1ain . Crag. 1cs
Obj

& Object-Oriented
Programming
Languages

Interpretation




Undergraduate Topics in Computer Science




Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content for
undergraduates studying in all areas of computing and information science. From core foundational
and theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and
modern approach and are ideal for self-study or for a one- or two-semester course. The texts are
all authored by established experts in their fields, reviewed by an international advisory board, and
contain numerous examples and problems. Many include fully worked solutions.

Also in this series

Max Bramer
Principles of Data Mining
978-1-84628-765-7

Hanne Riis Nielson and Flemming Nielson
Semantics with Applications: An Appetizer
978-1-84628-691-9



[ain D. Craig

Object-Oriented
Programming
Languages:
Interpretation

@ Springer



Tain D. Craig, MA, PhD, FBCF, CITP

Series editor
Tan Mackie
Ecole Polytechnique and King’s College London, UK

Advisory board

Samson Abramsky, University of Oxford, UK

Chris Hankin, Imperial College London, UK

Dexter Kozen, Cornell University, USA

Andrew Pitts, University of Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Denmark
Steven Skiena, Stony Brook University, USA

Tain Stewart, University of Durham, UK

David Zhang, The Hong Kong Polytechnic University, Hong Kong

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2007921522

Undergraduate Topics in Computer Science ISSN 1863-7310
ISBN-10: 1-84628-773-1 e-ISBN-10: 1-84628-774-X
ISBN-13: 978-1-84628-773-2 e-ISBN-13: 978-1-84628-774-9

Printed on acid-free paper

© Springer-Verlag London Limited 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or
transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in
the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright
Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free

for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions

that may be made.
987654321

Springer Science+Business Media
springer.com



Contents

Introduction ......... ... . ... ... .. 1
1.1 Introduction ............ ... ... . 1
1.2 Essential Properties of Objects .......... ... ... .. ... .. .. 3
1.3 Objects and Messages . .. ....oovinini i 6
1.4 Pure and Impure Languages ......... ... ... ... 7
1.5 Mixed-Paradigm Languages.......... ..., 9
1.6 Organisation of this Book ....... ... .. ... .. .. .. ... ... 9
Class Fundamentals................. ... ... ... ... . ... ........ 13
2.1 Introduction ........... ... 13
2.2 ClaSSES . v vt e 16
2.3 InsStances ... ... 20
2.4 Slots and Methods. ......... ... . . . . . . . . . . 22
2.5 Slot ACCESS . ..o 23
2.6 Visibility and Accessibility......... ... . i 25
2.7 Instance Creation ............. ... ... . ... 31
2.8 Imheritance ........... .. .. ... 34

2.8.1 Introduction .......... ... . ... .. ... ... 34

2.8.2 Definition of Inheritance ............................ 35
2.9 Abstract Classes . ........couiiiin i 40
2.10 Tterators . ..... i 44
2.11 Part Objects ... .o 49
Prototype and Actor Languages ............................ 57
3.1 Introduction ......... ... ... 57

3.2 Prototype Languages .......... .. .. . i 57



vi Object-Oriented Programming Languages: Interpretation
3.3 The Concept of the Prototype......... .. ... .. .. .. ... 58
3.3.1 Slots and Methods.......... ... .. ... ... . ... 64
3.3.2 Message Passing .......... ... .. ... . il 65
3.3.3 Creating New Objects ......... ... ... ..., 65
3.3.4 Delegation and Shared Structure ..................... 67

3.4 Methods in Prototype Languages . ............. .. ... ... ... 72
3.5 Actor Languages .. ... 73
3.5.1 Introduction ........... .. .. .. i 73
3.5.2  ACOTS .t 73
3.5.3 Extensions to the Actor Concept ..................... 78

4. Inheritance and Delegation .............. ... .. ... ... ... .. 83
4.1 Introduction .............c.iiiiii i 83
4.2 Interpretations of Inheritance ............ ... ... ... .. ... ... 84
4.3 Inheritance as Subtyping .......... .. .. i i 85
4.4 Inheritance as Code Sharing .......... ... ... ... .. .. ... 87
4.5 Single Inheritance ......... ... .. L 90
4.6 Calling More Abstract Methods .............. ... .......... 91
4.7 Multiple Inheritance ......... .. .. .. . . 98
4.8 Multiple Inheritance Graph Shape ............. .. ... ... ... 100
4.9 Approaches to Multiple Inheritance .. ....................... 106
4.10 Tree Inheritance........ .. ... . . i i 106
4.11 Graph Inheritance . ....... ... . .. i 108
4.12 Linearised Inheritance........ ... .. . .. .. . . . 110
4.13 Implemented Multiple Inheritance Techniques ................ 112
4.13.1 The CLOS Search Method........................... 112
4.13.2 Multiple Inheritance in C++ ....... ... . ... . ... .. 114
4.13.3 Multiple Inheritance in Fiffel ........................ 115

4.74 Mixin ClasSes ... .oouivintt e 117
4.15 Alternatives to Multiple Inheritance ........................ 120
4.15.1 Perspectives ... ... 120
4.15.2 Interfaces in Java. ........ ... o i i i 121
4.15.3 Delegation and Prototypes ........... ... ... .. ..... 122

4.16 Aggregation ... ... ... .. 124
5. Methods. ... ... . . 129
5.1 Introduction ........ ... ... 129
5.2 Methods and Objects .. ...... .. .. i 131
5.3 Object Constructors and Methods ........... ... .. .. ... .. 134
5.4 Environments and Closures ......... ... ... 135
5.4.1 Introduction ......... ... .. .. . . . i 135

5.4.2 Environments: A More Formal Definition .............. 136



Contents vii

5.4.3 Blocks in Smalltalk and SELF ....................... 139
5.4.4 Block Structurein Beta ............. ... ... .. .. ..... 143
5.4.5 Higher-Order Methods ............ ... .. .. ... .... 144
5.4.6 Methods and Inheritance ............................ 146

5.5 Static and Dynamic Binding ........... ... .. .. .. L 148
6. Types I: Types and Objects ................................ 155
6.1 Introduction ......... .. . ... 155
6.2 Inheritance and Types ......... .. .. i i 157
6.2.1 Telling What the TypeIs....... ... ... ..o it 159
6.2.2 Polymorphism ......... ... .. i 164
6.2.3  SIgnatures ............coeuiiiniiiii 164

6.3 Generic Polymorphism ......... .. .. .. i 166
6.4 Overloading and Over—riding. . ........ ... o it 169
6.5 Languages with Root Classes .......... .. ... ... ... ... ... 173
6.6 Polyadicity and Default Parameters......................... 174
6.6.1 Variance .............iiiiii e 176

6.7 Downcasting and Subtypes ........ ... ... .. . i i 179
6.8 Review ... ... ... . 181
7. Types II: Types and Objects—Alternatives .................. 185
7.1 Introduction ........... ... i 185
7.2 Types and Implementations. .......... ... ... ... ... . ... 185
7.3 Hiding Implementation Details ... ....... ... ... ... ... .. .. 190
7.4 Classes and Type Operations ..................co oo, .. 194
7.5 Containers and Objects ......... .. ..., 197
B, G 201
8.1 Introduction .......... ... .. . .. 201
8.2 Classes and Instances . .............o .. 202
8.2.1 Class and Instance Variables......................... 203
8.2.2 Access Levels ....... . 204
8.2.3 Data and Method Access Modifiers ................... 204
8.2.4 Instance Creation ............... ... ciiiirininon.. 205
8.2.5 Static Constructors . ............cooiiiiiii .. 207
8.2.6 Finalization and Destruction......................... 207
8.2.7 Dot Notation and Member Access .................... 208
8.2.8 Abstract Classes .......... ... 208
8.2.9 IndexXers.........ouiiii 208
8.2.10 Self Reference....... ... ... ... ... . .. . .. . ... 210

8.3 Imheritance ......... ... .. ... 210

8.3.1 Calling Base-Class Constructors .. .................... 211



viii

Object-Oriented Programming Languages: Interpretation

8.3.2 Imterfaces ....... ... . .. 213

8.4 Methods and Operators ............c.oiiiiiiiinnn.. 215
8.4.1 Dispatch ...... .. . 215

8.4.2 The Base Keyword .......... ... .. .. .. ... .. .... 217

8.4.3 Parameter Annotations ............ ... ... ... .. ... 218

8.4.4 Properties .. ... ... 220

8.4.5 Delegates. ... 221

8.4.6 Operator Overloading . ........... .. .. .. . ... ... 223

8.5 Polymorphism and Types......... ... 225
8.5.1  SErUCES . oot 225

8.5.2 Type Unification ...........c.. i, 227

8.6 Base Class Library ....... ... ... i 229

9. BeCecil.... ... . 231
9.1 Imtroduction .......... ... ...t 231

9.2 Programming Standard OO Mechanisms .................... 232

9.3 Syntactic Sugar .......... .. 237

9.4 A Small Example...... ... . 238

9.5 Concluding Remarks ....... ... .. .. . i 239
Bibliography . ... .. . 241
Index . ... o 249



1

Introduction

1.1 Introduction

Object-oriented programming has opened a great many perspectives on the
concept of software and has been hailed as part of the solution to the so-called
“software crisis”. It has given the possibility that software components can be
constructed and reused with considerably more credibility. There are now many
case studies in which the reuse of object-oriented components has been made
and analysed. Object-oriented programming relates the programming activity
to that of modelling or simulation; objects are identified by a correspondence
with the objects found in the application area of the program and are used to
model those domain operations. Object-oriented programming also opens the
prospect of more flexible software that is able to respond dynamically to the
needs of the application at runtime.

