
Lecture Notes in Computer Science 5502
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Giuseppe Castagna (Ed.)

Programming
Languages
and Systems

18th European Symposium on Programming, ESOP 2009
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2009
York, UK, March 22-29, 2009
Proceedings

13

Volume Editor

Giuseppe Castagna
PPS Laboratory, CNRS
Université Denis Diderot - Paris 7, France

Library of Congress Control Number: 2009922266

CR Subject Classification (1998): D.3, D.2.2, F.3.2, D.2.4, D.2.5, D.3.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-00589-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00589-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12632244 06/3180 5 4 3 2 1 0

Foreword

ETAPS 2009 was the 12th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new confer-
ences. This year it comprised five conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 22 satellite workshops (ACCAT, ARSPA-WITS, Bytecode, COCV,
COMPASS, FESCA, FInCo, FORMED, GaLoP, GT-VMT, HFL, LDTA, MBT,
MLQA, OpenCert, PLACES, QAPL, RC, SafeCert, TAASN, TERMGRAPH,
and WING), four tutorials, and seven invited lectures (excluding those that were
specific to the satellite events). The five main conferences received 532 submis-
sions (including 30 tool demonstration papers), 141 of which were accepted (10
tool demos), giving an overall acceptance rate of about 26%, with most of the
conferences at around 25%. Congratulations therefore to all the authors who
made it to the final programme! I hope that most of the other authors will still
have found a way of participating in this exciting event, and that you will all
continue submitting to ETAPS and contributing towards making it the best
conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2009 was organised by the University of York in cooperation with

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

VI Foreword

and with support from ERCIM, Microsoft Research, Rolls-Royce, Transitive,
and Yorkshire Forward.

The organising team comprised:

Chair Gerald Luettgen
Secretariat Ginny Wilson and Bob French
Finances Alan Wood
Satellite Events Jeremy Jacob and Simon O’Keefe
Publicity Colin Runciman and Richard Paige
Website Fiona Polack and Malihe Tabatabaie.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Luca de Alfaro (Santa Cruz), Roberto
Amadio (Paris), Giuseppe Castagna (Paris), Marsha Chechik (Toronto), Sophia
Drossopoulou (London), Hartmut Ehrig (Berlin), Javier Esparza (Munich), Jose
Fiadeiro (Leicester), Andrew Gordon (MSR Cambridge), Rajiv Gupta (Arizona),
Chris Hankin (London), Laurie Hendren (McGill), Mike Hinchey (NASA God-
dard), Paola Inverardi (L’Aquila), Joost-Pieter Katoen (Aachen), Paul Klint
(Amsterdam), Stefan Kowalewski (Aachen), Shriram Krishnamurthi (Brown),
Kim Larsen (Aalborg), Gerald Luettgen (York), Rupak Majumdar (Los Ange-
les), Tiziana Margaria (Göttingen), Ugo Montanari (Pisa), Oege de Moor (Ox-
ford), Luke Ong (Oxford), Catuscia Palamidessi (Paris), George Papadopoulos
(Cyprus), Anna Philippou (Cyprus), David Rosenblum (London), Don Sannella
(Edinburgh), João Saraiva (Minho), Michael Schwartzbach (Aarhus), Perdita
Stevens (Edinburgh), Gabriel Taentzer (Marburg), Dániel Varró (Budapest),
and Martin Wirsing (Munich).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and PC members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the Organising Chair of ETAPS 2009, Gerald
Luettgen, for arranging for us to hold ETAPS in the most beautiful city of York.

January 2009 Vladimiro Sassone, Chair
ETAPS Steering Committee

Preface

This volume contains 26 regular papers and two abstracts of invited talks pre-
sented at the 18th European Symposium on Programming held during March
25–27, 2009 in York (UK).

We received 130 abstracts and 98 full paper submissions. Some abstracts were
never followed by a full paper because of the 15-page limit for submissions im-
posed by ETAPS to all member conferences. Many, myself included, believe that
this limit strongly penalizes ESOP with respect to most programming language
conferences (such as POPL, PLDI, PPoPP, PPDP, ICFP, OOPSLA, ECOOP).
By a rough calculation, submissions to ECOOP and to 10-page ACM conferences
have two-thirds more space than ESOP papers. The gap is much wider with 12-
page ACM conference (ICFP, POPL, PPDP) or even 18-page ACM conferences
such as OOPSLA. I personally know authors who did not submit to ESOP be-
cause of the page limit and then had their paper accepted in one of the other
conferences mentioned above. The 15-page limit is inadequate for ESOP, not
only relatively to other major conferences, but also in the absolute sense. This
was felt by authors, reviewers, and Program Committee (PC) members. The
most common, printable, adjective used to described this limit in the PC discus-
sions was “absurd”: reviewers complained that some papers were butchered to
fit in the allotted page count, and that they had to download full versions and
read appendixes in order to be able to judge the work (as this was not uniformly
the case, with some reviewers judging only the submitted version, it added a fur-
ther degree of randomness to the decision process). The inadequacy was further
confirmed by two questionnaires submitted to authors and PC members (and,
rather surprisingly, dissatisfaction with the page limit was higher among the PC
members). The consensus is that ESOP will not reach its full potential as long
as such a limit is maintained, which is why several persons wrote to invite me
to argue at the ETAPS Steering Committee meeting to relax this limit and/or
to stop imposing the same limit to all ETAPS conferences.

Now for more mundane matters. This year competition was tough. We loosely
applied the Identify the Champion selection strategy1 and 30 of the 98 submis-
sions had at least one strong proponent, that is, one review with the highest
possible score. Two papers were immediately rejected because of simultaneous
submission to other conferences. In one case the authors explained that the dou-
ble submission was due to reviews obtained during a rebuttal phase, which were
so negative that they assumed it meant the paper was rejected. However, since
they did not formally withdraw their submission from the first conference, it was
considered as a double submission and the paper was rejected. In the second case

1 See http://www.iam.unibe.ch/ oscar/Champion/.

VIII Preface

the authors justified their double submission by the fact they did not carefully
read submission policies. For the remaining papers the discussion was organized
in four phases: we first selected the clear accepts and clear rejects; then divided
the remaining papers in thematic groups and performed a further selection on a
per group basis; the remaining papers of different topics were then further clas-
sified according to individual PC members’ rankings, independently from their
topics; finally, five last submissions were accepted in a final ballot requiring at
least one-third of the PC members votes.

A novelty of this year’s ESOP was the introduction of a rebuttal phase. Au-
thors were given a 60-hour period and 500 words to point out factual errors
and answer direct questions from reviewers. Rebuttals went smoothly (apart
from a single PC member who, despite several repeated reminders, uploaded
all his reports eight hours after the start of the rebuttal phase) and, accord-
ing to the questionnaires, they were unanimously appreciated by both authors
and PC members. I admit that before this experience I believed that the only
benefit of a rebuttal phase was to “put the pressure” on external reviewers so
as to obtain more detailed reviews. However, and somewhat to my surprise,
rebuttals turned out to be quite useful for decision making. In most cases in
which rebuttals influenced the decision, they did so in a negative way, since they
somehow confirmed or strengthened reviewers’ doubts. But in a few cases, they
made reviewers change their assessments and the paper switched from rejection
to acceptance.

I was truly impressed by the work done by the PC members and the 145 ex-
ternal reviewers: they prepared 313 reports and produced over 1100 comments
in the subsequent discussion. The discussion took place electronically and was
managed by EasyChair, a wonderful conference management system developed
by Andrei Voronkov, which made this PC Chair’s life much easier. I am partic-
ularly grateful to the many external reviewers who, during the discussion phase
and on short notice, accepted to prepare reports in a few days, thus giving a
decisive help in deciding controversial papers. But above all I am grateful to the
many authors that submitted a paper to ESOP, especially those that were not
gratified by seeing their paper accepted: for them I do hope that the feedback
they received from our reviews turned out to be useful to improve their work.

January 2009 Giuseppe Castagna

Organization

Program Chair

Giuseppe Castagna CNRS, Université Denis Diderot - Paris 7
(France)

Program Committee

Mart́ın Abadi UCSC and Microsoft Research (USA)
Torben Amtoft Kansas State University (USA)
John Boyland University of Wisconsin-Milwaukee (USA)
Michele Bugliesi Università “Ca’ Fóscari” di Venezia (Italy)
Silvano Dal Zilio CNRS-LAAS (France)
Vincent Danos University of Edinburgh (UK)
Mariangiola Dezani Università di Torino (Italy)
Maribel Fernández King’s College London (UK)
Tim Harris Microsoft Research, Cambridge (UK)
Martin Hofmann Ludwig-Maximilians-Universität München

(Germany)
Joxan Jaffar National University of Singapore (Singapore)
Xavier Leroy INRIA Paris-Rocquencourt (France)
Eugenio Moggi Università di Genova (Italy)
Greg Morrisett Harvard University (USA)
George Necula Rinera Networks and University of California

Berkeley (USA)
James Noble Victoria University of Wellington

(New Zealand)
Kostis Sagonas National Technical University of Athens

(Greece)
Peter Sestoft IT University of Copenhagen (Denmark)
Peter Sewell University of Cambridge (UK)
Jean-Pierre Talpin INRIA Rennes-Bretagne-Atlantique (France)
Peter Thiemann Unversität Freiburg (Germany)
Jan Vitek Purdue University (USA)
Kwangkeun Yi Seoul National University (Korea)
Gianluigi Zavattaro Università degli Studi di Bologna (Italy)

X Organization

External Reviewers

Abel, Andreas
Acciai, Lucia
Ahmed, Amal
Andrei, Oana
Ariola, Zena
Axelsson, Roland
Balakrishnan, Gogul
Bergel, Alexandre
Beringer, Lennart
Berthomieu, Bernard
Bieniusa, Annette
Bloom, Bard
Bonfante, Guillaume
Bonilla, Lidia
Borgstrom, Johannes
Bravetti, Mario
Calcagno, Cristiano
Cameron, Nicholas
Chang, Bor-Yuh Evan
Chaudhuri, Swarat
Chevalier, Yannick
Chitil, Olaf
Chlipala, Adam
Conchon, Sylvain
Coppo, Mario
Dagnat, Fabien
Dalla Preda, Mila
de’ Liguoro, Ugo
Degen, Markus
Delzanno, Giorgio
Dryer, Derek
Dubois, Catherine
Ducasse, Stéphane
ElBendary, Mohamed
Feret, Jérôme
Field, John
Findler, Robby
Flatt, Matthew
Fluet, Matthew
Foster, J. Nathan
Gabbrielli, Maurizio
Gaboardi, Marco
Garoche, Pierre-Löıc
Garrigue, Jacques

Gerakios, Prodromos
Giannini, Paola
Gordon, Andrew D.
Gorla, Daniele
Gotsman, Alexey
Grossman, Dan
Gulwani, Sumit
Guts, Nataliya
Hamlen, Kevin
Heidegger, Phillip
Hildebrandt, Thomas
Hirschfeld, Robert
Hobor, Aquinas
Hoffmann, Jan
Hyvernat, Pierre
Igarashi, Atsushi
Jeannet, Bertrand
Jouvelot, Pierre
Kim, Ik-Soon
Knowles, Kenn
Lagorio, Giovanni
Laird, James
Lakin, Matthew R.
Lanese, Ivan
Lange, Martin
Le Botlan, Didier
Lee, Oukseh
Ligatti, Jay
Liu, Yang
Loidl, Hans-Wolfgang
Loreti, Michele
Macedonio, Damiano
Maffei, Matteo
Mainland, Geoffrey
Marché, Claude
McBride, Conor
Mezzina, Leonardo Gaetano
Might, Matthew
Milazzo, Paolo
Miné, Antoine
Momigliano, Alberto
Mostrous, Dimitris
Müller, Peter
Myreen, Magnus O.

Organization XI

Nanevski, Aleks
Navas, Jorge
Oh, Hakjoo
Ostlund, Johan
Owens, Scott
Pantel, Marc
Park, Sungwoo
Passerone, Roberto
Pearce, David
Piazza, Carla
Pierce, Benjamin
Pittarello, Fabio
Pontelli, Enrico
Potanin, Alex
Potop Butucaru, Dumitru
Potter, John
Pottier, François
Pous, Damien
Pouzet, Marc
Pratikakis, Polyvios
Rajamani, Sriram
Rathke, Julian
Retert, William
Ridge, Tom
Rodriguez, Dulma
Roychoudhury, Abhik
Salibra, Antonino
Santosa, Andrew

Sarkar, Susmit
Sauciuc, Raluca
Schmitt, Alan
Schoepp, Uli
Sezgin, Ali
Shkaravska, Olha
Siafakas, Nikolaos
Simmons, Robert
Søndergaard, Harald
Spoto, Fausto
Sridharan, Manu
Staton, Sam
Strecker, Martin
Sun, Jun
Teller, David
Tuch, Harvey
Valencia, Frank
Vecchie, Eric
Versari, Cristian
Vieira, Hugo
Voicu, Razvan
Vouillon, Jérôme
Wehr, Stefan
Wrigstad, Tobias
Zappa Nardelli, Francesco
Zdancewic, Steve
Zhao, Tian
Zucca, Elena

Table of Contents

Typed Functional Programming

Well-Typed Programs Can’t Be Blamed . 1
Philip Wadler and Robert Bruce Findler

Exploring the Design Space of Higher-Order Casts 17
Jeremy Siek, Ronald Garcia, and Walid Taha

Practical Variable-Arity Polymorphism . 32
T. Stephen Strickland, Sam Tobin-Hochstadt, and Matthias Felleisen

Resolving Inductive Definitions with Binders in Higher-Order Typed
Functional Programming . 47

Matthew R. Lakin and Andrew M. Pitts

ETAPS Invited Talk

Using Category Theory to Design Programming Languages 62
John C. Reynolds

Computational Effects

Modular Monad Transformers . 64
Mauro Jaskelioff

Handlers of Algebraic Effects . 80
Gordon Plotkin and Matija Pretnar

Types for Object-Oriented Languages

Is Structural Subtyping Useful? An Empirical Study 95
Donna Malayeri and Jonathan Aldrich

An Interval-Based Inference of Variant Parametric Types 112
Florin Craciun, Wei-Ngan Chin, Guanhua He, and Shengchao Qin

Existential Quantification for Variant Ownership . 128
Nicholas Cameron and Sophia Drossopoulou

Verification

Formalising and Verifying Reference Attribute Grammars in Coq 143
Max Schäfer, Torbjörn Ekman, and Oege de Moor

XIV Table of Contents

Verified, Executable Parsing . 160
Aditi Barthwal and Michael Norrish

An Efficient Algorithm for Solving the Dyck-CFL Reachability Problem
on Trees . 175

Hao Yuan and Patrick Eugster

Amortised Memory Analysis Using the Depth of Data Structures 190
Brian Campbell

ESOP Invited Talk

The Financial Crisis, a Lack of Contract Specification Tools: What Can
Finance Learn from Programming Language Design? 205

Jean-Marc Eber

Security

All Secrets Great and Small . 207
Delphine Demange and David Sands

Type-Based Automated Verification of Authenticity in Cryptographic
Protocols . 222

Daisuke Kikuchi and Naoki Kobayashi

Concurrency

A Theory of Non-monotone Memory (Or: Contexts for free) 237
Eijiro Sumii

Abstraction for Concurrent Objects . 252
Ivana Filipović, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang

Minimization Algorithm for Symbolic Bisimilarity . 267
Filippo Bonchi and Ugo Montanari

Service-Oriented Computing

Conversation Types . 285
Lúıs Caires and Hugo Torres Vieira

Abstract Processes in Orchestration Languages . 301
Maria Grazia Buscemi and Hernán Melgratti

Global Principal Typing in Partially Commutative Asynchronous
Sessions . 316

Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda

Table of Contents XV

Tisa: A Language Design and Modular Verification Technique for
Temporal Policies in Web Services . 333

Hridesh Rajan, Jia Tao, Steve Shaner, and Gary T. Leavens

Parallel and Concurrent Programming

Automatic Parallelization with Separation Logic . 348
Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

Deny-Guarantee Reasoning . 363
Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis

A Basis for Verifying Multi-threaded Programs . 378
K. Rustan M. Leino and Peter Müller

SingleTrack: A Dynamic Determinism Checker for Multithreaded
Programs . 394

Caitlin Sadowski, Stephen N. Freund, and Cormac Flanagan

Author Index . 411

Well-Typed Programs Can’t Be Blamed

Philip Wadler1 and Robert Bruce Findler2

1 University of Edinburgh
2 University of Chicago

Abstract. We introduce the blame calculus, which adds the notion of blame from
Findler and Felleisen’s contracts to a system similar to Siek and Taha’s gradual
types and Flanagan’s hybrid types. We characterise where positive and negative
blame can arise by decomposing the usual notion of subtype into positive and
negative subtypes, and show that these recombine to yield naive subtypes. Naive
subtypes previously appeared in type systems that are unsound, but we believe
this is the first time naive subtypes play a role in establishing type soundness.

1 Introduction

Much recent work has focused on integrating dynamic and static typing using contracts
[4] to ensure that dynamically-typed code meets statically-typed invariants. Examples
include gradual types [15], hybrid types [5, 8], dynamic dependent types [13], and multi-
language programming [10]. Both Meijer [11] and Bracha [2] argue in favor of mixing
dynamic and static typing. Static and dynamic typing are both supported in Visual Ba-
sic, and similar integration is planned for Perl 6 and ECMAScript 4.

Here we unify some of this work, by introducing a notion of blame (from contracts)
into a type system with casts (similar to intermediate languages for gradual and hybrid
types), yielding a system we dub the blame calculus. In this calculus, programmers may
add casts to evolve dynamically typed code into statically typed, (as with gradual types)
or to evolve statically typed code to use subset types (as with hybrid types).

The technical content of this paper is to introduce notions of positive and negative
subtypes, and prove a theorem that characterises when positive and negative blame
can occur. A corollary is that when a program integrating less-typed and more-typed
components goes wrong the blame must lie with the less-typed component. Though
obvious, this result has either been ignored in previous work or required a complex
proof; here we give a simple proof.

Our work involves both ordinary subtypes (which, for functions, is contravariant
in the domain and covariant in the range) and naive subtypes (which is covariant in
both the domain and the range). Ordinary subtypes characterize a cast that cannot fail,
while naive subtypes characterize which side of a cast is less typed (and hence will be
blamed if the cast fails). We show that ordinary subtypes decompose into positive and
negative subtypes, and that these recombine in a different way to yield naive subtypes. A
striking analogy is a tangram, where a square decomposes into parts that recombine into
a different shape (see Figure 1). Naive subtypes previously appeared in type systems
that are unsound, notably that of Eiffel [12], but we believe this is the first time naive
subtypes play a role in establishing type soundness.

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 1–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 P. Wadler and R.B. Findler

Fig. 1. Tangram as metaphor: Ordinary
subtyping decomposes and recombines to
yield naive subtyping

Gradual types [15], hybrid types [5, 8], and
dynamic dependent types [13] use source lan-
guages where most or all casts are omitted,
but inferred by a type-directed translation; all
three use similar translations which target sim-
ilar intermediate languages. The blame cal-
culus resembles these intermediate languages.
Our point is that the intermediate language is
in itself suitable as a source language, with
the advantage that it becomes crystal clear
where static guarantees hold and where dy-
namic checks are enforced.

The blame calculus uses subset types as
found in hybrid types and dynamic dependent types, but it lacks the dependent func-
tion types found in these systems (an important area for future work). Hybrid types and
dynamic dependent types are parameterized by a theorem prover, which returns true,
false, or maybe when supplied with a logical implication required by a subtyping rela-
tionship; the blame calculus corresponds to the extreme case where the theorem prover
always returns maybe.

We make the following contributions.

– We introduce the blame calculus, showing that a language with explicit casts is
suited to many of the same purposes as gradual types and hybrid types (Section 2).

– We give a framework similar to that of hybrid types and dynamic dependent types,
but with a decidable type system for the source language (Section 3).

– We factor ordinary subtypes positive and negative subtypes, which recombine into
naive subtypes. We prove that a cast from a positive subtype cannot give rise to
positive blame, and that a cast from a negative subtype cannot give rise to negative
blame (Section 4).

An earlier version of this paper appeared in a workshop [19]. The current version is
completely rewritten and some technicalities differ. A rule merging positive blame and
negative blame from distinct casts has been eliminated, and as a consequence we use
a simpler notation with one label rather than two. A rule making every ground type a
subtype of type Dyn has been added, making the subtyping relations less conservative.
Detailed proofs may be found in the accompanying technical report [20].

2 The Blame Calculus

2.1 From Untyped to Typed

Figure 2 presents a series of example programs, which we consider in turn.
Program (a) is untyped. By default, our programming language is typed, so we in-

dicate untyped code by surrounding it with ceiling brackets. Untyped code is really
uni-typed (a slogan due to Robert Harper); it is a special case of typed code where
every term has type Dyn. Here the term evaluates to �4� : Dyn.

Well-Typed Programs Can’t Be Blamed 3

(a) �let x = 2
let f = λy. y + 1
let h = λg. g (g x)
in h f�

(b) let x = 2
let f = 〈Int→ Int⇐ Dyn〉p �λy. y + 1�
let h = λg : Int→ Int. g (g x)
in h f

(c) let x = 〈Nat⇐ Int〉p 2
let f = 〈Nat→ Nat⇐ Int→ Int〉q (λy : Int. y + 1)
let h = λg : Nat→ Nat. g (g x)
in h f

(d) let x = �true�
let f = λy : Int. y + 1
let h = 〈(Int→ Int)→ Int⇐ Dyn〉p �λg. g (g x)�
in h f

(e) let x = �true�
let f = 〈Dyn⇐ Int→ Int〉p (λy : Int. y + 1)
let h = �λg. g (g x)�
in �h f�

(f) let x = 〈Nat⇐ Int〉p 3
let f = 〈Nat→ Nat⇐ Int→ Int〉q (λy : Int. y − 2)
let h = �λg. g (g x)�
in �h f�

Fig. 2. Example programs

As a matter of software engineering, when we add types to our code we may not
wish to do so all at once. Progam (b) contains typed and untyped parts, fit together
by casting the untyped code to a suitable type. and the term evaluates to 4 : Int.
Gradual evolution is overkill for such a short piece of code, but in real systems it plays
an important role [17, 18]. Here �λy. y + 1� has type Dyn, and the cast converts it to
type Int→ Int.

In general, a cast from source type S to target type T is written 〈T ⇐ S〉p s, where
subterm s has type S and the whole term has type T , and p is a blame label. We assume
an involutive operation of negation on blame labels: if p is a blame label then p̄ is its
negation, and p is the same as p. Consider a cast with blame label p: blame is allocated
to p when the term contained in the cast fails to satisfy the contract associated with the
cast, while blame is allocated to p̄ when the context containing the cast fails to satisfy
the contract.

Our notation is chosen for clarity rather than compactness. Writing the source type is
redundant, but convenient for a core calculus. Our notation is based on that of Gronski
and Flanagan [7].

2.2 Contracts and Subset Types

Findler and Felleisen [4] introduced higher-order contracts, and Flanagan [5] and Ou
et al. [13] observed that contracts can be incorporated into a type system as a form

4 P. Wadler and R.B. Findler

of subset (or refinement) type. An example is {x : Int | x ≥ 0}, the type of all
integers greater than zero, which we will write Nat. A cast from Int to Nat performs
a dynamic test, checking that the integer is indeed greater than or equal to zero. Just as
we can start with an untyped program and add types, we can start with a typed program
and add subset types. Program (c) is a version of the previous program with subset types
added.

Unlike hybrid or dependent types, the blame calculus does not require subsumption.
As a technical nicety, this allows us to design a type system which (like gradual types)
satisfies unicity: every well-typed term has exactly one type. In order to achieve unicity,
we must add new value forms corresponding to the result of casting to a subset type.
Thus, the value of Program (c) is not 4 : Int but 4Nat : Nat.

2.3 The Blame Game

The above examples execute with no errors, but in general we may not be so lucky.
Casts perform dynamic tests at run-time that fail if a value cannot be coerced to the
given type. A cast to a subset type reduces to a dynamic test of the condition on the
type. Recall that Nat denotes {x : Int | x ≥ 0}. Here is a successful test:

〈Nat⇐ Int〉p 4 −→ 4 ≥ 0 �p 4Nat −→ true �p 4Nat −→ 4Nat

And here is a failed test:

〈Nat⇐ Int〉p −4 −→ −4 ≥ 0 �p −4Nat −→ false �p −4Nat −→ ⇑ p

The middle steps show a new term form that performs a dynamic test, of the form
s �p v{x:B|t}. If s evaluates to true, the value of subset type is returned; if s evaluates
to false, blame is allocated to p, written ⇑ p.

Given an arbitrary term that takes integers to integers, it is not decidable whether
it also takes naturals to naturals. Therefore, when casting a function type the test is
deferred until the function is applied. This is the essence of higher-order contracts.

Here is an example of casting a function and applying the result.

(〈Nat→ Nat⇐ Int→ Int〉p (λy : Int. y + 1)) 2Nat −→
〈Nat⇐ Int〉p((λy : Int. y + 1) (〈Int⇐ Nat〉p̄ 2Nat) −→
〈Nat⇐ Int〉p ((λy : Int. y + 1) 2) −→
〈Nat⇐ Int〉p 3 −→ 3Nat

The cast on the function breaks into two casts, each in opposite directions: the cast on
the result takes the range of the source to the range of the target, while the cast on the
argument takes the domain of the target to the domain of the source. Preserving order
for the range while reversing order for the domain is analogous to the standard rule for
function subtyping, which is covariant in the range and contravariant in the domain.

Observe that the blame label on the reversed cast has been negated, because if that
cast fails it is the fault of the context, which supplies the argument to the function.
Conversely, the blame label is not negated on the result cast, because if that cast fails it
is the fault of the function itself.

Well-Typed Programs Can’t Be Blamed 5

The above cast took a function with range and domain Int to a function with more
precise range and domain Nat. Now consider a cast to a function with less precise
range and domain Dyn.

(〈Dyn→ Dyn⇐ Int→ Int〉p (λy : Int. y + 1)) �2� −→
〈Dyn⇐ Int〉p((λy : Int. y + 1) (〈Int⇐ Dyn〉p̄ �2�)) −→
〈Dyn⇐ Int〉p((λy : Int. y + 1) 2) −→ 〈Dyn⇐ Int〉p 3 −→ �3�

Again, a cast on the function breaks into two casts, each in opposite directions.
If we consider a well-typed term of the form

(〈Nat→ Nat⇐ Int→ Int〉p f) x

we can see that negative blame never adheres to this cast, because the type checker guar-
antees that x has type Nat, and the cast from Nat to Int always succeeds. However
positive blame may adhere, for instance if f is λy : Int. y − 2 and x is 1.

Conversely, if we consider a well-typed term of the form

(〈Dyn→ Dyn⇐ Int→ Int〉p f) x

we can see that positive blame never adheres to this cast, because the types guaran-
tee that f returns an Int, and the cast from Int to Dyn always succeeds. However
negative blame may adhere, for instance if f is λy : Int. y + 1 and x is �true�.

The key result of this paper is to show that casting from a more precise type to a less
precise type cannot give rise to positive blame (but may give rise to negative); and that
casting for a less precise type to a more precise type cannot give rise to negative blame
(but may give rise to positive). Here are the two examples considered above, with the
more precise type on the left, and the less precise type on the right.

Nat→ Nat <:n Int→ Int Int→ Int <:n Dyn→ Dyn

We call this naive subtyping (hence the subscript n) because it is covariant in both the
domain and the range of function types, in contrast to traditional subtyping, which is
contravariant in the domain and covariant in the range. We formally define both subtyp-
ing and naive subtyping in Section 3.3.

2.4 Well-Typed Programs Can’t Be Blamed

Consider a program that mixes typed and untyped code; it will contain two sorts of
casts. One sort gives types to untyped code. Such casts make types more precise, and so
cannot give rise to negative blame. For instance, Program (d) in Figure 2 fails blaming
p. Because the blame is positive, the fault lies with the untyped code inside the cast.

The other sort takes typed code and makes it untyped. Such a cast makes types less
precise, and so cannot give rise to positive blame. For instance, Program (e) fails blam-
ing p̄. Because the blame is negative, the fault lies with the code outside the cast.

Both times the fault lies with the untyped code! This is of course what we would
expect, since typed code should contain no type errors. Understanding positive and
negative blame, and knowing when each can arise, is the key to giving a simple proof
of this expected fact.

6 P. Wadler and R.B. Findler

Syntax variables x, y blame labels p, q
base types B ::= Bool | Int | · · ·
constants c ::= true | false | 0 | 1 | · · · | + | − | ≥ · · ·
types S, T ::= Dyn | B | S → T | {x : B | t}
terms s, t, u ::= x | c | λx : S. t | t s | 〈T ⇐ S〉p s

Compile-time typing Γ 	 t : Tx : T ∈ Γ
Γ 	 x : T

T = ty(c)

Γ 	 c : T

Γ, x : S 	 t : T

Γ 	 λx : S. t : S → T

Γ 	 t : S → T Γ 	 s : S

Γ 	 t s : T

Γ 	 s : S S ∼ T
Γ 	 〈T ⇐ S〉p s : T

Compatibility S ∼ TB ∼ B Dyn ∼ T S ∼ Dyn

S ∼ S′ T ∼ T ′

S → T ∼ S′ → T ′
B ∼ T

{x : B | s} ∼ T
S ∼ B

S ∼ {y : B | t}
Fig. 3. Compile-time types

The same analysis generalizes to code containing subset types. For instance, Pro-
gram (f) fails blaming q. In this case, both casts make the types more precise, so cannot
give rise to negative blame. Because the blame is positive, the fault lies with the less
refined code inside the cast.

3 Types, Reduction, Subtyping

Compile-time type rules of our system are presented in Figure 3, run-time type rules
and reduction rules in Figure 4, and rules for subtyping in Figure 5. We discuss each of
these in turn in the following three subsections.

3.1 Types and Terms

Figure 3 presents the syntax of types and terms and the compile-time type rules. The
language is explicitly and statically typed. (See Section 3.4 for embedding untyped
terms.)

We let S, T range over types, and s, t range over terms. A type is either a base type
B, the dynamic type Dyn, a function type S → T , or a subset type {x : B | t}. A
term is either a variable x, a constant c, a lambda expression λx : S. t, an application
s t, or a cast expression 〈T ⇐ S〉p s. We write let x = s in t as an abbreviation for
(λx : S. t) s where s has type S.

We assume a denumerable set of constants. Every constant c is assigned a unique
type ty(c). We assume Bool is a base type with true and false as constants of
type Bool; and that Int is a base type with 0, 1, and so on, as constants of type Int,
and + and − as constants of type Int → Int → Int, and ≥ as a contant of type
Int→ Int→ Bool, and possibly other constants. Constants must have base type or
function type; this guarantees that every value of type Dyn has the form DynG(v) and
that every value of subset type has the form v{x:B|t}. Constants of function type must
not raise blame when evaluated; this guarantees that only casts can raise blame.

Well-Typed Programs Can’t Be Blamed 7

Syntax
ground types G ::= B | Dyn→ Dyn
terms s, t, u ::= · · · | DynG(v) | v{x:B|t} | s�p v{x:B|t}
values v, w ::= x | c | λx : S. t | 〈S′ → T ′ ⇐ S → T 〉p v | DynG(v) | v{x:B|t}
results r ::= t | ⇑ p
eval contexts E ::= [] | E s | v E | 〈T ⇐ S〉p E | E �p v{x:B|t}

Run-time typing Γ 	 t : TΓ 	 s : Bool Γ 	 v : B t[x := v] −→∗ s

Γ 	 s�p v{x:B|t} : {x : B | t}

Γ 	 v : G

Γ 	 DynG(v) : Dyn

Γ 	 v : B t[x := v] −→∗ true

Γ 	 v{x:B|t} : {x : B | t}
Reductions s −→ r

E[c v] −→ E[[[c]](v)] (1)

E[(λx : S. t) v] −→ E[t[x := v]] (2)

E[〈B ⇐ B〉p v] −→ E[v] (3)

E[(〈S′ → T ′ ⇐ S → T 〉p v) w] −→ E[〈T ′ ⇐ T 〉p (v (〈S ⇐ S′〉p̄ w))] (4)

E[〈Dyn⇐ Dyn〉p v] −→ E[v] (5)

E[〈Dyn⇐ B〉p v] −→ E[DynB(v)] (6)

E[〈Dyn⇐ S → T 〉p v] −→ E[DynDyn→Dyn(〈Dyn→ Dyn⇐ S → T 〉p v)] (7)

E[〈T ⇐ Dyn〉p DynG(v)] −→ E[〈T ⇐ G〉p v], if G ∼ T (8)

E[〈T ⇐ Dyn〉p DynG(v)] −→ ⇑ p, if G
∼ T (9)

E[〈{x : B | t} ⇐ S〉p v] −→ E[let x = 〈B ⇐ S〉p v in t�
p x{x:B|t}] (10)

E[true�
p v{x:B|t}] −→ E[v{x:B|t}] (11)

E[false�
p v{x:B|t}] −→ ⇑ p (12)

E[〈T ⇐ {x : B | s}〉p v{x:B|s}] −→ E[〈T ⇐ B〉p v] (13)

Fig. 4. Run-time types and reduction

The type system is explained in terms of three judgements, which are presented in
Figure 3. We write Γ
 t : T if term t has type T in environment Γ , and we write
S ∼ T if type S is compatible with type T . We let Γ range over type environments,
which are a list of variable-type pairs x : T .

A type is well-formed if for every subset type {x : B | t} we have that t has type
Bool on the assumption that x has type B (no other free variables may appear in t). In
what follows, we assume all types are well-formed. We call B the domain of the subset
type {x : B | t}.

The type rules for variables, constants, lambda abstraction, and application are stan-
dard. The type rule for casts is straightforward: if term s has type S and type S is
compatible with type T (defined below), then the term 〈T ⇐ S〉p s has type T .

8 P. Wadler and R.B. Findler

We write S ∼ T for the compatibility relation, which holds if it may be sensible to
cast type S to type T . A base type is compatible with itself, type Dyn is compatible with
any type, two function types are compatible if their domains and ranges are compatible,
and a subset type is compatible with every type that is compatible with its domain.

Compatibility is reflexive and symmetric but not transitive. For example, S ∼ Dyn
and Dyn ∼ T hold for any types S and T , but S ∼ T does not hold if one of S or T is
a function type and the other is a base type. Requiring compatibility ensures that there
are no obviously foolish casts, but does not rule out the possibility of two successive
casts, one from S to Dyn and the next from Dyn to T .

Our cast rule is inspired by the similar rules found for gradual types and hybrid
types. Gradual types introduce compatibility, but do not have subset types. Hybrid types
include subset types, but do not bother with compatibility. Neither system uses both
positive and negative blame labels, as we do here.

Hybrid types also have a subsumption rule: if s has type S, and S is a subtype of T ,
then s also has type T . This greatly increases the power of the type system. For instance,
in hybrid types each constant is assigned the singleton type c : {x : B | c = x}; and by
subtyping and subsumption it follows that each constant belongs to every subset type
{x : B | t} for which t[x := c] −→∗ true. However, the price paid for this is that type
checking for hybrid types is undecidable, because the subtype relation is undecidable.

A pleasant consequence of omitting subsumption from the blame calculus is that
each term has a unique type, and an even more pleasant consequence is that the type
system for the source language is decidable.

Proposition 1. (Unicity) If Γ
 s : S and Γ
 s : T then S = T .

Proposition 2. (Decidability) Given Γ and t, it is decidable whether there is a T such
that Γ
 t : T (using the compile-time type rules of Figure 3).

Both propositions are easy inductions.
However, there are some less pleasant consequences. (The tiger is caged, not tamed!)

Reduction may introduce terms that are not permitted in the source language, and we
need additional semidecidable run-time rules to check the types of these terms. We
explain the details of how this works below.

3.2 Reductions

Figure 4 defines additional term forms, values, evaluation contexts, additional run-time
type rules, and reduction.

We let v, w range over values. A value is either a variable, a constant, a lambda term,
a cast to a function type from another function type, an injection into dynamic from a
ground type, or an injection into a subset type from its domain type. The first three of
these are standard, and we explain the other three below.

We take a cast to a function type from another function type as a value for technical
convenience. Other work [15, 5] makes the opposite choice, and reduce a cast to a
function type from another function type to a lambda expression.

Values of dynamic type take the form DynG(v), where G is ground type, which is
either a base type B or the function type Dyn → Dyn, and v is a value of type G. For

Well-Typed Programs Can’t Be Blamed 9

example, the cast 〈Dyn ⇐ Int → Int〉p (λx : Int. x + 1) reduces to the value
DynDyn→Dyn(〈Dyn→ Dyn⇐ Int→ Int〉p (λx : Int. x + 1)). Note that the inner
cast is a value, since it is to a function type from another function type.

Values of subset type take the form v{x:B|t} where v is a value of type B and t[x :=
v] −→∗ true. We also need an intermediate term to test the predicate associated with
a cast to a subset type. This term has the form s �p v{x:B|t}, where v is a value of type
T , and s is a boolean term such that t[x := v] −→∗ s. If s reduces to true the term
reduces to v{x:B|t}, and if s reduces to false the term allocates blame to p.

(In contrast, Flanagan [5] has essentially the following rule.

t[x := v] −→∗ true

〈{x : B | t} ⇐ B〉p v −→ v{x:B|t}

This formulation is unusual, in that a single reduction step in the conclusion depends on
multiple steps in the hypothesis. The rule makes it awkward to formulate a traditional
progress theorem, because if reduction of t[x := v] proceeds forever, then evaluation
gets stuck.)

We let E range over evaluation contexts, which are standard. The cast operation is
strict, and reduces the term being cast to a value before the cast is performed, and the
subset test is strict in its predicate.

We write s −→ r to indicate that a single reduction step takes term s to result r,
which is either a term t or the form ⇑ p, which indicates allocation of blame to label p.
We write s −→∗ r for the reflexive and transitive closure of reduction.

There are three additional type rules for the three additional term forms. These are
straightforward, save that the two rules for subset types involve reduction, and hence
are semi-decidable. Hence, Proposition 2 (Decidability) holds only for the compile-
time syntax type rules of Figure 3, and fails when these are extended with the run-time
type rules of Figure 4. However, it is easy to check that Proposition 1 (Unicity), holds
even when the compile-time type rules are extended with the run-time type rules.

The good news is that semi-decidability is not a show stopper. We introduce the
semi-decidable type rules precisely in order to prove preservation and progress. Typing
of the source language is decidable, and reduction is decidable. We never need to check
whether a term satisfies the semi-decidable rules, since this is guaranteed by preserva-
tion and progress!

We now go through each of the reductions in turn. (1) Constants of function type are
interpreted by a semantic function consistent with their type: if ty(c) = S → T and
value v has type S, then [[c]](v) is a term of type T . For example, ty(+) = Int →
Int → Int, with [[+]](3) = +3, where ty(+3) = Int → Int and [[+3]](4) = 7. (2)
The rule for applying a lambda expression is standard. (3) A cast to a base type from
itself is the identity. (4) A cast to a function type from another function type decomposes
into separate casts on the argument and result. Note the reversal in the argument cast,
and the corresponding negating of the blame label.

The next three rules concern casts to the dynamic type. (5) A cast to Dyn from itself
is the identity. (6) A cast to Dyn from a base type is a value. (7) A cast to Dyn from a
function type S → T decomposes into a cast to Dyn from the ground type Dyn→ Dyn,
and a cast to Dyn→ Dyn from S → T .

10 P. Wadler and R.B. Findler

Entailment x : T ⇐ S |= t

S ∼ T for all v and w, if 	 v : S and 〈T ⇐ S〉p v −→∗ w then t[x := w] −→∗ true

x : T ⇐ S |= t

Subtype S <: T
B <: B Dyn <: Dyn

S′ <: S T <: T ′

S → T <: S′ → T ′
B <: T

{x : B | s} <: T

S <: B x : B ⇐ S |= t

S <: {x : B | t}
S <: G

S <: Dyn

Positive subtype S <:+ T
B <:+ B S <:+ Dyn

S′ <:− S T <:+ T ′

S → T <:+ S′ → T ′
B <:+ T

{x : B | s} <:+ T

S <:+ B x : B ⇐ S |= t

S <:+ {x : B | t}

Negative subtype S <:− T
B <:− B Dyn <:− T

S′ <:+ S T <:− T ′

S → T <:− S′ → T ′
B <:− T

{x : B | s} <:− T

S <:− B

S <:− {x : B | t}
S <:− G

S <:− T

Naive subtype S <:n TB <:n B S <:n Dyn

S <:n S
′ T <:n T

′

S → T <:n S
′ → T ′

B <:n T

{x : B | s} <:n T

S <:n B x : B ⇐ S |= t

S <:n {x : B | t}

Fig. 5. Subtypes

The next two rules concern casts from the dynamic type. (8) A cast to type T from
the value DynG(v) of dynamic type collapses to a cast to type T directly from type G
if the types T and G are compatible. (9) Otherwise, such a cast fails.

The next three rules concern casts to subset type. (10) A cast to subset type with
domain B from type S decomposes into a cast to B from S, followed by a test that the
value satisfies the predicate. (11) If the predicate evaluates to true the test reduces to the
subset type. (12) Otherwise the test fails.

The last rule concerns casts from a subset type. (13) Consider a cast to type T from
a subset type. Recall that values of subset type have the form v{x:B|s}, where v has
type B. The cast collapses to a cast directly to T from B. Note that B and T must be
compatible, since a subset type is only compatible with a type that is compatible with
its domain.

3.3 Subtyping

We do not need subtyping to assign types to terms, but we will use subtyping to char-
acterise when a cast cannot give rise to blame. Figure 5 presents entailment and four
subtyping judgements—ordinary, positive, negative, and naive.

Well-Typed Programs Can’t Be Blamed 11

Entailment is written
x : T ⇐ S |= t

and holds if for all values v of type S and w of type T such that 〈T ⇐ S〉p v −→∗ w
we have that t[x := w] −→∗ true.

We write S <: T if S is a subtype of T . Function subtyping is contravariant in the
domain and covariant in the range. A subset type is a subtype of its domain, and a type
is a subtype of a subset type if membership in the type entails satisfaction of the subset
type’s predicate. Every subtype of a ground type is a subtype of Dyn, since casts from
subtypes of a ground type to Dyn cannot allocate blame.

For example, say that we define Pos = {x : Int | x > 0} and Nat = {x : Int |
x ≥ 0}. Then x : Int ⇐ Pos |= x ≥ 0, and so Pos <: Nat by the sixth rule. For
another example, Int <: Int by the first rule, so Pos <: Int by the fifth rule, so
Pos <: Dyn by the third rule.

Entailment, and hence subtyping, are undecidable. This is not a hindrance, since our
type system does not depend on subtyping. Rather it is an advantage, since it means we
can show more types are in the subtype relation, making our results more powerful.

Our rules for subtyping are similar to those found in earlier work [5, 8, 13]. However,
they take every type to be a subtype of Dyn. In contrast, we only take S to be a subtype
of T if a cast from S to T can never receive any blame, and therefore the only subtypes
of Dyn are Dyn itself and subtypes of ground types. It is not appropriate to take function
types (other that Dyn → Dyn) as subtypes of Dyn, because a cast to Dyn from a
function type may receive negative blame. The issues are similar to the treatment of the
contract Any [3].

In order to characterize when positive and negative blame cannot occur, we factor
subtyping into two subsidiary relations, positive subtyping, written S <:+ T and neg-
ative subtyping, written S <:− T . The two judgements are defined in terms of each
other, and track the swapping of positive and negative blame labels that occurs with
function types, with the contravariant position in the function typing rule reversing the
roles. We have S <:+ Dyn and Dyn <:− T for every type S and T , since casting to
Dyn can never give rise to positive blame, and casting from Dyn can never give rise
to negative blame. We only check entailment between subtypes for positive subtyping,
since failure of a subset predicate gives rise to positive blame. Finally, on the negative
side, if S <:− G, then S <:− T , since no cast from a subtype of a ground type to any
other type can allocate negative blame.

Proposition 3. (Subtyping is transitive and reflexive) If S <: S′ and S′ <: S′′ then
S <: S′′, for all S, S′, S′′, and S <: S, for all S. Similarly for <:+, <:−, and <:n.

Proposition 4. (Subtyping and compatibility) If S <: T then S ∼ T . Similarly for <:+

and <:n, but not <:−.

The main results concerning positive and negative subtyping are given in Section 4. We
show that S <: T if and only if S <:+ T and S <:− T . We also show that if S <:+ T
then a cast from S to T cannot receive positive blame, and that if S <:− T then a cast
from S to T cannot receive negative blame.

We also define a naive subtyping judgement, S <:n T , which corresponds to our
informal notion of type S being more precise than type T , and is covariant for both

12 P. Wadler and R.B. Findler

Syntax untyped terms M,N ::= x | k | λx. N |M N | �t�
Well-formed terms Γ 	M wf

(x : Dyn) ∈ Γ
Γ 	 x wf

Γ, x : Dyn 	 N wf

Γ 	 (λx. N) wf

Γ 	M wf Γ 	 N wf

Γ 	 (M N) wf

Γ 	 t : Dyn

Γ 	 �t� wf

Embedding �M��x� = x
�c� = 〈Dyn⇐ ty(c)〉 c
�λx. N� = 〈Dyn⇐ Dyn→ Dyn〉 (λx : Dyn. �N�)
�M N� = (〈Dyn→ Dyn⇐ Dyn〉 �M�) �N�
��t�� = t

Fig. 6. Untyped lambda calculus

the domain and range of functions. In Section 4, we show that S <:n T if and only
if S <:+ T and T <:− S. (Note the reversal! In the similar statement for ordinary
subtyping, we wrote S <:− T , where here we write T <:− S.)

Here are some examples:

Int→ Nat <: Nat→ Int
Int→ Nat <:+ Nat→ Int
Int→ Nat <:− Nat→ Int

Nat→ Nat <:n Int→ Int
Nat→ Nat <:+ Int→ Int
Int→ Int <:− Nat→ Nat

The left-hand side line shows that ordinary subtyping is contravariant in the domain and
covariant in the range, while the right-hand side shows that naive subtyping is covariant
in both. In both cases, the first line is equivalent to the second and third.

3.4 Typed and Untyped Lambda Calculus

We introduce a separate grammar for untyped terms, and show how to embed untyped
terms into typed terms (and vice versa). The relevant definitions are in Figure 6.

Let M, N range over untyped terms. The term form �t
 lets us embed typed terms
into untyped terms; it is well-formed only if the typed term t has type Dyn. Below we
define a mapping �M�, that lets us embed untyped terms into typed terms.

An untyped term is well-formed if every variable appearing free in it has type Dyn,
and if every typed subterm has type Dyn. We write Γ
 M wf to indicate that M is
well-formed.

A simple mapping takes untyped terms into typed terms. An untyped term M is
well-formed if and only if the corresponding typed term �M� is well-typed with type
Dyn.

Lemma 1. We have Γ
M wf if and only if Γ
 �M� : Dyn.

It is straightforward to define reduction for untyped terms, and show that the embedding
preserves and reflects reductions.

Well-Typed Programs Can’t Be Blamed 13

S <:+ T s safe for p

〈T ⇐ S〉ps safe for p

S <:− T s safe for p

〈T ⇐ S〉p̄s safe for p

p
= q p̄
= q s safe for p

〈T ⇐ S〉qs safe for p

v safe for p

DynG(v) safe for p

s −→∗ true

s�p v{x:B|t} safe for p

q
= p s safe for p

s�q v{x:B|t} safe for p

x safe for p c safe for p

t safe for p

λx : S. t safe for p

t safe for p s safe for p

t s safe for p

Fig. 7. Safe terms

3.5 Type Safety

We have usual substitution and canonical forms lemmas, and preservation and progress
results.

Lemma 2. (Substitution) If Γ
 v : S and Γ, x : S
 t : T , then Γ
 t[x := v] : T .

Lemma 3. (Canonical forms) Let v be a value that is well-typed in the empty context.
One of three cases applies.

– If
 v : S → T then either
• v = λx : S. t, with x : S
 t : T , or
• v = c, with ty(c) = S → T , or
• v = 〈S → T ⇐ S′ → T ′〉p v′ with
 v′ : S′ → T ′.

– If
 v : {x : B | t} then v = v′{x:B|t} with
 v′ : B and t[x := v′] −→∗ true.
– If
 v : Dyn then v = DynG(v′) with
 v′ : G.

Proposition 5. (Preservation) If Γ
 s : T and s −→ t then Γ
 t : T .

Proposition 6. (Progress) If
 s : T then either

– s is a value, or
– s −→ t for some result t, or
– s −→ ⇑ p for some blame label p.

In this case, preservation and progress do not guarantee a great deal, since they do
not rule out blame as a result. However, Section 4 gives results that let us identify
circumstances where certain kinds of blame cannot arise.

4 The Blame Theorem

Subtyping factors into positive and negative subtyping, and naive subtyping also factors
into positive and negative subtyping, this time with the direction of negative subtyping
reversed.

Proposition 7. (Factoring subtyping) We have S <: T if and only if S <:+ T and
S <:− T .

14 P. Wadler and R.B. Findler

Proposition 8. (Factoring naive subtyping) We have S <:n T if and only if S <:+ T
and T <:− S.

The following is the central result of this paper and depends on the definition of the
safe for relation. A term t is safe for a blame label p if all of the casts that have the label
p are positive subtypes, all of the casts that have the label ¬p, are negative subtypes,
and all of the predicate tests with the label p succeed. The precise definition is given in
Figure 7.

Proposition 9. (Preservation of safe terms) For any well-typed term t and blame label
p, if t safe for p and t −→ t′ then t′ safe for p.

Proposition 10. (Progress of safe terms) For any well-typed term t and blame label p,
if t safe for p then t �−→ ⇑ p.

Corollary 1. (Well-typed programs can’t be blamed) Let t be a well-typed term with a
subterm 〈T ⇐ S〉p s containing the only occurrences of p in t.

– If S <:+ T then t �−→∗ ⇑ p.
– If S <:− T then t �−→∗ ⇑ p̄.
– If S <: T then t �−→∗ ⇑ p and t �−→∗ ⇑ p̄

In particular, since S <:+ Dyn, any failure of a cast from a well-typed term to a
dynamically-typed context must be blamed on the dynamically-typed context. And
since Dyn <:− T , any failure of a cast from a dynamically-typed term to a well-typed
context must be blamed on the dynamically-typed term.

Further, consider a cast from a more precise type to a less precise type, which we can
capture using naive subtyping. Since S <:n T implies S <:+ T , any failure of a cast
from a more-precisely-typed term to a less-precisely-typed context must be blamed on
the less-precisely-typed context. And since T <:n S implies S <:− T , any failure of a
cast from a less-precisely-typed term to a more-precisely-typed context must be blamed
on the less-precisely-typed term.

5 Related Work

Integrating static and dynamic typing is not new, and previous work includes type
Dynamic [1], soft types [21], and partial types [16]. Contracts for dynamic testing of
specifications were popularized by the language Eiffel [12]. Findler and Felleisen [4]
introduced the use of higher-order contracts with blame in functional programming.

Henglein [9] lays much of the theoretical ground work for combining typed and un-
typed program fragments in a single program. Our work’s principal technical debt con-
cerns canonical coercions and the results surrounding them which justify our writing of
casts as just a pair of types, instead of a pair of types combined with an explicit coer-
cion (as Henglein does). Due to a coincidence of terminology, it is natural to compare
Henglein’s positive and negative coercions with our positive and negative subtyping re-
lations, but they are essentially unrelated. Henglein’s positive and negative coercions
simply characterize naive subtyping [9, Proposition 23].

Well-Typed Programs Can’t Be Blamed 15

Siek and Taha [15] introduced gradual types, inspired by Gray et al [6]. Our results
augment theirs, since we show how the blame for a failed cast always lies with the less-
typed portion of the code. Siek, Garcia, and Taha [14] compare various approaches to
subtyping for gradual types, including the one considered in this paper.

Flanagan et al [5, 8] introduced hybrid types and a new programming language, Sage.
Ou et al [13] present a closely-related language with dynamically-checked dependent
types. These support dependent function types, while our work here is restricted to
ordinary function types.

Acknowledgements. This paper benefited enormously from conversations with John
Hughes. Thanks to Samuel Bronson, Matthias Felleisen, Cormac Flanagan, Oleg Kise-
lyov, Jeremy Siek, and anonymous referees of earlier drafts for their comments on the
paper. A special thanks to Michael Greenberg, Nate Foster, and Benjamin Pierce for
discovering a technical flaw in an earlier version.

References
[1] Abadi, M., Cardelli, L., Pierce, B., Plotkin, G.: Dynamic typing in a statically typed lan-

guage. ACM Trans. Prog. Lang. Syst. 13(2), 237–268 (1991)
[2] Bracha, G.: Pluggable type systems. In: OOPSLA 2004 Workshop on Revival of Dynamic

Languages (October 2004)
[3] Findler, R., Blume, M.: Contracts as pairs of projections. In: Hagiya, M., Wadler, P. (eds.)

FLOPS 2006. LNCS, vol. 3945, pp. 226–241. Springer, Heidelberg (2006)
[4] Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: ACM International

Conference on Functional Programming (ICFP) (October 2002)
[5] Flanagan, C.: Hybrid type checking. In: ACM Symposium on Principles of Programming

Languages (POPL) (Janurary 2006)
[6] Gray, K.E., Findler, R.B., Flatt, M.: Fine-grained interoperability through contracts and

mirrors. In: ACM Conference on Object-Oriented Programming: Systems, Languages, and
Applications (OOPSLA), pp. 231–246 (2005)

[7] Gronski, J., Flanagan, C.: Unifying hybrid types and contracts. In: Trends in Functional
Programming (TFP) (April 2007)

[8] Gronski, J., Knowles, K., Tomb, A., Freund, S.N., Flanagan, C.: Sage: Hybrid checking for
flexible specifications. In: Workshop on Scheme and Functional Programming (September
2006)

[9] Henglein, F.: Dynamic typing: Syntax and proof theory. Sci. Comput. Programming 22(3),
197–230 (1994)

[10] Matthews, J., Findler, R.B.: Operational semantics for multi-language programs. In: ACM
Symposium on Principles of Programming Languages (POPL) (Janurary 2007)

[11] Meijer, E.: Static typing where possible, dynamic typing where needed. In: OOPSLA 2004
Workshop on Revival of Dynamic Languages (October 2004)

[12] Meyer, B.: Object-Oriented Software Construction. Prentice Hall, Englewood Cliffs (1988)
[13] Ou, X., Tan, G., Mandelbaum, Y., Walker, D.: Dynamic typing with dependent types. In:

IFIP International Conference on Theoretical Computer Science (August 2004)
[14] Siek, J., Garcia, R., Taha, W.: Exploring the design space of higher-order casts. In:

Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 17–31. Springer, Heidelberg (2009)
[15] Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Workshop on Scheme

and Functional Programming (September 2006)

16 P. Wadler and R.B. Findler

[16] Thatte, S.: Type inference with partial types. In: Lepistö, T., Salomaa, A. (eds.) ICALP
1988. LNCS, vol. 317. Springer, Heidelberg (1988)

[17] Tobin-Hochstadt, S., Felleisen, M.: Interlanguage migration: From scripts to programs. In:
Dynamic Languages Symposium (DLS) (2006)

[18] Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed scheme. In:
ACM Symposium on Principles of Programming Languages (POPL) (2008)

[19] Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: Workshop on Scheme
and Functional Programming (September 2007)

[20] Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. Technical Report TR-
2009-01, University of Chicago (2009)

[21] Wright, A.K., Cartwright, R.: A practical soft typing system for Scheme. ACM Trans. Prog.
Lang. Syst. 19(1) (1997)

Exploring the Design Space of Higher-Order Casts

Jeremy Siek1,�, Ronald Garcia2, and Walid Taha2,��

1 University of Colorado, Boulder, CO 80309, USA
2 Rice University, Houston, TX 77005, USA

jeremy.siek@colorado.edu, ronald.garcia@rice.edu, taha@rice.edu

Abstract. This paper explores the surprisingly rich design space for the simply
typed lambda calculus with casts and a dynamic type. Such a calculus is the tar-
get intermediate language of the gradually typed lambda calculus but it is also
interesting in its own right. In light of diverse requirements for casts, we develop
a modular semantic framework, based on Henglein’s Coercion Calculus, that in-
stantiates a number of space-efficient, blame-tracking calculi, varying in what
errors they detect and how they assign blame. Several of the resulting calculi ex-
tend work from the literature with either blame tracking or space efficiency, and
in doing so reveal previously unknown connections. Furthermore, we introduce a
new strategy for assigning blame under which casts that respect traditional sub-
typing are statically guaranteed to never fail. One particularly appealing outcome
of this work is a novel cast calculus that is well-suited to gradual typing.

1 Introduction

This paper explores the design space for λ〈·〉
→ , the simply typed lambda calculus with a

dynamic type and cast expressions. Variants of this calculus have been used to express
the semantics of languages that combine dynamic and static typing [2, 3, 5, 6, 8–11].

The syntax of λ〈·〉
→ is given in Fig. 1. The dynamic type Dyn is assigned to values that

are tagged with their run-time type. The cast expression, 〈T ⇐ S〉le, coerces a run-time
value from type S to T or halts with a cast error if it cannot perform the coercion. More
precisely, the calculus evaluates e to a value v, checks whether the run-time type of v is
consistent with T , and if so, returns the coercion of v to T . Otherwise execution halts
and signals that the cast at location l of the source program caused an error.

The semantics of first-order casts (casts on base types) is straightforward. For exam-
ple, casting an integer to Dyn and then back to Int behaves like the identity function.

〈Int⇐ Dyn〉l2〈Dyn⇐ Int〉l14 �−→∗ 4

On the other hand, casting an integer to Dyn and then to Bool raises an error and reports
the source location of the cast that failed.

〈Bool⇐ Dyn〉l2〈Dyn⇐ Int〉l14 �−→∗ blame l2

We say that the cast at location l2 is blamed for the cast error.

� Supported by NSF grant CCF-0702362.
�� Supported by NSF grants CCF-0747431 and CCF-0439017.

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 17–31, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

18 J. Siek, R. Garcia, and W. Taha

Base Types B ⊃ {Int, Bool}
Types S, T ::= B | Dyn | S → T
Blame labels l ∈ L Integers n ∈ Z

Constants k ∈ K ⊃ {n, True, False}
Variables x ∈ V

Expressions e ::= x | k | λx : T. e | e e | 〈T ⇐ S〉le

Fig. 1. Syntax for the lambda calculus with casts (λ〈·〉
→)

Extending casts from first-order to higher-order (function) types raises several issues.
For starters, higher-order casts cannot always be checked immediately. In other words,
it is not generally possible to decide at the point where a higher-order cast is applied
to a value whether that value will always behave according to the type ascribed by the
cast. For example, when the following function is cast to Int → Int, there is no way
to immediately tell if the function will return an integer every time it is called.

〈Int→Int⇐ Int→Dyn〉(λx : Int. if 0 < x then 〈Dyn⇐ Bool〉True else 〈Dyn⇐ Int〉2)
So long as the function is only called with positive numbers, its behavior respects the

cast. If it is ever called with a negative number, however, its return value will violate the
invariant imposed by the cast.

The standard solution, adopted from work on higher-order contracts [1], defers check-
ing the cast until the function is applied to an argument and then checks the cast against
the particular argument and return value. This can be accomplished by using the cast as
a wrapper and splitting it when the wrapped function is applied to an argument:

(APPCST) (〈T1 → T2 ⇐ S1 → S2〉v1) v2 −→ 〈T2 ⇐ S2〉(v1 〈S1 ⇐ T1〉v2))

Because a higher-order cast is not checked immediately, it might fail in a context far
removed from where it was originally applied. To help diagnose such failures, dynamic
semantics are enhanced with blame tracking, a facility that traces failures back to their
origin in the source program [1, 4, 10].

Several dynamic semantics for casts have been proposed in the literature and their
differences, though subtle, produce surprisingly different results for some programs.
We use the following abbreviations: ST for Siek and Taha [8], HTF-L for Herman et al.
[7] (lazy variant), HTF-E for Herman et al. [7] (eager variant), WF-1 for Wadler and
Findler [10], and WF-2 for [11]. Consider how these five semantics for λ〈·〉

→ produce
different results for a few small examples.

The following program casts a function of type Int → Int to Dyn and then to
Bool → Int. It produces a run-time cast error in ST, WF-1, and HTF-E but not in
WF-2 and HTF-L.

(1) 〈Bool→ Int⇐ Dyn〉〈Dyn⇐ Int→ Int〉(λx : Int. x)

With a small change, the program runs without error for four of the semantics but fails
in HTF-E:

(2) 〈Bool→ Int⇐ Dyn→ Dyn〉〈Dyn→ Dyn⇐ Int→ Int〉(λx : Int. x)

Exploring the Design Space of Higher-Order Casts 19

It seems surprising that any of the semantics allows a function of type Int → Int to
be cast to Bool→ Int!

Next consider the semantics of blame assignment. The following program results in
a cast error, but which of the three casts should be blamed?

(3) (〈Dyn→ Int⇐ Dyn〉l3〈Dyn⇐ Bool→ Bool〉l2λx : Bool. x)〈Dyn⇐ Int〉l11
The semantics ST, HTF-E, and HTF-L do not perform blame tracking. Both WF-1
and WF-2 blame l2. This is surprising because, intuitively, casting a value up to Dyn
always seems safe. On the other hand, casting a dynamic value down to a concrete type
is an opportunity for type mismatch.

In this paper we map out the design space for λ〈·〉→ using two key insights. First,
the semantics of higher-order casts can be categorized as detecting cast errors using
an eager, partially eager, or lazy strategy (Section 2). Second, different blame tracking
strategies yield different notions of a statically safe cast (a cast that will never be blamed
for a run-time cast error) which are characterized by different “subtyping” relations, i.e.,
partial orders over types (Section 3).

In Section 5 we develop a framework based on Henglein’s Coercion Calculus in
which we formalize these two axes of the design space and instantiate four variants
of the Coercion Calculus, each of which supports blame tracking. Two of the variants
extend HTF-E and HTF-L, respectively, with blame tracking in a natural way. The
lazy variant has the same blame assignment behavior as WF-2, thereby establishing
a previously unknown connection. The other two variants use a new blame tracking
strategy in which casts that respect traditional subtyping are guaranteed to never fail.
Of these two, the one with eager error detection provides a compelling semantics for
gradual typing, as explained in Sections 2 and 3.

In Section 6 we show how the approach of Herman et al. [7] can be applied to obtain
a space-efficient reduction strategy for each of these calculi. In doing so, we provide the
first space-efficient calculi that also perform blame tracking. We conclude in Section 7.

2 From Lazy to Eager Detection of Higher-Order Cast Errors

The λ〈·〉
→ cast can be seen as performing two actions: run-time type checking and co-

ercing. Under the lazy error detection strategy, no run-time type checking is performed
when a higher-order cast is applied to a value. Thus, higher-order casts never fail im-
mediately; they coerce their argument to the target type and defer checking until the
argument is applied. Both HTF-L and WF-2 use lazy error detection, which is why
neither detects cast errors in programs (1) and (2).

Under the partially-eager error detection strategy, a higher-order cast is checked
immediately only when its source type is Dyn, otherwise checking is deferred according
to the lazy strategy. Both ST and WF-1 use the partially eager error detection strategy.
Under this strategy program (1) produces a cast error whereas program (2) does not.

Examples like program (2) inspire the eager error detection strategy. Under this
strategy, a higher-order cast always performs some checking immediately. Furthermore,
the run-time checking is “deep” in that it not only checks that the target type is consis-
tent with the outermost wrapper, but it also checks for consistency at every layer of

20 J. Siek, R. Garcia, and W. Taha

wrapping including the underlying value type. Thus, when the cast 〈Bool → Int〉 in
program (2) is evaluated, it checks that Bool → Int is consistent with the prior cast
〈Dyn → Dyn〉 (which it is) and with the type of the underlying function Int → Int
(which it is not). The HTF-E semantics is eager in this sense.

