL=130fF

tilL tLH tilL tLH till tLH tilL tLH till tLH

wWp=l~ 'i! 5.40 2.20 ii~i 1 3,96 2.25 ~ii~i ' !~i~

 06, 4 Wn:2~tm 5.33 3.6 3.53 2.87
Wp=4 grn

Optimization of tran-
sistor width

Benefits

3.27 3.07 3.51 3.44 1.77 1.64 2.78 2.61 2.24 2.21

39% 35% 50% 30% 50%

Table 1 : Optimization results for the functions fl and f2 implemented with differents
look up tables (delays in ns) and transistor sizing alternative (minimum and constant
sizes, optimized sizes for a given load).

Delays (ns)

14

12

10

8

6

4

2

0

f l = a b c + a b d + a c d

after opt imisat ion

after oDtimisation i ~ ~

nand2 Mux2/1 LTK4o MuxA Mux4/1 nand3 LTK3o LTK4 nand4 LTK3

Logic Blocks

Figure 10 : delays of the function f l (with Wn=2~tm and Wp=4~tm and CL=130fF) and
performance improvements of the look up table 314 implementation after transistor
sizing

Delays (ns)

43

14

12

10

8

6

4

2

I 2 = a b + f c d + f b e + b c d

after opt imisat ion

0
Mux2/1 LI-K6o nand2 Mux4/1 MuxA nand3 nand4 LTK6

Logic Blocks
Figure 11 : delays of the function 1"2 (with Wn=2~m and Wp=4pm and CL=130fF) and
performance improvements of the look up table 6 implementation after transistor sizing

5 - F P G A I M P L E M E N T A T I O N

We present in this section the implementation of fl and f2 functions with Xilinx
devices : XC3020 and XC4002.The results obtained with XACT tools are
summarized in table 2.

Function 1

Function 2

XC 4002

PAD IOB
tpOr~ t O Blk- Trout Nbr

IOB LUT CLB
. i t ,

17.2 7.2 4.5 2.7 1

2.03 10i3 7 3.3 1

PAD
t o ~ I

PAD

14.7

17.8

XC 3020

i O B
to B|k-

LUT Trout

7.3 4.6 2.7

1 0 . 5 2*4.6 1.3

Nbr
CLB

1

2

"PAD to PAD" : delay between input and output PADs, "lOB to IOB" : delay between input and output
lOB, "Blk-LUT" : delay through the CLB, "Trout" : routing delay, "Nbr CLB":Number o f CLB used to
implement f l and f2.

Table 2 : Delays obtained with xilinx devices.
To compare the performances, we consider the delays between IOB to IOB, which
represents the sum of the routing delay and the delay through the CLBs (the "PAD
to PAD" delay depends on the buffer size options).
The results obtained for the implementation of functions fl and f2 with the
XC4002 and XC3020 families are the same. As we can see in Table2, the function
f2 needs two CLBs with the XC3000 and only one with the XC4000. In othe side,
the routing delays are differents.
If we compare the results given by the layout synthsizer (in Table 1 for
Wn=Wp=16 ~tm and CL=9OOfF, we have a critical delay of 3.96ns) and xilinx
Implementation, we observe approximatively 10% difference between then. This
prove that our layout approach allows to characterize the performances of the
different logic block architectures.

44

6 - C O N C L U S I O N

We explored in this work the comparative performances of the different logic
blocks taking into account the layout evaluation. The main conclusion is the
confirmation of the good performances of the look up table and multiplexer
modules. A significant reduction in delay is obtained by optimizing the transistor
widths of the look up tables. The use of a layout generator is of great help to
evaluate architectural alternatives as well as the fast migration of circuits in
different processes. The high regularity of the layout style used, gives the
possibility to parametrize the layout capacitances, allowing an accurate prediction
of performances for logic synthesis tools.
Selection of FPGA structures as a technology management alternative for
performance driven design is a widely opened problem. Using automatic layout
generator combined to transistor sizing and performance evaluation we were able
to compare different logic blocks unit used to implement FPGAs. Examples are
obtained in different logic paths and compared in terms of speed and area. As a
surprising result evidence is given of LUT based high performance
implementation, through the defimtion of optimal sizing for logic units.

R E F E R E N C E S

[1] S. Singh, J. Rose, P. Chow, D. Lewis "The effect of logic Block architecture
on FPGA performance"IEEE Journal of Solid State Circuits, Vol. 27, N°3,
March 1992.

[2] S. Singh, "The effect of logic Block architecture on the speed of field
programmable gate array",M.A. Sc. thesis, Dept. Elect. Eng., Univ. of Toronto,
Ont. Canada, Aug. 1991

[3] A. E. Gamal "An architecture for electrically configurable gate arrays" IEEE
Journal of Solid State Circuits, Vol. 24, N°2, April 1989.

[4] E Moraes, N.Azemard, M.Robert, D. Auvergne "Flexible macrocell layout
generator",Proc, of 4th ACM/SIGDA physical Design Workshop, Los Angeles,
1993, p. 105-116

[5] E Moraes, N.Azemard, M.Robert, D. Auvergne "Tool box for performance
driven macrocell layout ggenerator",Fourth Eurochip Workshop on VLSI
design training,Toledo,September 1993.

[6] D.Auvergne, N.Azemard, V. Bonzom, D. Deschacht, M.Robert "Formal
sizing rules of CMOS circuits",The European Design Automation Conference,
Amsterdam, February 1991.

A Global Rout ing Heur i s t i c for F P G A s Based
on Mean Field Anneal ing

Ismail Haritao~lu and Cevdet Aykanat

Dept. of Computer. Eng & Information. Sci. Bilkent University 06533 Bilkent,
Ankara, TURKEY

hismail@bilkent.edu.t r

Abst rac t . In this paper, we propose an order-independent global rout-
ing algorithm for SRAM type FPGAs based on Mean Field Annealing.
The performance of the proposed global routing algorithm is evaluated in
comparison with LoeusRoute global router on ACM/SIGDA Design Au-
tomation benchmarks. Experimental results indicate that the proposed
MFA heuristic performs better than the LoeusRoute in terms of the dis-
tribution of the channel densities.

1 I n t r o d u c t i o n

This paper investigates the routing problem in Static RAM (SRAM) based Field
Programmable Gate Arrays (FPGAs) [7]. As the routing in FPGAs is a very
complex combinatorial optimization problem, routing process can be carried out
in two phases: global routing followed by detailed routing [5]. Global routing de-
termines the course of wires through sequences of channel segments. Detailed
routing determines the wire segment allocation for the channel segment routes
found in the first phase which enables feasible switch box interconnection con-
figurations [5, 9, 10].

Global routing in FPGA can be done by using global routing algorithms
proposed for standard cells [5]. LocusRoute global router is one of this type of
router used for global routing in FPGAs [4] which divides the multi-pin nets into
two-pin nets and considers only two or less bend, minimum distance routes for
these two-pin nets. The objective in LocusRoute is to distribute the connections
among channels so that channel densities are balanced. In this work, we propose
a new approach for the solution of global routing problem in FPGAs by using
Mean Field Annealing (MFA) technique.

MFA merges collective computation and annealing properties of Hopfield
neural networks [2] and simulated annealing [3], respectively, to obtain a general
algorithm for solving combinatorial optimization problems [1]. MFA can be used
for solving a combinatorial optimization problem by choosing a representation
scheme in which the final states of the spins can be decoded as a solution to the
target problem. Then, an energy function is constructed whose global minimum
value corresponds to the best solution of the target problem. MFA is expected
to compute the best solution to the target problem, starting from a randomly

46

chosen initial state, by minimizing this energy function. Steps of applying MFA
technique to a problem can be summarized as follows.

1) Choose a representation scheme which encodes the configuration space
of the target optimization problem using spins. In order to get a good
performance, number of possible configurations in the problem domain
and the spin domain must be equal, i.e., there must be a one-to-one
mapping between the configurations of spins and the problem.
2) Formulate the cost function of the problem in terms of spins, i.e.,
derive the energy function of the system. Global minimum of the energy
function should correspond to the global minimum of the cost function.
3) Derive the mean field theory equations using this energy function, i.e.,
derive equations for updating averages (expected values) of spins.
4) Select the energy function and the cooling schedule parameters.

The FPGA model used in this paper are given in Section 2. The proposed formu-
lation of the MFA algorithm for the global routing problem following these steps
is presented in Section 3. The performance of the proposed MFA algorithm is
evaluated in comparison with LocusRoute algorithm. Section 4 summarizes the
implementation details of these two-algorithms. Finally, experimental results are
presented in Section 5.

2 G l o b a l R o u t i n g P r o b l e m in F P G A s

The form of commercial FPGA consists of a two dimensional regular array of
programmable logic blocks (LB's), a programmable routing network and switch
boxes (SB's) [6, 13, 14]. Logic blocks are used to provide the functionality of a cir-
cuit. Routing network makes connections between LB's and input/output pads.
Routing network of FPGA consists of wiring segments and connection blocks.
Wiring segments have three type of routing resources in the commercial SRAM
based FPGA [13]: channel segments, long lines and direct-interconnections. A
horizontal (vertical) channel segment consists of a number of parallel wire seg-
ments connecting two successive SB's in a horizontal (vertical) channel. The
SB's allow programmed interconnection between these channel segments. Direct-
interconnection provides the connections between neighbor LB's. Long lines cross
the routing area of FPGA vertically and horizontally. Connection blocks provide
the connectivity from the input/output pins of LB's to the wiring segments of
the respective channel segments. Each pin can be connected to a limited number
of wiring segments in a channel and this is called as flexibility of connection
block [7]. In this paper, it is assumed that each LB pin can be connected to all
wiring segments in the respective channels. Therefore, we can omit the connec-
tion block in our FPGA model.

Since the direct-interconnections are used by neigbor LB's to provide mini-
mum propagation delay and the long lines are used by signals which must travel
long distances (i.e., global clock), these interconnection resources are not consid-
ered in the global routing. Hence, our FPGA model for global routing considers

47

1 2 3 4 5 6

," Vertical
)Channel Segment

2[....... SB43 3[L SB

....... LB43

4 r SB: Switch Box
LB: Logic Blocks

Horizontal
Channel Segment

Fig. 1. The FPGA model used for Global Routing

only the LB's, SB's and channel segments. An FPGA can be modeled as a two
dimensional array of LB's which are connected to the vertical and horizontal
channel segments, and SB's which make connections between the horizontal and
vertical channel segments (Fig. 1).

In this work, we divide all multi-pin nets into two-pin nets using minimum
spanning tree algorithm [12] as in LocusRoute. Hence, a net refers to a two-pin
net here, and hereafter. Consider the possible routings for a two-pin net with
a Manhat tan distance of dh q-d~ where dh and d~ denote the horizontal and
vertical distances, respectively, between the two pins of the net on the LB grid.
The routing area of this net is restricted to a (dh+ l)× (d~ +1) LB grid as shown
in Fig. 2.a. Then, the shortest distance routing of this net can be decomposed
into three i~depende~t routings as follows. Each pin of this net has only one
neighbor SB in the optimal routing area. Hence, each pin can be connected to
its unique neighbor SB either through a horizontal or a vertical channel segment
(Fig. 2). Meanwhile, the optimal routing area for the connection of these two
unique SB's is restricted to a dh ×dv SB grid embedded in the LB grid (Fig. 2).
Hence, by exploiting this fact, we further subdivide each net into three two-pin
subnets referred here as LS, SS and SL subnets (Fig. 2.b). Here, LS and SL
subnets represent the LB-to-SB and SB-to-LB connections, respectively, and SS
subnets represent the SB-to-SB connection for a particular net. Therefore, we
consider only two possible routings for both LS and SL subnets and dh+d~-2
possible one or two bend routings for SS subnets for routing the original net.

We define an FPGA graph F(L, S, C) for modeling the global routing problem
in FPGAs. This graph is a P x Q two-dimensional mesh where L, S and C
denote the set of LB's, SB's and channel segments, respectively. Here, P and Q

48

,[
Source LB -

Source SB--

2 3 4 5

~ Target SB

II
~ S S S SBI

LS-subnet

. . . . , o o / f .) ~ _ s u b n e t

............... i '

,,,_ i 2

J
SL-subnet

(a) (b)

Fig. 2. (a) The routing area of the two-pin net and its subnets, (b) The possible routes
for each subnets

is the number of horizontal and vertical channels in the FPGA. Each grid point
(vertex) s m of the mesh represents the SB at horizontal channel p and vertical
channel q. Each cell Lpq of the mesh represents the LB which is adjacent to four
SB's sin, Sp,q+l, sp+l,q+l and sp+l,q. Edges are labeled such that the horizontal
(vertical) edge Cq (c~q) corresponds to the channel segment between the two
consecutive SB's s m and Sp,q+l (Sp+l,q) on the horizontal (vertical) channel p
(q), respectively. Figure 3 displays a 8×6 sample FPGA graph. Then, the pins of
the L S / S L and S S type subnets are assigned to the respective cell-vertex and
vertex-vertex pairs of the graph as is in mentioned earlier.

The global routing problem reduces to searching for most uniform possible
distribution of the routes for these subnets. The uniform distribution of the
routes is expected to increase the likelihood of finding a feasible routing in the
following detailed routing phase. Hence, we need to define an objective function
which rewards balanced routings. We associate weights with the edges of FPGA
graph in order to simplify the computation of the balance quality of a given

h (C~q) denotes h (W;q) of a horizontM (vertical) edge c m routing. The weight w m
the density of the respective channel segment. Here, the density of a channel
segment denotes the total number of nets passing through that segment for a
given routing. Using this model, we can express the balance quality B of a given
routing R as

P Q - 1 Q P - 1

p = l q = l q = l io=l

As is seen in Eq. (1), each channel segment contributes the square of its density to
the objective function thus penalizing imbManced routing distributions. Hence,

49

FPGA Graph
1 2 3 4 5 6
r t w w ~ F

/
L

) ,I ,) ~) ~ ~ ~ 2

Y
S43 " 152

/
R1

7 8
F

k

R3 ~ - - - ~ - - - ~ w-----l~----~ ~
R2 *

L 2 4 ~ - - ~ i i

1_25 $75

RI: A possible route for SS-subnet ($43, $75)

R2: Two possible routes for the LS-subnet (L34 ,$45)

R3: Two possible routes for the SL-subnet ($73 ,L 3)

Fig. 3. The Cost Graph for FPGA model

the global routing problem reduces to the minimization of the objective function
given in Eq. (1).

3 M F A F o r m u l a t i o n

The MPA algorithm is derived by analogy to [sing and Ports models which
are used to estimate the state of a system of particles, called spins, in thermal
equilibrium. In Ising model, spins can be in one of the two states represented
by 0 and 1, whereas in Potts model they can be in one of the K states. All
LS/SL subnets are represented by Ising spins since they have only two possible
routes. In Ising spin encoding of each LS/SL subnet m, u~ = 1 (0) denotes
that the LB-to-SB or SB-to-LB routing is achieved through a single horizontal
(vertical) channel segment. Each SS subnet n having Ks >_ 2 possible routes
is represented by a K,~-state Potts spin. The states of a Ks-state Potts spin is
represented using a K~ dimensional vector

= (2)

where "t" denotes the vector transpose operation. Each Potts spin Vn is allowed
to be equal to one of the principal unit vectors el , er, • •., eK,,, and can not
take any other value. Principal unit vector er is defined to be a vector which
has all its components equal to 0 except its r ' th component which is equal to 1.
Potts spin vn is said to be in state r if vn = e,.. Hence, a K~-state Potts spin vn

50

is composed of K,~ two state variables v,~l, . . . , v,~, , . . . , vnK~, where v,~r E {0, 1},
with the following constraint

K s

1 (a)

If Ports spin n is in state r (i.e., v ~ = 1 for 1 _< r _< K~) we say that the
corresponding net n is routed by using the route r.

In the MFA algorithm, the aim is to find the spin values minimizing the
energy function of the system. In order to achieve this goal, the average (ex-
pected) values (urn} and {Vn} = [(v~,}, . . . , (v~r) , . . . , (V~K~}]t of all Ising and
Potts spins, respectively, are computed and iteratively updated until the system
stabilizes at some fixed point. Note that for each Ising spin m, um C {0, 1}, i.e.,
u,~ can take only two values 0 and 1, whereas (u,~) E [0, 1], i.e., (u,~} can take
any real value between 0 and 1. Similarly, for each Potts spin n, v,~ E {0, 1}
whereas (v,~) E [0, 1]. When the system is stabilized, (u,~) and (v,,~} values are
expected to converge to either 0 or 1 with the constraints ~ K . (v~r} = 1 for the r = l
Potts spins.

In order to construct an energy function it is helpful to associate the following
meaning to the values (Urn} for LS/SL subnets.

(u,~} = P(subnet m is routed by using the horizontal channel segment)

1 - (urn) = P(subnet m is routed by using the vertical channel segment)

That is, (urn) and 1-{u,~) denote the probabilities of finding Ising spin m at states
1 and 0, respectively. In other words, (u.~) and 1-(urn} denote the probabilities
of routing subnet rn through a single horizontal and vertical channel segment,
respectively. Similarly, for S,5' subnets represented with Potts spins

(v~} = P(subnet n is routed through route r) for 1 < r < K,~ (4)

That is, {vn~} denotes the probability of finding Potts spin at state r for 1 _<
r _< Kn. In other words, {v~,) denotes the probability of routing net n through
route r. Here and hereafter, um and v,~ will be used to denote the respective
expected values ((u,~} and (v~},respectively) for the sake of simplicity. Now, we
formulate the total density cost of global routing problem as an energy term

P Q - 1 O P - 1

E (u, v) = + G (v)] + Z [% (u) + %(v)]

where

p = l q= l q= l p = l

whq (U) = E um and w ~ e (V) = E E v ~
m~c~q n~c~ reR~,~c~q

% (u) = and % (V) =
rn gc~q n g c~q r E R ~ , r g c~q

(5)

Vnr

where U = {u l ,u2 , . . . } and V = { v l , v 2 , . . . } represent the sets of Ising and
Potts spins corresponding to the LS/SL and SS subnets, respectively. For

51

LS/SL subnets, "m 9 cvq" denotes "for each LS/SL subnet m whose pair of pins
share the horizontal or vertical channel segment Cvq". For SS subnets "n ~ Cpq"
denotes "for each SS subnet n whose routing area contains the horizontal and
vertical channel Cvq". Furthermore, "r G R~, r ~ %¢" denotes "for each possible
route r of SS subnet n which passes through the horizontal or vertical channel
segment Cpq". Here, Wpq(U) and Wpq(V) represent the probabilistic densities of
the horizontal or vertical channel segment Cpq for the current routing states of
LS/SL and SS subnets, respectively. Hence, Wpq(U, V) = Wpq(U)+wpq(¥) rep-
resents the total probabilistic density of horizontal or vertical channel segment
Cpq for the overall current routing state.

Mean field theory equations, needed to minimize the energy function EB,
can be derived as

¢ .~ (u , v) = EB(U, V)l.m=0 - E . (U , V)l~m=l

= - 2 [w~q(V, V) - % (U , V) - 2(u~ - 0.5)] (6)

where h v Cpq, Cpq C m

for an Ising spin m and

¢. ,~(u, v) = EB(U, V)[vo=0 - E . (U , V) [v (r)

c~qEr c~qEr

for 1 < r < K~

for a Ports spin n, respectively. Mean field values 4,~ and ¢,,. can be interpreted
as the increases in the energy function EB(U, V) when Ising and Potts spins
m and n are assigned to states 1 and r, respectively. Hence, -4),~ and - ¢ ~ r
may be interpreted as the decreases in the overall solution qualities by routing
LS/SL and SS subnets rn and n through the horizontal channel and route r,
respectively. Then, u,~ and v~,. values are updated such that probabilities of
routing subnets m and n through horizontal channel and route r increase with
increasing mean field values qS,~ and ~b~ as follows:

e¢~/T
um -- 1 + e¢-,/T (8)

e¢~lT
for r = 1 , 2 , . . . , K n (9) Vnr - - K ~

Ek=l e ~ / T

respectively. After the mean field equations (Eqs. (6-7)) are derived, the MFA
algorithm can be summarized as follows. First, an initial high temperature spin
average is assigned to each spin, and an initial temperature T is chosen. Each
u,~ value is initialized to 0.5 :t: ~,~ and each vnr value is assigned to 1/K~
5,~ where 5,~ and 5,~ denote randomly selected small disturbance values. Note
that limT-~oo u,~ = 0.5 and limT~oo v ~ = 1/K,~. In each MFA iteration, the
mean field effecting a randomly selected spin is computed using either Eq. (6)
or Eq. (7). Then, the average of this spin is updated using either Eq. (8) or
Eq. (9). This process is repeated for a random sequence of spins until the system

52

is stabilized for the current temperature. The system is observed after each spin
update in order to detect the convergence to an equilibrium state for a given
temperature. If energy function EB does not decrease in most of the successive
spin updates, this means that the system is stabilized for that temperature.
Then, T is decreased according to a cooling schedule, and iterative process is
re-initialized. At the end of this cooling schedule, each Ising spin m is set to state
1 if u m > 0.5 or to state 0, otherwise. Similarly, maximum element in each Potts
spin vector is set to 1 and all other element are set to 0. Then, the resulting
global routing is decoded as mentioned earlier.

4 I m p l e m e n t a t i o n

The performance of the proposed MFA algorithm for the global routing problem
is evaluated in comparison with the well-known LocusRoute algorithm [4].

The MFA global router is implemented efficiently as described in Section 3.
in i t in the Average of each Ising spin m is initialized by randomly selecting u m

range 0.45 _< um _< 0.55. Similarly, average of each Potts spin n is initialized
by randomly selecting K,~ v,~r values in the range 0.9/K,~ <_ v,~r <_ 1.1/K,~

and normalizing v,~i'it = v , ~ r / ~ 1 vnk for r = 1, 2 , . . . , Kn. Note that random
selections are achieved by using uniform distribution in the given ranges.

The initial temperature parameter used in mean field computation is es-
t imated using the initial spin averages values. Selection of initial temperature
parameters To is crucial to obtain good routing. In previous applications of MFA,
it is experimentally observed that spin averages tend to converge at a critical
temperature. Although there are some methods proposed for the estimation of
critical temperature, we prefer an experimental way for computing To which
is easy to implement and successful as the results of experiments indicate. We
compute the initial average mean field as

Nm N~ K,~ N,~

-m + E E '°" E K o)
rn-----1 n = l k= l n = l

Note that initial mean field values digit and ~init -m -,~r are computed according to
init and init Here, N,~ and N~ Eqs. (6) and (7) using initial spin values u m vnr .

denote the total number of Ising and Potts spins, respectively, where N = Nm +
Nn denotes the total number of spins (subnets). Then, initial temperature is

¢~,~init where constant C is chosen as 540 for all experiments. computed as To = v,-a~g
The cooling schedule is an important factor in the performance of MFA

global router. For a particular temperature, MFA proceeds for randomly se-
lected unconverged net spin updates until AE < c for M consecutive iterations
respectively where M = N initially and e = 0.05. Average spin values are tested
for convergence after each update. For an Ising spin rn, if either um < 0.05 or
um >_ 0.95 is detected, then spin m is assumed to converge to state 0 or state
1, respectively. For a Potts spin n, if vnr _> 0.95 is detected for a particular
r = 1 , 2 , . . . , K n , then spin n is assumed to converge to state r. The cooling

53

process is realized in two phases, slow cooling followed by fast cooling, similar to
the cooling schedules used for Simulated annealing. In the slow cooling phase,
temperature is decreased by T = a x T where a = 0.9 until T < T0/1.5. Then,
in the fast cooling phase, M is set to M/2, oL is set to 0.8. Cooling schedule
continues until 90% of the spins converge. At the end of this cooling process,
each unconverged Ising spin m is assumed to converge to state 0 or state 1 if
urn < 0.5 or Urn >_ 0.5, respectively. Similarly, each unconverged Potts spin n is
assumed to converge to state r where Vnr = max{v,~k : k = 1, 2 , . . . , Kn}. Then,
the result is decoded as described in Section 3, and the resulting global routing
is found.

The LocusRoute algorithm is implemented as in [4]. As the LocusRoute de-
pends on rip-up and reroute method, LocusRoute is allowed to reroute the cir-
cuits 5 times. No bend reduction has been done as in [6]. Both algorithms are
implemented in the C programming language.

5 E x p e r i m e n t a l R e s u l t s

This section presents experimental performance evaluation of the proposed MFA
algorithm in comparison with LocusRoute algorithm. Both algorithms are tested
for the global routing of thirteen ACM S'IGDA Design Automation benchmarks
(MCNC) on SUN SPARC 10 . The first 4 columns of Table 1 illustrate the
properties of these benchmark circuits.

These two algorithms yield the same total wiring length for global routing
since two or less bend routing scheme is adopted in both of them. Last six
columns of Table 1 illustrate the performance results of these two algorithms for
the benchmark circuits. The MFA algorithm is executed 10 times for each cir-
cuit starting from different, randomly chosen initial configurations. The results
given for the MFA algorithm in Table 1 illustrate the average of these execu-
tions. Global routing cost values of the solutions found by both algorithms are
computed using Eq. (1) and then normalized with respect to those of MFA. In
Table 1, maximum channel density denotes the number of routes assigned to the
maximally loaded channels. That is, it denotes the minimum number of tracks
required in a channel for 100% routability.

As is seen in Table 1, global routing costs of the solutions found by MFA
are 3.1%-10.5% better than those of LocusRoute. As is also seen in this table,
maximum channel density requirements of the solutions found by MFA are less
than those of LocusRoute in almost all circuits except alu2 and terml. Both
algorithms obtain the same maximum channel density for these two circuit.

Figures 4 and 5 contain visual illustrations as pictures (left) and histograms
(right) for the channel density distributions of the solutions found by MFA
and LocusRoute, respectively, for the circuit C1355. The pictures are painted
such that the darkness of each channel increases with increasing channel den-
sity. Global routing solutions found by these two algorithms are tested by using
SEGA [5] detailed router for FPGA. Figure 6 illustrates the results of the SEGA
detailed router for the circuit C1355

54

Tab l e 1. The performance results of the MFA and LocusRoute algorithms for the
global routing of MCNC benchmark circuits

Benchmarks Performance Results
Circuits MFA LocusRoute
number number FPGA global max. exec. globM max. exec.

of of size routing] channel time routing channel time name
I

nets 2 -p inne t s cost density (sec) cost density (sec)

9symml 71 259 10x9 1.000 12.0 0.36 1,032 14 0.28
too-large 177 519 14x13 1.000 16.0 0.88 1,071 17 0.64

apex7 124 300 l lx9 1.000 14.0 0.42 1,073 16 0.29
example2 197 444 13xll 1.000 15.0 0.64 1,097 16 0.72

vda 216 722 16x15 1,000 17.0 0.42 1.055 18 0.10
alu2 137 511 14x12 1.000 17,0 0,30 1.080 17 0.32
alu4 236 851 18x16 1.000 17.0 0.68 1.073 19 0.50

terml 87 202 9x8 1.000 14.0 0,34 1.093 14 0.27
C1355 142 360 12xll 1.000 13.0 0.56].119 15 0.43
C499 142 360 12xll 1.000 15.0 0.48 1.075 16 0.36
C880 173 427 13xll 1.000 15.4 0,68 1.065 17 0.38
[(2 388 1256 21x19 1.000 20.2 0,94 1.038 22 0.60

Z03D4 575 2135 26x25 1.000 17.0]2.34 1.117 18 1.84

6 C o n c l u s i o n

In this paper, we have proposed an order - independent global rou t ing a lgor i thm

for F P G A , based on Mean Field Anneal ing . The performance of the proposed
global rou t ing a lgor i thm is evaluated in compar ison with the LocusRoute global
router for 13 MCNC benchmark circuits. Exper imen ta l results indicate t ha t the

proposed MFA heuristic performs bet ter t h a n the LocusRoute.

7 Acknowledgments

The authors would like to t hank J o n a t h a n Rose for providing the benchmarks
and necessary tools for F P G A .

55

Fig. 4. Channel density distribution obtained by MFA for the circuit C1355

Fig. 5. Channel density distribution obtained by LocusRoute for the circuit C1355

43143145t=[

::~: ~ '~ ~TTb"I~ 5 -

!

J - _ _ _ - D

(b)
Fig. 6. $EGA detailed router results of the circuit C1355 for the global routing solu-
tions obtained by (a) MFA (b) LocusRoute

56

References

1. T. Bultan and C. Aykanat, " A new mapping heuristic based on mean field an-
nealing, " Journal o] Parallel and Distributed Computing, 16 (1992) 292-305.

2. J.J.Hopfield, , and D.W.Tank, "Neural Computation of Decisions in Optimization
Problems", Biolog. Cybern., vol. 52, pp. 141-152, 1985.

3. S.Kirkpatrick, C.D.Gelatt, and M.P.Vecchi. " Optimization by simulated anneal-
ing", Science, vol. 220, pp. 671-680, 1983.

4. J.Rose, "Parallel Global Routing for Standart Cells" IEEE Transactions on
Computer-Aided Design Vol. 9 No. 10 pp:1085-1095 October 1990.

5. S.Brown, J.Rose, Z.Vranesic, "A Detailed Router for Field Programmable Gate
Arrays" Proc. International Conference on Computer Aided Desing 1990.

6. J.Rose and B.Fallah, " Timing-Driven Routing Segment Assignment in FPGAs "
Proc. Canadian Conference on VLSI

7. J.Rose, A. E1 Carnal, A. Sangiovanni-vincentalli, " Architecture of Filed-
Programmable Gate Arrays " Proceedings of the IEEE pp:I013-1029 .Vo1:81, No:7,
July 1993.

8. C.Sechen, "VLSI Placement and Global Routing Using Simulated Annealing",
Kluwer Academic Publishers. 1988

9. J.Greene, V.Roychowdhury, S.Kaptanoglu, A.E.Gamal, "Segmented Channel
Routing", 27th ACM/IEEE Design Automation Conference pp:567-572 1990.

10. S.Burman, C.Kamalanathan, N.Sherwani, "New Channel Segmentation Model and
Routing for High Performance FPGAs", Proc. International Conference on Com-
puter Aided Desing, pp:22-25 1992

11. N.Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer Aca-
demic Publishers. 1993

12. T.Lengauer, "Combinatorial Algorithms for Integrated Circuit Layout" 1990
Wiley- Teubner Series.

13. "Fundamentals of Placement and Routing", Xilinx Co. 1990
14. "The Programmable Gate Array Data Book", Xilinx Co. 1992.

Power Diss ipat ion Driven F P G A Place and
Route under De lay Constraints

Kaushik Roy 1 and Sharat Prasad 2

1 Electrical Engineering, Purdue University, West Lafayette, IN, USA
2 Integrated Systems Lab., Texas Instruments, Dallas, TX, USA

Abst rac t . In this paper we address the problem of FPGA place and
route for low power dissipation with critical path delay constraints. The
presence of a large number of unprogrammed antifuses in the routing
architecture adds to the capacitive loading of each net. Hence, a con-
siderable amount of power is dissipated in the routing architecture due
to signal transitions occurring at the output of logic modules. Based on
primary input signal distributions, signal activities at the internal nodes
of a circuit are estimated. Placement and routing are then carried out
based on the signal activity measure so as to achieve routability with
low power dissipation and required timing. Results show that more than
40% reduction in power dissipation due to routing capacitances can be
achieved compared to layout based only on area and timing.

1 I n t r o d u c t i o n

The Field Programmable Gate Arrays (FPGA's) combine the flexibility of mask
programmable gate arrays with the convenience of field programmability. The
FPGA's which were once used only for prototyping has found application in
larger volume productions too. tlence, it is extremely important to achieve high
performance and lower power dissipation out of these devices. Depending on the
technology, the FPGA based designs can have large interconnect capacitances.
In this paper we will consider minimization of power dissipation due to wiring
capacitances for the row-based FPGA's under delay constraint.

With the widespread use of portable systems, power dissipation of circuits
have become a very important design consideration for longer battery life and
enhanced reliability. And if power dissipation is low enough, expensive ceramic
packages can be replaced by plastic ones which cost about 25% less. There are
various ways in which power dissipation can be minimized. One of the conven-
tional ways of minimizing power comes from scaling down the supply voltage
at the cost of larger circuit delays. Considerable improvement in power dissipa-
tion can be achieved at the cost of higher circuit delays. Hence, lowering supply
voltage make delay constrained power optimization even more desirable in view
of the longer delay times. Recently there has been a lot of research effort to
minimize power dissipation during different phases of a design such as high level
synthesis, logic synthesis, and circuit synthesis [1, 2]. These synthesis procedures
are based on average number of signal transitions on circuit nodes. Due to pres-
ence of a large number of antifuses in the routing architecture, the FPGA-based

58

designs can have large wiring capacitance. In this paper we will model the power
dissipation due to interconnects using signal transitions and minimize power
dissipation during placement and routing for FPGA's .

Figure 1 shows a row-based FPGA architecture [4]. There are rows of Logic
Modules (LM's) each of which can implement a large number of logic functions.
The routing channels are in between the rows of logic modules and are used for
routing of the nets. The routing tracks are laid out. The tracks are segmented
and the adjacent segments are separated by horizontal antifuses (hfuses). In
the unprogrammed state, the antifuses have a very large resistance and a small
capacitance. However, programming these antifuses produces a low-resistance
bidirectional connection between adjacent segments. The pins of the logic mod-

pins

,~ Q

' l / /

1 3

) b ,

) (

e

: c I

Programmed Logic Module
Cfuse Hfuse Width

Logic Module

) (

) (

f
0() (

<
\

Hfuse Cfuse

Fig. 1. Row-based FPGA Architect,re

ules can be connected to the routing tracks using the vertical lines as shown in
Figure 1. There is a cross antifuse (cfuse) present at the crossing of each hori-
zontal and vertical line. The cruse have the same electrical characteristic as the
hfuse. In the programmed state a low-resistance connection is obtained between
a pin of the LM and a routing track. Figure 1 shows the routing of net 1 us-
ing segments d and e by programming two cruses and all It fuSe. I f there are T
tracks in the channel, and M number of vertical lines, then at most one cruse
per vertical line gets programmed, and hence, at least M (T - 1) cruses remain
unprogrammed in each channel. Each of the unprogrammed antifuses contribute
a small capacitance, and due to the presence of large number of such antifllses
on each segment, the capacitive loading can be significant. Power dissipation

59

in CMOS circuits is associated with charging and discharging of LM load ca-
pacitances, and hence, consideration of power dissipation during layout is very
impor tan t for FPGA's .

The paper is organized as follows. Section 2 on preliminaries and definitions
introduces the reader to signal activity est imation at the output of CMOS logic
gates. Section 3 considers est imation of power dissipation due to layout capac-
itances. The details of the power dissipation driven F P G A layout algori thms
are given in Section 4. Results of our analysis is given in Section 5, and finally
conclusions are drawn in Section 6.

2 P r e l i m i n a r i e s and D e f i n i t i o n s

2.1 M u l t i l e v e l logic r e p r e s e n t a t i o n

Multilevel logic can be described by a set S" of completely specified Boolean flmc-
tions. Each Boolean flmction f E .T, maps one or more input and intermediate
signals to an output or a new intermediate signal. A circuit is represented as a
Boolean network. Each node has a Boolean variable: and a Boolean expression
associated with it. There is a directed edge to a node g from a node f , if the
expression associated with node g contains in it the variable associated with f
in either true or complemented form. A circuit is also viewed as a set of gates.
Each gate has one or more input pins and (generally) one output pin. Several
pins are electrically tied together by a signal. Each signal connects to the output
pin of exactly one gate, called the driver gate.

2.2 S igna l P r o b a b i l i t y a n d S igna l A c t i v i t y

Power dissipation can be estimated if signal transitions are accurately est imated
for all the nets. Research on estimation of the average number of signal transi-
tions has been reported in [3, 1]. Digital circuit signals can be represented as a
steady state s tat ionary stochastic process [3], each signal being associated with a
signal probability and an activity. Signal probability is defined as the probabil i ty
that a particular signal has a logic value of ONE, and signal aclivily is defined
as the average number of signal transitions at the nets. We assume that signal
probabili ty and activity of the pr imary input signals are known, and can be
obtained from system level simulations of the design with real life inputs. The
signal activities at the internal nodes of a circuit can be efficiently and accurately
est imated using the methods described in [1].

Let us consider a multi-input, mult i -output logic module M which imple-
ments a Boolean function. M can be a single logic, gate or a higher level circuit
block. We assume that the inputs to M, gl, g2, ..g,~ are mutual ly independent
processes each having a signal probabili ty of P(9~), and a signal activity of k(g~),
i _< n. The signal probabili ty at. the output can be easily computed using one
of the methods described in [10]. For example, if P1, P~, and Pa are the input
signal probabilities to a three input AND gate, the output signal probabil i ty

60

is given by P1P~P3, whereas, for an OR gate the output signal probability is
1 - (1 - P1)(1 - P2)(1 - P3). For an inverter, the ouput signal probability is
simply (1 - P1), where P1 is the input signal probability. The signal activity at
any output h j , of M is given by

r~

A(hj) = ~ P (Ohj "~ V(x i) (1)
i=1 k'-~-iffi l]

Here xi, i = 1, .., n are the module inputs and cghlOg is the boolean difference of
function g with respect to h and is defined by

Oh
0~ = h I,,=~ • h I.=0= h. m hy (2)

Figure 2 shows the propagation of signal activity through AND, OR, and NOT
gates. The signal probabilities and the circuit activities a.t the primary inputs to
a circuit are assumed to be available.

P , A ~ A

P1, A1

P2, A2

P1.A2 + P2.A1

P1, A1

P2, A2

(1-P1).A2 + (1-P2).A1

Fig. 2. Propagation of circuit activities through basic gates

3 Calculation of Power Dissipation

The three different sources of power dissipation in CMOS circuits are - leakage
current, short circuit current, and signal transitions to charge or discharge load

61

capacitances. Of these three, the last is the most dominant one and will only be
considered in the following discussions. The overall load capacitance that each
logic module or logic gate experiences is due to the routing capacitances, the
number of fanouts of the LM, and the transistor gate capacitance per fanout
connection.

For the FPGA's , the segmented routing tracks are laid out, and each segment
has a number of antifuses on it. Programming these antifuses produces a bidi-
rectional low-resistance connection between the segment and the corresponding
vertical line connected to a logic module pin (in case of c fuses) or between two
segments (in case of hfuses). However, in the unprogrammed state each antifuse
is associated with a small capacitance, and due to the presence of a large num-
ber of such antifuses on each segment the capacitive loading can be significant.
If the signal activity associated with a net having large wiring capacitance is
high, larger power will be dissipated due to the interconnect. The average power
dissipation can be given by:

Powering = ~ V~D.A,.C, (3)
i E all L M ' s

where V D D is the supply voltage, Ci is the capacitive load, and Ai represents the
signal activity associated with each LM output. The power dissipation internal
to an LM has not been considered in the above equation. The capacitive load
Ci that each logic module i experiences can be approximated by

.f anout i

c, : + cgj (4)
/ = 1

where the Cri represents the total wiring capacitance due to the metal line form-
ing the track segment(s) and the unprogrammed cruses on it, fanoutl represents
the number of fanout for logic module i, and Cg] represents the transistor gate
capacitances associated with each fanout f . If the wiring capacitance is com-
parable to the the fanout gate capacitances considerable improvement in total
power dissipation can be achieved if a signal activity based layout algorithm can
be used.

4 F P G A Layout

From the previous section it can be noted that power dissipation due to wiring
capacitances can be minimized if it is possible to assign the nets with higher
activity to routing tracks associated with lower capacitance. Logic synthesis to
achieve low power dissipation has been considered in [1], where multilevel logic
was synthesized based on signal activity measure. Previous research on F P G A
layout mainly concentrated on routability and critical path delays [4, 5, 7]. In
this research power minimization has been considered along with routabili ty
and performance optimization during placement and channel routing. The sig-
nal activities on different nets are determined from the signal probabilities and

62

activities of the primary input signal using Equation 1. We have developed tech-
niques with efficient datastructures to accurately determine signal activities even
in the presence of signal correlations, the details of the procedure is given in [1].

4.1 P l a c e m e n t

The placement algorithm is based on simulated annealing [9]. The cost function
not only considers timing and wire length penalty, but it also considers the
activity measures of the signals. The FPGA architecture details and constraints
are incorporated in the array template. Unlike the gate arrays, the feedthrough
cells cannot be inserted for vertical routing. Whenever a pin cannot be reached by
a module output through its dedicated vertical tracks, uncommitted feedthrough
segments have to be used. This appears as an extra cost in the cost function for
placement optimization.

The cost function (C) consists of total wire length (W), power dissipation
penalty (W * A), timing path penalty (P), and extra cost (F) for using uncom-
mitted feedthrough. The activity associated with the net, under consideration is
represented as A. The complete expression for the cost, function is given by

C~ = W + a(W * A) + bP + cF (5)

where a, b, and c are the relative weights of the three terms in the cost flmction.
The wire length of a net is estimated as half the perimeter of the minimum
rectangle, a bounding box, that encompasses the net. The wire length W is
proportional to the FPGA routing capacitances, and hence, W * A is proportional
to the power dissipated due to the routing capacitances. For each critical timing
path, an upper bound is put on the wire length of all the nets in the path. A
penalty is assigned for a path that has the wire length beyond this upper bound.

In order to provide a homogeneous cost factor, the extra cost (F) of using
uncommitted feedthrough segment is represented by the vertical distances be-
tween module output vertical span and the bounding box of the net. To facilitate
calculation, a concept of module driver is introduced. A module driver is a pin
that drives the rest of the pins in a net. With the location of the module driver
specified, F is readily available. For our timing and power dissipation driven
placement, the identification of the driver for a net will help the accuracy of
delay and power estimation. Global routing follows placement. It efficiently uses
the scarce vertical routing resources or feedthroughs to connect same nets in
different channels.

4.2 D e t a i l e d R o u t i n g

A routing channel contains segmented routing tracks as shown in Figure 1. The
channel routing problem is formulated as an assignment problem where each net
within a channel is assigned to one or more unassigned segments. Each net within
a channel is allowed to use at most one track due to a technology constraint which
does not allow programming of antifuses connected in an L-shaped fashion [4].

63

The programming of such antifuses can lead to programming two antifuses at
the same t ime which can degrade the performance of the p rogrammed antifuses.

The cost of routing is determined by the number of segments used by the crit-
ical nets in a channel, and the length of the segments assigned to different nets.
The number (Hx) of hfuses to be p rogrammed is equal to the number of segments
assigned to the corresponding net (z) minus one. Depending on the technology,
the resistance associated with programmed antifuses can be detr imental ly high.
If a net x of length Lx is routed with p (1 < p < K, m a x i m u m of K segments
allowed) segments, each of length Lj (j = 1, ...,p), then {(~Y=I Lj) - L~} gives
a measure of the wasted (or excess) length of segment(s). It can be observed tha t
the wasted segment is associated with unprogrammed cruses which increases the
capacitive loading on the net. This has two detr imental effects: a large segment
wastage means a larger delay on that net, and if the net is critical, t iming of the
circuit might get affected. Secondly, if the net is associated with large activity,
higher power will be dissipated due to higher capacitance. Besides, these two
performance effects, the segment wastage is also associated with routabil i ty of
the channel. For K-segment routing, in which a max imum of K segments can be
used by each net, we define the cost C~ of routing a net x as

where
P

j = l

/3 = H~

The factor (~ is a product of segment wastage due to tile assignment of a net
to a segment(s) and the activity of that net. The factor fl is associated with
routing performance, because tile programmed hfuses add to delays of a net.
The weights wl, w'2 assigned to tile wastage factor, and the horizontal antifilse
usage factor respectively, are determined by the technology under consideration.
For example, tile metal-metal horizontal antifllse has a nmch lower p rogrammed
resistance than a p rogrammed ONO [4] antifuse, and hence, w2 for the latter
technology should be higher than tile meta l -meta l antifilse technology. The total
cost of routing all the nets in a channel is ~ p Cp, 0 < p < V, where V is the
total number of nets in a channel.

Green et. al. [8] have shown that K-segment (I'(> 1) channel routing problem
is NP-complete. We use a routing algorithm based on net ordering. The nets are
ordered in terms of their length in a channel times the activity associated with
that net (L~A,.), and the nets with higher length-activity measure is routed
first, ttence, the nets which are routed first can be assigned to tile best possible
segment with least segment wastage. All t iming critical net, can be routed first
for t iming critical designs. If a net is unroutable, we resort to backtracking to
determine if undoing a previous net-segment assignment can achieve routabil i ty
[5]. If exhaustive backtracking is unable to route the nets in the channel, then
the channel is not routable. Average power dissipation due to channel routing is
measured using Equation 3.

64

5 Implementat ion and Results

The power dissipation and performance driven FPGA layout algorithms have
been implemented in C on SPARC 10 workstation: Table 1 shows the results of
our analysis on two MCNC benchmarks (bw and duke2) from Microelectronic
Center of North Carolina and some industrial designs. The primary input signals
were assigned signal probabilities of 0.5. Signal activities of primary inputs were
randomly assigned a number between 1 and 7. The logic was synthesized and
internal node activities were calculated using our algorithm of [1]. The FPGA's
used for experimentation had twenty-five routing tracks per channel with chan-
nel segmentation of TPCI010. There were forty-four logic modules per row. For
larger designs we increased the number of rows of logic module to fit the design.
The second column of Table 1 shows the average percentage segment wastage
over all nets of the design. The results have been compared with traditional lay-
out for FPGA's based on timing and routability (R), and our power dissipation
driven layout (P). The number of hfuses to be programmed is shown in the next
column. The last column shows the percentage change in power dissipation due
to routing capacitances. Considerable improvement in power dissipation was ob-
tained for all the examples satisfying all the critical path constraints. The nets
were modeled as RC trees [7] and some of the nets were analyzed using SPICE.
SPICE results indeed show a large improvement in average power dissipation.

T a b l e 1. Layout results

Design Wastage (%)
R P

Ibw 40.9 41.4
duke2 45.8 46.3
f104667 51.6 51.8
f104243 44.9 45.2
f104780 47.9 48.1
[103918 43.8 44.3
cf92382a 52.0 52.2

for some examples

Hfuses % Change
R P Power
0 0 34.3
3 .7 29.7
0 0 32.6

i0 0 23.1
8 9 37.2
3 3 42.1
0 0 22.0

6 Conclusions

Power dissipation and performance driven layout for row-based FPGA's has been
considered in this paper. Power dissipation in CMOS circuits is dependent on the
nature of primary inputs. Hence, probabilistic measures were used to determine
the signal activities. Experimental analysis shows the feasibility of achieving
considerable improvement in power dissipation due to routing capacitances for
FPGA's .

65

7 Acknowledgment

The research was sponsored in part by IBM Corporation under the SUR pro-
gram.

References

1. K. Roy and S. Prasad, "Circuit Activity Based Logic Synthesis for Low Power
Reliable Operations," IEEE Trans. on VLSI Systems Dec. 1993, pp. 503-513.

2. A. Chandrakashan, S. Sheng, and R. Brodersen, "Low Power CMOS Digital De-
sign," IEEE Journal on Solid-State Circuits, Apr. 1992, pp. 473-484.

3. F.N. Najm, "Transition Density, A Stochastic Measure of Activity in Digital Cir-
cuits," Design Automation Conf., 1991, pp. 644-649.

4. A. E1 Gammal,]. Greene, 3. Reyneri, E. Rogoyski, and A. Mohsen, "All Archi-
tecture for Electrically Configurable Gate Array," IEEE Journal of Solid State
Circuits, vol. 24, Apr. 1989, pp. 394-397.

5. K. Roy, "A Bounded Search Algorithm for Segmented Channel Routing for FPQA's
and Associated Channel Architecture Issues," IEEE Trans. on Computer-Aided-
Design, Nov. 1993, pp. 1695-1705.

6. C. Shaw, M. Mehendale, D. Edmondson, K. Roy, M. Raghu, D. Wilmoth, M.
Harward, and A. Shah, "An FPGA Architecture Evaluation Framework," FPGA-
92 workshop, Berkeley, Feb. 1992.

7. S. Nag and K. Roy, "Iterative Wirability and Performance hnprovement for
FPGA's," A C M / I E E E Design Automation Conf., 1993, pp. 321-325.

8. J. Greene, V. Roychowdhury, S. Kaptanaglu, and A. El Gammal, "Segmented
Channel Routing," Design Automation Conf., pp. 567-572, 1990.

9. C. Sechen and K. Lee, "An hnproved Simulated Annealing Algorithm for Row-
Based Placement," Intl. Conf. on Computer-Aided-Design, 1987. pp. 942-995.

10. S. Ercolani, M. Favalli, M. Damiani, P. Olivio, and B. Ricco, ~'Estimation of signal
Probability in Combinational Logic Network," 1989 European Test Conference, pp.
132-138.

F P G A Techno logy M a p p i n g for Power
M i n i m i z a t i o n 1

A m i r H. Fa r r ah i and M a j i d Sa r ra fzadeh

D e p a r t m e n t of Elec t r ica l Engineer ing and C o m p u t e r Science
Nor thwes te rn Univers i ty

Evans ton , IL 60208

A b s t r a c t . The technology mapping problem for lookup table-based FPGAs
is studied in this paper. The problem is formulated as assigning LUTs to nodes
of a circuit so as to minimize the total estimated power consumption. We show
that the decision version of this problem is NP-complete, even for simple classes
of inputs such as 3-level circuits. The same proof is extended to conclude that
the general library-based technology mapping for power minimization is NP-
complete. A heuristic algorithm for mapping the network onto K-input LUTs
in polynomial time, aimed at minimizing the power consumption is presented.
Despite the fact that the Boolean properties of the network are not exploited
in the mapping procedure~ the experimental results show %14.8 improvement
on the average power consumption compared to the results obtained from a
mapping algorithm aimed at minimizing the number of LUTs. On the average,
the number of LUTs is increased by %7.1.

1 I n t r o d u c t i o n

W i t h the r ap id deve lopmen t and advances in VLSI technology, the average t ran-
s is tor count in a chip is increased enormously , a l lowing m o r e soph i s t i ca t ed func-
t ional i ty . Moreover , the advent of persona l c o m m u n i c a t i o n and c o m p u t i n g ser-
vices has s t i r red a g rea t deal of in teres t in bo th the c omme rc i a l and research
areas. T h e m i n i m i z a t i o n of power c o n s u m p t i o n in m o d e r n circuits , is therefore
of g rea t i m p o r t a n c e . In pa r t i cu la r , b a t t e r y o p e r a t e d p roduc t s such as p o r t a b l e
compu te r s and cel lular phones, have come to a po in t in which m i n i m i z a t i o n of
the power c o n s u m p t i o n is a m o n g the mos t crucial issues. Due to the i m p o r t a n c e
of power c o n s u m p t i o n issue, there has been a g rea t shift of a t t en t i on in the logic
and layout synthes is areas f rom the delay and a rea m i n i m i z a t i o n issues towards
th is issue [18, 17, 9, 14].

An F P G A is an a r r ay of p r o g r a m m a b l e logic b locks (PLBs) t h a t can be inter-
connected in a fa i r ly genera l way. The in te rconnec t ion between these blocks are
also user p r o g r a m m a b l e . In a Lookup -Tab l e (LUT) based F P G A , the PLB is
a K- inpu t L U T (K - L U T) t h a t can i m p l e m e n t any Boolean func t ion of up to K

1This work has been s u p p o r t e d in pa r t by the Na t iona l Science F o u n d a t i o n
under g ran t M I P 9207267.

67

variables. The technology mapping problem for LUT-based F P G A s is to gener-
ate a mapping of a set of Boolean functions onto K-LUTs. Previous mapping
algorithms have focused on three main issues: minimization of the number of
levels of LUTs in the mapped network [4, 7, 11, 15] , minimizat ion of the num-
ber of LUTs used in the mapping solution [6, 10, 5], routabil i ty of the mapp ing
solution [16, 3], or combinations of these.

In this paper we study the technology mapping problem for LUT-based F P G A s
for power minimization. We formulate the problem as assigning LUTs to ver-
tices in the network so as to minimize the total est imated power consumption
of the mapped circuit. We show that the decision version of this problem is
NP-complete, even for simple classes of inputs. We use the transit ion density
metric for power estimation, and derive formulas for propagat ion of the transi-
tion densities from pr imary inputs to all the nodes in the network for a general
A N D / O R / I N V E R T circuit. The rest of this paper is organized as follows. Sec-
tion 2 sets up the notation. Section 3 describes the formulation of the power
est imation for a circuit being mapped onto LUTs. Section 4 summarizes our
NP-completeness results for the formulation presented in Section 3. Section 5
presents rnodeling of a general A N D / O R / I N V E R T combinational circuit and de-
scribes the transition density propagat ion formulas derived for this model. A
polynomial t ime heuristic algorithm to solve the problem is presented in Section
6. The experimentM results are presented in Section 7, and Section 8 summarizes
the key features of this paper and provides directions for further research in this
area.

2 P r o b l e m F o r m u l a t i o n a n d N o t a t i o n

Consider the representation of a combinational logic circuit as a directed acyclic
graph (DAG) G(V, £') where each vertex vi in V represents a boolean function,
and each directed edge (vi, vj) represents a connection between the output of vi
and the input of vj. A primary iTtput (PI) vertex has no in-coming edge and a
primary outpul (PO) has no out-going edge. Given a vertex v C V, by input(v)
we mean tile set of vertices that supply inputs to vertex v i.e. input(v) = {u C
Vl(u, v) C E}. In addition, given a subset V1 of V, not including any Pls or POs,
by input(V1) we mean the set of vertices in V-VI that supply inputs to vertices
in V1 i.e. input(V1) = {u ¢ (V - V1){~v C V1 : (at, v) C E}, and by output(V1)
we mean the set of vertices in V1 that supply inputs to vertices in V-V1 i.e.
output(V1) = {u ~ Vll?v E (V - V1) : (u ,v) E E}. In case V1 contains Pls
or POs, each PI in V1 will also be included in input(V1), and each PO in V1
will also be included in output(V1). For a set S of elements, the notat ion IS I is
used to denote the number of elements in S (i.e. cardinality of S). Vertex u is a
predecessor of vertex v if there is a directed path from u to v in the network. A
K-feasible cone at v, denoted by Cv, is defined as a subgraph consisting of v and
its predecessors such that any path connecting a vertex in Cv and v lies entirely
in C~, and linput(C~)[< K.

68

A output .~
/ ~ .(. d~:S
I I LUT~"P~ L U ~ - ' ~ d3 = 2

dl -"" UT3

-I]- -] [[- 1) ~" 5-feasible cone at 'v '
I I III]primary input

a)l~oolean Network b)DAG after Technology
Mapping Using 5-LUTs

F i g u r e 1. D A G R e p r e s e n t a t i o n of a B o o l e a n N e t w o r k a n d M a p p i n g it o n t o 5 -L UT s

A K-input lookup-table (K-LUT) is a programmable logic block capable of im-
plementing any K-input (and single output) boolean function. Therefore, each
K-LUT can implement a K-feasible cone in the boolean network. The technol-
ogy mapping problem for K-LUT based FPGA8 is to map a boolean network
using K-LUTs, which can be viewed as covering the DAG representation of the
boolean network with K-feasible cones. Figure 1 shows a boolean network, its
corresponding DAG and its mapping onto 5-LUTs.

Now, consider a DAG G(V, E) and a subset L of V. Assume that corresponding
to each vertex 1 in L, there is a LUT "placed at" this vertex in the graph 2, that
is, the output of vertex l will be supplied by this LUT. To simplify the notation,
the corresponding LUT will also be denoted by I. The dependency yl of LUT l is
defined as the number of PIs or LUTs that feed vertex I. Tha t is, Yt represents
the number of inputs to the LUT l if the assignment of LUTs to vertices of G
are as specified in L. This means that the LUT l corresponds to a K-feasible
cone at vertex l (a K-LUT) if and only if Yl _< K. For a node v, the contribution
quantity, denoted by Zv represents the contribution of node v to the dependency
of its fanout nodes. That is, Zv is equal to 1 or y~ f v is or is not assigned a LUT
in the mapping, respectively.

Intuitively, in technology mapping for LUT-based FPGAs for power minimiza-
tion, we desire to map the circuit onto K-LUTs such that the activity at the LUT
outputs, and hence the power consumption due to these activities are minimized.
Tha t is, a mapping would have low power consumption if the highly active signals
(edges) are hidden inside the LUTs in this mapping. As in [12], let us model a
logic signal by a function x(t), t 6 (- ~ , + ~) , which only takes values 0 or 1.
Note that such a model ignores waveform details such as over/under-shoots and
rise/fall times. The equilibrium probability (EP) and the transition density (TD)

2Note that the terms network and graph are used interchangeably in this
paper.

69

of a logic signal x(t), denoted by p(z) and d(x) respectively, are defined as:

f
+T/2

p(x) = lira 1/T x(t)dt (1)
T-~c~ J-T~2

d(x) = l i m n~(T) (2)

Where n~(T) represents the number of transitions of x(t) in the t ime interval
(-T /2 , +T/2] . It is shown in [12] that under a reasonable model, the limit in
(2) always exists. Consider a Boolean function y = f (x l , x2, ..., xn). Then the
Boolean difference of y with respect to xi denoted by ~ is defined as: cox i ,

O y y _
0X i Ylxi=0 @ Ylxi=i (3)

Consider a logic module 3,t with inputs xl , ..., x,~ and outputs Yl, ..., Y,~. If there
is no propagation delay associated with module Ad, the module is known as a
zero-delay logic module. The following theorem quoted from [12] relates the TDs
d(y~) to TDs d(xi):

T h e o r e m 1: If the inputs xi(t), i = 1,2, . . . ,n of a zero-delay logic module Ad
are pairwise independent signals with TDs d(xi), then the TDs d(yj), j --- 1, ..., m
are given by:

d(y~) = ~ 'OY~d(x~) (4) P~ @xl"
i=1

This theorem provides a tool to propagate the TDs at the PIs into the network to
compute the TDs at any point in the network. The assumption that the inputs to
a node are independent, however, may not be true for every node. Even though
this independence holds for the PIs, the existence of reconvergent paths may
cause correlation between the values of the inputs to a node in the circuit. It has
been mentioned in [12], however, that if the modules are large enough so that
tightly coupled nodes are kept inside the same module, then the coupling effect,
outside the modules are sufficiently low to justify the independence assumption.
In this paper we assume such an independence to simplify the propagat ion of
TDs. The importance of TDs at different sites in a network is due to the fact
that the average dynamic power consumption in a CMOS gate with output signal
x(t) is given by:

1 2 . ~ } ~CV~dd(x) (5)

Where C and Vda represent the load capacity at the output of the gate and
the power supply voltage, respectively. Note that for a CMOS gate, the static
power consumption is negligible, so, to minimize the total power consumption in
a network, the summat ion of the dynamic power consumption over all the nodes
in a network should be minimized. Note that at this stage of the design, the
routing information is not available. A rough est imate for the length of a net

70

can be the number of destinations of that net, which is taken into account in our
power est imation model when computing capacity of each net. In a LUT-based
F P G A environment, since the only modules are the LUTs, the summat ion should
be minimized over all the LUTs used to map the Boolean network. This idea is
also in accordance with technical data sheet information, e.g., [1] confirms that
the power consumption is proportional to the summat ion of the average activities
at the LUT outputs in a mapped network.

In this paper, we address the LUT-based technology mapping problem for min-
imizing the total power consumption of the mapping result, to be referred to as
K-input LUT power minimization problem (K-PMP). This can be stated as map-
ping a Boolean network onto K-LUTs such that the average power consumption
over the entire mapped circuit is minimized. To simplify the problem, we assume
tha t linput(v)l for each vertex v in the boolean network is less than or equal to
K (any circuit can be transformed to at tain such property). We also assume
tha t the covering procedure is not allowed to decompose a node into its fanin
a nodes. This restricted version of the problem will be denoted as K-RPMP,
which can be viewed as assigning LUTs to the nodes of a network such that
each LUT corresponds to a K-feasible cone, and tha t the power consumption of
the mapping result is minimized. Let PMP denote the l ibrary-based technology
mapping targeted at minimization of the power consumption of the mapping re-
sult. This problem is studied in [17]. Under the simplified assumptions of the
constant load model, this problem is NP-hard [2] 4. Note that PMP, K-PMP
and K-RPMP can each be formulated as an optimizat ion or a decision problem.
Unless otherwise stated, in the rest of this paper, PMP, K-PMP and K-RPMP
refer to the decision versions of the problems.

In our formulation of K-RPMP, we use the zero-delay model and TD for
est imating the power consumption. Not only does this allow the application of
Theorem 1 to compute the TDs at all nodes in the circuit, but it also simplifies
the problem and allows us to focus on the mapping algorithm rather than the
transition density propagation.

3 P o w e r E s t i m a t i o n M o d e l

As mentioned earlier, the major energy consumption term in CMOS circuits is
due to dynamic power dissipation, which happens at transit ion times. In LUT-
based FPGAs, the same is true with the difference that the transitions only take
place at the inpu t /ou tpu t of LUTs. Therefore, the average power consumption

3For each node v, fanin(v) and input(v) represent the same set.
4The decision version of this problem under the constant load model is NP-

complete.

7~

L U T L i l

LUT Li2

L U T Lin

L U T Li v

] -L '

C e q = Cou t + n . Cin

F i g u r e 2. Load Capacity at the Outpu t of a LUT

in a network N" mapped onto LUTs can be approximated by the following:

1 C

P I pl L U T Li
(6)

In this formula, the term [Co~t + fanout(Li)C~,~] accounts for the equivalent
load capacity at the output of LUT Li as shown in Figure 2, and the term rti
represents the number of LUTs receiving input from the pr imary input pi. Note
that by introducing the equivalent load capacity, we are in essence taking into
account the power consumption at the inputs of the fanout LUTs as well as the
power consumption at the output of current LUT.

4 C o m p l e x i t y I s s u e s

This section summarizes our results on the complexity of K - R P M P ~. Consider
the 3-Satisfiability problem (3-SAT). It is well-known that 3-SAT is an NP-
complete problem [8]. It is reported in [8] that 3-SAT remains NP-complete if
for each variable xi, there are at most 5 clauses that contain either of the literals
xi ,xi. We will refer to this version of 3-SAT as R3-SAT (restricted 3-SA7).
Lemma 1 forms the foundation of our complexity results for K-RPMP.

L e m m a 1. R3-SAT is polynomial t ime transformable to K-RPMP, for any
value K > 5.

Based on Lemma 1, and the fact that K - R P M P is in class NP we conclude the
following:

T h e o r e m 2. K-RPMP is NP-complete for K >_ 5.

SSee Northwestern University, EECS Depar tment , Technical Report June 1993
for proofs.

72

F i g u r e 3. Candidate Gates in a Gate Library

Furthermore, we can conclude the following, simply from the transformation
presented in the proof of Lemma 1:

C o r o l l a r y 1. K-RPMP with K > 5 remains NP-complete for the follow-
ing ("simple") networks: 3-level networks, networks with bounded fanin and/or
fanout, A N D / O R networks, combinations of these.

C o r o l l a r y 2. Let K-RLMP denote the technology mapping problem for LUT-
based FPGAs targeted at minimization of the number of LUTs, under the same
assumptions as K-RPMP. Then K-RLMP is NP-Complete for all K > 5 6

An interesting observation here, is that the same transformation can be used to
show the NP-completeness of both K-RLMP and K-RPMP for all I (> 5.

C o r o l l a r y 3. General library-based technology mapping problem for power
minimization (PMP) is NP-complete, even if our library consists only of the
("simple") gates G1, G2,...,G6 shown in Figure 3.

Note that Corollary 3 solves a previously open problem regarding the NP-completeness
of the PMP under this model.

We shall conclude this section by pointing out that the same transformation does
not work for values K < 5, due to technical problems.

5 C i r c u i t M o d e l A n d T r a n s i t i o n D e n s i t y P r o p a g a t i o n

Consider a general Boolean network consisting of A N D / O R / I N V E R T E R gates.
We can view such a circuit as a network consisting of AND, OR gates with
arbitrary input /ou tput polarities for each gate . We shall refer to these gates
as polarized gates. We will show how we can apply Theorem 1 to propagate
the TDs from the PIs into such a network. Since every Boolean network can
be transformed into such a representation, we can then use our technique for
propagation of TDs into the network. A polarized AND gate can be modeled as
an n-input AND gate with programmable inverter blocks at each input and output
as shown in Figure 4. Define polarity function pol(x) for each input /output as

eThis has also been shown in [5].

73

~ ~ '1 bl-°-NC---~

l

Programmable Inverter Block

F i g u r e 4. Modeling Polarized AND Gate

0 or 1 if the corresponding programmable inverter block acts as an inverting or
non-inverting buffer respectively . Now, consider such an AND gate with inputs
az , . . . ,an and output f . Associated with each input ai the polar input bi and
associated with the output f , the polar output g are introduced. Then we have:

p(ai), if pol(ai) = 1
p(bi) = ~. 1 - p(ai), i fpol(a i) = 0

= pol(ai)p(al) + [1 - pol(ai)][1 - p(ai)] (7)

P(I) = pol(f)p(g) + [1 - pol(I)][1 - p(g)] (8)

Then by applying Theorem 1, with the assumption that the inputs ai are inde-
pendent logic signals, we obtain:

'~ Og d ~ ~-[d (f) = d(g) = E p (~) (bi) = E [(J.J- p(bk))d(ai)] (9)
i=1 i: :1 k=l,k~i

p(f) = pol(f) r l P (b i) + [1 - pol(f)][l - r lP(b i)] (10)
i : 1 i : 1

A polarized OR gate is modeled similarly. By a similar analysis we obtain the

following:

p(f) = pol(f)p(g) + [1 - pol(f)][1 - p(g)];

dO") = ~{[(1-p(bk))]d(ai)}
i=1 k=l,k¢i

p(g) -- 1 - 1 - I [1 - p(b~)] (11)
i = 1

(12)

Where p(bi) is obtained from (7). This means that we can easily propagate the
TDs at PIs into the network to compute the TDs at any site in the network.

74

Tech_Map ping_for_Low_Power
Input : DAG G(V,E)
Output : A 5-feasible mapping of G with minimal power
Begin

Perform a topological sort on G(V,E) ;
Compute TDs for all nodes in the network ;

Starting from PIs towards POs for each node v do
Compute dependency y(v) of v ;
While (y(v) > K)

Sv = Set of fanin nodes of v to which no LUT is assigned;
Mv = Minimal_set (Sv) ;
Find the element u of Mv with maximum priority ;
Assign a LUT to u and update y(v);

End.

F i g u r e 5. Technology Mapping Algorithm for Power Minimization

6 A H e u r i s t i c M a p p i n g A l g o r i t h m

As mentioned in Section 2, our mapping algorithm is restricted only to assigning
LUTs to nodes in the network such tha t the whole network is mapped onto K-
feasible cones (K-LUTs). Our heuristic algorithm is shown in Figure 5.The main
idea in this algorithm is to scan the network start ing f rom the PIs towards POs
and make all LUTs K-feasible. At each node v, as we go along, if the dependency
Yv of v is larger than K, a fanin node of v is chosen and a LUT is assigned
to it, thus lowering yr. This procedure gets repeated until y~ _< K. The key
point in the algorithm is to consider both the contribution and TD factors in
the selection of fanin nodes for LUT assignment. Consider current node v, and
assume 5'~ = {ul, u2, ...,urn} is the set of fanin nodes o f v to which no LUTs are
assigned yet. Let the ordered pair (Zu,, d~,) represent the contribution Zu, of ui
to the dependency y~ of node v, and TD du. associated with ui respectively. We
say ui dominates uj if d~,~ >_ duj and Z ~ _< Zuj. The minimal set of v is defined
as the set of members of Sv that are not dominated by any other element in S~,
and is denoted by M~. Figure 6 shows a set of points in two dimensional space
(Z, d) and its corresponding minimal set. The minimal set of m elements in two-
dimensional space can be found easily in O(m log m) t ime (see [13]). Suppose
ul and u2 are members of Sv. Note that if ul dominates node u2, from a local
s tandpoint , we can claim that assignment of a LUT to u2 is more beneficial
for power minimization than assigning a LUT to ul. Tha t is, for selecting a
fanin node from S~ for LUT assignment, we can just focus on elements in M~. A
priority function priori ty(ul) = P ~ (u i) × (F ~ . Z (u i) - 1) is used to select the node
in M~ for next LUT assignment. The parameter F~, called contribution factor
is introduced to allow control over the relative significance of contribution and
TD factors. The t ime complexity of the algorithm can be shown to be O (n K 2)
where n is the total number of nodes in the network, and K is the m a x i m u m
input capacity of the LUTs.

75

density
d * ." * :.]
• • . o o 2 [~ k

o00" F ~ ElXements of
the minimal-set

Z Contribution

F i g u r e 6. Minimal-set of a Set of Points

N e t w o r k L e v e l - M a p R e s u l t s
n a m e b U T s - (m W ~ p o w e r m W
5 x p l 25 187
9 s y m 60 374

9 s y m m l 56 385
C 4 9 9 83 1410
C 8 8 0 103 1177
Mu2 127 894

a p e x 6 235 1413
a p e x 7 69 502
c o u n t 31 226
d u k e 2 175 526
m i ~ e x l 18 121

rd84 23 345
~ot 211 1945
vg2 25 159

z 4 m l 5 80
T o t a l 1246 10219

C o m p a r i s o n l + ~ 14.8

P o w e r M i n . Alg . R e s u l t s
L U T s P o w e r (r o W)

62 3 6 5
58 376
91 1076

111 1060
146 836
237 1404
77 459
31 2 2 7

190 478
16 106
27 344

238 1749
25 160
g 80

1339 8902
+ % 7 . 1 1

Table 1. Comparison of Power and LUT Minimization Algorithms

7 E x p e r i m e n t a l R e s u l t s

The algorithm was implemented in C and tested using a number of MCNC Bench-
mark circuits. The results were compared to Level-Map [5] algorithm which
addresses LUT minimization. Both algorithms were run a nmnber of times with
30 difl'erent wflues of F~ (/~) for Level-Map) in the range [0,20] and the best
result for power consumption was recorded. The input /output capacity for the
LUTs were set at lOpF and the examples were run with constant EP p = 0.5
and TD d = 10000 for all PIs. The algorithms were run for 5 input LUTs. On
the average, our power minimization algorithm shows %14.8 improvement on
the total power consumption. In addition, experiments show an average of %7.1
increase on the number of LUTs, compared to the results obtained from Level-
Map. These results are shown in Table 1. The running times of both algorithms
on each of the benchmark circuits were less than 10 seconds on a SUN SPARC
Station 1. Note that our main focus in this work has been on the mapping algo-
rithm for power minimization, and not on the propagation of the TDs into the
network. The propagation of the TDs into the circuit could be computed using
other, perhaps more realistic, approaches, e.g., using binary decision diagrams as
in [17], or could even be given as part of the input. In order to compare the de-
lay of mapping results of different technology mappers, we have also performed

76

Network" Level-Map Results Power Min. Alg. Results FlowMap Results
Delay Depth Delay Depth Delay

(roW) (ns) (roW) (ns) (raW)
70.6 5 73.4 3 64.3
66.4 7 64.0 7 59.5
61.7 6 54.1 5 94.7
64.3 5 70.1 5 64.3
56.4 6 73.3 3 78.6
47.5 5 61.6 3 38.1
80.2 8 62.9 4 75.5
39.8 2 24.4 2 24.4

44 483.8 32 449.4

Depth
(n9

5xpl 5
9sym 7

9symml 7
count 5

misexl 5
rd84 5
vg2 6

z4ml 2
Total 42"

Comparison +%31
487.2
+%0.8 +%37 1 1 +%3.1

Table2. Comparison of LUT, Power, and Depth Minimization Algorithms

placement and routing steps on a number of these benchmarks that would fit
into the XILINX 3090 FPGA architecture. The depth of the mapping 7 and the
delay of these benchmark circuits after placement and routing by XILINX tools
are shown in Table 2. As you can see, minimizing depth does not necessarily
correspond to minimizing the delay. This is mainly because of the fact that the
applied placement and routing algorithms were not directed to minimize the de-
lay as the primary objective, and that they used simulated annealing technique
which is a probabilistic approach.

8 C o n c l u s i o n

In this work, we studied the technology mapping step for LUT-based FPGAs
aimed at minimization of the power consumption of the mapping result. We
showed that even restricted versions of the problem are NP-complete for values
K > 5, where K is the input capacity of the LUTs. A polynomial time algorithm
was presented to solve the problem using a greedy heuristic. Experimental re-
suits show substantial reduction on the total power consumption on a number of
MCNC Benchmark examples. This is a promising result as no Boolean properties
were exploited in the mapping algorithm. Our future research in this area will
be in the following directions: exploiting the Boolean properties of the circuit
to achieve better results, intergating the technology mapping and the placement
and routing steps to improve routability and taking into account the resistive and
capacitive effect of the routing paths on the power consumption, improving the
power estimation metric to allow taking into account the power consumption due
to glitches, and finally recognizing and effectively exploiting reconvergent paths
to improve the quality of the mapping algorithm.

7The maximum number of LUTs on any PI to PO path in the mapping solution.

77

R e f e r e n c e s
[1] "The Programmable Gate Array Data Book". XILINX Inc., San Jose, CA, 1992.

[2] R. K. Brayton, G. D. Hachtel, and A L. Sangiovanni-Vincentelli. "Multilevel Logic Syn-
thesis". Proceedings of the IEEE, 78(2):264-300, February 1990.

[3] P. K. Chan and J. Y. Zien M. D. F. Schlag. "On Routabi l i ty Predict ion for Field-
Programmable Gate Arrays". In Design Automation Conference, pages 326-330.
ACM/IEEE, 1993.

[4] J. Cong and Y. Ding. "An Optimal Technology Mapping Algori thm For Delay Optimiza-
t ion In Lookup-Table Based FPGA Design". TechnicM Report CSD-920022, University of
Califoizfia at Los Angeles, May 1992. Also appeared in Proceedings of the ICCAD, 1992.

[5] A.H. FarrMfi and M. Sarrafzadeh. "On the Look-up Table Minimizat ion Problem for
FPGA Technology Mapping". In International A C M / S I G D A Workshop on Field Pro-
grammable Gate Arrays. IEEE/ACM, 1994.

[6] R. Francis, J. Rose, and K. Chung. "Chortle: A Technology Mapping Program for Lookup
Table-Based Field Programmable Gate Arrays". In Design Automation Conference, pages
613-619. IEEE/ACM, 1990.

[7] R. Fraucis, J. }-rose, and Z. Vranesic. "Technology Mapping for Lookup Table-Based
FPGAs for Performance". In International Conference on Computer-Aided Design, pages
568 571. IEEE, 1991.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of AlP completeness. Freeman, 1979.

[9] B. Lin and H. DeMan. "Low-Power Driven Technology Mapping Under Timing Con-
s traints" . In International Conference on Computer Design, pages 421- 427. IEEE, 1993.

[10] R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli. "Logic
Synthesis Algorithms for Programmable Gate Arrays". In Design Automation ConJerence,
pages 620-625. IEEE/ACM, 1990.

[11] R. Mm'gai, N. Shenoy, l{. K. Brayton, and A. Sangiovanni-Vincentelli. "Performance
Directed Synthesis for Table Look Up Programmable Gate Arrays". In International
Conference on Computer-Aided Design, pages 572 575. IEEE, 1991.

[12] F. Najm. "Transition Density: A New Measure of Activity in Digital Circuits". IEEE
7¥ansaetions on Computer Aided Design, 12(2):310-323, 1992.

[13] F. P. P repm 'a t aand M. I. Shamos. Computational Geometry: An Introduction. Springer-
Verlag, 1985.

[14] 1(. l{oy and S. Prasad. "Circuit Activity Based Logic Synthesis for Low Power Reliable
Operations". 1EEE Transactions on VLSI Systems, 1(4):503-513, 1993.

[15] P. Sawkar and D. Thomas. "Performance Directed Technology Mapping for Look-Up
'Fable Based FPGAs". In Design Automation Conference, pages 208-2[2. IEEE/ACM,
1993.

[16] M. Schlag, J. Kong, and K. Chan. "Ptoutability Driven Technology Mapping for Lookup
Table-Based FPGAs". In International Con]erence on Computer Design, pages 89-90.
IEEE, 1992.

[17] C. Tsui, M. Pedram, and A.M. Despain. "Technology Decomposi t ionand Mapping Target
ing Low Power Dissipation". In Design Automation Conference, pages 68-73. ACM/IEEE,
1993.

[18] H. Vaislmav and M. Pedram. "A Performance Driven Placement Algori thm for Low Power
Designs". In EUI~O-DAC, 1993.

Specification and Synthesis of Complex Arithmetic
Operators for FPGAs*

Hans-Juergen Brand Dietmar Mueller

Technical University Chemnitz-Zwickau, Faculty of Electrical Engineering
PSF 964, 09009 Chemnitz, Germany

Phone: ++ 49 - 371 - 531 - 3158/Fax: ++ 49 - 371 - 531 - 3186
E-Mail: brand@infotech.tu-chemnitz.de

Wolfgang Rosenstiel

University of Tuebingen, Faculty of Informatics
Sand 13, 72076 Tuebingen, Germany

Phone: ++49 - 7071 - 29 - 5482 / Fax: ++49 - 7071 - 610399
E-Mail: rosenstiel@peanuts.informatik.uni-tuebingen, de

Abstract. This paper describes the application of the experimental system
LORTGEN for file technology-specific specification and synthesis of high
performance arithmetic operators for FPGAs. Using multiplier and adder
designs for the XC3xxx-LCA-family as example we demonstrate that the
implemented architecture-specific techniques boost the performance and
density of the designs. Consequently, LORTGEN enables the implementation
of complex operators (e.g. multipliers) in one FPGA, frees the designers from
device-specific implementation details and allows them to focus more on
actually designing the application.

1 Introduction

The behavioral description of complex systems using HDLs - e.g. VHDL - often
contains arithmetic operators like addition or multiplication. During the synthesis
step these operators have to be replaced by an implementat ion satisfying the design
requirements.
Usually commercial synthesis tools like the Design Compiler [1] or AutoLogic [2]
synthesise operator implementations with a sufficient performance but they do not
apply special methods for data path synthesis. However, i f an extensive design space
exploration is necessary to adjust the implementat ion to additional restrictions in
time, area and so on, the synthesis process is often computationally infeasible for
large datapath-intensive ASIC-designs 1) and involves the following difficulties:

* This work is partly supported by the BMFT tinder the contract 01M3007C
1) The optimisation of one 32x32 bit multiplier implementation with the Design Compiler
takes about 8 hours on a SPARC10.

79

• Commercial synthesis systems do not support the mathematical decomposition of
arithmetic operators into proper subfunctions [3]. Consequently, the designer must
specify this decomposition in the specification which requires a great deal of
VHDL and design knowledge.

• The quality of the synthesis results depends largely on a suited specification style
and optimisation strategy.

• The synthesis of a certain implementation in the design space often requires
several synthesis cycles.

• The used synthesis and optimisation (mapping) techniques do not utilise all
architecture-specific features of FPGAs.

Consequently,
• commercial synthesis tools produce suboptimum implementations of arithmetic

operators for FPGAs,
• the quality of the synthesis result (as well as the design effort) depends on the

designer's experience,
• the determination of the implementation best adjusted to the design requirements

often results in a high design effort and consequently in a low design efficiency.

To simplify and accelerate the synthesis of arithmetic operators CAD-tool vendors
supply special tools often based on a library of technology-independent generic
modules or module generators (e.g. Design Ware |4], AutoLogic BLOCKS [2[or X-
BLOX [5]). This results in a better performance but usually the number of design
alternatives can explode so that the approach of a predefined library storing all
possible implementations becomes disadvantageous.
To handle this problem for arithmetic operators, the following goals must be
achieved:
(l)we need accurate and fast design space exploration methods to select the

implementation best adjusted to the design requirements,
(2) parameterisable and efficient generation algorithms are required instead of

predefined libraries.

Our main contributions are:
- Presentation of new specification and synthesis strategies for arithmetic operators

especially suited for FPGA design.
- Implementation of the new strategies in a test version of a synthesis tool called

LORTGEN.
- Development of fast and accurate evaluation methods not only for design quality

metrics like area or delay, but also for fuzzy criteria like regularity or modularity.
- Improvement of the implementation performance and a considerable reduction of

the design effort for arithmetic operators.

Our basic ideas are as follows:
- We integrate the evaluation of design alternatives into the specification process.
- We use function- and technology-specific parameterisable generation algorithms

which enable the prediction of synthesis results.

80

- The result of the specification process must be a unique, complete and consistent
formal specification description of the design alternative best adjusted to the
design requirements.

- The fixed relation between the specification description and the (technology-
specific) synthesis result is used to derive the evaluation models.

- We apply fuzzy methods for the evaluation of circuit characteristics important
for VLSI design like regularity or modularity.

In the paper we present an approach that supports the interactive specification of
arithmetic operators including a real (technology-specific) design space exploration
without any synthesis activity as well as the following architecture-specific synthesis
of the specified implementation for FPGAs. We ensure that only one specification
and one synthesis process have to be carded out independent from the designer's
experience and the design requirements.

The paper is organised as follows. In section 2 we give a short description of our
experimental system LORTGEN. Section 3 describes the application of LORTGEN
for the specification of arithmetic operators using the example of a multiplier.
Section 4 summarises the synthesis results for adders and multipliers and gives a
comparison with other synthesis tools.

2 L O R T G E N

The synthesis tool LORTGEN (LOgic and Register-Transfer GENerator) was
implemented based on the methods of "constraint-driven" specification and
"parameter-driven" module generation [6, 7]. Figure 1 shows the system structure of
the experimental system. LORTGEN supports the data path design in two phases of
the design process:

- the specification and modelling ofdatapath components in the system design phase
and

- the technology-specific synthesis of data path components in the realisation phase.

It addresses the following aims:

- to support the specification, evaluation and synthesis of arithmetic operators,
- to provide the existing design alternatives,
- t o ensure that only one specification and synthesis step has to be carried out

independent from the design requirements given in the design project and the
designers experience,

- to select the optimal design alternative before starting the synthesis process and
without any synthesis activity,

- to utilize the architecture-specific features of FPGAs,
- to ensure that the quality of the final solution is independent from the designers

experience.

The consideration of realistically modelled design characteristics during the
specification task results in two main advantages which can reduce the design effort
drastically:

81

(1) It avoids that incomplete and abstract models could adversely affect the quality of
the final solution or require to go through additional design iteration steps.

(2)The designer has to specify and synthesise one design alternative only
independent from the given constraints.

I specification] I circuit f evaluation
description J [results 1 l (description

Fig. 1. System structure of LORTGEN

Figure 2 illustrates the achieved design effort reduction and design efficiency
improvement.

The design flow using LORTGEN consists of two main steps. In a first step the
constraint-driven specification produces a unique, complete and consistent
specification description. The designer has to fix the function and the design re-
quirements as input to LORTGEN, Using quantitative and fuzzy evaluation the
suitable design alternative will be specified. The interactive specification process is
controlled by the function-specific decision tree visualised as browser in the
graphical user interface of LORTGEN, The nodes of the used decision trees do not
represent the existing design alternatives but the functional and algorithmic

82

parameters to describe the different implementations. Thus we avoid the exponential
growth of the specification effort with a growing number of design alternatives2).

(i)

(ii)

(i)

(ii)

(i)

(ii)

: : Specification

:,::i~! Synthesis]

i : : : :~ Evaluationl

I I

1 number of design n
alternatives

(i) - conventional
approach] [effort made

(ii)- presented ~ necessary effort
strategy

Fig. 2. Comparison between different synthesis approaches

In the second step the parameter-driven module generation transforms the
specification description into a functional model (for the system verification) and/or
into a technology-specific netlist (e.g. as structural VHDL-description or MAP-
file3)).

The integration of evaluation activities into the specification task allows the efficient
and reliable selection of the design alternative best adjusted to the design
requirements without any synthesis activity. Thus expensive design iteration steps
can be avoided.

3 Operator Specif ication wi th L O R T G E N

3.1 Design example - Fuzzy-Pattern Classification Accelerator

In recent years fuzzy technology has become an interesting alternative issue to cope
with analysis and control of complex systems. It is especially used if the system
model is described incompletely, inaccurately or there is only empirical knowledge
about the system behavior. The fuzzy pattern classification (FPC) [9] - a non rule-

2) Although the number of design alternatives significantly increases from about 100 for a
16x16 bit multiplier to about 480 for a 22x9 bit multiplier the node number in the
corresponding decision tree is constant.
3) The MAP-file generation process includes transformation steps using tools described in [8].

83

based fuzzy approach is being successfully applied for quality inspection,
recognition of standardised objects or for process control. Up to now only software
FPC systems were available which are too slow for many practical applications
especially in the real-time domain.
Therefore a special hardware FPC accelerator system was developed. Starting from
the idea of rapid prototyping FPGAs (XC3xxx family from XILINX) were chosen for
a first system implementation [10].
A complex multiplier contained in the accelerator determines the delay and area
characteristics of the whole system. The specification of such a multiplier subcircuit
is used to demonstrate the design process with LORTGEN. The multiplier design has
to satisfy the following requirements:

- operand word length: 22 and 9 bit
- result word length: 31 bit
- data format: unsigned (integer)
- target technology: LCA
- master: XC3090PG175-100
- critical path length: 12 stages (CLBs)
- maximum area: 280 CLBs (active area)
- optimisation goals: fastest implementation, area efficient, regular and

local connections.

LORTGEN provides about 480 design alternatives 4) for such a 22x9 bit multiplier.
The selection of the optimal design alternative using commercial synthesis systems
would require to specify these alternatives using VHDL and to synthesise an
implementation. The design process with LORTGEN can be carried out in one
specification process (selection of the appropriate design alternative) and one
synthesis process (generation of the netlist).

3 . 2 S p e c i f i c a t i o n w i t h L O R T G E N

LORTGEN uses hierarchical decision trees for the control of the specification
process. Each decision tree node represents one or several specification steps which
contribute to the setting of the functional and algorithmic parameters distinguishing
between the different design alternatives.
Figure 3 shows as example the two-operand integer multiplier decision tree. The
figure includes short descriptions of the activities done in the decision tree nodes
containing both the activity type and the activity description in italics (specification
of parameters or selection of subtrees in branch nodes). The detailed explanation of
these activity types using the multiplier design as example will be a part of the
presentation.

4) The nmnber of design alternatives corresponds to the nmnber of all possible combinations
of three algorithms for generating (Shift and Add, Booth and Baugh-Wooley) and four
algorittuns for adding partial products (CPA-field, CSA-field, Wallace tree, Dadda algoritlun)
and 40 different implementations for the vector merging addder (considering different block
sizes for carry select adders).

84

We distinguish between five activity types (examples are given in figure 3):

(1) interactive setting of given values:
The designer enters values for functional parameters (e.g. operand word length for
multipliers) which are given by the design project.

(2)fuzzy evaluation
The designer makes decisions concerning the selection of the optimal design
alternative basing on the results of a fuzzy evaluation of non-metric design
characteristics (e.g. regularity or modularity) or of metric design characteristics of
the existing design alternatives in early specification steps 5) . LORTGEN realises
this design space exploration automatically using the according facts and rules from
the fuzzy evaluation database considering design requirements given by the design
project.

[multiplication 2_i ~1

word fa~etl roun-
(1)[length~ding

(I) format

(2) (algorithm c la~

special algorithms i

fuzzy evaluation
(result: Shifi&ddd)

call of the decision
tree addition n i

given values (function)
(fact l =22, fact2=9,
prod=31)

given values (function)
(fact l =fact2 = "unsigned'
prod= "unsigned'9

fuzzy evaluation using
optimisation criteria-
fast, low area
(resuh: conv. algorithms)

!

i conv, algorithms

l generating (2) partial products I

V
I adding

partial product_~ (4)

V
I addition n i I

Fig. 3. Decision tree for two-operand integer multipliers

5) The area of an incompletely specified design alternative can not be calculated.

85

(3) quantitative evaluation
The designer makes decisions concerning the selection of the optimal design
alternative basing on the results of a quantitative evaluation of metric design
characteristics (e.g. delay or area) of the existing design alternatives. LORTGEN
realises this design space exploration automatically using the according evaluation
models [7, 111.

Both evaluation activity types contribute to the specification of algorithmic
parameters. Due to this evaluation support, the designer need not know the features
of the different algorithmic parameters for each component type.

(4) decision tree call
The designer continues the interactive specification process in the called decision
tree. The calling node will be set automatically after the specification in the called
tree has been finished.

(5) automatic setting of parameters
LORTGEN analyses the already specified parameters and sets a not specified
parameter automatically if the value of this parameter can be calculated uniquely
from the already specified parameters. This contributes to the consistency of the
specification without limiting the design space.

In the following an example for a quantitative evaluation will be explained. After the
specification of the algorithms for generating and adding the partial products as
subfunctions of a multiplication the algorithm for the vector-merging adder (26 bit
carry propagate adder) must be specified. The optimal adder will be selected using
the results of a quantitative evaluation. The vector merging adder may occupy 64
CLBs and the critical path delay is limited to 7 CLBs 6) .

Table 1 summarises the evaluation results calculated by LORTGEN. It contains only
carry-select adders composed of different sized blocks because all other design
alternatives exceed the delay limit and therefore the main optimisation criterion
could not be satisfied.
All design alternatives in table 1 occupy more than 64 CLBs. The highlighted
implementation with the block sizes 9/7/5/5 represents the smallest design and
consequently it will be selected as the optimal one. It gives an example for the fact,
that the fastest design can be the smallest as well.
Table 1 simultaneously shows the fine resolution of the design space by the design
alternatives available in LORTGEN. This enables a good adaption to the design
requirements.

The entire multiplier specification process comprises 19 decision tree nodes. Two
nodes are necessary to specify the functional parameters. The evaluation of the
existing design alternatives (about 480) and the selection of the appropriate one
requires nine nodes (about 50 percent of the entire specification process) - four nodes

6) This values are calculated by subtracting the area and critical path length of the already
specified multiplier components for partial product generation and addition from the limits
given in the design project.

86

use fuzzy and five quantitative evaluation methods. Six nodes (about 30 percent) will
be set automatically by LORTGEN. The remaining two nodes are call nodes.

carry-select delay area carry-select delay area
block sizes (CLB) (CLB) block sizes (CLB) (CLB)

12/10/4 7 74 11/8/7 7 67

12/10/3/1 7 79 11/g/6/1 7 77

12/10/2/2 7 79 1 I/8/5/2 7 74

12/9/5 7 71 11/8/4/3 7 72

12/9/4/1 7 77 11/8/4/2/1 7 77

12/9/3/2 7 76 11/7/5/3 7 70

12/8/6 7 70 11/7/5/2/1 7 75

12/8/5/I 7 77 11/7/4/4 7 69

12/8/4/2 7 76 11/7/4/2/2 7 73

12/8/3/3 7 74 10/8/g 6 66

12/7/7 7 68 10/8/6/2 6 75

12/7/5/2 7 74 10/8/5/3 6 72

12/7/4/3 7 72 10/8/5/2/1 6 74

12/7/4/2/1 7 77 10/8/4/4 6 71

12/6/4/4 7 71 10/8/4/2/2 6 71

12/6/4/2/2 7 75 10/7/5/4 6 69

11/9/6 7 68 10/7/5/3/1 6 74

11/9/5/1 7 75 10/7/5/2/2 6 74

11/9/4/2 7 74 9/7/5/5]] 6 1 6 5

11/9/3/3 7 72 9/7/5/3/2 [[1 6 70

Table 1. Feasible design alternatives for 26 bit vector merging adder

4 Synthesis Results

This section summarises the results achieved for the XC3xxx-LCA-family.
In a first experiment we compared 16-bit adders synthesised by AutoLogic [12] and
LORTGEN, respectively, with manually optimised designs [13].

Table 2 summerises the results for three different optimisation goals. It shows that
AutoLogic allows no adaption to the design requirements [12]. The manually
optimised adder with 8 CLBs delay requires an additonal area of two CLBs
compared with the adder generated by LORTGEN. As a result of this experiment we
found a generation algrorithm producing a 16-bit adder with a delay of 3 CLBs.
Secondly, we present the synthesis results of the multiplier design as described in
section 3. In the synthesis step LORTGEN generates a 22x9-bit multiplier occupying
281 CLBs with a critical path length of 11 CLBs (170 ns). The overall design
(multiplier and some registers) uses 286 CLBs and was realised in an XC3090.
Thus we realised a device utilisation of 88 percent compared with a lypical 70

87

percent device utilisation. This result could be achieved because the Dadda scheme
used for adding partial products requires mostly local connections. The accelerator
was successfully applied in two real-time applications (clock frequency 5 MHz).

optimisation
goal

small design

area~speed
compromise

fast design

AutoLogic [121

delay [area
(CLB) (CLB)

16 16

16 16

16 16

L O R T G E N

delay area
(CLB) (CLB)

16 16

8 22

4 42

manually
opt imised [13]

delay area
(CLB) (CLB)

16 16

8 24

3 41

Table 2. Synthesis results for 16-bit adders

bit x bit

22x7

22x9

22x16

tool from I14]

delay] area
(CLB) (CLB)

28 144

30 189

37 347

L O R T G E N

delay [area
(CLB) (CLB)

11 217

11 281

13 407

Compar i son

delay area (%)
(%)

-61 +51

- 63 + 49

- 65 + 17

Table 3. Synthesis results for different multipliers

A comparison of LORTGEN with X-BLOX concerning the multiplier design was not
possible because X-BLOX does support neither the XC3xxx-family nor the
multiplier design. In [12] synthesis results of AutoLogic and AutoLogic BLOCKS
for a 22x9-Bit multiplier are presented. However, the designs use at least 450 CLBs,
so that they can not be integrated in one XC3xxx-LCA.
Therefore, we compared LORTGEN with a generator presented at the EURO-
DAC'93 [14]. Table 3 summarises the synthesis results for three different
multipliers. The table shows that LORTGEN achieves a performance improvement
ranging between 61 and 65 percent at the expense of up to 51 percent increase in
area.

5 S u m m a r y

The results achieved with LORTGEN have shown that our approach could improve
the performance and minimise the area of arithmetic operators for FPGAs.
The presented techniques enable the integration of complex operators like
multipliers in one FPGA. LORTGEN significantly improves the designer's
productivity. We free the designers from device-specific implementation details and
allow them to focus more on actually designing the application.

88

Moreover, we avoid expensive design iteration steps by ensuring that only one design
alternative has to be specified and synthesised independent from the designer's
experience and the given design constraints.
Thus, in contrary to commercial synthesis tools, LORTGEN is especially suited for
system designers because of the provided comprehensive design support.

6 References

1. Design Compiler Version 3.0 - Reference Manual, Synopsys, 1992.
2. AutoLogic Family for Top-Down Design - Product Description. Mentor

Graphics, 1992.
3, BRAYTON, B. K.; RUDELL, R.; SANGIOVANNI-VINCENTELLI, A.; WANG, A.R.:

MIS: A Multi-Level Logic Optimization System. IEEE Transactions on CAD of
Integrated Circuits and Systems. November 1987, pp. 1062-1081.

4. Design Ware Version 3.0 - Databook, Synopsys, 1992.
5. KELEM, S. H.; FAWCETT, B. K.: Module Generators for Field Programmable

Gate Arrays. In Proceedings of the 2nd International Workshop on Field-
Programmable Logic and Applications 1992.

6. BRAND, H.-J.: Specification and Synthesis of Arithmetic Data Path
Components (in German). PhD thesis, Technical University Chemnitz-
Zwickau, 1993.

7. BRAND, H.-J., MUELLER, D.; ROSENSTIEL, W.: An Efficient Data Path Synthesis
Strategy. In Proceedings of the Synthesis and Simulation Meeting and
International Interchange SASIMI'93 in Nara/Japan, October 1993, pp. 155-
164.