It is very easy to think that object-oriented programming can be performed
in only one way. The prevalence of C++ and Java suggests that they are the
only way to approach the problem of what an object-oriented programming lan-
guage should look like. There are many approaches to this way of programming
and C++ and Java exemplify just one of these different approaches. Indeed, the
way in which the concept of the object is interpreted differs between approaches
and between languages.

The two main approaches found in object-oriented programming languages
are, respectively, class-based and prototype-based languages. Class-based lan-
guages are exemplified by Smalltalk [34], C++ [75, 74] and Java [47]. This



2 1. Introduction

approach is based upon the identification of common properties of objects and
their description in terms of a definitional structure called a class. The objects
manipulated by class-based programs are the result of instantiating classes.
In class-based programming, instances exist at runtime while classes typically
do not. Even in an interpreted language, instances are the entities that are
manipulated by programs; classes serve to define instances.

With the second approach, the prototype-based approach, matters are differ-
ent. According to the prototype-based approach, objects are created by means
of a copy operation (called cloning) which is applied to a prototype. Prototypes
define stereotypical objects. A clone of a prototype replicates the structure of
that prototype. Prototypes can be copied and modified to produce new proto-
types that can then be cloned to form new objects.

The prototype-based approach is less common than the class-based one,
although, as will be seen, it has a great deal to offer. There are other approaches,
but they are somewhat rare in their use. For example, instantiable modules can
be called objects. An instantiable module is a module like those in Modula-2
[81] which can be instantiated to produce multiple, independent objects or
entities (normally modules are declared and used—there is usually only one
instance of a module).

A significant problem with object-oriented programming is that it is very
difficult to find an account of the interpretation of the various constructs and an
explanation of the various concepts employed in such languages. The vast ma-
jority of books on object-oriented programming or languages concentrate on a
single paradigm, typically the class-based one. If one is interested in prototype-
based languages or in multiple inheritance, for example, it is necessary to engage
in extensive bibliographic searches.

The aim of this book is to present a comprehensive account of the primary
approaches to object-oriented programming languages and their concepts. It de-
scribes the interpretation of the constructs commonly found in object-oriented
languages; it presents an account of the semantics in English. In order to be
as comprehensive as possible, the book deals with class-based languages (such
as Smalltalk, Java and C++) as well as prototype-based ones (such as SELF
and Omega). In addition, instantiable module languages are considered where
appropriate.

Because the class-based approach to languages is the most common, it re-
ceives the greatest emphasis. Prototype-based languages are less common and
they are given their own chapter, a chapter which attempts to be as compre-
hensive as possible within a small but growing field.

Many issues interact in the semantics of object-oriented programming lan-
guages. Types, messages, inheritance and dispatch methods are just four gen-
eral issues, each of which can be considered in much more detail and which



1.2 Essential Properties of Objects 3

interact in complex ways in a full programming language. It is hoped that all
important issues are considered in adequate detail below. Along the way, other
issues relating to object-based languages are raised and discussed.

1.2 Essential Properties of Objects

Object-oriented languages are defined by a small set of properties. The extent
to which a particular language satisfies these properties defines how much of
an object-oriented language it is, as will be discussed below in Section 1.4. The
properties which will shortly be listed are, with the exception of the last, un-
controversial and all languages which are properly said to be “object oriented”
exhibit these essential properties.

An object is an independent entity which can be treated in isolation of
all other objects. It can be passed into and returned from procedures, can be
assigned to variables and stored in data structures like lists and arrays (i.e., is
a first-class construct). Each object has an identity which is distinct from all
others. Given any pair of objects, it is always possible to determine whether
they are the same or different. Objects are composed of data and operations;
the operations associated with an object typically act upon the data which it
contains. Objects represent logically distinct entities in a computation.

Objects also exhibit some more general properties:

— encapsulation;

— inheritance;

— polymorphism; and

— dynamic method binding.

We will briefly outline each of these properties. The reader is warned that a
more comprehensive and detailed account of each of these properties is given at
various points in the rest of this book. Indeed, inheritance and polymorphism
are so important (and so complex in their implications) that they are repre-
sented by chapters in their own right. The above properties are also closely
related and have mutually interacting implications; for this reason, they will
be the subject of repeated discussion below, each time in a slightly different
context and drawing out slightly different implications.

The property of encapsulation is the property of information hiding. En-
capsulation typically refers to the hiding of data and of the implementation of
an object. Data and code, when encapsulated, are hidden from external view.



4 1. Introduction

When an external observer views an encapsulated object, only the exterior in-
terface is visible; the internal details are invisible and cannot be accessed. Thus,
data which is encapsulated cannot directly be manipulated and, in particular,
cannot be directly updated. Objects in object-oriented programming languages
contain a local state which is encapsulated; they also have data associated with
them that defines what they are. The implementation of an object should,
ideally, be hidden from view.

Objects tend to be defined in terms of other objects. When a new object or
kind of object is defined, it is defined in terms of those properties that make
it special. Because objects are frequently defined in terms of other objects,
a mechanism is present so that the properties of those objects upon which a
new one depends can be transferred to the new object from the old one. This
mechanism is called ¢nheritance.

According to one interpretation of the object-oriented concept, objects are
defined by descriptions; a description can be used many times to create indi-
vidual objects. The description is expressed in terms of the properties of the
objects which can be created by its application. The way in which inheritance
works for this kind of language is that descriptions are constructed on the basis
of other descriptions. When a new description D,, is created on the basis of
an old one, D,, the properties that were defined in D, become automatically
available to D,,. It is in this sense that it is said that D,, inherits from D,. Thus,
any object created using D,, will automatically have the properties defined in
D,. It should be noted that D, can generate objects of its own; they will have
the properties defined by D, and by inheritance from the descriptions used to
define D,. Objects produced using D, do not have any properties defined in
D,,. The reason for this is that D, is an ancestor of D,,; inheritance works by
obtaining properties from ancestors.

Inheritance enables programmers to reuse the definitions of previously de-
fined structures. This clearly reduces the amount of work required in producing
programs.

Next, we turn to polymorphism. The word “polymorphism” literally means
“having many forms”. In programming languages, polymorphism is most often
taken to be that property of procedures by which they can accept and/or return
values of more than one type. For example, a procedure which takes a single
argument is said to be polymorphic if it can accept actual parameters of more
than one type. If P is such a procedure and 7; and 75 are two types, P is
polymorphic if and only if P can be called with an argument of type 7:

P(z:m)
and can also be called with an argument of type 7s:

P(x: 1)



1.2 Essential Properties of Objects 5

Similarly, given a function f and two return types, p; and ps, f is polymorphic
if and only if f can be called with an argument of type 71, returning a value of
type p1:

fimm—p
and can also be called with an actual parameter of type 79, returning a value

of type pa:
fim—po

Polymorphism is extended to assignment to variables in the following way. Let
v be a variable and let 01 be of type 71 and 05 be of type 7. Then assignment to
v is polymorphic if and only if the following assignments are both well-typed:

V=01
V=02

Polymorphism is pervasive in object-oriented languages. Given the inheri-
tance relation outlined above, if there are two objects, 01 and oy such that oq
inherits from (is defined in terms of)) o2, then 05 can replace o; and the program
remains well-typed. This implies, in particular, that:

— 09 can be assigned to a variable that can be assigned to o1;

— 09 can be an actual parameter bound to a formal parameter that can also be
bound to o1;

— 09 can be returned by a function that can also return o.

If objects are considered to be types, the direct correspondence can be seen.
Polymorphism has some profound implications for programming languages. In
object-oriented languages, polymorphism interacts strongly with inheritance, as
has just been indicated. Sometimes polymorphism arises because it is necessary
to redefine an operation so that it is particularised to a particular object or set
of objects. We will spend considerable time below on polymorphism.

Finally, there is dynamic binding. Dynamic binding means that the opera-
tion that is executed when objects are requested to perform an operation is the
operation associated with the object itself and not with one of its ancestors. In
some languages (C++ is one), when an object is assigned to a variable, passed
as a parameter, returned as a result, referenced by a pointer, the operation
that is performed need not be the one defined for the object that is actually
assigned, passed, returned, pointed to, etc., but the operation associated with
one of the object’s ancestors.

This comes about because of the following. In C++, if one kind of object,
01, is defined in terms of another, oy, the two object kinds are identified with
types. If oy is the ancestor of o1, then it is considered to be a supertype of o;.



6 1. Introduction

Because an object of a type can always be assigned to a variable whose type is
a supertype of that type, it is possible to assign o; to the same variables as os.
C++ considers only the static type of the variables (the pointers, parameters,
return types, etc.). If a variable is declared to be of a supertype, when a subtype
is assigned to that variable, only those operations associated with the supertype
can be performed. There is a way of making C++ perform dynamic binding,
but the scheme described in this paragraph is the default (it is called static
binding).

Dynamic binding is another property that has profound implications for
object-oriented languages. At a practical level, it means that the operations
that are performed are always those associated with the object asked to perform
them (unless it must inherit the operation). At a more theoretical level, dynamic
binding interacts with inheritance and with the type structure of a language.

1.3 Objects and Messages

In Smalltalk, the active components, the methods associated with classes (the
operations), were activated by means of messages. Message passing is a central
concept in object-oriented programming languages. When one object wants to
activate a method in another object, it sends the other object a message. The
message specifies which method is to be executed and provides the parameters
required to activate the method.