For the authors, the main use of λ〈·〉
→ is as a target language for the gradually typed

lambda calculus, so we seek the most appropriate error detection strategy for gradual
typing. With gradual typing, programmers add type annotations to their programs to
increase static checking and to express invariants that they believe to be true about their
program. Thus, when a programmer annotates a parameter with the type Bool→ Int,
she is expressing the invariant that all the run-time values bound to this parameter will
behave according to the type Bool → Int. With this in mind, it makes sense that the
programmer is notified as soon as possible if the invariant does not hold. The eager
error detection strategy does this.

3 Blame Assignment and Subtyping

When programming in a language based on λ〈·〉
→ , it helps to statically know which parts

of the program might cause cast errors and which parts never will. A graphical develop-
ment environment, for instance, could use colors to distinguish safe casts, unsafe casts
which might fail, and inadmissible casts which the system rejects because they always
fail. The inadmissible casts are statically detected using the consistency relation ∼ of
Siek and Taha [8], defined in Fig. 2. A cast 〈T ⇐ S〉e is rejected if S �∼ T . Safe casts
are statically captured by subtyping relations: if the cast respects subtyping, meaning
S <: T , then it is safe. For unsafe casts, S ∼ T but S �<: T 1.

T ∼ Dyn Dyn ∼ T B ∼ B
S1 ∼ T1 S2 ∼ T2

S1 → S2 ∼ T1 → T2

Fig. 2. The consistency relation

Formally establishing that a particular subtype relation is sound with respect to the
semantics requires a theorem of the form:

If there is a cast at location l of the source program that respects subtyping,
then no execution of the program will result in a cast error that blames l.

Wadler and Findler [10], [11] prove this property for their two semantics and their
definitions of subtyping, respectively. Fig. 3 shows their two subtyping relations as well
as the traditional subtype relation with Dyn as its top element.

We consider the choice of subtype relation to be a critical design decision because
it directly affects the programmer, i.e., it determines which casts are statically safe and

1 Subtyping is a conservative approximation, so some of the unsafe casts are “false positives”
and will never cause cast errors.

Exploring the Design Space of Higher-Order Casts 21

Traditional subtyping:

T <: Dyn B <: B

T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2

Subtyping of WF-1:

B <: B Dyn <: Dyn
T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2

Subtyping of WF-2:

B <: B Dyn <: Dyn
S <: G
S <: Dyn

T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2

where G ::= B | Dyn→ Dyn

Fig. 3. Three subtyping relations

unsafe. The traditional subtype relation is familiar to programmers, relatively easy to
explain, and matches our intuitions about which casts are safe. This raises the question:
is there a blame tracking strategy for which the traditional subtype relation is sound?

First, it is instructive to see why traditional subtyping is not sound with respect to the
blame tracking in WF-2 (WF-1 is similar in this respect). Consider program (3).

(〈Dyn→ Int⇐ Dyn〉l3〈Dyn⇐ Bool→ Bool〉l2λx : Bool. x)〈Dyn⇐ Int〉l11
The cast at location l2 respects the traditional subtyping relation: Bool → Bool <:
Dyn. The following reduction sequence uses the blame tracking strategy of WF-2. The
expression DynG(v) represents values that have been injected into the dynamic type.
The subscript G records the type of v and is restricted to base types, the dynamic type,
and the function type Dyn → Dyn. Their interpretation of a cast is closer to that of an
obligation expression [1], so each blame label has a polarity, marked by the presence or
absence of an overline, which directs blame toward the interior or exterior of the cast.

(〈Dyn → Int ⇐ Dyn〉l3 〈Dyn ⇐ Bool → Bool〉l2λx : Bool. x)〈Dyn ⇐ Int〉l11

−→ (〈Dyn → Int ⇐ Dyn〉l3DynDyn→Dyn(〈 Dyn → Dyn ⇐ Bool → Bool〉l2λx : Bool. x))〈Dyn ⇐ Int〉l11

−→ (〈Dyn → Int ⇐ Dyn → Dyn〉l3〈 Dyn → Dyn ⇐ Bool → Bool〉l2λx : Bool. x)〈Dyn ⇐ Int〉l11

−→ 〈Int ⇐ Dyn〉l3(〈 Dyn → Dyn ⇐ Bool → Bool〉l2λx : Bool. x)〈Dyn ⇐ Dyn〉l3 〈Dyn ⇐ Int〉l11

−→ 〈Int ⇐ Dyn〉l3(〈 Dyn → Dyn ⇐ Bool → Bool〉l2λx : Bool. x)〈Dyn ⇐ Int〉l11

−→ 〈Int ⇐ Dyn〉l3〈Dyn ⇐ Bool〉l2((λx : Bool. x) 〈Bool ⇐ Dyn〉 l2 〈Dyn ⇐ Int〉l11)

−→ blame l2

The example shows that under this blame tracking strategy, a cast like l2 can respect
traditional subtyping yet still be blamed. We trace back to the source of the cast er-
ror by highlighting the relevant portions of the casts in gray. The source of the cast
error is the transition that replaces the cast 〈Dyn ⇐ Bool → Bool〉l2 with 〈Dyn →
Dyn⇐ Bool→ Bool〉l2 . This reduction rule follows from restrictions on the structure

22 J. Siek, R. Garcia, and W. Taha

of DynG(v): the only function type allowed for G is Dyn → Dyn. This choice forces
casts from function types to Dyn to always go through Dyn → Dyn. However, adding
the intermediate step does not preserve traditional subtyping: S → T <: Dyn is always
true, but because of the contravariance of subtyping in the argument position, it is not
always the case that S → T <: Dyn → Dyn. For instance, if S = Bool, then it is not
the case that Dyn <: Bool.

It seems reasonable, however, to inject higher-order types directly into Dyn. Consider
the following alternative injection and and projection rules for Dyn:

〈Dyn⇐ S〉lv −→s DynS(v)

〈T ⇐ Dyn〉lDynS(v) −→s 〈T ⇐ S〉lv if S ∼ T
〈T ⇐ Dyn〉lDynS(v) −→s blame l if S 	∼ T

We define the simple blame tracking semantics, written−→s, to include the above rules
together with APPCST and the standard β and δ reduction rules. The following is the
corresponding reduction sequence for program (3).

(〈Dyn→ Int⇐ Dyn〉l3〈Dyn⇐ Bool→ Bool〉l2λx : Bool. x) 〈Dyn⇐ Int〉l11

−→s (〈Dyn→ Int⇐ Dyn〉l3DynBool→Bool(λx : Bool. x)) 〈Dyn⇐ Int〉l11
−→s (〈Dyn→ Int⇐ Bool→ Bool〉l3(λx : Bool. x)) 〈Dyn⇐ Int〉l11
−→s (〈Dyn→ Int⇐ Bool→ Bool〉l3(λx : Bool. x)) DynInt(1)

−→s 〈Int ⇐ Bool〉l3((λx : Bool. x) 〈Bool⇐ Dyn〉l3DynInt(1))
−→s blame l3

Under this blame tracking strategy, the downcast from Dyn to Dyn → Int at location
l3 is blamed instead of the upcast at location l2. This particular result better matches
our intuitions about what went wrong, and in general the simple blame strategy never
blames a cast that respects the traditional subtype relation.

Theorem 1 (Soundness of subtyping wrt. the simple semantics)
If there is a cast labeled l in program e that respects subtyping, then e �−→∗

s blame l.

Proof. The proof is a straightforward induction on −→∗
s once the statement is general-

ized to say “all casts labeled l”. This is necessary because the APPCST rule turns one
cast into two casts with the same label.

While the simple blame tracking semantics assigns blame in a way that respects tra-
ditional subtyping, it does not perform eager error detection; it is partially eager. We
conjecture that the simple semantics could be augmented with deep checks to achieve
eager error detection. However, there also remains the issue of space efficiency. In the
next section we discuss the problems regarding space efficiency and how these prob-
lems can be solved by moving to a framework based on the semantics of Herman et al.
[7] which in turn uses the Coercion Calculus of Henglein [6]. We then show how the
variations in blame tracking and eager checking can be realized in that framework.

4 Space Efficiency

Herman et al. [7] observe two circumstances where the wrappers used for higher-order
casts can lead to unbounded space consumption. First, some programs repeatedly apply

Exploring the Design Space of Higher-Order Casts 23

casts to the same function, resulting in a build-up of wrappers. In the following example,
each time the function bound to k is passed between even and odd a wrapper is added,
causing a space leak proportional to n.

let rec even(n : Int, k : Dyn→Bool) : Bool =

if (n = 0) then k(〈Dyn⇐ Bool〉True)
else odd(n - 1, 〈Bool→ Bool⇐ Dyn→ Bool〉k)

and odd(n : Int, k : Bool→Bool) : Bool =

if (n = 0) then k(False)

else even(n - 1, 〈Dyn→ Bool⇐ Bool→ Bool〉k)
Second, some casts break proper tail recursion. Consider the following example in
which the return type of even is Dyn and odd is Bool.

let rec even(n : Int) : Dyn =

if (n = 0) then True else 〈Dyn⇐ Bool〉odd(n - 1)

and odd(n : Int) : Bool =

if (n = 0) then False else 〈Bool⇐ Dyn〉even(n - 1)

Assuming tail call optimization, cast-free versions of the even and odd functions re-
quire only constant space, but because the call to even is no longer a tail call, the
run-time stack grows with each call and space consumption is proportional to n. The
following reduction sequence for a call to even shows the unbounded growth.

even(n)
−→ 〈Dyn⇐ Bool〉odd(n− 1)

−→ 〈Dyn⇐ Bool〉〈Bool⇐ Dyn〉even(n− 2)

−→ 〈Dyn⇐ Bool〉〈Bool⇐ Dyn〉〈Dyn⇐ Bool〉odd(n− 3)

−→ · · ·

Herman et al. [7] show that space efficiency can be recovered by 1) merging se-
quences of casts into a single cast, 2) ensuring that the size of a merged cast is bounded
by a constant, and 3) checking for sequences of casts in tail-position and merging them
before making function calls.

5 Variations on the Coercion Calculus

The semantics of λ〈·〉
→ in Henglein [6] and subsequently in Herman et al. [7] use a

special sub-language called the Coercion Calculus to express casts. Instead of casts of
the form 〈T ⇐ S〉e they have casts of the form 〈c〉e where c is a coercion expression.
The Coercion Calculus can be viewed as a fine-grained operational specification of
casts. It is not intended to be directly used by programmers, but instead casts of the
form 〈T ⇐ S〉e are compiled into casts of the form 〈c〉e. In this section we define a
translation function 〈〈T ⇐ S〉〉 that maps the source and target of a cast to a coercion.
We define 〈〈e〉〉 to be the natural extension of this translation to expressions. The syntax
and type system of the Coercion Calculus is shown in Fig. 4. We add blame labels to
the syntax to introduce blame tracking to the Coercion Calculus.

The coercion T ! injects a value into Dyn whereas the coercion T ? projects a value
out of Dyn. For example, the coercion Int! takes an integer and injects it into the type
Dyn, and conversely, the coercion Int?l takes a value of type Dyn and projects it to

24 J. Siek, R. Garcia, and W. Taha

Syntax: Coercions c, d ::= ι | T ! | T ?l | c→ d | d ◦ c | Faill

Coercion contexts C ::= � | C → c | c→ C | c ◦ C | C ◦ c
Type system:

� ι : T ⇐ T � T ! : Dyn⇐ T � T ?l : T ⇐ Dyn � Faill : T ⇐ S

� c : S1 ⇐ T1 � d : T2 ⇐ S2

� c→ d : (T1 → T2)⇐ (S1 → S2)

� d : T3 ⇐ T2 � c : T2 ⇐ T1

� d ◦ c : T3 ⇐ T1

Fig. 4. Syntax and type system for the Coercion Calculus

type Int, checking to make sure the value is an integer, blaming location l otherwise.
Our presentation of injections and projections differs from that of Henglein [6] in that
the grammar in Fig. 4 allows arbitrary types in T ! and T ?l. When modeling Henglein’s
semantics, we restrict T to base types and function types of the form Dyn → Dyn.
Thus, (Dyn → Dyn)! is equivalent to Henglein’s Func! and (Dyn → Dyn)?l is equiva-
lent to Func?. The calculus also has operators for aggregating coercions. The function
coercion c → d applies coercion c to a function’s argument and d to its return value.
Coercion composition d ◦ c applies coercion c then coercion d.2 In addition to Hen-
glein’s coercions, we adopt the Faill coercion of Herman et al. [7], which compactly
represents coercions that are destined to fail but have not yet been applied to a value.

In this section we add blame tracking to the Coercion Calculus using two different
blame assignment strategies, one that shares the blame between higher-order upcasts
and downcasts, thereby modeling WF-1 and WF-2, and a new strategy that places re-
sponsibility on downcasts only. To clearly express not only these two blame assignment
strategies but also the existing strategies for eager and lazy error detection (HTF-E and
HTF-L), we organize the reduction rules into four sets that can be combined to create
variations on the Coercion Calculus.

L The core set of reduction rules that is used by all variations. This set of rules, when
combined with either UD or D, performs lazy error detection.

E The additional rules needed to perform eager error detection.
UD The rules for blame assignment that share responsibility between higher-order up-

casts and downcasts.
D The rules for blame assignment that place all the responsibility on downcasts.

Fig 5 shows how the sets of reduction rules can be combined to create four distinct
coercion calculi.

All of the reduction strategies share the following parameterized rule for single-step
evaluation, where X stands for a set of reduction rules.

c ∼= C[c1] c1 −→X c2 C[c2] ∼= c′

c �−→X c′

2 We use the notation d◦c instead of the notation c; d of Henglein to be consistent with the right
to left orientation of our type-based cast expressions.

Exploring the Design Space of Higher-Order Casts 25

Lazy error detection Eager error detection

Blame upcasts and downcasts L ∪UD L ∪UD ∪E

Blame downcasts L ∪D L ∪D ∪E

Fig. 5. Summary of the Coercion Calculi

The above rule relies on a congruence relation, written∼=, to account for the associativ-
ity of coercion composition: (c3 ◦ c2) ◦ c1

∼= c3 ◦ (c2 ◦ c1). The reduction rules simplify
pairs of adjacent coercions into a single coercion. The congruence relation is used dur-
ing evaluation to reassociate a sequence of coercions so that a pair of adjacent coercions
can be reduced. A coercion c is normalized if � ∃c′. c �−→X c′ and we indicate that a
coercion is normalized with an overline, as in c.

B?l ◦B! −→ ι
ι→ ι −→ ι
c ◦ ι −→ c
ι ◦ c −→ c

B′?l ◦B! −→ Faill

B?l ◦ (S1 → S2)! −→ Faill

(T1 → T2)?
l ◦B! −→ Faill

d ◦ Faill −→ Faill

Faill ◦ T ! −→ Faill (FAILIN)
(d1 → d2) ◦ (c1 → c2) −→ (c1 ◦ d1)→ (d2 ◦ c2)

Fig. 6. The core reduction rules (L)

The set L of core reduction rules is given in Fig. 6. These rules differ from those of
Herman et al. [7] in several ways. First, the rules propagate blame labels. Second, we
factor the rule for handling injection-projection pairs over functions types into UD and
D. Third, we omit a rule of the form

(FAILL) Faill ◦ c −→ Faill

This change is motivated by the addition of blame tracking which makes it possible to
distinguish between failures with different causes. If we use FAILL, then the optimiza-
tions for space efficiency change how blame is assigned. Suppose there is a context
waiting on the stack of the form 〈Faill2 ◦ Int?l1〉� and the value returned to this
context is 〈Bool!〉True. Then in the un-optimized semantics we have

〈Faill2 ◦ Int?l1〉�
−→ 〈Faill2 ◦ Int?l1〉〈Bool!〉True
−→ 〈Faill2 ◦ Int?l1 ◦ Bool!〉True

−→ 〈Faill2 ◦ Faill1〉True
−→ 〈Faill1〉True
−→ blame l1

whereas in the optimized semantics we have

〈Faill2 ◦ Int?l1〉�
−→ 〈Faill2〉�
−→ 〈Faill2〉〈Bool!〉True
−→ 〈Faill2 ◦ Bool!〉True

−→ 〈Faill2〉True
−→ blame l2

On the other hand, the rule FAILIN is harmless because an injection can never fail.
When we embed a coercion calculus in λ〈·〉

→ , we do not want an expression such as

26 J. Siek, R. Garcia, and W. Taha

Syntax:
Expressions e ::= x | k | λx : T. e | e e | 〈c〉e
Simple Values s ::= k | λx : T. e

Regular Coercions ĉ ::= c where c 	= ι and c 	= Faill

Values v ::= s | 〈ĉ〉s
Evaluation contexts E ::= � | E e | v E | 〈c〉E

Type system:

Γ � x : Γ (x) Γ � k : typeof (k)

Γ [x
→ S] � e : T

Γ � λx : S. e : S → T

Γ � e1 : S → T Γ � e2 : S

Γ � e1 e2 : T
� c : T ⇐ S Γ � e : S

Γ � 〈c〉e : T

Reduction rules:
(β) (λx : T.e) v −→ e[x
→ v]
(δ) k v −→ δ(k, v)
(STEPCST) 〈c〉s −→ 〈c′〉s if c
−→X c′

(IDCST) 〈ι〉s −→ s
(CMPCST) 〈d〉〈ĉ〉s −→ 〈d ◦ ĉ〉s
(APPCST) 〈c→ d〉s v −→ 〈d〉(s 〈c〉v)
(FAILCST) 〈Faill〉s −→ blame l

(FAILFC) 〈Faill ◦ (c→ d)〉s −→ blame l

Single-step evaluation:

e −→ e

E[e]
−→ E[e′]
e −→ blame l

E[e]
−→ blame l

Fig. 7. A semantics for λ〈·〉
→ based on coercion calculi

〈Faill ◦ (ι→ Int!)〉(λx : Int. x) to be a value. It should instead reduce to blame l.
Instead of trying to solve this in the coercion calculi, we add a reduction rule (FAILFC)
to λ〈·〉

→ to handle this situation.
Fig. 7 shows a semantics for λ〈·〉→ based on coercion calculi (it is parameterized on the

set of coercion reduction rules X). We write λ〈·〉
→ (X) to refer to an instantiation of the

semantics with the coercion calculus X . The semantics includes the usual rules for the
lambda calculus and several rules that govern the behavior of casts. The rule STEPCST

simplifies a cast expression by taking one step of evaluation inside the coercion. The
rule IDCST discards an identity cast and CMPCST turns a pair of casts into a single cast
with composed coercions. The APPCST rule applies a function wrapped in a cast. The
cast is split into a cast on the argument and a cast on the return value. The rule FAILCST

signals a cast error when the coercion is Faill.

5.1 Blame Assignment Strategies

In this section we present two blame assignment strategies: the strategy shared by WF-
1 and WF-2, where upcasts and downcasts share responsibility for blame, and a new

Exploring the Design Space of Higher-Order Casts 27

strategy where only downcasts are responsible for blame. The first strategy will be
modeled by the set of reduction rules UD (for upcast-downcast) and the second by
the set of reduction rules D (for downcast).

The UD Blame Assignment Strategy. As discussed in Section 3, the blame assign-
ment strategy that shares responsibility for blame between upcasts and downcasts is
based on the notion that a cast between an arbitrary function type and Dyn must al-
ways go through Dyn→ Dyn. As a result, at the level of the coercion calculus, the only
higher-order injections and projections are (Dyn → Dyn)! and (Dyn → Dyn)?l. The
compilation of type-based casts to coercion-based casts is responsible for introducing
the indirection through Dyn→ Dyn. Fig. 8 shows the compilation function. The last two
lines of the definition handle higher-order upcasts and downcasts and produce coercions
that go through Dyn→ Dyn. Consider the coercion produced from the higher-order cast
that injects Bool→ Bool into Dyn.

〈〈Dyn⇐ Bool→ Bool〉〉l = (Dyn→ Dyn)! ◦ (Bool?l → Bool!)

The projection Bool?l in the resulting coercion can cause a run-time cast error, which
shows how, with this blame assignment strategy, higher-order upcasts such as Dyn ⇐
Bool→ Bool share the responsibility for cast errors.

The set of reduction rules for UD is given in Fig. 8. With UD, the only higher-order
coercions are to and from Dyn → Dyn, so the only injection-projection case missing
from the L rules is the case handled by the INOUTDD rule in Fig. 8.

The combination L ∪UD simulates the semantics of WF-2.

Theorem 2. If e −→∗ e′ in WF-2 and e′ is a value or blame l, then there is an e′′

such that 〈〈e〉〉 �−→∗
L∪UD e′′ and 〈〈e′〉〉 = e′′.

Proof. The proof is a straightforward induction on −→∗.

The combination L∪UD can also be viewed as the natural way to add blame tracking
to HTF-L, revealing an interesting and new connection between HTF-L and WF-2.

The D Blame Assignment Strategy. To obtain a blame assignment strategy that coin-
cides with traditional subtyping, we lift the restriction on injections and projections to
allow direct coercions between arbitrary function types and Dyn, analogous to what we
did in Section 3. With this change the compilation from type-based casts to coercions no
longer needs to go through the intermediate Dyn→ Dyn. Fig. 9 shows the new compila-
tion function. Consequently the reduction rules for D need to be more general to handle
arbitrary higher-order projections and injections. The rule INOUTFF in Fig. 9 does just
that. The blame label l used to create the coercion on the right-hand side is from the
projection. This places all of the responsibility for a potential error on the projection.

We now prove that the D strategy fulfills its design goal: traditional subtyping should
capture the notion of a safe cast, i.e., a cast that is guaranteed not to be blamed for any
run-time cast errors. It turns out that this is rather straightforward to prove because a
cast from S to T , where S <: T , compiles to a coercion with no projection or failure
coercions. In fact, the coercion will not contain any blame labels.

28 J. Siek, R. Garcia, and W. Taha

Compilation from type-based casts to coercions:

〈〈B ⇐ B〉〉l = ι

〈〈B′ ⇐ B〉〉l = Faill if B 	= B′

〈〈Dyn⇐ Dyn〉〉l = ι

〈〈Dyn⇐ B〉〉l = B!

〈〈B ⇐ Dyn〉〉l = B?l

〈〈B ⇐ S1 → S2〉〉l = Faill

〈〈T1 → T2 ⇐ B〉〉l = Faill

〈〈T1 → T2 ⇐ S1 → S2〉〉l =

⎧
⎪⎨

⎪⎩

ι if c = ι and d = ι

Faill if c = Faill or d = Faill

c→ d otherwise
where c = 〈〈S1 ⇐ T1〉〉l, d = 〈〈T2 ⇐ S2〉〉l

〈〈Dyn⇐ S1 → S2〉〉l = (Dyn→ Dyn)! ◦ 〈〈Dyn→ Dyn⇐ S1 → S2〉〉l
〈〈T1 → T2 ⇐ Dyn〉〉l = 〈〈T1 → T2 ⇐ Dyn→ Dyn〉〉l ◦ (Dyn→ Dyn)?l

Reduction rules:

(INOUTDD) (Dyn→ Dyn)?l ◦ (Dyn→ Dyn)! −→ ι

Fig. 8. The UD blame assignment strategy

Lemma 1 (Subtype coercions do not contain blame labels)
If S <: T then labels(〈〈T ⇐ S〉〉l) = ∅, where labels(c) is the labels that occur in c.

Proof. The proof is by strong induction on the sum of the height of the two types
followed by case analysis on the types. Each case is straightforward.

Next we show that coercion evaluation does not introduce blame labels.

Lemma 2 (Coercion evaluation monotonically decreases labels)
If c �−→L∪D c′ then labels(c′) ⊆ labels(c).

Proof. The proof is a straightforward case analysis on �−→L∪D and −→L∪D.

The same can be said of λ〈·〉
→ (L ∪D) evaluation.

Lemma 3 (λ〈·〉
→ (L ∪D) evaluation monotonically decreases labels)

If e �−→ e′ then labels(e′) ⊆ labels(e), where labels(e) is the labels that occur in e.

Proof. The proof is a straightforward case analysis on �−→ and −→.

Thus, when a cast failure occurs, the label must have come from a coercion in the
original program, but it could not have been from a cast that respects subtyping because
such casts produce coercions that do not contain any blame labels.

Theorem 3 (Soundness of subtyping wrt. λ〈·〉
→ (L ∪D))

If every cast labeled l in program e respects subtyping, then e ��−→∗ blame l.

Proof. The proof is a straightforward induction on �−→∗.

Exploring the Design Space of Higher-Order Casts 29

Compilation from type-based casts to coercions:

... (same as in Fig. 8)
〈〈Dyn⇐ S1 → S2〉〉l = (S1 → S2)!

〈〈T1 → T2 ⇐ Dyn〉〉l = (T1 → T2)?
l

Reduction rules:

(INOUTFF) (T1 → T2)?
l ◦ (S1 → S2)! −→ 〈〈T1 → T2 ⇐ S1 → S2〉〉l

Fig. 9. The D blame assignment strategy

5.2 An Eager Error Detection Strategy for the Coercion Calculus

To explain the eager error detection strategy in HTF-E, we first review why the reduc-
tion rules in L detect higher-order cast errors in a lazy fashion. Consider the reduction
sequence for program (2) under L ∪D:

〈〈〈Bool→ Int⇐ Dyn→ Dyn〉l2〈Dyn→ Dyn⇐ Int→ Int〉l1(λx : Int. x)〉〉
= 〈Bool!→ Int?l2〉〈Int?l1 → Int!〉(λx : Int. x)

−→ 〈(Bool!→ Int?l2) ◦ (Int?l1 → Int!)〉(λx : Int. x)

−→ 〈(Int?l1 ◦ Bool!)→ (Int?l2 ◦ Int!)〉(λx : Int. x)

−→ 〈Faill1 → ι〉(λx : Int. x)

The cast 〈Faill1 → ι〉 is in normal form and, because the Faill1 does not propagate
to the top of the cast, the lazy reduction strategy does not signal a failure in this case.

The eager error detection strategy therefore adds reduction rules that propagate fail-
ures up through function coercions. Fig 10 shows the two reduction rules for the E
strategy. Note that in FAILFR we require the coercion in argument position to be nor-
malized but not be a failure. This restriction is needed for confluence.

Using the eager reduction rules, program (2) produces a cast error.

· · · �−→ 〈Faill1 → ι〉(λx : Int. x) �−→ 〈Faill1〉(λx : Int. x) �−→ blame l1

The combination L ∪UD ∪ E can be viewed as adding blame tracking to HTF-E.
The combination L∪D∪E is entirely new and particularly appealing as an intermediate
language for gradual typing because it provides thorough error detection and intuitive
blame assignment. The combination L ∪D is well-suited to modeling languages that
combine dynamic and static typing in a manner that admits as many correctly-behaving
programs as possible because it avoids reporting cast errors until they are immediately
relevant and provides intuitive guidance when failure occurs.

(FAILFL) (Faill → d) −→ Faill

(FAILFR) (c→ Faill) −→ Faill where c 	= Faill′

Fig. 10. The eager detections reduction rules (E)

30 J. Siek, R. Garcia, and W. Taha

6 A Space-Efficient Semantics for λ〈·〉
→(X)

The semantics of λ〈·〉
→ (X) given in Fig. 7 is only partially space-efficient. Rule CMPCST

merges adjacent casts and the normalization of coercions sufficiently compresses them,
but casts can still accumulate in the tail position of recursive calls. It is straightfor-
ward to parameterize the space-efficient semantics and proofs of Herman et al. [7] with
respect to coercion calculi, thereby obtaining a space-efficient semantics for λ〈·〉

→ (X).
The proof of space-efficiency requires several properties that depend on the choice

of X . First, the size of a coercion (number of AST nodes) in normal form must be
bounded by its height.

Lemma 4 (Coercion size bounded by height)
For each coercion calculus X in this paper, if � c : T ⇐ S and c is in normal form for
X , then size(c) ≤ 5(2height(c) − 1).

Proof. The proofs are by structural induction on c. In the worst-case, c has the form
(Dyn→ Dyn)! ◦ (c1 → c2) ◦ (Dyn→ Dyn)?. Thus, size(c) = 5 + size(c1) + size(c2).
Applying the induction hypothesis to size(c1) and size(c2), we have
size(c) ≤ 5 + 2 · 5(2height(c)−1 − 1) = 5(2height(c) − 1).

Second, the height of the coercions produced by compilation from type-based casts is
bounded by the the sum of the source and target type.

Lemma 5. If c = 〈〈T ⇐ S〉〉l then height(c) ≤ max (height (S), height(T)).

Third, coercion evaluation must never increase the height of a coercion.

Lemma 6 (Coercion height never increases)
For each coercion calculi X in this paper, if c �−→X c′ then height(c′) ≤ height(c).

7 Conclusion and Future Work

In this paper we explore the design space of higher-order casts along two axes: blame
assignment strategies and eager versus lazy error detection. This paper introduces a
framework based on Henglein’s Coercion Calculus and instantiates four variants, each
of which supports blame tracking and guarantees space efficiency. Of the four variants,
one extends the semantics of Herman et al. [7] with blame tracking in a natural way.
This variant has the same blame tracking behavior as [11], thereby establishing a pre-
viously unknown connection between these works. One of the variants combines eager
error detection with a blame tracking strategy in which casts that respect traditional
subtyping are guaranteed to never fail. This variant provides a compelling dynamic se-
mantics for gradual typing.

Our account of the design space for cast calculi introduces new open problems. The
UD blame strategy has a constant-factor speed advantage over the D strategy because
D must generate coercions dynamically. We would like an implementation model for D
that does not need to generate coercions. We are also interested in characterizations of
statically safe casts that achieve greater precision than subtyping.

Exploring the Design Space of Higher-Order Casts 31

Bibliography

[1] Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: ACM International
Conference on Functional Programming (October 2002)

[2] Flanagan, C.: Hybrid type checking. In: POPL 2006: The 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Charleston, South Carolina, pp.
245–256 (January 2006)

[3] Flanagan, C., Freund, S.N., Tomb, A.: Hybrid types, invariants, and refinements for imper-
ative objects. In: FOOL/WOOD2006: International Workshop on Foundations and Devel-
opments of Object-Oriented Languages (2006)

[4] Gronski, J., Flanagan, C.: Unifying hybrid types and contracts. In: Trends in Functional
Prog. (TFP) (2007)

[5] Henglein, F.: Dynamic typing. In: Krieg-Brückner, B. (ed.) ESOP 1992. LNCS, vol. 582,
pp. 233–253. Springer, Heidelberg (1992)

[6] Henglein, F.: Dynamic typing: syntax and proof theory. Science of Computer Program-
ming 22(3), 197–230 (1994)

[7] Herman, D., Tomb, A., Flanagan, C.: Space-efficient gradual typing. In: Trends in Func-
tional Prog. (TFP), p. XXVIII (April 2007)

[8] Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Scheme and Functional
Programming Workshop, pp. 81–92 (September 2006)

[9] Siek, J.G., Taha, W.: Gradual typing for objects. In: Ernst, E. (ed.) ECOOP 2007. LNCS,
vol. 4609, pp. 2–27. Springer, Heidelberg (2007)

[10] Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: Workshop on Scheme
and Functional Programming, pp. 15–26 (2007)

[11] Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: Castagna, G. (ed.) ESOP
2009. LNCS, vol. 5502, pp. 1–16. Springer, Heidelberg (2009)

Practical Variable-Arity Polymorphism

T. Stephen Strickland, Sam Tobin-Hochstadt, and Matthias Felleisen

PLT @ Northeastern University

Abstract. Just as some functions have uniform behavior over distinct
types, other functions have uniform behavior over distinct arities. These
variable-arity functions are widely used in scripting languages such as
Scheme and Python. Statically typed languages also accommodate mod-
est forms of variable-arity functions, but even ML and Haskell, languages
with highly expressive type systems, cannot type check the wide variety
of variable-arity functions found in untyped functional languages. Con-
sequently, their standard libraries contain numerous copies of the same
function definition with slightly different names.

As part of the Typed Scheme project—an on-going effort to create an
explicitly typed sister language for PLT Scheme—we have designed and
implemented an expressive type system for variable-arity functions. Our
practical validation in the context of our extensive code base confirms
the usefulness of the enriched type system.

1 Types for Variable-Arity Functions

For the past two years, Tobin-Hochstadt and Felleisen [1,2] have been devel-
oping Typed Scheme, an explicitly and statically typed sister language of PLT
Scheme [3]. In many cases, Typed Scheme accommodates existing Scheme pro-
gramming idioms as much as possible. One remaining obstacle concerns functions
of variable arity. Such functions have a long history in programming languages,
especially in LISP and Scheme systems where they are widely used for a variety of
purposes, ranging from arithmetic operations to list processing. In response, we
have augmented Typed Scheme so that its type system can cope with variable-
arity functions of many kinds.

Some variadic functions in Scheme are quite simple. For example, the function
+ takes any number of numeric values and produces their sum. This function,
and others like it, could be typed in a system that maps a variable number of
arguments into a homogeneous data structure.1 Other variable-arity functions,
however, demand a more sophisticated approach than collecting the extra argu-
ments in such a fashion.

Consider Scheme’s map function, which takes a function as input as well as
an arbitrary number of lists. It then applies the function to the elements of the
lists in a pointwise fashion. The function must therefore take precisely as many
arguments as the number of lists provided. For example, if the make-student

1 Languages like C, C++, Java, and C# support such variable-arity functions.

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 32–46, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Practical Variable-Arity Polymorphism 33

function consumes two arguments, a name as a string and a number for a grade,
then the expression

(map make-student (list "Al" "Bob" "Carol") (list 87 98 64))

produces a list. We refer to variable-arity functions such as + and map as having
uniform and non-uniform polymorphic types, respectively.

For Typed Scheme to be useful to working programmers, its type system
must handle this form of polymorphism. Further, although map and + are part
of the standard library, language implementers cannot arrogate the ability to
abstract over the arities of functions. Scheme programmers routinely define such
functions, and if they wish to refactor their Scheme programs into Typed Scheme,
our language must allow such function definitions.

Of course, our concerns are relevant beyond the confines of Scheme. Variable-
arity functions are also useful in statically typed languages, but are barely sup-
ported because of a lack of pragmatic approaches. Even the standard libraries
of highly expressive typed functional languages contain functions that would
benefit from non-uniform variable-arity, but instead are defined via copying of
code. For example, the SML Basis Library [4] includes the ARRAY and ARRAY2
signatures, which include functions that differ only in arity. The GHC standard
library [5] also features close to a dozen families of functions (such as zip and
zipWith) defined at a variety of arities. We conjecture that if their type systems
provided variable-arity polymorphism, Haskell and ML programmers would rou-
tinely define such functions, too.

In this paper, we present the first pragmatic and comprehensive approach to
variable-arity polymorphism: its design, implementation, and evaluation. Our
new version of Typed Scheme can assign types to hundreds of programmer-
introduced function definitions with variable arities, something that was simply
impossible before. Furthermore, we can now type check library functions such
as map and fold-left without resorting to special tricks or duplication.

In the next two sections, we describe Typed Scheme in general terms and then
present the type system for variable-arity functions. In section 4, we introduce a
formal model of our variable-arity type system. In section 5 we present prelimi-
nary results of our evaluation effort with respect to the PLT Scheme code base
and the limitations of our system. In section 6 we discuss related work.

2 Typed Scheme . . .

The goal of our Typed Scheme [2] project is to design a typed sister language
for an untyped scripting language in which programmers can transfer programs
to the typed world one module at a time. Like PLT Scheme, Typed Scheme is a
modular programming language; unlike plain Scheme programs, Typed Scheme
programs have explicit type annotations for function and structure definitions
that are statically checked. Typed Scheme also supports integration with un-
typed Scheme code, allowing a typed program to link in untyped modules and
vice versa. The mechanism exploits functional contracts [6] to guarantee a gen-
eralized type soundness theorem [1].

34 T.S. Strickland, S. Tobin-Hochstadt, and M. Felleisen

Typed Scheme supports this gradual refactoring with a type system that
accommodates standard Scheme programming idioms with minimal code mod-
ification. In principle, Scheme programmers need only annotate structure and
function headers with types to move a module to the Typed Scheme world; on
occasion, they may also wish to define a type alias to keep type expressions con-
cise. The type system combines true union types, recursive types, first-class poly-
morphic functions, and the novel discipline of occurrence typing. Additionally,
Typed Scheme infers types for instantiations of polymorphic functions, based on
locally-available type information.

2.1 Basic Typed Scheme

Scheme programmers typically describe the structure of their data in comments,
rather than in executable code. For example, a shape data type might be repre-
sented as:

;; A shape is either a rectangle or a circle
(define-struct rectangle (l w)) (define-struct circle (r))

To accommodate this style in Typed Scheme, programmers can specify true,
untagged unions of types:

(define-type-alias shape (
⋃

rectangle circle))
(define-struct: rectangle ([l : Integer] [w : Integer]))
(define-struct: circle ([r : Integer]))

Typed Scheme also supports explicit recursive types, which, for example, are
necessary for typing uses of cons pairs in Scheme programs. This allows the
specification of both fixed-length heterogeneous lists and arbitrary-length ho-
mogeneous lists, or even combinations of the two.

Finally, Typed Scheme introduces occurrence typing, which allows the types
of variable occurrences to depend on their position in the control flow graph. For
example, the program fragment

(display "Enter a number to double: ")
(let ([val (read)]) ;; an arbitrary S-expression

(if (number? val) (display (∗ 2 val))
(display "That wasn’t a number!")))

type-checks correctly because the use of ∗ is guarded by the number? check.

2.2 Polymorphic Functions and Local Type Inference

Typed Scheme supports first-class polymorphic functions. For example, list-ref
has the type (∀ (α) ((Listof α) Integer → α)). It can be defined in Typed
Scheme as follows:

(: list-ref (∀ (α) ((Listof α) Integer → α)))
(define (list-ref l i)

(cond [(not (pair? l)) (error "empty list")]
[(= 0 i) (car l)]
[else (list-ref (cdr l) (− i 1))]))

Practical Variable-Arity Polymorphism 35

The example shows two important aspects of polymorphism in Typed Scheme.
First, the abstraction over types is explicit in the polymorphic type of list-ref but
implicit in the function definition. Second, typical uses of polymorphic functions,
e.g., car and list-ref , do not require explicit type instantiation. Instead, the
required type instantiations are synthesized from the types of the arguments.

Argument type synthesis uses the local type inference algorithm of Pierce
and Turner [7]. It greatly facilitates the use of polymorphic functions and makes
conversions from Scheme to Typed Scheme convenient, while dealing with the
subtyping present in the rest of the type system in an elegant manner. Further-
more, it ensures that type inference errors are always locally confined, rendering
them reasonably comprehensible to programmers.

3 . . . with Variable-Arity Functions

A Scheme programmer defines functions with lambda or define. Both syntactic
forms support fixed and variable-arity parameter specifications:

1. (lambda (x y) (+ x (∗ y 3))) creates a function of two arguments and
(define (f x y) (+ x (∗ y 3))) creates the same function and names it f ;

2. the function (lambda (x y . z) (+ x (apply max y z))) consumes at least
two arguments and otherwise as many as needed;

3. (define (g x y . z) (+ x (apply max y z))) names this function g;
4. (lambda z (apply + z)) creates a function of arbitrary arity; and
5. (define (h . z) (apply + z)) is the analogue to this lambda expression.

The parameter z in the last four cases is called the rest parameter.
The application of a variable-arity function combines any arguments in excess

of the number of required parameters into a list. Thus, (g 1 2 3 4) binds x to 1
and y to 2, while z becomes (list 3 4) for the evaluation of g’s function body. In
contrast, (h 1 2 3 4) sets z to (list 1 2 3 4).

The apply function, used in the examples above, takes a function f , a sequence
of fixed arguments v1 . . . vn, and a list of additional arguments r. If the list r is
the value (list w1 . . . wn), then (apply f v1 . . . vn r) is the same as (f v1 . . .
vn w1 . . . wn). The apply function plays a critical role in conjunction with rest
arguments.

This section sketches how the revised version of Typed Scheme accommo-
dates variable-arity functions. Our revision focuses on the uses of such func-
tions that accept arbitrarily many arguments. Scheme programmers sometimes
use variable-arity functions to simulate optional or keyword arguments. In PLT
Scheme, such programs typically employ case-lambda [8] or equivalent define
forms instead.

3.1 Uniform Variable-Arity Functions

Uniform variable-arity functions are those that expect their rest parameter to
be a homogeneous list. Consider the following three examples of type signatures:

36 T.S. Strickland, S. Tobin-Hochstadt, and M. Felleisen

(: + (Integer∗ → Integer))
(: string-append (String∗ → String))
(: list (∀ (α) (α∗ → (Listof α))))

The syntax Type∗ for the type of rest parameters alludes to the Kleene star
for regular expressions. It signals that in addition to the other arguments, the
function takes an arbitrary number of arguments of the given base type. The
form Type∗ is dubbed a starred pre-type, because it is not a full-fledged type and
may appear only as the last element of a function’s domain.

Here is a definition of variable-arity + in Scheme:

;; assumes binary-+, a binary addition operator
(define (+ . xs) (if (null? xs) 0 (binary-+ (car xs) (apply + (cdr xs)))))

Typing this definition is straightforward. The type assigned to the rest parameter
of starred pre-type τ∗ in the body of the function is (Listof τ), a pre-existing
type in Typed Scheme.

3.2 Beyond Uniform Variable-Arity Functions

Not all variable-arity functions assume that their rest parameter is a homoge-
neous list of values. We can allow heterogeneous rest parameters by finding other
constraints. For example, the length of the list assigned to the rest parameter
may be connected to the types of other parameters or the returned value.

For example, Scheme’s map function is not restricted to mapping unary func-
tions over single lists, unlike its counter-parts in ML or Haskell. When map
receives a function f and n lists, it expects f to accept n arguments. Also, the
type of the kth function parameter must match the element type of the kth list.

Scheme’s apply function provides its own challenges. It is straightforward to
type the use of apply with a uniform variable-arity function, as in the hypotheti-
cal definition of + from section 3.1. If the type of f involves the starred pre-type
τ∗, then the list r must have type (Listof τ).

However, take the following example taken from the PLT Scheme code base:

;; implements a wrapper that prints f ’s arguments
(define (verbose f)

(if quiet? f (lambda a (printf "xform-cpp: ˜a\n" a) (apply f a))))

The intent of the programmer is clear—the result of applying verbose to a func-
tion f should have the same type as f for any function type. With uniform
variable-arity functions, we can type the internal lambda’s argument a only
as a homogeneous list of arbitrary length. Thus, if f has some fixed arity n,
then there is no way to statically guarantee that the list of arguments a has
n elements, and thus applying the function f to the list a via apply may go
wrong. Our type system should protect the programmer from arity mismatches,
whether through function application or uses of apply, while allowing functions
like verbose.

Practical Variable-Arity Polymorphism 37

3.3 Non-uniform Variable-Arity Functions

As of the latest release, Typed Scheme can represent the types of non-uniform
variable-arity functions. Below are the types for some example functions:

;; map is the standard Scheme map
(: map

(∀ (γ α β . . .)
((α β . . .β → γ) (Listof α) (Listof β) . . .β → (Listof γ))))

;; map-with-funcs takes any number of functions,
;; and then an appropriate set of arguments, and then produces
;; the results of applying all the functions to the arguments
(: map-with-funcs

(∀ (β α . . .) ((α . . .α → β)∗ → (α . . .α → (Listof β)))))

Our first key innovation is the possibility to attach . . . to the last type variable
in the binding position of a ∀ type constructor. Such type variables are dubbed
dotted type variables. Dotted type variables signal that this polymorphic type
can be instantiated with an arbitrary number of types.

Next, the body of ∀ types with dotted type variables may contain expressions
of the form τ . . .α for some type τ and a dotted type variable α. These are dotted
pre-types; they classify non-uniform rest parameters just like starred pre-types
classify uniform rest parameters. A dotted pre-type has two parts: the base τ and
the bound α. Only dotted type variables can be used as the bound of a dotted
pre-type. Since ∀-types are nestable and thus multiple dotted type variables may
be in scope, dotted pre-types must specify the bound.

When a dotted polymorphic type is instantiated, any dotted pre-types are
expanded by copying the base an appropriate number of times and by replacing
free instances of the bound in each copy with the corresponding type argument.
For example, instantiating map-with-funcs as follows:

(inst map-with-funcs Number Integer Boolean String)

results in a value with the type:

((Integer Boolean String → Number)∗ →
(Integer Boolean String → (Listof Number)))

Typed Scheme also provides local inference of the appropriate type argu-
ments for dotted polymorphic functions, so explicit type instantiation is rarely
needed [9]. Thus, the following uses of map are successfully inferred at the ap-
propriate types:

(map not (list #t #f #t))
;; map is instantiated (via local type inference) at:
;; ((Boolean → Boolean) (Listof Boolean) → (Listof Boolean))

(map make-book (list "Flatland") (list "A. Square") (list 1884))
;; ((String String Integer → book)
;; (Listof String) (Listof String) (Listof Integer) → (Listof book))

38 T.S. Strickland, S. Tobin-Hochstadt, and M. Felleisen

Typed Scheme can also type-check the definitions of non-uniform variable-
arity functions:

(: fold-left
(∀ (γ α β . . .) ((γ α β . . .β → γ) γ (Listof α) (Listof β) . . .β → γ)))

(define (fold-left f c as . bss)
(if (or (null? as) (ormap null? bss)) c

(apply fold-left (apply f c (car as) (map car bss)) (cdr as)
(map cdr bss))))

The example introduces a definition of fold-left . Its type shows that it accepts at
least three arguments: a function f ; an initial element c; and at least one list as .
Optionally, fold-left consumes another sequence bss of lists. For this combination
to work out, f must consume as many arguments as there are lists plus one; in
addition, the types of these lists must match the types of f ’s parameters because
each list item becomes an argument.

Beyond this, the example illustrates that the rest parameter is treated as if it
were a place-holder for a plain list parameter. In this particular case, bss is thrice
subjected to map-style processing. In general, variable-arity functions should be
free to process their rest parameters with existing list-processing functions.

The challenge is to assign types to such expressions. On the one hand, list-
processing functions expect lists, but the rest parameter has a dotted pre-type.
On the other hand, the result of list-processing a rest parameter may flow again
into a rest-argument position. While the first obstacle is simple to overcome
with a conversion from dotted pre-types to list types, the second one is onerous.
Since list-processing functions do not return dotted pre-types but list types, we
cannot possibly expect that such list types come with enough information for
an automatic conversion.

Thus we use special type rules for the list processing of rest parameters with
map, andmap, and ormap. Consider map, which returns a list of the same length
as the given one and whose component types are in a predictable order. If xs is
classified by the dotted pre-type τ . . .α, and f has type (τ → σ), we classify (map
f xs) with the dotted pre-type σ . . .α. Thus, in the definition of fold-left (map
car bss) is classified as the dotted pre-type β . . .β because car is instantiated at
((Listof β) → β) and bss is classified as the dotted pre-type (Listof β) . . .β .

One way to use such processed rest parameters is in conjunction with apply.
Specifically, if apply is passed a variable-arity function f , then its final argument
l , which must be a list, must match up with the rest parameter of f . If the
function is a uniform variable-arity procedure and the final argument is a list,
typing the use of apply is straightforward. If it is a non-uniform variable-arity
function, the number and types of parameters must match the elements and
types of l .

Here is an illustrative example from the definition of fold-left :

(apply f c (car as) (map car bss))

By the type of fold-left , f has type (γ α β . . .β → γ). The types of c and (car
as) match the types of the initial parameters to f . Since the map application

Practical Variable-Arity Polymorphism 39

p ::= = | plus | minus | mult | car | cdr | null?

v ::= n | b | p | nullτ | (consτ v v) | (λ (
−−−→
[x : τ]) e) | (Λ (−→α) e)

| (Λ (−→α α ...) e) | (λ (
−−−→
[x : τ] . [x : τ∗]) e) | (λ (

−−−→
[x : τ] . [x : τ ...α]) e)

e ::= v | x | (e −→e) | (if e e e) | (consτ e e) | errorL

| (@ e −→τ) | (@ e −→τ τ ...α) | (apply e −→e e)
| (map e e) | (ormap e e) | (andmap e e)

τ ::= Integer | Boolean | α | (Listof τ) | (−→τ → τ)
| (−→τ τ∗ → τ) | (−→τ τ ...α → τ) | (∀ (−→α) τ) | (∀ (−→α α ...) τ)

Fig. 1. Syntax

has dotted pre-type (Listof β) . . .β and since the rest parameter position of f is
bounded by β, we are guaranteed that the length of the list produced by (map
car bss) matches f ’s expectations about its rest argument. In short, we use the
type system to show that we cannot have an arity mismatch, even in the case of
apply.

4 A Variable-Arity Type System

The development of our formal model starts from the syntax of a multi-arity
version of System F [10], enriched with variable-arity functions. An accompany-
ing technical report [9] contains the full set of type rules as well as a semantics
and soundness theorem for this model.

4.1 Syntax

We extend System F with multiple-arity functions at both the type and term
level, lists, and uniform rest-argument functions. The use of multiple-arity func-
tions establishes the proper problem context. Lists and uniform rest-argument
functions suffice to explain how both kinds of variable-arity functions interact.

The grammar in figure 1 specifies the abstract syntax. We use a syntax close
to that of Typed Scheme, including the use of @ to denote type application. The
use of the vector notation −→e denotes a (possibly empty) sequence of forms (in
this case, expressions). In the form −→nek , n indicates the length of the sequence,
and the term eki is the ith element. The subforms of two sequences of the same
length have the same subscript, so −→nek and −→nτk are identically-sized sequences
of expressions and types, respectively, whereas −→mej is unrelated. If all vectors
are the same size the sizes are dropped, but the subscripts remain. Otherwise
the addition of starred pre-types, dotted type variables, dotted pre-types, and
special forms is needed to operate on non-uniform rest arguments.

A starred pre-type, which has the form τ∗, is used in the types of uniform
variable-arity functions whose rest parameter contains values of type τ. It only
appears as the last element in the domain of a function type or as the type of a
uniform rest argument.

40 T.S. Strickland, S. Tobin-Hochstadt, and M. Felleisen

A dotted type variable, which has the form α ..., serves as a placeholder in a
type abstraction. Its presence signals that the type abstraction can be applied to
an arbitrary number of types. A dotted type variable can only appear as the last
element in the list of parameters to a type abstraction. We call type abstractions
that include dotted type variables dotted type abstractions.

A dotted pre-type, which has the form τ ...α , is a type that is parameterized
over a dotted type variable. When a type instantiation associates the dotted
type variable α ... with a sequence −→nτk of types, the dotted pre-type τ ...α is
replaced by n copies of τ, where α in the ith copy of τ is replaced with τki . In the
syntax, dotted pre-types can appear only in the rightmost position of a function
type, as the type of a non-uniform rest argument, or as the last argument to @.

In this model the special forms ormap, andmap, and map are restricted to appli-
cations involving non-uniform rest arguments, and apply is restricted to applica-
tions involving rest arguments. In Typed Scheme, they also work for applications
involving lists.

4.2 Type System

The type system is an extension of the type system of System F to handle
the new linguistic constructs. We start with the changes to the environments
and judgments, plus the major changes to the type validity relation. Next we
present relations used for dotted types and expressions that have dotted pre-
types instead of types. Then we discuss the changes to the standard typing
relation, and finally we discuss the metafunctions used to define the new typing
judgments.

The environments and judgments used in our type system are similar to those
used for System F except as follows:

– The type variable environment (Δ) includes both dotted and non-dotted
type variables.

– There is a new class of environments (Σ), which map non-uniform rest pa-
rameters to dotted pre-types.

– There is also an additional validity relation Δ 	 τ ...α for dotted pre-types.
– The use of Σ makes typing relation Γ, Δ, Σ � e : τ a five-place relation.
– There is an additional typing relation Γ, Δ, Σ � e	τ ...α for assigning dotted

pre-types to expressions.

The type validity relation checks the validity of two forms—types and dotted
type variables. The additional rules for establishing type validity of non-uniform
variable-arity types are provided below, along with an additional relation which
checks the validity of dotted pre-types.

TE-DVar
α ... ∈ Δ
Δ � α ...

TE-DFun
Δ � τr ...α−−−−→

Δ � τj Δ � τ
Δ � (−→τj τr ...α → τ)

TE-DAll
Δ ∪ {−→αj , β ...} � τ
Δ � (∀ (−→αj β ...) τ)

TDE-Pretype
Δ � α ...
Δ ∪ {α} � τ
Δ � τ ...α

Practical Variable-Arity Polymorphism 41

When validating a dotted pre-type τ ...α , the bound α is checked to make sure
that it is indeed a valid dotted type variable. Then τ is checked in an environment
where the bound is allowed to appear free. It is possible for a dotted pre-type to
be nested somewhere within a dotted pre-type over the same bound, e.g.

(∀ (α . . .) ((α . . .α → α) . . .α → (α . . .α → (Listof Integer))))

To illustrate how such a type might be used, we instantiate this sample type
with the sequence of types Integer Boolean:

((Integer Boolean → Integer) (Integer Boolean → Boolean)
→ (Integer Boolean → (Listof Integer)))

There are two functions in the domain of the type, each of which corresponds to
an element in our sequence. All functions have the same domain—the sequence
of types; the ith function returns the ith type in the sequence.

TD-Var
Σ(x) = τ ...α

Γ, Δ, Σ � x 	 τ ...α

TD-Map
Γ, Δ, Σ � er 	 τr ...α Γ, Δ ∪ {α}, Σ � ef : (τr → τ)

Γ, Δ, Σ � (map ef er) 	 τ ...α

The preceding rules are the typing rules for the two forms of expressions that
have dotted pre-types. The TD-Var rule just checks for the variable in Σ. The
TD-Map rule assigns a type to a function position. Since the function needs to
operate on each element of the sequence represented by er, not on the sequence
as a whole, the domain of the function’s type is the base τr instead of the dotted
type τr ...α . This type may include free references to the bound α, however.
Therefore, we must check the function in an environment extended with α as a
regular type variable.

As expected, most of the typing rules are simple additions of multiple-arity
type and term abstractions and lists to System F. For uniform variable-arity
functions, the introduction rule treats the rest parameter as a variable whose
type is a list of the appropriate type. There is only one elimination rule, which
deals with the special form apply ; other eliminations such as direct application
to arguments are handled via the coercion rules.

The type rules in figure 2 concern non-uniform variable-arity functions. These
functions also have one introduction and one elimination rule. The rule T-
Ormap and its absent counterpart T-Andmap are similar to that of TD-Map
in that the dotted pre-type bound of the second argument is allowed free in
the type of the first argument. In contrast to uniform variable-arity functions,
non-uniform ones cannot be applied directly to arguments in this calculus.

While T-DTAbs, the introduction rule for dotted type abstractions, follows
from the rule for normal type abstractions, the elimination rules are quite dif-
ferent. There are two elimination rules: T-DTApp and T-DTAppDots. The
former handles type application of a dotted type abstraction where the dotted
type variable corresponds to a sequence of types, and the latter deals with the
case when the dotted type variable corresponds to a dotted pre-type.

42 T.S. Strickland, S. Tobin-Hochstadt, and M. Felleisen

T-DAbs−−−−→
Δ � τk Δ � τr ...α Γ[−−−−−→xk �→ τk],Δ,Σ[xr �→ τr ...α] � e : τ

Γ,Δ,Σ � (λ (
−−−−−→
[xk : τk] .[xr : τr ...α]) e) : (−→τk τr ...α → τ)

T-DApply
Γ,Δ,Σ � ef : (−→τk τr ...α → τ)−−−−−−−−−−−→

Γ,Δ,Σ � ek : τk Γ,Δ,Σ � er � τr ...α

Γ,Δ,Σ � (apply ef
−→ek er) : τ

T-Ormap
Γ,Δ,Σ � er � τr ...α

Γ,Δ ∪ {α}, Σ � ef : (τr → Boolean)
Γ,Δ,Σ � (ormap ef er) : Boolean

T-DTAbs
Γ,Δ ∪ {−→αk, β ...}, Σ � e : τ

Γ,Δ,Σ � (Λ (−→αk β ...) e) : (∀ (−→αk β ...) τ)

T-DTApp−−−−→n
Δ � τj

−−−−→m
Δ � τk

−→m
βk fresh Γ,Δ,Σ � e : (∀ (−→nαj β ...) τ)

Γ,Δ,Σ � (@ e −→nτj
−→mτk) : tdτ(τ[−−−−−→nαj �→ τj], β,

−→m
βk)[

−−−−−→m
βk �→ τk]

T-DTAppDots−−−−→
Δ � τk Δ � τr ...β Γ,Δ,Σ � e : (∀ (−→αk αr ...) τ)
Γ,Δ,Σ � (@ e −→τk τr ...β) : sd(τ[−−−−−→αk �→ τk], αr, τr, β)

Fig. 2. Selected Type Rules

sd(αr, αr, τr, β) = τr

sd(α,αr, τr, β) = α where α �= αr

sd((−→τj τ
′
r ...αr → τ), αr, τr, β) =
(
−−−−−−−−−−−→
sd(τj , αr, τr, β) sd(τ ′r, αr, τr, β) ...β → sd(τ, αr, τr, β))

sd((−→τj τ
′
r ...α → τ), αr, τr, β) =
(
−−−−−−−−−−−→
sd(τj , αr, τr, β) sd(τ ′r, αr, τr, β) ...α → sd(τ, αr, τr, β)) where α �= αr

sd((∀ (−→αj α ...) τ), αr, τr, β) = (∀ (−→αj α ...) sd(τ, αr, τr, β))

td τ((−→nτj τr ...β → τ), β,
−→m
βk) =

(
−−−−−−−−−−→n

td τ(τj , β,
−→m
βk)

−−−−−−−−−−−−−−−−−→m

td τ(τr, β,
−→m
βk)[β �→ βk] → tdτ(τ, β,

−→m
βk))

td τ((−→nτj τr ...α → τ), β,
−→m
βk) =

(
−−−−−−−−−−→n

td τ(τj , β,
−→m
βk) td τ(τr, β,

−→m
βk) ...α → tdτ(τ, β,

−→m
βk)) where α �= β

Fig. 3. Subst-dots and trans-dots

The T-DTAppDots rule is more straightforward, as it is just a substitution
rule. Replacing a dotted type variable with a dotted pre-type is more involved
than normal type substitution, however, because we need to replace the dotted
type variable where it appears as a dotted pre-type bound. The metafunction
sd performs this substitution. Selected cases of the definition of sd appear in
figure 3; the remaining clauses perform structural traversals.

Practical Variable-Arity Polymorphism 43

The T-DTApp rule must first expand out dotted pre-types that use the dotted
type variable before performing the appropriate substitutions. To do this it uses
the metafunction tdτ on a sequence of fresh type variables of the appropriate
length to expand dotted pre-types that appear in the body of the abstraction’s
type into a sequence of copies of their base types. These copies are first expanded
with tdτ and then in each copy the free occurrences of the bound are replaced
with the corresponding fresh type variable. Normal substitution is performed
on the result of tdτ , mapping each fresh type variable to its corresponding type
argument. The interesting cases of the definition of tdτ also appear in figure 3.

5 Evaluation

Mining the extensive PLT Scheme code base provides significant evidence that
variable-arity functions are frequently defined and used; examining a fair number
of examples shows that our type system is able to cope with a good portion of
these definitions and uses.

5.1 Measurements of Existing Code

A simple pattern-based search of the code base for definitions of variable-arity
functions and uses of certain built-in core functions produces the following:

– There are at least 1761 definitions of variable-arity functions.
– There are 488 uses of map, for-each, foldl , foldr , andmap, and ormap with

more than the minimum number of arguments.

These numbers demonstrate the need for a type system that deals with
variable-arity functions. Programmers use those from the core library at multiple
arities. Furthermore, programmers define such functions regularly.

It is this kind of inspection of our code base that inspires a careful inves-
tigation of the issue of variable-arity functions. We cannot reasonably ask our
programmers to duplicate their code or to duplicate type cases just because our
type system does not accommodate their utilization of the expressive power of
plain Scheme.

5.2 Evaluation of Examples

Simply counting definitions and uses of variable-arity functions is insufficient.
Each definition and use demands a separate inspection in order to validate that
our type system can cope with it. This is particularly necessary for function def-
initions, because our pattern-based search does not indicate whether a definition
introduces a uniform or non-uniform variable-arity function.

Uses The sample set for uses of variable-arity functions from the core library
covers 30 cases, i.e., 10 randomly-chosen example function applications using
each of map, for-each, and andmap with at least two list arguments. For map,

44 T.S. Strickland, S. Tobin-Hochstadt, and M. Felleisen

we are able to type 9 of 10, for for-each we are able to type 10 of 10, for andmap
we are able to type 10 of 10.

In short, our technique is extremely successful for the list-processing functions,
checking 29 of the 30 examples. The one failure is due to the use of a list to
represent a piece of information that comprises four pieces. In this case, our
type system simply does not preserve the length information for the list from
the input to map.

Definitions. The sample set for definitions of variable-arity functions covers some
120 cases (or some 7%) from the code base. Our findings naturally sort these
samples into three categories:

– A majority of the functions can be typed with uniform rest arguments or use
variable arity to simulate optional arguments. For the latter, we recommend
that programmers rewrite such functions using case-lambda.

– Twelve of the 120 inspected definitions are non-uniform and require variable-
arity polymorphism. Our type checker can assign types to all of them. Re-
turning to our example in section 3.2, verbose can be given the type

(∀ (β α . . .) ((α . . .α → β) → (α . . .α → β))).

– The small remainder cannot be typed using our system.

These inspections demonstrate two important points. First, all of the vari-
ous ways in which Typed Scheme handles varying numbers of arguments are
important for type-checking existing Scheme code. Second, our design choices
for variable-arity polymorphism mostly capture the programming style used in
practice by working PLT Scheme programmers. In conclusion, we conjecture that
our type system can validate more than 95% of the uses of heterogeneous library
functions such as map, that it can check 70% of the close to 1800 definitions,
10% of which require the heterogeneous version of variable-arity polymorphism.

6 Related Work

Variable-arity functions are nearly ubiquitous in the world of programming lan-
guages, but no typed language supports them in a systematic and principled
manner. Here we survey existing systems as well as several theoretical efforts.

ANSI C provides “varargs,” but the functions that implement this function-
ality serve as a thin wrapper around direct access to the stack frame. Java [11]
and C# are two statically typed languages that have only uniform variable-arity
functions, since access occurs via a homogeneous array.

Dzeng and Haynes [12] come close to our goal of providing a practical type
system for variable-arity functions. As part of the Infer system for type-checking
Scheme [13], they use an encoding of “infinitary tuples” as row types for an ML-
like type inference system that handles optional arguments and uniform and
non-uniform variable-arity functions.

Practical Variable-Arity Polymorphism 45

By comparison to our work, Dzeng and Haynes’ system has several limitations.
Most importantly, since their system does not support first-class polymorphic
functions, they are unable to type many of the definitions of variable-arity func-
tions, such as map or fold . Additionally, their system requires full type inference
to avoid exposing users to the underlying details of row types, and it is also
designed around a Hindley-Milner style algorithm. This renders it incompatible
with the remainder of the design of Typed Scheme, which is based on a system
with subtyping.

Gregor and Järvi [14] propose an extension for variadic templates to C++ for
the upcoming C++0x standard. This proposal has been accepted by the C++
standardization committee. Variadic templates provide a basis for implementing
non-uniform variable-arity functions in templates. Since the approach is grounded
in templates, it is difficult to translate their approach to other languages without
template systems. The template approach addresses a simpler problem, since tem-
plate expansion is a pre-processing step and types are only checked after template
expansion. It also significantly complicates the language, since arbitrary computa-
tion can be performed during template expansion. Further, the template approach
prevents checking of variadic functions at the definition site, meaning that errors
in the definition are only caught when the function is used.

Tullsen [15] attempts to bring non-uniform variable-arity functions to Haskell
via the Zip Calculus, a type system with restricted dependent types and special
kinds that serve as tuple dimensions. This work is theoretical and comes without
practical evaluation. The presented limitations of the Zip Calculus imply that it
cannot assign a variable-arity type to the definition of zipWith (Haskell’s name
for Scheme’s map) without further extension, whereas Typed Scheme can do so.

Similarly, McBride [16] and Moggi [17] present restricted forms of dependent
typing in which the number of arguments is passed as a parameter to variadic
functions. Our system, while not allowing the expression of every dependently-
typable program, is simpler than dependent typing, suffices for most examples
we have encountered, and does not require an extra function parameter.