8. SCHMIDT, J., MUELLER, D.; SCHUPPAN, H.: Logic Synthesis of Logic Cell
Arrays Using Register-Transfer Description. 2nd International Workshop on
Field-Programmable Logic and Applications, Wien 1992.

9. BOCKLISCH, S.; ORLOVSKI, S.; PESCHEL, M.; NISHIWAKI, Y.: Fuzzy Sets
Application, Methodological Approaches and Results. Akademie-Verlag,
Berlin, 1986.

10. SCHLEGEL, P.; EICHHORN, K.; BRAND, H.-J.; MOLLER, D.: Accelerated Fuzzy
Pattern Classification with ASICs. 6. IEEE ASIC Conference and Exhibit in
Rochester, 27. September - 1. Oktober 1993. pp. 250-253.

11. BRAND, H.-J.; MUELLER, D., ROSENSTIEL, W.: Design of High Throughput
Data Path Components. In Proceedings of the 4th ACM/SIGDA Physical
Design Workshop, Lake Arrowhead, April 1993, pp. 141-151.

12. SCHUBERT, E.; ROSENSTIEL, W.: Synthesis of Register-Transfer Elements for
High-Level Synthesis Using VHDL (in German). SMT/ASIC/Hybrid'94,
Nuernberg, 1994.

13. The Programmable Logic Data Book. XILINX, 1993, pp. 8/72-8/78.
14. GASTEIER, M.; WEHN, N.; GLESNER, M.: Synthesis of Complex VHDL

Operators. In Proceedings of the EURO-DAC'93, Hamburg, September 1993,
pp. 566-571.

A S p e e d - U p Technique for S y n c h r o n o u s
Circuits Real ized as L U T - B a s e d F P G A s

Toshiaki Miyazaki, Hiroshi Nakada, Akihiro T s u t s u i
Kazuhisa Yamada, Naohisa Ohta

NTT Transmission Systems Laboratories
Y-807C, 1-2356 Take, Yokosuka-shi, Kanagawa, 238-03 JAPAN

e-marl: miyazaki@ntttsd.nt t.jp

Abs t rac t . This paper presents a new technique for improving the per-
formance of a synchronous circuit configured as a look-up table based
FPGA without changing the initiM circuit configuration except for latch
location. One of the most significant benefits realized by this approach
is that the time-consuming and user-uncontrollable reconfiguration pro-
cesses, i.e., re-mapping, re-placement and re-routing~ are unnecessary to
improve circuit performance.

1 I n t r o d u c t i o n

Field Programmable Gate Arrays (FPGAs) have been widely used because of
their usefulness. The circuit programming of FPGAs is often performed with
CAD tools[i], and the execution speed of the programmed circuit really depends
on the CAD tools. For example, if considering a look-up table (LUT) based
FPGA, circuit programming requires the solution of the mapping and place-
ment problems inherent in assigning the input logic onto LUTs, and the routing
problem of interconnecting the LUTs. However, because the problems are known
to be NP-hard, most CAD tools adopt some form of heuristics[2][3][4][5][6]. This
means that the CAD tools do not guarantee to produce optimal programming
results. Thus, particularly with regard to the propagation delay, some tune-up
is often necessary to improve the execution speed of the FPGA-based circuit.

To improve circuit performance, several techniques have been developed. One
of the most famous techniques is re~iming[7][8][9][lO]. It minimizes the combi-
national circuit delay between two latches by only inserting and /or removing
the latches without changing the logic of the original circuit design. In another
development, single-phase clocked synchronous circuits are often used in com-
munication or digital signal transport systems, and a common design technique
is to insert latches into the original circuit at the cost of increasing the input
clock frequency[11]. Compared to retiming, this technique does cause some clock
responae delay, but it is often applied as a technique that can reliably improve
circuit performance. A similar technique can be found in the pipeline sequence
design of CPUs[12][13].

All the above methods, unfortunately, do not pay much at tent ion to the upper
limit of the number of latches inserted between two combination logic parts. With

90

FPGAs, however, it is very important to consider this limitation because the
number of usable latches is finite in an FPGA, and the latch-insertion points are
restricted given the condition that the initial routing result remains unchanged,
which is our major premise as described hereafter. Accordingly, existing design
methods cannot directly be applied to the task of improving FPGA-based circuit
performance.

One solution to improve the performance of FPGA-based circuits is to op-
timize the delay using try-and-error or pa~eh based approaches. This is because
if placement and routing tools are invoked again, they often change the circuit
configuration drastically and the designer cannot keep track of the delay informa-
tion easily; after delay optimization, LUT placement and routing results should
not be changed. Thus, a natural question arises with regard to the performance
improvement, is it possible to speed up the circuit without re-placement and
re-routing ?

In this paper, we present a method that answers this question. Here, we
consider that the FPGA has latches located at the output of each LUT, and a
mechanism is available to control latch usage without changing the initial circuit
programming result. The basic approach of the method is to insert as many
latches into the initial circuit as possible, under the latch limitation described
before, to increase the input clock frequency. One of the most significant benefits
of our method is that the initial routing result is not changed because placement
and routing are not re-executed.

Kukimoto and Fujita[14] presented a method that rectified a circuit pro-
t rammed onto an FPGA by changing only the logic configuration of LUTs. This
is, the netlist is not changed and the net delay in the original circuit is pre-
served after modifying the logic of the circuit as in our method. However, there
are few cases to which the method is applicable. Especially for logic optimized
circuits, it is hard to apply their method because such circuits employ rather
complex logic in each LUT and there is little room in which to rectify the logic.
In addition, their method does not improve circuit performance itself~ Thus, it
seems that the method is not so useful in practice. Unlike their method, whether
our approach is applicable to a circuit or not, depends on the topology of the
nets connecting the LUTs, not the complexity of the configured logic in each
LUT. Our technique is very effective for topologically simple circuits such as
combination circuits which do not have any feedback loops.

This paper is organized as follows: Section 2 formulates the problem ad-
dressed. In Section 3, the speed-up method to solve the problem formulated in
Section 2 is described in detail. Section 4 shows the experimental results gained
using some benchmark data. Section 5 concludes this paper with a discussion of
possible directions for future research.

2 P r o b l e m

We consider an LUT-based FPGA containing basic cells (BCs) as shown in Fig.
1. Each basic cell has an LUT and a latch. An r~input LUT can implement 2 2~

91

different Boolean functions[i], and the output of the LUT can be p rogrammed
freely as to whether it is latched or not. In addition, we assume tha t the F P G A -
implemented circuit does not contain any loops tha t do not include any latches,
i.e., the circuit has no asynchronous feedback.

_

I 1 -

L U T

M U X

Fig. 1. A basic cell in the FPGA.

Under the above assumptions, we consider latch insertion without changing
the initial placement and routing results. If some latches can be inserted in the
critical path, it is guaranteed that the performance of the circuit is improved
because the net delays are not changed. Here, our problem is defined as follows:

Problem1. If an F P G A has a mechanism that permits independent control of
the latch located at the output of each LUT, is it possible to realize a q-clock
response delay circuit compared to the original circuit by controlling only the
output value of each LUT by latching it or unlatching it ?

Here, q-clock response delay circuit is defined as follows[ill. Suppose A is
a synchronous circuit. Let YA(X,t=) be the output vector at t ime t,~] n > 0
corresponding to the input signal X for all input pins of A. Suppose B is a
synchronous circuit which has external pins corresponding to the external pins
of A one by one. Here, let to be the initial time. If an integer value q I q > 0
exists for every X and the following equation is satisfied

Ys(X,t +q) : (1)

we say "B is the q-clock response delay circuit of A."

2.1 F o r m u l a t i o n

Let G(V, E, s,t) be a circuit graph, where V is a node set representing BCs, i.e.,
pairs of an LUT and its latch, E is an edge set representing connections among
BCs, s is the input node, and t is the output node. Here, each edge is weighted

92

with the propagation delay. In addition, nodes s and t are dummy nodes that
are connected to all input pins and from all output pins, respectively, and the
weights of all edges connected to s and t are zero.

An example of the circuit graph is shown in Fig. 2(1). In the graph, a solid
node indicates that the corresponding BC is latched.

G(V, E, s, t) G'(V',E' , s, t)
' \

a e5 _ g a~ e5 '--

e ~ s t
E 1

81 J

[@Latchednode [
O Unlatched node

(1) Original circuit graph (2) After shrinking loop

Fig. 2. A circuit graph and a loop-shrunk circuit graph.

It is known that the number of latches in a loop cannot be changed by
retiming[7]. Our approach is not to actually perform retiming, but to simplify
the latch insertion algorithm as described hereafter, we do not insert any latches
into the nodes in the loops. Thus, shrinking the loops in G is used as a pre-
process. In Fig. 2(1), nodes c, e and h form a loop so they are shrunk to node L
and edges E l , E2, E3 and E4 are re-linked to the appropriate nodes as shown
in Fig. 2(2). Let the loop-shrunk circuit graph be G~(W, E ~, s,t). Problem 1
becomes the problem of finding the nodes which should be latched, under the
constraint that the number of the nodes on each path from node s to node t
must be the same in G ~. Finding such latch insertion points is equal to finding
the articulation sets of graph G ~ in graph theory. Here, the articulation set A is
defined as follows:

D e f i n i t i on 1 (A r t i c u l a t i o n se t) . Let G'(V', E', s,t) be a loop-shrunk circuit
graph. Articulation set A is defined as satisfying the following conditions: A C V'
and each path from s to t has only one element in A. In other words, if all nodes
in A with connected edges are removed from G', G ~ is divided into two sub-
graphs; one contains s and the other contains t. In Fig. 2(2), nodes {a,b,i~]} and
{g,1} are the articulation sets.

Changing all nodes in an articulation set into latched nodes means inserting
a latch into each path from node s to node t in G ~. The addition of the latches

An Efficient Technique for Mapping RTL
Structures onto F P G A s

A R Naseer~ M B a l a k r i s h n a n ~ A n s h u l K u m a r

Department of Computer Science and Engineering
Indian Institute of Technology, Delhi

New Delhi - 110 001

Abs t rac t . This paper presents an efficient technique for realizing Data
Path using FPGAs. The approach is based on exploiting the iteratlve
structure of the datapath modules and identifying 'largest' slices of con-
nected modules that can be mapped onto each CLB. The mapping pro-
cess employs a fast decomposition algorithm for checking whether a set of
slices can be realized by a single CLB. Comparison with manufacturer's
proprietary software for a set of High-level synthesis benchmark struc-
tures show a significant reduction in CLB count. Another advantage of
our technique is that CLB boundaries in the final design are aligned to
RTL module boundaries providing modularity and ease in testing. Thus
this technique is very suitable for integration as a technology mapping
phase with a high-level synthesis package.

1 I N T R O D U C T I O N

Currently a number of technology options are available ranging from Fullcustom,
semi-custom to the Field Programmable Gate Arrays (FPGAs). FPGAs are
rapidly gaining popularity due to the short design cycle time and low manufac-
turing cost. There are two main classes of FPGAs[1] - Look-Up-Table (LUT)
based FPGAs and Multiplexer (MUX) based FPGAs. In this paper, we are pre-
senting a methodology for mapping RTL structures onto Look-up table based
FPGAs (as exemplified by XILINX[2]. A LUT based FPGAs typically consists of
a 2-dimensionM array of CLBs (Configurable Logic Blocks). A variety of devices
with similar architecture, but differing in the number of inputs, outputs and
flipflops per CLB, are available. Further, the way in which each function genera-
tor in a CLB can be configured to implement a logic function also varies. These
differences are important for both technology mapping and decomposition. In
particular, these parameters define the limits on the portion of a network which
can be realized by a CLB.

Recently several different approaches for LUT based technology mapping
have been reported, e. g . , Chortle[3], Chortle-err[4], MIS-pga[1], Hydra[5], X-
MAP[6], VIS-MAP[7]. All these algorithms optimize the number of CLBs in
the generated solutions. On the other hand some approaches like Chortle-d[8],
DAG-MAP[9] and Improved MIS-pga[10], emphasize on minimizing the delay of
the mapped solutions. In all these approaches, the input is a boolean network in
which each node is a gate or a boolean function.

100

In the context of High level synthesis, the above approaches are suitable for
implementing the control part of the design only. For synthesizing the data path,
it is beneficial to take into account the iterative structure of data part modules.
Further, there are some advantages in aligning CLB boundaries to RTL module
boundaries for improving testability and enhancing modularity.

The main objective of our work is to integrate RTL structure synthesis with
mapping onto FPGA technology. In this paper, we present an approach (part of
a system called FAST[14, 15]) which directly realizes an RTL structure (of data
path) in terms of FPGAs. FAST forms a backend to a Data path Synthesizer[13]
and is being integrated to IDEAS[12]. Starting from a VHDL like behavioral
description language and a global time constraint RTL data path is generated
automatically. As the RTL modules are generic in nature, they cannot be directly
mapped onto a single CLB. We use a dynamic slicing technique based on the
iterative structure of RTL modules to partition them into component parts.
Each RTL module is viewed as consisting of slices of one or more bits. Closely
connected slices of different modules are considered together and mapped onto
one or more logic blocks. At each stage an attempt is made to maximally utilize
the logic block.

The rest of the paper is organized in five sections. Classification of RTL com-
ponent cells and slicing structures are described in section 2. Section 3 presents
the preliminary definitions and terms used in this paper and the expressions for
computation of cost of nodes, cones and cost benefits. Algorithm for mapping
RTL structures onto FPGAs is given in section 4 and decomposition technique
used is briefly described in section 5. An example illustrating the technique used
is presented in section 6. In section 7, results of technology mapping on XIL-
INX devices alongwith conclusions for some high level synthesis benchmarks are
presented.

2 R T L C O M P O N E N T S A N D C E L L S

The approach proposed in this paper is especially suited for implementing the
data path of the design because most of the data path modules are generic mod-
ules with variable widths which cannot be mapped directly onto a single CLB.
An important property of the RTL modules is that they are iterative structures
of basic cells, where a cell is an indivisible part of a module that is iterated to
form a module. Because of this, an RTL module can be partitioned into an array
of single-cell or multi-cell slices, where a slice is an array of contiguous cells of a
module. For example, a 16-blt adder can be expanded into an array of 16 one-
bit cell slices or 8 two-bit cell slices or 6 three-bit cell slices and so on. Cells of
different RTL components can be classified into two categories depending upon
the nature of their inputs and outputs.

i) Fixed Cell : A fixed cell has fixed number of inputs and outputs. An
important characteristic of these cells is that though the component to which it
belongs may be generic, but the number of inputs and outputs of the cell always
remains the same in all instances of the component. For example, we can expand

101

an 8-bit or a 16-bit or a 64-bit adder into an array of single-bit cells but in all
these cases, the basic 1- bit cell has fixed number of inputs and outputs i. e. ,
3-inputs (including carry in) and 2-outputs(sum and carry out).

il) G e n e r i c Cel l : As the name implies a generic cell has variable number
of inputs and outputs. For example, a basic 1-bit cell of an 8-bit 10-input mux
and an 8-bit 16-input mux differ in the number of inputs.

Examples of RTL components with fixed cells are - adder, subtractor, alu,
comparator , register, counter etc. Examples of RTL components with generic
cells are - MUX, AND, OR, XOR, NAND, NOR, Decoder, Encoder etc.

An RTL component is composed of basic cells, arranged in the form of an
array, a tree or a combination of these. For example -

- a 16-bit ALU is an array of 16 ALU cells,
- an 8-input AND is a tree of smaller (generic) AND cells,
- a 10-input 8-bit wide MUX is an array of trees of smaller (generic) 1-bit

wide multiplexers,
- a 4 to 16 decoder is an array of 4 input partial decoders. Larger decoders

may be considered as arrays of trees of smaller part ial decoders.

Figure 1 illustrates some of these examples. It is clear tha t components like
Mux or decoder can be composed in more than one way because the basic cells
are generic. These choices are explored by our algorithm.

3 C O N E S A N D C O S T B E N E F I T S

The input network to FAST is an RTL structure (Data p a t h) obtained from
High Level synthesizer and output is an optimized network of CLBs. The input
network is represented as a directed graph G(V,E) where each node represents a
register or a functional module (ALU, Max, e t c . ,) and directed edges represent
connections between the modules. In the F P G A architecture we have considered,
flipflops appear at the output ends of CLBs. To facilitate mapping of register
slices to these flipflops, each register node in G is split into two nodes - a register
input (RI) node and a register output (R0) node, not connected with each other.
After this splitting RO nodes become source nodes in addition to Pr imary Input
(P I) nodes and RI nodes become sink nodes in addition to Pr imary Outpu t
(P0) nodes.

We use the te rm width to refer to the number of cells in a node or a slice. Let
Width(n) and Wid th(s) represent width of a node n and slice s respectively.
Sof2-slicing is a process that dynamically determines slice width.

Let n~ represent slice of node n with width k, then

max_slice_width(n) = max k Ink is realizable in a CLB (I)

For a slice s, node (s) denotes the corresponding node. Minimum number of
instances of slice s required to cover node (s) is given by

[.idth(nods(,))]
i st_c t(s)-- I I (2)

102

LINEAR
(CASCADE)

AI BI

f u a . . ~ Cin

ALU CELL

,i,i, ,i,
16-BITALU

LINEAR

(WITH COMMON INPUTS)

DECODERCELL

)IN 0-3

-4 I - ~ °

-I I ~-2'~

4 TO 16 DECODER

TREE

MUX CELL

MIo_~'-

I

MUXSL ~ 7

10-INPUT 8-BIT MUX

Fig. 1. RTL Component Structures

Minimum number of CLBs required to realize a node n is given by

min_CLB_co~t(n) = [, ,ieth(n) rnaz_slice_width(n)']
= inst_cnt(nk)

where k is maximum slice width

(3)

As our intention is to minimize the number of CLBs required to realize the
graph, we start with an upper bound on CLBs required. This can be easily found
by adding the minimum number of CLBs required for realizing each of the nodes.

103

CLB_llpp er..bollztcl 1 = ~ mizt_CLB_co~l.llt (I~) (4)
nEv

Our algorithm is based on packing slices from multiple nodes into a single
CLB. This is achieved by identifying cones. A Cone is a set of slices of nodes
which lie on paths converging on a particular node called apex of the cone. A
realizable cone is a cone that fits in a CLB. Note that all slices are trivial form
of cones and all slices of node n upto max_slice_width(n) are realizable cones.
Naturally, in this context we consider only realizable cones. Further we consider
only those cones which are beneficial i. e. , those which reduce the number of
CLBs required.

As a cone could consist of slices of different widths, the number of instances
of a cone required would be decided by the minimum inst_cnt of its slices.

min_inst_cnt(c) = min inst_cnt(s) (5)
sEc

Let C A (c) denote the cost of realizing the nodes of cone c individually,
i. e. , without forming the cone. It can be computed by simply summing the
min_CLB_counts of the individual nodes that make up the cone c.

CA(c) = ~ min_CLB_count (n) (6)
neltode_s et(c)

Let CB(c) denote the cost of realizing the nodes that comprise the cone c,
with cone c formed. As each cone is realized by a CLB, min_inst_cnt(c) gives the
number of CLBs realizing cone of type c. Due to differences in bit width of nodes
as well as slice width of slices in c, the nodes may not be covered completely by
cones. The remaining part of nodes are covered by the max_slice_width slices. We
have observed that this assumption is mostly not restrictive. Therefore, CB(c)
is given by the following formula -

. i d t h (n o a e (s)) --
CB(c) = mininst_cnt(c) + ~ mam_slice_vaidth(node(s))

sEc
(7)

Now we can quantify the benefit due to cone c as the difference between these
two costs.

Benef i t (c) = C A (c) - C B (c) (8)

We define a set of cones C as complete if it covers all the nodes in the graph.
As per the above formulation, we consider only those cone sets in which non-
trivial cones do not overlap. A non-trivial cone is one which contains slices from
atleast two nodes. Cost of a cone set C denoted by CC is

cc(c) = CB(¢) (9)
eGG

1 In this paper we do not address the constraints imposed by limited number of inter-
connection resources available on the device.

104

4 F A S T M A P P I N G A L G O R I T H M

The algorithm described in figure 2 shows the major steps involved in mapping
RTL structure to FPGAs. Step 1 computes the CLB upper bound and step2
traverses the network and generates cones. We traverse the network backwards
starting from register inputs /pr imary outputs and generate 'realizable' cones
with non-negative 'cost-benefit' by considering various soft slicing options and
merging them till no more merger is feasible or register outputs /pr imary inputs
are reached. The feasibility of these cones are checked as they are generated and
only 'realizable' ones are retained. Step 3 finds a cover which minimizes the CLB
count following a greedy approach.

iAlgorithm F I S T . . M A P
1. C o m p u t a t i o n of CLB u p p e r b o u n d

1.1 fo r each node n E n o d e s e t Vofgraph G
I.I.I compute (i) max_slice_sidth(n)

and (i i) min_CI3 count (n)
1.2 compute CLB_uppsr_bound

9.. Realizable Cone generation
2.1 for all 'feasible slices' s of nodes in V do

2.1.1 generate all 'realizable' cones

using FAST decomposition .ith
cost benefit >_ 0 with s as apex

3. Minimal cone cover
3 . 1 G e n e r a t e c o m p l e t e cone s e t s w i t h minimum

Cost in a ~gresdy' manner

Fig. 2. Algorithm for Mapping RTL Structures onto FPGA's

The 'Realizable Cone generation' algorithm is shown in figure 3. The Cone-
generation algorithm considers each node from the nodes of G and generates
variable-width slices of width varying from 1 to max_s l i ce_wid th and checks
whether each slice of that node can be merged with a slice of the node at its fanin
to form a cone. If the resulting cone is realizable and beneficial, then starting
with this newly generated cone, it further checks whether it can be merged with
slices of the node at its fanin. This process is repeated until no more slices can
be packed into the cone. For each cone generated it computes the reduction in
CLB count and rejects those for which no benefit occurs.

Minimal cone cover procedure given in figure 4 follows a greedy approach.
It begins by sorting the list of conesets in the decreasing order of the benefit.
Initially a coverset containing the first coneset of the c o n e _ l i s t is formed and
the CLB_upper bound is taken as the minimal cost for covering the entire net-

105

)rocedureitea]izable_cone_generationO

Conese t =

for all ~EVdo
for i = I to =ax_slice_.idth(n) do

{

c = {.~}
C o n e s e t ffi C o n s s e t + C

gro._cone(C)
}

}

procedure grow_cone(C)
{

for all u 6 fanln~et(C) do

if u is not a register output or a primary input

then

for j = 1 t o max_slice_.idth(u) do
{

C I = merge(C, uj)
i f C t is zealizable and benefi~al

t h e n
{

}
}

Coneset = Co~eset + C t

gro~-co.e(C 1)

Fig. 3. Realizable cone generation

work. Next each coneset other than the first coneset is taken from the c o n e _ l i s t
and checked to see whether it overlaps with the coversets already generated. If
the coneset overlaps with all the coversets already generated, it creates a new
coverset with this coneset. Otherwise, it is added to all the non-overlapping cov-
ersets and minimal cost of realizing the network is made equal to the minimum
of CLB_upper_bound and cost of newly formed complete coversets. All coversets
exceeding this minimal cost are rejected.

5 D E C O M P O S I T I O N

During cone generation an important check to be performed is whether a cone is
realizable or not. A CLB is characterized by a fixed number of inputs, outputs
and flipflops. Every 'realizable' cone should have number of inputs, outputs and
fiipflops less than or equal to those present in a CLB. But for realizability this

1 0 6

Procedure Minimal_cone_cover (coneset)
{

C o n e _ l i s t = S o r t _ c o n e s (c o n e s e t)
C r e a t e a c o v e r s e t = f i r s t (c o n e _ l i s t)
UB = CLB_upper_bound
for all C q (cone_list except the first element) dc

if(C overlaps with all coversets) then

Create a new coverset with C

else
(

}

add C t o t h e n o n _ o v e r l a p p i n g c o v e r s e t s
US = m i n (U B , c o s t o f n e w l y formed

complete c o v e r s e t s)

R e j e c t a l l c o v e r s e t s e x c e e d i r ~ U B c o s t

Fig. 4. Minimalcone cover

check is not sufficient because all FPGA structures are characterized by one
or more function generators which cannot realize any arbitrary function of the
inputs. Typically the set of inputs have to be decomposed into two or three parts
to be mappable onto a CLB.

Among the decomposition techniques employed by FPGA mapping systems,
Roth-Karp[ll] is the most versatile but suffers from high computation com-
plexity. The complexity arises due to the fact that all possible combinations of
variables have to be exhaustively checked for decomposition. Heuristics for fast
decomposition have been developed and reported in [14]. The technique is based
on checking some simple necessary conditions which candidate partitions have
to satisfy for 'feasible' decomposition. Thus during the decomposition process a
large number of candidate partitions are quickly rejected to achieve a speedup.
An average speedup of 51.64% over Roth-Karp method has been achieved for
decomposing MCNC logic synthesis benchmarks.

6 I L L U S T R A T I V E E X A M P L E

The technique presented in this paper is unique in terms of its ability to map RTL
structures onto FPGAs. We illustrate this technique using a GCD RTL structure
obtained from IDEAS Data Part Synthesizer[13] which takes behavioral descrip-
tion of GCD(Greatest Common Divisor) High Level Synthesis Benchmark as
input. Figure 5 a) shows the GCD RTL structure and figure 5 b) gives the CLB
map of this structure for XILINX XC3000. In figure 5 b) the dotted rectangles

107

enclosing the node (s) indicate tha t they can be realized using single CLBs and
the number in the smM1 square box associated with each node indicates the
number of slices of tha t node packed to a CLB.

We traverse the GCD network star t ing f rom a register node rega and generate
realizable cones by merging re#a with slices of nodes at its fanin, i. e. , muza.
The table 1 shows the realizable cones rooted at rega, slices of nodes associated
with these cones and CLB count. I t is evident f rom the table tha t cone C22

Cone contents CLB Count
Cll 1-bit slice of rega + 1-bit slice of muxa 16
C~1 2-bit slice of rega + 1-bit slice of muxa 16
C~ 2-bit slice of rega + 2-bit slice of muxa 8

Table I . Partial Cone list

is beneficial as it requires only 8 CLBs whereas Cla and C22 bo th consume 16
CLBs and hence are rejected. Start ing with this newly generated cone C2~, we
further check whether it can be merged with the slices of the nodes at its fanin.
Since no further merger is possible, this cone is added to the cone list. As it can
be seen from the figure, that the 1-bit slice of the alu node has 4 inputs and
2 outputs and it cannot be merged with any other node and hence it forms a
separate cone. Similarly, traversing the network from regb towards the pr imary
inputs generates the next beneficial cone containing 2-bit slices of regb and muzb.
Next the traversal is continued from pr imary outputs towards register inputs.
The compara tor node crop has 5 inputs and 3 outputs and cannot be realized
by a CLB, and hence it is decomposed into 3 sub-nodes, 1-bit slices of first two
nodes occupy a single CLB whereas 2-bit slices of the third node get mapped
onto one CLB. The register node regc is at the pr imary output and is realized
using IOBs.

7 R E S U L T S A N D C O N C L U S I O N

The package FAST has been implemented on a workstation based on Motorola
68030 running at 25 MHz. We have synthesized five structures corresponding
to High level synthesis benchmarks : GCD, Diff_eqn, AR_filter, Elliptic filter
and Tseng structure. The mapping onto XC2000, XC3000 and XC4000 device
CLBs has been performed and is reported in table 2. For benchmarks containing
multipliers, we have assumed tha t multipliers are external to the design and are
realized separately.

Table 2 lists the total number of CLBs required by FAST, X A C T 2 and

2 XACT is a p~oprietary product of XILINX and interfaces with a Schematic Capture
tool for mapping onto XILINX devices.

108

rgaot rgbot
,~= \16 16/

CIn ~ 1 > COUt

/ \ j.o, ,j.
m.= / "N f = =

muxaot :tuxbot
16 16

ot

Z ~ g ~ t ~ t

a) GCO STRUCTURE

II Z eout gout

b) GCD CLBMAP

sout

Fig. 5. GCD B.TL Structure and CLB Map

FPGA
device
class

XC2000

XC3000

Xc4000

ITotM # of CLBs for HLS Benchmarks
Mapper GCD Diif_eqn AR.filter Elliptic Tseng

filter
FAST 96 320
XACT 104 338
FAST 56 160
XACT 62 168
FAST 4O 120
XACT 48 142
XBLOX 40 136

240
264

120
126
104
113
104

656 630
688 662
328 317
3~4 s2s
256 294
278 316
272 304"

Table 2. Total CLB count for HLS Benchmarks

109

XBLOX s for realizing the network after the mapping process. The synthesis
technique reported in this paper results in a CLB count reduction of upto 16%
over XACT and upto 12% over XBLOX. In addition to this, FAST has a much
lower execution time. The details of the structure used are summarized in ta-
ble 3.

RTL
~omponents

ALU
COMP'

..... REG
AND

(16-bit)
OR

(16-uit)
MUX

(le-bit)

HLS Benchmarks examples
GcD Diif-eqn hR..filter Elliptic Tseng

width no width no width no width no width no
16-bit 1 16-bit 1 16-bit 2 16-bit 1 16-biti 2
16-bit 1 - - - 16-bit 1

1-bit 1
16-bit 3 16-bit 6 16-bit 5 16-bit 12 16-bit 17

- 2-inp 1

- 2-inp 1

12-inp 2 5-inp 2 4-inp 3 116-inp 2 8-inp 1
4-inp 2 2-inpl5 8-inp 1 4-inp 14
2-inp 4 4-inp 4 2-inp 3

2-inp 4

Table 3. Component Details of HLS Benchmark Structures

To conclude, we have presented an approach for mapping RTL structures
onto FPGAs. The technique is primarily meant for da tapar t of the design and
effectively utilizes iterative structure of the da ta par t components. The slices of
well connected components are generated and are called cones. These functions
form the inputs to the decomposition process. The approach is flexible and can
handle a variety of look-up table based FPGAs and utilizes the architectural
features of commercial devices(like intermediate outputs). The synthesized CLB
boundaries correspond to RTL component boundaries which would imply ease
in testabil i ty and simulation.

A C K N O W L E D G E M E N T S

This work is part ial ly supported by Depar tment Of Electronics(DOE), Govt.
of India under IDEAS project and Ministry of Human Resource Development
(MHRD), Govt. of India under QIP programme.

s XBLOX is a recent product from XILINX and supports MSI level module library

110

References

1. R. Murgai, eta] . , "Logic Synthesis for Programmable Gate Arrays", Proc. 27th
Design Automation Conf., June 1990, pp. 620-625.

2. Xilinx Programmable Gate Array Users' Guide, 1988 Xilinx, Inc.
3. R. J. Francis, J. Rose, K. Chung, "Chortle: A Technology Mapping Program for

Lookup Table based Field Programmable Gate Arrays", Proc. 27th Design Au-
tomation Conf., June 1990, pp. 613-619.

4. R. J. Francis, J. Rose, Z. Vranesic, "Chortle-cff: Fast Technology Mapping for
Look-up Table-Based FPGAs", Proc. 28th Design Automation Conf. 1991, pp.227-
233.

5. D. Filo, J. C. Yang, F. Malihot, G.D. Micheli, "Technology Mapping for a Two-
output RAM-based Field Programmable Gate Arrays", European Design Automa-
tion Conf., February 1991, pp. 534-538.

6. K. Karplus, "Xmap: A Technology Mapper for Table-Lookup Field Programmable
Gate Arrays", Proc. 28th Design Automation Conf., June 1991, pp. 240-243.

7. Nam-Sung Woo, "A heuristic Method for FPGA Technology Mapping Based on
Edge Visibility", Proc. 28th Design Automation Conf.,June 1991, pp. 248-251.

8. R. J. Francis, J. Rose, Z. Vranesic, "Technology Mapping of Look- up Table-Based
FPGAs for performance", Proc. Int. Conf. on CAD, 1991, pp.568-571.

9. Kuang-Chien Chen et al., "DAG-Map: Graph-Based FPGA Technology Mapping
for Delay Optimization", IEEE Design & Test , September 1992, pp. 7-20.

10. R. Murgai et al., "Performance-Directed Synthesis for Table Look-up Pro-
grammable Gate Arrays", Proc. Int. Conf. on CAD, 1991, pp. 572-575.

11. P. J. Roth and R. M. Karp, "Minimization over Boolean graphs", IBM Journal of
Research and Development vol. 6/No.2/April 1962 pp. 227-236.

12. Anshul Kumar et al. "IDEAS : A Tool for VLSI CAD ", IEEE Design and Test,
1989, pp.50-57.

13. M. V. Rao, M. Balakrishnan and Anshul Kumar, "DESSERT : Design Space Ex-
ploration of RT Level Components", Proc. IEEE/ACM 6th Int. Conf. on VLSI
Design'93, January 1993, pp. 299-303.

14. A. R. Naseer, M. Balakrishnan and Anshul Kumar , "FAST : FPGA targeted
RTL structure Synthesis Technique", Proc. IEEE/ACM 7th Int. Conf. on VLSI
Design'94 January 1994, pp. 21-24.

15. A. R. Naseer, M. Balakrishnan and Anshul Kumex , "A technique for synthe-
sizing Data Part using FPGAs' , Proc. IEEE/ACM 2nd Int. Workshop on Field
Programmable Gate Arrays, Berkeley, February 1094.

A Testbench Design Method Suitable for
FPGA-based Prototyping of Reactive Systems

Volker Hamann

Institut ffir Technische Informatik
Vienna University of Technology

Treitlstrasse 3 - 182/2
A- 1040 Wien, AUSTRIA

email: volker@vlsivie.tuwien.ac.at

Abstract. As reactive systems are growing more and more complex, costs
stemming from a misconception in early design phases like requirements
analysis and system specification show a tendency to explode. This makes rapid
prototyping inevitable for extensive simulation in early design phases. In this
article, we investigate into the usability of field programmable logic for
designing a "real-world" testbench suitable for simulating the environment of a
prototype. We present a top-down design method which significantly reduces
cffort, especially when FPGAs are also used as implementation technology for
the system prototype.

1 Introduction

Each environment of a system can be seen as a system of its own. When verifying a
system under development (SUD), it suffices to show that the interaction between the
system itself and the system called "environment" at no time leaves the specification as
long as certain constraints are fulfilled. Most of the time, this interaction is performed
according to a state-oriented protocol.

Statecharts IHar87] have proven to be a good capture and simulation basis for
designing state-based reactive systems. Statecharts are not only suitable for designing
such systems themselves but can also be used for specifying their working environment
and thus may serve as a basis for testbench development. Instead of being bothered
with the development of case studies and/or test vectors, the designer creates a model
of the environment and steps down the design process in parallel with the SUD itself.

Since the introduction of the FPGA technology, their power and consequently their
field of usage have increased to a high extent. Several applications of medium to high
complexity have been realized and lots of tools have been created supporting top-down
synthesis from higher design levels like hardware description languages (e.g. VHDL
[IEEE88]) or logic level encoding based on schematics [View91]. However,
verification techniques have not been able to keep up with this development. Most
simulation tools accept test vectors as input and produce either a kind of waveform or a
"go-nogo" statement when comparing simulation results with expected results.

Section 2 will describe a possible design flow supporting codesign of a system and its
testbench. In Section 3 this method is being discussed and some results are presented.

112

2 Design Flow

The design flow is shown in Fig. 1. The testbench as well as the SUD are modelled in
quite the same way, possibly even in parallel. As a front end, a Statecharts tool like
SPeeDCHART [Spd93] can be used. This tool offers a VHDL generation facility. Thus,
the SLID can be simulated directly in Statecharts or in an VHDL environment, e.g.
Synopsys [Syn92]. After refining the VHDL code with hand-written entities, which has
proven to be useful when designing modules of higher complexity, it can be
synthesized to logic level using e.g. the Xilinx [Xi193] backend available for Synopsys
and downloaded into FPGAs. Here it is possible to make the connections between SUD
and testbench by the internal routing channels of an FPGA, thus using the same chip
for testbench and SUD. If, however, the design is too large, the connections are
realized by external wiring between the various FPGA chips.

Testboooh I ! SUD

i onoratevHDL I I ooo'a oV L

I V"DLSimula io° I

+

~_~_ Statecharts
Level

I
VHDL

Behavioral
Level

Logic
Level

executable HV¢
specification

Fig. 1: Co-ordinated Design Flow.

3 Discussion and Results

The proposed method has several advantages:

1.) The designer is obliged to spend more thoughts on the environment of the system,
almost as much as in a design method based on formal semantics. As he does so in an
early design phase, costs for searching for the optimum solution can be kept small.

2.) High level design tools like Statemate or SPeeDCHART encourage the usage of
statechart models not only for the design itself but also for simulation testbenches, so
why throw them away when stepping down to the next level?

3.) When reaching the FPGA prototype level, it is much cheaper to test the system
prototype by connecting it to another FPGA prototype of the system environment.
Especially in an industrial environment where expensive machines are controlled by

113

electronic devices, erroneous behavior in the integration test stage may have disastrous
consequences.

4.) When a system consists of several submodules, a single submodule may see the rest
of them as its testbench. By having a thoroughly designed testbench, at least parts of it
can be reused for modelling other components of the system under development. This
is especially true for interacting replications of equally structured entities.

Of course, this method - if used stand-alone - will not be feasible for optimizations
necessary for ASIC development based on processes different from FPL technologies.
This is due to the fact that it views system and environment (or subsystem and other
subsystems) very much as separate entities, neglecting behavior that they might have in
common. Anyway, this is not really a need as long as a system is only prototyped.
Also, the method will not be helpful when statemachine based design is out of question
unless different front-end tools are empoyed.

The method is currently being tested for feasibility in the design of a fuzzy controller.
As far as we can see now, there is a significant improvement in design time and fault
coverage compared to standard testing methods. Especially when designing the
rulebase, the interactive testing and observation of the external behavior is eased in a
considerable way [SH94]. The rulebase is first modelled with Statecharts and tested
without fuzzifier and defuzzifier. Appropriate fuzzified input values are presented by
the testbench, and output values are evaluated for soundness giving an idea how stable
the system is and how sensible it reacts to changes of input stimuli.

Afterwards, fuzzifier and defuzzifier models are created in VHDL and tested together
with the "already designed rulebase. Logic synthesis and FPGA implementation finish
the prototyping cycle. Along with the model, the testbench is refined and made more
and more similar to the real operating environment and is finally also brought to
FPGA level, allowing for "real-time" observations.

R e f e r e n c e s

[IEEE88]

[Har87]

[SH941

[Spd93]

[Syn92]

[View91]

[Xi193]

IEEE, IEEE Standard VtlDL Language Reference Manual, IEEE, 1988.

David Harel: "Statecharts: A Visual Formalism for Computer Systems",
in: Science of Computer Programming, Vol. 8, North Holland, 1987.

Valentina Salapura, Volker Hamann: "Using Statecharts and Embedded
VHDL for Fuzzy Controller Design', Proc. of VHDL-Forum for CAD in
Europe, 1994.

Speed: "SPeeDCtlART Reference Manual", Speed SA Neuchatel
(Switzerland), 1993.

Synopsys, "Design Compiler Reference Manual", Version 3.0., Synopsys
Inc., 1992.

VIEWlogic: "Workview Reference Manual", Version 4.1, VIEWlogic
Systems Inc., 1991.

Xilinx: "The Programmable Logic Data Book", Xilinx Inc., 1993.

Using C o n s e n s u s l e s s Covers for Fast O p e r a t i n g
on B o o l e a n Funct ions

E u g e n e G o l d b e r g L u d m i l a K r a s i l n i k o v a

Institute of Engineering Cybernetics, the Academy of
Sciences of Belarus, Surganov str.6, Minsk 220012, Republic of
Belarus, fax: + + 7 0172 31 84 03, phone: -t-+ 7 0172 39 51 71,

e-mail: katkov@adonis.iasnet.com

A b s t r a c t . The paper presents a method for fast operating on covers
of Boolean functions. The method develops the one based on the unate
paradigm (UP)[1]. The proposed method differs from the UP one in two
aspects (1) the initial cover is decomposed into a set of prime rather than
unate subcovers, (2) prime covers are obtained by applying to each re-
ched not prime subcover either branching by the Shannon expansion or a
procedure of making the subcover consensusless in a variable by the con-
sensus operation. Experiments on MCNC-91 two-level logic benchmarks
and random functions show that operations based on the proposed method
are less laborious than their UP based counterparts.

1 B a s i c D e f i n i t i o n s a n d P r o p o s i t i o n s

To present the proposed method we need to introduce some definitions and
proposit ions.

A subset C = $1 x .. x S,~ of the Boolean n-space {0, 1}" is said to be a cube .A
subset Si we shall call the i- th component of C. A cube C is called an implicant
of a completely specified s ingle-output Boolean function f if C C O N _ S E T (f)
where O N _ S E T (f) is the vertices of the n-space in which f evaluates to 1. An
implicant C is said to be a prime if any cube strict ly containing C is not an
implicant. A set of implicants of f which contain any vertex of O N _ S E T (f)
is called a cover of f . We shall call a cover prime if all primes of the Boolean
function specified by the cover are in the cover.

Cubes C ~ , C " are said to be orlhogonal in the k- th variable if S~ N S~ ~ = 0 .
Let cubes C' and C " be or thogonal only in the j - t h variable. Then a cube
S~ N S~' x ,. x Sj U Sj: x S; n S~: is said to be produced by the consensus operat ion
[2]. We shall call a pair of cubes which are or thogonal only in one variable a
consensus pair in the variable. We shall call a cover consensusless in a variable
if any cube produced by the consensus opera t ion f rom a pair of cubes from F
which are consensus pair in the variable is contained in some cube f rom F .

Denote by F~j and F~-j subcovers (sometimes called cofactors with respect
to xj and gj [2]) of subfunct ions f (x l , .., 1,..x~) and f (x l , . . , O,..x,~) of funct ion
f (x l , . . , x j , . . , xn) formed f rom a cover F of f .
P r o p o s i t i o n 1 I f a cover F is consensusless in M1 variables, F is prime.
P r o p o s i t i o n 2 Let a cover F be eonsensusless in the j - th variable. Then the
covers Fxk and F ~ , k 7 £ j obtained by Shannon expansion or any cover F'

115

obtained by adding to F a set of cubes produced by the consensus operation are
consensusless in the j - th variable too.
P r o p o s i t i o n 3 Let F be a cover and Fj be a set o f all cubes produced from
consensus pairs of cubes from F orthogonal in the j - tb variable. Then the
equivalent to F cover F; = F O F] is consensusless in the j - th variable .

The proofs of the propositions are omit ted for short.

2 Formula t ion of the M e t h o d

Tile UP method is to apply the Shannon expansion to the initial cover to
decompose the cover into a set of unate subcovers. This allows one to subst i tute
operating on the cover for doing on the unate subcovers. The main property
of unate covers that makes performing many operations trivial is that a unate
covet: is prime [2]. The key point of the method presented in the paper is to
decompose the operated cover into prime subcovers which, generally speaking,
may not be unate.

The method consists in recursive performing the following algorithm. (1) If
there is a variable in which a subcover F is not unate and an ancestor of F
was not made consensusless in the variable then step 2 is performed. Otherwise
F is prime.(2) The subcover F is either decomposed by branching in a "not
processed" variable or made consensusless in one of such variables.

I~y making the subcover F consensusless in variable xj is meant the described
in proposition 3 procedure of substituting F for cover /7~. To choose between

,,,i.,,(IFt + n '{ , n j) are calculated where n i and 'ha0 is the number of cubes f rom
F the j - th component of which is equal to {0} and {1} respectively. The value
or 2 1 F I - (~,.{ + ,.{;)is equal to IF~,I + IF~#I and. so a describes the most effective

w~y of branching. The value of I/~'1 + n{ * n~ is the upper bound of I U I and
so b describes the most effective way of making the cover F consensusless in
a variable.if a < b the branching in a variable minimizing 2IF I - (n{ + n j) is
chosen. Otherwise from F cover Fj* is obtained where j is the index of variable

~o,. ,,q,i~b I~[+ ,,{ * ,~{ is minimum.
Justification of the method is based on propositions 1-3.

3 E x p e r i m e n t a l Resu l t s

To evaluate the efficiency of using the proposed method (further referred to as
the EPC- (expansion plus consensus) method) programs EPC-Reduce and EPC-
Decomposition have been written. EPC-Reduce implements Reduce operation
used in the two-level logic minimizer Espresso [2]. The program was applied
to a number of MCNC-91 two-level examples (table 1). When implementing
the operation the extension of the EPC-method to the case of mul t i -output
Boolean flmctions was made. The program EPC-Decomposi t ion is intended just
to decompose the cover into a set of prime covers. The program was applied to
sillgle-output covers obtained by the pseudorandom number generator (table 2).

116

Both programs were compared with their UP based counterparts written in
accordance with [2]. To compare the performance of operations based on the
UP- and EPC- methods it is reasonable to use the total number of the varia-
bles processed when reaching pr ime subcovers. For the UP-based operations
the number is equal to the number of branchings and for the EPC-method ba-
sed ones the number is equal to the sum of the number of branchings and the
number of variables in which subcovers were made consensusless. Programs
EPC-Reduce and UP-Reduce were applied to covers obtained after performing
Irredundant_Cover procedure during the first i teration of the minimization loop
of Espresso [2]. When constructing a random cover the number of components of
a cube different from {0,1} was uniformly distributed in the range [rt, r=] shown
in table 2.

T a b l e 1

Examp. nc ni ~o nexp n c o n nepc nup
apex2 459 39 3 6749 2219 8968 13561
apex5 308 117 88 1210 339 1549 1566
alu4 360 14 8 4595 2624 6219 6310
comic 1082 23 2 2824 2694 5518 51474
cps 106 24 109 216 57 273 268
ex4 141 128 28 584 344 928 1033
seq 262 41 35 821 209 1030 1056
misex3 70 14 14 1807 384 2191 2792

T a b l e 2

Examp. nc ni rl r2 nexp ~con nepc nup
1 100 10 3 4 310 311 621 851
2 100 10 6 7 222 41 263 268
3 50 20 4 4 403 249 652 5692
4 50 20 3 5 446 305 751 7584
5 60 20 3 5 1493 846 329 15241
6 60 20 4 4 1173 576 749 14253
7 100 30 8 18 2289 1556 845 3209
8 100 30 6 7 15154 11027 2181 95789

nc,nl,no - the number of cubes, inputs and outputs respectively, n ~ v , n~on -
the number of variables processed in EPC-based programs by expansion and
consensus operation, n~p~, n~p- the total number of variables processed by EPC-
and UP-based programs.

R e f e r e n c e s

[1] Brayton R.K., e.a. Fast recursive Boolean function manipulat ion , Proc.
Int. Syrup. Circuits and Syst. Rome, Italy, May 1982,pp.58-62.

[2] Brayton R.K., e.a: Logic minimization algorithms for VLSI synthesis.
Norwell, MA: Kluwer Academic Publishers, 1984.

Formal Verification of Timing Rules in Design
Specifications

Tibor Bartos, Norbert Fristacky

Abstract:

An algoritlun for formal verification of the set of timing rules that express timing discipline
in digital systems is described. It is based on a digital system specification model and notation
transferrable to VHDL and concerns formal consistency verification at the design level of
system specification development procedure.

1. Introduction

In the process of top-down synthesis, developed system specifications have to be
verified even during the specification refinement process, for it must be assured that
the derived specification is consistent and correct, and that towards it any
synthesised implementation can be formally verified.

This paper concentrates on the formal verification of specified t iming discipline
that should hold in the system and its environment (i.e. it ignores the functional
verification). The specifications are expressed in frame of a higher-level specification
model we employ.

2. S p e c i f i c a t i o n m o d e l

We will represent time as a finite real interval TI and variables as functions of type
X: T I - + D X ~ ~ n~ where DX is a finite domain and u denotes all nnspecified value.
A finite number of changes in TI is supposed. Variables are described as sequences
of evems (changes of values). Two ~-pes of e~ents exist: up(A,v,i) (X changes from
ally value to v; i is an index used to distinguish betxveen different changes to the
same value) and down(A;v,i) (X changes from v to any other value). For eve~'
up(X,v,i), down(X,v,i) exists. Symbol tin(e) denotes the time xxhen event e occurs.

A digital ,syxtem S is described b5 inpuL output and state variables. Let V. H. Q be
sets of vectors of input, output and state variable values, rcspeclively. The vectors are
called input vectors, output vectors and states of S. Let v(t). h(t) and q(t) denote their
values indicated in t ime point t. A timed input output word (shortly i/o word) of
system S is a finite sequence w = (v l , e l . h l) (v2,e2,h2) ... (vN,eN.hN). Ever3 ~
(vi,ei,hi) is a timed mput~output vector (shortly i/o vector), where e i is an event, v i =
v(tm(ei)) and h i = h(tm(ei)), t in(el) < tm(e 2) < ... < tm(eN). Events e i are called
timing events. The last t iming event e N is called final timing event ef.

The model [1] is based on entities named agents that spec ie a partial behavionr of
the system S over finite time interval. An agent specifies a particular set of i/o
communications (given by i/o words and initial states) taking place in a time interval
and the final state at the end of the interval. All agents reflect deterministic finite
state machine behaviours. The timing discipline of an agent is specified by a set of

118

predicates called timing rules [1], [2], [3]. To achieve the behaviour specified by an
agent, all timing rules have to be fulfilled. The following types of rules exist: Delays
specify that a difference between two event occurence times is equal to a given
timing parameter, constraints specify that a difference between two event occurence
times is not less than a given timing parameter. Stability ru&s specify that the value
of a given variable is stable in an interval containing a timing event. They can be
converted to constraints. Or-rules are disjunctions of previous types of rules.

3. Verification algorithm

As the timing of events is "closed" within tile agents, we can verify tile timing of
every agent separately. The timing of an agent is correct if the timing rules are true
for every i/o word w specified by the agent. Change of a variable in w generates an
event. Let E(w) be the set of all these events and TR(w) the set of timing rules that
deal only with events from E(w). Tile timing of w is consistent if for every event e e
E(w) exists an occurence time tm(e) such that all timing rules from TR(w) are true
and evem e I occurs in w before event e 2 if and only i f tm(e l) < tin(e2).

An approach to verification of timing rules over a graph representing timing
diagrams was developed in [5], [3], [2]. A timing diagram is semantically equal to a
sequence of events together with the set of timing rules. We have concentrated on the
question how the set of i/o words and timing rules can be transformed to a graph, in
order to use the known approach. As a result, timing rules in an agent are verified if:

I. All possible i/o words are generated from a regular expression that describes the
set of i/o communications.

2. For every i/o word, all events resulting from changes of input and output
variables are added to the sequence of timing events at appropriate positions,
creating so-called precedence graph. The precedence graph is a graph G where
nodes represent events and oriented weighted edges represent the precedence (or
relative time order and "distance") of events. The mapping from nodes to events is a
one-to-one function, so we will use the names of events as names of nodes. The
edges have two weights. There is an edge from e 1 to e 2 with weights p and s in G if
either s = 0 and tin(e2) _> tin(el) + p or s = 1 and tin(e2) > tm(el) + p.

Whenever an "up" event is added to the graph, also the corresponding "down" is
added and they are connected by an edge with weights p = 0 and s = 1. I f an "up"
event describing a change of variable X is added to the graph, an edge with weights
p = 0 and s = 0 from last "down" event for X to this event is added. If an edge with
weights Po and s o is being added, but another edge with weights Pn and s n
connecting given nodes already exists, only the weights of the existing edge are
updated. The resulting weights will be Pn, Sn ifPn > Po" Po, So ifPn < Po or (Pn = Po
and s n = 0); Po, 1 ifPn = Po and s n = 1. The graph G is initially empty.

The precedence graph is created as follows: Let w = (vl ,el ,h 1) ... (vN,eN,h N) be
the input i/o word, where e 1 e N are timing events, v 1 v N and h 1 h N are
vectors of values of input and output variables. For every i = 1 N:

a) the node representing the timing event e i is added along with an edge with
weights p = 0 and s = 1 from previously added timing event to this event.

119

b) Evems generated by changes of values of every variable X (X(tm(ei)) ~ u) in
vectors v i and h i are added. I f X does not change its value, only an edge with weights
p = 0 and s = 1 from e i to the last "down" event for X is added. If the value of X
changes, corresponding "up" and "down" events are added together with two edges.
The first one connects the "up" event with e i and has weights p = 0 and s = 0 and the
second one connects e i with the "down" event and has weights p = 0 and s = 1.

3. Edges representing the set of tinting rules are added to the graph. Edges are
added only if there exist both nodes they connect (so that only rules from TR(w) are
added for i/o word w). For constraints, one edge with weight p equal to the timing
parameter is added. For delays, two edges with weight s = 0 between given events e l,
e 2 are added: an edge from e l to e 2 with weight p = x and an edge from e 2 to e l
with weight p = -x. where x is the given timing parameter.

It is possible to prove [3] that the set of tinting rules is inconsistent iff the
precedence graph contains a positive cycle (a cycle in which either the sum of p-
weights of edges is positive, or the sum of p-weights is zero and there is at least one
edge with s-weight equal to I in the cycle).

Satisfying one of the subrules contained in an or-rule suffices for the entire or-rule
to be satisfied. If one of the subrules causes existence of a positive cycle in the graph.
adding another one calmot cancel it. As a result, the consistence of an or-rule can be
verified by searching all graphs where exactly one of subrules contained in the or-
rule is added. Therefore, after all "simple" rules have been added to the graph, one of
subrules from evel 3. or-rule is added, and the graph is searched for positive cycles.
The subrules are then removed from the graph and the process is repeated until all
combinations of subrules are checked. The whole set of rules is consistent, if at least
one consistent combination is found.

4. Conclusion

This algorithm is intended to be used in the process of specification design to
ensure that the developed specification is correct. It ~as implemented as a program
in C. A simple language was defined as input notation for that program. Definition
of the input notation and implementation details can be found in 14].

References:

[1] Fristacky, N., Cingel, V.: A functional and timing specification model for digital systems.
Proc. of the 7th Syrup. on Microcomp. and Microproc. App., Budapest, 1992, pp. 185-I 90.

[2] Cingel, V.: A graph based method for timing diagrams representation and verification, hi
Correct ttardware Design Methodol. CHARME 93, Arles France, Springer Verlag, 1993.

[3] Cingel, V.: Specification and Verification of Timing in Digital Systems. Ph.D. Thesis,
Dept. of Comp. Science and Eng., Slovak Techn. Univ., Bratislava, 1991 (in Slovak).

[4] Bartos, T.: Program for Verification of Timing Rules in Digital System Specifications.
Diploma Thesis, Faculty of El. Eng., Slovak Teclm. Univ., Bratislava, 1993 (in Slovak).

[5] Jahanian, F., Mok, A. K.: A Graph-theoretic Approach for Timing Analysis and its
hnplementation. IEEE Tr. on Computer, Vol. 8, 1987, pp. 961-975.

Opt imized Synthes is of Self-Testable Fini te
State Machines (FSM) Using B I S T - P S T

Structures in Altera Structures

Andrzej Htawiczka-Senior Member, IEEE 1, Jacek Binda 1

Technical University of Gliwice, Poland email:<hlawiczoss.iele.gliwice.edu.pl>

Abs t r ac t . The testing of PCBs containig ASICs, e,g., Altera FPGA is
an important problem which needs consideration. One of the ideas of
solving this problem is using BIST architecture for each ASIC. With
the use of built-in testers, the additional cost, in the form of overhead
of macrocells is added. A certain idea of built-in tester structures is
BIST-PST [1]. The disadventage of this idea is, that the FSM memory
block in form of MISR with a given characteristic polynomial may be
realized only in form of: IE-MISR and EE-MISR. In our paper, the new
kind of MISR registers consisting of D and T flip-flops has been used in
BIST-FST. They make it possible for a given characteristic polynomial
to achieve a wide range of possible realizations of MISR type memory
block, ranging from tens to thousands. In effect, it is possible to choose
the minimal excitation function saving a considerable number of Altera
FPGA macrocells.

1 Optimized Synthesis

The idea of BIST-PST structures given by Wunderlich in [1], and presented
in Fig. 1, didn' t include the solution of problems concerning synthesis of self-
testable FSMs using minimum cost, e.g., standard cells in Altera 7000 family.
The main drawback of the theory proposed in [1] was used, for a given primitive
polynomial, only the Internal EXOR gates based Multi Input Signature Registers
(IE-MISR) and External EXOR gates based MISR (EE-MISR). On the basis of
the Wunderlich theory, the primitive polynomial, e.g., p (x) = 1 + x + x a has only
two following realizations: D®DD and D D e D (see Fig. 2). In effect the number of

In

........... ~ z ~ " ~

i ~] i .out

I

Fig. 1. The BIST-PST architecture

121

a) b)

Fig. 2. Realizations of MISR: a - Dq~DD, b - DDOD

different excitation functions fM of above mentioned MISRs is very small. So the
chance of choosing the optimized new excitation function fM Ofs (fs - excitation
function of sequential circuits) was too poor. This chance rapidly grows using
new class of MISRs presented in [2]. The paper [2] deals with a uniform algebraic
description of operations of M ISRs consisting of D and T flip-flops (DT) and their
combinations with XOR gate based linear feedback path. Structures based on the
internal (external) linear feedback path with new kind of D or T flip-flops have a
huge number of possible realizations of MISR registers named IEDT-MISR and
EEDT-MISR. The main point of the new theory is discovery the possibility of
designing DT type linear registers using XOR gates contained in the T flip-flops
(JK f/fs) instead of XOR gates placed in tile feedback path. The example of p(x)
mentioned above obtain now new five realizations of IEDT-MISRs and EEDT-
MISRs: DTT; TDT; TTD; T ¢ T T ; TTOT. Tile DT type registers operate faster
than any of their equivalents with XOR gates in tile feedback path and what 's
more are less complicated and use less number of cella ill some of PLDs, FPGAs
etc. The more is tile number of MISR's stages the more rapidly increases the
number of IEDT-MISR and EEDT-MISR realizations for given polynomial. For
examl)le some of ten degrees polynomials have hundreds and some of seventeen
degrees polynomials have thousands or more realizations of IEDT-MISRs and
EEDT-MISRs. Discovering the rules of finding out IEDT-MISR (EEDT-M1SR)
with primitive polynomial quaranteing the minimal or close to (quasi) minimal
cost of realization of the fimction (fs q) f v) q~ fM, was the main point of this
new theory. According to the rules of creating the excitation functions of i-
th stage of register of the BIST-PST memory block structure presented in [2]
(f~i = fsi @ fMi), the new excitation function for i-th stages of the sequential
circuit has been created. Owing to its compensation by the fMi in the MISR
type memory block, the truth table of the sequential circuit is unchanged. The
realization of such a fimction is fsi = (fsi q)fMi)®fMi = f~i®fMi. The main task
of the optimization relied on finding out the type of IEDT-MISR register, having
primitive polynomial and which fMi formula for each (i-th) stage warranty the
minimal realization for every fsi ® fMi functions. Depending on values of Pi and
ki factors (Fig.6 in [2]), the function fsi = fsi q~ fMi may be for tobit register
stated ill four formulas (1)

f[si --~ f s i @ q i -1

f s i z f s i (710 q i -1 @ qn

f~'i "= fS i ~O q i - l @ qi

(1)

122

fsi = fs i (~ qi-1 0 qi q3 qn

Every of (1) formulas carry in the different cost factors of the i-th stage of IEDT-
MISR register 's realistation. To achieve the minimal fs i function the minimiza-
tion process based on Karnaugh maps must be done. Their number is s tated
by the expression: Nn = 4 (n - 1) where n denotes the length of the register.
As a result is the complexity (the number of terms) of the i-th stage of IEDT-
MISRs. Having the minimal complexity of the fsi functions of the IEDT-MISRs
i-th stages, the choice of the minimal cost IEDT-MISR register may be real-
ized. This set of minimal f~i excitation functions of i-th stages, makes possible
to determine the characteristic polynomial of the pointed IEDT-MISR register.
If achieved in this way polynomial is the primitive one, the designed register
based on it is regarded as proper to realize the minimal BIST-PST structures.
In other way, the next from the set of the f~i minimal realizations of the i-th
MISRs stage is chosen. This process is repeated until the primitive polynomial
is reached. Comparing the way of the IEDT-MISR realization to the IE-MISR
ones, the following conclusions have been created:

- there are only 2 '~-~ registers consisting of the D flip-flops,
- there a r e 2 2 (n - l) = 4 (n - l) = 2(~-2)2n possible to achieve IEDT-MISR reg-

isters based on the D and T flip-flops,
- the number of realizations of the IEDT-MISRs is 2 ~ times more than the

number of realizations of the IE-MISRs.

So the chance of finding out the possible minimal realizations of IEDT-MISRs
in comparison to IE-MISRs grows rapidly, together with the length of the register
(2n). Based on the concept of the new class of IEDT-MISR registers, a new
family of FPGA circuits - Altera 7000 was taken to realize this theory. Thanks
to existence of the XOR gates connected to programmable flip/flop and used to
build internal (external) feedback paths, the idea of constructing the new kind of
MISR registers based on the given primitive polynomial was realized. Owing to
this new theory, one can reduce not only the number of macrocells used to realize
project, but also to change the proportions between the number of macroeells
used in realization of FSM and the number of macrocells used in realization of
the BIST.

R e f e r e n c e s

1. B. Eschermann, H.J. Wunderlich: Optimized Synthesis of Self Testable Finite State
Machines. Proc. 20th Int. Symp.Fault-Tolerant Computing, pp.390-397,1990

2. A. Htawiczka: D or T flip-flop based linear registers. Archives of Control Sciences
Volume I(XXXVII) No.3-4, pp.249-268, 1992

A High-Speed Rotation Processor

Jan Lichtermann, G~inter Neust~dter

Department of Computer Science, University of Kaiserslautem
D-67653 Kaiserslautern, PO-Box 3049, Germany

Abstract. We present a bigh-speed rotation processor for rotating digital images
based on the backrotation algorithm. The design is part of our research project
on real time volume visualization architectures. The processor is implemented
on an Actel FPGA and the solution is compared to a Xilinx implementation. Per-
formance measurements show a throughput of more than 360 images per second
with 2562 pixels per image. Each pixel is represented with 12 bit data.

1 Introduction
Modern imaging techniques in medicine like computer tomographie or magnetic reso-
nance imaging produce digital images, called slices, of the human anatomy. Combin-
ing adjacent slices of one scene results in a volumetric data set. Volume visualization
methods, eg. raytracing directly throttgh the sampled data points, make it possible to
compute images that show a perspective (313) view of these volumetric data sets. To
achieve real time computation speed (20 pictures per second) wc scparate the entire
visualization process into data volume rotation and raytracing with fixed observer
position [2]. Therefore we can use a pipeline architecture for these computations. In
this paper we present a high-speed rotation pr(yccssor for the first pipeline step [311. It is
capable of rotating 320 slices with 256 x 256 daU~ points with 12 bit intensity resolu-
tion in one second, equivalent to 16 slices at the required rotation speed.

l l
Transformation

Matrix

+ = [-cosO-sinO 1
M Lsine cos 0_]

= {-cos0 sin0~
M- [_-sin 0 cos~

Fig. 1. MR picture of a head before and after 35 o rotation

2 hnage Rotation
The sample points in the slices are on a recmngttlar, evenly spaced grid. They can be
described by integer coordinates in a source coordinate system. 2D-Rotation by angle
0 can be described by matrix M ÷ for countcrclockwisc and M- for clockwise rotation.
In the rotated slice, the new sampling points are described in a destination coordinale
system.
The backrotation algorithm enumerates all points in the destination slice and trans-
forms their coordinates back into the source coordinate system by applying the invcrse

124

matrix of the rotation matrix. Enumerating these points in a regular fashion leads to
simplifications in the algorithm because line drawing DDA algorithms can be used to
easily compute the points in the source coordinate system [1]. The following algorithm
(figure 2) enumerates the points in a slice column by column.

/* transform the coordinates of the first point of first column p'(x',y') from the
destination coordinate system into source coordinates p(x,y): */

Xba k : X ----- X ' " cos0+y' - sin0, Ybak = Y = Y' " cos0-x' • sin0
for all columns of the destination slice {

for all points p'(x',y') in the column {
compute the intensity at point p'(x',y') from the intensities of the neighborhood
of point p(x,y) in the source slice (resampling)
x = x + s i n 0 , y = y+cos0 }

X = Xba k : Xba k + COS0 , Y = Ybak = Yb~k- sin0 }

Fig. 2. Backrotation algorithm using line drawing

The new sampling points p(x,y) generally do not exactly meet the integer coordinates
in the source coordinate system. In a resampling step we use bilinear interpolation to
compute the intensity i(p) at a point p(x,y) between grid points from the intensities of
the four surrounding grid points.

3 Rotation Processor

The architecture of our rotation processor is shown in figure 3. The source memory
source crossbar bilinear destination consists of four memory banks and

memory switch interpolation memory is able to store 16 slices. Partition-

- - ~ i] ~ - ~ ing the source memory into four
banks allows parallel access to all

~ i ~]=~_]L i ~ f°ur values necessary f°r bilinear
interpolation (memory interleav-
ing). Data read from source mem-

"~ q ' ~ i i ~ ~ i [i ! ory is routed through a crossbar
switch to the inputs of the bilinear

,, interpolator. The result of the inter-
e= polation is stored in destination
~ tl"'][i.!__..~_ 1 -~_..5 _ i~)at ~ memory which is of the same size

"-" as the whole source memory. Cross-
I (FPGA) bar switch and bilinear interpolator Proce~or

are realized by a standard cell
Fig. 3. Architecture of backrotation processor design (die size 40 mm 2) with ES2

1.5~ cell library.
The backrotation algorithm (figure 2) has been implemented in an Actel FPGA A-
1280-1. The address generator traverses a slice column by column and computes the
source coordinates of the four points necessary for bilinear interpolation. The source
coordinates are split up into integer parts which give the addresses to access the inten-

125

sity values at the grid points and fractional parts which are the weights (dx, dy) for
bilinear interpolation. Computation of the first point in the first slice takes seven clock
cycles. After that, we are able to rotate one pixel within each 42 ns clock cycle.

4 FPGA-Design Experiences
The Actel A-1280-1 contains 1232 logic modules (8000 gate array equivalent gates).
In our design we have a module utilization of about 80%. Therefore it was difficult to
achieve our timing requirements. Our limit was a clock period of at most 47ns. Actel
design tools predicted a probability of 94% for complete wiring. Only about half of the
50 placement and routing attempts succeeded. Initial critical path analysis showed that
the design would not reach the goal (30% too slow). Avoiding large fanouts by dupli-
cating parts of the logic in critical paths and using additional buffers and gates with
few pins improved the critical path by about 5ns. Another 5-10ns could be saved by
marking nets more or less critical. We observed that the delay of one net differs
between 8ns and 15us after distinct place and route attempts. Nets not marked critical
driven by modules with a fanout of 8 or more can easily reach delays up to 50ns.
Finally, after all improvements, critical path analysis tools reported a delay of 55ns for
worst case process (chip fabrication) and operating conditions 75°C ambient tempera-
ture at 4.75V supply voltage. For typical process conditions and 25°C ambient temper-
ature at 5.0V supply voltage the result was 46us.
The design was retargeted to the Xilinx XC4000 family. This was done by giving a
VHDL description of the processor to the Mentor AutoLogic synthesis tool. Since the
synthesized adders turned out to be much too slow (120 ns) we replaced them by hand
designed adders. Xilinx place and route tools suggested an XC4008 with 324 config-
urable logic blocks (approx. 8000 gates). After placement and routing the tools
reported a CLB utilization of 82% and a critical path length of 52.9ns for an XC4008
with speed grade -5 (5ns CLB delay). The critical path analysis reflects worst case val-
ues over the recommended operating conditions. The current version of AutoLogic is
not able to optimize the critical path length during technology mapping for Xilinx
designs. Several place and route attempts led to comparable results. Even the attempt
to use an XC4010 with more CLBs and routing resources did not improve the result.
Thus we can conclude that both FPGA families, Actel and Xilinx, are suitable for our
application and result in designs (Actel 55ns worst case versus Xilinx 52.9ns worst
case) with similar speed.

References
1. Joel H. Dedrick: Transforming Digital Images in Real Time. The Electronic

Design Magazine, 27-30, August 1987
2. Jan Lichtermann, Gangolf Mittelhfiuger: Eine Hardwarearchitektur zur Echt-

zeitvisualisierung yon Volumendaten durch 'Direct Volume Rendering', GI
Workshop Visualisierungstcchniken, Stuttgart, June 1991 (in German)

3. Jan Lichtermann, G/inter Neusttidter: A High-Speed Rotation Processor for the
PIV2-Architecture, SFB 124 Report, University of Kaiserslautern, Germany,
1994

The M D 5 M e s s a g e - D i g e s t A l g o r i t h m in the
X I L I N X F P G A

P. Gramata 1 P. Trebatick~ and E. Gramatov£ 2

1 INFOTRANS,
Ddbravskg. cesta 9, 842 20 Bratislava, Slovak Republic

2 Institute of Computer Systems of Slovak Academy of Sciences,
Ddbtavsk£ cesta 9, 842 37 Bratislava, Slovak Republic

Security algorithms are very often implemented by the FPGA technology
because only a limited amount of circuits with these algorithms are necessary
for production.

This paper describes some possibilities for implementation of the MD5 Messa-
ge-Digest Algorithm [1] by means of XILINX FPGA's. A message digest algo-
r i thm (one-way hash function generator) takes as input a message of arbitrary
length and produces as output say 128-bit "fingerprint" or "message digest" of
the inputs. Such algorithms are often usefull for digital signature applications.

Several algorithms of this kind are known. SNEFRU, FFT-Hash II, MD4,
MD5 algorithms, or the I.S.O. proposal are among them [1], [2], [3].

We chose the MD5 algorithm for implementation for several reasons:

- it was good accepted by experts,
- it needs minimum ROM memory, so it can be fully implemented in one circuit

(higher security),
- it offers good trade-offs for implementation of hash functions with respect

of development time and price,
- only one small change (new initial constants) allows to distinguish different

users.

The algorithm begins with the initial constant MD0 and processes n blocks
of words by means of four round functions - FF, GG, HH and II as follows:

MDi = MDi-1 + II (Mi ,HH(Mi,GG(Mi,FF(Mi,MDi_I)))) . (1)

Each round consists of 16 steps, where in each step must be values of four
registers A,B,C,D calculated according to formula:

A = B + ((A + f (B ,C,D) + x[s] + t[i]) < < k). (2)

The XILINX XC4000 FPGA family was chosen for implementation of this
algorithm [5]. Several experiments have been executed to find optimal architec-
ture. Results of them are described in this paper. The main goal was to achieve
a circuit, which can be "fed" by words of a message practically with the speed
of the PC bus. Then, we can use the circuit as a peripheral device of a PC
computer.

XC4000 FPGA's were chosen because of their possibility to implement very
effectively ROM and RAM memories. ROM memory was used as a table instead
of computing of function t [i] = 4294967296 * abs (sin (i)). Dimension of the

127

table is 64x32 bits. Another ROM tables contain values for shift- ing (32x5 bits)
and initial constants (4x32 bits). As the architecture of such circuit is "heavy
multiplexed", we have preferred XC4000 family to XC3000 one.

RAM memory contains 16 32-bit words. Some experiments have shown, that
this part of the circuit and substantial part of control block could be saved, when
sequence of steps in the MD5 algorithm is modified by sequence of input words.
But such modification of the algorithm gives lower security.

RAM's and ROM's dimensions don't allow to implement them with a small
amount of packages on board. Therefore for the full implementation of the algo-
rithm, they can be put into one XC4004 package with 82 active i/o pins. This
circuit is interfaced to another one, where all computational steps of the MD5
algorithm are done. Content of the 16x32 data RAM, from which the fingerprint
is being received, is defined by the controlling PC computer, i.e. final padding
of the RAM is its task. Structure of the circuit is on Fig.1.

The most critical part of the algorithm from the point of view of its per-
formance was the summing of two 32 bit words. Implementation of dedicated
carry logic in CLB's of the XC4000 FPGA's was really substantial advantage.
All other sub-functions were implemented as synchronous with a clock signal.

Trade-offs between price and performance of the implemented algorithm
forced us to propose "modified MD5 algorithm". The main cause of the modifica-
tion is based on the fact, that the original algorithm has 32-bit structure, which
gives 128-bit fingerprint but it needs 32-bit buses which are limiting factor for
routing. We have experimented with 8-bit and 16-bit structures, which offer 32-
bit nad 64-bit fingerprints. Such fingerprints can be used in specific applications,
where CFB mode of operation for ciphering is used.

The main part of the control logic consists of 13-bit state shift register, which
generates impulses for the basic function, described by equation (2). Control
signals for 64 steps in 4 rounds, described by (1), are generated by another state
machine.

Table 1 shows possible implementation of these structures in XC4000 FPGA's
without RAM and ROM memories. In these implementations was the limiting
factor not the number of gates, but number of interconnections among blocks.
As a final result, we received a class of circuits, containing MD5 algorithm or its
modification with respect of their complexity and price. The simplest version is
implemented into XC 4004A FPGA.

Some experiments are running now to receive a circuit for message digest with
fingerprint larger than 128 bits, based on a modification of the MD5 algorithm.
In such circuit can be also other arithmetical functions used, to achieve better
confusion for cryptoanalysts. Such circuit will be useful e.g. in an archiving
system with high performance, where security and throughput are determined
also by chosen hash function.

References

1. R. Rivest.: "The MD4 Message Digest Algorithm", RFC 1320, MIT and Data Se-
curity, Inc., April 1992.

2. R. Rivest.: "The MD5 Message Digest Algorithm", RFC 13P1, MIT and Data Se-
curity, Inc., April 1992.

128

3. "ISO/IEC Draft 10118 Information Technology - Security Techniques - Hash func-
tions," ISO 1992

4. C.P. Schorr, "FFT-Hash II, Efficient Cryptographic Hashing, = Proc. o] EURO.
CRYPT, Budapest 1992, pp. 44-47.

5. "The Programmable Logic Data Book," XILINX, ~lOO logic Drive, Sa, Jose, CA
95124, 1993.

4)¢3:2
r

~£ts

Figure 1.
Block Structure of circuit

Structure Number of gates Implementation

8 bits 2 550 XC4004A

16 bits 4 600 XC4005A

32 bits 8 600 XC4010

Table I.
Implementation of different structures

of the MD5 algorithm

A Reprogrammable Processor
for Fractal Image Compression

Barry Fagin

Department of Computer Science
United States Air Force Academy
2354 Fairchild Drive Suite 6K41

USAF Academy, Colorado 80840-6234 USA

Pichet Chintrakulchai

Thayer School of Engineering
Dartmouth College

Hanover, NH 03755-8000 USA

Abstract. Fractal image compression appears to be a good candidate for
implementation with a reprogrammable processor. It is computationally
intensive, slow on existing technology, and employs a few basic, well-
defined functions that are clear candidates for hardware implementation. We
discuss our implementation of a reconfigurable processor for fractal image
compression, used to evaluate the utility of different compression methods
faster than a software-only approach.

1 Introduct ion

Fractal image compression has recently been proposed as an alternative to JPEG and
other compression techniques [1,2,3]. By identifying an appropriate set of affine
transformations, images can be stored as mathematical functions which can then be
iterated on an arbitrary initial data set to approximate the original image. The
challenge is to construct the transformation set. Recause the search space is large,
fractal image compression is computationally intensive. Fractal image compression
of a 128 x 128 color image can take over 4 hours on an RS/6000.

The long turnaround time for a software-only implementation enhances the difficulty
of experimentation with different search and comparison functions. We require both
1) improved performance of frequently executed functions, and 2) the ability to
evaluate different functions as candidates for use in fractal image compression. This
suggests the use of a reconfigurable coprocessor.

2 Archi tecture

Our coprocessor system is designed to work with the Apple Power Macintosh
computer using the NuBus interface [4], as shown in Figure 1:

130

|
, T

NuBus
in~fac~

! F~nctiorLal
II Unit

Power ~ ~2

Fig. 1. Coprocessor Architecture

The coprocessor functions in either in compute mode or program mode. In program
mode, the user feeds configuration data for a particular candidate function through the
NuBus into the FPGAs. In compute mode, the host computer pumps input data
through the NuBus which is then fed through the programmable functional unit.
Output results are stored in the buffer memory. The functional unit is user-
programmable and set up according to the directed acyclic graph (DAG) of the
candidate operation. This DAG is the data flow pipeline of the candidate operation
where many basic units can operate in parallel, Data dependency is the only limit for
the degree of parallelism in each stage; results dependent upon the outputs of the
current stage become the next stage of the pipeline. This way, we are able to exploit
the parallelism both within a single stage of the pipe and across the entire pipeline
where results are pumped out of the pipe every cycle after the pipe is filled.

3 Candidate Operation

Profile results gathered from running a fractal compression program on sample
images on IBM RS6000/340 workstation show that the program spends more than
80% of total run time computing the absolute error between image blocks. This
suggests that this function is a good candidate for hardware implementation,

Figure 2 shows the DAG for absolute error computation. Our calculations indicate
implementation requirements of 123 CLB's and 64 I/O pins, easily within the limits
of a Xilinx 4000-series FPGA [5]. Our results indicate that this routine can be sped
up by approximately a factor of 50. Applying Amdahrs Law reduces the speedup to
an approximate factor of 4, still a significant improvement. We are looking to
incorporate other candidate functions into hardware, including genetic algorithms for
searching the problem space and user-defined functions for determining similarity
between portions of images.

This work was supported by the National Science Foundation under award # MIP -
9222643.

M O D 3

131

i n p u t

I f l i p - f l o p

c o n a b i n a t i o n a l

f l i p m

- - b y t e s h u f f l e " "

I A ~ 1

I A - ~ I I I I A - B I I I I A - B I

)16

R e f e r e n c e s

Fig. 2.

,) 16

r e s u l t

DAG for 2x2 Pixel Error Computation

1. Barnsley, M.F. and Hurd, L.P., Fractal Image Compression, A.K. Peters, 1993.

2. Fisher, Y., Jacobs, E.W. and Boss, R.D., Fractal Image Compression using
Iterated Transforms, Image and Text Compression, J. A. Storer Editor, Kluwer
Academic Publishers, 1992.

3. Jacquin, A.E., Image Coding Based on a Fractal Theory of Iterated Contractive
Image Transformations, IEEE Trans. on Image Processing, Vol. 1 (1), 1992, p. 18-
30.

4. Apple Computer, Inc., Designing Cards and Drivers for the Macintosh Family
(3rd Edition), Addison-Wesley, 1992

5. Xilinx Inc., The Programmable Logic Data Book, San Jose, CA, 1993.

Implement ing GCD Systolic Arrays on F P G A

Tudor Jebelean

RISC-Linz, A-4040 Linz, Austria
j ebelean@risc, uni-linz, ac. at

A b s t r a c t . We implement on Field Programmable Gate Arrays from
Amtel (old CLi) three systolic algorithms for the computation of grea-
test common divisor of integers. The experiments show that elimination
of global broadcasting significantly reduces both area and time consump-
tion. We eliminate broadcasting by using a novel technique which is more
suitable to arithmetic algorithms than Leiserson conversion lemma.

This report is part of an on-going research aimed at speeding-up exact-
arithmetic systems by adding a systolic dedicated coprocessor. Computation
of the greatest common divisor (GCD) of long integers is an important and ex-
pensive subalgorithm in exact arithmetic and in some cryptography schemes.
Practically, the systolic approach has been so far the most successful in paralle-
lizing this algorithm- see [BrKu85], [YuZh86], [Guyo91].

We compare three GCD systolic implementations using field programmable
logic from Amtel (old CLi): a semisystol ic parallelization of a variant of Brent-
Kung plus-minus algorithm, using signed arithmetic and global broadcasting; a
purely systolic algorithm previously described in [Jebe93], which is obtained
from the first by eliminating global broadcasting; an improved version of the
purely systolic algorithm by halving the number of cells.

We start from a simplified version of the plus-minus algorithm introduced
by [BrKu85]. In the description in figure 1, A,B are the input integers and
ao,al ,bo, bl denote their least-significant bits. A termination and correctness
proof of this algorithm are presented in []ebe94].

1 Systolic Algorithms

In order to parallelize the plus-minus algorithm systolically, the operands are
represented using signed-digits, for avoiding carry propagation. Each cell con-
tains 9 registers (variables): the 3-bit signed-digit representation of each operand;
one-bit"tags" la, tb which show the sign-bits of each operand; sa: the sign of A
(finally of the result). Cell 0 (the rightmost) determinates the "instruction" to be
executed, which is than broadcasted to all the other cells (there are 5 "instruc-
tions"). The tags ta, tb are essential for termination detection in the presence
of variable-length operands. The tags are set to 1 in those processors containing

* Supported by Austrian FWF, project P10002-PHY.

133

while B ¢ 0 do
if a0 = 0 and b0 = 0 then [shift both]

(A, B) *-- (A/2, B/2); (As, Bs) ~ (A, B)
if a0 = 0 and b0 = 1 then [interchange and shift]

(A, B) ~ (B, A/2)
if a0 = 1 and b0 = 0 then [shift B]

(A, B) ~- (A, B/2)
if a0 = 1 and b0 = 1 then [plus-minus and shift]

if al = bl then (A, B) ~ (B, (A - B)/2)
else (A, B) #-- (B, (A + B)/2)

return A [the pseudo-GCD], As, Bs

Fig. 1. The plus-minus algorithm.

non-significant bits, and shifted rightward when possible. When tb reaches cell
0, than we know B is null. Also, the value of the lowest tagged bit of A is shifted
rightward using sa. At the end this will indicate the sign of the result.

For the elimination of global broadcasting we do not use Leisersons systolic
conversion scheme [Leis82]. This method would triplicate the number of registers
and the new circuit will inherit the complications of signed-redundant ar i thme-
tic. Rather, we us a novel technique, which is more suitable to least-significant
bits first ar i thmetic algorithms: the carries/borrows are rippled along together
with the "instruction" signal (which has now 8 values), and the operands are
represented in the classical fashion. This reduces the number of registers needed
for operands by a factor of 3, compensating the registers added for buffering the
instruction signal: only 8 registers are used now instead of 9. The details of this
systolic algori thm are presented in [Jebe93].

Similarly to what happens in Leiserson systolic conversion method, our broad-
casting-elimination scheme also introduces a slow-down of 2: the array is used
with only 50% efficiency. In order to improve this situation, we "pack" two cells
in one: a new "double" cell will contain the registers of two old neighboring
cells, but only one implementat ion of the transition function. The function is
multiplexed alternatively between the two sets of registers. This brings the theo-
retical efficiency to 100%, however from the practical point of view only a small
improvement in area consumption can be noted.

Nevertheless our systolic algorithms represent a significant improvement over
Brent-Kung scheme [BrKu85]. While the old device needed 4n cells, for n-bit ope-
rands, each with 24 registers, our devices need n cells with 8 registers (respec-
tively n /2 cells with 16 registers) - hence a reduction of 12 times. The running
t ime of the old algori thm is 4n for any inputs, the running t ime of our a lgori thm
is 4.34n in the average.

134

2 Practical Exper iments and Conclus ions

The three designs were implemented for 8-bits operands using Amtel FPGA
development system (successor of Concurrent Logic), which includes CAD from
Viewlogic. The layout was done automatically on a 6005 CLi chip (has 56 * 56 =
3,136 primitive cells), and was successful only for the purely systolic designs. For
the first (semi-systolic) design, 97 nets out of 694 could not be routed. Figure 2
presents the resulting data.

semisystolic systolic improved
macros 710 476 426
registers 98 89 92
gates 607 377 313
equivalent gates 2,928 2,167 2,210
cells used
%efore layout 704 466 405
after layout 2,649 1,889 1,576
t ime/c lock (ns)
before layout
after layout
increase (times)

60.8 56.4 64.0
650 450 440

11 8 7

Fig. 2. Comparison of the three designs.

The most important conclusion of the experiments is that elimination of
global broadcasting using our novel technique is benefic from all points of view:
the purely systolic algorithm was s imp le enough for the layout software to
be able to process it successfully; the a r e a c o n s u m p t i o n of the semi-systolic
device is bigger by 32% (equivalent gates), 73% (logic cells), 68% (layout cells);
the t i m i n g of the semi-systolic device is bigger by 8% (logic), 47% (layout).

References

BrKu85 R. P. Brent, H. T. Kung, A systolic algorithm for integer GCD computation,
7th IEEE Symp. on Computer Arithmetic.

Guyo91 A. Guyot, OCAPI: Architecture of a VLSI coprocessor for the GCD and
extended GCD of large numbers, 10th IEEE Symposium on Computer Arithmetic.

Jebe93 T. Jebelean, Systolic normalization of rational numbers, ASAP'93.
debe94 T. Jebelean, Systolic algorithms for long integer GCD computation, Conpar94.
LeisS2 C. E. Leiserson, Area-efficient VLSlcomputation, PhD Thesis, Carnegie Mel-

lon University, MIT Press, 1982.
YuZh86 D. Y. Y. Yun, C. N. Zhang, A fast carry-free algorithm and hardware design

for extended integer GCD computation, ACM SYMSAC'86.

Formal C A D Technique s for Safety-Critical F P G A
Des ign and D e p l o y m e n t in E m b e d d e d S u b s y s t e m s

R.B. Hughes 1, G. Musgrave 2

Abstract Hardware Limited, No. 1 - Brunel Science Park,
Kingston Lane, Uxbridge, Middlesex,

UB8 3PQ, U.K.
2 Department of Electrical Engineering and Electronics,

Brunel University, Uxbridge, Middlesex,
UB8 3PH, U.K.

A b s t r a c t . In this short paper we describe the formal specification of inter-
face chips which are used in embedded subsystems. The typical applications
come from t lae areas of mission critical systems which are most commonly
found in the avionics and space industries. Our application, by which we illus-
trate our formal techniques for the design of an embedded FPGA controller
is that of an ABS (anti-lock braking system) as used by the automotive in-
dustry. We describe our innovative technological approach for ASIC design
and show that it may equally well be applied to the area of FPGA design
which are more cost-effective for small production runs or where the system
specification may need to be changed at short notice.

1 Introduction

This paper describes par t of our on-going work[l , 2, 3] to formally specify inter-
face chips which are used in embedded subsystems. The typical appl ica t ions with
which we i l lustrate our technique are the use of F P G A s in safety-cri t ical applica-
tions in avionics and space, which require extremely high levels of mission reliabili ty,
extended maintenance-free operat ion, or both. The automot ive indust ry is also in-
creasing its use of control and interface chips in engine management , cruise control
and ABS subsystems. The need for design assurance, increasingly of a contractual
nature, has led to the increa~sing use of formal methods in this area[@ Our use of
formal methods is industr ia l , our indust ry-provided example being developed on a
commercial ly available formal CAD toolset (LAMBDA), and not purely academic.
We show how the LAMBDA (Logic and Mathemat ics Behind Design Automat ion)
system, which very successfully exploits many years of academic research and whose
logical core is based on ttOL[5, 6], can be used to address these problems.

2 Overview of Technological Approach

At the core of our approach is a theorem-proving tool in which a specification[7] can
be t ransformed through a series of rule t ransformat ions into a design which is correct
by construction[8]. The design decisions are made, interactively, by the engineer
and the system au tomat ica l ly introduces constraints (e.g. on t iming, connections of

136

inputs and outputs and wiring) as a result of the partitioning decisions made by the
engineer.

The current design state is represented as a rule which must keep track of formal
relationship between four things, viz. the original specification, the implementation
developed so far, the work which remains to be done and environmental constraints
introduced by the system. Initially the rule is a tautology, which is valid, and this is
transformed by the theorem prover as the designer makes implementation decisions.

IF current_design + further_work ACHIEVES task_n
AND ...
AND current_design + further_work ACHIEVES task_l
THEN current_design + further_work + constraints ACHIEVES specification

We do not go into detail about the rule transformations, as these are not what
the engineer needs, or wants, to work with. Such mathematical details need to be,
and are, hidden from the engineer; all that the engineer sees is a graphical view of
the current state of the implementation and a view of what design work remains to
be done to provide an implementation which satisfies the specification. If details of
the logical transformation process are of interest then see[l, 3].

The engineer makes a series of partitioning decisions(c.f. /9]), some of which
are aided by the system, and transcends a design hierarchy. We advocate that this
approach, which is currently being commercially used for ASICs, can be applied to
the design FPL. The primitive elements, i.e. the leaves of the design tree, are the cells
of the FPGA, the connections between them having been generated automatically in
a mathematically rigorous formal manner This highly novel approach is illustrated by
example for the design of an FPGA for deployment in an anti-lock braking system.
An FPGA is worthwhile when the ideal specification of the FPGA system is not
known. By this, we are referring to the possibility of a braking system in which the
brakes may be independent or one in which front and rear are grouped together.
These systems have different mechanical properties relating to yaw movement of the
car. In some systems, including the phase II version of our development, the wheel
angle is taken into account in the specification so that increased braking force may
be applied to the wheels on the inside of the steering curve, thus increasing the
ear's ability to corner while braking. To change the specification and reproduce a
formal interconnect to the FPGA cells is much easier, and hence less costly, than
redesigning and refabricating a dedicated ASIC.

3 C o n c l u s i o n s

In general, the theorem-proving research emphasis towards microprocessors has left
the formal development of FPGAs relatively unexplored. This is extremely unfor-
tunate since, as mentioned in the introduction, these are now being designed into
safety-critical systems; it can also be argued that, because the user base for an FPGA
is so much smaller than for a mature commercial microprocessor, a design design flaw
in an FPGA is more likely to find its way into a deployed critical system. Clearly,

137

this s i tuat ion needs to be addressed. W h a t we have shown is a thoroughly prac t ica l
approach for the formal specification an'd formal design of FPGAs . The a u t o m a t i c
generat ion of firmware for embedded microcontrol lers has also been demons t ra t ed ,
and provides a small step in the direction of hardware /sof tware codesign yet ad-
dresses a very large sector (60-70%) of the software requirements of the codesign
market . Fur ther work in this area is certainly required. Our approach is also sui table
for h ighly-dis t r ibuted systems but more "real-world" problems need to be tackled by
industr ia l designers adopt ing our methods in-house; it is only from feedback gained
by such experiences tha t further refinement and customisat ion of our technique for
the par t icular problems of various niche areas can be achieved.

R e f e r e n c e s

1. R. B. Hughes, M. D. Francis, S. P. Finn, and G. Musgrave. Formal tools for tri-state
design in busses. In L.J.M. Claesen and M.J.C. Gordon, editors, IFIP Transactions:
Higher Order Logic Theorem Proving and Its Applications (A-20), pages 459-474, Ams-
terdam, The Netherlands, 1993. Elsevier Science Publishers B.V. (North-Holland). ISSN
0926-5473.

2. G. Musgrave, S. Finn, M. Francis, R. Harris, and R. Hughes. Formal Methods in the
Electronic Design Environment. In Proceedings of the NORCHIP Conference, Finland,
October 1992.

3. R.B. Hughes and G. Musgrave. Design-Flow Graph Partitioning for Formal ttard-
ware/Software Codesign. In J.W. Rozenblit and](. Buchenrieder, editors, Codesign:
Comp~ter-Aided Software~Hardware Engineering, chapter 10. (to be published by IEEE
Compuler Society Press), Sep[ember 1994.

4. Fura, Windley, and Cohen. Towards the formal specification of the requirement and
design of a processor interface unit. NASA Contractor 4521, Boeing Space and Defense
Systems, 1993.

5. M. Gordon. Why Higher-Order Logic is a good conclusion for specifying and verify-
ing hardware. In G. Milne and P.A. Subrahmanyam, editors, Formal Aspects of VLSI
Design. North-Holland, 1986.

6. Gordon and Melham. Introduction to HOL: A Theorem Proving Environment for Higher
Order Logic. Cambridge University Press, 1993.

7. I(.D. Mfiller-Glaser and J. Bortolazzi. An approach to computer aided specification.
JSSC, 25(2):45-47, April 1990.

8. G. Musgra.ve, S. Finn, M. Francis, R. ttarris, and R.B. Hughes. Formal Methods and
Their Future. In F. Pichler and R. Moreno Dfaz, editors, Computer Aided Systems
Theory - EUROCAST'9& pages 180-189. Springer-Verlag, Heidelberg, January 1994.

9. E. D. Lagnese and D. E. Thomas. Architectural partitioning for system level synthesis
of integrated circuits. Transactions on Computer-Aided Design, 10(7):847-860, July
1991.

Direct Sequence Spread Spectrum Digital Radio DSP
Prototyping Using Xilinx FPGAs

T.Saluvere, D.Kerek, H.Tenhunen

Royal Institute of Technology
KTH-Electrum, ESD-lab, Electrum 229, 164 40 Kista~ Sweden

Abstract . Spread spectrum digital radio receivers and transmitters are very diffi-
cult to simulate for overall system performance evaluation. Reliable estimates
for Bit Error Rates and effect of indoor and outdoor fading radio channels can be
best studied via practical hardware measurements. In this work we propose a
flexible CDMA spread spectrum radio architecture structure well suited for
FPGA prototyping. FPGA based rapid system prototyping techniques provide
complementary information than simulations and also facilities earlier system
integration activities across different project groups.

1 Introduct ion

The design of future mobile communication systems requires thorough perform-
ance analysis before the hardware can be built. Many of the design options can only be
evaluated and characterised in real working environment making the analytical or
completely simulation based approaches infeasible. Due to real radio environment
with multipath fading, interference and interactions with natural noise sources, rapid
system prototyping techniques need to be adopted as an integral part of the design
cycle. Prototyping will not replace simulations, but will complement and identify spe-
cific problem areas which need to be characterised in more detail with modelling and
simulations.

l
2 GHz ~ Mobitex
HiperLan ~ GSM ~ ~EeT

~-11 WALKSTATION
MINT BASE Z ~

ROUTER STATION

Fig. 1. System overview

Mint

½Fq
WALKSTATION

139

Our work relates to testing system solutions in mobile high data rate communica-
tion network and building the first testbenches in order to demonstrate the feasibility
and application integration[l].

Mobile users expect global network connectivity, mobility transparent applications,
and quality of services comparable to that of fixed networks. This will require the inte-
gration of fixed, and mobile indoor local area and outdoor wide-area networks in order
to provide global connectivity. In practice this will require from portable radio subsys-
tems flexibility to handle multiple radio air interfaces based on availability and quality
of services and air interfaces. Appropriate radio interfaces will be controlled and
selected by a system management function (implemented as a software) to meet crite-
ria such as achievable throughput and delay, real time requirements, usage cost, and
impact of selected communication link battery lifetime and currently available radio
transmission power.

2 System overview

2.1 Xilinx FPGA based digital receiver

In order to have a configurable and flexible radio interface to the host-MINT [1]
computer the main signal processing tasks for encoding transmitted and extracting
received data are performed digitally using Xilinx FPGAs. For communication with
analog world, 8-bit AD and DA video speed converters are used and, whole DSP itself
is implemented on 4 XC4000 series PLCC84 chips to achieve also flexibility of availa-
ble logic on the board (see fig.2).

A/I~ I R h i t , t . , ~ Received Signal ~ " I II \ 1 ~ , , I _
"J J - - I / /] Acquisition ~ [. I I ~ " " I - ~

I I - - - - - / " I and I ~ ,'-I I I - J (I I

. . . .

Fig. 2. Xilinx XC4000 based flexible DSP for DS CDMA digital radio

In general, there is 2 AD interfaced inputs to the board for I and Q channel and also

140

2 DA interfaced outputs. For communication with host computer DSP board is
equipped with Xilinx download-readback and also with low - and high speed control
interfaces. System partitioning is done in a way that the most extensive incoming sig-
nal processing will normally be done in first chips directly connected to ADs thereafter
extracted control information is passed to third chip which acts as a controller and is
passing needed correction information back to the first two chips. The fourth chip is
dedicated for transmitting and interfacing functions. Such an architecture is turned out
to be universal enough to test out several different design solutions without need to
alter PCB. Different modulation and access schemes, data transmission speeds and
coding algorithms can be utilized just by downloading different chip configuration.
Xilinx configuration data is possible to download in a daisychain way or every chip
individually.