When a message is sent from one object to another, the receiver examines
the method specification. This specification, called the selector, is used to look
up the appropriate method in a method table. Each object has a method table
which associates selectors with methods. When the appropriate method has
been determined, its code is executed and a result might be returned to the
sender of the message.

The use of selectors provides a level of indirection between messages and the
code (or method body) which implements them. It also provides a mechanism
for determining which methods are provided by which objects. If a selector is
not present as a key in the method table of the receiving object, the object can
inherit the method from one of its parent objects. This means that a request
is made to the objects superclass to return the appropriate method; should the
method not be located there, the superclass of the superclass is consulted. This
process continues until either the method is located and returned for execution,
or there are no more classes and an error is signalled.

Selectors separate the names by which methods are known from the code
which implements them. Thus, a method might be known by more than one



1.4 Pure and Impure Languages 7

name (selector) in a program; as long as the selectors mentioned in messages
map to the correct code so that the correct behaviour is elicited from the
system.

The Smalltalk implementation of message passing, like those in SELF [24],
Omega [10] and the language proposed by Malenfant et al. [52], are based upon
actually passing messages between objects. These languages are all sequential
(SELF is implemented as threads, but the treatment described here is gen-
eral) and messages do not need to be enqueued. Instead, a message is directly
passed to the receiver object. The receiver object then picks up the message (as
a pointer, typically) and executes. Because of the synchronisation constraint
inherent in sequential languages, this direct message handling technique be-
comes possible; were the languages to support asynchronous interactions, some
form of queueing would be required.

In many languages, message passing is replaced by procedure call. In object-
oriented languages using procedure calls, methods are implemented as proce-
dures. Because messages are directly handled, the selector can be replaced by
the name of the method in the receiver and the parameters supplied in the
message are replaced by procedure parameters. Instead of indexing a method
table, the procedure call approach, in its simplest form, involves the direct ex-
ecution of the method named by the selector; the parameters which are to be
passed to the method are typically passed on the runtime stack as parameters
to the procedure implementing the method. The procedure call can be seen as
an optimisation of the message technique; the runtime stack is used instead
of creating a new message in the heap and then filling the various slots of the
message. The interpretation of message passing as procedure call removes the
indirection of the selector-based message passing technique and method tables
can be compiled down into a simpler form.

1.4 Pure and Impure Languages

A distinction is often made between so-called pure and impure object-oriented
languages. Pure object-oriented languages contain only constructs that directly
relate to object orientation. Every procedure must be written as a method and
associated with an object. Programs in pure languages are always expressed in
terms of object-oriented constructs. Impure languages (which are sometimes
called hybrid languages), on the other hand, are typically composed of an
object-oriented component and a procedural one. Impure languages allow the
programmer to write object-oriented programs or procedural ones.



8 1. Introduction

Smalltalk [34], Java [47], Eiffel [53] and Sather [60, 61] are examples of pure
object-oriented languages. C++ [75, 74], CLOS [65] and Ada [8] are examples
of impure languages.

Impure languages are very often designed by taking a procedural program-
ming language and adding a set of constructs that support object-oriented
programming. This was the case, for example, in the transition from the 1983
Ada standard [12] to the Ada95 [8] version. In addition to general modifications
to the language, object-oriented extensions were added so that Ada95 became
an impure language. C++ is another example of such an embedding (its history
is described in [73]). Essentially, it was felt that the C language was in need of
modification and improvement, so object-oriented features were added, as were
features intended to increase the type safety of C and features for the represen-
tation of constants. The language grew in popularity and the object-oriented
features were increased and/or improved. For example, single inheritance in
the first version became multiple inheritance in the second; protected class
components were similarly introduced, as was the distinction between public,
protected and private superclasses. Object-oriented exceptions were introduced
at the same time. Other languages, including Pascal and COBOL, have been
enriched with object-oriented extensions.

The trend towards object-orientation has also been reflected in the develop-
ment of languages like Oberon [56]. There is an object-oriented component in
Oberon, but it does not look much like that in C++ or Smalltalk. Oberon relies
upon a module system to provide modularity and concepts such as abstract
classes and object-specific methods are also lacking; Oberon employs special
handler procedures and record inclusion in its object-oriented component.

A similarly unusual language is represented by JavaScript [32], a language
for programming World-Wide Web browsers. JavaScript is an interpreted rel-
ative of C but includes a form of prototype mechanism. Prototype objects can
be defined and copied in JavaScript; a variety of operations can also be per-
formed on the objects which it supports. The objects supported by JavaScript
are, however, really just associative tables, a fact which does not reduce the
utility of the language.

Pure object-oriented languages, however, are typically designed from scratch
or based on designs for other object-oriented languages. Smalltalk was partially
based upon Simula67 [31], but introduced many new features. Beta [43] is also
based on Simula67, but clearly displays the wisdom of many years exposure
to object-oriented programming. Sather [60, 61] is based upon Eiffel [53], a
language which was designed from scratch to be an effective and reliable tool
for software engineering.

Given the fact that there are languages which emphasise procedural aspects
more than object-oriented ones and that there are languages at the opposite



1.5 Mixed-Paradigm Languages 9

end of the object-orientation spectrum, as well as those in the middle of the two
extremes, it seems fairer to think of object-orientation as being a continuous
property. Typically, object-orientation is thought of as being an all or nothing
property. Inspection of the literature shows that this black or white view is
inappropriate. It is far better, when comparing the claims for object orientation
made of two languages, to consider the degree to which they are object oriented.
Smalltalk and Java, at the one end, exhibit a high degree of object orientation,
while Oberon, at the other, exhibits a relatively low degree.

As we move from one end of the object-orientation spectrum to the other,
properties of the languages will change. For example, in impure languages,
procedure call tends to replace message passing; inheritance might be replaced
by some other concept and encapsulation might be supported by some other
mechanism (e.g., packages in Ada). At the other end, the properties of object-
oriented languages that are taken as being definitional are present in clearer
forms.

1.5 Mixed-Paradigm Languages

It is possible, although currently very rare, for the object-oriented component
to be embedded into a functional, logic or constraint-based context. Languages
which are based upon such a mixture are often called mixed-paradigm lan-
guages. We will have nothing to say about these languages in this book.

1.6 Organisation of this Book

Chapters 2 to 7 are concerned with the class-based paradigm. This paradigm
is the one most frequently encountered in everyday programming. Languages
such as Smalltalk, C++, Java and Ada are based upon the concepts of class
and instance.

Chapter 2 introduces the basics of class-based programming. The primary
concepts—encapsulation, inheritance, polymorphism and dynamic binding—
are all introduced. The concepts of class and instance are presented, explained
and related to the concept of the type. This connection is often to be found
in languages of this kind, notably C++, Java, Ada, CLOS and Dylan. The
discussion of the concept of instance includes consideration of what instances
are and what they contain. As part of this, the concept of the method is also
introduced. The idea that slots can have different levels of visibility is also



10 1. Introduction

introduced and discussed, as are the alternative ways in which slots can be
accessed. Class and instances variables are also considered.

In Chapter 2, the concept of inheritance in the form of single, linear, or sim-
ple inheritance is also considered and some of the implications are drawn. The
simpler form of inheritance is the best starting point for discussing inheritance;
inheritance can be viewed in many ways and it interacts with other concepts,
sometimes in a very subtle fashion. Next, the concept of the abstract class is
introduced. Its use is summarised and is related to inheritance. Iterators and
part objects complete the chapter.

Next, in Chapter 3, an alternative, though rarer, but still important ap-
proach is discussed. This alternative is the prototype-based approach as ex-
emplified by the SELF, Omega and Kevo languages. In these languages, the
concepts of copying and modifying objects are employed. This typically leads
to languages and systems that support exploratory programming and persis-
tent storage, and to languages that lack strong type disciplines. However, the
Omega language shows extremely well that strong types can easily co-exist
with prototypes. Unfortunately, at the time of writing, prototype-based lan-
guages have not received the attention that class-based ones have. Delegation
is introduced and explained. The Actor family of languages is also presented
briefly.

Inheritance is the topic covered in Chapter 4. The chapter begins with the
single inheritance concept introduced in Chapter 2 and examines its limitata-
tions. The relationship between inheritance and subtyping is discussed; this
is a natural topic, given the frequent interpretation of classes as types. Code
sharing and interface inheritance are considered, followed by consideration of
how to invoke methods defined in classes higher in the inheritance structure.
The controversial topic of multiple inheritance is then introduced, motivated
and explained. A number of popular interpretations of multiple inheritance are
considered:

— graph inheritance;

— tree inheritance;

— linearised inheritance;
— mixin inheritance.

The interactions between multiple inheritance and object component access
is considered in detail. Some alternatives to multiple inheritance are examined.
Inheritance is then contrasted with delegation and aggregation, the primary
competing approaches to inheritance.

Chapter 5 deals with methods. Methods implement the operations asso-
ciated with objects. In the class-based approach, they are usually defined as



1.6 Organisation of this Book 11

part of the definition of classes. The relationship between objects and methods
is considered first, and then the role of constructor functions. The concept of
higher-order functions and their relationship to methods is next considered;
many languages, in particular the so-called “pure” languages like Eiffel and
Java, do not permit higher-order functions, but permit other techniques. In
the section on higher-order methods, we consider those techniques and dis-
cuss the flexible approach based on blocks adopted in Smalltalk and SELF;
this approach simplifies the definition of the language because many control
structures can be implemented directly as blocks. Next, the interaction be-
tween methods and inheritance is considered again, and the method-combining
structures in FLAVORS and CLOS are explained. Static and dynamic method
binding constitute the next topic. Dynamic method binding is often considered
the binding strategy most appropriate to object-oriented programming. The
differences between the two binding techniques are discussed, as are their im-
plications. The implementations of dynamic binding used in Smalltalk and in
C++ are discussed.