7 Conclusion

In this paper, we have presented a design for polymorphic functions with variable
arity. Our system accommodates both uniform and non-uniform variadic func-
tions. We also validated our design against existing Scheme and Typed Scheme
code. Typed Scheme with variable-arity polymorphism is part of the latest re-
lease of PLT Scheme (4.1), available from http://plt-scheme.org/.

In closing, we leave the reader with a final observation on the nature of
variable-arity polymorphism. Many existing languages allow functions that ac-
cept a variable number of arguments, all of a uniform type. Such functions have
types of the form τ∗ → τ . To accommodate variable-arity polymorphism, how-
ever, we must lift this abstraction one level up. For example, given the type (∀
(α . . .) (α . . .α → Boolean)), the kind of this type is simply �∗ → �. So we see
that non-uniform variable arity at the type level is reflected in uniform variable
arity at the kind level.

46 T.S. Strickland, S. Tobin-Hochstadt, and M. Felleisen

References

1. Tobin-Hochstadt, S., Felleisen, M.: Interlanguage Migration: From Scripts to Pro-
grams. In: DLS 2006, Companion to OOPSLA, pp. 964–974 (2006)

2. Tobin-Hochstadt, S., Felleisen, M.: The Design and Implementation of Typed
Scheme. In: POPL, pp. 395–406 (2008)

3. Flatt, M.: PLT MzScheme: Language Manual. Technical Report PLT-TR2008-1-
v4.0.2, PLT Scheme Inc. (2008), http://www.plt-scheme.org/techreports/

4. Gansner, E.R., Reppy, J.H.: The Standard ML Basis Library. Cambridge Univer-
sity Press, New York (2002)

5. The GHC Team: The Glasgow Haskell Compiler User’s Guide (2008)
6. Findler, R.B., Felleisen, M.: Contracts for Higher-Order Functions. In: ACM SIG-

PLAN International Conference on Functional Programming, pp. 48–59 (2002)
7. Pierce, B.C., Turner, D.N.: Local Type Inference. ACM Trans. Program. Lang.

Syst. 22(1), 1–44 (2000)
8. Dybvig, R.K., Hieb, R.: A new approach to procedures with variable arity. Lisp

and Symbolic Computation: An International Journal 3(3) (1990)
9. Strickland, T.S., Tobin-Hochstadt, S., Felleisen, M.: Variable-Arity Polymorphism.

Technical Report NU-CCIS-08-03, Northeastern University (2008)
10. Girard, J.Y.: Une extension de l’interprétation de Gödel à l’analyse, et son applica-

tion à l’élimination de coupures dans l’analyse et la théorie des types. In: Fenstad,
J.E. (ed.) Proceedings of the Second Scandinavian Logic Symposium, pp. 63–92.
North-Holland Publishing Co., Amsterdam (1971)

11. Gosling, J., Joy, B.: The Java Language Specification, 3rd edn. Addison-Wesley,
Reading (2005)

12. Dzeng, H., Haynes, C.T.: Type Reconstruction for Variable-Arity Procedures. In:
LFP 1994, pp. 239–249. ACM Press, New York (1994)

13. Haynes, C.T.: Infer: A Statically-typed Dialect of Scheme. Technical Report 367,
Indiana University (1995)

14. Gregor, D., Järvi, J.: Variadic templates for C++. In: SAC 2007, pp. 1101–1108.
ACM Press, New York (2007)

15. Tullsen, M.: The Zip Calculus. In: Backhouse, R., Oliveira, J.N. (eds.) MPC 2000.
LNCS, vol. 1837, pp. 28–44. Springer, Heidelberg (2000)

16. McBride, C.: Faking it: Simulating Dependent Types in Haskell. J. Funct. Pro-
gram. 12(5), 375–392 (2002)

17. Moggi, E.: Arity polymorphism and dependent types. In: APPSEM Workshop on
Subtyping and Dependent Types in Programming (July 7, 2000) (invited talk)

http://www.plt-scheme.org/techreports/

Resolving Inductive Definitions with Binders in

Higher-Order Typed Functional Programming�

Matthew R. Lakin and Andrew M. Pitts

University of Cambridge Computer Laboratory, Cambridge CB3 0FD, UK
{Matthew.Lakin,Andrew.Pitts}@cl.cam.ac.uk

Abstract. This paper studies inductive definitions involving binders,
in which aliasing between free and bound names is permitted. Such
aliasing occurs in informal specifications of operational semantics, but
is excluded by the common representation of binding as meta-level λ-
abstraction. Drawing upon ideas from functional logic programming, we
represent such definitions with aliasing as recursively defined functions
in a higher-order typed functional programming language that extends
core ML with types for name-binding, a type of “semi-decidable propo-
sitions” and existential quantification for types with decidable equality.
We show that the representation is sound and complete with respect to
the language’s operational semantics, which combines the use of eval-
uation contexts with constraint programming. We also give a new and
simple proof that the associated constraint problem is NP-complete.

1 Introduction

Perhaps the single most important technique in the study of programming lan-
guage semantics is the use of inductive definitions. This is especially the case
for operational semantics, which in broad terms consists of one or more in-
ductively defined relations between data structures involving programming lan-
guage syntax. The inductive definition commonly takes the form of finitely many
“schematic” rules containing parameters that can be instantiated, usually in in-
finitely many different ways, to get concrete rules for inductively generating
instances of the relations. Schematic rules are necessarily written in some meta-
language whose definition is often left implicit in published research. Having to
be completely precise about the meta-language of rule schemes is an inescapable
part of the current trend toward mechanization of semantics, whether it be
machine-assisted proof construction/checking, or executable semantic specifi-
cations. In this paper we are concerned with the latter, but in either case it is
clear that the ubiquitous presence of binding constructs in the “object-language”
(that is, the programming language whose semantics is being formalized) cre-
ates difficulties for mechanized meta-languages (see the POPLmark Challenge
wiki, for example). Ideally one would like the executable meta-language for rule
schemes to provide a fully automatic treatment of α-conversion of bound names
� Research supported by UK EPSRC grant EP/D000459/1.

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 47–61, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

48 M.R. Lakin and A.M. Pitts

in object-languages. Here we investigate a way of doing that within the context
of higher-order typed functional programming. In doing so we take a “nomi-
nal” approach to object-level binders for the following reasons to do with name
aliasing.

One way of dealing with issues of α-conversion is to make the representation
of object-level binders completely anonymous. This can be achieved through a
case-by-case use of de Bruijn indices [8], or more systematically by use of Higher-
Order Abstract Syntax (HOAS) [21] to enforce that object-level bound names
are only represented by meta-level bound names. In either case the conceptu-
ally simple operation of instantiating parameters in a rule scheme, which may
involve capture of a free name by a binder of the same name, has to be replaced
by something more complicated—simply because “binder of the same name”
makes no sense if binders have been anonymized. But there is a more serious
problem with anonymous representations of object-level binding: they rule out
the common practice of name-aliasing involving binders, be it the use of the
same name at two different binding occurrences, or the use of the same name for
both a free and a binding occurrence. For example, in an inductive definition of
β-reduction of λ-terms it is natural to use the rule scheme

t→ t′

λx. t→ λx. t′

where the two different binding occurrences within the conclusion are both
named x. In this case the name-aliasing does not cause a problem for a for-
malization using HOAS, which might render the above rule as

f(x)→ f ′(x)
λ(f)→ λ(f ′)

where f and f ′ are meta-variables of function type. The top half of Fig. 1 contains
another example. (The bottom half of the figure will be explained in Sect. 2.)
In this case the conclusion of the third rule contains both free (the first x) and
binding (the x within L(<x>t)) occurrences with the same name. We leave the
reader to ponder how to convert these rules into an extensionally equivalent
HOAS formalization (probably by ignoring the third rule completely). In fact
we do not know any definitive results comparing the class of relations (on tuples
of α-equivalence classes of λ-terms, say) defined by HOAS rule schemes with
the class defined by first-order rule schemes with conventional, named binders.
In any case, the phenomenon of name-aliasing seems too convenient to give up
unless we really have to.

So we advocate the study of executable meta-languages for rule schemes that
allow object-level binders to be named. More specifically we study such an ex-
ecutable meta-language which is a higher-order, typed functional programming
language, drawing upon the ideas of functional logic programming [14]. Our mo-
tivation for favouring this paradigm over the relational paradigm of first-order
logic programming has to do with the expressiveness and modularity afforded by

Resolving Inductive Definitions with Binders 49

nfv(x, t): “x : vr is not a free variable of the λ-term t : tm”

x # x′

nfv(x, Vx′
)

nfv(x, t) & nfv(x, t′)

nfv(x, A(t, t′)) nfv(x, L(<x>t))
nfv(x, t) & x # x′

nfv(x, L(<x′
>t))

Equivalent standard form
ϕ

nfv y
has

ϕ � Ex, x′(y = (x, Vx′) & x # x′) v Ex, t, t′(y = (x, A(t, t′)) & nfv(x, t) & nfv(x, t′))
v Ex, t(y = nfv(x, L(<x>t))) v Ex, x′, t(y = nfv(x, L(<x′>t)) & nfv(x, t) & x # x′)

Fig. 1. Example α-inductive definition

higher-order functions. For example, having higher-order functions allows one to
encode definitions that are parameterised by other definitions (such as the var-
ious operations on relations that occur in the relational approach to contextual
equivalence of programs [12, 17, 25]).

Contributions of this paper. We begin by fixing a simple, yet expressive class
of inductive definitions permitting name-aliasing in binders, where binding is
handled generically through the existing notion of a “nominal signature”. These
α-inductive definitions (Sect. 2) may involve side-conditions asserting constraints
in terms of α-equivalence and the “not-a-free-variable-of” relation. In Sect. 3 we
make the apparently new observation that such constraints can express member-
ship in finite sets; consequently the associated constraint satisfaction problem
is NP-complete (Theorem 3.3). Section 4 introduces the main contribution of
the paper, a typed higher-order functional programming language that extends
core ML with name-binding types, a type of “semi-decidable propositions” and
existential quantification for types in a class of equality types coinciding with
the arities of a user-declared nominal signature. This language, which we call
αML, draws upon the ideas of αProlog [7], extending them to higher-order func-
tional programming. αML is a simplification of both our first attempt to do
this [16] and of αProlog itself, in that it avoids the use of concrete names and
name-permutations in programs (see Remark 2.2 and Sect. 6 for the significance
of this). αML has a remarkably simple operational semantics that combines the
use of Felleisen-style evaluation contexts with constraint programming; we show
that it restricts to the usual operational semantics on the purely functional part
of αML (Theorem 4.1). By design, αML represents α-inductive definitions as
certain recursively defined functions; we prove that this representation is sound
and complete (Corollary 5.3). Finally, Sect. 6 discusses related and future work.

2 α-Inductive Definitions

In this section we give a simple, yet expressive class of inductively defined re-
lations between α-equivalence classes of expressions, or α-inductive definitions
for short. Alpha-equivalence arises from the presence of binding constructs in

50 M.R. Lakin and A.M. Pitts

the expressions and we will deal with this in a generic way by using nominal
signatures [28], Σ. These generalize the usual notion of many-sorted algebraic
signature to encompass constructors that bind names of various sorts. Such a Σ
is given by a finite set of name sorts N , a disjoint finite set of data sorts S, and
a finite set of constructors K : A -> S, each with a specified result sort S and
argument arity A—where the nominal arities of the signature are given by:

A ::= S (data sort)
A *· · ·* A (tuples)
N (name sort)
[N]A (name-abstractions).

(1)

For example, the nominal signature for untyped λ-calculus has a name sort vr for
variables, a data sort tm for λ-terms and constructors V : vr->tm, A : tm*tm->tm
and L : [vr]tm -> tm. For other examples, see [24, Sect. 2]. As in that paper,
we associate with each arity A of a nominal signature Σ a set α-TreeΣ(A) of
α-equivalence classes of abstract syntax trees, or α-trees for short. The elements
of each α-TreeΣ(A) are equivalence classes [g]α of syntax trees g ∈ TreeΣ(A)
built up from countably many names n ∈ Name(N) (for each name sort N of
Σ) by repeatedly applying the following three operations.
Constructor application: K g ∈ TreeΣ(S), if g ∈ TreeΣ(A) and K : A -> S.
Tupling: (g1, . . . , gn) ∈ TreeΣ(A1 *· · ·* An), if gi ∈ TreeΣ(Ai) for i = 1..n.
Name-abstraction: 〈n〉g ∈ TreeΣ([N]A), if n ∈ Name(N) and g ∈ TreeΣ(A).
(These trees are the ground nominal terms from [28], that is, the ones not in-
volving variables.) The third operation, name-abstraction, is the generic binding
form provided by nominal signatures: renaming 〈n〉(−)-bound names in trees
gives an equivalence relation =α [24, Fig. 1] and α-TreeΣ(A) is the quotient
TreeΣ(A)/=α. To specify inductively defined relations between α-trees we make
use of a simple meta-language of patterns.

Definition 2.1 (patterns and valuations). The patterns p ∈ PatΣ(A) for
describing α-trees of each arity A of Σ are built up from countably many vari-
ables x ∈ Var(A) (for each A) by repeatedly applying the three tree-forming
operations mentioned above:
Constructor application: K p ∈ PatΣ(S), if p ∈ PatΣ(A) and K : A -> S.
Tupling: (p1, . . . , pn) ∈ PatΣ(A1 *· · ·* An), if pi ∈ PatΣ(Ai) for i = 1..n.
Name-abstraction: <x>p ∈ PatΣ([N]A), if x ∈ Var(N) and p ∈ PatΣ(A).

A valuation V is a finite function mapping variables to α-trees (of the same
arity). If the variables occurring in a pattern p ∈ PatΣ(A) are in dom(V) (the
domain of definition of V), then �p�V ∈ α-TreeΣ(A) denotes the α-tree resulting
from p by replacing each x ∈ dom(V) with V (x).

Remark 2.2. The following points about patterns should be noted.
(a) Variables stand for unknown α-trees, not unknown trees, and (hence) a pat-
tern p ∈ PatΣ(A) describes an α-tree rather than a tree (just which one depends
upon how its variables are instantiated by a valuation). This reflects the common

Resolving Inductive Definitions with Binders 51

practice of leaving α-equivalence implicit and referring to a class via a represen-
tative, signalled by a phrase like “we identify expressions up to α-equivalence”.
(Our own Figs. 2 and 3 in Sect. 4 provide examples of this!)
(b) No concrete names n ∈ Name(N) occur in patterns. In particular, although
the meta-language allows us to name object-level binding occurrences, <x>p, we
use variables x of name sort rather than names themselves to do so. Again, this
reflects common practice. For example, in Barendregt’s classic text [1], Defini-
tion 2.1.1 says that λ-terms are words over an alphabet containing, among other
things, “variables v0, v1, . . .”; then Notation 2.1.2 says that “x, y, z . . . denote
arbitrary variables”; the concrete variables v0, v1, . . . are never mentioned again
and only the meta-variables x, y, z . . . are used throughout the rest of the book.
(c) There are no meta-level variable-binding constructs in patterns—all variables
in a pattern are free. In particular x occurs free in the name-abstraction pat-
tern <x>p. This allows patterns to support the phenomenon of name-aliasing
discussed in the Introduction.
(d) Valuation of patterns is a form of “possibly-capturing” substitution. Once
again, this reflects common practice when instantiating the meta-variables of
schematic rules in operational semantics. Note that, in addition to the previous
point, this is another reason why it makes no sense to try to identify patterns
up to renaming <x>(−)-scoped variables, since valuations do not respect such a
notion of α-equivalence. For example, we cannot regard <x>z and <y>z as equiv-
alent (where x, y and z are distinct), since the valuation V = {x �→ [n]α, y �→
[n′]α, z �→ [n]α} (with n �= n′) has �<x>z�V = [〈n〉n]α �= [〈n′〉n]α = �<y>z�V .

Fix a finite set of relation symbols r <: A, each with a specified arity A. Such an
r is intended to denote a subset of α-TreeΣ(A). Schematic rules for inductively
defining such subsets take the form

r1(p1) & · · · & rm(pm) & c1 & · · · & cn

r(p)
(2)

(see Fig. 1 for an example). The conclusion of (2) is an atomic formula r(p)
with r <: A and p ∈ PatΣ(A) for some arity A; the hypothesis is a finite
(possibly empty) conjunction of such atomic formulas and “side-conditions” ci,
that is, constraints on how the rule may be instantiated by a valuation. What
form of constraints should we use? At the very least we need name-inequality
constraints x �= x′, where x, x′ ∈ Var(N) with N a name sort. Experience
with nominal logic [23, 11] and nominal logic programming [7] shows that it is
useful to generalize name-inequality to name freshness constraints, x # p where
x ∈ Var(N) and p ∈ PatΣ(A), even though these can be inductively defined in
terms of name-inequality (cf. Fig. 1). The intended meaning of x # p on α-trees
is as follows.

Definition 2.3 (free names and freshness). If t ∈ α-TreeΣ(A) we write
FN t for the finite set of names that occur freely in some (indeed, any) tree g
with [g]α = t; in other words, n ∈ FN [g]α iff n occurs in g, but not within the

52 M.R. Lakin and A.M. Pitts

scope of any name-abstraction 〈n〉(−). Note that each α-tree t ∈ α-TreeΣ(N)
of name sort N is of the form t = [n]α = {n} for some n ∈ Name(N) (because
the constructors of a nominal signature only produce results of data sort, rather
than of more general arities, and these are disjoint from the name sorts). Given
t ∈ α-TreeΣ(N) and t′ ∈ α-TreeΣ(A), we write t # t′ and say t is fresh for t′ if
t = [n]α and n /∈ FN t′.

Note that the case of several mutually inductively defined relation symbols r1 <:
A1, . . . , rk <: Ak reduces to the case of a single one at the expense of extending
the signature: we add a new data sort S and new constructors Ii : Ai -> S for
i ∈ {1..k} and use the fact that subsets R ⊆ α-TreeΣ(S) are in bijection with
n-tuples of subsets, R1 ⊆ α-TreeΣ(A1), . . . , Rn ⊆ α-TreeΣ(An). So from now on
we will fix on a single arity Ar of a nominal signature Σ and a single relation
symbol r <: Ar.

Definition 2.4 (formulas and satisfaction). Let FormΣ be the set of first-
order formulas built up from atomic formulas r(p) (where p ∈ PatΣ(Ar)), equal-
ities p = p′ (p, p′ ∈ PatΣ(A), some A) and freshnesses x # p (x ∈ Var(N),
p ∈ PatΣ(A), some N, A) just using finite conjunctions &, finite disjunctions
v and existential quantification Ex(−) (x ∈ Var(A), some A). Given an in-
terpretation R ⊆ α-TreeΣ(Ar) for the relation symbol r and a valuation V
(Definition 2.1) for the free variables of ϕ ∈ FormΣ (i.e. those not within the
scope of an Ex), let (R, V) |= ϕ denote the associated satisfaction relation.
Thus (R, V) |= r(p) holds if �p�V ∈ R; (R, V) |= p = p′ holds if �p�V = �p′�V ;
(R, V) |= x#p holds if V (x) # �p�V (Definition 2.3); and satisfaction is extended
to compound formulas in the usual way.

Generalizing (2), we will allow the hypothesis of a schematic rule to be a for-
mula in FormΣ . Allowing equality, disjunction and existential quantification in
addition to freshness and conjunction does not increase the expressive power
of inductive definitions; but it does allow us to write inductive definitions in a
“standard form”, illustrated in Fig. 1.

Definition 2.5 (standard α-inductive definitions). An α-inductive defini-
tion D in standard form of a set of α-trees of arity Ar is given by

ϕ

r(x)
(3)

where x ∈ Var(Ar) and ϕ ∈ FormΣ is a formula with at most x free. The
meaning �D� ⊆ α-TreeΣ(Ar) of D is by definition the least fixed point of the
monotone function ΦD on subsets of α-trees that maps each R ⊆ α-TreeΣ(Ar)
to

ΦD(R) � {t ∈ α-TreeΣ(Ar) | (R, {x �→ t}) |= ϕ}. (4)

The definition of �D� via (4) is a fancy way of stating the usual meaning of a
rule-based inductive definition: the rule (3) is schematic in the sense that it has
the variable x as parameter; we instantiate x to get many concrete rules (this

Resolving Inductive Definitions with Binders 53

is the effect of the valuations {x �→ t} in the definition of ΦD) and take the
least set of α-trees closed under these rules, in other words, the least R such
that ΦD(R) ⊆ R. The existence of �D� is an application of the usual Tarski
fixed point theorem (ΦD is monotone because the relation symbol r only occurs
positively in ϕ). Indeed ΦD is finitary and we can construct �D� as the union of
the countable chain of subsets ∅ ⊆ ΦD(∅) ⊆ ΦD(ΦD(∅)) ⊆ · · · of α-TreeΣ(Ar).

3 α-Tree Constraint Problems

The hypothesis ϕ of an α-inductive definition (3) contains non-inductive equal-
ity and freshness constraints. When instantiated by a particular valuation, the
validity of such constraints amounts to α-equivalence of trees g ∈ TreeΣ(A) and
to non-membership of the set of free names of such trees. These are properties
that can be decided in linear time; see [3] for example. However, the problem
of checking whether or not there is some valuation that validates a collection
of equality and freshness constraints is surprisingly more complicated, mainly
because of the presence of variables x in binding position in name-abstraction
patterns <x>p (see points (c) and (d) in Remark 2.2).

Definition 3.1 (constraints and their satisfaction). A formula ϕ ∈ FormΣ

is an α-tree constraint if it is of the form Ex1 · · · Exm (c1 & · · · & cn) with each
ci either an equality (p = p′) or a freshness (x # p). Since such formulas do not
involve the relation symbol r <: Ar, the satisfaction relation of Definition 2.4
restricts to a relation V |= ϕ between valuations and constraints. A constraint
problem is a closed constraint formula and it is satisfiable if ∅ |= ϕ holds, where
∅ denotes the valuation with empty domain.

That satisfaction of α-tree constraint problems is decidable and in NP can be
deduced from results about nominal unification [28]: see [5, Theorem 7.1.2].
One can show that it is also NP-hard via the following simple observation, which
seems to be new.1 In stating it we use the abbreviation <x1, . . . , xn>(−) to stand
for iterated name-abstraction <x1>(· · · <xn>(−) · · ·).
Lemma 3.2 (set membership as an α-tree constraint). Given distinct
variables x, x1, . . . , xk, x′, x′

1, . . . , x
′
k ∈ Var(N) (for some name sort N), define

mem(x, x1, . . . , xk) � Ex′ Ex′
1 · · · Ex′

k (x # x′ & <x1, . . . , xk>x = <x′
1, . . . , x

′
k>x

′).
Then a valuation V on {x, x1, . . . , xk} satisfies mem(x, x1, . . . , xk) iff V (x) is a
member of the finite set {V (xi) | i = 1..k}.
�
We can use this lemma to show NP-hardness by reduction of Graph 3-Colour-
ability. Given a finite graph with vertices v1, . . . , vn (which we can take to
be variables of some name sort), edges e1, . . . , em and source/target functions
s, t : {e1, . . . , em}⇒ {v1, . . . , vn}, then the formula

1 Cheney’s proof of NP-hardness [4] for his constraint problems is not applicable here,
because it relies upon the use of concrete names and name-permutations.

54 M.R. Lakin and A.M. Pitts

Er, g, b, v1, . . . , vn

(
r # g & g # b & b # r & &n

i=1 mem(vi, r, g, b) & &m
j=1 s(ej) # t(ej)

)

is logically equivalent to an α-tree constraint problem which is satisfiable iff the
graph’s vertices can be coloured with one of three colours (r, g, b) so that no edge
connects vertices of the same colour. So altogether we have:

Theorem 3.3. Satisfiability of α-tree constraint problems is NP-complete.
�

4 αML

We are going to make the α-inductive definitions of Sect. 2 executable by em-
bedding the simple meta-language language of patterns and formulas in which
they are expressed within an ML-like functional programming language, called
αML. The embedding has two attractive features:
(a) nominal signatures Σ are subsumed within recursive data type declarations;
(b) α-inductive definitions D become instances of recursively defined functions.

To achieve point (a) we mimic FreshML [26] and extend ML’s type system with
types of name N and name-abstraction types [N]T . However, unlike FreshML
and for the reasons given below, we will restrict the use of [N]T to the case
when T is an equality type in the sense of Standard ML [20, Sect. 4.4]. To
achieve point (b) we note that the meaning �D� of D is the fixed point of a
higher-order function (4). We represent subsets of α-TreeΣ(A) by αML functions
of type A -> prop, where prop is a new type of “semi-decidable propositions”;
and then ΦD is represented by a function of type (A -> prop) -> (A -> prop).
In order to be able to write this function, αML extends the pure functional
core of ML with name-binding patterns, with equality and freshness constraints,
and with existential quantification over values of equality types. The syntax of
αML types and expressions is given in Fig. 2. For simplicity’s sake αML has a
monomorphic type system with a single, top-level data type declaration of some
name sorts (N), of some data sorts (S, including a distinguished one bool with
constructors T () and F ()) whose recursive definitions may only involve equality
types (E), and of some general data types (D) whose recursive definitions may
involve function types and prop. Note that in accord with point (a) above, such
a declaration subsumes the notion of nominal signature [28] that we used in
Sect. 2; in particular, the signature’s nominal arities (1) coincide with equality
types.

Turning to αML’s operational semantics, the behaviour of the pure func-
tional constructs is completely straightforward and could be formalized in any
of the standard ways. We use Felleisen-style evaluation contexts [9], formalized
using frame stacks [22], because this makes the combination with αML’s impure
features smoother. These impure features are α-tree equality and freshness con-
straints, and existentially quantified variables of equality type. We describe their
behaviour by combining the use of frame stacks with the techniques of constraint
logic programming (CLP) [15] applied to the α-tree constraint problems of the
previous section. A constraint-based approach gives a clean, abstract presenta-
tion that avoids the use of unifying substitutions; this is especially useful here

Resolving Inductive Definitions with Binders 55

Equality types E ::=
S (data sort)

E *· · ·* E (tuples, including
nullary case, unit)

N (name sort)

[N]E
(name-
abstraction)

Types T ::=
E (equality type)
D (data type)
T *· · ·* T (tuples)
T -> T (functions)

prop
(semi-decidable
propositions)

Data type declaration:
names N · · ·
data

bool = T of unit | F of unit

S = K1 ofE1|· · ·|Kn ofEn...
D = K′

1 of T1|· · ·|K′
n′ of Tn′...

Expressions e, v ::=
x, f (variables)
letx = e in e (sequencing)

K v
(constructor
application)

case v of K x => e
| · · ·
| K x => e

(case
analysis)

(v, . . . , v) (tuple)
e.i (projections, i ∈ N)
fun f x = e (recursive function)

v v
(function
application) pure. .

<v>v
(name- impure
abstraction)

T (empty constraint)
c (atomic constraint)
Ex e (existential)

Atomic constraints c ::=
v = v (equality)
v # v (freshness)

Frame stacks s ::=
id (empty)
s ◦ (x. e) (non-empty)

Expressions and frame stacks in A-normal form
are obtained by restricting v to range over
Values v ::=
x, f | K v | (v, . . . , v) | fun f x = e | <v>v | T

• We only consider well-typed expressions and frame stacks. We use explicitly typed
variables x ∈ Var(T) as T ranges over types. The typing of the pure functional part of
αML is entirely standard; the types of αML’s impure features are:

Name-abstraction <e>e′ : [N]E if e : N and e′ : E
Empty constraint T : prop
Equality constraint e = e′ : prop if e : E and e′ : E
Freshness constraint e # e′ : prop if e : N and e′ : E
Existential Ex e : T if x ∈ Var(E) and e : T .

• We identify αML expressions up to renaming bound variables. Despite the fact that
αML is a meta-language for object-level languages with binding, there is no reason not
to adopt the usual conventions (see Remark 2.2(a)) for αML’s own variable-binding
constructs. In the pure part, variable-binding occurs in the usual way, in let, case
and fun expressions and in frame stacks s ◦ (x.−); and in the impure part, Ex(−) is a
binder. We write FV (e) for the finite set of free variables of an expression e and say e
is closed if this set is empty. We write e[e′/x] for the capture-avoiding substitution of
e′ for all free occurrences of x in e (well-defined up to renaming bound variables).

Fig. 2. αML syntax

56 M.R. Lakin and A.M. Pitts

Pure transitions s, e→ s′, e′

(P1) s ◦ (x. e), v → s, e[v/x]
(P2) s, (letx = e in e′)→ s ◦ (x. e′), e
(P3) s, (v1, . . . , vn).i→ s, vi if i ∈ {1..n}
(P4) s, (caseKi v ofK1 x1 => e1|· · ·|Kn xn => en)→ s, ei[v/xi] if i ∈ {1..n}
(P5) s, v v′ → s, e[v/f, v′/x] if v is fun f x = e

Impure transitions E�x(c; s; e)→ E�x′(c′; s′; e′)
(I1) E�x(c; s; e)→ E�x(c; s′; e′) if s, e→ s′, e′

(I2) E�x(c; s;x.i)→ E�x, x1, . . . , xn(c & x=(x1, . . . , xn); s;xi)
(I3) E�x(c; s;case x ofK1 x1 => e1|· · ·|Kn xn => en)→ E�x, xi(c & x=Kixi; s; ei)

if i ∈ {1..n} and ∅ |= E�x, xi(c & x=Kixi)
(I4) E�x(c; s; c)→ E�x(c & c; s;T) if ∅ |= E�x(c & c)
(I5) E�x(c; s; Ex e)→ E�x, x(c; s; e) if ∅ |= Ex(T)

• e, s, e′, s′, ei, . . . range over expressions and frame stacks in A-normal form (Fig. 2).
• Impure transitions are between configurations E�x(c; s; e) where c is a finite conjunc-
tion of atomic constraints and �x is a finite list of distinct variables of equality type
containing the free variables of c, s and e. As for expressions, we identify configurations
up to renaming of E-bound variables. The initial configuration is E∅(T; id ; e).
• In (I2) x ∈ Var(E1* · · · *En) and xi ∈ Var(Ei)− �x for i = 1..n.
• In (I3) x ∈ Var(S), S =K1 of E1|· · ·|Kn ofEn and xi ∈ Var(Ei)− �x for i = 1..n.
• In (I5) x /∈ �x. If x ∈ Var(E) say, then constraint Ex(T) is satisfiable iff E is non-
empty, in the sense that there is an α-tree of arity E. We allow empty data sorts,
e.g. that given by the declaration es =K of es.

Fig. 3. αML operational semantics

because the “possibly-capturing” nature of substitution (cf. Remark 2.2(d)) com-
plicates unification—see for example the use of terms involving explicit name-
permutations in nominal [28] and equivariant [6] unification algorithms. αML’s
operational semantics is specified in Fig. 3. To simplify the presentation we have
restricted to the A-normal forms [10] from Fig. 2; transitions for general expres-
sions can be derived by reducing them to A-normal form. The αML transition
relation is non-deterministic, because of the “narrowing” that occurs when eval-
uating a case-expression whose subject is an existentially quantified variable
(transition (I3) in Fig. 3). There is a considerable literature about this specific
source of non-determinism, centred around the semantics of the functional logic
programming language Curry; see [14] for a survey. Since αML features non-
trivial computational effects and we do not wish to impose a monadic program-
ming style, we prefer a strict evaluation strategy, rather than the call-by-need
strategy that is more common in the functional logic programming literature;
and for simplicity’s sake we wish to avoid residuation and concurrent execu-
tion [14, Sect. 2.4]. So we use a simple-minded design where the “rigid/flexible”
behaviour of case-analysis is part of the dynamics (pure transition (P4) versus
impure transition (I3)), rather than user-specified.

The following theorem shows that we do achieve the design goal of embedding
within αML the usual operational behaviour of pure functional programming

Resolving Inductive Definitions with Binders 57

with recursive data types and call-by-value higher-order functions. It depends on
a notion of configurations being well-typed, E�x(c; s; e) : T , whose straightforward
definition we omit here.

Theorem 4.1 (embedded pure functional language). An αML expression
or frame stack is pure if it does not contain sub-expressions of the form <e>e′,
T, e = e′, e # e′, or Ex e. Suppose s and e are pure and that E∅(T; s; e) : T holds
for some type T . Then E∅(T; s; e) → E�x(c; s′; e′) holds iff �x = ∅, c = T, s′ and
e′ are pure, and there is a pure transition (s; e)→ (s′; e′).
�
αML restricts the name-abstraction type-former [N](−) to apply only to equal-
ity types E (that is, to nominal arities) rather than to general types T , for which
equality constraints are in general uncomputable. This allows expressions of
name-abstraction type to be deconstructed by unification with name-abstraction
patterns <x>p in the presence of freshness constraints on x, rather than using
the “generative name unbinding” [25] mechanism of FreshML, which is based on
a supply of dynamically allocated fresh names (“gensym”). Here is an example.

Example 4.2. If the nominal signature for λ-terms mentioned in Sect. 2 is part
of the data type declaration, then the λ-term substitution operation (t, t′, x′) �→
t[t′/x′] can be encoded in αML by the following function of type tm*tm*vr-> tm

fun subst(t, t′, x′) = case t of
V x => ifx = x′ then t′ else t

| A x => A(subst(x.1, t′, x′), subst(x.2, t′, x′))
| L x => Ex1 Et1 x1 # (t′, x′) & <x1>t1 = x & L(<x1>subst(t1, t′, x′))

(5)

where we have used some syntactic sugar for tuple-pattern matching, together
with the following abbreviations:

e1 & e2 � letx = e1 in e2 (6)

if e then e1 else e2 � case e of T x1 => e1 | Fx2 => e2 (7)

(where x /∈ FV (e2) in (6) and xi /∈ FV (ei) in (7)). The underlined freshness con-
straint in (5) enforces the usual “capture-avoiding” property when substituting
under a λ-binder (cf. [7, Example 2.3]).

Remark 4.3 (dynamically allocated names). We can add dynamically al-
located names to αML without breaking the “names as meta-variables” aspect
of its design (Remark 2.2(b)): extend its syntax with expressions freshN of
type N (for each name sort N) and its operational semantics with the impure
transition:

(I6) E�x(c; s; freshN)→ E�x, x(c & x # �x; s; x)

where x ∈ Var(N) is not in �x and x # �x is the constraint x # x1 & · · · & x # xn

when �x = x1, . . . , xn. Using this we can define a uniform operation of generative
name-unbinding

unbind e as <x>x′ in e′ � letx = freshN in Ex′ <x>x′ = e & e′ (8)

58 M.R. Lakin and A.M. Pitts

where e : [N]E and x ∈ Var(N), x′ ∈ Var(E) are distinct variables not oc-
curring in e. Then, for example, we can replace the last branch of the case
expression in (5) with L x => unbindx as <x1>t1 in L(<x1>subst(t1, t′, x′)). Rule
(I6) and definition (8) together give a version of generative unbinding that is
like the one used by MLSOS [16]. It is operationally different from FreshML’s
version [26], which pushes a swap of x with a fresh name into the body e′. Are
these two forms of generative unbinding behaviourally equivalent? To determine
this requires developing the properties of contextual equivalence for αML, which
we defer to a future paper. Is freshN definable up to contextual equivalence in
terms of the language presented in Figs 2 and 3? It seems unlikely, but we do
not have a proof.

5 α-Inductive Definitions as αML Recursive Functions

We remarked in the previous section that nominal arities are the same thing as
αML equality types. Regarding the relation symbol r <: Ar of nominal arity Ar

as a variable of type Ar -> prop, we identify α-inductive definitions in standard
form D (Definition 2.5) with certain αML recursive function values vD of type
Ar -> prop:

vD � (fun r x = ϕ) where D is
ϕ

r(x)
. (9)

For this to make sense we have to embed formulas ϕ ∈ FormΣ over a nominal
signature Σ (Definition 2.4) as αML expressions of type prop. Clearly the pat-
terns p of each arity A (Definition 2.1) coincide with values v (Fig. 2) of equality
type A. So αML syntax has all the necessary constituents for expressing formu-
las except possibly for conjunction and disjunction. We define conjunction as in
(6) and express disjunction using a flexible case-expression (cf. [27, Sect. 3.1]):

e1 v e2 � Ex (casex of T x1 => e1 | Fx2 => e2)
(where x, x1, x2 /∈ FV (e1, e2)).

(10)

So given an α-inductive definition D in standard form with associated αML
function vD : Ar -> prop as in (9), for each formula ϕ′ ∈ FormΣ we get an
αML expression ϕ′[vD/r] of type prop. The following theorem characterizes sat-
isfaction of ϕ′ in terms of the operational behaviour of this expression. It uses
the solution set of ϕ′ (with respect to a set of variables �x containing those free
in ϕ′): this is defined to be the set solns(ϕ′) of constraints E�x′(c) such that
E�x(T; id ; ϕ′[vD/r])→· · ·→ E�x, �x′(c; id ; T) and ∅ |= E�x, �x′(c).

Theorem 5.1. For any formula ϕ′ and valuation V we have:

Soundness: if E�x′(c) ∈ solns(ϕ′) and V |= E�x′(c) then (�D�, V) |= ϕ′.
Completeness: if (�D�, V) |= ϕ′ then there is E�x′(c) ∈ solns(ϕ′) with V |=

E�x′(c).

Resolving Inductive Definitions with Binders 59

Proof. The theorem can be deduced using standard techniques from constraint
logic programming (CLP) [15, Sect. 4.4 and 4.5]. This is because one can prove
that αML’s operational semantics agrees with the semantics of CLP goal states
〈ϕ, ϕ1, . . . , ϕn | c〉 if the latter are encoded as αML configurations of the form
E�x(c; sϕn,...,ϕ1 ; ϕ), where the frame stack sϕn,...,ϕ1 is defined by: s∅ � id and

s�ϕ,ϕ � s�ϕ ◦ (x. ϕ) (where x /∈ FV (ϕ)).
�
Definition 5.2 (success). We say that a configuration E�x(c; s; e) : prop may
succeed and write E�x(c; s; e)↓ if there is a finite sequence of transitions from
E�x(c; s; e) to a configuration of the form E�x, �x′(c′; id ; T), for some �x′ and c′ with
∅ |= E�x, �x′(c′).

We can use Theorem 5.1 to deduce that the operational semantics of vD :
Ar -> prop in αML detects, through the above notion of success, all and only
the α-trees t ∈ α-Tree(Ar) lying in the inductively defined subset �D� (Defini-
tion 2.5). To do so, we first have to discuss how αML represents α-trees, since
they involve concrete names n ∈ Name(N) whereas αML follows the common
practice (Remark 2.2(b)) of only using variables of name sort, x ∈ Var(N).
What matters about names when they are used to describe binding structure
is not their particular identity, but rather the distinctions between them—and
those can be expressed using constraints asserting that all the variables in a list
�x = x1, . . . , xk are distinct:

#�x � &
1≤i<j≤k

xi # xj .

A valuation V with domain �x satisfies #�x iff V (x1), . . . , V (xk) are (α-equivalence
classes of) mutually distinct names. We can represent a particular α-tree in αML
by a pattern in the presence of such a constraint: if t ∈ α-Tree(Ar) is the α-
equivalence class of a tree involving k distinct names (bound or free), we can
find a pattern p : Ar with k variables �x of name sort and a valuation V with
t = �p�V and V |= #�x. Then taking ϕ′ to be #�x & r(p) in Theorem 5.1 we get:

Corollary 5.3. Let D be an α-inductive definition in standard form with asso-
ciated αML function vD : Ar -> prop. If t ∈ α-Tree(Ar) is represented as above
by a pattern p : Ar and a valuation V (with dom(V) = �x, the variables of p),
then t ∈ �D� iff E�x(#�x; id ; vD p)↓.
�

6 Related and Future Work

Apopular approach to executable operational semantics is to use higher-order logic
programming, where binders in inductive definitions are represented via higher-
order abstract syntax (HOAS): see Miller [19] for an overview. We think it is both
useful and interesting to study executable operational semantics also using func-
tional logic programming [14]. It has proved harder to integrate HOAS representa-
tions with functional programming: see [18] for a recent view on this. In any case,
in the Introduction we advocated leaving the HOAS mainstream and pursuing a
nominal approach, for reasons to do with name-aliasing. As far as we know the

60 M.R. Lakin and A.M. Pitts

first such approach was Cheney and Urban’s first-order logic programming lan-
guage αProlog [7]. Our first attempt to combine αProlog’s computational mecha-
nism (resolution based on nominal unification [28]) with higher-order typed func-
tional programming was influenced by the work on FreshML [26] and produced
MLSOS [16]. Byrd and Friedman’s αKanren [2] combines it with the untyped func-
tional language Scheme. αProlog, MLSOS and αKanren allow the use of constants
to name object-level bound entities. We argued in Remark 2.2(b) that such
concrete names are never used in practice when specifying inductively defined re-
lations. Moreover their use naturally leads to “equivariance” (that is, invariance
under permutations of concrete names) becoming an explicit part of the meta-
language’s operational semantics [6], rather than just a useful meta-theoretic
property of the semantics. By contrast, αML only uses meta-
variables rather than constants to name object-level bound entities, plus fresh-
ness constraints on meta-variables when distinctions between names are needed.
As well as being closer to informal practice, this approach leads both to a pleasingly
simple design for αML’s operational semantics (Fig. 3) and a correctness result
(Corollary 5.3) that was lacking for MLSOS. Our design also avoids the use of ex-
plicit name-swapping; although this is a characteristic feature of nominal logic [23],
nominal unification and αProlog, it is not needed from the point of view of a user
specifying operational semantics in an executable meta-language.

The presence of unifiable meta-variables in binding position in αML patterns
does mean that, as for Cheney’s equivariant unification [4], our constraint satis-
faction problem is NP-complete (Theorem 3.3). There are at least two different
approaches to obtaining a practically useful implementation of αML that should
be investigated. One approach is to identify restrictions on α-inductive definitions
that do not limit their applicability for specifying operational semantics too much,
but for which the associated α-tree constraint problems are in P rather than NP;
cf. Cheney and Urban [7, Sect. 5.3]. Since degrees of “applicability for specifying
operational semantics” are hard to pin down, perhaps a more attractive alternative
is to stick with the general and conceptually simple form of α-inductive definitions
used in this paper, but investigate transformations on α-tree constraint problems
that allow the highly developed technology of Sat-solvers to be applied.

References

[1] Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. North-
Holland, Amsterdam (1984) (revised edition)

[2] Byrd, W.E., Friedman, D.P.: alphaKanren: A fresh name in nominal logic pro-
gramming. In: Proc. 2007 Workshop on Scheme and Functional Programming,
number DIUL-RT-0701 in Université Laval Technical Reports, pp. 79–90 (2007)

[3] Calvès, C., Fernández, M.: Nominal matching and alpha-equivalence. In: Hodges,
W., de Queiroz, R. (eds.) Logic, Language, Information and Computation. LNCS,
vol. 5110, pp. 111–122. Springer, Heidelberg (2008)

[4] Cheney, J.: The complexity of equivariant unification. In: Dı́az, J., Karhumäki,
J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 332–344.
Springer, Heidelberg (2004)

[5] Cheney, J.: Nominal Logic Programming. PhD thesis, Cornell Univ. (2004)

Resolving Inductive Definitions with Binders 61

[6] Cheney, J.: Equivariant unification. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467,
pp. 74–89. Springer, Heidelberg (2005)

[7] Cheney, J., Urban, C.: Nominal logic programming. Trans. Prog. Lang. and Sys-
tems 30(5), 1–47 (2008)

[8] de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indag. Math. 34, 381–392 (1972)

[9] Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theoret. Comput. Science 103, 235–271 (1992)

[10] Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. SIGPLAN Not. 28, 237–247 (1993)

[11] Gabbay, M.J.: Fresh logic: Proof-theory and semantics for FM and nominal tech-
niques. J. Appl. Logic 5, 356–387 (2007)

[12] Gordon, A.D.: Operational equivalences for untyped and polymorphic object cal-
culi. In: Gordon and Pitts [13], pp. 9–54

[13] Gordon, A.D., Pitts, A.M. (eds.): Higher Order Operational Techniques in Se-
mantics. Cambridge University Press, Cambridge (1998)

[14] Hanus, M.: Multi-paradigm declarative languages. In: Dahl, V., Niemelä, I. (eds.)
ICLP 2007. LNCS, vol. 4670, pp. 45–75. Springer, Heidelberg (2007)

[15] Jaffar, J., Maher, M., Marriott, K., Stuckey, P.: Semantics of constraint logic
programming. J. Logic Programming 37, 1–46 (1998)

[16] Lakin, M.R., Pitts, A.M.: A metalanguage for structural operational semantics.
In: Trends in Functional Programming, vol. 8, pp. 19–35. Intellect (2008)

[17] Lassen, S.B.: Relational reasoning about contexts. In: Gordon and Pitts [13], pp.
91–135

[18] Licata, D.R., Zeilberger, N., Harper, R.: Focusing on binding and computation.
In: LICS 2008 Proceedings, pp. 241–252. IEEE Computer Society, Los Alamitos
(2008)

[19] Miller, D.A.: Abstract syntax for variable binders: An overview. In: Palamidessi,
C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K.,
Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS, vol. 1861, pp. 239–253. Springer,
Heidelberg (2000)

[20] Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML
(Revised). MIT Press, Cambridge (1997)

[21] Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: PLDI 1988 Proceedings,
pp. 199–208. ACM Press, New York (1988)

[22] Pitts, A.M.: Operational semantics and program equivalence. In: Barthe, G., Dyb-
jer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 378–412.
Springer, Heidelberg (2002)

[23] Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. and
Comput. 186, 165–193 (2003)

[24] Pitts, A.M.: Alpha-structural recursion and induction. J. ACM 53, 459–506 (2006)
[25] Pitts, A.M., Shinwell, M.R.: Generative unbinding of names. Logical Methods in

Comput. Science 4, 1–33 (2008)
[26] Shinwell, M.R., Pitts, A.M., Gabbay, M.J.: FreshML: Programming with binders

made simple. In: ICFP 2003 Proceedings, pp. 263–274. ACM Press, New York
(2003)

[27] Tolmach, A., Antoy, S.: A monadic semantics for core Curry. In: WFLP 2003 Pro-
ceedings. Electr. Notes in Theoret. Comp. Science, vol. 86(3), pp. 16–34. Elsevier,
Amsterdam (2003)

[28] Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theoret. Comp. Sci-
ence 323, 473–497 (2004)

Using Category Theory to Design

Programming Languages

John C. Reynolds�

Computer Science Department, Carnegie Mellon University,
Pittsburgh, U.S.A.

john.reynolds@cs.cmu.edu

In a 1980 paper entitled “Using Category Theory to Design Conversions and
Generic Operators”, the author showed how the concepts of category theory can
guide the design of a programming language to avoid anomalies in the interaction
of implicit conversions and generic operators. He wrote:

. . . Our intention is not to use any deep theorems of category theory, but
merely to employ the basic concepts of this field as organizing principles.
This might appear as a desire to be concise at the expense of being
esoteric. But in designing a programming language, the central problem
is to organize a variety of concepts in a way which exhibits uniformity and
generality. Substantial leverage can be gained in attacking this problem
if these concepts can be defined concisely within a framework which has
already proven its ability to impose uniformity and generality upon a
wide variety of mathematics.

In this talk, we will revisit these ideas and generalize them to other aspects
of language design. We intend to demonstrate that language design is an un-
usual form of applied mathematics, where one uses, rather than theorems, the
underlying structural principles of a field such as category theory.

– We will review the treatment of implicit conversions and generic operators, in
which the conversions are specified by a functor on the preorder of subtypes,
and the operators are natural transformations.

– We will describe the treatment of side-effects as monads, where each side-
effect-free type is mapped into the corresponding type with effects by a
monadic functor.

– We will present the description of block structure by functor categories,
which insures that the values of local variables do not escape from the block
in which the variables are declared.

� Research supported in part by National Science Foundation Grant CCF-0541021.

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 62–63, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Using Category Theory to Design Programming Languages 63

– If time permits, we will describe the treatment of type variables and poly-
morphism by PL-categories, where type expressions are described by a base
category, and ordinary expressions by a functor from the base category to a
category of (cartesian closed) categories.

In each case, we will show how desirable properties of a programming language
can be enforced by using an appropriate categorial definition.

No prior knowledge of category theory will be assumed.

Modular Monad Transformers

Mauro Jaskelioff

Functional Programming Laboratory—University of Nottingham

Abstract. During the last two decades, monads have become an indis-
pensable tool for structuring functional programs with computational
effects. In this setting, the mathematical notion of a monad is extended
with operations that allow programmers to manipulate these effects.
When several effects are involved, monad transformers can be used to
build up the required monad one effect at a time. Although this seems to
be modularity nirvana, there is a catch: in addition to the construction
of a monad, the effect-manipulating operations need to be lifted to the
resulting monad. The traditional approach for lifting operations is non-
modular and ad-hoc. We solve this problem with a principled technique
for lifting operations that makes monad transformers truly modular.

1 Introduction

Since monads were introduced by Moggi [13,14] to model computational effects,
they have proven to be extremely useful to structure functional programs
[20,19,9]. Monads are usually accompanied with operations that manipulate the
effects they model. For example, an exception monad may come with operations
for throwing an exception and for handling it, and a state monad may come with
operations for reading and updating the state. Consequently, the structure one
is really working with is a monad and a set of operations associated to it.

In order to combine computational effects, one must combine monads. There
are many ways of combining monads: distributive laws [2], coproduct of mon-
ads [11], and monad transformers [10,15,3]. However, these technologies fall short
in combining monads with operations, as they only provide means to combine
monads. Liang et al. [10] identified this problem more than a decade ago and
proposed a workaround, which is not modular. In fact, they have to lift opera-
tions associated to a monad through a monad transformer in an ad-hoc manner,
and therefore the number of liftings of operation grows like the product of the
number of monad transformers and operations involved (see Section 3.)

More recently, Plotkin et al. [17,7] have proposed to look at monads induced
by algebraic theories, and to address the problem of combining monads (and
associated operations) as a problem of combining algebraic theories. Their ap-
proach works very smoothly, but can only deal with monads induced by algebraic
theories (and lifting is limited to algebraic operations).

Of all the techniques for combining monads, monad transformers are the most
popular among functional programmers, as they are easy to implement and
capture all the desired combinations for standard effects1. We show that for
1 We take as standard the monads and operations described in [10].

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 64–79, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Modular Monad Transformers 65

monad transformers with a functorial behaviour there is a uniform definition of
lifting for a class of operations, which includes (after some minor repackaging)
all the operations described in [10]. The main contributions of this article are:

– Identifying a class of operations associated to a monad, called algebraic Σ̂-
operations, that are easy to lift along any monad morphism (Section 4).

– Showing that all Σ̂-operations for a monad can be lifted (through any func-
torial monad transformer) by interpreting them as algebraic Σ̂-operations
for a related monad (Section 5).

– Comparing our uniform lifting to more ad-hoc liftings found in the literature
or in Haskell’s libraries. This has revealed a mismatch with one definition in
Haskell’s monad transformer library (as discussed in Section 4).

Our approach extends both the traditional monad transformer approach [10]
with the addition of uniform liftings, and the algebraic approach [7], since alge-
braic operations are a special case of algebraic Σ̂-operations.

Remark 1. This article is aimed at researchers and programmers interested in
using monads to structure functional programs with computational effects. For-
mally we work with system Fω. In examples and remarks we may freely use
extensions of Fω or idioms that are customary in functional languages.

Much of the terminology we introduce is borrowed from Category Theory.
Usually, there is not an exact correspondence between category-theoretic no-
tions and their formalization in a calculus. For instance, monads expressible in
the simple typed lambda calculus correspond to strong monads in a CCC [14].
In what follows, when we say monad we mean expressible monad in Fω (and
similarly for other category-theoretic notions).

2 Preliminaries

We work with system Fω and its equational theory induced by βη-equiva-
lence (for details, see [1,5]). One may replace Fω with a weaker system, like
HML [6] (which distinguishes types from type schemas), or a stronger system,
like CC [4]. To fix the notation, we recall the syntax of Fω

kinds k ::= ∗ | k → k

type constuctors U ::= X | U → U | ∀X : k. U | ΛX : k. U | U U

terms e ::= x | λx : X. e | ΛX : k. e | e U

We write eU for e U (polymorphic instantiation) and we often write definitions
gX(x : A) =̂ t when we mean g =̂ ∀X : ∗. λx : A. t. We often write term application
using a tuple, that is, we write t (z1, . . . , zn) for t z1 . . . zn.

Following [18] we express in the setting of Fω several category-theoretic no-
tions, such as functors, natural transformations, monads, monad transformers.
Familiarity with these notions is not needed to understand the rest of the paper,
but interested readers may want to look at [16,3].

66 M. Jaskelioff

Definition 2 (Functor [18]). The set Functor of functors consists of pairs
F̂ = (F, mapF), where F : ∗ → ∗ is a type constructor and

mapF : Map(F) =̂ ∀X, Y : ∗. (X → Y)→ FX → FY

is a term such that for all f : A→B and g : B→C

mapF
A,A idA = idFA (1)

mapF
A,C (g · f) = mapF

B,C g ·mapF
A,B f (2)

where, id =̂ ΛX : ∗. λx : X. x and g · f is function composition λx : A.g(f x).
The composite functor F̂ ◦ Ĝ is the pair (F ·G, map) where

mapA,B (f : A→ B) =̂ mapF
GA,GB(mapG

A,Bf).

Definition 3 (Natural Transformation). Given two functors F̂ and Ĝ, the
set Nat(F̂ , Ĝ) of natural transformations from F̂ to Ĝ consists of terms τ : F •→
G =̂ ∀X : ∗. FX→GX, such that for all f : A→ B

mapG
A,B f · τA = τB ·mapF

A,B f (3)

The term ι =̂ Λ(M : ∗ → ∗)(X : ∗). λm : MX. m is the identity natural trans-
formation, σ◦τ =̂ ΛX : ∗. σX ·τX is composition of natural transformations, and
Σ̂(τ : F •→ G) : Σ · F •→ Σ · G =̂ ΛX : ∗. mapΣ

FX,GX(τX) is the application of a
functor Σ̂ to a natural transformation τ from F̂ to Ĝ.

Definition 4 (Monad). The set Monad of monads consists of triples M̂ =
(M, retM , bindM), where M : ∗ → ∗ is a type constructor and

retM : Ret(M) = ∀X : ∗. X →MX

bindM : Bind(M) = ∀X, Y : ∗. MX → (X →MY)→MY

are terms such that for every a : A, f : A→MB, m : MA and g : B →MC:

bindM
A,B(retMA a, f) = f a (4)

bindM
A,A(m, retMA) = m (5)

bindM
A,C(m, λa : A. bindM

B,C(f a, g)) = bindM
B,C(bindM

A,B(m, f), g) (6)

Every monad M̂ = (M, retM , bindM) has an underlying functor (M, mapM),
denoted by M̂ , where mapM

A,B (f : A→ B) (m : MA) =̂ bindM
A,B(m, retMB · f).

Example 5 (State Monad). The monad for modelling side-effects on a state of
type S is Ŝ = (S, retS, bindS), where S (X : ∗) =̂ S→X × S and

retSX(x : X) : S X =̂ λs : S. (x, s)
bindS

X,Y (m : S X, f : X→S Y) : S Y =̂ λs : S. let (a, s′) = m s in f a s′

Intuitively, a computation SX takes an initial state and produces a value of type
X and a final state, retS does not change the state, and bindS threads the state.
A simple calculation shows that equations 4–6 hold. ��

Modular Monad Transformers 67

Example 6 (Continuation Monad). The monad for modelling continuations of
result type R is Ĉ = (C, retC, bindC), where C (X : ∗) =̂ (X→R)→R and

retCX (x : X) : C X =̂ λk : X→R. k x

bindC
X,Y (m : CX, f : X→C Y) : C Y =̂ λk : Y →R. m (λx : X. f x k)

Intuitively, CX is a computation that given a continuation X → R returns a
result in R, retC simply runs a continuation, and bindC(m, f) runs m with a
continuation constructed by running f in the current continuation. ��
Definition 7 (Monad Morphism). Given two monads M̂ and N̂ , the set
MM(M̂, N̂) of monad morphisms from M̂ to N̂ consists of terms ξ : M •→ N ,
such that for every a : A, m : MA and f : A→MB

retNA a = ξA(retMA a) (7)

ξB(bindM
A,B(m, f)) = bindN

A,B(ξA m, ξB · f) (8)

Remark 8. A simple consequence of equations 7–8 is that a monad morphism is
also a natural transformation between the underlying functors.

In order to combine effects, instead of writing a monad from scratch, one can
add more effects to a pre-existing monad using monad transformers.

Definition 9 (Monad Transformer). The set MT of monad transformers
consists of tuples T̂ = (T, retT , bindT , liftT), where T : (∗→∗)→(∗→∗) and

retT : ∀M : ∗ → ∗. Ret(M)→ Bind(M)→ Ret(TM)

bindT : ∀M : ∗ → ∗. Ret(M)→ Bind(M)→ Bind(TM)

liftT : ∀M : ∗ → ∗. Ret(M)→ Bind(M)→ ∀X : ∗. MX → TMX

are terms such that for every monad M̂ , the tuple T̂ M̂ =̂ (TM, retT
M̂

, bindT
M̂

) is
a monad and liftT

M̂
is a monad morphism from M̂ to T̂ M̂ , where

retT
M̂

=̂ retTM (retM , bindM), bindT
M̂

=̂ bindT
M (retM , bindM),

liftT
M̂

=̂ liftTM (retM , bindM).

From now on we will drop type information of kind ∗ from examples, in order
to make them more readable.

Example 10. The state monad transformer Ŝ = (S, retS , bindS , liftS) adds side-
effects to an existing monad, where S (M : ∗→∗)(X : ∗) =̂ S→M(X × S), and

retS
M̂

(x : X) :SMX =̂ λs. retM (x, s)

bindS
M̂

(t :SMX, f :X→SMY) :SMY =̂ λs. bindM (t s, λ(x, s′). f x s′)

liftS
M̂

(m : MX) :SMX =̂ λs. bindM (m, λx. retM (x, s))

A simple calculation shows that equations 4–6 hold for ŜM̂ and equations 7–8
hold for liftS

M̂
, whenever equations 4–6 hold for M̂ . ��

68 M. Jaskelioff

Example 11. The exception monad transformer X̂ = (X , retX , bindX , liftX) adds
exceptions to an existing monad, where X (M : ∗→∗)(X : ∗) =̂ M(Z + X) (here
Z is the type of exceptions), and

retX
M̂

(x : X) :XMX =̂ retM (inr x)

bindX
M̂

(t :XMX, f : X→XMY) :XMY =̂

bindM (t, λc. case c of | inl z ⇒ retM (inl z)

| inr x⇒ f x)

liftX
M̂

(m : MX) :XMX =̂ bindM (m, retX
M̂

x)

A simple calculation shows that equations 4–6 hold for X̂M̂ and equations 7–8
hold for liftX

M̂
whenever equations 4–6 hold for M̂ . ��

3 Operations and Lifting

We seek a general technique for lifting operations associated to a monad M̂ to
another monad N̂ . In this section we make precise what kind of operations our
technique will be able to handle, and what lifting means.

Definition 12 (Σ̂-operation). If Σ̂ is a functor and M̂ is a monad, then a
Σ̂-operation for M̂ is a natural transformation op in Nat(Σ̂ ◦ M̂, M̂).

Example 13. The standard operations for the state monad are

get (k : S→SX) : SX =̂ λs. k s s

set (s : S, m : SX) : SX =̂ λ . m s.

The operation get applies the current state to its argument, and set sets runs
a stateful computation in the provided state. They are Σ̂-operations for the
following functors

Σget X =̂ S→X mapΣget

(f : X → Y , t : ΣgetX) : ΣgetY =̂ λs. f (t s)

Σset X =̂ S ×X mapΣset

(f :X → Y , (s, x) : ΣsetX) : ΣsetY =̂ (s, f x).

In Fig. 1, we show some Σ̂-operations (all the monads and Σ̂-operations are
presented along the paper, except for the list monad and its operations for which
the reader may consult [19]). Interestingly, all the operations considered in [10]
for these monads are definable in terms of Σ̂-operations. For example, we can
use the Σ̂-operations in Example 13 to define the more usual operations

get : S S =̂ getS(retSS) = λs. (s, s)

set : S→S1 =̂ λs. set1(s, retS1(•)) = λs s′. (•, s)
where • is the sole inhabitant of the unit type 1. In the same manner, we can
define

ask : R E =̂ askE(retRE) = λe. e

for the environment monad, and

Modular Monad Transformers 69

Monad Signature Σ̂-operations

List ΣemptyX=̂ 1 emptyX : 1→LX
LX =̂ [X] ΣappendX=̂ X ×X appendX : LX × LX→LX

Output ΣoutputX=̂ [A]×X outputX : [A]× OX→OX
OX =̂ X × [A] Σflush X=̂ X flushX : OX→OX

State ΣgetX=̂ S→X getX : (S→SX)→SX
SX =̂ S→X × S ΣsetX=̂ S ×X setX : S × SX→SX

Environment ΣaskX=̂ E→X askX : (E→RX)→RX
RX =̂ E→X Σ localX=̂ (E→E)×X localX : (E→E)× RX→RX

Exception ΣthrowX=̂ 1 throwX : 1→XX
XX =̂ Z +X ΣhandleX=̂ X × (Z→X) handleX : XX × (Z→XX)→XX

Continuation ΣabortX=̂ R abortX : R→CX
CX =̂ (X→R)→R ΣcallccX=̂ (X→R)→X callccX : ((CX→R)→CX)→CX

Fig. 1. Σ̂-operations for the standard monads

output : [A]→ O1 =̂ λw. output1(w, retO1 (•)) = λw. (•, w)

for the output monad. The usual call-with-current-continuation callcc and the
Σ̂-operation callcc are defined as:

callcc (f : (X→CY)→CX) : CX =̂ λk. f (λx . k x) k

callcc (f : (CX→R)→CX) : CX =̂ λk. f (λm. m k) k

The operation callcc can be defined from callcc as:

callcc f =̂ callcc (λk. f (λx . k (retCx))) (9)

Definition 14 (Lifting). Let op be a Σ̂-operation for M̂ and ξ be a monad
morphism from M̂ to N̂ . A lifting of op to N̂ along ξ is a Σ̂-operation opN for
N̂ such that for all X : ∗,

ξX · opX = opN
X · (mapΣ

MX,NX ξX) (10)

or equivalently, such that the following diagram commutes:

Σ(NX)
opN

X �� NX

Σ(MX)
opX

��

mapΣξX

��

MX

ξX

��

This definition can be specialised to the case of a monad transformer T̂ by taking
N̂ =̂ T̂ M̂ and ξ =̂ liftT

M̂
. In this case we call opN a lifting of op through T̂ .

In the absence of a general technique, the only way to lift an operation is
to do it in an ad-hoc manner, for each monad transformer [10]. Although this
works, the approach has significant shortcomings:

70 M. Jaskelioff

– The number of liftings grows like the product of the number of operations
and monad transformers. This is clearly non-modular: adding a new monad
transformer with some operations involves showing how to lift every existing
operation through the new monad transformer, and showing how to lift the
new operations through every existing monad transformer.

– Without a uniform definition of lifting, one could have different ad-hoc lift-
ings of the same operation through a monad transformer, and no clear criteria
to choose among them.

– There is no division of concerns: defining a lifting involves understanding the
intended semantics of both the transformer and the operation.

We show that for well-behaved Σ̂-operations, called algebraic, there is a unique
way to lift them among a monad morphism. Moreover, for all Σ̂-operations (not
necessarily algebraic) there is a uniform way to lift them through a wide class
of monad transformers, called functorial monad transformers.

4 Unique Lifting of Algebraic Operations

We characterize operations that interact well with bind.

Definition 15 (Algebraic Σ̂-operation). A Σ̂-operation op for M̂ is alge-
braic provided that for every f : A→MB and t : Σ(MA)

bindM
A,B(opA t, f) = opB(mapΣ

MA,MB(λm : MA. bindM
A,B(m, f)) t) (11)

or equivalently, that the following diagram commutes:

Σ(MA)
opA ��

mapΣbindM (−,f)

��

MA

bindM (−,f)

��
Σ(MB)

opB

�� MB

Remark 16. The notion of algebraic operation given in [17] corresponds to alge-
braic Σ̂-operations for functors Σ̂ of the form ΣX = A× (B → X).