The homodyne direct conversion receiver is used in the radio frontend. After mixing
down and amplifying the received signal, the DSP is fed with[l]:

I(0=data(t)*pn(0*cos(o~0 and Q(0=data(0*pn(0*sin(c00

The actual data extraction and synchronization and received power estimation are
done digitally. One of the non-trivial problems one must face with a DS CDMA sys-
tem is the synchronization of the PN sequence in the receiver. Different solutions have
been proposed from which Noncoherent Tracking Loop is used due to inherent sim-
plicity for VLSI (Xilinx FPGA) implementation.

PN early

Sampled da~ ~ ~ 2

Control signal to NCO according to chosen channel

fe..~ ~ ~ PN early
PN late
PN

fN.t

Fig. 3. Functional diagram of the digital receiver

The received signal is multiplied with three shifted replicas of the PN sequence.
Each of the PN sequence is shifted by half a chip in time from each other. Correlated
input signals are integrated over the one bit arrival time T b and thereafter dumped.

As shown in fig. 3, the data is extracted from the in time integrator, and by taking
the difference of the late and early we get an error signal which is feed back to a digital
variable oscillator. It is implemented with the help of an NCO and a PN generator.

3 References

1. D.Kerek, H.Tenhunen, G.Q.Maguire, EReichert, "Direct Sequence CDMA Tech-
nology and its Application to Future Portable Multimedia Communication Systems,"
IEEE 3. International Symposium on Spread Spectrum Techniques & Applications,
(Oulu, Finland), July 1994.

F P G A Based Reconf igurable Archi tec ture
for a Compact Vis ion S y s t e m

R.Nguyen 1 , P.Nguyen 2

Lab. Syst~me de Perception, ETCA,
16bis, Av. Prieur de la C6te d'Or, 94114 Arcueil Cedex, FRANCE

E-mail address : ~bob@etca.fr, ~pn@etca.fr Fax Number : (aa) (1) 42319964

Abs t rac t . The EMFRI board is a set of hardware resources (FPGA.
memories, communication links) for the rapid prototyping of control
units dedicated to our home-made programmabIe artificial retinas. Its
full on-line reconfigurability enables to load different architectures and
softwares. We now project to use it as an "active" architecture.

1 I n t r o d u c t i o n

The original goal was to validate and compare different ideas of control unit
architectures for the "NCP retina", a SIMD matrix of 500(} boolean processors
A65X76) on a single chip, each of them including a photosensitive device, an

/B converter and 3 bits of memory. The NCP retina was extensively described
in [1]. Previous researches [2] on the top level architecture of a vision system

; - R e ~ i ~ 2 ~ ; ~ £ / o ~ i

S c a l ~ "~~'i R ' t i n a I : ~ * ~ ' ~ ' I R . t i n a I
C o n t r o l /,~ I ~ I 1 ~ ' / ' ~ Image

I . .j

Fig. 1. Bi-Processor Vision System based on NCP retina

based on the NCP retina led us to associate an undedicated scalar unit (80186
or Spare) to the retina chip (Fig 1). In this framework, rather than building
a new electronic board for each control unit we had in mind, we decided to
design an unique FPGA-based re-programmable board. This platform proved
itself so flexible that it led us to use it for other purposes, in particular as a co-
processor for compilation of communication inside the P.E. network. Eventually,
the concept of "active architecture" can be supported, that is, the down-loaded
architecture is changed according to the context, by the vision process itself.

2 G l o b a l S t r u c t u r e

A s e t o f fu l ly r e - p r o g r a m m a b l e r e s o u r c e s : The particular architecture of
the NCP retina and its operating mode lead us to take into account hardware
or software parameters: Bandwidth between control unit and smart retina data
path (about 20 Mo/s), Latency delay between both processor request and execu-
tion, "Real-time" control (due to the image flow), Control of the instruction flow,
Execution model (CISC, RISC, independent thread), Diversity and specificity of
operators. They might be strongly algorithm dependent, so we privileged flexi-
bility and re-programmability features by interconnected resources: Memories,

142

Broadcasted Bus
* Data Pro!
** Instructions Me] I Data Memory I . ~'~,t°- . .,, , vlvlt~ interlace

° ' : x,p ::::71S;2 1' x41 ~,~ ,

Bro,d + ,,,.',,*,..¢...£
~.~ 4 ' ~;~\'to Shared Memory

' ' ' " ~ ' Processor

I, Scalar Processor I

Fig. 2. E.M.F.R.I. schematic structure
N.B.: The width of grey arrows are proportional to the number of interconnections

Programmable Logic, NCP Retina, Fixed Communication links (wire). The most
complex control unit requires 3 distinct memory spaces (ie, the C.I.S.C. HAR-
VARD architecture). Besides, specific requirements for each memory space imply
different bus widths and sizes. The FPGA chips are specialized and have priv-
ileged links according to their allocation of a memory space (see Fig 2). Three
buses are also broadcasted to all chips. Cohabitat ion of operative and routing
part in each F P GA avoids re-wiring. Unlike e.g. the B.O.R.G. system [3], and
for speed reasons we have not used a specific FPGA for routing.

All these fixed specifications relative to FPGA,memory, fixed wiring, access
protocols are derived into a platform skeleton, that defines the minimal descrip-
tion of any new control unit. The platform can be swapped between two opera-
tion modes: configuration and user mode.

I n t e r - p r o c e s s o r c o m m u n i c a t i o n s : Processors communicate by sending
messages through two resources : the shared memory with a dual port (extend-
ing the local data memory, cf top-left of Fig 2) and the FPGA internal registers
(providing an easy hardware solution for access conflict on shared data).

3 C r e a t i o n a n d d e b u g g i n g of a v i s i o n s y s t e m

T h e m e t h o d o l o g y : The hardware and software co-description of the proces-
sor (ie: program, instruction set and material architecture for a C.I.S.C. based
system) is compiled by an extended chain (50 tools) of processes. The soft-
ware description is based on our retina specific extended C language (RC). The
hardware functionalities are described by logical schematics or by a behavioral
language, even if it has proved possible to automatically deduce a data path
directly from an algorithm (e.g.P.R.I.S.M. [4]). Our type of description enables
us full control of control structures and signal paths. A specific loader (VxLoad)
down-loads each resource with all hardware and software result objects. Fig 3
summarizes the whole creation flow chart.

D e b u g g i n g faci l i t ies : The debugging of an algorithm of vision and of its
dedicated processor use both software and hardware facilities: debug procedures,
specific debug instructions, added data paths. Like the "make" UNIX facility,
only upgraded description needs to be compiled again.

143

Description

Hardware ~ i ~ g r a m } Description
CAD or V}{DL ~et RC langllage

P~0o~t ~ ~ o ~ b l ~ r ~ }Compilation
0000 ~ ~oal~r } Linking

Emfr i. obj

~VxLoad } Execution
Running Process

Fig. 3. Design Flow for an EMFRI's vision system

4 D e v e l o p e d A p p l i c a t i o n s

The following application examples emphasize on the diversity of implementable
architectures on the EMFRI platform. Even if some operators or data paths
are added to the design to improve program efficiency, the basements of an
architecture won't be altered. So we have identified and studied three types of
architecture which seem particularly interesting:

- a C.I.S.C. like Control Unit
- an Independent Thread Control Unit
- an architecture for Compilation of R.I.S.C. smart retina code

Further research should address the fact that some vision application involve
distinct modes: e.g. target detection and target tracking need very different func-
tionalities. The swapping between mode is performed by on-line reprogramming
of our control platform. This gives birth to the concept of "active" architecture
as a reminder of "active" vision for perception system.

5 C o n c l u s i o n

The main feature of the "EMFRI" platform is its great flexibility. It is aimed at
providing a material support for a quick implementation of a control unit and
additional data path for the NCP retina. It could be considered as a step for
abolishing the dependences to hardware (see a nice example in [5]). Hardware
design and test become fully resolved by software. Retargett ing facilities from
Xilinx to silicon designs is an other advantage of the platform. In this way,
"EMFRI" provides a reconfigurable workspace to conceive and debug future
control unit ASICs for upcoming versions of programmable artificial retinas.

The authors are indebted to T.Bernard, F.Devos and B.Zavidovique for their
support and fruitful discussions.

R e f e r e n c e s
1. T. Bernard, B. Zavidovique, F. Devos, A programmable artificial retina, IEEE J.

Solid-State Circuits, Jul 93, vol. 28 pp 789-798.
2. Ph. Nguyen, T. Bernard, F. Devos, B.Zavidovique, A Vision Peripheral Unit Based

On A 65x76 Smart Retina. SICICA'92, Malaga Spain, May 20-22 1992, pp 643-648.
3. Pak K. Chan, Martine D.F. Schlag, and Marcelo Martin B.O.R.G. : A Reconfig-

urable Prototyping Board using FPGA. Tech. report UCS-CRL-91-45, Computer
Engineering, University of California, Santa Cruz, California 95064

4. Peter M. Athan~s, Itarvey F. Silverm~n, Processor Reconfiguration Through
Instruction-Set Metamorphosis (P.R.LS.M.) Computer, March 1993, pp 11-18.

5. Dr. D. E. Van den Bout, O. ,Kahn, D. Thomae, The 1993 AnyBoard Rapid-
Prototyping Environment. RSP 93, North Carolina, June 28-30 1993, pp 31-39.

A New FPGA Architecture for Word-Oriented Datapaths

Reiner W. Hartenstein, Rainer Kress, Helmut Reinig

University of Kaiserslautern
Erwin-Schr6dinger-StraBe, D-67663 Kaiserslautem, Germany
Fax: ++49 631 205 2640, email: abakus@informatik.uni-kl.de

Abstract. A new FPGA architecture (reconfigurable datapath architecture,
rDPA) for word-oriented datapaths is presented, which has been developed to
support a variety of Xputer architectures. In contrast to von Neumann machines
an Xputer architecture strongly supports the concept of the "soft ALU" (recon-
figurable ALU). Fine grained parallelism is achieved by using simple reconfig-
urable processing elements which are called datapath units (DPUs). The word-
oriented datapath simplifies the mapping of applications onto the architecture.
Pipelining is supported by the architecture. It is extendable to almost arbitrarily
large arrays and is in-system dynamically reconfigurable. The programming
environment allows automatic mapping of the operators from high level descrip-
tions. The corresponding scheduling techniques for I/O operations are explained.
The rDPA can be used as a reconfigurable ALU for bus-oriented host based sys-
tems as well as for rapid prototyping of high speed datapaths.

1 Introduction

Word-oriented datapaths are convenient for numerical computations with FPGAs. A
recent trend in F / ~ A technology moves toward the support of efficient implementa-
tion of datapath circuits. The Xilinx XC4000 series [9] provides fast 2-bit addition at
each logic cell by a special carry circuit. AT&T's ORCA [4] supports even 4-bit arith-
metic operations. A 16 bit adder requires only four function blocks for example. Word-
oriented datapaths are not directly supported by FPGAs currently available since these
circuits are designed for both random logic control and datapath applications. Word-
oriented datapaths in reconfigurable circuits have the additional advantage of operators
being mapped more efficiently.
The reconfigurable datapath architecture (rDPA) provides these word-oriented data-
paths. It is suitable for evaluation of any arithmetic and logic expression. Statement
blocks in inner loops of high performance applications can be evaluated in parallel.
The rDPA array is in-system dynamically reconfigurable, which implies also partial
reconfigurability at runtime. It is extendable to almost arbitrarily large arrays,
Although the rDPA has been developed to support Xputer architectures it is useful for
a wide variety of other applications for implementation of numerics by field-program-
mable media.

145

First, this paper gives an overview on the rDPA. Section 3 explains a support chip
which allows the efficient use of the rDPA in bus-oriented systems. Section 4 presents
the programming environment for the automatic mapping of operands and conditions
to the rDPA. The scheduling algorithm is described. Section 5 shows the utilisation of
the rDPA within the Xputer hardware environment. Finally some benchmark results
are shown and the paper is concluded.

2 Reconfigurable Datapath Architecture
The reconfigurable datapath architecture (rDPA) has been designed for evaluation of
any arithmetic and logic expression from a high level description. It consists of a regu-
lar array of identical processing elements called datapath units (DPUs). Each DPU has
two input and two output registers. The dataflow direction is only from west and/or
north to east and/or south. The operation of the DPUs is data-driven. This means that
the operation will be evaluated when the required operands are available. The commu-
nication between the neighbouring DPUs is synchronized by a handshake. This avoids
the problems of clock skew and each DPU can have a different computation time for
its operator. A problem occurs with the integration of multiple DPUs into an integrated
circuit because of the high I/O requirements of the processing elements. To reduce the
number of input and output pins, a serial link is used for data Iransfer between neigh-
bouring DPUs on different chips as shown in figure 1. The DPUs belonging to the con-
verters are able to perform their operations independent of the conversion. Using a
serial link reduces the speed of the communication, but simulation results showed that
by using pipelining, the latency is increased whereas the throughput of the pipeline is
decreased only slightly. Internally the full datapath width is used. For the user this
serial link is completely transparent.
A global I/O bus has been integrated into the rDPA, permitting the DPUs to write from
the output registers directly outside the array and to read directly from outside. This
means, that input data to expressions mapped into the rDPA do not need to be routed
through the DPUs. The communication between an external controller, or host, and the
DPUs is synchronized by a handshake like the internal communications.
An extensible set of operators for each DPU is provided by a library. The set includes
the operators of the programming language C. Other operators such as the parallel pre-

parallel to serial converter serial to parallel conver ter

f"%~...,s,:...,.%~..,.f.,:..,..'.:..~,....,. :.~..,'~,..,.~.: D O l l ii-:"~ ~ ~..:::~..:...:::..-:-%::
ii~i~: c h i p 1 : ', i - - ii ; : c h i p 2 ::i~

I/o bus " 1 ,, i ; : " 1 /
,?"" = = ii, "'"%,

2-- - , ° , i "r .-.(:

Fig. 1. The extendable rDPA architecture between chip boundaries

146

fix operator are provided [3]. For example a queue of 'scan-max' operators can be used
for easy implementation of a hardware bubble sort [7]. The 'scan-max' computes the
maximum from the input variable and the internal feedback variable and gives the
maximum as result and stores the other value internally. In addition to expressions, the
rDPA can also evaluate conditions. Each communication channel has an additional
condition bit. If this bit is true, the operation will be computed, otherwise not. In each
case the condition bit is routed with the data using the same handshake. The 'false'
path is evaluated very quick, because the condition bit has to be routed only. With this
technique also nested if_then_else statements can be evaluated (see also
figure 4). The t h e n and the e l s e path can be merged at the end with a merge opera-
tor (m). This operator routes the value with the valid condition bit to its output.
The operators of the DPUs are configurable. A DPU is implemented using a fixed ALU
and a microprogrammed control, as shown in figure 2. This means, that operators such
as addition, subtraction, or logical operators can be evaluated directly, whereas multi-
plication or division are implemented sequentially. New operators can be added by the
use of a microassembler.
As mentioned before the array is extendable by using several chips of the same type.
The DPUs have no address before configuration since all rDPA chips are identical. A
DPU is addressed by its x- and y-location, like an element in a matrix. The x- and y-
location are called addresses later for convenience. A configuration word consists of a
configuration bit which distinguishes the configuration data from computational data.
Furthermore it consists of the x- and the y-address, the address of the DPU's configura-
tion memory, and the data for this memory.
Each time a configuration word is transferred to a DPU, the DPU checks the x- and the
y-address. Four possible cases can occur:

• the y-address is larger than zero and the x-address is larger than zero
• the y-address is larger than zero and the x-address is zero
• the y-address is zero and the x-address is larger than zero
• both, the y-address and the x-address are zero

b)
west I/0 bus ~ _~ortl

1

\ A,"u

I s o u t h ~ e a s t

north

micropro-
, grarnmable

control

Fig. 2. A datapath unit (a) and its implementation (b)

147

In the first case the DPU checks if the neighbouring DPUs are busy. If the neighbour-
ing DPU in y-direction is not busy, the y-address will be decreased by one and the
resulting configuration word will be transferred to this DPU. If the DPU in y-direction
is busy and the DPU in x-direction is not busy the x-address will be decreased by one
and the resulting configuration word will be transferred to this DPU. If both neigh-
bouring DPUs are busy, the DPU waits until one finishes. With this strategy an auto-
matic load distribution for the configuration is implemented. Internally the
configuration words are distributed over the whole array and several serial links are
used to configure the rest of the chips. An optimal sequence of the configuration words
can be determined since these can be interchanged arbitrarily.
In the second case, the y-address will be decreased by one and the configuration word
will be transferred to the next DPU in y-direction. In the third case when the y-address
is zero and the x-address is larger than zero, the x-address will be decreased by one and
the configuration word will be transferred in x-direction. In the last case when both
addresses are zero, the target DPU is reached, and the address of the DPU's configura-
tion memory shows the place where the data will be written.
Because of the load distribution in the rDPA array, one serial link at the array boundary
is sufficient to configure the complete array. The physical chip boundaries are com-
pletely transparent to the user. The communication structure allows dynamic in-system
reconfiguration of the rDPA array. This implies partial reconfigurability during runtime
[6]. Partial reconfigurability is provided since all DPU can be accessed individually.
The configurability during runtime is supported because each DPU forwards a config-
uration word with higher priority than starting with the next operation. The load distri-
bution takes care of that most of the configuration words avoid the part of the rDPA
array which is in normal operation. Further the configuration technique allows to
migrate designs from a smaller array to a larger array without modification. Even
newer generation rDPA chips with more DPUs integrated do not need a recompilation
of the configuration data. The configuration is data-driven, and therefore special timing
does not have to be considered.
With the proposed model for the DPA, the array can be expanded also across printed
circuit board boundaries, e. g. with connectors and flexible cable. Therefore it is possi-
ble to connect the outputs of the east (south) array boundary with the west (north) one,
to build a toms.

3 S u p p o r t C h i p f o r B u s - O r i e n t e d S y s t e m s

With the rDPA, a programmable support chip for bus-oriented systems is provided.
Together they form a data-driven reconfigurable ALU (rALU). The support chip con-
sists of a control unit, a register file, and an address generation unit for addressing the
DPUs (figure 3).
The register file is useful for optimizing memory cycles, e. g. when one data word of a
statement will be used later on in another statement. Then the data word does not have
to be read again over the external bus. In addition, the register file makes it possible to
use each DPU in the rDPA for operations by using the internal bus for routing. If dif-
ferent expressions have a common subexpression, this subexpression has to be com-
puted only once. If the rDPA does not provide the routing capacity for this reduction,

148

I I r O P A
Iobal I/0 bus L

[address [r fi
Igenerationl
I unit I

I rDPAoontro'unit I
L p r o g r . Sup_port__Chi_p - .

Fig. 3. The reconfigurable datapath architecture (rDPA) with the programmable support chip

e. g. if three or more subexpressions are in common, the interim result can be routed
through the register file.
The address generation unit delivers the address for the DPU registers before each data
is written into the rDPA over the bus. Usually the address is increased by one but it can
also be loaded directly from the rDPA control unit.
The rDPA control unit holds a program to control the different parts of the dam-driven
rALU. The instruction set consists of instructions for loading data into the rDPA array
to a special DPU from the external units, for receiving data from a specific DPU, or
branches on a special control signal from the host. The rDPA control unit supports con-
text switches between three control programs which allows the use of three independ-
ent virtual rALU subnets. The control program is loaded during configuration time.
The reconfigurable data-driven ALU allows also pipelined operations.
A status can be reported to the host to inform about overflows, or to force the host to
deliver data dependent addresses. The input FIFO is currently only one word deep for
each direction. The datapath architecture is designed for an asynchronous bus protocol,
but it can also be used on a synchronous bus with minor modifications of the external
circuitry.

4 P r o g r a m m i n g E n v i r o n m e n t

Statements which can be mapped to the rDPA array are arithmetic and logic expres-
sions, and conditions. The input language for programming the rALU including the
rDPA array is the rALU programming language, called ALE-X (arithmetic & logic
expressions for Xputers). The syntax of the statements follows the C programming
language syntax. A part of an ALE-X example is shown in figure 4.
A data dependency analysis is performed to recognize possible parallelization and to
find dependencies between the statements. The statements are combined to larger
expressions and a data structure which is a kind of an abstract program tree is built
(figure 5). Then the data structure is mapped onto the rDPA array structure. The map-

149

a = b + c * d; (i)

if (e < i0) (2)

f = g + h; (3)

else (4)

f = g - h; (5)

i = c + f; (6)

rt.-f

Fig. 4. Part of an ALE-X program example mapped onto the rDPA array

ping algorithm starts at the leaf cell nodes of the data structure for each expression.
These nodes are assigned to DPUs in a first line of the rDPA array. A second line starts
if there is a node of higher degree in the data structure. The degree of a node increases
if both sons of the node are of the same degree. After that the mapped structure is
shrunk by removing the nodes which are used only for routing. There are several pos-
sibilities for the mapping of each expression. Finally the mapped expression with the
smallest size is chosen. Figure 5 shows an example of the mapping. Now the mapped
expressions are allocated in the rDPA array, starting with the largest expression. If the
expressions do not fit onto the array, they are split up using the global I/O bus for rout-
ing. If the number of required DPUs is larger than the number of DPUs provided by
the array, the array has to be reconfigured during operation. Although this allocation
approach gives good results, future work will be done in the optimization of this algo-
rithm to incorporate the scheduling process for advance timing forecast.
Due to the global I/O bus of the rDPA array, the loading of the data and the storing are
restricted to one operation per time. An optimal sequence of these I/O operations has to
be determined. For the example in figure 4, starting with loading the variables c and d
is better than starting with h. The operators do not have to be scheduled, since they are
available all the time. The operands have to be scheduled with the additional restric-
tion that operands used at multiple locations have to be loaded several times at suc-
ceeding time steps. For example, when the variable c is scheduled, the c of the
multiplication and the c of the last addition have to be loaded in direct sequence. To
find the time critical operations, first an 'as soon as possible' schedule (ASAP) and an
'as late as possible' schedule (ALAP) are performed. No other resource constraints

d e

b + c (d + e)

a' ~ y

c

Fig. 5. Example of the mapping process: a) data structure with the degree of the node,
b) mapped structure, c) shrunk mapped structure

15o

ASAP ALAP

6 ~ 6

5 . .

Fig. 6. ASAP and ALAP schedules for the program example

(like only a single I/O operation at a time) are considered at this moment. For simplic-
ity in our example, all operations, including the route operations (rt) are assumed to
need a single time step for finishing in the worst case. The multiplication is assumed to
need six time steps. The rALU compiler considers the real time delays in the worst
case. Due to the serf timing of the data-driven computation, no fixed time step intervals
are necessary. Figure 6 shows the ASAP and ALAP schedules for the program exam-
ple.
Comparing the ASAP with the ALAP schedule, the time critical path is found. It is the
multiplication of c and d with the succeeding addition of b. The range of this opera-
tion is zero. A priority function is developed from these schedules which gives the
range of the I/O operations of the operands. This is the same as in a list based schedul-
ing [2]. The highest priority i. e. the lowest range have the variables c and d. Since c
has to be loaded twice, d is loaded first. The complete priority function is listed in
figure 7b.
When the variable c is scheduled twice in direct sequence the ASAP and the ALAP
schedule may change because of the early scheduling of c in the addition operation.
Then the schedule of ct, c, and c is kept fixed and a new priority function on the
remaining variables is computed to find the next time critical operation. For simplicity
this is not done in the illustration. Figure 7a shows the final schedule of the program
example.
In time step 10 no I/O operation is performed. If the statement block of the example is
evaluated several times, the global I/O bus can be fully used by pipelining the state-
ment block. The pipeline is loaded up to step 9. Then the variable d from the next
block is loaded before the output variables et, i and f are written back. The statement
block is computed several times (step 10 to 21, figure 7c) until the host signals the
rALU control to end the pipeline. Step 22 to the end is performed, and the next opera-
tors can be configured onto the rDPA array.

151

final schedule (a) pipelined finalschedule (c)
.

1 [d] 1 ~-~

3

4

5

6

7

8

9

(b) priority read write

0 d a
O' c
0" c
1
2 e i
3 g ,g f
4 h,h
5
6 b

10

11

12

13

2

8

9

10

i 12

13

14

15

16

17

18

19

2O

21

22

23

24

25

Fig. 7. The final schedule (a), the priority function (b) and the pipelined final schedule
(c) for the program example

19

IE

"O
c-
19

The rDPA configuration file is computed from the mapping information of the process-
ing elements and a library with the microprogram code of the operators. The configu-
ration file for the rALU control unit is extracted from the final schedule of the I/0
operators.

152

5 Utilisation with the Xputer Hardware Environment

Although the proposed rALU can be used for any bus-oriented host based system, it is
originally build for the Xputer prototype Map-oriented Machine 3 (MoM-3). The
Xputer provides a hardware and a software environment for a rALU. The rALU has to
compute a user defined compound operator only. A compiler for the Xputer supports
the high level language C as input [8]. The rALU programming environment has to
compile arithmetic and logic expressions as well as conditions onto the rALU.
Many applications require the same data manipulations to be performed on a large
amount of data, e. g. statement blocks in nested loops. Xputers are especially designed
to reduce the von-Neumann bottleneck of repetitive decoding and interpreting address
and data computations. In contrast to von Neumann machines an Xputer architecture
strongly supports the concept of the "soft ALU" (rALU). The rALU allows for each
application a quick problem-oriented reconfiguration. High performance improve-
ments have been achieved for the class of regular, scientific computations [5], [1].
An Xputer consists of three major parts: the data sequencer, the data memory and the
rALU including multiple scan windows and operator subnets. Scan windows are a
kind of window to the data memory. They contain all the data words, which are
accessed or modified within the body of a loop. The data manipulations are done by
the rALU subnets, which provide parallel access to the scan windows. The scan win-
dows are updated by generic address generators, which are the most essential part of
the data sequencer. Each generic address generator can produce address sequences
which correspond to nested loops under hardware control. The term data sequencing
derives from the fact that the sequence of data triggers the operations in the rALU,
instead of a von-Neumann instruction sequence. Generally, for each nesting level of
nested loops a separate rALU subnet is required to perform the computations associ-

II Control Memory I L
I i Ilnstr. Sequencerl "-
}1 Generic I

1~ I Address I " " I Generator I

la I Generic Address Generator

IL_|==II ScanWindow II
t ~ rALU Subnet [

I Scan Wind°w I
rALU Subnet

l ScanWindow II
rALU Subnet

US

I Bus interface I

i ous
Main Memory m Host

Fig. 8. The Xputer prototype Map-oriented Machine 3 (MoM-3)

153

ated with that nesting level. The rALU subnets perform all computations on the data in
the scan windows by applying a user-configured complex operator to that data.
Pipelining across loop boundaries is supported. The subnets need not to be of the same
type. Subnets can be configured for arithmetic or bit level operations.
The Xputer prototype MoM-3 has direct access to the host's main memory. The rALU
subnets receive their data directly from a local memory or via the MoMbus from the
main memory. The MoMbus has an asynchronous bus protocol. The datapath architec-
ture is designed for the asynchronous bus protocol of the MoMbus, but it can also be
used by a synchronous bus with minor modifications. Figure 8 shows our prototype
MoM-3.
A complete rALU programming environment is developed for the rALU when using it
with the Xputer prototype. The input language for programming the rALU is the
ALE-X programming language. The syntax of the statements follows the C program-
ming language syntax (see also figure 4). In addition, the language provides the size of
the scan windows used and the next handle position which is the lower left comer of
the boundary of the scan window. Providing the handle position gives the necessary
infomaation for pipelining the complete statement block in the rALU.
The ALE-X programming language file is parsed and a data structure like an abstract
program tree is computed. Common subexpressions are taken into consideration. The

(ALE-X Programming Language)

new
operators C APT, Data Structure)

the Operators' I '
Allocation of] I Data Dependency

] Analysis I

I Scheduling & I
Memory Optimization

I Code Generation for |
I rALU and GAG Control

Configuration Code [
Generation I

~rALU Control File) (.GAG Control File)

(Configuration~ File) l

II reconf,gurable Control ::31 • I;I I ,11 Generic
IJatapath Re,', File i~1:1 II Address I~1 Architecture I ! Generator

Fig. 9. The rALU programming environment

154

operators of each statement are associated to a DPU in the rALU array as described in
section 4. Memory cycles can be optimized using the register file when the scan pat-
tern of the GAGs works with overlapping scan windows.
The rDPA configuration file is computed from the mapping information of the DPUs
and a library containing the code of the operators. The configuration file for the rALU
control unit and the configuration file for the GAGs is extracted from the final schedule
of the I/O operators. The programming environment of the rALU is shown in figure 9.

6 Results

The prototype implementation of the rDPA array works with 32 bit fixed-point and
integer input words. Currently the host computer's memory is very slow. The clock
frequency of the system is 25 MHz. In a single chip of the rDPA array fits at least a
3 × 3 matrix of DPUs. In many applications the coefficients in e. g. filter implementa-
tions are set up in such a way that shift operations are sufficient and multiplications are
not necessary. If high throughput is needed the DPU processing elements can be linked
together to implement a pipelined multiplier for example. Benchmark results are given
in table 1. The performance figures are a worst case estimation of our prototype. They
give the duration of the operation time per data word. The speed of the examples 2 to 5
does not depend on the order of the filter as long as the necessary hardware (number of
DPUs) is provided. The same applies for exam)le 6.

Algorithms Opera- number of
dons active DPUs

1024 Fast Fou-
* + , - 10

1 rier Transform '

FIR filter, n th
2 order *' + 2(n+ 1)

FIR filter, n th
3 order shift, + 2(n+ 1)

n x m two dim.
* + 2(n+l)(m+2)-I 4 FIR filter '

n x m two dim.
5 FIR filter shift, + 2(n+l)(m+2)-I

6 B ubblesort, scan- n- 1
length n max

number of
necessary chips

2

-n+ 1"
3

In3----~l(m+ 2)]

Time
Perfor-

Steps per
Operation mance

16" 10240 20 ms

1800 ns /
15

data word

500 ns /
4

data word

1800 ns /
15

data word

500 ns /
4

data word

240 ns /
2

data word

Table 1. Benchmark results

a. ['x] = the smallest integer, which is greater or equal to x

7 Conc lus ions

An FPGA architecture (reconfigurable datapath architecture, rDPA) for word-oriented
datapaths has been presented. Pipelining is supported by the architecture. The word-
orientation of the datapath and the increase of the fine granularity of the basic opera-

155

tions extremely simplifies the automatic mapping onto the architecture. The extendable
rDPA provides parallel and pipelined evaluation of the compound operators. The rDPA
architecture can be used as reconfigurable ALU for bus-oriented host based systems as
well as for rapid prototyping of high speed datapaths. It suits very well for the Xputer
prototype MoM-3. The architecture is in-system dynamically reconfigurable, which
implies also partial reconfigurability at runtime.
A prototype chip with standard cells has been completely specified with the hardware
description language Verilog and will be submitted for fabrication soon. It has 32 bit
datapaths and provides arithmetic resources for integer and fixed-point numbers. The
programming environment is specified and is currently being implemented on Sun
SPARCstations.

References

1. A. Ast, R. W. Hartenstein, H. Reinig, K. Schmidt, M. Weber: A General purpose
Xputer Architecture derived from DSP and Image Processing; in M. A. Bayoumi
(Ed.): VLSI Design Methodologies for Digital Signal Processing Architectures;
Kluwer Academic Publishers, Boston, London, Dordrecht, pp. 365-394, 1994

2. D.D. Gajski, N. D. Dutt, A. C.-H. Wu, S. Y.-L. Lin: High-Level Synthesis, Intro-
duction to Chip and System Design; Kluwer Academic Publishers, Boston, Dor-
drecht, London, 1992

3. S.A. Guccione, M. J. Gonzalez: A Data-Parallel Programming Model for Recon-
figurablc Architectures; IEEE Workshop on FPGAs for Custom Computing
Machines, FCCM'93, IEEE Computer Society Press, Napa, CA, pp. 79-87, April
1993

4. D. Hill, B. Britton, B. Oswald, N.-S. Woo, S. Singh, C.-T. Chen, B. Krambeck:
ORCA: A New Architecture for tligh-Perfonnance FPGAs; in H. Griinbacher, R.
W. l Iartenstein (Eds.): Field-Programmable Gate Arrays, Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, 1993

5. R.W. Hartenstein, A. G. Hirschbiel, M. Riedmtiller, K. Schmidt, M. Weber: A
Novel ASIC Design Approach Based on a New Machine Paradigm; IEEE Jour-
nal of Solid-State Circuits, Vol. 26, No. 7, July 1991

6. P. Lysaght, J. Dunlop: Dynamic Reconfiguration of Fieldprogrammable Gate
Aaxays; Proceedings of the 3rd International Workshop on Field Programmable
Logic and Applications, Oxford, Sept. 1993

7. N. Petkov: Systolische Algorithmen und Axrays; Akademie-Verlag, Berlin 1989
8. K. Schmidt: A Program Partitioning, Restructuring, and Mapping Method lor

Xputers; Ph.D. Thesis, University of Kaiserslautern, 1994
9. N.N.: The XC4000 Data Book; Xilinx, Inc., 1992

Image Processing on a Custom Computing Platform
Peter M. Athanas and A. Lynn Abbott

The Bradley Department of Electrical Engineering
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061-0111

Abstract. Custom computing platforms are emerging as a class of computing
engine that not only can provide near application-specific computational
performance, but also can be configured to accommodate a wide variety of
tasks. Due to vast computational needs, image processing computing
platforms are traditionally constructed either by using costly application-
specific hardware to support real-time image processing, or by sacrificing real-
time performance and using a general-purpose engine. The SPt~SH-2 custom
computing platform is a general-purpose platform not designed specifically for
image processing, yet it can cost-effectively deliver real-time performance on a
wide variety of image applications. This paper describes an image processing
system based on the SPLASH-2 custom computing engine, along with
performance results from a variety of image processing tasks extracted from a
working laboratory system. The application design process used for these
image processing tasks is also examined.

1. Introduction

Many of the tasks associated with image processing can be characterized as being
computationally intensive. One reason this is true is because of the vast amount of
data that requires processing -- several million pixels need to be processed per
second for images with respectable resolution. Another reason is that for many
tasks, several operations need to be performed on each picture element within the
image, and a typical image may be composed of more than a quarter of a million
picture elements. To keep up with these capacious data rates and demanding
computations in real-time, the processing engine must provide specialized data
paths, usually application-specific operators, creative data management, and careful
sequencing and pipelining.

A typical design process necessitates extensive behavioral testing of a new concept
before proceeding with a hardware implementation. For any task of reasonable
complexity, simulation of a VHDL model with a representative data set on a
respectable workstation is prohibited due the enormous simulation processing time.
Days, or even weeks, of processing time are sometimes needed to simulate the
processing of a single image. In many instances several seconds, or even minutes of
image data, which may consist of hundreds or thousands of images are needed to
make a fair subjective analysis, or to exercise the design sufficiently. Because of

157

this, the designer is often forced to into a trade-off on how much testing can be
afforded verses an acceptable risk of allowing an iteration in silicon.

An alternative approach discussed in this paper is the automated transformation of
the structural representation (or the transformation of a behavioral model) into a
real-time implementation. Using this approach, the prototype image processing
platform would not only serve as a means to evaluate the performance of an
experimental algorithm/architecture, but also may serve as a working component in
the development and testing of a much larger system. The platform used to provide
this capability is an experimental general-purpose custom computing platform called
SPLASH-2[1]. SPLASH is a reconfigurable attached processor featuring programmable
processing elements and programmable communication paths as the mechanism for
performing computations. The SPLASH-2 system utilizes arrays of RAM-based
FPGAs, crossbar networks, and distributed memory as a means of accomplishing the
above goals. Even though SPLASH was not designed specifically for image processing,
this platform possesses architectural properties that make it well suited for the
computation and data transfer rates that are characteristic of this class of problems.
Furthermore, the price/performance of this system makes it a highly competitive
alternative to conventional real-time image processing systems.

There are several aspects of image processing which distinguish it as being
computationally challenging; these are identified in Section 2. Sections 3 and 4
provide a synopsis of the pertinent architectural features of the SPLASH processor,
along with a description of the laboratory image processing system. Section 5
provides a narration of the application design process. Descriptions of some of the
applications implemented on the laboratory system can be found in Section 6.
Performance results are given in Section 7.

2. Architectural Aspects of Image Processing

Conventional general-purpose machines fail to manage the distinctive I/O
requirements of most image processing tasks, nor are they equipped to take
advantage of the opportunities for parallel computation that are present in many
vision-related tasks. Parallel processing systems such as mesh computers or
pipelined processors have been successfully applied to some image processing
applications. Mesh architectures often provide very large speedup after an image is
loaded, but overall performance often suffers severely from I/O limitations.
Pipelined machines can accept image data in real time from a camera or other
source, but historically they have been difficult to reconfigure for different processing
tasks.

Image processing is characterized by being computationally intensive, and often by
the repeated application of a single operator. A typical edge detector, for example,
may be implemented as a 3x3 (or 5x5, etc.) operator which is applied at every picture
element (pixel) in an image, producing a new image as the result. Other examples of
such neighborhood operations are template matching and morphological processing.

158

Other forms of image processing do not produce new images, but instead compute
statistical information from the image data. Examples of this include histogram
generation and the computation of moments. Furthermore, many applications
require that sequences of such images be processed quickly. Image compression and
motion compensation applications typically operate on sequences of two or more
images.

Image data are typically available in raster order -- pixels are presented bit-, byte-,
or word-serially, left-to-fight for each image row, beginning with the top row. If a
typical image frame is 512 rows by 512 colunms of 8-bit pixels, then the total data in
a single frame is 256 kilo-pixels, or 2 megabits of data. The discussions in this
paper will assume that data represent monochrome light intensity values.

3. The SPLASH-2 C u s t o m C o m p u t i n g M a c h i n e

SPLASH-2 is a second generation custom computing attached processor designed by
the Supercomputing Research Center in Bowie, Maryland. SPLASH is intended to
accelerate applications by reconfiguring the hardware functionality and processing
element interconnections to suit the specific needs of individual applications.

SPLASH is classified as an attached processor since it is intended to append a host
machine through an expansion bus. It differs from a coprocessor in that it does not
reside directly on the host processor bus. SPLASH-2 has been designed with an SBus
interface, and currently serves a Sun SPARC-2 host. A SPLASH attached processor is
comprised of an interface board (for formatting and buffering input and output data),
and from one to fifteen processor boards. Each processor board contains 17
processing elements and a crossbar network. A Xilinx XC4010 and a fast 256Kx16
static RAM together make one processing element. The crossbar network contains
sixteen 36-bit bidirectional ports for augmenting communications between processor
elements. The crossbar switches present on SPLASH can be dynamically adjusted to
support complex interconnection topologies.

The SPLASH-2 system offers an attractive alternative to traditional architectures. With
this computing platform, not only can the specific operations be custom designed (for
function and size), but the data paths can also be customized for individual
applications. Furthermore, these platforms can be completely reconfigured in just a
few seconds. The reconfigurable nature of SPLASH provides the performance of
application-specific hardware, while preserving the general-purpose nature of being
able to accommodate a wide variety of tasks. A more complete description of SPLASH
hardware and software development environment can be found in [1,2].

Splash
Host SPARC-2

Workstation

159

s~].a..~-2

, .3Z@s

iiiiii!i!i!i!i!i!i!!i!
Fro m e :~:.
Buffer i~

 ¢iiiiiiiiiiiiiiiiiiiiiiiiiiii i! !3 ii iiiiiiiiiiiiiiiii iiiiii i ii c
Output (processed)
Image D~splay

Fig. 1: Components in the V]PLASH laboratory system.

4. A Real-Time Image Processing Platform

Performing the computations of a vision related task within the time permitted of a
live video data stream is a challenging task, mainly because of:

• the quantity of data involved -- 256 Kbytes for a single 512x512
image frame,
• the input / output data requirements (30 frames per second for
RS-170), and
• the high computational requirements (per pixel) for many image
applications.

The adaptive nature of the SPLASH architecture makes it well suited for the
computational demands of image processing tasks, even though it was not
specifically designed for such tasks. Furthermore, SPLASH features a flexible interface
design which facilitates customized I/O for situations which cannot be
accommodated by the host SPARC processor. There is sufficient memory distributed
on each processor board to buffer several images for the processing of two or more
frames simultaniously (if needed). A real-time image processing custom computing
system has been constructed at Virginia Tech based on SPLASH-2. The VTSPLASH
laboratory system is depicted in Figure 1.

A monochrome video camera or a VCR is used to create an RS-170 image stream.
The signal produced from the camera is digitized with a custom built frame grabber
card. This card was designed not only to capture images, but also to perform any
needed sequencing or simple pixel operations before the data are presented to SPLASH.
The frame grabber card was built with a parallel interface which can be connected
directly to the input data stream of the SPLASH processor. The SPLASH system used in
this work consists of a modified interface board and two processor array boards.

160

The output of SPLASH, which may be a real-time video data stream, overlay
information, or some other form of information, is first presented to another custom
board for converting the data (if necessary) to an appropriate format. Once
formatted, the data are then presented to a second frame grabber card (a commercial
card: Data Translation DT2867LC). A new RS-170 signal is formed and presented
to a video monitor. A Sun SPARC 2 serves as the SPLASH host, and is responsible for
configuring the SPLASH arrays and interjecting run-time commands within the video
stream.

5. A p p l i c a t i o n D e v e l o p m e n t on SPLASH-2

While the programming environment for SPLASH-2 is one of the most advanced and
automated for its class, there are a number of difficulties that exist that must be
addressed before this type of machine can become accepted into mainstream
computing. In this section, a brief summary of the application development process
is given.

Figure 2 illustrates the basic design flow for the development of a typical SPLASH
application. This figure is somewhat simplified, and may not depict all of the

possible iteration paths in the design process.
The first step in the process is the definition of
the problem. As in all hardware and software
system design, a sound problem definition will
facilitate the design process. Step two is the
behavioral modeling of the problem. Typically,
a V1-SPLASH programmer models the problem using
C or with a behavioral VI-IDL model. Not only
is the model verified to comply with the problem
definition, but sample images are run through
the model (when possible) for comparison with
the results of the synthesized implementation.

The next step in the process, and often a difficult
step, is partitioning the model into a form that is

suitable for the final implementation on SPLASH.
The model is first mapped onto processor boards,
and then partitioned more finely into individual
processing elements. The three main factors that

drive a partition are time, area and communication complexity. The time and area
factors are familiar problems that are discussed in the high-level synthesis and
silicon compiler literature[3]. Time relates to how much computation is desired per
clock cycle. Area relates to how much of the reconfigurable resources should be
allocated to a given computation, and to the total available reconfigurable resources
within each processor board and within each of the I7 processing elements on each
board. Even though SPLASH contains ample hardware support to aid signal

C Integration)

Fig. 2: The application design
process.

161

propagation between processing elements, not all communications are equal in cost
and in bandwidth (communication complexity). There are finite limitations on the
available communication resources that the designer must comply with in SPt~SH-2.
Some of these are: 1

• a maximum of 36 bits of input data and 36 bits of output data per
processing element (72 bits if the crossbar network is used to
augment these paths).
• a 16 bit data path between a processing element and its 2
megabyte RAM
• several single-bit signals for global communications and
broadcasts.
• a 36 bit data path between processing boards, along with several
1-bit global signals.

While these numbers are quite generous, they represent realistic design trade-offs
versus cost, and any upper bounds on these data paths will eventually disgruntle
some designers. Not all applications easily map to these communications
limitations, and tough design trade-offs must be considered. As it stands now, there
are few quantitative up-front measures available to gauge partitioned alternatives. A
designer must often wait until after the synthesis step before it is known whether a
given problem partition is feasible.

After the design is partitioned, a detailed structural design is produced and verified.
Many different alternatives are available to the designer for "programming" an
application, including FPGA design tools like XBLOX[4]; however, the best
supported design environment for SPLASH is with the Synopsys VHDL simulation and
synthesis tools. There is only so much one can simulate within a reasonable amount
of time. The simulations for many of the image processing tasks discussed in this
paper consumed several days of CPU time per run on a SPARC-10 -- in many cases,
for just a small fraction of an image. Therefore, the stimulation input for a
simulation run must be considered judiciously.

The application simulations are based on VHDL models developed prior to
placement and routing; hence, are barren of signal propagation annotation. Actual
propagation delays in the Xilinx FPGAs are highly sensitive to the outcome of the
placement and routing process, and can have a disturbing effect on the application
behavior. To counter these problems, and to help cope with the limited functional
coverage that can be achieved by the simulation tools, a powerful debugging
environment has been built for SPLASH-2. T h e / 2 interactive debugger [5] provides
the power of conventional high-level language debuggers by allowing such features
as monitoring internal state variables and tracing. Debugging a hardware/software
design adds new conceptual difficulties not found in traditional debugging
environments. Once the image operations are performing satisfactorily, they must be

1These numbers are rather simplistic. A better understanding of the SPLASH architecture is
required to get a full appreciation of the available communication resources.

162

integrated within the body of application. A rich C library has been developed by
SRC[5] which facilitates communication between a host program and the attached
processor.

As stated before, SPLASH is representative of the state-of-the-art in custom computing
processors -- both in hardware capabilities and software support -- yet it requires a
substantial time investment to develop an application. The authors observed that
graduate students well versed in VHDL and hardware design required from one to
four months to develop their first SPLASH application. This time decreased by half for
the development of the second. To make this class of machinery more widely
accepted and cost-effective, methods must be developed to reduce application
development time. There are many promising endeavors that focus on this issue
[6,7,8]; the main emphasis of these are to automate to some degree the portions of
the shaded region of Figure 2.

6. Image Processing Tasks

Common image processing tasks can be classified into the following categories:
neighborhood operations (both linear and nonlinear), statistical computations, and
transformations. All of these types of operations have been implemented (with
varying degrees of difficulty) on the ~SPt~SH laboratory system, and are briefly
discussed in this section to illustrate the types of computations each require.

6.1. Linear and Nonlinear Neighborhood Operations

Two-dimensional filtering techniques are very common in image processing. The
most common methods process small neighborhoods in an input image to generate a
new output image. The'resulting image is often a smoothed or enhanced version of
the original, or may comprise a 2D array of features that have been detected.
Neighborhood-based filtering is characterized by the repeated application of identical
operations, and often serves as a preprocessing step that is followed by higher-level
image analysis.

Neighborhood operations typically use a 2D template, usually rectangular, which is
applied at every pixel in the input image. (The template is often called a mask
operator, or filter.) In the linear case, applying a template means centering the
template at a given pixel of the input image, multiplying each template pixel by the
associated underlying image pixel, and summing the resulting products. The sum is
used as the pixel value (for this template position) in the output image.

In addition to the linear filtering described above, template operations can be
nonlinear. For example, a median filter can be implemented by using a template.
For every position of the template, the median value is chosen from the image pixels
covered by the template, and is used as the new pixel value for the output image. In
this case, the template simply serves as a window, and has no cell values.

163

Another form of nonlinear image processing is based on mathematical
morphology[9]. This is an algebra which uses multiplication, addition (subtraction),
and maximum (minimum) operations to produce output pixels. The filtering
operations are known as erosion and dilation, and can be used to perform such tasks
as low-pass or high-pass filtering, feature detection, etc. One advantage of this
nonlinear approach is reduced blurring, as compared with linear filtering.

6.2. Statistical Computations

Unlike the previous types of processing, statistical analysis typically does not result
in a new output image. Instead, the goal is to extract descriptive statistics of the
input image. For example, the mean and standard deviation of pixel values in the
image are often of interest. These and similar statistics can be computed using
simple multiply-accumulate processing, where one such operation is required for
each input pixel.

Real-time histogram generation is another useful operation which is often used as an
initial step for other applications, such as region detection and region labeling. In
generating a histogram, the processor must maintain and update a one-dimensional
array which records the number of occurrences of particular pixel values. In
addition, histograms are often analyzed further and used to adjust parameters for
image enhancement.

6.3. 1-D and 2-D Transformations

The 2-D discrete Fourier transform (DFT) is an extremely useful operation which is
often avoided because of its large computational requirements. Although it is a
linear operation, it differs from the neighborhood operations described above since
every transformed output pixel depends on every pixel of the input image. The
problem can be simplified somewhat, since the 2-D Fourier transform can be
decomposed into multiple 1-D Fast Fourier transforms. For example, a 512x512
DFT can be implemented as 512 one-dimensional FFT computations (one for each
row) followed by 512 additional one-dimensional FFTs (one per column). This
application was implemented using floating point arithmetic.

The Hough transform, another 2-D transformation, can be appended after an edge
detection task for the purpose of determining if a set of points lie on a curve of
specified shape, namely a straight line. The coordinates of high-intensity points in
the transform domain correspond to the position and orientation of best-fit lines in
the original image. A more complete discussion on the Hough transform can be
found in [12].

6.4. Other Image Transformations

After an image has been appropriately low-pass filtered, the image can be
subsampled without fear of violating the Nyquist criterion. If an image is recursively
filtered and subsampled, the resulting set of images can be considered a single unit
and is called a pyramid. This data structure shows promise in applications which

164

require complex image analysis, because analysis which begins at the lower-
resolution portion of the pyramid can be used to guide processing at higher-
resolution levels. For some tasks (such as surveillance and road following) this
approach can greatly reduce the overall amount of processing required.

In addition to low-pass pyramids, it is possible to generate band-pass pyramids, in
which each level of the pyramid contains information from a single frequency band.
A popular technique for generating these pyramids (known as Gaussian and
Laplacian pyramids) is described in [10]. Reconfigurable data paths through the
crossbar networks are used as the mechanism for dynamically restructuring and
reconnecting the pyramid processing elements.

7. Performance

A diversity of image processing tasks have been completed on the VTSPLASH laboratory
system. This section provides a quantitative summary of a representative number of
these. Qualitative evaluation of the real-time visual results are absent; the interested
reader can refer to contemporary texts on the subject[11][12]. Furthermore, example
(stationary) pictures of the processed results are not included since they do not
contribute to the major theme of this paper.

Application Description Class

Fourier 2-D transformation to / from spatial Repeated 1-D transformation.
Transform domain. Implemented using floating

point arithmetic.

Convolution 8×8 window operation for linear filtedng. Neighborhood operator.

Pyramid Repeated application of a Gaussian filter, 2-D transform, filtering,
Transform Laplacian filter, and decimation, decimation, and reconstruction.

Morphological Non-linear 3x3 window operator. Neighborhood operator.
Operators

Median Filter Non-linear 3x3 window operator. Neighborhood operator.

H o u g h Transform'ation of x-y coordinates into 2-D statistical operation and
Transform angle and displacement. Useful for line transformation.

finding.

Region Uses point statistics to determine regions, Mixture of window operations,
Detection and and then assigns a unique number to the point statistics, and pixel
Label region, manipulation.

Histogram Determines image intensity distribution. Statistical point operation.

Table 1: A representative list of image processing tasks.

Table 1 sununadzes a number of tasks that were discussed in the previous section,
which have been implemented in the laboratory. Table 2 provides an estimate of the
computational performance of each of these tasks. In Table 2, the application name

165

is listed in the first column. The second column provides a rough estimate of the
number of general-purpose operations (operations that are likely to be found in the
repertory of most common RISC processors) performed on average each pixel clock
cycle. In the third column, an estimate of the number of (equivalent) storage
references are given. The purpose of these two columns is to provide a basis for
quantifying the computational load of each of the tasks. These numbers are used to
produce a very rough estimate of the "MIPS" rating given in the fourth column of
Table 2.

Application Arithmetic~logical
operations per

second

Memory operations
per second

Effective number of
operations per

second

Median Filter 3.9x108 2x107 4.1×108
Hough 2.6x108 8x107 3.4x108
Transform

1.8x108 4x107 2.2x108

2.2x108
(floating point)

2.0x108
(fixed point)

3.8x10 8

1.2x 108
4.8x108

Region
Detection and
Labeling
Fast Fourier
Transform
(forward &
reverse)
Pyramid
Generation

2.0x 10 8

6x 10 7

2x 10 7
2x 107

Histogram
Morphological
Operators

6.6x10 8

4.4x108

1.4x108
5.0×108

8x8 Linear 6.4x108 lx107 6.5x108
Convolution

Table 2: Estimated performance of image processing tasks.

In many of the applications developed, a pipeline architecture was used. The
pipeline accepts digitized image data in raster order, often directly from a camera,
and produces output data at the same rate, possibly with some latency.

8. S u m m a r y

With the addition of input/output hardware, the SPLASH platform has proven to be well
suited for many meaningful image processing tasks. Reconfigurable computing
platforms, such as SPLASH, can readily adapt to meet the communication and
computational requirements of a variety of applications. Real-time processing of

166

image data is an effective approach for demonstrating the potential processing power
of adaptive computing platforms.

Acknowledgments

The authors are indebted to the graduate students who have contributed to the
WSPL~SH program which include the WSPL~SH application developers Luna Chen,
Robert Elliott, James Peterson, Ramana Rachakonda, Nabeel Shirazi, Adit
Tarmaster, and A1 Waiters, along with the VTSPLASH hardware support duo of Brad
Fross and Jeff Nevits. In addition, the authors appreciate the support and guidance
from Jeffrey Arnold and Duncan Buell from the Supercomputing Research Center.

References

[1] J.M. Arnold, D. A. Buell, E. G. Davis, "Splash 2," in Fourth Annual ACM
Symposium on Parallel Algorithms and Architectures, San Diego, CA, pp. 316-
322, 1992.

[2] J .M. Arnold, "The Splash 2 software environment," in IEEE Workshop on
FPGAsfor Custom Computing, Napa, CA, pp. 88-93, Apt 1993.

[3] D. Gajski, Silicon Compilation, Addison-Wesley, Reading, Massachusetts,
1988.

[4] The Programmable Gate Array Data Book, Xilinx Inc. San Jose,
California.,1994.

[5] J. M. Arnold, M. A. McGarry, "Splash 2 Programmer's Manual,"
Supercomputing Research Center, Tech. Rep. SRC-TR-93-107, Bowie,
Maryland, 1993.

[6] M. Gokhale, R. Minnich, "FPGA Computing in a Data Parallel C," in IEEE
Workshop on FPGAsfor Custom Computing, Napa, CA, pp. 94-101, Apt 1993.

[7] L. Abbott, P. Athanas, R. Elloitt, B. Fross, L. Cben, "Finding Lines and
Building Pyramids with Splash-2" in IEEE Workshop on FPGAs for Custom
Computing, Napa, CA, pp. 155-163, Apr 1994.

[8] P. Athanas, H. Silverman, "Processor Reconfiguration through Instruction-Set
Metamorphosis: Architecture and Compiler," IEEE Computer, vol. 26, no. 3,
pp. 11-18, Mar 1993.

[9] A. L. Abbott, R. M. Haralick, X. Zhuang, "Pipeline Architectures for
Morphologic Image Analysis," Machine Vision and Applications, vol. 1, no. 1,
pp. 23-40, 1988.

167

[10] P. J. Burt, E. H. Adelson, "The Laplacian Pyramid as a Compact Image Code,"
IEEE Transactions on Communications, vol. COM-31, no. 4, pp. 532-540,
April 1983.

[11] B. Jahne, Digital Image Processing, Springer-Verlag, New York, 1991.

[12] A. Rosenfeld, A. Kak, Digital Picture Processing, 2nd Edition, Academic,
New York, 1982.

A Superscalar and Reconfigurable Processor

Christian Iseli and Eduardo Sanchez

Laboratoire de Syst~mes Logiques, I~cole Polytechnique Fdddrale, CH-1015
Lausanne, Switzerland *

Abs t rac t . Spyder is a processor architecture with three concurrent, re-
configurable execution units implemented by FPGAs. This paper pre-
sents the hardware evolution of the Spyder processor and its evolving
software development environment.

1 I n t r o d u c t i o n

The performance (P) of a processor is usually measured as a function of the
time (T) necessary for the execution of a given benchmark. This execution time
is itself a function of three parameters: the number of instructions executed (Ni),
the average number of cycles per instruction (Ci) and the clock frequency (F) [1]:
Performance = f (T -1) where T = Ni- Ci- F -1.

Assuming that the clock period is mostly a technological parameter (even
if it also depends on the processor organization), the designer is left with two
parameters to optimize, so as to realize the highest-performance processor in the
world. Unfortunately, however, these two parameters are in direct conflict: the
optimization of one implies the deterioration of the other, and vice-versa. Pro-
cessor designers are thus divided into two opposing schools: the CISC (Complex
Instruction Set Computer) school emphasizes the optimization of the number of
instructions, while the RISC (Reduced Instruction Set Computer) school, which
at the moment is dominant, emphasizes the optimization of the number of cycles
per instruction [1].

In a conventional scalar processor, at least three cycles (fetch, decode and
execute) are necessary to execute an instruction: special techniques are thus
needed to improve this value. At the moment, the two most common techniques
are pipelining (decomposition of the execution in independent phases, so as to be
able to execute more than one instruction at the same time, each in a different
phase) and superscalar design (entirely parallel execution of multiple instruc-
tions, thanks to multiple processing units).

However, some drawbacks are associated with these two techniques:

- Pipelining introduces hazards of many types, which are difficult to handle,
with repercussions notably on the compiler and on the handling of excep-
tions. Moreover, if the number of stalls in the pipeline is very high, the
performance gain is minor, given the added complexity of hardware and
software.

* FAX: ÷41 21 693 3705, E-maih Christian.Iseli@di.epfl.ch

169

- The multiple execution units of a superscalar processor, which are sure to
cause an increase of the surface of the silicon and a deterioration of the clock
frequency, are rarely used in full: it is very difficult for the fetch unit to find
enough independent instructions capable of being executed in parallel. More-
over, a large bandwidth is necessary to deliver the data to all the units which
request them. And, because of the fixed size of the data in a conventional
processor, a sizable portion of this bandwidth can remain unused. For these
reasons, superscalar architectures very often imply an appreciable waste of
silicon.

Spyder (Reconfigurable Processor DEvelopment SYstem) is an alternative to
these two techniques, proposing an improvement of superscalar design, called
SURE (SUperscalar and REconfigurable):

- the instruction is very large (128 bits), allowing, as with microprogramming,
the direct control of the different execution units;

- only three execution units are available in parallel, but, thanks to the use
of F P GA circuits in their implementation, they are entirely configurable by
the user, according to the application. The waste in the number of units
and in the bandwidth (the configuration of the units includes not only the
functionality but also the size of the handled data) is thus avoided;

- to increase the bandwidth, the large register bank shared by the three exe-
cution units is multiple-access (four accesses: the three units plus the data
memory).

Right now, the configuration of the execution units is done "by hand" by
the user, but the final goal is to endow Spyder with an "intelligent" compiler,
capable of producing, in addition to the executable code, the configurations best
suited for a given problem.

The architecture of Spyder, together with a first implementation, has been
described in [2]: here we plan to show mostly the evolution of its development
software, as well as a second, extended, implementation.

2 P r o c e s s o r A r c h i t e c t u r e

The overall architecture of Spyder, shown in figure 1, derives mainly from the
architecture of VLIW processors [3] with some features of RISC processors. It is
register-based and uses only load and store operations to communicate with the
data memory. The data and program memory are separate (Harvard-type). The
data memory is dual-port, 16-bit wide and the program memory is 128-bit wide.
The program consists of horizontal microcode that drives all the components of
the processor in parallel. There are three execution units that can work in parallel
and two register banks. Each execution unit has one separate bidirectional data
bus connected to each register bank and can perform one read and one write
operation during each clock cycle. Both register banks are connected to the data
memory and one data transfer f rom/to each register bank can occur during each
clock cycle.

128

[Pipeline Reg. I
~128

Memory

Sequencer

170

Host computer

Register window
pointer

@

~ 1~

16
I
]" -I Memory [

Fig. 1. Overall architecture

A detailed description of the s t ructure and execution of an instruction on
Spyder can be found in [2]. The architecture of Spyder has undergone some
modifications, described below, since it was presented in [2].

The structure of the sequencer is shown in figure 2. It can perform the usual
jump, call and return operations, both conditionally and unconditionally. It now
also includes a stack of counters. We soon discovered, by experimenting with the
first version of Spyder, tha t an execution unit often had to be used to implement
a loop counter. The counter also had to be stored in some data register. We felt
it was bet ter to have the counting done where it was actually needed: in the
sequencer. There is a stack of 32 16-bit counters to handle nested loops.

The registers are accessed using a windowing system similar to the SPARC
architecture [4]: four windows of 4 to 16 registers are accessible at any given
time: the global window which is always accessible (at the highest index), the
current window, the previous window, and the next window. The size of the
register banks and the number of windows has been increased, compared to the
previous version of Spyder. Each bank consists of 2048 16-bit registers and there
can be 128, 256 or 512 windows of, respectively, 16, 8 or 4 registers. The current
window index is incremented by the subroutine call instruction and decremented
by the return from subroutine instruction. It now can also be incremented, decre-
mented and reset at will. Indeed, the windowing mechanism is very valuable to
temporari ly store a few lines of pixels from an image or the s tate of the cells of
a cellular au tomata . For example, if we configure Spyder to have 512 windows,
we can store at most 8 lines (there are 2 register banks) of a 8192-pixel-wide
black-and-white image in the registers.

The operation of the sequencer and the increment, decrement and reset of
the window index are controlled by the same 4 bits of the microcode, as would
be expected since the window index is modified by call and return instructions.

171

Jump Address

1

~< Sequencer Command

Flag

Cou~

Fig. 2. Sequencer

I t is interesting to note that there is no explicit increment operat ion for the
sequencer: it is replaced by an explicit j ump to the next instruction. No problem
is caused by this approach since we use horizontal microcode where the j ump
address field is always available, and since it lowers the number of bits needed
to control the sequencer.

The execution units are now also connected in a ring by two 16-bit wide
da ta buses. This allows the use of the execution units in a pipelined mode and
increases the data transfer bandwidth available to the execution units.

3 I m p l e m e n t a t i o n

The sequencer and tile register windowing controller are each implemented in a
Xilinx 4005 chip [5]. Each execution unit is implemented in a Xilinx 4008 chip;
a Xilinx 4010 chip could also be used, should tile need arise, without having to
change the board. The whole Spyder processor is being realized on a double-
Europe VME board.

4 S o f t w a r e

In classical superscalar processors, it is very hard to keep the n execution units
available busy at all time. To keep them all busy, the dispatch unit would have to
be able to read a large number of instructions in parallel and find among them
n independent instructions of different types. For example, the PowerPC 601
can execute up to 3 operations in parallel (an integer operation, a floating-point
operat ion and a branch), chosen among 8 instructions stored in the execution
queue, and its dispatch unit is very complex [6].

172

opera tor Add {
input i l , i2 , i3 , i4;

void output sum;
Add(short a i , short b i , phases {

Phase ph, 1: (i l , i 2) -> (,) ;
1: (i 2 , i l) -> (,); short &co, short &bo)

{ 2: (i3,i4) -> (sum,sum);

2: (i4,i3) -> (sum,sum) ;
static short temp;

}

switch (ph) { }
case PIl_1: memory {

short d[4] ;
temp = ai + bi;
break; short result ;

case PH_2: }
ao = bo = temp + ai + bi; main()

break; {
} Add.il = d[O]; Add.i2 = d[l];

} Add.i3 = d[2] ; Add. i4 = d[3] ;

result = Add.sum;
}

Fig. 3. Example of operator Fig. 4. Example of microcode

The Spyder architecture tries to provide two solutions to this waste of re-
sources:

1. The execution units are configured according to the application. They im-
plement the operations actually used by the application in an opt imal way.

2. There is no dispatch unit. Each instruction commands the execution units
and all the other components of the processor in parallel.

To summarize, the Spyder architecture shifts the complexity from the hard-
ware to the compiler. Ideally, the compiler should be able to produce the object
code, the instruction set and the hardware to implement this instruction set.

In other words, the functions of the ideal Spyder compiler are:

- to analyze the source code for a given application, wri t ten in a s tandard
high-level language like C + + , and extract the hardware operators necessary
to the application;

- to classify these operators in three independent groups to be implemented
each in one of the three execution unit;

- to generate the configuration of the F P G A circuits implementing the execu-
tion units;

- to generate the object code, maximizing the parallel use of the three execu-
tion units.

173

class Spyder {
public:

unsigned long *ramPtr;

unsigned char *ctrlPtr;

virtual int WriteData(u_int start, u_int length, void *data) = O;
virtual int ReadData(u_int start, u_int length, void *data) = O;
virtual void Start(void) = O;

virtual void Stop(void) = O;
virtual void WaitAndStop(void) = O;
virtual int RunningP(void) = O;

};

Fig. 5. The Spyder interface class

The design of such a compiler, if at all possible, is unfortunately beyond our
reach. The added complexity of parallelizing a sequential algorithm and gener-
ating the configuration of FPGA circuits from a behavioral description of their
functionality, all described in a single high-level language, seems overwhelming.

Moreover, considering the fact that Spyder is a coprocessor, and thus is un-
able to handle input /output , another program must run on the host computer to
complete the development system. This program, which can be called a monitor,
feeds data to Spyder, reads back the results, displays them, etc.

So, for the time being, a Spyder application is decomposed in several parts
where more intelligence is provided by the programmer than by the tools. In a
first phase, the programmer must decide which operators to implement in the
execution units and describe them using a subset of C++. Figure 3 shows tile
description of an example operator implementing the addition of 4 numbers in
2 phases. Tbis description contains the operator interface and the operations
to be performed in each phase. From this description, a compiler generates a
netlist which is then fed to the Xilinx placement and routing tools which in turn
produce the configuration for the execution units.

In a second phase, the programmer uses the operators defined in the first
phase to write the program which solves a given problem. Again a subset of
C++, with a few extensions, is used to describe the algorithm. As shown in
figure 4, first the available operators are described, followed by the data memory
organization and the program itself. The compiler handles the register allocation
and schedules the operations to try to maximize the use of all the execution units
in parallel. The compiler can also translate the source program in s tandard C++,
in order to be able to simulate the program on the host computer, and thus
facilitate the debugging.

Eventually, the programmer has to write the monitor program running on
the host computer which handles the communication between Spyder and the
host. A C + + interface class, shown in figure 5, is provided to ease this task. All

174

the details of the hardware implementation of Spyder are thus hidden. Accesses
to the data memory of Spyder are performed through the ramPtr pointer or
the ReadData and Wri teData methods. This class also allows to hide from the
monitor whether the Spyder application is being simulated or run on the actual
hardware.

5 Conclus ion

A first a t tempt at implementing the Abingdon Cross Benchmark (an image pro-
cessing benchmark) [7] shows that the performance of Spyder for this benchmark
is roughly an order of magnitude worse than the performance of the connection
machine CM 1. But it seems our algorithm could be improved. It also turns out
that the performance of Spyder could very easily be improved by using wider
data words (32 or 64-bit wide data word). It is interesting to note that the
ability of Spyder to handle more that one data element per data word (i.e., 16
black-and-white pixels per 16-bit data word) in a meaningful manner allows an
easy scaling of the computing power with the width of the data words. This is
usually not the case with regular (non-reconfigurable) processors. Who needs
64-bit integers?

References

1. David A. Patterson and John L. Hennessy, Computer Organization ~ Design, The
Hardware/Software Interface, Morgan Kaufmann Publishers, San Mateo, 1994.

2. Christian Iseli and Eduardo Sanchez, "Spyder: A reconfigurable VLIW processor
using FPGAs", in IEEE Workshop on FPGAs for Custom Computing Machines,
Napa, April 1993.

3. B. Ramakrishna Rau and Joseph A. Fisher, "Instruction-level parallelism: History,
overview, and perspectives", in Instruction-Level Parallelism, B. Ramakrishna Rau
and Joseph A. Fisher, Eds., pp. 9-50. Kluwer Academic Publishers, Boston, 1993.

4. Sun Microsystems, The SPARC Architecture Manual, Sun Microsystems, Inc,
Mountain View, 1987.

5. Xilinx, The Programmable Logic Data Book, Xilinx, San Jose, 1993.
6. Motorola, Phoenix, Arizona, PowerPC 601 RISC Microprocessor User's Manual,

1993.
7. Kendall Preston Jr., "The abingdon cross benchmark survey", IEEE Computer,

vol. 22, no. 7, pp. 9-18, July 1989.

A Fast F P G A I m p l e m e n t a t i o n of a G e n e r a l
P u r p o s e N e u r o n

Valentina Salapura, Michael Gschwind, Oliver Maischberger
{ vanja, mike, oliver} @vlsivie. tuwien, ac. at

Institut ffir Technische Informatik
Technische Universit£t Wien

Treitlstrafle 3-182-2
A-1040 Wien

AUSTRIA

Abst rac t . The implementation of larger digital neural networks has not
been possible due to the real-estate requirements of single neurons. We
present an expandable digital architecture which allows fast and space-
efficient computation of the sum of weighted inputs, providing an efficient
implementation base for large neural networks. The actual digital cir-
cuitry is simple and highly regular, thus allowing very efficient space us-
age of fine grained FPGAs. We take advantage of the re-programmability
of the devices to automatically generate new custom hardware for each
topology of the neural network.

1 Introduction

As conventional computer hardware is not optimized for simulating neural net-
works, several hardware implementations for neural networks have been sug-
gested ([MS88], [MOPU93], [vDJST93]). One of the major constraints on hard-
ware implementations of neural nets is the amount of circuitry required to per-
form the multiplication of each input by its corresponding weight and their
subsequent addition:

where xj are the input signals, wji the weights and ai the activation function.
The space efficiency problem is especially acute in digital designs, where

parallel multipliers and adders are extremely expensive in terms of circuitry
[CB92]. An equivalent bit serial architecture reduces this complexity at the cost
of net performance, but still tends to result in large and complex overall designs.

We decided to use field-programmable gate arrays (FPGAs) to develop a
prototype of our net [Xil93]. FPGAs can be reprogrammed easily, thus allowing
different design choices to be evaluated in a short time. This design methodol-
ogy also enabled us to keep overall system cost at a minimum. Previous neural
network designs using FPGAs have shown how space efficiency can be achieved

176

[vDJST93], [GSM94], [Sa194]. The neuron design proposed in this paper makes
a compromise between space efficiency and performance.

We have developed a set of tools to achieve complete automatization of
the design flow, from the network architecture definition phase and training
phase to the finished hardware implementation. The network architecture is
user-definable, allowing the implementation of any network topology. The cho-
sen network topology is described in an input file. Tools automatically translate
the network's description into a corresponding net list which is downloaded into
hardware Network training is performed off-chip, reducing real estate consump-
tion for two reasons:

- No hardware is necessary to conduct the training phase.
- Instead of general purpose operational units, specialized instances can be

generated. These require less hardware, as they do not have to handle all
cases. This applies especially to the multiplication unit, which is expensive in
area consumption terms. Also, smMler I~OMs can be used instead of RAMs
for storing the weights.

As construction and training of the neural net occurs only once in an appli-
cation's lifetime, namely at its beginning, this off-chip training scheme does not
present a limitation to a net's functionality. Our choice of FPGAs as implemen-
tation technology proved beneficial in this respect, as for each application the
best matching architecture can be chosen, trained on the workstation and then
down-loaded to the FPGA for operational use.

2 R e l a t e d W o r k

The digital hardware implementations presented in literature vary from bit-
stream implementations, through bit-serial and mixed parallel-serial implemen-
tations to fast, fully parallel implementations.

The pulse-stream encoding scheme for representing values is used in an ana-
log implementation by Murray and Smith [MS88]. They perform space-efficient
multiplication of the input signal with the synoptic weight by intersecting it with
a high-frequency chopping signal.

van Daalen et al. [vDJST93] present a bit-stream stochastic approach. They
represent values v in the range [-1, 1] by stochastic bit-streams in which the
probability that a bit is set is (v q- 1)/2. Their input representation and ar-
chitecture restrict this approach to fully interconnected feed-forward nets. The
non-linear behavior of this approach requires that new training methods be de-
veloped.

In [GSM94], we propose another bit-stream approach. Digital chopping and
encoding values v from the range [0, 1] by a bit stream where the probability
that a bit. is set is v are used. Using this encoding, an extremely space efficient
implementation of the multiplication can be achieved. In this design, only 22
CLBs [Xi193] are required to implement a neuron. This method enables the

177

construction of any network architecture, but constrains applications to those
with binary threshold units.

The approach in [Sal94] is based on the idea to represent the inputs and
synaptic weights of a neuron as delta encoded binary sequences. For hardware
implementation delta arithmetic units are used which employ only one-bit full
adders and D flip-flops. The performance of the design is improved and some
real-estate savings are achieved. The design can be used for assembling of feed-
forward and recursive nets.

GANGLION [CB92] is a fast implementation of a simple three layer feed
forward net. The implementation is highly parallel achieving performance of 20
million decisions per second. This approach needs 640 to 784 CLBs per neuron,
making this implementation extremely real estate intensive.

3 T h e N e u r o n

Each processing unit computes a weighted sum of its inputs plus a bias value
assigned to that unit, applies an activation function, and takes the result as its
current state. The unit performs the multiplication of 8 bit unsigned inputs by
8 bit signed integer weights forming a 16 bit signed product. The eight products
and a 16 bit signed unit-specific bias are accumulated into a 20 bit result. The
final result is computed by applying an arbitrary activation function. This pro-
cess scales the 20 bit intermediate result stored in the accumulator to an 8 bit
value (see figure 1).

We use the fact that multiplication is commutative, and instead of multiply-
ing the input values with the weight, we multiply the (signed) weight with the
(positive) input values. Thus, multiplication is reduced to multiplying a signed
value by an unsigned value. This can be implemented using fewer logic gates.

Multiplication is performed by using the well-know shift and add algorithm.
The first synapse weight is loaded into the 16 bit shift register from the weight
ROM, and the synapse input in the 8 bit shift register. Then, the shift and add
multiplication algorithm is performed, using a 20 bit accumulator.

After eight iterations, the first multiplication wji * x j has been processed.
To process the next neuron input, the input and weight values for the next
multiplication are loaded into their respective shift registers and the process
starts over. At the same time, the accumulator is used for implementing the
accumulation of the multiplication result and adding the results of all eight
multiplications.

After the result ~ l < j < , ~ wji * zj has been computed, the activation func-
tion is applied to this inte)mediate result. Depending on the complexity of the
activation function, this can take 0 or more cycles. This activation function also
scales the intermediate result to an unsigned 8 bit output value. This output
value is either the final result or fed to a next layer neuron.

As the constructed unit can have at most eight inputs and as the multipli-
cation of one input requires eight cycles, a new computation cycle is started
every 64 cycles (plus the time used for computing the activation function). This

178

W

PE

update

I0 II 12 I3 I4 15 16 I7

I multiplexer 8:1

8 bit shift register

weight]
ROM I

16 bit shift register

20 bit accumulator
rese t

activation I
function

Fig. 1. Schematic diagram of a neuron.

condition is checked by a global counter, and distributed to all neurons. Upon
receiving this signal, the neurons will latch their input state into an output
register, load the bias into the accumulator and start a new computation.

51 CLBs are used for implementing the base neuron. Depending on the com-
plexity of the activation function used, additional CLBs may be necessary to
implement look-up tables or other logic. The ppr tool [Xil92] reports the follow-
ing design data for a single neuron:

Packed CLBs 51
FG Function Generators 102

I
H Function Generators 16
Flip Flops 44
Equivalent "Gate Array" Gates 1458

4 T h e O v e r a l l N e t w o r k A r c h i t e c t u r e

The design of the neurons is such that any neural architecture can be assembled
from single neurons. Users can choose an optimal interconnection pat tern for

179

their specific application, as these interconnections are performed using F P G A
routing. This neuron design can be used to implement a wide range of different
models of neural networks whose units have binary or continuous input and unit
state, and with various activation functions, from hard-limiter to sigmoid. The
implementation of both feed-forward networks and recursive networks [Hop82],
[Koh90] is possible.

Any network can be implemented using the proposed units. The design in-
cludes a global synchronization unit which generates control signals distributed
to the whole network. Figure 2 shows a feed-forward n(~twork with four neurons
in the input layer, four neurons in the hidden layer and two neurons in the output
layer.

IIIllJll IIIlllll IIIllJJl

outlall

lllllll IIIllJll
i
G

[1111111

I=I3 I4 I51617

I °

sync

~ t 3

Fig. 2. Example architecture: a feed-forward network with ten neurons.

Several neurons can be placed on one FPGA. The exact number of neurons
fitting on one F P G A depends on the exact FPGA type and the complexity
of the activation function. By using multiple FPGAs, arbitrarily large, complex
neural nets can be designed cheaply and efficiently. Having neurons as indivisible
functionM units allows absolute freedom in choosing any topology required.

5 A u t o m a t i o n o f t h e D e s i g n P r o c e s s

To design a network for a ~aew application, a new network topology is selected.
On this network, the training process is performed, yielding a set of new weights
and biases. These new connections, weights and biases have to be mapped to the

180

logic of the LCAs. Embedding these parameters into the LCAs alters the routing
within the LCAs. To customize the base LCA design for each new application, we
have developed tools that enable the fully automation of the designing process.
The arbitrarily network topology with trained weights is described in an input
file. Complete translation into LCAs and design optimization is then performed
automatically, entirely invisible to the user.

I I1

I I2

N SON0 0
C I1 GND GND GND GND GND GND GND

W 126 0 0 0 0 0 0 0

N SON1 0
C I2 GND GND GND GND GND GND GND

W 126 0 0 0 0 0 0 0

N S1N0 192

C SONO SONI GND GND GND GND GND GND

W 63 63 0 0 0 0 0 0

N S2NO 64
C SONO SONI GND GND GND GND GND GND

W 63 63 -126 0 0 0 0 0

0 S2NO

Fig. 3. Example input file: a feed-forward network with four neurons.

The input file contains all parameters needed. For illustration, a simple input
file is shown in figure 3. It describes a small network with two inputs, two neurons
in the first, one neuron in the second and third layers and one output. At the
beginning of the file inputs are specified (denoted with I), assigning a name to
every input. Then, the neurons are described. The order of neurons in the file
is irrelevant. Every neuron is defined with four parameters. Firstly, a name is
assigned to every unit. Then, the bias value assigned to the unit is given: After
that, the connections are specified: for each of the eight neuron inputs, the name
of the input to the network or the name of the unit with which to connect is
given. If an input of the unit is unused, it is connected to GND. Finally, the
corresponding weights (signed integers) are given. At the end of the file, the list
of the outputs is defined, containing the names of the units whose output should
be used as outputs of the network.

After the network has been defined and trained, our tool set generates a
configuration net list for the FPGA board. The configuration bit-stream is used
to initialize the Xilinx FPGAs. Figure 4 shows the phase model for the design
of a neural net from training to hardware operation.

181

~ sim.ul~ h~rdwL,~

Fig. 4. Phase model of net development

6 C o n c l u s i o n

We propose a space-efficient, fast neural network design which can support any
network topology. Starting from an optimized, freely interconnectable neuron,
various neural network models can be implemented.

The simplicity of the proposed neuron design allows for the massive repli-
cation of neurons to build complex neural nets. FPGAs are used as hardware
platform, facilitating the implementat ion of arbi t rary network architectures and
the use of an off-chip training scheme.

Tools have been developed to completely au tomate the design flow from
the network architecture definition phase and training to the final hardware
implementation.

R e f e r e n c e s

[CB92] Charles E. Cox and W. Ekkehard Blanz. GANGLION - a fast field-
programmable gate array implementation of a connectionist classifier. IEEE
Journal of Solid-State Circuits, 27(3):288-299, March 1992.

[GSM94] Michael Gschwind, Valentina Salapura, and Oliver Maischberger. Space
efficient neural net implementation. In Proc. of the Second International
ACM/SIGDA Workshop on Field-Programmable Gate Arrays, Berkeley,
CA, February 1994. ACM.

[ttop82] John J. Hopfield. Neural networks and physical systems with emergent col-
lective computational abilities. In Proceedings of the Academy of Sciences
USA, volume 79, pages 2554-2558, April 1982.

[Kohg0] Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE,
78(9):1464-1480, September 1990.

[MOPU93] Michele Marchesi, Gianni Orlando, Francesco Piazza, and Aurelio Uncini.
Fast neural networks without multipliers. IEEE Transactions on Neural
Networks, 4(1):53-62, January 1993.

[MS88] Alan F. Murray and Anthony V. W. Smith. Asynchronous VLSI neural
networks using pulse-stream arithmetic. IEEE Journal of Solid-State Cir-
cuits, 23(3):688-697, March 1988.

182

[Sa194] Valentina Salapura. Neural networks using bit stream ~rithmetic: A space
efficient implementation. In Proceedings o] the IEEE International Sympo-
sium on Circuits and Systems, London, UK, June 1994.

[vDJST93] Max van Daalen, Peter Jeavons, and John Shawe-Taylor. A stochastic
neural architecture that exploits dynamically reconfigurable FPGAs. In
IEEE Workshop on FPGAs for Custom Computing Machines, Naps, CA,
April 1993. IEEE CS Press.

[Xil92] Xilinx.)(ACT Reference Guide. Xilinx, San Jose, CA, October 1992.
[Xil93] Xilinx. The Programmable Logic Data Book. Xilinx, San Jose, CA, 1993.

Data-procedural Languages
for FPL-based Machines

A. Ast, J. Becket, R.W. Hartenstein, R. Kress, H. Reinig, K. Schmidt

Fachbereich Informatik, Universitgt Kaiserslautem
Posffach 3049, D-67653 Kaiserslautern, Germany

fax: (+49 631) 205-2640, e-mail: abakus@informatik.uni-kl.de

ABSTRACT. This paper introduces a new high level programming language for
a novel class of computational devices namely data-procedural machines. These
machines are by up to several orders of magnitude more efficient than the yon
Neumann paradigm of computers and are as flexible and as universal as comput-
ers. Their efficiency and flexibility is achieved by using field-progranmaable
logic as the essential technology platform. The paper briefly summarizes and
illustrates the essential new features of this language by means of two example
programs.

1 Introduction

Usually procedural machines are based on the yon Neumann machine paradigm. (Data
flow machines are no procedural machines, since the execution order being determined
by an arbiter is indeterministic.) Both, yon Neumann machines, as well as yon Neu-
mann languages (Assembler, C, Pascal, etc.) are based on this paradigm. We call this a
control-procedural paradigm, since execution order is control-driven. Because in a
yon Neumann machine the instruction sequencer and the ALU are tightly coupled, it is
very difficult to implement a reconfigurable ALU supporting a substantial degree of
parallelism.
By turning the yon Neumann paradigm's causality chain upside down we obtain a data
sequencer instead of an instruction sequencer. We obtain a new machine paradigm
called a data-procedural machine paradigm. This new paradigm is the root of a new
class of procedural languages which we call data-procedural languages, since the exe-
cution order is deterministically data-driven. This new data-procedural paradigm [l],
[4], [5] strongly supports highly flexible FPL-based reconfigurable ALUs (rALUs)
permitting very high degrees of intra-rALU parallelism. That 's why this paradigm
opens up new dimensions of machine architecture, reconfigurability, and hardware
efficiency [4].
This paper introduces this new class of languages by using a data-procedural example
language. The language MoPL-3 used here is a C extension. Such data-procedural lan-
guages support the derivation of FPL-based data path resource configurations and data
sequencer code directly from data dependences. The usual detour from data depend-
ences via control flow to data manipulation, as practiced by yon Neumann program-

184

~d
'S:
d-
TI-
lic

b) to address
generator

~d
~s

a)

data memory

Fig. 1. Basic structures of Xputers and the MoM architecture: a) reconfigurable ALU
(rALU) of the MoM, b) basic structure of Xputers

ming, is almost completely avoided. The paper illustrates data-procedural language
usage and compilation techniques as well as their application to FPL-based hardware.

2 Summarizing the Xputer
For convenience of the reader this section summarizes the underlying machine para-
digm having been published elsewhere [1], [4], [5], [6], [9]. Main stream high level
control-procedural programming and compilation techniques are heavily influenced by
the underlying von Neumann machine paradigm. Most programmers with more or less
awareness need a von-Neumann-like abstract machine model as a guideline to derive
executable notations from algorithms, and to understand compilation issues. Also pro-
gramming and compilation techniques for Xputers need such an underlying model,
which, however, is a data-procedural machine paradigm, which we also call data
sequencing paradigm. This section summarizes and illustrates the basic machine prin-
ciples of the Xputer paradigm [9]. Later on simple algorithm examples will illustrate
MoPL-3, a data-procedural programming language.

2.1 Xputer Machine Principles
The main difference to von Neumann computers is, that _X.puters have a data counter
(as part of a data sequencer, see figure lb) instead of a program counter (part of an
instruction sequencer). Two more key differences are: a reconfigurable ALU called
rALU (instead of a hardwired ALU), and transport-triggered operator activation ([11],
instead of the usual control-flow-triggered activation). Operators are preselected by an
activate command from a residual control unit. Operator activation is transport-trig-
gered. Xputers are data-driven but unlike data flow machines, they operate determinis-
tically by data sequencing (no arbitration).
Scan Window. Due to their higher flexibility (in contrast to computers) Xputers may
have completely different processor-to-memory interfaces which efficiently support
the exploitation of parallelism within the rALU. Throughout this paper, however, we
use an Xputer architecture supported by smart register files, which provide a 2-dimen-
sional scan windows (e.g. figure 2b shows one of size 2-by-2). A scan window gives

185

-.•x Legend:
• starting

Y =ocation I ~ = " ~ final
"~" location

step vecto~r [1,1] - %
Scan Pal;1;~rn
scanxyz 3 steDs [1,1];

han
a) b)

Fig. 2.

Legend:
~ L ~ D initial location
~ N ~ ~3 final location
!

Simple scan pattern example: a) source text and illustration, b) scan pattern moves a
scan window by its handle

rALU access to a rectangular section of adjacent locations in data memory space. Its
size is adjustable at run time.
Scan Pattern. A scan window is placed at a particular point in data memory space
according to an address hold by a data counter (within a data sequencer). A data
sequencer generates sequences of such addresses, so that the scan window controlled
by it travels along a path which we call scan pattern. Figure 2a shows a scan pattern
example with four addresses, where figure 2b shows the first and fourth location of the
scan window. Figure 3 shows sequential scan pattern examples, and figure 9c a com-
pound (parallel) scan pattern example.
Data Sequencer. The hardwired data sequencer features a rich and flexible repertory
of scan patterns [4] for moving scan windows along scan paths within memory space.
Address sequences needed are generated by hardwired address generators having a
powerful repertory of generic address sequences [2], [13]. After having received a scan
pattern code a data sequencer runs in parallel to the rest of the hardware without steal-
ing memory cycles. This accelerates Xputer operation, since it avoids performance
degradation by addressing overhead.
Reconfigurable ALU. Xputers have a reconfigurable ALU (rALU), which usually
consists of global field-programmable interconnect (for reconfiguration), hardwired
logic (a repertory of arithmetic, relational operators), and field-programmable logic
(for additional problem-specific operators) [3]. Figure la shows an example: the rALU
of the MoM-3 Xputer architecture: 4 smart register files provide 4 scan windows. A
rALU has a hidden RAM (hidden inside the field-programmable integrated circuits
used) to store the configuration code.
rALU Configuration is no Microprogramming. Also microprogrammable von Neu-
mann processors have a kind of reconfigurable ALU which, however, is highly bus-
oriented. Buses are a major source of overhead [7], especially in microprogram execu-
tion, where buses reach extremely high switching rates at run time. The intension of
rALU use in Xputers, however, is to push overhead-driven switching activities away
from run time, over to loading time as much as possible, in order to save the much
more precious run time.

~ y x

186

PixMap[8, 1]

a) PixMap[8, 8]

~ ~ L o R z i g z ~

Fig. 3. JPEG Zig-Zag scan pattern for array PixMap [1:8,1:8], a) and its subpatterns: b)
upper left triangle UpLzigzagScan, d) lower right LoRzigzagScan, c) full SouthWest-
Scan

Compound Operators. An Xputer may execute expressions (which we call com-
pound operators) within a single machine step, whereas computers can execute only a
single operation at a time. The rALU may be configured in such a way, that one or
more sets of parallel data paths form powerful compound operators connected to one
or more scan windows (example in figure 7).
Execution triggering. A compound operator may be activated (sensitized) by setting a
flag bit (and passivated by resetting this flag bi0. Each operator currently being active
is automatically executed whenever the scan windows connected to it are moved to a
new location. E.g. during stepping through a scan pattern of length n this operator is
executed n times.
Summary of Xputer Principles. The fundamental operational principles of Xputers
are based on data auto sequencing mechanisms with only sparse control, so that Xput-
ers are deterministically data-driven (in contrast to data flow machines, which are
indeterministically data-driven by arbitration and thus are not debuggable). Xputer
hardware supports some fine granularity parallelism (below inslruction set level: at
data path or gate level) in such a way that internal communication mechanisms are
more simple than known from parallel computer systems (figure 9d and e, for more
details about Xputer see [4], [5]).

187

Source code example (see figure 5) Action described

single step scan pattern EastScan:
ScanPattern (See line (2))
EastScan is 1 step [i, O] ~ x step vector: [1,0]

Y~'

~ c a n P a t t e r n (seeline (3))
SouthScan is i step [0,11

S . z a n p a t t e r n (seeline (4))

SouthWestScan is 7 steps

[-i,i]

ScanPattern (seeline (5))

NorthEastScan is 7 s_teps_ [i,-11

single step scan pattern SouthScan:

- ~ x 1 ' step vector:
y r 1 ~ [0,1]

multiple step scan pattern:

y7 x /

step v e C ~ s t S c a n

like SouthWestScan (see above),

but reversed order sequence

Fig. 4. Scan patterns declared for the JPEG example (see also figure 5)

3 A P r o g r a m m i n g Language for Xputers

This section introduces the high level Xputer programming language MoPL-3 (Map-
oriented Programming Language) which is easy enough to learn, but which also is suf-
ficiently powerful to explicitly exploit the hardware resources offered by the Xputer.
For an earlier version of this language we have developed a compiler [16]. MoPL-3 is
a C extension, including primitives for data sequencing and hardware reconfiguration.

3.1 MoPL-3: A Data-procedural Programming Language
This section introduces the essential parts of the language MoPL-3 and illustrates its
semantics by means of two program text examples (see figure 5 and figure 8): the con-
stant geometry FFT algorithm, and the data sequencing part for the JPEG zig-zag scan
being part of a proposed picture data compression standard. MoPL-3 is an improved
version of MoPL-2 having been implemented at Kaiserslautern as a syntax-directed
editor [16].
From the von Neumann paradigm we are familiar with the concept of the control state
(current location of control), where control statements at source program level are

188

translated into program counter manipulations at hardware machine level. The main
extension issue in MoPL compared to other programming languages is the additional
concept of data location or data state in such a way, that we now have simultaneously
two different kinds of state sequences: a single sequential control state sequence and
one (or more concurrent) data state sequence(s). The control flow notation does not
model the underlying Xputer hardware very well, since it has been adopted from C to
give priority to acceptance by programmers. The purpose of this extension is the easy
programming of sequences of data addresses (scan patterns) to prepare code genera-
tion for the data sequencer. The familiar notation of these MoPL-3 constructs is easy to
learn by the programmer.

Function Name Corresponding Operation

rod
roll"
rotu
mirx
miry
reverse

turn left
turn right
turn 180 °
flip x
flip y
reversed order sequence

Table 1. Transformation functions for scan patterns

3.2 Declarations and Statements

The following Xputer-specific items have to be predeclared: scan windows (by win-
dow declarations), rALU configurations (by rALUsubnet declarations), and scan pat-
terns (by SeanPat tern declarations). Later a rALU subnet (a compound operator) or a
scan pattern may be called by their names having been assigned at declaration. Scan
windows may be referenced within a rALU subnet declaration.
Scan Window Declarations. They have the form: window <group_name> is
<window_specs>';'. Each window specification has the form: <window_name(s)>
<window_size> handle <point>. Figure 6 shows an example, where a 2-dimensional
window named 'SWI ' with a size of 2 by 2 64-bit-words, and two windows named
'SW2' and 'SW3' with the size of a single 64-bit-word each, are declared. The <point>
behind handle specifies the word location inside the window, which is referenced by
scan patterns. The order of windows within a group refers to physical window numbers
within the hardware platform. E.g. the above windows 'SWI ' through 'SW3' are
assigned to window numbers 1 through 3.
rALU Configuration, A compound operator is declared by a rALUsubnet declaration
of the following form: rALUsubnet <group_name> is <expression assignment(s)>,
where the compound operators are described by expressions. All operands referenced
must be words within one or more scan windows. Figure 7 illustrates an example of a
group 'FFF' which consists of two compound operators with destination window
'SW2', or 'SW3', respectively, and a common source window 'SWl ' .
Scan Pattern Declarations. Scan patterns may be declared hierarchically (nested scan
patterns), where a higher level scan pattern may call lower level scan patterns by their

189

names. Parallel scan patterns (compound scan patterns) may be declared, where sev-
eral scan patterns are to be executed synchronously in parallel. Scan pattern declara-
tions are relative to the current data state(s). A scan pattern declaration section has the
form ScanPat te rn <declaration_item(s)> '; '. We distinguish two types of declaration
items: simple scan pattern specifications <simple_spec> (linear scan patterns only:
examples in figure 4) and procedural scan pattern specifications <proc spec>. More
details will be given within the explanation of the following two algorithm examples.
Activations. Predeclared rALU subnets (compound operators) may be activated by
apply statements (example in line (44) of figure 10, where group 'FFF' is activated),
passivated by passivale statements, and removed by remove statements (to save pro-
grammable interconnect space within the rALU). Scan window group definitions can
be activated by adjust statements (example in line (43) of figure 10). Such adjustments
are effective until another adjust statement is encountered.
Parallel Scan Patterns. For parallel execution (compound) scan patterns are called by
a name list within a Darbeain block. See example in line (46) of figure 10, where the
scan patterns 'SPI ' , 'SP23' and 'SP23' are executed in parallel (which implies, that
three different data states are manipulated in parallel). Pattern 'SP23' is listed twice to
indicate, that two different scan windows are moved by scan patterns having the same
specification. The order of patterns within the parbegin list corresponds to the order of
windows within the adjustment currently effective (ThreeW, see line (43) in figure 10).
E.g. scan pattern 'SPI ' moves window no. 1, and 'SP2' moves windows no. 2 and 3.
Each scan pattern starts at current data state, evokes a sequence of data state transi-
tions. The data state after termination of a scan pattern remains unchanged, until it is
modified by a more l0 instruction or another scan pattern.
Nested Scan Patterns. Predeclared scan patterns may be called by their names. A scan
pattern may call another scan pattem. Such nested calls have the following form:
<pattern_name> '(' <pattern_definition>')' ' ; ' . An example is shown in line (46) of
figure 10, where scan pattern 'HLScan' calls the compound scan pattern definition
formed by the parbegin block explained above. The entire scan operation is described
as follows (for illustration see figure 9). Window group ThreeW is moved to starting
points [0,0], [2,0], and [2,8] within array CGFI~ by line (45) - see initial locations in
figure 9c. Then the (inner loop) compound scan pattern (parbegin group in line (46)) is
executed once. Then the (outer loop) scan pattern 'HLScan' executes a single step,
where its step vectors move the window group ThreeW to new starting points. Now
again the entire inner loop is executed. Finally the inner loop is executed from starting
points being identical to the end points of the outer loop scan pattern. After last execu-
tion of the inner loop the windows have arrived at final locations shown in figure 9c.