There follow two chapters on the concept of type as it relates to class-
based languages. The first is concerned with matters such as the overloading
and redefinition of methods. Inheritance, particularly in connection with the
classes-as-types interpretation, interacts with typing; in particular, it implies
the operation called downcasting which we discuss in some detail. Next, we
consider the problem of determining the type of an object. Some authors, for
example Stroustrup [73], argue that runtime type tagging is to be avoided, in
which case the user must either abandon hope or introduce their own scheme
for tagging. I argue that runtime type determination mechanisms that do not
require the introduction of type functions and predicates are to be preferred.

It is frequently stated that polymorphism is a central property of any object-
oriented programming language. Overloading, downcasting and redefinition are
characteristics of object-oriented polymorphism. These issues are next consid-
ered, as is the concept of a generic object. The concept of the root class is
introduced and discussed as a way of introducing a simple and powerful form
of polymorphism. The concept of variance, often considered to be one of the
more complex and obscure in object-oriented programming languages, is dis-
cussed and, I hope, demystified.

The second chapter on types is concerned with a ragbag of issues, including;:

— types and implementations;
— classes and type operations.

As part of the discussion, the idea that a class can have multiple implementa-
tions is explored in a little detail.



12 1. Introduction

The penultimate chapter, Chapter 8, is a description of C#, a new language
developed for Microsoft. The form of this chapter is slightly different because
those features of the language that relate to object orientation are described and
compared with features in C++ and Java, the languages that it most closely
resembles. C# introduces some new concepts into object-oriented languages
and refines some others. The object of the chapter is to show how the new
language has developed from older concepts, a task made easier because C#’s
design is fairly conservative.

The final chapter (Chapter 9) contains a brief description of some of the
features of BeCecil, a language defined as a core upon which extensions can be
defined. BeCecil, as its name suggests, is related to Cecil, and both languages
are based on the concepts of prototypes and multi-methods. BeCecil is included
because it is the product of reductionist thinking.

EXERCISES

1.1. List the three properties that characterise object-oriented program-
ming languages.

1.2. Name the two main approaches to object-oriented programming lan-
guage design.

1.3. Explain the relationship between objects, methods and messages.

1.4. Explain how pure and impure object-oriented languages differ.



2

Class Fundamentals

2.1 Introduction

The very first object-oriented programming languages, Simula67 [9, 31] and
Smalltalk [34], were based on the concepts of class and instance. The majority
of the object-oriented languages now in use are based upon these two concepts.
Indeed, we can correctly refer to these languages as promoting class-based
programming, a style of program construction based upon the idea that the
programmer first defines a collection of classes and instantiates those classes
when required. Classes represent the primary concepts employed in the program
and instances represent particular exemplars of those concepts. The concept of
the class is very similar to that of the abstract data type, and the two are
frequently identified; when constructing a class-based program, the program-
mer identifies complex (abstract) data types and uses them to structure the
program. The identification of classes with types implies that class-based lan-
guages have extensible type systems or, when dynamically typed like Smalltalk
or Lisp, possess extensible structuring methods.

Many, if not the majority of object-oriented languages now in use are based
upon the class concept. This chapter will discuss the concepts of class and
instance and will explain how they are related. In addition, it will address the
issue of inheritance, a relationship between classes, which gives this style of pro-
gramming its considerable power. As will be seen, inheritance is a somewhat
controversial issue, and I will adopt the simplest interpretation in order to pro-
vide the reader with sufficient background to continue with the remainder of the



14 2. Class Fundamentals

book. The aim of this chapter is to introduce the reader to many of the major
concepts of object-oriented languages and so, in addition to the class/instance
difference, other issues of importance will be considered, in particular:

— the correspondence between classes and abstract data types;
— information hiding (encapsulation);

— the internal structure of classes;

— restricting what is visible to descendent classes.

Many of the concepts discussed at a relatively superficial level in this chapter
will be considered in greater detail in subsequent chapters.

Object-oriented programming languages, or, more correctly, class-based lan-
guages, are claimed to have the following exceptional properties:

— encapsulation;

— inheritance;

— polymorphism; and
— dynamic binding.

The class, in class-based programming, is the key to these claims. The con-
cept of the class is that of a device which collects together data and procedural
elements into an entity which presents a well-defined interface to its users. As
such, it hides the details of its implementation. This is encapsulation. In fact,
because classes can be said to act as templates, they can be instantiated to
create objects (the objects in this kind of programming are the instances of
classes, not classes themselves); the internal structure of objects is invisible to
the computational processes which manipulate them. An interface for the class
is defined; the interface makes visible, or exposes, part of the class’s structure.

If encapsulation were the entire story, classes would not be very interesting
because they would be little more than instantiable modules. What makes them
more than modules is the inheritance relation which holds between classes. In-
heritance makes families out of individual classes. When one class inherits from
another, they share some of their internal structure. If class C inherits from
class S, C' is said to be a subclass of .S, while S is said to be the superclass of
C. In such a case, the data and operations defined for S will be accessible to
C. This means that there is a kind of code sharing between the sub- and su-
perclass. A superclass can have more than one subclass. Each subclass inherits
components from the superclass. Inheritance allows a class to be extended by
the addition of new internal elements, some of which will be made visible to
users as its interface.



2.1 Introduction 15

Next, there is polymorphism. This term means literally “many formed” and
refers to the property of object-oriented languages that they permit routines to
have more than one type of assignment. In languages like Pascal, it is required
that a routine be associated with a unique set of input specifications; if the
routine is a function, there must be a unique return type associated with it.
A polymorphic routine can be associated with many input and output specifi-
cations. Class-based programming makes this possible by attaching procedural
elements, called methods, to class definitions and allows methods with the same
name to be present in different classes. This is a technical subject which is dealt
with in more detail in Chapter 5, below.

Finally, there is dynamic binding. This is an approach to the invocation of
the operations defined in a class. Dynamic binding basically means that the op-
eration that is actually called is the one associated with the object itself and not
with the type of the variable or pointer which refers to it. In essence, dynamic
binding means that the operation the programmer expects to be performed is
the one that is actually performed. Thus, when an object of one kind is passed
into a procedure, the parameter to which it is bound might not reflect the full
set of properties of the object that is being passed. Within the procedure, an
operation might be called. This operation will be common to both the declared
kind of object and the actual one. However, there might be differences between
the formal and the actual parameter in terms of the details of the operation
that is to be called. If the operation associated with the formal parameter is
called, anomalous behaviour might be exhibited by the procedure. It is also
counter-intuitive for an object to perform an operation that is not associated
with it. Dynamic dispatch can only be completely understood when inheritance
and polymorphism have been comprehended.

The next section (Section 2.2) introduces the concept of the class. The class
as a form of template, a form of structure and a form of type definition are all
introduced. Classes are also related to abstract data types. Next, the concept of
the instance is presented (Section 2.3). Instances in class-based programming
are the objects with which programs actually deal; they do not manipulate
classes, but, instead, the instances of classes. The components of objects (in-
stances), their slots and methods are defined and motivated (Section 2.4); the
ways in which they can be accessed are then discussed (Section 2.5). If slots
and methods can be accessed, they must be visible. However, not all slots and
not all methods should be visible to everyone—this would violate the assump-
tions about encapsulation made about classes-so we discuss how visibility and
accessibility can be controlled (Section 2.6). The process of instance creation is
discussed in Section 2.7. Following on from this consideration of instances, in-
heritance is discussed in Section 2.8. The form of inheritance which is discussed
is the simple form, often called single inheritance for it imposes the constraint



16 2. Class Fundamentals

that each class is permitted only to have one superclass. Section 2.9 introduces
the concepts of abstract classes and methods. Iterators (a high-level method
for writing loops that does not violate encapsulation) are the subject of Section
2.10. Part objects, an issue raised by the Beta language [43, 50, 51], are the
subject of Section 2.11.

2.2 Classes

In this section, we will consider the concept of the class. The class is central to
class-based programming languages and serves as a mechanism for defining sets
of objects, together with operations to manipulate them. Objects are instances
of a concept; a class defines a concept of some kind. For example, a class can
represent a linked list, a window on a display, a file, a page of text or a piece
of furniture. Classes act as encapsulating mechanisms that are instantiated to
create instances; this is the way in which classes resemble templates. Classes
collect the definition of data and operations. The data definition states what the
data elements local to an instance will be (some languages allow more than this
to be specified, but we leave such issues until later); the operation definitions
specify the operations that can be performed on the data elements defined for
the class. The operations also define (part of) an interface for manipulating the
entities the class represents. A consequence of viewing classes as templates is
that the process of instantiation implies the sharing of code among the instances
of a class.

It is essential first to define classes so that they can be instantiated. In class-
based programming, it is usual to manipulate the results of class instantiation,
not classes themselves. Although the approach we take in this section is based
upon the relationship between classes and types, the reader should keep in
mind the idea that a class is a kind of template.