As examples of algebraic Σ̂-operations we have all the operations in Fig.1,
except for flush, local and handle, for which equation 11 does not hold. Remark-
ably, callcc is an algebraic Σ̂-operation despite not being algebraic in the sense
of [17] and hence, not tractable in that approach. With our generalization, callcc
is not only tractable, but also well-behaved.

The following proposition presents a bijection between algebraic operations
and natural transformations of a particular type. It provides an alternative way
of verifying that an operation is algebraic and it will play a crucial role in showing
how to lift algebraic operations.

Modular Monad Transformers 71

Proposition 17. There is a bijection between algebraic Σ̂-operations for M̂ and
natural transformations from Σ̂ to M̂ given by:

φ(op : Σ ·M •→M) : (Σ •→M) =̂ ΛX : ∗. opX · (mapΣ
X,MX retMX)

ψ(op′ : Σ •→M) : Σ ·M •→M =̂ ΛX : ∗. joinM
X · op′MX

where joinM
X =̂ λm : M(MX). bindM

MX,X(m, idMX) : M(MX)→MX is the mul-
tiplication of M̂ . We call op′ the natural transformation corresponding to the
algebraic Σ̂-operation op.

Remark 18. When ΣX = A × (B → X) there is a further bijection between
algebraic Σ̂-operations op for M̂ and maps op′′ : A→MB, namely

op′′(a : A) =̂ opB(a, retMB).

Theorem 19 (Algebraic Lifting). Given an algebraic Σ̂-operation op for M̂
and a monad morphism ξ from M̂ to N̂ , define the term opN : Σ ·N •→ N as

opN
X =̂ joinN

X · ξNX · opNX · (mapΣ
NX,M(NX) retMNX)

opN is an algebraic Σ̂-operation for N̂ and a lifting of op along ξ. Moreover,
opN is the unique lifting of op which is algebraic.

Proof. The operation opN is a lifting since the following diagram commutes:

Σ(NX)
opN

X ��

mapΣ retM
NX

���������������

(def)

NX

(3) Σ(M(NX))
opNX ��

(3)

M(NX)

joinN
X ·ξNX

����������������
(8)

Σ(M(MX))

mapΣ (mapM ξX)

��

opMX

�� M(MX)

mapM ξX

��

joinM
X ����������������

Σ(MX)

mapΣ ξX

��

opX

��
mapΣ retM

MX

���������������
(Prop. 17)

MX

ξX

��

By Prop. 17, opN is algebraic and, by the same proposition, it must be the
unique lifting of op which is algebraic. ��

For example, when N̂ = X̂ Ŝ and ξ = liftX
Ŝ

, thus NX = S → ((Z + X)× S),
then the algebraic lifting of the algebraic Σ̂-operation get yields the operation

getXX(k : S → XSX) :XSX =̂ λs. k s s.

Since callcc is an algebraic Σ̂-operation, we can apply the algebraic lifting and
obtain for every monad morphism ξ from C to N̂ a lifted algebraic operation

72 M. Jaskelioff

callccN : ∀X : ∗. ((NX → R) → NX) → NX . For example, for N̂ = ŜĈ and
ξ = liftS

Ĉ
, thus NX = S → ((X × S) → R) → R, then the operation simplifies

to:

callccS (f : (SCX→R)→SCX) : SCX = λs k. f (λm. m (s, k)) s k.

We can define a lifted version of callcc in terms of callccS in the same manner
as equation 9 and obtain:

callccS (f : (X→SCY)→SCX) : SCX = λs k. f (λx s′ . k (x, s)) s k.

The author has used the uniform lifting of callcc to verify the ad-hoc liftings
of callcc in Haskell’s monad transformer library (mtl). This verification revealed
that the uniform lifting above coincided with all of the library’s liftings, except
for one: the library’s lifting of callcc through the state monad transformer is not
consistent with the rest of the liftings.2 The ad-hoc lifting of callcc in mtl is:

callcc−mtlS (f : (X→SCY)→SCX) : SCX = λs k. f (λx s′ . k (x, s′)) s k.

The difference is that the ad-hoc lifted operation preserves changes in the
state produced during the construction of the new continuation even when the
current continuation is used. However, all the other liftings of callcc in the library
do not preserve produced effects when using the current continuation.

5 Lifting of Operations

We now show how to lift Σ̂-operations. To achieve this, we need to refine the
definition of monad transformer. All the standard monad transformers fit into
this refined definition, except the monad transformer for continuations.

Definition 20 (Functorial Monad Transformer). The set FMT of func-
torial monad transformers consists of tuples T̂ = (T, retT, bindT, liftT, hmapT),
where the first four components give a monad transformer (see Def. 9), and

hmapT : ∀M, N : ∗ → ∗. Map(M)→ Map(N)→ (M •→ N)→ (TM •→ TN)

is a term such that for all monads M̂ , N̂ and P̂ ,

– hmapT preserves natural transformations and monad morphisms, i.e.
• τ :Nat(M̂, N̂) implies hmapT

M̂,N̂
τ :Nat(T̂ M̂ , T̂ N̂)

• ξ :MM(M̂, N̂) implies hmapT
M̂,N̂

ξ :MM(T̂ M̂ , T̂ N̂)

– hmapT respects identities and composition of natural transformations, i.e.
• hmapT

M̂,M̂
ιM = ιTM

2 In another monad transformer library by Iavor S. Diatchki, called MonadLib, all the
liftings correspond to the uniform lifting obtained above.

Modular Monad Transformers 73

• τ :Nat(M̂, N̂) and σ : Nat(N̂ , P̂) imply

(hmapT
N̂,P̂

σ) ◦ (hmapT
M̂,N̂

τ) = hmapT
M̂,P̂

(σ ◦ τ)

– liftT is natural, i.e.

τ :Nat(M̂, N̂) implies (hmapT
M̂,N̂

τ)X · liftTM̂,X
= liftT

N̂,X
· τX (12)

where hmapT
M̂,N̂

=̂ hmapT
M,N(mapM , mapN).

Example 21. The monad transformer Ŝ becomes functorial with hmapS given
by

hmapS
F̂ ,Ĝ

(τ : F •→ G)(X : ∗)(t :SFX) : SGX =̂ λs : S. τ(t s)

Some tedious calculations show that it satisfies all the required properties. ��

Example 22. The monad transformer X̂ becomes functorial with hmapX given
by

hmapX
F̂ ,Ĝ

(τ : F •→ G)(X : ∗)(t :XFX) : XGX =̂ τ(t)

��

In order to lift Σ̂-operations we will exploit impredicative polymorphism of
system Fω to define a monad transformer K (which is not functorial) such that
every Σ̂-operation op for M̂ induces an algebraic Σ̂-operation opK for K̂M̂ , and
op can be recovered from opK by pre- and post-composition of opK with two nat-
ural transformations. The unique algebraic lifting allows to lift opK through any
monad transformer T̂ , and obtain an algebraic Σ̂-operation opK,T for T̂ (K̂M̂).
Finally, when T̂ is functorial, one recovers from opK,T a lifting of op through T̂ ,
in the same way as one recovers op from opK.

Definition 23 (Codensity). K̂ is the monad transformer (K, retK, bindK, liftK)
such that for every monad M̂

KMX =̂ ∀Y : ∗. (X →MY)→MY

retK
M̂,X

(x : X) :KMX =̂ ΛY : ∗.λk : X→MY . k x

bindK
M̂,X,Y

(c :KMX, f : X→KMY) :KMY =̂

ΛZ : ∗. λk : Y →MZ. c (λx : X. (f x)Z k)

liftK
M̂,X

(m : MX) :KMX =̂ ΛY : ∗.λk : X→MY.bindM
X,Y (m, k)

Remark 24. The monad transformer K̂ is related to the construction of the con-
density monad for an endofunctor (see [12]). In what follows, we use only some
properties of K̂, which are provable by simple calculations in system Fω. Thus,
we do not exploit in full the universal property of the codensity monad.

74 M. Jaskelioff

Definition 25. Let M̂ be a monad. Then, we define the terms

κ(τ : Σ ·M •→M) : Σ •→ KM =̂ ΛX : ∗. λs : ΣX.

ΛY : ∗. λk : X →MY . τY (mapΣ k s)

fromM̂ : KM •→M =̂ ΛX : ∗. λc :KMX. cX (retMX)

and for every Σ̂-operation op for M̂ we define

opK : Σ · KM •→ KM =̂ ψ(κ op)

where ψ is defined in Prop. 17.

Proposition 26. Given a monad M̂ and a Σ̂-operation op for M̂ , then

a) fromM̂ is a natural transformation from K̂M̂ to M̂ such that

ιM = fromM̂ ◦ liftK
M̂

b) opK is an algebraic Σ̂-operation for K̂M̂ such that

op = fromM̂ ◦ opK ◦ (Σ̂ liftK
M̂

) (13)

where ι and ◦ are the identity and composition of natural transformations, and
Σ̂ is the application of a functor to a natural transformation (see Definition 3).

Theorem 27 (Lifting). Given a Σ̂-operation op for a monad M̂ and a func-
torial monad transformer T̂ , let opT : Σ · (TM) •→ TM be the term

opT = (hmapT
K̂M̂,M̂

fromM̂) ◦ opK,T ◦ (Σ̂(hmapT
M̂,K̂M̂

liftK
M̂

)) (14)

where opK,T is the algebraic lifting of opK through T̂ , then opT is a lifting of op
through T̂ .

Proof. The following diagram commutes:

Σ(TMX)
opT

X ��

Σ̂(hmapT liftK
M̂

)X

��������������

(def)

TMX

(2,12) Σ(TKMX)
opK,T

X ��

(10)

TKMX

(hmapT fromM̂)X

����������������
(12)

Σ(KMX)

Σ̂(liftTK̂M
)X

��

opK
X

�� KMX

liftTKM,X

��

fromM̂,X ����������������

Σ(MX)

Σ̂(liftT
M̂

)X

��

opX

��
Σ̂(liftK

M̂
)X

��������������
(13)

MX

liftTM,X

��

��

Modular Monad Transformers 75

When op is an algebraic Σ̂-operation for M̂ , there is a simpler way to lift op
through T̂ . The following result says that when both liftings are defined, they
yield the same result.

Proposition 28. If op is an algebraic Σ̂-operation for M̂ and T̂ a functorial
monad transformer, then the algebraic lifting of op along liftT

M̂
given by Theo-

rem 19 coincides with the lifting of opT given by Theorem 27.

Example 29. We specialize the lifting in Theorem 27 to several concrete functo-
rial monad transformers and an arbitrary Σ̂-operation op for a monad M̂ .

– When T̂ = Ŝ, thus SMX = S →M(X×S), the lifting simplifies to:

opSX (t : Σ(SMX)) : SMX = λs. opX×S(mapΣ τs t)

where τs(f : S →M(X×S)) = f s.
– When T̂ = X̂ , thus XMX = M(Z + X), the lifting simplifies to:

opXX(t : Σ(XMX)) : XMX = opZ+X t.

– When T̂ is R̂, the functorial monad transformer for environments of type
E [10], thus RMX = E →MX , the lifting simplifies to:

opRX (t : Σ(RMX)) : RMX = λe. opX(mapΣ τe t)

where τe(f :E →MX) = f e.
– When T̂ is Ô, the functorial monad transformer for output of type [A] [10],

thus OMX = M(X × [A]), and the lifting simplifies to:

opOX(t : Σ(OMX)) : OMX = opX×[A] t.
��

The example above shows that Theorem 27 subsumes the incremental ap-
proach in [15,3]. In the following, we apply the lifting theorem to the remaining
non-algebraic operations local, handle, and flush. Because of Proposition 28, for
algebraic operations it makes more sense to use the simpler algebraic lifting.

Example 30. The monad for environments of type E and its operations for read-
ing the environment and performing a computation in a modified environment
are shown below.

R(X : ∗) =̂ E→X

retR (x : X) : R X =̂ λ . x

bindR(m : R X, f : X→R Y) : R Y =̂ λe. f (m e) e

ask (f : E→RX) : RX =̂ λe. f e e

local (f : E→E, m : RX) : RX =̂ λe. m (f e)

76 M. Jaskelioff

Applying Theorem 27 to the non-algebraic, Σ̂-operation local we obtain the
following lifted operation for any functorial monad transformer T̂ :

localT (f : E→E, t : TRX) : TRX =̂ hmapT
K̂R̂,R̂

fromR̂ (localK,T (f, t′))

where t′ : TKRX =̂ hmapT
R̂,K̂R̂

liftK
R̂

t

localK,T (f : E→E, t : TKRX) : TKRX =̂ joinT
K̂R̂

(liftTK̂R̂
(ΛY. λk. local (f, k t)))

– When T̂ = Ŝ, thus SRX = S → E → (X×S), the lifting simplifies to:

localS (f : E→E, t :SRX) :SRX = λs e. t s (f e).

– When T̂ = X̂ , thus XRX = E → (Z + X), the lifting simplifies to:

localX (f : E→E, t :XRX) :XRX = λe. t (f e).

– When T̂ = R̂, thus RRX = E → E → X , the lifting simplifies to:

localR (f : E→E, t :RRX) : RRX = λe e′. t e (f e′)

– When T̂ = Ô, thus OMX = E → (X × [A]), the lifting simplifies to:

localO (f : E→E, t :ORX) :ORX = λe. t (f e)
��

Note that we can arrive at the concrete liftings above—where both T̂ and op
are fixed—by either Example 29 (where we first fix T̂) or the definition of localT

above (where we first fix op), but only by fixing the monad transformer we get
a significant simplification of the lifting.

Example 31. The monad for exceptions of type Z and its operations for throwing
and handling exceptions are shown below.

X(X : ∗) =̂ Z + X

retX(x : X) : XX =̂ inr x

bindX(m : XX, f : X→XY) : XY =̂ case m of | inl z ⇒ inl z | inr x⇒ f x

throw (z :Z) : XX =̂ inl z

handle (m : XX, h :Z→XX) : XX =̂ case m of | inl z ⇒ h z | inr x⇒ inr x

We obtain the following liftings for the non-algebraic Σ̂-operation handle.

– When T̂ = Ŝ, thus SXX = S → Z + (X×S), the lifting is:

handleS (t :SXX, h :Z→SXX) :SXX = λs. case t s of | inl z ⇒ h z s

| inr x⇒ inr x

Modular Monad Transformers 77

– When T̂ = X̂ , thus XXX = Z + (Z + X), the lifting is:

handleX (t :XXX, h : Z→XXX) :XXX = case t of | inl z ⇒ h z

| inr x⇒ inr x.

– When T̂ = R̂, thus RXX = E → (Z + X), the lifting is:

handleR (t :RXX, h : Z→RXX) :RXX = λe. case t e of | inl z ⇒ h z e

| inr x⇒ inr x

– When T̂ = Ô, thus OXX = Z + (X × [A]), the lifting is:

handleO(t :OXX, h : Z→OXX) :OXX = case t of | inl z ⇒ h z

| inr x⇒ inr x.
��

Example 32. The monad for output of a type [A] and its operations for out-
putting a list, and flushing the output are shown below.

O (X : ∗) =̂ X × [A]

retO (x : X) : OX =̂ (x, empty(•))
bindO(m : OX, f : X→OY) : OX =̂ let (x, w) = m in

let (x′, w′) = f x in (x′, append(w, w′))

output ((w, m) : W × OX) : OX =̂ let (x, w′) = m in (x, append(w′, w))
flush (m : OX) : OX =̂ let (x,) = m in (x, empty(•))

where empty(•) is the empty list, and append appends two lists. We obtain the
following liftings for the non-algebraic Σ̂-operation flush.

– When T̂ = Ŝ, thus SOX = S → ((X×S)× [A]), the lifting is:

flushS (t :SOX) :SOX = λs. let (x,) = t s in (x, empty(•))

– When T̂ = X̂ , thus XOX = (Z + X)× [A], the lifting is:

flushX ((c, w) :XOX, h : Z→XOX) :XOX = (c, empty(•))

– When T̂ = R̂, thus ROX = E → (X × [A]), the lifting is:

flushR (t :ROX) :ROX = λe. let (x,) = t e in (x, empty(•))

– When T̂ = Ô, thus OOX = (X × [A])× [A], the lifting is:

flushO ((p, w) :OOX, h : Z→OOX) :OOX = (p, empty(•))
��

78 M. Jaskelioff

6 Conclusion

Monad transformers allow programmers to modularly construct a monad, but
for their potential to be fully realized, the lifting of operations should also be
modular. We have defined a uniform lifting through any monad transformer
with a functorial behaviour. This lifting is applicable to a wide class of operations
which includes all operations considered in [10] and all the operations in Haskell’s
mtl, except for listen. Through several examples, we have given evidence that our
uniform lifting subsumes the more or less ad-hoc definitions of lifting that could
be found in the literature.

Our initial focus on algebraic operations is inspired by Plotkin et al. [7], where
a monad is constructed from an algebraic theory presented by algebraic oper-
ations and equations, and combined monads are obtained by combination of
theories. This approach is appealing, but it can cope only with monads corre-
sponding to algebraic theories and with algebraic operations.

The current design of monad transformer libraries is based on the traditional
approach to operation lifting which has other problems besides non-modularity.
The experimental library Monatron [8] implements a new design which not only
lifts operations uniformly, but also avoids many of these problems.

There are several possible directions for further research:

– The lifting of Σ̂-operations assumes functorial monad transformers. In order
to accomodate the continuation monad transformer, we plan to extend the
results in the article to mixed-variant functorial monad transformers.

– Instead of assuming an operation Σ ·M •→ M , we can consider operations
HM •→ M , where H is a functor in an endofunctor category. This allows
us to model the mtl operation listen and obtain a lifting for it. However,
in general, obtaining a lifting seems to depend on the operation inducing
an algebraic Σ̂-operation for another monad. General techniques for finding
such a lifting need to be investigated.

– Given a Σ̂-operation for M̂ , we can obtain its lifting through any functo-
rial monad transformer. However, its general formulation is rather involved,
and we would like to obtain a simpler lifting (perhaps under certain extra
assumptions, as in Proposition 28).

Since the traditional non-modular solution for lifting operations throughmonad
transformers was introduced, there has been little progress in this area. We hope
that the new approach developed in this article leads to new and exciting ways of
designing structured effectful functional programs.

Acknowledgments. I would like to thank Nils Anders Danielsson, Neil Ghani,
Graham Hutton, Peter Morris, Wouter Swierstra, and the anonoymous referees
for their detailed and insightful comments. Finally, I would like to specially thank
Eugenio Moggi for his generous assistance in significantly improving this article.

Modular Monad Transformers 79

References

1. Barendregt, H.: Lambda calculi with types. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, pp. 117–309.
Oxford University Press, Oxford (1992)

2. Barr, M., Wells, C.: Toposes, Triples and Theories. Grundlehren der mathematis-
chen Wissenschaften, vol. 278. Springer, New York (1985)

3. Benton, N., Hughes, J., Moggi, E.: Monads and effects. In: Barthe, G., Dybjer, P.,
Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42–122. Springer,
Heidelberg (2002)

4. Coquand, T., Huet, G.P.: The calculus of constructions. Inf. Comput. 76(2/3),
95–120 (1988)

5. Ghani, N.: Eta-expansions in F-omega. In: van Dalen, D., Bezem, M. (eds.) CSL
1996. LNCS, vol. 1258, pp. 182–197. Springer, Heidelberg (1997)

6. Harper, R., Mitchell, J.C., Moggi, E.: Higher-order modules and the phase distinc-
tion. In: POPL, pp. 341–354 (1990)

7. Hyland, M., Plotkin, G.D., Power, J.: Combining effects: Sum and tensor. Theor.
Comput. Sci. 357(1-3), 70–99 (2006)

8. Jaskelioff, M.: Monatron: an extensible monad transformer library (submitted for
publication) (2008), http://www.cs.nott.ac.uk/~mjj/pubs/monatron.pdf

9. Peyton Jones, S.L., Wadler, P.: Imperative functional programming. In: POPL, pp.
71–84 (1993)

10. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters. In:
POPL, pp. 333–343 (1995)

11. Lüth, C., Ghani, N.: Composing monads using coproducts. In: ICFP, pp. 133–144
(2002)

12. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Math-
ematics, vol. 5. Springer, Heidelberg (1971)

13. Moggi, E.: Computational lambda-calculus and monads. In: LICS, pp. 14–23. IEEE
Computer Society, Los Alamitos (1989)

14. Moggi, E.: Notions of computation and monads. Information and Computa-
tion 93(1), 55–92 (1991)

15. Moggi, E.: Metalanguages and applications. In: Semantics and Logics of Compu-
tation. Publications of the Newton Institute. CUP (1997)

16. Pierce, B.C.: Basic Category Theory for Computer Scientists (Foundations of Com-
puting). MIT Press, Cambridge (1991)

17. Plotkin, G.D., Power, J.: Semantics for algebraic operations. In: ENTCS, vol. 45
(2001)

18. Reynolds, J.C., Plotkin, G.D.: On functors expressible in the polymorphic typed
lambda calculus. Inf. Comput. 105(1), 1–29 (1993)

19. Wadler, P.: Comprehending monads. MSCS 2(4), 461–493 (1992)
20. Wadler, P.: The essence of functional programming. In: POPL, pp. 1–14 (1992)

http://www.cs.nott.ac.uk/~mjj/pubs/monatron.pdf

Handlers of Algebraic Effects

Gordon Plotkin� and Matija Pretnar��

Laboratory for Foundations of Computer Science,
School of Informatics, University of Edinburgh, Scotland

Abstract. We present an algebraic treatment of exception handlers and,
more generally, introduce handlers for other computational effects repre-
sentable by an algebraic theory. These include nondeterminism, interac-
tive input/output, concurrency, state, time, and their combinations; in
all cases the computation monad is the free-model monad of the theory.
Each such handler corresponds to a model of the theory for the effects
at hand. The handling construct, which applies a handler to a compu-
tation, is based on the one introduced by Benton and Kennedy, and is
interpreted using the homomorphism induced by the universal property
of the free model. This general construct can be used to describe previ-
ously unrelated concepts from both theory and practice.

1 Introduction

In seminal work, Moggi proposed a uniform representation of computational ef-
fects by monads [14,15,1]. The computations that return values from a set X
are modelled by elements of TX , for a suitable monad T . Examples include
exceptions, nondeterminism, interactive input/output, concurrency, state, time,
continuations, and combinations thereof. Plotkin and Power later proposed to
focus on algebraic effects, that is, effects that allow a representation by opera-
tions and equations [18,20,21]; the operations give rise to the effects at hand.
All of the effects mentioned above are algebraic, with the notable exception of
continuations [6], which have to be treated differently: see [9] for initial ideas.

In the algebraic approach, an operation gives rise to an occurrence of an
effect and its arguments are the possible computations after that occurrence.
For example, using a binary choice operation or :2, a nondeterministically chosen
boolean is given by the term or(return true, return false) :Fbool, where Fσ stands
for the type of computations that return values of type σ (we are working in
Levy’s call-by-push-value (CBPV) framework [11]). The equations of the theory,
for example the ones stating that or is a semi-lattice operation, generate the
free-model functor, which is used to interpret the type Fσ.

Modulo the forgetful functor, the free model functor is exactly the monad
proposed by Moggi to model the corresponding effect [19]. When operations are
viewed as a family of functions parametric in X , e.g., orX : TX2 → TX , one
� Supported by EPSRC grant GR/586371/01 and a Royal Society-Wolfson Award

Fellowship.
�� Supported by EPSRC grant GR/586371/01.

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 80–94, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Handlers of Algebraic Effects 81

obtains the so-called algebraic operations ; such families are characterised by a
certain naturality condition [20].

Although the algebraic approach has given ways of constructing, combin-
ing [10], and reasoning [22] about effects, it has not yet accounted for their
handling. The difficulty is that exception handlers, a well-known programming
concept, fail to be algebraic operations [20]. Conceptually, algebraic operations
and effect handlers are dual: the former could be called effect constructors as
they give rise to the effects; the latter could be called effect deconstructors as
they depend on the effects already created. Filinski’s reflection and reification
operations provide general effect constructors and deconstructors in the context
of layered monads [5].

This paper presents an account of deconstructors for arbitrary algebraic ef-
fects, and introduces a handling construct for them. The central new semantic
idea is that deconstructing a computation amounts to applying to it a unique
homomorphism guaranteed by universality. The domain of this homomorphism
is a free model of the algebraic theory of the effects at hand; its range is a
programmer-defined model of the algebraic theory; and it extends a programmer-
defined map on values. Our new handling construct generalises the exception-
handling construct of Benton and Kennedy [2]. It also includes many other,
previously unrelated, examples, such as: stream redirection of shell processes,
renaming and hiding in CCS [8], timeout, and rollback.

In Section 2, we illustrate the use of homomorphisms via an informal discus-
sion of exception handlers. Then in Sections 3, 4, and 5, we develop a formal
calculus in the call-by-push-value framework. This framework includes both call-
by-value and call-by-name and proved convenient for the logic of effects in [22].
Section 3 describes the algebraic theory of effects over a given base signature
and interpretation. A natural need for two languages arises: one describing han-
dlers, given in Section 4, and one using them to handle computations, given
in Section 5. The second parts of these sections give the relevant denotational
semantics; readers may wish to omit them at first reading. We give examples in
Section 6, where CBPV enables us to define handlers using non-free algebras.

We outline a version of a logic for algebraic effects [22] with handlers in Sec-
tion 7. In Section 8, we sketch the inclusion of recursion: until then we work only
with sets and functions, but everything adapts straightforwardly to ω-cpos (par-
tial orders with sups of increasing sequences) and continuous functions (mono-
tone functions preserving sups of increasing sequences). We conclude in Section 9
with a discussion of some open questions and possible future work.

2 Exception Handlers

We start our study with exception handlers, both because they are an estab-
lished concept [2,12] and also because exceptions provide the simplest example
of algebraic effects. To focus on the exposition of ideas, we write this section in
a rather informal style, mixing syntax and semantics.

Taking a set of exceptions E, the computations that return values from a
set X are modelled by elements γ of the monad TX =def X + E with unit

82 G. Plotkin and M. Pretnar

ηX = inlX : X → X + E. Algebraically, one may take a nullary operation, i.e.,
a constant, raisee : 0 for each e ∈ E and no equations, and then FX has carrier
TX with raisee interpreted as inr(e).

Fixing X , an exception handler γ handle {e �→ γe}e∈E takes a computation
γ ∈ X + E and intercepts raised exceptions e ∈ E, carrying out predefined
computations γe ∈ X + E instead (if one chooses not to handle a particular
exception e one takes γe = raisee). So we have the two equations:

ηX(x) handle {e �→ γe}e∈E = inlX(x) ,

raisee handle {e �→ γe}e∈E = γe .

From an algebraic point of view, the γe provide a model X + E for the theory
of exceptions. This model has carrier X +E and, for each e, raisee is interpreted
by γe. We then see from the above two equations that

θ(γ) =def γ handle {e �→ γe}e∈E

is the unique homomorphism θ : X + E → X + E extending inlX : X → X + E
along ηX (we confuse the free model on X with its carrier).

Benton and Kennedy [2] generalised the handling construct to one of the form

try x⇐ γ in g(x) unless {e �→ γe}e∈E ,

where exceptions e may be handled by computations γe of any given type M
(here a model of the theory) and returned values are “handled” with a map
g : X → M . (This construct is actually a bit more general than in [2] as E
may be infinite and as we are in a call-by-push-value framework rather than a
call-by-value one.) We now have:

try x⇐ ηX(x) in g(x) unless {e �→ γe}e∈E = g(x) ,

try x⇐ raisee in g(x) unless {e �→ γe}e∈E = γe .

As remarked in [2], this handling construct allows a more concise programming
style, program optimisations, and a stack-free small-step operational semantics.

Algebraically we now have a model M on (the carrier of) M , interpreting
raisee by γe, and the handling construct corresponds to the homomorphism θ
induced by g, that is the unique homomorphism θ : X + E → M extending g
along ηX . Note that all the homomorphisms from the free model are obtained
in this way, and so (this version of) Benton and Kennedy’s handling construct
is the most general one possible from the algebraic point of view.

We can now see how to give handlers of other algebraic effects. To give a
model of a finitary algebraic theory on a set X is to give a map fop : Xn → X
for each operation op :n, on condition that those maps satisfy the equations of the
theory. As before, computations are interpreted in the free model and handling
constructs are interpreted by the induced homomorphisms. Intuitively, while
exceptions are replaced by handling computations, operations are recursively
replaced by handling functions on computations.

Handlers of Algebraic Effects 83

3 Effects

We start with a base signature Σbase, consisting of: a set of base types β; a
subset of the base types, called the arity types α; a collection of function symbols
f : (β)→ β; and a collection of relation symbols R : (β). We use vector notation
a to abbreviate lists a1, . . . , an.

Base terms v are built from variables x and function symbols, while base
formulas ψ are built from equations between base terms, relation symbols applied
to base terms, logical connectives, and quantifiers over base types; we may omit
empty parentheses in terms and formulas, and in similar constructs introduced
below. In a context Γ of variables bound to base types, we type base terms as
Γ � v :β and base formulas as Γ � ψ : form.

An interpretation of the base signature is given by: a set [[β]] for each base
type β, countable if β is an arity type; a map [[f]] : [[β]] → [[β]] for each function
symbol f : (β) → β; and a subset [[R]] ⊆ [[β]] for each relation symbol R : (β),
where [[β]] = [[β1]] × . . . [[βn]]. Terms Γ � v : β and formulas Γ � ψ : form are
interpreted by maps [[v]] : [[Γ]] → [[β]] and subsets [[ψ]] ⊆ [[Γ]] as usual [4].

3.1 Effect Theories

Standard equational logic does not give a finitary notation for describing effects
given by an infinite family of operations, having an infinite number of outcomes,
or described by an infinite number of equations [20]. We present a more general
notation to do this, at least in some cases.

To avoid infinite families of operation symbols, we allow operations to have
parameters of base types. For example, instead of having a family of operation
symbols updatel,d :1 for each location l and datum d, we employ a single operation
symbol update : loc,dat; 1 that takes parameters l : loc and d : dat, giving a
memory location to be updated and a datum to be stored there.

To avoid operation symbols of infinite arity, their arguments are allowed to
depend on an element of an arity type. For example, lookup : loc;dat has param-
eter l : loc and a single argument, dependent on a d :dat. The parameter gives
a memory location to be looked-up and the argument gives the computation to
be then carried out, dependent on the datum stored in that location.

Thus, given a base signature Σbase, an effect signature Σeff consists of oper-
ation symbols op :β; α1, . . . , αn, where β is a list of parameter base types, and
α1, . . . , αn are lists of argument arity types. We omit the semicolon when β is
empty, and write n instead of α1, . . . , αn when every αi is empty. Effect terms
T are given by the following grammar:

T :: = z(v) | opv(xi :αi.Ti)i ,

where z ranges over effect variables, and opv(xi : αi.Ti)i is an abbreviation for
opv(x1 :α1.T1, . . . , xn :αn.Tn). We may omit empty binders here and in similar
constructs below.

84 G. Plotkin and M. Pretnar

We type effect terms as Z; Γ � T , where Z consists of effect variables z : (α),
according to the following rules:

Γ � v :α
Z; Γ � z(v)

(z : (α) ∈ Z)

Γ � v :β Z; Γ, xi :αi � Ti (i = 1, . . . , n)
Z; Γ � opv(xi :αi.Ti)i

(op :β; α1, . . . , αn ∈ Σeff) .

Next, conditional equations have the form Z; Γ � T1 = T2 (ψ), assuming that
Z; Γ � T1, Z; Γ � T2, and Γ � ψ : form. Finally, a conditional effect theory Teff
(over base and effect signatures Σbase and Σeff) is a collection of such equations.
It would be interesting to develop an equational logic for such theories [17].

Example 1. To describe a set E of exceptions, the base signature consists of a
base type exc and a constant function symbol e : () → exc for each e ∈ E. We
interpret exc by E and function symbols by their corresponding elements. The
effect signature consists of an operation symbol raise : exc; 0, while the effect
theory is empty. Then, omitting empty parentheses, raisee is the computation
that raises the exception e.

Example 2. For nondeterminism, we take the empty base signature, the empty
interpretation, the effect signature with a single nondeterministic choice opera-
tion symbol or :2, and the effect theory for a semi-lattice, which states that or is
idempotent, commutative, and associative.

Example 3. For state, the base signature contains a base type loc of memory lo-
cations, an arity type dat of data, and appropriate function and relation symbols
for the locations and data. We interpret loc by a finite set L and dat by a count-
able set D. The effect signature consists of operation symbols lookup : loc;dat
and update : loc,dat; 1, while the effect theory consists of seven conditional
equations [19,17]. As an example, lookupl(d :dat.updatel′,d(z)) is the computa-
tion that copies d from l to l′ and then proceeds as z.

Each effect theory Teff and interpretation of the base signature induces a stan-
dard, possibly infinitary, equational theory [7]. For each op : β; α1, . . . , αn and
b ∈ [[β]], we take an operation symbol opb of countable arity

∑
i |[[αi]]|. Then

each effect term Z; Γ � T and c ∈ [[Γ]] gives rise to a, possibly infinitary, term
Tc, with variables of the form za (z : (α) ∈ Z, a ∈ [[α]]). The equations of the
theory are Tc = Tc′ for each Z; Γ � T = T ′ (ψ) in Teff and c ∈ [[ψ]] (⊆ [[Γ]]).

An interpretation of Σeff has a set M , its carrier, together with a map

opM : [[β]] ×
∏

i

M [[αi]] →M

for each op : β; α1, . . . , αn ∈ Σeff ; it is a model of the effect theory Teff if the
corresponding maps opM (b,−), where b ∈ [[β]], satisfy the equations of the

Handlers of Algebraic Effects 85

induced equational theory. A homomorphism between models M and N is a
map θ : M → N such that opN ◦ (id[[β]] ×

∏
i θ[[αi]]) = θ ◦ opM holds for all

op :β; α1, . . . , αn ∈ Σeff .
Models and homomorphisms form a category ModTeff , equipped with the for-

getful functor U : ModTeff → Set, which maps a model to its carrier and a
homomorphism to its underlying map. This functor has a left adjoint F , which
constructs the free model FX on a set of generators X . The set UFX represents
the set of computations that return values in X , and the monad UF agrees [19]
with the monad proposed by Moggi to model the corresponding effect [15] (as-
suming the effect theory appropriately chosen).

The monad induced by the theory for exceptions in Example 1 maps a set X
to X + E, the one for non-determinism in Example 2 maps it to the set F+(X)
of finite non-empty subsets of X , while the one for state in Example 3 maps it to
(S×X)S , where S = DL. One can give an equivalent treatment using countable
Lawvere theories [23].

4 Handlers

Exception handlers are usually described and used within the same language:
for each exception, we give a replacement computation term, which can contain
further exception handlers. Repeating the same procedure for other algebraic
effects is less straightforward: in order to interpret the handling construct, the
handlers have to be correct in the sense that the redefinition of the operations
they provide yields a model of the effect theory.

Equipping a single calculus with a mechanism to verify that handlers are
correct would result in a complex interdependence between well-formedness and
correctness. We avoid this by providing two calculi: one, given in this section,
enables the language designer to specify handlers; another, given in the next
section, enables the programmer to use them. In this way the selection of correct
handlers is delegated to the meta-level.

Handler types χ, handler terms w, and handlers h are given by the following
grammar:

χ :: = X | Fσ | 1 | χ1 × χ2 | σ → χ

w :: = ϕ(v) | opv(xi :αi.wi)i | if ψ thenw1 elsew2 | return v |
letx :σ be w in w′ | � | 〈w1, w2〉 | fst w | sndw | λx :σ.w | wv

h :: = (ϕp :χ; xp :σ).{opx(ϕ) �→ wop}op∈Σeff ,

where X ranges over type variables, σ ranges over value types (here the same as
the base types), ϕ ranges over handler variables, and ψ ranges over quantifier-free
formulas. A handler is given by a handling term for each operation, dependent on
parameters xp and ϕp. We may omit the semicolon in handlers when either σ or
χ is empty, and also in similar constructs introduced below. When opx(ϕ) �→ wop

is omitted, we assume that wop = opx(xi :αi.ϕi(xi))i, so that op is not handled.

86 G. Plotkin and M. Pretnar

We type handler terms as Φ; Γ � w :χ where Φ is a context of handler variables
ϕ : (α)→ χ, according to the following rules:

Γ � v :α
Φ; Γ � ϕ(v) :χ

(ϕ : (α)→ χ ∈

Φ)
Γ � v :β Φ; Γ, xi :αi � wi :χ (i = 1, . . . , n)

Φ; Γ � opv(xi :αi.wi)i :χ
(op :β; α1, . . . , αn ∈ Σeff)

Γ � v :σ
Φ; Γ � return v :Fσ

Φ; Γ � w :Fσ Φ; Γ, x :σ � w′ :χ
Φ; Γ � let x :σ be w in w′ :χ

,

and the standard rules for conditionals, products, and functions.
Handlers are typed as � h : (χ; σ)→ χ handler by the following rule:

ϕp :χ, (ϕi : (αi)→ χ)n
i=1; xp :σ, x :β � wop :χ (op :β; α1, . . . , αn ∈ Σeff)

� (ϕp :χ; xp :σ).{opx(ϕ) �→ wop}op∈Σeff : (χ; σ)→ χ handler
.

Note that a handler may be polymorphic, as type variables may occur in χ or
χ. We say that a handler � h : (χ; σ)→ χ handler is uniform if χ = X , and
parametrically uniform if χ = σ → X .

4.1 Semantics

For each assignment ρ of models to type variables, handler types χ are interpreted
by models [[χ]]ρ, given by

[[X]]ρ = ρ(X) [[Fσ]]ρ = F [[σ]] [[1]]ρ = 1

[[χ1 × χ2]]ρ = [[χ1]]ρ × [[χ2]]ρ [[σ → χ]]ρ = [[χ]][[σ]]
ρ ,

where the model is given component-wise on M1 ×M2 and point-wise on MA.
Then, we interpret contexts Φ = ϕ1 : (α1) → χ1, . . . , ϕn : (αn) → χn by

[[Φ]]ρ = U [[χ1]]
[[α1]]
ρ × · · · × U [[χn]][[αn]]

ρ and handler terms Φ; Γ � w : χ by maps
[[w]]ρ : [[Φ]]ρ × [[Γ]] → U [[χ]]ρ, defined inductively on valid typing judgements by

[[Φ; Γ � ϕi(v) :χi]]ρ = ev[[αi]],U [[χi]]ρ ◦ 〈pri ◦ pr1, 〈[[v]]〉 ◦ pr2〉
[[Φ; Γ � opv(xi :αi.wi)i :χ]]ρ = op[[χ]]ρ ◦ 〈〈[[v]]〉 ◦ pr2,

̂[[w1]]ρ, . . . , ̂[[wn]]ρ〉
[[Φ; Γ � return v :Fσ]]ρ = η[[σ]] ◦ [[v]] ◦ pr2

[[Φ; Γ � letx :σ be w inw′ :χ]]ρ = [[w′]]†ρ ◦ 〈id[[Φ]]ρ×[[Γ]] , [[w]]ρ〉 ,
where judgements are abbreviated to terms on the right. The maps ev and pr are
evaluation and projection functions; -̂ is the transpose operation (associativity
isomorphisms are omitted here, and below); and η is the unit of UF . The map
f † =def U(εM ◦ Ff) ◦ stA,B : A × UFB → UM is the parameterised lifting of
f : A × B → UM , where ε is the counit of FU , and st is the strength of UF .
Conditionals, products, and functions are interpreted as usual [11].

Handlers of Algebraic Effects 87

A handler h : (χ; σ)→ χ handler is interpreted by a parameterised family
[[h]]ρ(mp, ap) of Σeff-interpretations, where mp ∈ U [[χ]]ρ and ap ∈ [[σ]]; each
such interpretation has carrier U [[χ]]ρ, and, for each op :β; α1, . . . , αn, the map

opU [[χ]]ρ =def (m, a) �→ [[wop]]((mp, m), (ap, a))

(identifying models M with their trivial powers M1).
We say that h is correct (with respect to Teff) if for all assignments ρ, and

for all mp ∈ U [[χ]]ρ and ap ∈ [[σ]], the Σeff -interpretation [[h]]ρ(mp, ap) defines
a model of the effect theory Teff on U [[χ]]ρ. If the effect theory is empty, then
any handler is correct, but, in general, correctness is undecidable. In particular,
the following problem is Π1-complete: given a multi-sorted finitary equational
theory with finite signature and finitely many axioms, decide whether, in the
initial model, a given interpretation of the theory in itself satisfies the axioms.

5 Computations

We assume a handler signature Σhand of handler symbols

H : (χ; σ)→ χ handler .

Then, computation types τ and terms t are given by the following grammar:

τ :: = Fσ | 1 | τ1 × τ2 | σ → τ ,

t :: = opv(xi :αi.ti)i | if ψ then t1 else t2 | return v | letx :σ be t in t′ |
try t withH(t; v) asx :σ in t′ | � | 〈t1, t2〉 | fst t | snd t | λx :σ.t | tv ,

where ψ ranges over quantifier-free formulas, as before.
One can see that computation types and terms mirror their handler counter-

parts, with the omission of type and handler variables, and with the addition of
the handling construct. When the full handling construct is not necessary, we
write handle t withH(t; v) instead of try t withH(t; v) as x :σ in return x, and when
the handler signature consists of a single handler symbol H , we omit it, writing
try t with v; t asx :σ in t′ or handle t with t; v instead.

We can extend both handlers and computations with other call-by-push-value
types and terms [11,22]. A problem arises if we introduce thunks: handler terms
then contain value terms, which contain thunked computation terms, which con-
tain the handling construct. To resolve the issue, one further splits the handler
types and terms into value and computation ones.

Computation terms are typed as Γ � t : τ according to rules similar to the
ones for handling terms, except that the handling construct for a handler symbol
H : (χ; σ)→ χ handler ∈ Σhand is typed by

Γ � t :Fσ Γ � t :χ[τ/X] Γ � v :σ Γ, x :σ � t′ :χ[τ/X]
Γ � try t withH(t; v) as x :σ in t′ :χ[τ/X]

,

where χ[τ/X] is the computation type obtained by replacing all the type vari-
ables X in χ by the computation types τ .

88 G. Plotkin and M. Pretnar

5.1 Semantics

To interpret computation terms, we assume given a handler definition Δ, map-
ping each handler symbol H : (χ; σ)→ χ handler ∈ Σhand to a correct handler
� Δ(H) : (χ; σ) → χ handler. Then, computation types and terms are inter-
preted in the same way as their handler counterparts, except that the handling
construct Γ � try t withH(t; v) as x :σ in t′ :χ[τ/X] is interpreted along the lines
discussed in Section 2, as we now see.

Take c ∈ [[Γ]] and let ρ be an assignment that maps Xi to [[τ i]]. Since each
handler Δ(H) is correct, the Σeff interpretation [[Δ(H)]]ρ(〈[[t]]〉(c), 〈[[v]]〉(c)) is
a model U [[χ]]ρ of the effect theory Teff with carrier U [[χ]]ρ. By the universality
of the free model F [[σ]], there is a unique homomorphism θc : F [[σ]] → U [[χ]]ρ
extending [[t′]](c,−) in the sense that the following diagram commutes:

[[σ]]

UF [[σ]]

η[[σ]]

� θc� U [[χ]]ρ

[[t ′]](c,−)
�

The handling construct Γ � try t withH(t; v) as x : σ in t′ : χ[τ/X] is then
interpreted by the map

c �→ θc([[t]](c)) : [[Γ]] → U [[χ[τ/X]]]

(note that [[χ]]ρ is equal to [[χ[τ/X]]] by the definition of ρ).

6 Examples

We give a number of examples to demonstrate the versatility of our handling
construct.

6.1 Exceptions

The standard uniform exception handler is given by

(ϕ :exc→ X).{raisee �→ ϕe} : (exc→ X)→ X handler .

Benton and Kennedy’s construct try x ⇐ t in t′ unless {e1 ⇒ t1 | · · · | en ⇒ tn}
can then be written as try t with texc as x :σ in t′ for a suitable σ and texc :exc→ τ .

Benton and Kennedy noted a few issues about the syntax of their construct
when used for programming [2]. It is not obvious that t is handled whereas t′

is not, especially when t′ is large and the handler is obscured. An alternative
they propose is try x ⇐ t unless {e1 ⇒ t1 | . . . | en ⇒ tn}i in t′, but then it is not
obvious that x is bound in t′, but not in the handler. The syntax of our con-
struct try t withH(t; v) as x : σ in t′ addresses those issues and clarifies the order
of evaluation: after t is handled with H , its results are bound to x and used in t′.

Handlers of Algebraic Effects 89

6.2 Stream Redirection

Shell processes in Unix-like operating systems communicate with the user us-
ing input and output streams, usually connected to a keyboard and a terminal
window. However, such streams can be rerouted to other processes so simple
commands can be combined into more powerful ones.

One case is the redirection proc > outfile of the output stream of a pro-
cess proc to a file outfile, usually used to store the output for a future analy-
sis. An alternative is the redirection proc > /dev/null to the null device, which
effectively discards the standard output stream.

Another case is the pipe proc1|proc2, where the output of proc1 is fed to
the input of proc2. For example, to get a way (not necessarily the best one) of
routinely confirming a series of actions, for example deleting a large number of
files, we write yes|proc, where the command yes outputs an infinite stream
made of a predetermined character (the default one being y).

We represent interactive input/output by: a base signature, consisting of
a base type char of characters and constants a, b, . . . of type char, together
with the obvious interpretation; an effect signature, consisting of operation sym-
bols out : char; 1 and in : char, with the empty effect theory. Then, if t is a
computation, we can express yes| t > /dev/null by handle t withHred, where
Hred : ()→ X handler is defined to be {outc(ϕ) �→ ϕ, in(ϕ) �→ ϕ(y)}.

6.3 CCS Renaming and Hiding

In functional programming, processes are regarded as programs of empty type 0.
The subset of CCS processes [13], given by action prefix and sum, can be repre-
sented by: a base signature, consisting of a base type act of actions and appropri-
ate constants for actions, interpreted in the evident way; an effect signature, con-
sisting of operation symbols 0 :0, do :act; 1, and +:2, with the obvious effect the-
ory [22]. Then, process renaming t[b/a] can be written as handle t withHren(a, b),
where, writing a.ϕ for doa(ϕ), Hren : (act, act)→ F0 handler is defined by:

Hren = (a :act, b :act).{a′.ϕ �→ if a′ = a then b.ϕ elsea′.ϕ} .

Note that 0 and + are handled by themselves, following the convention given
above regarding operation symbols omitted from handlers.

Hiding can be implemented in a similar way, but whether parallel can be
is an open question. The difficulty is that the natural definition of parallel is
by a simultaneous recursion on the structure of both its arguments, whereas the
handler mechanism provides only recursion on one argument. We should mention
that some attempts at finding a binary variant of handlers were unsuccessful.

6.4 Explicit Nondeterminism

The evaluation of a nondeterministic computation usually takes only one of all
the possible paths. But in logic programming [3], we do an exhaustive search for

90 G. Plotkin and M. Pretnar

all solutions that satisfy given constraints in the order given by the solver imple-
mentation. Such nondeterminism is represented slightly differently from the one
in Example 2. We take: the empty base signature; an effect signature, consisting
of operation symbols fail : 0 and pick : 2, with the effect theory consisting of the
following equations stating that the operations form a monoid:

z � pick(z, fail) = pick(fail, z) = z ,

z1, z2, z3 � pick(z1, pick(z2, z3)) = pick(pick(z1, z2), z3) .

The free-model monad maps a set to the set of all finite sequences of its elements,
which is Haskell’s nondeterminism monad [16].

A user is usually presented with a way of browsing through those solutions,
for example extracting all the solutions into a list. Since our calculus has no
polymorphic lists (although it can easily be extended with them), we take base
types α and listα, function symbols nil : () → listα, cons : (α, listα) → listα,
head : (listα)→ α, tail : (listα)→ listα, and append : (listα, listα)→ listα. Then,
all the results of a computation of type Fα can be extracted into a returned
value of type F listα using the handler

{fail �→ return nil ,

pick(ϕ1, ϕ2) �→ let x1 : listα be ϕ1 in let x2 : listα be ϕ2 in return append(x1, x2)} .

We can similarly devise a handler that returns the first solution, or one that
prints out a solution and asks the user whether to continue the search or not.

6.5 Handlers with Parameter Passing

Sometimes, we wish to handle different instances of the same operation dif-
ferently, for example suppressing output after a certain number of characters.
Although we handle operations in a fixed way, we can use handlers on a function
type σ → χ to simulate handlers on χ that pass around a parameter of type σ.

Instead of

(ϕp :χ; xp :σ).{opx(ϕ) �→ λx :σ.wop}op∈Σeff : (χ; σ)→ (σ → χ) handler .

where all the occurrences of ϕi(v) are applied to some v :σ, the changed param-
eter, we write

(ϕp :χ; xp :σ).{opx(ϕ)@ x :σ �→ w′
op}op∈Σeff : (χ; σ)→ χ@σ handler ,

where w′
op results from substituting ϕi(v)@v for ϕi(v)v in wop. We also write

try t with H(t; v)@v as y :σ′ @ x :σ in t′

instead of
(try t withH(t; v) as y :σ′ in λx :σ.t′)v .

We could similarly simulate mutually defined handlers by handlers on product
types, but we know no interesting examples of their use.

Handlers of Algebraic Effects 91

6.6 Timeout

When the evaluation of a computation takes too long, we may want to abort it
and provide a predefined result instead, a behaviour called timeout.

We represent time by: a base signature with a base type int of integers, ap-
propriate function symbols and a relation symbol > : (int, int), with the evident
interpretation; an effect signature consisting of delay :1, to represent the passage
of some fixed amount of time, with the empty effect theory. Then timeout can
be described by a handler which passes around a parameter T : int representing
how long we are willing to wait before we abort the evaluation and return ϕp.

(ϕp :X).{delay(ϕ)@ T : int �→ delay(if T > 0 thenϕ@(T − 1) elseϕp)}
Note that the handling term is wrapped in delay in order to preserve the time
spent during the evaluation of the handled computation.

6.7 Input Redirection

With parameter passing, we can implement the redirection proc < infile, which
feeds the contents of infile to the standard input of proc. We take the base
signature, etc., of Section 6.2, extended by the base type listchar, etc., of Sec-
tion 6.4. Then a handler Hin : () → X@listchar handler to pass a string to a
process is defined by

{in(ϕ)@ � : listchar �→ if � = nil then in(a.ϕ(a)@nil) else ϕ(head(�))@tail(�)} .

Unfortunately we do not see how to implement the pipe t1| t2: the difficulty is
very much like that with the CCS parallel combinator.

6.8 Rollback

When a computation raises an exception while modifying the memory, for ex-
ample, when a connection drops half-way through a database transaction, we
want to revert all the modifications made. This behaviour is termed rollback.

We take the base and the effect signatures for exceptions as in Example 1
and state as in Example 3, and the effect theory for state, together with the
equation updatel,d(raisee) = raisee for each exception e [10]. The standard ex-
ception handler, extended to state, is no longer correct. Instead, working in an
extended language as described above, we use a parametrically uniform handler
Hrollback : () → X@ U(exc → X) handler with parameter a thunked function
to revert modified locations. It is defined, omitting some type declarations, by

{updatel,d(ϕ)@ f :U(exc→ X) �→
lookupl(d

′.updatel,d(ϕ@ thunk(λe. letx be (force f)e in updatel,d′(return x)))) ,

lookupl(ϕ)@ f :U(exc→ X) �→ lookupl(d.ϕ(d)@f) ,

raisee @ f :U(exc→ X) �→ (force f)e} ,

and is used on t :Fσ by handle t withHrollback@t0 for some t0 :exc→ Fσ.
We can also give a variant of rollback that passes around a list of changes to

the memory, committed only after the computation has returned a value.

92 G. Plotkin and M. Pretnar

7 Logic

We sketch an adaptation of the logic for algebraic effects of [22] to account for
handlers. This is relatively straightforward as the notions needed to interpret
the handling construct are embodied in the computation induction (CI) and free
algebra principles of [22]: the latter allows the ad-hoc construction of models
and guarantees the existence of the required unique homomorphism.

We add handler types and terms to the language of the logic and state that
handling is a homomorphic extension by:

Γ � try return v withH(tp; vp) as x :σ in t = t[v/x] ,

Γ � try opv(xi.ti)i withH(tp; vp) as x :σ in t = w′
op ,

where, if Δ(H) = (ϕp : χ ; xp : σ).{opx(ϕ) �→ wop}op∈Σeff , then w′
op is obtained

by substituting tp for ϕp() and try ti[vi/xi] withH(tp; vp) asx :σ in t for ϕi(vi) in
wop[vp/xp, v/x]; CI yields uniqueness. These two equations generalise the first
two ‘handle-sequencing’ equations of [12].

The fourth ‘associativity’ equation has no valid generalisation of the form

try (try t1 with m2 asx1 :σ1 in t2)withm3 as x2 :σ2 in t3

= try t1 withm′
3 as x1 :σ1 in (try t2 withm3 as x2 :σ2 in t3) ,

for some m′
3, given the ti and the mj (m ranges over model expressions H(t; v)):

such an m′
3 may not exist, and there may even be no possible model for it to

denote. There are generalisations of the third and fourth equations provable by
CI, subject to conditions involving the model expressions.

Still, the associativity of exception handlers is expressible, and provable by
CI. We then have m1 = Hexc(t) for some t :exc→ Fσ2, and we set

m3 =def Hexc(λe :exc. try te withm2 as x2 :σ2 in t3) .

(Note that, although handlers cannot contain handler constructs, it is possible
to achieve something of that effect through the use of parameters, as we do
here.) It may be, more generally, that unconditional associativity is provable
for limited classes of handlers, such as the uniform ones. Further equations for
exception-handling (also provable by CI) are given in [2]; it remains to consider
their possible general forms.

8 Recursion

We sketch how to adapt the above ideas to deal with recursion. Base signatures
are as before; for their interpretations we use ω-cpos and continuous functions,
still, however, interpreting arity types by countable sets, equipped with the triv-
ial order (with some additional effort this can be generalised to ω-cpos countable
in the categorical sense). Effect syntax is as before, except that we allow con-
ditional inequations Z; Γ � T1 ≤ T2 (ψ) and assume there is always a constant
Ω and the inequation Ω ≤ z. We again obtain a category of models, now using

Handlers of Algebraic Effects 93

ω-cpos (necessarily with a least element) as carriers and continuous functions
(necessarily strict) as homomorphisms; free models exist as before.

The handler and computation syntax is also as before except that we add
recursion terms μϕ :χ.w and μy :τ.t (and so also computation variables y) with
the usual least fixed-point interpretation. Correct handlers cannot redefine Ω
because of the inequation Ω ≤ z. The adaptation of the logic of effects to allow
recursion in [22] further adapts to handlers, analogously to the above; in this
regard one notes that inequations are admissible and therefore one may still use
computation induction to prove associativity and so on.

9 Conclusions

Some immediate questions stem from the current work. The most important is
how to simultaneously handle two computations to describe parallel operators,
e.g., that of CCS or the Unix pipe combinator; that would bring parallelism
within the ambit of the algebraic theory of effects. More routinely, perhaps, the
logic should be worked out more fully, the work done on combinations of effects
in [10] should be extended to combinations of handlers, and there should be a
general operational semantics [18] including that of Benton and Kennedy in [2].

The separation between the languages for handlers and computations is es-
sential in the development of this paper. A possible alternative is to give a single
language and a mechanism limiting well-typed handlers to correct ones. This
might be done by means of a suitable type-theory.

It is interesting to compare our approach to that taken in Haskell [16], where
a monad is given by a type with unit and binding maps. The type-checker only
checks the signature of the maps, but not the monadic laws they should satisfy.
Still, the only way to use effects in Haskell is through the use of the built-in mon-
ads, and their laws were checked by their designers. Building on this similarity, one
can imagine extending Haskell in two ways: enriching the built-in effects with oper-
ations and handlers; and giving programmers a means to write their own handlers
which could be used to program in an extension of the monadic style.

A given handler may or may not be computationally feasible for a given effect
and so there is a question as to which are. We may expect uniform, or parametri-
cally uniform, handlers to be feasible, as they cannot use the properties of a specific
data-type and so, one may imagine, cannot be as contrived. In this connection,
note too that a single monad or algebraic theory may model distinct effects. For
example, the complexity monad N×−may be used to model either space or time.

Lastly, one advantage of Benton and Kennedy’s handling construct is the
elegant programming style it introduces. We gave various examples of our more
general construct above; some used parameter-passing, but none, unfortunately,
used mutually defined handlers. We hope our new programming construct proves
useful, and we look forward to feedback from the programming community.

Acknowledgments. The authors thank Andrej Bauer, Andrzej Filinski, Paul
Levy, John Power, Mojca Pretnar, and Alex Simpson for their insightful com-
ments and support.

94 G. Plotkin and M. Pretnar

References

1. Benton, N., Hughes, J., Moggi, E.: Monads and effects. In: Barthe, G., Dybjer, P.,
Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42–122. Springer,
Heidelberg (2002)

2. Benton, N., Kennedy, A.: Exceptional syntax. Journal of Functional Program-
ming 11(4), 395–410 (2001)

3. Clocksin, W.F., Mellish, C.: Programming in Prolog, 3rd edn. Springer, Heidelberg
(1987)

4. Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press,
London (2000)

5. Filinski, A.: Representing layered monads. In: 26th Symposium on Principles of
Programming Languages, pp. 175–188 (1999)

6. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: PLDI, pp. 237–247 (1993)

7. Grätzer, G.A.: Universal Algebra, 2nd edn. Springer, Heidelberg (1979)
8. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.

Journal of the ACM 32(1), 137–161 (1985)
9. Hyland, M., Levy, P.B., Plotkin, G.D., Power, A.J.: Combining algebraic effects

with continuations. Theoretical Computer Science 375(1-3), 20–40 (2007)
10. Hyland, M., Plotkin, G.D., Power, A.J.: Combining effects: Sum and tensor. The-

oretical Computer Science 357(1-3), 70–99 (2006)
11. Levy, P.B.: Call-by-push-value: Decomposing call-by-value and call-by-name.

Higher-Order and Symbolic Computation 19(4), 377–414 (2006)
12. Levy, P.B.: Monads and adjunctions for global exceptions. Electronic Notes in

Theoretical Computer Science 158, 261–287 (2006)
13. Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980)
14. Moggi, E.: Computational lambda-calculus and monads. In: 4th Symposium on

Logic in Computer Science, pp. 14–23 (1989)
15. Moggi, E.: Notions of computation and monads. Information And Computa-

tion 93(1), 55–92 (1991)
16. Peyton Jones, S.L.: Haskell 98. Journal of Functional Programming 13(1), 255

(2003)
17. Plotkin, G.D.: Some varieties of equational logic. In: Futatsugi, K., Jouannaud,

J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation. LNCS, vol. 4060,
pp. 150–156. Springer, Heidelberg (2006)

18. Plotkin, G.D., Power, A.J.: Adequacy for algebraic effects. In: Honsell, F., Miculan,
M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 1–24. Springer, Heidelberg (2001)

19. Plotkin, G.D., Power, A.J.: Notions of computation determine monads. In: Nielsen,
M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer,
Heidelberg (2002)

20. Plotkin, G.D., Power, A.J.: Algebraic operations and generic effects. Applied Cat-
egorical Structures 11(1), 69–94 (2003)

21. Plotkin, G.D., Power, A.J.: Computational effects and operations: An overview.
Electronic Notes in Theoretical Computer Science 73, 149–163 (2004)

22. Plotkin, G.D., Pretnar, M.: A logic for algebraic effects. In: 23rd Symposium on
Logic in Computer Science, pp. 118–129 (2008)

23. Power, A.J.: Countable Lawvere theories and computational effects. Electronic
Notes in Theoretical Computer Science 161, 59–71 (2006)

Is Structural Subtyping Useful?
An Empirical Study

Donna Malayeri and Jonathan Aldrich

Carnegie Mellon University, Pittsburgh, PA 15213, USA
{donna,aldrich}@cs.cmu.edu

Abstract. Structural subtyping is popular in research languages, but all main-
stream object-oriented languages use nominal subtyping. Since languages with
structural subtyping are not in widespread use, the empirical questions of whether
and how structural subtyping is useful have thus far remained unanswered. This
study aims to provide answers to these questions. We identified several criteria
that are indicators that nominally typed programs could benefit from structural
subtyping, and performed automated and manual analyses of open-source Java
programs based on these criteria. Our results suggest that these programs could
indeed be improved with the addition of structural subtyping. We hope this study
will provide guidance for language designers who are considering use of this
subtyping discipline.

1 Introduction

Structural subtyping is popular in the research community and is used in languages such
as O’Caml [15], PolyToil [6], Moby [11], Strongtalk [5], and a number of type systems
and calculi (e.g., [7, 1]). In the research community, many believe that structural subtyp-
ing is beneficial and is superior to nominal subtyping. But, structural subtyping is not
used in any mainstream object-oriented programming language—perhaps due to lack
of evidence of its utility. Accordingly, we ask: what empirical evidence could show that
structural subtyping can be beneficial?

Let us consider the characteristics that a nominally-typed program might exhibit that
would indicate that it could benefit from structural subtyping. First, the program might
systematically make use of a subset of methods of a type, with no nominal type corre-
sponding to this method set. A particular such implicit type might be used repeatedly
throughout the program. Structural subtyping would allow these types to be easily ex-
pressed, without requiring that the type hierarchy of the program change.

Second, there might be methods in two different classes that share the same name
and perform the same operation, but that are not contained in a common nominal su-
pertype. This could happen due to oversight, or perhaps the need did not yet exist to
call that method in a generic manner for both classes. Alternatively, perhaps such a
need did exist, but programmers resorted to code duplication rather than refactoring the
type hierarchy. With structural subtyping, the two classes would automatically share a
common supertype.

Or, programs might use the Java reflection method Class.getMethod to call a
method with a particular signature in a generic manner. Structural subtyping provides

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 95–111, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

96 D. Malayeri and J. Aldrich

exactly this capability, with no need for reflection. Finally, what might a class do if it
can only support a subset of its declared interface, but no such super-interface can be
defined (due to library use)? One implementation strategy is to have some of its meth-
ods always throw an UnsupportedOperationException. In contrast, with structural
subtyping, the intended structural super-interface could simply be used.

With these characteristics in mind, we examined up to 29 open-source Java programs,
using both manual and automated analyses (in the case of manual analyses, a subset
of the subject programs were considered). Each aimed to answer one question: are
nominally-typed programs using implicit structural types? We found that indeed they
were; representing these types explicitly could therefore be advantageous.

In our empirical evaluation, we sought to answer the following questions:

1. Does the body of a method use only a subset of the methods of its parameters? If so,
structural types could ease the task of making the method more general. (Sect. 3)

2. If structural types are inferred for method parameters, do there exist types that are
used repeatedly, suggesting that they represent a meaningful abstraction? (Sect. 3.3)

3. How many methods always throw “unsupported operation” exceptions? In such
cases, classes support a structural supertype of the class type. (Sect. 4)

4. Do there exist common methods—methods with the same name and signature, but
that are not contained in a common supertype of the enclosing classes? (Sect 5.1)

5. How many common methods represent an accidental name clash? (Sect 5.2)
6. Can structural subtyping reduce code duplication? (Sect. 5.3)
7. Is there synergy between structural subtyping and other proposed language fea-

tures, such as multimethods? (Sect. 6)
8. Do programs use reflection where structural types would be preferable? (Sect. 7)

Thus, we considered a variety of facets of existing programs. While none of these as-
pects is conclusive on its own, taken together, the answers to the above questions provide
evidence that even programs written with a nominal subtyping discipline could benefit
from structural subtyping. This study provides initial answers to the above questions;
further study is needed to fully examine all aspects of some questions, particularly ques-
tions 6 and 7. Additionally, this study considers only the potential benefits of structural
subtyping, while there are situations where nominal types are more appropriate [23, 17].

To our knowledge, this is the first systematic corpus analysis to determine the benefits
of structural subtyping. This paper makes the following contributions: (1) identification
of a number of characteristics in a program that suggest the use of implicit structural
types; and (2) results from automated and manual analyses that measure the identified
characteristics.