3.3 JPEG ZIG-ZAG SCAN EXAMPLE

The MoPL-3 program in figure 5 illustrates programming the JPEG Zig-Zag scan pat-
tern (named JPEGzigzagScan, see figure 3) being part of the JPEG data compression
algorithm [10], [12], [15]. The problem is to program a scan pattern for scanning 64
locations of the array PixMap declared in line (1) of figure 5 according to the sequence
shown in figure 3a. Note the performance benefit from generating the 64 addresses
needed by the hardwired address generator such, that no time consuming memory

190

/* assuming, that rALU configuration has been declared and set-up */

Array
ScanPattern

PixMap [1:8,1:8,15:0];
EastScan i__~s 1 ~ [i, 0],
SouthScan i_ss 1 ~ [0, i],
SouthWestScan i_ss 7 steps [-i, i],
NorthEastScan i_ss 7 steps [i,-i],

UpLzigzagScan i__ss
beqin

while (@[<8,])
beqin Eastscan;

SouthWestScan until @[~i,];
SouthScan;
NorthEastScan until @[,~i];

end
end UpLzigzagScan;

begin

end

JPEGzigzagScan i_ss
beqin

UpLzigzagScan;
SouthWestScan;
rotu (reverse(UpLzigzagScan));

end JPEGzigzagScan;
/* end of declaration part*/

/*smtementpart*/
moveto PixMap [i,i] ;
JPEGzigzagScan;

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(ii)
(12)
(13)
(14)
{15)
(16)
(17)
(IS)
(19)
(20)
(21)
(22)
(23)
(24)

(2 5)
(26)
(27)
(28)
(29)
(30)

Fig. 5. MoPL program of the JPEG scan pattern shown in figure 3

access cycles are needed for address computation. Figure 3 shows, that the JPEG scan
pattern may be partitioned into the three subsequences shown by figure 3b through d.
Lines (2) thru (5) in figure 5 declare four scan patterns used later to synthesize the scan
patterns shown in figure 3 and explained in figure 4. Scan pattern declaration state-
ments have the following form:
<name_of_scan_pattern> <maximum_length_of_loop> STEPs <step_vector>.

Scan Pattern Declaration. The step vec tor specifies the next data location relative to
the current data location (data state) before executing a step of the scan sequence. A
positive integer specifies the maximum length (maximum step count) of the scan pat-

191

Source code example: Size of the scan windows:

window ThreeW is

SWI [1:2,1:2,63:0]
handle [i,i],

SW2, SW3
[I:i,i:i,63:0]

handle [i,I];

handle [1,1] ~ ~ 2

name of window: SW1 ~ . ~]
word size [63:0] 2

names of windows: SW2, SW3
word size [63:0] 1 1

' ~ I F - ']

Fig. 6. Scan window declaration of the FFF example (see also figure 8)

tern. A scan pattern may be terminated earlier than predeclared when an escape clause
has become true (which will be explained later).
Calling Scan Patterns. Predeclared scan patterns may be called by statements. The 4
declared scan patterns (figure 4), which are needed for the JPEG zig-zag scan, are
called in the two while loops at lines (9) thru (14) and at lines (18) thru (23) in
figure 5, e.g. see line (10), where the scan pattern 'EastScan' is called (similar to a pro-
cedure call in C). By an escape a scan may also be terminated before
<maximum_length of_loop> is reached.
Escapes. In this case there will be an escape from the scan pattern, when the boundary
of the data map is reached or exceeded. E.g. see the until clause (escape clause) in line
(11) indicating an escape on having reached a leftmost word within the 'PixMap' array
(see figure 3: the first execution of 'SouthWestScan' at top left corner of the array
reaches only a loop length of 1). The condition @ [_<1 ,] says: escape if within current
a.tray a data location with an x subscript _<1 has been reached. The empty position
behind the comma says: ignore the y subscript.
Data State Initialization. Before the execution of the first scan pattern, you have to
specify the starting point in the data map. For this purpose we use another data state
manipulation statement, the moveto statement. With this statement (a data goto) you
are able to realize absolute jumps of the scan window inside the data nmp. E.g. see line
(28) in figure 5, where the scan window is moved to the upper left corner of the array
'PixMap', which is the starting point of scan pattern 'JPEGzigzagScan' call at line
(29).
Hardware-supported Escapes. To avoid overhead for efficiency the until clauses are
directly supported by the MoM hardware features of escape execution [4]. To support
the until @ clauses by off-limits escape the address generator provides for each dimen-
sion (x, y) two comparators, an upper limit register, and a lower limit register.
Structured Scan Pattern. The above MoPL-3 program (figure 5) covers the follow-
ing strategy. The first while loop at lines (9) thru (14) iterates the sequence of the 4
scan calls 'EastScan' thrn NorthEastScan for the upper left triangle of the JPEG scan,
from PixMap [1,1] to PixMap [8,1] (figure 3). The second while loop at lines (19) -
(23) covers the lower right triangle from PixMap [8,1] to PixMap [8,8]. The "South-

I m p l e m e n t i n g On Line A r i t h m e t i c on P A M

Marc Daumas 1, Jean-Michel Muller 1 and Jean Vuillemin 2

a Laboratoire de l'Informatique du Parall~lisme - CNRS
/~cole Normale Supdrieure de Lyon

Lyon, France 69364
Paris Research Laboratory - Digital Equipment Corporation

Rueil Malmaison, France 92563

Abs t rac t . On line arithmetic is a computation tool able to adapt to the
precision expected by the user. Developing a library of on line operators for
FPGAs will lead in a near future to the spread of brick-assembled application-
dedicated operators. In the implementation of the basic arithmetic operations
(addition, multiplication, division and square root), we have met some new
problems: our work has involved changes in the VLSI design methodology in
order to achieve some effective performances. We shall present the modified
on-line algorithms and their adaptation to the cell oriented FPGA archi-
tecture. The correct integration of some retiming barriers has proved to be
critical as far as speed is concerned.

Introduction

With the advances in programmable logic we observe a strong demand from the users
for a library that implements the arithmetic functions. The DEC PeRLe 1 board [3]
is the perfect platform for developing, testing and prototyping such a library. The
board is a configurable universal coprocessor built from 23 Xilinx XC 3090 chips
[11].

On line arithmetic [5] operates on numbers flowing serially one digit at a time
most significant digits first. Digit serial arithmetic is widely used in signal processing
where the communication links cannot handle the parallel transmission of the signal
and whenever hardware area is critical. Some recent work about on-line arithmetic
on FPGAs can be found in [8].

We have described and thoroughly tested a fully optimized working prototype for
the addition and multiplication. We have concluded the development of the division
and the square root operation. The block architecture of the FPGAs has affected
our design of an hardware efficient circuit; moreover, we have incorporated some
retiming barriers in the algorithm to hide the circuit commuting time.

In Section 1, we present a set of basic on line arithmetic operations and the PeRLe
board architecture with the example of an on line adder configuration. Section 2
describes the general architecture for the multiplication, the division and the square
root operator. The Section 3 is dedicated to the modified algorithms that incorporate
some of the needed retiming barriers.

197

1 E n v i r o n m e n t

1.1 On l ine O p e r a t i o n

The circuit uses a redundant number system such as Avizienis' signed digit systems
[1], which include the radix 2 Borrow Save representation (BS) [4]. Any real number
X can be written as follows with the BS notation. We define the value X{ from one
decomposition of X truncated after the ith most significant digits.

X = ~ xk2 -k with xk E {--1, 0,1}

i
Xi --= ~ xk2 -k

k=-oo

Each on line operator S = X @ Y is characterized by its delay ~: the digit si of
the result is computed just from the value of Xi+~ and Yi+~. Since one new digit of
the operands is available at each clock cycle, a new digit of the result is produced
each cycle after 6 initialization cycles (see Fig 1).

,<= D e l a y ~ '1

i i
i

R e s u l t . .] s o . . S l . s .2 . . s . 3 . s. 4. . .ss. . .s .~ . s .7 . . s . 8 . . s . 9

digits i
i

O p e r a n d . , . . a . o . a . l aft . a 3 .a4. a 5 . a § . . a 7 . a8_ a9. .a .19 .

 igit,) ?)) ? i ?)) ?))) ?)

Time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1S (C l o c k C y c l e)

Fig. 1. Delay of an Operator

Used in an adapted environment, a group of on line operators induces some
parallelism by the pipeline at the digit level as presented Figure 2: an operation is
initiated before all the digits of its operands are available.

The on line basic operations have been defined in many references, including
[2, 5, 7, 10]. We use the following sign function S(W) adapted from [5].

l i f W ~ l / 2
s(W)= 0i f - 1 / 2 < W < 1 / 2

-1 if W < 1/2

198

_ _ _ f ~ I t " I

-->1 log ~-~ ~ ~ ~J Dolay 2 I~olay 4

I - 1 U L J L J
~,xay 4 Registres

C s i n 2 a + log b
Q10bal Dolay 13

Fig. 2. Sequence of On Line Calculations

A d d i t i o n The actual circuit is deduced from the carry free parallel BS adder. The
addition has also been defined from the recurrence below: The size of W(J) is
bounded and does not depend on the length of X and Y.

w u) = 2 (w u - 1) _ s j_ l) + ¼(~j + y~)
s t = s (w u))

M u l t i p l i c a t i o n To compute the product of two numbers on-line, we have to store
both numbers Xj and Yj as their digits flow in. The multiplication algorithm is
based on the shifting accumulator W.

W(J) = 2(W0-1) - p~_~) + y~X~ + z~Yj'-i

v~ = s (w 2 ~)

Div i s ion The natural division algorithm is W(J) = 2 W (/ - 0 - qj- lD. The on line
algorithm compensates for the incoming digits zj+3 and dj+3. Since the delay
is 3, the difference between the on line algorithm and a natural division is small
enough, the redundancy of the number representation allows some temporary

1 3 errors. The divisor is presealed D E [, ~[.

_ 1 1 W(J) - 2W(j-~) qj-lDj+2 - ~dj+3Qj + ~zj+~

S q u a r e R o o t This operation is very close to the division process. A second full
length adder is needed to accumulate q] at the correct position into the accu-
mulator.

• 1 W (j) : 2W (1-1) - 2qj-lQj-1 + q~2 -~ + ~xj+2

qj = s(w~o j~)

1.2 B o a r d A r c h i t e c t u r e

The Xilinx XC 3090 chip [11] is composed of a core of 20 x 16 logic cells with some
capabilities for signal routing and a ring of 72 input-output buffers (see Fig 3). The
signals are conveyed to the logic cells through the communication touters and the
programmable wire connections. Although the commuting time of a router is very

199

small, a circuit involving neazest neighbor communication wi l | mostly use the wi~e
connections which are much taster. Whenever we had to broadcast an information.
to a row or a column of cells, we have used a vertical or horizontal long lines.

[]

[]
[]
[]

[]
[]
[]
[]
[]
[]
[]
[]

[]
[]
[]
[]

mwmwNwwwm

F-I~NN@)

~ F-I B [ZgJN!
S@DDN
5DF-ID~

NC

~ ' I N) :) : []': '-:'."

N~

I:

I~MWWmW

: . : i[]
[])-:.: [])-:.: []i::-iN

• i []

. _l N
D D ~ D S D D D D D
D D ~ D S ~ N D N @ ~
D [2 G @ ~ N N S ~ N [3

~ D N @

[]
DU][3D

$

[]
[]
[]
[]
[]

-p
@t

I

[]

°.::.:

Lon gline (Broadcas t ing)

C o m m u n i c a t i o n R o u t e r

Inpu t O u t p u t Block (lOB)

Control Logic Block (CLB)

Wire Connect ions

Fig. 3. Chip Internal Architecture (Logic Cell & IO Buffer)

A logic cell (CLB) implements two functions of its inputs from a t ruth table
and contains two registers to store any binary result (see Fig 4). There are some
restrictions configuring an FPGA compared to building a VLSI: a cell has only
two outputs , whereas both the registers and the logic unit may produce two useful
results; it is not possible to load both register with two different values and leave
the two logical units for some other functions; the long lines are assigned a l imited
number of input and output of each logic cell reducing the possibilities for routing
and placement.

The DEC PeRLe 1 bourd gathers 23 Xilinx XC 3090 chips. In this work, we will
focus on the 4 x 4 2D computat ion matr ix (see Fig 5). Seven more p rogrammable
chips are involved in the data path for the user control and the communicat ions with
the host.

Direct Input

Input A

I n p u t B

Input C

Input D

Input E

C l o c k

Reset

200

F : - "1

O u t p u t X

O u t p u t Y

I - . J

Fig. 4. Logic Cell Functionalities

1.3 A d d i t i o n

We have deduced the on line adder presented Figure 9 from the parallel adder
described in [1] (see Fig 8). This architecture uses two rows of Plus Plus Minus cells
(see Fig 6 and 7). In order to implement the on-line adder on the PAM we have used
only 2 CLBs (see Fig 10). Four registers are available in the two CLBs of the adder,
only three of them are used.

2 G e n e r a l A r c h i t e c t u r e

2.1 Basic Or ga n i za t i on

The multiplication, the division and the square root operator share the same general
organization: the intermediate result is accumulated and shifted with two other terms
obtained from the product of a number by a digit (see Fig 11). The circuit computes
the sum of the three operands, and possibly some local transformation / on W o).

= 2 / (w (J)) + × + b} ×

We have implemented two of the adders presented Figure 8 and the operators for
the digit products a~ x AU) and b~ x BU). The function / only involves a few of
the most significant digits and is obtained by adding some logic to the data path for

Fifo

201

Controller Switch

Matrix

Sw:E ~h Switch

Switch Cont

E
:oiler

Fig. 5. Computation Matrix and Surrounding Logic

a b c

I I
r 8

FA Cell

r a ~ ~ iT7

[

- - 1 I
L_ 7"4" ST

PPM Cell

Fig. 6. Addition Cell

202

+ + - I +
-4- - [- +

I ? I ?

Fig. 7. Representing the PPM Cell

s 5 s~ ~4 ~4

b:b+~:o+, b;b+~o;o~

~ 2~ ~~.; Z ~ I I
b - b + a - a + 1 1 1 1

c+ o

Fig. 8. Borrow Save Adder

these specific digits. The words A(j) and B (j) are constructed as follows for most of
the operat ions: the circuit places the value of aJ at the posi t ion j + d in A(J).

a(j+l)= (aj if k = j + d

a~ j) otherwise

The circuit counts the i te ra t ion number j with a cursor: each segment k of the
mul t ip l ier stores one bi t Stk. At i terat ion j , if Stk is set, i t means tha t k = j ,

÷ i:¸1+ s,+_~

Fig . 9. On Line Adder

203

a,+_
aT--
b,+-

57

I

I

8i--2

- - 8+_2

Fig. 10. FPGA On Line Adder

hence a (j+l) is set to the value of aj. The cursor controls the behavior of the cell j+d
(j+l) regarding aj. For the square root operation, the algorithm only stores one aj+d

operand. The other term is used to accumulate the value qj2 j . The definition of B (j)
is presented below, no register is needed.

B(J) = qj 2 j

ai

/
Fig. 11. General Architecture of the Implemented On-fine Operators

2.2 I m p l e m e n t a t i o n Details

We consider one segment of the operator: it works on one digit taking care of the
incoming carry signals and propagating the outgoing carries. The length l of the

1

registers needed is fixed by the length n -- 2 x I of the inputs as detailed in [7]. The
final circuit is obtained by repeating I times the segment. Using as much as possible
the functionalities of each logic cell, we have optimized the segment down to 8 cells.

, a(kJ) , b~J) The partial products aj × and bj × can be computed on one cell each;
one BS adder uses 2 PPMs, the two adders are implemented with a total of 4 cells.
This leads to the scheme proposed Fig 12.

bj B (D , >> k

204

i k - l '

Fig. 12. Low Level Map of a Segment

All the segments of one chip are aligned on two columns to share the same signals
on the vertical long lines. The cells of the first line of the chip generates the signals
to be broadcasted as presented Figure 13.

To incorporate the state counter in the segment, we have grouped the digit
multiplication of a~ x a (j) and the first PPM cell (see the dotted box in Fig 12).
The two output functions of the grouped cell have exactly 5 inputs: each one can
be implemented with one logic cell generating only one output signal. The first of
the two cells obtained stores and propagates the state counter. The reset signal is
used by many cells across the chip and is not assigned any vertical long line. To
broadcasts the reset signal to all the circuit, we have used the second cell obtained
to feed one of the horizontal long line on each segment. The reset signal is sent on
the second vertical long line of this cell and repeated on one of the horizontal long
lines of the segment. The arithmetic function of the second cell uses only the sign
of a~: the signal sent on the first long line of the cell is the sign of a~ in the Signed
Digit representation d = (-1) s × m, the second long line is available for the fast
transmission of the pre-reset signal to all the segments.

205

[Left Control [Right Control [

[Segment 35 [Function]
LSD A

Segment 0 I I

' A MSD
l

Segments 18-34 Segmehts 1-15

I Segment 17 _] [Segment 16]

Fig. 13. Segments Organization in a Chip

b t. a j
3

R e s e t
a ~) x a(3

P P M 1

Fig. 14. Longlines usage of one Segment

3 E n h a n c e m e n t s

3.1 M u l t i p l i c a t i o n

P i p e l i n i n g - - The information in the multiplier moves from the left side to the right
side of a segment (see Fig 12) and from the LSD segment to the MSD segment (see
Fig 13). No information is sent in the opposite direction. Introducing a retiming
barrier of latches between two parts of the circuit only involves a time change of
one cycles between two areas. It is possible to introduce two retiming barriers in the
segments and one just before the evaluation of pj.

S c a l i n g - - A chip totally occupied by the multiplier produces 74 digits. A multiplier
extended to the other chips of the board is able to generate a very large product.
Going from one chip to another in the circuit adds two retiming barriers; this is
possible because the information flows from the least significant digit segment to the
most significant digit segment. The state signal propagates from the MSD segment
to the LSD segment: the predicted signal is sent 4 cycles in advance from one chip

206

to the next one to cross the retiming barrier. To use a linear interconnection in the
PeRLe board mesh architecture, we have routed the signals from the rightmost chip
of each row to the leftmost chip of the row and then to the chips of the lower row
(see Fig 15).

LSD DEC PeRLe1 Matrix

Segments 454-605

~V r-q

Segments 302-453

Segments 150-301

Segs. >> Segs. --> Segs. ~:~ Segs ~ MSD
> 5- %

112-149 74-111 36-73 0-35

Fig. 15. Data Circulation on the PeRLe 1 Board

3.2 Divis ion and Squa re R o o t

In the division and the square root operation, the digit qj is produced by the head
of the operator and used by the partial product qj x Di+2. It is not possible to
incorporate a retiming barrier due to the communications between the different
parts of the circuit. The circuit predicts a digit of the quotient one cycle ahead with
the following recurrence, adding one unity to the delay. The predicted digit of the
quotient is send backward through the time barrier.

W (j) : 2W (j-l) - q j - l D j + 3 - l d j + 4 Q j + ~xj+41
v + l = s (w ~ i) - q~D~)

Conc lus ion

The scheme used for our implementation of the BS on-line basic operators has been
studied thoroughly. This work has lead us to a fast space-optimized scalable device.

207

The cell oriented architecture of the Xilinx XC 3090 chips has forced us to adop t
some strategies in the design of the circuit.

The basic operat ions, with no pipeline, run with a slow clock (50 ns); the longest
signal typical ly involves 10 cells. The circuit obta ined for the mul t ip l ica t ion with the
3 barr iers has a correct behavior with a clock cycle of 33 ns (30 MHz). Two more
re t iming barriers could have been included in the mul t ip l ier with no change in the
size of the segment. W i t h a clock cycle smaller than 33 ns, the placement and the
rout ing are so crit ical tha t most of it must be exact ly specified by the user. Yet
the tools available from Xilinx on the XC 3090 chips do not present ~ user interface
comparable to the P e R L e l D C library.

The opera tor for the mul t ip l icat ion computes the result up to 1210 correct digits.
The reasonnable implementa t ion of the division and the square root produce results
up to 72 digits.

R e f e r e n c e s

1. A. Avizienis, "Signed digit number representation for fast parallel arithmetic," IRE
Transaction on Electronic Computers, Volume EC-10, 1961.

2. J.C. Bajard, J. Duprat, S. Kla & J.M. Muller, "Some operators for on-line radix 2 com-
putation," to appear in Journal o] Parallel and Distributed Computing, also avMlable
from Laboratoire de l'Informatique du Paralldlisme RR 92-42, October 1992.

3. P. Bertin, D. Roncin & J. Vuillemin, "Introduction to programmable active memories,"
Systolic Array Processors, Prentice Hall, also available from Paris Research Laboratory,
PRL-RR 24, March 1993.

4. C.Y. Chow & J.E. Robertson, "Logical design of a redundant binary adder," 4th IEEE
Symposium on Computer Arithmetic, October 1978.

5. M.D. Ercegovac, "On line arithmetic: an overview," Real Time Signal Processing VII,
SPIE, Volume 495.

6. - - , "A general hardware oriented method for evaluation of functions and computations
in a digital computer," 1EEE Transactions on Computers, Volume C-26, N. 7, July
1977.

7. S. Kla Koud, "Calcul parall~le et en ligne des fonctions arithmdtiques," Laboratoire de
l'Informatiquc du Parallglisme, PhD Dissertation 31-93, February 1993.

8. M.E. Louie & M.D. Ercegovac, "On digit recurrence division implementations for field
programmable gate arrays," 11th IEEE Symposium on Computer Arithmetic, June
1993.

9. J.M. Muller, "Some characterization of functions computable in on-fine arithmetic,"
to appear in IEEE Transactions on Computers, also available from Laboratoire de
l'Informatique du Paralldlisme RR 91-15, 1991.

10. K.S. Trivedi & M.D. Ercegovac, "On llne algorithm for division and multiplication,"
IEEE Transactions on Computers, Volume C-26 (7), July 1977.

11. Xilinx Inc., "The programmable gate array data book," Product Brie]s, Xilinx, 1987.

S o f t w a r e E n v i r o n m e n t for W A S M I I :
a D a t a D r i v e n M a c h i n e w i t h a V i r t u a l

H a r d w a r e

Xiao-yu Chen 1 Xiao-ping Ling 2 Hidcharu Amano 1

1 Department of Computer Science, KEIO University~ Japan.
2 Department of Computer Science and Engineering,

Kazlagawa Institute of Technology~ Japan.
{chen,ling;hunga} (@aa.cs.keio.ac.jp

Abs t rac t . A data driven computer WASMII which exploits dynami-
cally reconfigurable FPGAs based on a virtual haxdwaxe has been devel-
oped. This paper presents a software system which automatically gen-
erates a configuration data fbr FPGAs used in the WASMII. In this
system~ an application program is edited as a dataflow graph with a
user interface~ and divided into a set of subgraphs each of them is corre-
sponding to the configuration data of an FPGA chip. These subgraphs
axe translated into program modules described in a hardware description
language called the SFL. From the SFL programs, a logic synthesis tool
PARTHENON generates a net-list of logic circuits for the subgraphs.
Finally~ the net-list is translated again for the Xilinx's CAD system:
and the configuration data is generated. Here, the ordinary differential
equation solver is presented as an example, a~ld the number of gates is
evaluated.

1 Introduction

Tcchnologics around the FPGA (Field Pro.qrammablc Gate Array) have bccn
rapidly established in these sevcrM years. Now: the FPGA which works at
250MHz (togglc frequency) including more than I0000 gatcs is available, and
a small scale microprocessor cart bc implemented on one FPGA chip.

Reconflgurablc FPGAs represented with Xilinx's XC3000/4000 family[I] have
been giving a largc impact to computer architectures because of their flexibil-
ity. In these FPGAs, logic circuits arc configured according to the configuration
inibrmation stored in the configuration RAM inside the chip. By inserting thc
configuration data again, the logic circuits call bc easily changed.

With the bcst use of its flexibility, there arc many researches on "flexible
computer architectures"[2][3][4]. However, since it takes a long time (ttSCCS or
msccs) to change the hardware function on an FPGA for inserting the configura-
tion data, application is limited. In order to cope with this problem, an extended
FPGA chip was proposcd[5][6]. As shown in Figure 1, scvcral SRAM sets cach of
which is corresponding to the configuration RAM for an FPGA chip arc added
inside the chip. They arc switched by a multiplexor for changing the connection
bctwccn the SRAM and the logic circuits.

209

Using this structure, multiple functions can be realized in a single FPGA
chip, and changed quickly. This method is called a Multifunction Programmable
Logic Device(MPLD). The configuration da ta in a SRAM set is called a config-
uration information page. Such a system can bc extensively used in the arca of
image/signal processing, robot control; neural network simulation, CAD engines,
and other applications which require hardware engines.

Thc MPLD, however, has two major problems. First, if required configuration
data is larger than that of the configuration RAMs on the MPLD, the problem
cannot be solved. This is similar to a computer without a secondary memory.

Next, the s tate of a sequentiM logic circuit realized on an F P G A is disap-
peared when a configuration RAM is replaced. I t means tha t da ta in registers
on an FPGA is also disappeared. As a result, it is diificult to control the t ime
when a configuration RAM can be replaced.

To cope with the former problem, techniques of virtual memory are applied.
A backup RAM unit is at tached outside the MPLD, and the configuration data
can be carried into the unused configuration page inside the chip.

For the lat ter problem, a data driven control mechanism is introduced into
the MPLD. Each configuration RAM is replaced when all tokens are flushed out
of the circuit.

The chip structure with the data driven control and the virtual hardware
mechanism is called the Single-chip WASMII. A parallel system using the single-
chip WASMII chips is called thc Multi-chip WASM[~7][8].

In this systmm an application program is edited as a dataflow graph with a
user interface: and divided into a set of subgraphes each of them is corresponding
to the configuration data of an FPGA chip. Then: these subgraphs must be
translated into a configuration data for an FPGA chip.

In this paper~ a software system for generating a configuration da ta is de-
scribed. First, th(, WASMII syst('m is intr()(luced in the Section 2. The divided
subgraphs are translated into program modules described by a hardware de-
scription language called the SFL. From the SFL programs~ a logic synthesis
tool PARTHENON g e n e r a t e s a net-list of logic: circuits for the snbgraphs. In the
Section 3, design alld imph'mentat ion of these translators are described. Finally:
the number of gates which arc generated from an example application with the
system is evaluated.

2 W A S M I I

2.1 T h e v i r t u a l h a r d w a r e

First, the internal configuration information pages (RAMs)of the MPLD are
connected with the offehip backup RAM through a bus. When an internal page
is not used (not connected with dements of the FPGA), a new confgurat ion
intbrmation can be carried from tim backup RAM. By replacing and preloading
the configuration data fi'om the backup RAM, a large scale hardware can be
realized with a single FPGA chip.

210

~ . , . , i , u Q . i J . , ~ l o i , l , l m ° o l l . , o , ° , , , ° ° u o o ° ° ° o ° ° w o o . m . , ° ° , , a a ° ~ o , o . ° ~ , , , ° , , l l . , .

.

/ i
Configuration /..~ / . / .

MPLD
%ln l i , , o . oao ,ooao= lo~ , l l , om ,~ . , o . i o l , , . , , , o i . I ,H ,=~ ,o . , . uo .= . , , , . . , o , o . . ~

Fig. 1, The concept of MPLD.

We call this mechanism the virtual hardware, and use the terms according to
thc tcrminology in thc virtual memory. An internal configuration data RAM is
just callcd an intcrnal page, and thc behavior of loading configuration informa-
tion from the backup RAM to thc internal pages is called the preloadin 9. When
a pagc is conncctcd to elcmcnts in thc FPGA and forms thc rcal circuit, the
pagc is callcd activated page.

2.2 Introducing data driven m e c h a n i s m

The next problem of the MPLD is tha t it is difficult to managc this mechanism
bccausc all s tates of sequential logic circuits realized on an FPGA arc disap-
pcarcd when a page is replaced. In order to solve this problcm~ a data driven
control mechanism is introduced tbr the actiw~tion and prcloading of the page
in the vir tual hardware[7].

Thc targct application is represented with a data-flow graph consisting of
nodes which can bc any function like an addcr, multiplier: comparator: or more
complex functions. Although the node has a registcr ibr storing thc data dur-
ing its computat ion; it must not storc any information after its computat ion.
Each nodc starts its computat ion when tokens arrive at all input. Tha t is; this
mcchanism is a purc data-flow machine.

In ordcr to rcalize the data-flow mechanism with the virtual hardware, the
input tokcn rcgistcr with firing mechanism and token router are introduced as
shown in Figure 2.

- The foken-rout, eris a packet switching system ibr transferring tokcns bctwccn
pagcs. I t rcccivcs tokens from the activated page and sends them to thc

211

input token registers. A high speed multistage packet switching network[?]
is utilized.

- lnput-token-regi.~ters store tokens outside pages. A set of registers is required
to every page of the WASMII chip.

Outside the WASMII chip, a scheduler, which is the only intelligent par t of
the system, is prepared. A small microprocessor system is used, and it will be
connected with a host workstation. It carries configuration da ta from the backup
RAM to internal pages inside the chip according to thc order decided by a static
scheduling algorithm described later.

t'|, / Router ~ I I , IIl r'

rip oat~

laeg'steL~ .. U WASM' I

.......................... [I
Fig. 2. A sing;le-chip WASMII.

We. call this chip architecture a single chip WASMII. A target dataflow graph
is divided into subgraphs, each of which is mapped to a page of the virtual hard-
ware. Using the current state of technology, only one or two floating calculation
units can be implemented in an FPGA chip. However. several units will be im-
plemented in the near futurc. Here. we assume that several nodes of a dataflow
graph can be executed with an FPGA chip.

When all required input-tokens arrive at the input-token-registers, the cor-
responding page is ready to be activated. After all tokens are flushed out of the
current activated page: one of ready pages is activated by the order assigned
in advance. In an activated page~ all nodes and wires are i'calized with a real
hardware on the FPGA. Each nod~: starts its computat ion completely in the
da ta driven manner. Tokens transfl-rred out of the ~etivated page arc sent to the

212

input registers through the token-router, and they enable the other pages to be
ready.

2 .3 M u l t i - c h i p W A S M I I

WASMII chips can bc easily connected together to form a highly parallel system.
The token-router is extended so as to transfe.r tokens between pages in different
WASMII chips.

Each WASMII chip has its own backup RAM; and subgraphs arc statically
allocated to each chip. Here: we adopt a simple nearest neighbor mesh connec-
tion topology. In the multi-chip WASMI[, relatively large latency for the token
routing in the mesh structure can be hidden by the data driven operation. In
ordcr to avoid causing a bottleneck: schedulers must be distributed. Since the
scheduling is fixed when the dataflow graph is generated~ each scheduler can
execute its job independently.

2 . 4 T h e W A S M I I e m u l a t o r

In order to demonstratc the efficiency of the WASMII system, WASMII emulator
is under-developing. 4 × 4 array of WASMII chip emulators are connected as a
mesh structurc. Unfortunately, there is no FPGA chip with the virtual hardware
mechanism. Therefore: all pages which are not activated arc stored in the backup
RAMs, and transferred to FPGA chips when the page is activated.

Each WASMII chip emulator consists of a main FPGA chip (XC3090), backup
RAM, an input-token-registers and a token-router chip. Input-token-registers arc
realized with a small scale FPGA chip(XC3042). A rm~tcr chip is a banyan type
switch which works at 50MHz. Each clfip has 16 input /ou tput lines. A single
microprocessor board (the main CPU is 68040) connected with workstations via
Ethcrnct works as a scheduler.

3 The software sys tem for WASMII

3.1 O v e r v i e w o f t h e s o f t w a r e s y s t e m

WASMII is expected to bc utilized as a special purpose engine for signal/linage
processing, image recognition, voice recognition: LS[CAD, robot control; and
other application fields. In these systems; a loaded program is repeatedly (or
continuously) executed many times, and the time /'or preproccssing is not an
important problem. Now, three applications (ordinary differential equation solver
(ODESSA), production system MANJI[9] and neural network simulator NEURO
generate a datafiow graph for the WASMII system.

Figure 3 shows an overview of the software system. The configuration data
for each page is generated as tbllows:

- The target dataflow graph is divided into subgraphs corresponding to a page.
The cyclic structures which may cause the deadlock are also eliminated. This
procedure is called the graph decomposition.

213

Application programs

!
I I

/ "°u'=

/

PARTHENON ~ Xilinx automatic I
logic synthesis tool I Ice. placement/routing I

Fig. 3. Software system of the WASMII.

- The execution priority of decomposed subgraphs is calculated as well ms
the execution order of nodes ill a sttbgraph. This procedure is called the
s c h e d u l i n g .

- Program text for each page written in a hardware description language SFL is
generated atttomatically with the translator. The SFL node l ibrary consisting
of various types of nodes are used for the generation.

- The net-list of gates corresponding to each page is obtained by the logic
synthesis tool PARTHENON, and then it is translated into the Xilinx~s net-
list format for generating configuration data.

3.2 G r a p h d e c o m p o s i t i o n a n d s c h e d u l i n g

From tile name of the node ill the dataflow graph, the number of gates required
for the node is obtained with checking the SFL node library. The graph is divided
into subgraphs so that the total number of gates which required for the node are
smaller than that of the target FPGA (xca090).

Next, the execution priority of decomposed snbgraphs is calculated as well as
the execution order of nodes in a subgraph. Although the execution of WASMII
is basically done in the data driven manner, the following two operations are
managed according to the. order or priority assigned in advance:

- P r c l o a d i n g : A page must be loaded from the backup RAM according to the
order decided in advanco.

214

- Page activation: A page must be selected when there arc multiple pages
whose input tokens are ready. This selection is done by the priority assigned
in advance.

In the preproccssing stage, decomposed subgraphs are anMyzcd: and the
activity priority and prcloaxling order arc decided. A simple level scheduling
algorithm called LS/M[10] is utilized for the ordering.

3.3 Trans la to r and node l ibrary

SFL and P A R T H E N O N SFL/PARTHENON is used for hardware descrip-
tion and logic synthesis of the target subgraph. PARTHENON is a VLSI design
system developed by NTT[ll]; which consisting of the logic simulator SEC-
ONDS, logic synthesis tool SFLEXP.. and optimizer OPTMAP. The SFL(Structurcd
Function description Language) is a front-end hardware description language for
PARTHENON. Although it is similar to the VHDL in a part~ the pipeline oper-
ation is easy to bc described in the SFL. SFL/PARTHENON is widely used in
Japanese universities and industries for education and fabrication of VLSI chips.

In the WASMII software system, the data driven operation in the node library
is described with the best use of pipeline description of the SFL.

3.4 Genera t ing SFL descr ipt ion

The structure of the translator is shown as Figure 4.
Here, as an example; solving Van Der PoFs equation (a non-liner system

simulation) is introduced. The equation is represented with a connection graph
like an old analog computer ms shown in Figure 5. "int"; "add"; "mid": "inv";
':con" arc integrator, adder; multiplier, sign reverse function, and constant value
generator respectively. This connection graph can bc almost directly used as a
dataflow graph for the WASMII software system. By using the front end system
called ODESSA[10] 3, the graph is edited. After the graph decomposition, the
dataflow graph shown in Figure 6 is generated. Here, this graph is divided into
two subgraphs (responding to pagc_nol and page_am2 shown in Figure 7); and
cyclic paths which may cause the deadlock arc eliminated in each page.

From the subgraph "pagc_nol": the ibllowing SFL descriptions arc automat-
ically generated by the translator:

~i ''/plasma/wasmii/library/mul.sfl''
~i 'C/plasma/wasmii/library/add.sfl''

module page_no1 {
submod_type mul {

input input1<17>; input input2<17>;
output output1<17>; instrin mul_instrin; }

a ODESSA was developed ~r a ffontend system ~r a multiprocessore~d (S M) 2.

library : ~/
215

subrlow
graph

Trans--~ator • •

I Subflow graph
"*- informalion check

Librar] include

Define a main module
and sub modules

1
Defiw~e stage_task a .d
control terminals

1
Check ieJput.tokens
and start the tasks

Calculate and ~'et up
the control flag

Fig. 4. Structllre of the Translator

submod_type add {
input input2<17>; input input2<17>;
output outputl<17>; instrin add_instrin; }

Like the VHDL and other hardware description languages; hierarchical de-
scription is allowed in the SFL. The translator searches the SFL node library
with the l mde name of the subgraph. Here; module "add" and '~mul" correspond-
ing to the 16bit adder and multiplier are included. I n p u t / o u t p u t interface is only
described in this part.

Them the following s tatements are generated for each node:

stage_name add_nol_stage { task
stage_name mul_no2_stage { task

add_nol_task() ; }
mul_no2_task() ; }

In the SFL: tasks performed in the pipelined manner are defined with "task"
s ta tcmcnt in the pipeline stage named by '~stag.alamc" s tatements . Here: each
nodc in the subgraph is generated in their own stages.

In WASMII, each node is activated when tokens arrive at all input of the
node. The arrivM of tokens are noticed with activation of tile inside control

216

~.-~ ,

Y1 = Y 2

~'2 = E (1-Y1 ') Ye-Y1

Fig. 5. Connection Graph of Van Der Pol's Eqtlation.

Fig. 6. Dataflow Graph of Vail Der Pol's Equation.

217

~._.az_~a imge_na~Lk~u~4

puge._no2

lUgm ~ _ pull page no2_oulpul2

l u | 5

/
page_nol

paee_~l ~eap~1

Fig. 7. Graph Decomposition for Pages

terminals defined with "instrsclf" statements (add_nol_flag and muhno2_flag).

instrself add_not_flag ; instrself mul_no2_flag ;

any { (inv no2_flag)~(con_no1_flag):
generate add not_stage.add_not_task(); }

any { (add nol flag)a(con_no2_flag):
generate mul_no2 stage.mul_no2_task(); }

Using the statement "any", each task starts its computation when the fol-
lowing conditions arc satisfied. Ill this case, the task starts when both flags arc
scL that is; tokens arrive.

Each node receives tokens from both inputs, and starts its computation. After
computation; it set appropriate flag for activation of the successor nodes. Thus:
each node consists of two states as follows:

s t age add n o l _ s t a g e {
s ta te_name s t a t e 1 ; s tate_name s t a t e 2 ;
f i r s t _ s t a t e s t a t e 1 ; s t a t e s t a t e 1 par {

a d d _ n o l . a d d _ i n s t r i n (inv_no2_tmp,con_nol_ tmp) ;
go to s t a t e 2 ; }

s t a t e s t a t e 2 par {
add_no l_ tmp=add_no l . add_ ins t r i n (i n v _ n o 2 t m p , c o n _ n o l _ t m p) . o u t p u t l ;
a d d _ n o l _ f l a g () ;
finish ; } }

stage mul_no2_stage {
state_name statel ; state_name state2 ;

218

first_state statel ; state statel par {
mul_no2.mul_instrin (add_nol_tmp,con_no2_tmp);
goto state2 ; }

state state2 par {
mul_no2_tmp=mul_no2.mul_instrin (add_nol_tmp,con_no2_tmp).outputl;
page_nol_outputl--mul_no2_tmp;
mul_no2_flag();
finish ; } }

In "statc 1", a node receives data from two inputs, and in "state 2": computa-
tion is performed by calling the library modules. Then. flags arc set (addJml_flag0,
mul_no2_flag()) tbr the successor nodes: and the task is finished.

4 E v a l u a t i o n resul ts

Here, the number of gates generated from the WASMII software system are
evaluatcd. Tablc 1 shows thc gcncration results of solving the Van Dcr Pol's
equation shown in Figure 5.

Table 1. The required ha.rdware for Van Der PoFs equation.

Type Number of Gates Number of CLBs

add
mul
int
inv
c o n

..... page-no1

849
2005
849

1

4

149
272
149
0
0

700 4860
page-no2 4553 724

total circuit
for VanDerPol 9413 1429

In this example, 17 bits (16 bits f , r data and 1 bit for sign) fixed point number
is utilized. While thc simple look ahead adder "acid" requires a small numbcr
of gate, thc array-typc high spced multiplier '~mul" rcquircs a lot of gates. In
this examplc; a quick multiplicr is required to avoid thc bcing bottlcncck of thc
systcm. Thc intcgrator is complex node including multiply and add. Howcvcr,
sincc thc multiplicand is just a fixed number (dt), the requircd gates arc the samc
as that of thc addcr. Only a few gatcs arc rcquircd for thc sign rcvcrse function
(inv) and constant gcncrator (con). Since thcse gatcs arc actually included in
the othcr node, they consume no CLBs.

219

Tablc 1 also shows the required CLBs (Configuration Logic Blocks) which is
a unit PLD for XilinxSs XC3000/4000 family LCA. Since a XC3090 chip sup-
ports 320 CLBss this cquation requires five configuration pagcs corrcsponding to
XC3090s.

5 C o n c l u s i o n

Now: the framework of the software system has been developed: and the ordinary
cquation solvcr is available. Other two applications, the neur',fl network simulator
and the production system arc Under development. These applications will be
cxccutcd on the WASMI[emub~tor, which is now under implcmcntations for
establishment of basis for futurc development of the real WASMII chip,

R e f e r e n c e s

1. XILINX Corp.: "Progra.mnud)le gate a.rray's data hook", 1992.
2. M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lain, P. Athana-s, H. Silverman and

S. Ghoshs "PRISM-II Compiler and Architecture', Proceedings of IEEE Workshop
on FPGAs ibr Custom Computing Machines; IEEE Computer Society Press~ pp.9-
16: 1993.

3. S. Casselman~ "VirtuM Computing and The VirtuM Computer" s Proceedings of
IEEE Workshop on FPGAs for Custom Computing Machines~ IEEE Computer
Society Press s pp.43-59¢ 1993.

4. T. SueyoshL K. Hano, Toga.no and I. Arita, "An Approach to Realizing a Reconfig-
urable Intercommction Network Using Field Programmable Gate Arrays '~, Trans.
IPS Japan; No.33, pp.260-269. 1992.

5. N. Suganuma: Y. Murata¢ S. Nakata, S. Naga.ta~ M. Tomita and K. Hirano, "Re-
configuraMe Machine and Its Application to Logic Diagnosis", International Conf.
on Computer Aided Desigm pp.373-376, 1992,

6. S. Yoshirni(FUJITSU Inc.), "Multi-function pr~gra.mable logic device~, Japan
Patent(A) Hei2-130023, 1990.

7. X.-P. Ling and H. Amano~ "WASMII: a Data Driven Computer on a Virtual Haxd-
ware', Proceedings of FPGAs for Custom Computing Machines, pp.33-42, 1993.

8. X.-P. Ling and H. Amano, "Performance Evaluation of WASMII: A Data Driven
Computer on a Virtual Hardware"; Proceedings of the 5th International PARLE
Confe.rellce; LNCS 694, pp.610-621; 1993.

9. J. Miyazaki, H. Amano aud H. Aiso, "MANJI: A parMlel machine for production
system", Proceedings of the 20th Annual HICSS, pp.236-245 s 1987.

10. X.-P. Ling and H. Amano, "A static scheduling system for a parallel machine
(S M) 2 ~ I I " : Proceedings of the 2nd InternationM PARLE Conference s LNCS
365-I, pp.118-135, 1989.

11. NTT Data Communication Company~ Japing.: "PARTHENON Refe, rence Manual 's,
1989. "PARTHENON User's ManuM': 1990.

Constraint-based Hierarchical Placement of
Parallel Programs

Mat Newman, Wayne Luk and Ian Page

Programming Research Group, Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford, UK, OX1 3QD

Abstract. This paper continues our investigation into the feasibility of exploiting
the structure of a parallel program to guide its hardware implementadon. We review
previous work, and present our new approach to the problem based upon placing
neflists hierarchically. It is found that appropriate constraints Can be derived from the
source code in a straight-forward way, and this information can be used to guide the
subsequent placement routines. Comparisons with traditional placement procedures
based on simulated annealing are given.

1 Introduction

The ability to compile programs written in a language such as occam with well-defined
semantics and transformation rules facilitates the development of provably-correct systems.
By compiling such programs into hardware, we can extend this verifiability to cover systems
containing both hardware and software.

We have been investigating methods for compiling parallel programs into hardware,
using FPGAs as our target technology [1, 2]. One of our goals is the rapid compilation of
programs into hardware yielding faster implementations than traditional software compila-
tion. A major bottleneck in this approach is in the automatic placement and routing of the
netlists generated by our hardware compilers. We are currently looking at several methods
which will speed up this process to acceptable levels.

2 C o m p i l i n g H a n d e l i n t o h a r d w a r e

Several compilers have been developed for a variant of occam known as Handel, which
includes the basic programming constructors such as:

SEQ P Q (sequential composition - do P then do Q)
PAR P Q (parallel composition - do P and Q concurrently)
WHILE E P (while E is true, do P)
I F E P Q (ifE then P else Q)
v l v-n : = E1 En (assign expression E± to variable v i , l < i < n)
C l E (output expression E on channel C)
C ? v (assign value from channel C to variable v)

Programs written in Handel are transformed into synchronous circuits using a token
passing system. Each control block has signals called r e q u e s t (abbreviated to r eq or r) and

221

acknowledge (abbreviated to ack o.r a). As an example, the control circuitry for SEQ P Q
must ensure that the process P has finished before the process Q can begin. This is achieved
by simply connecting the ack signal from P to the req signal of Q. Our convention states that
the req line of a block is raised for one clock cycle, at which time that block may begin its
computations. When the block has finished it in turn raises its ack line for one clock cycle,
after which it remains dormant until it receives another req signal. Initially there is a special
STARTER block which has no req line, and raises its ack line for one clock cycle when the
circuit is started. Figure 1 illustrates the control circuitry for some of the constructors.

a

(a) (b) (c)

Fig. 1. Hardware for (a) SEQ P Q, (b) IF E P Q (if E then P else Q) and (c) WHILE E P (while
E do P). The V-labelled component is an or-gate. The triangular-shaped component is a demultiplexer,
which steers its horizontal input to either the T (true) or F (false) output depending on the boolean
expression E.

Traditionally one would take the flattened netlist, consisting of basic logic gates and
latches, and feed it to an automatic place and route (APR) package for laying out into the
FPGA. This results in generally acceptable layouts, but it often takes a large amount of time.
Given that our netlist is not generated randomly, but rather from a piece of (hopefully!)
structured code, we feel that there should be some way of exploiting the structure of the
source program in guiding the placement phase of the layout process.

3 Syntax-directed layouts

We shall briefly review our first approach to this problem, details of which can be found
in [2]. This approach adopts a deterministic procedure for laying out a circuit where the
complete placement and routing information was derived from the structure of the source
program. The layout scheme utilised parametrised Register, Constructor and Wiring blocks,
as illustrated in Figure 2.

The Constructor Block holds the control circuitry and expression evaluation hardware,
while the Register Block contains the variables. The control information flows orthogonally
to the data, and we avoid wiring through control circuitry by utilising a specific Wiring
Block. The adopted convention specifies that the control circuitry has its req on the left
and the ack on the right. While this compiler produces functioning circuits, these tend to
have an inefficient layout with a poor aspect ratio: programs with many statements tends
to have long and thin rectangular layouts. While such layouts are amenable to compaction
techniques, we have decided to look at less rigid interpretations of the source code structure
in guiding the placement of circuits.

222

Registea
Block

Constructor Block

Wiring
Block

Fig. 2. Syntax-directed compiler layout template.

One can think of the two approaches outlined above as being at opposite ends in a
spectrum of possibilities for circuit layout. At one end we use APR tools to generate a layout
from a flattened netlist; this approach is suitable for designs containing mostly random logic.
At the other end of the spectrum, we deterministically place and route the circuit using pre-
developed macros, with relatively little flexibility. A complete picture of such a spectrum
may include:

- Use APR tools on the flattened netlist.
- Use library modules for recognised pieces of code, use APR for the rest.
- Use the structure of the source code to guide the APR software.
- Use a fixed datapath architecture, and use APR for the control circuitry.
- Have fixed datapath and control paths derived from the source code syntax.

It is not clear that the above list is in any particular order in terms of time to layout, quality of
the resulting circuit and so on. Also one can imagine using combinations of the techniques
described. The approach studied here uses a combination of library modules and source code
structure to guide an APR phase.

4 M o d u l a r compi lat ion and constraints

Certain pieces of circuitry are used many times when parallel programs are compiled into
hardware, and the components comprising this circuitry are invariably placed near to each
other in the final layout. This leads one to use library modules of hand:placed components for
often-used circuits. One such example concerns variables which we implement as registers.
In our compiler, the circuitry generated to implement a variable depends on two factors:
firstly the width of the variable, and secondly the number of different sources for assignments
to the variable. The second factor is a result of the need to multiplex the assigned data into
the data-in lines of the registers implementing the variable.

At present our compiler has a fixed library template for a multi-bit variable, and it
produces individual gates for the multiplexing hardware whose layout has not yet been
determined. This arrangement facilitates the optimisation of the multiplexing hardware at a
later stage. We can assume however that for the majority of cases the multiplexing circuitry

223

should be placed near to the variable in an efficient layout scheme. We can thus specify
constraints which tell the APR software to try to keep the multiplexing circuitry near to the
corresponding variable.

For our experiments we have devised a Constrained Hierarchical Netlist format known
as Chopin, in which constraints between components can be expressed. As an example there
is a Near relation, where Near (P,Q,s) specifies that the blocks P and Q are to be placed
near to each other with a strength s. The weaker the strength, the more leeway the APR
software is given in the relative placement; a default value can be used if the strength is not
specified. This constrained netlist can be produced by our hardware compiler with almost
no additional computing cost.

We have concentrated so far on generating constraints due to hardware being associated
with a common component - a variable, a channel or a control block, "Communications"
between components in our circuits can be utilised to provide an additional level of constraint
information. Thus constraints are generated from the following types of program statements:

X := y

C?X

C!y

Op (x, y)

Here Op is a binary operation, such as addition or a comparison operation.
When we are compiling a program and we come across one of the above statements,

a corresponding Near constraint is generated. For example the statement x : =y causes the
constraint Near (Var x, Var y, s) to be generated. For statements of the form Op (x , y) ,
we need constraints to specify the relationship between the two variables and the operator
hardware; for instance x + y would result in the constraint Near (Var x, Var y, Add, s) where
Add refers to a specific instantiation of an adder circuit.

One feature of Chopin is its ability to capture constraints hierarchically: for a statement
such as z : = x + y , the constraint generated when x + y is compiled is referred to in the
constraint associated with the assignment to z.

5 U s i n g t h e c o n s t r a i n t s

Once we have generated our netlist of hardware and constraints, we need to be able to
utilise these constraints in guiding our placement tools when laying out the hardware.
For algorithms involving cost functions, such as simulated annealing and the majority of
other well-known heuristic placement algorithms, the "obvious" place to incorporate these
constraints is in either the cost function or in the move generation procedure (for more details
on the simulated annealing algorithm see [3]).

It can easily be seen, however, that incorporating the constraints as additional features
in the cost function will result in a slower algorithm than one without the constraints. This is
because currently we assume that to obtain acceptable results, the constraint-based algorithm
has to perform the same number of loop iterations, and to reduce the temperature parameter
at the same rate, as the one without the constraints. Similarly, trying to replace a simple
move generation procedure (such as "swap the contents of two random locations") with one
which takes the constraints into account could result in longer run-times for the algorithm,

224

but hopefully with better final results. In this paper, however, we shall focus on methods for
producing better results than traditional ones in comparable times.

The approach we have taken is to split off segments of our total netlist into sub-netlists.
These sub-netlists are then placed individually, using a standard simulated annealing ap-
proach. The final placement of the sub-netlist is then used to define a fixed macro, which
performs the function of that sub-netlist. This macro contains all the port information nec-
essary to connect it up to the rest of the original netlist. Once these macros have been
combined with the remaining circuitry into a final netlist, this too is then placed using a
simulated annealing approach. Experimental software has been developed to implement this
method, and we outline the results below. We shall also comment on some of the ways in
which it can be improved.

In our experiments we used a simple model consisting of a rectangular array of cells,
each of which can either be a combinational gate or be a single-bit register. In order to
compare our results with placements achieved using a simulated annealing algorithm over
the flattened netlist, we allowed both methods the same amount of CPU time to produce a
placement of the circuit on this array of cells. Both methods were given the same cooling
schedule and the same design size in which to place the components. Components were
selected to be moved with a probability inversely proportional to their area. This was done
because in our current implementation, it is more costly to move large components than
moving small ones. Hence the movement of a large component is likely to be rejected by
the acceptance function especially at the later stages of the annealing procedure, and so we
should not waste time examining such moves.

Our cost function for these experiments was a simple estimated wire length (EWL)
calculation, based upon the Manhattan metric: for each net we added half the edge length
for the bounding rectangle of the net. Since we were doing comparative experiments we did
not attempt to route our final placements. The issue of the routability of designs is covered
in the final section.

6 Some examples

To demonstrate our approach we now outline three example compilations, and compare the
process of placing the derived circuit firstly by running a simulated annealing algorithm
over the flattened netlist, and secondly by running the algorithm presented in the preceding
section.

The first example is a very simple piece of code (see Figure 3) which illustrates the
benefits of using macros for variables and operators.

VAR x , y : 4

SEQ

X := 9

y := 5

X := X + y

Fig.3. A simple example.

225

While it is clear that using pre-placed macros for the variables and the adder will result
in nearly minimal wire lengths for the internal hardware of these components, the majority
of the wiring for such a circuit is in the data paths connecting the components together. Thus
one might expect to lose some quality in the final placement due to the constraints over how
the adder and variables are designed. In fact this is not the case, and as Table 1 shows there
are significant gains as a result of using such macros (all timings are in seconds).

Without macros With macros
EWL Time EWL Time

121 74 74 73

Table 1. Results with and without hardware macros.

An example as simple as that just given does not lend itself to a hierarchical style of
compilation, since there is not much structure to exploit. In order to investigate hierarchical
compilation we need a more complex example.

The code given in Figure 4 implements a bubble sort routine. To identify subsets of
components that can benefit from pre-placement, a data-flow analysis of the source code is
performed to find out how components implementing variables and channels communicate
with one another, and the result is shown in Table 2. An entry is placed in this table when
an expression or a statement in the source program indicates a connection between two
resources; for instance, the expression

Tmp_crnt <= Trap_next

and the statement

Tmp_crnt : = Tmp_next

indicate that the variables Tmp_crnt and Tmp_next have to communicate twice, hence
the (T m p . n e x t , T m p _ c r n t) entry is 2. Using this table, subset of components with greater
connectivity can be dealt with first in our hierarchical method. Note that the communications
inside the inner WHILE loop will be executed more frequently than those outside, and we
could weight them accordingly. At present all constraints are given an equal weighting.

Three different derivative netlists were generated by our compiler from this program.
Firstly, we generated a flattened gate-level netlist. Secondly, a netlist using macros for the
variables and adders was produced; as expected, we were able to obtain better placements
from the second netlist than from the first in the allotted time. Thirdly, we generated a
sub-netlist comprising just those expressions involving the variable C r n t and the channel
A d d r , the pair which scores the highest value in the data-flow analysis. We then ran our
simulated annealing routine on this netlist to produce a fixed-placement macro. Next, this
macro was inserted into the netlist of the remaining components, and the resulting netlist

226

VAR Crnt, Last, Tmp_crnt, Trap next : 4

CHAN Addr, Din, Dour : 4

SEQ

Last := 15

WHILE (Last != 0)

SEQ

Crnt := 0

PAR

Addr ! Crnt

Din ? Tmp_c rnt

WHILE (Crnt != 15)

SEQ

PAR

Addr ! (Crnt+l)

Din ? Trap_next

IF (Tmp_crnt <= Trap next)

SEQ

PAR

Addr ! (Crnt+l)

Dout ! Tmp_crnt

PAR

Addr ! Crnt

Dour ! Tmp_next

Tmp_crnt : = Tmp_next

Crnt := Crnt+l

Last := Last - 1

Fig. 4. A bubble sort routine.

Las t Crnt Tmp_crnt Trap_next Addr Din Dout ConsmnS

Last

Crnt

Tmp_crnt

Tmp_next

Addr

Din

Dour

Total

l x x x x x x 2

0 1 x x x x x 2
0 0 0 x x x x 0

0 0 2 0 x x x 0

0 4 0 0 0 x x 0
0 0 1 1 0 0 x 0
0 0 1 1 0 0 0 0
1 5 4 2 0 0 0 0

Table 2. Data-flow analysis for bubble sort routine.

227

was placed. The times for placing the sub-netlist and the composite netlist were added to
produce the final timings (incorporating the sub-netlist macro into the composite netlist takes
negligible time). The averaged results from many such trials is given in Table 3. The results
show that the hierarchical method always returns better circuits with shorter EWL than the
versions with macros and with flattened netlists, over a range of specified placement times.

Flattened Macros Hierarchical
EWL Time EWL Time EWL Time

1 5 8 4 4 9 8 950 345 8 7 8 3 4 8

- - 961 297 910 279
- - 1016 232 938 235

Table 3. Bubble sort results with and without hardware macros, and using hierarchical placement.

As another example, the run-length encoder code given in Figure 5 was examined. Here
the routine repeatedly accepts values on the D i n channel until a new value is encountered,
it then outputs the value and the number of occurrences (modulo 16) of that value on D o u t .

VAR Crnt, Count, Prev: 4

CHAN Din, Dout : 4

SEQ

Count := 0

Prev := 0

WHILE (TRUE)

SEQ

Din ? Crnt

IF (Crnt =Prev)

Count := Count + 1

SEQ

Dout ! Prev

Dout ! Count

Count := 1

Prey := Crnt

Fig. 5. A run-length encoder.

Here a data-flow analysis reveals that the variables Prev and Crnt are involved together
in two statements: one assignment and one comparison. This is a weaker connection than
the four times that the channel A d d r and the variable C r n t were combined in the bubble

228

Flattened Macros Hierarchical
EWL Time EWL Time EWL Tune

455 148 292 119 296 117
- - 314 100 312 100

Table 4. Run-length encoder results with and without hardware macros, and using hierarchical
placement.

sort program, so it is no surprise that hierarchically compiling this circuit by pre-placing
a sub-netlist based upon P r e y and C r n t does not do significantly better than placing the
entire circuit in one go. Table 4 summarises the results for this circuit.

7 F u r t h e r c o n s i d e r a t i o n s

Our work indicates that a hardware compiler can generate placement information at little
extra cost. This information can be exploited by a layout routine to produce good results
more quickly than a direct placement of the flattened netlist. Similar ideas are being explored
for compiling other languages, such as Ruby [4], into hardware.

It is clear that in order for our method to obtain good results, the program should contain
appropriate subsets of components that can benefit from pre-placement. Identifying such
subsets is at present achieved by simple data-flow analysis. It is open to future research to
find other ways of discovering such subsets.

There are two obvious ways to improve our placement routines. First, the sub-netlists
are currently placed without regard to the remaining parts of the circuit. As a result, gates
connected to components outside of the sub-netlist may be placed in the interior of the
created macro instead of at the periphery (this is similar to performing Min-Cut without
terminal propagation). Making such cells more likely to be placed on the border of a macro
is likely to improve the final estimated wire length.

Second, our current macro generator produces a macro as a collection of individual
components with fixed relative positions, as opposed to a single large component. Hence
the movement of a large macro is more costly than moving a small macro. Producing
a homogeneous macro block should speed up the movement procedure in the simulated
annealing algorithm.

Future work will verify that improved placements are still achievable when routing is
taken into consideration. One major stumbling block to most placement routines is that
high congestion areas occur, and this leaves some nets without valid routings. The density
of the macros we create will play a crucial part in ensuring routability. It would also
be interesting to study the impact of device-specific features on the performance of our
compilation approach.

At present we use constraints derived from our circuits to guide placement in a hierar-
chical fashion. It may be possible to use these constraints in other contexts, for example as

229

input constraints to the timing-based placement tool described in [5].
Clearly our approach can be used in developing any kind o f hardware, from custom

circuits to printed-circuit board designs. For implementation in partially-reprogrammable
FPGAs, it would be desirable to constrain the layout to facilitate fast reprogramming of
critical parts of the device. The size of FPGAs currently available means that only relatively
small programs can be compiled into them. Our approach relies on the source program
having discernible structures to exploit, and is thus more amenable to larger programs. As
larger FPGA devices and boards populated with multiple FPGAs become available, our
approach should prove useful in compiling programs of reasonable size automatically into
hardware.

Acknowledgement

Thanks to members of the Oxford Hardware Compilation Research Group for discussions
and suggestions. The support of U.K. Science and Engineering Research Council, ESPRIT
OMI/HORN project and Oxford Parallel Applications Centre is gratefully acknowledged.

References

1. Page, I. and Luk, W.: Compiling occam into FPGAs, in FPGAs, W. Moore and W. Luk, Eds.
Abingdon EE&CS Books, pp. 271-283, 1991.

2. Luk, W., Ferguson D. and Page, I.: Structured hardware compilation of parallel programs, in More
FPGAs, W. Moore and W. Luk, Eds. Abingdon EE&CS Books, pp. 213-224, 1994.

3. van Laarhoven, P.J.M., Aarts, E.H.L. and Liu, C.L.: Simulated annealing in circuit layout. Nieuw
Archief Voor Wiskunde, 9(1), pp. 13-39, 1990.

4. Luk, W.: Systematic serialisation of array-based architectures. Integration, the VLSIJournal, 14(3),
pp. 333-36O.

5. Raman S., Liu C.L. and Jones, L.G.: Timing-based placement for an FPGA design environment,
in MoreFPGAs, W. Moore and W. Luk, Eds. Abingdon EE&CS Books, pp. 213-224, 1994.

ZAREPTA: A Zero Lead-Time, All
Reconfigurable System for Emulation,

Prototyping and Testing of ASICs

Tormod Nj¢lstad, Johnny Pihl, and JCrn Hofstad

University of Trondheim
The Norwegian Institute of Technology

Faculty of Electrical Engineering & Computer Science
N-7034 Trondheim-NTH

NORWAY
(tormod.njoelst ad@fysel.unit.no)

A b s t r a c t . Primarily, our ZAREPTA system addresses the need for a
low-cost static ASIC tester. By utilizing reconfigurable FPGA technol-
ogy, the ZAREPTA's total functionality (and 400 DUT pins) can be
configured, controlled and monitored by PC software. The main princi-
ples of the tester, the block diagram, the software, and the FPGA designs
will be explained. However, as a spin-off, the ZAREPTA system may also
be used for emulation and fast prototyping of small ASICs. Recently, the
ZAREPTA system has been extended with 4 FPIDs, to provide pro-
grammable interconnect between the 13 Xilinx XC4005 of ZAREPTA.
Bit-serial ASIC architectures with at most 120 external signal pins and
20000 gates may be emulated.

1 I n t r o d u c t i o n

The digital tester made by one of our students 12 years ago, has been used for
testing of m a n y of our CMOS VLSI prototypes. However, after all these years,
it is not reliable any more. In 1992, we therefore decided to build ZAREPTA,
which primarily is a new static ASIC tester [I][2][3][4]. The ZAREPTA system
is based on the XC4000-series FPGAs from Xilinx, due to their very at t ract ive
properties in this context: high source and sink current per output pin, local
RAMs, programmable pull-up or pull-down resistors, Boundary Scan support ,
fast reprogramming etc. The tester is implemented using 13 Xilinx XC4005.
Each of these RAM-based FPGAs can be reconfigured from the PC bus at any
time. It should be noted, as explained below, that only three different Xilinx
configurations are required to implement the tester. These three configurations
are independent of the ASIC under test.

The main features of the tester are:

- Static testing of CMOS ASICs
- DUTs (Devices Under Test) with at most 400 pins
- Each pin selectable to be either IN ,OUT, I /O ,CLKn,VCC,GND,or NC

231

Fig. 1. Photograph of the Zarepta system (prior to the FPID expansion).

- No need for a test jig
- Flexible implementat ion due to use of f ield-programmable gate arrays
- PC based software to configure, control and monitor the tester 's total func-

tionality
- Interface to commercial automatic test pa t tern generators (ATPG)
- Low-cost system compared to commercial ASIC testers

2 S y s t e m C o m p o n e n t s

As shown in Fig. 2, the ZAREPTA board comprises a 20x20 pin grid array ZIF
socket, thirteen Xilinx XC4005 FPGAs, 5 octal registers and bus interface to a
personal computer. The PC bus interface provides access to these control and
s tatus registers, to the byte-parallel configuration ports of the different FPGAs,
and to the actual internal registers implemented in each FPGA. 18 out of the
total 20 ICs on the ZAREPTA board comply with the IEEEl149.1 Boundary
Scan standard. They are connected in a Boundary Scan chain, to make the tester
itself testable. The scan test chain is accessible through the PC bus. Every pin
in the 20x20 socket are connected to a Xilinx I / O pad and to a j umpe r to

232

C-pro3r ,~m~ L~ l,¢,,/;~#oco,~.

/
f

f 3
X/ / . /N~"

t~cr .5

OIL :
~x2~
P6A ~t@-

Fig. 2. System components.

select whether this pin should be VCC, GND or a signal. In the latter case, the
corresponding Xilinx pin will be set up by PC commands as an input, output or
a specified clock, as explained below.

3 T h e T h r e e X i l i n x C o n f i g u r a t i o n s f o r t h e S t a t i c A S I C

T e s t e r M o d e

The 400 jumpers facilitate connection of power and ground to the DUT. Un-
less using a lot of relays, there is no way to automate this. However, with PC
commands we check for wrong GND or VCC jumper settings, using two Xilinx
configurations with input pull-up and pull-down options, respectively, as shown
in Fig. 3.

When the power supply is set up correctly and checked in the first two con-
figurations as explained above, the third configuration is now downloaded in the
FPGAs. Each pin may be a data pin or a specified clock, depending on the PC
commands given to the different registers associated with each pin. When a pin
is defined to be a data pin, the pin logic is as shown in Fig.4 (simplified for
clarity). For each test clock cycle, the PC can write to FF1 and FF2 to define
next data value and direction, and get current pin data value by reading TBUF.
When the PC starts each new test clock cycle by a specified command, a pre-
stored sequence of 16 bits specifies the time event for stimulus data setup and
the response sampling time.

When a pin is defined to be a clock pin, the clock pin logic (simplified for

233

¢ONFf~.

.L puU.~ovJ~

VCC.

~Vc.C
'qll c bu'r - p~n

"" G, No

Fig. 3. Input pull-up and pull-down are used to check GND and VCC.

clarity) is as shown in Fig. 5. Here the 16 bits pre-stored sequence defines the
time events for rising and falling edge of this particular clock.

Since the appropriate 16 bits data and clock patterns may be downloaded
for each pin, many different clocking schemes and clock/data relationships are
possible.

4 I n t e r f a c e t o C o m m e r c i a l T e s t S o f t w a r e

We have developed a C library of high level functions for controlling the tester,
to make it easy to build test programs. The functions are accessible in the Lab-
Windows/CVI [12] environment under Microsoft Windows, making application
software development a simple task. We are also working with an interface to the
TDS ASCII format, which is a widely accepted test pat tern standard [9] (e.g.
optional output from the TestCompiler from Synopsys [10]).

5 F a s t P r o t o t y p i n g w i t h Z A R E P T A

As a spin-off, we believe ZAREPTA may be a suitable tool for so-called fast pro-
totyping and in-circuit emulation. In order to efficiently utilize the 13 FPGAs,
they need to be interconnected. Recently, the ZAREPTA system has therefore
been augmented with 4 IQ-160 field-programmable interconnect devices (FPIDs)
from I-Cube. Fig. 6 shows an overview on how ZAREPTA is used for fast pro-
totyping.

The 13 FPGAs may be configured individually from the PC to implement
different parts of the functionality of the ASIC device under emulation (DUE),

234

I

Fig. 4. Data pin logic.

and the FPIDs provide the required internal interconnections between the mod-
ules of the DUE as well as connections to the external world. As can be observed
in Fig. 7, all 4 FPIDs are connected to the 13 Xilinx FPGAs and to the I/O
connector representing the external signal pins of the DUE (max. 120). Since
only 32 I/O pins per Xilinx part are used, the system is primarily suited for em-
ulating ASIC designs with bit-serial data paths. To be conservative, we expect
that designs with up to 20.000 gates may be emulated by the ZAREPTA system
(assuming 30% utilization of the CLB resources in Xilinx).

Fast prototyping may be an alternative and a supplement to simulation for
studying the functional behavior of a single module or a complete ASIC. By in-
circuit emulation in the system environment, it is possible to detect and correct
design errors and specification inconsistencies, which otherwise might not have
been discovered before receiving the ASIC from the foundry. In system design,
cooperating software and hardware may be developed and tested concurrently,
even though no physical ASIC exists. Specifically, prior to layout and process-
ing of an ASIC, its real-time behavior may be investigated. In adaptive signal
processing, simulation may be too unrealistic, whereas in-circuit emulation can
be invaluable. Also, when exhaustive simulation is required (e.g. for evaluation
of subjective quality in audio and video codecs), emulation will speed up the
computations.

We have used Synopsys' Design Compiler and FPGA Compiler to provide
synthesis from a technology independent level (VHDL) to the Xilinx target tech-
nology. Exactly the same design descriptions may be used for the final standard
cell or gate array synthesis as for the emulation. Obviously, the design descrip-
tions need not adapt to a specific Xilinx-style, and we can always utilize the
highest level of abstraction accepted by the synthesis tools.

235

~ "I"o ~o'r

(ll(l(l[lilllLI
I
|

I)
I i

Fig. 5. Clock pin logic.

Fig. 6. Fast prototyping with ZAREPTA.

236

120r

lOO
160. 1

 ooXZ
1001 II 4x,

"30

lbe•l_•O i(

~'100

~" 30 10
/ /

10 ..
iCube 10 iCut

#2 ~ #3

"100

"30 "30

, 10~ iC'ubc)
#4

O0 /100

x8

4005] ...
#2]

FO

4x4

Fig. 7. Interconnection topology of FPIDs and FPGAs in ZAREPTA.

Four different UNIX-cshell/Synopsys scripts have been developed to facilitate
synthesis from VHDL to Xilinx configurations, which automate most of the
procedure. These scripts are:

- zest: Using Synopsys' VHDL Compiler the design is compiled from VHDL
(IEEEl164) into Synopsys internal db-format. The Xilinx logic (CLBs) and
I/O (IOBs) requirements, and the hierarchy are extracted from the design.
The results from this script form the basis for further decisions on partition-
ing.

- zcon: For a given design, this script facilitates a query on connectivity.
A report is generated on the connectivity between the subinstances of an
instance in the design.

- zpar t :A specified set of sub-modules (instances) are extracted from the de-
sign, and partitioned into one Xilinx part. A report on Xilinx logic and
I/O requirements is generated. Depending on the results of this script, the
partition may be accepted or rejected.

- zbui ld: When the original design has been partitioned into between 1 and 13
sub-designs, this script uses Synopsys' FPGA Compiler to generate Xilinx
netlists (XNF files without pin number assignments) for each of the sub-
designs. The first connectivity program, zcollect [8], is then run on the XNF

237

Design

VHDL

7"' zest ~ zcon ~ zpart H zbuiid

I

FPGA&FPID configuration files
~ ~ Z A R E P T A ~

Fig. 8. Design flow for generating ZAREPTA configuration files from a VHDL design.

files, zcollect inspects the signal names of in- and out-signals of each FPGA
and identifies common names. The XNF files are annotated with feasible
pin assignments which are given by the connecl, ivity restrictions imposed
by ZAREPTA's hardware structure. This way, the Xilinx place and route
tools are given largest possible freedom ensuring a good hardware utilization.
An I/O pin definition file may be included to steer external ports (max.
120) of the design to pre-determined I/O pins. The Xilinx software (ppr
and makebi ts) then places and routes each of the sub-designs, resulting
in up to 13 loadable FPGA configurations (EXO files). Finally the second
connectivity program, zconnect is run to create the iCube configuration
files and convert them to Boundary Scan bit streams which can be loaded
into the FPIDs.

The design flow using the scripts, is depicted in Fig. 8. The dashed lines
indicate that the partitioning is semi-automatic, so that queries on connectivity
and partitioning attempts is repeated until a satisfactory partition in terms
of CLB and IOB requirements, is achieved. Thus, using the first three of these
scripts, we may semi-automatically partition the VHDL design into the 13 Xilinx
parts of ZAREPTA. Later on, we plan to automate the partioning process using
a suitable algorithm. The two key ideas to be employed are: 1) Traverse the
hierarchy to find the largest modules which fit into each FPGA without exceeding
the 1/O restrictions. 2) The optimal solution is not the one which gives the

238

smallest CLB count, but the one which gives good enough resource utilization
without spending too much effort on partitioning and building configuration
files, since low development time is important .

After the loadable configuration files for the FPGAs and FPIDs have been
generated, the configuration files are transferred to the PC controlling ZAREPTA,
and the files are down-loaded. The design is now ready for emulation on the
ZAREPTA system.

For DSP applications, the design can be specified at an even more abstract
level with signal flow graphs (SFG), using Mentor's DSP Station. The synthesis
tools of DSP Station produce bit-serial or bit-parallel solutions (VHDL netlists),
suitable for further synthesis and mapping.

6 E x a m p l e s on U s e of Z A R E P T A for Fast P r o t o t y p i n g

As an example of the fast prototyping capability of ZAREPTA, the system was
used to emulate a 48-tap FIR filter design. The filter is an analysis bandpass
filter for a filter bank. The filter was specified at the SFG level and bit-serial
synthesis was performed in DSP Station. To simplify the partitioning, prior to
bit-serial synthesis the design was entered as 10 sub-designs, each implementing
5 taps except the last one which implemented 3 taps of the FIR filter. A 5-
tap FIR filter link is shown in Fig. 9. Output signal y connects to the acc
input of the following link. The filter has an internal word length of 20 bits and
an inpu t /ou tpu t word length of 16 bits. It was estimated that each of these
10 sub-designs would fit into one FPGA. A structural VHDL design was then
manually created to reflect the connections between the 10 sub-designs as well
as connections to external ports. Note that since the implementation is bit-
serial the interconnection requirements between the 10 sub-designs are very low.
The partitioning specification was then prepared and a master script calling the
four scripts above was written. The master script first calls zes t on the design
at the top level, then performs partitioning with z p a r t using the partitioning
specification (one call for each Xilinx part), and finally calls zb u i l d to create the
FPGA and FPID configuration files. Approximately 3 man-hours was spent on
developing the VHDL design description. Running the master script and down-
loading the configuration files into ZAREPTA took approximately 3 hours of
CPU time on a HP735 workstation. Note that once the VHDL design description
and the partit ioning specification has been created, the rest of the process is fully
automatic.

7 C o n c l u s i o n

With the ZAREPTA system, a static ASIC tester has been implemented. By
introducing programmable interconnection devices, the ZAREPTA system now
has been extended to be a simple, but versatile tool for fast prototyping and
in-circuit emulation of small bit-serial ASICs.

xC2>

acc

239

Fig. 9. 5-tap FIR filter link

Just like the old story from Sarepta about the widow's jar, which could
never be emptied, the possibilities of our ZAREPTA are almost bottomless. The
ambit ious name is inspired by this old legend, but is of course also an acronym
for what our ZAREPTA is: "A _Zero lead-time, All Reconfigurable sys tem for
__Emulating, P rototyping, and --Testing of ASICs"!

References

1. T.Nj¢lstad & H.Dale: "ZAREPTA. An ASIC emulator and tester", Technical re-
port, Norwegian Institute of Technology, Trondheim, Norway, 1992 (Norwegian).

2. FI.Dale: "Test station for integrated circuits", M.Sc.thesis, Norwegian Institute of
Technology, Trondheim, Norway, 1992 (Norwegian).

3. S.M0ien: "ZAREPTA- emulator and tester for AS1Cs", Term project report, Nor-
wegian Institute of Technology, Trondheim, Norway, 1992 (Norwegian).

4. T.Nj01stad, J.E.Oye, H.Dale and S.M0ien: "ZAREPTA: A low-cost system for fast
prototyping and testing of ASICs'. Proceedings on the fourth Eurochip Workshop
on VLSI Design Training, Toledo, Spain, 1993, pp. 150-155.

5. S.M0ien: "The interface between the ZAREPTA system and the PC", Technical
report, Norwegian Institute of Technology, Trondheim, Norway, 1993 (Norwegian).

6. S.M¢ien: "On digital design, fast prototyping and ASIC emulation of a digital
filterbank', M.Sc.Thesis, Norwegian Institute of Technology, Trondheim, Norway,
1993 (Norwegian).

7. J.Hofstad: "Test of Altera EPS448 using ZAREPTA" Term project report, Nor-
wegian Institute of Technology, Trondheim, Norway, 1993 (Norwegian).

8. J.Hofstad: "Fast prototyping of ASICs using the ZAREPTA system", M.Sc.Thesis,
Norwegian Institute of Technology, Trondheim, Norway, 1994 (Norwegian).

9. TSSI: TDS Options Guide, August 1992.
10. Synopsys Inc: TestCompiler and TestCompiler Plus Reference Manual, Version 3.0,

December 1992.
11. Xilinx Ine: The Programmable Logic Data Book, 1993.
12. National Instruments: LabWindows/CVI, 1994.

Simulating Static and Dynamic Faults in BIST Structures
with a FPGA Based Emulator

Richard W. Wieler, Zaifu Zhang and Robert D. McLeod
Department of Electrical and Computer Engineering

University Of Manitoba, Wpg, MB, Canada, R3T-2N2

Abstract. Circuit emulation, using dynamically reconfigurable hardware is a high
speed alternative to circuit simulation, especially for large and complex designs.
Dynamic re.configuration enhances the ability to efficiently analyse the test of combi-
national and sequential circuits by providing statistical information on fault grading,
detectability, and signature analysis. In this paper we examine hardware accelleration
of static and delay fault simulation, and the accelleration in simulating new BIST
techniques.

1 Introduction
Emulation of circuits which are large or contain feedback loops, is desirable for several
reasons. Emulation can considerably reduce the time taken in the analysis of fault grading
and signature analysis for combinational and sequential circuits of small or large scale. A
dynamically reconfigurable emulator, allows the user, to directly inject faults into a circuit
for the purpose of test analysis. Towards this end we have been investigating the use of a
field programmable gate array ~PGA) based platform. By using a FPGA platform, we
allow for both rapid prototyping of the end product as well as rapid prototyping of test
schemes.

Algotronixl[3] currently has a FPGA based computer using an array of CAL1024
chips. This computer allows the user to download designs and control functions occurring
on the computer. The ability to download large designs and have full control of clocking
functions, is an ideal concept on which to base a hardware emulator.

Due to the increasing density of Integrated Circuits (IC) and ever increasing demands
for high product quality in manufacturing and throughout the life cycle of an IC product,
Built-In Self-Test (BIST) is becoming more and more popular[4][5][6][7]. All BIST tech-
niques require two basic elements; test pattern generation and some form of test response
compaction. These two components are equally important for obtaining high quality test.
Test patterns generated are required to activate each fault's behaviour to at least one pri-
mary output, and compaction is required to capture and retain the faulty behaviour[5][8].
In general, with BIST schemes that use pseudorandom test, test patterns are most corn-

1. Algotronix was recently purchased by Xilinx. For the purposes of this discus-
sion the implementation is sufficiently generic to apply to other FPGA environ-
ments and particularly well suited to future technologies with increased support
for dynamic reconfiguration.

241

monly generated by the use of linear feedback shift registers (LFSR), or cellular automata
(CA)[5][9], and compacted by LFSR or CA signature analyses. The problem with LFSRs,
or CAs, is that they may introduce a hardware overhead which may be undesirable and
degrade the performance. A proposed alternative to augmenting a circuit with LFSRs is
Circular Self-Test Path (CSTP)[1][2]. CSTP is a similar idea to the simultaneous self-
test(SST) approach, presented in [10]. With a CSTP technique, less silicon area overhead is
incurred. In theory, on an ASIC the CSTP loop may span a significant portion of the chip
reducing the control overhead otherwise needed by more conventional scan based meth-
ods. In addition, the quality of the test patterns appear very high with aliasing being similar
to that of traditional LFSR based signature analysis.

CSTP is not being widely utilized at this time. One reason for this slow acceptance is a
lack of a fast simulator to analyse the CSTP circuit under test. A fast simulator is needed to
assess the quality of a test process[Ill like SST or CSTP. It is very expensive and time con-
suming to simulate sequential circuits, SST, or CSTP circuits, and to analyse the detecta-
bilities and aliasing probabilities of the faults with serial computers. A fast simulator would
be one that emulated the actual hardware, so a logical solution would be based on the use
of reprogrammable devices. With this scheme it is possible to efficiently emulate both
combinational and sequential circuits, on a large or small scale.

The paper includes an overview of the Algotronix FPGA technology and issues such as,
why dynamic reconfiguration makes it well suited for these types of problems. We also
illustrate that FPGA technology can be used not only for rapid prototyping of systems, but
also rapid prototyping and verification of test structures. We also look at results of fault
grading, fault detectability and aliasing, for both the LFSR signature analysis as well as a
CSTP scheme. As well, the results of [1][2] have been verified for the state coverage, and
the probability of a 1 occurring in a CSTP register.

2 A d v a n t a g e s o f C o n t r o l S t o r e R A M A r c h i t e c t u r e f o r F P G A s

The Algotronix type FPOA is ideally suited towards emulation type applications. The
Algotronix chips are known as CALs (Configumble Array Logic). These FPGAs consist of
an array of programmable cells. Each cell may be connected (input and output) to its near-
est neighbours.

The FPGA uses a static RAM control store. The control RAM controls multiplexers
which in turn control both the functional blocks as well as routing. Only one mux in each
functional block is controlled by data, instead of the control RAM. Because of this com-
plete control over all aspects of the FPGA configuration, it is possible to change individual
control RAM cells without affecting the remaining configuration of the chip. This enable
the user to quickly and dynamically reprogram the FPGA. The dynamic reprogramability
allows for efficient fault insertion.

Another very useful feature of this architecture is the bit of control store, in each cell
which allows the user to read back the output of each function block. This allows for con-
tinuous monitoring of internal cells. Monitoring of cells internally, allows for I/O to be
freed for other purposes, especially when cascading chips in an array configuration.

The architecture of arrayed logic cells, allows for transparent boundaries when chips
are cascaded in an array fashion. This creates simplicity when partitioning a design over
multiple chips. This architectural feature is exploited with the Algotronix FPGA computer.
It also makes further expansion quite simple.

242

nit

t

Fig. 1.Array Structure

3 E m u l a t i n g Static Faults

The hardware emulator is derived from a FPGA based computer. The computer is made up
of an array of Algotronix CALl024 chips. The computer is on a board that fits into an AT
compatible bus. It enables the user to download the design into the FPGA array and run the
circuit in real time. The user may manipulate the control functions of the chip and the
clocking, by way of the pc interface[3]. The current system we have, has a capability of
emulating a circuit of several thousand gates. The actual hardware allows for 16,384, two
input gate equivalents, although when implementing a CUT, the degree of resource utiliza-
tion is reduced, due to routing overhead. Two points should be noted: i) this is considered a
first generation FPGA technology, and ii) sub-circuits to be analysed for test will not likely
be larger than several thousand gates, due to functional partitioning of large designs.

The fact that the emulation is actually occurring in hardware, reduces the time it takes
to perform a simulation or generate a signature. Because of the reprogramability of the
emulator, it is very easy to inject faults at crucial areas. The CALl024 allows the user to
change individual cells during write cycles. This feature has been manipulated to further
expedite the fault injection process, and enhance test point insertion. More conventional
hardware emulators or those based on chip level reprogramability have been and will con-
tinue to be important for hardware accelerated simulation. For applications such as BIST
analysis, dynamic reconfiguration at the gate level is a definite asset. This is due to the fact
that reconfiguration time is required to be minimal as the circuit is modified for each fault
injected. To statistically evaluate the detectabilities and aliasing probabilities of the combi-
national circuit, the fault injection procedure could be further improved by simultaneously
injecting faults which are in independent blocks. This is not possible on a serial machine
simulation.

A variety of methods are under investigation in the use of the reconfigurable computer
for emulation. The most straight forward involves the sequential emulation of a fault free
circuit, storing the final signature for comparison with signatures o f the circuit with the
fault(s) injected. The basic procedure is illustrated in Figure 2 (a) and is denoted method 1.
This method would allow for the largest of circuits to be investigated but requires more
time than the following methods.

An improved method which still allows for maximum sized circuits consists of sequen-
tial emulation of the fault free and faulty circuit but involves the recording of multiple sit-

243

Sa, clu mlJel Fault Ree and Fault-injected Circuit Emuludon
- ~ / ' To S~gnature Regisler

~multaneous Emulation Faulty and Fault Free: Multiple Signatur~
~ ullipie Signature6 Recorded

100,1000, 10000 itelati~-ts

I eg.16 N~.
Mul~p~e Signature6

I I AJIows fo¢ Eady Fautt
[] Dropping

Ga,~eratiort and comparison
of signature after 100.100, 10000

~ . ~ T o S~gr~aturo Reg is te r ~ iter~or~

Modus Operandi Modus Operandi

. __ ~ -Faults sdected E'~n Fault List ~Caults selected from Fault List
~ ~ -Fauft-kee emulal~on -Fault-free ernu[a~o~

- - ~ -Cot w/[ault emulat~ -Cot w/fau~t emulated

Faults modeled include SA and detay Fault s modded irlcksde SA and c~4~/

Figure 2 (a) Method 1: Sequential Emulat ion (left), (b) Method 2: Sequential
Emulat ion with Multiple Signatures (right)

natures. These multiple signatures may be at 100, 1000, 10K, or longer iterations of the test
cycle. Signatures generated during the emulation of the faulty circuit are compared to the
multiple signatures stored. This allows for the fault to be dropped early in the test cycle and
reduces overall test time. This method is illustrated in Figure 2 (b) and is denoted method
2.

The final method discussed denoted method 3 and illustrated in Figure 3 allows for
immediate fault dropping upon detection of a difference in output between the fault free
and faulty circuit. This is accomplished by simultaneously emulating the both the fault free
circuit and fault injected circuit. The comparison circuit is a simple XOR gate. Upon the
receipt of a difference, the fault in question can be removed from consideration.

Si rnu l ta~ Emulation: Faulty and Fa~t Free Circuit ~ Faull Detected

R

Modue Op~andi

-Faults selected from Fault Ust
-Sin'~Jtaneoue Fault-free and
Fault in~ected dn::tJt em~al~.r~

-B~t Stmarrm Co~pared
detecliotrl n~Xt fault injecled

Figure 3 Method 3: Simultaneous Emulation

In each of these methods a fault list would be generated, likely based upon a reduced
single stuck-at fault subset through gate level fault collapsing[12][ll][13]. These stuck-at
faults can be easily modelled (emulated). More sophisticate parametric fault models likely
cannot be accommodated with current technology.

244

4 C i r c u i t U n d e r T e s t

The 74LS181, a four bit ALU[14] was chosen as the initial circuit used to test the emulator.
The 74LS 181 is a combinational circuit that has been widely used as a benchmark for var-
ious testing methodologies[15][16]. The procedures stated in this paper could easily be
extended to larger and more complex circuits, however there is a physical limitations with
the current emulator configuration, 1 so only slightly lager circuits can be emulated at this
time.

Initially when testing the 74LS181, the simultaneous emulation method (method 3) was
used. Two identical circuits were downloaded to the emulator. Each circuit used a 16 bit
maximum length LFSR as an input. There are 14 inputs on the 74LS181 so a maximum of
214 input patterns were possible, with this configuration. The outputs of the 74LS 181 were
fed through a comparator circuit.

The first task was to fault grade the ALU. The fault list consisted of 314 gate equivalent
stuck-at faults. Since the Algolronix FPGA allows a maximum of two inputs per gate, the
gates which are fed by more than three inputs were implemented with an appropriate type
of several cascaded two input gates when modelled for the emulator. This did not effect
fault coverage however, as the 74LS181 has 100% fault coverage. When testing a circuit
with an undetermined, or less than 100% fault coverage, possible faults arising from the
cascaded version of the multiple input gates could be ignored when fault grading, thus
more closely emulating the original model. A one to one map between the original circuit
and emulation implementation could be generated to ensure that only the faults which cor-
respond to those of the original circuit are considered in the emulation procedure.

Fault grading of the 74LS181 resulted in all faults being detected within about 350
cycles for several different seeds. Once the fault had been detected, the circuit was reset
and the next fault was injected. Using this process and running the computer, at a reduced
bus speed of 8 MHz, the entire circuit was fault graded within one minute. This process
would take longer if there were hard to detect faults or redundant lines in the circuit. How-
ever the procedure takes the same time per fault regardless of the complexity of the circuit,
and increases slightly as the circuit size increases. This is a significant advantage of the
emulator.

The detectability of the faults was the next test performed. The test was implemented in
the following manner. Each single fault was injected into the CUT. The circuit was then
clocked for 214 cycles to insure the majority of possible input patterns were covered. Each
time the comparator sensed the fault, it was recorded. The detectability profile of 74LS 181
can be seen in Figure 4.

1. Although system size can be almost tripled, the hardware is no longer available
from Algotlonix.

245

4O i
1
t

I

,,~ ao f
i

•

7 .

O -

0 0.1

! _,___:
i i I ! i I i
, _ _ . . ~ - - a - - - - . - a - - - - - a - . . - - - . L - - - . . I - - . - ~ , - - - - - ~ a

ti !
0.2 O.3 0.4 0.$ O~ 0.7 0.8 O~ 1 1.

Det ev':tablit)"

Fig. 4. Detectability Profile

5 Delay Fault Testing
We have explored several models for testing transition delay faults[14][18]. The first
scheme is described as follows (Figure 5). The proposed scheme would consist of three
similar circuits. One circuit would be the Golden circuit, another one would be the circuit,
onto which the stuck-open faults would be implemented. The third circuit would also be a
Golden circuit but would be delayed by one clock cycle. When a fault is detected from the
test circuit, the delayed Golden circuit, is observed to find the delayed value of the line
under test. In this way if the delayed circuit test point, and the test circuit have the same
value, the delayed fault should be detectable in a normal testing scheme. We have
attempted to implement this scheme with our current emulator configuration. Unfortu-
nately the current software can not translate a design of this size to the bit steam needed to
program the emulator.

I
. j

SA0
~- -Tes t Point ~ T e s t Point

Delayed Circuit Testing Circuit

Fig. 5. Delayed Model Test Scheme for Slow-to-Rise Transition Delay Faults

Because of the constraints of our current system, we have implemented a second, less
hardware intensive scheme for testing delay faults. The scheme involves adding flip-flops
to the golden circuit. The flop-fops act as a shadow register of the previous state of the line
connected to it. Because of the routing constraints of the circuit not all of the delay faults
have been tested. Instead we took the 10 least detectable stuck-at-zero and the ten least
detectable stuck-at-one faults, so that, transition faults corresponding to these faults will be
hard to detect and have an impact on the necessary test lengths.

246

For the delay fault to be detected, it must be a slow-to-fall fault, when using the stuck-
at-one fault to test. Likewise a slow-to-rise fault uses a stuck-at-zero fault to test for
observability. If the stuck-at-zero fault of line 1 is dectected there is a probability (deter-
mined by the zero controllability of line/) that the slow-to-rise fault is also detected, as the
slow-to-rise fault must be in a low state, the clock cycle before, if it is to be detected.

Our current method of testing shows that all of the faults we tested were observable.
This is as expected. We did not at the time this paper was written test for the actual detecta-
bility of the faults. To test the detectability of the delay faults involves some minor modifi-
cations to compensate for muting inversions which occur on the Algotronix FtK3As.

The second scheme should be efficient enough for testing most delay faults, as it should
only be necessary to test delay faults where the stuck-at fault has a low detectability, since
the transition faults corresponding to those stuck-at faults, have a lower detectability [19].

Faulty Circuit Golden Circuit w. Flip-flop

Fig. 6. Delay Fault Scheme #2

6 Testing of the LFSR Signature
Signature analysis on the 74LS181 ALU has been implemented, with both different cycle
lengths and different seeds. Given that the CUT was 100% fault testable, there could be
100% fauR detection with a suitable LFSR signature analyses. That is, aliasing was not
anticipated to be problem.

The testing methodology was changed to incorporate sequential emulation with multi-
pie signatures (method 2). The golden circuit was clocked at multiples of 1000 cycles.
After each clocking cycle of the golden circuit the 16 bit LFSR signature was recorded.
Following that, each fault was injected and the circuit cycled again. Each faulty signature
was then recorded and checked against the good signature for aliasing. After this test, no
instances of aliasing occurred. This same procedure was then also extended to testing a
CSTP scheme.

7 Circular Self-Test Path
CSTP links together registers into one circular path. Not all the registers in the circuit have
to be utilized, but at least all the primary input and primary output registers must be used.
The register acts like a simple D-latch or flip-flop when the circuit is in a normal mode of
operation. When the circuit is under test, the bit from the previous latch is XOR'd with the

247

incoming bit[l]. This process acts as a modulo 2 sum of the previous state. It is this proce-
dure that generates the test vectors as well as performing the compaction for signature
analysis. A schematic representation of the basic scheme is shown in Figure 7.

The most significant advantage of CSTP is the minimal amount of additional hardware
that is required. The additional hardware is illustrated in Figure 8.The ALU, using the con-
figuration as shown in Figure 9, has been slightly changed to facilitate a CSTP test. Four of
the primary outputs are fed back to four of the primary inputs (F0-F3 and B0-B3 respec-
tively) as "active inputs". The other primary inputs were set to a "0" value as "inactive
inputs" to form an ALU CSTP configuration.

~ ----~ircuit in Normal Operation

Circular Self-Test Path

Fig. 7. Schematic of the Basic CSTP Configuration

The same emulation method that was used to test for aliasing (method 3) was used to
find the LFSR signature. The bits which are as long as the number of all the CSTP registers
(22 total, 14 input, and 8 output), were used for representing the signature contents. No
aliasing was found to be occurring.

Other tests on the CSTP design included testing for state-space coverage on the inputs,
and testing for the probability of any bit being set to one, on an input. Krasniewski and
Pilarski[1] have stated that after a short periods, the probability of any bit being set to one
on the input should approach 0.5. This was verified on our circuit as the probability of one
on all the inputs was very close to 0.5 (0.49657) at 10,000 cycles. This figure remained
close to 0.5 for increased cycle lengths.

The state space coverage was implemented for three randomly chosen different 8 bit
input taps, in which the chosen 8 bits include a hybrid of "inactive input" and "active
input" [1]. The state coverage at different cycle times are given, as shown in Table 1. The
three randomly selected 8 bit words for this experiment are denoted Tapl, Tap2 and Tap3.
We noted that after 1000 cycles, nearly 100.00% of states are generated on all three taps.
This verifies that the CSTP registers are a very good technique for pattern generation.

248

Circular Self-Test Hardware Overhead

Normal Registor Opera,on

ST

Te~ Mode Ret~ler Opera, on

Fig. 8. Hardware Required for CSTP

Table 1: State Coverage of Inputs

Cycles Tap 1 Tap 2 Tap3 Average

100 37.81% 33.20% 32.03% 34.35%

1000 97.27% 96.88% 96.48% 96.88%

10,000 100.00% 99.61% 99.61% 99.74%

It is important to note that the test performed on the CSTP scheme took the same
amount of time as the tests performed on the LFSR scheme. This would not be the case if a
simulator was used. The ability to develop and verify different BIST strategies such as
CSTP, will not only increase their acceptance, but will also decrease the time for a system
to be validated. Although the CUT being used was a very basic design, this methodology
can easily be extended to larger and more complex designs.

8 Recommendations for Future FPGA Development

We have taken our work in emulation technology as far as our current system limitations
will allow. It may be possible to port some of this work to other FPGA technologies, how-
ever there are certain aspects of the current Algo~onix technology that would greatly
enhance future FPGA architecture. The following paragraphs outline some of the architec-
tural aspects that could improve future emulation, based on FPGA technology.