In class-based programming, the concept of the class is associated with
a number of different, but not always competing, interpretations. The term
“class” can variously be interpreted as:

— a set of objects;

a program structure or module;

a factory-like entity which creates objects; and
— a data type.

The first interpretation associates the term “class” with a collection of re-
lated entities. The entities have properties or behaviours in common and can



2.2 Classes 17

be regarded as being of the same class. Thus, a class defines properties or
operations (or both) that are common to a collection of objects. The class is
a construct that defines collections of objects in terms of the properties they
must have. The objects thus described are manipulated by programs and exist
at runtime only.

The second interpretation considers a class to be a kind of module. Modules
encapsulate types, data (variables) and operations (procedures and functions);
data defined within a module can remain invisible outside the module and an
explicit operation must be performed for parts of the module’s internals to be
made visible to the outside world. Modules are usually defined and included
within a program; modules import and export other modules. An imported
module provides data types, variables and routines to the importing module;
an exporting module provides types, variables and routines to modules which
import it. In some languages, modules are defined and included in a program; in
others, they can be instantiated (Ada packages are an example of instantiable
modules). If a module can be instantiated, many copies of the module exist at
runtime within a single program.

Classes are similar to modules in that they export some entities (often
operations) and they can be made to import others. Modules hide their internal
details and so do classes; in both cases, for a component to be made visible
to the outside world, an explicit operation must be performed. This view of
the class considers it to be an instantiable module and considers objects to be
instances of the same modular object. Just as every instance of an instantiable
module has a similar structure, so too do the instances of a class.

The third interpretation is the factory object concept. This is an interesting
interpretation because it emphasises the dynamic nature of object-oriented
languages. Here, the class is seen as a device that can create objects. The
objects created by a class all have the same properties and can perform the
same operations. The definition of the class contains a description of what the
objects produced by the class will look like and how they will behave. When
an object of a particular kind is required in a program, the relevant factory is
used to produce it. Different factories produce different objects.

The factory object concept is quite interesting because it opens the way to
describing objects in a parametric fashion. That is, the factory object can allow
the creation process to accept parameters when it creates a new object. The
parameters define the details of the object that is produced; this leads to a more
flexible view of how objects are created and what they are. The other interpre-
tations of the term “class” all imply that objects will have the same structure
and behaviour; the factory interpretation implies that objects produced by the
same class (or falling within the same class) can have slightly different specifi-
cations. Factory objects are used fairly extensively in the Java library.



18 2. Class Fundamentals

Finally, the concept of the class is often identified with the concept of an
abstract, or encapsulated type [49]. Classes in many languages, for example
C++, Java, Ada and Dylan, are considered to be types. Languages treating
classes as types allow the programmer to declare variables with a type that is
a class; in some languages, and in some contexts, such variable declarations,
when executed, cause the class to be instantiated (see Section 2.3 below).

Thus, in one of these languages, given a class, C, and a variable, V, the
following is legal:

v : C

This declares the variable, V, to be of type C. In the particular case of a class-
based language that identifies types and classes, this declaration states that
variable V has type C. We consider languages permitting such declarations be-
cause they are frequently encountered.

If a variable can be declared to be of a class type (a type which is defined
by a class), what is a class?

A class defines a collection (a set in practical terms) of entities with the
same internal structure and which behave in the same way; in addition, a
class defines an external appearance (interface) for the objects that fall within
the class. The class defines what is common to the elements of the collection.
The objects are all composed of the same data elements and have the same
behaviour. We can equally think of a class as defining a set of properties and
a set of operations. Given these definitions, similarities between classes and
abstract data types can be seen.

An abstract data type is sometimes called an encapsulated data type because
the details of its implementation are hidden from the user. Similarly, once
a class has been defined, its external interface is all that should be used in
determining the properties of the class. The external interface of a class is
almost always represented by a collection of operations over that class and some
of its properties. The external interface tells the user of the visible properties
of the class and what operations are defined over it. The internal details of a
class can consist of properties and operations, but they are not required for
the user to be able to understand what the class represents and how it can be
treated. The process of hiding the internal details (the implementation details)
of a class is called encapsulation.

We could, for example, define a complex number type. We can define it in
terms of two variables of floating point type. These numeric variables represent
the real and the imaginary components of the number. In addition, we would
define operations over complex numbers to represent such things as addition,
multiplication, and so on. We might also want to include two operations, one to
convert the representation to polar co—ordinates and one to convert from polar



2.2 Classes 19

co—ordinates. Naturally, the latter will be the identity if we opt to represent
complex numbers as pairs of reals; if we had chosen to represent them as a
radius and an angle, the conversion operation to polar co—ordinates would be
the identity. That we would include both conversion operations is an important
point, the reason for which is that we want to hide the way in which we choose
to represent complex numbers. In a similar fashion, we could represent a stack
type as an encapsulated or abstract data type (or as a class). When building a
stack type, we must provide operations to push and pop elements, test whether
the stack is empty and so on. We have to decide how we want to represent
the structure to hold the stacks elements. We can decide to represent this as
a (singly) linked list or as a vector. If we know that the stack will have a
maximum number of elements we might choose the vector representation; if
we have no such knowledge, the list is probably safer. Once the representation
decision has been made, we can then define the details of the operations we
have defined for our type. We also need to add one other operation to the set
of operations that we have defined for the class: we need to define an operation
for creating stacks for us (this is called a constructor function).

In both cases, we do not want the user to know how we represented complex
numbers or stacks. The internal details do not matter to them. As long as
the class behaves in the correct ways, and as long as we can construct an
object of the appropriate type, the details of how it works internally should be
of no interest to us. (Consider, for example, how floating point numbers are
represented. In some cases, the IEEE standard is adopted, in others it is not.
As far as the user is concerned, as long as the operations over floating point
numbers work as expected, their internal representation is of no relevance.)

We have described exactly what it is to be a class in a class-based language
that considers classes to be types. The internal details of a class are hidden
from the user (principle of encapsulation) and an interface, typically expressed
in terms of a constructor and a set of operations is available for use. The con-
structor and operations defined by the class constitute most of the information
available to the user in order to determine what a class represents and how it
should operate (they need this information in order to use the class).

The process of definition of a class amounts to the identification of a new
concept having a particular behaviour. For example, if we defined a highway
simulation, we would want a class (type) to represent an automobile. This is
because automobiles represent an important class of road user. Equally, we
might want a class to represent trucks of various kinds as well as buses. We
would define classes for these kinds of vehicle because the vehicle types are
important and distinct concepts in such a simulation. Now, each of these classes
have properties and behaviours in common and they have properties that differ
from each other. For example, most vehicles have an engine size, and each



20 2. Class Fundamentals

vehicle has a current speed property; however, automobiles tend to carry fewer
than four passengers while buses can carry fifty or sixty and trucks (depending
upon the behaviour of the driver!) tend only to carry a driver. Engine size,
current speed, number of passengers, and number of wheels, are all properties
of the vehicle class. An operation could be defined to compute the vehicle’s
current position on the road for any one of these classes (in fact, we would
define it in a parent class and define the other classes in terms of that parent—
this involves inheritance, a process which we will describe below in Section 2.8).
Not all of the details of each type of vehicle would be available for inspection;
we might want to encode the make of the vehicle as an integer or we could
have some complex structure to represent the destination or the cargo that it
carries.

In the automobile simulation, we define different kinds of class to define
the different types of vehicle. Each class represents properties of the thing it
represents and it also represents operations that can be performed on that
object. An operation to set the vehicles speed might be one such operation;
another operation would return the licence plate number, while another would
return the year of manufacture. The properties and operations defined for each
class are appropriate for the object the class is intended to represent. As we
saw in the case of complex numbers, classes can denote conceptual entities as
well as physical ones.

In order to construct a realistic simulation of a highway, we would want lots
of instances of the automobile class. This is extremely important.

2.3 Instances

When we declare an integer variable in a program, we are creating a variable to
contain an instance of the type integer. There can be many integer variables in
a program, each with a different name and each containing a different instance
of the integer type. What these variables have in common is that they hold
instances of that type.

We noted in the last section that if we wanted to build a highway simulation,
we would need to define classes for each of the kinds of vehicle we wanted to
include, and, most importantly, we would need to define lots of instances of the
classes that represent vehicles. The instances of the classes are similar to the
integer values we described in the previous paragraph. Just as we manipulate
instances of the integer type, we manipulate, at runtime, instances of classes.
A class itself serves as the definition for a collection of instances, but it cannot
usually be manipulated at runtime. In class-based programming languages like



2.3 Instances 21

c {defination — cannot
ass manipulate at runtime)
instances
@ L] @ (runtime entities)

Figure 2.1 A class and its instances.

Java and FKiffel, it is the instances of classes that are manipulated at runtime.
Thus, in the highway simulation, instances of the various automobile classes
must be created in order to run the program.

In class-based programming, the term “object” properly refers to the in-
stances of classes. However, because so much effort is expended in defining the
classes in the first place, the term “object” is often used (incorrectly) to re-
fer to class definitions. A class is a definition of what is common to all of its
instances. The instances of a class are objects which have an identity and a
lifetime within the execution of the program. Because of the way classes are
defined, instances almost always have variables and constants defined within
them that allow different values to be stored at runtime. Thus, two instances
can differ in the values that are stored within them. It is also very common
for the variables and constants to be accessed and updated at runtime. A class
and (some of) its instances is depicted in Figure 2.1.