2 Corpus and Methodology

For this study, we analyzed the source code of up to 29 open-source Java applications (de-
tails, including version numbers, are provided in [18]). The full set of subject programs
were used for the automated analyses; due to practical considerations, for manual anal-
ysis we chose a subset thereof (ranging from 2 to 8 in size). The applications were cho-
sen from the following sources: popular applications on SourceForge, Apache Founda-
tion applications, and the DaCapo benchmark suite. The full set of programs range from

Is Structural Subtyping Useful? An Empirical Study 97

12 kLOC to 161 kLOC, and for both kinds of analysis we selected programs based on
size, type (library vs. standalone program) and domain (selecting for variety). For some of
the manual analyses, we favored applications with which we were familiar, as this aided
analysis. All of the manual analyses, including the subjective analyses, were performed
by the first author. The methodology for each analysis is described in the corresponding
section; further details are available in the companion technical report [18].

For space considerations, in this paper we have omitted data from the 10 smallest
applications that were not already the subject of a manual analysis (in order that the
manual analysis subject programs be a subset of the included automated analysis pro-
grams). (There is one exception: Azureus was used in one manual analysis (Sect. 5.3),
but was too large for our whole-program automated analyses.) We refer the reader to
the companion technical report for full results [18].

3 Inferring Structural Types for Method Parameters

It is considered good programming practice to make parameters as general as the
program allows. Bloch, for example, recommends favoring interfaces over classes in
general—particularly so in the case of parameter types [3]. An analogous situation
arises in the generic programming community, where it is recommended that generic
algorithms and types place as few requirements as possible on their type parameters
(e.g., what methods they should support) [22].

Bloch acknowledges that sometimes an appropriate interface does not exist (e.g.,
class java.util.Random does not implement any non-marker interfaces). In such a
case the programmer is forced to use classes for parameter types—even though it is
possible that multiple implementations of the same functionality could exist [3]. This is
a situation where structural subtyping could be beneficial, as it allows programmers to
create supertypes after-the-fact.

As it is impossible to retroactively implement interfaces in Java, we hypothesized
that method parameter types are often overly specific, and sought to determine both
(1) the degree and (2) the character of over-specificity. To answer question (1), we per-
formed an automated whole-program analysis to infer structural types for method pa-
rameters. Methodology and quantitative results are described in Sect. 3.1. To properly
interpret this data, however, we must consider question (2). Accordingly, we manually
examined the inferred structural types from the previous analysis and considered the
qualitative question of whether changing a method to have the most general structural
type could potentially improve the method’s interface (Sect. 3.2). Across all applica-
tions, we also counted occurrences of inferred structural types that were supertypes of
classes and interfaces of the Java Collections Library. Of these, in Sect. 3.3 we present
those structural types that a client might plausibly wish to implement while not simul-
taneously implementing a more specific nominal type (e.g., Collection, Map, etc.).

3.1 Quantitative Results

Our analysis infers structural types for method parameters, based on the methods that
were actually called on the parameters. (For example, a method may take a List as an

98 D. Malayeri and J. Aldrich

argument, but may only use the add and iterator methods.) The analysis, a simple
inter-procedural dataflow analysis, re-computes structural types for each parameter of a
method until a fixpoint is reached. Details of the algorithm are described in the compan-
ion technical report [18]. Structural types were not inferred in the following cases: calls
to library methods, assignments to fields and local variables, uses of primitive types,
uses of types such as String and Object, and cases where the inferred structural type
would have a non-public member.

The analysis is conservative; in the case where a parameter is not used (or only
methods of class Object are used), no structural type is inferred for it. (A parameter
may be unused because (a) it is expected that overriding methods will use the parameter,
or (b) because the method may make use of the parameter when the program evolves,
or (c) because it is no longer needed, due to changes in the program.) In the case of
method overriding, the analysis ensures that the same structural types are inferred for
corresponding parameters in the method family.

Our results suggest that a refactoring that infers structural types is of limited util-
ity unless structural types are used in libraries. On average, only 15% of parameters
could have a structural type inferred. The remaining parameters fell into the following
three categories: an average of 14% were either a primitive type or were unused; an
average of 25% were uses of Object, String or StringBuffer; an average of 49%
were parameters on which a library method was transitively called, or were stored to
fields/local variables, or which called non-public instance methods. Thus, our results do
not paint a complete picture, though the fact that several of the subjects were libraries
does increase confidence in our findings. In our future work, we plan to analyze some
of the libraries used by the subject applications, in order to increase the percentage of
inferrable parameters.

Analysis results for 19 programs are displayed in Table 1. For example, in Ant,
16.5% of parameters could have a structural type inferred. Of these, 98.6% of the pa-
rameters were declared with an overly specific nominal type (i.e., the nominal type
contained more methods than were actually needed). For only 2.4% of the inferred pa-
rameters did a corresponding nominal type exist that would make the parameter type as
general as possible (i.e., a nominal type that contained only those methods transitively
called on the object). There were an average of 2.0 methods in the inferred structural
types, while there were 33.3 methods in the corresponding nominal types. Finally, there
was a median of 1 structural type inferred for each nominal type in the program, and a
maximum of 27 structural types.

Several conclusions can be drawn from the data. First, most parameter types for
which a structural type can be inferred (15% on average) are overly specific (94% on
average). Moreover, for most inferred parameters (91% on average), no nominal type
existed in the program that was as general as possible.

Second, inferred structural types do not have many methods (3.5 on average), while
the corresponding nominal types have quite a few methods (37.8 on average). This
shows that there is quite a large degree of over specificity—more than a full order of
magnitude—in addition to the large percentage of overly specific parameters. This is
likely due to the overhead of naming and defining nominal types, as well as the lack
of retroactive interface implementation. We also found that when nominal types were

Is Structural Subtyping Useful? An Empirical Study 99

Table 1. Results of running structural type inference. Percent inferrable is the percentage of pa-
rameters that could have a structural type inferred for them (i.e., where neither library methods
were transitively called, nor was the parameter unused, etc.), percent overly specific is the per-
centage of the inferrable parameters that have an overly specific nominal type, percent structural
needed is the percentage of the inferrable parameters for which a most general nominal type does
not exist, average methods per structural type is the average number of methods in the inferred
structural types, average methods per nominal type is the average number of methods in nominal
types that appear as parameter types (including inherited methods), and median/maximum struc-
tural types per nominal are the median and maximum, respectively, of the number of inferred
structural types corresponding to each nominal type.

LOC % inferrable % overly % structural Avg methods/ Avg methods/ Struct types/nominal
specific needed structural type nominal type median max

Ant 62k 16.5% 98.6% 97.6% 2.0 33.3 1 27
Apache collect. 26k 10.9% 90.1% 83.6% 1.9 9.9 1 11
Areca 35k 15.0% 99.1% 97.0% 2.6 35.1 1 35
Cayenne 95k 21.1% 96.8% 93.0% 2.4 27.6 2 27
Columba 70k 12.0% 99.6% 98.7% 2.0 55.3 1 19
Crystal 12k 15.9% 97.7% 92.5% 3.5 13.7 1 19
hsqldb 62k 7.8% 99.4% 99.4% 1.9 50.8 2 34
jEdit 71k 6.7% 95.1% 95.1% 2.2 105.2 1 20
JFreeChart 93k 17.2% 97.4% 94.4% 3.2 53.4 1 35
JHotDraw 52k 17.5% 100.0% 99.6% 2.7 55.2 2 19
JRuby 86k 24.6% 97.4% 96.7% 4.4 66.1 1 85
LimeWire 97k 16.7% 98.4% 94.8% 2.1 35.2 1 21
Log4j 13k 17.1% 96.7% 95.0% 1.9 54.9 1 6
Lucene 24k 9.2% 80.5% 77.4% 1.6 9.9 1.5 8
OpenFire 90k 20.6% 99.3% 99.2% 2.5 34.3 1 45
PLT collections 19k 10.3% 49.7% 51.0% 1.6 15.2 1 25
Smack 40k 13.7% 100.0% 90.8% 4.6 25.2 1 13
Tomcat 126k 13.4% 96.7% 96.3% 4.5 34.4 2 32
Xalan 161k 12.4% 95.5% 95.1% 3.1 55.7 1 16

Average 15.0% 93.5% 91.3% 3.5 37.8 1.2 23.4

as general as possible, they had very few members—one or two on average. This is in
accordance with previous work which found that interfaces are generally smaller than
classes [25].

Next, for a given nominal type, there were not many corresponding structural types
(2.5 on average, a median of 1.2). The data followed a power law distribution, with an
average maximum of 24; that is, small values were heavily represented, but there were
also a few large values. The low median suggests that the overhead of naming structural
types is not necessarily high; it is plausible that programmers would be able to name
and use structural types for around half of the nominal parameter types.

Finally, if we were to define new interfaces everywhere possible, the average increase
in the number of interfaces is 313%, the median is 287%, and the maximum is 1000%.
This illustrates the infeasibility of defining new nominal types for the inferred structural
types. Note that we considered only those interfaces for which the implements clause
of a class could be modified (i.e., those classes in the program’s source); in general, the
situation is even worse, as programmers may wish to define new supertypes for types
contained in libraries.

100 D. Malayeri and J. Aldrich

3.2 Qualitative Results

Though our results show that many parameters are overly specific, we do not necessar-
ily recommend that every parameter be made as general as possible. This is because a
method might be currently only using a particular set of methods, but later code mod-
ifications may make it necessary to use a larger set; a more general type could hinder
program evolution. On the other hand, more general types make methods more reusable,
which aids program evolution. For this reason, a refactoring to structural types (or even
structural type inference) cannot be a fully automated process—programmers must con-
sider each type carefully, keeping in view the kinds of program modifications that are
likely to occur. Additionally, for some structural types, there may ever be only one
corresponding nominal type, in which case using a structural type is of limited utility.

Accordingly, we considered the empirical question of whether changing a given
method to have the most general structural types for its parameters would make the
method more general in a way that could improve the program. To determine this, we
inspected each method and asked two questions. First, does the inferred parameter type
S generalize the abstract operation performed by the method, as determined by the
method name? Second, does it seem likely that there would be multiple subtypes of S?

We studied two applications: Apache Collections (a collections library) and Crystal
(a static analysis framework). Of methods for which a structural type was inferred on
one or more parameters, we found that 58% and 66%, respectively, would be general-
ized in a potentially useful manner if the inferred types were used.

For example, in Apache Collections, in the class OnePredicate (a predicate class
that returns true only if one of its enclosing predicates returns true), the factory method
getInstance(Collection) had the structural type {iterator(); size();} in-
ferred for its parameter. This would make the method applicable to any collection that
supported only iteration and retrieving the collection size, even if it didn’t support col-
lection addition and removal methods. There were 25 other methods in the library that
used this structural type. Another example is the method ListUtils.intersection
which takes two List objects. However, the first List need only have a contains
method, and the second List need only have an iterator method (for this latter pa-
rameter, the interface Iterable could be used). There were also 8 methods that took an
Iterator as a parameter, but never called the remove method. With a structural type
for the method, the type would clearly specify that a read-only iterator can be passed as
an argument.

In Crystal, two methods took a Map parameter that used only the get and put meth-
ods. Converting the method to use this structural type would make it applicable to a
map that did not support iteration (such a type exists in Apache Collections, for ex-
ample). Also, there were 11 methods that use only the methods getModifiers() and
getName() on an IBinding object (an interface in the Eclipse JDT). Replacing the
nominal type with a structural type would allow the program to substitute a different
“bindings” class that supported only those two methods.

Of course, for some of these structural types, there may not be a large number of
classes that implement its methods but not all of the methods of a more specific nominal
type, e.g., Collection. However, we believe that all of the aforementioned types rep-
resent meaningful abstractions. Furthermore, since it is conceivable that a programmer

Is Structural Subtyping Useful? An Empirical Study 101

may define a class implementing that abstraction, using these more general types would
increase the applications’ reusability.

Translation to Whiteoak. Using the inference algorithm, we also developed an au-
tomated translation of programs from Java to Whiteoak [14], a research language that
extends Java with support for structural subtyping. We performed this translation on
two programs: Apache Collections and Lucene, validating the results of the analysis
and demonstrating its practical use.

3.3 Uses of Java Collections Library

We examined the inferred structural types that were generalizations of types in the Java
Collections Library. Over all applications, there were 67 distinct types in total, though
not all appeared to express an important abstraction. We made a conservative subjective
finding that at least 10 of these types were potentially useful; these are displayed in
Table 2, along with a description of possible implementations. The relatively high num-
ber of occurrences of each of these structural types further suggests their utility, even
though the types contain few methods. It further shows that programs routinely make
use of types that the library designers either did not anticipate or chose not to support.

Table 2. Uses of Java Collections classes across 19 programs, as inferred using the parameter
structural type inference. (Erasures are used in lieu of generic types.).

Methods in type Uses Description

get(Object); containsKey(Object); 168 Read-only non-iterable map; for instance, a
read-only hashtable

iterator(); isEmpty(); size(); 114 Read-only iterable collection that knows its
size; for instance, a read-only list

add(Object); addAll(Collection); 101 Write-only collection; for instance, a log
put(Object, Object); 55 Write-only map
hasNext(); next(); 28 Read-only iterator
contains(Object); 21 Read-only collection that does not support iter-

ation; for instance, a read-only hashset
get(Object); put(Object, Object); 15 Non-iterable map; for instance, a hashtable
contains(Object); iterator(); size(); 11 Read-only iterable collection that knows its

size and can be polled for the existence of an
element; for instance, an iterable hashset

add(Object); contains(Object); iterator(); size(); 10 Same as above, but that also supports adding
elements

iterator(); size(); toArray(Object[]); 8 Read-only collection that can be converted to
an array; for instance, a read-only array

In summary, the data shows that programs make repeated use of many implicit struc-
tural types. A language that would allow defining these types explicitly could be bene-
ficial, as it can help programmers make their methods more generally applicable.

3.4 Related Work

Forster [12] and Steimann [24] have described experience using the Infer Type refac-
toring, which generates new interfaces for inferred types and replaces uses of overly

102 D. Malayeri and J. Aldrich

Table 3. A selection of the structural interfaces “implemented” by classes in the subject programs
once methods unconditionally throwing an UnsupportedOperationException are removed.
(Actual method sets are omitted to conserve space.).

Number of classes

Read-only Iterator 50
Read-only Collection 19
Read-only Map 9
Read-only Map.Entry 6
Read-only ListIterator 6
Collection supporting everything but removal 5
Map supporting everything but removal 4
Collection supporting only read and removal methods 1
Collection supporting iteration, addition, and size only 1
ListIterator supporting read, add, and remove (but not set()) 1
ListIterator supporting only read and set() operation 1
Map supporting read, put, and size only 1
Map supporting read and put, but not size or removal 1
Map supporting everything but entrySet(), values() and containsValue() 1

specific types with these interfaces. This analysis is more general than ours, because it
considers all type references, not just parameter types. However, the refactoring is lim-
ited by the fact that classes in libraries cannot retroactively implement new interfaces.
Steimann found that when applying this refactoring, the number of total interfaces al-
most quadrupled—an increase of 369%.1

4 Throwing “Unsupported Operation” Exceptions

In the Java Collections Library, there are a number of “optional” methods whose doc-
umentation permits them to always throw an exception. This decision was due to the
practical consideration of avoiding an “explosion” of interfaces; the library designers
mentioned that at least 25 new interfaces would be otherwise required [19].

To determine if such super-interfaces would be useful in practice, we to-
talled the methods in the subject programs that unconditionally throw an
UnsupportedOperationException. The program that had the most such methods
was Apache Collections: there were 148 methods that unconditionally throw the
exception (out of 3669 total methods, corresponding to 4%). Next, we considered
those methods that were overriding a method in the Java Collections Library. To
encode these optional methods directly would require 18 additional interfaces. There
are only 27 interfaces defined in the library, so this represents a 67% increase. Note
that this is a conservative estimate, as we did not consider interactions between classes
(e.g., an Iterable returning a read-only Iterator). A selection of these structural
super-interfaces are summarized in Table 3. For instance, there were 50 iterator classes
that did not support the remove() operation, and 19 subclasses of Collection that
supported a read-only interface.

1 This differs slightly from our average of 313%, though this difference is likely due to the fact
that Steimann considered only two applications.

Is Structural Subtyping Useful? An Empirical Study 103

Note that, with the exception of the read-only iterator, the sets of interfaces in Ta-
bles 3 and 2 are distinct from one another (though some are subtypes). This is likely
due to the fact that different applications use different subsets of the methods of a class.

Structural subtyping could be helpful for statically ensuring that “unsupported oper-
ation” exceptions cannot occur, as it would allow programmers to express these super-
interfaces directly.

5 Common Methods

In our experience, there are situations where two types share an implicit common su-
pertype, but this relationship is not encoded in the type hierarchy. For example, suppose
two classes both have a getName method with the same signature, but there does not
exist a supertype of both classes containing this method. We call getName, and meth-
ods like it, common methods. Common methods can occur when programmers do not
anticipate the utility of a shared supertype or when two methods have the same name,
but perform different operations; e.g., Cowboy.draw() and Circle.draw() [16].

Accordingly, this section aims to answer three questions: (1) how often do common
methods occur, (2) how many common methods represent an accidental name clash,
and (3) do common methods result in code clones.

5.1 Frequency

We performed a simple whole-program analysis to count the number of common meth-
ods in each application. Only public instance methods were considered (resulting in
slightly different data than that previously presented [17]). Results are in Table 4. Over-
all, common methods comprise an average of 19% of all public instance methods. That
is, for 19% of methods, there existed another method with the same name and signature
and the method was not contained in a common supertype of the enclosing types.

We also computed the number of types that share at least two common methods with
another type; there were an average of 9% of such types. These are the cases in which
a structural supertype is most likely to be useful. This high percentage indicates that
there are a number of implicit structural types in most applications.

For example, in Apache Collections, UnmodifiableSortedMap and OrderedMap
share the methods firstKey() and lastKey(). And, AbstractLinkedList
and SequencedHashMap share the methods getFirst() and getLast(). Finally,
BoundedMap and BoundedCollection have the common methods isFull() and
maxSize().

In Lucene, a document indexing and search library, RAMOutputStream and
RAMInputStream both support the seek(), close(), and getFilePointer()meth-
ods, which might be useful to move to a supertype. Also, the classes PhraseQuery
and MultiPhraseQuery both support the methods add(Term), getPositions(),
getSlop(), and setSlop(int).

5.2 Accidental Name Clashes

Of course, to interpret this data, we must consider cases where the common methods
have the same meaning, and where callers are likely to call the methods with the same

104 D. Malayeri and J. Aldrich

Table 4. Common methods for each application. Number of types indicates the total number of
types in the application, types with greater than one common method is the number of types that
share more than one common method, percentage is the percentage of this compared to the total
number of types, percent common methods is the percentage of public instance methods that is a
common method, and average number of classes per common signature is the average number of
classes for each common method signature.

LOC Number of Types with >1 Percentage % common Avg # classes/
types common method methods common signature

Ant 62k 945 65 6.9% 31.3% 3.7
Apache Collections 26k 550 19 3.5% 7.3% 2.7
Areca 35k 362 30 8.3% 15.4% 2.7
Cayenne 95k 1415 104 7.3% 18.1% 2.8
Columba 70k 1232 48 3.9% 17.3% 3.1
Crystal 12k 211 4 1.9% 5.1% 2.9
hsqldb 62k 355 31 8.7% 19.5% 2.6
jEdit 71k 880 40 4.5% 11.7% 2.5
JFreeChart 93k 789 301 38.1% 39.5% 3.9
JHotDraw 52k 616 59 9.6% 19.0% 2.8
JRuby 86k 997 83 8.3% 15.6% 3.1
LimeWire 97k 1689 88 5.2% 17.7% 3.1
log4j 13k 201 4 2.0% 13.6% 2.4
Lucene 24k 398 21 5.3% 13.4% 2.6
OpenFire 90k 1039 110 10.6% 19.0% 3
plt collections 19k 812 60 7.4% 7.5% 2.8
Smack 40k 847 115 13.6% 23.5% 3.3
Tomcat 126k 1727 234 13.5% 32.6% 3.6
xalan 161k 1223 94 7.7% 16.1% 2.9

Average 9.3% 19.0% 2.9

purpose in mind. If two methods have the same meaning, it might be useful to define a
structural type consisting of that method. Two methods are defined as “having the same
meaning” if they perform the same abstract operation, taking into account (a) the se-
mantics of the method, and (b) the semantics of the enclosing types. This determination
was made by examining the source code, using javadoc where available.

We studied two applications: Apache Collections and Lucene. In Collections, under
condition (a), there were no methods that had the same signature but performed dif-
ferent abstract operations. However, there were 2 cases (1% of all common methods)
where the methods had the same meaning, but the enclosing classes did not appear to be
semantic subtypes of some common supertype containing that method; i.e., condition
(b) was not satisfied. For example, the classes ChainedClosure and SwitchClosure
both had a getClosures()method, but ChainedClosure calls each of these closures
in turn, while SwitchClosure calls that closure whose predicate returns true.

In Lucene, there were 42 instances of methods that had the same signature, but
did not have the same meaning (19% of all common methods). In 32 of these cases,
the methods were actually performing a different abstract operation. For example,
HitIterator.length() returned the number of hits for a particular query, while
Payload.length() returned the length of the payload data. An additional 10 cases
did not satisfy condition (b) above. For example, in a high-level class IndexModifier,
there were several cases where a method m performed some operation, then called

Is Structural Subtyping Useful? An Empirical Study 105

// repeated exactly in 19 classes
if (property == EXPRESSION PROPERTY) {
if (get) {
return getExpression();

} else {
setExpression((Expression) child);

return null;
}

}

private InlineMethodRefactoring(ICompilationUnit unit,
MethodInvocation node, int offset, int length)

{
this(unit, (ASTNode)node, offset, length);

fTargetProvider= TargetProvider.create(unit, node);

fInitialMode= fCurrentMode= Mode.INLINE SINGLE;

fDeleteSource= false;
}

private InlineMethodRefactoring(ICompilationUnit unit,

SuperMethodInvocation node, int offset, int length)
{
... // same method body as above

}
(a) (b)

Fig. 1. Examples of code duplication in the Eclipse JDT. Structural subtyping could eliminate this
duplication.

IndexWriter.m, the latter performing a lower-level operation. So, the semantics of
the methods were similar, but the semantics of each class was different.

Overall, the data is very promising, as it indicates that most common methods have
the same meaning and would benefit from being contained in a structural supertype—
90% on average, across both applications. Structural subtyping would allow these meth-
ods to be called in a generic manner, without the need to create additional interfaces.

5.3 Code Clones

We hypothesized that common methods can lead to code clones, as there is a common
structure that is not expressed in the type system. To determine this, we examined two
applications: Eclipse JDT and Azureus.

In the Eclipse Java Development Tools (JDT), many AST classes have meth-
ods getExpression and setExpression, but these methods are not contained
in a supertype. As a result, there is repeated code in each of these classes, e.g.,
related to reading and storing these attributes in a generic internal AST map.
The code for this is shown in Fig. 1a. This could be re-written using struc-
tural subtyping by writing a helper method taking a parameter of structural type
{ getExpression; setExpression; }. The repeated code would then be replaced
with something similar to getSetExpr(this, get, child). A similar situation oc-
curs with the methods typeArguments() and getBody().

Similarly, the classes FieldAccess and SuperFieldAccess have
no superclass other than Expression. The same problem occurs with
MethodInvocation and SuperMethodInvocation, and ConstructorInvocation
and SuperConstructorInvocation. We found 44 code clones involving these types
(though some were only a few lines long). An example of a code clone involving
MethodInvocation and SuperMethodInvocation appears in Fig. 1b.

In the Eclipse SWT (Simple Windowing Toolkit), there are 13 classes (such as
Button, Label, and Link) with the methods getText and setText that get and set
the main text for the control. But, there is no common IText interface. Azureus, a

106 D. Malayeri and J. Aldrich

if (widget instanceof Label)
((Label) widget).setText(message);

else if (widget instanceof CLabel)
((CLabel) widget).setText(message);

else if (widget instanceof Group)
((Group) widget).setText(message);

... // 5 more items

if (widget instanceof CoolBar) {
CoolItem[] items = ((CoolBar)widget).getItems();

for(int i = 0; i < items.length; i++) {
Control control = items[i].getControl();

updateLanguageForControl(control);

}
} else if (widget instanceof TabFolder) {
... // same code

} else if (widget instanceof CTabFolder) {
... // same code
... // 5 more items

(a) (b)

Fig. 2. Code excerpts from Azureus, illustrating an awkward coding style and duplication

BitTorrent client, is an application that requires the ability to call these methods in a
generic fashion. Azureus is localized for a number of languages, which can be changed
at runtime. Accordingly, there are several instances of code similar to that of Fig. 2.

Note that some of this code duplication might be avoided if the class hierarchy were
refactored. Obviously, this is not always possible—e.g., Azureus cannot modify SWT.

In summary, common methods can lead to undesirable code duplication. Structural
subtyping can help eliminate this problem, without refactoring the class hierarchy.

6 Cascading “Instanceof” Tests

We considered the question of whether structural subtyping could provide benefits if
used in conjunction with other language features—external methods in particular. Ex-
ternal methods (also known as open classes) are similar to ordinary methods and pro-
vide the the usual dispatch semantics, but can be implemented outside of a class’s def-
inition, providing more flexibility. Multimethods are a generalized form of external
method, defined outside all classes and allowing dispatch on any subset of a method’s
arguments [9, 4, 10, 17].

Since Java does not support any form of external dispatch, programmers often com-
pensate by using cascading instanceof tests. This programming pattern is problem-
atic because it is tedious, error-prone, and lacks extensibility [10]. Many instances of
this pattern could be re-written to use external methods, but a problem arises if an
instanceof test is performed on an expression of type Object.

To illustrate this, let us consider how instanceof tests would be translated to ex-
ternal methods. Suppose we have a cascaded instanceof, with each case of the form
“[else] if expr instanceof Ci { blocki }.” This would be translated to an ex-
ternal method f defined on expr’s class, and overridden for each Ci by defining Ci. f
{ blocki }. The top part of Fig. 3b shows the external methods translated from the
instanceof tests in Fig. 3a (but without an external method defined on Object, the
type of query, which we will come to in a moment).

A problem arises when the target expression in the instanceof test is of type
Object, as an external method must be defined on Object, then overridden for each

Is Structural Subtyping Useful? An Empirical Study 107

List qlist = ...

Object query = qlist.get(i);

Query q = null;
if (query instanceof String)
q = parser.parse((String) query);

else if (query instanceof Query)
q = (Query) query;

else
System.err.println(

"Unsupported query type");

// external methods
Query String.toQuery(QueryParser parser) {
return parser.parse(this);

}
Query Query.toQuery(QueryParser parser) {
return this;

}
...

// structural type
struct QueryConvert { Query toQuery(QueryParser) };
List<QueryConvert> qlist = ...

Query q = qlist.get(i).toQuery(parser);

(a) (b)

Fig. 3. Rewriting instanceof using structural subtyping and external dispatch. Listing (a) is the
original code; listing (b) is the translated code, which defines the structural type QueryConvert
and external methods on Query and String. Note that the translated code eliminates the need
for the error condition.

Table 5. Total instanceof tests, the number present in cascading if statements that perform the
test on an expression of type Object, and that number expressed as a percentage. Code written
using this pattern can be translated to a language with structural subtyping and external dispatch.

instanceof Expression of type Object Percentage

Apache collections 225 75 33%
Areca 77 10 13%
JHotDraw 229 50 22%
log4j 54 8 15%
Lucene 56 10 18%
PLT collections 119 64 54%
Smack 56 20 36%
Tomcat 959 158 16%

Average 26%

type tested via an instanceof. The problem with this solution is that it pollutes the
interface of Object. In many cases, the implementation of this method performs a
generic fallback operation that does not make sense for an object of arbitrary type—but
this method becomes part of every class’s interface and implementation. (While it is
also possible to pollute the interface of an arbitrary class C, this is generally less severe,
and detecting such a situation requires application-specific knowledge.)

To determine the prevalence of this pattern, we manually searched for instanceof
tests in 8 applications, and found that 13% to 54% (with an average of 26%) were per-
forming a cascading instanceof test on an expression of type Object (see Table 5).

Structural subtyping provides one solution to this problem. We have previously de-
fined a language with both structural subtyping and external dispatch [17]. The type
of the expression on which the instanceof is performed would be changed from
Object to the structural type consisting of the newly defined external method f . That
is, instead of making the target operation applicable to an arbitrary object, it would be

108 D. Malayeri and J. Aldrich

applicable to only those objects that contain method f . Figure 3b defines an
external method toQuery on String and Query, then uses the structural type
{ toQuery(...) } as the type for the List elements. The advantage of using struc-
tural subtyping is that the main code can call this method uniformly. 2

Thus, for many applications, there is a potential benefit to using structural subtyping
in a language that supports external dispatch; an average of 26% of instanceof tests
could be eliminated.

Note that since we refined the element type of the List object, this obviates the need
for the error condition—an additional advantage. However, it is not always possible to
refine types to a structural type; an expression may simply have type Object, due to the
loss of type information. In such a case, it would be possible to re-write the code using
a structural downcast. Though the use of casts would not be eliminated, there are still
several advantages to this implementation style. First, the external methods could be
changed without having to also modify the method that uses them. Also, if subclasses
are added, a new internal or external method could be defined for them. Finally, since
the proposed cast would use a structural type, it would be more general, applying to any
type for which the method were defined.

7 Java Reflection Analysis

We aimed to answer the following question: do Java programs use reflection where
structural types would be more appropriate? We hypothesized that uses of reflection fall
into two categories: cases where dynamic class instantiation and classloading are used,
and cases where the type system is not sufficiently powerful to express the programming
pattern used. It is difficult to eliminate reflection in the first category, as these uses
represent an inherently dynamic operation. However, some of the uses in the second
category could potentially be rewritten using structural downcasts. Reducing the uses
of reflection is beneficial as it decreases the number of runtime errors and can improve
performance.

We examined 28 applications, and found that an average of 32% of uses of the re-
flection method Class.getMethodcould be re-written using a structural downcast (see
Table 6). A structural downcast is preferable to reflection because type information is
retained when later calling methods, as opposed to Method.invoke, which is passed
an Object array and must typecheck the arguments at runtime. Additionally, it is easier
to combine sets of methods in a downcast; when using reflection, each method must be
selected individually. There is also the potential to make method calls more efficient,
which is difficult with reflection, due to the low-level nature of the available operations.
(For example, the language Whiteoak [14] supports efficient structural downcasts.)

In summary, the high percentage of reflection uses that can be translated to structural
downcasts suggests that programmers may sometimes use reflection as a workaround
for lack of structural types.

2 Note that it would not be possible to make use of a nominal interface containing the method f
to call the method in a generic manner. For external methods to be modular, once a method is
defined as an internal method, it cannot be implemented with an external method; see [20, 10].

Is Structural Subtyping Useful? An Empirical Study 109

Table 6. Uses of the reflection method Class.getMethod, and the number and percentage that
could be re-written using a structural downcast. Programs that did not call this method are omit-
ted. The percentage entry in the last row is calculated by dividing the total “could be rewritten”
by the total “uses of getMethod.”

Uses of getMethod Could be rewritten Percentage

Ant 36 9 25%
Apache Collections 4 3 75%
Areca 1 0 0%
Azureus 27 6 22%
Cayenne 28 4 14%
Columba 10 8 80%
hsqldb 2 0 0%
jEdit 10 7 70%
JFreeChart 1 1 100%
JHotDraw 26 1 4%
JRuby 17 6 35%
log4j 4 1 25%
OpenFire 2 0 0%
Tomcat 37 10 27%
Xalan 28 11 39%

Totals 233 67 29%

8 Related Work

A number of research languages support structural subtyping, such as O’Caml [15],
PolyToil [6], Moby [11], and Strongtalk [5]. We have also previously defined a language
supporting both external dispatch and structural subtyping [17]. An evaluation of the
benefits of each of nominal and structural subtyping is available in [23, 17].

As mentioned in Sect. 3, researchers have studied the problem of refactoring pro-
grams to use most general nominal types where possible [12, 24]. Structural subtyping
would make such refactorings more feasible (since new types would not have to be de-
fined) and applicable to more type references in the program (since structural supertypes
for library types could be created, while new interfaces cannot).

Muschevici et al. measured the number of cascading instanceof tests in a number
of Java programs, to determine how often multiple dispatch might be applicable [21].
They found that cascading instanceof tests were quite common, and that many cases
could be rewritten to use multimethods; this is consistent with our results.

Corpus analysis is commonly used in empirical software engineering research. For
example, it has been used to examine non-nullness [8], aspects [2], micro patterns [13],
and inheritance [25].

9 Summary and Conclusions

In summary, we found that a number of different aspects of Java programs suggest the
potential utility of structural subtyping. While some of the results are not as strong as
others, taken together the data suggests that programs could benefit from the addition
of structural subtyping, even if they were written in a nominally-typed language.

110 D. Malayeri and J. Aldrich

We hope that the results of this study will be used to inform designers of future
programming languages, as well as serve as a starting point for further empirical studies
in this area. Ultimately, one must study the way structural subtyping is eventually used
by mainstream programmers; this work serves as a step in that direction.

Acknowledgements. We would like to thank Ewan Tempero for helpful discussions
and feedback, and Nels Beckman and the reviewers for comments on an earlier version
of this paper. This research was supported in part by the U.S. Department of Defense,
Army Research Office grant number DAAD19-02-1-0389 entitled “Perpetually Avail-
able and Secure Information Systems,” and NSF CAREER award CCF-0546550.

References

[1] Amadio, R., Cardelli, L.: Subtyping recursive types. ACM TOPLAS 15(4) (1993)
[2] Baldi, P., Lopes, C., Linstead, E., Bajracharya, S.: A theory of aspects as latent topics. In:

OOPSLA (2008)
[3] Bloch, J.: Effective Java, 2nd edn. Addison-Wesley, Reading (2008)
[4] Boyland, J., Castagna, G.: Parasitic methods: an implementation of multi-methods for Java.

In: OOPSLA 1997, pp. 66–76 (1997)
[5] Bracha, G., Griswold, D.: Strongtalk: typechecking Smalltalk in a production environment.

In: OOPSLA 1993, pp. 215–230 (1993)
[6] Bruce, K., Schuett, A., van Gent, R., Fiech, A.: PolyTOIL: A type-safe polymorphic object-

oriented language. ACM Trans. Program. Lang. Syst. 25(2), 225–290 (2003)
[7] Cardelli, L.: Structural subtyping and the notion of power type. In: POPL 1988 (1988)
[8] Chalin, P., James, P.: Non-null references by default in Java: Alleviating the nullity anno-

tation burden. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 227–247. Springer,
Heidelberg (2007)

[9] Chambers, C.: Object-oriented multi-methods in Cecil. In: Lehrmann Madsen, O. (ed.)
ECOOP 1992. LNCS, vol. 615, pp. 33–56. Springer, Heidelberg (1992)

[10] Clifton, C., Millstein, T., Leavens, G., Chambers, C.: MultiJava: Design rationale, compiler
implementation, and applications. ACM TOPLAS 28(3), 517–575 (2006)

[11] Fisher, K., Reppy, J.: The design of a class mechanism for Moby. In: PLDI (1999)
[12] Forster, F.: Cost and benefit of rigorous decoupling with context-specific interfaces. In:

PPPJ 2006, pp. 23–30 (2006)
[13] Gil, J., Maman, I.: Micro patterns in Java code. In: OOPSLA 2005, pp. 97–116 (2005)
[14] Gil, J., Maman, I.: Whiteoak: Introducing structural typing into Java. In: OOPSLA (2008)
[15] Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml system,

release 3.10 (2007), http://caml.inria.fr/pub/docs/manual-ocaml
[16] Magnusson, B.: Code reuse considered harmful. Journal of Object-Oriented Program-

ming 4(3) (November 1991)
[17] Malayeri, D., Aldrich, J.: Integrating nominal and structural subtyping. In: Vitek, J. (ed.)

ECOOP 2008. LNCS, vol. 5142, pp. 260–284. Springer, Heidelberg (2008)
[18] Malayeri, D., Aldrich, J.: Is structural subtyping useful? An empirical study. Technical Re-

port CMU-CS-09-100, School of Computer Science, Carnegie Mellon University (January
2009)

[19] Sun Microsystems. Java collections API design FAQ (2003),
http://java.sun.com/j2se/1.4.2/docs/guide/collections/designfaq.html

http://caml.inria.fr/pub/docs/manual-ocaml
http://java.sun.com/j2se/1.4.2/docs/guide/collections/designfaq.html

Is Structural Subtyping Useful? An Empirical Study 111

[20] Millstein, T., Chambers, C.: Modular statically typed multimethods. Inf. Comput. 175(1),
76–118 (2002)

[21] Muschevici, R., Potanin, A., Tempero, E., Noble, J.: Multiple dispatch in practice. In: OOP-
SLA 2008 (October 2008)

[22] Musser, D., Stepanov, A.: Generic programming. In: Gianni, P. (ed.) An Optimized Trans-
lation Process and Its Application to ALGOL 68. LNCS, vol. 38, pp. 13–25. Springer,
Heidelberg (1989)

[23] Pierce, B.: Types and Programming Languages. MIT Press, Cambridge (2002)
[24] Steimann, F.: The infer type refactoring and its use for interface-based programming. Jour-

nal of Object Technology 6(2) (2007)
[25] Tempero, E.D., Noble, J., Melton, H.: How do Java programs use inheritance? An empirical

study of inheritance in Java software. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142,
pp. 667–691. Springer, Heidelberg (2008)

An Interval-Based Inference of Variant Parametric
Types�

Florin Craciun1, Wei-Ngan Chin2, Guanhua He1, and Shengchao Qin1

1 Department of Computer Science, Durham University, UK
{florin.craciun,guanhua.he,shengchao.qin}@durham.ac.uk
2 Department of Computer Science, National University of Singapore, Singapore

chinwn@comp.nus.edu.sg

Abstract. Variant parametric types represent the successful integration of sub-
type and parametric polymorphism to support a more flexible subtyping for Java-
like languages. A key feature that helps strengthen this integration is the use-site
variance. Depending on how the fields are used, each variance denotes a covari-
ant, a contravariant, an invariant or a bivariant subtyping. By annotating vari-
ance properties on each type argument to a parametric class, programmers can
choose various desirable variance properties for each use of the parametric class.
Although Java library classes have been successfully refactored to use variant
parametric types, these mechanisms are often criticized, due to the difficulty of
choosing appropriate variance annotations. Several algorithms have been pro-
posed for automatically refactoring legacy Java code to use generic libraries, but
none can support the full flexibility of the use-site variance-based subtyping. This
paper addresses this difficulty by proposing a novel interval-based approach to in-
ferring both the variance annotations and the type arguments. Each variant para-
metric type is regarded as an interval type with two type bounds, a lower bound
for writing and an upper bound for reading. We propose a constraint-based infer-
ence algorithm that works on a per method basis, as a summary-based analysis.

1 Introduction

Recently, several mainstream object-oriented languages, such as Java and C#, have suc-
cessfully integrated traditional subtype polymorphism and parametric polymorphism to
support better type-safe reusable code with significant reduction of runtime cast oper-
ations. Subtype polymorphism is a nominal relation, based on a given class hierarchy.
Parametric polymorphism allows a data or a function to be parameterized by types and
supports structural subtyping [1]. In handling objects with mutable fields, a crucial fea-
ture that helps strengthen the integration of subtype and parametric polymorphism is
the adoption of variance. Variance annotations predict the flow of values for fields and
provide a richer subtyping hierarchy. Depending on how the fields are being accessed,
each variance denotes a covariant, a contravariant, an invariant or a bivariant subtyping.
Generics types of Java 5 (also called Wildcard Types) [23,24,12] are based on the vari-
ant parametric types (or VPTs) [14]. VPTs is based on use-site variance whereby each
use of a class type is marked with suitable variances that indicate how the fields are to
be accessed.
� The work is supported in part by the EPSRC project EP/E021948/1.

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 112–127, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Interval-Based Inference of Variant Parametric Types 113

Variant Parametric Types. Consider a variant parametric class Pair with two fields
which are captured as type parameters:

class Pair〈A, B〉 { A fst; B snd; · · · }
Assume three methods to retrieve the first field, to set the second field and to swap the
two fields for a Pair object. In these methods, the parameter this is the Pair object
whose variant parametric type must be provided with suitable variances. The type of
the this parameter is specified prior to delimiter ′|′ (as in [4]):

Pair〈⊕A,�〉 | C getFst〈A, C〉() where A<:C { return this.fst; }
Pair〈�,�B〉 | void setSnd〈B, C〉(C y) where C<:B { this.snd=y; }
Pair〈�A,�A〉 | void swap〈A〉(){A y=this.fst; this.fst=this.snd; this.snd=y; }

As can be seen, four kinds of variance annotations (denoted by α) are possible: (i) α = ⊕
captures a flow-out from the field to support covariant subtyping; (ii) α = � captures a
flow-in to the field to support contravariant subtyping; (iii) α = � captures both flow-in
and flow-out to support invariant subtyping; and (iv) α = � captures no access for the
field to support bivariant subtyping. For simplicity, �t can be abbreviated as �. More
generally, given an object with variant parametric type c1〈α1t1〉, we may pass it to a
location with type c2〈α2t2〉, in accordance with the following subsumption relations:

c1<:c2 α1t1<:α2t2
c1〈α1t1〉<:c2〈α2t2〉

(α1<:�) t1=t2
α1t1<:�t2 α1t1<:�t2

(α1<:⊕ ∧ t1<:t2) ∨ t2=Object
α1t1<:⊕t2

(α1<:� ∧ t2<:t1) ∨ t2=⊥
α1t1<:�t2

The bottom of the class hierarchy is ⊥ denoting the type of null value, while the top
of the class hierarchy is Object. For simplicity, the first rule assumes that each class
constructor has only a single inheritable type parameter. The above rules use nominal
subtyping c1<:c2 from traditional class hierarchy and also a reflexive and transitive vari-
ance subtyping with a simple hierarchy: �<: ⊕ <: � � <: � <: � . The <: operator
is overloaded to handle variance subtyping, nominal class subtyping and two VPT sub-
typings for t and αt, respectively. The above subsumption relations form the basis of
the VPT system to provide a richer subtyping system. Two provisos highlighted in the
above rules for parametric fields are (i) to allow each such field to be retrievable as an
Object, and (ii) a null value (of ⊥ type) to be written into any such field, regardless of
its variant annotation. Types ⊕Object and �⊥ are essentially equivalent to �t.

Motivation. Although VPT mechanisms have now been validated in the full-scale im-
plementation of Java 5 [12] and Java library classes have been successfully refactored
to use variant parametric types, these mechanisms are often criticized, due to the diffi-
culty of choosing appropriate variance annotations. By annotating variance properties
on each type argument to a parametric class, programmers can choose various desir-
able variance properties for each use of the parametric class. For example, the types
Pair〈⊕A,⊕B〉 or Pair〈�A,�B〉 are still correct types for the receiver of the above method
getFst. However the best generic type is Pair〈⊕A,�〉, since the first field is read and
the second field is not accessed. In order to establish the most flexible correct variance
annotations (those which do not restrict the code genericity) for a type declaration, the
programmer has to analyse all the places where that type declaration is used in the

114 F. Craciun et al.

program. Although several algorithms have been proposed for refactoring legacy Java
code [9,8,7,11], they are restricted either to parametric types [1] or to variant paramet-
ric types with known variance annotations. No one can support the full flexibility of the
use-site variance-based subtyping. Moreover these algorithms require global analysis.

Contributions. We propose a novel approach to automatically inferring the variance
annotations and the type variables for the variant parametric types of method parameters
(including receiver), method result and method body’s local variables. In addition, the
expected value flow that may arise from the method body is captured as a precondition.
The inference is designed as a summary-based analysis that works on a per method
basis: the variant parametric types of a method are inferred only based on how they are
used in the method body, while each call site is a specific instance of the method’s type
declaration. Our inference is guided by a dependency graph such that all the methods
which are called by the current method have been already analyzed. Our inference also
assumes that the generic class hierarchy is known. In order to support the full flexibility
of the subtyping based on the use-site variance, our inference algorithm starts with un-
known variance annotations. Each variant parametric type is represented as an interval
type [2], namely two type bounds that allow us to distinguish a read flow from a write
flow for each object’s field. Based on a flow-based approach for VPTs [4], we reduce the
problem of inferring variance annotations and type arguments to the problem of solv-
ing specialized flow constraints. To the best of our knowledge this is the first algorithm
that decouples variance inference from the type inference itself. In order to allow more
generic types for the method parameters we introduce dual types to support unknown
variance flow. Dual types make a distinction between flow via an object, object flow
and the flow via the object’s fields, field flow. We also use intersection and union types
to capture the divergent flow and convergent flow, respectively. A safe yet precise ap-
proximation is used to avoid disjunctive constraints. We also provide special solutions
to handle runtime cast operations and method overriding.

Related Work. The task of introducing generics to an existing Java code [9,8,7,11,16]
consists of two distinct problems, parameterization and instantiation. Class parameter-
ization selects the class fields that can be promoted as class type parameters. Since
class parameterization decisions may be quite hard to automate due to trade-offs in
the possible design outcomes, our solution is to let programmers focus on high-level
design decisions for parameterization, while leaving the more tedious annotations on
value flows of methods to be automatically inferred. Previous algorithms for instanti-
ation have been restricted to parametric types based on invariant subtyping [9,8,7,11].
Although the most recent Java refactoring paper [16] claims being able to infer wildcard
types, it conservatively assumes invariant subtyping even with wildcard types.

At each call site, Java compiler [12] performs a local inference of the method’s type
parameters. The algorithm follows the local type inference designed for parametric types
[17] . Recently, a significant revision of Java local inference has been proposed in [21].
The new proposal has introduced two bounds for a type variable similar to our interval
types. However it does not perform variance inference since the variance annotations are
known. Our approach is more general and subsuming the local type inference.

Our variant parametric type inference algorithm produces subtyping (flow) con-
straints. To solve them, we work on a closed constraint graph employing techniques

An Interval-Based Inference of Variant Parametric Types 115

from [25,18,22,10]. It seems also possible to formalize our constraint solver on a pre-
transitive graph [13] to have a more scalable implementation. In general the constraint
solving techniques assume that the polarities of term constructors are known.
However the inference of variant parametric types may generate term constructors with
unknown polarities (variances). Therefore our approach uses an interval type (a con-
travariant lower bound and a covariant upper bound) to represent each unknown polarity
of a term constructor. The idea of using interval types for updatable values has already
been applied to reference type [20,19] and also in the context of object calculi [2]. An
open problem (discussed in [2]) is whether the interval types can be used to infer types
with variance information from non-annotated terms. Our variance inference provides
a constraint-based solution to this open problem.

Outline. The following section presents our interval-based view of VPTs. Section 3 in-
troduces the key features of our approach. Section 4 formalizes our inference algorithm.
Section 5 solves the method overriding problem. A brief conclusion is then given.

2 Variant Parametric Types as Interval Types

The underlying idea behind our solution is to view each variant parametric type αX as
an interval (of types) with a low-bound X.L and a high-bound X.H such that X.L<:X.H.
The low-bound variable captures each value of type t1 that may flow into αX using the
constraint t1<:X.L, while the high-bound variable captures each value of type t2 that
may flow out of αX using X.H<:t2. By default, it is always safe for each low-bound X.L

to be bounded by ⊥ <:X.L and each high-bound can be bounded by X.H<:Object. For
example, given a variant parametric type c〈αX〉 (where X is a type variable) denoting a
class with a field of type αX, it can always be translated into an interval type as follows:

X=X.H
c〈⊕X〉⇐⇒c〈[⊥, X.H]〉

X=X.L
c〈�X〉⇐⇒c〈[X.L,Object]〉 c〈�X〉⇐⇒c〈[X, X]〉

c〈�〉⇐⇒c〈[⊥,Object]〉
X.L=fresh() X.H=fresh()

c〈αX〉=⇒c〈[X.L,X.H]〉
Translation rules are bidirectional where the variance is known. The last rule is a key
rule for variance inference, as it splits a type variable with an unknown variance into
two type variables. Thus, field selection (reading) uses the type X.H, while field updating
(writing) is based on type X.L.

The interval type subtyping subsumes VPT subtyping and is defined as a contravari-
ant subtyping on low-bounds and a covariant subtyping on high-bounds, as follows:

c1<:c2 t2.L<:t1.L t1.H<:t2.H
c1〈[t1.L, t1.H]〉<:c2〈[t2.L, t2.H]〉

The annotations .L and .H make a flow-based distinction among the types, such that:

– X.L denotes a type that expects a write flow (flow in),
– X.H denotes a type that expects a read flow (flow out),
– X (without annotation) denotes a type that expects both read and write flows.

Using the flow expectations, we identified a special group of flow constraints that we
called closed flow constraints. They denote a matching of a flow-out with a flow-in,
namely a consumption of a read flow by a write flow.

116 F. Craciun et al.

Definition 1 (Closed Flow Constraint). A closed flow constraint is a flow constraint
that has one of the following forms: X1.H<:X2.L, X1.H<:X2, X1<:X2.L, and X1<:X2, where
X1, X2, are different from Object and ⊥.

Proposition 1 (Variance Inference Rule-1). If a low-bound type variable X.L does not
occur in any closed flow constraint, it is resolved to be ⊥. If a high-bound type variable
X.H does not occur in any closed flow constraint, it is resolved to be Object.

3 Inference of Variant Parametric Types

3.1 Main Algorithm

This section illustrates the main steps of our inference algorithm using the following
method of a non-generic Pair class:

Pair | Object move(Pair a) { Object y=a.getFst(); this.setSnd(y); return y; }
Our goal is to infer its generic version that corresponds to the variant parametric class
Pair〈A, B〉. Internally, our algorithm works with interval types to generate and solve the
flow constraints. Therefore, we use the following interval type based specifications of
the methods getFst and setSnd of the variant parametric class Pair〈A, B〉:

Pair〈[⊥, A.H], [⊥,Object]〉 | C getFst〈A.H, C〉() where A.H<:C {..}
Pair〈[⊥,Object], [B.L,Object]〉 | void setSnd〈B.L, C〉(C y) where C<:B.L {..}

Step 0. Decoration with Fresh Interval Types. This is a pre-processing step. It con-
sists of the annotation with fresh type variables of the non-generic types and non-
generic methods. We use the following naming conventions: the letters Vi for the global
type variables (visible outside the method), the letter Y for the method result, the letters
Ni for the arguments of new expressions, and the letters Ti for other annotations:

Pair〈[V1.L, V1.H],[V2.L, V2.H]〉 | Y move(Pair〈[V3.L, V3.H],[V4.L, V4.H]〉 a)
{T0 y=a.getFst〈T1.H, T2〉(); this.setSnd〈T3.L, T4〉(y); return y; }

Step 1. Collect Flow Constraints. This step gathers the constraints from the method
body using the type inference rules given in Section 4.1, as follows:

Pair〈[V3.L, V3.H], [V4.L, V4.H]〉<:Pair〈[⊥, T1.H], [⊥,Object]〉∧T1.H<:T2 ∧ T2<:T0 ∧ T0<:T4∧
T4<:T3.L ∧ Pair〈[V1.L, V1.H], [V2.L, V2.H]〉<:Pair〈[⊥,Object], [T3.L,Object]〉 ∧ T0<:Y

Step 2. Simplify Flow Constraints. This is a closure algorithm that iteratively decom-
poses the constraints into their elementary components. It primarily applies the interval
subtyping rules with transitivity. The closure algorithm is invoked each time a new con-
straint is added to the set. For brevity, in the following examples, we omit the transitivity
and the default constraints like ⊥<:X, X<:Object, and X.L<:X.H. The result of this step is
the following:

V3.H<:T1.H ∧ T1.H<:T2 ∧ T2<:T0 ∧ T0<:T4∧T4<:T3.L ∧ T3.L<:V2.L ∧ T0<:Y

Step 3. Variance Inference. This step generates a set of closed flow constraints and
then applies the variance inference rule from Section 2. Since V1.L, V1.H, V4.L, V4.H, V2.H,

V3.L do not occur in any closed flow constraint, they are accordingly solved as follows:

V1.L=⊥ ∧ V1.H=Object ∧ V4.L=⊥ ∧ V4.H=Object ∧ V2.H=Object ∧ V3.L=⊥

An Interval-Based Inference of Variant Parametric Types 117

Step 4. Type Variables Inference. This step solves the type variables Ti, Ni, and Y

in term of the global type variables Vi and ground types (which are types without type
variables). It consists of three substeps:

1. Cycle elimination: This causes all type variables of a cycle to be equal. Note that
there isn’t a cycle in the current example.

2. Ordering: The type variables are ordered based on the number of constraints in
which they appear as an upper bound.

3. Unification: Following the order defined before, the type variables are solved by
equating to their low bounds. Type variables occuring in fewer constraints have a
higher priority.

For our example, the result of the unification is summarized by the last column of the
following table. The first column contains the constraints in which the type variables
from the second column occur as upper bounds. Multiple type variables in the second
column denotes type variables having the same priority.

Constraints TVars Result
V3.H<:T1.H {T1.H} T1.H=V3.H

V3.H<:T2∧T1.H<:T2 {T2} T2=V3.H
V3.H<:T0∧T1.H<:T0∧T2<:T0 {T0} T0=V3.H

V3.H<:T4∧V3.H<:Y∧T1.H<:T4∧T1.H<:Y∧T2<:T4∧T2<:Y∧T0<:T4∧T0<:Y {T4, Y} Y=T4=V3.H
V3.H<:T1.H<:T2<:T0<:T4<:T3.L {T3.L} T3.L=V3.H

Step 5. Result Refining. This step simplifies the inferred types of the method. The goal
is to reduce the number of the global type variables using the residual flow constraint
(namely the remaining flow constraints among the global type variables). The residual
flow constraint of the current example is: V3.H<:V2.L. These type variables can be unified
to a fresh type variable V, such that V=V3.H=V2.L. Since V stands for both low-bound and
high-bound, it is not marked with either. The result of our inference (including the above
refinements) is the following:

Pair〈[⊥,Object],[V,Object]〉 | V move〈V〉(Pair〈[⊥, V],[⊥,Object]〉 a)
{V y=a.getFst〈V, V〉(); this.setSnd〈V, V〉(y); return y; }

Step 6. VPT Result. This step translates the inferred interval types into VPTs:

Pair〈�,�V〉 | V move〈V〉(Pair〈⊕V,�〉 a)
{V y=a.getFst〈V, V〉(); this.setSnd〈V, V〉(y); return y; }

3.2 Interval Types Versus Variant Parametric Types

The interval types are more expressive than variant parametric types, since they can
support two different non-default bounds. A variant parametric type can only support
two equal non-default bounds in the case of invariant subtyping�. Note that the default
low-bound is ⊥, while the default high-bound is Object. Considering the following code
fragment, we like to infer the interval type of obj:

118 F. Craciun et al.

class Cell〈A〉 { A fst; · · ·
Cell〈⊕A〉 | A get〈A〉(){..}
Cell〈�A〉 | void set〈A〉(A y){..}..}

class Integer extends Number{..}
class MyInt extends Integer{..}

. . .
Cell〈[T.L, T.H]〉 obj = new Cell〈Integer〉(new Integer(1)); // T.L<:Integer<:T.H
Number n = obj.get〈T1〉(); // T.H<:T1<:Number
MyInt m = new MyInt(2); obj.set〈T2〉(m); // MyInt<:T2<:T.L

Our algorithm can infer the interval type Cell〈[MyInt, Number]〉 for obj. However this
interval type cannot be translated into a variant parametric type, since it consists of two
different bounds. In order to keep the equivalence between interval types and variant
parametric types, we add one more rule to the variance inference:

Proposition 2 (Variance Inference Rule-2). If both bounds X.L and X.H of an interval
type occur in the closed flow constraints, then the default constraint of an interval type
X.L<:X.H is strengthened to the equality X.L=X.H.

In our example, adding T.L=T.H to the above set of constraints will generate a cycle
such that T.L<:Integer<:T.H ∧ T.L=T.H. Cycle elimination generates T.L=Integer=T.H.
Thus new inference result is the interval type Cell〈[Integer, Integer]〉, that can be
directly translated into the variant parametric type Cell〈�Integer〉.

3.3 Main Flow and Conditional Flow

Cast operations give rise to conditional flow constraints (or dynamic subtype constraints
in [9]). These constraints are conditional in the sense that they are only required to hold
if the corresponding dynamic downcasts succeed at runtime. Our analysis separates the
main flow gathered from the method body without the cast operations and the condi-
tional flow corresponding to the cast operations. Conditional constraints use a different
subtyping notation (<:c). One benefit of our analysis is that it can guarantee that some
of the cast operations are redundant, and therefore they can be safely eliminated at
compile time. The number of the eliminated casts is used as an accuracy measure of
generic type systems [8,11,4,16]. The following example illustrates how our inference
algorithm handles the cast operations:

Original code
Cell | void fill(Cell a)
{Cell b = (Cell)a.fst;b.fst = this.fst; }

Inference Result
Cell〈⊕V〉| void fill(Cell〈⊕Cell〈�V〉〉 a)
{Cell〈�V〉 b = a.fst;b.fst = this.fst; }

Code annotated with Fresh Interval Types
Cell〈[V1.L, V1.H]〉 | void fill(Cell〈[V2.L, V2.H]〉 a)

{ Cell〈[T1.L, T1.H]〉 b = (Cell〈[T2.L, T2.H]〉)a.fst; b.fst = this.fst; }
1 . Collect Cell〈[T2.L, T2.H]〉<:Cell〈[T1.L, T1.H]〉∧V1.H<:T1.L
Constraints V2.H<:cCell〈[T2.L, T2.H]〉
2. Simplify V1.H<:T1.L<:T2.L<:T2.H<:T1.H V2.H<:cCell〈[T2.L, T2.H]〉
3 . Infer V1.L=V2.L=⊥∧T1.H=T2.H=Object∧V1.H<:T1.L<:T2.L

Variance V2.H<:cCell〈[T2.L,Object]〉
4. Infer {T1.L} T1.L=V1.H
Type Vars {T2.L} T2.L=V1.H

5 . Solve Conditional V2.H<:cCell〈[V1.H,Object]〉 ⇒ V2.H<:Cell〈[V1.H,Object]〉
6. Refine Results V=fresh() V1.H=V ∧ V2.H=Cell〈[V,Object]〉

An Interval-Based Inference of Variant Parametric Types 119

Though the conditional flow is kept separately, it is still used by the variance inference in
Step 3. If Step 3 ignores the conditional flow, it infers the incorrect result V2.H=Object.
A new step (Step 5) is added to the main algorithm. This step combines together the
conditional flow and the (already solved) main flow in order to find a common solution.
In our example, adding the conditional constraint to the main flow does not generate
any contradiction as the type variables V2.H and V1.H are unconstrained in the main flow.
However it is not always possible to find a common solution for the main and condi-
tional flow, as illustrated by the following example:

V3 foo2(Cell〈[V4.L, V4.H]〉 obj) {
if(...) {... return (Integer)obj.fst; } else{... return (Float)obj.fst; }}
//Integer<:V3∧Float<:V3 V4.H<:cInteger∧V4.H<:cFloat

In this example the conditional constraints can be added to the method precondition to
be checked at each call site where the casts could be selectively eliminated (with the
help of a polyvariant program specializer):

Number foo2(Cell〈[⊥, V4.H]〉 obj) where V4.H<:cInteger∧V4.H<:cFloat

3.4 Convergent Flow and Divergent Flow

Multiple low bounds denote a convergent flow, while multiple high bounds denote a
divergent flow. Our analysis uses union types for multiple low bounds and intersection
types for multiple high bounds. An union type t1|t2 represents the least upper bound
of t1 and t2, while an intersection type t1&t2 is the greatest lower bound of t1 and t2.
Some of their subtyping rules may generate disjunctions. In order to keep our analysis
simple, we propose a safe yet precise approximation that avoids those disjunctions:

AND rules OR rules
t1|t2<:t

t1<:t ∧ t2<:t
t<:t1|t2

t<:t1 ∨ t<:t2
t<:t1&t2

t<:t1 ∧ t<:t2

t1&t2<:t
t1<:t ∨ t2<:t

Our OR rules
t<:t1|t2 T1=fresh()
t<:T1 ∧ t1<:T1 ∧ t2<:T1
t1&t2<:t T2=fresh()
T2<:t1 ∧ T2<:t2 ∧ T2<:t

where T1 and T2 are fresh type variables. Another solution to avoid disjunctions is the
tautology t1&t2<:t1|t2, but sometimes this approximation may lead to no solutions.
One benefit of using union and intersection types is that they are more expressive so
that more casts can be directly eliminated as the following example (from [8,4]) can
illustrate:

class B1 extends A implements I {..}; class B2 extends A implements I {..};
Original code
void foo(Boolean b){
Cell c1 = new Cell(new B1());
Cell c2 = new Cell(new B2());
Cell c = b?c1 : c2;
A a = (A) c.get();
I i = (I) c.get();
B1 b1 = (B1) c1.get();
B2 b2 = (B2) c2.get(); }

Code annotated with Fresh Interval Types
void foo(Boolean b){
Cell〈[T1.L, T1.H]〉 c1 = new Cell〈N1〉(new B1());
Cell〈[T2.L, T2.H]〉 c2 = new Cell〈N2〉(new B2());
Cell〈[T3.L, T3.H]〉 c = b?c1 : c2;
A a = (A) c.get〈T4〉();
I i = (I) c.get〈T5〉();
B1 b1 = (B1) c1.get〈T6〉();
B2 b2 = (B2) c2.get〈T7〉(); }

120 F. Craciun et al.

The following table contains the inference steps for the above code with interval types.
At the step 4.4, T3.H is resolved as to the union type B1|B2 due to two distinct flows
converging to it, B1<:T3.H ∧ B2<:T3.H. The solutions of the main flow can prove that all
conditional constraints succeed, and therefore all casts can be eliminated.