Emulation, as previously stated, is greatly enhanced by dynamic in circuit reprograma-
bility. By this we mean, not chip level, but functional block level and routing level recon-
figuration. Advancements in this area with FPGAs currently commercially available could
be a great resource.

249

Fig. 9. 4 bit ALU CSTP Configuration

Reprogramability on the scale stated above, usually comes with a reduction in clock
speed (due to the increased delays through control multiplexers). However any FPGA
technology should try to optimize the architecture for fast clocking of global signals. As
well the feature of a controllable on board clocking scheme would also be a great asset. If
the clocking must be controlled by software, there will be a great loss in the performance
of the emulator, due to the communication bandwidth limitations between board I/0 and
host IJO. There is no reason for this to occur if software can control an on board clock.
If a current FPGA vendor could meet the architectural requirements above, it would also
be fortuitous to develop a multi-chip board and control software. It would be advantageous
if a board, as described above, could be a stand alone unit with I/O access to a number of
hardware platforms.

Acknowledgments
Support provided by the Natural Sciences and Engineering Research Council of Canada,
the Federal Government's Centres of Excellence Micronet Program and the Canadian
Microelectronics Corporation is highly appreciated.

References

[1] A. Krasniewski, and S. Pilarski, Circular Self-Test Path: A Low-Cost BIST Tech-
nique for VLSI Circuits, ~ _ E Transactions on Computer-Aided Design, Vol. 8,
pp.425-428, Jan. 1989.

[2] S. Pilarski, A. Krasniewski, and T. Kameda, Estimating Testing Effectiveness of the
Circular Self-Test Path Technique, IEEE Transaction on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 10, pp.1301-1317, Oct. 1992.

[3] Algotronix Ltd., Configurable Array Logic User Manual, Edinburgh UK, 1991.
[4] E.J. McClauskey, Built-In Self-Test Techniques, IEEE Design and Test of Comput-

ers, pp.21-36, April 1985.
[5] P.H. Bardell, W.H. McAnney, and J. Savir, Built-In Test for VLSI: Pseudorandom

Techniques, John Wiley & Sons, 1987.
[6] V.D. Agrawal, C.R.Kime, and K.K. Saluja, A Tutorial on Built-In Self-Test, Part I,

IEEE Design and Test of Computers, pp.73-82, March 1993.
[7] V.D. Agrawal, C.R.Kime, and K.K. Saluja, A Tutorial on Built-In Self-Test, Part II,

LEEE Design and Test of Computers, pp.69-77, June 1993.
[8] Y. Zorian and A. Ivanov, Progranunable Space Compaction BIST, Proc. of Int'l

Syrup. on FTC, pp.340-349, 1993.

250

[9] P.D. Hortensius, R.D. McLeod, W. Pries, D.M. Miller, and H.C. Card, Cellular
Automata-Based Pseudorandom Number Generators for Built-In Self-Test, IEEE
Transaction on Computer-Aided Design of Integrated Circuits and Systems, Vol. 8,
No.8, pp.842-859, Aug. 1989.

[10] P.H. Bardell and W.H. McAnney, Self-Testing of Multichip Logic Modules, Proc. of
Int'l Test Conference, pp.200-204, 1982.

[11] M. Abramovici, M.A. Breuer, and A.D. Friedman, Digital Systems Testing and Test-
able Design, Computer Science Press, New York, 1990.

[12] D.R. Schertz and G. Metze, A New Representation for Faults in Combinational
Digital Circuits, IEEE Transaction on Computers, Vol.21, No.8, Aug. 1972.

[13] J.E Chen, C.L. Lee, and W.Z. Shen, Single-Fault Fault-Collapsing Analysis in
Sequential Logic Circuits, nz~EE Transaction on Computer-Aided Design of Inte-
grated Circuits and Systems, Vol. I0, No.12, pp.1559-1568 Dec. 1991.

[14] The TTL Data Book for Design Engineers, Texas Instruments, Inc. Dallas, TX,
1981.

[15] S.B. Aker and B. Krishnamurty, On the Application of Test Counting to VLSI Test-
ing, pp. 343-359, Chapel Hill Conference on VLSI 1985.

[16] J.L.A. Hughes and E.J. McClauskey, Multiple Stuck-at Fault Coverage of Single
Stuck-at Fault Test Sets, Proc. of Int'l Test Conference, pp.368-374, 1986.

[17] Y. Ievendel and P.R. Menon, Transition Faults in Combinational Circuits: Input
Transition Test Generation and Fault Simulation, 16th Int'l Symposium on Fault
Tolerant Computing Systems, pp. 278-291, 1986.

[18] R.L. Wadsack, Fault Modelling and Logic Simulation of CMOS and MOS Inte-
grated Circuits, Bell System Technical Journal 57(5), pp. 1449-1474, 1978.

[19] J.A. Waicukauski, E. Lindbloom, B.R. Rosen, and V. S. Igengar, Transition Fault
Simulation, IEEE Design & Test of Computers, pp. 32-38, April 1987.

F P G A Based Prototyp ing for Verification and
Evaluat ion in Hardware-Software Cosynthes i s

Th.Benner, R.Ernst, I.KSnenkamp, U.Holtmann,
P.Schiiler, H.-C.Schaub and N.Serafimov

Technische Universit/it Braunschweig
Institut fuer Datenverarbeitungsanlagen

D-38106 Braunschweig, Germany

Abs t r ac t . COSYMA is a ttW/SW-cosynthesis system for small embed-
ded controllers. The final simulation of the COSYMA output leads to
impractical computation time. Therefore, we decided to employ a hard-
ware prototyping system. The HW/SW prototyping system consists of a
SPARC processor, an FPGA-based coprocessor with HW/SW debugging
features realized with a high speed microcontroller.

1 I n t r o d u c t i o n

COSYMA (CoSYnthesis of embedded Micro Architectures) is one of the first
systems for hardware-software cosynthesis [1]. It is targeted to the design of
small embedded controllers. Given an input description in a superset of C, C *,
consisting of one or more tasks with t ime constraints, and given a fixed core
processor, COSYMA tries to map as much of the system as possible to software.
When the t ime constraints cannot be met, it automatical ly parti t ions parts of the
system description to an application specific coprocessor such that the t iming
constraints are met with minimum hardware overhead. The parti t ioning pro-
cess regards and minimizes communication overhead. Significant speedups have
been observed for real examples with more than 1000 lines of C code and a
33MHz SPARC as core processor. Figure 1 outlines the design flow. Part i t ioning
is done on the basic block level using simulated annealing based on speedup,
communicat ion t ime and hardware overhead estimation. The software par t is
enhanced by a communication protocol, translated to C and compiled to object
code. The hardware part is generated by high-level synthesis. The approach is
flexible enough to permit the use of different high-level synthesis systems; cur-
rently these are OLYMPUS [2] from Stanford taking a HardwareC description
as input and our own synthesis system BSS [3] taking a CDFG as input. A run
t ime analysis is able to accurately est imate the execution t ime of the resulting
hardware-software system on a clock cycle basis [4] and thus show if the t im-
ing constraints are met. Currently, we are working on an approach to adapt the
es t imat ion in hardware-software parti t ioning to the actual results. Once the t im-
ing constraints are met , the highqevel synthesis system generates a hierarchical
netlist on the logic level consisting of the controller and the data path in SLIF
format (Stanford Intermediate Logic Format) . In order to verify this netlist, we

252

currently use H W / S W cosimulation. It turned out that logic level simulation
of the coprocessor and the communication hardware is only possible for small
examples in acceptable computation time, even though the processor is simu-
lated at the register transfer level. So, we decided that for hardware-software
co-verification a hardware prototyping system would be very helpful.

C ~
system

description

communication SW HW/SW • • partitioning HW. communication protocol d e s ~ ~ . . ~ ; c r t p t l o n ~ p r o t o c o l

~ HL.synthesi ~ ' ' ,)
f l l~ (~ (~ I / - t t V] ~ I [D I T~'t

object code
modelsALU ~ l o g i c netlist

logic synthesis

\
transformation] to ASIC design

Fig. 1. The COSYMA experimental system

253

2 Prototyping System Requirements

Because the generated hardware-software system uses memory coupling, it seemed
reasonable not to use a very expensive commercial prototyping system, which
would have to be extended by a SPARC core, anyway, but to develop a spe-
cialized system. Because the coprocessor typically is rather small, we concluded
tha t it should be possible to design the hardware-software prototyping system
to run close to real t ime (33MItz SPARC clock) and so even use it for system
evaluation in the real environment. Furthermore, symbolic debugging features
with software breakpoints were considered essential for COSYMA verification. A
major requirement was that the whole design flow from the high-level synthesis
output should work without manual interaction.

3 T h e A r c h i t e c t u r e o f the Prototyping S y s t e m

The prototyping system consists of three different boards. Figure 2 gives an
overview of the system. The LSI SPARC processor ([5]) and the coprocessor
board are memory coupled by RAM A and RAM B of the coprocessor board.
The arbiter separates the processor bus from the system bus, which enables the
processor to fetch an instruction from its instruction RAM, while the coprocessor
is fetching one or two 32 bit words in the same clock cycle.

The F P G A board contains four XILINX XC4010 ([6]). We chose the F P G A
family, because of its sizes. For multiplications, we added an AMD 29C323.

For the purpose of t ime measurement, debugging and the connection to the
host computer, a Motorola MC 68332 ([7]) is used.

3.1 T h e F P C I A B o a r d

The major function of the prototyping system is the emulation of an application
specific coprocessor. A typical design generated by COSYMA could include up
to five ALUs and 20 registers. This exceeds the capacity of one single FPGA.
So, the design was parti t ioned into clusters. With up to 5 arbitrari ly connected
32 bit ALUs and 10 more rnore registers, we would quickly run out of pins when
allocating complete ALUs and registers to FPGAs. Instead we chose a bit slice
architecture (fig. 3). The FPGA board consists of four XILINX XC4010, each
handling an eight bit slice of all ALUs and registers. So, every F P G A holds up
to five 8-Bit-ALU slices and an application dependent number of 8 bit register
slices.

In order to handle the large number of control signals, a copy of the whole
controller is included in each slice. Therefore it is ensured that all impor tan t
control signals are generated on each slice. The carry signal of the ALUs is
handled by a carry look ahead logic on one of the slices (no. 3). Additional flags
for comparison decrease the controller overhead.

On every slice there are two RAM ports. Each of the ports is able to read or
write 8 bits of the 32 bit word. Therefore, the control signals are generated on

sys tem h11~

254

micro controller board

host interface

SPARC board

SPARC

coprocessor board

coprocessor

4 XC4010

Fig. 2. The architecture of the prototyping system

one of the slices (no. 2). The memory consists of two banks, whose address spaces
can be mapped in two different ways. The address space of port B can be mapped
following port A. Another possibility is to address port A and port B alternately
in steps of four bytes for interleaving. The address modes are configured by the
micro controller.

3.2 C o m m u n i c a t i o n B e t w e e n t h e S P A R C a n d t h e F P G A B o a r d s

Currently, processor and coprocessor communicate through shared memory with
mutual exclusive access. In order to increase the parallelism in the future, every
slice uses two separate memory ports. The coprocessor is able to fetch two 32

255

Coprocessor-Board

8-bit 8-bit 8-bit

R A M B (32k x 32 Bit) :

8-bit

8-bit

8-bit

8-bit
• 4

~i o," 4""44, ~

/t i ~r " I '

XC4010 t-~

AMD29C323

R A M A (32k x 32 Bit)

8-bit 8-bit

8-bit 8-bit

8-bit 8-bit

oo • :.... /.'"'"",,_
~ t Data~ ~Adress

I ,oo.o_

8-bit

8-bit

8-bit

I

I oo.o

XC4010 ! ~'~' : ! ! .-"" XCAO'IO ~ XC4010 °o• ,

I . - '°" "•

; d" t * / " t /
o -

ooo•°'° j ~** i'

[/

/
r I

~ i i i ~ "' ' r":,-,.e~istor8 b,t
Barrelshifter

8 bit
< < < < > > > >

complete]~
controller

I I

I

,o

J /

,

g
.
.

.
.
I

XILINX XC4010

F i g . 3. A r c h i t e c t u r e of the F P G A b o a r d

256

bit values concurrently. The two memory banks are mapped into the SPARC
address space.

Up to now, the SPARC receives a HOLD signal when the coprocessor is
active. We are going to increase the performance of the design by allowing parallel
execution in the SPARC and the coprocessor. Therefore, a separate instruction
memory is inserted, allowing the SPARC to fetch an instruction during a data
fetch of the coprocessor.

3.3 Time Measurement and Debugging

As mentioned above, a microcontroller is used for time measurement and debug-
ging. One interrupt channel of the MC68332 is triggered by a tag RAM, which
contains the addresses of up to eight breakpoints. Whenever one of eight mask-
able tag breakpoint appears on the address bus, the microcontroller receives an
interrupt while processor and coprocessor are stopped in the same cycle. Then,
user is able to read the memory map.

The hardware breakpoint are also used for the time measurement. One of the
MC68332 timers is triggered by the tag RAM. Each can be used either for t ime
measurement or for debugging. The state of the system bus during a breakpoint
event is stored in a register which can be read by the micro controller.

4 D e s i g n F l o w

The result of the partitioning process in COSYMA consists of software for a
processor core, and a coprocessor. For the software parts, COSYMA generates
ANSI-C code which is then compiled.

As an output of high-level synthesis ([2],[3]), the coprocessor is described as
a logic level netlist in SLIF format. This netlist is a technology independent
description which has to be partit ioned into the four bit-slices (fig. 4). Each slice
uses a local copy of the hierarchical netlist description where all bits belonging
to different slices are removed. This is currently done on text level by a script
written in "perl". While this works well for the data path, special care has to
be taken not to remove signals entering or leaving the controller or crossing
bit-slices.

The description of modules like ALUs, RAMs, ... is extended by those signals
necessary for the interconnection of the bit-slices. This happens already before
partitioning. Because of a predefined set of interconnections, only a fixed set of
signals (5) from data path is available in the controller.

After a translation to Verilog, logic optimization is done by the Synopsys
system on each of the FPGA-netlists separately. At this point VHDL models of
the ALUs and the barrel shifter are included. The synthesized slices are mapped
to the FPGAs. The output of the Xilinx tools is a bitstream, which is then
downloaded to the FPGAs controlled by the MC68332.

257

logic-netlist (SLIF) I

Bitstream] I Bitstream I I Bit~tream I I Bitstream I
Slice 1 Slice 2 Slice 3 Slice 4

Fig. 4. The design flow

5 Future Directions
Now, the system is completed as wire-wrap prototype, which is clocked at 10
Mttz. We are going to build a 30 Mttz version using multilayer PCBs. One
problem of the system is the capacity of the XILINX 4010. Using four XC 4025
instead of XC 4010, an internal multiplier could be realized on the chips and a
large no. of registers.

258

We are going to extend COSYMA to small heterogeneous multiprocessor
systems. As a first extension, the Motorola DSP 96002 will be added to the pro-
totyping system. The DSP-Board will be prototyped using Apt ix interconneetion
matrixes.

6 Acknowledgement

J. Herrmann and P. Meier were responsible for the mechanical construction of
the prototyping system and H.-O. Leilich and F. Rabe gave very helpful hints
when we debugged the hardware.

References

[1] R. Ernst, J. Henkel and Th. Benner, Hardware/Software Co-Synthesis for Micro-
controllers, IEEE Design & Test of Computers, pp. 64-75, Dec. 1993.

[2] G. De Micheli et al., The Olympus Synthesis System, IEEE Design & Test of
Computers, pp. 37-53, Oct. 1990.

[3] U. Holtmann, Hierarchical Behavioural Representation in the Braunschweig Syn-
thesis System BSS, IFIP Workshop on Application of Synthesis and Simulation,
Lenggries, 25-28.8.1993.

[4] W. Ye, R. Ernst, Th. Benner, J. Henkel, Fast Timing Analysis for Hardware-
Software Co-Synthesis, Proc. of ICCD 1993, Cambridge, pp. 452-457 , 1993.

[5] LSI Logic Corporation, L64831 - SPARC Integrated IU/FPU Technical Manual,
Milpitas, Calif. 1992.

[6] Xilinx, Inc., The Programmable Logic Data Book, San Jose, Calif., 1993.
[7] Motorola Inc., MC68332 User's Manual, Phoenix, Arizona, 1990.

F P G A Based Low Cost Generic Reusable
M o d u l e for the Rapid Pro to typ ing of

Subsys tems

Apostolos Dollas* and Brent Ward and John Daniel Sterling Babcock

Department of Electrical Engineering
Duke University

Durham, NC 27708-0291
USA

A b s t r a c t . The development of a model for sub-system reuse and the
evaluation of currently available rapid prototyping platforms has led to
the development of a GEneric Reusable Module (GERM). The GERM is
a low-cost, stand-alone, reprogrammable development tool designed for
prototyping digital subsystems. The GERM, and associated templates,
aid the designer in rapidly prototyping and reusing subsystem designs.
The GERM addresses also the introduction of students to FPGA technol-
ogy in an environment which they can continue to use for more complex
designs. Extensions of the GERM include combining multiple GERMs
together to prototype larger subsystems and systems. The system was
used successfully in computer engineering courses at Duke University.

1 I n t r o d u c t i o n

Decomposit ion of a system into functional blocks, or subsystems, is one of the
more common approaches used to manage designs of complex systems. By di-
viding a system into small functional blocks, multiple designers and /o r groups
can focus on developing and testing specific subsystems [5, 2]. Tested, verified,
and documented subsystems are ul t imately integrated into a complete system
for fabrication and delivery.

The subsystems created for a design can, in many cases, be reused in future
systems and by other designers. Subsystems are often reusable in their original
%nn, but in some instances, modifications to an existing design yield a newer
and more applicable subsystem to meet a designer's requirements. The reuse of a
subsystem will effectively save the designer t ime by eliminating the t ime needed
to create the subsystem, and will ul t imately lead to more rapid prototyping
of systems. In the context of well parametr ized design spaces, knowledge based
CAD tools for rapid system prototyping have been successfully demonst ra ted [3,
4]. In an effort to establish the role of reusable subsystems in the more general
case of rapid microelectronic system prototyping, a model of the design process
was developed, shown in Figure 1.

* Now at the Technical University of Crete, Greece, dollas~eed.tue.gr

260

Available
Sul,sy~ms

[

"lost and 1 | Verify
~__ Subsystem

f Evaluate Applicabl©
Subsysteans

I Evaluamd
Subsystem(s)

1
Understand Usc of

Subsyst~m(s~

Docum~at]
- Subsystem Ro]e in

System
t

Teat and

Submit
Modified or New

SubCSyst*m

~~late t

Inc, orpoeat¢)
Subsyst*m
/ato Syatcm

Sys~m J

I

Verify
System

Fig. 1. Flow Diagram of Subsystem Reuse

At Duke University, we have studied issues of rapid system prototyping in
academia [11, 10]. This paper presents results from an on-going research effort
on rapid system prototyping through increased subsystem reusability. After de-
veloping a model for subsystem reuse [16], we determined that we needed an en-
vironment and hardware platform to rapidly prototype subsystems. We desired
the option of designing subsystems using schematic capture, logic description,
or behavioral code (such as VHDL [13, 6]), and then mapping the design into an
FPGA based reprogrammable prototyping hardware system [15]. To determine
the best platform to use in our research, we investigated and evaluated three
FPGA prototyping environments.

Of the available pro*otyping environments, we evaluated the Anyboard [8,

261

9], the BORG [7], and the Protozone [12]. These boards represent prototyping
systems which provide a low to med ium level of reprogrammable resources, as
opposed to Quickturn [17] and Splash [1] which have a high level of resources.
The results of the evaluations are shown in Table 1. The results are reported in
terms of High, Medium, and Low. The Anyboard and BORG boards are both
mul t i -FPGA prototyping systems allowing for larger designs to be developed
whereas the Protozone is a single-FPGA prototyping system.

Criterion and Platforms

Criterion Anyboard[BORG [Protozone

Expected Ease of Use

Hardware Resources H
Experimentat ion Tool H to M

M
M Use of Standard Software

Cost M
Availability L

HW(SW) Support L(M)
Documentat ion H

M t o H L
H t o M tt

H H
H H
M L
M H

H(H) M(H)
H M

H:High M:Medium L:Low

T a b l e 1. Evaluation Results

After evaluating available prototyping systems, we determined that a hard-
ware tool targeted specifically at subsystem development was needed to further
study subsystem reuse. We desired a low cost, easy to use, and stand alone
prototyping tool which would double as an educational aid in teaching under-
graduates about F P G A technology and issues of reprogrammabi l i ty and system
prototyping. The ease of use of the Intel FLEXlogic family and its development
environment [14] at the entry level was coupled with a slow learning curve to
transition to Xilinx FPGA technology, and we determined that we needed a vehi-
cle for easy introduction to FPGA technology in the Xilinx environment, which
we use in more advanced applications (and more advanced classes). Thus, the
GEneric Reusable Module (GERM) was designed with minimal components,
connectors, and complexity as an experimental platform to study subsystem
reusability and as an educational platform to introduce students to F P G A ' s at
the sophomore level.

2 C u r r i c u l u m U s a g e

The GERM has been used as an instructional tool for introductory digital design
courses. We use it as a lab kit to introduce students to F P G A technology, re-
programmable hardware, subsystem design, and rapid system prototyping. The

262

GERM is also used to prototype and test subsystem designs which may then be
connected together to prototype larger subsystems. The GERM board was de-
veloped in prototype, wirewrapped form in 1993, and in small scale production
with printed circuit boards in early 1994.

GERMs have been used in undergraduate and graduate courses at Duke
University, starting in the spring semester of 1994. The board supplements the
current lab kit used in the sophomore level EEl51, Introduction to Switching
Theory and Logic Design, and it was also used in the senior/graduate level
EE254, Fault-Tolerant and Testable Systems 2. There are plans to use it also
in EE251, Advanced Digital System Design, and EE261, Introduction to VLSI
Design. The GERM can aid research into reusability because it is simple enough
to use at the entry level and it will facilitate understanding of reusability issues in
a realistic environment on realistic projects. We expect the GERM, its tools, and
its design procedures to further aid the undergraduate and graduate students in
the upper level courses where complex hardware design projects are expected to
be produced in a semester. More advanced tools and facilities available to these
students include BORG II boards and a dedicated F P G A laboratory.

3 G E R M Design

A layout diagram of the GERM is provided in Figure 2, a list of the components
in Table 2, and the header-pin designations in Figure 3. Although not shown in
Figure 2, the board also has a header for serial downloading, which is very useful
during design development and debugging. It turns out that the serial download
cable is also very useful for class usage due to the larger number of available
development systems (workstations, PC's) than EPROM programmers.

GERM Components
1 XC3030PC-50 Xilinx FPGA
1 AMD2764 Advanced Microdevices EPROM
4 26 Pin Male Header Connector
1 Red LED Power Indicator
11 Green LED GO Indicator
3i 5 kohm Resistor Pull-Up
2 200 ohm Resistor Voltage Drop
1 SPDT Switch Power Switch
1 10uF Capacitor Bypass Capacitor for Power/GND Pins

T a b l e 2. Components of the GERM

2 For simplicity, the initial classroom use of the GERM was with the serial download
cable and not the EPROM

263

FPGA Generic Reusable Module

FPGA "Programmed" LED

"Power On" LED

Power Switch

Header Connectors 26 pins each

Socket for EPROM 28 pin

/

XC3030

EPROM > 22,176 kbits

Header Connectors 26 pins each

Fig. 2. Block Diagram of GERM

Key Notch

/

25 23 21 19 17 15 1 / 1 1 9 7 5 3 1

i iiiiii!!i!ii}iiiii!!i!i!)iiiiiiii !!!ii!iii!iii!?i !iiill eJ
26 24 22 20 18 16 14 12 10 8 6 4 2

I-GND
2-NC
3-12 Basic I]O
13-20 Advanced I/O
21-TCLK
22-NC
23 -/RESET
24-DONE
25-Vdd
26-NC

(View Looking Into Male Connector)

Fig. 3. Profile of Standard GERM Header Connector

264

Through the use of these standardized headers, connecting an array of GERMs
or a GERM to another subsystem module is quick and well defined. A user may
use 26 conductor ribbon cables with keyed header connectors, or single jumper
wires. The Red LED indicates that the power is ON and the Green LED indi-
cates that the FPGA has completed loading the configuration information from
the EPROM. The GERM is approximately 3"x3.5" (7.62cm x 8.89cm).

Some attributes of the GERM include the following:

1. It has been designed primarily with the introductory level digital designer
(the student) in mind. The GERM is to supplement current lab kits consist-
ing of discrete T T L and GAL chips and wires.

2. It provides a simple development platform intended to prototype and emu-
late subsystems.

3. It is portable and low-cost, enabling students to potentially develop designs
and circuitry in their dorm rooms as well as in the laboratory.

4. Many of the GERMs (each with a different subsystem configuration) can be
connected together to develop more complex systems.

5. It provides a means of gradual transition from lower level subsystem design
to higher level system design in the computer engineering curriculum.

6. The use of a regular EPROM rather than the once-programmable serial
PROM allows for standalone operation (without a download cable) and
reusability of the board itself without the expense associated with the PROM's.

4 G E R M Design Process

Some experimental designs, to be discussed in Section 6, have been developed
to demonstrate the capabilities and applicability in teaching undergraduates
reusability and digital design with FPGA's.

Prototyping a digital design with a GERM board requires that a user have ac-
cess to a schematic capture package (e.g. DATA I/oWMFutureNet or Viewlogic T M

Viewdraw) or a behavioral description language (i.e. VHDL). The user designs
the subsystem and then compiles the schematic into a bit file through the Xil-
inx Logic Cell Array suite of tools. The bit file is then programmed into the
EPROM. Once the EPROM is programmed, it is placed in the ZIF socket on
the GERM and power is turned on. The FPGA programs itself with the user
design and the Green LED turns on to indicate that the design is loaded and
ready to be tested. The steps in using the GERM are summarized below.

1. Schematic Capture or Logic Description of Circuit
2. Define Input and Output Pins
3. Compile Design Using Xilinx Tools
4. Program EPROM with . b i t file
5. Insert EPROM in ZIF on GERM
6. Turn on Power
7. Wait for Green LED "GO"
8. Exercise Circuit Through Connectors

265

Alternatively to the last steps, the serial download cable option can be used
on the GERM for downloading in a similar fashion to existing boards (e.g. the
Xilinx demonstration boards).

5 T e m p l a t e s

We have found, in working with students and with other researchers, that tem-
plates (or prototype files) and tutorials are extremely valuable to the novice de-
signer. Templates and basic tutorials greatly reduce the amount of time typically
required to "get up to speed" when using such tools as Powerview, ABEL TM,
VHDL, writing code in C, documenting systems or subsystems in LATEX, and
when reusing or creating new subsystems. Templates also provide a means for
standardizing code design and documentation.

The templates we provide designers are typically "generic" in nature and
supply the user with basic information and examples that the user may quickly
modify to match his/her needs. The templates include those for documenta-
tion (LATEX), logic description (ABEL), behavioral description (VHDL), code
development (C), and directory structure usage (tempdir). These files and direc-
tory structure can all be copied into the user's directory and modified, or they
can be used as a reference for determining the proper usage of commands and
struct.ures. Thus, consistency with other designers' documentat ion and coding
tbrmats is maintained with little effort from the designer, and the time required
to document and encapsulate designs is reduced as well. We have found that
reusability at the subsystem level is hampered not only by the lack of proper
tools, but also the mentality of the designers. The use of the GERM starting
at the sophomore level and continuing through the senior level will facilitate
reusability as designs will become of increasing complexity and thus require the
use of previous ones (e.g. see experiment 2 in Section 6.2, which uses the circuit
of experiment 1 in Section 6.1).

Templates describing a subsystem can be quickly modified and mapped into
hardware for testing. Using established and supported facilities from both View-
logic and Xilinx, we are able to quickly define a subsystem, simulate it, and then
map it into the GERM for evaluation and connection to other subsystems.

6 E x a m p l e D e s i g n s

Two of the primary designs used as examples for introductory level digital de-
signers are described below. The first is an entry-level laboratory exercise that is
designed to introduce the student to the schematic capture tools and the overall
design process. The second is a more advanced laboratory exercise, designed to
introduce the student to more complex circuitry and subsystem reusability.

266

6.1 E x p e r i m e n t 1: S i m p l e Circuit

A simple circuit with a binary to seven segment converter is designed, with a
debounced switch to be used as a manual clock input, a counter, and combi-
national circuitry to generate 7-segment LED display information. The circuit
counts backwards through the sequence 3-2-1-0-3 etc. The binary data from the
counter is converted into segment display information and sent off chip to a
7-segment LED display. The basic circuit schematic for the F P G A is shown in
Figure 4.

Schematic for Simple Circuit
Experiment #i

p48 ~Dz

, - b £ E , P o 3

This circuit requires an input clock.

TWO T--Flops a r e used to create a counter.

Combinational Logic is used to generate

the correct outputs.

The outputs are passed off the chip to --~

appDopriate LED's in a 7--segment display. --

Fig. 4. Schematic of a Simple Lab Circuit

The circuit introduces a beginning student to the concepts of switch debounc-
ing, counters, combinational logic, seven segment LEDs, FPGAs, and rapid pro-
totyping without requiring the student to spend an hour or so breadboarding
the circuit using discrete chips.

6.2 E x p e r i m e n t 2: A d v a n c e d Circuit

This more advanced circuit combines data registers, LED multiplexing, BCD
to seven segment decoders, timers, clocking, and switch debouncing. The cir-
cuit also requires finite state machines, combinational logic, and requires power
considerations when driving LEDs.

The student is required to develop a display driver, taking as input (se-
quentially) four 4-bit hex numbers, and driving four 7-segment displays in a

267

multiplexed fashion, as is typically done in calculators. The numbers are entered
in a four element deep, 4-bit wide FIFO. The student has access to a BCD to
seven segment decoder from the parts library. The inputs to the chip include
4 bits of register data, 1 clock for clocking the registers (debounced), and one
clock (jmnpered) for either the user to manual ly clock across the seven-segment
LED's or a 555 timer to clock across them. The outputs consist of seven bits
to indicate values for the segments of the seven-segment displays, and four bits
to provide power to the common anodes of each of the displays. The advanced
circuit schematic for the F P G A is shown in Figure 5.

A deliberate goal of these exercises is to introduce reusability as a concept
in rapid system prototyping. Reusability is more than the existence of libraries
of designs, and includes s tandardizat ion of documentat ion and the methodology
that new designs require the use of previous ones. Indeed, the design component
in this exercise is "how" to use registers, 7-segment display drivers, and other
designs, together with a newly designed finite state machine in order to complete
the design.

S c h e m a t i c for A d v a n c e d Circuit

E~p~r~nr #2

I[~:"" h
. . . . = " ° "

, ii , - . . : , P ° .

)p5~

W ~ o n ~ ; h o r e g i s t e r c l o c k r i s e s a l l r o q i . t o r l ~ f o r m a t i o n a d v a n c e s .

r h ~ ~ a × a ~ D . ¢ o o ~ 8 t h e B e D t o S . v . n S o g m o ~ = .

Fig. 5. Schematic of an Advanced Lab Circuit

7 E v a l u a t i o n

Due to its minimal configuration, the GERM lacks many of the advanced features
of the larger systems. Some of the l imitations and capabilities of the G E R M are
discussed below.

268

GERM
Criterion Evaluation

Hardware Resources Low
Potential as an Exper imentat ion Tool High

Expected Ease of Use High
Use of Standard Software High

Cost Low
Availability Low

Hardware Low
Software Support High

Documentat ion High

T a b l e 3. GERM Evaluation

7.1 L i m i t a t i o n s

- Users must manually part i t ion large designs into multiple GERMs and then
manual ly interconnect the GERMs to form larger networks.

- The interconnection of the modules can be done using GERMs as routers,
however, this process requires a separate design for each of the GERMs.

- There is a small number of inpu t /ou tpu t signals on each cable (18), which
may require multiple cables to be used between GERMs to fully implement a
large design. The pin l imitation is more evident in da tapa th and bus designs.

- The GERMs do not have protective circuitry on the programmable in-
p u t / o u t p u t pads, and therefore the user must be careful when intercon-
necting modules.

7.2 C a p a b i l i t i e s

- The GERM can be programmed using either schematic or behavioral de-
scriptions.

- It is easy to use, well-characterized, and needs little documentat ion to de-
scribe its functionality and use.

- The design of subsystems can be kept within the Xilinx design environment
if desired or developed using Viewlogie tools and then converted through
Xilinx utilities.

- GERMs can be programmed to act as many different subsystems and then
connected together to form a larger subsystem or system.

- In addition to the Viewlogic front end tools, the Synopsys synthesis tools can
be used as an alternative design pa th with language (VHDL) rather than
schematic design entry.

A s u m m a r y evaluation of the GERM with the same criteria as other small
scale F P G A based boards is in Table 3.

269

8 Conclusions

We have found the reuse of subsystems useful in rapidly prototyping new sub-
systems and systems. The development and fabrication of the GERM board has
facilitated research on reusability of subsystems.

The GERM is portable, small, and reprogrammable , and it serves an in-
structor as a simple, low-cost introductory teaching tool. The behavior of the
GERM can be quickly changed by swapping EPROMs and at tached modules.
Thus, the GERM acts as a generic building block for subsystem prototyping and
development.

Although the boards are newly developed, they have already been used in
two Duke University classes at the Depar tment of Electrical Engineering during
the spring semester of 1994. Initial usage was limited to the serial downloading
of student designs, but in the future the EPROM downloading will also be used.

In the filture, GERMs using XC4000 series chips will be constructed to pro-
vide more user I /O and more internal programming resources. The GERM may
eventually be equipped with an on board selectable clock, manual clock but-
ton, and Electrically Erasable PROMs. Sample GERM boards are available for
distribution and evaluation with tutorials, demonstra t ion designs, design files,
teml~lates, and user manuMs from Duke University Electrical Engineering De-
1)a.r tment.

9 Acknowledgements

Wc would like to acknowledge the National Science Foundation for support ing
our research in reusability and rapid system prototyping through grant MIP-
92(19866 and for flmding a Field Programmable Gate Array Labora tory through
grant DUE-9351480. The printed circuit boards were also flmded by the Na-
t.i(mal Science Foundation through the MOSIS service. Mr. Larry Calhoun of
AMD Corporation and Mr. David Lain of Xilinx Corporat ion helped us greatly
with generous part donations from their coinpanies. We appreciate the interest
and efforts of Professors John Board and Pete Marinos from the Electrical En-
gim'ering Depar tment at Duke University who used the GERM in their classes
and provided us with valuable feedback, and Professor David Overhauser from
the same Depar tment who contributed substantially to the project with many
suggestions for improvements and assistance with CAD tools.

References

1..l. Arnold, D. Buell, and E. Davis. Splash 2. Proceedings, ~th Annual A C M Sym-
posium on Parallel Algorithms and Architectures, pages 316-322, 1992.

270

2. A. Asur and S. Hufnagel. Taxonomy of Rapid-Prototyping Methods and Tools.
In Proceedings, The Fourth IEEE International Workshop on Rapid System Pro-
totyping RSP-93, pages 42-56. Computer Society Press, 1993.

3. W. P. Birmingham, A. P. Gupta, and D. P. Siewiorek. The MICON System for
Computer Design. IEEE Micro, 9(5):61-67, October 1989.

4. W. P. Birmingham, A. P. Gupta, and D. P. Siewiorek. Automating the Design of
Computer Systems: The MICON Project. Jones-Bartlet t , 1992.

5. F . P . Brooks, Jr. The Mythical Man-Month, Essays in Software Engineering.
Addison-Wesley, 1972.

6. R. Camposano, L. F. Saunders, and R. M. Tabet. VHDL as Input for High-Level
Synthesis. IEEE Design and Test of Computers, 8(1):43-49, March 1991.

7. Pak K. Chan. BORG: A Field-Programmable Prototyping Board: User's Gukde.
Technical report, University of California at Santa Cruz, 1992.

8. D. E. Van den Bout, O. Kahn, and D. Thomae. The 1993 AnyBoard Rapid-
Prototyping Environment. In Proceedings, The Fourth IEEE International Work-
shop on Rapid System Prototyping RSP-93, pages 31-39. Computer Society Press,
1993.

9. D. Van den Bout, J. Morris, and D. Thomae et al. AnyBoard: An FPGA-Based,
Reconfigurable Systenl. IEEE Design and Test of Computers, pages 21-29,
September 1992.

10. A. Dollas. Experimental Results in Rapid System Prototyping with Incomplete
CAD Tools and Inexperienced Designers. In Proceedings, The Second IEEE Inter-
national Workshop on Rapid System Prototyping RSP-91, pages 9-16. Computer
Society Press, 1992.

11. A. Dollas and V. Chi. Rapid System Prototyping in Academic Laboratories of the
1990's. In Proceedings, The First IEEE International Workshop on Rapid System
Prototyping RSP-90, pages 38-45. Computer Society Press, 1991.

12. Abbas E1 Gamal. Protozone: The PC-Based ASIC Design Frame - User's Guide.
Technical report, Stanford University, Stanford, California, 1992.

13. IEEE Computer Society Press. IEEE Standard VHDL Language Reference Man-
ual, IEEE Std. 1076-1987, 1987.

14. Intel Corporation. PLDshell Plus/PLDasm User's Guide, 1993.
15. S. H. Kelem and J. Seidel. Shortening the Design Cycle for Programmable Logic

Devices. IEEE Design and Test of Computers, pages 40-50, December 1992.
16. B. T. Ward. An Experimental Study in Subsystem Reusability Toward Rapid

Prototyping of Microelectronic Systems. Master 's thesis, Department of Electrical
Engineering, Duke University, 1993.

17. Howard Wolff. How Quickturn is Filling a Gap. Electronics, page 70, April 1990.

FPGA Development Tools:
Keeping Pace with Design Complexity

Bradly K. Fawcett and Steven H. Kelem

Xilinx Inc.
San Jose, CA, USA

Abstract . As the density and complexity of FPGA-based designs
increases beyond 10,000 gates, highly-integrated and automated
development tools are required. Several recent trends in development
system capabilities are helping designers keep pace with growing design
complexity, including FPGA-specific logic synthesis, increased design
portability, improved design implementation tools, support for system-
level simulation, and framework integration.

FPGAs have created a unique requirement for CAE software; their tools must
deliver the ease-of-design and fast time-to-market benefits that have popularized FPGA
technology, must be capable of implementing high density logic designs on an
engineer's desktop system, and, in order to service a broad market, must be easy-to-use
and compatible with the user's existing design environment. Several recent trends in
FPGA development system capabilities are helping designers meet the twin
challenges of growing design complexity and increasing time-to-market pressures.

As with other logic technologies, the basic methodology for FPGA design consists
of three inter-related steps: entry, implementation, and validation (Figure 1). The
design process is iterative, returning to the design entry phase for correction and
optimization. Typically, generic tools are used for entry and simulation, but
architecture-specific tools are needed for implementation.

Design Entry !
I "

Schematic Entry

Text-Based Entry

Functional Simulation

Timing simulation

(Back-annotation)

Design Implementation

b, , . ._ I

Design Validation

Simulation

In-circuit Validation

FPGAs EPLDs

Map, Place, & Route Partition, Map, & Interconnect

Figure 1. The basic FPGA/EPLD design methodology consists of three steps:
entry, implementation, and validation.

272

1 Design Entry

Entry methods for FPGA design include schematics (using graphics-based schematic
editors) and behavioral entry (requiring FPGA "fitters" - device-specific tools that
optimize the logic to fit the target FPGA architecture).

For high-density FPGA designs, gate-level entry tools often are cumbersome, and
the use of logic synthesis and high-level description languages (HDLs), such a s

VHDL or Verilog-HDL, can raise designer productivity. However, for a top-down,
HDL-based design methodology to be useful, the synthesis tools must be effective in
producing a gate-level design optimized for the target technology. Optimization
algorithms for fan-in limited, lookup-table based architectures such as the Xilinx
FPGAs are dramatically different than the algebra-based algorithms used for gate
arrays. In this respect, logic synthesis for FPGAs is still an emerging technology.

Most FPGA development systems support hierarchical design entry; these
development systems can combine hierarchical elements that are specified with
multiple design entry tools, allowing the most convenient entry method for each
portion of the design.

The ability to easily port a design to different device architectures provides several
advantages to the system designer: the technology choice can be postponed until
later in the development cycle when requirements are better defined, design migrations
to reduce cost during the life of the product (such as migrating from an FPGA to a
gate array) are simplified, and portions of the design can be easily re-used in future
products, even if those products use different technologies. Ideally, new product
development should be able to take advantage of the latest devices and technologies
without having to duplicate earlier development efforts to re-use proven portions of
previous designs.

In the past, users often had to make the technology decision (for example, choosing
between an EPLD and an FPGA architecture) as the first step in the design process at
the beginning of the design entry phase. Two recent developments have changed this
scenario: the advent of design synthesis tools optimized for programmable logic
architectures, and the development of 'universal' schematic libraries that support
multiple device architectures. A design described in an HDL can be 'technology-
transparent', relying on synthesis compilers to map the logic into the targeted
technology automatically. The "Unified Library" of the new XACT TM 5.0
development system from Xilinx typifies the advances being made in the development
of 'portable' schematic libraries. All primitives and macros common to two or more
Xilinx device families are consistent in name and appearance. Thus, migration of a
design from one family to another requires a change of only the compilation target
and, if needed, the editing of any family-specific symbols used in the design.

2 Design Implementation

After the design is entered, implementation tools map the logic into the resources
of the target FPGA's architecture, determine an optimal placement of the logic, and
select the routing channels that connect the logic and I/O blocks, Design
implementation tools apply a high degree of automation to these tasks. These tools
tend to be unique to each FPGA architecture, but should have a smooth interface to
their supporting cast of entry and validation tools.

273

Xilinx's automated implementation tools typify the advances being made in this
field. An automatic design compilation utility, XMAKE, retrieves the design's input
files and performs all the necessary steps to create the FPGA configuration program:
translating the input files to the Xilinx Netlist Format (XNF), merging together the
elements of a hierarchical design, deleting unused logic, mapping the design into the
FPGA's logic resources, placing and routing the logic and I/O blocks, and generating
the configuration program.

The automated partition, place, and route algorithms are timing-driven; that is,
timing analysis of the signal paths within the application is performed during the
placement and routing of the design. Users can specify performance requirements
along entire paths in an FPGA design (as opposed to the traditional method of
assigning "net criticality" to individual nets), and the implementation programs use
this information to guide the placement and routing process.

Optionally, user-designated partitioning, placement, and routing information can be
specified as part of the design entry process (typically, right on the schematic). The
implementation of highly-structured designs can greatly benefit from the basic
floorplanning techniques familiar to designers of large gate arrays.

3 Design Validation

Validation (testing) of FPGA designs typically is accomplished through a
combination of in-circuit testing, simulation, and static timing analysis. The user-
programmable nature of FPGAs allows designs to be tested immediately in the target
application. However, as designs increase in density and complexity, the number of
circuit paths that may have timing problems increases, and timing simulation
becomes an invaluable tool. To support timing simulation, FPGA implementation
tools include timing calculators to determine the post-layout timing of implemented
designs, including the actual delays of routing paths. This information is annotated
into gate level libraries for full timing simulation. To manage increasing design
complexity better, a growing number of users employ board-level and system-level
simulation spanning multiple device types, in addition to simulating each FPGA on
its own. Alternatively, static timing analyzers examine a design's logic and timing to
calculate the performance along signal paths, identify possible race conditions, and
detect set-up and hold-time violations, without requiring user-generated input stimulus
patterns or test vectors. However, most users limit the use of static timing analysis
to fully-synchronous designs only; the technique is difficult to apply accurately to
asynchronous circuits.

4 F r a m e w o r k s A n d Too l I n t e g r a t i o n

The typical FPGA development environment includes a mix of generic design tools
and architecture-specific implementation tools. Ideally, these tools are molded into an
integrated, easy-to-use development environment. Most FPGA vendors provide their
own design management software. However, more-tightly integrated tool sets are
now available. For example, Viewlogic Systems, Cadence Design Systems, and Data
I/O are among the CAE vendors that package, sell, and support design kits that
provide full front-to-back design capabilities by melding FPGA vendors'
implementation tools into their own frameworks.

Meaningful Benchmarks for Logic Optimization of
Table-Lookup FPGAs

Steven H. Kelem

Xilinx, Inc.

Abstract. This paper discusses benchmarks for optimization to table-lookup
FPGAs. We discuss a scientific method for systematically generating a set of
benchmarks for measuring the effectiveness of a synthesis tool/algorithm for a
particular F P G A architecture. The benchmarks have the useful properties of
being generated easily, having an a priori, known best result, covering all the
possible configurations of a lookup table, and yielding a simple metric. This
metric can be used to compare different synthesis tools/algorithms for their effi-
ciency in mapping to a given FPGA architecture. This is in contrast to the ad hoc

sets of benchmarks, for which it is difficult to compare results of different opti-
mization tools/algorithms.

1 I n t r o d u c t i o n

This paper discusses benchmarks for optimization to table-lookup FPGAs. We discuss
a scientific method for systematically generating a set of benchmarks for measuring
the effectiveness of a synthesis tool/algorithm for a particular FPGA architecture.
Logic optimization is a technique (set of algorithms) that was originally developed for
reducing the number of product terms in a PLA. These algorithms have been modified
or re-designed to reduce the number of resources required to implement a circuit or set
of equations in architectures other than PLAs. These include multi-level PLAs[1], fine-
grained architectures such as gate arrays, and medium-grained architectures such as
table-lookup FPGAs[2]. A minimal set, or "kernal", of 4-input functions have been
discovered for technology mapping of FPGAs[3], but the results of thi s mapping has
not yet been compared to existing techniques.

To measure the effectiveness of an optimization tool/algorithm designs should be run
through the tool/algorithm, once for delay optimization, and once for area optimiza-
tion. Then the resulting circuit size and delay can be measured for each optimization
criterion. Then a metric derived from these measurements can be used to compare dif-
ferent optimization tools or algorithms, or to tune a given algorithm.

The approach we take is a statistical one, where a large number of samples from the
space of meaningful configurations for the tables in the table-lookup FPGA. This has
the effect of not being biased towards any particular benchmarks, and thus more accu-
rately predicts how an optimization tool will perform on real designs.

275

2 T a b l e - L o o k u p F P G A Arch i t ec tures

The CLB in Xilinx' 4000-series FPGA contains two, independent, 4-input table-
lookup Function Generators, F and G. The CLB can be configured so that the outputs
of F and G are inputs to the 3-input Function Generator, H. (The third input to H may
be a primary input to the CLB.) In this mode any function of five variables can imple-
mented. Because the eight inputs to the two 4-input Function Generators are independ-
ent of one another, some Boolean functions of up to nine variables can be implemented
in one CLB. These include many useful functions, including the 9-input
exclusive OR, which, without the TLU architecture, would be expensive to implement.

2.1 Number of Unique Functions

The number of functions that can be realized in the table-lookup architecture can be
determined as follows. The n-input table-lookup function generator is a 2 n -bit RAM.
The numbe~i of possible values, and therefore the number of possible functions, in the

2 4 RAM is 2 . The -input funcUon generators can implement 65,536 functions, the 5-
input function generators 4,294,967,296. The 4K CLB has 40 bits in the RAM CLB,
and can implement 1,099,511,627,776 functions.

The number of functions that the CLBs can implement is large, however, many of the
functions are degenerate--some of the inputs to many of the n-input functions are not
necessary. For example, the 5-input CLB can implement all Boolean functions of 1, 2,
3, and 4 variables. In particular, a 5-input CLB with one unused input can implement a
4-input function f as f(a,b,c,d), fla,b,c,e), f(a,b,d,e), f(a,c,d,e), or flb,c,d,e), depending
on which of the five inputs to the CLB is not taking part in the function.

Wc can calculate the number of degenerate and non-degenerate n-input functions for
arbitrary n 1. Table 1 shows the number of degenerate and non-degenerate n-input func-
tions for n from 0 to 6.

Table 1, Numbers of Non-Degenerate n-Input Functions

n

0

1
2

3

4

5

6

degenerate # non-degenerate Total % degenerate

0 2 2 0%
2 2 4 50%

6 10 16 37.5%

38 218 256 14.8%

942 64,594 65,536 1.44%

325,262 4,294,642,034 0.00769%

25,768,825,638 18,446,744,047,
940,725,978

4,294,967,296

18,446,744,073,
709,551,616 1.4x10 -7

1. There is an elegant proof of this, but these margins are insufficient to hold
it. Contact the author for details.

276

3 Generating Test Cases

Because l~e number of possible functions realizable in a Table-Lookup Architecture is
large (2 2), enumerating all of them is impractical. Our goal is to generate a large
number of test cases by statistical means. We want to generate test cases for which we
know the desired result a priori. First we generate all possible configurations of a sin-
gle CLB in a TLU, then we see how to generate predictable multi-CLB configurations.
From the analysis alluded to in the previous section, we know how many n-input func-
tions are realizable, and how many of the functions are degenerate. Further, we wish to
generate only/-input functions for an n-input CLB, for 0 _< i _< n. So it is important to
be able to detect when a randomly-generated test case does not meet the desired condi-
tions.

Given a truth table for a n-input function, we wish to be able to detect which, if any,
input variables are not used in the function. The method for doing this can be deter-
mined by examining a truth table for symmetry. Symmetry can be detected in time pro-
portional to size of the truth table. If T is the size of the truth table, this time is
o (TlogT) • Because T = 2 n , the siz 9 of tl~e truth table is exponential in the number of
inputs, n, to the CLB. This time is o~ n2").

3.1 Generating Test Cases for a n-Input Function Generator
The procedure for generating test cases for a n-input Function Generator is to generate
n-input truth tables randomly. A truth table is represented as a 2" -bit configuration of a
CLB. The first bit in this configuration corresponds to the truth table entry for all
inputs=0, the last to the entry for all inputs=l. When an n-input function is desired, we
use the symmetry-detecting procedure to check whether any of the input variables are
unused. If any are unused, then the configuration is rejected and another is chosen ran-
domly and subjected to the same test. Once a configuration is chosen which meets the
desired conditions, the test case can be written in the desired format.

4 Conclusion

We have discussed a method for evaluating the complexity of a randomly-generated
logic minimization test cases with an a priori optimal result. This provides a statistical
basis for test cases that can be used to compare logic optimization programs. The
results observed with these test cases correlate well with real logic designs.

References

1. Karen A. Bartlett, et al: Multilevel Logic Minimization Using Implicit Don't
Cares. IEEE Transactions on Computer-Aided Design of Integrated Circuits,
7(6): 723-740, June 1988.

2. Stephen D. Brown, et al: Field-Programmable Gate Arrays. Kluwer Academic
Publishers, Engineering and Computer Science Series. Boston, 1992.

3. Steve Trimberger: A Small, Complete Mapping Library for Lookup-Table-Based
FPGAs. In the 2nd International Workshop on Field-Programmable Logic and
Applications. IFIP Working Groups 10.2 and 10.5, August 1992

Educational Use of Field Programmable Gate Arrays

David Lain
University Programs

Xilinx, Inc.
2100 Logic Drive,

San Jose, CA 95124

Abstract. Traditionally, digital logic designs in undergraduate courses are
described o n paper and implemented with TTL SSI/MSI components. These
standard logic devices have proven to be an inexpensive approach, but require
"wirewrapping " and other similar means of circuit board assembly; as a result, a
significant portion of the students' effort is focused on completing and debugging
the physical connections between devices. This paper describes an alternative
approach using Field Programmable Gate Arrays that avoids these assembly
issues, allowing the students to focus on the logic design process, with the added
benefit o f exposing the students to the use of modern CAE tools.

Since its introduction by Xilinx in 1985, the FPGA has played a major role in
revolutionizing digital system design. The flexibility of the architecture and the ease of
use of the software make F l e a devices an ideal choice for a wide range of applications.
In undergraduate education, FPGAs are used in courses ranging from first-year
introductory levels to senior design projects. Multiple TIT, components can be integrated
into a single FPGA, eliminating the need for wirewrapping and allowing the students to
focus on their designs.

In the past, digital courses with labs required students to purchase kits that contained
standard logic devices The purpose of the lab assignments was to reinforce the concepts
learned during lecture and to actually build what was described on paper. For small
design projects using less than a handful of components, the objective was normally met.
The problem surfaced when building large designs using multiple components. The task
of wirewrapping was excessively tedious and time consuming. Time spent on debugging
the wirewrapped connections increased enormously. The emphasis of the project was no
longer on digital design, but on wirewrap debugging techniques.

Design Flow

Traditionally, logic design was done with paper and pencil and implemented with
discrete components and wires that connected the various devices in the system. The
design flow required much attention to detail and was subject to a wide margin of error.
Documentation was limited to the design on paper and any associated notes written by
the designer. The FPGA allows designers to view their project from a system-level
perspective. Designing with FPGAs eliminates the arduous task of debugging large

278

wirewrapped circuits. Designs are either entered using a text-based language or a
schematic editor, or a combination of both.

The FPGA design cycle consists of three basic steps: entry, implementation, and
verification. The open architecture of the FPGA implementation software allows the use
of various third-party design entry and simulation packages. The Xilinx Netlist Format is
a standard format used to interface to these packages. The simplicity of the interface has
prompted many universities to develop translation programs for their "homebrewed"
CAE tools to take advantage of the technology. Entering the design using a commercial
or public domain CAE tool set provides the designer with better documentation, a
platform to functionally simulate prior to technology mapping, greater control over the
entire design process, a short development cycle, and the realization of the final design
in a standard, off-the-shelf device.

Functional and timing verification is typically performed using third-party simulation
packages and in-circuit testing. Report files and a static timing analyzer also are
available in the implementation software. Designing an FPGA can be performed easily
and quickly on a desktop computer, resulting in more complex projects done in a shorter
period of lime.

Prototyping Boards

A pr°t°typing board is a valuable tool for measuring the success of a laboratory
assignment. Student designs can be realized on a prefabricated board without having to
breadboard their circuit. The same board can be used by various design groups to
implemented projects without having to rewire the components. The enthusiasm of using
Xilinx FPGAs has led to the development of many different custom prototyping boards.

F P G A s used in Academia

There are many ways to use the FPGA technology in education. It is a perfect fit as a
learning tool for computer science and electrical engineering courses that emphasize
digital design.

Hundreds of VLSI designs are sent to MOSIS each year from universities across the
United States. MOSIS is a wafer fabrication facility funded by the National Science
Foundation. Chips are fabricated, packaged, and returned to the respective university
within eight week period. Unfortunately, a majority of the designs are not functional due
to poor design methodologies. Often, student designs are not properly tested before they
are sent to MOSIS. Turnaround time is also a problem; students may lose interest or the
school term may end before the finished product is received. Using FPGAs to prototype
designs can significantly improve yields. Every design can be fully tested in-system to
ensure that it is functionally correct. The end result is a motivated student who
understands the importance of good design practices.

At a recent NSF "Summer Workshop on Microelectronic Systems Education," a
behavioral description of a "Craps" game was described in VHDL and targeted for a
Xilinx FPGA for rapid prototyping prior to MOSIS fabrication. The design was then
compiled in ViewSynthesis with a target technology in mind. The first path was Xilinx
FPGAs for rapid prototyping. The resulting netlist from the synthesis compiler was
translated into the XNF format ready to be used by the Xilinx. The resulting binary
representation of the design was downloaded to a demonstration board for in-circuit

279

testing. Using the same source after verification, the design was retargeted to a standard
cell library and lXOcessed through the Lager/Octtools set. The Lager/Octtools public
domain tool set contains programs that translate the output file from the synthesis
compiler to a format ~,cepted by MOSIS.

Tufts University uses commercial CAE tools to enter FPGA designs in their
Introductory Digital Logic Design course. The goal of the course is to teach students
proper techniques encompassing the specification, analysis, design, and implementation
of digital logic using industrial grade tools. Students fast gained familiarity with the
CAE tools and the top-level design approach by designing a 4-bit adder/subtractor
accumulator. The second lab experiment required the students to design a traffic light
controller and download it into an XC4000 demo board. The final experiment was a
simple 4-bit microprocessor with a 4-bit data and address bus that could perform 16
instructions. Code was generated and included in the microprocessor's ROM. The
program and the design's operation were tested in-circuit.

The University of California at Davis is offering an upper level course entitled
"Synthesis Approach to Digital System Design" for graduate and senior level students.
The entire course is devoted to the challenges of design complexity and fast turnaround
time. Their choice of tools was Synopsys for VHDL synthesis and simulation and the
Xilinx FPGA devices for rapid prototyping. The emphasis of this course is to gain
"hands-on" experience with logic synthesis tools using circuits of reasonable complexity.

In a Georgia Tech computer architecture course, the MIPS RISC microprocessor from
Patterson and Hennesy's "Computer Organization and Design" text was successfully
synthesized using VHDL tools from VIEWlogic. There are plans to implement the
design in the XC4000-based BORG prototyping board in the next computer architecture
c o u r s e .

S u m m a r y

The flexibility of the architecture, and the simplicity of the design tools, make F-PGAs
the ideal technology for prototyping logic designs in the university environment. Design
implementation software in the past several years has become highly automated. Third
party tools are virtually integrated into user interfaces. A design may be prototyped by
simply invoking a command that will take a third party netlist and create a configuration
bitstream ready for downloading. Design changes can be implemented rapidly and
efficiently, and students can get immediate feedback on those changes. Little knowledge
of the FPGA architecture and implementation programs are needed to successfully
implement designs. An entire digital design project can be completed within a term. The
FPGA technology is significantly changing the way traditional logic design is taught.

HardWire:
A Risk-Free FPGA-to-ASIC Migration Path

Bradly K. Fawcett, Nick Sawyer, and Tony Williams

Xilinx Inc.
San Jose, CA, USA

A b s t r a c t . HardWire LCAs are architecturally-equivalent, mask-
programmed versions of Xilinx FPGA devices, where the programming
elements have been replaced with fixed metal connections. Built-in scan
test logic used in conjunction with automatic test vector generation
software results in 100% fault coverage. Completed FPGA database files
are used to generate HardWire LCA masks and test programs, ensuring
compatibility with the corresponding programmable device and
minimizing the engineering resources required for the conversion.

Field Programmable Gate Arrays (FPGAs) combine the density and flexibility of
mask-programmed gate arrays with the convenience and time-to-market benefits of a
user-programmable device. However, the 'overhead' of on-chip programming elements
and the circuitry to support them results in FPGA die sizes that are significantly
larger than the equivalent-density gate arrays. As a result, FPGA component prices
tend to range anywhere from three to ten times the cost of equivalent mask-
programmed gate arrays. In high-volume applications with a stable design, FPGA
users often consider migrating the design to a gate array as a cost reduction path.

However, such FPGA-to-gate array migrations are not without risk and cost.
Converting designs to a different technology will change the timing of signal paths,
and the gate array version of the design must be exhaustively simulated. Special
features utilized within the FPGA, such as three-state buffers or dedicated carry logic,
must be re-designed in the gate array implementation. Test vectors must be created
for the gate array, a task often as time-consuming as the original circuit design. In
short, the FPGA-to-gate array conversion process can be resource intensive, and
exposes the designers to all the risks that were avoided by using an FPGA initially.

These considerations led to the development of the HardWire TM Logic Cell Array
(LCA TM) families. HardWire devices are mask-programmed versions of the popular
XC2000, XC3000, and XC4000 FPGAs. In the standard FPGAs, the logic functions
and interconnections are determined by configuration data stored in static memory
cells. In the HardWire components, the memory cells and the logic they control are
replaced by metal connections. All other circuitry in the HardWire devices is identical
to the corresponding FPGA's internal circuitry. Thus, a HardWire LCA is a
semicustom device manufactured to provide a specific functionality, yet is completely
compatible with the FPGA it replaces.

1 H a r d W i r e L C A A r c h i t e c t u r e

The underlying architecture of the HardWire LCA devices is identical to that of their
FPGA counterparts, with a matrix of Configurable Logic Blocks (CLBs) surrounded

281

with a perimeter of Input/Output Blocks (lOBs). All other architectural features of the
FPGAs, such as global clock buffers, internal three-state buffers, carry logic circuitry,
and boundary scan test logic, are also replicated in the HardWire LCAs. The
interconnect topology is preserved; however, the programmable interconnect of the
FPGAs is replaced by metal connections implemented in a single mask layer.

Unlike the FPGAs, configuration data does not need to be supplied to HardWire
parts. However, several 'configuration modes' are available to ensure compatibility in
the target system. If the customer chooses the "instant-on" option, the device wakes
up functioning like a programmed FPGA. Optionally, a HardWire device can emulate
any configuration mode of the corresponding FPGA; this capability allows HardWire
LCAs to function in configuration daisy-chains with standard FPGAs the HardWire
LCA is an identical replacement for the programmable device.

2 H a r d W i r e L C A T e s t A r c h i t e c t u r e

Test programs for HardWire devices are generated automatically with 100%
guaranteed fault coverage; customer-generated test vectors are not required. Testing of
HardWire devices is facilitated by special on-chip "scan test" logic. Dedicated test
latches, called TBLKs, are included in each logic block and I/O block. For example,
Figures 1 shows the CLB TBLK locations for the HardWire versions of the XC3000
FPGA family. The placement of these test latches is critical, since signals exiting
the CLBs and IOBs can fanout to multiple destinations. The TBLKs are completely
transparent to the normal operation of the circuit.

Scan testing allows the contents of all internal flip-flops to be serially shifted off-
chip, and for automatically-generated test vectors to be shifted into the device, thus
enabling all flip-flops to be initialized to any desired state. The TBLKs are connected

.di DATA IN

~ b

ENABLE CLOCK .OC

-~* (EN~L~

D

)F

RESET .rd
[~RECT

"0" (mHH~r)

(C= ~AL ~SEq

Figure 1. HardWire LCA test latch locations in the XC3000 CLB

CLB

Output i A

SW2 ~ ¢

B

282

Tut Latch

SWl

AO ~'r~B
Test
Clock

Out to
Selected Nets

SQ n+2

Figure 2. TBLK block diagram

together in a serial chain. The path begins at the Scan In pin, sequences through each
CLB, then through each IOB, and exits at the Scan Out pin. Automatically-generated
test vectors can be shifted into the device, initializing all internal flip-flops to known
states. Similarly, the contents of all internal flip-flops can be shifted out of the
device.

The internal architecture of a TBLK is shown in Figure 2. In normal operation,
switch SW1 is in the A position and all test latches are bypassed. The device is
placed in Test Mode (SW1 is in position B) when unique conditions are present on
several configuration pins and a "password" is serially shifted into the device.
Depending on the position of switch SW2, a test latch can receive data from either an
IOB or CLB output or the previous TBLK in the chain. Synchronized by a special
test clock, the latches operate in two phases. The first phase serially loads all test
latches to place a specified vector at the inputs to all blocks to be tested (SW2 = B).
Next, all latches are stored in parallel with the expected output data from the CLBs
and IOBs (SW2 = A). Then, phase one is repeated, serially clocking out the results
while simultaneously loading the next test vector.

3 The Conversion Process

The HardWire device is manufactured using the information from the FPGA design
file, ensuring compatibility with the programmable device. Customers provide the
routed and verified LCA file from the completed programmable design, Xilinx
engineers perform a semi-automated design role check, test vectors are generated using
an ATGP (automatic test generation program), and the custom mask layer is created.
100% test coverage is guaranteed. Prototypes are fabricated using the same
manufacturing lines as production devices, and can be supplied in four weeks time.

In contrast, converting an FPGA design to a conventional gate array involves
converting the netlist to the gate array vendor's format, possible design changes to add
test logic or insure pin compatibility, a design rule check, functional simulation,
placement and routing, back-annotation of timing parameters, full timing simulation,
test vector generation, and the creation of two to four mask layers.

HardWire devices typically cost 50% to 70% less than their FPGA counterparts.
The combination of FPGA and HardWire devices offer a fast and easy way to get
electronic systems to market, while ensuring a subsequent low-risk, high-volume cost
reduction path.

RECONFIGURABLE HARDWARE FROM
PROGRAMMABLE LOGIC DEVICES

Nigel Toon
European Marketing Manager, Altera Corporation

Reconfigurable hardware is an emerging technology that utilises SRAM based field
programmable logic devices to implement functions in hardware to accelerate
processing functions. Using the reconfigurable aspect of the programmable logic
device this hardware function can then be changed allowing alternative functions to
be implemented. This article will describe a hardware platform - the Altera Re
configurable Interconnect Peripheral Processor (RIPP 10) that is now available to
support research in this area.

1. INTRODUCTION

Imagine the leading edge personal computer that you would be able to buy in five years.
High resolution graphics with 24bit 'True' colour for video reproduction; real-time image
compression /decompression; voice recognition; handwriting recognition and with
sufficient processing power to perform complex processing functions such as real-time
video manipulation; high speed database transaction enquiries; or advanced scientific
functions. It is possible to consider that some types of processing functions currently
performed by super computers could be performed on your desktop or notebook
computer. The question is how?

2. H A R D W A R E C O - P R O C E S S O R S

The concept of off loading specific processing task's to peripheral devices is commonly
understood. A graphics co-processor can perform Bit-Bit functions for windowing
graphic environments faster then the central processor; or a maths co-processor can
perform arithmetic functions. This concept works by having specific hardware functions
masked into custom silicon devices. These devices manipulate the data and perform an
algorithm in hardware that would otherwise be performed by the processor executing a
software program. In this way the data can be manipulated and processed in nano-
seconds as opposed to milli-seconds or longer for the processor executing a software
program.

2.1 RECONFIGURABLE HARDWARE
Now consider instead of having a custom silicon device, that performs a fixed function
to accelerate a processing task, that you have a Re configurable Hardware resource that
can be programmed to perform a particular algorithm and then at some later point be
reprogrammed to perform another function. A software program could be partitioned into

284

some functions that would be processed by the central processor and into functions that
would be performed in hardware and as a result could either be many times more
complex or could be performed many times more quickly. In a microprocessor there is an
Arithmetic Logic Unit (ALU) which is 'programmed' by the instruction set to perform a
simple task i.e. add two values, perform a bit shift, compare two values etc. In the same
way you can consider having a much larger area of re configurable hardware that can be
'programmed' to perform a task but where the task is a graphics rending function, or an
MPEG image decompression, or voice recognition, or analysis of meteorological data.

3. I N - C I R C U I T R E C O N F I G U R A B L E L O G I C D E V I C E S

The concept of Re configurable Hardware has only become realisable with the
emergence of high density In-Circuit Re configurable (ICR) Logic devices such as the
SRAM based Altera FLEX devices. These devices use static RAM memory cells to store
logic functions and interconnect connectivity information. The configuration data is
typically held in an associated serial EPROM from which the device re-configures itself
at power-up. Alternatively the configuration data can be held in any non-volatile memory
source and can be down-loaded to the device. In this way different configuration files can
be down-loaded to the device dynamically changing the function of the device. In
mainstream applications, programmable device designers have held back from using the
re configurable aspect and typically the device is configured once with a fixed function.
However some people have recognised how this dynamically re configurable property
could be used to investigate the concepts of re configurable hardware.

4. R E C O N F I G U R A B L E P R O C E S S O R S

With-in the academic community and at some leading edge R&D centres a number of
research projects are being undertaken to investigate and utilise this re configurable
hardware concept. These projects tend to be focused on limited-purpose re configurable
processing applications that are focused on specific compute intensive functions such as
DNA pattern matching, seismic data analysis, database manipulation , and simulation
projects. These re configurable hardware processing based solutions are easily
outperforming super computers on the same tasks. These promising results have spawned
other investigations and the whole concept of re configurable hardware seems on the
verge of rapid growth.

4.1 ALTERA RIPP 10 BOARD
To support these projects Altera Corporation has developed a PC Compatible ISA bus
add-in card called the Re configurable Interconnect Peripheral Processor (RIPP 10)
board. This board provides 100,000 usable gates of re configurable programmable logic,
populated with Altera FLEX8000 programmable logic devices and I-Cube
programmable Interconnect devices. Onto the board it is also possible to add SRAM
devices allowing complete processing functions to be implemented. This board is being
used by a number of universities and research companies to investigate Re configurable
Processing applications.

285

4.2 ALTERA RIPP 10 APPLICATIONS
Currently Ceram Inc,USA a computer acceleration company together with a computer
aided natural resources engineering company is utilising the RIPP10 board in the analysis
of Seismic data. Today analysis is constrained by processing resources, and re
configurable hardware offers the opportunity to accelerate certain tasks. The project
begins with an analysis of the software functions to identify the processing bottlenecks.
The functions that significantly slow the overall processing task are mapped into the
programmable logic off-loading the central processor from the task. These functions
include post-stack seismic processing, mapping functions and database server functions
for well and seismic access. Computer architecture simulation is another area with a
number of projects using re configurable hardware to simulate advanced computer
structures this work includes investigations into stochastic processing (see insert) and
also work being carried out at the University of South Carolina on simulating new
processing structures. The major problem that needs to be overcome is the issue of
implementing algorithms in the programmable logic. It will be necessary to develop
compilers that can take a high level software description and partition the code into target
code for the microprocessor and into configuration data for the programmable devices so
that they are able to implement the correct hardware algorithms.

5. S U M M A R Y

As the compiler problems are worked on and solved and specialised programmable logic
architecture's evolve targeted at these Re configurable Processing applications it is
possible to envisage a PCMCIA add-in Re configurable Processing card for your
notebook computer that will provide a general purpose acceleration for a wide range of
processing functions - enabling your notebook computer to perform processing tasks
faster then a super computer. The technologies that will evolve have the potential to
accelerate the processing capability of a desktop or notebook PC into new application
areas and to add functionality that would otherwise not be possible.

On some Limits of XILINX Based Control Logic
Implementations

Attila Katona and P6ter Szolgay*
katona@miat0.vein.hu, szolgay@mars.sztaki.hu

Department of Information Technology and Automation, University of Veszpr6m
*Computer and Automation Institute of HAS, Hungary

Abstract. In this paper we gave some methods how the complexity of a design
description can be quantified and what is the largest complexity that can be
implemented on a given type of XILINX chip using the standard XACT design
system. These methods can be used to partition a large design task, given by
either a circuit schematic or an algorithm, to smaller ones which can be
implemented in FPGA chips.

1.Introduction
In digital systems built up from VLSI parts the component list follows the traditional
computer architecture: Processor - Memory - Control unit. A typical design task uses
standard processor and memory chips/blocks while the control logic part is specific
to a given problem. Using PLDs (Programmable Logical Devices) or FPGAs (Field
Programmable Gate Arrays) it is possible to integrate all the control logic functions
in a few chips [4]. There is a wide design-software support to provide continuous
help to the designer in the whole process. As an example, the XILINX FPGA chip
and the XACT design package are considered here. We identify two basic problems
concerning design methodology [5]:
(i) partitioning a large design description, given by either a circuit schematic or an

algorithm on a hardware description language, to smaller ones which can be
implemented in FPGA chips;

(ii) how the complexity of a design description can be quantified and further what is
the largest complexity that can be implemented on a given type of XILINX chip
using the standard XACT design support.

Here we are going to present an approach to the second problem which, of course,
may help to solve the first one, as well.

2. On the Limits of Design Methods

2.1. The Limits Originating from the Structure
A design task may be given by a TTL level circuit diagram in which case it is auto-
matically converted to logic-block-level circuit diagram. In the XC3020PC68 chip
there are 58 user programmable I/O blocks and an array of 8x8=64 CLBs
(Configurable Logic Blocks). Each CLB in LCA (Logic Cell Array) has five combi-
natorial logic variable inputs and four other inputs: clock, enable clock, direct data
in, and asynchronous reset. Each CLB has two outputs [2]. Table 1. shows the rout-
ing resources of a kxl array of logic blocks inside the structure. A kxl array has

2 8 7

k rows and I columns of CLBs. The following constraints were considered:
(i) a synchronous network design is assumed using the global clock net.
(ii) the interconnections of a/crl size CLB array are realized through the border of

the array.
(iii) let us suppose that only the border problem can cause routing failure that means

We do not examine now the routability inside and outside the kxl block. We sup-
pose that there is no routing problem anywhere else.

(iv) synchronous I/O blocks are supposed.
Proposition 1. The 8x8 chip is routable under the above constraints if there are less
than 144 nets in the design (nets are the interconnections which connect CLB
outputs to CLB inputs).

k,1

1
2
3
4
5
6
7
8

the number of possible the number
connections (see of inputs and

figure 1.) outputs
9"k+9"1 10*k*l

18 10
36 40
54 90
72 160
90 250
108 360
126 490
144 640

Table 1.

.... I I
- i ' [i i i i i [i ~ i l l d l : i

i i[ii] P-
"~-q IH-H~ i i l l l l l l t-rr---J.,._l

.-' ii i i." L!L"[!!! !11 ÷
m . . I I I I I I I I I I I I , ,

Figure 1.

!! i
,ttl i

--, ~[iii'
iiiii[

" ' ~ " ' 1 1

, ii!!

The figure shows the routing resources around a CLB. Two horizontal long lines,
three vertical long lines, four direct connections and five lines are running into each
direction through the switching matrices. The proof of the proposition can be derived
from the chip layout.

2.1.1. Complexity Limits Derived from the Circuit Schematic to Implement
There are some additional design requirements effecting the final results. The pre-
scription of the bounding pads and the speed of the circuit are the most critical.
There are certain limitations coming from the size of the used FPGA chip, namely
the number of I/O pads, and flip-flops. These values of the circuit diagram can be
obtained easily and may be compared to the target FPGA chip. There are not so
simply computable limits characterising the complexity of a design task:
(i) wire density, the number of nets in the schematic
(ii) assigned cells (CLBs)/total cells
(iii) the number of combinatorial inputs
(iv) The maximal wire density along the one-dimensional layout model of a task can

be a measure of complexity.J1]

2.1.2. Complexity Limits Derived from the Algorithm to Implement
The other possibility to specify a design task is the algorithmic level description - a
high level description. For hardware specification the VHDL is a de facto standard.
The VHDL description can be transformed into the .XNF type internal file of the

288

XACT system. It is allowed to come from other PLD design systems as CUPL or
ABEL. In all these systems the tasks are described by an algorithm. Based on the
Halstead method in [3] a complexity measure, was calculated from the number of
distinct operators and operandi and from the total number of operators and oprandi.

2.2. Design Experiences
We have solved some examples with the XACT system. Certain designs were not
possible to be realized on a single chip because of the limited number of CLBs. The
number of CLBs is one of the most important constraints. We can easily count the
number of flip-flops and I/O pads but not the number of CLBs in the schematic. In
some examples both the algorithmic and the circuit schematic level description were
given. The algorithmic level and circuit level complexity measures were composed
for these examples. A close correlation were found between the two complexity
measures. Table 2. shows the routing limits for an artificially generated test design
family in which all the CLBs were used. The basic building block of the test
schematics were similar to the LCA architecture because here we wanted to study the
effect of routing to the complexity. After the automatic translation all the 64 CLBs

Name lOBs Nets Unrouted pins
CLBSN 0 223 0

CLBSO I 25 248 1
CLBSO II 25 248 9
CLBSP I 24 247 11
CLBSP II 24 247 8
CLBSQ 20 243 7
CLBSR 10 233 2
CLBSS 0 223 0

Table 2. Unrouted pins versus nets

3. Conclusion

were used. In the Nets column the
number of the nets in the schematic is
given. We did not count the
combinatorial output to flip-flop input
nets because their connection was
made within the CLBs. When 223 nets
were in the design then there was no
unrouted pin. The number of unrouted
pins can be different even in the case
of the same design due to the fact that
XACT design process starts from a
random placement.

Based on our experiences there is not a single parameter which can be selected to de-
scribe the complexity of a task given by a circuit schematic, but a multidimensional
parameter space is required. Nevertheless we identified the wire density as the most
important parameter [5].

References
[1] P.Szolgay," On algorithms in the parallel design of logic and layout of circuits

with functional blocks", Int. J. of Circuit Theory and Applications, Vol.20,
pp.411-429, (1992.)

[2] The Programmable Gate Array Data Book 1992, Xilinx, San Jose, California
[3] M.H.Halstead, Elements of Software Science, Elsevier North-Holland,

Amsterdam, 1977.
[4] Special Section on Field Programmable Gate Arrays (ed. A. El Gammal),

Proc. of the IEEE Vol. 81, No. 7, July 1993 pp. 1011-1083
[5] A.Katona and P.Szolgay, "Limits of XILINX based control logic

implementations", IT-2-1993, University of Veszpr6m

Experiences of using XBLOX for Implementing
a Digital Filter Algorithm

Gerhard R. Cadek 1, Peter C. Thorwart l 1, and Georg P. Westphal ~

Vienna University of Technology, IAEE, CAD-Division, A-1040 Vienna, AUSTRIA
2 Atomic Institute of the Austrian Universities, A-1020 Vienna, AUSTRIA

Abst rac t . A preloaded digital filter algorithm for filtering the out-
put signal of a Germanium gamma ray detector was implemented on
a XC4000 device using the XBLOX software from Xilinx. A system fre-
quency of 20 MHz was achieved due to multiple pipeline stages and ex-
tensive usage of the high speed carry paths. This paper describes author's
experiences g~ined using XBLOX intensively. The strong and weak points
of the tool will be discussed.

1 T h e Application

For high-rate gamma spectrometry using a pre-loaded filter which automatically
adapts its noise filtering time to the actual pulse interval is a proved method.
Up to now this pre-loaded filtering of the charge pulse signal at the output of
the detector has been accomplished using conventional low noise analog circuitry
[1]. A new concept was developed using a 20 Msamples/s 12 bit analog to digital
converter in companion with a high speed customised digital signal processor.
The resulting circuitry offers a better noise rejection ratio and drift performance
than the analog circuitry. The digital filter consists of four blocks. The input

G e d e t e c t o r
I " I

I Filter z e r o a d i u s t I
I - I

to PC

Fig. 1. Block diagram of the pre-loaded filter

unit differentiates the digital input from the ADC. After performing integration,
low-pass filtering with variable cut-off frequency has to be done. The results
are stored into an on-chip 32word deep, 16bit wide FIFO. A standard PC data
acquisition card reads out the FIFO for further processing. Additional circuitry
inhibits drifting due to noise by a loop-back correction. First prototypes had to
be available within one month. The digital circuitry had to accomplish:

290

1. 20 Mttz system clock
2. 12, 16, and 24bit integer arithmetic
3. two's complement notation
4. 32x16bit on-chip FIFO
5. about 250flip flops

2 D e v i c e a n d T o o l S e l e c t i o n

Following our experience we decided to use a device from the Xilinx XC4000
family. This was due to the on-chip RAM capability of the XC4000 series and
due to our practical experience in implementing high speed pipelined arithmetic
circuitry into these devices. We decided to use the XBLOX software to spare
us boring gate-level data-path design. Design entry and the simulation task
were done using Viewlogic's Viewdraw and Viewsim, respectively, on a PC. The
XBLOX processing-, placement-, and routing-task was performed using the Xil-
inx software on a SUN SPARC10.

3 T h e I m p l e m e n t a t i o n

Design entry using XBLOX is very fast since you need not to worry about the
implementation of a register, counter or adder. Some special adaptations of the
circuit were made to meet the XC4000 architecture. The nine stage 12bit wide
shift register was implemented using a 9x12 bit on-chip SRAM instead of using
conventional registers. This solution requires only 8,5 CLBs compared to 108 for
the conventional one.

The first tool problems arose when we tried to connect busses of different
widths. Since there is no XBLOX element available for this purpose, we had
to convert the busses into Viewlogic ones which could easily be processed. The
XBLOX bus conversion elements do not support the negative bus notation which
was used for the right hand bits of the comma (fractional notation).

Although the XBLOX library offers a big number of data path elements,
there is no element for defining a barrel shifter. Since we used two's complement
notation our barrel shifter needed to perform sign extension too. The problem
was solved by converting the signals to Viewlogic ones where the definition of the
24 bit0-7 digit shift-right barrel shifter required only one symbol. Despite these
difficulties the design was defined within three days. The backannotation of the
Xilinx netlist after inserting pre-layout timing information into the Viewsim
netlist format was tedious and took about after a quarter of an hour. Due to a
bug of the Xilinx to Workview interface xnfPwir you need to copy your design
from the network drive to a local disk because a file is opened twice.

During XBLOX processing another major bug was detected. If a hard macro
like an adder is directly followed by a register stage, these registers will be im-
plemented in the same CLBs. But if negative bus notation is used, the generated
hard macro uses the register output FFX twice within a CLB for these nega-
tive bits instead of using FFX and FFY outputs, respectively. This bug leads

291

to a fatal error during a PPR-run. So far this is only correctable by editing the
*.hm-file after analysing the XBLOX output.

Automatic global clock insertion is another weak point of the XBLOX soft-
ware. If the clock signal is fed only into one combinatorial input - this may be
only an inverter - XBLOX does not use a global clock buffer automatically, which
leads to enormous routing problems and a poor t iming performance. Thus the
global clock must be handled manually by using the appropriate symbols.

Since many net names have to be addressed with their hierarchical name,
labelling all instances has been proved to be wise for simulation purposes. There
is another simulation problem if art input signal is used both directly and reg-
istered. Stimuli applied using the name of the signal will only drive the direct,
non-registered input since the register will be moved into the IOB. The regis-
tered input has to be fed directly from the pad signal which cannot be labelled
in XBLOX since this signal is not available. You need to browse the *.lca file for
the net name or you have to use conventional IBUF and IPAD symbols.

Due to the feed-throughs automatically inserted by P P R on heavily loaded
signals, net names are changed so that they are not visible for post-layout sim-
ulation. So you again have to analyse the *.lea- or *.xnf-files after running PPR
to get the appropriate information. This fact leads to the problem that the
pre-layout simulation stimuli cannot be applied to the post-layout simulation
without changes introducing possible design inconsistencies.

The design fits pretty nicely into a XC4006-PG156-5. The final routing lasted
about half an hour on a SUN SPARC10. It took four weeks for designing the
FPGA including tool installation, design corrections and bug fixing.

4 C o n c l u s i o

XBLOX has been proved to speed up the design definition but it does not relieve
the designer of thinking about utilising special device structures. Bus manipula-
tion is a tedious job. The usage of clock distribution circuits is not well supported
until now. Since XBLOX parts use the fast carry path automatically, the result-
ing circuits are very fast. Some problems were detected concerning applying
pre-layout stimuli irt post-layout simulation due to changed net names.

Besides testing a new tool by means of a real life design instead of a bench-
mark circuitry, FPGAs have been proved to meet both the needs of advanced
high speed signal processing and fast design cycles. Our further work will concen-
trate on the acquisition time control unit around the customised signal processor,
which is now realised using analogue circuitry.

R e f e r e n c e s

1. Westphal G.P.: A PreIoaded Filter for high-rate, high-resolution gamma spectrome-
try. Nuclear Instruments and Methods in Physics Research, A299 (1990), pp. 261-267,
1990.

CONTINUOUS INTERCONNECT PROVIDES
SOLUTION TO

DENSITY / PERFORMANCE TRADE-OFF IN
P R O G R A M M A B L E LOGIC

Nigel Toon
European Marketing Manager, Altera Corporation

This article will discuss the trade-off between segmented and continous
interconnect in programmable logic devices and the effect on performance
and ease of use in logic design. The article will describe the effects on
interconnect delay paths of both styles of programmable interconnect and
will show how these affect overal performance.

1. I N T R O D U C T I O N

The major challenge in high density programmable logic devices is providing high
density logic together with high performance. One of the most significant differences
between Mask Gate-Array and a programmable logic device is that in a gate-array
the logic elements are connected by metal connections created as part of the
customer specific manufacturing process, whereas in programmable logic devices
the interconnect between the logic elements must be implemented with a user
programmable connection. This article will discuss the two main forms of
interconnect used in programmable logic devices Continuous Interconnect and
Segmented Interconnect.

2 . S E G M E N T E D I N T E R C O N N E C T .

One concept used to implement programmable interconnect in high density
programmable logic devices is to use short segments of metal lines that are
interconnected by a programmable switch matrix which enables these short segments
to be combined to create longer routing paths. This type of interconnect structure
derives from the channel routed gate-array structures and has benefits in that these
short segments can be combined in a wide variety of combinations making effective
use of the metal lines available. As interconnect becomes used up in a particular path
alternative routes can be found.

2.1 CUMULATIVE DELAYS.
Each switch matrix that a signal passes through in a segmented interconnect structure
adds impedance to the path. As segments are joined together this loading builds-up
and as a result interconnect paths will have different delays dependant on how many
switch matrix elements the signal has passed through. In addition signal fanout will

293

also have an impact on the delay. Not only is an additional load impedance
introduced by each signal destination but also additional load is introduced by the
additional switch matrix elements that must be passed through to reach each signal
end point.

3 . C O N T I N U O U S I N T E R C O N N E C T .

In a simple PLD device the output from every logic element or macrocell is
connected directly to the input of every other logic element or macrocell. In addition
each signal is provided as both a true and a compliment - doubling the number of
macrocells has the effect of increasing by a factor of four the amount of interconnect
required. As a result it would be impractical in high density programmable logic
devices to have logic element connected by a continuous line to every other element.

However it is possible to extend this concept of continuos interconnect by using a
hierarchical structure where groups of logic elements are combined together into a
block and then a continuous interconnect resource can connect signals from one
block of logic elements to another. The Altera FLEX 8000 family of high density
programmable logic devices use this type of a routing technique for the 3-
dimensional 'Fast-Track' interconnect structure.

3.1 A L T E R A FLEX 8000.

The FLEX 8000 devices are made up from a fine granularity Logic Element which
consists of a four input look up table and a configurable flip-flop. Eight of these
logic element are combined together into a Logic Array Block (LAB) which
provides interconnect from any Logic Element to any other Logic Element contained
with-in the LAB.

The Logic array blocks are connected by a Row and a Column Interconnect resource.
These interconnect resources provide for each signal a continuous metal line that
runs the complete length of the device in either the horizontal or the vertical. A
multiplexing structure on the input to every Logic Array Block selects from the
available signals in the Row or Column the signals required in that Logic Array
Block. In this way any Logic Element can be connected to any other logic element
with-in the device.

3.2 FAST-TRACK INTERCONNECT DELAYS

The continuous metal lines in both the Row and the Column interconnect resource
run the complete length of the device. Each metal line is connected to every Logic
Array Block through a multiplexer. When the device is configured the signal is either

294

connected or not by the selection that is set on the multiplexer. Irrespective of
whether the signal is selected or not into one or all of the Logic Array Blocks the
loading on the line remains the same and as a result the delay remains the same
irrespective of where the signal routes too or the signal fan-out. In the case of the 3-
dimensional 'Fast-Track' interconnect - three predictable delays exist. A lnSec delays
exists for Logic Elements that are connected with-in a Logic Array Block. A 6nSec
delay exists for Logic Elements that are connected from one Logic Array Block to
another through the Row Interconnect Resource and a 9nSec delay for signals that
must pass through both the Row and the Column Interconnect Resource.

In addition to these general purpose interconnect paths, specific connection paths
are provided in the FLEX 8000 devices between adjacent Logic Elements. These
paths are utilised to implement fast Carry-Chains and Cascade Chains. For Adders
and Counters the Carry-Chain path is utilised to provide a dedicated path for the
carry signal from one stage of the adder or counter to the next. For complex logic
functions that require more then four variables the Cascade path is used to enable
multiple Logic Elements to be cascaded together to provide for wider signal fan-in.

The combination of these routing resources enable an 8bit Registered Accumulator
to be implemented with a delay of 8nSec and a frequency of 125Mhz, or a 16bit
loadable up/down counter with a worst case delay of 13nSecs and a frequency of
75Mhz. A 24bit magnitude comparitor, a common function in video processing for
example can be implemented with a worst case delay from data valid to the
comparison result of 23nSec. Also a 24bit adder can be implemented with a worst
case delay of 22nSec so it would be possible to implement a real-time 24bit image
processing application that would be able to operate at approx. 40Mhz.

4. S U M M A R Y

Continuous interconnect enables high performance applications to be implemented
with-in high density programmable logic devices. The predictable delays allow high
performance to be achieved with the minimum of design effort. When designing
with programmable logic devices with continuous interconnect it is not necessary to
worry so much about the placement of the individual Logic Elements with-in the
device because the overall performance will not be affected. As a result achieving
high performance designs in these types of devices, commonly called Complex
Programmable Logic Devices (CPLD's) is a much simpler process then with devices
that utilise segmented interconnect such as FPGA's.

A HIGH DENSITY C O M P L E X PLD FAMILY OPTIMIZED FOR
FLEXIBILITY, PREDICTABILITY and 100% ROUTABILITY

Om P. Agrawal
Director of Strategic Product Planning

Advanced Micro Devices, Inc.
Sunnyvale, CA 94088

Abstract

This paper describes the silicon architecture of AMD's second generation Macro Array CMOS High Speed/High Density
(MACH®) foanily of PLDs. With an advanced O.65um technology and an innovative architecture, the ruext generation MACH
family offers gate density up to 10,000+ gates with 100% roatability, flexibility, and predictable worst-case pin-to-pin
delays of 15ns.

I n t r o d u c t i o n

The MACIt 3 & 4 family is AMD's second generation Macro Array CMOS High Performance High density
(MACH®) family. AMD's first generation MACH 1 & 2 family, introduced in 1990, set the industry standard for
15ns worst case pin-to-pin delays for devices ranging from 900 to 3,600 gates, The 1st generation MACH family also
pioneered the concept of fixed, predictable, deterministic, logic and routing independent signal delays. AMD's next
generation MACH family raises the bar of "predictable speed standards" to 10.000 gates with significantly increased
flexibility and 100% routability.

Second G e n e r a t i o n M A C H F a m i l y

MACH 3 & 4 family consists of 4 devices. This family begins at 3,500 gates and extends up to 10,000+ gates
offering predictable, path-independent worst-case delays of 15ns. These devices offer between 96 and 256 logic cells
with 96 to 384 registers, and are available in 84 to 208 pins PLCC and PQFP packages. Designed with proven,
advanced 0.65- micron double metal CMOS electrically erasable technology the MACH 3 & 4 family devices are
100% testable and have 100% guaranteed programming and functional yields. The MACH 3 & 4 family also pioneers
5V incircuit progrmnmability with full conformance to 1EEE 1149.1 JTAG standard for PQFP packages beyond 84-
pi~s. A single set of dedicated pins are used for both in-circuit programmability and JTAG compatability. Table 1
shows the members of the MACH 3 & 4 family and their capabilities,

Device MACH 355 M A C H 4 3 5 M A C H 4 4 5 MACH465

Gate Count 3,500 5,000 5,000 10,000

Macro Cells 96 128 128 256

IO Cells 96 64 64 128

Registers 96 192 192 324

St'x~cd 15ns 15ns 15ns 15ns

Package 144-PQFP 84-PLCC 1 0 0 - P Q F P 208-PQFP

Table 1 MACH 3xx/4xx Family

Like the first generation MACH lxx/2xx family members, the MACH 3xx/4xx family consists of "multiple,
optimized programmable logic blocks interconnected by high speed switch matrices." Retaining the fixed, predictable
characteristics of the first generation MACH architecture, the 2nd generation MACIt 3 & 4 family locuses on
significantly increasing density, flexibility, routability and programmable connectivity without compromising
speed. Major innovations in next generation MACH family include: multi-tiered, high speed switch matrices to
provide 100% routability; and significant architectural enhancements to PAL blocks and macrocells to provide
density, flexibility; and predictable speed.

296

M A C H 3 & 4 F a m i l y F l e x i b l e P r o g r a m m a b l e L o g i c B l o c k

Each programmable logic block of the MACH 3 & 4 family consists of: flexible Clock Generator, an enhanced AND-
OR-XOR array, a more flexible logic allocator, and an array of logic and I t macrocells, With 16 macroceils each
logic block is designed to handle wide gating functions up to 33-34 inputs. This makes it ideal for emerging 32-bit
microprocessors bus interfaces and address decoding applications.

Each Logic Block has its own clock generator that can provide up to 4 different global, synchronous pin clocks for
each block with programmable polarity. Accessibility to four different clock sources with programmable polarity
helps to implement complex state machines inside a block. Each logic block contains a 33-34 inputs (true and
complements) x 90 AND-OR-XOR product term array that form the basis of all logic implementation in a logic
block. The product term array for each logic block consists of logic product terms and control product terms. Logic
product terms are grouped in clusters. For control functions, product terms are not clustered-. For MACH 3 & 4
family, each logic macrocen receives an average of 5 PT clusters from PT array. In addition, the logic allocator
distributes up to 20 PTs of logic per macrocell in a more flexible fashion, with no speed penalty. The PT array also
provides a separate output enable PT term for each I t macroceU. In addition, flexible asynchronous Reset product
term and a separate asynchronous Preset product term are provided for all logic macrocells initialization within a logic
block.

F l e x i b l e S y n c h r o n o u s / A s y n c h r o n o u s L o g i c M a c r o c e l l s with XOR F u n c t i o n s

Macrocell enhancements for the MACH 3 & 4 family include more intelligent PT clustering, more PTs/macrocell,
synchronous/asynchronous mode of operation, flexible clocking with pin or PT clocks with programmable polarity,
flexible Reset/Preset swapping and built-in XOR capability.

Each logic macrocell provides a AND-OR array based sum.of-products with flexible XOR capability. Each logic cell
can provide base logic capability up to 5 PTs. The 5 PT logic for each logic cell consists of two lrl's clusters - one
consisting of a 4 PT cluster and the other consisting of a single PT. The single PT is used as either logic PT for the
OR gate or a logic input for the XOR. When used as a logic PT, the 5th PT can be steered to the 5-input OR-gate.
In that situation it is not available as PT for the XOR gate. It can also be used as single PT controlling the XOR
gate. The ability to use a single PT comes in handy for address decoder application - where single PT can be used and
the 4 PT cluster can still be made available to adjacent macrocells.

Each logic cell has access to the logic clusters of its three adjacent neighbors: one from above and two from below,
via the logic allocator. With accessibility to 3 adjacent macrocells, each cell can provide logic capability up to 20
PTs. An unique strength of the MACH 3 & 4 family architecture is that no additional speed penalty is imposed for
this additional logic flexibility.

The storage element inside the logic cell can be individually programmed to operate in either a transparent flow-
through latch or as an edge-triggered D or T-type register, blow-through latching provides minimum input to output
delays for speed critical functions such as chip-select decoding, while edge-triggering guarantees glitch-free outputs for
applications needing synchronous counters and state machines. The built-in XOR gate in front of the macrocell,
besides providing the polarity control of the signals going into the macrocell, can also be used for complex XOR
arithmetic logic functions (comparators, adders etc) and for De Morgan's inversion for reducing the number of product
terms (for logic optimization and synthesis). An important innovation of the MACH 3 & 4 family macroeell is its
ability to support both synchronous and asynchronous logic capability on an individual macrocell basis, in the same
macrocell with no speed penalty.

In synchronous mode, all logic macrocells are initialized together with the common asynchronous Reset or Preset
product terms. However, each macrocell has the capability to swap the Set/Reset function on an individual macrocell
basis. In the asynchronous mode, each macrocell can receive its own independent product term dock, plus independent
set/reset PT. Further, each macrocell has the ability to swap the Set/Reset function, on an individual macrocell basis
in both the synchronous and asynchronous modes. In synchronous mode, each macroceli selects its clock from 4 logic
block clocks. In asynchronous mode, the clocking is more flexible. Each cell receives two logic block pin clocks
(generated from its block clock generator), one individual PT clock (generated from its array inputs) and one the
inverted PT clock. This provides an individual and separate PT clock with programmable polarity for each macrocell.

Flexible macroeell structures and intelligent PT allocation capability of the logic allocator with no additional speed
penally, is a key feature differentiating the next generation MACH family from other complex EPLDs. The
architectural flexibility of the logic allocator and the flexible macrocell structure, combined with each blocks ability
to handle up to 34 inputs and better than 2:1 input to output ratio allows each programmable logic block of the
MACH 3 & 4 family architecture to pack quite a bit of synchronous and asynchronous logic in a single block.