The update of variables is how the state of an object-oriented program is
affected at runtime. The state of an object-oriented program at runtime is or-
ganised in terms of the instances, each instance encapsulating part of the state.
The state represented by one instance is usually distinct from that represented
by another (there are exceptions, but they tend to be rare), so the global (pro-
gram) state can be thought of as being distributed among the various instances
of the classes used by the program.

Instances of classes can be bound to variables and, in some languages, they
can be pointed to. Instances of classes are passed as arguments to procedures
and are returned as results from procedures. It is worth emphasising that in-
stances can be bound, pointed to and passed in and out of procedures. Instances
are, because of this, first-class citizens. Classes serve only as definitions; it is
not possible to bind a class to a variable, nor is it possible to point to a class
or pass one to a procedure.

Above, when we considered abstract data types, we stated that the opera-
tions defined over that type are considered part of the abstract types definition,



22 2. Class Fundamentals

and that, in an identical fashion, operations (called “methods”) are defined in
classes. Methods are used to manipulate the internal state of instances and
to perform transformations, as well as doing the usual things that procedural
entities do. Methods are applied to instances and methods return instances as
results. Methods do mot operate on classes because classes are not, in class-
based programming, first-class citizens.

The creation and manipulation of instances forms the dynamic structure
of a class-based object-oriented programming language. The static structure
is determined by the definitions of classes and the relationships which obtain
between class definitions (inheritance and part-of relations play a particularly
significant role in defining static structure).

With these basic distinctions out of the way, we can move to a more detailed
examination of the concepts of class-based programming languages.

2.4 Slots and Methods

The definition of a class contains the definition of slots. Some slots hold data,
while others refer to pieces of procedural code that implement the operations
defined for the class. The slots that are defined by the class (and their types),
determine what the class’s instances will represent. The operations that are
defined also serve to define the class. For the reason that classes and instances
encapsulate data and operations, it is necessary for the operations to be part
of the definition of the class. A graphical representation is shown in Figure 2.2.

Data slots hold the data that is local to the instances of a class. The
instances are, in the class-based approach, the objects that are handled at

class

— } slots

method

method

Figure 2.2 Slots and methods.



2.5 Slot Access 23

runtime; space is actually allocated for slots in instances, not in classes. The
data in their slots is part of the way in which they represent things. Sometimes
the values in data slots can be changed by programs, while some slots are con-
stants. If we defined a class to represent a stack, for example, instances of the
class would each contain a slot holding the implementation of the stack (either
a vector or a linked list) and might hold a slot pointing to the top of the stack.
This data is hidden inside the instances of the stack class, but is made available
to the operations defined over the stack class (push, pop, top, empty?, etc).

Although most object-oriented languages, and almost all class-based lan-
guages, consider methods to be separate from the slots in an instance, we will
continue to speak as if methods were held in special slots. In class-based lan-
guages, methods are defined as part of the class. Instances have access to the
methods that are defined in their class because of the definitional mechanism.
What is really the case is that methods are shared between instances. However,
it is natural to think of methods as being part of instances, so we will strictly
abuse the terminology in the way stated above. We will, therefore, refer to
“method slots” and “data slots”, where the former refers to slots (notionally)
holding methods, and the latter refers to slots holding data and references to
instances of classes.

It is important for the reader to remember that instances are the objects
that are really manipulated at runtime. Therefore, when we talk of accessing
a class’s slots (as we do in the next section), we are, in fact, talking about
accessing the slots present in an instance of that class. When we talk of a
slot in a class being constant or variable, we will be referring to the runtime
operations that are defined in the class for that slot.

2.5 Slot Access

Slots containing methods are usually considered to be read-only. It only makes
real sense to call a method or to pass it as a parameter; it does not usually make
much sense, in an object-oriented language, to re-define a method at runtime.
One reason for this is that inheritance (see below, Section 2.8) allows methods
to be re-defined in a structured and controlled fashion. Matters are completely
different when data slots are considered.

Data slots can represent variable or constant information. That is, a slot can
be read-only or read-write. Clearly, if a slot is intended to be read-only, it makes
no sense to try to update its value. Some languages allow the programmer to
mark a slot as being constant; others make the distinction in other ways. One
particularly important way is based upon how slots are accessed.



24 2. Class Fundamentals

It seems natural to access a slot in an instance as if it were a variable.
In other words, it makes some sense to allow access to data slots in a direct
fashion. Thus, when we write:

i.s

to access the slot s in instance i, we are in fact writing a direct access to the
slot. When we write:

i.s := exp

we are directly updating the slot s in instance i. In both cases, the internal
structure of the instance is directly accessed and, perhaps, modified. We have
a way to get inside an instance.

When compiled, the slot is an offset to a pointer or a fixed address in the
store. When defining slots, the distinction between a constant and a variable
slot can be made. In Java, for example, a slot can be marked as final, making
it a constant; otherwise, the slot is treated like a variable; C++ allows slots to
be defined as constant.

The direct approach to a slot is simple. It has faults. For example, it allows
direct access to the contents of an instance, thus violating the encapsulation
(visibility) barrier that a class should maintain (instances are automatically
encapsulated by means of the creation process which reveals no internal details
to the user). Direct access to the slots of a class reveals the names of slots
(revelation of methods appears less of a problem, though, but see below).

A second approach, one adopted by CLOS and Dylan, inter alia, is based
upon the idea that slot access should be through the intermediary of reader
and writer functions. In this scheme, when a data slot is defined, additional
functions are defined. If it is intended that values in the slot be readable, a
reader function is defined. Similarly, if it is intended that it should be possible
to update the slots contents, a writer function is defined. In some languages,
if a slot is to be readable and writable, the reader and writer functions can be
combined in a single function called an accessor function. When defined, these
functions are globally accessible (if CLOS permitted nested class definitions,
the visibility of these functions would be restricted to the class in which the
nested class is defined). For example:

slot aslot,
reader: read_aslot;
writer: write_aslot;

defines a slot which is called aslot. This slot has a reader function (called
read_aslot) and a writer function (called write_aslot). The slot is both read-
able and writable. If we wanted the slot to be read-only (a constant slot), we



2.6 Visibility and Accessibility 25

would just define a reader function (and also equip the slot with an initial
value).
If we want to read the value in the slot, we would write:

V := i.read_aslot()
and to update the slot, we would write something like:
i.write_aslot(v)

(Dylan allows the writer function to be written as i.aslot := v.)

The justification of the function-based approach to slot access is that it
de-couples access and update from naming. If a reader function is defined for
a slot, the name of the slot inside the class matters not one iota; what matters
is the name given to the reader function. In the above example, it does not
matter at all what we define the slot’s name to be. We decided to call the slot
aslot, but we could call it slotl, Bill, Joe or dwiddle (it is good practice
for slots to have intelligible names that describe their role). Slot names must
be unique within a class. The name is used internally by the class in order to
allocate slots. What matters to the outside world is that the access functions
are defined and have meaningful mnemonic names.

The use of access and updater functions to read and write slots separates the
names visible outside a classs definition from those that are visible inside (and
to subclasses). This provides valuable additional support for encapsulation in
languages supporting these features.

2.6 Visibility and Accessibility

So far, we have assumed that all the slots in a class are visible to the user.
In particular, we tacitly assumed that all slots were available to subclasses as
part of their explicit definition. The definition of a class is its interface. One
assumption about classes is that they will make visible all the most important
aspects of their interface. This implies not only that their slots remain constant,
but also that all of the “important” slots be visible and accessible to subclasses
as well as to users (quite what “important” means must be left undefined for
it relates to the intension of a class, not its extension).

Some early languages, Smalltalk and LOOPS, for example, as well as some
more recent ones such as SELF, do not make any provision for hiding slots. All
slots in these languages are on equal footing and are all equally visible. Slots
containing methods, typically, must be accessible to all parts of a program
and to all subclasses of the one in which they are defined for the reason that
they must be called or used in the definition of other methods. When the



26 2. Class Fundamentals

language is not of the pure object-oriented variety, it is necessary for methods
to be visible so that they can be called by procedures and functions that are
not attached to any class. Given this basis, data slots are sometimes left as
universally accessible. In an interpreted language like Smalltalk or LOOPS,
data slots are visible because, during exploratory programming, programmers
do not often know which slots to hide.

Under certain circumstances, it is not desirable to allow all slots to be vis-
ible to every program component and to the user. The restriction in visibility
of slots is a natural part of interface design. It is also a natural part of good
design. For example, two methods in a class might call the same operation, the
common operation being another method defined in that same class. This com-
mon operation might not be used elsewhere, so there is little point in making
it visible or accessible to everything. An example of such a method is one that
checks the index to a dynamic array or vector; this method is needed inside the
class by all methods that access the array or vector—it is not required (and
probably makes no sense) outside the class. Another example, this time of a
data slot, is the reference counter on an object stored in a reference-counted
heap. Only the operations to reference and dereference the object need access
the reference counter slot (variable), so hiding the counter in the class appears
to promote a better interface.

class

exterally visible
slots

slots visible only
within class

Figure 2.3 Slots visible and invisible outside a class.

Before continuing, I need to introduce some terminology. A class represents
a program region in which definitions of slots are made. These slots are visible
within the class itself and, should they not be restricted, they are also visible
outside their defining class (see Figure 2.3). I prefer to use the term scope to
refer to the region of a program text in which a variable or function (procedure)
can be accessed; this corresponds to the standard interpretation of the term



2.6 Visibility and Accessibility 27

in the A-calculus and in block-structured languages. Given this distinction, a
slot has a scope within a method defined in the same class (it is global to the
method), but is visible within the definitions at the same level of the class.
Outside the class, the slot can be visible or not; it cannot be in scope until its
name is used in any independent procedure or function. A slot can be wvisible
to another class.