1. Collect B1<:N1∧Cell〈[N1, N1]〉<:Cell〈[T1.L, T1.H]〉∧
Constraints B2<:N2∧Cell〈[N2, N2]〉<:Cell〈[T2.L, T2.H]〉∧

Cell〈[T1.L, T1.H]〉<:Cell〈[T3.L, T3.H]〉∧Cell〈[T2.L, T2.H]〉<:Cell〈[T3.L, T3.H]〉
∧T3.H<:T4∧T3.H<:T5∧T1.H<:T6∧T2.H<:T7
T4<:cA∧T5<:cI∧T6<:cB1∧T7<:cB2

2. Simplify B1<:N1∧T1.L<:N1<:T1.H∧B2<:N2∧T2.L<:N2<:T2.H∧T3.L<:T1.L∧T1.H<:T3.H
∧T3.L<:T2.L∧T2.H<:T3.H∧T3.H<:T4∧T3.H<:T5∧T1.H<:T6∧T2.H<:T7
T4<:cA∧T5<:cI∧T6<:cB1∧T7<:cB2

3. Infer T1.L=T2.L=T3.L=⊥ ∧ B1<:N1<:T1.H∧B2<:N2<:T2.H∧
Variance T1.H<:T3.H∧T2.H<:T3.H∧T3.H<:T4∧T3.H<:T5∧T1.H<:T6∧T2.H<:T7

T4<:cA∧T5<:cI∧T6<:cB1∧T7<:cB2
4 . Infer {N1, N2} N1=B1∧N2=B2
Type Vars {T1.H, T2.H} T1.H=B1∧T2.H=B2

{T6, T7} T6=B1∧T7=B2
{T3.H} T3.H=B1|B2
{T4, T5} T5=T4=B1|B2

5. Solve B1|B2<:cA B1|B2<:cI
Conditional B1<:cB1 B2<:cB2

3.5 Field Flow and Object Flow

A key feature of our approach is the distinction between the flow via an object, called
object flow and the flow via the fields of that object, called field flow. We introduce a
special type notation, that we called dual type to support these two views: (1) object
as a black box, and (2) object as a glass box. For example, a dual type for a Pair is of
the form X

.
=Pair〈[V1.L, V1.H], [V2.L, V2.H]〉, where the type variable X (called object part)

is used for the flow of the entire object, while Pair〈[V1.L, V1.H], [V2.L, V2.H]〉 (called field
part) caters to the flow via its fields. This dualism can improve the genericity of our
inference results. Specifically, given the following method dup (from [4,14]):

Pair dup(Pair a) { Pair p = new Pair(a, a); return p; }
Without using the dual types, our inference can get the following types:

Pair〈�,�〉 dup(Pair〈�,�〉 a){
Pair〈�,�〉 p=new Pair〈Pair〈�,�〉,Pair〈�,�〉〉(a, a); return p; }

The type of the method result is too imprecise, but still correct as fields are not accessed
(bivariant �) in the method body. Using dual types our approach can get more precise
types by inferring an intersection type for the method parameter a, namely:

Pair〈�X1,�X1〉 dup〈X1〉(X1&Pair〈�,�〉 a) {
Pair〈�X1,�X1〉 p = new Pair〈X1, X1〉(a, a); return p; }

The type variable X1 plays an important role, it allows the unknown variance to flow
unchanged, such that the variance annotations of the parameter a fields are preserved in
the type of the method result. As can be seen below, the type variable X1 comes from
the object part of the dual type:

An Interval-Based Inference of Variant Parametric Types 121

Y dup(X1
.
=Pair〈[V1.L, V1.H], [V2.L, V2.H]〉 a) {

X2
.
=Pair〈[T1.L, T1.H], [T2.L, T2.H]〉 p = new Pair〈N1, N2〉(a, a); return p; }

1. Collect X1
.
=Pair〈[V1.L,V1.H],[V2.L,V2.H]〉<:N1∧X1 .=Pair〈[V1.L,V1.H],[V2.L,V2.H]〉<:N2

Constraints ∧Pair〈[N1,N1],[N2, N2]〉<:X2
.
=Pair〈[T1.L,T1.H],[T2.L,T2.H]〉

∧X2 .=Pair〈[T1.L, T1.H], [T2.L, T2.H]〉<:Y
2 . Simplify X1<:N1∧X1<:N2∧Pair〈[N1, N1], [N2, N2]〉<:X2
Dual Types ∧Pair〈[N1, N1], [N2, N2]〉<:Pair〈[T1.L, T1.H], [T2.L, T2.H]〉∧X2<:Y
3. Simplify X1<:N1∧X1<:N2∧Pair〈[N1, N1], [N2, N2]〉<:X2<:Y

∧T1.L<:N1<:T1.H∧T2.L<:N2<:T2.H
4. Infer V1.L=V2.L=T1.L=T2.L=⊥∧V1.H=V2.H=T1.H=T2.H=Object
Variance X1<:N1∧X1<:N2∧Pair〈[N1, N1], [N2, N2]〉<:X2<:Y

5. Infer {N1, N2} N1=X1∧N2=X1
Type Vars {X2} X2=Pair〈[X1, X1], [X1, X1]〉

{Y} Y=Pair〈[X1, X1], [X1, X1]〉
6 . Refine X1

.
=Pair〈[⊥,Object], [⊥,Object]〉⇒X1&Pair〈[⊥,Object], [⊥,Object]〉

Results Pair〈[X1,X1],[X1,X1]〉 .=Pair〈[⊥,Object],[⊥,Object]〉⇒Pair〈[X1,X1],[X1,X1]〉

A new step (Step 2) is added to the main algorithm in order to simplify the dual types.
The simplification rules always prefer the object flow over the field flow (e.g. first con-
straint of Step 1 is reduced to X1<:N1). However, when the type variables of the field
part are used by the other constraints, both flows are generated (e.g. the third constraint
of Step 1 is decomposed into two constraints). The last step is adapted to refine the dual
types. A dual type can be refined to an intersection type (e.g. first line of Step 6). Since
an intersection type is the greatest lower bound of its parts, it could be further simplified
(e.g. the second line of Step 6).

4 Inference Algorithm

Program

P ::= def∗

def ::= class c〈K∗〉 extends c1〈π11 ,..,π1k 〉
... cn〈πn1 , .., πnk〉 {(π f)∗ mth∗}

mth ::= κ | κ mn〈V ∗〉((κ v)∗) where ψ {e}
e ::= null | v | v.f | v = e | v.f = e
| {κ v = e1 ; e2} | e1 ; e2 | (κ)v
| new c〈κ∗〉(v∗) | if v then e1 else e2
| while v do e | v0.mn〈κ∗〉(v∗)

Variant Parametric Type

(VPT)

π ::= ακ | K
κ ::= V | c〈π1, .., πn〉 | c
| κ&κ | κ|κ | ⊥

α ::= � | ⊕ | � | �
VPT Subtyping Constraint

ψ ::= κ1<:κ2 | κ1<:cκ2

| ψ∧ψ | true

Fig. 1. SYNTAX OF VARIANT CORE-JAVA

We design our inference algorithm as a summary-based analysis, on a per method basis
guided by a global method call graph. Our approach is flow-insensitive within each
method, but context-sensitive across the methods. The algorithm takes as input a well-
typed non-generic program and the VPT class hierarchy, before it outputs a program
that uses VPTs.

We use two assumptions to avoid recursive constraints: (1) no F-bounded quantifica-
tion over the VPT class hierarchy, and (2) no polymorphic recursion for the classes and

122 F. Craciun et al.

the methods. Techniques for avoiding recursive constraints are presented in [4,5]. Nev-
ertheless, our algorithm can cope with F-bounds, as long as we use constraint solving
techniques that support recursive constraints and inductive simplification (from [25,18]).
Our current approach can infer generic types for mutually-recursive methods under the
monomorphic recursion assumption.

We formalize the algorithm on Variant Core-Java (Fig. 1), a core calculus for Java-
like languages. Both input and output programs are encoded in Core-Java since VPTs
can subsume non-generic types. For ease of presentation, the features related to static
methods, exception handling, inner classes and overloading are omitted. Multiple inter-
face inheritance is supported as in Java [12], each class may extend from a single su-
perclass but may implement multiple interfaces. VPT’s syntax is also shown in Fig. 1.
There are two kinds of type variables: K denoting a variance and a type together, and
V denoting only a type. For simplicity, primitive types (e.g. bool, void) are represented
by their corresponding classes (such as Bool, Void). Specifically, for each method our
analysis can be divided into two main steps: (1) gathering the flow constraints based on
the type inference rules (Section 4.1), and (2) solving the flow constraints (Section 4.2).

4.1 Type Inference Rules

The inference process is driven by the following main rule for each method:

G� ci �dcr ti G; {(vi:ti)
n
i=2, this:t1} � e �e e

′:t, ϕ0

Y=fresh() Q1=
⋃n

i=1fv(ti) G � ϕ0∧t<:Y ;Q1 �solver ϕ;Q;σ
σt1|σY mn〈Q〉((σti vi)

n
i=2) where ϕ {σe′}�vpt κ1|κ mn〈Q′〉((κi vi)

n
i=2) where ψ {e′′}

G � c1|c0 mn((ci vi)
n
i=2) {e} � κ1|κ mn〈Q′〉((κi vi)

n
i=2)) where ψ {e′′}

that takes a non-generic method and the VPT class hierarchy G, decorates the method
parameters (�dcr) with fresh interval types, collects the flow constraints (�e) from the
method body, and then passes the constraints to the constraint solver (�solver). The solver
(Section 4.2) returns the list of method type parameters Q and a substitution σ. The sub-
stitution maps the type variables (introduced by the decoration) either to ground types
or to the type variables from Q. Interval types (and dual types), their flow constraints and
the substitutions σ are detailed in Fig. 2. The final step �vpt translates the interval types
inferred for the method into VPTs. We summarize below the main judgments employed
by this phase of our analysis (a complete description is in [5]):

– G�c �dcrt denotes the decoration with fresh type variables of a non-generic class c
with respect to its parameterized version from VPT class hierarchy G. The result t
is either a dual type, or the class c (when c is not parameterized), or a type variable.

– ρ�κ�κtt and ρ�π�πττ denote the translation of a VPT into an interval type with
respect to a substitution ρ. A substitution ρ maps a type variable K (denoting a type
and a variance) into two bounds [τL, τH].

– G�t, fn�fld[τL,τH] returns the low-bound and high-bound [τL,τH] of a field fn with
respect to an interval type t and the VPT class hierarchy G.

– G�t, mn�mthmth returns the interface mth (with fresh interval types) of a method mn

with respect to a receiver t and the VPT class hierarchy G.

An Interval-Based Inference of Variant Parametric Types 123

Interval Type

τ ::= t | t.L | t.H
t ::= X | d | c〈[τ1L, τ1H], .., [τnL, τnH]〉
c | t1&t2 | t1|t2 | ⊥ | Object

X ::= V | T | N | Y
Dual Type

d ::= X
.
=c〈[τ1L, τ1H], ..., [τnL, τnH]〉

Flow Constraint
ϕ ::= τ1<:τ2 | τ1<:cτ2 | ϕ∧ϕ | true

Substitution
σ ::= X=τ | X.L=τ | X.H=τ | d=t

Closed Flow Constraint
φ ::= t1.H<:t2.L | t1<:t2.L | t1.H<:t2
| t1.H<:ct2.L | t1<:ct2.L | t1.H<:ct2

Fig. 2. INFERENCE TYPES AND FLOW CONSTRAINTS

– G; Γ�e�ee
′:t, ϕ denotes the type inference for the expression e with respect to the

type environment Γ and the VPT class hierarchy G. The inference result consists of
the expression e′ annotated with interval types, its interval type t and the derived
flow constraint ϕ. The type environment Γ consists of the interval types generated
by �dcr.

4.2 Constraint Solver

The constraint solver takes as input a flow constraint ϕ0, a set of visible type variables
Q0, a VPT class hierarchy G and performs the following sequence of steps:

�ϕ0�setC0 �C0�trC1 G�C1�simplifyC2 �C2�dualC3;D G�C3�simplifyC4

�C4;Q0�varianceC5;Q1;σ1 �C5;Q1;�typvarC6;Q2;σ2 G�C6�condC7

G�C7;D;Q2;σ2◦σ1�refineC8;Q;σ �C8�cnjϕ

G�ϕ0;Q0�solverϕ;Q;σ

The goal is first to simplify the constraintsϕ0 to atomic constraints among type variables
and ground types and then to solve the type variables in term of the ground type and
the visible type variables Q. The result consists of a residual constraint ϕ among the
visible type variables, a reduced set of type variables Q and the solution itself given as
a substitution σ. Since our solver internally works with a set of constraints C instead of
a conjunction ϕ, the judgments �set and �cnj make the corresponding translations. We
summarize below the main steps of our solver (a complete description is in [5]).

Transitive Closure (�tr). The constraint set is always closed by transitivity such that
this step is performed each time a new constraint is added. The transitivity takes into
account the conditional constraints, it generates a conditional constraint from a condi-
tional constraint and non-conditional constraint. VPT subtyping (and also interval type
subtyping) is transitive since the VPT class declarations are well-formed as in [15].

Simplification (�simplify). It consists of a constraint decomposition �s followed by a
transitive closure:

G�C0�sC
′ �C′�trC

G�C0�simplifyC

Constraint decomposition �s is performed with respect to the class subtyping given by
the VPT class hierarchy G, the interval subtyping rule and the subtyping rules for in-
tersection and union types. Using the mechanism presented before the intersection and
union types constraints always decompose into conjunctions. A conditional constraint

124 F. Craciun et al.

is decomposed into new conditional constraints. The step is performed until the con-
straint set remains unchanged. In the solver, the first call of �simplify step decomposes
the outermost intersection and union types to reduce the complexity of the step �dual.

Dual Types Simplification(�dual). It decomposes all the dual types from the input con-
straint set C0. The result consists of a new constraint set C and the list of the decomposed
dual types D:

�C0�dD;C1 �C1�trC
′
1 D�C′

1�cdC2 �C2�trC

�C0�dualC;D

The process is performed in two stages. In the first stage (�d), all the flow constraints
with dual types are decomposed. When it needs to choose, �d prefers the flow through
the object part of a dual type rather than that through the field part. In the second stage
(�cd), the flow through the field part is selectively added to the constraint set when it is
required by the other constraints.

Variance Inference (�variance). It computes the high-bound type variables and the low-
bound type variables that do not occur in the closed flow constraints, and resolves them
to their default values by the substitutions σH and σL respectively.

LH={V.H | V.H<:V1.L∈C0 ∨ V.H<:V2∈C0 ∨ V.H<:cV3.L∈C0 ∨ V.H<:cV4∈C}
LL={V.L | V1.H<:V.L∈C0 ∨ V2<:V.L∈C0 ∨ V3.H<:cV.L∈C0 ∨ V4<:cV.L∈C0}

σH=[[V.H �→Object] | V.H∈fv(C0) ∧ V.H �∈LH]
σL=[[V.L�→ ⊥] | V.L∈fv(C0) ∧ V.L�∈LL]

σHL=[[V.L�→V, V.H �→V] | V.H∈LH ∧ V.L∈LL]
Q=Q0∪ran(σHL)\(dom(σL)∪dom(σH)∪dom(σHL)) C=σH◦σL◦σHLC0

�C0;Q0�varianceC;Q;σH◦σL◦σHL

The substitution σHL implements the second variance inference rule, making equal the
bounds of an interval when both of them occur in the closed flow constraints. The initial
list of the visible type variables Q can be affected by the variance inference. This step
works on all constraints, either from conditional flow or from main flow.

Type Variables Inference (�typvar). This step solves the non-visible type variables in
terms of the visible type variables Q0:

�C0;Q0�cycleC1;Q1;σ1 �C1;Q1�orderL �L;C1�unifyC;σ2 Q=Q1∪fv(C)

�C0;Q0�typvarC;Q;σ2◦σ1

First substep (�cycle) makes equal all the type variables of a cycle. This process may also
affect the visible type variables, resulting in a new set Q1. We use techniques from [10]
to eliminate the cycles. The non-visible type variables are then solved (�unify) in an
order given by the number of their low bounds (�order). The substep �order iteratively
computes the order taking into account the situations when the low bounds are class
type parameterized with type variables. The substep �unify unifies the type variables
with their low-bounds producing a substitution σ2. Multiple low-bounds are combined
together as an union type. Non-visible type variables of final constraint set C are pro-
moted as visible in Q. Though this step works only on the main flow constraints, its
computed substitutions are also applied on the constraints of the conditional flow.

An Interval-Based Inference of Variant Parametric Types 125

Solving conditional constraints (�cond). This step translates the conditional con-
straints into non-conditional constraints if the non-conditional constraints hold. Since
it is always safe to add more constraints on the method interface type variables and
the constraint set is transitively closed, this step only checks (�?) the conditional con-
straints with the ground types with respect to the class hierarchy G. First check is for
ground constraints, while the last two are to verify if an intersection and an union type
can exist in G. If the checks do not hold, the conditional constraints are not translated.

B={c1<:cc2 | c1<:cc2∈C0} G�?B
∀V ∈fv(C0).G�?{c | V <:cc∈C0}&{c | V <:c∈C0}
∀V ∈fv(C0).G�?{c | c<:cV ∈C0}|{c | c<:V ∈C0}

C′={τ1<:τ2|τ1<:cτ2∈C0} C′
0=C0\{τ1<:cτ2|τ1<:cτ2∈C0}

G�C0�condC
′∪C′

0

Refining the results (�refine). The goal of this step is to reduce the number of visible
type variables of a method interface. The first three substitutions are based on the closed
flow constraints which are in C0. The last two substitutions are for the high bound (low
bound) type variables occurring on low bound (high bound) positions. Dual types are
also translated into intersection types by the substitution σd.

σ1=[V1.H �→V, V2.L�→V |V1.H<:V2.L∈C0 ∧ V=fresh()] σ2=[V.H �→t|V.H<:t∈σ1C0]
σ3=[V.L�→t|t<:V.L∈σ2◦σ1C0] σ4=[V �→t|t<:V ∈σ3◦σ2◦σ1C0 ∨ V <:t∈σ3◦σ2◦σ1C0]

σ′=σ3◦σ2◦σ1◦σt G�σ′D�refinedual σd

σ′
1=[V.H �→V |V1.L�→V.H∈σ′ ∧ V=fresh()] σ′

2=[V.L�→V |V1.H �→V.L∈σ′ ∧ V=fresh()]
σ=σ′

2◦σ′
1◦σd◦σ′

G�C0;D;Q0;σ0�refineσC0;σQ0;σ

5 Method Overriding

Consider the following method overriding example, where the method boo of the class
Cell is overridden by the subclass Pair (note that class Pair extends Cell{..}):

Cell | Object boo(Cell a) {this.fst = a.fst; return a.fst; }
Pair | Object boo(Cell a) {a.fst = this.fst; this.snd = a.fst; return a.fst; }

Applying our inference to each method, we obtain the following results:

Cell〈�P〉 | P boo(Cell〈⊕P〉 a){..} Pair〈⊕P1,�P1〉 | P1 boo(Cell〈�P1〉 a){..}
The method overriding is sound only if the overriding method is a subtype of the over-
ridden method and the overriding method’s receiver is a subtype of the overridden
method’s receiver [3]. As can be seen, this property does not hold for the above in-
ferred methods:

Pair〈⊕P1,�P1〉<:Cell〈�P〉 Cell〈⊕P〉<:Cell〈�P1〉 P1<:P

To ensure this property, we augment our inference algorithm with the following con-
siderations: (i) we can strengthen the receiver type and the result type of the overriding
method; (ii) we can strengthen the parameters types and the precondition of the over-
ridden method. Thus the method overriding problem is solved as follows:

126 F. Craciun et al.

1. Infer the overridden method as: Cell〈[P,Object]〉 | P boo(Cell〈[⊥,P]〉 a)
2. Undo the variance of the overridden method parameters by using fresh interval type

variables (P1.H and P1.L) that keep the relation with the other type variables of the
receiver and the result: Cell〈[P,Object]〉 | P boo(Cell〈[P1.L,P1.H]〉 a) where P1.H<:P

3. Do inference for the overriding method: The process starts with the sound overrid-
ing assumptions (Step 1):

Pair〈[V1.L,V1.H],[V2.L,V2.H]〉 | Y boo(Cell〈[V3.L,V3.H]〉 a)
{a.fst=this.fst;this.snd=a.fst;return a.fst;}

1.Overriding Assumptions Pair〈[V1.L,V1.H],[V2.L,V2.H]〉<:Cell〈[P,Object]〉∧Y<:P∧
Cell〈[P1.L,P1.H]〉<:Cell〈[V3.L,V3.H]〉∧P1.H<:P

2.Collect Constraints V1.H<:V3.L∧V3.H<:V2.L∧V3.H<:Y
3.Simplify P<:V1.L∧Y<:P∧V3.L<:P1.L∧P1.H<:V3.H∧P1.H<:P

V1.H<:V3.L∧V3.H<:V2.L∧V3.H<:Y
4.Infer Variance V2.H=Object∧V1.L=V1.H∧V3.L=V3.H∧P1.L=P1.H
5.Infer Type Vars P=P1.H=P1.L=V1.H=V1.L=V2.L=V3.H=V3.L

4. The result of the previous step is applied on both overridden and overriding methods
and we obtain the following sound result:

Cell〈�P〉 | P boo(Cell〈�P〉 a) Pair〈�P,�P〉 | P boo(Cell〈�P〉 a)

6 Conclusion

We have formalized a novel constraint-based algorithm to infer variant parametric types
for non-generic Java code. In contrast to the previous refactoring algorithms [9,8,7,11,16]
which mainly support invariant subtyping and are designed as whole program analyses,
our approach offers full support for use-site variance based subtyping and it is designed
as a summary-based analysis that works on a per method basis. The main technical nov-
elty of our approach is a systematic variance inference based on interval types. With
the full support for use-site variance based subtyping, our approach can generate better
generic types than those derived by existing systems. For instance, none of the previous
algorithms can automatically infer the examples from Section 3.4 and Section 3.5.

Although our inference algorithm internally works with sophisticated mechanisms,
its output is expressed in terms of variant parametric types extended with restricted
forms of intersection/union types as used in [4]. We have proven the soundness of our
inference algorithm with respect to our variant parametric type system in [4]. However
the completeness requirement is a difficult problem since the decidability of nominal
subtyping with use-site variance is still an open problem as was discussed in [15].

We have built an inference prototype which works for a core subset of Java. Our
previous VPT checker from [4] is used to validate the inferred results. In our initial
experiments we have tested the quality of our inference system results on a small set
of non-generic programs by comparing the inferred generic types with the best generic
types that one can manually provide. In all the cases, our system was able to infer the
same types as those manually provided. The inference time was less than one second
for each test program. Currently we are working to extend our experiments to larger
programs by using our translator of Java to a core subset [6].

An Interval-Based Inference of Variant Parametric Types 127

References

1. Bracha, G., Oderski, M., Stoutamire, D., Wadler, P.: Making the future safe for the past:
Adding genericity to the Java programming language. In: ACM OOPSLA (1998)

2. Bugliesi, M., Geertsen, S.M.P.: Type inference for variant object types. Information and
Computation 177(1) (2002)

3. Castagna, G.: Covariance and contravariance: Conflict without a cause. ACM TOPLAS 17(3)
(1995)

4. Chin, W.N., Craciun, F., Khoo, S.C., Popeea, C.: A flow-based approach for variant paramet-
ric types. In: ACM OOPSLA (2006)

5. Craciun, F., Chin, W.N., He, G., Qin, S.: An Interval-based Inference of Variant Parametric
Types. Technical report, Department of Computer Science, Durham University, UK (Decem-
ber 2008), http://www.durham.ac.uk/shengchao.qin/papers/VPTinfer.
pdf

6. Craciun, F., Goh, H.Y., Chin, W.N.: A framework for object-oriented program analyses via
Core-Java. In: IEEE Internationl Conference on Intelligent Computer Communication and
Processing (2006)

7. Dincklage, D., Diwan, A.: Converting Java Classes to use Generics. In: ACM OOPSLA (2004)
8. Donovan, A., Kiezun, A., Tschantz, M.S., Ernst, M.D.: Converting Java Programs to Use

Generic Libraries. In: ACM OOPSLA (2004)
9. Duggan, D.: Modular Type-based Reverse Engineering of Parameterized Types in Java Code.

In: ACM OOPSLA (1999)
10. Fähndrich, M., Foster, J.S., Su, Z., Aiken, A.: Partial online cycle elimination in inclusion

constraint graphs. In: ACM PLDI (1998)
11. Fuhrer, R., Tip, F., Kiezun, A., Dolby, J., Keller, M.: Efficiently Refactoring Java Applica-

tions to Use Generic Libraries. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp.
71–96. Springer, Heidelberg (2005)

12. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification. Addison-
Wesley, Reading (2005)

13. Heintze, N., Tardieu, O.: Ultra-fast aliasing analysis using cla: A million lines of c code in a
second. In: ACM PLDI (2001)

14. Igarashi, A., Viroli, M.: Variant parametric types: A flexible subtyping scheme for generics.
ACM TOPLAS 28(5) (2006)

15. Kennedy, A., Pierce, B.: On Decidability of Nominal Subtyping with Variance. In:
FOOL/WOOD (2007)

16. Kieżun, A., Ernst, M.D., Tip, F., Fuhrer, R.M.: Refactoring for parameterizing Java classes.
In: ICSE (2007)

17. Odersky, M.: Inferred Type Instantiation for GJ, Notes (January 2002)
18. Pottier, F.: Simplifying Subtyping Constraints. In: ACM ICFP (1996)
19. Pottier, F.: Type inference in the presence of subtyping: from theory to practice. PhD thesis,

Universite Paris 7 (1998)
20. Reynolds, J.C.: Preliminary design of the programming language Forsythe. Technical report,

CMU-CS-88-159, Carnegie Mellon (1988)
21. Smith, D., Cartwright, R.: Java type inference is broken: Can we fix it? In: ACM OOPSLA

(2008)
22. Su, Z., Fahndrich, M., Aiken, A.: Projection merging: Reducing redundancies in inclusion

constraint graphs. In: ACM POPL (2000)
23. Torgersen, M., Ernst, E., Hansen, C.P., von der Ahe, P., Bracha, G., Gafter, N.: Adding Wild-

cards to the Java Programming Language. JOT 3(11) (2004)
24. Torgersen, M., Ernst, E., Hansen, C.P.: WildFJ. In: FOOL (2005)
25. Trifonov, V., Smith, S.: Subtyping Constrained Types. In: SAS (1996)

http://www.durham.ac.uk/shengchao.qin/papers/VPTinfer.pdf
http://www.durham.ac.uk/shengchao.qin/papers/VPTinfer.pdf

Existential Quantification for Variant Ownership

Nicholas Cameron� and Sophia Drossopoulou

Imperial College London
{ncameron,scd}@doc.ic.ac.uk

Abstract. Ownership types characterize the topology of objects in the
heap, through a characterization of the context to which an object be-
longs. They have been used to support reasoning, memory management,
concurrency, etc. Subtyping is traditionally invariant w.r.t. contexts,
which has often proven inflexible in some situations. Recent work has
introduced restricted forms of subtype variance and unknown context,
but in a rather ad-hoc and restricted way.

We develop Jo∃, a calculus which supports parameterisation of types,
as well as contexts, and allows variant subtyping of contexts based on ex-
istential quantification. Jo∃ is more expressive, general, and uniform than
previous works which add variance to ownership languages. Our explicit
use of existential types makes the connection to type-theoretic founda-
tions from existential types more transparent. We prove type soundness
for Jo∃ and extend it to Jo∃deep which enforces the owners-as-dominators
property.

1 Introduction

Ownership types [9,10,11] support a characterization of the topology of objects
in the heap. They have been successfully applied in many areas. Boyapati [3]
et al. annotated several Java library classes and multithreaded server programs,
effectively preventing data races. Vitek et al. used ownership types to support
memory management in real time systems, with applications such as flying un-
manned aircraft [2], while Aldrich et al. used ownership to enforce software
architectures in large, real-world software [1].

Usually ownership types are expressed by classes parameterised by formal
context parameters, e.g., class C<o1,o2,o3> {...}, and types parameterised
by actuals, e.g., C<this,o2,o2>. Context parameters represent objects. The first
context parameter denotes the owner of the corresponding object. We say that an
object is inside its owner, and all transitive owners of the latter. This implicitly
defines a tree structure of owners in the heap.

Deep ownership systems enforce the owners-as-dominators property [11,9],
which requires that the path to any object o from the root object passes through
the owner of o. That is, objects are dominated by their owners. Such encapsulated
objects are protected from direct and indirect access.

� Author’s current address is Victoria University of Wellington, New Zealand.

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 128–142, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Existential Quantification for Variant Ownership 129

In many variations of ownership types [9,10,22,23], actual context parameters
must be known and invariant: they must not vary with execution or subtyping;
i.e., C<o1> is not a subtype of C<o2> even if o1 is inside o2. This follows generic
types: List<Dog> is not a subtype of List<Animal>.

Recent work on ownership types has introduced the concept of unknown,
flexible contexts: universe types [13] support the annotation any, MOJO [6] uses
the context parameter ?, and effective ownership [19] uses an any context. These
unknown owners introduce variant subtyping, whereby, e.g., C<o> is a subtype
of C<?>. Variant ownership types [18] support variance annotations to more
precisely describe variance properties of ownership types.

All these systems are somewhat ad hoc in formalisation — there is no direct
link to the underlying theory of existential types. In particular, they do not
support:

1 two or more context parameters are unknown, but known to be the same,
e.g., in the type ∃o.C<o,o>;

2 context polymorphic methods [9,23] in the presence of variant contexts;
3 upper and lower bounds on variant contexts;
4 scoping of unknown contexts, e.g., to distinguish a list of students which may

havedifferentowners, froma list of studentwhich share the sameunknownown-
ers, i.e., List<this, ∃o.Student<o>>, and ∃o.List<this, Student<o>>.

To bridge this gap, we develop Jo∃, which has its foundations in existential
types and supports all these features. Jo∃ is a purely descriptive system, in that it
only describes the heap topology, and guarantees that the topology is preserved,
but does not restrict the topology in any way. We then develop a flavour of Jo∃,
called Jo∃deep, which also supports deep ownership. We have distinguished deep
ownership from the existential aspects, because descriptive ownership systems
are useful in their own right (e.g., to support reasoning with effects).

Jo∃ is a foundational, rather than usable, system. We expect it to be useful
to reason about variance in ownership systems and to compare the various im-
plementations of ownership variance. Whilst it is expressive and powerful, Jo∃
is verbose. Practical adoption of Jo∃ would require heavy syntactic sugaring.

Recent work with Java wildcards and similar systems [7,5,16,20] has used
existential types to implement and formalise subtype variance in object-oriented
languages. In these systems existential types are often implicit [20,16], a more
programmer-friendly syntax obscures the underlying existential types. Packing
and unpacking are usually implicit, even where quantification is explicit [5].

We use existential quantification of contexts to implement variant ownership.
This solution is uniform and clearly related to its theoretical underpinnings;
typing and the underlying mechanisms are refelcted in the syntax. Furthermore,
in combination with type parameterisation, it is extremely expressive.

Outline. In Sect. 2 we give an example explaining and motivating Jo∃. We
present Jo∃ in Sect. 3 and Jo∃deep in Sect. 4. We discuss these languages in
Sect. 5 and their relation to related work in Sect. 6. We conclude in Sect. 7

130 N. Cameron and S. Drossopoulou

2 Example

In this example we use a sugared syntax1, rather than the verbose Jo∃ syntax,
with implicit packing and unpacking of existential types. Such implicit packing
and unpacking appears, for example, in Java wildcards; mapping from the sug-
ared version to Jo∃ is simple [4]. We use o→[a b] to denote that the formal
context parameter o has the lower bound a and upper bound b, that is, any
instantiation of o must be inside b and outside2 a in the ownership hierarchy.

class Worker<manager, company outside manager> {
List<this, Worker<manager, company>> colleagues;
∃o→[⊥ company].List<this, Worker<o, company>> workGroup;
∃o→[manager company].Worker<o, company> mentor;

void mixGroups() {
workGroup = colleagues;
//colleagues = workGroup; ERROR
//colleagues.add(workGroup.get(0)); ERROR
//workGroup.add(colleagues.get(0)); ERROR

}
}

class Company extends Object<©> {
Worker<this, this> director;
Worker<director, this> headOfMarketing;
∃o→[⊥ director].Worker<o, this> employeeOfTheMonth;
List<this, ∃o→[⊥ this].Worker<o, this>> payroll;

<m> void processColleagues(Worker<m, this> w) {
for (Worker<m, this> c : w.colleagues) { ... }

}

void mentorEmpMonth() {
employeeOfTheMonth.mentor = director;
//employeeOfTheMonth.mentor =
// new Worker<headOfMarketing, this>; ERROR

}
}

Our example is part of a human resources system for a large company. Each
worker in the company is owned by its manager; the employees form a hierarchy
with the director at its root. In the Worker class, each worker keeps a list of his

1 We also use fields as context parameters. This is not implemented in Jo∃, but is a
relatively easy extension. It is present in, for example, MOJO [6].

2 We say o outside o′ to mean o′ inside o.

Existential Quantification for Variant Ownership 131

colleagues. Each colleague is a Worker with the same manager as this. In the
Company class, we store references to the director and the head of marketing,
whose immediate manager is the director.

So far, we have only used features present in classical ownership types systems.
We use existential types where the precise owner of objects is unknown and
highlight the features listed in the previous section, e.g., 1. In the Worker class,
mentor is some worker who either works with or indirectly manages that worker,
but whose exact position in the management hierarchy is not specified (3). A
worker may work with some other team of workers in the company (a team is
assumed to have a single manager). For example, an engineer may have contact
with the management team. This group (workGroup) may have any manager in
the company, and this is represented by the existential type. Since we assume
all members of the group have the same owner, the existential quantification is
outside the List (4).

In the Company class, the employeeOfTheMonth may be any Worker in the
company, her manager is not important. The payroll keeps track of every worker
in the company. Each worker on the payroll may have a different manager.

The method processColleagues takes a worker (w) as a parameter and per-
forms some action on each of his colleagues. Since the method is polymorphic in
the manager (m) of w, we can name m as the owner of w’s colleagues, c (2).

In mixGroups we can set workGroup to colleagues because manager (the
manager of colleagues) is within the bounds specified in the type of workGroup.
We cannot set colleagues to workGroup, nor add an element of colleagues
to workGroup, because workGroup may have any manager, not necessarily this.
Even though we can set workGroup to colleagues, we cannot add an element
of colleagues to workGroup because although the owner of the workGroup may
be any owner, it is a specific owner and not necessarily manager3.

Owners-as-dominators. Even in a deep ownership system it can be safe and de-
sirable to support subtype variance. A Worker instance and his mentor (though
not his workGroup) satisfy owners-as-dominators in Jo∃deep. mentorEmpMonth
sets the mentor of the employeeOfTheMonth to the director. This preserves
owners-as-dominators since the director must transitively manage (own) the
employeeOfTheMonth, no matter who that is. Setting the employeeOfTheMonth’s
mentor to a new worker owned by the headOfMarketing would violate owners-
as-dominators and is not allowed. This is because the employeeOfTheMonthmay
not be transitively owned by this new worker.

3 Jo∃
In this section we present the most interesting parts of Jo∃, a minimal object-
oriented language in the style of FGJ [15], with parametrisation of methods and
classes by context and type parameters, and existential quantification of con-
texts. In order to demonstrate ownership properties, we include field assignment
3 Here, the owner is manager due to the earlier assignment, but in general it will be

unknown.

132 N. Cameron and S. Drossopoulou

and a mutable heap. Jo∃ is fully described in the first author’s PhD thesis [4]
along with much extra detail that could not be included here for space reasons.

Subtype variance in Jo∃ is implemented by existential quantification. Existen-
tial types are explicit and are introduced and eliminated (packed and unpacked)
using close and open expressions. Thus, we follow the more traditional model of
existential types [7], rather than the Java 5.0 approach of using implicit packing
and unpacking.

Neither the ownership or existential quantification features of Jo∃ interact
with subclassing. Furthermore, the benefits of existential quantification in Jo∃
do not depend on subclassing, nor the absence of subclassing. For these reasons,
and because the standard solution to subclassing in ownership types systems
is long known [10], we elide subclassing and inheritance. This simplifies the
presentation of Jo∃ and its proofs. Jo∃ could be extended to include subclassing
by extending the subtyping and method and field lookup rules following FGJ
[15]. Subclassing must preserve the formal owner of an object [10]. There are no
changes to any of the rules involving quantification.

We are primarily interested in type parameterisation to increase expressive-
ness of ownership types, rather than to investigate features of generic types.
We therefore treat type parameterisation simply and do not support bounds on
formal type parameters, nor existential quantification of type variables.

e ::= null | x | γ.f | γ.f = e | γ.<a, T>m(e) | expressions
new C<a, T> | open e as x,o in e |
close e with o→[b b] hiding a | ι | err

Q ::= class C<Δ, X> {T f; W} class declarations
W ::= <Δ, X> T m(T x) {return e;} method declarations

v ::= close v with o→[b b] hiding r | ι | null | err values

N ::= C<a, T> class types

R ::= C<r, T> runtime types

M ::= N | X non-existential types
T ::= M | ∃Δ.N types

Ψ ::= X→[bl bu] type environments

Δ ::= o→[bl bu] context environments
γ ::= x | ι | null vars and addresses
Γ ::= γ:T var environments

H ::= ι→{R; f→v} heaps

a ::= o | x | © | ι contexts

r ::= © | ι runtime contexts

b ::= a | ⊥ bounds

x, y variables
X, Y type variables
o formal owners
C classes
ι addresses

Fig. 1. Syntax of Jo∃

Existential Quantification for Variant Ownership 133

Syntax. The syntax of Jo∃ is given in Fig. 1. Entities only used at runtime are in
grey . Jo∃ includes expressions for accessing variables (x, which includes this)
and addresses (ι), object creation, null (for field initialisation), field access and
assignment, method invocation, and packing and unpacking of existential types.

Class and method declarations (Q and W) are parameterised by context (o)
and type (X) parameters. The former have upper and lower bounds (bounds
are actual context parameters — not subtype bounds — and limit the bounded
formal context to some part of the ownership hierarchy), and so methods and
classes are considered to be parameterised by context environments (Δ). These
are mappings from formal context parameters to their bounds (o→[bl bu]).

Contexts (a) consist of context variables (o), variables (x) and the world con-
text (the root object), ©. At runtime we may also use addresses. Runtime con-
texts (r) are restricted to addresses and ©.

Variable environments, Γ , map variables to their types. Type environments,
Ψ , map type variables to bounds on a context. Type variables do not have bounds
on the types they may take. The bounds contained in Ψ define upper and lower
bounds on the owner of actual types. If the lower and upper bounds on the
owner of X are bl and bu, then for C<o> to instantiate X, o must be outside bl

and inside bu. The bounds in Ψ are manufactured by the type system (in T-
Class in Fig. 4 and T-Method [4]) and cannot be defined by the programmer.
In Jo∃ and Jo∃deep, upper bounds in Ψ are always © and, in effect, are never
used; however, we keep upper bounds to allow for easy extension. We only use
the lower bound to support deep ownership in Jo∃deep (Sect. 4).

To model execution we use a heap, H, which maps addresses (ι) to records
representing objects. Each record contains the type of the object and a mapping
from field names to values. Values (v) are addresses or close expressions that
pack addresses.

Types in Jo∃. The syntax of types in Jo∃ is given in Fig. 1. Class types (N)
are class names parameterised by actual type and context parameters. The first
context parameter is the owner of objects with that type. Class types may be
existentially quantified by a context environment to give existential types. For
example, ∃o.List<o, Animal> denotes a list owned by some owner. For concise-
ness in examples, we omit bounds and empty parameter lists where convenient.

By combining existential quantification with type parameterisation we can
express many interesting and useful types: ∃o.List<o, Animal<this>> denotes
a list owned by some unknown owner where each element is an Animal owned
by this, while ∃o1,o2.List<o1, Animal<o2>> denotes a list owned by some
owner where all elements are owned by the same owner which may be different
from the owner of the list, and ∃o1.List<o1, ∃o2.Animal<o2>> denotes a list
where each element is owned by some owner and the owner of each element may
be different, finally, ∃o.List<o, Animal<o>> denotes a list where each element
in the list and the list itself are owned by the same, unknown, owner.

Subtyping and the Inside Relation. The inside relation relates contexts and is
defined by the rules given in Fig. 2. We say that o1 is inside o2 (Δ; Γ � o1 � o2),
if o1 is transitively owned by o2. The inside relation is reflexive, transitive, and

134 N. Cameron and S. Drossopoulou

Δ;Γ � M <: M

(S-Reflex)

Δ;Γ � bu � b′u Δ;Γ � b′l � bl

Δ;Γ � ∃o→ [bl bu].N <: ∃o→ [b′l b′u].N

(S-Full)

Δ;Γ � b � b

(I-Reflex)

Δ;Γ � b � b′′ Δ;Γ � b′′ � b′

Δ;Γ � b � b′

(I-Trans)

Δ;Γ � b ok

Δ;Γ � b � ©
(I-World)

Δ;Γ � b ok

Δ;Γ �⊥� b

(I-Bottom)

Γ (γ) = C<a, T>

Δ;Γ � γ � a0

(I-Owner)

Δ(o) = [bl bu]

Δ;Γ � o � bu

Δ;Γ � bl � o

(I-Bound)

Fig. 2. Jo∃ subtyping, and the inside relation for owners and environments

has top and bottom elements — the world and bottom contexts, respectively.
I-Owner asserts that every variable and address is inside the declared owner of
its type (if its type is a class type). For example, if this has type C<o>, then
this is inside o. I-Bound gives that a formal context is within its bounds.

Subtyping is also given in Fig. 2. Since there is no subclassing in Jo∃, subtyping
of non-existential types is given only by reflexivity. Subtyping between existential
types follows the full variant of existential subtyping [14,7]. Existential types are
subtypes where the bounds of quantified contexts in the subtype are more strict
than in the supertype.

o ∈ dom(Δ)
Δ;Γ � o ok

(F-Owner)

Δ;Γ � © ok

(F-World)

Δ;Γ �⊥ ok

(F-Bottom)

Γ (γ) = N

Δ;Γ � γ ok

(F-Var)

class C<o→[bl bu], X>... Δ;Γ � a ok

Δ;Γ, this:C<a, X> � [a/o]bl � a Δ;Γ, this:C<a, X> � a � [a/o]bu

Ψ ;Δ;Γ � T ok |T| = |X|
Ψ ;Δ;Γ � C<a, T> ok

(F-Class)

X ∈ dom(Ψ)
Ψ ;Δ;Γ � X ok

(F-Type-Var)

Δ;Γ � o→[bl bu] ok

Ψ ;Δ, o→[bl bu];Γ � N ok

Ψ ;Δ;Γ � ∃o→[bl bu].N ok

(F-Exist)

Fig. 3. Jo∃ well-formed contexts and types

Existential Quantification for Variant Ownership 135

Well-formedness. Well-formed contexts and types are given in Fig. 3. An owner
variable is well-formed if it has class type; this guarantees precise information
about all unquantified contexts, and that the set of contexts is closed under
substitution. This restriction abides by the philosophy of existential types, that
abstract packages must be unpacked to be used.

Well-formed class types (F-Class) require the class name to have been de-
clared, actual context parameters to be within the bounds of formal context
parameters, the number of actual type parameters to match the number of for-
mal type parameters, and actual context and type parameters to be well-formed.
Well-formed environments (used in F-Exists) are elided, the only interesting as-
pect is that we require the lower bound of each context variable to be inside its
corresponding upper bound.

To check that actual context parameters are within their corresponding bounds,
the judging environments are extended with this mapped to C<a, X>, i.e., the
class type with actual context parameters and formal type parameters.This is nec-
essary because bl and bu may involve this. We cannot substitute for this, because
there may not be a variable or address that contains the object to be substituted.
We use a mixture of actual context parameters (a) and formal type parameters (X)
because of the order of application of substitution lemmas in the proofs. Using X
is safe, even though X are not in scope, because the type parameters of types are
never used in the rules defining the inside relation.

Ψ ;Δ;Γ � γ : N
fType(f, γ, N) = T

Ψ ;Δ;Γ � γ.f : T

(T-Field)

Ψ ;Δ;Γ � γ : N
fType(f, γ, N) = T

Ψ ;Δ;Γ � e : T
Ψ ;Δ;Γ � γ.f = e : T

(T-Assign)

Ψ ;Δ;Γ � C<a, U> ok

Ψ ;Δ;Γ � new C<a, U> : C<a, U>

(T-New)

Ψ ;Δ;Γ � γ : N Ψ ;Δ;Γ � e : T
Δ;Γ � a ok Ψ ;Δ;Γ � U ok
mTypeΔ;Γ (m<a, γ, U>, N) = T→T

Ψ ;Δ;Γ � γ.<a, U>m(e) : T

(T-Invk)

Ψ ;Δ;Γ � e : ∃o→[bl bu].N

Ψ ;Δ, o→[bl bu];Γ, x:N � e′ : T
Ψ ;Δ;Γ � T ok

Ψ ;Δ;Γ � open e as x,o in e′ : T

(T-Open)

Δ;Γ � [a/o]bl � a Δ;Γ � a � [a/o]bu Δ;Γ � a ok

Ψ ;Δ;Γ � e : [a/o]N Ψ ;Δ;Γ � ∃o→[bl bu].N ok

Ψ ;Δ;Γ � close e with o→[bl bu] hiding a : ∃o→[bl bu].N

(T-Close)

Ψ = X→[⊥©]

∅; this:C<o, X> � o→[bl bu] ok Ψ ; o→[bl bu]; this:C<o, X> � W, T ok

� class C<o→[bl bu], X> {T f; W} ok

(T-Class)

Fig. 4. Jo∃ expression and class typing rules

136 N. Cameron and S. Drossopoulou

Typing. Type rules are given in Fig. 4. Field and variable access (T-Field
and T-Var) are close to those of FGJ [15]. Field assignment (T-Assign) is a
straightforward extension of field access. We adopt the standard subsumption
rule (T-Sub). In object creation (T-New), we create uninitialised objects, we
do not support constructors. T-Null allows null to take any well-formed type.
Method invocation is also close to FGJ, with the addition that actual context
parameters must be well-formed and within their corresponding formal bounds.

In T-Field, T-Assign, and T-Invk, the receiver is restricted to γ. This
allows us to substitute γ for this in field and method types without requiring
dependent typing. Expressivity is not lost since the programmer can use an open
expression with empty o to act as a let expression.

To type check open and close expressions we follow Fun [8] and other classical
existential types systems. The type of expression e is unpacked to an owner
environment, o→[bl bu], and unquantified type, N. We then judge the body
of open (e′) by extending Δ with o→[bl bu] and adding a fresh variable, x,
with type N to Γ ; x stands for the unpacked value of e. We ensure no variables
escape the scope of the open expression by checking that the result type, T, is
well-formed without o or x.

The close expression packs an expression e by hiding some of the context
parameters present in e’s type. For example, if e has type C<this>, then the
expression close e with o hiding this has the existential type ∃o.C<o>.
Example. The assignment employeeOfTheMonth.mentor = director from the
example in Sect. 2 is represented with explicit packing and unpacking as:

open employeeOfTheMonth as e,m in
e.mentor = close director with o→[m this] hiding this;

Under an environment where e has type Worker<m, this>, the close and as-
signment expressions have type ∃o→[m this].Worker<o, this> by T-Close,
and by T-Assign and S-Reflex, respectively. By T-Subs, S-Full, and I-
Bttm, the assignment has the m-free type ∃o→[⊥ this].Worker<o, this>.
employeeOfTheMonth (of type ∃m→[⊥ director].Worker<m, this>) can be
unpacked as e (of type Worker<m, this>), used in type checking the assign-
ment, and therefore T-Open can be applied, giving the entire expression the
type ∃o→[⊥ this].Worker<o, this>.

Dynamic Semantics. We elide most of the operational semantics of Jo∃, they
are mostly standard4. Reduction of open and close expressions is given by the
following rule, taken from the classical formulations of existential types [21]:

open (close v with o→[bl bu] hiding r) as x,o in e;H� [r/o, v/x]e;H
The open and close sub-expressions are eliminated, leaving the body of open

(e) with formal variables replaced by the packed value and hidden contexts. For
example, open (close 3 with o hiding 2) as x,o in (this.<o>m(x)), where 2
and 3 are addresses, reduces to this.<2>m(3) (we replace x by 3 and o by 2).
4 Object creation, performed in R-New, creates a new object with all its fields set to
null; i.e., we do not support constructors.

Existential Quantification for Variant Ownership 137

∀ι→ {C<r, T>; f→v} ∈ H :
∅;Δ;H � C<r, T> ok

fType(f, ι, C<r, T>) = T′ ∅;Δ;H � v : T′

∀v ∈ v : add(v) defined ⇒ add(v) ∈ dom(H)
Δ � H ok

(F-Heap)

Δ � H ok
∀ι ∈ fv(e) : ι ∈ dom(H)

Δ;H � e ok

(F-Config)

Fig. 5. Jo∃ well-formed heaps and configurations

In Fig. 5 we give the definitions of well-formed heaps and configurations. Most
premises are standard. We insist that the address of all referenced values are in
the domain of the heap. The address of a value is given by the partial function
add, defined as:

add(v) =

⎧
⎨

⎩

ι, if v = ι
add(v′), if v = close v′...
undefined, otherwise

which recursively unwraps abstract packages, returning the address within. Thus,
add(v) is defined if v is neither null nor null wrapped in a close expression.

Type Soundness. Type soundness in Jo∃ guarantees that the types of variables
accurately reflect their contents, including ownership information. Furthermore,
the ownership hierarchy defined statically in a program describes the heap when
that program is executed. Although these properties do not constitute an en-
capsulation property, they are necessary when using ownership information to
reason about programs, for example using effects [10]. We show type soundness
for Jo∃ by proving progress and preservation (subject reduction):

Theorem (progress). For any H, e, T, if ∅; ∅;H � e : T and ∅ � H ok
then either there exists H′, e′ such that e;H � e′;H′ or there exists v
such that e = v.

Theorem (subject reduction). For any Δ,H,H′, e, e′, T, if ∅; Δ;H �
e : T and e;H� e′;H′ and Δ;H � e ok and ∅;H � Δ ok and e′ 	= err
then ∅; Δ;H′ � e′ : T and Δ;H′ � e′ ok.

Proofs are given in [4] and can be downloaded from:
http://www.doc.ic.ac.uk/˜ncameron/papers/cameron esop09 proofs.pdf

4 Jo∃deep

Jo∃deep enforces the owners-as-dominators property. It differs from Jo∃ only in its
definition of well-formed types, heaps, and classes. We define auxiliary functions
to find the owner of an object in the heap (ownH(v)) and the owner of objects
with type T (ownΨ (T)) in Fig. 6.

The owner of objects of type X is the lower bound on the owner of X, recorded
in Ψ . To find the owner of objects with existential type (∃Δ.C<a, T>), we must

138 N. Cameron and S. Drossopoulou

ownΨ (C<a, T>) = a0

Ψ(X) = [bl bu]

ownΨ (X) = bl ownΨ (∃Δ.C<a, T>) = glbΔ(a0)

b �∈ dom(Δ)
glbΔ(b) = b

Δ(o) = [bl bu]

glbΔ(o) = glbΔ(bl)

H(ι) = {C<r, T> ...}
ownH(ι) = r0 ownH(close v with o→[bl bu] hiding r) = ownH(v)

Fig. 6. Owner lookup functions for Jo∃deep

find a context that is not quantified and that is inside the declared owner of the
type (a0). This is accomplished by the glb function; glbΔ(b) finds the outermost
object that is inside b and not in the domain of Δ.

The owners-as-dominators property manifests itself as an extra constraint on
well-formed heaps; thus, we extend F-Heap (Fig. 5) as follows:

...
∀ι ∈ H ∀v ∈ H(ι) Δ;H � ι � ownH(v)

Δ � H ok

(F-Heap)

Similarly, Jo∃deep requires some modifications to the well-formedness rules for
class types and classes of Jo∃:

...

∀ai ∈ a : Δ; Γ � a0 � ai

∀Ti ∈ T : Δ; Γ � a0 � ownΨ (Ti)
Ψ ; Δ; Γ � C<a, T> ok

(F-Class)

...

Ψ = X→[o0 ©]
⊥	∈ T, o→[bl bu]

� class C<o→[bl bu], X> {T f; W} ok

(T-Class)

The extra premises in F-Class (together with the well-formedness rules for
contexts) ensure that only contexts that are outside an object can be formed by
substitution of actual for formal parameters in its class. The owner of an object
(a0) is, by definition, outside that object. The first extra premise ensures that
the actual context parameters are outside a0. The second premise ensures that
the owners of any actual type parameters are outside a0. Therefore, all types
formed by substitution of contexts or types will have an owner outside this.

In T-Class we change the way Ψ is created; the lower bounds in Ψ are the
formal owner of the class rather than ⊥. This is required because of the changes
we made to F-Class. The class declaration class C<o, X> { C<o, X> f; }
would not type check without this change: otherwise C<o, X> would not be
well-formed because ownΨ (X) could not be derived to be outside o.

The second extra premise in T-Class requires that ⊥ cannot appear as a
bound in the formal context parameters of the class, nor in any existential types
given to fields in the class. The intention is to ensure that the owner of all objects

Existential Quantification for Variant Ownership 139

referenced by objects of the class (including the hidden owner of objects with
existential type) is outside the referring object. Therefore, in the example in
Sect. 2, the declaration of workGroup would be illegal in Jo∃deep.

We state the owners-as-dominators property in Jo∃deep as:

Theorem (Owners-as-dominators). For any H, if Δ � H ok then
∀ι→ {R; {f→ v}} ∈ H, ∀vi ∈ v : Δ;H � ι � ownH(vi)

This is given by the added premise to F-Heap; we prove that this is main-
tained under execution as part of the proof of subject-reduction [4].

5 Discussion

The expressivity of types in Jo∃ comes from the combination of existential quan-
tification of contexts and type parameterisation. The formalisation of Jo∃ follows
from these starting points and the decision to use explicit packing and unpack-
ing, which simplifies the type rules and proofs for Jo∃. The natural and uniform
emergence of the calculus is reassuring.

Allowing packed values to be be values (and thus stored in the heap) follows ear-
lierwork [8,21,14] on existential types and is a natural consequence of explicit pack-
ing. However, the owners-as-dominatorsproperty is usually phrased assuming that
all values are objects (addresses inJo∃).Wemust therefore consider howtodescribe
owners-as-dominators in the presence of packed values. We do this by not distin-
guishing between packed values and the objects that they abstract. This ensures
that existential quantification cannot hide violations of owners-as-dominators.

In the type system of Jo∃deep, we had to extend the usual restrictions found in
ownership systems to enforce owners-as-dominators. Requiring context parame-
ters to be outside an object’s owner is standard, we needed to extend this to deal
with quantified context variables and type parameters. The crucial observation
is that, in enforcing owners-as-dominators, we always wish to show that a value
is outside the object that refers to it. It is therefore conservative to use a lower
bound on a value’s owner rather than the value’s owner itself. The additional
premises in F-Class of Jo∃deep can thus deal with lower bounds on parameters.
In the case of quantified context parameters this means that we can use their
greatest lower bound. For type parameters we use the lower bound stored in Ψ ;
this motivates using Ψ in Jo∃ rather than just a set of type variables.

6 Related Work

Generics and Ownership Types. Type and ownership information in ownership
types systems is usually kept separate [9,12,25], as in Jo∃. Surprisingly, in OGJ
[22], these two kinds of parameters can be expressed using only type parameters.
This leads to a small and uniform extension of generic Java that implements deep
ownership. The fact that context parameterisation can be encoded using type
extension highlights the similarity of the two systems. It will be interesting future
work to add Jo∃’s existential types to OGJ and, it is hoped, reap the benefits of
Jo∃ in a more realistic language.

140 N. Cameron and S. Drossopoulou

Existential Types. Existential quantification of ownership domains in System
Fown [17] allows domains to be passed around even if they cannot be named.
System Fown supports existential quantification of types, absent in Jo∃, but does
not support subtyping and so existential quantification does not lead to variance.

Infinitary ownership types [9] use existential types to abstract contexts which
cannot be named. Because of dynamically created contexts, this is necessary
to avoid dependent typing. Existential types in Jo∃ can be used in the same
way. However, since contexts cannot be dynamically created, abstraction is not
necessary to avoid dependent typing.

Existential owners can be used in dynamic casts [24]. Casts are not supported
in Jo∃, but they should be straightforward to add. Existential downcasting could
then be encoded in Jo∃ by casting using an existential type.

Variance. Variant ownership types [18] are a programmer friendly way to sup-
port use-site subtype variance, and have very similar behaviour to existential
types. Jo∃ types are more expressive as they allow lower and upper bounds on
contexts (as opposed to upper or lower bounds), type parameters, and explicit
quantification (to express types such as ∃o.C<o, o>).

MOJO [6] uses ? to denote an unknown context parameter. This corresponds
to an existentially quantified context bounded by ⊥ and © in Jo∃. In MOJO, ?
may be used as an actual context parameter.

In the case of field access, substitution of ? (not found in other systems such as
Wild FJ [20]) produces a similar behaviour to existential types in Jo∃. To prevent
field assignment and method call where ? would appear as a type parameter
by substitution (but not where ? is written in the type), strict method and
field lookup are used. Likewise in Jo∃, field assignment or method call where
the receiver has existential type is type incorrect. Variant types in MOJO are,
therefore, treated in the same way as unbounded existential types in Jo∃.

Universes [13] support limited subtype variance through the any notation.
Universe types can be given corresponding types in Jo∃: any C corresponds to
∃o→[⊥©].C<o>, peer C corresponds to C<o> (where o is the owner of the class
declaration in which the type appears), and rep C corresponds to C<this>. The
viewpoint adaptation5 rules of universes correspond to substitution of owners
and unpacking and packing in Jo∃. Generic universes [12] can be described using
this correspondence and Jo∃’s type parameterisation.

An any context is used to facilitate variance in effective ownership [19]. During
field and method type lookup, all substitutions of any for x are replaced with
substitutions of unknown for x. This mechanism is similar to the abstract contexts
of variant ownership types [18] and ? in MOJO. Similarly to these systems, it
should be possible to encode the ownership structure of effective ownership in
Jo∃. Effective owners (per-method owners) are currently beyond the scope of
Jo∃. An effective owner cannot be any, and so there is no variance aspect to
these owners.

5 Viewpoint adaptation is the change in universe annotations when considering a type
in a different context from the one in which it was declared.

Existential Quantification for Variant Ownership 141

In most related work [6,13,18], the treatment of unknown contexts is specific to
the underlying system; our approach is founded in the theory of existential types
and makes clear the relationship between variant types and their behaviour. We
discuss in more detail how Jo∃ can be used to encode and compare the systems
described in this section in [4].

7 Conclusion and Future Work

Jo∃ supports context variance in a uniform and transparent fashion using exis-
tential types. Expressivity is improved by combining existential quantification of
contexts with type parameterisation. We have extended Jo∃ to support owners-
as-dominators and proved both versions sound.

Jo∃ can be used to compare and encode ownership systems with different kinds
of variance or existential types. Existing mechanisms for supporting context
variance have the same behaviour as existential types in Jo∃ and can be easily
encoded (even if other language features cannot). Explicit existential types can
give us a clearer picture of the underlying mechanisms used in type checking.
Jo∃ can also be used to encode existing kinds of existential types in ownership
systems with similar benefits.

We would like to use type parameterisation and context quantification to im-
prove the expressivity of multiple ownership and ownership domains systems,
and to investigate how existentially quantified contexts can be used in an ef-
fects system. It might be useful to extend Jo∃ with subclassing, bounds on type
variables, and existential quantification of type variables.

Acknowledgement. We would like to thank Werner Dietl and the anonymous
reviewers for their detailed and useful feedback, and James Noble for ideas and
inspiration from discussions on the MOJO project.

References

1. Abi-Antoun, M., Aldrich, J.: Ownership Domains in the Real World. In: Inter-
national Workshop on Aliasing, Confinement and Ownership in object-oriented
programming (IWACO) (2008)

2. Armbruster, A., Baker, J., Cunei, A., Flack, C., Holmes, D., Pizlo, F., Pla, E.,
Prochazka, M., Vitek, J.: A Real-Time Java Virtual Machine with Applications in
Avionics. Transactions on Embedded Computing Systems 7(1), 1–49 (2007)

3. Boyapati, C., Rinard, M.: A Parameterized Type System for Race-free Java Pro-
grams. In: Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA) (2001)

4. Cameron, N.: Existential Types for Variance — Java Wildcards and Ownership
Types. PhD thesis, Imperial College London (2009)

5. Cameron, N., Drossopoulou, S., Ernst, E.: A Model for Java with Wildcards. In:
Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 2–26. Springer, Heidelberg
(2008)

142 N. Cameron and S. Drossopoulou

6. Cameron, N., Drossopoulou, S., Noble, J., Smith, M.: Multiple Ownership. In:
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA)
(2007)

7. Cameron, N., Ernst, E., Drossopoulou, S.: Towards an Existential Types Model for
Java Wildcards. In: Formal Techniques for Java-like Programs (FTfJP) (2007)

8. Cardelli, L., Wegner, P.: On Understanding Types, Data Abstraction, and Poly-
morphism. ACM Computing Surveys 17(4), 471–522 (1985)

9. Clarke, D.: Object Ownership and Containment. PhD thesis, School of Computer
Science and Engineering, The University of New South Wales, Sydney, Australia
(2001)

10. Clarke, D.G., Drossopoulou, S.: Ownership, Encapsulation and the Disjointness
of Type and Effect. In: Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) (2002)

11. Clarke, D.G., Potter, J.M., Noble, J.: Ownership Types for Flexible Alias Pro-
tection. In: Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA) (1998)

12. Dietl, W., Drossopoulou, S., Müller, P.: Generic Universe Types. In: European
Conference on Object Oriented Programming (ECOOP) (2007)

13. Dietl, W., Müller, P.: Universes: Lightweight Ownership for JML. Journal of Object
Technology 4(8), 5–32 (2005)

14. Ghelli, G., Pierce, B.: Bounded existentials and minimal typing. Theoretical Com-
puter Science 193(1-2), 75–96 (1998)

15. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a Minimal Core Calculus
For Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001); an
earlier version of this work appeared at OOPSLA 1999 (1999)

16. Igarashi, A., Viroli, M.: Variant Parametric Types: A Flexible Subtyping Scheme
for Generics. Transactions on Programming Languages and Systems 28(5), 795–847
(2006)

17. Krishnaswami, N., Aldrich, J.: Permission-Based Ownership: Encapsulating State
in Higher-Order Typed Languages. In: Programming Language Design and Imple-
mentation (PLDI) (2005)

18. Lu, Y., Potter, J.: On Ownership and Accessibility. In: Thomas, D. (ed.) ECOOP
2006. LNCS, vol. 4067, pp. 99–123. Springer, Heidelberg (2006)

19. Lu, Y., Potter, J.: Protecting Representation with Effect Encapsulation. In: Prin-
ciples of Programming Languages (POPL) (2006)

20. Torgersen, M., Ernst, E., Hansen, C.P.: Wild FJ. In: Foundations of Object-
Oriented Languages (FOOL) (2005)

21. Mitchell, J.C., Plotkin, G.D.: Abstract Types have Existential Type. Transactions
on Programming Languages and Systems 10(3), 470–502 (1988)

22. Potanin, A., Noble, J., Clarke, D., Biddle, R.: Generic Ownership for Generic
Java. In: Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA) (2006)

23. Wrigstad, T.: Ownership-Based Alias Managemant. PhD thesis, KTH, Sweden
(2006)

24. Wrigstad, T., Clarke, D.: Existential Owners for Ownership Types. Journal of
Object Technology 6(4) (2007)

25. Zhao, T., Palsberg, J., Vitek, J.: Type-based Confinement. J. Funct. Pro-
gram 16(1), 83–128 (2006)

Formalising and Verifying Reference Attribute
Grammars in Coq

Max Schäfer, Torbjörn Ekman, and Oege de Moor

Programming Tools Group, University of Oxford, UK
{max.schaefer,torbjorn.ekman,oege.de.moor}@comlab.ox.ac.uk

Abstract. Reference attribute grammars are a powerful formalism for concisely
specifying and implementing static analyses. While they have proven their merit
in practical applications, no attempt has so far been made to rigorously verify
correctness properties of the resulting systems. We present a general method for
formalising reference attribute grammars in the theorem prover Coq. The formal-
isation is supported by tools for generating standard definitions from an abstract
description and custom proof tactics to help automate verification. As a small
but typical application, we show how closure analysis for the untyped lambda
calculus can easily be implemented and proved correct with respect to an oper-
ational semantics. To evaluate the feasibility of our approach on larger systems,
we implement name lookup for a naming core calculus of Java and give a formal
correctness proof of the centrepiece of a rename refactoring for this language.

1 Introduction

Verifying program analyses and transformations is hard, even with the assistance of
modern proof tools. Previous work [17,18] has followed standard practice in the com-
pilers community by focussing on simple intermediate languages, where issues like
complex scoping have been transformed away. For verifying optimisations in a batch
compiler this approach is successful and adequate.

However, many modern development tools such as refactoring editors and code
checkers operate at source level, and not on an intermediate language. This requires
the implementation of analyses and transformations that align with the ‘middle’ phases
of a compiler that deal with name binding, type checking and complex control flow
structures, which are often the most intricate and error prone [10,6].

This paper presents a framework for verifying analyses and transformations on
source, consisting of a specification formalism for source-level analyses and transfor-
mations, namely Circular Reference Attribute Grammars, and an embedding of that for-
malism in Coq. Our embedding is supported by tools that reduce the tedium of working
with a complex language definition and allow proofs to be conducted at a high level of
abstraction.

The particular variant of attribute grammars we have chosen is the basis of the Jast-
Add system [7]. It enhances standard attribute grammars [16] with a notion of node
identity (reference attributes), and the ability to express least fixed point computations
(circular attributes). Both these extensions are well-known: most industrial attribute

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 143–159, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

144 M. Schäfer, T. Ekman, and O. de Moor

grammar systems support reference attributes [1,23], and the idea of circular attributes
goes at least back to Farrow [8].