The I/O macrocell for the MACH 3 & 4 family architecture consists of a three-state output buffer, control for the
three-state buffer and an input macrocell. The three-state buffer can be configured in one of three ways: always
enabled, disabled, or controlled individually by a separate PT. This gives designers the flexibility of configuring the
I/O macrocell as an output, an input or bidirectional pin, or a three-state output for driving a bus. The input to the
three-slate buffer comes from the output switch matrix.

297

100% Routability

Another significant innovation of the next generation MACH family is its multi-tiered switch matrix structure. The
multi-tiered switch matrices structures are designed to provide 100% mutability with fixed, predictable delays. The
second generation MACH architecture consists of three types of switch malrices: Input Switch Matrix (ISM), Central
Switch matrix (CSM) and Output Switch Matrix (OSM).

Wilh multitiered switch matrices, the second generation MACH offers a "true programmable connectivity" between
logic block and I0 pins.. The multi-tiered switch matrix structure completely decouples the internal logic block from
external physical 10 pins and all internal feedbacks; and provides a uniform way for treating all signals with
significantly increased routability. It significantly addresses the nuljor concern of design changes effect on old-
pinouts.

Each switch matrix structure has been optimized for speed, cost and flexibility. The ISM decouples the I t -pins
feedbacks and logic block feedback signals from the internal logic block and provides multiple chances of signal entry
to the global switch matrix. The CSM acts as the main signal routing structure to provide optimized global
connectivity and is key for achieving fixed, predictable, deterministic, and path independent delays for the device. The
OSM decouples the logic block from its I t pins and its own inputs and is key for addressing the concerns of design
changes while retaining prior pinouts.

S o f t w a r e S u p p o r t

AMD's MACHXL TM design development system fully exploits the density and flexibility of MACH 3xx/4xx family
architecture and provides a low-cost software environment. The MACHXL development system includes PALASM®
comparability, Boolean equations, State machines and High Level languages design entry. It also includes an
automated logic compiler, logic synthesis package, automatic device partitioner, placer and router, functional unit
delay simulator, JEDEC generator and a report generator. This low-cost design system provides designers with high
level design capability for fast, hands-off, automatic routability plus fine control for fine-tuning the device. AMD's
Besides AMD's MACHSXL design environment, the MACH 3xx/4xx family is supported by broad third-party PLD
tools vendors such as DATA I/O, MINC, OrCAD, Logical Devices and ISDATA. Support in the CAE environments
such as CADENCE, MENTOR, VIEWLOGIC and SYNOPSYS is made available via existing agreements between
third-party PLD tools and CAE vendors, lh'ogramming support is made available by third-party vendors such as
DATA I/O, Logical Devices, BP Microsystems, SMS etc.

S u n t m a r y

The major strength of the next generation MACH 3 & 4 family are its architectural simplicity - multiple PAL-like
AND-OR-XOR blocks interconnected by multi-tiered switch matrices with fixed, predictable, deterministic delays. A
significant breakthrough for the MACH 3 & 4 family architecture is its combination of flexibility, programmable
connectivity, and deterministic speed. The internal architecture of the MACH 3xrd4xx devices provides flexible
global connectivity,with TRUE predictable speed. Delays are neither path dependent, placement dependent, fan-out
dependent, nor logic and routing dependent. Logic block structures, logic macroceil structures, and multi-tiered switch
matrices have been all optimized to give users a better optimal balance of speed, density, flexibility and
programmable connectivity. Every macrocell communicates with every other macro cell along the same path and with
the same, fixed predictable deterministic delays.With its simple, symmetrical, and optimal structure the next
generation MACtt 3xx/4xx family is structured to raise the bar of "predictable speed standards" to 10,000 gates.

Design Experience with Fine-grained FPGAs

P. Lysaght, D. McConnell and H. Dick

Department of Electronic and Electrical Engineering,

University of Strathclyde,

Glasgow G1 1XW

Abstract. The performance of fine-grained, cellular FPGAs is improving
rapidly. In this paper, the experience of working with two relatively fine-
grained FPGA architectures, the Atmel 6005 FPGA and the Dynamically
Programmable Logic Device (DPLD) from Pilkington Micro-electronics Ltd, is
described.

1. Introduction

This paper reports on the authors' experiences in designing with the Atmel
AT6005 [1] and the Pilkington Micro-electronics Ltd. (PMeL) 3k6 Dynamically
Programmable Logic Device DPLD [2]. The work began with a number of different
logic designs implemented on the Atmel FPGA by undergraduate and postgraduate
students at the University of Strathclyde. The subsequent porting of a representative
sample of three of these designs to the DPLD architecture forms the basis of the
paper. Aspects of the device architectures, CAD tools and their impact on the relative
performance of the designs are considered.

2. CAD Tools and Design Porting

The authors have used a pre-release version of the CAD suite that PMeL is
intending to release commercially. The software is PC based and consists essentially
of physical design tools, i.e. placement and routing programs. Designs are imported
via an EDIF interface and programs for device configuration and programming are
also provided. At present, the only schematic and simulation libraries that are
provided are for use with the Viewlogic CAD software. Post-layout delay
information for back annotation is provided for the Viewlogic Workview simulator.
The software also features a comprehensive on-line help facility.

The Atmel CAD software is also PC based and the components of its tool set are
practically identical to those offered by the PMeL software. The main differences are
that the Atmel software can exchange files directly with the Workview software
without using EDIF and that a fully interactive, manual design editor is supplied.

The mechanics of design porting were quite straightforward. The Workview
schematics of the Atmel designs were converted to DPLD designs by manually
replacing all references to Atmel library primitives with the equivalent PMeL library
primitives. The designs were then re-exported and the PMeL design tools were used

299

to automatically place and route them. The success of this approach relied heavily on
the availability of equivalent or replacement design primitives in the target library.
No special, architecturally specific design primitives were used in either design. This
point is developed further in the next section.

3. Architectural Issues

The cell structure of the AT6005 offers an unusually large number of
permutations of logic and routing functions: for 13 of the 44 logic functions available
in a single cell there are multiple configurations for the same function. In the
manufacturer's literature, the logic functions are referred to as logical primitives
while the associated cell configurations are referred to as physical primitives. The
logical primitive representing the simple inverter, for example, has six different
physical primitives associated with it. Figure 1 shows two of the more complex
Atmel logical primitives. During synthesis the user may wish to use such cell
structures to realise smaller and hence faster designs. At present, designers are
obliged to recognise the opportunity for deploying the more complex logic primitives
within their circuitry and then to enter them manually into their schematics.

B ~ B ~ A B ~ B A,
A A, L o Lo

Li

Fig. 1. Complex Logic Primitives

An analysis of the macro libraries provided an unexpected result. Neither of the
complex logical primitives shown in Figure 1 are used in the construction of more
complex macros in the system libraries. Furthermore, the same observation is true of
approximately a quarter of the total of 44 logical primitives. One reason for the lack
of use of the more complex logical primitives is that while they combine several logic
functions into one cell, they can be extremely difficult to route efficiently. This
restriction extends to some of the simpler logical primitives also.

P ~ . a o

B . ,

C, ~ Q
D n -

E °

F*

G °

H*

Fig. 2. Implementations of AT6005 and DPLD Wide-input OR gates

300

Consider the example of the logical primitive for the 2-input OR gate. It is
constructed by inversion of the inputs and outputs of a two-input AND gate (as is the
case in the DPLD) but is so difficult to route that it is rarely used. Figure 2 shows the
construction of the 8-input OR gates in the Atmel and DPLD libraries. The Atmel
macros do not use the 2-input OR primitive and are highly asymmetric with respect to
one another. The 8-input OR gate requires nine cells to implement and contains eight
levels of logic. In contrast, the symmetrical DPLD implementation of the same
function uses seven gates with four levels of logic.

4. Designs

Three in-house designs have been ported from the Atmel AT6005 to the PMeL
DPLD. They are a one-hot encoded finite state machine, a content addressable
memory (CAM) and a hardware implementation of a queue model. The finite state
machine (DESIGN1) had ten states and represents the control sequence for a
"walkman" portable audio player (without recording facilities). It was the smallest
of the three designs and also the least regular circuit. It consisted of 101 nets, 10 flip-
flops, 112 gates and had an estimated equivalent gate count of 218.5 gates.

The second design was a 4 by 4 bit content addressable memory (DESIGN_2). It
was a highly regular design since each CAM cell is identical and was predominantly
combinatorial in nature. It consisted of 206 nets, 8 flip-flops, 234 gates and had an
estimated equivalent gate count of 328.5 gates. The final design to be described was
a hardware implementation of a M/M/1 queue model (DESIGN_3). This design was
comprised of two 32-bit, linear feedback shift registers (LFSRs) and two 16-bit,
probabilistic bit-stream modulators which were very register-intensive. It also
included an 8-bit up/down counter, a 24-bit ripple carry counter, three small finite
state machines (encoded using one-hot techniques), an 8-bit data bus and some
address decoding logic. It consisted of 312 nets, 147 flip-flops, 260 gates and had an
estimated equivalent gate count of 1558.5 gates. The equivalent gate counts for the
three designs are derived from the Atmel CAD tool reports.

5. Design Performance

The three designs were automatically placed and routed using both the Atmel and
PMeL physical design tools as shown in Figure 3. The designs laid out on the Atmel
FPGA occupy significantly more area that their counterparts on the DPLD array, even
when the slightly larger zones of the DPLD are taken into account. This is partially
the result of the autoplacement algorithm. It would appear that the Atmel algorithm
adopts a strategy of dispersed component placement to make the task of the
autorouter easier. In general, it was better to avoid using the autoplace software and
to rely on manual placement. The designs were manually laid out on the Atmel array
as shown in Fig. 4. An immediate improvement in the area utilisation is apparent for
all three designs. In the case of the queue (DESIGN_3), the manually placed circuit
did not successfully complete autorouting so it was manually routed. In the interests
of comparison, DESIGN 1 and DESIGN_2 were also manually routed.

=,i i!,i = =.

301

iii! !ii ! :iiiiiii i!; :iiii
" [' ::::~=== :::'°="##::~::~::'~';:~:::~:::'=="==::~:l

;:: Vi ~il;! :;iiii!i;i:i:ii~ i!:iii! i

Fig, 3. APR of the FSM, CAM and Queue for the AT6005 and the DPLD 3k6

i ! ,L,
~,,~ii!!~i~-ii'i ,~ ::.

~iii~ii.;iii~!, , (' ,:!~?
"~i. ' [" "'~i!,"

: !iiiJi iiiiil! iiiiiil iiiiil! ii!
' '~ili:l! iiiiil::iiiiil! iiiiil! ~!:

!~ !-iiii£~-: ii!ili!Zii!!'iii!ii!{
~ilii ! 7

ii! !ii i !iii!!

Fig. 4. Manually Placed FSM, CAM and Queue for the AT6005

For the CAM and the Queue, the autoroute software performed better than the
human designer as is indicated by the design summary statistics in Table 1. In the
case of each of the three designs the table indicates the resource utilisation first for the
automatically placed and routed design (APR), then for the manually placed and
automatically routed design (MPAR) and finally for the fully manual placed and
routed design (MPMR). Even after manual placement and optimum routing, the
DPLD designs are considerably more compact than the Atmel ones. Since greater
area equates to increased delay in FPGAs, the designs are also substantially faster, by
as much as a factor of four for the FSM and Queue designs. These figures were
obtained from the Workview simulator for the Atmel designs and from the physical
design tools' summaries in the case of the DPLD. The DPLD design tools on the PC
do not support manual layout or interconnection, so no comparison is possible
between the manual and automatic placement and routing•

302

AT6005

No. of Turns

N o . of Buses"

Local Buses

Express Buses

No. of Cells

DESIGN_I:FSM

APR MPAR MPMR

102 100 67

'337 '267 265

305 242 230

32 25 35

319 252 318

DESIGN_2: CAM

APR MPARMPMR

150 58 56

765 327 355

628 314 286

137 13 86

854 587 605

DESIGN_3: Queue

APR MPAR MPMR

172 151 162

613 701 628

549 555 576

, 64 146 52

865 832 971

Table 1. Summary of Layout Statistics for AT6005

Neither set of summary statistics produced by the design tools report directly the
number of cells used in through-cell routing. DESIGN _1 required 196 AT6005 cells
and 115 DPLD cells for through routing, DESIGN_2 required 345 AT6005 and 278
DPLD cells and DESIGN_3 required 425 and 441 cells respectively. For both
architectures the cell usage figures quoted by the software statistics is misleading, if
taken in isolation. Though nothing useful can be achieved with a large proportion of
the cells in otherwise fully committed sectors or zones the CAD tool statistics do not
report them as being in use or consumed.

6. Conclusion

It should be pointed out that the device architecture and CAD tools for the PMeL
FPGA are probably as much as a design generation ahead of the present Atmel
FPGA. How much of the superiority of the PMeL device and CAD tools can be
attributed to this factor is at present impossible to quantify. The use of default design
parameters was assumed throughout the work reported here, though different
optimisations have been tried. Future work will address these considerations.

Acknowledgements

The assistance of Juan-Carlos Azorin, Gordon McGregor and Jonathan
Stockwood, and the support of the EPSRC, Pilkington Micro-electronics Ltd, and
Atmel Inc. are gratefully acknowledged.

References

1. Atmel Corporation: Configurable Logic Design and Application Book, Atmel
Corporation, San Jose, California, USA, 1994.

2. M.S. Jhitta: Introduction of a New FPGA Architecture, In: More FPGAs, W.
Moore and W. Luk (edit.), Abingdon, England 1994.

F P G A Rout ing Structures from Real Circuits

Andrew Leaver

Oxford University Computing Laboratory, Wolfson Building, Parks Road, OXFORD,
OX1 3QD, England

1 I n t r o d u c t i o n

A typical field-programmable gate array (FPGA) consists of a mixture of rout-
ing resources and logic resources, ideally with a balance between the two that
matches that required by the circuits to be implemented. It is not obvious what
this balance is, or indeed whether there is a single ratio that is suitable for a
class or a set of classes of circuits. The work presented here a t tempts to identify
the common features of the routing in a set of example circuits. The approach
taken is to generate layouts from a set of circuits picked to represent those we
wish to implement on an FPGA and to analyse the routed layouts for common
features.

2 E x p e r i m e n t a l Procedure

E x a m p l e C i r c u i t s The routing patterns seen in the layouts will be strongly
affected by the choice of example circuits. For the purposes of this work
the example circuits were made up of twenty-one test circuits from the the
Microelectronics Centre of North Carolina (MCNC), seven circuits generated
using Rebecca, a functional language hardware compiler, and five generated
using Handel, an imperative language hardware compiler. Both compilers
were developed in Oxford.

F P G A Logic B l o c k In order to perform an experimental analysis of routing it
is necessary to fix on a logic block. A large variety of logic blocks have been
suggested and implemented in various FPGAs. It was desired that the logic
block chosen be simple and regular in order to facilitate automatic design
generation. This led to a logic block consisting of a four-input look-up table
and a D-latch, based on that proposed in [1]. The output of the D-latch can
be fed straight back into the look-up table. It is hoped that the simplicity
of this logic block will make it possible to map the results onto other logic
block architectures.

T e c h n o l o g y M a p p i n g The example circuits were technology-mapped for the
given logic block using SIS, a synthesis program from Berkeley. It would
have been preferable to use a technology mapper that takes account of the
routabili ty of the mapped designs and not merely the number of nodes but
the lack of such a program prevented this.

P l a c e m e n t Hardware compilers require a fast placement algorithm in order to
reduce the compile-generate-edit time. This led to the use of a rain-cut based

304

placement algorithm. When implemented this produced designs with 0% -
25% greater routing requirements than the same designs placed using APR,
the Xilinx XC3000 series placement tool. It is important to note that this
step commits the architecture design to a fast, simple placement stage. For
FPGAs intended to be placed using a better but slower algorithm such as
simulated annealing these results will give too much routing by a factor of
around 20%.

Globa l R o u t i n g A typicM automatic routing procedure splits the process into
two stages: a global routing stage during which wires are assigned to channels
followed by a detail routing stage in which the wires in each channel are
allocated to the particular routing segments available. It is not clear that this
is as appropriate for FPGAs as it is for conventional gate arrays but it has
the advantage that the global routing stage can be made almost architecture-
independent. For the same reason the routing channels are chosen to be over
the rows and columns of logic blocks rather than along the empty space
"between the logic blocks. This moves some of the routing task from the
global to the detail routing stage but frees the algorithm from dependence
on a segmented channeled routing architecture.

3 R e s u l t s f r o m Global Routing

The procedure described above resulted in the generation of a globally routed
layout for each of the thirty-three example circuits. For each circuit the distri-
bution of segment lengths was plotted, a segment being a section of net between
two pins. For example, a simple L-shaped net has two segments, a T-shape has
three. A segment of length one spans the distance between two neighbouring
logic blocks. The distribution seen in all cases was fitted well by the equation:

Number o f wires = K × Number o f Logic Blocks × W i r e length - a

The measured values of G and K for the example circuits are given below.

Circuits G Mean G Std. Dev. K Mean K Std. Dev.
All 2.27 0.42 3.40 1.82
MCNC 2.16 0.43 3.92 2.12
Rebecca 2.53 0.34 2.51 0.42
Handel 2.49 0.17 2.48 0.13

This formula supports the design of hierarchical FPGAs as it says that a circuit
with 2n logic blocks has the same distribution of short wires as a circuit with n
logic blocks plus some additional longer segments.

The parameter G measures the ratio of long segments to short segments. A
small value of G indicates more longer segments. The results indicate that there
is a strong similarity between the segment length distributions in a wide variety
of circuits.

Values of K show a wider variation, particularly for the MCNC circuits. The
compiled circuits are much more consistent.

305

The layouts can also be used to determine channel densities and switching
patterns. Lack of space precludes discussion of this data here. It is presented
along with more information on this work in [2].

4 Routing Architecture Generation

A simple segmented routing architecture can be designed as follows. K is chosen
to be 3.4 and G to be 2.0. The design will be a square array whose width is a
power of two, and with segment lengths of powers of two only. We also choose
to make the routing symmetrical and regular, so we need only design routing for
one row which is then replicated over the array. The formula can be rearranged
to give N S L : 1.7 • x/-N-C/L 2 where N,_,CL is the number of segments of length
L per row and N C is the number of logic blocks. K halves to allow for the
segments used for column routing.

To determine the number of segments of each power-of-two length we break
down the unused lengths, so that the number of segments of length 5 is added to
the number of length 4 and the number of length 1. This gives for an 8x8 logic
block array nineteen length 1, eight length 2, and four length 4 segments. These
must be distributed among the switchboxes. Experiment suggests the segment
arrangement is not critical. A randomly generated routing is shown in Fig. 1.
This routing requires on average 40% more segments to connect two arbitrary
pins than a fully-connected routing using only power-of-two segment lengths. In
comparison the best hand-designed routing required 35% above the minimum.
In practice the designer would wish to adjust this design before implementing
to even out the number of connections per switchbox.

Fig. 1. Randomised Routing for an 8x8 Logic Block Array

A detail router for this architecture is currently being implemented. This
will allow the propsed architecture to be tested against existing FPGA routing
designs.

References

1. J. Rose, R.J. Francis, D. Lewis and P. Chow. Architecture of Field-Programmable
Gate Arrays: The Effect of Logic Block Functionality on Area Efficiency. IEEE J.
Solid-State Circuits, Vol. 25 No. 5, October 1990, pp. 1217 - 1225.

2. A. Leaver. FPGA Design]or Systems Compilation. D.Phil. Thesis, Computing
Laboratory, University of Oxford (to appear)

A Tool-Set for Simulating
Altera-PLDs Using VHDL

Andr6 Klindworth

University of Hamburg, Dept. of Computer Science
Vogt-Koelln-Str. 30, D-22527 Hamburg, Germany

A b s t r a c t . This paper presents a tool-set for simulating Altera-PLDs
[1] using VHDL [2]. It has been successfully used in a graduate course
on digital design with PLDs. The tool-set supports timing simulation as
well as functional simulation of designs that have been designed with the
Altera MAX+plusII development tool.

1 B a c k g r o u n d

Altera 's P L D / F P G A design tool MAX+plus l I comes with an own hardware de-
scription language (HDL) named AHDL [3]. Compared to s tandard HDLs like
VHDL, AHDL is a low-level t tDL with support for signals of type either bit or
vector-of-bits only. The implicit signal types along with short-hand constructs
for instantiat ing and interfacing of subdesigns allows very compact hierarchical
design descriptions. In addition, AHDL gives the user a direct control over tech-
nology mapping and design partit ioning. Both aspects let us choose AttDL ms
the means of design entry in a first year graduate course on digital design for
PLDs in which most part icipants have little or no experience in using HDLs as
well as PLDs.

2 S i m u l a t i o n R e q u i r e m e l ~ t s

Validation by simulation is still the usual way verification of digital designs is
done. The designer should have easy access to a powerfld simulator and the
development tools of PLD-vendors usually come with programs which generate
a design description in a s tandard format like EDIF, Verilog, and/or VHDL.
Such a description then can serve as an input to a third-par ty simulator.

When simulation is considered, it is highly desirable that the designers view
of the design is structured in the same way as ill the original design description,
that is, design hierarchy, groups of signals (busses), and all symbolic names of
instances, machine states, and internal as well as external signals should be
preserved. MAX+plus l I for workstations fails to meet these d e m a n d s) Netlist
writers tha t produce an EDIF, VHDL or Verilog description of a design are
available, but they merely write flattened netlists. These netlists contain full

1 The PC-version of MAX+pluslI comes with an integrated simulator, but the expres-
sive power of the stimulus description language is limited.

307

t iming information, but neither the design hierarchy nor names (except for the
primary inputs and outputs) are preserved. Functional debugging of a design
has to be done by analysis of the primary inputs and outputs only.

But before correct timing of a circuit is to be verified, the designer must check
the functionality of the design. For this task, the exact t iming of the circuit is
quite irrelevant and a fltnc~ional simulation suttices. This is especially true when
the design is fully synchronous, as it is enforced by the structure of functional
blocks in most PLDs. We believe that at this stage of the design process it is
much more important to simulate a design that "looks" exactly the same as in
the original description rather than using a modified model of the design with
exact timing information.

3 S i m u l a t i o n P r o c e d u r e

As a compromise between tim needs of the designer and what can be fulfilled
with a reasonable effort, we developped a tool-set which eases t iming simulation
and provides flinctional simulation of Altera PLDs that have been designed using
AHDL and the MAX+plus l l compiler. For both types of sinnllation, VIIDL is
used to interface MAX+plus l l with a third-party sinmlator which in our case is
the powerful Synopsys VllDL-simulator vhdlsim [4]. VIIDL is also used by the
user to define stimuli for the simulation. For this purpose, our tool-set embeds the
design-to-test in an automatical ly generated VflDL testbench. This testbench
is a Vt tDL entity with an architecture that contains a component declaration
for the design, a signal declaration for each of its external connections, and an
instantiat ion of the design, the ports of which are connected to the signals. Using
such a testbench has been proposed in [5] and gives the user the full expressive
power of VItDL to assign waveforms to the external inputs and t.o observe and
evaluate the restllting responses of the design.

Our tool-set supports bot.h t.ypes of simulation: limi~g simTtlalion and fun.c-
timbal simulaliom

For limiT~9 simulat, io~, the VIIDL netlist written by the MAX+plus l I com-
piler is slightly modified and embedded in the testbench. Two script files named
limege~ and lsim make the necessary calls to programs which

- check that the design project is up-to-date and has been successfully com-
piled in MAX+plusI l .

-- modify the VllDL-netl ist t.hat has been written by MAX+plus l l . Modifica-
tions include regrouping of busses that have been resolved by the compiler.

- generate a VIIDL testbeneh for the design.
- make the calls to the VIIDL compiler to generate simulat.ion models for the

VIIDL description of the design itself and its testbench.
call the sinnllator.

For fundional simulatioT~., a VIIDL model of the design is generated directly
from the original AIIDL description. This task is carried out by an AIII)L-
to-VItDL compiler named agvhdl. The VIIDL code produced by a2vhdl fully

308

preserves the hierarchy of the design project as well as all signal groups (busses)
and all symbolic names of instances, machine states and signals. This VItDL de-
scription of the design is embedded in the same testbench as the timing model, so
that the same stimuli are used for both types of simulation. Changing between
functional and timing sinmlation is done by simply configuring the testbench
for using the timing architecture or the flmctional architecture of the design,
respectively. Again, two script files named funcgen and fsim realize all the nec-
essary steps to simulate an AIIDL design that has been succesfully compiled
with MAX+plusII.

To simulate an AHDL design using our tool-set, the designer has to follow
the following procedure:

1. Design entry with AtIDL.
2. Compile design with MAX+pluslI.
3. Call funcgen or timegen, respectively.
4. Insert stimuli processes in the testbench.
5. Call fsim or tsirn, respectively, to start the simulation.

The VHDL code generated for the design is transparent to the user. When
doing a timing simulation, all be sees from the VItDL model is tile testbench,
containing the external connections of the design. In the case fimctional sim-
ulation is chosen, the same testbench is used. In addition, the interior of the
functional VHDL model is structured in the same way as the original AItDL
description. All design objects the user defined in the original design description
do also exist in the functional VIIDL model and have the same name. Internal
signals may be traced during simulation using the original (hierarchical) node
identifiers.

4 C o n c l u s i o n s

The tool-set as described in this paper proved to greatly simplify debugging of
PLD designs. It combines the compactness of design description in AItDL with
the expressive power of VHDL for the description of simulation stimuli and the
monitoring capabilities of a powerfid VHDL sinmlator.

R e f e r e n c e s

1. Altera Databook, Altera Corporation, San Jose CA, 1993.
2. IEEE Standard VHDL Language Reference Manual, IEEE Standard 1076-1987,

New York, 1988.
3. Altera MAX+plusIIreference manual, Altera Corporation, San Jose CA, 1992.
4. Synopsys VHDL Simulator Reference Manual, Synopsys Inc., 1993.
5. Z. Navabi: VHDL - Analysis and Modelling o] Digital Systems, McGraw-Hill, New

York, 1993.

A CAD Tool for the Development of an Extra-Fast
Fuzzy Logic Controller Based on FPGAs

and Memory Modules
John Ant. Hallas , Evaggehnos. P. Marlatos *, Michael K. Birbas

Alexlos N. Birbas and Constantinos. E. Goutls

Electrical Engineering Dept., Patras University, Patras 26110, GREECE
** Synergy Systems Ltd., 68 Amerikis Str., Patras 26 441, GREECE

Abstract. A method for the development of an Extra-Fast Fuzzy Logic
Controller is presented in this paper, using a CAD tool to utilize the potentials
of programmable hardware [1]. This is accomplished by generating custom
VHDL synthesizable code [2] that is targeted to an FPGA chip. The CAD tool
produces, also, bit patterns that represent a compiled version of the fuzzy-
logic controller [3]. These are stored in memory modules. The basic idea is
simple but very efficient with respect to the achieved processing speed, the
required hardware and the ease of programmability.

1 Introduction

Fuzzy logic control methods have been in wide use in a variety of application fields
during the last years. The major advantage of these methods is the ability to develop
a working system even when a strict mathematical model for the regulated process is
not available. Observed patterns in the time-series of the input-output pairs or the
knowledge of an expert can be exploited to formulate the membership functions and
the rules of the fuzzy controller. Then, during the evaluation tests, the membership
functions and the fuzzy rules can be trimmed to achieve the best results.
The presented method consists of a CAD tool that accepts information regarding the
fuzzy controller and produces a bit pattern that is stored in ROM or loaded in a
RAM module. Apart from the memory-based part, the CAD tool queries the user
about several hardware aspects and develops a VHDL synthesizable code that will be
targeted to an FPGA chip. The proposed procedure is depicted in figure 1. The
memory-based fuzzy-logic control method, the required programmable hardware and
the CAD tool are presented in the subsequent sections.

2 Memory-Aspects of Fuzzy-Logic Control

The overall architecture of a fuzzy-logic control system is presented in figure 2. The
input signals are fuzzified according to their resemblance to certain membership
functions. The fuzzified values are fed to the inference engine which examines the
contents of the Fuzzy Rules Matrix (FRM). The outcome of the inference process is
a set of values that represent the grades of the results of each individual rule. The last
step is the defuzzification process, where the set of output grades is transformed,
back, to a crisp value.
Many different methods exist both for the inference process and the defuzzification
process and all of them are dependent on the number and the shape of the
membership functions. It is obvious that to achieve an efficient hardware
implementation for the aforementioned blocks, taking into account all the potential
variations that might be requested, is a difficult task. Another approach for the
development of a fuzzy-logic controller is to implement the algorithm in software

310

running in a conventional microprocessor. Although this is a flexible solution, there is
an obvious drawback: the developed system is many times slower that a pure
hardware approach. The proposed technique overcomes both of the aforementioned
problems by following a middle-road approach as is explained below.
The basic idea stems from the fact that most fuzzy-logic control systems need only
two variables as input: a specific signal and its time-derivative. Since a conventional
fuzzy controller's output is independent of its previous state (i.e. the controller
presents combinatorial behaviour) the outputs for every input combination can be
pre-computed (compiled) and stored in a contiguous part of a memory module [3]. A
simple calculation shows that the required memory size for a two-input, one-output,
eight-bit resolution (in both the input and output signals) is 8*2(8+8)'= 64 Kbytes.
Although the idea of using the memory module as a universal function approximator
is simple, the advantages are manifold:
• There is no need to stick to a particular inference or defuzzification method.
• The processing speed is inversely-proportional to the memory-module access time.
• The inference time is independent on the size of the rule matrix or the methods for

inference and defuzzification as well as independent on the particular input
combination. This is essential for real-time systems.

• There are no compromises to the number, shape and overlap of the membership
functions, the size of the rule matrix or the methods of inference.

• Each input or output can receive a different number of resolution bits.
• The number of resolution bits for the membership grade axis does not affect the

size of the memory. The CAD tool computes the result using maximum accuracy.
• The fuzzy-logic controller designer can try various implementations without wasting

resources either for writing software or for building hardware.
The memory module is assisted by a number of logic blocks in order to build a
complete controller. All aspects of those hardware elements are described next.

3 FPGA-Aspects of Fuzzy Logic Control

Since the memory module that holds the input-output data of the controller must be
embedded in a host digital system, some interface issues must be resolved in external
hardware using FPGAs as vehicles for their implementation. The logic blocks that
can optionally be included in the FPGA are:
• A divider of the host system's clock to meet the memory-module's timing.
• A subtractor that may be used for the calculation of the Ax variable i.e. the time-

derivative of the x input variable if this is required. A similar method may be
necessary if an integral of an input variable is requested.

• A multiplexing-demultiplexing scheme if the controller is used to regulate simul-
taneously more that one similar systems.

• An interface circuitry for the generation of Start_of_Convertion (SOC) and
acknowledge of the EndofConvertion (EOC) signals to assist the linking of the
fuzzy logic controller with ADCs. Also, a Convert signal should be generated to
drive a DAC if the output variable is in the analog domain.

• An adder that may be needed to trim the controller's output by a certain offset.
• Additional adder/subtractor modules may be necessary if the controller is required

to produce an incremental output instead of a direct one.
• An additional clock divider may be useful if one of the inputs is used for timing.
• Glue logic to assist the interconnection and/or addressing when more that one

memory modules are used to hierarchically increase the number of inputs [3].
It is obvious that the aforementioned logic circuitry can be implemented in a small

311

FPGA. This way, the whole fuzzy-logic controller can be constructed using only two
components: a memory chip and an FPGA chip.

4 The FuFMeV (Fuzzy FPGA-Memory-VI-IDL) CAD Tool

The FuFMeV CAD tool is developed using the C programming language. Its output
consists of two ASCII files:
a. A bit-pattern (BP) organized in words that are stored in ROM or loaded in RAM.

This file contains the compiled version of the requested fuzzy-logic controller.
b. Synthesizable VHDL-code (PC) that is targeted to a family of FPGAs using a

VHDL-based synthesis tool. This portion of VHDL code serves for both
simulation and synthesis purposes.

The two-previous sections have covered most of the memory-aspects (associated with
ASCII file BP) and thefpga-aspects (associated with ASCII file VC) that are handled
by the CAD tool. The interactions between the FuFMeV tool and the designer are
described below:
In the memory-part of the tool, the user is queried about the number and the

resolution of the input variables, the resolution of the output variable, the number of
the membership functions and their shape, the number and type of fuzzy-rules, the
methods of inference and defuzzification and the base-address of the memory
module, If the number of input variables is greater than two then the tool asks if a
hierarchical approach is preferred. On affirmative answer, the number of required
memory modules, their inputs and their base-addresses are also requested. This
information is sufficient to produce the BP ASCII file.
In the FPGA-part of the tool the user is queried about the existence or not of the
logic modules that are described in the previous section. Parametrical and
synthesizable VHDL code generators for these simple logic blocks are hard-coded in
the CAD tool. When the user has entered all required information, VHDL entities
for the required blocks are produced and linked together in a structural format
(netlist). The result is written in the VC ASCII file. This code is then processed by a
commercial synthesis tool to generate gate-level netlist optimized according to the
basic configurable logic block of certain FPGA families. An FPGA-family specific
tool transforms this netlist to the format required for the hardware programming.

5 References
[1] The Programmable Gate Array Data Book, XILINX Inc., 1992
[2] Autologic-VHDL User's Manual v8.2, Mentor Graphics Corp.
[3] Witold Pedrycz, Fuzzy Control and Fuzzy Systems, Research Studies Press Ltd., 1993

(Proposed
CAD tool)

VHOL cod~ Eblt-pstt~Tn v"°L';Ig~2" ~!
Logic retargetlng

I c I
FPGA place&route I c.0,oo,]

Fig.2: Architecture of a fuzzy-logic
controller

Fig.l: Proposed procedure

Performance Characteristics of the Monte-Carlo
Clustering Processor (MCCP) - a Field Programmable

Logic based Custom Computing Machine

C.P. Cowen and S. Monaghan

Neural and VLSI Systems Group
Department of Electronic Systems Engineering

University of Essex
Colchester, CO4 3SQ England

Abstract. A specialpurposeprocessororiginally designed for Monte-Carlo sim-
ulation using Metropolis type algorithms has been reconfigured to allow the use
of a new improved class of Monte-Carlo algorithm without compromising the
processor's performance.

1 Introduct ion

In Monte-Carlo simulations and digital signal processing applications it has often proved
advantageous to use specially constructed processors in place of general purpose com-
puters. SRAM-based Field Programmable Gate Arrays (FPGAs) appear to be suited to
applications in this area [1, 2] as they can be used to reduce both the practical difficulties
and the cost of building special purpose processors. Although FI~As may be slower
than non-programmable devices, they provide much greater flexibility in allowing the
hardware to be readily altered. This paper describes how a piece of hardware based
on Xilinx 3000 series FPGAs[3], originally built to perform Monte-Carlo (MC) com-
putations and simulations based on the Metropolis[4] and related algorithms, has been
reconfigured to implement a recently discovered and very different class of Monte-Carlo
algorithms. These algorithms were not anticipated by the designers of the original hard-
ware but the flexibility provided by the FPGAs allows the same board to adapt to these
new algorithms. The computational hardware can be modified and the processor is able
to keep up with developments in algorithm design that often occur in the kinds of areas
to which FPGAs can be currently applied.

2 H a r d w a r e P la t form

The architecture of a simple PC hosted processor board, built to implement variants of
the Metropolis algorithm is shown in Fig.1.

In the original application this hardware platform was used as follows: an image
represented by a string of pixels stored in SRAM1 is passed through sections of a FIFO
implemented in FPGA2/SRAM2. The FIFO section in FPGA2 is tapped at the stages
corresponding to a local processing window to provide the inputs to a processing element
implemented in FPGA2/SRAM2. In the case of the Metropolis algorithm the processing

313

FPGA 1 1 / 1 FPGA 2

!

Fig. 1. FPGA/memory architecture

element typically consists of a random number generator (RNG) and a comparator in
FPGA2 and a look-up table (LUT) in SRAM2. A data address generator (DAG) in
FPGA1 controls the flow of data between SRAM1 and the FIFO and the address
sequence of this DAG is completely known at run-time. The Metropolis algorithm,
implemented in this way, executes an order of magnitude faster than a similarly costing
Digital signal processor (DSP) for a number of different simulations of physical systems
at non-zero temperatures [5](Simulated Annealing).

3 Cluster Algor i thm

Cluster algorithms [6] consists of two stages. The first stage forms tree-like data structures
(clusters), by linking neighbouring pixels according to a stochastic percolation process.
The probability that adjacent cells will be linked is a function of the temperature of the
simulated system. This clustering stage can be achieved via a pipelined arrangement
similar to the above processor. The second, declustering stage consists of locating and
updating each individual cluster of pixels separately by following the links to each pixel
in the cluster. Since each pixel can be linked to more than one neighbour, a recursive
method is used. The size, shape and number of these clusters will depend upon certain
simulation parameters such as the system temperature and will vary throughout the
simulation. This means that the sequence of the data addresses cannot be known prior to
execution, and that a variable number of branches will take place during the declustering
stage of the algorithm. It is not clear at first sight that these algorithms can be efficiently
implemented in Fig. 1.

3.1 MCCP architecture

The MCCP architecture can be placed into this arrangement for small problem sizes,
given the small memories used in the prototype. Refer to [7] for details of the MCCP
architecture. Again, SRAM 1 is used to store the image, and the pipeline that performs the
clustering stage is placed into F/a3A2 along with the RNGs and comparators. SRAM2 is
used as a stack which means that FPGA2 must also contain the stack controller. FPGA1
contains the DAG, which for cluster algorithms is larger, more complex and able to
handle branch operations. FPGA2 also contains a finite state machine which generates
the address sequence from cluster information.

314

4 P e r f o r m a n c e o f M C C P architecture

To obtain an appropriate performance measure of the MCCP architecture, a version of the
cluster algorithm, was written in hand-optimised assembly language on a popular Digital
Signal Processor(DSP) [8]. This exercise confirms that the same order of magnitude
performance gain is obtained[7] as with previous processors. This is because, although
the DSP provides some of the data addressing capability required for efficient execution
of cluster algorithms, there are a number of important functions, such as masking, stack
control and random number generators (RNGs), that require large software overheads
and must be carried out sequentially. Such operations can be readily implemented in
hardware and carried out concurrently.

5 Conclusions

A processor implemented in 3000 series FPGAs, originally intended for Monte Carlo
simulations based on the Metropolis algorithm has been reconfigured to run a new and
very different type of Monte-Carlo algorithm while the performance gain of an order of
magnitude over a similarly priced DSP is maintained. No changes have been made to the
non-reconfigurable connections in the processor indicating that at least within a given
area of application, FPGA-based computing machines are flexible. The reconfigurability
of the FPGA-based platform allows the MCCP architecture to be used in conjunction
with other Monte-Carlo processor architectures, providing a wider range of options
for investigating Monte-Carlo problems. The use of field programmable interconnect
devices is likely to improve further the applicability of this type of processor.

References

1. S. Monaghan, T. O'Brien, and E Noakes. FPGAs, page 363. Abingdon CS Books, 1991.
Edited by W. Moore and W. Luk.

2. S. Monaghan. Gate level reconfigurable Monte Carlo processor. JVSP, 6:139 - 153, 1993.
3. Xilinx. The Programmable Gate Array Data Book, 1991.
4. K. Binder, editor. Applications of the Monte-Carlo Methods in Statistical Physics. Springer-

Verlag, 1984.
5. S. MonaghanandC.E Cowen. Multi-bitreconfigurableprocessorforDSPapplicationsinStat-

istical Physics. Proc. FPGAs for Custom Computing Machines FCCM'93, 1993. sponsored
by IEEE Computer Society.

6. Robert H. Swendsen and Jian-Sheng Wang. Nonuniversal Critical Dynamics in Monte Carlo
Simulations. Physical Review Letters, 58(2), January 1987.

7. C.E Cowen and S. Monaghan. A Reconfigurable Monte-Carlo Clustering Processor (MCCP).
Proc. FPGAs for Custom Computing Machines FCCM'94, 1994. sponsored by IEEE Com-
puter Society.

8. Analog Devices. ADSP-2101 Data Sheet, 1990.

A Design Environment with Emulation
of Prototypes for Hardware/Software Systems

Using XILINX FPGA

Gerd vom BSgel 1 , Petra Nauber 2, JSrg Winkler 2

1 Fraunhofer-Institute of Microelectronic Circuits and Systems, IMS Duisburg
Finkenstrasse 61, D-47057 Duisburg, Germany

2 Fraunhofer-lnstitute of Microelectronic Circuits and Systems, IMS Dresden
Grenzstrasse 28, D-01109 Dresden, Germany

Abs t r ac t . The paper will present a Design Environment with Emula-
tion of Prototypes (DEEP) for designing hardware/software systems. The
CAE tool DEEP consists of an integrated workframe for designing hard-
ware/software systems and the Rapid Prototype Co-Emulator (RPCE)
for hardware/software co-emulation and verification. For a flexible reali-
zation of the designed systems FPGAs by XILINX are widely used within
the RPCE. Experiences in prototype realizations will be presented.

1 Rapid-Prototyping and Design Verification by
Emulation

For bringing the realized system functionality and the requirements of the em-
bedding enviromnent into line the design of microelectronic systems still requires
the realization of the design as a prototype. The method of Rapid Prototyping
allows a fast realization of prototypes meeting the demands of ' t ime to mar-
ket ' and product quality. DEEP supports this method by a 'soft-configurable '
hardware.

For verification by emulation a physical replication of the designed system
or sub-sys tem is realized and embedded into its target application environment.
The aim of such a physical replication is to get a flmctional and t iming identical
prototype of the system to be implemented later. The functional behaviour of the
system can then be verified in the target environment under real t ime conditions.
In DEEP the emulation of digital hardware runs on XILINX FPGAs and the
emulation of software on standard microprocessors.

2 Components of DEEP

DEEP consists of PC based software tools for design entry, design translation and
emulation management as well as tile DEEP hardware called Rapid Pro to type
Co-Emula tor .

316

2.1 D E E P Software

The DEEP software is fitted out with a MS-Windows workframe acting as user
interface for invoking and controlling the different design steps. DEEP starts
with a system specification by the notation of cooperating function components
(FC), where hardware FC are specified using VHDL or schematics and software
FC using the programming language C.

For the implementation on the RPCE the hardware FC may be divided into
blocks which fit into the available FPGAs. For this a special software is used.
It partitions the FPGA technology files and allocates the resulting blocks to
the available devices. The partitioning process is user controlled with different
selectable strategies.

The RPCE is controlled by the MS-Windows workframe. All commands like
configure, emulation start/stop and trace are invoked from the emulation control
menu.

The DEEP emulation system provides an integrated debugging environment
to analyse the current system state of the emulated hardware and software. The
hardware state is visualized by reporting the register values, got by reading back
the LCA internal data, within the schematics. The software state is characterized
in an extra window, showing the used registers and variables.

2.2 D E E P Hardware

The Rapid Prototype Co-Emulator (RPCE) is a VMEbus based system exten-
ded by different emulation modules (Fig. 1). Its modular structure facilitates
a variety of extensions and a flexible adaption to widely differing application
environments.

Module Bus

Fig. 1. DEEP Hardware Structure

317

The VMEbus itself acts as configuration and control bus mastered by a con-
trol CPU board. To link the emulation modules within the RPCE as well as to
the target environment a flexible module bus and I /O bus structure is provided.

Until now, three types of modules are available:

- Logic modules for emulation of digital FC,
- Processor modules for emulation of software FC and
- Converter modules to tie up analogous components as well as sensors and

actors.

In general the emulation modules consist of an interface board carrying the
very emulation board.

The main functionality of the interface board is realized on the basis of two
XILINX LCAs 3090PGl75, one controlling the bus drivers of the module bus
and I /O bus and the other interfacing the VMEbus to the emulation boards.
The necessary control logic for the bus drivers is generated automatically during
the design translation. For the function of the VMEbus interface LCA standard
configurations are provided, which can be modified or extended by the user for
special applications.

The logic emulation board consists of four XILINX LCAs 3090PG175 and
3195PG175, respectively, used for the circuit to be emulated. They are connected
via a hard-wired array according to a special developed scheme. Thus digital
circuits with a complexity of up to 15,000 gates (or 20,000 gates using 3195
LCAs) can be realized per module.

The converter emulation board allows the connection to analogous compo-
nents via A/D and D/A converter (12-Bit, 100kHz samples, 16/8 A/D channels,
4 D/A channels). The specification of the converter interface is carried out within
the DEEP workframe, where the configuration data for the module are generated
afterwards. The configuration data are downloaded into the driver control LCA
also facilitating various operating modes of the module.

Processor modules are used for the emulation of software FC. The module
is set up on a VMEbus compatible CPU board, that has been extended for
the RPCE by a special interface board. The CPU board contains a MC68070
CPU with RAM, EPROM and I/Os. The special interface board is mastered
by a XILINX LCA 3090PG175 containing the control logic for the bus drivers
which can be extended by logic for any necessary interface circuits. Additionally
a plug-in interface for further CPUs (IMS2205, MC6805, 18051) is controlled by
the LCA. In the same manner the integration of DSPs is under preparation.

3 E x p e r i e n c e s i n P r o t o t y p e R e a l i z a t i o n s

Up to now three RPCE devices are used for prototype emulation at the IMS
institutes. Experiences are gained by designing and emulating a highly parallel
data decompression circuit and a knowledge based analytical controller ASIC
both involving digital hardware as well as software components.

DSP Development with Full-Speed Prototyping
Based on HW/SW Codesign Techniques

Jouni Isoaho 1, Axel Jantsch 2 and Hannu Tenhunen 2

I Tampere University of Technology, Signal Processing Laboratory
P.O.Box 553, FIN-33101 Tampere, Finland, Email: jouni@cs.tut.fi

2 Royal Institute of Technology, Electronic System Design
P.O, Box 204, S-16440 Stockholm, Sweden

1 Prototyping Method
Fie]d Programmable Gate Arrays (FPGAs) have been established as efficient tools for prototyping of
various DSP algorithms in [3] and [6]. Quite often prototypes are implemented, because the algorithms
have to be tested with huge amount of different kind of real test data. Developing new algorithms and
approaches using VHDL-synthesis based prototyping typically means that algorithm design, filtering
analysis, VHDL coding, simulation, synthesis, prototyping implementation and measurements have to
be done. This normally takes several weeks of time requiring a lot of different knowledge from the algo-
rithm designer and this approach is also very sensitive to human errors.

To achieve more efficient systcm level design and analyses we propose a fast HW/SW codesign
based method for Digital Signal Processing (DSP) algorithm development with "full-speed prototyp-
ing". The real world data is collected into the memory of workstation via an FPGA based board, filtered
using bit-true C-models and sampled back to the environment via the same board with a realistic data
rate. The communication mechanism between hardware interfaces and C-models is generated automati-
cally during compilation. This approach allows an accurate analyses and an efficient system level opti-
mization of DSP functions for the target application without an actual implementation. Our hardware,
which is connected to Sun Sparcstation IPX via SBus, is based on two Xilinx 4000 series devices. The
algorithm can be modelled first with the full word lengths (32 bits) to achieve the worst case scaling
requirements. This model is later used to generate the reference file for implementation optimization.
During the implementation minimization optimal scaling factors, internal word lengths and the arithme-
tic solutions can be selected. The output of the optimized model can be compared with the reference file,
if no differences are found the model is acceptable and the optimization can continue. If differences are
found the model has to be analysed in simulator or with prototyping to check the effects of distortion.

2 Development Environment
Filter modelling is done using C-language and thus allows the use of both floating-point and bit-true
models. Basic signal analyses can be done in the Madab graphical environment. The software models
are connected to the target and prototyping environment by means of HW/SW codesign techniques
which allows to prototype the DSP algorithm with a full operating speed. During the compilation an
assembler code is generated for the parts that will be executed on the workstation, and VHDL for the
parts that will be implemented on the FPGA board [5]. In the early phase prototyping this normally
means that only the interface functions are linked to the corresponding components on our interface con-
figuration library for Xilinx. Afterwards, the codesign environment together with High Level Synthesis
too/, like SYNT [2] [4], can be used for implementing the system after validation and sharpening of the
specification. The new modules of the system can easily be coprototyped with the parts that are already
implemented in the earlier systems. To implement large systems the same communication protocol can
be used with the RPM logic emulator [8]. The compiler generates the additional code for handling the
communication between the software and hardware parts. On the software side the device drivers are
called to open and close the logical communication channel, to configure the Slave FPGA, to initiate the

319

application design and to serve interrupts from the board. For the hardware side a prespecified, parame-
terizable VHDL entity is generated, which takes care of the handshaking with the controller FPGA and
the address generation for the local memory. The prototyping board is based on two Xilinx 4000 series
devices, one of the devices contains the SBus interface (Master) [1] and the other one application config-
uration (Slave). The bottleneck which limits the overall data transfer rate to 4 Mbit/s for 8-bit data is
located between the DVMA component and the XC4005 controller. If higher data rates are needed, the
local memory, which is currently only 1 Mbit, can be used up to 25 MHz applications (32 bits).

We demonstrate the possibilities and advantages of the development system with an audio sigma-
delta D/A converter example [7]. The interpolated data is forwarded to a sigma-delta noise shaper. The
output bit-stream of the noise shaper can be forwarded to a 1-bit D/A and an analog postfilter to allow
the listening experiments of the algorithm performance. As at maximum 64 times oversampling ratio for
the audio data is possible with our prototyping environment due to the data transfer limitations, the sec-
ond order noise shaper topology is needed to replace with the fourth order one [3]. Of course, if the sec-
ond order topology is preferred, the other possibility is to implement the high sample rate parts of the
running sum intcrtx~lator and the noise shaper on FPGAs. It is possible even within our current hardware
configuration as the interfaces require only some logic modules in Xilinx 4000 series architecture.

The combined bit-modelling and prototyping approach is very advantageous with optimizing e.g.
the nonlinear noise shaper, because the scaling always removes information and due to feedback loops
this might cause also the system start to variate in the similar manner as a badly designed IIR filter. The
optimized internal word lengths for the fourth order noise shaper topology are 20, 16, 13 and 8 bits. It
means about 43% of savings in the size of the noise shaper compared to the full 25 bits of word length,
which is the smallest usable common bit width if no input scalings before intergrators are used. Also, the
effects of two's complement and saturative arithmetic Can be researched. In this case, the test data is
generated using a CD player and read into the Xilinx board at the speed of 44.1 kHz (2 x 16 bits of data).
This data is sampled into the memory of the Sparcstatlon. After filtering and noise shaping the data is
sampled out with the stxzed of 2.8 MHz (M = 64). The output bit-stream can be forwarded to the loud-
speaker using a 1-bit D/A and an ~malog reconstruction filter. The interface system configurations for
collecting data ,and writing out the samples are presented in Figure 1.

serial parallel

(a)
• , o ,

i

Slave FPGA ' ' Master '
bco , ~ ' , ' a c k . : FIK3A '

~ / Y ' M 3 6 1 3 / wcod° ~ mtertace]:module ~ ~:
I: data ' :

SBus
R A M

bit-stream ,.I., packed bit-stream d~. bi t-stream
r l " " 1 "

(b) ' Mas te r ' ' Slave .

' F P G A ' , F P G A
~ S B u s SBus, ', req : ',

in ~ .~" ~ clOCkdata

i

Fig. 1. (a) Data collection configuration. (b) Data output configuration with sample clock.

The prototyping board is connected to the CD player via a standard CD interface chip (YM3613B). The
bit-serial data is [urther converted to the bit-parallel format in the Slave FPGA. The interface module
acknowledges to the Master FPGA from which channel the data comes. As the system has different data
lengths the 1-bit output of sigma-delta noise shaper is packaged in software for transmission into 16-bit

320

dataframes before writing the data into the memory. From the memory the data is sent to the SBus
according to the requests of the Slave FPGA. The dataframes are unpacked in the Slave FPGA before
outsampling.

Using the fourth order noise shaper, we need to sample out filtered data at the rate of 176.4 kHz (16-
bit frame). In the FPGA board, this 16-bit dataframe is decoded and 1-bit output data is sampled out
from the system at the rate of 2.8224 MHz (maximum operating speed for one charmel solution due to
the current communication hardware). At this speed we need 1.4 Mbytes of 16-bit memory for an 8 sec-
onds one channel sample. As in our configuration there is about 20 Mbytes usable memory for applica-
tions for one channel at maximum 112 seconds (M = 64) of sample can be filtered with the system
presented. In this case, the bit-true drive of the C-program which performs the whole filtering of 8 sec-
onds of sample can easily be completed on Sparcstation 10 within one hour (about two hours in a Sparc-
station IPX) including the compilation and interface downloading, which is about the same time as
needed for synthesizing and implementing a single filter which fits into a single XC4010. As comparison
the FPGA implementation of this converter structure requires 3-4 XC4010 devices for each channel. As
C-models handle only samples, the corresponding VHDL models also need emphasis on timing and
control. Therefore code generation, design verification and debugging is much faster with C-models.
The simulation time with bit-true models in C is e.g. about 10-20 times shorter than using VHDL mod-
els in Synopsys. Also, the hardware requirements are much slower. Synthesizing the filters required
using our Sparcstation 1PX with 24 Mbyte central memory is not possible in this case. 100 - 160 Mbytes
of central memory is a proper amot, nt for hierarchical synthesis approach in the Synopsys synthesis
environment for our example converter system.

3 Conclusions
The automatic HW/SW tool provides an efficient tool for DSP system optimization. In addition to proto-
typing, the filtered data can also b e closer analysed on Matlab with the real data collected from the sys-
tem environment. The time to change the system takes only a few minutes to complete while the
changing of hardware prototype on FPGAs takes usually even with synthesis tools some days in com-
plex changes. The proposed approach allows a fast search of the best filtering solution with minimal
effort for implementation. As no DSP functions are needed to implement it allows typically much faster
operating speed than which is possible with normal FPGA prototypes or ASIC emulators and provides a
very cost efficient environment for the system level development. Also, unlike in a full prototyping with
FPGAs, the maximum operating speed and the system capacity is quite easy to approximate.

References
1. S. He and M. Torkelson, "FPGA Application in an SBus based Rapid Prototyping System for ASDP", ICCD

91, pp. 1 -4, 1991.
2. A. Hemani, "High-Level Synthesis of Synchronous Digital Systems using Serf-Organization Algorithms for

Scheduling and Binding", doctoral thes&, Royal Institute of Technology, Sweden, 1992.
3. J. Isoaho, J. Pasanen, O. Vainio and H. Tenhunen, "DSP System Integration and Prototyping with FPGAs",

Jotarnal of VLSI Signal Processing, Vol. 6, pp. 155 - 172, 1993.
4. J. lsoaho, J. Oberg, A. llemani and It. Tenhunen, "High Level Synthesis in DSP ASIC Optimization", In Proc.

71h IEF.E ASIC Conference and Exhibit, Rochester, New York, SepL 1994.
5. A. Jantsch, P. Etlcrvee, J. Olxzrg, A. Ilemani, and H. Tenhunen, "A Software Oriented Approach to Hardware/

Software Codesign", in Proc. ofCC'94, Edinburgh, April 1994.
6. 3. Nousiainen, L lsoaho and O. Vainio, "Fast Implementation of Stack Fi/terS with VHDL-based Synthesis and

FPGAs", In Proe. IEEE Winter WS on Nonlinear DSP, pp 5.2-4. I---5.2-4.6, Tampere, Finland, Jan. 1993.
7. T. Saram~ki, T. Ritoniemi, T. Karema, J. Isoaho and H. Tenhunen. "VLSI-Realizable Muhiplier-Fme Interpo-

lators for Sigma-Delta D/A Converters" In Proc. oflSCAS89, pp 60-63. Nanjing, China, July 1989.
8. J. Varghese, M. Butts, and J. Batcheller, "An Efficient Logic Emulation System", IEEE Trans. VLSI Systems,

vol. 1, no. 2, pp. 171 - 174, June 1993.

T h e A r c h i t e c t u r e o f a G e n e r a l - P u r p o s e
P r o c e s s o r C e l l

Jifi DANI~CEK, Alois PLUH~.CEK, Michal Z. SERVIT

Czech Technical University, Dept. of Computers,
Karlovo n£m. 13, CZ - 121 35 Praha 2, Czech Republic

A b s t r a c t . A general-purpose processor cell, called DOP, is presented.
The DOP is a 16-bit stack oriented processor designed to support effi-
ciently imperative programming languages like C or Pascal. The archi-
tecture of DOP is a result of HW/SW co-design. The DOP is supposed
to be used as a building block in a FPGA library.

1 I n t r o d u c t i o n

The architecture of a simple universal processor cell, called DOP, is presented.
It is currently under implementat ion with the XILINX XC4000 family. Our mo-
t ivation was to design a very simple yet still efficient processor which effectively
supports High Level programming Languages (HLL's) like C or Pascal. We con-
sidered the design of DOP as an example of H W / S W co-design where the SW
part is represented by a compiler (or rather by a code generator) and the HW
part is the resulting processor. Our pr imary goal was to propose such a proces-
sor which would provide a simple and efficient compilation scheme, and which
would keep the complexity of t tW within reasonable limits. This is why the
tiLL requirements were investigated first [1], [2]. This analysis led us to the
programming model and architecture of the DOP processor.

The DOP processor is designed to support efficient evaluation of address
expressions and arithmetic operations with both signed and unsigned numbers
of various length. The 2's complement representation of signed numbers and the
small endian representation of multibyte data stored in the main memory are
supposed.

2 T h e p r o c e s s o r o r g a n i z a t i o n

The DOP is a stack oriented processor with 16-bit internal bus (BUS) divided
into low and high 8-bit part , 16-bit external address bus, and 8-bit external data
bus (see Fig 1). The memory is byte organized and I / O devices are memory
mapped.

The DOP contains six 16-bit programmer-visible registers: P C - program
counter, SP stack pointer, S source operand address, D - destination
operand address, PSW - - program status word consisting of two 8-bit subreg-
isters denoted L (Loop counter) and F (Flags), and W - - working register.

322

The PC and SP are well known registers and theY are used in a common
manner which needs no comment.

The S and D registers are designated to store source and destination ad-
dresses (which can be evaluated in the ALU) - - but they can be used for other
purposes as well. The S and D registers have auto-post- inerementat ion capabili ty
to support mult ibyte operations.

The L register (the lower par t of the PSW register) supports p rogramming of
loops. It has auto-post-decrementat ion capabili ty and its content can be tested
by conditional j ump and interrupt instructions.

The F register (the higher part of the PSW register) contains the following
flags: C F - carry flag, O F - overflow flag, S F - sign flag, Z F - zero flag,
AF - - auxiliary sign flag.

The W register can be considered as a part of the ALU (it can be loaded only
through the ALU). The first operand (or the only operand) of an ari thmetic/ logic
operation is always the content of the W register. As the second operand the
data from the BUS are used.

m

m

I
a d d r e s s

' l i y , l , '

d a t a o u t d a t a i n

I

J I

Fig. 1. The structure of the processor

The outputs of all the mentioned registers can be connected via BUS and
Address Buffer (AB) to the external address bus. Using the BUS they can also
be connected to the external data bus via DO (Data Out) register to write the
data, or via DIL or DIH (Data In Low or High, respectively) registers to read
data or instructions. One byte (8 bits) or one word (16 bits) data can be read
or written. It is obvious that two bus cycles are needed to read or to write one
word. When reading a word, the DIL register is used to store the lower byte
temporally. When reading a byte, the sign- or zero-extension can be used.

The Instruction Register (IR) contains the just performed instruction.

323

3 T h e i n s t r u c t i o n set

The instruction set consists of 21 instruction types only covering all operations
that can be expected in a processor of this class (for details see [1]). Further we
will focus our at tention on only "special" features of the DOP instruction set.

All instruction codes (consisting of instruction type identification, operand
type identification and addressing mode identification) are packed into one byte.
An instruction code can be followed by one- or two-byte immedia te operand
when appropriate.

The DOP supports the following addressing modes:
,, Register, in which operand(s) and /or result reside in register(s) visible to

the programmer. Registers are implicit or must be declared explicitly.
• Immediate, in which an operand follows instruction operation code.
• Register indirect, in which operand(s) and/or result reside in memory loca-

tion pointed to by register content. In certain cases auto-incrementing or
auto-decrementing of register content is feasible.

• Stack, in which operand or result resides on top of the stack or at the location
determined by the offset to SP register, which is a part of the instruction.

Table 1. Possible data transfers

S O U r C e

PC
SP
S
D

PSW
W

[PC+]
[SP-]
[S+]
[D]
[W]

destination
PC SP S D PSW W

w

w

w

v¢ w w w w

w s,w,b s,w,b 1,2 s,w,b
w s,w,b s,w,b 1,2 s,w,b

s,w,b s,w,b s,w,b
s,w~b s,w~b s,w~b

s ~ w ~ b

IntAddr w
SP-[PC+] w w w

~+sp] [D+]

1,2 1,2
1,2 1,2
1,2 1,2
1,2 1,2

alu7-I

w

W .

w

W

~,w,b [
;,w,b I
~,w,b I

i

The functionality of most instructions can be described as a single data trans-
fer between registers, or between a register and memory, or between a register
and ALU. Instructions Load Local Address (LLA) consisting of two or three
transfers are exceptional from this point of view. Possible data transfers are
summarized in the Table 1, where the following conventions are used:

o Square brackets denote the content of corresponding memory location(s).
o Signs plus and minus denote pre- /post- incrementation or decrementation,

respectively; if the sign is in front of /behind a register name, pre- /post - is
true, respectively.

o alu2 stands for the second ALU operand.

324

o s, b, and w stand for sign-extended byte (signed short integer), zero-extended
byte (unsigned), and two-byte word, respectively.

o 1, and 2 stands for one byte, and two bytes, respectively.
o IntAddr stands for "Interrupt Address" that is from the set: {0xFFC0,

0xFFC4, .. . , 0xFFFC}.
The last line in Table 1 corresponds to instructions LLA.

The following arithmetic and logic operations can be performed: addition,
subtraction, AND, OR, XOR, rotate W left and right, NOT, and AAF (dis-
cussed below). The W register content is used as the first operand of a b ina ry
arithmetic/logic operation and as the only operand of an unary one. The pos-
sible sources of the second operand are given in the Table 1 (see column alu2).
The result is normally stored in the W register. However, the storing can be
suppressed by a special instruction Suppress Write into W (SWW) that must
immediately precede the considered instruction. The only result is the new con-
tent of the F register. In this way such operations as "compare" or "mask" can
be performed.

Any arithmetic/logic operation changes the flags (the content of the F reg-
ister) [3]:

* The CF flag is set by any addition or subtraction instruction if the carry
from the most significant position is equal to 1 (the subtraction is considered
to be the addition of the opposite number - - the CF flag is the inverse of
the borrow). The rotate instructions are performed through CF which acts
as the 17th bit of W. An instruction setting CF (called SCF) is included in
the instruction set. By any logical operation the CF is cleared.

• The OF flag is set by any addition or subtraction instruction if the overflow
occurs assuming the 2's complement number representation.

• The SF flag is changed to be equal to the most significant bit of the result.
• The ZF flag is set if the result is equal to 0.
• The AF flag is set by any addition and subtraction instruction if the second

operand is negative or non-negative, respectively.

The CF, OF, SF and ZF flags can be used in branch and interrupt instruc-
tions. (Essentially, interrupt instructions are conditional fixed address calls.) The
used flag is given as one parameter of the instruction. The second parameter is
the value of the flag which implies a branch. In such a way, for example, the
branch "if carry" can be executed as well as the branch "if not carry". Similarly,
the branch "if L = 0" or the branch "if L 7£ 0" can be executed. However, the
L register is pre-decremented in this case.

The CF and AF flags serve for other purposes as well. A special instruction
Use Carry Flag (UCF) supports addition and subtraction of multibyte operands.
If this instruction is used immediately before any addition or subtraction instruc-
tion, the CF flag is added to the first operand when the corresponding operation
is performed. In such a way, for example, the sequence UCF and ADD has the
same functionality as the ADDC instruction known from other processors of this
ClaSS.

The AF flag allows the addition and subtraction of signed operands of differ-

325

ent lengths (e.g. addition of a 2-byte signed number to a 4-byte one). A special
instruction called Add extended AF (AAF) serves this purpose. This instruction
adds the CF value and "all zeroes" or "all ones" for AF = 0 or AF = 1, re-
spectively, to the W register. When it is needed to add or to subtract a shorter
operand to or from a longer operand, the appropriate addition or subtract ion in-
struction (and UCF, if needed) is to be used for the lower parts (words or bytes)
of both operands and then the higher parts of the first (longer) operand are to
be loaded into the W register and to be modified using the AAF instruction.
For unsigned operands, the UCF and the "add 0 to W" or "subtract 0 from W"
instruction is to be used instead of AAF.

The impor tant feature of the suggested use of the CF and AF flags and
the UCF and AAF instructions is that the correct values of CF, OF and SF
flags are received after performing the last instruction in the above mentioned
sequence (e.g. after the last AAF). It holds for both signed (2's complement
representation) and unsigned operands.

4 C o n c l u s i o n s

The XILINX XC4005 chip is used for the implementat ion of the DOP processor.
It is supposed that the processor will be one of the XILINX XC4000 library
elements. Certain parts of DOP, namely registers and ALU, were designed and
simulated. Two VHDL models of the DOP have been written and debugged: the
behavioral model and the register transfer model.

Tile software support of DOP has been developed. It includes the C compiler
and the processor simulator. This software support enabled us to compare the
DOP with other processors in terms of the code size [2]. Surprisingly enough,
the DOP code is shorter than the code of much more complex processors.

The DOP processor is a result of H W / S W co-design. It seems to be a good
compromise between the complexity of HW and the simplicity and efficiency of
the compilation scheme.

R e f e r e n c e s

1. Dan~eek, J., Drgpal, F., Pluhgeek, A., Saleie, Z., Servft, M.: DOP - - A Simple Pro-
cessor for Custom Computing Machines. Journal of Microcomputer Applications
(to appear)

2. Dan~eek, J., Drgpal, F., Pluhgeek, A., Saleie, Z., Servft, M.: Methodologies for
Computer Aided Hardware/Software Co-Design Using Field Programmable Gate
Arrays. Research Report. Dept. of Computers, CTU Prague (in print)

3. Pluhgeek, A., Dan~eek, a.: The Manipulation with Flags on the DOP Processor.
CTU SEMINAR 94, CTU Prague 1994, 55 - 56

This research was supported by the Czech Technical University under grant
no. 8095 and by the Czech Grant Agency under grant no. 102/93/0915.

The Des ign of a Stack-Based Microprocessor

Michael Gschwind, Christian Mautner
{ mike, chm} @vlsivie. tuwien, ac. at

Institut fiir Technische Informatik
Technische Universit£t Wien

Treitlstra~e 3-182-2
A-1040 Wien

AUSTRIA

Abstract. This paper describes the design of a stack-based CPU using
field-programmable gate array technology. The architecture to be imple-
mented was already defined by a compiler, which had been implemented
previously. We describe what tools and strategies were used to implement
different parts of the processor, as well as the final integration process.

1 I n t r o d u c t i o n

FPGAs offer a unique opportunity to prototype chip implementations. To more
closely study this option, we have built a prototype board based on Xilinx FP-
GAs [Hub92] and conducted several implementation experiments. We imple-
mented our first design, JAPROC, as part of the JAMIE project. JAPROC is a
micro-controller upwardly compatible to the PIC16C57 [GJ92].

Field programmable gate arrays (FPGAs) can be used to allow fast imple-
mentation of chip designs [GAO92], [Gsc94]. This allows for a fast debug cycle,
as designs can be altered and downloaded in a mat ter of hours. As FPGAs are
pretested, only logic functionality has to be validated, reducing the time to get
a workable implementation of a chip considerably.

Since this has proved to be a remarkable success, we have started to use
FPGAs in student projects for logic design courses (building circuits such as
multipliers and dividers) and to build more complex designs, such as the stack-
based microprocessor presented here.

The advantage of this approach is that students do not have to deal with
the electrical intricacies of silicon implementations or breadboarding. Also, the
implementation cost is reduced dramatically.

2 A r c h i t e c t u r e

To maximize the understanding of the interaction of all levels of computer design
(hardware, compilers, OS), we emphasize integration of system design consider-
ation in student designs. Thus, the architecture presented here was used earlier
in a compiler construction class [BF92].

327

The processor implements a stack machine, with all operands being addressed
relative to the top-of-stack pointer or a frame pointer (local-pointer) which is
used to access local variables [Mau94]. The memory model is that of a Harvard
architecture, i.e. separate data and program memories. Memory addresses, as all
other data, are 16 bit wide. Thus the processor can address 216 = 64k words in
each memory segment. The data memory is 16 bit wide, and instruction memory
uses 24 bit. This allows each instruction word to encode a full 16 bit immediate
constant or address.

Instruct ion Descr ipt ion
NOP no operation
PSHc const
PSH1 offset
PSHli
STO1 offset
STOli
MVTc const

push const
push value at (FP + offset)
pop offset, push value at (FP + offset)
pop value and store at (FP + offset)
pop offset, pop value and store at (FP + offset)
move top-pointer (SP) by const

MLT
PSL
PPL

local-pointer (FP) := top-pointer (SP)
push local-pointer (FP)
pop local-pointer (FP)

GET read value from I/O port and push
PUT write top stack element to I /O port
ADD add
SUB subtract
MUL multiply
SWP swap the top elements
JMP address
JPE address
JPG address
JSR address
RET
STP

jump
jump on equal
jump on greater-than
jump to subroutine - push PC+l , jump
return pop return address and jump
stop execution

Table 1. Instruction set architecture

3 I m p l e m e n t a t i o n

3.1 C o n t r o l U n i t

The stack machine was implemented using a finite state machine (FSM) con-
trolling the data path (see figure 1). The finite state machine was modeled using
a microprogram-like mnemonic representation (see figure 2). We decided to au-
tomatically generate the controller part from a high-level description. This had
several advantages:

- The high-level description can be used as specification of the controller be-
havior.

328

- No inconsistencies can arise between the specification and the actual im-
plementation, as the implementat ion is automatical ly generated from the
specification.

- If the specification changes, a new implementat ion can be generated with
little effort, whereas a manual translation process such as used for J A P R O C
requires a complete re-design of the controller.

i n 5

instr-mem I I
data bur addr bur

l

I

I i e°ntrol
signals

E

internal bus

data-mem 1
data buf

I .
Fig . 1. Block level diagram of stack machine

LABEL (ADD)
COM(top_to_dmemadd I dmeraadd_le I dmem_rd I dbus to_alu_a)
COM(top_direct_down I top_clk_en)
COM(top_to_dmemadd I dmemadd_le I dmem_rd I dbus_to_alu_b)
COM(top_to_dmemadd I dmemadd_le I dmem_wr ~ alu_e_to_dbus I \

alu_cntrl_add i pc_inc I fetch)

Fig. 2. FSM code for adding the top two stack elements

To describe the design, we used a simple language with two primitives, one
to define the output signals to be generated in a particular state, a second
primitive to symbolically name state numbers. The language primitives have C
macros associated with them, so tha t the formal specification of the FSM can
be executed. By executing the specification, a bit s t ream is generated which
describes the control unit [Gsc93].

To implement the control unit, we use a ROM storing all s tate transitions
and control signals. This ROM is implemented using the Xilinx memgen tool

329

[Xi192], which allows automatic generation of ROM- and RAM-like structures
for FPGAs. The bit s t ream generated by the formal specification is used to
initialize this ROM.

For JAPROC, we used espresso optimized random-logic to generate the FSM
controlling the da ta path. As a result, the complete s tate machine had to be spec-
ified as a set of boolean equations and changes to the original control s t ructure
were much harder to achieve.

Due to the simplicity of the instruction set we implemented, each instruction
is implemented by a linear sequence of two to eight states. Each s tate has exactly
one successor state. The only time when control is not transferred to a well
defined next state is during the decoding stage of a new macro-instruction: to
decode a macro instruction, the opcode is fed to a decoder (also implemented
as ROM and automatical ly generated from the same executable specification)
which decodes an instruction by setting the controller s tate to the beginning of
the state sequence which implements the macro instruction.

3.2 Data Path

The design of the data path was straight-forward, using Xilinx-supplied macros
(soft- and hard-macros), the T T L emulation library and our own, generic bit-
slice ALU.

Integration of the design was seamless, but the the usage of hard macros and
of multiple XNF modules complicated things somewhat: to generate an F P G A
description which can be simulated, the design has to be translated first to XNF
level where all XNF modules were merged.

The merged design was then translated to the LCA level where hard macros
could be integrated. Then the whole translation process was reversed to generate
a VSM-type file for simulation. This lengthy translation process showed a number
of interfacing bugs in the Xilinx software and between the Xilinx and ViewLogic
environments which have to this date not been resolved.

The simulation was largely successful, but exhibited occasional unexpected
behavior, like erroneous incrementing of the PC - this was tracked down to
hazards in the automatically generated ROM. The control signals had been
stabilized by latching the current state, allowing hazards to propagate to all
functional units in the data path. By latching the control signals of the current
s tate instead, these hazards were masked out. After this final verification, the
original compiler was adapted to reflect the changes made to the architecture
at the beginning phase of the project. Thus, a fully functional microprocessor
environment was available, including a compiler and a hardware prototype, im-
plemented on one Xilinx XC4006 FPGA.

4 R e s u l t s a n d E x p e r i m e n t s

We simulated a whole system by integrating this CPU design in a ViewLogic
schematic which also contains instruction and da ta memories, and all the nec-
essary glue logic. This board level design was then simulated using ViewSim.

330

Simulation shows that the CPU designed here will run at 12.5 MHz, and that
the processor speed is limited by the memory subsystem. The circuit itself could
operate at a much higher clock rate.

The XC4006 F P G A showed 100% utilization of CLBs, with a huge degree of
flip-flops being unused. It is interesting to note that more than a third of the
available CLBs were used for implementing the two ROMs used in the control
unit. For larger designs, CLB-based FPGAs should probably not be used to
implement large look-up tables. An alternative is to used dedicated parts for
memory-type resources, as described in [KNZB93].

5 R e l a t e d W o r k

Intel Corp. used 14 Xilinx-based Quickturn RPMs to fully simulate its current
top-of-the=line Pentium T M microprocessor as part of the Pentium T M pre-silicon
validation process [KNZB93]. The simulated Pentium T M microprocessor achieved
an emulation speed of 300 kHz and booted all major operating systems for Intel's
x86 processor family.

6 C o n c l u s i o n a n d F u t u r e w o r k

We have shown that FPGAs are a useful tool for CPU prototyping. We are
currently embarking on a project to model the MIPS R3000 CPU using FPGAs
as target technology and VHDL for design specification. This design will be
targeted towards and enhanced board featuring multiple Xilinx FPGAs and
local static RAM.

7 A c k n o w l e d g e m e n t

We wish to thank Alexander Jaud for his help with the ViewLogic and the Xilinx
design environments.

R e f e r e n c e s

[BF92]

[GAO92]

[G J92]

Manfred Brockhaus and Andreas Falkner. (:Ybersetzerbau. Vorlesungsskrip-
turn, TU Wien, 1992.
T. Gal, K. Agusa, and Y. Ohno. Educational purpose microprocessors im-
plemented with user-programmable gate arrays. In Proc. of the 2nd Inter-
national Workshop on Field-Programmable Logic and Applications, Vienna,
Austria, August 1992.
Herbert Grfinbacher and Alexander Jaud. JAPROC - an 8 bit microcon-
troller and its test environment. In Proe. of the Second International Work-
shop on Field-Programmable Logic and Applications, Vienna, Austria, Au-
gust 1992.

331

[Gsc93]

[Gsc94]

[Hub92]

[KNZB93]

[Mau94]

[Xi192]

Michael Gschwind. Automatic generation of finite state machines for data
path control. Technical report, TU Wien, 1993.
Michael Gschwind. Reprogrammable hardware for educational purposes. In
Proc. of the 25th ACM SIGCSE Symposium, SIGCSE Bulletin, pages 183-
187, Phoenix, AZ, March 1994. ACM.
Ernst Huber. Eine Einsteckkarte fiir den I B M - P C / A T zur Programmierung
yon Xilinx FPGAs. Diplomarbeit, Institut fiir Technische Informatik, Tech-
nische Universit~it Wien, Vienna, Austria, September 1992.
Wern-Yan Koe, Harish Nayak, Nazar Zaidi, and Azam Barkatullah. Pre-

silicon validation of Pentium CPU. In Hot Chips V - Symposium Record,
Palo Alto, CA, August 1993. TC on Microprocessors and Microcomputers
of the IEEE Computer Society.
Christian Mautner. Entwurf eines Stackprozessors als Konfiguration eines
Xilinx FPGA Serie 4000. Technical report, Institut ffir Technische Infor-
matik, Technische Universiti~t Wien, April 1994.
Xilinx. X A C T Reference Guide. Xilinx, October 1992.

Implementation and Performance Evaluation of an Image
Pre-Processing Chain on FPGA

Mohamed AKIL and Mareelo ALVES DE BARROS
Groupe ESIEE - Laboratoire IAAI - BP 99, Cit6 Descartes, 2, Bd. Blaise Pascal

93162 - NOISY LE GRAND CEDEX - FRANCE - email: akilm@esiee.fr

1. In troduct ion

In image processing domain, many applications need their implementation
respect both flexibility and real time constraints. Tasks in low level image processing
are characterised by a great operation regularity and recursivity, as well as a large
data density (image pictorial format). These low level tasks, according to their high
computing requirements, have led to design specific architectures and Application
Specific Integrated Circuits (ASICs) as hardware solutions.

The programmable technology today gives FPGA circuits with considerable
performance and integration capacity [Xil 92]. The Xiinx XC4010 circuit used in
this work is a two-dimensional array with 400 Configurable Logic Blocks (CLBs),
160 In-Out Blocks (IOBs) and a programmable interconnection network. The CLB is
a basic element of the circuit effective area.

This work is based on MODARC (MODular reconfigurable ARChitectures)
approach [Alves93]. MODARC methodology was conceived to allow synthesis,
implementation and system test of specific operators for low level image processing
real time applications, with a low cost of development. In this environment an
application is represented by a data flow graph and a set of graph transforming
procedures are used to adapt algorithm and architecture graphs to the MODARC
hardware support graph. The hardware model consists of a cascade of basic operators
placed on a linear array of physical modules composed of SRAM based FPGA
circuits and interconnected memory resources.

2. Eva luat ion o f p e r f o r m a n c e s and area costs

The evaluation approach is adapted to the technology characteristics and to the
proposed architectural model, i.e. pipelining basic operators in a data-flow operation
mode. Let Ecc, Emm and Eint be the quantities representing respectively the
"energy" of computing, memory and interconnections of the specific architecture.
The term "energy" is used to express the amount of the several different components
present in the architecture, belonging to these three classes of architectural resources.
Let Acc, Atom and Aint be the quantities representing respectively the area cost of the
computing, memory and interconnection elementary components. In MODARC
approach an architectural elementary component library is defined in order to
represent low level image processing (8 or 16-bit adders, comparators, bus, registers,
etc.). The cost of these components is given as a number of CLBs. The algorithm
architecture whole area cost can be calculated by the expression:

A:(~Ecci.Acq~Emm-Amm+Emr.Amr+Eint.Aint Eq.]

333

where Ecc i is the energy of the i-th computing component of the architecture, Acc i
its the area cost and Emr and Amr represent respectively the energy and the area of
an elementary register component. The critical data-path of a basic operator or a
pipeline stage is evaluated by:

Tc=Nccts(Tct. +L.T~)+ Tcr.s + Tcx ~ Eq. 2

where: Nccu : number of CLBs layers (logic levels); Tcu propagation delay of a
CLB; L : interconnection length in the circuit for each CLB layer; T~r : propagation
delay per unit of interconnection length; Tcxs : propagation delay from clock to
registers outputs; Tcx~z: dispersion delay (skew) of the clock in the circuits.

For the proposed model, the architecture latency is determined by the number of
pipeline layers used. The maximum system frequency, Fmax, is defined by the
slower pipeline stage propagation delay. Fmax is given by: Fmax=l/max[Tc] (Eq.
3), where Tc is the i-th pipeline stage propagation delay.

3. Implementing an image pre-processing chain

The pre-processing chain is part of an image-recognition system showed in
Figure 1. The aim of the pre-processing tasks (shaded block in Figure 1) is to
generate accurate edges for the extraction of the object features such as area,
perimeter and curvature, after contours closing and region labelling. These features
are compared to objects models by a pattern matching algorithm to identify the
current object. The desired implementation on FPGA include the algorithms from
noise reduction until contour detection.

Edge Detector

~ H~ogram
I Equatizng North

~ ~\\\\\\\\\\\\\\\\\\N~

Cor~tou rs
Closing
and Reg~
Labd~g

Figure 1. An image pre-processing chain (shaded area).

The median filter is used to reduce the image noise. The algorithm proposed is a
variation of the original median algorithm, named separable median, for 3x3
windows. This non-linear algorithm reduces noise preserving edge information [Nat
85]. For an image l(m,n), the processed pixel O(m,n) is given by the expression:

O(m,n) =median[medianti(k,n-1),l(k,n),l(k,n + 1)]],

where: k=m-1, m, m+l, n=l L, and L is the size of the image. This operator
requires ~f~'(~C~_ 1) comparing/exchanging elementary operations (UCE), where
N is the number of pixels in the window (N=9 for 3x3 windows). The histogram
equalizer reduces sensitivity to illumination variations. It is performed by a look-up
table. This function corresponds to a memory reading operation. The Sobel operator
is used to enhance the edges of the images. The algorithm corresponds to convolving

334

the image by two ortogonal differential masks and choice the maximum absolute
value of the two convolutions. This operator can be performed by 12
additions/subtractions and a comparison/exchanging step.

The median is composed of two one-dimensional pipelined filters performed by
two 3-way sorters (Median3 modules). The vertical filter sorter processes the 3 pixels
of a column in the 3x3 window and gives the median. The second filter (horizontal
median3) sorts the last 3 outputs of the vertical median3 module and computes the
median.

The linear-logarithmic converter look-up table is performed by a 256x8-bit
"ROM" (Read Only Memory) integrated in the FPGA. The input image pixels are
used as the address of the "ROM". In order to avoid implementation of the
convolvers, the Sobel architecture is adapted to a 3-stage pipeline made of adders
and subtractors. This adaptation is based on filter separability and power of two
coding of its coefficients. Separability, as in the case of the median filter, reduces the
original algorithm to the application of two one-dimensional filters (/1 0 -11 and [1 2
1]), respectively to the columns and to the lines of the 3x3 windows. Power of two
coding reduces the multiplications to a shifting of a bit in the input of the adders.

From equations 1, 2 and 3, and considering the XC4010-5 circuit, we have area
costs (A) and time estimation (7) as shown in Table below, for each function. Third
column shows results from implementation by use of Xilinx place and routing tools.

hZxo~ith,,~ i F_~ti,.~ed
Separable Median] A=I02 CLBs
, , (~D) I r=3S ns
Histogram Equalizer I A =69 CLBs
~QV) ! r =35 n~
Sobel Operator A =67 CLBs
(SOB} T=MAXIT"c l ; Tc2; Tc3]= MAX[26; 49,'38]=49ns

I Implemented
A=102 CLBs
T=39 ns
A =69 CLBs
T =35 ns
A =68 CLBs
T=49ns

The overall pre-processing chain architecture uses 239 CLBs corresponding to
60% of the available area in the FPGA. 72 IOBs are needed for communications with
external FIFO memories (46% of available I/O resources). The maximum internal
frequency allowed is Fmax-=l/49 ns - 20 MHz.

4. Conclusions

An efficient implementation of a low level image processing algorithm on FPGA
requires to consider the particularities of the device architecture in the design of the
application architecture and different optimization levels. The proposed evaluation
method allows to study the feasibility on Xilinx circuits to implement low level
image processing tasks at video rate.

5. Bibliography

[Alves 93] M. ALVES DE BARROS, M. AKIL. "Circuits Reconfigurables et Traitement Bas
Niveau dqmages en Temps R6el". Ann. 14one GRETSI, Juan les Pins, France, Sept. 1993.
IXil 92] The XC4000 Programmable Gate Array Data Book, Xilinx, San Jose, USA, 1992.
[Nar 85] P. M NARENDA * A separable median falter for image noise smoothing", In: Digital
Image Processing and Analysis. Vol 1, IEEE Computer Society, 1985, 450-459.

Signature Testability of PLA

E.P.Kalosha 12, V.N.Yarmolik 1 and M.G.Karpovsky 3

1 Computer Science Department, Minsk Radioengineering Institute
6, Brovki Str. Minsk 220600, Belarus. Tel. (7 0172) 39 86 66

2 To moment: Fachbereich Datenverarbeitung, Fachgebiet Elektrotechnik,
Universit~it-GH-Duisburg

3 Department of Electrical, Computer and Systems Engineering
Boston University, Boston, MA 02215. FAX (617) 353 6440

A b s t r a c t . This paper deals with the design of a Built-In Self Test
(BIST) environment for the Programmable Logic Arrays that minimizes
the aliasing probability. The signature testability condition is developed
that prove criteria to compare the BIST environment aliasing. An im-
portant feature of the developed approach is that the criteria proved by
signature testability allows to design both pseudo-random test pattern
generator (PRPG) and signature analyzer (SA).

1 I n t r o d u c t i o n

The aliasing is an impor tant problem in the compact technique. The al iasing
occurs when the fault s ignature is identical to the fault-free one. The al iasing
probabi l i ty of the compact technique has been studied by coding theory frame-
work [1]. In [2], the detection propert ies of the BIST environment for the errors
tha t can be expressed as a single product term has been discussed. I t has been
shown tha t the BIST schemes based on the PRTG and the SA with the same
feedback polynomial detect almost all cases of the above errors. Fur thermore ,
the BIST environment with reciprocal polynomials have the poor error detect ion
capabil i ty.

Here, we propose a s ignature tes tabi l i ty condit ion tha t allows to de te rmine
the error detect ion capabil i ty for all combinat ions of PRTG- and SA-polynomials .
We 'also propose a new error model generalized the one in [2]. The s ignature
tes tabi l i ty condition is derived to analyze the aliasing for proposed error model.

2 S i g n a t u r e T e s t a b i l i t y

Consider an algebraic model of a test ing configuration tha t is shown in Fig. 1.
Let g(x) denote the primit ive feedback polynomial of the P R T G and let h(x)
denote the irreducible feedback polynomial of SA. It is assumed tha t deg g(x) =
deg h(x) = m. In this paper , a denotes the pr imit ive element over G F (2 "~) defined
by the pr imit ive polynomial g(x). The irreducible polynomial h(x) defines the
element fl over GF(2m) . Let fl = ak. We assume here tha t the ini t ial s ta te of SA
is zero. Ini t ial s ta te of PRTG is 0 . . . 010 and can be described by the e lement a .
Let PRTG generate 2 m - 1 test pat terns , tha t are appl ied to the CUT.

Now consider the s ignature value for an Boolean function f t ha t describes
CUT. Let] (7) denote the value] (g i n _ l , . . . , go) of the Boolean function f , where

336

7 G GF(2 m) and G = (g in- i , . . . ,go) is the vector form of the element 9' in the
bases 1,¢xl , . . . , ~m-1. Then [2],[3]

2 m - - 2

Sg(f) = ~ f(cx') O~ -ik. (1)
i = 0

In this paper, the criteria to estimate the aliasing of the BIST environment
is discussed that based on the following error model.

Let f (x) and re(x) denote the Boolean function of the fault free and faulty
CUT, respectively. The error function is given by e(x) = f (x) + re(x), where
+ denote the modulo two sum. We consider the Reed-Muller canonical form of
the error function that is the modulo two sum of the terms. Let r be the literals
number in the term with the maximum multiplicity.

Let the fault be called a signature testable fault if

2 m - -2

Sg(e) = # o. (2)
i = 0

Let us consider a set F of Boolean functions that have no more then r literals
in the term with maximum multiplicity. For each function f E F the following
vector can be formed: v[f] -- [f(a2m-2), f(o~ 2 m - 3) , ' ' " f (O ~ 0)] . The set of vectors
forms a vector subspace over GF(2) . This vector subspace is the r- th order
Reed-Muller code R(r, m) [4]. For each vector v[f] can be formed polynomial

2 m - 2
P (f) = ~-~.i=o f (a i) x i. Common to all polynomials roots form a set of code
nulls. The nulls of the r th-order Reed-Muller code have the following property.

The a k is a root of the generator polynomial of the rth-order Reed-Muller
code R(r ,m) if and on ly / f0 < w2(k) < m - r , where w2(k) is the binary weight
of integer k [~].

Let error multiplicity be r. Then, the error sequence belongs to the r th-order
Reed-Muller code R(r, m). The set of the nulls of the code corresponds to a set
of the SA for tha t the code word is an error causes the fault masking. Thus, the
error with the multiplicity r is undetectable for all SA that have the feedback
polynomial with root/~ = a k and m - w2(-k) > r.

Let a[g,h] = m - w2(- loga/~) , where a, fl are roots of 9(x) and h(x),
respectively.

S i g n a t u r e t e s t a b i l i t y c o n d i t i o n . The error with multiplicity r is signature
testable if a[g, h] < r.

Hence, the BIST environment has the good error detectability when a[g, h] is
small. The PRTG-SA pair has the minimum aliasing if a[g, hi = 1. That is when
g(x) = h(x). The worst error detectability is when a[g, hi = m - 1. The feedback
polynomials of P R T G and SA are reciprocal in this case.

Now, we apply the signature testability condition to design the BIST envi-
ronment. Let us analyzed the circuit error distribution over the error multiplicity
r. We assume that in the digital circuit the errors with multiplicity r > p occure
only. Thus, feedback polynomials with a[g, hi <_ p must be used.

337

I SA I

t

t

Fig. 1. Testing Configuration

P.
0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

o deg h(,)=12 ']
• ~g~(=)=6 I/

_ _

Fig. 2. Aliasing probability of BIST

3 E x p e r i m e n t a l R e s u l t s

Some simulation experiments were performed to test the signature testability
condition. Fig. 2 presents the results of one such experiment. The sinmlation
experiments were done on the (12,103,12)-PLA. The aliasing probability was
calculated for all cross-point-faults. The plot shows that primitive polynomi-
als of the same degree can have the significantly different aliasing. The obtained
a-dependence of the aliasing probability supports the signature testability condi-
tion proposed. The experimental results show that the BIST environment with
the a[g, h]value close to m have the low error detection capability. The feed-
back polynomial h'(x) of the 6 degree can have the lower aliasing than the
12-polynomial h"(x) when a[9, h'] > a[g, 1~"].

4 C o n c l u s i o n

In this paper, the signature testability technique is developed that can be used
to analyze aliasing of the BIST environment for Programmable Logic Arrays.
The proposed approach is a first technique to estimate aliasing of both PRTG
and SA, what have not been available yet.

The group of the BIST environment with the good error detection capability
can be obtained by the signature testability condition. By using the property
of the error distribution and the testability condition, the design procedure for
BIST environment is proposed.

References

1. Pradhan D.K. and Gupta S.K. "A New Framework for Designing and Analyzing
BIST Techniques and Zero Aliasing Compression", IEEE Trans. on Computers,
vol. 40, N 6, June 1991, pp. 743-763.

2. Nagvajara P., Karpovsky M.G., "Coset Error Detection in BIST Design", IEEE
VLSI Test Symposium 1992, pp. 79-83.

3. Yarmolik V.N., Kalosha E.P., "Signature-Testable LSSD-Circuits", Avtomatika i
Vychislitelnaya Technika, 1990, N 1, pp. 94-95.

4. Mac\Villiams F.J. and Sloane N.J.A., "The Theory of Error-Correcting Codes",
NewYork: North-Holland, 1977.

A FPL Prototyping Package with a C++
Interface for the PC Bus

Ibrahim bin Mat James M. Noras

Malaysian Institute of
Microelectronic Systems

Exchange Square, Darnansara Heights
50490 KUALA LUMPUR

Malaysia
telephone: 03 2552700

ibm@rangkom.my

Department of Electronic and
Electrical Engineering

The University
BRADFORD BD7 1DP

United Kingdom
telephone: 0274 384036

J.M.Noras@bradford.ac.uk

Abstract. Even though student projects generally have severe constraints of time
and other resources, they should aspire to reach ambitious targets. One way of
giving suitable projects a flying start is to build on the PC bus. In this paper
we outline a package which aids the rapid development of FPL-based systems
within a reliable and powerful interface of hardware and software. This
removes the need for an initial phase studying the details of bus protocols.

1 Introduction

One important practical use for field programable logic devices is the rapid
prototyping of systems. This is particularly useful in education, where low cost and
re-usability are gratefully accepted. It is very helpful to have simple demonstration
download boards, for example with push-buttons and LEDs, but greater scope is
readily available: [1,2]. Quite sophisticated, "serious" designs can be investigated with
FPL-based systems, and for research and advanced" undergraduate projects it is
desirable to have a prototyping framework that supports the full potential of emerging
technologies, with real-time testing. Many complete systems can be targeted to cards
sitting on the PC bus, so that their rapid and easy development would be a
contribution to a wide range of research and learning. Also student projects should
be ambitious, and not curtailed by routine detail, re-inventing and testing wheels.

With these aims in mind, we have produced a set of hardware templates and C++
interface routines to aid the reliable development of hardware attached to the PC bus.
We chose this environment because it is affordable and is in common use, with many
application areas. This work started as an M.Sc. project at Bradford University.

2 System overview

In this section we set out the attributes that we perceive as most useful in a general-
purpose prototyping and evaluation system [3], describe the design and test process,

339

and the features available at present. The programmable hardware used is
manufactured by Xilinx [4]. This is not the only possibility, but was readily available
and provided satisfactory flexibility, speed and power.

2.1 System specification
We aimed to supply the following:

1) A PCB template with integral bus-lines, interfacing and block addressing,
to which users could add their particular designs;
2) A library of macros, programmable in FPL hardware on the PC card to
give interface functions for host-application communication;
3) Software routines to link high-level programs with application cards;
4) A user guide to the above features.

This permits users to implement designs without first having to study the details of PC
interfacing, but to progress directly to interesting problems. If subsequent work
requires deeper knowledge of the interface, by then the user will have a grasp of the
main task in hand. Designs are testable from the PC host at realistic clock and data
rates - a great advance on the use of static testing for hardware development.

2.2 Implementation
A major hazard of development of original PC peripheral cards is damage to the host
computer during the early learning phase, so our first design used basic discrete
components in order to prove the hardware ideas, only then going on to a second
system using programmable logic. This provided an useful tutorial aid, as the card
using FPL had simpler routing and much smaller area, as expected. PCB design using
double-sided construction was done with the Boardmaker package and Orcad
schematic capture software was used for the programmable logic. Software
development used Turbo C++ routines in modular form for ease both of testing and
of subsequent adoption by users. Much time went into testing to avoid damage due
to errors and to ensure that this work would be a reliable platform for later designs.

2.3 Present features
Two demonstration cards have been produced and tested: the first with discrete logic
only was a prototype for the second card. This contains some discrete logic to enable
card initialisation, but all other interfacing functions are provided using a FPL device.
These permit bi-directional data transfer with 8-bit or 16-bit word lengths. Together
with interface routines written in C++ the card has the following features:

1) Setting the block I/O address with a 4-bit DIP switch;
2) Initialising for 8-bit or 16-bit operation with a SPST switch;
3) Configuring the FPL chip on power-up;
4) Resetting the FPL chip by:

a) push button,
b) a PC system reset, or
c) a software reset;

5) Activating a reprogramme signal to clear the FPL configuration, prior to
reprogramming.