I prefer to use this terminology in order to separate procedural elements
from classes. A class is, typically, a restricted, flat name space, whereas a pro-
cedure tends to involve nesting of declarations. Furthermore, a variable in a
procedure definition is in scope (and hence visible) only within the procedure
in which it is defined and within all procedures defined within that procedure
(unless the variable is hidden by the definition of another variable with the
same name); a global variable is in scope in all procedures defined within the
global scope and in all procedures which are defined within these procedures.
A scoped variable is visible only in a “downward” sense. A slot in a class, un-
less hidden, is visible within its defining class and within all other classes and
procedures unless over-ridden by another (local) definition. In this sense, slots
have a two-dimensional region within which they are accessible or visible to
other entities.

An obvious distinction to make is to define some slots as visible and others as
hidden. CLOS adopts the approach that all slots are accessible; if programmers
want to hide some, they may write code to make this distinction, the code being
included at runtime in the class-processing code.

Even if it is decided to make some slots hidden and some visible, there are
questions that must be asked. In both cases, the question arises as to who can
see the slot. If a slot is visible, to whom is it visible? To all objects? If a slot is
hidden, from whom is it hidden? A visible slot might be visible to everything;
that is, it is exported from the class’s interface and can be accessed by anything
(provided it is not over-ridden). A hidden slot might be visible only to those
entities within the class in which it is defined. Such a slot could not be accessed
outside of its defining class, nor could it be accessed in any classes derived by
specialisation from that defining class.

The C++ and Java approach to visibility is one that allows a relatively fine
control over the visibility of slots. They introduce distinctions between public,
protected and private slots. It is possible to make methods private, as well as
data slots. Furthermore, in C++, it is possible to have a superclass that is
private (the default is a public superclass). The distinction between the three
kinds of visibility are as follows.

A public slot (data or method) is visible to all entities within the class in
which it is defined, as well as in all other classes. For C++, we must add the
possibility that the slot is visible in all routines external to any class and in



28 2. Class Fundamentals

class 1

Al
B1
C1

D1
E1
F1

class 2

(overrides)

Al
B2
cz2

D2

Figure 2.4 Public slot visibility and access.

which the identifier of the slot has not been over-ridden by a local definition
(e.g., as in Figure 2.4). For C++, it is also necessary to add the constraint that
visibility is restricted to the file in which the slot is defined. For Java, there are
no procedures or other constructs external to classes and Java classes exist in
name spaces, not files; these facts have the implication that the visibility rule
for Java amounts to the first sentence of this paragraph. To an approximation,
a public data slot can be referenced, accessed and updated anywhere in the
program; a public method slot can be referenced and called anywhere in the
program.

A private slot (data or method) is only visible within the class in which it
is defined. A private slot can be referenced (and called), accessed and updated
(if it is a data slot) by methods local to the class in which the slot is defined; it
can be stored in any container object defined in the class. Private slots are also
visible in the sense of variable scope in all classes that are defined locally to the
class in which the slot is defined. Private slots cannot be seen in classes that are
external to the one in which they are defined. When a C++ class declares its



2.6 Visibility and Accessibility 29

superclass to be private, all public and protected slots of the superclass become
private slots of the subclass; the default is for superclasses to be public, in which
case their public slots become public slots of the subclass.

There is a third distinction made in these languages. Some slots can be
declared to be protected. A protected slot is visible within the class in which it
is defined (and in all locally defined classes) and it is visible within all subclasses
(and their locally defined classes) of its defining class. It is not visible anywhere
else. A protected data slot is one that can be referenced, accessed or updated
within its defining class and within all of the subclasses of its defining class. A
protected method slot is one that can be referenced and called within the class
in which it is defined (and its locally defined classes) and within all subclasses
(and their locally defined classes) of its defining class.

A completely different scheme is adopted by Eiffel. Here, a distinction is
made between those classes in which particular slots can be inherited. Slots
in Eiffel are called features; the term refers to data and to method slots. The
visibility of features can be stated either in an export clause or in the definition
of the feature in the defining class. An export clause takes the form of a list of
feature references annotated with a visibility constraint. For example:

export
{ANY} £, g;
{NONE} x;
{D} h

is such a feature list. Each line defines the visibility of the variables that appear
to the right of the entity named between braces. With the exception of the entity
named NONE, each entity mentioned between the braces is a class. The export
list says that f and g are visible to class ANY and to all of its descendants.
It also says that feature h is visible to class D and to all of its descendants.
Therefore, f and g are visible to all classes because ANY is the root of all classes
in Eiffel (it is a pre-defined class). The feature named x, though, is visible to
no other classes; the specification of NONE makes the feature private to the
class in which it is defined.

Eiffel also allows visibility specifications to be made on feature definitions:

feature {A}
i : INTEGER

This states that i is visible to class A and all of its descendants.

It should be clear that there are interactions between inheritance and visibil-
ity. The standard rule applies for inheritance: unless over-ridden in a subclass,
all visible definitions in the superclass are carried over into the subclass. For
example (this example is taken from [53], p. 99), if we define class B as:



30 2. Class Fundamentals

class B
feature
x, y: INTEGER
feature {A}
f, g, h: INTEGER;
end

and class C as:

class C inherit B
export
{D} x;
{ANY} f;
{NONE} g;
end

end

The features of the subclass, C, have the following status. Feature y is visible
to all classes. Feature h is visible to class A and all of its subclasses. In class
C, these two features retain the same status they had in class B. Meanwhile,
in C, x is now available to D and all of its subclasses, and f is visible in all
classes, while g is now private to C. This means that the status of x, f and g
has changed. It is important to remember that the status has changed with
respect to C, not to B; in B, their status is as defined in that class. When we
have an instance of B, the features defined in B have the status that is defined
there; when we have an instance of class C, the features that are defined in
that class have the status defined there. Consequently, we can access the g in
instances of B from any class we care, but we cannot access the g in instances
of C. If we attempt to access x from an object that is not an instance of D, we
can do it without error if the x is in an instance of B, but access in an instance
of C will be blocked (it will cause a compile-time error). It can be seen that
Eiffel allows classes to inherit features which are public and then to make them
wholly private, but on a selective basis, not, as in C++, on a per-class basis.

A second issue, related to visibility, is how a slot is allocated. There are two
main choices:

— the slot is allocated in each instance of the class;
— the slot is allocated once and is shared by all instances of the class.

This distinction is made in Smalltalk, LOOPS, CLOS, C++ and Java; the slot
might be hidden or public, but can be allocated in these ways. A third way is
for there to be no allocation and a per-program specific mechanism is supplied
by the programmer; this mechanism is called a wvirtual slot in Dylan. The Dylan
virtual slot is included so that other mechanisms can provide what look like



2.7 Instance Creation 31

slots: a read-only slot might be implemented as an input side of a stream or
pipe, for example.

The distinction made by Smalltalk, LOOPS, CLOS, C++ and Java, as well
as Dylan, is between the way in which a slot is allocated, no matter what
its visibility constraints are. The distinction, using Smalltalk terminology, is
between class and instance variables. A class variable is instantiated once and
is shared by all instances of a class. The instances are able to update the
variable’s value, as well as reading it. An instance variable is allocated for each
instance of the class; it is not shared between instances. In C++ and Java,
the default is for slots to be allocated on a per-instance basis. Hence, in these
languages, instance variables are the default. If a slot is to be defined once for
all instances, it must be allocated as a static (own) variable in these languages;
such slots can be hidden or public.

Class variables require runtime storage to be allocated with each class.
They also allow instances to update their values. A class variable is a common
runtime variable whose scope can be restricted.

2.7 Instance Creation

A class is of little use unless it can be instantiated. Instantiation is necessary
in order to produce the objects which, at runtime, are the basis of computa-
tion. Instantiation allows independent entities of a given type to be created.
Slight differences can exist between instances of the same class. Two instances
of a class representing the application of a binary arithmetic operator to its
arguments can differ in the following ways:

— one might represent a multiplication, the other an addition;

— one might represent a multiplication of a variable by a constant, the other
an addition of two variables.

If we have instances of the binary arithmetic operator application class that
both represent multiplications, they can differ in the following sense:

— one might be the multiplication of two variables, the other the multiplication
of a variable by a scalar constant.

Instances can differ slightly or to a considerable extent. Imagine that we are
building an object-oriented program to process data about families (say for a
census or for a food store). People can differ in their height, for example, by
considerable amounts; preferences can vary wildly. One person’s favourite food
might be beef steak, while another might prefer lemon sorbet to anything else



32 2. Class Fundamentals

in the world. However, people all have in common a set of basic properties.
A class defining People would capture these commonalities, but it would also
leave room to represent the differences between people.

In a program, instances of a class all share a common structure and a
common set of properties. In addition, they all share the same set of methods.
By setting the values in one instance in one way, we can make it differ from all
other instances of that same class: this is the essence of parameterisation, an
extremely important property of the concept of an instance.

One way in which instances can be created, a way in which the structure
of the class is respected, is to arrange for there to be a “master object”. The
master object resembles a class in the sense that it defines the structure of its
instances and defines the methods which apply to its instances. It defines the
slots and methods that are to form the objects. When an instance of the master
object is required, the master object is simply copied. The way in which the
copy is performed depends upon what is required. There are two choices:

— shallow copy;
— deep copy.