The success of JastAdd [28] amply demonstrates the power of circular reference at-
tribute grammars and their practical usability. Particularly relevant are its use in the
implementation of JastAddJ, a full, highly compliant Java compiler [7], and in the con-
struction of a refactoring framework for Java [24].

While it is well-known that pure attribute grammars can be regarded as non-strict
functional programs [15], reference attributes and circular attributes require a more so-
phisticated translation. We demonstrate that these complications can be handled grace-
fully by generating boilerplate definitions and judicious use of proof strategies.

The result is a completely general framework for conducting proofs of analyses and
transformations that deal with the full complexity of modern source languages. We
illustrate its use on two examples: verification of a closure analysis, and the core of
the refactoring framework of [24]. The complete formalisation including mechanised
proofs is available for download [25]. Major contributions of this paper are:

– The first generic framework for mechanised proofs of the correctness of program
analyses and transformations specified at source level.

– Tool support for conducting such proofs in Coq, at a high level of abstraction.
– A substantial case study that illustrates how our framework copes with the complex

scoping issues in modern object-oriented languages, an issue that has hitherto not
been considered in a formal setting.

– Evidence that proofs in our framework are scalable: non-trivial extensions to the
object language require only modest additions to the proofs themselves.

The paper is structured as follows. First we introduce the notion of circular reference
attribute grammars in Sec. 2. Next we show in Sec. 3 how this variant of attribute gram-
mars is formalised in Coq. Sections 2 and 3 use a simple closure analysis as a running
example. As a more substantial case study, we describe a formalisation of name analysis
in an object-oriented language in Sec. 4, and show how it can be used to give a correct-
ness proof of the central component of the Rename refactoring. Section 5 evaluates the
development effort for both examples, and investigates scalability issues. Related work
is discussed in Sec. 6, and we conclude in Sec. 7.

2 Reference Attribute Grammars

Attribute grammars [16] are a high-level formalism for declaratively specifying and im-
plementing programs working on trees, in particular programming language processors
such as compilers. Nodes of the underlying trees are endowed with attributes defined in
terms of other attributes on the same node, or attributes on the surrounding nodes.

As originally proposed, attribute grammars make no special provisions for non-local
dependencies, i.e. attributes that are defined in terms of other attributes on nodes far
away in the tree. This situation commonly occurs in the static analysis of programming
languages: For example, to typecheck the use of a variable, information about its type
is needed, which has to be obtained from its declaration arbitrarily far away in the tree.

Formalising and Verifying Reference Attribute Grammars in Coq 145

Solutions such as the explicit construction of symbol tables tend to become quite
complicated, compromising the conceptual clarity of the underlying approach. Many
extensions have been proposed to remedy this and similar problems, a particularly sim-
ple one being Reference Attribute Grammars, or RAGs [11], which are closely related
to Remote Attribute Grammars [3]. The idea here is to allow attributes to evaluate to
node references, on which other attributes can be evaluated in turn, thus superimposing
a graph structure on the abstract syntax tree. This alleviates the need for secondary struc-
tures such as symbol tables and enables the use of the abstract syntax tree as the only
data structure. RAGs become especially useful when combined with circular attributes,
i.e. attributes defined by recursive equations; the combined formalism of Circular Ref-
erence Attribute Grammars, or CRAGs [20], will be our focus in this paper.

To introduce the key features of attribute grammars in general and reference attribute
grammars in particular, we show how to implement closure analysis for the untyped
lambda calculus. Closure analysis is a static analysis that predicts the reduction be-
haviour of terms. Take, for example, the term (λf.(f I) (f K)) (λx.x) where I = λa.a
and K = λb.λc.b. Closure analysis will be able to predict that during reduction x can
only be bound to the terms I and K; we say that the set of closures of (the single oc-
curence of) x is {I, K}. For a discussion of the uses of closure analysis we refer to
the literature [26,22], we concentrate on how to compute the set of closures using an
attribute grammar.

2.1 Abstract Syntax Trees

Our object language is the simply typed lambda calculus with its reduction relation
t ⇓ v, indicating that term t evaluates to value v. The definitions of syntax and reduction
relation are standard and we elide them for brevity.

Lambda terms are represented as abstract syntax trees (ASTs): Every node in an
AST corresponds to a nonterminal of the grammar (here always term). Its children
may either be terminals or other nodes, corresponding to a particular production in
the grammar. In our example, a term node is either a variable node with a single
identifier as its only child; or an abstraction node with an identifier (the bound variable)
and a term node as its children; or an application node with two term nodes as its
children. A node represents a subterm at a certain position, hence in the example the
two occurrences of variable f will be represented by different nodes, albeit with the
same content (namely the term f).

We want to implement an attribute closures that, for each node in the abstract
syntax tree of a lambda term, returns the set of possible closures it could evaluate to.
We want to prove a coherence result to show that our closure analysis agrees with the
reduction relation and correctly predicts reduction outcomes:

Lemma 1 (Coherence). For any lambda term t and closure v, if t ⇓ v then there is
some node nd ∈ closures(t) such that v is the content of nd .

2.2 The Attributes

To start with, we need to define a parameterised lookup attribute which looks up a
name from a position within the term. Proceeding outwards, it returns a reference to

146 M. Schäfer, T. Ekman, and O. de Moor

the innermost enclosing lambda abstraction binding that name, if there is any. Thus, the
result of looking up a name y at a node nd depends on the context of the node:

– if nd is the body of a lambda abstraction binding a variable x, we compare y and x;
if they are the same, nd’s parent node (the lambda abstraction) is returned as result;
otherwise, we proceed with the lookup of y from the parent node

– if nd is the left child of an application node, lookup proceeds outwards
– if nd is the right child of an application node, lookup proceeds outwards

These three cases correspond to the clauses of the definition of name lookup as an
inherited attribute, which is given in Fig. 1 using pseudocode. In these equations, this
refers to the node lookup is invoked on, whereas parent is that node’s parent node.
The equations are defined by pattern matching on the position of this relative to parent,
which is here symbolically indicated as a term with a bullet showing the position of this.

inh lookup :: id× node→ node

lookup(y, λx.•) =

{
parent if y ≡ x
lookup(y,parent) otherwise

lookup(y, • t2) = lookup(y,parent)
lookup(y, t1 •) = lookup(y,parent)

Fig. 1. Informal specification of name lookup

The closure analysis itself is specified as a synthesised attribute closures, which
computes an overapproximation of the closures a term could evaluate to, and a collec-
tion attribute args, which computes an overapproximation of the closures a closure
could be applied to. These two attributes are mutually defined as shown in Fig. 2.

syn closures :: node→ set node

closures(x) = args(lookup(x, this))
closures(λx.t) = {this}
closures(t1 t2) =

⋃{closures(body(c)) | c ∈ closures(t1)}

coll args :: node→ set node

args(c, t1 t2) ⊇ closures(t2) if c ∈ closures(t1)
args(c,) ⊇ ∅ otherwise

Fig. 2. Informal specification of closure analysis

The attribute closures is defined by case analysis over the content of its argument
node, not its position as with attribute lookup above: this is the crucial difference
between synthesised and inherited attributes. The equations are quite straightforward:

– a name can be bound to any value its binding abstraction is applied to
– a lambda abstraction’s only possible value is itself
– an application’s possible values are those of the body of its first child

Formalising and Verifying Reference Attribute Grammars in Coq 147

Note the use of reference attributes in the third equation: The attribute closures re-
turns a set of node references, on which other attributes may in turn be evaluated.

The attribute args is a globally defined collection attribute: Every node in the tree
contributes a value, and all these contributions are combined using set theoretic union to
yield the attribute’s final value. The attribute has type node→ setnode; for a closure
c, args(c) is the set of all possible arguments c could be applied to. The contribution
clauses (written using ⊇) have type node × node → set node; for a closure c and a
node n, they specify what the node n contributes to the value of args(c). In particular,
an application t1 t2 with c as a possible value of t1 contributes all possible values of t2.

The attributes closures and args circularly depend on each other, thus it is not im-
mediately clear that this definition is sensible. The classical solution [5] is to take least
fixed points, which can here be constructed by iteration: the definitions are monotonic
(as we will prove) and have values over a complete partial order of finite height.

Since the inception of attribute grammars, much research has been done on how to
statically detect circularities. It turns out, however, that even the very simple extension
of allowing attributes to take additional parameters (like lookup) defeats all checks:

Theorem 1 (Undecidability of Circularity). It is undecidable whether a para-
meterised attribute is circularly defined.

Proof. See the technical report for details [25].

3 Formalisation of Reference Attribute Grammars

We now show how to implement reference attribute grammars, such as the example
presented in the previous section, in Coq. We choose to use a shallow embedding of
reference attribute grammars into Coq: Abstract syntax trees are represented as terms,
with attributes as functions on them. This means that attribute equations can use the full
power of the Coq language, in particular they can exploit its powerful type system.

3.1 Formalising Abstract Syntax

For the formalisation of the object language’s abstract syntax, we make use of Ott [27],
a tool for specifying the syntax and semantics of programming languages and calculi.
Given an abstract grammar, Ott generates one Coq datatype per nonterminal, with one
constructor per production. In our case this yields

Inductive term : Set := Var : string → term
| Abs : string → term → term
| App : term → term → term.

This representation, however, is not sufficient to model reference attributes. The at-
tribute lookup, for example, should return a reference to a lambda abstraction, which is
not only characterised by its content (given by term of type term), but also its position
in the syntax tree to distinguish it from other abstractions that might happen to have the
same body. This leads to our first implementation challenge:

148 M. Schäfer, T. Ekman, and O. de Moor

Challenge 1 (Node Identity) We need a datatype representing nodes with an identity
such that they can be distinguished from other nodes, even if they have identical content.

To achieve this, we use Huet’s zipper [12]. The basic idea of the zipper is to describe
a node’s position as a “path” from the node to the root of the tree. Let n be the node
under consideration. If it is the root node, its path is empty. Otherwise, n must be the ith
child of some node p and has left siblings n1, . . . , ni−1 and right siblings ni+1, . . . , nm,
where m is the total number of children of p. Then the path of n consists of a first “step”
containing all the siblings n1, . . . , ni−1, ni+1, nm (represented by their subtrees), and
a path for p.

The possible steps are prescribed by the grammar: since every abstract syntax tree
must be derivable from the start symbol, a step can only go from the occurrence of
a nonterminal t’ on the right hand side of some production p to the nonterminal t
on its left hand side. In our grammar, there are only three possible steps and only one
nonterminal, hence the definition of the step datatype is very simple:

Inductive step : Set := Term1InApp : term → step
| Term2InApp : term → step
| TermInAbs : string → step.

The three constructors correspond exactly to the position patterns used in our infor-
mal specification of the lookupattribute in the previous section: A step Term1InApp t2
describes (the position of) a node which is the first child of a node representing an ap-
plication, and whose right sibling is t2 – in the pseudocode, this was written as (• t2).
Likewise, Term2InApp tt1 corresponds to (t1 •) and TermInAbs x is (λx.•).

In order to fully describe a node’s position, we need to give the complete sequence
of steps all the way to the root of the syntax tree. Thus the datatype of positions is

Inductive pos : Set := Root : pos
| Step : step → pos → pos.

Finally, nodes are nothing but pairs of positions and content (i.e., terms), with con-
venience functions node_pos and node_content to access these two parts.

The example term from Sec. 2 is represented in Coq as

App (Abs "f" (App (App (Var "f") I) (App (Var "f") K)))
(Abs "x" (Var "x"))

where I and K are Coq representations of the terms I and K , respectively. The position
of the only occurrence of x is

Step (TermInAbs "x")
(Step (Term2InApp (Abs "f" (App (App (Var "f") I)

(App (Var "f") K)))) Root)

If we “plug” the content of the node into the first step on its path, we obtain the tree
representation of the parent node’s content. If we continue plugging all the way up to
the root node, we get back the representation of the whole tree. These operations can
be implemented systematically for every nonterminal as two functions plug_step and
root which can be understood as tree navigation primitives for going “upwards”.

Formalising and Verifying Reference Attribute Grammars in Coq 149

The definitions of the zipper datatypes step, pos, node, and the helper functions
plug_step and root can clearly be automatically derived from the abstract grammar.
Indeed, we have extended Ott to provide this facility, but since the general case of gram-
mars with multiple nonterminals requires somewhat more involved definitions than the
ones given above, we defer discussion of this feature until Sec. 4.

3.2 Formalising Attributes

A pleasant side effect of using a zipper-based representation of nodes is that it yields a
nice characterisation of the difference between synthesised and inherited attributes: A
synthesised attribute works on the first component of a node (its children), whereas an
inherited attribute works on its second component (its siblings and ancestors).

We start out by rephrasing our informal specification of lookup from Sec. 2 in Coq.
First, we need to remedy a loophole of that specification: if we try to lookup an unbound
variable, the inherited attribute described in Fig. 1 will reach the root of the syntax tree
without having found any binding abstraction, and the specification does not say what is
supposed to happen in this case. Our implementation of the attribute as a Coq function
will have an option type as its return type, with a designated value None indicating that
no binder was found.

If a binder was found, what should the function return? In the specification, it returns
the binder’s node. However, given our current node implementation, all nodes have type
node, so we cannot by its type distinguish a node representing an abstraction from a
node representing, say, an application. Hence we introduce a type that contains the same
information as a node containing an abstraction, but in more explicit form1:

Definition closure := pos * string * term.

The type of the lookup attribute is now string → node → optionclosure.
When evaluated to lookup an unbound variable, it will return None, otherwise Some c

where c is the closure representing the binding abstraction:

Definition lookup (y:string) :=
inh (fun _ ⇒ option closure) (fun _ ⇒ None)

(fun s p t up ⇒
match s with
| TermInAbs x ⇒

if string_eq x y then Some (p, x, t) else up
| _ ⇒ up
end).

The implementation makes use of the inh combinator which takes three arguments:

1. The result type of the attribute. .
2. The default value of the inherited attribute at the root node.
3. A function to compute the attribute value on a non-root node. The four parameters

of this function are
1 A perhaps more elegant alternative would be to have a grammar with a separate nonterminal

for abstractions; our syntax tree would then be more strongly typed, and we could directly
return a node from lookup. This is the path followed in Sec. 4.

150 M. Schäfer, T. Ekman, and O. de Moor

(a) the first step of the node’s position
(b) the parent node’s position
(c) the contents of the node
(d) the attribute value at the parent node.

The definition of the combinator is automatically derived from the specification of
the grammar by our framework. Its use greatly improves the legibility of inherited at-
tributes; the implementation of lookup closely resembles the informal specification.

Next, we implement the synthesised attribute closures. According to its specifi-
cation, it should return a set of nodes representing closures; instead of sets, our imple-
mentation uses lists (without duplicate elements). The implementation of the attribute is
shown in Fig. 3, where the underlined code should be ignored for the moment. It makes
use of some user-defined syntactic sugar for handling sets to improve legibility.

The collection attribute args from Sec. 2 is implemented in two parts: One is the
contribution function args, which, for every node in the tree, specifies what it con-
tributes to the value of the attribute. Its implementation is given in Fig. 3, again with
some additional underlined code to be discussed shortly. The attribute closures uses
the combinator coll to perform a traversal of the syntax tree, collecting contributions
from all the nodes, and combining them by set union, with [] (the empty set) as neutral
element. The combinator’s definition is automatically derived from the grammar.

3.3 Circularity

The functions closures and args are defined by mutual recursion. However, Coq does
not allow general recursion, requiring recursive functions to use well-founded recursion
instead to ensure termination, which leads to our second main formalisation challenge:

Challenge 2 (Circularity) Many attributes are most easily given (mutually) circular
definitions. We need a way to formalise such definitions in Coq.

In line with classical work on circular attribute grammars [5,8], we require all possibly
circular attributes to be monotonic functions whose range is partially ordered; the actual
attribute value is then computed as the least fixed point.

In our example, the attributes take values in the poset of (finite) lists of closures2. The
iterative fixed point computation is formalised by giving all circularly defined attributes
an extra “time to live” (TTL) parameter ttl, which is a natural number that is decreased
on every unsafe recursive invocation. If it ever reaches 0, the recursion stops and [] (the
bottom element of the poset) is returned. To achieve this, we need to introduce extra
code (underlined in Fig. 3), which makes use of a convenience function to effect the
“cut-off” once the counter drops to zero:

Definition TTLcut f ttl := match ttl with 0 ⇒ []
| S ttl’ ⇒ f ttl’ end.

This solution is quite lightweight and requires pleasantly little extra machinery.

2 This partial order is a priori infinite (and of infinite height), but for any given term t the
attribute closures will only return closures from t, which form a finite set.

Formalising and Verifying Reference Attribute Grammars in Coq 151

Fixpoint closures (nd:node) ttl := TTLcut (fun ttl ⇒
match node_content nd with
| Var x ⇒ match lookup x nd with

| Some c ⇒ coll union [] (args c ttl)
| None ⇒ []
end

| Abs x t ⇒ [nd]
| App t1 t2 ⇒

let f := Node (Step (Term1InApp t2) (node_pos nd)) t1 in
⋃

{{ closures (closure_body c) ttl | c ← closures f ttl }}
end) ttl

with args c ttl (nd:node) := TTLcut (fun ttl ⇒
let p := node_pos nd in
match node_content nd with
| App t1 t2 ⇒

let n1 := Node (Step (Term1InApp t2) p) t1 in
let n2 := Node (Step (Term2InApp t1) p) t2 in

if contains (closures n1 ttl) c then closures n2 ttl
else []

| _ ⇒ []
end) ttl.

Fig. 3. Definition of closures and args; circularity handling code underlined

Our first and most urgent task is to prove monotonicity of the definitions to ensure
that we can sensibly speak about their least fixed points. Since the two attributes are
mutually defined, the Coq proof simultaneously establishes their monotonicity by in-
duction on ttl.

We can now proceed to the formalisation of the coherence lemma. The reduction
relation on terms can be abstractly specified in Ott and is extracted to Coq as a binary
predicate reduce. Lemma 1 then reads like this:

Lemma closures_sound : ∀ t v, reduce t v →
∃ ttl, In v (closures (Node Root t) ttl).

In words, this asserts that for any term t and any value v such that t ⇓ v there is a
sufficiently large TTL value such that the analysis predicts a closure c containing v. The
proof proceeds by induction on the reduction of t to v.

To summarise, we have shown how the implementation of closure analysis as a
CRAG from Sec. 2 can be translated to Coq. The two features of reference attributes
and circular attributes pose the two challenges of how to represent nodes with iden-
tity and how to accommodate non-wellfounded mutual recursion. These challenges are
overcome via automatically generated datatype definitions and combinators that make
it easy to translate the informal attribute specifications into Coq code, on which we can
then prove the desired coherence property.

152 M. Schäfer, T. Ekman, and O. de Moor

4 Case Study: Name Analysis

The example in the previous section is quite simple and could easily have been written
without using CRAGs. As a case study in using our framework to formalise a more
substantial attribute grammar, we will now briefly discuss the formalisation of name
analysis for a subset of Java. Although this is a much more complicated object language
than the untyped lambda calculus, the same techniques are applicable; in fact, name
analysis can be implemented using only inherited and synthesised attributes, there is
no need for collection attributes. Tool support for automatic generation of definitions
for the abstract syntax and the zipper datatypes is much more important now, as are
carefully chosen tactics to simplify proofs. These two facilities ensure easy extensibility
of the language: adding a non-naming related feature to the language usually can be
done by changing only the high-level specification.

4.1 The Grammar

We define NameJava, a subset of Java that concentrates on the language’s naming fea-
tures for fields and classes, to the exclusion of almost all “operational” aspects.In partic-
ular it supports compilation units and packages, nested classes, initialisers with nested
blocks, member fields and local variables, qualified names for variables and classes,
and the keywords this and super.

The name lookup rules for NameJava are the same as for Java [9]; an example pro-
gram that highlights some of the salient points appears in Fig. 4. The five local variables
a1 to a5 are assigned as follows: a1 is bound to the local variable a, a2 to the field
a of class D, a3 to the field a of class B, a4 to the field a of class B (since the local
variable A obscures the class of the same name), and a5 to the field a of class A.

package p; class B {
A a;

class A { class D extends A {
A a; C c; / / 1
class C { } A a;

} { A a = a; B A = A; A a1 = a; A a2 = this.a;
A a3 = B.this.a; A a4 = A.a; A a5 = p.A.a; }

}
}

Fig. 4. Example NameJava program

The grammar of NameJava is, as for the untyped lambda calculus, specified in Ott, so
datatype definitions for the abstract syntax and the zipper are automatically generated.
For example, the inductive datatype for programs is

Inductive program : Set := CProgram : list compunit → program.

expressing that a program is a list of compilation units.

Formalising and Verifying Reference Attribute Grammars in Coq 153

For the zipper datatypes, our automatic extraction actually generates a more strongly
typed version than the one shown in Section 2: there is not a single datatype node of
nodes, but rather a family of datatypes indexed by the nonterminal they represent. The
index type is an enumeration type with one constructor per nonterminal of the grammar:

Inductive nt : Set := Program | Compunit | Classdecl | Extclause
| Bodydecl | Block | Stmt | Vardecl | Expr | Access | ...

The datatype of steps is doubly indexed over nt. A step t’ t describes the posi-
tion of a subtree derived from nonterminal t’ within its parent, which is derived from
nonterminal t, i.e. it is a “step from t’ to t”. We cannot give the definition of step
for NameJava in full due to space constraints, but a fairly typical constructor is

BodydeclInClassdecl : string → extclause →
list bodydecl → list bodydecl → step Bodydecl Classdecl

describing the position of a body declaration within a class declaration: To reconstruct
the complete class declaration given one of its body declarations b, we need to know the
class name (a string), the extends clause, the body declarations to the left of b, and
the body declarations to the right of b—exactly the data stored in the step constructor.

As before, the pos datatype is a sequence of steps. It is, however, likewise indexed
over a nonterminal (thus pos t describes the type of positions of subtrees derived
from t), and it ensures that the steps it is composed of “fit together”:

Inductive pos : nt → Type :=
Root : pos Program

| Step : ∀ t t’, step t t’ → pos t’ → pos t.

Finally, to define the type of nodes, we need to ensure that the content of a node t
actually is of the right type, i.e., a term of the inductive datatype corresponding to the
index t. To this end we make use of an (automatically generated) function content,
that maps indices to datatypes—for example, content Program is program:

Inductive node : nodetype → Type :=
Node : ∀ t, pos t → content t → node t.

The upshot of using this more complicated, indexed representation of zippers is that
it rules out many positions and nodes that could never occur in a well-formed program.
For example, with the given NameJava grammar we can prove (in Coq) that the parent
of a node Stmt will always be a node Block. This is crucial for the definition of
plug step and root, which both map nodes to trees; if the nodes were improperly
nested, no corresponding trees could be constructed.

4.2 Attributes for Name Analysis

Name lookup in NameJava proceeds basically in an “outwards” movement, search-
ing through enclosing lexical scopes until a matching declaration is found. Member
classes and fields, however, can also be inherited from an ancestor class, hence an “up-
wards” movement (up the inheritance chain) is superimposed on the underlying out-
wards movement. Qualified names, finally, contribute a third type of movement: first,
the declaration of the qualifier (resp. its type if it is a variable) is looked up, then the

154 M. Schäfer, T. Ekman, and O. de Moor

qualified name is looked up as a member within this declaration (again possibly follow-
ing the inheritance chain upwards, but never going outwards through enclosing scopes).

Name lookup for classes is implemented using five attributes, modelled after the
implementation in the JastAddJ Java compiler [7]:

– toplevel class looks up a toplevel class within a compilation unit
– canonical class looks up a class by name and package
– local class looks up a local member class within a class
– member class looks up a member class in a class or one of its ancestors
– lookup class looks up a class, starting from an arbitrary node and searching

through enclosing scopes

The first three of these just iterate over a list of declarations, looking for the first
one with the right name. The behaviour of lookup class and member class and
their interaction, is more interesting, since they circularly depend on each other: Sup-
pose that lookup class is used to lookup the type name "C" from the line marked
with “1” in Fig. 4. First, class D is searched for a member class named C. Mem-
ber classes include both locally defined classes and inherited member classes. Since no
local class C exists, we need to invoke member class on D’s super class.

To resolve the super class, we need to lookup the name "A" by lookup class,
causing member class to depend on lookup class. That lookup will search for
a member class named "A" in the enclosing class B, causing lookup class to
depend on member class in turn. Since A is not a member class of B, it will be found
as a toplevel class. Once we have a reference to A, class C is successfully looked
up as a member class of A.

Observe that this last step makes crucial use of reference attributes: The node of class
A is retrieved as the value of attribute lookup class, and then attribute
member class is in turn evaluated on it. The example also shows that the two at-
tributes recursively invoke each other, and thus are circularly defined.

4.3 Circularity in Name Analysis

Nevertheless, this circularity is quite different from the one encountered when imple-
menting closure analysis: Whereas the specification of closure analysis is genuinely cir-
cular and the actual result of the analysis is the least fixed point of the given equations,
the circularity of the definitions of lookup class and member class is somewhat
accidental. We would, in fact, hope that the mutual recursive invocations of these two
attributes are well-founded so that the attribute evaluation eventually terminates.

However, the language described so far allows classes that extend themselves, i.e.
definitions like class A extends A { }. Looking up a member in A will lead the
two attributes to repeatedly invoking each other on the same arguments, and thus to
nontermination. The Java Language Specification [9] forbids programs like the above:
Well-formed Java programs must not contain classes that are their own descendants.

It is clear that lookup on classes with acyclic inheritance hierarchy always terminates:
When member class recursively invokes itself on the superclass (as determined by
lookup class), we have moved up one level of inheritance, so eventually we will
arrive at a class that extends no other class, and the member lookup will terminate. So

Formalising and Verifying Reference Attribute Grammars in Coq 155

in order to implement a version of lookup class that is guaranteed to terminate,
we need to require that the node it is invoked on belongs to a program with acyclic
inheritance hierarchy. However, in order to define the concept of an acyclic inheritance
hierarchy we need a definition of inheritance, and for this we need lookup class!

There does not seem to be an easy solution to this chicken-and-egg problem, so
we accept the presence of a possible circularity, and treat it in the same way as for
closure analysis: The circularly defined attributes take an additional TTL parameter and
produce values over the flat poset of optional values, defined by the Coq type option,
with None standing for nontermination.

Once we have implemented class lookup as a partial function, we can define what it
means for a class to have an acyclic inheritance hierarchy, and we can give a (construc-
tive) proof that when looking up a member class of such a class, there is a sufficiently
large number n for which lookup will always return a value when invoked with n as its
TTL counter. In other words, we can now prove that member lookup on classes with
acyclic inheritance hierarchy always terminates.

Note that the need for circularly defined class lookup arises from the presence of
nested classes. In a language without nested classes, all classes are toplevel classes
within compilation units, so class lookup could be implemented by the two attributes
toplevel class and canonical class alone, without any circularity.

4.4 Towards the Verification of Rename Refactorings

We cannot prove the correctness of our lookup implementation, since there is no formal
specification to validate it against, so we apply our framework to a different problem:
In [24], we describe how the well-known Rename refactoring, i.e. changing the name
of a declaration and all its uses, can be implemented using right inverses to the lookup
functions. We start from the observation that a reasonable correctness criterion for a
renaming would be that the “binding structure” of the program does not change, i.e. all
names in the program still refer to the same declarations as before.

We therefore define an access computation function that is a right inverse to lookup:
Whereaslookup computes the declaration d a name n binds to at a program location p,
access computes a name n that a declaration d can be accessed under from a location
p, where n might be qualified to avoid capture. The inversion property means that if
access gives a name n to access d from p, looking up n from p will yield d.

Given an implementation of access computation with this property, it is, in principle,
easy to implement a rename refactoring: Given an input program, we first determine
which declaration every individual name refers to. Then we perform the requested name
change. Now we go over the program again. For every name, we know the declaration
it ought to refer to, and if it does not do so anymore we can use access computation to
determine an alternative name that does, and replace the old name with it.

In our current case study we concentrate on proving the inversion property. Given the
implementation of the attributes for class and variable lookup, we can write correspond-
ing access computation attributes. For member class, which looks up a member
class, we have an attribute access member, which constructs an access to a mem-
ber class; for lookup class we have access class, and so on. The inversion

156 M. Schäfer, T. Ekman, and O. de Moor

of an attribute definition is quite systematic, and it is easily verified that all the access
computation attributes are indeed right inverse to their corresponding lookup attributes.

Many of the proofs proceed by induction on either trees or positions, and hence
have to handle (at least) one case per language construct to establish the induction step.
Only a limited number of cases is actually interesting for every given proof, however:
When proving properties of name lookup, for example, only constructs corresponding
to naming scopes need special attention, in all the other cases the induction hypothe-
sis can be applied directly. This situation can be handled gracefully by the Coq tactic
language: When doing an induction, we specify a default tactic to be tried on all new
subgoals; usually, Coq’s auto tactic is sufficient to discharge all the trivial cases, if its
hint database has been populated with enough domain specific lemmas.

5 Evaluation

5.1 Statistics

Figure 5 gives some statistics about the size of the complete Coq development for both
our examples: the implementation of closure analysis in Sec. 3 and the name analysis
for NameJava in Sec. 4. For both we give the line count for the Ott specification and
for the Coq code automatically extracted from that specification, written as a sum: The
first summand represents the size of the code extracted by Ott, and the second the size
of the code extracted by our extension. Furthermore, we give the line count for the
handwritten Coq specification, and for the proof scripts, as well as the total line count.

Closure Analysis NameJava
Ott specification (LOC) 80 322
extracted Coq code (LOC) 118+163 403+443
Coq specification (LOC) 301 2219
proof scripts (LOC) 233 1694
total LOC 614 4235

Fig. 5. Size of development

As expected, the name analysis is far bigger than the closure analysis, at almost seven
times the size. In both cases, we have profited clearly from writing a high-level speci-
fication in Ott and automatically extracting the definitions of tree and zipper datatypes:
the Ott specification is only about a third of the size of the extracted code. It is worth
noting, however, that we use Ott merely as a convenient language for describing the ob-
ject language syntax. All the proofs are carried out inside Coq, on the generated abstract
syntax, and are fully certified by the Coq kernel.

It is interesting to see that the proof scripts are smaller than the specification they
verify, only comprising about 40% of the total line count on both projects. This number
is similar to other formalisation projects, such as Leroy’s CompCert [19].

Formalising and Verifying Reference Attribute Grammars in Coq 157

5.2 Extensibility

Although NameJava has all the major naming related features of full Java, it is a much
smaller language. We have shown how the same implementation techniques can be used
to specify closure analysis on the lambda calculus and to prove the inversion property
of access computation and lookup in NameJava. But what about extending to a larger
subset of Java, or even the full language? Will all the proofs have to be redone?

Fortunately, the answer is no. Adding a non-naming related feature to the language
is possible without breaking any of the proofs: Introducing an if statement to the lan-
guage only needs five additional lines of Ott. Neither lookup nor access computation
have to be changed, and all the proofs still go through unchanged. For language features
such as the for loop, which do influence the lookup without introducing any new nam-
ing related concepts, the effort is still moderate (40 lines of specification, 50 lines of
proof). Adding, e.g., interfaces would certainly require more effort, but the experience
of JastAddJ shows that CRAGs are powerful enough to handle the full Java language.

6 Related Work

Proofs of analyses and transformations. Cachera et al. [4] derive a dataflow analysis
in Coq by abstract interpretation, independent of an implementation language. On the
other end of the spectrum, Lerner et al. [18] introduce a domain specific language to
encode analyses, which are then automatically proved correct. Our work is positioned
in the middle: Using CRAGs offers a convenient implementation language, which is
nevertheless fully integrated with Coq; the price we pay is less automation.

Formalising attribute grammars. Traditionally, attribute grammars have been en-
coded in lazy functional languages as families of functions, one per nonterminal, that
take inherited attributes as parameters and return synthesised attributes as results [15].
Our method represents different attributes by different functions, thus staying closer to
the original attribute grammar. It is not clear if the traditional encoding could accom-
modate reference attributes. The zipper has been used before to implement inherited
attributes [29,2], but without making the connection to reference attributes.

Formalisations of Java. There has been much interest in the formalisation of (subsets
of) the Java language [14,21], but most formalisations focus on the semantics of the lan-
guage and mostly ignore more syntactic aspects like lookup rules. Only FJI [13] makes
an effort to model nested classes, but the formalisation is geared towards minimality
and does not give a satisfying solution to the name lookup circularity problem.

7 Conclusions

We have presented a novel framework for formalisation and verification of analyses and
transformations that are expressed at source level, rather than on a simplified interme-
diate language. The key to this framework are circular reference attribute grammars,
which have proven their practical worth in compiler generation tools [1,23,8,7].

We have presented a general method for formalising them in Coq, enabling the ex-
pression of specifications and proofs at a high level of abstraction. We provide tools

158 M. Schäfer, T. Ekman, and O. de Moor

that automatically generate datatype definitions and utility functions from a high-level
description of the object language, which are complemented by domain-specific tac-
tics to simplify proofs. We have validated these tools and tactics with a non-trivial case
study, namely renaming in the presence of the complex binding rules of modern object-
oriented languages. The verification effort is manageable, and the proofs are scalable,
so that they do not have to be redone from scratch when the object language changes.

As future work, we would like to explore the implementation of a domain specific
language for attribute grammars on top of Coq. This would give additional possibilities
for automation, and it might be possible to support automatic proofs of common lemmas
such as the monotonicity of circularly defined attributes. Still, we feel that it is essential
to provide close integration of the attribute implementations with the Coq language in
general, so as not to lock the user into the DSL, since the more complex proofs can
likely not be fully automated and certainly benefit from the power of the full system.

We hope this paper has enthused others to venture into the formalisation and verifi-
cation of source level analyses . Modern development tools need to stay at the source
level to interact with the user, but bugs are common even in production quality environ-
ments. Our work shows that rigorous verification of the underlying analyses is feasible,
which can help in improving tools used by developers on a daily basis.

References

1. Augusteijn, L.: Definition of the programming language Elegant, 2000. Release 7.1, Philips
Research Laboratories, Eindhoven, the Netherlands (February 2000)

2. Badouel, É., Fotsing, B., Tchougong, R.: Yet Another Implementation of Attribute Evalua-
tion. Technical Report 6315, INRIA Rennes (2007)

3. Boyland, J.T.: Remote attribute grammars. J. ACM 52(4), 627–687 (2005)
4. Cachera, D., Jensen, T., Pichardie, D., Rusu, V.: Extracting a data flow analyser in construc-

tive logic. Theor. Comput. Sci. 342(1), 56–78 (2005)
5. Chirica, L.M., Martin, D.F.: An Order-Algebraic Definition of Knuthian Semantics. Mathe-

matical Systems Theory 13, 1–27 (1979)
6. Ekman, T., Ettinger, R., Schäfer, M., Verbaere, M.: Refactoring bugs (2008), http://

progtools.comlab.ox.ac.uk/refactoring/bugreports
7. Ekman, T., Hedin, G.: The JastAdd Extensible Java Compiler. In: OOPSLA (2007)
8. Farrow, R.: Automatic generation of fixed-point-finding evaluators for circular, but well-

defined, attribute grammars. In: CC, pp. 85–98 (1986)
9. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification (2005)

10. Hanson, D., Proebsting, T.: A research C# compiler. SPE 34(13) (2004)
11. Hedin, G.: Reference Attributed Grammars. Informatica (24), 301–317 (2000)
12. Huet, G.P.: The Zipper. J. Funct. Program. 7(5), 549–554 (1997)
13. Igarashi, A., Pierce, B.C.: On inner classes. Inf. and Comp. 177(1), 56–89 (2002)
14. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A Minimal Core Calculus for Java

and GJ. In: OOPSLA, pp. 132–146 (1999)
15. Johnsson, T.: Attribute grammars as a functional programming paradigm. In: Kahn, G. (ed.)

FPCA 1987. LNCS, vol. 274, pp. 154–173. Springer, Heidelberg (1987)
16. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems Theory 2, 127–146

(1968); correction: Mathematical Systems Theory 5, 95–96 (1971)
17. Lacey, D., Jones, N.D., Van Wyk, E., Frederiksen, C.C.: Proving Correctness of Compiler

Optimizations by Temporal Logic. In: POPL, pp. 283–294. ACM Press, New York (2002)

http://progtools.comlab.ox.ac.uk/refactoring/bugreports
http://progtools.comlab.ox.ac.uk/refactoring/bugreports

Formalising and Verifying Reference Attribute Grammars in Coq 159

18. Lerner, S., Millstein, T., Rice, E., Chambers, C.: Automated soundness proofs for dataflow
analyses and transformations via local rules. SIGPLAN Not. 40(1), 364–377 (2005)

19. Leroy, X.: Formal certification of a compiler back-end. In: POPL, pp. 42–54 (2006)
20. Magnusson, E., Hedin, G.: Circular Reference Attributed Grammars. Sci. Comput. Pro-

gram. 68(1), 21–37 (2007)
21. von Oheimb, D., Nipkow, T.: Machine-checking the java specification: Proving type-safety.

In: Alves-Foss, J. (ed.) Formal Syntax and Semantics of Java. LNCS, vol. 1523, p. 119.
Springer, Heidelberg (1999)

22. Palsberg, J.: Closure Analysis in Constraint Form. TOPLAS 17(1), 47–62 (1995)
23. Reps, T.W., Teitelbaum, T.: The Synthesizer Generator: A system for constructing language-

based editors. In: Texts and Monographs in Computer Science. Springer, Heidelberg (1989)
24. Schäfer, M., Ekman, T., de Moor, O.: Sound and Extensible Renaming for Java. In: Kiczales,

G. (ed.) OOPSLA. ACM Press, New York (2008)
25. Schäfer, M., Ekman, T., de Moor, O.: Formalising and Verifying Reference Attribute

Grammars in Coq (Technical Report and Implementation) (2009), http://progtools.
comlab.ox.ac.uk/projects/refactoring/formalising-rags

26. Sestoft, P.: Analysis and Efficient Implementation of Funct. Prog. Ph.D. thesis (1991)
27. Sewell, P., Nardelli, F.Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strnisa, R.: Ott:

effective tool support for the working semanticist. In: ICFP, pp. 1–12 (2007)
28. Ekman, T.: JastAdd (2008), http://www.jastadd.org
29. Uustalu, T., Vene, V.: Comonadic functional attribute evaluation. In: TFP (2005)

http://progtools.comlab.ox.ac.uk/projects/refactoring/formalising-rags
http://progtools.comlab.ox.ac.uk/projects/refactoring/formalising-rags
http://www.jastadd.org

Verified, Executable Parsing

Aditi Barthwal1 and Michael Norrish2

1 Australian National University
Aditi.Barthwal@anu.edu.au

2 Canberra Research Lab., NICTA
Michael.Norrish@nicta.com.au

Abstract. We describe the mechanisation of an SLR parser produced by a parser
generator, covering background properties of context-free languages and gram-
mars, as well as the construction of an SLR automaton. Among the various prop-
erties proved about the parser we show, in particular, soundness: if the parser
results in a parse tree on a given input, then the parse tree is valid with respect
to the grammar, and the leaves of the parse tree match the input; completeness: if
the input is in the language of the grammar then the parser constructs the correct
parse tree for the input with respect to the grammar; and non-ambiguity: gram-
mars successfully converted to SLR automata are unambiguous.

We also develop versions of the algorithms that are executable by automatic
translation from HOL to SML. These alternative versions of the algorithms re-
quire some interesting termination proofs.

1 Introduction

The (context-free) parsing problem is one of determining whether or not a string of
terminal symbols belongs to a language that has been specified by means of a context-
free grammar. In addition, we imagine that the input is to be processed by some later
form of analysis, e.g., a compiler. Therefore, we wish to generate the parse tree that
demonstrates this membership when the string is in the language, rather than just a
yes/no verdict.

The parsing problem can be solved in a general way for large classes of grammars
through the construction of deterministic push-down automata. Given any grammar in
the acceptable class, the application of one function produces an automaton embodying
the grammar. This automaton then analyses its input, producing an appropriate parse
tree. The particular function we have chosen to formally characterise and verify pro-
duces what is known as an SLR automaton.

Thus, at a high level, our task is to specify and verify two functions

slrmac : grammar -> automaton option
parse : automaton -> token list -> ptree option

The slrmac function returns SOME m if the grammar is in the SLR class, and NONE
otherwise. The parse function uses the machine m to consume the input and produce
a parse tree for the input string, returning NONE in case of a failure. A parser generator

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 160–174, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Verified, Executable Parsing 161

is used to produce such a parse function for any context-free grammar. In this paper
we will concentrate on implementation and verification of the parse function.

In the rest of the paper, we will describe the types and functions that appear above.
In Section 1.1, we describe grammars and their properties. In Section 1.2, we describe
the type of SLR automata, and the type of the results. In Section 1.3, we describe the
construction of automata from input grammars. We are then in a position to verify
important properties about these functions. Our theorems are described in Section 2.
Finally, we also wish to be able to turn our verified HOL functions into functions that
can be executed in SML. To do this, a number of definitions that have rather abstract
or “semantic” characterisations need to be shown to have executable equivalents. The
derivation of executable forms is described in Section 3.

Literature and Technology. Being one of our field’s earliest examples of theory leading
to successful practice, parsing and language theory has a large literature. On the other
hand, we are not aware of any existing work on a mechanised theory of parsing. Our
mechanisation has been performed in the HOL4 system [2,5], and has been inspired
principally by Hopcroft and Ullman’s standard text [3].

Parsers as External Proof Oracles. If an external, potentially untrusted, tool were to
generate the parse tree for a given string, it would be easy to verify that this parse tree
was indeed valid for the given grammar. The parse tree would be serving as a proof that
the input string was indeed in the grammar’s language, and the trusted infrastructure
need only check that proof. It is natural then to ask what additional value a verified
parser-generator might provide. Apart from the intellectual appeal in mechanising in-
teresting mathematics, we believe there is at least one pragmatic benefit: if the (verified)
construction of an SLR automaton succeeds, one has a proof that the grammar in ques-
tion is unambiguous. When a parse is produced by the automaton, one knows that no
other parse is possible.

1.1 Context-Free Grammars

A context-free grammar (CFG) is represented in HOL using the following type defini-
tions:

symbol = TS of string | NTS of string

rule = rule of string => symbol list

grammar = G of rule list => string

(The => arrow indicates curried arguments to an algebraic type’s constructor. Thus, the
rule constructor is a term of type string -> symbol list -> rule. We use
lists rather than sets for the grammar’s rules for ease of later translation to SML, and to
avoid frequent finite-ness side conditions.)

A rule is a mapping from a string to a symbol list, where the string is interpreted as a
non-terminal. Similarly, a grammar consists of a list of rules and a string giving the start

162 A. Barthwal and M. Norrish

symbol. Traditional presentations of grammars often include separate sets correspond-
ing to the grammar’s terminals and non-terminals. We extract these sets with functions
terminals and nonTerminals respectively.

Definition 1. A list of symbols (or sentential form) s derives t in a single step if s is of
the form αAγ, t is of the form αβγ, and if A → β is one of the rules in the grammar.
In HOL:

derives g sf1 sf2 =
∃s1 s2 rhs N.

(sf1 = s1 ++ [NTS N] ++ s2) ∧
(sf2 = s1 ++ rhs ++ s2) ∧
MEM (rule N rhs) (rules g)

(The infix ++ denotes list concatenation. The MEM relation denotes list membership.)

We can form the reflexive and transitive closure of a binary relation like derives g
with the ˆ* operator, written as a suffix. Thus, (derives g)ˆ* sf1 sf2 indicates
that sf2 is derived from sf1 in zero or more steps, also denoted as sf1⇒∗ sf2 w.r.t
a grammar.

Later we will also use the rightmost derivation relation, rderives, and its closure.

Definition 2. The language of a grammar consists of all the words that can be derived
from the start symbol.

language g =
{ tsl | (derives g)ˆ* [NTS (startSym g)] tsl ∧

EVERY isTmnlSym tsl }
(Predicate isTmnlSym is true of a symbol if it is of the form TS s for some string s.
EVERY checks that every element of a list satisfies the given predicate.)

We also define the concept of nullability and relations for finding first sets and follow
sets for a symbol as stated below. These notions are central when the actions for the
SLR automaton are calculated (see Section 1.2).

Definition 3. A list of symbols α is nullable iff α⇒∗ ε:

nullable g sl = (derives g)ˆ* sl []

Definition 4. The first set of a symbol is the set of terminals that can appear first in the
sentential forms derivable from it:

firstSet g sym =
{ (TS fst) | ∃rst.(derives g)ˆ* [sym] (TS fst::rst) }

(:: represents the list ‘cons’ operator.)

Definition 5. The follow set of a symbol N is the set of terminals that can occur after
N in a sentential form derivable from any of the right-hand sides belonging to a rule in
the grammar.

Verified, Executable Parsing 163

followSet g N =
{ TS ts | ∃M rhs p s.

MEM (rule M rhs) (rules g) ∧
(derives g)ˆ* rhs (p ++ [N;TS ts] ++ s) }

(This definition might be simplified by only considering derivations from the start sym-
bol of the grammar. However, we choose to present it in the above way so it is compati-
ble with our executable definition, which ignores reachability of non-terminals.)

Executable versions of these functions (which do not need to scan all possible deriva-
tions) are described in Section 3.1.

1.2 SLR Automata

An SLR machine is a push-down automaton where each state in the automaton corre-
sponds to a list of items. An item N → α · β, is a grammar rule that has been split
in two by the dot (·) marking the progress that has been made in recognising the given
right-hand side (αβ). In HOL:

item = item of string => symbol list # symbol list
state = item list

In the mechanisation, an automaton state is a list of items, and the empty list represents
an error state. The state of an execution is the current input, coupled with a stack of
pairs of automaton states and parse trees. The root of each parse tree corresponds to a
terminal symbol that has been shifted from the input, or to a non-terminal that has been
produced through a reduction step.

Based on the next symbol in the input (we are implementing SLR with one symbol
lookahead), and the state the parser is in, the parser will perform one of the following
actions:

– REDUCE: the parser recognizes a valid handle on the stack and reduces it to the
left-hand side of the rule

– GOTO: the parser shifts an input symbol on to the stack and goes to the indicated
state

– NA: the parser throws an error

In our framework, the automaton is presented by two functions, goto and reduce.
The goto function takes a symbol and a state as arguments and returns a new
state. We have thus merged two tables in the traditional presentation: the shift table
encoding information for terminals, and the goto table for non-terminals.

The reduce function takes a symbol and a state and returns a list of possible
rules that can be reduced in the given state. When the machine has been constructed
from an SLR grammar the list will always be empty or just one element long. If a
reduction is to be performed for rule N → α, the symbols α are popped off the stack,
revealing a state s0. The non-terminal N is pushed onto the stack, and the machine
shifts to the state given by goto applied to N and s0.

164 A. Barthwal and M. Norrish

Given a state and input symbol, the next action is a shift if the goto function returns
a non-error state. The next action is a reduction if the reduce function returns a list
containing one rule. The SLR construction ensures that both conditions can’t be true
simultaneously. If neither is true, the machine throws an error.

These functions are combined using a while combinator of type

(’a -> bool) -> (’a -> ’a option) -> ’a ->
’a option option

The type ’a is the type of the execution state. The first argument is a boolean condi-
tion on states specifying when the loop should continue. The second argument encodes
the loop body, allowing for the possibility that the loop execution terminates abnor-
mally (e.g. the parser detects a string not in the grammar’s language). The third argu-
ment is the initial state. The result encodes normal termination, abnormal termination
(SOME NONE) and failure to terminate (NONE).

1.3 Constructing the Parser

The architecture of the parser-construction process is shown in Figure 1. The first step in
creating the SLR machine is to augment the grammar. The augmentation adds an extra
rule that introduces a new start symbol and a marker (a terminal symbol) that appears
at the end of all the words in the language of the grammar. The parser uses this rule
for reduction exactly when it has accepted the input word. This ensures that the parser
always ‘spots’ the end of input. The augmentor auggr is a function of type

grammar -> string -> string -> grammar option

We use SOME g’ to return the augmented grammar g’ when the symbols being in-
troduced are ‘fresh’ (not part of the old grammar). Otherwise failure is indicated by
returning NONE.

The slrmac function creates the goto and reduce functions which represent the
three transition tables of the traditional presentation of an LR automaton. It checks that

Fig. 1. Architecture of the Parser Construction Process

Verified, Executable Parsing 165

the functions don’t produce any shift-reduce or reduce-reduce conflicts. If the functions
pass this test, they can be passed onto the parser function which implements the
machine (as described above in Section 1.2).

Building the Parsing Tables. The construction of the goto function is conceptually
simple: let the result of applying goto to a state σ and the symbol s (terminal or non-
terminal) be the list of items N → αs · β, where N → α · sβ is an element of σ. This
behaviour is captured in the HOL function moveDot. Unfortunately, it is not sufficient.

When an item’s dot is before a non-terminal, say A → α · Bβ, this indicates that
the parser expects to parse the non-terminal (B) next. To ensure the item set contains
all possible rules the parser may be in the midst of parsing, it must additionally include
all items describing how B itself will be parsed. If there are rules for B that themselves
have non-terminals as the first element of a RHS, then those non-terminals’ items must
also be included. Thus we must take a closure: repeatedly including all referenced non-
terminals until we reach a fix-point.

The final goto function is calculated by nextState (which gets access to the
input grammar). The new state is computed by moving the dot over all the items in the
current state that have the input symbol after the dot, and then taking the closure.

nextState g itl sym = closure g (moveDot itl sym)

The other table we must compute is reduce. This really is simple: for every com-
plete item (of the form N → α·) in a state, return the rule N → α if the input symbol
is in the follow set of N . Because we use the entire follow set of N , we are computing
an SLR machine. If we didn’t use a follow set at all, and always reduced on complete
items, we would be implementing an LR(0) parser. If we computed follow sets for states
that depended on where a non-terminal had been used, we would be implementing an
LALR parser.

Checking for Conflicts. When slrmac has constructed the functions goto and
reduce, it then checks them for possible shift-reduce or reduce-reduce conflicts.
Checking for such an error in a given state on a given symbol is done by the noError
function:

noError (go,rd) sym st =
case rd st sym of

[] -> T
|| [r] -> (go st sym = [])
|| otherwise -> F

The slrmac function then tests noError on all reachable states in the automaton,
and for all possible terminal symbols. This is easy to express logically:

okSlr g initState =
∀syms state tok.

trans g (initState, syms) = SOME state =⇒
noError (goto g, reduce g) tok state

166 A. Barthwal and M. Norrish

where trans g iterates goto g over a sequence of symbols to find the resulting state
(if any). Hopcroft and Ullman call this function δ.

Expressing this check executably is discussed in Section 3.

Putting it all Together. The parser function is as given in Figure 1.

parser (initState, eof, oldS) m sl =
let out = mwhile (¬ ◦ exitCond eof oldS)

(λs.parse m s) (init initState sl)
in
case out of

NONE -> NONE
|| SOME (SOME (sl’,[(state,ptree)],csl’)) ->

SOME (SOME ptree)
|| SOME NONE -> SOME NONE
|| SOME _ -> SOME NONE

The parse function implements a single step of the SLR machine (Section 1.2). init
provides the initial execution state to get this process started. The exitCond function
is true of an execution state if the stack consists of just the non-augmented grammar’s
start symbol, and if the input consists of just the eof token. The while combinator
mwhile (Section 1.2) repeatedly performs the parse step until exitCond is true.

2 Proofs

We now have a parser generator formally specified in HOL. To verify that our speci-
fication is indeed correct, we would like to demonstrate that the language accepted by
the automaton is the same as the language defined by the grammar. This goal is natu-
rally split into two inclusion results: that everything accepted by the machine is in the
language (“soundness”), and that everything in the language is accepted by the machine
(“completeness”).

Before we delve into the proofs, we describe what it means to be a valid parse tree
with respect to a grammar:

(validptree g (Node n ptl) =
MEM (rule n (getSymbols ptl)) (rules g) ∧
(∀e. MEM e ptl ∧ isNode e =⇒ validptree g e)) ∧

(validptree g (Leaf tm) = F)

Here, getSymbols gives the list of symbols at the roots of a list of trees. Thus, a tree
is valid with respect to a grammar if there is a rule in the grammar that corresponds to
the root node deriving the roots of its sub-trees, and if (recursively) all the sub-trees are
also valid.

The proofs to come also depend on a number of simple invariants on the state of a
parse execution:

Verified, Executable Parsing 167

– parser inv states implementation-specific properties about the stack. These
properties ensure the items in each of the state on the stack correspond to some
grammar rule (validStates) and that the initial start state is never popped off
from the stack.

parser inv g csl = validStates g csl ∧ ¬NULL csl

– The SLR automaton works by computing valid items for each viable prefix. Predi-
cate validItem inv asserts that each of the states contains only those items that
are valid for the viable prefix γ, which is the string of symbols that has been pushed
on to the stack to reach that state (stk).

validItem_inv g initState stk =
∀stk’.

IS_PREFIX stk stk’ ∧ ¬NULL stk’
=⇒
trans g (initState, stackSyms stk’) =
SOME (topState stk’)

2.1 Validity of the Parse Tree Generated

If the parser results in a parse tree, the tree is valid with respect to the grammar for which
the parser was generated. Alternatively, the parse tree was built using rules present in
the given grammar.

Below we abbreviate validptree inv for conditions which state that for all the
non-terminals on the stack, the associated parse trees are valid with respect to the given
grammar. We prove that this property is preserved by the parse function, which takes
a single step of the execution. By induction over the while-loop, if the parser is able to
reduce the stack symbols to the start symbol, then the corresponding parse tree must be
valid as well.

Theorem 1
∀g sl stl.

auggr g s eof = SOME ag ∧ slrmac ag = SOME m ∧
parser_inv ag csl ∧ validptree_inv g stl ∧
parser (initState, eof, oldS) (SOME m) sl =
SOME (SOME tree)

=⇒
validptree ag tree

2.2 Equivalence of the Output Parse Tree and the Input String Parsed

The main predicate of interest here is the leaves eq inv. Below it abbreviates con-
ditions which assert that at each state the leaves of the tree are equal to the parsed string.
This ensures that the grammar rules being applied to form the parse tree, correspond to
the input string being parsed and the leaves of the resulting parse tree are equal to the
original input string.

168 A. Barthwal and M. Norrish

Theorem 2
∀m g s eof sl csl.

auggr g s eof = SOME ag ∧ slrmac ag = SOME m ∧
parser inv ag csl ∧ leaves eq inv sl sl [] ∧
parser (initState, eof, startSym g) (SOME m) sl =

SOME (SOME tree))
=⇒

(sl=leaves tree)

2.3 Soundness of the Parser

To prove soundness, we have to show that the input string for which a valid parse tree
can be constructed, is in the language of the grammar.

Theorem 3
∀m g s eof sl csl.

auggr g s eof = SOME ag ∧ slrmac ag = SOME m ∧
parser inv ag (stl, csl) ∧
validptree inv ag (stl, csl) ∧
leaves eq inv sl sl [] ∧
parser (initState, eof, startSym g) (SOME m) sl =

SOME (SOME tree))
=⇒
sl ∈ language ag

In turn, this result depends on a simple result stating the equivalence of being able to
derive a sentential form and having a valid parse tree with that form as its leaves.

2.4 Completeness of the Parser

To show completeness, we have to prove that if a string is in the language of a grammar
then the parser will terminate with a parse tree. Soundness (Theorem 3) already ensures
the validity of the output tree. We assume that the grammar does not have useless non-
terminals, i.e. all the non-terminal symbols generate some terminal string (‘generates
a word’, gaw). We earlier proved that removing useless symbols does not affect the
language of a grammar, so we might extend slrmac to do this for us, or just have it
report an error if given a grammar containing useless non-terminals.

Theorem 4
auggr g st eof = SOME ag ∧ sl ∈ language ag ∧
slrmac ag = SOME m ∧
(∀nt. nt ∈ nonTerminals ag =⇒ gaw ag nt)

=⇒
∃tree.
parser (initState, eof, startSym g) (SOME m) sl =

SOME (SOME tree)

Verified, Executable Parsing 169

This result has by far the most complicated proof in the mechanisation, and took a con-
siderable proportion of the total time spent. Much of the time was spent casting about
for a detailed version of the argument for LR(0) grammars in Hopcroft and Ullman [3,
§10.7]. That argument specifies the construction of the automaton and continues:

We claim that when M starts with w in L(G) on its input and only s0 on
the stack, it will construct a rightmost derivation for w in reverse order. The
only point still requiring proof. . .

Our eventual proof recasts this somewhat. We already have an (arbitrary) rightmost
derivation for w by virtue of the fact that it is in L(G). (We proved the lemma stating that
any derivation of a word has a rightmost equivalent.) We then argue that the machine
will take a sequence of steps that mirror this derivation.

We make the actual derivation concrete (it is a list of sentential forms), and write
R 	 d � sf 0 → sf 1 if d is a derivation of sf 1, starting at sf 0, and respecting derivation
relation R (i.e., R holds between each successive pair of elements in the list d).

Each sentential form is derived from its predecessor by the expansion of a non-
terminal. When moving backwards through the derivation, this corresponds to a reduc-
tion step.

The crucial lemma supporting our proof states that if we have rderives g 	 d �

sf 0 → w, then there is a sequence of n parse-steps bringing the SLR automaton to
a state where it is just about to perform the first reduction of the derivation d. This is
by induction on d. This result in turn relies on knowing that when the current handle,
or RHS of the next reduction, is still partly or completely in the input, the machine will
perform a sequence of shift moves in order to bring the handle onto the stack.

All of these results depend on the invariants already described, and the fact that the
automaton is SLR. For example, in the last lemma: if we know that a shift is possible,
then we also know that a reduction is not.

2.5 SLR Grammars Are Unambiguous

A grammar is unambiguous if for each string w∈ L(G), w has a unique rightmost
derivation.

Definition 6. A word w in the language of grammar g is represented by a derivation
list starting from the start symbol of g and ending in w. A derivation for w is unique iff
all possible derivation lists are identical.

isUnambiguous g =
∀sl dl dl’.

sl ∈ language g ∧
rderives g 	 dl � [NTS (startSym g)] → sl ∧
rderives g 	 dl’ � [NTS (startSym g)] → sl ∧

=⇒
dl=dl’

170 A. Barthwal and M. Norrish

Theorem 5
auggr g st eof = SOME ag ∧ slr ag = SOME m

=⇒
isUnambiguous ag

A corollary of completeness and the fact that the SLR machine is deterministic.

3 An Executable Parser

For the most part, the HOL definitions turn out to be executable. However, for the sake
of simplicity and clarity, many of our definitions were written in a style that favoured
mathematical ease of expression. The use of existential quantifiers, and the reflexive
and transitive closure in such definitions make them non-executable. Here we describe
how the defined functions can be re-expressed in a way that makes them acceptable to
HOL4’s emitML technology. Our general approach was to take an existing function
f , and define a new fML constant. After proving termination for the typically compli-
cated recursion equations defining fML, we then had to show that fML’s behaviour was
equivalent to f ’s.

Would it save work to just use executable functions from the outset? Sadly no; the
important thing about these executable functions is that they should compute some
mathematical property. Proving that this is the case is the same problem as showing
the equivalences we describe here.

In this section we describe our executable implementations of the non-executable, or
“mathematical” HOL definitions. Even though the HOL versions were more tractable
for proving properties such as our language inclusion results, there have been places
where it was decided to value executability over succinctness of presentation.

3.1 Executable Calculation of Nullable Non-terminals

The executable counterpart of the nullable function is given below.

nullableML g sn [] = T ∧
nullableML g sn (TS ts::rest) = F ∧
nullableML g sn (NTS A::rest) =

if (MEM (NTS A) sn) then F
else
EXISTS (nullableML g (NTS A::sn))

(getRhs A (rules g)) ∧
nullableML g sn rest

The nullableML function determines whether or not a list of symbols (a sentential
form) can derive the empty string. When the string includes a terminal symbol, the result
is false. When a non-terminal is encountered, we recursively determine if any of that
non-terminal’s RHSes might derive the empty string.

In order to ensure that this recursion terminates, we introduce a “seen” list and up-
date this with the non-terminal that is being visited when we expand it. To then con-
vince HOL that this function terminates, we must find a wellfounded relation on the

Verified, Executable Parsing 171

arguments of nullableML. Because a singleton list containing a non-terminal may
expand into a list of symbols of arbitrary length, we cannot simply use the length of the
sentential form as a measure. Instead we use the lexicographic combination:

measure (λ(g,sn). |nonTerminals g \ set sn|)
LEX

measure LENGTH

We assert that either the number of symbols except the ones in the seen list decreases,
or that the length of the sentential form decreases. The former corresponds to the first
conjunct in the third clause in the definition while the latter takes care of the second
conjunct.

The next step is to show the equivalence between the new HOL constants and the
originals. Proving the equivalence requires showing the following two implications.

∀g sn sf. nullableML g sn sf =⇒ nullable g sf

∀g sf. nullable g sf =⇒ sn = [] =⇒ nullableML g sn sf

As previously outlined, for a sentential form to be nullable, it cannot have a terminal
symbol. We look at the non-trivial case, i.e.when the sentential form itself is not empty.
A sentential form N1N2...Nn is nullable iff the individual derivations for the Ns itself
are nullable.

N1 ⇒∗ ε
N2 ⇒∗ ε
.
.
.
Nn ⇒∗ ε

nullable asserts the existence of some derivation from sf to ε. On the other hand,
nullableML looks at a concrete derivation with a specific property, i.e.in each indi-
vidual derivation, the symbols cannot be repeated. This property gives us termination
but it also makes the equivalence proof harder.

The first implication turns out to be easy to prove since we are showing the existence
of a particular form of derivation from a more generic one.

To prove the latter implication, we need to show that each derivation without any
constraints on its form, can be recast into a derivation where the individual derivations
of ε do not have repeated symbols. We do this by a complete induction on the length of
the derivation and show that any derivation of the form N ⇒∗ ε can be recasted into a
new derivation (possibly smaller), that gets accepted by nullableML.

This ‘obvious’ property of nullable derivations is usually ‘assumed’ in textbook
proofs, but plays a centre role when proving the equivalence between a mathematical
definition and an executable one.

With this equivalence we now know that execution of SML code will provide a be-
haviour corresponding to that of the formal HOL entity.

172 A. Barthwal and M. Norrish

The executable firstSet and followSet definitions were defined in a similar
way (by introducing a “seen” list in the computation). The termination and equivalence
proof follow similar lines of reasoning.

An Executable slrmac. Another interesting termination case is encountered when we
try to make slrmac definition executable. slrmac checks whether the resulting table
for the grammar has any conflict or not. It is not strictly a necessary component of the
parser generator but does assist in stating some of the proofs. For example, with this
function we can assert that if we can build a parse table for a grammar and the input
belongs in the language of the grammar, then the parser will output a parse tree.

Building the parse table involves traversing the state space to find the next state for each
of the symbols in the grammar, starting from the initial state. neighbours takes a state
and returns a state list. The state list contains states that can be reached by following each
of the symbols in the input (i.e., transitions one-level deep). It uses symNeighbour to
shift the dot past the current symbol and get the state corresponding to it. The result-
ing state contains no duplicates (rmDupes). The condition DISTINCT ensures that we
don’t loop forever by considering states where the same items might be repeated. An-
other check, validItl makes sure that the items in the state do correspond to some
rule in the grammar.

symNeighbour g itl sym =
rmDupes (closure g (moveDot itl sym))

neighbours g itl [] = [] ∧
neighbours g itl (x::xs) =

symNeighbour g itl x::neighbours g itl xs

visit g sn itl =
if ¬(DISTINCT itl) ∨ ¬(validItl g itl) then []
else let s = neighbours g itl set (allSyms g) in
let rem = diff s sn in

rem++(FLAT (MAP (visit g (sn++rem)) rem))

The parse table builder here is the visit function. Starting in the initial state it follows
the transitions for each of the symbols in the grammar until it can reach no more new
states. The important thing here is to make sure states are not repeated otherwise we
end up following the same path over and over again. Here, the number of states seen
increases at each recursive call. We also know that the number of possible states (even
though it might be large) is finite (allGrammarItls). This is because we have a
finite number of symbols in our grammar and a finite number of rules as well. From
this we can deduce that the number of states that have not been encountered decreases
at each call. This forms our termination argument.

measure (λ(g,sn,itl). |allGrammarItls g \ set sn|)

With this on hand, we can implement an executable slrmac that checks the entire
table for shift-reduce and reduce-reduce conflicts.