340

For tutorial purposes the card has 16 LEDs and 16 DIP switches. Under menu-driven
commands, 8-bit or 16-bit data can be read to the host PC screen from the DIP bank,
data can be written to the LEDs from the host PC.

For prototyping use we provide a PCB template in Boardmaker form. This has the
tracking for the hardwired initialisation and block-addressing logic, connections to all
the required bus-lines, and for the correct location of one Xilinx chip. We supply the
Xilinx code to allow users to programme the chip with the interfacing functions
specified above. The user is also given information about available free resources
within the programmable chip, and about which pins on this chip are uncommitted.

3 Summary and continuing work

We have built and tested a system of hardware and software which permits the rapid
and reliable development of PC-based peripheral hardware for I/O processing and
custom coprocesser cards. With this system, we have carried out student projects
which concentrate on applications, taking our environment of hardware and software
as a reliable and pre-existing starting point. Present development concerns FPL library
components to permit DMA and interrupt communication between card and host. The
card will retain a hardwired 8-bit part for system initialisation, but users will have
Xilinx macros for the full range of bus features. A new PCB design template has
connections for the additional PC/AT bus signals. Supporting software is being tested.
All communication software will be written in assembly code device-drivers for
efficient control and data transfer, as well as convenience for users.

This prototyping framework permits users to concentrate on the novel features of their
applications, and removes early delays in hardware construction and testing. This
environment will encourage novice designers to tackle projects that would otherwise
be too daunting.

R e f e r e n c e s

Brown, G.M. and Vrana, N., "A Computer Architecture Laboratory Course
Using Programmable Logic", Proc. 3nd Intl. Workshop on Field-
Programmable Logic and Applications, Oxford, 1993.

. Kebschull, U., Schubert, E., Thole, P. and Rosentiel, W., "The Design and
Implementation of an Educational Computer System Based on FPGAs", Proc.
4th Eurochip Workshop on VLSI Design Training, Toledo, 1993.

. Mat, I. and Noras, J.M., "A system for rapid prototyping with field
programmable logic", Proc. Intl. Conference on Robotics, Vision and Parallel
Processing For Industrial Automation, Ipoh, 1994.

4. Xilinx, "The Programmable Logic Data Book", 1993.

Design of Safety Systems Using Field Programmable Gate
Arrays

Juan J. Rodrlguez-Andina, J. Alvarez and E. Mandado

Departamento de Tecnologia Electr6nica, Universidad de Vigo
Apartado Oficial, 36200 Vigo, Spain

Abstract. This paper presents a design methodology to implement fail-safe
circuits (i.e. circuits whose output is at any moment correct, or fails in a safe
manner) in Field Programmable Gate Arrays.
In order to be fail-safe, a circuit must include redundant elements. We consider
the time redundancy technique called alternating logic, that is based on the use
of a given function and its dual function in two consecutive time intervals.

1 I n t r o d u c t i o n

Fail-safe systems can be defined as those that, in the presence of faults, avoid the
propagation of errors to other systems and, in addition, their outputs are in a correct
state or can be forced to a safe one.

A circuit is called totally self-checking (TSC) if, for every fault from a prescribed
set, there exists at least one input which produces a noncode-space output, and there
exists no input which produces an erroneous code-space output. In other words, a
TSC circuit is self-testing and fault-secure. TSC circuits can be used as basic blocks
in the design of fail-safe systems. Fault-security provides the fault contaimnent
capability, and the self-testing condition allows the system to force its outputs to a
safe state when a noncode-space output is to be produced.

This paper presents a method to implement fail-safe logic controllers by using time
redundancy. The method is based on the interconnection of several predefined safety
parts to form a fail-safe circuit.

2 A l t e r n a t i n g Circu i t s

Alternating logic [1] is a design technique that utilizes time redundancy to achieve
its fault detection capability. It is based on the implementation of self-dual
combinatorial functiotts. A function F of a set of binary variables X is self-dual if
F(X') =F'(X), where X' and F ' are the complemented values of X and F respectively.

An alternating variable is one that takes its true value during one time interval,
followed by its complemented value during the next time interval. An alternating
circuit produces a logic function F at time t, and the function dual of F at time t + 1
[i.e, a pair (y, y') of binary complemented values] if the inputs are alternating.
Therefore, the output of the circuit is an alternating variable if the inputs are

342

alternating. Time intervals are determined by the true and false intervals of a clock
ck. An alternating variable is equivalent to a logic value ' 1' i f it equals ck and to a
logic '0' if it equals ck'.

Alternating circuits are TSC for single permanent and intermittent stuck-at faults
if they are irredundant (self-testing condition) and do not include any line that takes
a non-alternating, but correct, value for an input vector (X, X') (fault-secure
condition). To demonstrate the latter condition (that is alternative to the ones proposed
in [1], and more suitable for our purposes) let us assume, by way of contradiction,
that the circuit produces an erroneous alternating output [(y',y) instead of (y, y')]
when line n within it is stuck-at-d. If an erroneous alternating output is to be
produced, both X and X' must sensitize the fault, but then the fault-free value of line
n is d ' for both input combinations. Therefore, line n takes a non-alternating, but
correct, value for (X, X'), a contradiction by hypothesis, q.e.d.

This condition implies that all functions that depend on both X and X' must be
alternating. For instance, the combinatorial functions implemented in a look-up table
in an SRAM-based FPGA [2] must be alternating, while the values stored in
individual SRAM cells can have a correct non-alternating value without compromising
fault security, because each one of them depends only on X or X', not on both.

3 D e s i g n Methodology

Figure 1 shows the general structure of a fail-safe alternating logic controller,
whose components are available in an user library, to facilitate the design.

CONTROLLER
INPUTS

CKS --

STATE

CONTROL

OUTPUT

CONTROL

ALTERNATING ALTERNATING
, , INPUTS] [OUTPUTS ~ C O N T R O L L E R

= - COMBINATIONAL =] INPUT I ~ I CK _1 OUTPUT I - OUTPUTS
|INTERFACEI CK I - | | -IINTERrACEI ERROR

[' [~ CIRCUIT ~] ~ ' ~ ~ OUTPUTS
] CURRENT STATE I " " t
/ BITS / I

I ' , S *TE RITS I

Figure 1: Fail-safe alternating logic controller.

The input interface transforms input variables in alternating ones. It is a modular
block, consisting of as many input adapter cells as the number of inputs.

The state register consists of one two-stage shift register (clocked at twice the
frequency of clock ck, by clock ck~, to accomplish the proper alternation of the
current-state variables) and a load block (that allows to force the system to an
arbitrary state) per state variable.

The output interface transforms alternating variables in non-alternating ones by
means of output adapter cells. It includes additional logic to force the outputs to a
safe state, if necessary, and a TSC code checker that indicates, by means of one or
more error signals, if all the outputs of the combinatorial circuit alternate. Both the
adapter and checker blocks are modular.

343

Finally, the combinatorial alternating circuit generates the next-state and output
functions of the controller.

The transformation of a behavioural representation of a logic controller in an
alternating fail-safe circuit is straightforward. The idea is to automatically add some
elements to the unsafe design, to transform it in a fail-safe one. The necessary
information to be obtained from the behaviour of the system is detailed on the
following paragraphs.

Number of inputs. This information is used to generate the input interface using the
library part input adapter cell.

Number and safe state(s) of the controller. This information allows us to generate
the state register from the library parts two-stage shift register and load state. In order
to force the state of the system (for instance, at power-on) it is necessary to generate
the state control inputs. This function is realized by an external auxiliary circuit,
whose consideration exceeds the limits of the present work.

Number and safe state(s) of the outputs. With this information it is possible to
build the output interface block utilizing the library parts output adapter cell, safe
output logic and alternating TSC checker. The output control inputs are generated by
the above mentioned external auxiliary circuit.

Next-state and output functions. These functions are generated by a combinatorial
altermating circuit. The first step in the design of this circuit is to obtain the truth
tables of the functions. If a function F is self-dual, it remains unchanged. In other
case, it is modified to build an equivalent self-dual function F* by adding the clock
ck as an input variable [1]. If the function is to be implemented in a set of n-input
LUTs, the function is partitioned, if necessary, in a set of self-dual m-input (m <_ n)
sub-functions, to meet the fault-secure condition presented in the previous section.

It is important to notice that no changes are needed in the behavioural description
of the system in order to implement it as a fail-safe circuit, except that a list of safe
states has to be provided. The fail-safe design procedure can be totally automated and,
therefore, transparent to the designer.

4 Conclusions

A method has been presented that allows to automatically implement fail-safe logic
controllers in FPGAs from standard behavioural descriptions. The increment in design
time is negligible, because the only additional information needed consists of a list of
safe states. The method is based on the use of time redundancy, but it can be
extended to the use of other forms of redundancy, such as information redundancy.

References

1. D.A.Reynolds and G.Metze: Fault detection capabilities of alternating logic. IEEE
Transactions on Computers 12, 1093-1098 (1978).

2. Xilinx Inc. The Programmable Gate Array Databook (1991).

A Job Dispatcher-Collector
Made of FPGA's

for a Centralized Voice Server

J.C Debize and R.J Glaise

Compagnie IBM France CER La Gaude (France)
Transport Network Node Development

Abstract. It is the purpose of this paper to describe a specific applica-
tion made of XILINX XC4000 series Field Programmable Gate
Arrays (FPGA's).
The application takes advantage of a feature of this RAM based
device where logic is implemented under the form of an array of small
look-up tables which may be as well used as an array of small RAMS.
The paper shows how this array of RAMs is well suited to do the
function that dispatches and collects, over a bunch of Digital Signal
Processors or DSP's, Digitized Voice Packets that need to be com-
pressed (decompressed) before (aRer) transmission on a Tele Proc-
essing line to realize a V o i c e Server function that saves a significant
amount of the transport medium bandwidth.
The paper tends to demonstrate that the availability of xl organized
independent internal RAM devices permits to simply carry out the
function, at the nominal speed, in a couple of FPGA s while the equiv-
alent function would only be achievable in a standard gate array at the
expense of the use of many Flip Flops.

1. What is to be done:

The function to realize, depicted on the Figure 2, assumes it is possible at a
node of a digital network to dispatch over a bunch of DSP's, at regular inter-
vals, "packets" of digitized samples of phone conversation in progress. The
packets are compressed within the DSP s then, transported through the digital
network thus saving a signitican.t portion of the medium bandwidth. De-
compression of the received votce packets is done by the same bunch of
DS P s so to sustain a transparent full duplex phone conversation between two
parties at both ends of a network as shown in Figure 1
The packets are typically 160 byte large before compression representing 20
milliseconds of a phone conservation (digitized voice channel at 64 kbits/sec).
After processing the source sampling of the phone conversation is compressed
into only 32 bytes. The compression and decompression algorithm are
running on a bunch of Motorola DSP s 56166 capable of handling several
voice channels each. Thus, the role of the dispatcher is to be able to contin-
uously feed the DSP's from an Inbound Buffer and collects the compressed or
decompressed packets to the Outbound Buffer while more than 100 phone
conversations are in progress.
The source and sink of the packets brought to the Voice Server is a port of a
switch representing a particular node in the digital network through which the
phone communications are established.

3 4 5

I: ! ADAPIrERJ [A D,~ P
- - - - - - . , "1" i - M

! I
• = . =

I I
l:: I
I I
I I

AD,~P~'ER

' /
I
i

32B .l~<~cket
!

SWITCH "~.

I ~@i t

ADAP,TER ADAP;
I
I
I
I
I
I

I I
I I
I I
I I
! ,.

! I

~_ C~INE
I

w_um~ ~

VOICE
SERVER

Figure 1. A phone conversation through a Digital Network

2. How it is done:

3 4 6

The Motorola DSP 56166 is equipped with two serial ports to load or fetch
packets. To permit a complete decoupling between loading and fetching one
port is used to load the data to process while fetching may go on independ-
ently on the second port when a processed packet is ready to go. Therefore,
there is no contention possible between the two operations. The collector is
informed that a job is ready to go because an interrupt is raised by a DSP
while loading rate of the jobs, from the dispatcher, must stay compatible with
the total processingcapability of each DSP (35 MIPS).
The other end of the dispatcher is a 4 byte interface (DMA-like) with a buffer
memory, managed by a specialized controller. It receives through the inbound
switch port the remote compressed packet (to be de-compressed) or the local
packets that need to be compressed before they are sent at the remote node
through the network.

i : : : i : ?:iiii: : i:i:.i: From/To Switch :i : . i :
INBOUNDPORT i , : i:. " i i : :: OUTBOUND PORT

. !

[INBOUND: BUFFER

i:!:i:i

f [DATA MOVEMENT [I OUTBOUND BUFFER
(OMA) ~ROCESSOR.)

~ o s ~ , B~E O U S ~

Figure 2. The Voice Server function

2.1 A Buffer Serializer for Dispatching the Jobs

The heart of the dispatcher function is a buffer serializer whose principle is
shown in Figure 3. A 4 byte word fetched from the buffer memory is first
latched into an interface register then immediately after temporarily stored, at
two consecutive addresses, into a set of sixteen 16xl internal RAMs. The 32
bits are then, soon after, unloaded serially to a DSP through a serial port in
two consecutive 16 bit frames as DSP 56166 serial port mode of operation
calls for.
The parallel loading and the serial shifting are done alternatively. Every
second cycle (the system clock is running at 60 Ns or 18 Mhz.) there is an
opportunity to load in parallel two bytes into one buffer while the other half
o f the cycles are used to serialize the data on all the serial links at a rate of 1

347

bit every 120Ns which is the maximum frequency at which the DSP serial
ports may be operated.

AL LINK

Figure 3. Dispatcher Buffer Serializer

2.2 Buffer Serializer Cell Mode of Operation

The way a buffer-serializer cell (in the dotted area of Figure 3) is operated is
summarized in Table 1. The 16xl RAM may be loaded either from the upper
or lower half of the data input register.
To actually write into the RAM 'WE" strobe must be active. Otherwise the
buffer serializer is in standby although the shift clock is free running. Shifting
of the data occurs by writing the RAM contents from one device to the next
one through the latches with following timing:

I 1 16 SHIFT CLOCK PERIODS AT 120 NS
: I z 3 4 s s 7 e g l e 1 I lz 1314

Figure 4. Shift Timing

The address where the shift occurs must obviously be stable. 'WE' strobe
must be ON and the RAM input multiplexer selects the previous RAM

348

output into the chain so the data shift from left to right from one 16xl RAM
to the other at clock rate. The first bit to go out on the serial link toward a
DSP is the one from the most right device. The most left device is idled with
O's (tie down). At the end of the shift the corresponding row (16 bit wide) is
cleared since O's have been pushed in while a 16 bit word has been transferred
to the DSP's.

Table 1. Serializer mode of operation

X X 0 STANDBY

I lilLo D.xrs i5
1 0 1 LOAD BITS 16-31

~ " ' I ' I I " " - •

• 0 ! [: X 1

2.3 RAM Buffering Organization

The temporary buffering of data is organized within the RAMs as shown in
Table 2. For a given user 8 bytes are pre-fetched before serialization may
occur. This leaves enough time to pre-fetch data while serialization goes on
on all the links. Serialization and prefetching are alternatively done on a per
(60 Ns) cycle basis in such a way that both interfaces are active together thus
implementing a pseudo dual port (one parallel, one multi serial) scheme.
The Figure 2 and Table 2 show that there are two DSP rows one EVEN and
one ODD that are alternatively fed through a common set of serial ports. The
chief reason for this is that DSP's are unable to sustain a continuous stream of
bits. A pause must be observed between two strings of 16 bits. Thus the
application rather toggles between ODD and EVEN DSP's to keep the serial
links continuously busy.
Therefore, the temporary buffering is organized in a such a way that while
data are fetched on the upper interface and stored in the "FLIP" port serializa-
tion goes on on the bot tom serial links from the "FLOP" portion. And vice
v e r s a .
Whenever there are no data to be transferred to a DSP (just because there are
no Voice Packets to process) the corresponding temporary buffering portion is
not fed and the validation bit contained in a 17th bit is not set. Thus, when
serialization will later occur the Serial Port for this data string will not be actu-
ally started (Frame Synchro line is OFF. See references [1] and [2]).

349

Table 2. RAM organization ,.
1 16 bits

[.

Z

: ii.i : : : ::i.i :i::)": : .::::::.:[1511i:il : ::ii: : : .(Bits I6-31)t

, : . ~ I : F L I P : : ti!~i?:??:i;~:i:?~i:::~:::)~)?i:::::::::i:i i::i~::::i::::::i:;:~:ii(tt!~";o~tS)t ~ 0

: [.... : l ::

i:.i: !i~ :.~iii:i::i f i::il ii::i :::::i::ii: :.. i i'.:.::..~..~:.~iiiiii:i:!:.:iiiiiiii::ili~iiiil;~! i:::i:!:!::ii:~ii: iii: i~ iii~ i: :::::iii~::: ;i~:i :cuasi: i:~-3!i~t
:!! :~:~: !/i:[? ii~ ~i~ i ill !iiii:~ !ii::~ i-:.~i :;iii:i:ii~ili~! iiiiiii~iiiii-ii ii!iiiiiiiiii::i::!~iiii~;i!!iii!~i~iiiii::i~i~i:~: o ~ 1

i-i :: i i :: ~::. ~i:::..::...:... :: . . .: :.::.::., o......~ili.ii~:i!~i!'i:~i::i:~.:~i!i:.[!!i~ii:~:i!i::~i!iiiii~!~ ::o~t~

2.4 Configurable Logic Blocks (CLB) count

Logic implemented in XILINX F P G A must fit into a certain number of
Configurable Logic Blocks or CLB's. A basic dispatcher cell is shown in
Figure 3 fit in one XC4000 series CLB. This includes the input multiplexer,
the 16xl RAM itself and the output flip flop. Thus, an array of fourteen 17
bit buffer serializer (the 17th bit is the validation bit) which is the core of the
function, requires only:
One serializer ... 17xl = 17 CLB's
Fourteen Serializer .. 14x17 = 238 CLB's
Plus the input reg with MPX ... 238+16 = 254 CLB's
which easily fits into a XC4013 (576 CLB's) with the rest of the control logic
not discussed in this paper. Then, the buffer serializer array represents a total
14x17x16 or almost 4 k bits of static R A M that would need to be done
entirely with F /F in a standard gate array.
Furthermore the wiring of the cells is straightforwards from the CLB struc-
ture. Each CLB needs only to be connected to its neighbor one (down in a
column) with only one wire as shown in Figure 5. All the other controls
signals and the data inputs are distributed using the metal "Long Lines"
another feature of Xilinx FPGA's. Keeping the wiring simple is the key factor
to get the product running at 60 Ns in worst case conditions.

350

**L+*+_I II I t ~ . t t . " " " t P , . t l t . + + ~ ' I *TT X * * ~ . * * I + r . . ilJlq~tll I ~ I I I I I l ~ ' ~ m l l + I I , + ,

L,,!)-t tl + LTI~: .+ +. ++~.+, +1 . .~ ' .+ '717 ++~:+"++~,

L ' -+:- '" ' ; - J : + ' l " + ++, +,++ ,+++ ,,,+
" i + + +

° ° ~ . t t.~+.+': ! ! Z - .+If " ~ ' ~ t t . t l t ~ t J l l t " +

i l i i ~t ~ g ' ~ $ - t d ' L • °~i; i i iii*L~.~. * •+ .+ l_J~. .

Print Display: PVALX.LCA (4013PG223-5), XACT 4.40, Fri Feb 18 13:50:58 1994

Figure 5. A few Buffer serializer cells

3. Job Collector

The collection of the packets after processing by the DSP's is just the opposite
of what has been described up to now. Reading is done one bit at a time on
the serial links and enter a similar array of RAMs in the Collector FPGA.
Whenever enough data has been assembled they are transferred, 4 byte at a
time, to the outbound buffer. When a complete packet is ready it is routed to
the network through the Voice Server outbound port.
This part is very similar to the dispatcher and is not be further described.

4. Summary and Conclusion

It is a purpose of this paper to demonstrate that, taking advantage of the
internal RAMs of a RAM based FPGA, like the 4000 Series of XILINX, it
becomes possible to carry out a function that otherwise would require a too
large amount of flip flops to be feasible in a FPGA or would require a
standard gate array as large as 50 kcells to do the equivalent.
Although FPGA are expensive devices the approach retained permits to go
through the engineering and pre-production phases with a re-programmable
device while the production phase will use a less expensive hard wired sol-
ution. The important point is that both real estate and performance of the
FPGA phase need to keep up with the hard wired solution.
The use of the internal RAMs was the answer to this challenge in this partic-
ular application.

351

G Y 0 'llmh

F X 2SS Ramm
0 I.brd Mlu:ro

1 2 3 4 $ Ii 7 8 ~) 101112 IS 14 181617 t e 1 ~ 2 0 2 1 2 2 2 3 2 4
1

2 • I~o l,m,a~

/'
~ , ~ :1 e ~ 11

I !U I I 14
~ i ~ , Ills

l 21 * ~eT._V~C_~,
122 • IN :ISTAI"E4

Figure 6. Job Dispatcher

R e f e r e n c e s
[1] "16-bit General Purpose Digital Signal Processor" DSP 56166

MOTOROLA INC. Technical Data Sheet, 6/15/93.
[2] "DSP56166" Digital Signal Processor User's Manual MOTOROLA INC.

1993.

An Optoe lec tron ic 3-D Field Programmable
Gate Array

J. Depreitere 1, H. Neefs 1, H. Van Marck 1, J. Van Campenhout 1, R. Baets ~, B.
Dhoedt 2, H. Thienpont 3 and I. Veretennicoff 3

t University of Ghent, Electronics and Information Systems Department
St.-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

University of Ghent Electronics, Information Technology Department
St.-Pietersnieuwstra~t 41, B-9000 Ghent, Belgium

s Free University of Brussels, Applied Physics Department
Pleinlaan 2, B-1050 Brussels, Belgium

Abs t rac t . Traditional Field-Programmable Gate Arrays suffer from a
lack of routing resources when implementing complex logic designs. This
paper proposes two possible improvements to the FPGA structure that
could alleviate these problems. We suggest extending the FPGA class
to 3-D architectures. The 3-D architectures could be constructed of a
stack of optically interconnected 2-D planes. Furthermore, we suggest
a hierarchical distribution of routing resources that closely matches the
wire length distributions of the intended class of applications.

1 Introduction

Field-Programmable Gate Arrays (FPGAs) are a rapidly growing class of elec-
tronic components. They offer a low-cost, off-the-shelf solution for implementing
or prototyping a broad range of digital designs. This is achieved by using pr o-
grammable logic blocks interconnected via programmable routing resources.

Although routing resources consume the major part of the chip area, com-
plex designs remain difficult to implement. Due to routing problems, logic block
utilization seldom achieves more than 50% and critical paths are forced into
more indirect routes [1]. This has a negative impact on the performance of the
implemented circuit. We are looking at ways to overcome these problems.

One way to model circuit complexity is by using Rent's rule [2]. Rent consid-
ers hierarchical models of circuit interconnection graphs. At every level, nodes are
grouped into modules, to form the nodes of the next higher level. The grouping is
such that the total number of pins emerging from the modules is minimal. This
results in the following relation between the average number of pins emerging
from the modules and the average number of (basic) nodes inside the modules:

P = C B ' , O ~ r < l , (1)

where P is the average number of pins emerging from the modules, B is the
average number of (basic) nodes inside the modules, O is a constant related to
the average fanout of the nodes and r is the Rent exponent. The value of r = 0.5

353

represents 'easy' to route, planar-like circuits. Complex, highly interconnected
designs are characterized by larger values of r. Studies about placement of digital
logic [3, 4] show that circuit complexity - characterized by the Rent exponent
- and wire lengths of the implemented circuits are strongly correlated. Further-
more, it is dear that the wire length of the implemented circuits and the routing
area are also correlated.

An analysis of the interconnection lengths of designs implemented in three
dimensional structures [5] shows that interconnection length is significantly lower
compared to two dimensional implementations. The gains are most pronounced
with high-Rent designs. The availability of integrated optoelectronic compo-
nents, allowing massive parallel free-space interconnections, holds the promise
of constructing three dimensional systems. Hence, we consider building a 3-D
optoelectronic FPGA structure consisting of a stack of 2-D electronic planes
that are optically interconnected.

Furthermore, the design of routing resources in traditional FPGAs seems
rather ad hoc. We state that routing resources could be more efficient when they
are more closely matched to the needs of the logic designs that would be imple-
mented in FPGAs. Based on a study [3] we make some suggestions that could
offer an alternative for the seemingly ad hoc nature of existing interconnection
structures.

2 I m p r o v e m e n t s t o t h e F P G A A r c h i t e c t u r e

2.1 Us ing 3-D F P G A i n t e r c o n n e c t i o n s

The construction of isotropic three dimensional FPGAs, having the same inter-
connection density in all three dimensions, would lead to a massive increase of the
number of interconnections. It seems obvious that routing problems would thus
be decreased. However, the technical requirements may preclude the realization
of such architectures in the foreseeable future.

Therefore, we propose an architecture with an anisotropic interconnection
structure (see Fig. 1). We create a 3-D system as a stack of interconnected 2-
D electronic planes. Each horizontal plane consists of a large FPGA structure.
The FPGA's logic blocks are grouped into rood lles. In between these modules,
we place interconnections to the next plane. These interconnections between
planes could be either electrical (through vias [6]) or optical. It is clear that such
architectures will exhibit a smaller gain in routing resources than truly isotropic
3-D systems. Hence, one should carefully investigate the cost/benefit ratio of
varying degrees of sparseness of the interconnections in the third dimension.

Van Marck [5] has studied the average interconnections lengths of designs
implemented into 2-D and 3-D architectures. He examined isotropic Manhat tan
grids - i.e., grids where the interconnection density is the same in all three
dimensions - as well as anisotropic grids (see Fig. 2). Although the model is
still quite simple and does not take routing problems into account, the study
shows that the reduction in average wire length is sufficiently large to arouse

354

one's interest. This indicates that anisotropic 3-D systems will offer advantages
over 2-D systems.

~x

.

., " , . '

" FPGA modules

....... i~.~ ".~!~ ..~i~i~l~. ::~;~:~:~~"
. - z

I I detectors

Fig. 1. Proposed architecture for the 3-D FPGA

' Z

~x

':.

d

Fig. 2. Anisotropic grid: one layer of a cubic grid with sparse interconnections to the
next layer

2.2 I m p r o v e d 2 - D i n t e r c o n n e c t l o n t o p o l o g y

General-purpose FPGAs (e.g. Xilinx FPGAs [7]) have a rather small number of
local interconnections, i.e., interconnections between near-by logic blocks. Long-
line interconnections provide large fanout interconnections that cross the entire

355

width of the chip. All other routing resources can be programmed to interconnect
any two blocks. However, this flexible way of routing is not very area-efficient
and causes large delays. Furthermore, when implementing complex designs in
such structures, one very often finds that there is a lack of routing resources.

To avoid this problem, we should approach the routing resource architecture
;form a different point of view. The routing architecture of an F P G A should
match the "needs" of a large class of logic designs. Studies about wire lengths [3,
4] have examined placements of digital logic on square grids. From these studies
it follows that optimally placed logic designs have a wire length distribution
function that is given by:

fk = g / k 7, l < k < L
0, > L , (2)

where fk is the fraction of wires with length k; g is a normalization constant; L
is a constant related to the size of the array and the adequacy of the placement;
and 7 is related to the complexity of the circuit architecture (based on Rent 's
rule [2]).

Consequently, an FPGA should have a hierarchy of routing resources lead-
ing to an interconnection distribution given by (2). First, FPGAs should have
more local routing resources, which could be hard-wired and will thus be faster.
Secondly, there should be a smaller number of longer routing resources. These
longer interconnections need not be general; i.e., they need not to be able to
interconnect any two blocks, but they should have a distribution according to
(2).

The structure of the routing resources of the Triptych F P G A [1] has emerged
from reflections about the inherent fanin/fanout trees of logic designs. It there-
fore comes as no surprise that the resulting structure satisfies (2).

These suggestions should lead to architectures in which implemented designs
are faster and easier-to-route. A first step towards such systems has been made
and has resulted in the design of a 3-D optoelectronic F P G A demonstrator .

3 T h e D e m o n s t r a t o r

3.1 G o a l

The current complexity of the optoelectronic F P G A demonstrator and its phys-
ical form are n o t geared towards demonstrat ing the at tainable routing gains.
It is aimed at establishing the feasibility of free-space optical interconnections
- at the logical circuit level - between traditional planar subsystems. We have
chosen to use optical interconnections because of the increasing availability of
optoelectronic interconnection devices such as LEDs (Light Emit t ing Diodes)
and VCSELs (Vertical-Cavity Surface Emit t ing Lasers). Among others, optical
interconnections hold the promise of high-bandwidth data transfers in galvani-
cally isolated subsystems. Furthermore, the use of f r e e - s p a c e interconnections
allows a much easier cooling of the subsystems.

3.2 G e n e r a l S t r u c t u r e

356

In view of the technological capabilities at hand in our research teams, we have
chosen to construct the demonstrator as shown in Fig. 3. It consists of a stack
of three robust, metal frames. Each metal frame holds a PCB and a small glass
plate. The PCB carries the FPGAs, while the glass carries the optics-related
components, i.e., the LEDs, driver chips, detector diodes and receiving amplifiers.
The metal frame has two fittings through which a reproducible positioning of
the planes relative to each other is realized. The lateral positioning accurax:y
between two adjacent planes should be better than 10#m. Proper functioning of
the optical links necessitates an accuracy of 50/~m. The layer separation is 5 mm,
while the lateral measures are 150 x 140mm. On each PCB we put 4 CMOS
FPGA chips. These chips are fabricated in a 1.5 pm ES2 process. They measure
8518/~m x 6300pm. On the glass there are a LED array, two driver chips, one
detector array and two receiver chips. The LED array has integrated diffractive
lenses [8] and contains 16 LEDs. The infrared LEDs are used at a bitrate of
50 Mbit/s. The LED arrays are bonded using solder bumps or gold bumps. The
detector arrays are fastened with anisotropic conducting axthesive film (ACAF).
Receiving lenses, enhancing light collection and reducing cross-talk, are provided
on the bot tom of the glass.

glass carriers,
/ . containing optics-related

FPGA chips ~..~... chips

C=__
~ m e t a l frame PCB

Fig. 3. Physical form of the demonstrator

357

3 . 3 T h e 2 - D F P G A s t r u c t u r e

Each layer of the stack contains a 2-D F P G A structure, consisting of an array of
two by two smaller FPGAs. One small F P G A contains an array of four by four
logic blocks. Hence, one layer of the three dimensional F P G A contains an array
of eight by eight logic blocks. So, the full 3-D F P G A contains 3 × 8 × g, or 192
logic blocks.

R o u t i n g R e s o u r c e s . The routing resources of the small FPGAs were inspired
by the structure proposed in the Triptych architecture [1]. The purpose of the
routing scheme is to match, as closely as possible, the routing requirements of a
hierarchically designed circuit, as explained in section 2.2. The routing resources
consist of interconnections through the logic blocks, direct interconnections, the
so called long line interconnections and interconnections to the optical devices.

Routing through logic blocks. Beside comput ing a logic function, the logic blocks
of both the Triptych and our architecture can be used to route signals (see Fig.
4). This allows a more versatile use of the routing resources. Furthermore, since
a trade-off can be made between routing and logic, less area remains unused due
to routing problems.

Direct interconnections. The structure of the F P G A consists of logic blocks hav-
ing unidirectional diagonal direct interconnections between logic blocks (see Fig.
5(a)). The resulting scheme is then mirrored bo t t om to top and overlaid on the
original scheme. In this way we get an upward and a downward da ta flow. Fi-
nally, the data flow direction can be changed by using the so called feedback
connections. The direct interconnections are hard-wired and therefore should be
used for local high-speed communicat ion between logic blocks.

Long line interconnections. The long line interconnections are longer range con-
nections and have a larger fanout (see Fig. 5(b)). As with the direct intercon-
nections, the long line downward da ta flow is obtained by mirroring the scheme
of Fig. 5(b) bo t tom to top and overlaying it on the original scheme. There are
two types of long line interconnections:

- intra-chip long line interconnections, which connect one logic block with the
next row of logic blocks inside the chip. This type of long line interconnec-
tions is hard-wired. Due to the limited number of logic blocks in the chip,
these long line interconnections have a fanout of two.

- inter-chip long line interconnecfions, which can be p r o g r a m m e d to connect
one logic block with the next row of logic blocks inside the chip as well as
with the next row of the neighbouring chips. These long lines can have a
larger fanout.

358

Optical ir~terconaec~ioas. The output of the logic functions of the logic blocks
are hard-wired to the optical transmitters. The data of the four logic blocks of
one row are multiplexed. By multiplexing the data from the four logic blocks on
the same row, wc can take advantage of the large bandwidth of the optical con-
nections. After transmission and demultiplexing, the data can be interchanged,
in fact providing us with a simple space/time routing switch. By doing so, the
data from a logic block can be connected with any block of the row of logic blocks
above it. This leads to factor four decrease of the number of optical components
(see Fig. 5(c)).

Logic Block Architecture. The structure of the logic blocks is shown in Fig.
4. This LUT-based logic block is capable of simultaneous function calculation and
signal routing, as in the Triptych architecture. Two functions of four inputs can
be calculated or one function of five variables. Studies on the routing resources
of LUT-based FPGAs indicate that 4-input LUTs are the most area-efficient [9].
Nevertheless, it is not clear if this holds for our type of routing resources.

Every input of the logic block can be programmed to feed the two LUTs.
The outputs of the LUTs can either be latched or unlatched. Furthermore, the
outputs of the flip-flops can be fed back and used as inputs of the LUTs. By
doing this, wc can implement finite state ma~hincs.

At present, the electrical and mechanical parts of the demonstrator are being
assembled and tested; the final integration with the optoelectronic components
is expected to take place within the coming months.

.E

0
0

0

i • | |

o~

O.

0

0 _o
.0

._o
_o

Fig. 4. Routing and Logic Block

(a)

(b)

to/from, pad

to/from pad

359

...... 7 ('~ /
". ,-C_

I

' I

l t

• ~,~" "~i "~

to/from pad

to/from pad

o Programmable interconnection point
• Junction

(c)

\
demultiplexer

multiplexer

Fig. 5. Routing resources: (a) direct interconnections of upward (black) and down-
ward (grey) data flow; (b) long line interconnections of upward data flow direction; (c)
interconnections to optoelectronic devices for one row of logic blocks

4 C o n c l u s i o n s

In this paper we have presented a possible way to alleviate routing problems
in FPGAs. We have proposed to introduce a third interconnection dimension,
effectively reducing estimated interconnection length of implemented complex
designs. We have suggested to realize this additional interconnection dimension
using free-space optical interconnections. We have also touched upon more ap-
propriate ways to provide suitable interconnection structures in future FPGAs.

Our theoretical research effort is being complemented by the design and

360

realization of a prototype 3-D optoelectronic FPGA demonstrator, the purpose
of which is to establish the feasibility of the proposed optical interconnection
technique.

5 Acknowledgements

The above text presents research results of the Interuniversity Attraction Poles
Program IUAP24, initiated by the Belgian State, Prime Minister's Service, Sci-
ence Policy Office. Additional support was provided by an IMEC research pro-
gram.

References

I. G. BorrieUo, C. Ebcling, and S. Hauck. Triptych: An FPGA architecture with in-
tegrated logic and routing. In J. Savage T. Knight, editor, Advanced Research in
VLSI and Parallel Systems, pages 26-43. The MIT Press, 1992.

2. B. S. Landman and R. L. Russo. On a pin versus block relationship for partitions
of logic graphs. IEEE Trans on Computers, C-20:1469-1479, 1971.

3. W. E. Donath. Wire length distribution for placements of computer logic. IBM J.
Res. D., 25:152-155, 1981.

4. M. Feuer. Connectivity of random logic. In Proceedings of the workshop on large-
scale networks and systems, pages 7-11. IEEE 1980 Symposium on Circuits and
Systems, 1981.

5. H. Van Marck and J. Van Campenhout. Modeling and evaluating optoclectronic
designs. In R. T. Chen and J. A. Neff, editors, Optoelectronics II, pages 2153:307-
314. Proceedings of the SPIE, 1994.

6. R. C. Eden. Capabilities of normal metal electrical interconnections for 3-D MCM
electronic packaging. In R. T. Chen and J. A. Neff, editors, Optoelectronics II, pages
2153:132-145. Proceedings of the SPIE, 1994.

7. Xilinx Inc. The Programmable Logic Data Book, 1994.
8. B. Dhoedt, P. De Dobbelaere, J. Blondellc, P. Van Dacle, P. Demeestcr, H. Nccfs,

J. Van Campenhout, and R. Baets. Arrays of light emitting diodes with integrated
diffractive microlcnses for board-to-board optical interconnect applications: design,
modelling and experimentel assessment. Accepted for publication in CLBO '9~ tech-
nical digest, 1994.

9. S. D. Brown, It. J. Francis, J. Rose, and Z. G. Vranesic. Field-Programmable Gate
Arrays. Kluwer Academic Publishers, 1992.

On Channe l Arch i t ec ture and R o u t a b i l i t y for
F P G A ' s under Faulty C o n d i t i o n s

Kaushik Roy 1 and Sudip Nag 2

1 Electrical Engineering, Purdue University, West Lafayette, IN, USA
2 Electrical Engineering, Carnegie-Mellon University, Pittsburgh, PA, USA

Abst rac t . The Field Programmable Gate Array (FPGA) routing re-
sources are fixed and their usage is constrained by the location of Pro-
grammable Connections (PC's) such as antifuses. The routing or the
interconnect delays are determined by the length of segments assigned
to the nets of various lengths and the number of PC's programmed for
routing of each net. Due to the use of PC's certain unconventional faults
may appear. This paper models the PC faults and analyzes the perfor-
mance of FPGA channel architecture under faulty conditions to achieve
100% routability with graceful degradation in performance. A channel
architecture has been synthesized to achieve routability and performance
even under faulty conditions. Results on a set of indllstrial designs and
MCNC benchmark examples show the feasibility of achieving routat)ility
and performance under a large number of faults in the channel.

1 I n t r o d u c t i o n

Field Programmable Gate Arrays (FPGA's) combine the flexibility of mask pro-
grammable gate arrays with the convenience of field programmability. Figure
1 shows the row-based FPGA architecture [1, 2]. Each row of logic modules is
separated by channels. Each channel has a fixed number of horizontal routing
tracks which are segmented. For example, Figure 1 has 3 tracks per channel. The
topmost track is divided into two segments a and b separated by a horizontal
antifuse (hfuse). In the unprogrammed state the antifuse offers a very high resis-
tance, and hence, there is no electrical connection between the segments. A low
resistance electrical connection between the segments can be established by pro-
gramming the antifuse. Dedicated vertical lines through each input and output
pin of a logic module connect the pins to the routing tracks. Vertical feedthroughs
pass through the modules, serving as links between different channels. There is
a cross antifuse (cruse) located at the crossing of each horizontal and vertical
segment. Programming these antifuses produces a bi-directional connection be-
tween the horizontal and vertical segments. Let us again consider Figure 1. Due
to the different choices available during routing, it may be possible to achieve
100% routability even under the presence of a large number of faults. One can
also notice that there are a large number of both cross and horizontal anti-
fuses present in the channel to achieve flexibility in routing. However, most the
antifuses remain in the unprogrammed state even after FPGA programmation.

362

An alternate scheme replaces antifuses by switches, making the architecture
reprogrammable. This is achieved at the cost of larger area required for the
switches. An antifuse is of the size of a via, and requires very small area.

pins

c

d

() C)

1/5

1 3

b ,

C

• r

Programmed Logic Module
Cruse Hfuse Width

Logic Module

i ()

Hfuse Cfuse

Fig. 1. FPGA Channel Architecture

For such an F P GA architecture, it is not adequate to consider only the stuck-
at faults for the logic modules. The unconventional PC short and open faults in
the channel will also have to be considered to determine the complete function-
ality of the chip. In this paper we model the PC faults and address the design
and routability of the FPGA Channel architecture to achieve 100% routing with
minimum performance penalty in the presence of PC faults.

The paper is organized as follows. Section 2 considers the possible faults
in FPGA's and models the faults. The routability of a channel and the t iming
performance associated with routing are described in Section 3 along with the
routing algorithm. Section 4 considers channel routabili ty under the presence of
faults. Section 5 deals with automatic synthesis of channel architecture to achieve
routabili ty and performance under the presence of faults. Section 6 presents the
results of injecting faults into the synthesized architecture and the conclusions
are drawn in Section 7.

2 F a u l t M o d e l i n g a n d F a u l t L o c a t i o n

Let us first consider antifuse technology for PC's. Routabili ty of the FPGA's
requires the presence of a large number of cfuses and hfuses in the channel. An

363

antifuse requires multiple p rogramming pulses to successfully form the electrical
connection between logic modules or segments. And depending on the circuit
size and device type, 3,000 to 20,000 antifuses are typically p rogrammed [3].

Two types of faults in the antifuses are considered. The first type of fault can
be diagnosed a priori i.e. before p rogrammat ion and are called typel (or short)
faults. A shorted (or already programmed) cruse or hfuse is an example of type1
fault. Such faults can be easily detected by the p rogramming circuitry which is
able to address each antifuse individually. For example, p rogramming a cruse
X1 in Figure 1 requires charging the vertical line crossing X1 to a voltage VPP
and the segment d to GND (0V). VPP is determined by the antifuse technology
under consideration. A voltage stress of VPP across the antifuse for a certain pe-
riod of t ime creates a low resistance (technology dependent) connection between
the vertical line and the horizontal segment. All other vertical and horizontal
lines are charged to a voltage of VPP/2. It can be noted that the other unpro-
g rammed cruses experience a voltage stress of 0 volts or VPP/~ volts, and hence
remain unprogrammed. The above programming concept can be used to stress
any unprogrammed cruse to a VPP/2 volts to detect if a low resistance short
exits or not. Type2 (or open) faults cannot be diagnosed a priori. Let us consider
an antifuse which shows a normal behavior (open) in the unprogrammed state
but after p rogrammat ion does not produce a low resistance connection. Such a
fault cannot be diagnosed before the F P G A is programmed. It can be noted tha t
if reprograrnrnable PC's are used instead of antifllses then both open and short
faults are detectable before FPGA programmat ion. After programming, a faulty
antifuse may produce an electrical connection between the horizontal and verti-
cal line or between two horizontal segments having a resistance higher than the
nominal value. In such cases, the path which includes that p rogrammed antifllse
in it may experience larger than normal delay, producing delay or t iming error.

The h fuse faults can also be classified into typel and type2 categories. The
type1 faults can be detected by precharging the horizontal segment adjacent to
any unprogrammed hfuse. A lypel fault on the hfuse would also charge up the
other adjacent segment, As in the case of cruses, both typ(:1 and type2 faults may
produce a moderate ly high resistive connection between two adjacent segments
producing a t iming fault. It should be noted that each horizontal segment can
be separately precharged by the programming circuitry. This helps in vertical
line and channel truck testing. The test charges up each track, and after a pre-
determined t ime needed to maintain the level, the charge must still be high to
allow a pass.

All the inputs and ouput to each logic module can be individuMly addressed
and accessed through serial shift registers. And the inputs can be toggled through
all the test vectors required to test, each combinational and sequential modules
completely for any stuck-at faults.

364

3 Routing

The channel routing problem is formulated as an assignment problem where each
net within a channel is assigned to one or more unassigned segments. A net in
a channel can use at most one track due to a technology constraint which does
not allow programming of antifuses connected in an L-shaped fashion [1].

Consider K-segment routing for a net x of length Ls which uses p segments
(I < p < K) and Hs horizontal PC's . We define the cost of routing net x as

(E~=I Lj) - Ls H=
C= : Wl .~ + w2.fl, where c~ = and fl = - - P L (~ j = l J) g

¢r and fl are penalties for segment length wastage and horizontal P C usage,
respectively, and are both positive and less than 1. The factor a is associated
with both routabil i ty and performance because the unprogrammed antifuses
add to capacitive loading, while fl is associated with routing performance. The
weights wl, w2 assigned to the wastage factor, and the horizontal P C usage
factor respectively, are technology-dependent.

Green et. al. [5] have shown that K-segment (K > l) channel routing prob-
lem is NP-complete. For K-segment routing, each net is allowed a m a x i m u m
of K adjacent segments (on the same track) for routing. For our purposes, we
use a fast, greedy routing algorithm. The nets within a channel are ordered in
decreasing order of length. We assume that the longer nets are more critical,
and hence, they are routed first. However, each net can be assigned a criticality
value and depending on that the nets can be ordered. Let the leftmost and the
right most coordinate of a net x (or a segment i) be given by lef t= and r igh t s
(l e f t i and r ight i) respectively. Net x is routable using segment i if the segment
has not been previously assigned to any other net and the following conditions
are met:

l e f t s > l e f t i , right= < r ight i

Such conditions can be easily extended when two or more adjacent segments are
required for routing the net on a given track,

4 R o u t a b i l i t y u n d e r t h e P r e s e n c e o f F a u l t s

For the FPGA architecture of Figure 1, 100% routabil i ty may be achieved even
under the presence of faults in the channel. Let us first consider the cross P C a n d
the horizontal PCfau l t s in the channel. The cross PC' s are located at the crossing
of each vertical line, which connects to a pin of a logic module, and the horizontal
routing tracks. Typically, the router connects each pin to one horizontal track.
The rest of the cross P C ' s on that vertical line remain unprogrammed. Similarly,
most of the horizontal PC's also remain in the unprogrammed state because only
a few of the nets require more than one segment for routing. So it may be possible
to route nets such that the P C faults do not cause an error to occur during the
normal operation.

365

After detecting the type l faults as shown in Section 2, routing can be per-
formed around the faulty cross PC or the horizontal PC', if possible. Type2 faults
for antifuses cannot be diagnosed a priori, and hence, routing reconfiguration
is not possible. However, if reprogrammable PC technology is used, then bo th
short and open faults are detectable before p rogrammat ion (in the test mode),
and hence, routing around both the open and the short faults might be possible.

Let the probabil i ty that a cross PC is faulty (both type1 or type2 faults) be
given by f . Each vertical line in a channel has T number of cross PC's, where
T is the number of tracks. There are T number of segments going across any
vertical line in a channel. The vertical line is connected to either a pin i in a
logic module or is a feedthrough across channels. The number of available tracks
that p in / , and therefore net i, can be assigned to is given by N/, where N/ < T.
N/ is a function of the number of nets routed in the channel before routing net i
and the segments assigned to those nets. We assume that pin / can be assigned
to any one of the available N/ tracks. Therefore, the probabil i ty that net i uses
the j t h available track is given by 1/Ni. If we assume exactly one cross P C f a u l t
per vertical line within a channel, then the probabil i ty that net i gets assigned
to a track segment having a faulty cross PC on that vertical line is given by

P l ---- ~ i . f - (1 --
f)N,-1

It follows from the above discussions that the probabil i ty of 100% routabil i ty of
the net in the presence of u p t o n faults on a vertical line in a channel is

rl

1 E j . f J . (1 _ j.),,¢,_j (1) R = l - ~ i "
3 = I

= 1 - P (2)

where P is the probabili ty of an error occurring with at most n faults on a ver-
tical line. It should be observed that a typel fault on a cflLse can be handled by
assigning net i to the corresponding track segment. Any type.2 faults on unpro-
g rammed cross PC's can also be tolerated. Therefore, in reality, the probabil i ty
of 100% routabili ty of a net in the presence of faults is greater than R.

The above fault types can also be considered for horizontal PC's to come
up with analytical expressions for routability. Let the probabil i ty that a net i is
routed using one segment be given by all. ai~ is a flmction of net length and its
spatial location within a channel for a given channel segmentation. Let (tip be
the probabili ty of routing net i with p segments requiring the p rogrammat ion of
(p -- 1) horizontal PC's. Let us also assume that a m a x i m u m of (K + 1) segments
(K h fuses) be allowed for routing of any net within a channel. The mlmber K
is user defined, and is associated with the routing performance, because each
programmed antifuse contributes positively toward critical path delay. Such a
routing scheme is defined to be (I(+l)-segment routing. If we only consider
horizontal P C faults, then the probabili ty of faulty routing for net i using exactly
2 adjacent segments (one horizontal PC) is given by

Qi2 ~- OG2.f2

366

where f2 is the probability of type2 fault on a horizontal PC. Note that it is
possible to tolerate a type1 fault if two or more segments are used for routing.
Similarly, for exactly 3-segment routing for net i

Q,3 = + - / 2) 1

where C~ represents n choose m. It can be shown that

P
p J Q,i,p+l = c~i,p+l. ~ C~_j .f2 .(1 - f2) p-j (3)

j=l

From the above analysis it is clear that the probability that net i can be routed
using one or more segments (upto K hfuses) is

K

V~ = 1 - ~_, Qij .c~ij
j=l

The unprogrammed horizontal PC's can potentially have typcg faults without
causing any routing error. As the majori ty of the nets use a single segment for
routing, most of the lype2 faults can be tolerated. The lypel horizontal PCfau l t s
associated with unassigned segments can also be tolerated. However, in order to
achieve 100% routability, nets might get assigned to longer and/or large number
of segments which in turn can increase critical path delays,

5 F a u l t - T o l e r a n t C h a n n e l A r c h i t e c t u r e

A routing solution is dependent on the existing placement which defines the
routing requirements, the channel architecture which defines the available routing
resources and the routing algorithm which efficiently uses these routing resources
so that the final routing solution meets some performance requirements. Apart
from the usual performance requirements of 100% routability with critical path
delay constraints, our router described in the previous section also addresses
the issue of routing under faulty conditions. Evidently, such a router 's ability to
meet such performance criteria will be dependent on the channel architecture in
addition to the routing algorithm used. Therefore, in order to improve routing
solutions under faulty conditions, it is imperative to design the architecture with
such a performance requirement in mind.

The primary difference between handling faults at the routing level and at
the architecture design level is that while at the routing level, the information
regarding the faults is used to determine the routing solution, at the architec-
ture design level, no information is available regarding the location of faults.
Therefore, we assume that the PC faults are randomly distributed across the
channel. One of the other characteristics of the faults are that, they are found
to be clustered around some particular areas of the circuit [8]. Hence, we also
consider clustered nature of faults in our analysis.

367

As pointed out in Section 1, the routability, performance, and fault handling
capacity of a channel depends largely on the channel segmentat ion scheme. In-
tuitively, a strong correlation between the segment length and the net length
distributions within a channel is very desirable so tha t the single channel ar-
chitecture is able to handle different types net distributions. However, the mere
existence of a unique segment of acceptable length for every net in a channel
does not guarantee 100% routability, or required performance and fault toler-
ance. This is due to the fact that an additional factor, the location of a segment
with respect to a net span in a channel is also impor tant in determining whether
that segment can be used for routing that net. It is imperative, therefore, to
consider the spatial distribution of nets. The set of benchmark net distributions
were obtained from Texas Ins t ruments ' gate array designs.

We extend our architecture design scheme originally targeted towards wirabil-
ity and t iming [6] so as to include the fault-tolerant capabil i ty for random and
clustered fault distribution models. The basic approach used in our scheme was
to generate an opt imal architecture with respect to wirability and tinting for
a large set of sample net-lists. Our extension therefore also addresses the fault
handling capability of such an architecture with respect to the large number of
sample net-lists. The optimization technique used was simulated annealing [9]
which explores a plethora of possible architectures and selects the opt imal one
based on a cost-fimction.

The routing cost for channel i, having the set of nets Ni, and a set S of
already laid out segments is given by

Ok.q +

kENi,, k E N , ~

Z G

The original cost-function targeted wirability and timing, using the first three
terms of Equation 4. We have added a fourth and a fifth term for addressing the
fault-handling capability. We will describe these terms following a brief discussion
of the first three terms which address the issues of wirability and timing. I Niu I
in Equation 4 represents the cardinality of set Ni,,, and is equal to the number
of 1-segment unroutable nets in channel i. The set Nit, is the set of unroutable
nets in channel i. For the set of 1-segment routable nets Ni,. in channel i, the
segment wastage factor ak for each net k is calculated (refer to section 3). 0kg
corresponds to the m a x i m u m overlap of net k with an unassigned segment g,
and is a measure of n-segment routabili ty of a 1-segment unroutable net k. The
left and the right coordinates of segment g are given by .ql and g~ respectively,
and hence, g,. - gl represents the length of segment g. The weights L,~, Vw, and
Vo are associated with the corresponding factors. The routal)ility weight t,~ is
much higher than ~'w or ~'o as it relates to both routability and performance.
The I-segment routable nets with very low segment wastage usually have lower
interconnect delays than nets requiring two or more segments for routing due
to the presence of p rogrammed horizontal antifllse(s). In fact, the exact routing

368

delay depends on the number of unprogrammed cruses on the segment(s), the
length of the segment(s), the resistance of any p rogrammed h fuse(s), and cruses.
The weight Uo associated with the overlap factor is a small negative number. For
unroutable nets we consider a larger overlap to be bet ter - the net has a higher
probabil i ty of getting routed using two or more segments. For p different channels
(p sets of nets, Ni, N2, .. Np), the total cost of routing, C, using the same set
of segments S is given by C P = ~ = 1 Ci. The usage of 1-segment routability and
the overlap factor represents a novel way of efficiently predicting the K-segment
routabil i ty of a segmented channel architecture.

The fourth term measures the fault-handling capabili ty of the architecture.
For a particular net-list, 1-segment routing is done. This results in a set of nets
that are unroutable (using one segment) and a set of segments that are free or
available for routing. The information on free tracks for every zone is stored.
The unrouted nets would have to be routed using multiple segments. These nets
would require tracks at least in the zones denoting the nets ' span. We use this
measure to est imate ~ : a lower limit on the number of free tracks at each zone
after complete routing. If a is negative for a particular zone, this would guaran-
tee unroutability. If a is zero for a particular zone, there is a high probabil i ty of
routabil i ty problems in that zone. These cases are therefore penalized (although
indirectly) by the wirability related terms. However, an interesting observation
here is tha t the larger a is for a zone, the larger would be the number of tracks
free for that zone. Therefore after complete routing, if some faults exist in tha t
zone, larger ~f implies larger fault-tolerance. In other words, a larger & in a par-
ticular zone implies a larger probabil i ty that a channel router can achieve 100%
routabili ty in that zone despite the existence of faults in that zone since it would
have extra free tracks to use in place of the faulty one.

Assuming random faults, the smaller the 6 is in the zones, the less fault-
tolerant the architecture would be. Specifically, the zonal fault-intolerance FT~
of a zone z is a function of 6 for that zone. This function was derived empirically
based on the observation that routabil i ty problems star ted appearing with (f val-
ues less than 3 .7 , which is the fault-intolerance of the architecture is calculated

as ~-,~ez FT~.
Assuming clustered faults (the clusters themselves being randomly located

anywhere in the chip), existence of clusters of adjacent zones with small
would result in a less fault-tolerant architecture. Specifically, assuming clusters
of length L, and a total of C such possible clusters in a channel, the cluster
fault-intolerance FTC~ of a cluster c is a function of the FTz of the zones form-
ing the cluster c. If the FT~ values for multiple zones are large, then FTCc is a
large number depending on how many zones in cluster c have high FTz values.
7, in this case, is calculated as ~ c e c FTCc. v] is the weight factor used for the
fourth term.

In any zone, if a fault causes the inability to use a particular segment, the
usage of an identical segment of similar length would result in the min imum
deviation of t iming and segment wastage due to the fault. Therefore it is in-
tuitively desirable to have in each zone, a few large segments, a few medium

369

segments, a few small segments etc. To achieve this, the segments are divided
into G groups based on their lengths, each segment group comprises segments of
length between a certain group-specific range. Constraints are provided in each
zone in the form of a min imum number of elements (Mg) required to be present
for group g. Evidently there could be G such constraints.

For each zone, it is tested if all these constraints have been met. The fifth
term measures the summat ion of all the violations of these constraints in different
zones. For zone z, Pzg is the number of segments belonging to group g in that
zone. If Pzg >_ Mg, it implies the constraint k has been met for zone z and
function f returns 0. However if Pza = Mg - a, it implies tha t constraint k has
been violated by an amount a in zone z, and / returns a 2 in this case. The
superlinear function is used to heavily penalize large deviations. Pl is the weight
factor for the fifth term.

Due to the complex nature of the cost function, simulated annealing was used.
Given a large set of sample net distributions, annealing starts by assigning an
arbi t rary segmentation for a channel of given width and a given number of tracks.
Two moves are allowed in this specific annealing algorithm - - merging of two
adjacent segments in a track and breaking of a segment within a track into two
segments such that the broken segments add up to the original segment length.
The segments are randomly selected for either merging or breaking. Merges or
breaks are also determined randomly. It is not possible to break a segment of
length equal to the width of a single logic module. After each move the cost Ci is
calculated for each of the given sets of net distributions, Ni ,....Np. If C decreases
from its previous value the move is accepted. However, a move with a higher C

is accepted with a probabili ty e , where 16(C)1 is the absolute value of the
change in cost C and Temp is the annealing temperature.

6 R e s u l t s

The Mgorithms for fault-tolerant routing and architecture synthesis were im-
plemented in C on a Sparc 10 workstation. We present below the results of our
experiments with 7 MCNC and industrial examples from Texas Instruments with
900 to 2300 gates. The designs were logic synthesized and placed on TPC1010
[3] type templa te having 44 logic modules per row. Each channel had 25 seg-
mented routing tracks. Table 1 shows the effect of injecting cross P C s h o r t faults
in the channels. The number of logic modules (LM's) and the number of chan-
nels required to implement each design is also shown in the table. The columns
show tha t 0, 15, 20, and 25 cross PC short faults were randomly injected into
each channel of each design. The total number of cross PC's present in each
channel is Number'Tracks x NumberVerticalLines, which is 25 x 572 = 14300 in
our case. Results show that as the number of injected cross PC short faults de-
creases, the routabili ty increases and so does performance. The total number of
horizontal P rogrammable Connections (PC's) used and the average percentage
segment wastage over all the channels (refer to Section 3) are measures of rout-
ing performance and routabili ty and are shown in the table. With 15 randomly

370

injected faults per channel, routabi l i ty was obta ined for all the designs. For the
unroutable designs there is a " -" entry in the column for percentage segment
wastage.

Tab le 1. Routing results with cross P C short faults

Design No. No. Number of Horizontal Avg. % Seg.
Name LM's Channels I Unrouted Nets Prog. Conn. Wastage

01151201 25 0 115120125] 0 I 15 I 20 I 25
bw 144 8 0 0 0 0 0 0 0 1 38.4 38.7 38.9 39.0

duke2 318 9 0 0 1 2 6 7 6 12 42.7 42.6 - -

f104667 262 9 0 0 0 0 0 0 1 1 46.846.946.947.2
f104243 512 15 0 0 0 0 0 0 0 0 41.842.342.142.7
f104780 671 19 0 0 0 1 12114162340 .541 .241 .5 -
f103918 782 19 0:0 0 0 4 5 5 4 38.839.039.139.4
cf92382a 1668 19 010 0 0 0 0 0 2146.646.746.746.6

Horizontal P C short faults were also r andomly injected into each channel.
Table 2 shows the rout ing results with 0, 7, 8, and 10 horizontal P C short faults
injected r andomly into each channel. All designs were routable with 7 r andomly
injected faults in each channel. However, routabi l i ty a n d / o r segment wastage
deter iorated with the increase in the number of horizontal P C short faults in
each channel.

Tab le 2. Routing results with horizontal P C short faults

Design Number of Horizontal I Avg. • Seg.
Name Unrouted Nets Prog. Conn. Wastage

017181 10 0 7 8 10 0 7] 8 I 10

0 0 0 0 0 o o l o 3 43 740,,01
duke2 0 0 1 1 16 8 1 0 1 1 42,7 42.7 - -

f 1 0 4 6 6 7 0 0 ' 0 0 0 ' O I 1 : 2 4 6 . 8 4 6 . 9 4 6 . 9 4 8 . 0

f104243 0 0 0 0 0 ~4118181 41.841.841.941.9
f104780 00!0 1 ,,2 40.540.741.2 -
f103918 0!010 0 4 1 6 1 8 6 38.838.838.839.0
zf92382~ 0!010 0 0 I 010 2 46.6 46.9 46.9147.2

Table 3 shows the rout ing results when cross P C open faults were r andomly
int roduced into the channel. The rout ing results are compared with 0, 4%, 12%
and 20% r a n d o m cross P C faults. Even with 12% (1716) cross P C faults per

371

channel , the rou te r could rou te all the designs. I t can be observed t h a t as m o r e
cross PC faul t s were in t roduced , the r o u t a b i l i t y and pe r fo rmance de t e r io r a t e s
which is reflected by the larger number of ho r i zon ta l ant i fuse usage, and h igher
segment was tage . I t should be no ted t h a t for ant i fuses such open faul t s are no t
a priori known and can only he de tec ted while t ry ing to p r o g r a m the ant i fuse .

T a b l e 3. Routing results with cross PC open faults for reprogrammable PC's

Design Number of Horizontal Avgl % Seg.
Name Unrouted Nets Prog. Conn. Wastage

0 4% 12% 20%1i 0 [4%112%120% I 0 [4% [12%[20% I
bw 0 0 0 0 0 0 3 6 38.4'38.7 38.9 42.0

i

duke2 0 0 0 7 6 8 11 38 42.7 42.9143.1 -
f104667 0 0 0 0 0 0 3 4 46.847.3 47.4 48.9

,f104243 0 0 0 1 IO 2 7 12 41.842.7142.9 -
f104780 0 0 0 9 '12 191 27 92 40.5 4(}.943.2 -
f103918 0 0 0 3 !4 9 27 49 38.8139.2~40.1 -
cf92382a 0 0 0 2 ,0 0 4 32 46.6 46.8 46.9 -

Tab le 4 shows the resul ts of i n t roduc ing open faul ts for t i le hor izon ta l PC's
when r e p r o g r a m m a b l e technology is used. The re were 20 and 40 open fau l t s
respect ive ly in t roduced in each channel for e x p e r i m e n t a t i o n . Resu l t s show t h a t
a large number of such open faul ts can be to le ra ted . Th i s is due to the fact
t ha t mos t of the nets in a channel are rou ted with single segments . Tile rou t ing
resul ts for all the designs r ema in unchanged f rom the 0 faul t case except for
design f10,~780 and duke2. However, all the nets were r o u t a b l e for t h a t des ign
even wi th the presence of a large number of open faul ts .

The a rch i t ec tu re synthes ized for rou tab i l i ty , pe r fo rmance , and faul t to ler -
ance was c o m p a r e d to the a rch i tec ture t h a t we deve loped only for p e r f o r m a n c e
and r o u t a b i l i t y [6], The resul ts show tha t the new a rch i t ec tu re can hand le a b o u t
20% more r a n d o m faul t s wi th s imi la r pe r fo rmance for the designs t h a t we exper -
i lnen ted with. E x p e r i m e n t s were also conduc ted wi th r a n d o m c lus tered faul ts .
S imi la r resul ts were also o b t a i n e d for c lus tered faul ts .

7 C o n c l u s i o n s

This pape r shows the feas ib i l i ty of achieving r o u t a b i l i t y and pe r fo rmance under
the presence of P C faul t s in F P G A channel a rch i tec ture . A channel a rch i t ec tu re
has been synthes ized which not only considers r o u t a b i l i t y and pe r fo rmance , b u t
also enhances the r o u t a b i l i t y of the a rch i t ec tu re under the presence of P C fau l t s
w i t hou t sacrif icing per fo rmance . Resul t s show tha t a large n u m b e r of fau l t s can
be to l e ra t ed in the new a rch i tec tu re using a channel rou t ing a l g o r i t h m which can

372

T a b l e 4. Routing results with horizontal PC open faults with reprogrammable tech-
nology

Design
Name

bw
duke2

f104667
f104243
f104780
f103918
cf92382a

Number of Horizontal
Unrouted Nets Prog. Corm

o12o I 40 1°12°14° I
0 0 0 0 0 0

0 0 0 4 6 8
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 12 12 12
010 0 4 4 5
0i0 0 0 0 0

Avg. % Seg.
Wastage

0 120 140
38.4 38.5 38.5
42.7 42.7 42.6
46.8 46.8 46.8
41.8 41.8 41.8
40.5 40.5 4(}.7 I
38.8 38.8 39.0
46.6 46.6 46.6

rou te nets under the presence of faul ts . T h e antifl lse faul t s have been charac te r -
ized into two categor ies - those t h a t can be de tec ted before p r o g r a m m a t i o n , and
those t h a t can be only de tec ted after p r o g r a m m a t i o n . I t has also been shown
tha t some of the PC open and shor t faul ts m a y also a p p e a r as de lay faul ts due
to open or shor t res is tances being m o d e r a t e l y large.

R e f e r e n c e s

i . A.E. Gamma] et. M., "An Architecture for Electrically Configurable Gate Array,"
IEEE Journal of Solid State Circuits, Vol. 24, No. 2, pp. 394-398, April 1989.

2. J. Birkner et. al., "A Very High Speed Field Programmable Gate Array Using
Metal to MetM Antifuse Programming Elelnents," IEEE Custom Integrated Cir-
cuits Conf., pp 1.7.1-1.7.6, May 1991.

3. Field Programmable Gate Array - Application Handbook, Texas Instruments, 1992.
4. K. Roy, "A Bounded Search Algorithm for Segmented Channel Routing of F P G A s

and Associated Channel Architecture Issues," IEEE Trans. on Computer-Aided
Design, pp. 1695-1705, November 1993.

5. J. Green, V. Roychowdhury, S. Kaptanaglu, and A. Gammal, "Segmented Channel
Routing," 1EEE/ACM Design Automation Con]., pp. 567-572, 1990.

6. K. Roy, S. Nag, and S. Datta, "Channel Architecture Optimization for Performance
and Routability for Row-Based FPGAs," IEEE Intl. Conf. on Computer Design
(1CUD), pp. 220-223, 1993.

7. K. Roy and M. Mehendale, "Optimization of Channel Segmentation for Channelled
Architecture FPGAs," IEEE Custom Integrated Circuits Conf., pp. 4.4.1-4.4.3,
1992.

8. C. Stapper, "The Effects of Wafer to Wafer Defect Density Variations on Integrated
Circuit defect and Fault Distribution," IBM Journal of Research and Development,
pp. 87-97, January 1985.

9. S. Kirkpatrick, C. Gellat, and M. Vecchi, "Optimizatioll by Simulated Annealing,"
Science, Vol. 220, N. 4598, pp. 671-680, May 1983.

High-Performance Datapath Implementation on
Field-Programmable Multi-Chip Module

(FPMCM) *

Tsuyoshi Isshiki and Wayne Wei-Ming Dai

Computer Engineering, University of California, Santa Cruz CA 95064

Abst rac t . In this paper, a new design style for multi-FPGA system
is proposed. It fills the large gap between high-level synthesis and the
FPGA logic design by providing datapath circuit module library which
can contain high-level s imulation models as well as low-level circuit netlists.
Some bit-serial circuit modules have been designed which are easy to par-
tition and place within multiple FPGAs. Also, we have describe our novel
work on Field-Programmable Multi-Chip Module which demonstrates its
ability in reducing hardware size, reducing power consumption, reducing
packaging cost and providing with high density chip-to-chip connections.

1 I n t r o d u c t i o n

The potential of Field-Programmable Gate Array technology (FPGA) has been
demonstrated by many researchers in this field to provide an alternative ap-
proach to computation intensive applications. Custom chips which are optimized
for some specific applications are possible only if they promise a high volume
production. Parallel processing using general purpose microprocessors or digital
signal processors can be effective if a wide range of applications is targeted. FP-
GAs take in the advantages from both sides: an efficient and high-performance
datapath implementation of a custom chip and the programmabili ty of a mi-
croprocessor. Researches on this FPGA-based custom computing have been ac-
tive on both aspects [1][2][3], however, often failing to merge the two together.
Engineers can implement an efficient, high-performance design on this FPGA-
based system with a design methodology similar to custom chip design requiring
extensive knowledge of digital system and experience [3]. On the other hand,
efforts in making the FPGA-based systems easy to program has come to a point
where designers can write VHDL-like programs and the tools will automatically
generate the FPGA configuration data [4][5]. Here, the problem is that the au-
tomatically generated designs are often inefficient in terms of resource usage
and performance. Also, these hardware description language still requires basic
digital design skills.

This paper at tempts to solve these problems by proposing a new design style
which integrates the digital system design knowledge and experience into the

* This work is supported in part by ARPA under ONR Grant N00014-93-1-1334.

374

design environment to guarantee the quality of performance and efficiency, and
still regain the user-friendliness for the programmers without the knowledge of
digital system designs which the majority of the potential users would not have.
Our design style consisting of bit-serial arithmetic module library eliminates the
large gap of high-level synthesis and logic design on FPGAs, bringing the de-
sign decision process to the highest level of abstraction while providing accurate
tradeoff measures.

One other aspect in FPGA-based system is that in order to effectively and
efficiently tackle such computation intensive applications, a large amount of logic
resources are needed, in the order of millions of gate counts. Decreasing the phys-
ical size of the hardware of the FPGA-based systems is not only important by
itself, but also critical in increasing the performance, cutting power consumption,
and cutting the overall cost. Our novel work on Field-Programmable Multi-Chip
Module (FPMCM) clearly demonstrates a feasible and effective solution to this
hardware compaction problem of the FPGA-based custom computer systems.

2 F P M C M - A n I n t e g r a t i o n o f F P G A a n d M C M
T e c h n o l o g y

FPGAs suffer from low logic density and slow circuit speed. Fortunately, the
recent advancement in device technology is making these problems less critical.
The gate capacity of a single chip is growing close towards 100K gate counts. The
circuit speed has being improving where 4-input logic functions can be computed
in less than 3ns. Whereas for the multiple-FPGA systems, there are some more
problems:

- Existing FPGA chips may be IO limited when used in multiple-FPGA con-
figuration.

- IO drivers are designed to drive large load, therefore often slow. Chip-to-chip
communication penalty is large.

- Multiple-FPGA hardware results in large size and requires large power.

We have address the first problem, discussed in the later section, by using bit-
serial datapath modules where IO limitation is not a problem. We have actually
demonstrated in our multiplier design example that the chip-to-chip communi-
cation penalty is indeed critical.

In the following section, we will describe our current work on Field-Programmab]
Multi-Chip Module (FPMCM) which will help us deal with those problems using
the new packaging technology.

2.1 Overv iew of M C M

A Multi-Chip Module (MCM) has several bare chips or dice mounted and inter-
connected on a multi-layer substrate which functions as a single IC. Usually, a
silicon substrate consists of a ground plane, a power plane, and two signal rout-
ing layers. The power and ground plane form a good decoupling capacitance.

375

If necessary, additional processing steps can be added to produce intergrated
floating capacitors, thin-film resistors, inductors, and bipolar transistors.

The most promising assembly technique for MCM is the flip-chip at tachment
[7]. In flip-chip, dice are attached with pads facing down via solder bumps which
form the mechanical and electrical connections. The flip-chip technology pro-
vides area pads through solder bumps which are distributed over the entire chip
surface, rather than being confined to the periphery as in conventional packaging.

The resulting assembly is attached, wirebonded, and encapsulated in a second
level package. The second level package, used for insertion into the final system, is
typically a pin or ball-grid array (BGA). This process is well suited to FPMCMs
because the substrates can accommodate a high density of interconnect; There
are two layers with a wire pitch on the order of 1.5 mils. The process has also
been carefully optimized to minimize cost without sacrificing the performance
of digital circuits.

2.2 F P M C M - I A r c h i t e c t u r e

We have designed and are in the process of manufacturing a first generation
FPMCM (FPMCM-I) [9]. The purpose of the first generation device is to fully
exercise the MCM fabrication and assembly technology, quickly familiarize our-
selves with the technical problems of FPMCM design, uncover any pitfalls, and
try out an initial architecture.

Fig. 1. Physical Design First Generation FPMCM. Outer dimensions of the module
are 30.6 mm square. The device contains 12 Xillnx XC3042's and a single Aptix FPIC.
Four ceramic chip capacitors are provided to stabilize the on module power and ground
planes. The figure shows the three metal routing layers. The first two (X and Y)
layers shown are on the silicon substrate, while the third consists of an identical I/O
redistribution pattern for each XC3042 and the solder bump grid of the FPIC which is
necessary because the bond pad pitch on the 3000 series is too small for inexpensive,
reliable flip chip assembly.

The FPMCM-I consists of 12 Xilinx XC3042s encircling a Field-Programmable
Interconnect Chip (FPIC), the Aptix PIC-R. This FPIC die has an array-IO of

376

32 x 32 resulting in 1019 IO pins including 976 user-IOs which can be treated al-
most like a crossbar network. Four surface mount chip capacitors provide power
decoupling on the substrate. Each FPGA has 12 pins connecting to each nearest
neighbor in the ring and 22 pins connecting to external bondpads. Four global
signals are shared by all FPGAs. For testability purposes every signal net on
the MCM substrate connects to a PIC pin. There are a small number of direct
connections from the pins of the MCM to the PIC for diagnostic purposes; this
is in addition to the connections needed for the configuration and control lines.
To summarize, the FPMCM-I has 268 user IO in addition to numerous power,
ground and control signals [9].

2.3 Advan tages of M C M

MCMs have many advantages over traditional packaging: lower electrical para-
sitics between packages, smaller size, increased interconnect resources, and re-
duced packaging cost.

1. Power consumption reduction:
All other things being equal, the lower capacitive loads of shorter MCM
interconnect provide substantial power savings. The power savings for MCMs
are typically fifty percent lower than conventional packaging. This power
savings is increased dramatically when the drivers are specifically designed
for the MCM interconnects that they drive. Low power is an important
feature of MCM, especially when applied to portable systems and add-on
cards which are power-limited.

2. High-speed high-density chip-to-chip communication:
High wiring density of the silicon substrate allows communication between
chips to be very dense. And since the parasitic capacitance is significantly
lower compared to on-board communications, fast drivers can be built in
the die. AT&T Bell Laboratory has designed a set of low voltage, high-
speed IO buffers optimized specifically for MCM. The results show that
these new buffers reduce power consumption 6x and increase performance
2.5x compared to conventional CMOS buffers and they can operate at up
to 400MHz [8].

3 F P M C M D e s i g n E n v i r o n m e n t

3.1 P r o b l e m s of Cur ren t F P G A Design E nv i ronmen t

The existing FPGA design tools are provided with the thought that the FPGA
users are engineers with experience and patience. And they are specially tuned to
implement random logics efficiently as possible. Tools such as logic minimization,
logic partition, technology mapping, and automatic placement and routing are
therefore designed under the assumption that the circuit has a random structure.
There are several problems in applying this design environment to datapath
implementation:

377

1. Datapath circuits such as ALUs, registers, ROMs, RAMs, adders, counters
and multipliers are regularly structured and their statistical characteristics
vary between each other. Synthesizing datapath circuits as random logics
using the existing tools will often result in poor implementation in terms of
logic size and circuit speed.

2. Design change, in order to make the design fit in the available F P G A hard-
ware or to speed up the circuit to meet the given specification, is difficult
and time consuming.

3. Design verification including functionality and timing is also time consuming.
4. Design entry requires digital system design skills which will greatly discour-

age the programmers without the skill to use the system. Simply attaching
a high-level synthesis tool which translates high-level behavioral description
like C and PASCAL into structural description would result in poor im-
plementation since the decisions made in the high-level synthesis can only
be based upon some unreliable information about the hardware size and
performance of the datapath components [6].

5. Each design iteration takes too long. A time to compile a structural descrip-
tion into configuration data takes tens of minutes, possibly hours. This also
discourages the users.

Based on these observations, we now propose a new FPGA design style very
similar to the high-level synthesis approach.

3.2 A N e w De s ign S ty l e B a s e d on H i g h - L e v e l S y n t h e s i s

High-level synthesis, first called silicon compilation, have gained a great attention
since the early 1980s, where VLSI technology has advanced to a point where
the time it took to design chips became as long as chip lifetimes, leading to a
bottleneck in the product development cycle. High-level synthesis are programs
that generate layout data from some higher-level description.

The essential building block for the high-level synthesis is the module com-
ponents. Modules is defined in high-level synthesis environment as microarchi-
tectural entities that perform one or a few specific functions and consist of one
or more arrays of cells or tiles of a specific type. Examples of modules are PLAs,
ROMs, RAMs, register stacks, multipliers, ALUs, and counters. Modules are
compiled from cells which are single-bit logics or storage functions of some mi-
croarchitectural components or circuits of SSI or MSI complexity. The important
feature here is that modules are associated with high-level models such as func-
tional, logic, timing, power, and testability models to be used by verification,
analysis, and optimization tools such as functional and logic simulators, t iming
and power analyzers, and layout compactors. In this way, designers are able to
identify at high and abstract level which part of the design is causing the er-
ror, or which parts need to be reworked in order to meet the requirements of
performance and hardware size.

Fig.2(b) shows the high-level synthesis design style applied on FPGA de-
signs. The description can either be behavioral or structural. From a behavioral

378

nality

I \] (logic partition)

~efformance I , . I

synthesizer

perfo ce . .

] layo.ut '
L synthesizer

(a) Conventional design flow on FPGA Co) Proposed design flow on FPGA

Fig. 2. Conventional and proposed design flow on FPGA

description, a architecture synthesizer generates structural description. This part
of high-level synthesis consists of data dependency analysis, register allocation,
scheduling, memory allocation, and so on. This process requires accurate infor-
mations about hardware complexity and performance measures in order to gen-
erate area-efficient high-performance datapath structure. In conventional FPGA
design style, these information are not provided until the design has been al-
ready mapped, placed and routed, at the lowest level of abstraction. This made
it almost impossible to incorporate high-level synthesis in the FPGA design
environment.

A structural description consists of ALUs, registers, multipliers, counters and
other arithmetic functions. These modules are defined in the module library with
wide varieties of functions. Each module is described in logic block functions for
a particular FPGA, therefore the amount of logic blocks needed for the design
is already known at this stage. A timing model is also provided for each mod-
ule, therefore the performance of the design is also predictable. By completely
relying on the module library, the designers are able to eliminate the lengthy
process of logic minimization, logic partition, and technology mapping which

379

are tuned to work well on random circuits but not on datapath circuits. A va-
riety of design verification is done at this structural level, which makes it very
easy to detect design errors, timing errors, feasibility of actual implementation,
and performance.

In order for this design style to be realistic, the module library has to meet
the following requirement.

1. Module library should provide with wide choices of components, at least
include decoders, register stacks, multipliers, ALUs, counters, etc.

2. Following models for each module have to be provided in high-level descrip-
tion.
(a) Functional model
(b) Timing model
(c) Testability model

3. Each module has to be physically compatible with other modules in terms
of placement and routing.

4. The routability and the propagation delays of inter-module connections have
to be highly predictable.

We have to note that the prediction of routability and propagation delays
is extremely difficult in FPGA architecture. In custom chip design which is one
of the original targets for the high-level synthesis, routing propagation delays
are only caused by wiring capacitance. Also, routing has maximum flexibility in
custom chips, designer has the freedom of assigning enough routing resources to
congested regions. Therefore, the nets are almost always routable. Whereas in
FPGA architecture using pass-transistors for connecting routing channels, drain
capacitance of the pass-transistors is significantly larger than wiring capacitance.
Routing propagation delays totally depend on the number of pass-transistors the
net has to go through. Furthermore, the limited routing resources per channel not
only make the routing more difficult but also force routing nets in the congested
region to scatter to other routing channels. This makes the prediction of the
routing delays even harder.

We have realized that the last two critical requirements are the keys to high-
level synthesis. Our decision of using bit-serial arithmetic which will be discussed
in the next section is the result of this observation.

4 B i t - S e r i a l A r i t h m e t i c M o d u l e s

Computer arithmetic schemes and datapath implementation techniques have a
large impact on performance, circuit complexity and power consumption. We
have to be particularly careful in designing datapath circuits on FPGA. Since
the logic density is lower and circuit speed is slower, we cannot afford to waste
the resources or misuse them which may severely affect the performance. And
we also have to be more careful about the routing than we would normally do
on custom chip designs since the routing penalty is very high due to the high
capacitance of the pass transistors on the routing channels. This directly links
with the concerns on module-based methodology of FPGA design.

380

Bit-serial systolic array cell
inter-module connections

I (typically 1-SCLBs) [bit-serial arifllmetic modules are sparse (typically 2--6 wires)

Bit-~-rial arithmetic m Number of c¢llincludedin a module
grows }itwarly (such as r~ulfildiem, reg~ters) or is independent of

I (add¢~. shift?, ro,n.~,) ~ word she. l~ch cdl pwoes~

Design partition is easy because the deaigners
have the freedom of partitioning the modules
and they do n o t have to worry about pin limitation
prob lem because of the sparse inter-module and
inter--cell connections.

Module partition can be accompfished by simply
inserting flip-flops o n t h e cut.

Fig. 3. Systolic array implementation of bit-serial modules

4.1 Examples of Bit-Serial A r i t h m e t i c Modules

Bit-serial arithmetic modules can be implemented in systolic array fashion (Fig.3).
Each cell contains several combinational logics implementing single bit function
plus several storage elements. We have designed some bit-serial modules on Xil-
inx XC3000 architecture. Each systolic array cell is typically implemented using
1 to 5 configurable logic blocks (CLBs) with logic depth of I or 2 CLBs. Each bit-
serial module consists of a single cell as in adders and shifters, or multiple cells
proportional to the word length as in multipliers and registers. Inter-cell connec-
tions and inter-module connections are sparse, typically 2 to 6 wires, which are
independent of the word length (Table 1).

4 . 2 Compar i son Between Bit-Serial and Bi t -Para l le l Modules

Let us compare this bit-serial arithmetic modules with a bit-parallel modules in
terms of partition, placement and routing which are the key factor in creating a
realistic module library for high-level synthesis.

1. Partition:
(a) Bit-parallel modules are often hard to partition over multiple FPGAs

since partitioning such circuits often leads to I/O pin limitation problem.
Also, performance is critically affected by the partition, thus making
the performance measures at the high-level unreliable. It is therefore
not practical to partition bit-parallel modules. Also, design partitioning
is difficult and may result in poor logic resource usage because of the
coarse granularity of the module circuit composed of tens of CLBs and
pin limitation problem.

(b) Bit-serial modules are easy to partition since inter-cell connections are
sparse. Performance degradation by partition can be totally eliminated

38]

Table 1. Statistics of bit-serial datapath modules. Word size ---- N

Modules Area Logic depth
Multiplier
(1-input 1-constant) 4N CLBs 1 CLB
i(2-inputs) 5N CLBs 2 CLBs
Adder
I(single precision) 1 CLB 1CLB
(double precision) 3 CLBs 1 CLB
Rounder
(truncate)
(round-to-nearest-even)
Absolute operator
Max-min selector
(least-significant-bit-first)
(most-significant-bit-first) I

1 CLB 1 CLB
4 CLBs 1 CLB

2 + N/2 CLBs 1 CLB

1 + N/2 CLBs 1 CLB
4 CLBs 1 CLB

by inserting additional flip-flops on the parti t ioned inter-cell connections
under the assumption that the chip-to-chip delay is smaller than the
internal critical path of the systolic array cells. Design partit ioning is
also easy because of the fine granularity of the cell circuit composed of
only several CLBs and no pin limitation problem, and result in a very
high logic resource usage, as high as 100%.

2. Routing:
(a) Bit-parallel modules tend to be large in hardware, may have a large fan-

in and fan-out, may have a vast area of dense connectivity. And as a
result, wiring distance can be considerably long for some nets. Routabil-
ity of such modules are hard to predict, and their routing delays are also
unpredictable. Therefore, in order to construct a useful module library
for the high-level synthesis, bit-parallel modules have to be placed and
routed as seen in Hard-Macros. This physical restriction of the module
will affect the routability of the other parts of the chip.

(b) Bit-serial modules consisting of systolic array cells only has local con-
nections. Since the distance of those wires are all short, the propagation
delays of those wires can be highly predictable. Therefore, unrouted mod-
ules can still provide with reliable performance measures. Also because
of the local connections, routing wires tend to be evenly distributed
throughout the chip, naturally avoiding routing congestions.

3. Placement:
(a) Since bit-parallel modules have to be placed and routed in order to pro-

vide the information needed in high-level synthesis, physical compati-
bility between modules tend to be poor. Locking the relative position
of CLBs within the module, locking the routing wires, locking the posi-
tion of I /O nodes, all these reduce the feasible placement search space
significantly.

382

(b) Bit-serial modules can afford to be unrouted as long as the CLBs within
a cell and adjacent cells within a module is placed close enough, to make
the routing wires short and to make the routing delays predictable. This
flexibility increases the physical compatibility between other modules,
which minimizes the affect of the routability from the other circuits in
the same chip.

input . CLB multiplier cell output
p~d flip/-flop / / pad

; z _

~ ' 7 I 1'7 I I' ~ _ L _ y - L _ U ' - L I _ J ' - L U ' - t : ~

~ ' 7 1 I'7 1 I '71 I'-L_I_J'7 1 F'-I I I ' 7 : ~
~ ~ J 7 7 ~ J-T7 ~]--F-7 ',.f-7-7'J-T-7',=F77 ; _ ~

7 I F7 I F7 I Y7 I I'-L_L_/'7__I__/'7:I~IJ
~ ,J-T7 ;J-l-I ,J--17 ~J-T7 ;SI - I ,J -17 ~_~xEl

'7 I,I'7 1 I'7 1 I'7_L__I'7 1 I'7 1 I'-~:~I
~ 'J-7-1 ;d-l-I ~$7-7 ~d--17 'J--17 ~J-]7 %~EI

'7 I I'-I I 1'7 I 1'7 11'7 I I ' Z _ L I ' ~ : U

'7 1 I'7 1 I'7 1 I'7 I I'7 1 l'7_U'Tq~7~
(a) Floorplan of bit-serial multipliers on XC3042

~ -bit multiplier

-[6-bit multiplier [

-[6-bit multiplier]

~ 6-bit multiplier]

~ 6--bit multiplier]

~ 6-bit multiplier]

(b) Schematics

Fig. 4. Bit-serial multiplier layout on XC3042

To support the above argument, we have provided one actual design example to
demonstrate the high logic resource usage of the bit-serial arithmetic modules.
In Fig.4, actual layout example of a bit-serial multiplier on XC3042 is shown.
We were successful in mapping 6 × 6-bit multiplier on one chip using up all of
the 144 CLBs. The internal critical path (flip-flop to flip-flop) was 17.0ns. The
placement was done by hand, and routing was done by Automatic Placement
and Routing (APR). The maximum internal routing delay was 5ns. However,
the external critical path (flip-flop to flip-flop via chip pads) was 31.5ns. Taking
in account of clock skew between chips (,~2ns) and chip-to-chip interconnect
delay (<~10ns), the overall critical path is around 45ns. We can see that by
using bit-serial datapath modules whose logic depth is very small, clock period
can be reduced significantly to a point where the delays from the IO pad drivers
become dominant in the critical path. In Table 2, estimated performance and
area of several applications on our FPMCM chip are shown. There are two clock
frequencies assumed. 20MHz is the upper bound imposed by the IO pad buffer
delays (,~ 45ns). 50MHz is the upper bound when the IO pad buffer delays are
ignored, and the internal critical path is the overall critical path (17ns). The
reason for ignoring the IO pad buffer delays is that by using MCM packaging

383

technology for mult iple-FPGA system which is discussed in the next section, IO
pad buffers can be made significantly smaller and faster.

Table 2. Estimated performance measures on FPMCM chip. Multiplication, ad-
dition, rounding, max-selector, and rain-selector are all counted as 1 operation.
min-max-selector are counted as 2 operations. Others are not counted as operations.
The assumed clock frequency is 20MHz and 50MHz.

of word size sampling rate Ops
CLBs (20MHz) (50MHz) /cycle

8-point IDCT 1064 16 bits 1.25MHz 3.125MHz 56
FIRfilter (25 taps) 1675 16 bits 1.25MHz3.125MHz 51
FIR filter (49 taps) 1715 8 bits 2.5MHz 6.25MHz 99
8-point bubble sort 126 8 bits 2.5MHz 6.25MHz 40

Ops per second
(20MHz) (50MHz)
70 MOPS 175 MOPS
63 MOPS 159 MOPS

247 MOPS 618 MOPS
100 MOPS 250 MOPS

5 P a r t i t i o n , P l a c e m e n t a n d R o u t i n g f o r F P M C M

For our proposed design flow, we have to provide an automatic part i t ion and
placement algorithm to map the bit-serial arithmetic modules onto multiple
FPGAs.

1. Parti t ion algorithm would consist of assigning bit-serial systolic array cells
to each FPGA chip while assuring a feasible placement inside the chip and
a feasible routing inside the FPIC, retiming of data due to the insertion of
flip-flops at the chip boundary and back-annotating to the functional model.

2. Placement algorithm would consist of assigning each CLB to physical loca-
tion while assuring that CLBs of the same cell is placed adjacent to each
other, placing adjacent cells as close as possible to make the routing de-
lay below the predicted margin, and placing boundary cells, cells which is
connected to cells in a different FPGA chip, closest to the I /O blocks.

3. Routing algorithm would consist of routing the FPIC to provide the required
connection between FPGAs while keeping the chip-to-chip delay within the
tolerant margin, that is, the critical path within the FPGA. Routing of
the individual FPGA has to be done by the routing tools provided by the
FPGA vendors since this requires extensive knowledge of the F P G A routing
architecture.

These three tasks has to occur simultaneously in order to obtain the best results
since these tasks are dependent of each other. However, since we are dealing
with a very special class of circuits with only local connections and very limited
fan-in and fan-out, simultaneous partition, placement and routing should be a
lot easier than the ones for random circuits.

These algorithms are currently under development.

A Laboratory for a Digital Design Course Using FPGAs

Stephan Gehring Stefan Ludwig Niklaus Wirth

Institute for Computer Systems, Federal Institute of Technology (ETH)
CH-8092 Zurich, Switzerland

{gehring ludwig wirth}@inf.ethz.ch

Abstract. In our digital design laboratory we have replaced the
traditional wired circuit modules by workstations equipped with an
extension board containing a single FPGA. This hardware is
supplemented with a set of software tools consisting of a compiler for
the circuit specification language Lola, a graphical layout editor for
design entry, and a checker to verify conformity of a layout with its
specification in Lola. The new laboratory has been used with
considerable success in digital design courses for computer science
students. Not only is this solution much cheaper than collections of
modules to be wired, but it also allows for more substantial and
challenging exercises.

1 Introduction
In order to demonstrate that what had been learnt in the classroom can actually be
materialized into useful, correctly operating circuits, digital circuit design courses are
accompanied by exercises in the laboratory. There, students select building elements
from an available collection and assemble circuits by plugging them together, by
wire-wrapping, or by soldering. We have replaced this setup by workstations used in
programming courses [1] and equipping them with an FPGA on a simple extension
board. Not only is this replacement substantially less expensive, but it allows for the
implementation of considerably more realistic and challenging designs. This is due to
the large number of available building elements in the form of FPGA cells. Instead of
plugging units together, cells are configured and connected using a graphical circuit
editor. Indeed we consider this laboratory as the application of SRAM-based FPGAs,
where their inherent flexibility is not merely an advantage, but a simple necessity.
After all, a design is not only changed for correction or improvement, but also
discarded upon successful completion, whereafter the FPGA is reused for a next
exercise. Our experience also shows that learning effect and motivation surpass our
expectations, and that simulation by software can no longer be justified as a
substitute for actual circuit implementation. Furthermore, the concurrent design of
test programs on the host computer helps to bridge the perceived gap between
hardware and software, and is a strongly motivating factor, in particular for
Computer Science students.

Whereas the construction of the FPGA-board was a rather trivial matter, most of
the project's efforts were spent on the design of adequate software tools. They
comprise not only a graphical layout editor, but also a small circuit specification
language called Lola a n d i t s compiler (Sect. 2). A typical exercise starts with the
formulation of the informally described circuit in terms of this (textual) notation.
The second step consists of mapping it onto the FPGA, i.e. of finding a layout and
entering it with the aid of the layout editor (Sect. 3). Before testing the circuit with
test programs, a second tool, the Checker is applied to verify the consistency of the
layout with the circuit's specification in terms of Lola (Sect. 4).

We stress the fact that these tools have not only proved most useful in digital
design courses, but also adequate and effective in practice.

386

2 The Circuit Specification Language Lola

In the design of Lola we have made a deliberate effort to let the basic notions of
digital circuits be expressed as concisely and as regularly as possible, making use of
constructs of programming languages, while omitting unnecessary and redundant
features and facilities. The similarity of its appearance (syntax) with that of
structured programming languages is intentional and facilitates the learning process.
However, the reader is reminded that "programs" describe static circuits rather than
algorithmic processes. Although the entire language is defined in a report of some six
pages only, we here choose to convey its "flavor" by showing a few examples rather
than by presenting a comprehensive tutorial.

2.1 Declarations, Expressions, and Assignments

Every variable (signal) is explicitly declared. Its declaration specifies a type (binary,
tri-state, open-collector) and possibly a structure (array dimension). Variables occur
in expressions defining new signal values. The available operators are those of
Boolean algebra: not (~), and (,) , or (+), and xor (-) . Expressions are assigned to
variables, thereby defining their value depending on other variables. The frequently
encountered multiplexer operation is defined as

MUX(s:x,y) = ~ s , x + s , y

The following basic operators allow the specification of storage elements and
registers, and thereby of (synchronous) sequential circuits.

SR(s', r')
LATCH(g, d)
REG(en, d)

set-reset flipflop
transparent latch
D-type register with enable and implied clock

2.2 "l~ype Declarations

If a certain subcircuit appears repeatedly, it can be defined as an explicit circuit type
(pattern), whereafter it can be instantiated by a simple statement. Declaration and
instantiation resemble the procedure declaration and call in programming languages.
Inputs appear in an explicit list of parameters. Outputs do not. Instead, they are
treated like local variables, with the difference, however, that they can also be
referenced in the context of the instantiation, namely by their name qualified by the
instance's identification.

Of particular value is the easy scalability of declared types. This is achieved by
supplying a declaration with numeric parameters, typically used to indicate array
dimensions. This kind of parametrization embodies the most essential advantage of
textual specifications over circuit schematics.

2.3 Examples

The first example is a binary adder consisting of N identical units of type ASElement.
Input cin denotes the input carry, and s controls whether z is the sum o fx andy or
their difference (Fig. 1).

387

x

Y

Cl
cout

Fig. 1. Add-Subtract Element

TYPE ASElement;
IN x, y, ci, s: BIT;
OUT z, co: BIT;
VAR u, h: BIT;

B E G I N u : = y - s ; h : = x - u ; z : = h - c i ; c o : = (x * u) + (h * c i)
END ASElement;

TYPE Adder(N) ;
IN cin, sub: BIT;

x,y: [N] BIT;
OUT cout: BIT;

z: IN] BIT;
VAR AS: [N] ASElement;

BEGIN AS.0(x.0, y.0, sub, sub);
FOR i := 1 .. N-1 DO AS.i(x.i, y.i, AS[i-1].co, sub) ; z.i := AS.i.z END ;
cout := AS[N-1].co

END Adder

The second example shows a multiplier with N-bit inputs x a n d y and a 2N-bit output
z. The circuit consists of a matrix of identical adder elements (Fig. 2). The first
parameter is the product of multiplicand and multiplier.

y3 y2 y l i0

0

\ \

\

z7 z6 z5

- 0

\
zO

- 0

",\
zl

- 0

z2
- - 0
\

z4 z3

x0

xl

x2

x3

Fig. 2. Multiplier

388

TYPE AddElement;
IN x, y, ci: BIT;
OUT z, co: BIT;

BEGIN z :-- (x-y) - ci; co := (x * y) + ((x -y) * ci)
END AddElement;

TYPE Multiplier(N);
IN x,y: IN] BIT;
OUT z: [2,N] BIT;
VAR M: IN] IN] AddElement;

BEGIN
FORj := 0 .. N-1 DO M.0.j (x.0 *y.j, '0, '0) END ;
FOR i := 1 .. N-1 DO

M.i.0 (x.i ,y .0 , M[i-1].l.z, '0);
FORj := 1 .. N-2 DO M.i.j (x.i ,y . j , M[i-ll[j+l].z, M[i][j-1].co) END ;
MIll[N-I] (x.i ,y[N-1], M[i-llIN-1].co, MIi][N-2].co)

END ;
FOR i := 0 .. N-2 DO z.i := M.i.0.z; z[i+N] := M[N-1] [i+l].z END ;
z[N-11 := M[N-1].0.z; z[2*N-11 := M[N-1][N-11.co

END Multiplier

Our last example is a binary up~down counter with the three ~control inputs en
(enable, carry input), clr' (clear), and up (indicating the counting direction).