Under shallow copy, the container is copied and its contents are shared; under
deep copy, the container is copied and the contents are copied and assigned to
the correct place in the copied master object. Since methods are usually imple-
mented as pointers either to special method-representing or method-handling
objects or to the entry point of the method code, the decision as to whether a
deep or shallow copy is performed is irrelevant. I focus, therefore, on data slots.

When a master object is shallow copied, only the container structure is
replicated. The contents of the container object are shared between all copies.
Thus, when a change is made to the master object, say a new value is assigned
to a data slot, that change will be seen by all copies of the master objects.
An object can be copied so that it exactly replicates the structure and content
of its master object; the object (instance) can then be updated to introduce
differences. If, on the other hand, the master object is deep copied, the container
and the contents are copied. When a change is made to the master object, the
copies are unaffected and do not see the change.

The master object approach underpins object-oriented programming based
on prototypes (see Chapter 3 for more details). It also underpins another ap-
proach to object-oriented programming, one that is far less commonly encoun-
tered. This rare approach considers objects to be, in effect, instantiable modules
which present well-defined interfaces. The instantiable module approach suffers
from inflexibility and is not often encountered in the mainstream. Prototype-
based programming, on the other hand, is an exciting and relatively poorly
explored area.



2.7 Instance Creation 33

The most common approach to object-oriented programming by far is
that which makes a distinction between classes and instances. The instance-
producing process is called instantiation. There are various approaches to in-
stantiation, depending upon the particularities of the language. Languages like
C++ can instantiate objects on the runtime stack or in the heap and the lan-
guage provides constructs for instantiating classes that reflects where they are
to be created. In other languages, particularly those in the LISP and Smalltalk
families, instance creation is performed by a single, unified mechanism. What-
ever the decisions made about where instances are created, the instantiation
mechanism works by using the class as a structural template which is used to
allocate the slots and methods that are to appear in the instance. In most class-
based languages, instances have an internal structure that reflects the structure
of their class. Thus, the process of creating an instance remains fundamentally
the same despite constraints on where instances are allocated.

In C++, given that C is a class and v a variable, a legal way to create an
instance of C is:

C v;

In a procedure, the instance would be allocated on the stack. The variable v
would be taken to be a variable in the ordinary way, so if v1 is another variable
of type C, the assignment v := v1 is quite legal and should (in C++ there are
factors that can prevent this) perform the assignment of v1’s instance of C to
v. Note that the variable v is not a pointer to an instance; the entire instance
is allocated on the stack when the block containing the declaration is entered.
If we wanted a pointer to an instance of C, we would have to write:

C *v;

V := new C;

where new is an instance-creating primitive which returns a pointer to a heap-
allocated instance.

It is all very well to create instances of classes, but without the ability to
set at least some of their slots to specific values, instantiation is a blunted tool.
Thus, again in C4++, we could define a stack-allocated instance of C by:

C v(99, “‘foo’’);

which instantiates v to be an instance of C, but, this time, two of v’s slots are
initialised to the integer 99 and to the string “foo”. In C++, as in many other
languages, it is possible to parameterise the declaration of a variable so that
values can be passed into the instance to initialise some or all of its slots.

In CLOS and related languages, there is an equal control over the creation of
instances, and values can be passed to instances for slot initialisation. However,
unlike many languages, in CLOS and other LISP-related languages (Dylan



34 2. Class Fundamentals

being one), the language provides an instance-creation function. This function
typically takes, as its first parameter, the name of the class to be instantiated.
It also takes a variable number of parameters, each one supplying a value to
be used to instantiate a slot.

In CLOS and related languages, all instances are allocated in the heap, so
a single instance-creating mechanism can be supplied; in languages like C++,
Java and Eiffel which allow instances to be created on the local stack or in the
heap, a mechanism for each storage area must be provided. Each operator must
allow for the creation of parameterised instances.

2.8 Inheritance
2.8.1 Introduction

Class-based programming is powerful. It encapsulates data and procedures into
units which can then be instantiated. Class-based programming is very often
associated with inheritance or the ability of one class to extend another. Inher-
itance refers to the fact that the definition of a new class can assume or rely
upon the existence of another definition; alternatively, inheritance makes a pre-
viously defined structure available for incorporation in a new one. Alternatively,
if one class inherits from another, the inheriting class specialises a class which
is more general. The definition of classes via inheritance involves the construc-
tion of definitions that are increasingly specialised. A final interpretation of the
inheritance relation is that it enables subtypes to be produced given a defini-
tion of a supertype. The first definition given above, a highly pragmatic one,
implies that inheritance is a method for code sharing. The second definition
implies a logical relationship between classes (specialisation/generalisation),
while the last implies a type-based account. All three of these interpretations
are acceptable, but the code sharing one should not be mixed with the others.

In terms of the organisation of classes, inheritance induces an organisation
upon them. This organisation is extremely important to class-based program-
ming and it forms the subject of this section. Here, we will tend to think in
terms of specialisation/generalisation and sub/super types.

The reader will probably have encountered the concept of multiple inheri-
tance. This is a complex and controversial subject. Consequently, I focus here
on single inheritance, the form found in Smalltalk, Java, FLAVORS, LOOPS,
Beta and Sather; in a later chapter (Chapter 4), I will consider multiple inher-
itance.



2.8 Inheritance 35

2.8.2 Definition of Inheritance

The term “inheritance” as used above is to be taken in the familiar sense in
which property or wealth is inherited, or in which genes are inherited. It is the
process by which one generation hands down something to a later generation.
In object-oriented terms, it means the handing down of properties from a more
general structure to a less general one. This is directly analogous to the ordinary
language interpretation in which someone hands on something to someone else
(usually a relative). In the case of object-oriented programming, it is the class
that hands something to another class; that something is its slots. The process
of inheritance is part of the definition of classes in class-based programming.
One often defines one class as a subclass of another. Alternatively, we can
say that the newly defined class (the subclass) is obtained by the process of
specialisation of its superclass: one class is specialised in order to create a
subclass.

The reader should note that, by superclass, we mean both the immediate
superclass and all the ancestors of a given class. The converse of a superclass is
a subclass. I will also refer to the immediate superclass as the direct superclass
(the converse being the direct subclass). The ancestors of a class is the set
of all of its superclasses (the superclass, superclass of the superclass, etc.);
sometimes I will assume that the ancestors are ordered in a natural fashion.
When considering a class as a type-defining construct, I will refer to the subclass
as a subtype; conversely, a subtype has a supertype which is its superclass. I
will use the terms subclass and superclass when there is no confusion and will
be more precise when I believe it to be necessary.

What this means is that when one class is defined as a subclass of another
class, the subclass is able to treat the slots and methods of its superclass as
if they belonged to it. The subclass is applicable to fewer situations than the
superclass, so the concept of specialisation is introduced. When we define classes
depending upon each other in this way, we say that there is an inheritance
relation between classes.

For example, imagine that we have a basic class, say Data, that represents
any data type whatsoever, then we can define a Stack class to implement a push-
down stack whose elements are instances of class Data. We might specialise
Data so that we could represent integers, reals, double-precision reals, and so
on. When we do this, we produce specialisations of class Data. Now consider the
Stack class itself. We might find that double-precision floating point numbers
are of particular importance to some application, and we want to have the
Stack hold them. We could stick with using Data, but the more specific type
DoubleFloat is more suited to the current application; we could then construct
a new version of Stack but which now only holds instances of DoubleFloat



36 2. Class Fundamentals

(we would do this by changing the types of the methods so that they input
and output DoubleFloats and we would change the element type for the stack
structures so that it was DoubleFloat). Inside the new stack class, we use the
operations defined for Stack, but wrap specialising code for them.

C1
SN
512
mi1
superclass
mi2
mi3
cz
s21
S22
S23

m21

m22

Figure 2.5 The inheritance relation.

Another example of specialisation is the construction of labelled nodes for
a program that manipulates graphs. Initially, it makes sense to define a class
to represent the nodes in the graph. A node class might define such things as
its degree and pointers to each of the nodes to which it could be connected. It
might have operations to link and unlink to other nodes and, perhaps, print
some information about itself. Next, we come to the labelled node. This can
be represented by an instance of the node class, but with an extra slot to hold
the label. To do this, we would define a new class, say LabelledNode, which



2.8 Inheritance 37

was identical to the node class, but differs in its inclusion of the label. The
operations defined for the basic node class would be inherited by LabelledNode,
as would the pointers to connected nodes. The LabelledNode class would add
its own slot for the label and methods to set the label and to print it on the
screen. The original node class serves as the basis for all other kinds of node
one would like to include in a graph; for example, rather than labelling nodes,
one might want to colour them in order to find partitions, so a ColouredNode
class could be defined as a subclass or specialisation of the basic node class.
The ColouredNode class would inherit the same operations and slots as would
LabelledNode; it would differ in the presence of a slot to represent the node’s
current colour and methods to set, retrieve and display the node’s colour.

—_————— 81
—_— 512
mi1
mi2
mi3

Figure 2.6 C,’s slots.

In the figure (Fig. 2.5), it can be seen that there are two classes, C; and Cs.
The upper class, C is the superclass of class Cy; Cy is, therefore, the subclass
of C7. In other words, Cs is a specialisation of C. Class Cy has slots s1; and
s12, as well as methods mq1, mi2 and mq3. Class Cy has slots sa1, S22 and sa3,
as well as meth