TYPE UpDownCounter(N); (*with load, enable and clear,)
IN ld', en, clr', up: BIT; x: IN] BIT;
OUT Q: [N] BIT;
VAR cu, cd: IN] BIT;

BEGIN
Q.0 := REG(MUX(Id': x.0, Q . 0 , clr' - en)); cu.O := Q.O • en; cd.0 := ~Q.0 • en;
FOR i := 1 .. N-1 DO

Q.i := REG((MUX(Id': x.i, Q.i - MUX(up: cd[i-1], cu[i-1]))) • clr');
cu.i := Q.0 • cu[i -1] ; cd.i := ~Q.i * cd[i-1]

END
END UpDownCounter

2.4 The Compiler

Unlike a compiler for a programming language, which generates executable code, the
Lola compiler generates a data structure representing the circuit that is most
appropriate for further processing by various design tools, ideally by an automatic
layout generator. Other tools are timing analyzers, fanout checkers, and simulators.
In our case, the most important tool is the Checker, which verifies a given layout
rather than generating one. The data structure generated by the compiler consists of a
binary tree for each variable occurring in the design. Hence the compiler flattens the
structured description. It also applies obvious simplification rules. They take effect,
for example, at the edges of the matrix of the second example above, where some of
the input parameters are zeroes.

3 The Layout Editor

A graphical editor is used to enter and modify circuit specifications implemented on
an FPGA. It presents the FPGA at a low level, as close to the real hardware as
possible. We first present the used FPGA architecture and then give a description of
the editor's mode of operation and its implementation.

389

3.1 The Hardware

In our laboratory, an extension board containing an FPGA of Atmel (formerly
Concurrent Logic Inc.) is used [2]. The AT6002 chip in an 84-pin package consists of
a matrix of 32 by 32 identical cells. A cell implements two functions of up to three
inputs (A, B, and L). These functions can be combinational and sequential (i.e.
involving a register). Two outputs (A and B) of a cell are connected to the inputs of
its four neighbors (north, south, east, and west). In addit ion to the neighbor
connections, there is a bussing network connecting bus inputs and outputs of eight
cells in a row or column. These so-called local busses are used to t ransport signals
over longer distances between cells. They can be connected to other local busses or to
additional express busses via repeaters at 8-cell boundaries. Surrounding the array of
cells are 16 programmable IO pads on each side. These connect to the bus of the host
workstation and to components on the extension board, such as an SRAM and an
RS-232 line driver.

3.2 Des i~ l Representation and Modification

The editor presents the gate array in a viewer as an excerpt of the 1024 cells (Fig. 3).
Every eight cells, a repeater column or row is displayed, and surrounding the array,
the programmable pads are shown. Each componenrs contents reflect the
implemented function as closely as possible - e.g. an Exclusive-Or in a cell with a
constant one input is displayed as a Not-gate. To show the signal flow, connections
between cells and to and from local busses, and connections with repeaters are
displayed as arrows. 13y giving neighboring connections a different color (yellow)
than local (green) and express busses (red), a visual feedback on the speed of a
specific connection is suggested. Inside a cell, the same picture is displayed
regardless of the source and destination direction of signals. For instance, even if
signals enter a cell from below and flow to the top, the picture inside the cell
suggests a flow from top to bottom. The reason for this will be explained in Sect.
3.3.2. To give signals a meaningful name - and to enable a link to a Lola description
of a circuit (see Sect. 4) - textual labels can be placed at cell and pad outputs.

A B ~'-

i
A-~--1L I B i

"T T

i

i " f T

. [

1 i =.7 1 i a.6

i ! i !~-- t i-
. T I T][.

....... L . , 1 . ,

Ii i
" T T i

~ . . . i I'-"

Fig. 3. Editor View with Cells, Pads, Repeaters, and Labels

3 9 0

The mouse is used as the primary input device to change a design. Cells, pads, and
repeaters can be edited using popup menus (Figs. 4, 5). The top row of the menu in
Fig. 4 shows the six different routing modes possible in a cell, and the four items on
the left of the bottom row show the state of a cell [2]. The two multiplexers on the
right are an often used combination of routing mode Mux and states Xor or Xor with
register. Similarly, all possible configurations for repeaters (Fig. 5) and pads (not
shown) are presented through a menu. The current configuration of the edited
resource is highlighted in the menu with a frame. Connections between cells must be
entered manually as no automatic router is provided. Thus, students learn about the
problems of placement and routing in FPGAs. Fast replication of data path elements
is available by selecting and copying bit slices of the layout. Cells can also be moved
or copied across viewer boundaries in which a different design or a different excerpt
of the same design is shown.

- ~ i , l g / ~ , i , . s . , -

Fig. 4. Cell Menu

• ."--.+--..*......-~'.: " i*. ~ - - / ,+. . . . ,2~. , .

~ I, i ~- I~l---,:l-~l~l~l~l~l I,, j"
.~. , ,~. . " , , , , ~. ~ . . . I . & . .

4 :+ I 0 :--

i L~. !.~]~- - ~ ! e !..'..J'--t4Ll_e J..."....j'-
• ' ~ " "+" - " T Z ~ . ~ , 0 ~" T

Fig. 5. Repeater Menu

391

3.3 Implementation

The editor consists of five modules comprising roughly 65KB of object code. The
following sections discuss some of the finer points of the implementation.

3.3.1 Data Structures

We use a straight-forward data structure to represent the various resources on the
FPGA. A two-dimensional array of cell records represents the matrix of cells. This
allows for fast iteration over the data structure when displaying it. Similarly, the
repeaters and pads are represented as arrays of records. The labels, however, are a
linked list of records containing the position and caption of a label. Designs are
saved to disk using a portable data format. A simple run-length encoding of empty
cells, pads, and repeaters compresses typical files to 23% of their original size. Even
large designs take up only 8KB, whereas smaller designs remain well under 1KB.

3.3.2 Drawing Operations

For drawing the contents of a cell, we use a special font containing only the patterns
of signals flowing from top to bottom. Thereby, we get fast drawing of a design
without having to distinguish between the 384 possible signal flow directions, but at
the cost of a fixed aspect ratio and non-optimal print output. Making the distinction
and drawing a cell's contents with multiple lines and dots slows down the
performance by 50% and increases the program size by 100%. Repeaters are drawn
using a font as well, but here, a special pattern exists for each possible signal flow.
Despite the disadvantages when using a font, the chosen solution works well in
practise. A special display option can be set where only used cells and busses are
drawn. Not only does this improve display speed, but it also avoids a cluttered view.

3.3.3 Editing Operations and Undo

The problem of displaying three different menus has an elegant solution using a
generic procedure. This procedure takes two procedure variables as parameters, one
for displaying the contents of each menu item, and one for updating the data
structure according to the chosen item. Thereby, the code for configuring cells, pads,
and repeaters remains the same, only the procedure variables and the number of
rows and columns in the menu change.

Each editing operation can be undone. This is accomplished by backing up the
data structure before executing the operation. Then, a simple swap between the
backup and the primary data structure implements the undo (and redo) operation.

3.4 Command Module and Queries

Operations that are not frequently used are provided through a command module
[3]. Clock and reset lines are set with commands. Labels, cells according to their
coordinates, and whole arrays according to a prefix, can be located in a design.
Statistics on the design are also provided, with which different implementations of
the same specification can be compared against each other (according to bus
utilization and the number of cells used for routing, logic, and registers).

392

3.5 Downloading to the Extension Board

Once a design is finished, it can be downloaded onto the FPGA in a few
milli-seconds. Only during this step, simple electrical consistency checks are
performed, such as multiple sources writing to a bus unconditionally, and
incompletely configured cells.

3.6 Discussion

For the intended purpose the chosen implementation worked out very well. The fast
adaption of all users to our system was encouraging and the positive feedback very
rewarding. In the future, we will provide configurability of the editor to support
various chip sizes and IO configurations. Research-wise, we intend to develop design
automation tools that support a seamless integration between the specification of a
circuit and the automatically laid out design.

4 The Checker and Analysis Tools

4.1 The Checker

In a digital design laboratory, a typical design cycle might look as in Fig. 6. After
initial design entry with the editor, the designer downloads the design onto the
FPGA. By configuring the FPGA, the circuit is implemented and can be tested
subsequently. If the test fails, the design is corrected, downloaded, and tested anew.

No

Fig. 6. Design Cycle

While downloading and testing a design is usually a matter of seconds or minutes,
correcting a faulty design can be very tedious. Mostly, this comes from the fact that,
while it is easy to detect an error, it is hard to find its location in the design. In
traditional laboratories with electronic components being plugged together, the
designer must verify manually that each component is properly wired. Our
software-based approach, by contrast, offers the opportunity to construct a circuit
checker program that helps the designer not only to detect, but also to locate
implementation errors.

4.1.1 Representing and Checking Designs

A digital circuit is characterized by its inputs, outputs, and a set of Boolean functions
combining the inputs. Each circuit output is associated with the result of such a
function. The function can be represented as a binary tree with nodes consisting of
Boolean constants, operators, variables, and units composed of several operators
(e.g. multiplexers, registers). Each output forms the root of such a binary tree. A

z

complete circuit can thus be represented as a set o f trees, one for each output. Inner
tree nodes represent operators with edges pointing towards the node's inputs, while
leaf nodes represent constants and input variables.
Fig. 7 illustrates the equivalence between a Boolean function represented as a set of
interconnected gates, a binary tree, and a Boolean formula.

Schematic

393

e - -

Tree Lola

Fig. 7. Circuit Representations

z := u*v + REG(e, x)

Since the above representations of a circuit are equivalent, both a circuit layout and a
Lola program can be transformed into a set of trees. Corresponding trees can then be
compared to detect inconsistencies. Under the assumption that the Lola program
describes the circuit correctly, i.e. it properly reflects a circuit specification,
inconsistencies between corresponding pairs of trees are interpreted as errors in the
layout, i.e. the circuit implementation.

The checker strives to find a structural equivalence between the specification and
the implementation trees. It starts at the roots of two respective trees and, in parallel,
traverses both trees from the roots towards the inputs. At each pair of nodes, the
checker verifies that the two nodes match. If they match, the nodes' subtrees are
checked for equivalence recursively. The procedure terminates when all nodes have
been visited or a mismatch is detected.

Existing verifiers, such as automated theorem-provers [4], attempt to find an
equivalence between Boolean equations by transforming them until equivalence (or
its opposite) is inferred. This scheme is more flexible than matching for structural
equivalence and allows for different levels of abstraction between the specification
and the implementation. While such verifiers are well suited to detect inconsistencies,
they typically fail in pinpointing the fault in the layout. The information needed for
this purpose is either left out or lost during the transformations applied to the
Boolean equations. This loss makes it impossible to locate an implementation error
automatically and leaves the designer with the labor of locating it in the layout
manually.

The checker, by contrast, keeps the information required to locate a part in the
layout within each node. With this information available, an implementation error
can not only be detected but also located in the faulty layout.

4.1.2 Using the Checker

The first step in the checking process is writing a Lola specification for the circuit.
This program is compiled by the Lola compiler which generates a set of trees as its
output. The trees can be viewed in a textual format as a set of Boolean equations. The
output can be used as a reference in the next step when entering the design with the
editor. The checker is then invoked to check the implementation for compatibility
with the specification. Inconsistencies between the two are displayed textually and

394

graphically in the layout. The checker can check complete layouts but may also be
used during design entry to check partial layouts (e.g. for checking bit slices of a data
path).

4.1.3 Implementation

In order to make the implementation of the checker simple and extensible, the
architecture-dependent extraction part is decoupled from the architecture-
independent matching part. The extractor converts the FPGA-dependent re-
presentation of circuits used by the editor into an architecture-independent set of
trees. The matcher then verifies compatibility with the set of trees generated by the
Lola compiler. This separation allows easy adaption to a new FPGA architecture by
simply exchanging the extractor component. The extractor follows the signals from
the output towards the inputs. Extraction stops at labels and constants found in the
layout. When returning from the leaf nodes, the tree is constructed. Already during
extraction certain checks are performed, such as detecting unconditional outputs to a
tri-state bus or reading from an undefined source. The extractor also recognizes
certain combinations of gates and converts them to more abstract operators, such as

q := MUX(en: q, x) -> q := LATCH(en, x)
q := ~ (s ' . ~(r' * q)) -> q := SR(s', r')

Once the trees are extracted, the matcher checks corresponding pairs of trees for
compatibility. The trees generated by the Lola compiler are used as a reference while
the trees extracted from the circuit are examined.

Earlier, we mentioned that the checker searches for a structural match between
two corresponding trees. Demanding an exact structural match would require the
designer to specify the circuit exactly the same way as it is later implemented. As this
is too restrictive, the checker allows a number of transformations being applied to
the trees. Since the goal is still to locate detected errors in the layout automatically,
transformations must preserve the information needed for this purpose. The
structural matching rules are relaxed and allow the following transformations:

1. Inverters. Architectural constraints imposed by FPGAs sometimes require the
designer to connect parts of a circuit through successive inverters. For example, if
an AND gate is implemented with a NAND gate, an inverter must follow the
NAND gate, hence there are two inverters in series. The checker allows an
arbitrary number of inverter nodes between any two nodes.

x = ~ (~ x)

2. DeMorgan's Laws. The checker applies the laws of DeMorgan when necessary.
For instance, the AT6002 FPGA cell lacks an OR gate. An OR gate is therefore
usually implemented as a NAND gate with inverted inputs. This
architecture-dependency should, however, not reflect in the specification where
the OR operator is used instead.

x + y = ~ (~ x , ~ y) x , y = ~(~x+~y)

3. Commutativi(y. The representation of a dyadic Boolean operator as a node of a
binary tree introduces an inherent order, by which its subtrees are compared
(e.g. "compare left specification subtree with left implementation subtree"). For
commutative operators (AND, OR, XOR), this order cannot be determined
beforehand and the checker potentially matches both possibilities. Since the trees
generated by the Lola compiler have a typical height of less than five, there is no
apparent performance penalty associated with commutativity.

x , y = y * x x + y = y + x x - y -- y - x

395

4. Associativity. As with commutativity, associativity i s an inherent property of
binary trees. The checker supports only simple cases of associativity.

y , (x , (u + v)) = (u + v) * (x , y)

5. MUX selectors. For greater flexibility, multiplexers may be implemented with an
inverted selector signal and accordingly exchanged input signals.

MUX(s: x ,y) = MUX(~s:y, x)

6. OR/AND with MUX. It is sometimes more convenient to implement OR gates or
AND gates using multiplexers. The checker recognizes the MUX representations
as equivalent.

x + y = MUX(x:y , ' I) x , y = MUX(x: '0, y)

All of these transformations can be applied to trees without losing information
needed to locate errors in the layout after a mismatch.

Combined, the transformations make the checker a flexible and efficient tool for
checking layouts. Its speed and its capability to check only parts of a design make it
well suited for interactive use during design entry.

Design AT6002 Cells Used

UART 240
8x8 Multiplier 440

Microcontroller 770

Lola Variables Total Checking Time
100 < 1 s
230 < 2 s

240 < 4 s

Table 1. Checking Performance (80486, 33MHz)

4.2 The Timing Analyzer

Once a circuit is designed with the editor and its correct layout verified with the
checker, the question about the circuit's performance arises. To determine the
maximum operating speed of a given synchronous circuit a timing analysis tool is
required. We have developed a timing analyzer which is capable of analyzing
combinational and sequential circuits efficiently. It can be used interactively from
within the editor during design entry but also provides a simple programming
interface which can be used by future design automation tools. It provides
commands to determine the maximum input delay between a given output and all of
its inputs or only a specific input. If a circuit contains parts with fan-outs greater than
one ("common subexpressions") their input delays are calculated only once to save
computation time.

5 C o n d u s i o n s

We presented an FPGA system consisting of an extension-board with an Atmel
AT6002 FPGA and a set of simple and efficient software tools used to develop circuits
for the board. The software consists of a compiler for the Lola language, a small
hardware description language for synchronous digital circuits, an easy-to-use
graphical editor with which layouts are entered with simple mouse manipulations,
a n d a loader to configure the FPGA with layouts entered with the editor. Additionally,
a circuit checker was implemented which performs a consistency check between a
circuit specification in the form of a Lola program and its implementation within the
editor. Inconsistencies are not only detected but also located within the layout
displayed in the editor.

396

The software part was designed and implemented in Oberon [3] by three people in
three months and consists of 13 modules containing about 6500 lines of code. Two
weeks were spent developing the extension-board.

We have been using the system successfully in a laboratory for introductory
courses in digital design. Due to its simplicity, the students learned to use the system

~ uickly and were able to solve the given exercises. The exercises range from simple
inary counters to a UART. At the Institute, we use the same system for experiments

with programmable hardware.
All in all, we can only recommend using FPGAs in education. Their flexibility and

quick reprogrammability allow interesting and diverse problem statements. By using
real hardware instead of a simulator, the students also have to cope with the "real"
problems of digital design such as good placement, economical routing, timing, and
synchronization between components. Last, but not least, the chosen solution is an
order of magnitude more cost effective than conventional laboratories using discrete
MSI components and physical wiring.

Acknowledgements
We wish to thank I. Noack for implementing and testing the extension board.

References

1. B. Heeb, I. Noack, Hardware Description of the Workstation Ceres-3,Technical
Report 168, Institute for Computer Systems, ETH Zurich, Switzerland, October
1991

2. Atmel Corporation, San Jose, CA. Field-Programmable Gate Arrays, AT6000 Series.
1993

3. M. Reiser. The Oberon System -User's Guide and Programmer's Manual.
Addison-Wesley, Reading, MA. 1991.

4. R.S. Boyer, J. Strother Moore, Proof-Checking, Therorem-Proving, and Program
Verification, Contemporary Mathematics, Vol. 29, American Math. Society, 1984,
119-132

COordinate Rotation Digital Computer
(CORDIC) Synthesis for FPGA

U. M e y e r - B ~ e ++, A. Meyer-B/iset ,W. Hilberg:~

t Ins t i tu t Flugmechanik und Regehmstechnik, Technische Hochschule Darms tad t

~Inst i tut fiir Datentechnik, Technische Hochschule Darms tad t

A b s t r a c t . An universal CORDIC processors is able to compute a wide variety
of functions, for example conversion between polar and cartesian coordinates,
trigonometric (sin,cos,tan and vice versa), division, hyberbolic and exponential
flmctions. Because CORDIC needs only simple add/subtract and shift opera-
tions, it is easy to realize it with FPGAs. We explain the CORDIC synthesis
in different architecturs and of different accuracies. We examine the CORDIC
synthesis for coordinate conversion from cartesian to polar 12, y ~ R, 0 and for
computing the exponential function with the CORDIC processor supporting a
former inlplemented artifical neural network. With our optimization the hard-
ware effort of the CORDIC could be reduced, so that each processors may be
implement each with one XC3090 FPGA from Xilinx.

1 The C O R D I C Algori thm

Ill 1959 Volder [Vo159] developped the CORDIC algorithm (Coordina te Rota t iona l
D ig i t a l Computer) , to convert between polar and cartesian coordinates. CORDIC is
an i terat ive algori thm to compute the coordinate of a vector rotat ion or to c o m p u t e
radius and the phase of a vector.

The method explained by Volder to compute tr iogonometric functions was expan-
ded by Wal ther [Wal71]. With the aid of these extension, it is possible, to compute

also very effective~ hyperbolic and exponential functions using the same hardware as
for the t r igonometr ic functions [Sch74, t).162-176,181-193].

For the generalized CORDIC algorithm the i terat ive equations in the hyperbolic
(m = --1), in tile linear (m = 0), and in tile circular (m = 1) coordinatat ion approach
are shown in figure l (b) .

The CORDIC algori thm can be operate in either a vector "rotat ion" mode, or an
angle accumulat ion mode ("vectoring"). Table 1 shows the various functions [H HB91],
which can be realized with tile CORDIC algorithln depending on the initial values of
the register xi , , , yi,~ and zi,~, the coordinate system, and the two modes.

2 Examples of C O R D I C - P r o c e s s o r Synthes is

After a brief summarize of the CORDIC algorithm and same using terminology, we
will point our a t tent ion on two typical synthesis apl)lications , and we will show that

i Insider says that HP use the CORDIC techniques in their scientific calculators [Sch74].

398

i
i

ira----0 s "S

. m = l ~ . ' " m=-I

R ' , , ' I k

(a)

xi+i] = [1 mSiai
Yi+i - 51ai 1

zi+l = z i + S i 0 i

t a n h - l (a i)

Oi : ~i
tan -1 (~i)

][::]
: m ~ - - 1

: m = 0

: 7D.= 1

R x with i as the index for each i teration.
(u)

Figu re 1 (a) CORDIC modi (b) Definition of the rotation angle.

(1)

(z)

(3)

hype rbo l i c

m = --1 c~i ----- 2 - i

(i=1 ,2 ,3 N)

(repea te I ter . 4,13,40, . . .)

- - ~ 1 : x i y l >_ 0

X N.{. 1 ~ IX'h ~ Y~n
z g + l = z ln + t a n h - X (Y l n / x i n)

I tanh-~ (u~./~.)l _< 1.11s~
- - ~ 1 : z i _ < 0

: ~ 0 o i = ~ - 1 z i > O

X N + 1 = Kh[Xin cosh(zin)

+llin slnh(zin)]

YN+I = Kh[Xin s i n h (z i .)

lZinl < 1.1187.

l inear

m = 0 c~i = 2 - i

(i=1 ,2 ,3 N)

1 : x iY i :> 0

--1 xiYi < 0

XNq-I = gin

ZN+ 1 = Zin + Yin/Zin

lui,/z,d _< l
1 : zi < 0

- 1 zl _> 0

YN+I = Yin q'XinZin

c i rcu la r

m = 1 ~ i = 2 - i

(i=0 ,1 ,2 ,3 , . . . ,N)

1 : yi _>0

- 1 ~ < 0

x~,,+l = Kc V~,2n + Y~n

ZN+I = Zln "1" atan2(yln,Xin)

]a tan2 (y i . , x l n) [< 1,7433(99.9")

1 : z i _ < 0

- 1 zi >_ 0

Y N + I = K¢[xin sin[zin)
+v, (~,-)l I

I=~.1 _< 1-7433(99.9 °)

Tabu la r 1 CORDIC-table with ~i, XN+l, YN+I, ZN+l and the range of convergence (ROC).

the CORDIC F P G A solution is more efficient than the conventional signalprocessor
(DSP) solution.

A conventional DSP solution is to prefer, if the function, which should be com-
puted, may be developped in a (short) Taylor series to util ize the very fast hardware
multiplier. Interest ing and efficient applications of a DSP are F I R filter and au to - or
cross-correlation. Unfortunately this concept will not properly work in computat ion
of t r igonometric functions. E.g., the Taylor series of the arctan function is linear
convergent in dependence with the nmnber of i terations, this means, doubling the
iterations, we call get a gain of 1 bit . The CORDIC algoritlm~ - in contrast - has a
gain of 1 bit per i terat ion [Hah91, p.81-83].

In the following, we will show the synthesis of CORDIC-processors by explaining
two applications in detail .

399

2.1 D e m o d u l a t i o n o f B a n d p a s s S i g n a l s U s i n g t h e CO1R.DIC
A l g o r i t h m

For an universal incoherent receiver resul ts the inphase and quadraturphase after a
mixer or sampler, whose complex sum constitute an analytic signal. The aim of a
demodulator is to recover the original signal for all possible types of modulations. We
will see that the CORDIC algorithm will solve this problem in an efficient manner.

2.1.1 Basis of COordinate Rotation Digital Computer (C O R D I C)

When we construct a demodulator, we use the binary CORDIC because the
result of an A/D converter is normally binary (K2). Additionally we use
the CORDIC-algor i thm as a coordinate converter from rectangular to polar
(X , Y --+ R,O), because we get directly AM- and PM-demodulat ion, respectively.
As we have seen in the last section tile conventional computat ion R = ~ + y2
und t) = arc tan(Y /X) is expensive and could dramatically be reduced with tile COR-
DIC [Hah91, p.81-83].

I [~ I I g e n e r a t i ° n ~ X,Y~R, 0 ~'-ll---I f--I f--I ['-J

Figure 2 Hilbert sampling receiver with CORDIC demoduh~tion.

2.1.2 F u n c t i o n a l l y D i sc r ip t i on of the C o n v e r t i o n (X, Y + t{,0)

The CORDIC algorithm is an iterative procedure, which rotates a vector in the
X, Y-plane by a defined angle :}:c~i. We distinguish between vectoring (X, Y --+ R, 0),
representing demodulation, and rotation (R, 0 --+ X , Y) , representing modulation.

In the following, we will only exalnine the vectoring mode, because we will get
only demodulation (R, O) [MB93c]. With tile help of figure 3 we explain tile principle.
Starting with vector "1", which is received as X - and Y coordinate, this vector will
be rotated in each iteration about :i:o'i, so that he lies finally oil tile X axis. Tile
sum of the angles ~i--'~ a~ represent the phase, where we are looking for. The final
value of X,~ is tile belonging radius. It can be shown how the rotation can be reduced
to simple add and shift opperations [MB91, p.30-32].

Understanding the concept of Voider [Vo159], means choosing an angle, which
rotates either in positive or negative sense, see figure 3(a).
With this choose of the rotation angle, the equations for the rotations becolne

Xi+l = Xi =t= ki2 -(i-2} (4)

!ei+l - Y~ + X~2 -t~-2) (5)

400

Y

1

~l = arctan(cw) = 90 ° _~

c~ 2 = arctan(2 °) - - 4 5 °
~ 3 = arctan(2_l) = 26,5 o I
(~4 = arctan(2_2) = 14,0 o -1.0 -0.2

~i = arctan(2 -(;-2)) Yi > 1

1.0

0.523

6 2

3

-1.0

(a) (b)

Figure 3 (a) Definition of the angle ai. (b) Example for vectoring.

We see, that to compute Xi+a and Vi+l, we only need very simple arithmetic (shift
and add) operations, which can be very efficient realized with FPGAs. We are free
in choosing the bit width. The parameter depends on the available complexity of the
FPGA and the required accuracy. The reachable accuracy for R in effective bits may
be calculated with the theoretical calculation by [HHB91].

d~r = log.2(1)
2- , ,+ , , ' I~(0)1 + 2-~-o .~ (c.,(,,)/~¢,. + a) - a (6)

This equation is shown in figure 4(a) for 8 to 20 iterations and bit width of 8 to 20
bit for the X/Y register and full scale 1~7(0)1

e,. b, , - ; ~ ¢ontou, line 14 b,
~ ' > - . , ((. c o n t o u r line 12 bit

16 . ~ ~ F . > - . j < c o n t o u r line 8 bit

"~ " ~ 20

20 1 iterations n

bit width b ~ 12 1 0 ~ - " ¢ ~ 8

11.5

11

10.5

10

9.5
g

8 5

3

7.5
7

6,5
10

. Y

,.../ [Hug2]mean - -
,,," m ~ i t r ~ m - - - .

/ , "

' '3 ' ' '6 ; 11 12 1 14 15 I 1 18
Z r~ster Width

(a) (b)

Figure 4 (a) Effective bit following (6). (b) Dependence of the Z-register width to the
accuracy Z with 13 bit X/Y-resolution and 8 iterations.

The examination in [Hi]92]'shows, that unlike to the available literatur [Hu92],
the Z accuracy (0) depends not only on the number of iterations, radius of input,

401

the resolution in the X/Y-path, but also on the rounding errors in the Z - p a t h and
the rounding error in Z, because of the existing rounding errors in the X/Y-path.
Especial ly our s imulat ion results proof, that the accuracy of Z reaches only asympto t ic
the radius accuracy, see figure 4(b).

Final ly we point out the fact, that the resulting resolution for radius in the range
25% - 100%, which use the AM modulat ion of the central european radio control
watch s tat ion DCF77, has a comparable accuracy as the P M / F M - s i g n a l s with used
LF-FAX stat ions like DCF37 or DCF54 with radius 100%. A por tab le universal
LF receiver [Hi192],[BB92],[HK92] was designed with the CORDIC demodula to r with
accuracy as shown in table 2.

range minimum

radius 25% - 100% 10,160

phase 2 5 % - 100% 9,143

radius 50% - 100% 10,160

phase 5 0 % - 100% 9,277

radius

phase

lOO%

100%

10,161

9,538

11,160

11,071

11,121

t 1,080

variance lit. [Hu92]

0,470 9,648

1,306 9,000

O,453 9,648

1,309 9,000

0,414 9,648

1,286 9,000

Ta bu l a r 2 Effective bit width of an experimental CORDIC processor with 13 hit
X /Y-pa th , 15 bit Z-path and 8 iterations.

2.1.3 H a r d w a r e R e a l i z a t i o n of t h e C O R D I C D e m o d u l a t o r

The CORDIC algorithm may be realized as a "stage machine" or with a full pipelined.
processor [Hi192],[No191].

Both architectures can be efficiently realized with Field p rogrammable Gate Arrays

(F P G A) :~. If the main aim is speed, then each i terat ion equation may be realized in
special Hardware - - and we need for b bit width and ([b - 1]-stages of the pipeline
x3 x b)-CLBs. By b = 8 bit we need so 168 CLBs and for b = 12 bit we need 396
CLBs, which are to match for the greatest F P G A (XC3090 ~ 320 CLB).

In figure 5 we present a s tate machine, which may be preferred, if the space in
the F P G A is critical. An additionally reduction in complexi ty would be reached, if
the "full parallel architecture" [Tim90, p.63] from figure 5 is reduced to the "lean
s t ructure" (only one shifter and/or one accumulator) . Addi t ional ly it is possible to
replace the expensive barretshifter (BS) by a seriell right shifter (RS) or a seriell
lef t / r ight shifter (LRS). For this three different archi tectures the resulting space for
the X/Y-path in a F P G A can be seen from table 3.

As a good compromise between low latency t ime and space in an F P G A appears
the "lean s tructure" with one barrelshifter and one accumulator .

In figure 6 the resulting expense is shown for a realization of the CORDIC processor
in the "lean s tructure" (1BS+IAC) if8 to 16 bits accuracy are nesessary. From figure

The specified CLB mm~bers (ConfigurabIe Logic Block) refere t.o the XCa000 of Xilinx.

402

X-register I K-register

tl ll
Xi ~ 2-(i-2)Ki Yi 4- 2-(i-2)Xi]

II

4
Z-register

j j , i

tabular al

I

' 1

Figure 5 Realization of the CORDIC algorithm through a "flfll parallel" state machine.

structure

2BS+2AC

2RS+2AC

.LRS+2AC

1BS+2AC

1RS+2AC

1LRS+2AC

1BS+IAC

1RS+IAC

1LRS+IAC

2*7

2*7

2*7

7

7

7

multiplexer

3*7

3*7

3*7

2*7

2*7

2*7

2"14

2"14

2"14

2"14

2"14

2"14

2"19,5

2*6,5

2*8

19,5

6,5

8

81

55

58

75,5

62,5

64

tilne

12

46

:39

20

56

74

20

92

74

Tabular 3 CLBs for a 13 bit plus sign bit X/Y-Pfad ofa CORDIC processor. (Abbrevia-
tions:AC=accumulator; BS=barre]shifter; RS=serieU right shifter; LRS=seriell
left/right shifter)

6 it can be seen, that if the Z accuracy increases linearly, the expense behaves also
linear. In contrast, the example of the full pipelined processor shown at the beginning
of this section, which shows a square expense. The jmnp between 14 and 16 bit
accuracy is established from the fact, that each CLB has at most 5 input variables.

The comparison between a conventional universal demodulation with a DSP and
the CORDIC-FPGA realization arise as follows [MB91, p.33-37]: The direct algebraic
computation of the I /Q demodulation equation with a DSP for AM, PM or FM
signals is expensive for PM, less for FM and AM modulated signals. On the other
side, the CORDIC algorithm needs for iterative computation for b bit accuracy only

b iterations and it is possible to realize a pipeline structure, with which (with a

403

I~ t .5

116
....

95

fii{iiiiiiiiiiiiiiiil ~iiiiiiiiiiiiiiii~
!i!i!!!!~!i~!iiiii!

N°
iiiii:i:(:ii!i ~::?:;;i

131,5

iiiiNii~iiiiiiii

i{iiiii{{iiii

147,$
::::::::::::::::::

N
::::::::::::::::::

::::::::::::::5::

:.:.:+:~.:.:.:

:i i i

8 10 12 14

X / Y - p a t h

Z - p a t h

control u n i t

e f f e c t i v e b i t Z

16

Figure 6 Expense for different requirement accuracy of Z result.

short delay) a conversion I/Q to R, 0 (AM and PM demodulation sinmlaniously) may
be performed in one cycle. For the FM demodulation only one differentiation must
be computed after the CORDIC conversion.

Conclus ion: Except for binary ASK signals the above examination shows, that
the CORDIC realization with FPGA may be preferred before the direct computation
with a DSP, because the CORDIC processors offer essential speed and computational
advantage.

2.2 I m p l e m e n t a t i o n o f an G P F U N e u r a l N e t w o r k w i t h A i d .
o f F P G A

Artificial neural networks with radial basis functions realize an universal approximator
with a three layer structure [HKK90],[MB+93a], see figure 7. The hidden neurons,
also called "Gaussian Potential Function Units" (GPI:U) [MB+93b], compute the
euclidean distance between input and reference vector.

The main computational effort is:

N

i = 1

The aim of a hardware implementation is to increase the computational speed
of the gaussian potential function through FP(IAs. On these programmable logic
the computation of the exponential function should be performed. In the existing
DSP/FPGA realization the DSP won't waste a lot of time computing the time ex-
pensive exponential function.

To compute the exponential function the CORDIC processor must work in hyper-
bolic/rotation mode. For the X and Y register we get from table 1 with m = -1 the
following equations:

layer 3

layer 2

layer 1 (

404

))

-- I_ (~:_m",] T.KJ . f ~ - -m ~)
g l j = e 2 . j , • ~,

Figure 7 Three layer GPFU artificial neural network.

• ,~+~ = K, , (~ , , cosh(z.d + w,~ ~inh(~.d) (8)
Y,~+l = I(h (xi,~ cosh(zi,,) + Yi,~ sinh(zi,~)) (9)

with the aid of the hyperbolic function the exponential function is defined as

e ~ = sinh(x) + cosh(x) (10)

To get directly e ~ from the iteration, both X and Y register nmst be initialized with
1. Now we see, that the iteration equations for X and Y are the same. This fact, as
we can see, dramatically reduce the complexity of the CORDIC architecture.

For the hyperbolic CORDIC the range of convergence (ROC) for rotation mode is

[zi,~[< 0 ~ 1, 1182 (11)

To get a greater ROC we must use negative iterations with the rotation angles 0i =
tanh-l(1 - 2 -2-I+~) instead of 0; = tanh- l (2- i) , because the norma.l rotation angle
deliver for negative i complex angles.
The expanded range of convergence results in

0 N

0 = ~ t a n h - l (1 - 2 - 2 - ' + l) + [t a n h - a (2 - N) + ~ - ~ t a n h - l (2 - i)] (12)
i = - M i=1

The needed ROC depends mainly on the parameter of the neural net. With M = 2
the ROC of the exponent x is [-6.92631; 6.92631]. Simulation results shows [Sch92],
that the ROC of M = 2 is sufficient for our net configuration. With the increased
ROC we get slightly different iterative equations:

405

With the "lean s tructure" the equation for Y must not be expl ici te ly computed and
it follows for m = - 1

xi+l = xl - xi(5i(1 - 2 -2- '+ ') (14)

Analyzing equation 14, we can see, that we get for (51 two cases ((5 = - 1 or 1) for the
nonshift par t of the i teration equation and a third case for the conventional i tera t ion
with posit ive rotat ion. These three possibilities changed the archi tecture so far as the
X path needs an addit ional ly 3:1 multiplexer before the a dd / sub uni te [HK93], see
figure 8.

X-register

I1

2-0-2) i

3:1 MPX

Xi~2 4i'2) X i ~ - ~

4-
(a)

~-~'. . ' . . .~:. . .~.. '~. '~. L_...~ cont our line 12 bit
effectiv* bit ,c. ::,::>.~.::. ::.:::.C:. ".

~5- / : - . . ""r : ' "~ '~ ":'Q~:'" ""Q"<~'" e-"" c°nmur line I 0 bi~

11~12 ' { ~ ~ ~ . " . " ~ i ~ . ~ . : " ' " / ' " " ~ ' " ' 1 ~ / ' " ' ' ' $ ' × " " " " ' " ~ : < " ' " : > * ~ " " " " "

.," --:/---.-/.._.¢.. ;/.....:>~..::..-::~--:~.~....:2~:..:...2;.~..:..::..::~
~ , ::.,.~. -......Q:.-::.::..:..,:.-.*.:.:-..~:::.-.--

----...-.:..:.-...-.:-.....-..-..

25 23 20 i tetalions
21 15

17

(1,)

Figu re 8 (a) CORDIC stage machine with ROC expansion and with a "lea.n structure"
(0 see figure 5). (b) Error estimation of the CORDIC algorithm with 1000 test.
values z~,~ for each point.

2.2.1 S e l e c t i o n of t h e A p p r o p i a t e C O R D I C P a r a m e t e r s

In the former section we introduced tile new efficient s t ructure of the processor, and
now we want to select all appropria te bit width and tile number of the necessary
iterations. These two parameters depend on tile acceptab]e hardware complexi ty and
the required accuracy. The simulation of the (;PFU recognition rate shows that 10
bit fractional accuracy will be sufficient. The integer accuracy is 6 bit resulting in
a total accuracy of 16 bit. The accuracy of the CORDIC computa t ion depends on
the quantization error of the X/Y path, the Z quantizat iou error, the number of
i terations, and the scaling. In contrast to the circular CORDIC algori thm [MB93c]
the effective resolution of the hyperbolic CORDIC may not be computed analyt ical ly,
because II B,,,(j) I[&pends mainly on the value of z(j) during tile i terat ion, see
[Hu92, p.837, Lemma 2].

~'z--1

II Bin(j)[[= 1-Ik-l(i)el:IJl-={'~ll m = --1 (1.5)
/=j

406

Figure 8(b) shows the minimum accuracy with the estimation equation by [Hu92],
which is computed over 1000 test values zi~ for each combination bit width/number
of the possible iterations. A comparison of the CORDIC results of the 1000 values
with an exact (floating point computation) shows [HK93], that this results are ca. 1
bit better than the estimation with the equation by [Hu92]. So the estimation results
of [Hu92] are quite realizable.

number of CLBs

250

200

150

100

50
t

i11 ! II
21/18 22115 23/1,1 24114 21118 22/15 23114 2-1/M

1 bit RCA 2 bit RCA

ii iiiiiiii l i

i! ii '

21118 22115 23/1-1 2-1/1,1.

carry look ahead.

[] X/Y-path

[] Z-path

~[~ control unit

bit width X] number of iterations

Figure 9 Realization of the CORDIC processors with Xilinx XC3000 FPGA depending on.
different register width, number of iterations, and the architectures.

For the appropriate accuracy of 10 bit, four different solutions exist. Under use of
the fastet shifter (barrelshifter) the computational time depends only on the number
of iterations, and the kind of accumulator. Beside the conventional "ripple carry
adder" (one CLB for each bit), we also examined double speed adder (2 bit in 3
CLB) and a "carry look ahead" adder, see figure 9. Finally we choose the "carry
look ahead" adder with 22 bit width and 15 iterations, because only 320 CLBs are
available and this combination would be faster than the three other ones.

3 F u r t h e r D e v e l o m e n t

Our further examination will be a full pipelined CORDIC processor with the new
XC4020 FPGA. These FPGAs have a "fast carry logic" to implement 2 bit per CLB
of a fast adder/subtract realization. With this pipeline architecture, we get a great
increase in speed compared with the stage machine.

Also a future aim would be an universal CORDIC stage machine, which should
realize all 6 modes (3 coordinate systems each with rotation and vectoring mode).

407

This processor is with the existing FPGA in the required accuracy not realizable
nowadays, so we hope of future devices with more complexity.

A c k n o w l e d m e n t

The authors would like to thank to all students who have worked with us on this
project. Special thanks to J. Hill, R. Schimpf, C. Brandt, R. Bach, H. Hausmann,
V. Kleipa, S. Keune and T. Hguser.

R e f e r e n c e s

[BB92]

[Hah91]

[HHB91]

[Hi1921

[HK92]

[HK931

[HKK90]

[Hu92]

[MB91]

[MB+93a]

R. Bach and C. Brandt. [hfiverseller Hilbert-Abtastempfiinger mit
CORDIC-DemoduIation durch programmierbare Gale Arrays. Masterthe-
sis ST 551, Institut fiir Datentechnik, THD, 1992.

H. Hahn. Untersuchung und Integration yon Berechnungsverfahren ele-
mentarer FuT~ktionen a~(CORDIC-Basis mit Anwendungen in der adap-
tiven Signalverarbeitung. Ph.D. dissertation , VDI Verlag, Reihe 9, Nr.
125, 1991.

Xiaobo Hu, Ronald G. I-lather and Steven C. Bass. E.~:pandi~zg the Range of
Convergence o f the CORD1C Algorithm. IEEE TraTzsaetion.s on computers,
page 13-21, 1:1991.

J. Hill. EntwuTf eiTzes optimierten. COordinate Digital Computer (COR-
DIC) mit programmierbaren Gate Arrays. Masterthesis DT 550, tnstitut
fiir Datentechnik, THD, 1992.

H. Hausmann and V. Kleipa. Aufbau (i~es MikT"OController Systems und
Entwickhtng eines LCD-Graphik Controllers auf FPGA-Basis. Master-
thesis ST 520, Institut filr Datentechnik, THD, 1992.

T. H£user and S. l{enne. EntwickhtT~g either vollparallelen 7~e'uroT~alen
CORDIC-Architektur rail Flieflkomma-£'ignalprozessor uTzd programmier-
baren Gate Arrays. Masterthesis DT 570, Institut fill Da.tentechnik, TH]),
199:3.

Eric J. Hartman, James D. Keeler and Jacek M. Kowalski. Layered
Neural Networks with Gaussian Hidden Units as Universal Approxima-
tions. Neural Computation, 2:210-215, 4:1990.

Yu Hen Hu. The Quautization Effects of the CORD1C-Algorithm. IEEE
Transactions on signal processing, page 834-844, 4:1992.

U. Meyer-Bfise. EntwaTf und Untersuchuag univer.~eller digitaler
Empfiingerprinzipien. Report 135, Institut ffir Datentechnik, THD, 1991.

A. Meyer-Bgse et ah Modulares Neuronales PhoT~emerkennungskonzept mit
Radialbasisklassifikatoren. 15. DAGM-Symposium in Liibeck Workshop,
page 670-677, 9:199:/.

[MB+93b]

[MB93c]

[No191]

[Seh74]

[Sch92]

[Tim90]

[Vo]59]

[WM71]

408

A. Meyer-B~e et al. Neuronale Selbstorganisation und inverse Abbildungs-
eigenschaften in Netzen mit rezeptiven Feldern. DFG-Tagung ,,l(ognition,
Repr&~entation und Intentionalitiit in natiirlichen und kiinstlichen Syste-
men, 4:1993.

U. Meyer-B~se. Universel-
ler Hilbert-Abtastempf~'nger mit CORDIC-Demodulation. In Funkuhren
Zeitsignale Normalfrequenzen, page 65-81, 5:1993.

A. Noll. Implementierung des CORDIC-Algorithmus zur Koordinaten-
transformation in einem programmierbaren Gate Array. Masterthesis DT
481, Institut ffir Datentechnik, THD, 1991.

H. Schmid. Decimal Computation. John Wiley & Sons, 1974.

R. Schimpf. Implementierung eines Neuronalen Netzes und Algorithmen
zur Sprachvorverarbeitun9 auf einem Flieflkommasignalprozessorsystem.
Masterthesis DT 553, Institut fiir Datentechnik, THD, 1992.

D. Timmermann. CORDIC-Algorithmen, Architekturen und monolithi-
sche Realisierungen mit Anwendungen in der Bildverarbeitung. Ph.D. dis-
sertation, VDI Verlag, Reihe 10, Nr. 152, 1990.

J. E. Voider. The CORDIC Trigonometric computing technique. IRE
Transactions on Elechvnies Compute7% page 330-4, 9:1959.

J.S. Walther. A Unified algorithm for elementary functions. Spring Joint
Computer Conference, page 379-385, 5:1971.

MARC: A Macintosh NUBUS-expansion board
based r_econfigurable test system for validating

communication systems

Georg J. Kempa and Peter Rieger

University of Kaiserslautern, Microelectronics Centre (ZMK)
67653 Kaiserslautern, Germany

Abstract. In this paper a test system based on a Macintosh NUBUS-expansion
board is presented. The test system is termed MARC. MARC is a reconfigurable
test system which can be applied in the simulation loop. The primary benefit of
MARC is that technology independent VHDL code can be mapped onto its re-
configurable components, thus allowing a fast real-world validation of the fun-
ction described by the VHDL code instead of time consuming logic simulation.
The different parts of this tool are introduced and the benefits of using it in the
VHDL based design process are depicted. Using an exemplary communication
system represented by a digital wireless microphone system, the aforementioned
benefits are validated.

1 I n t r o d u c t i o n

The hardware description language VHDL [1] has become accepted as a viable tool for
the use in the design process. In the Microelectronics Centre of the University of Kai-
serslautern, VHDL is used in the design process of components required in communi-
cation systems [5]-[9]. The functionality of parts of these systems is verified by the
logic simulation of automatically synthesized schematics. However, it is not possible
to verify the whole system in this way for the following reason. To demonstrate and
validate the performance of a communication system, usually the achievable error per-
formance in terms of bit error rates is determined by considering large numbers of in-
put data. By using a logic simulation tool, this validation procedure is extremely time-
consuming. It would be desirable to carry out such a validation procedure in real time.

One of the benefits of using VHDL is the technology independent design [2]-[4].
For instance, it is possible to map the VHDL code on FPGAs by logic synthesis for
prototyping or evaluation purposes. In order to exploit the benefits of the prototyping
and evaluation capabilities by deploying FPGAs, a universal FPGA based expansion
board as part of a test system for evaluating the performance of components of com-
munication systems was developed. The test system including the developed evaluati-
on board is termed MARC. By using MARC, on the one hand the functionality of the
component under investigation can be verified in hardware and on the other hand the

410

performance of that component can be quickly determined, e.g. in terms of bit error ra-
tes. The application of such an evaluation board leads to a significant reduction of de-
velopment time.

In order to allow a flexible test of various components required in a communication
system or even the whole system itself, MARC is reconfigurable. An overview of
MARC and details of some hard- and softwareparts are presented in the following
section. Section 3 introduces a digital wireless microphone system as an example of a
communication system to be evaluated. The results of the validation procedure of this
digital microphone system by deploying MARC are presented in section 4.

2 M A R C

2.1 Overview

NUBUS

Test program

Interface
program

Fig. 1 MARC

Fig. 1 gives an overwiev of MARC. MARC is subdivided into a software part, contai-
ning both the "Test program" and the "Interface program" respectively, and a hardware
part represented by the implemented NUBUS-expansion board and a clock synthesizer
board, cf. Fig. 5 and Fig. 8. The "Test program" controls the running of the test with its

411

system parameters, provides the configuration data for the FPGA and the correspon-
ding netlist file (.XNF file), creates and provides the stimulus files, simulates the envi-
ronment of the system under test and interprets the results. The "Interface program"
facilitates the connection between the "Test program" and the NUBUS-expansion
board and controls the board. The NUBUS-expansion board is the platform to include
any VHDL coded and XILINX FPGA mapped system parts in the simulation process.
For this the board takes the operating data of each system part and prepares the confi-
gurable parts of the board for simulation.

2.2 Software of MARC

In Fig. 2 the petri net of the "Test program" is depicted.

I
request und get status I

I /

installed~ NUBUS expansion board not installed

create stimulus file for]

I whole system

6 print error-message:
"install NUBUS-expansion

transfer I board an i re-boot"
LCA-Configuration file,
.XNF-file and clock rate

of a system part

transfer a stimulus

recieve and store
the result

complete t

I
l

I
verification of systempart

not complete

l

verification of whole
system not complete

complete

I read and interpret results

validation ready

Fig. 2 Petri net of the "Test program"

412

In the beginning of a test run it is checked whether the hardware part of the test sy-
stem, namely the NUBUS-expansion board, is installed. If the NUBUS-expansion
board isn't detected, the programm puts out an error message. In this case the user has
to install the NUBUS-expansion board and has to re-boot the computer.

If the NUBUS-expansion board is detected, the "Test program" creates the sti-
mulus file for testing the system under investigation. The next task of this "Test pro-
gram" is the initialization of the NUBUS-expansion board. During this initialization,
the configuration of the FPGA has to be achieved once at the beginning of a test cycle
if smaller systems or only parts of a complex system are to be studied. If larger sy-
stems are tested, the "Interface program" has to reconfigure the FPGA repeatedly. In
this case, the FPGA's interface has to be reconfigured as well. Therefore, the "Test pro-
gram" sends the LCA configuration data and the I/O data included .XNF file to the "In-
terface program". Additionally the "Test program" transfers some important system
parameters, e.g. the clock rate of the system part to be studied, to the "Interface pro-
gram". In the following the system part can be tested. The stimuli are transferred to the
NUBUS-expansion board in sequential order and the computed results are received
and stored. After receiving the last result it is checked whether other system parts are
to be tested. If such parts are found, the described actions are repeated. Otherwise the
verification of the system is completed. Finally the "Test program" interprets the sto-
red results.

The main task of the abovementioned "Interface program" is the initialization of
the NUBUS-expansion board. Therefore, the "Interface program" takes the I/O data
included in the .XNF file and sends a port description to the NUBUS-expansion board.
According to this port description, the "Interface program" configures the interface of
the system under test. By doing so the FPGA is automatically protected against dama-
ging by inadvertently forcing of outputs.

2.3 Hardware of MARC

2.3.1 NUBUS-expansion board

The structure of the NUBUS-expansion board is shown in detail in Fig. 3. The "NU-
BUS-Interface" connects the units of the board to the NUBUS. A XILINX XC4010 -5
PG191C FPGA is used as the configurable part of the NUBUS-expansion board [10].
This unit is clocked by a "NUBUS-Interface" controlled "Frequency Synthesizer".
Due to this circumstance, the system is running independently of the NUBUS clock at
a user defined speed. A universal interface consisting of latches provides the possibili-
ty to model different interfaces, cf. Fig. 3. The "Declaration ROM" is needed to iden-
tify the NUBUS-expansion board in order to distinguish it from other boards on the
NUBUS.

413

In Fig. 4 the structure of the abovementioned "NUBUS-Interface" is depicted. The
"NUBUS-Interface" is subdivided into four functional units. The unit "Adressdecode"
monitors the NUBUS adress/data lines ADx and identifies if the "Interface program"
wants to access to the NUBUS-expansion board.

@

NUBUS expansion board

DI~,t , ,
Handshake (Stimuli/Result)

I I

NUBUS- ~ - ~ " . ~ . ~ . . . ~ ConfigurableGate Array
Interface * Int~ hal ~ (LCA)

XC4010

reset

,0
Handshake (LCA-Configuration)

)O*

Fig. 3 Overview of the NUBUS-expansion board

The identifier/CLK is an abbreviation of the NUBUS clock signal. I f a request is
detected the unit "Adressdecode" activates with a control signal the "Interface con-
trol". It controls the NUBUS protocol, which is neccessary for the data transfer. There-
fore, the "Interface control" can access the unit "Dataflow" in order to transfer the data
between the NUBUS and the other units of the NUBUS-expansion board. Using the
port description included in the .XNF file the functional unit "Latcharbiter" controls
the latches which build the universal interface to the reconfigurable part of the NU-
BUS-expansion board. The unit "Latcharbiter" is controlled by the units "Adressdeco-
de" and "Interface control" as well.

The realized NUBUS-expansion board is shown in Fig. 5. The NUBUS-interface is
realized as part of the FPGA on the right of the board. The NUBUS driver is realized
with the parts in the foreground of Fig. 5. The "Latches" and the "Declaration ROM"
are positioned in the middle. The FPGA on the left side is the aforementioned FPGA
which can be reconfigured.

Hand- control control
shake- for for

(Stimuli/ Latch Declaration- Freouencv -

414

Handshake
(LEA-

F i g . 4 N U B U S - I n t e r f a c e

:~ii~!ii!~ ~ ~ ~ ~ ~ ~ ~ ~:~ ~:~:~i~!~i~ i: ~i~!~i~i~i~i~i:i~i~i~i~i~i~ i~i~i~i~i~i~i~i~i~i~i~i:i~i~i~i~i~i~i~ i~i~i:!~i:i~i~i~i~i~i~i~i:i ~:i~i~i~i ~!~i ~i~i~i~!~i~

F i g . 5 N U B U S - e x p a n s i o n b o a r d

415

2.3.2 Clock synthesizer board

To improve the performance of MARC the application on the NUBUS-expansion
board can be clocked independently from the NUBUS clock. Therefore the NUBUS-
expansion board can be extended by a clock synthesizer board, which allows to adjust
the clock rate ranging from 1 MHz to 40 MHz in 500 kHz increments. Thus it is possi-
ble to run the system under test up to its maximum clock rate. In Fig. 6 the structure of
the clock synthesizer board and its interface to the NUBUS-expansion board is de-
picted. On the top level the clock synthesizer board is subdivided into two functional
units. One of this units, a digital frequency synthesizer circuit, is realized by an
ACTEL A1020B FPGA [11]. The other functional unit contains voltage controlled
oscillators (VCO) combined with low-pass filters to form a phase-locked loop (PLL)
[12]. In addition the unit contains digital control logic required for this special appli-
cation.

NUBUS-expansion board

Frequency
Synthesizer

VCO.
low-pass filters

and
control logic

Fig. 6 Clock synthesizer board (principle design)

In the beginning of a simulation run the frequency setpoint is transferred to the
clock synthesizer board. By using the control signals depicted in Fig. 6 the NUBUS-
expansion board resets the clock synthesizer board and initiates the clock synthesis.
The "Frequency Synthesizer" compares the frequency of the VCO output with the fre-
quency setpoint by using a stable reference clock and performs a signal to drive the
VCO. If the clock frequency matches the frequency setpoint, an active lock detect si-
gnal indicates a stable synthesized clock. If the NUBUS-expansion board receives this
signal, the simulation starts.

The aforementioned frequency range cannot be realized by a single VCO. Therefo-
re the frequency range is subdivided into smaller ranges wich are realized by several
VCO circuits. The lock detect signal is used to switch between the several ranges du-
ring a particular definable time interval. In Fig. 7 an example of the functionality of the
board is depicted. The frequency setpoint is shown as constant clock. The synthesized

416

clock, depicted below the frequency setpoint trace, has to match this dock. In the be-
ginning of the simulation any VCO circuit and therefore any base frequency is chosen,
in this case a frequency which is lower than the frequency setpoint. The frequency syn-
thesizer now drives the VCO to increase the clock frequency, cf. Fig. 7.

frequency
setpoint

synthesized
clock

lock
detect

I I I

I I I i

i i [

[t O It I ! ~t 2

Fig. 7 Clock synthesis

The realized PLL circuits adjust the specified clock frequency after 2.53 ms at the
latest. If the frequency setpoint is not within the chosen frequency range, the frequency
range is automatically changed, based on the lock detect signal, see Fig. 7 at the time
t 1. After changing the frequency range to a higher frequency as the setpoint, the fre-
quency adjustment is initiated again. In the example shown in Fig. 7 the frequency of
the synthesized clock is decreased to match the frequency setpoint, indicated by the ri-
sing lock detect signal at the time t 2. From time t 2 onward the simulation runs on the
NUBUS-expansion board.

In Fig. 8 the realized clock synthesizer board is shown.The abovementioned "Fre-
quency Synthesizer" is realized in the Actel FPGA on the fight-hand side of the board.
The timer, a predivider and the operational amplifier with the items to realize the low
pass filter are positioned in the middle of the board. The parts on the left-hand side are
the aforementioned VCO and the multiplexer to switch between the different frequen-
cy ranges.

Fig. 8 Clock synthesizer board

417

3 Digital wireless microphone system

Fig. 9 depicts the structure of a digital wireless microphone system applying frequency
division multiple access (FDMA) [16].

mobile 1

mobile K

I
i

T
K'R indoor mobile
radio channels

el(t)

e_R(t)

base station
receiver

~nl(t)

mK(t)

Fig. 9 Digital microphone system

The system consists of K mobiles and one immobile base station. In the system, the
transmitters are always concentrated in the K mobiles whereas the base station repre-
sents the receiver. Each of the K mobiles contains a microphone. The analogue voice
signals picked up by the microphones in the mobiles are converted into digital signals
which are then source and channel encoded and mapped onto DQPSK (differential
quadrature phase shift keying) symbols. Based on these DQPSK symbols, digital si-
gnals mk, k = 1...K, are generated at the K mobiles which are then modulated and
converted into corresponding analog signals _a k (t) , k = 1...K. The analog signals
_a k (t) , k = 1...K, are then transmitted over time-variant mobile radio channels. Since
the considered digital wireless microphone system is designed for indoor applications,
the time-variant mobile radio channels have flat fading characteristics. Besides the
time-variant distortion of the transmitted signals _a k (t) , k = 1...K, the distorted ver-
sions of _a k (t) , k = 1...K, are corrupted by additive white Gaussian noise (AWGN)
[14].

At the immobile base station, antenna diversity is applied. The distorted and cor-
rupted versions of the transmitted signals _a k (t) , k = 1...K, are received over R recei-
ver antennas. Based on the R received signals _er(t), r = 1...R, the base station
receiver determines estimates L~I k, k = 1...K, of the digital signals m k, k = 1...K,
which contain DQPSK symbols by applying differentally coherent detection. The qua-

418

lity of the performance achieved with the base station receiver can be quantified in
terms of bit error rates [15].

4 Validation

The introduced digital wireless microphone system was simulated with MARC to
evaluate its digital parts. The digitally processing namely the performing of the recei-
ver functions of the system is carried out on the NUBUS-expansion board. The o ther
parts of the system and the indoor mobile radio channel are simulated by the "Test pro-
gram" on the Macintosh PC.

100
, . ~ 1 0 - 1

" " = = = = z / . ' - ' - ' S - ' L ~ . ! . ! . :: . ~ .
' ~ - ' - ' - i = '=~===" :~"~ ' i~ . ~ . ! . ~ .

: : : : : :::::: :: :: :: :: :::: ::::i:::: :::: :: :::: : : : : : : : : : : ? : ~ : : : : : :~':?:7:~':~:~:: :::: : : : : ? : ? : ~ : < : :: : : : : : : : : : : : : : : : : : : :i: :: : : ~ = = ~ ~:

. i . ! ~ . ~ ' " ' " ! ~ i ~ : . " ~ .

................... (l a n d 4 a n t e m ! a s) i ' " ~ i i "~.:~ i ~"
1 0 " 2 -?)))))))?)??))))))i!)?)?))::))!!)?))))))??!!!))))))i?))!}))i))?))?))!)))?)?)i))i)))?i!))::):i.:)?))))))?~:`))))!?))?))))!?))?)))))))))))~?)~:`)))))))))))))))?)!?)i)?-

........... -o=AWGN channet : : : : : : : : : : : : i ~ ! ~ i : ! i i.-~

. " . i . R . : ? . ,

........... ;.;; (I :: aJid ~[antennas) i :: :~,~ i b,,,

" ' a i " ' ,

1 0 -3 - ! ! ! ! ! !?! ! ! ! ! ! ! ! !] ! ! ! ! ! ! ! ! ! i : ! ! ! ! ! ! ! i !~!! ! ! !?! ! ! ! ! ! !?! ! ! ! !]] ! ! ! ! ! !~!! ! ! ! !?! ! ! ! ! ! ! ! ! `) `~!! ! ! ! ! ! ! ! ! ! ! ! ! !] ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! : :

:::~::~::::::::::::~:~::~:~:~:~:::~:~:::::~:::~:~:::~::~::~::::~:::~:~:::~:::~:~::~:~:;~:~:~:~:~:~:~:~:~:`:::~:~:~:~:::~:::::

. i " : ;
1 0 - 4 ~ .

- 2 0 2 4 6 8 1 0

10log 10 (Eb/No)/dB

Fig. 10 Bit error rate curves

Fig. 10 depicts the simulation results in terms of bit error rates versus the average
signal-to-noise ratio Eb/N 0 obtained for the considered digital wireless microphone sy-
stem by various test runs deploying MARC. In order to obtain the 47 depicted bit error
rate values represented by asterisk (*) and circles (o), the transmission of approximate-
ly two million DQPSK symbols per bit error rate value, i.e. 94 million DQPSK sym-
bols in total, was simulated. The results obtained by deploying MARC are in perfect
agreement with results obtained by simulations carried out on a Siemens/Fujitsu

419

VP100 super computer which are represented by the dashed lines [16]. Therefore, the
viability of MARC is obvious.

Acknowledgement

The authors wish m thank Mr. Markus Mtiller for his valuable support during the lay-
out of the boards and Dr. Peter Jung for brushing up our English. Finally the authors
wish to thank Dr. Florian Graf for providing the yet unpublished simulation results ob-
tained with the aforementioned supercomputer.

References

[1] VHDL Language Reference Manual. IEEE Standard 1076-1992, The Institute of
Electrical and Electronics Engineers, Inc.

[2] R. Camposano, R.M. Tabet: Design representation for the synthesis of behavioral
VHDL models. In Darringer, Rammig (Eds.): Computer Hardware Description Lan-
guages and their Applications. Amsterdam: Elsevier Science Publishers B.V. (1990)
pp. 49-58.

[3] S.P. Levitan, A.R. Matello, R.M. Owens, M.J. Irwin: Using VHDL as a language
for synthesis of CMOS VLSI circuits. In Darringer, Rammig (Eds.): Computer Hard-
ware Description Languages and their AppIications. Amsterdam: Elsevier Science Pu-
blishers B.V. (1990)pp. 331-345.

[4] D. Gajski et al.: High-Level Synthesis. Boston/Dordrecht/London: Kluwer Acade-
mic Publishers, 1992.

[5] E Jung: Entwurf und Realisierung von Viterbi-Detektoren fiir Mobilfunkkaniile. Ph.
D. Thesis, University of Kaiserslautern, Department of Electrical Engineering, 1993.

[6] E Jung, J. Blanz: Design of a Viterbi equalizer with field programmable gate ar-
rays. Microelectronics Journal, 24. Amsterdam: Elsevier Science Publishers
Ltd.(1993) pp. 787-800.

[7] F. Berens: Parametrisierte Verhaltensbeschreibung eines soft-output Viterbi-Ent-
zerrers. Masters Thesis, University of Kaiserslautern, Department of Electrical Engi-
neering, 1993.

[8] E Jung, J. Blanz: Realization of a soft output Viterbi equalizer using field program-
mable gate arrays. I.E.E.E VTC-93, Veh. Technol. Conf., Secaucus, New Jersey, May
18-20, 1993.

420

[9] G. Kempa, P. Jung: FPGA based logic synthesis of squarers using VHDL. In Grtin-
bacher, Hartenstein (Eds.): FPGAs: architectures and tools for rapid prototyping. Ber-
lin: Springer, 1993.

[10] The Programmable Gate Array Book, XILINX, 1993.

[11] ACT Family Field Programmable Gate Array Data Book, Actel, 1990

[12] V. Manessewitsch: Frequency synthesizers, Theory and Design, John Wiley &
Sons, 1987.

[13] M. Floyd, Ph.D. Gardner: Phaselock Thechniques, John Wiley & Sons, 1979.

[14] J.G. Proakis: Digital communications. McGraw-Hill, New York, 1993

[15] E Adachi, K. Ohno: BER performance of QDPSK with postdetection diversity
reception in mobile radio channels. IEEE Transactions on Vehicular Technology, Vol.
VT-40, S. 237-249, 1991.

[16] E Graf: Digitale drahtlose Mikrofonsysteme mit Vielfachzugriff. Ph. D. Thesis,
University of Kaiserslautem, Department of Electrical Engineering, 1993.

Artificial Neural Network Implementation on a Fine-
Grained FPGA

P. Lysaght, J. Stockwood, J. Law and'D. Girma

Communications Division,
Department of Electronic and Electrical Engineering,

University of Strathclyde,
Glasgow G1 1XW

Abstract This paper reports on the implementation of an Artificial Neural Net-
work (ANN) on an Atmel AT6005 Field Programmable Gate Array (FPGA). The
work was carried out as an experiment in mapping a bit-level, logically intensive
application onto the specific logic resources of a fine-grained FPGA. By exploiting
the reconfiguration capabilities of the Atmel FPGA, individual layers of the network
are time multiplexed onto the logic array. This allows a larger ANN to be imple-
mented on a single FPGA at the expense of slower overall system operation.

1. Introduction

Artificial neural networks, or connect ionis t classifiers, are massively parallel com-
putation systems that are based on simplified models of the human brain. Their com-
plex classification capabilities, combined with properties such as generalisation, fault-
tolerance and learning make them attractive for a range of applications that conven-
tional computers find difficult. Examples of these include video motion detection,
hand-written character recognition and complex control tasks.

Traditionally, ANNs have been simulated in software or implemented directly in
special-purpose digital and analogue hardware. More recently, ANNs have been im-
plemented with reconfigurable FPGAs. These devices combine programmability with
the increased speed of operation associated with parallel hardware solutions. One of
the principal restrictions of this approach, however, is the limited logic density of
FPGAs resulting from the intrinsic overhead of device programmability.

This paper presents an alternative approach to previously reported neural network
implementations on FPGAs [2][3][7]. The novelty of the design is achieved by ex-
ploiting several design ideas which have been reported previously in different designs
and by combining them to form a new implementation. The design is based on a fine-
grained FPGA implementation of an ANN in contrast to most of the FPGA implemen-
tations reported to date. It emphasises careful selection of network topology and
methods of realisation to produce a circuit which maps well to the special require-
ments of fine-grained architectures. These include the realisation of the ANN using
digital pulse-stream techniques and the choice of a feedforward network topology. It
further exploits the use of run-time device reconfiguration to time-multiplex network
layers to offset the logic density limitations of current devices. These topics are intro-

422

duced in section two, where a reconfigurable pulse-stream ANN architecture [5][6]
that is well suited for implementation on fine-grained FPGAs is described. Section
three reviews some of the physical design issues that arose when mapping the ANN
onto the AT6005 architecture, and in section four the performance of the network is
appraised.

2. Reconfigurable ANN based on Pulse-Stream Arithmetic

2.1 Overview

ANNs employ large numbers of highly interconnected processing nodes, or neu-
rons. Each neuron contains a number of synapses, which multiply each neuron input
by a weight value. The weighted inputs are accumulated and passed through a non-
linear activation function as illustrated in Fig. 1. These arithmetic-intensive opera-
tions and numerous interconnections are expensive in terms of logic and routing re-
sources when implemented on an FPGA. Typically, as a result of these restrictions,
expensive arrays of FPGAs have to be employed to implement "useful" networks [2],
or alternatively, a single neuron is placed on the FPGA and used to emulate a network
serially [3].

X 0

W f = Activation Function

~r y=f(~=oWiXi)

XN'I ~ wN

X N

Fig. 1. The components of a simple artificial neuron.

The reported ANN incorporates three approaches to overcoming logic density
limitations. First, pulse-stream arithmetic is used to provide an efficient mapping of
the network onto a fine-grained FPGA. This technique is discussed in more detail in
section 2.2.

Second, a reduction in the number of inter-neuron connections, which consume
valuable routing resources, is made by adopting a layered, feed-forward network to-
pology. As Fig. 2 shows, in contrast to the fully-interconnected network, the layered
topology has connections only between nodes in adjacent layers. Further, supervised
training is used to eliminate the need for feedback connections. This makes for easier
partitioning of the network, since data flow through the network is uni-directional,
from the input layer to the output layer.

Finally, by exploiting the reconfigurability of static memory-based FPGAs, the
ANN can be t ime-multiplexed so that one physical layer is reconfigured to perform the
function of all the other network layers. This makes it possible to implement a much

423

larger design than would otherwise be possible on a single device. However, for this
strategy to be successful it is important that the time spent reconfiguring the FPGA is
relatively short, otherwise the speed of the overall network is severely degraded.

Fully Interconnected Layered Network
Network

()
Fig. 2. Fully interconnected and layered ANN topologies

The ANN is implemented on an Atmel AT6005 (formerly Concurrent Cli6005).
This is a fine-grained FPGA which is presently the only commercially available de-
vice capable of being dynamically reconfigured, i.e. selectively reconfigured while
the logic array is active [4]. It will be shown that by exploiting this capability, and
only reconfiguring those parts of the array which differ between network layers, it is
possible to dramatically reduce the amount of system processing time that is lost dur-
ing reconfiguration.

2.2 Pulse Stream Arithmetic

Pulse Frequency Modulation (PFM) is a coding scheme where circuit state values
are represented by the frequency of narrow constant-width pulses. Fig. 3 shows an
example of PFM, where the fractional value 7/16 is represented by the presence of 7
pulses in a 16-pulse window. Signals encoded in this manner can be summed and
multiplied using simple logic gates. This technique, known as pulse-stream arithme-
tic [5], maps well onto fine-grained FPGAs such as the Atmel AT6005 which contain
a large number of low fan-in gates.

System
Clock

Pulse
Stream

(.

i Window Size = 16 Pulses

i Number of Pulses = 7

i M B L_q
Pulse Stream Value = 7/16

Fig. 3. Example of a Pulse Frequency Modulated signal.

424

2.3 Pulse Stream Neuron

In Section 1 the principal components of an artificial neuron were introduced.
Here, the digital pulse-stream implementation of synaptic weight multiplication, post-
synaptic summation and non-linear activation are described.

The inputs to the ANN are encoded as a constant stream of narrow pulses. Within
each synapse, this pulse stream must be gated so that only a certain proportion of the
pulses are allowed to pass through to the summation stage of the neuron. This pro-
portion represents the value of the synaptic weight. A suitable gating function can be
constructed by selectively ORing together a series of chopping clocks [5]. These are
synchronous, non-overlapping binary clocks with duty cycles of 1/2, 1/4, 1/8 and so
on. Fig. 4 shows a 4-bit chopping clock generator which can be used to construct
weights in the range 0 to 15/16. Multiplication of the input pulse-stream by the
weight value can be achieved by simply ANDing the input and the gating function, as
shown in the diagram.

t if2 I _. I I Pulse Addition Pulse Multiplication
I 1/4 ~ Gating Signal Chopping

Generator ~ u I"1_
/ 1 6 1 I1. I . IIIIIlllllllllll . IIIII

Pulse Stream Weighted
Pulse-Stream

Fig. 4. Pulse arithmetic using simple logic gates

A synapse output is either excitatory, i.e. it increases the chance of the neuron fir-
ing, or inhibitory. In the pulse-stream neuron, positive and negative synaptic weights
are accomplished by feeding excitatory and inhibitory synapse outputs to separate up
and down inputs of a binary counter.

The neuron activation function is a simple binary step function, rather than the
sigmoid function that is often used. There are two principal reasons behind this
choice:

1. The sigmoid function is considerably more complex to implement, and requires
neuron outputs to have a range of values rather than a simple binary output.

2. The binary step function's primary limitation applies to networks which em-
ploy back-propagation learning, which are less likely to converge on a correct
solution without the smoothing effect of the sigmoid. The ANN reported here
uses supervised learning, so this restriction is less relevant.

The output of the neuron is therefore calculated using a simple thresholding op-
eration based on the most significant bit of the counter. Fig. 5 shows a block diagram
of the complete digital pulse-stream neuron.

425

Chopping
Clock

Generator

Excitatory I
Pulse-Stream I

Neuron I Up/Down
Output ~ I Counter

elective Combination
f Chopping Clocks

R~Inhibitory
Pulse-Stream

I
Fig. 5. Pulse-Stream Neuron

2.4 Pulse Stream Artificial Neural Network

Fig. 6 shows pulse-stream neurons connected together to form a single layer of the
ANN. A layer consists of a maximum of four neurons, each with four synapses to
allow full connectivity between successive network layers. The restriction to four
neurons is imposed by the need to lay out the design on a single AT6005 device, and
is discussed more fully in the following sections.

Inputs to the circuit are latched and encoded into non-overlapping pulse-streams
so that on any given system clock cycle a pulse appears on only one input line. This
ensures that pulses are processed one at a time by the neural counter. The chopping
clocks are distributed to every synapse, where they are selectively combined to repre-
sent the weight value. Synaptic weights have a resolution of four bits. Higher resolu-
tion weights require more chopping clocks to be distributed to the synapses.
Moreover, each additional weight bit doubles the number of pulses needed to repre-
sent circuit values and hence halves the processing speed of the network. Four bit
weights were therefore chosen as a compromise between speed of operation and accu-
racy.

After processing of a network layer is complete, the neuron outputs are latched,
and the FPGA is reconfigured to load the next layer. Any unused neurons in a layer
can effectively be "switched off" by assigning them zero-valued weights. This means
that the only parts of the circuit to be reconfigured are the OR gates in each synapse
which are used to combine chopping clocks.

After reconfiguration, the previous layer's outputs are fed to the input latches and
the next layer processed. When the final layer is completed the network outputs can
be sampled.

To implement the complete circuit within the FPGA, it is important that both the
input and output latches, and the FSM which controls reconfiguration, retain their
state during device reprogramming. This requires dynamic reconfiguration, i.e. partial
reconfiguration while the logic array of the FPGA remains active [4]. Note that in this
particular system no datapath processing takes place on the logic array during recon-

426

figuration. This limited form of dynamic reprogramming, where the logic array re-
mains active only to maintain storage values, constitutes a sub-class of the wider class
of dynamic reconfiguration. Currently, the only commercially available FPGAs ca-
pable of dynamic reconfiguration are the Atmel AT6000 series [1].

Synap

Synap

-n
S~nal~

Pulse-Stream ~ sy.~
Encoder \

Feedforward Path

Fig. 6. Single Layer of Pulse-Stream ANN

3. Implementat ion on the Atmel AT6005

3.1 AT 6000 Series Architecture

The Atmel AT6005 FPGA comprises an array of 54 x 54 fine-grained cells, each
of which can implement all common 2-input functions, or certain functions of 3 inputs

toc~_ - -

~ t o u

Fig. 7. Atmel AT6000 Series Architecture

427

along with a single storage register (see Fig. 7). Routing resources are split between
slower through-cell connections and fast long-range busses, a limited number of
which are available to each block of 8 x 8 cells. The equivalent gate capacity of this
architecture is quoted by the manufacturer as 5000 gates.

3.2 Circuit Layout on the AT6005

The pulse-stream ANN circuitry was manually placed and routed on the AT6005
FPGA for the following reasons:

• The Atmel APR tool employs a generous placement algorithm with respect to
inter-component spacing. This appears to be optimised for maximum routing
flexibility, but makes it difficult to achieve the degree of macro clustering re-
quired for this design.

• Timing is critical when implementing pulse-stream circuitry, as excessive sig-
nal skew can result in errors due to two or more pulses overlapping. Sub-
circuits therefore have to be placed symmetrically such that delays on the sig-
nal lines which distribute pulse-streams and chopping clocks are well bal-
anced. These special timing requirements are difficult to achieve with the
current Atmel tools, which use a simple ordered list of nets to enable the de-
signer to prioritise routing. A more advanced timing-driven layout tool such
as that supplied by Xilinx would be needed to provide the necessary flexibility
[8].

• The layout of the synapse circuits has to be optimised to minimise the time
needed to reconfigure the device between layers of the network.

An Interactive Layout Editor is shipped with the development system, and this was
used for manual design layout. Fig. 8 shows the floorplan of the FPGA with the first
layer of the ANN after placement and routing.

The diagram does not fully indicate the extensive amount of long-range routing
consumed by the design. Considerable areas of the logic array had cells which could
not be used for logic because the adjacent routing busses were already heavily com-
mitted. The only way into and out of such areas is via through-cell routing, which is
in general inappropriate for anything but short nets.

A potential shortcoming of the Atmel architecture was encountered during circuit
layout. As with most designs, the ANN requires a large number of OR-gates, includ-
ing a number with wide inputs. Unfortunately, both the 2-input OR-gate macros have
limitations - one is slow and takes up three cells, while the single cell version is fast
but has inflexible connections. Furthermore, the Atmel literature indicates that it is
not possible to implement a totally glitch-free single cell OR function, due to the na-
ture of the internal cell structure. The provision of a wired-OR capability would have
been a considerable advantage for this design.

428

Weight]
Generator

. ill li i l l ' ° ' l ! "°'['" ° In : : : l i n t a f f i a a = c ~ a U l l ~ ~ a ~ a a l l a m a I I

. , , ooo

~ . ~ t l i r ~ t ~ I r ~ r ; ~ l o Generator ~ , ~ :

~ ~z o lie i l l a ae ~ r~ o a a a a ~:.~a a o r~ ~a ~a u u ~ ~ ~ ~ m~ o m ;
~D a W U l I I I 2 m E ~ D a D G Q I ~a ~ ~ ~ ~ ~ t3 = t~ D I~ I~ D F4 D I

, a n a a a m l l l l a a I I a a a l : e ~ t ~ m m t~ m a = m t l m a a a a l
, a l U l l l l a m l a a a a a ~ l a a a t ~ t ~ n ~ a D a a a a m l
,1~ n a m a m m ~ a a m l a a u l ~ t~ ~ ~ tz t~ a ~ , ~ a t l m la a m i
~ m a W ~ m ~ ~ l n r ~ a m m a l ~ t~ ~s ~s ts ts ts ~ ~ Is ~ a Is Is a i
,r~ a ra ~ a a a ~ a ~ a a l ~ a a t ~ a ~ n

Synapses]

~ NeurN
~ o.~..-,~ Counte~

~ a a a a a ~ ~ a ~ a ~ a ~,

a a a a a m ~ _ _ ~

I l l la l l l l l l IE a la I i l l a a a a u t l L ~ tS IS tS ~S ~ ~ ~ I S IS I~ I~ I~ a io is m a n n] a n ~
l a l m a J a a t m m ~ a a a a a a ; a ~ o ~ n a a u a a a ~ , . ~ ~"

Fig. 8. Layout of a single network layer on the AT6005

The equivalent gate count calculated by the Atmel software for a single network
layer (see Fig. 9) equates to a utilisation figure of 24.3%. It is clear from the table that
routing forms a very significant proportion of the layout - nearly as many cells are
used for routing as for logic (462 routing cells versus 476 logic cells), while 529 local
and 68 express buses are also used.

Utilization Summar~¢
Number of Macros

Utilized
273

Number of Flip-Flops 59
Number of Gates 417
Number of Turns 65
Number of Buses: 597
Local Buses: 529
Express Buses: 68
Number of IO's: 13 of 64
Number of Cells: 938 of 3136
Number of Equivalent Gates: 1216.5

Fig. 9. Design utilisation summary produced by Atmel software

429

3.3 Reconfiguration of the AT6005

To fully reconfigure the Atmel chip takes a minimum of 808gs, although this is
only necessary when loading the first network layer. For subsequent layers partial
reconfiguration can be used since the only changes to be made are to the synaptic
weights.

Partial configurations are loaded into the device as a series of one or more win-
dows, each of which contains programming data for a single contiguous block of cells
along a row of the device. Every reconfiguration has an overhead of 10 bytes for pre-
amble and control information, and each separate window within the bitstream carries
an additional overhead of 5 bytes. In order to maximise reconfiguration speed, there-
fore, the following rules apply:

• The number of cells reconfigured should be the absolute minimum necessary to
effect the required circuit changes.

• Configurations should be loaded at the maximum permissible rate, which in the
case of the AT6005 is 10MHz. This typically requires some form of direct
memory access.

• The number of configuration windows should be kept to a minimum. This has
implications for circuit layout, since the reconfiguration of contiguous blocks
of cells is faster than a "fragmented" reconfiguration.

It is worth noting that if any two windows are separated by less than three cells
(i.e. 6 bytes of configuration data) it is faster to merge the two windows and overlay
the intervening cells with an identical configuration. Experiments suggest that any
stored results in these cells are unaffected by the reconfiguration operation, although
this is not specified in the Atmel documentation.

4. Results and Performance

To date, the ANN has only been tested with the binary XOR function. This simple
problem is non-linearly separable, which means that it requires a network with at least
one hidden layer. The appropriate synaptic weights were calculated manually and
subsequently incorporated into the FPGA configurations as detailed in section 2.4.

Testing of the ANN took place with the aid of an FPGA prototyping system which
was developed in-house. This is based around a pair of Inmos Transputers which
handle communications between the FPGA and a host computer, and also provide
control over reconfiguration of the AT6005. Whilst this system is highly flexible, it is
currently unable to match the maximum configuration loading rate of the AT6005,
which would require a write cycle of lOOns. A mechanism to allow the FPGA to di-
rectly access fast memory to achieve full reconfiguration speed is under development
at the time of writing.

With a 20MHz system clock, each layer of the ANN takes 6.5gs to produce an
output. Reconfiguration between network layers for the XOR problem takes 17.6gs
when a 10MHz configuration loading clock is applied. This is faster than the general
case, however, since for this specific problem some weights are the same in successive

430

network layers. The initial full configuration, for the first network layer, takes 808gs.
This only takes place when the network is first initialised and so has not been included
in the performance calculations.

The three-layer ANN can produce results for the XOR problem at a rate of 24kHz,
when reconfiguration overhead is taken into account. This corresponds to a network
performance of 0.77M CPS (Connections Per Second). In comparison, the same net-
work implemented using full static reconfiguration, again at the maximum configura-
tion loading rate, would produce results at a rate of only 625Hz, or 20k CPS. Thus,
for this network, partial reconfiguration gives a speedup of 38 over full reconfigura-
tion, as well as a reduction in the amount of external configuration storage needed.

The reported network is considerably slower than "static" FPGA-based ANNs
such as the GANGLION, which is reported to operate at 4.48G CPS [2]. It should be
borne in mind, however, that this impressive performance is achieved at considerable
expense, using an array of more than 30 large Xilinx devices in a fixed configuration.
Where the technique of time-multiplexing offers benefit is as a cost-effective solution
to ANN implementation which uses limited logic resources.

5. Conclusions

The authors have a particular interest in investigating potential application areas
for dynamically reconfigurable FPGAs. Since the only FPGAs capable of dynamic
reconfiguration to date are fine-grained devices, the technology mapping of reconfig-
urable designs onto fine-grained FPGAs is a valuable experiment. The ANN imple-
mentation reported here has provided useful information about mapping this type of
circuit onto the particular resource set of fine-grained FPGA architectures such as the
Atmel AT6005. Further, the use of reconfiguration, and in particular dynamic recon-
figuration, has led to the implementation of a considerably larger ANN than would
otherwise be possible on a single FPGA. Whilst the current system is limited to the
time-multiplexing of whole network layers, the extension of the technique to allow
individual layers to be partitioned for time-sharing would offer the potential of larger
networks and is currently under consideration.

The work done in developing the pulse-stream ANN has highlighted certain re-
strictions in both the reconfiguration mechanism of the AT6005 and the CAD tools
used to produce designs on it. When compared to the system speeds possible on the
logic array, reconfiguration is currently very slow. If the advantages of device recon-
figuration are to be exploited in real-time applications, it is important that this situa-
tion is improved. In addition, no vendor yet provides software for the simulation of
reconfigurable designs, or floorplanning tools to optimise design layouts for fast re-
configuration.

Architectural changes to the AT6005 have been identified which would increase
the density and performance of the pulse-stream ANN. These include the provision
of wired-OR capability, dedicated fast carry logic for counters, increased bussing re-
sources and a faster reconfiguration mechanism.

These observations point to a possible future direction for the development of new
FPGA architectures. Most design classes implemented on FPGAs would benefit in

431

some way from having the logic and routing resources available on the device tailored
to the particular application. Moreover, many designs which exploit reconfiguration
contain a proportion of logic that is always static. Performance and integration levels
could be further increased by providing dedicated resources to perform some of these
static functions. This approach is a natural extension of the special purpose "hard
macros" used in the Xilinx 4000 series devices for wide decoding functions. In the
case of the pulse-stream ANN, dedicated pulse-stream and chopping clock generation
could be combined with the architectural changes outlined previously to produce a
Field Programmable Artificial Neural Network (FPANN). Such a device would lose
the capability to implement large amounts of general-purpose logic, but would be
particularly well suited to the efficient implementation of ANNs.

In general, it is conceivable that the optimisation of logic and routing resources to
specific application classes could help to bridge the performance gap between FPGAs
and ASICs, whilst retaining the benefits of reconfigurability.

Acknowledgements

The authors would like to thank the Nuffield Foundation, SERC and the Defence
Research Agency for their support.

References

1. Atmel Corporation: Configurable Logic Design and Application Book, Atmel
Corporation, San Jose, California, USA, 1994.

2. C.E. Cox, W.E. Blanz: GANGLION - A Fast Field-Programmable Gate Ar-
ray Implementation of a Connectionist Classifier, IEEE Journal of Solid-State
Circuits, Vol. 27, No. 3, March 1992, pp. 288-299

3. S.A. Guccione, M.J. Gonzalez: A Neural Network Implementation using Re-
configurable Architectures, In: W. Moore, W. Luk (eds.): More FPGAs, Ab-
ington, Oxford, UK, 1994, pp. 443-451

4. P. Lysaght, J. Dunlop: Dynamic Reconfiguration of FPGAs, In: W. Moore,
W. Luk (eds.): More FPGAs, Abington, Oxford, UK, 1994, pp. 82-94

5. A.F. Murray: Pulse Arithmetic in VLSI Neural Networks, IEEE Micro, De-
cember 1989, pp. 64-74

6. J.E. Tomberg, K.K.K. Kaski: Pulse-Density Modulation Technique in VLSI
Implementation of Neural Network Algorithms, IEEE Journal of Solid-State
Circuits, Vol. 25, No. 5, October 1990, pp. 1277-1286

7. M. van Daalen, P. Jeavons, J. Shaw-Taylor: A Stochastic Neural Architecture
that Exploits Dynamically Reconfigurable FPGAs, Proceedings of the IEEE
Workshop on FPGAs for Custom Computing Machines, Napa, California,
USA, April 1993, pp. 202-211

8. Xilinx Inc.: The Programmable Logic Data Book, Xilinx Inc., San Jose, Cali-
fornia, USA, 1993.

Author Index

A

Abbot t , A. Lynn 156
Agrawal , O.P. 295
Akil , M ... 332

Alvarez , J . 341
Alves de Barros, M . 332
Amano , H .. 208

Ast, A .. 183
Athanas , P.M .. 156
Auvergne , D .. 34
Aykanat , C .. 45

B

Babcock , J .D.S .. 259
Baets , R .. 352
Balakr ishnan, M .. 99
Bartos, T .. 117

Becket , J . 183
Benner , ~Ih .. 251

Binda, J . 120
Birbas, A . N ... 309
Birbas, M . K ... 309

B6gel vom, G .. 315
Brand, H.-J .. 78

C

Cadek, G .R ... 289
Chert, X . -y . 208
Chintrakulchai , P. 129
Cowen , C.P. 312

D

Dai, W.W.-M .. 373

D a n ~ e k , J ... 321
Daumas , M ... 196

Debize , J .C .. 344
Deprei tere , J . 352
Dhoedt , B .. 352

Dick, H ... 298
Dollas, A 259

E

Ernst , R 251

F

Fagin, B .. 129
Farrahi, A .H 66

Fawcet t , B . K .. 2 7 1 , 2 8 0
Fristacky, N . 117

G

Gehr ing , S .. 385
Girma, D .. 421

Glaise, R.J . 344

Goldberg , E . 114
Goutis , C . E . 309
Gramata , P. 126
Gramatov~i, E .. 126
Gschwind , M . 175 ,326

H

Hallas, J .A .. 309
Hamann , V. 111
Haritao~lu, I . 45
Hartenste in , R . W . 144, 183
Her rmann, M .. 1

Hilberg, W .. 397
Hlawiczka , A .. 120

Hof fmann , W .. 1
Hofstad, J . 230
Hol tmann , U .. 251
Hughes , R.B . 135

I

Iseli, C . 168

Isoaho, J . 318
Isshiki, T . 373

J
Jantsch, A . 318

Jebelean, T. 132

K

Kalosha, E . E 335
Karpovsky, M . G .. 335

Katona, A ... 286
Ke lem, S.H . 2 7 1 , 2 7 4
Kempa , G.J . 409

Kerek, D .. 138

Kl indwor th , A .. 306
K 6 n e n k a m p , I . 251
Kras i ln ikova, L .. 114

Kress , R . 144, 183
Kumar , A .. 99

434

L

Lain, D .. 277
Law, J . 42 !
Leaver , A .. 303
L ieh te rmann , J . 123

Ling, X . -p . 208
Ludwig , S . 385
Luk, W. ... 220
Lysaght , P. 298 ,421

M

Maischberger , O . 175
M a n d a d o , E . 341
Mar ia tos , E.P. 309
M a t bin, I . 338
Maumer , C .. 326
M c C o n n e n , D .. 298
M c L e o d , R .D ... 240
Meyer-B~ise, A . 397
Meyer -B~se , U . 397
Miyazaki , T . 89

M o n a g h a n , S . 312
Moraes , E ... 34
Muel ler , D .. 78
Muller , J . -M .. 196
Musgrave , G .. 135
M u z i k ~ , Z .. 23

N

Nag, S .. 361
Nakada, H ... 89
Naseer , A .R .. 99
Nanber , P. ... 315
Neefs , H . 352
Neustadter , G ... 123
N e w m a n , M 220
Nguyen , P. .. 141
Nguyen , R . 141
Nicola id is , M ... 11
Nj¢ls tad , T. 230
Noras , J .M .. 338

O

Ohta, N .. 89
Ol ive i ra Duar te de, R . 11

P

Page, I .. 220

Pihl , J . 230
Pluh~i~ek, A .. 321
Prasad, S ... 57

R

Reinig, H . 144, 183

Rieger, P. ... 409

Rober t , M .. 34
Rodr iguez -And ina , J .J , 341

Rosens t i e l W ... 78

Roy, K ... 57 ,361

S

Salapura, V. 175
Saluvere, T. 138
Sanchez , E .. 168
Sarrafzadeh, M .. 66

Sawyer , N .. 280

Schaub, H. -C .. 251
Schmidt , K ... 183

Schiller, P. ... 251

Seraf imov, N .. 251

Servit , M . Z . 23 ,321
S tockwood , J . 421

Szolgay, P. .. 286

T

Tenhunen , H . 138 ,318
Thienpont , H ... 352

Thorwart l , P.C . 289
Toon, N .. 2 8 3 , 2 9 2

Torres, L . 34

Trebaticlo), P. 126

Tsutsui, A ... 89

V

Van C a m p e n h o u t , J . 352
Van Marck , H .. 352
Veretennicoff , I . 352

Vuinemin , J . 196

W

Ward, B ... 259
Westphal , G.P. 289

Wieler, R.W. 240

Wil l iams, T . 280
Winkler, J . 315

Wirth, N ... 385

Y

Yamada, K .. 89
Yarmolik, V.N .. 335

Z

Zhang, Z . 240

	Field-Programmable Logic Architectures, Synthesis and Applications
	Preface
	Untitled
	Fault modeling and test generation for FPGAs
	A test methodology applied to Cellular logic Programmable Gate Arrays
	Integrated layout synthesis for FPGA's
	Influence of logic block layout architecture on FPGA performance
	A global routing heuristic for FPGAs based on mean field annealing
	Power dissipation driven FPGA place and route under delay constraints
	FPGA technology mapping for power minimization
	Specification and synthesis of complex arithmetic operators for FPGAs
	A speed-up technique for synchronous circuits realized as LUT-based FPGAs
	An efficient technique for mapping RTL structures onto FPGAs
	A testbench design method suitable for FPGA-based prototyping of reactive systems
	Using consensusless covers for fast operating on Boolean functions
	Formal verification of timing rules in design specifications
	Optimized synthesis of self-testable finite state machines (FSM) using BIST-PST structures in Altera structures
	A high-speed rotation processor
	The MD5 message-digest algorithm in the XILINX FPGA
	A reprogrammable processor for fractal image compression
	Implementing GCD systolic Arrays on FPGA
	Formal CAD techniques for safety-critical FPGA design and deployment in embedded subsystems
	Direct sequence spread spectrum digital Radio DSP prototyping using xilinx FPGAs
	FPGA based reconfigurable architecture for a compact vision system
	A new FPGA architecture for word-oriented datapaths
	Image processing on a custom computing platform
	A superscalar and reconfigurable processor
	A fast FPGA implementation of a general purpose neuron
	Data-procedural languages for FPL-based machines
	Implementing on line arithmetic on PAM
	Software environment for WASMII: A data driven machine with a virtual hardware
	Constraint-based hierarchical placement of parallel programs
	ZAREPTA: A zero lead-time, all reconfigurable system for emulation, prototyping and testing of ASICs
	Simulating static and dynamic faults in BIST structures with a FPGA based emulator
	FPGA based prototyping for verification and evaluation in hardware-software cosynthesis
	FPGA based low cost Generic Reusable Module for the rapid prototyping of subsystems
	FPGA development tools: Keeping pace with design complexity
	Meaningful benchmarks for logic optimization of table-lookup FPGAs
	Educational use of Field Programmable Gate Arrays
	Hardwire: A risk-free FPGA-to-ASIC migration path
	Reconfigurable hardware from programmable logic devices
	On some limits of XILINX based control logic implementations
	Experiences of using XBLOX for implementing a digital filter algorithm
	Continuous interconnect provides solution to density/performance trade-off in programmable logic
	A high density complex PLD family optimized for flexibility, predictability and 100% routability
	Design experience with fine-grained FPGAs
	FPGA routing structures from real circuits
	A tool-set for simulating altera-PLDs using VHDL
	A CAD tool for the development of an Extra-Fast Fuzzy Logic Controller based on FPGAs and memory modules
	Performance characteristics of the Monte-Carlo clustering processor (MCCP) - a field programmable logic based custom computing machine
	A Design Environment with Emulation of Prototypes for hardware/software systems using XILINX FPGA
	DSP development with full-speed prototyping based on HW/SW codesign techniques
	The architecture of a general-purpose processor cell
	The design of a stack-based microprocessor
	Implementation and performance evaluation of an image pre-processing chain on FPGA
	Signature testability of PLA
	A FPL prototyping package with a C++ interface for the PC bus
	Design of safety systems using Field Programmable Gate Arrays
	A job dispatcher-collector made of FPGA's for a centralized Voice Server
	An optoelectronic 3-D Field Programmable Gate Array
	On channel architecture and routability for FPGA's under faulty conditions
	High-performance datapath implementation on Field-Programmable Multi-Chip Module (FPMCM)
	A laboratory for a digital design course using FPGAs
	Coordinate Rotation DIgital Computer (CORDIC) synthesis for FPGA
	MARC: A Macintosh NUBUS-expansion board based reconfigurable test system for validating communication systems
	Artificial neural network implementation on a fine-grained FPGA
	Author Index