Verified, Executable Parsing 173

slrML4Sym g [] sym = SOME (goto g, reduce g) ∧
slrML4Sym g (i::itl) sym =

let s = goto g i sym in
let r = reduce g i (sym2Str sym) in

case (s,r) of ([],[]) -> slrML4Sym g itl sym
|| ([],[v12]) -> slrML4Sym g itl sym
|| ([],h::h’::t) -> NONE
|| (h::t,[]) -> slrML4Sym g itl sym
|| (h::t,h’::t’) -> NONE

slrML g itl [] = SOME (goto g, reduce g) ∧
slrML g itl (sym::rst) =

if (slrML4Sym g itl sym = NONE) then NONE
else slrML g itl rst

4 Future Work

One piece of future work we would like to pursue is to demonstrate that SLR parsers
terminate on all inputs, not just on strings in the language. This would then demon-
strate the decidability of language membership. (Our mechanisation currently admits
the possibility that parser goes into an infinite loop.)

We would also like to improve the efficiency of the parser. Currently, the DFA states
are computed on the fly. This gives us simpler proof goals, assisting in reasoning about
the program’s properties. Changing this to be computed statically would enhance the
performance of the parser when emitted as executable SML code.

For the sake of simplicity, we have dealt with SLR parsers. In practice however,
compiler-compilers such as yacc and GNU bison generate LALR parsers. Instead of
follow sets, LALR parsers uses lookahead sets, which are more specific as they take
more of the parsing context into account, allowing finer distinctions. It will be inter-
esting to see to what extent the existing work on SLR will assist us in verifying other
parsing algorithms such as LR(1), LALR or GLR parser generator. We anticipate that
most of the proof framework will not change excepting the work related to calculating
lookahead sets.

5 Related Work

To realise the ambition of fully verified translation from source to machine code, all
phases in the compilation process should either be verified or subject to verification
after the fact. These two strategies are implemented in what have been termed verified
or verifying compilers respectively. As we have already commented, one might imagine
that the appropriate strategy for parsing would be to verify the output of an external tool.
This then would be what one might call verifying parsing. For example, a verifying
parser would mesh with Blazy, Dargaye and Leroy’s work on the formal verification of
a compiler front-end for a subset of the C language [1], which otherwise ignores parsing
as an issue.

174 A. Barthwal and M. Norrish

In the field of language theory, Nipkow [4] provided a verified and executable lexical
analyzer generator. This is the closest in nature to the verification we have done. As with
our work, Nipkow faced issues in making his definitions executable, principally because
of the inductively defined transitive closure.

6 Conclusions

We have presented work on formal verification of an SLR parser generator. Most of the
functions are directly executable. For those that we thought were better expressed more
“mathematically”, we have presented executable definitions of behaviourally equivalent
alternatives. This conversion also illustrated the gap between simple textbook defini-
tions and a verifiable executable implementation in a theorem prover. Issues like termi-
nation which can be ignored when dealing with semantic definitions, become necessary
when executability comes into play. This also highlights how eminently suitable HOL
is for developments of this kind, especially with its facility of emitting verified HOL
definitions as SML code.

HOL sources for the work are available at http://users.rsise.anu.edu.
au/˜aditi/. The definitions and proofs are 21000 LOC. It took 7 months to com-
plete the work which includes over 700 lemmas/theorems. This includes the definitions,
major proofs related to SLR grammars and also lemmas about existing HOL types (e.g.,
sets,lists) that were not already present in the system.

References

1. Blazy, S., Dargaye, Z., Leroy, X.: Formal verification of a C compiler front-end. In: Misra, J.,
Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 460–475. Springer, Heidel-
berg (2006)

2. Gordon, M.J.C., Melham, T. (eds.): Introduction to HOL: a theorem proving environment for
higher order logic. Cambridge University Press, Cambridge (1993)

3. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, Reading (1979)

4. Nipkow, T.: Verified lexical analysis. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS,
vol. 1479, pp. 1–15. Springer, Heidelberg (1998)

5. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S.
(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008), http://
hol.sourceforge.net

http://users.rsise.anu.edu.au/~{}aditi/
http://users.rsise.anu.edu.au/~{}aditi/
http://hol.sourceforge.net
http://hol.sourceforge.net

An Efficient Algorithm for Solving the
Dyck-CFL Reachability Problem on Trees

Hao Yuan and Patrick Eugster

Department of Computer Science, Purdue University
{yuan3,peugster}@cs.purdue.edu

Abstract. The context-free language (CFL) reachability problem is well
known and studied in computer science, as a fundamental problem under-
lying many important static analyses such as points-to-analysis. Solving
the CFL reachability problem in the general case is very hard. Popu-
lar solutions resorting to a graph traversal exhibit a time complexity of
O(k3n3) for a grammar of size k. For Dyck CFLs, a particular class of
CFLs, this complexity can be reduced to O(kn3). Only recently the first
subcubic algorithm was proposed by Chaudhuri, dividing the complexity
of predating solutions by a factor of log n.

In this paper we propose an effective algorithm for solving the CFL
reachability problem for Dyck languages when the considered graph is
a bidirected tree with specific constraints. Our solution pre-processes
the graph in O(n log n log k) time in a space of O(n log n), after which
any Dyck-CFL reachability query can be answered in O(1) time, while
a näıve online algorithm will require O(n) time to answer a query or
require O(n2) to store the pre-computed results for all pairs of nodes.

1 Introduction

In this paper, we study a well-known problem called the context-free language
reachability (CFL reachability) problem [1]. This problem is of particular interest
in the context of static analyses, such as type-based flow analysis [2] or points-
to analysis [3,4]. Consider a directed graph G = (V, E) with n vertices and a
context-free grammar, each directed edge (u, v) ∈ E is labeled by a terminal
symbol L(u, v) from Σ. For any path p = v0v1v2 . . . vm (which can have loops),
we say that this path realizes a string R(p) which is the concatenation of the
symbols on the path, i.e., R(p) = L(v0, v1)L(v1, v2)L(v2, v3) . . .L(vm−1, vm).

The CFL reachability problem has several facets:

– Source and destination specified. Given a source node and a destination node,
is there a path p connecting them, whose corresponding string R(p) can be
generated by the context-free grammar?

– Single source. Given a source node u, answer the questions: for each node v,
is there a path p connecting u and v, whose corresponding string R(p) can
be generated by the context-free grammar?

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 175–189, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

176 H. Yuan and P. Eugster

– Single destination. Given a destination node v, answer the questions: for each
node u, is there a path p connecting u and v, whose corresponding string
R(p) can be generated by the context-free grammar?

– All pair queries. Answer for every pair of nodes u and v: is there a path p
connecting u and v, whose corresponding string R(p) can be generated by
the context-free grammar?

A context-free language is called Dyck language if it is used to generate
matched parentheses. Basically, it has the following form: a size k (i.e., k kinds
of parentheses) Dyck language can be defined by

S −→ ε
∣
∣ S S

∣
∣ (1 S)1

∣
∣ (2 S)2

∣
∣ · · · ∣

∣ (k S)k

where S is the start symbol, and ε is the empty string.
When the context-free language is a Dyck language, the CFL reachability

problem on that language is referred to as the Dyck-CFL reachability problem. In
this paper we give an efficient algorithm for solving this problem when the given
digraph is in a specific bidirected tree structure, as detailed in Sections 3 and 4. A
bidirected tree corresponds to some situation in which an object flow (sub-)graph
only involves objects of non-recursive types.

In short, our algorithm pre-processes the specific tree graph in O(n log n log k)
time within O(n log n) space, which allows for a Dyck-CFL reachability query
for any pair of nodes to be performed in O(1) time. Note that a näıve online
algorithm will in contrast take O(n) time to answer a query online, or need
O(n2) space to store the pre-computed results for all pairs of nodes.

The speedups in the pre-processing, which are central to the efficiency of our
algorithm, are made possible by the following two key ideas:

1. We build linear data structures for a pivot node x to answer queries on paths
leading through x. To that end, we construct tries [5] of size n representing
strings of unmatched parentheses for the path from any node to x in a single
tree walk using O(n log k) time.

2. To handle the case where a given path does not lead through x, we apply
the above scheme recursively for the subtrees obtained by removing x; x is
chosen to be a centroid node of the tree [6,7].

Roadmap. This paper is organized as follows. Section 2 covers the related
work on the CFL reachability problem. The motivation of studying the Dyck-
CFL reachability problem on trees is given in Section 3, which focuses on the
application to points-to analysis. Our algorithm to solve the problem efficiently
is described in Section 5, after preliminary definitions and lemmas have been
provided in Section 4. Finally, Section 6 concludes with final remarks.

2 Background and Related Work

The CFL reachability problem was first formulated by Yannakakis [8] in his work
to solve the datalog chain query evaluation problem in the context of database

An Efficient Algorithm for Solving the Dyck-CFL Reachability Problem 177

theory. Since then, it is widely used in the area of program analysis: many
program analysis problems can be reduced to it, e.g., interprocedural data flow
analysis [9], shape analysis [10], points-to analysis [3,4], alias analysis [11] and
type-based flow analysis [2]. For more applications, see the survey paper of [1].

In the work of Yanakakis [8], an O(k3n3) algorithm was given to solve the
CFL reachability problem, with k the size of the grammar (usually considered
to be constant) and n the number of nodes (typically objects in an object graph).
Later, Reps gave a very popular iterative algorithm [10], which is still in O(k3n3).
Since many program analysis problem can be reduced to the CFL reachability
problem, it is important to see if we can break the cubic bottleneck.

Recently, Chaudhuri gave the first subcubic time algorithm for the CFL reach-
ability problem [12]. His algorithm runs in O(k3n3/ logn) time by using the well-
known Four Russians’ Trick [13] to speed up set operations under the Random
Access Machine model. Similar techniques were used in Rytter’s work [14,15].
A closely related problem, the reachability problem on recursive state machines,
was also studied in [12]. It can be shown that the reachability problem on recur-
sive state machines can be reduced to the CFL reachability problem, and vice
versa [16].

It is possible to improve the running time of the CFL reachability algorithm for
special cases [1]. One direction is to design algorithm for specific grammars. For
example, if the context-free language under consideration is the Dyck language,
then the general O(k3n3) time bound can be reduced to O(kn3) by a refined
analysis [17]; in the type-based flow analysis work of Fähndrich [2], an O(n3)
algorithm is designed to handle the special grammar used in his reduction. The
Dyck language captures the nature of the call/return structures of a program
execution path, and hence constitutes an important context-free language that
is studied within the context of the CFL reachability problem [4,1,12]. In the
work of [3], a Dyck language was used to model the PutField and GetField
operations in the field-sensitive flow-insensitive points-to analysis for Java. Dyck
languages are also studied in the context of visibly pushdown languages [18] and
streaming XML [19].

The other direction is to design algorithms for special graph classes. When
the directed graph is a chain, the CFL reachability problem can be viewed as
the CFL-recognition problem, which has an algorithm running in O(BM(n))
time given by Valiant [20], where BM(n) is the upper bound to solve the matrix
multiplication problem for n× n boolean matrices. The best such upper bound
known is O(n2.376). Yannakakis [8] noted that Valiant’s algorithm can also be
applied to the case when the graph is a directed acyclic graph. In this work, we
will consider the special case when the graph is in the form of a bidirected tree.

3 Motivation: Points-to Analysis

In this section, we present the motivation for the Dyck-CFL reachability problem
on trees; it is based on the application of the CFL reachability problem to field-
sensitive flow-insensitive points-to analysis [3].

178 H. Yuan and P. Eugster

3.1 Points-to Analysis via Dyck-CFL Reachability

In points-to analysis, we want to compute for each pointer x, the points-to
function

pt(x) = {objects allocated in the heap that are possibly pointed by x}.

Throughout this paper, we will use the other notation ft(o), the flow-to function,
to represent the set of pointers that will possibly point to the object o, i.e.

ft(o) = {x | o ∈ pt(x)}.

The underlying model discussed is field-sensitive and flow-insensitive. Field-
sensitive means that we take the fields of the classes into consideration. Flow-
insensitivity entails that we do not consider the execution order of the codes.
Figure 1 gives an example illustrating the basic concepts of flow analysis.

The scenario depicted in the figure is as follows. For the statement x=new
Object(); we allocate a new object o1 in the heap, and then assign it to the
pointer x by a directed edge labeled with new. Similarly, for the second statement,
we make a new edge from o2 to pointer z. For the assignment statement w=x;,
we add an assign edge to the graph. One can see that object o1 may flow to
pointer w through the execution of the first and third statements, this is reflected
on the graph by a path from o1 to w. The last two statements demonstrate the
field-sensitive analysis, i.e., we add two edges GetField[f] and PutField[f]
accordingly. Object o1 is only considered possibly flowing to the field f of v
rather than flowing to v even if v is reachable from o1 in the graph. The reason
is that, the path connecting o1 and v is not closed: there should be a PutField[f]
before GetField[f] to make the object flow to v through the field f. It is not
difficult to see that o2 indeed can flow to v through a path

o2
new−−−−→ z

PutField[f]−−−−−−−→ w
GetField[f]−−−−−−−→ v

If we consider a pair of PutField[f] and GetField[f] operations as a kind
of parenthesis indexed by the field f, and consider assign and new as ε, then
the points-to analysis can be formulated by the reachability problem under the
following Dyck Language:

S −→ ε
∣
∣ S S

∣
∣ PutField[f]S GetField[f]
∣
∣ PutField[g]S GetField[g]
∣
∣ PutField[h]S GetField[h]
∣
∣ · · ·

where f, g and h are the available fields. An object o can flow to a pointer x if
and only if there is a path p connecting o to x such that the corresponding R(p)
can be generated by the above grammar. In this points-to definition, we do not
consider the “may alias” cases (see [3] for more details).

An Efficient Algorithm for Solving the Dyck-CFL Reachability Problem 179

x = new Obj(); // o1
z = new Obj(); // o2
w = x;

w.f = z;

v = w.f;

o2

z

new

w

v

assign
x o1new

PutField[f]GetField[f]

o1 x: object o1 flows to pointer x
pointer x points to object o1

Fig. 1. An example of field-sensitive points-to analysis (modified from the talk slides
of [3]). The black edges are generated based on the statements. The dotted blue edges
are used to illustrate the flows-to/points-to relationship.

3.2 Special Tree Structure Case

If the corresponding directed graph for a set of program statements forms a tree1

structure, then we can take advantage of the tree structure to provide a better
algorithm for solving the Dyck-CFL reachability problem.

For any two neighbor nodes u and v on the tree, we may have both directed
edge (u, v) and (v, u) (i.e., the tree digraph can actually have loops!). In such a
case, we restrict the labels on them to satisfy the following constraint: if there are
both (u, v) and (v, u) on the tree, then either they are both labeled by ε, or they
are labeled by a pair of parentheses (or PutField/GetField) of the same index.
For example, if (u, v) is labeled by PutField[g], then (v, u) must be labeled by
GetField[g]. This constraint will enable us to have a fast algorithm to solve
the Dyck-CFL reachability problem on a tree.

The constraint corresponds to a special case of instances of non-recursive
types. In the a special scenario, if one has a statement x=y.f, then the only other
interaction between x and y about the field f must be y.f=x. This constraint
ensures that for any path connecting two nodes, there is no reason to go through
any loop, because the string labeled by the loop must be well matched. Note
that in this case, a special constraint is made: the interaction between x and y
must go trough a single field.

Such a constraint and the tree-structure requirement do not imply that our
algorithm is restricted to non-tree graphs and languages which prohibit recursive
1 Throughout this paper, we use the term “tree” to represent the special bidirected

tree graph.

180 H. Yuan and P. Eugster

types; it is easy to conceive an analysis which switches between our algorithm
and a “classic” more complete and more complex one based on the objects and
flow graph encountered. Our algorithm is then applied as a “fast path”, possibly
to a subgraph of an object flow graph only.

4 Preliminaries

Before delving into our algorithm, we present some preliminary definitions and
lemmas. Straightforward proofs are omitted, and will be given in the full version
of this paper.

4.1 Problem Definition

Given a bidirected tree T = (V, E), for every neighboring node pair u and v,
at least one of the edges {(u, v), (v, u)} exists. Each directed edge (u, v) ∈ E
is assigned a label L(u, v), which is a symbol in either A = {a1, a2, · · · , ak} or
Ā = {ā1, ā2, · · · , āk}. Here, A represents the set of opening parentheses, and Ā
represents the set of closing parentheses. For any 1 ≤ i ≤ k, we call the two
symbols ai and āi a pair of matched parentheses.

Let A be A ∪ Ā. For any x ∈ A , we define

flip(x) =

{
āi if x = ai for some i,
ai if x = āi for some i.

Note that we will also use x̄ to denote flip(x). For any directed edge (u, v) ∈ E,
we assume that L(v, u) = flip(L(u, v)) if (v, u) exists.

A Dyck language L(G) of size k is defined by the following context free gram-
mar G:

– The only non-terminal symbol is S, which is also served as the start symbol.
– The set of terminal symbols is A = A ∪ Ā.
– The production rules are

S −→ ε
∣
∣ S S

∣
∣ a1 S ā1

∣
∣ a2 S ā2

∣
∣ · · · ∣∣ ak S āk,

where ε represents the empty string.

For any path p = v0v1v2 . . . vm (which can have loops) in the tree, we use
R(p) to denote the string that is realized by p. More specifically, we define
R(p) to be R(p) = L(v0, v1)L(v1, v2)L(v2, v3)L(v3, v4) . . .L(vm−1, vm), i.e., the
concatenation string of the symbols along the path.

The Dyck-CFL reachability problem asks the following query Q(u, v): for any
two nodes u and v, is there a path p connecting u and v, such that R(p) can be
produced from the grammar G?

An Efficient Algorithm for Solving the Dyck-CFL Reachability Problem 181

4.2 Basic Definitions

For any string s, we call it an S-string if it can be produced from the grammar
G by starting from the non-terminal S. Similarly, for any path p, if its realized
string R(p) is an S-string, then we call the path p an S-path. Since S is by
default the starting non-terminal symbol in grammar G, therefore, the Dyck-
CFL reachability problem can be formulated as: for any two nodes u and v, is
there an S-path connecting u and v?

Definition 1. We define a function R′(s) for a string s to be the string gen-
erated by repeatedly eliminating matched parentheses from s. Formally, R′(s) is
generated based on the following elimination process: for any substring of s, if
it is an S-string, then we remove the substring from s and repeat the process on
the resulting string.

For example, if s = ā3a1a2a1ā1ā2a3a4ā4a2, then we have R′(s) = ā3a1a3a2,
because a2a1ā1ā2 and a4ā4 are the two removed S-substrings. Given a string s,
the computation of R′(s) can be done in O(|s|) time using a stack. The definition
of R′(s) directly gives the following facts:

Lemma 1. A string s is an S-string if and only if R′(s) = ε, where ε represents
the empty string.

Lemma 2. For any two strings s1 and s2, we have R′(s1s2) = R′(R′(s1)R′(s2)).

The following definitions and lemmas are used to test if the concatenation of
two strings is an S-string.

Definition 2. For any string s1, we call it a valid S-prefix if there exists a string
s2 such that s1s2 is an S-string. Similarly, for any string s2, we call it a valid
S-suffix if there exists a string s1 such that s1s2 is an S-string.

Note that testing whether a string is an S-prefix or S-suffix can be done using
a stack in linear time.

Definition 3. For any two strings s1 and s2, we say that s1 matches s2 if and
only if s1s2 is an S-string, or equivalently, R′(s1s2) = ε.

Let reverse(s) represent the reversal of a string s, e.g., reverse(a1ā4a2a3) =
a3a2ā4a1.

Lemma 3. For any two strings s1 and s2, we have s1 matches s2 if and only if
R′(s1) = flip(reverse(R′(s2))) and s1 is a valid S-prefix.

For any two nodes u and v in the tree, we denote the only loopless directed path
from u to v by P (u, v) – if such a path exists. We also use R(u, v) and R′(u, v)
to denote R(P (u, v)) and R′(P (u, v)) respectively for short.

182 H. Yuan and P. Eugster

5 Dyck-CFL Reachability Algorithm on Trees

In this section, we describe our algorithm for solving the Dyck-CFL reachability
problem on bidirected trees, which can be pre-computed using O(n log n) space
and O(n log n log k) time to subsequently answer any online query Q(u, v) in
O(1) time.

5.1 Loopless Property

In the problem definition, we have assumed that for any directed edge (u, v) ∈ E,
L(v, u) = flip(L(u, v)) if (v, u) exists. This assumption leads to the following
lemmas:

Lemma 4. Any closed directed path p = v0v1v2 · · · vmv0 in the tree is an S-path.

Lemma 5. For any query Q(u, v), it is only required to consider the loopless
directed path P (u, v) to see if it is the S-path. If P (u, v) is not an S-path, then
we can conclude that no S-path joining u and v exists.

5.2 Basic Idea

Let x be a fixed tree node. We will call this node x a pivot node. Now, consider
the following set of queries:

Qx =
{
Q(u, v)

∣
∣ u and v are a query pair such that P (u, v) goes through x

}
.

The goal is to build a linear data structure to answer any query in Qx effi-
ciently. Later in Section 5.3, we will describe how to handle queries outside Qx

by recursively building the data structures.
For any query Q(u, v) ∈ Qx, according to Lemma 1 and Definition 3, we know

that P (u, v) is an S-path if and only if R(u, x) matches R(x, v). By Lemma 3,
this is equivalent to testing whether R(u, x) is a valid S-prefix and R′(u, x) =
flip(reverse(R′(x, v))). So we need to build data structures that support the
following subqueries

– For any node u, is R(u, x) a valid S-prefix?
– For any nodes u and v, is R′(u, x) = flip(reverse(R′(x, v)))?

S-prefix test. If R′(u, x) can be computed efficiently, then we are able to tell
whether R(u, x) is a valid S-prefix due to the following Lemma 6.

Lemma 6. R(u, x) is a valid S-prefix if and only if R′(u, x) does not contain
any symbol from Ā.

A näıve algorithm to compute R′(u, x) is to use a stack to cancel matched
parentheses in |R(u, x)| time (see the NaiveStack procedure in Algorithm 1).
If we do that for every u separately, then the total time can be as bad as Θ(n2),
and the spaces required to store the n realized strings can be as large as Θ(n2).

An Efficient Algorithm for Solving the Dyck-CFL Reachability Problem 183

Algorithm 1. Stack-based algorithm to compute R′(u, x) for a single u

Procedure NaiveStack(u)
Input: a tree node u
Output: a string R′(u, x), represented by the stack

1: Initialize an empty stack.
2: w ← u.
3: while w �= x do
4: Let wp be the parent node of w in the tree.
5: If the directed edge (w, wp) does not exist, then we terminate and report that

no directed path from u to x exists.
6: if L(w, wp) ∈ Ā and the stack is non-empty and L(w, wp) is the flipped paren-

thesis of the top of the stack then
7: Pop the top symbol from the stack. // Detected a pair of matched parentheses.
8: else
9: Push L(w, wp) to the stack.

10: end if
11: w ← wp. // Move w to the next node on the path to x.
12: end while

Constructing a trie. Our idea to speed up the computation is to pre-compute
R′(u, x) for all u’s in a single tree walk using O(n log k) time, and represent the
realized strings in a trie [7] of size O(n). See Algorithm 2. The trie constructed
by BuildTrie will have the following properties:

– Denote the trie by TRIE, and its root by r.
– Each edge (z′, z) of TRIE will be labeled by a symbol L(z′, z) from A . Here,

the edges of the trie are undirected.
– For a trie node z, denote R(z) to be a string that is concatenated by the

symbols on the path from z to the root r. Note that this definition is in the
bottom-up fashion, in contrast to the traditional top-down reading of the
trie. Also, the algorithm processes the path P (u, x) in the order from x to u
rather than from u to x (like NaiveStack).

– For each tree node u ∈ T , there is a corresponding trie node z ∈ TRIE such
that R(z) = R′(u, x). We store this trie node z in TriePos(u). Note that, if
TriePos(u) is not set for some u ∈ T , then it means that there is no directed
path from u to x.

– At each node z ∈ TRIE, we store the set of tree nodes that are associated
to z in TreeNodeSet(z), i.e., TreeNodeSet(z) =

{
u

∣
∣ TriePos(u) = z

}
.

The correctness of BuildTrie is based on the fact that: the trie simulates
a stack. Line 5 simulates “stack pop” by moving z to its parent zp, and line
8 simulates “stack push” by expanding/walking-down the trie. In this way, a
trie node z effectively represents a stack, and the contents of the stack is cap-
tured by R(z). The space complexity of this tree-walk style pre-processing algo-
rithm is O(|T |), and time complexity is O(|T | log k). The log k factor comes from

184 H. Yuan and P. Eugster

Algorithm 2. Trie-based algorithm to compute R′(u, x) for all u’s
Make a call to the following recursive procedure by BuildTrie(x, r), where r is a
pre-allocated root of a trie.

Procedure BuildTrie(u, z)
Input: a tree node u, and a trie node z

1: TriePos(u)← z and add u to the set TreeNodeSet(z).
2: for each child node u′ of u such that the directed edge (u′, u) exists do
3: Let zp be the parent node of z in the trie.
4: if zp exists and L(u′, u) = flip(L(z, zp)) and L(u′, u) ∈ A then
5: Call BuildTrie(u′, zp).
6: else
7: Choose a child node z′ of z such that L(z′, z) = L(u′, u); if it does not exist,

then add a new child node z′ to z, and label the edge (z′, z) by L(u′, u).
8: Call BuildTrie(u′, z′).
9: end if

10: end for

line 7, where a balanced binary tree of size at most |A | = 2k is used efficiently
to search for child nodes in the trie.

Now, we have the trie to compactly represent R′(u, x) for all u’s. Getting back
to the S-prefix test problem, the validity for R′(u, x) can be easily pre-computed
by a top-down tree walk as in Algorithm 3. The correctness is guaranteed from
Lemma 6: each time we visit a node z, we have made sure that R(z) contains
symbols only from A and the tree walk only passes through edges that are labeled
by symbols from A. Therefore, the S-prefix validity test for R(u, x) can be pre-
computed in linear time and space, and the subquery can be answered later in
O(1) time.

Algorithm 3. Pre-compute the information for S-prefix validity test
Make a call to the following procedure by MarkValidity(r), where r is the trie root.

Procedure MarkValidity(z)
Input: a trie node z

1: For each u ∈ TreeNodeSet(z), we mark down that R(u, x) is a valid S-prefix.
2: for each child node z′ of z do
3: if L(z′, z) ∈ A then
4: Call MarkValidity(z′).
5: end if
6: end for

Match test. Now, consider the second subquery, i.e., testing whether R′(u, x) =
flip(reverse(R′(x, v))). We will first show that R′(x, v) for all v’s can also be
represented by a trie, and pre-computed efficiently. The previous Algorithm 2
can be modified to construct a trie such that:

An Efficient Algorithm for Solving the Dyck-CFL Reachability Problem 185

– For each trie node z, if we denote R̂(z) to be the string that is concatenated
from the symbols along the path from the trie root to z (this time, it is in
the top-down fashion), then we have R̂(z) = R′(x, v) for any tree node v
that is associated to the trie node z.

The key modifications of Algorithm 2 to compute such a trie are

– Consider downward edges (u, u′) instead of upward edges (u′, u).
– When testing to “pop” or not (at line 4), change the condition from L(u′, u) ∈

A to L(u, u′) ∈ Ā. This is important, because when we compute R′(x, v), we
should use a symbol from Ā to initiate the cancelation of matched parenthe-
ses.

The time and space complexities after the modifications are still O(n log k) and
O(n) respectively.

Assume that we now have two tries TRIE1 and TRIE2, where TRIE1 is con-
structed to represent R′(u, x), and TRIE2 is to represent R′(x, v). A näıve way
to test whether R′(u, x) = flip(reverse(R′(x, v))) can be done as follows

1. Find out z1 = TriePos(u) in TRIE1.
2. Find out z2 = TriePos(v) in TRIE2.
3. Let z1 and z2 simultaneously walk up the tries towards their corresponding

roots. During the walk, test to see if the edge labels are matched (i.e., one
label is the flipped version of the other edge label in the other trie).

The correctness is based on the fact that R(z2) is the reversed string of R̂(z2),
so we are actually testing whether R(z1) = R′(u, x) is the flipped version of
R(z2) = reverse(R̂(z2)) = reverse(R′(x, v)). This näıve algorithm would use as
much as Θ(n) time if the tries have very large heights.

To speed up the testing, we adapt the following pre-processing algorithm:

1. Flip all the edge labels of TRIE2.
2. Merge TRIE1 and TRIE2 to be a single trie. This can be done in linear time

[5]. Denote the new trie by TRIEmerged.
3. For a tree node u ∈ T , let z1 ∈ TRIE1 be the trie node where R(z1) =

R′(u, x), i.e., z1 is the TriePos(u) in the context of TRIE1. Then after the
merge, we denote TriePos1(u) to be the new location of z1 in the merged
trie TRIEmerged.

4. For a tree node v ∈ T , let z2 ∈ TRIE2 be the trie node where R̂(z2) =
R′(x, v), i.e., z2 is the TriePos(v) in the context of TRIE2. Then after the
the merge, we denote TriePos2(v) to be the new location of z2 in the merged
trie TRIEmerged.

Step 1 and 2 take linear time. The data structures (i.e., TriePos1 and TriePos2)
defined in step 3 and 4 can be computed naturally in linear time during the
merging.

Using TRIEmerged, we can tell whether R′(u, x) = flip(reverse(R′(x, v))) by
simply checking the equality of TriePos1(u) and TriePos2(v). More specifically,

186 H. Yuan and P. Eugster

R′(u, x) = flip(reverse(R′(x, v))) if and only if TriePos1(u) = TriePos2(v)
based on the above analysis.

Therefore, the second subquery can be answered in O(1) time, with an
O(n log k)-time and O(n)-space pre-processing. Combing the results in this sub-
section, we have the following theorem.

Theorem 1. There exists a data structure, which can be preprocessed in
O(n log k) time and O(n) space to answer any query pair whose path goes through
a pre-defined separator x of the tree.

5.3 Divide and Conquer

Now the question is how to efficiently handle the cases when the path does not
go through the predefined pivot node x. We can solve those cases by recursively
building data structures for the subtrees obtained by removing x from the tree.
The recursions are expected to be balanced in order to achieve a good time
bound, so we choose the centroid node of a tree to be such an x.

A node x in a tree T is called a centroid of T if the removal of x will make the
size of each remaining connected component no greater than |T | /2. A tree may
have at most two centroids, and if there are two then one must be a neighbor of
the other [6,5]. Throughout this paper, we specify the centroid of a tree to be
the one whose numbering is lexicographically smaller (i.e., we number the nodes
from 1 to n). There exists a linear time algorithm to compute the centroid of a
tree due to the work of Goldman [21]. We use CT(T) to denote the centroid of
T computed by the linear time algorithm.

Algorithm 4 is the well-known recursive tree centroid decomposition method
(see Figure 2 for an example of the tree centroid decomposition). The time
complexity for the recursive tree centroid decomposition algorithm is O(n log n),
since no node will participate in the centroid computations for more than
O(log n) times. The stack space for the recursion is bounded by O(n + n/2 +
n/4 + n/8 + . . .) = O(n).

Algorithm 4. Tree centroid decomposition
Procedure CentroidDecomposition(T)

1: Find the centroid of T . Denote the set of the remaining connected components by
Remain (T) = {T ′ ∣

∣ T ′ is a connected component after the removal of CT(T)}.
2: Let c = CT(T) be the computed centroid, then for each neighbor x of c in T , we

use Tc,x to denote the remaining connected component that contains x. Also, we
denote the current tree T by Tc.

3: Recursively call CentroidDecomposition(T ′) for each T ′ ∈ Remain (T) .

Define canonical subtrees to be all the subtrees considered during the recursive
call of Algorithm 4 if we start the recursion at T , i.e., the canonical subtrees are
{Tc

∣
∣ c ∈ V }. Please note that, each node c ∈ V must be a centroid of some

An Efficient Algorithm for Solving the Dyck-CFL Reachability Problem 187

x

y

z

c

T, also named T_c

T_c,z

T_c,x
also named T_c

1T_c,y

c
1

Fig. 2. An example for the tree centroid decomposition. In this example, node c is a
centroid of the whole tree, and c1 is the centroid of the subtree Tc,x.

canonical subtree; an extreme case is when node c is the centroid of a subtree
which only consists of a single node (c itself). Therefore, there are exactly n such
canonical subtrees, and one can see that each “remaining connected component”
Tc,x is just TCT(Tc,x). Based on the fact that no node will be in more than O(log n)
canonical subtrees, we have

∑

c∈V

|Tc| = O(n log n).

For each canonical subtree Tc, we build a trie using the BuildTrie algorithm
specified in Section 5.2 to preprocess for the following query set

Qc =
{
Q(u, v)

∣
∣ u and v are a query pair such that P (u, v) goes through c

}
.

The total time complexity is
∑

c∈V

|Tc| log k = O(n log n log k).

Once the data structures for each canonical subtree are built, we can answer
any query Q(u, v) in the following way:

188 H. Yuan and P. Eugster

– Locate a smallest canonical subtree Tc such that both u and v are in that
tree. Note that we must have node c on the undirected path from u to v,
otherwise Tc can not be the smallest such canonical subtree.

– Query on the data structures that were built for Tc since Q(u, v) ∈ Qc.

The second step takes O(1) time from the trie-based data structures. For
the first step, we can have a linear size data structure to help us locate the Tc

efficiently: preprocess the recursion tree of Algorithm 4 in linear time so that the
least common ancestor query [22,23] for any two nodes in the recursion tree can
be answered in constant time. In the recursion tree, let nu and nv be two nodes
that correspond to Tu and Tv respectively, then the least common ancestor of
nu and nv in the recursion tree corresponds to our desired Tc. Therefore, the
first step takes O(1) time as well. Combing the analysis, we have the following
theorem.

Theorem 2. The Dyck-CFL reachability problem can be preprocessed in
O(n log n log k) time and O(n log n) space to answer any online query in O(1)
time.

6 Conclusions

We considered the CFL reachability problem for the case when the underlying
graph is a specific bidirected tree of size n, and the grammar is the Dyck language
of size k. We have described an efficient algorithm to build a data structure of
size O(n log n) in O(n log n log k) time to handle any online query in O(1) time.
Possible future work can be considering dynamic graph updates, i.e., graph nodes
and edges are added/deleted dynamically and online CFL reachability queries
need to be answered efficiently.

References

1. Reps, T.W.: Program analysis via graph reachability. Information & Software Tech-
nology 40(11-12), 701–726 (1998)

2. Rehof, J., Fähndrich, M.: Type-based flow analysis: From polymorphic subtyping
to CFL-reachability. In: Proceedings of the 28th ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages (POPL 2001), pp. 54–66 (2001)

3. Sridharan, M., Gopan, D., Shan, L., Bod́ık, R.: Demand-driven points-to analy-
sis for Java. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
2005), pp. 59–76 (2005)

4. Sridharan, M., Bod́ık, R.: Refinement-based context-sensitive points-to analysis for
Java. In: Proceedings of the ACM SIGPLAN 2006 Conference on Programming
Language Design and Implementation (PLDI 2006), pp. 387–400 (2006)

5. Knuth, D.E.: The art of computer programming, volume III: sorting and searching.
Addison-Wesley, Reading (1973)

6. Hakimi, S.: Optimum locations of switching center and the absolute center and
medians of a graph. Operations Research 12, 450–459 (1964)

An Efficient Algorithm for Solving the Dyck-CFL Reachability Problem 189

7. Knuth, D.E.: The art of computer programming, volume I: fundamental algorithms.
Addison-Wesley, Reading (1973)

8. Yannakakis, M.: Graph-theoretic methods in database theory. In: Proceedings of
the 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS 1990), pp. 230–242 (1990)

9. Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via
graph reachability. In: Conference Record of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 1995), pp. 49–61
(1995)

10. Reps, T.W.: Shape analysis as a generalized path problem. In: Proceedings of the
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM 1995), pp. 1–11 (1995)

11. Zheng, X., Rugina, R.: Demand-driven alias analysis for C. In: Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL 2008), pp. 197–208 (2008)

12. Chaudhuri, S.: Subcubic algorithms for recursive state machines. In: Proceedings
of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2008), pp. 159–169 (2008)

13. Arlazarov, V.L., Dinic, E.A., Faradzev, M.A.K.,, I.A.: On economical construction
of the transitive closure of an oriented graph. Soviet Mathematics Doklady 11,
1209–1210 (1970)

14. Rytter, W.: Time complexity of loop-free two-way pushdown automata. Inf. Pro-
cess. Lett. 16(3), 127–129 (1983)

15. Rytter, W.: Fast recognition of pushdown automaton and context-free languages.
Inf. Control 67(1-3), 12–22 (1986)

16. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T.W., Yannakakis, M.:
Analysis of recursive state machines. ACM Transactions on Programming Lan-
guags and Systems 27(4), 786–818 (2005)

17. Kodumal, J., Aiken, A.: The set constraint/cfl reachability connection in practice.
In: Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2004), pp. 207–218 (2004)

18. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC 2004: Proceed-
ings of the thirty-sixth annual ACM symposium on Theory of computing, pp.
202–211. ACM, New York (2004)

19. Alur, R.: Marrying words and trees. In: PODS 2007: Proceedings of the twenty-
sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems, pp. 233–242. ACM, New York (2007)

20. Valiant, L.G.: General context-free recognition in less than cubic time. Journal of
Computer and System Sciences 10(2), 308–315 (1975)

21. Goldman, A.: Optimal center location in a simple network. Transportation Sci-
ence 5, 212–221 (1971)

22. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM Journal of Computing 13(2), 338–355 (1984)

23. Bender, M.A., Farach-Colton, M.: The lca problem revisited. In: Proceedings of
the 4th Latin American Symposium on Theoretical Informatics, pp. 88–94 (2000)

Amortised Memory Analysis Using the Depth of

Data Structures

Brian Campbell�

School of Informatics, University of Edinburgh
Brian.Campbell@ed.ac.uk

Abstract. Hofmann and Jost have presented a heap space analysis [1]
that finds linear space bounds for many functional programs. It uses an
amortised analysis: assigning hypothetical amounts of free space (called
potential) to data structures in proportion to their sizes using type an-
notations. Constraints on these annotations in the type system ensure
that the total potential assigned to the input is an upper bound on the
total memory required to satisfy all allocations.

We describe a related system for bounding the stack space require-
ments which uses the depth of data structures, by expressing potential
in terms of maxima as well as sums. This is achieved by adding extra
structure to typing contexts (inspired by O’Hearn’s bunched typing [2])
to describe the form of the bounds. We will also present the extra steps
that must be taken to construct a typing during the analysis.

Obtaining bounds on the resource requirements of programs can be crucial for
ensuring that they enjoy reliability and security properties, particularly for use in
constrained systems such as mobile phones, smartcards and embedded systems.
Hofmann and Jost have presented a type-based amortised analysis for finding
upper bounds on the heap memory required for programs in a simple functional
programming language [1]. The form of these bounds is limited to linear functions
with respect to the size of the program’s input. Fortunately, this is sufficient for
a wide variety of interesting programs. Moreover, the analysis was successfully
used to certify such bounds in a Proof Carrying Code system [3].

However, it is also important to bound the stack space requirements, espe-
cially for functional programs where it is easy to cause excessive stack usage by
accident. The Hofmann-Jost analysis has previously been adapted to measure
stack space [4,5], but the form of the bounds was again limited to linear functions
in terms of the total size of the input.

In this work we present a similar analysis where bounds are given as max-plus
expressions on the depth of data structures. This is far more precise for programs
operating on tree-structured data.

Like Hofmann-Jost, our analysis consists of two parts: a type-system which
certifies that a given bound really is an upper bound on the stack memory
requirements, and an inference procedure based on Linear Programming for that
� This work was partially supported by the ReQueST grant (EP/C537068/1) from the

Engineering and Physical Sciences Research Council.

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 190–204, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Amortised Memory Analysis Using the Depth of Data Structures 191

type system. In our type system we impose extra structure on the typing contexts
to represent the form of the bounds (where to take the maximum and where to
add), and hence we use extra structural typing rules to manipulate the context.
We also add an extra stage to the inference to determine where these structural
rules should be used.

We begin by presenting the programming language and its metered opera-
tional semantics, then in Section 2 give details of the type system and consider
some examples of typings in Section 3. We prove that the type system correctly
certifies bounds in Section 4 before presenting the inference procedure in Sec-
tion 5. In Section 6 we discuss some limitations when analysing programs with
nested datatypes. Finally we describe some extensions to the analysis (Section 7)
and related work (Section 8).

1 Language and Operational Semantics

We consider a simple first-order call-by-value functional programming language.
The syntax of the language is presented in Figure 1, where programs P are given
as a sequence of function definitions D with expressions e. For brevity’s sake we
only consider computations on units (∗), booleans, pairs, sums and binary trees.
The syntax requires programs to be in a ‘let-normal’ form which makes the
evaluation order explicit by requiring variables rather than subexpressions in
various places. We will discuss extensions to the language in Section 7.

P := let D | let D P

D := f(x1, . . . , xp) = ef

e := ∗ | true | false | x | f(x1, . . . , xp) | let x = e1 in e2 | if x then et else ef

| (x1, x2) | match x with (x1, x2)→ e

| inl(x) | inr(x) | match x with inl(xl)→ el � inr(xr)→ er

| leaf | node(xl, xr, xv) | match x with leaf → e1 � node(xl, xr, xv)→ e2

Fig. 1. Syntax

We have a large step operational semantics for the language, which includes
metering of the free stack space. Values in the language are units, booleans,
pairs, sums and heap locations for trees, with a distinguished location null which
represents leaf. A selection of the rules for the operational semantics appear in
Figure 2. The judgements have the form

m, S, σ � e � v, σ′

meaning that with m units of stack space, an environment S mapping variable
names to values and a store σ mapping non-null locations to binary tree triplets,
the expression e can evaluate to the value v with the new store σ′. We do not

192 B. Campbell

S(x1) = v1 . . . S(xp) = vp m, [y1 �→ v1, . . . , yp �→ vp], σ � ef � v, σ′

the yi are the symbolic arguments in the definition of f
m+ stack(f), S, σ � f(x1, . . . , xp) � v, σ′ E-Fun

m,S, σ � e1 � v0, σ0 m,S[x �→ v0], σ0 � e2 � v, σ′

m,S, σ � let x = e1 in e2 � v, σ′ E-Let

m,S, σ � leaf � null, σ
E-Leaf

σ′ = σ[l �→ 〈S(xl), S(xr), S(xv)〉] l �∈ dom(σ)

m,S, σ � node(xl, xr, xv) � l, σ′ E-Node

S(x) = 〈vl, vr, vv〉 m,S[xl �→ vl, xr �→ vr, xv �→ vv], σ � e2 � v, σ′

m,S, σ � match x with leaf → e1 � node(xl, xr, xv)→ e2 � v, σ′ E-MatchNode

Fig. 2. Sample rules from the operational semantics

need to include the amount of stack space afterwards because the stack discipline
will ensure that it is m again (this is easily checked in the full set of rules).

Note that we assume that stack space is allocated one frame at a time on
function entry, and released on exit. We denote the size of frame required by
function f by stack(f). We expect that our techniques could also be applied to
more fine grained stack machines. Indeed, a simpler Hofmann-Jost style stack
space analysis has been applied to a stack machine cost model for the Hume
language [4].

We will also need to mention an unmetered form of the operational semantics.
For this we simply drop the m part of each judgement.

Example 1. The andtrees function computes the point-wise boolean ‘and’ of two
binary trees with boolean values at the nodes:

let andtrees(t1,t2) =
match t1 with leaf → leaf � node(l1,r1,v1) →
match t2 with leaf → leaf � node(l2,r2,v2) →

let l = andtrees(l1,l2) in
let r = andtrees(r1,r2) in
let v = if v1 then v2 else false in

node(l,r,v)

This function requires at most stack(andtrees) × (min{|t1|d, |t2|d} + 1) units
of stack space to run (where depth | · |d is defined by |null|d = 0 and |l|d =
1 + max{|l1|d, |l2|d} when σ(l) = 〈l1, l2, v〉).

2 Type System

We now describe the type system that can be used to provide certified bounds.
The key notion in the type system is that the function from input size to the

Amortised Memory Analysis Using the Depth of Data Structures 193

stack space bound is encoded by annotations in the types and the structure of
the typing context. This is similar to the ‘physicist’s view’ of amortised analysis
described by Tarjan [6]. Following Tarjan, we call this assignment potential.

The types and contexts are given by

T := 1 | bool | T1 ⊗ T2 | (T1, k1) + (T2, k2) | tree(T, k).
Γ := · | x : T | k | Γ1, Γ2 | Γ1; Γ2.

where the annotations k are positive rational numbers. For sum types the anno-
tations represent different contributions to the bound depending upon the choice,
and for trees the annotations represent a requirement of k times the depth of the
tree (not counting the leaves). Fractional amounts are allowed; for instance, a
tree with annotation of one half corresponds to one unit of stack space for every
second level of the tree.

The typing contexts have two context formers: one for summing the contri-
bution of the subcontexts (,) and one for taking the maximum (;). For example,
the context

(x : tree(bool, 5); y : tree(bool, 3)) , 6

represents the bound
max{5× |x|d, 3× |y|d}+ 6.

Thus our typing contexts take the form of trees. To allow a greater range of
bounding functions to be represented we also allow variables to appear several
times in the context, so long as the underlying types (but not necessarily the
annotations) are the same. We will implicitly take ‘,’ and ‘;’ to be associative
throughout.

The formal encoding of this potential in types and typing contexts is given as
the Υt and Υc functions in Figure 3.

Using structured contexts in this way was inspired by O’Hearn’s Bunched
Typing [2], where a typical application of the structure was to denote heap
separation of data structures with one context former, and possible sharing of
heap data with the other.

We represent function signatures as a map Σ from function names to a sig-
nature Γ → T, k where Γ is a context containing each parameter once, T is the
result type and k the fixed amount of potential to add to that from T .

The type system has two groups of rules. The syntax-directed rules feature side
conditions which ensure that the potential of the context is a sufficient amount of
stack space to evaluate the expression, and that there is enough potential in the
context to account for all of the potential in the result type (we will make this
more formal in Theorem 1, below). The latter requirement is needed to translate
bounds for subsequent parts of the program — the typing of these later parts
may give a bound in terms of the size of the result of this expression, and we
wish to translate it into a bound with respect to the size of the input values
only. Thanks to this translation we do not need a separate size analysis to give
a relationship between the size of the intermediate values and the input.

194 B. Campbell

Υt(σ, ∗, 1) = Υt(σ, true, bool) = Υt(σ, false, bool) = 0

Υt(σ, (v′, v′′), T ′ ⊗ T ′′) = Υt(σ, v′, T ′) + Υt(σ, v′′, T ′′),

Υt(σ, inl(v), (T ′, k′) + (T ′′, k′′)) = k′ + Υt(σ, v, T ′),

Υt(σ, inr(v), (T ′, k′) + (T ′′, k′′)) = k′′ + Υt(σ, v, T ′′),

Υt(σ, null, tree(T, k)) = 0

Υt(σ, l, tree(T, k)) = max{Υt(σ,vl, tree(T, k)), Υt(σ, vr, tree(T, k)), Υt(σ, vv , T)}+ k

where σ(l) = 〈vl, vr, vv〉.

Υc(σ, S, ·) = 0,

Υc(σ, S, x : T) = Υt(σ, S(x), T),

Υc(σ, S, k) = k,

Υc(σ, S, (Γ,Δ)) = Υc(σ, S, Γ) + Υc(σ, S,Δ),

Υc(σ, S, (Γ ;Δ)) = max{Υc(σ, S, Γ), Υc(σ, S,Δ)}.

Fig. 3. Assignment of potential to values and environments according to their types
and contexts

However, the syntax-directed rules require the typing context to have a specific
structure. To manipulate the context structure to fulfil these requirements we
also have a set of structural rules.

A representative sample of the syntax-directed rules is given in Figure 4 and
all of the structural rules are given in Figure 5. The typing judgements take the
form

Γ � e : T, k′

meaning that in the context Γ the expression e can be given type T , and the
potential assigned to the result is given by the annotations in T plus the fixed
amount k′. In some places we use Γ () to denote a context with a hole, and Γ (Δ)
when that hole is filled by Δ. We write q×Γ to denote the context Γ with every
annotation k replaced by qk.

The Var and Leaf rules are the simplest: evaluation of the expressions re-
quires no stack space and we only need to ensure that the potential of the result,
k′, is accounted for by a fixed amount in the context, k. Note that the annotation
for the leaf’s type, k1, can be anything because we consider the depth of a leaf
to be zero. The Node rule’s side condition requires an extra k1 units because
the resulting tree is one level deeper than the larger subtree.

The Fun rule has two side conditions. The first ensures that there is enough
potential in the context to account for the allocation of a stack frame for the
callee, and the second gives the two possible sources for ‘translating’ k′, either
from the potential k used to show that we can allocate the stack frame, or from
the amount k′

1 given by the result of the callee (which must ultimately have
come from somewhere in Γ).

Amortised Memory Analysis Using the Depth of Data Structures 195

k ≥ k′
x : T, k � x : T, k′

Var
k ≥ k′

·, k � leaf : tree(T, k1), k′
Leaf

k ≥ stack(f) k + k′1 ≥ k′ Σ(f) = Γ → T, k′1 (y1, . . . , yp) = names(Γ)

Γ [x1/y1, . . . , xp/yp], k � f(x1, . . . , xp) : T, k′
Fun

Δ � e1 : T0, k0 Γ (x : T0, k0) � e2 : T, k′

Γ (Δ) � let x = e1 in e2 : T, k′
Let

k ≥ k1 + k′

(xl : tree(T, k1);xr : tree(T, k1);xv : T), k � node(xl, xr, xv) : tree(T, k1), k′
Node

Γ (·) � e1 : T, k′ Γ ((xl : tree(T, k1);xr : tree(T, k1);xv : T), k1) � e2 : T, k′

Γ (x : tree(T, k1)) � match x with leaf → e1 � node(xl, xr, xv)→ e2 : T, k′
Match

Fig. 4. Sample syntax-directed typing rules

The Let rule is more subtle. Intuitively, we can just take the maximum of
the stack space bounds for e1 and e2, but we must also consider how to translate
the parts of e2’s bound that are expressed in terms of the size of the value of
the bound variable x. Hence we locally replace the part of the context used for
e1 with x, which allows for both the stack allocation required for e1 and the
translation of subsequent requirements in e2 given in terms of the size of x. To
be sound this requires that all of the allocations that we consider respect the
stack discipline; that is, all allocations in e1 are deallocated before the evaluation
of e1 is complete. If we consider memory allocations in e1 that may persist into
e2 (such as heap memory) then we may not have the free memory ‘promised’ by
the annotations in the surrounding context, Γ ().

The Match rule uses a similar local replacement, but this is simply an un-
folding of the tree structure into the context and does not require the stack
discipline for soundness.

The structural rules allow the manipulation of contexts to fit the requirements
of the syntax-directed rules. The two weakening rules remove sections of the
context and unnecessary potential. The context equivalence rule ≡ replaces part

Γ (Δ) � e : T, k′

Γ (Γ ′(Δ)) � e : T, k′
Weaken

Γ (x : T [k1/k]) � e : T ′, k′ k ≥ k1

Γ (x : T) � e : T ′, k′
WeakenA

Γ (Δ′) � e : T, k′ Δ ∼= Δ′

Γ (Δ) � e : T, k′
≡

Γ (q ×Δ, (1− q)×Δ′) � e : T, k′ q ∈ [0, 1]
Γ (Δ;Δ′) � e : T, k′

Split

Fig. 5. Structural typing rules

196 B. Campbell

Γ,Δ ∼= Δ,Γ (plus-commute)

Γ, (Δ;Δ′) ∼= (Γ,Δ); (Γ,Δ′) (distribute)

Γ ∼= Γ, · (plus-empty)

Γ ∼= Γ, 0 (plus-zero)

Γ ∼= Δ if Δ ∼= Γ (symmetry)

Γ ;Δ ∼= Δ;Γ (max-commute)

Γ ∼= Γ ;Γ (max-contract)

Γ ∼= Γ ; · (max-empty)

Γ ∼= Γ ; 0 (max-zero)

Γ ∼= q × Γ, (1− q)× Γ for q ∈ [0, 1] (plus-contract)

Fig. 6. Equivalent contexts (for the ≡ typing rule)

of the typing context with one whose contents and potential are identical, using
any of the equivalences from Figure 6. Note that all of these equivalences are
reversible.

The plus-contract case of ≡ illustrates an important difference from the
Hofmann-Jost heap analysis. In that system contraction treated the annota-
tions of nested types (such as tree(tree(bool, 3), 2)) independently. Here we can
only uniformly scale the entire context. This restriction is necessary because we
are measuring the depth of the entire data structure weighted by the annotations
and treating the annotations independently can change the ratio of the weight-
ings and hence may alter which path through the data structure is the ‘deepest’.
Uniform scaling maintains the deepest path, ensuring that the potential does
not change as a result of applying the typing rule.

Split is the typing rule of last resort — it approximates a bound given as
a sum by a bound given as a maximum. For example, when q = 1/2 and the
potential of Δ and Δ′ is given by x and y, Split corresponds to the fact that

∀x, y ∈ Q

+, max{x, y} ≥ x/2 + y/2,

where Q

+ is the set of rationals greater than or equal to zero. The set of in-
equalities corresponding to Split are the best we can give without requiring
extra information about x and y. Split is useful in two places; during inference
when conflicting structural requirements force the approximation, and when one
of the subcontexts can be ignored for the purposes of giving a bound (for ex-
ample, because it is a boolean). In the latter case q is 0 or 1 and there is no
approximation.

We also give the following two derived rules to manipulate fixed amounts of
potential:

Γ (k1, k2) � e : T, k′ k = k1 + k2

Γ (k) � e : T, k′ ContractA

Γ (k) � e : T, k′ k = k1 + k2

Γ (k1, k2) � e : T, k′ ContractA′

These two contraction rules replace most of the cases of plus-contract where the
factor q is not known. Thus if we fix a value for q in the remaining cases and

Amortised Memory Analysis Using the Depth of Data Structures 197

the uses of Split we will only have linear equalities and inequalities as side
conditions, which will allow us to use Linear Programming during the inference.

3 Examples of Typing Derivations

Before proving the soundness of the type system we consider some examples.

Example 1 (Continued). The precise bound given in Section 1 contained a min-
imum, whereas we only consider max-plus bounds. Hence we hope to show that

stack(andtrees)× (1 + |t1|d) and stack(andtrees)× (1 + |t2|d)
are bounds on the stack space required. These correspond to the following two
type signatures:

t1 : tree(bool, stack(andtrees)), t2 : tree(bool, 0)→ tree(bool, stack(andtrees)), 0
t1 : tree(bool, 0), t2 : tree(bool, stack(andtrees))→ tree(bool, stack(andtrees)), 0

Note that these signatures do not include the last stack(andtrees) units of space;
this is added by the typing of the function call in the caller. The annotation on
the result says that the bound is also at least stack(andtrees) times the depth
of the result, too.

We can obtain either of these signatures with a type derivation of the structure
shown in Figure 7, where k1 = stack(andtrees), k2 = 0 for the first bound, and
vice versa for the second. The only non-trivial side condition in this typing is
k1+k2 = k from ContractA′. Note that the uses of Let in the derivation focus
in on exactly the subcontext required for the recursive calls and the calculation
of v.

Example 2. Using maxima in the potential also allows more precise bounds to
be derived than plain Hofmann-Jost is able to. Consider the following function:

≡

Leaf

t2, 0

t2

Leaf

(l1; r1; v1), k1

Fun

l1, l2, k

Fun

r1, r2, k

If

Var

v2, k

Bool

v2, k

v1, v2, k

Node

(l; r; v), k

(l, k); (r, k); (v, k)
≡

(l, k); (r, k); (v1, v2, k)
Let

(l, k); (r1, r2, k); (v1, v2, k)
Let

(l1, l2, k); (r1, r2, k); (v1, v2, k)
Let

(l1, (l2; r2; v2), k); (r1, (l2; r2; v2), k); (v1, (l2; r2; v2), k)
Weaken

(l1; r1; v1), (l2; r2; v2), k
≡

(l1; r1; v1), k1, (l2; r2; v2), k2
ContractA′

(l1; r1; v1), k1, t2
Match

t1, t2
Match

Fig. 7. Typing derivation structure and contexts for andtrees example

198 B. Campbell

let maybeleft(t,b) =
match t with leaf → leaf � node(l,r,v) →

if b then l else t

While the function itself only requires a constant amount of stack space, its
typing is used to translate bounds in terms of its result’s size into bounds in
terms of t. In the present system we can obtain the signature

tree(T, k); bool→ tree(T, k), 0

indicating that the size of t is an upper bound on the size of the result. The
key part of the typing is that we can use the max-contract form of the ≡ rule
to take the maximum of the two branches of the if expression. However, other
Hofmann-Jost analyses can only sum the potential for the branches of the if,
which doubles the part of the bound expressed in terms of t’s size.

4 Soundness

Our main result is that any amount of potential that we can assign to a typing
context and still type an expression using it is a sufficient amount of stack space
to evaluate that expression. For the induction, we also show that the potential
assigned to the result is at most the amount we began with and that any extra
space q is preserved.

Theorem 1. If an expression e in some well-typed program has a typing

Γ � e : T, k′

and an evaluation S, σ � e � v, σ′ and Υc(σ, S, Γ) is defined, then for any q ∈ Q

+

and m ∈ N such that
m ≥ Υc(σ, S, Γ) + q

m will be a sufficient amount of stack space for the execution to succeed,

m, S, σ � e � v, σ′,

and
m ≥ Υt(σ′, v, T) + k′ + q.

Proof. (Sketch.) We proceed by simultaneous induction on the evaluation and
the typing derivations. First, note that whenever we use a value from S or σ
we can be sure that it has the expected form for its type because otherwise
Υc(σ, S, Γ) would not be defined.

For the leaf evaluation rules (E-Leaf, E-Node and their unit, boolean, sum
and pair counterparts) no extra stack memory is required so the execution will
always succeed. It is then sufficient to check that Υc(σ, S, Γ) plus the given side
condition is at least the potential assigned to the result.

Amortised Memory Analysis Using the Depth of Data Structures 199

The other rules need to use the induction hypothesis. The precondition on m
can be satisfied by showing that the original Υc(σ, S, Γ) is larger than or equal to
its counterpart for the induction hypothesis. The result of the induction hypoth-
esis is sufficient for most of the rules, where the resulting value and type from the
induction hypothesis are also the value and type of the current expression. The
Fun rule is a little different due to the stack space used, and Let rule uses the
induction hypothesis twice. As these are the most interesting cases, we consider
them in a little more detail.

Fun. As the entire program is well-typed there must be a typing of the func-
tion body:

Γ � ef : T, k′
1.

Now we can check that m is sufficient for both the allocation and the induction
hypothesis (note that the side condition guarantees that q + k − stack(f) is
positive):

m ≥ Υc(σ, S, (Γ [x1/y1, . . . , xp/yp], k)) + q

= Υc(σ, [y1 �→ S(x1), . . . , yp �→ S(xp)], Γ) + k + q

≥ stack(f) + Υc(σ, [y1 �→ S(x1), . . . , yp �→ S(xp)], Γ) + (q + k − stack(f)).

From the induction hypothesis we also have

m ≥ stack(f) + Υt(σ′, v, T) + k′
1 + (q + k − stack(f))

≥ Υt(σ′, v, T) + k′ + q,

as required.
Let. It can be easily shown that Υc(σ, S, Γ (Δ)) ≥ Υc(σ, S, Δ), which allows

us to apply the induction hypothesis to e1.
We can also use the induction hypothesis to deduce that the potential has

not increased. If we set m1 =
Υc(σ, S, Δ)� and q = m1 − Υc(σ, S, Δ) we can
see that m1 − q = Υc(σ, S, Δ), and from the induction hypothesis we know that
m1 − q ≥ Υt(σ0, v0, T0) + k0. Thus,

Υc(σ, S, Δ) ≥ Υt(σ0, v0, T0) + k0.

Thus we can also establish that m is sufficient to apply the induction hypothesis
to e2. ��

5 Checking and Inference

For type checking we assume that we are given the full typing derivation (in the
implementation we use an assignment of extra terms to uses of the structural
typing rules), including rational values for the annotations. It then remains to
check that each arithmetic side condition is satisfied.

Our inference procedure has three main steps:

1. Construct a plain (that is, unannotated) typing;

200 B. Campbell

2. add the context structure and uses of the structural rules to obtain a typing
derivation in the system of Section 2, modulo side conditions; then

3. use standard Linear Programming techniques such as the Simplex method
to solve the side conditions and minimise the bound.

The first stage can be performed by standard unification methods. The middle
stage is new to this analysis; previous Hofmann-Jost systems had relatively little
extra structure that might not be present in a plain typing (the exception to this
is contraction, which must be explicit in order to sum all the requirements).

To make the inference more tractable we assume that the user provides the
structure of the function signatures, but they need not give actual values for
the annotations. For instance, in the andtrees examples we could supply the
structure

t1, t2

without specifying the types or values for their annotations.
With the typing from the first stage and the structure for function signatures

we can derive a ‘desired’ typing context for each leaf in the typing derivation.
For example, the construction of the new node in the andtrees example has a
desired context of

(l : tree(bool, k1); r : tree(bool, k1); v : bool) , k

to match the Node rule. Note that k1 and k are just symbolic annotations;
the actual values are determined by the Linear Programming solver in the final
stage.

We then work outwards in the typing derivation until we have a ‘desired’
context for the entire function body. For example, if we have an expression
if x then e1 else e2 and desired contexts Γ1 and Γ2 for e1 and e2 respectively,
then we can take Γ1; Γ2; x (the maximum bound of the branches) as the desired
context for the entire expression. Note that we need to add a use of Weaken
to the typing derivations for e1 and e2 to remove the irrelevant subcontexts.

Binding constructs are more challenging. To simplify the problem we note
that we can use the ≡ typing rule to expand a context into a maximum of
sums form, and also contract an expanded context into its original form. Once
we have the contexts for the subexpressions in this form we can factor out the
bound variables and use ContractA′ to split any fixed amount k between the
part of the context changed by the expression’s typing rule and the surrounding
context (denoted Γ () in the typing rules). It is during this factoring that we
may need to introduce an approximation using Split. Finally, the expression’s
typing rule provides us with the desired typing context for the whole expression.

We must also add structural rules to bridge any gap between the desired con-
text inferred for the function body and the given function signature. Fortunately
this can be treated as an extreme form of binding construct, where every variable
is bound. Should the desired context have any symbolic annotation k without a
corresponding source in the function signature the plus-zero or max-zero cases
of ≡ can be used to fix k to be zero.

Amortised Memory Analysis Using the Depth of Data Structures 201

Finally, we gather the side conditions from the resulting typing and use a
Linear Programming solver to minimise the overall bound. This step may fail if
the resource usage is super-linear, or too subtle for the analysis (for example,
because it relies on some unmodelled invariant).

Applying the inference procedure to the examples in Section 3 yields the same
bounds as our manual use of the type system. However, the derivations are more
verbose, mostly due to the context expansion at every binding construct.

The extra stage in the inference also adds to the amount of work the inference
performs. In the worst case the expansion can be exponential with respect to
the context size, but in practice the execution times remain similar to earlier
Hofmann-Jost analyses [7, Appendix B].

6 Containers

Nested data structures such as trees of trees can present a problem for the
analysis. The limitation is that we always take the depth of the entire data
structure, including all nested contents. In a tree of trees this is the longest path
(weighted by the annotations) from the root of the outer tree to a leaf of the
inner trees. Hence when we move values around the outer tree (to sort it, for
example) we may change the overall depth despite leaving the depth of the outer
tree and each inner tree alone.

Ideally we would wish to express the overall ‘size’ of the data structures differ-
ently; namely, as the depth of the outermost structure, plus the maximum depth
of the structures in the next layer, and so on for further nested layers: essentially,
the sum of the maximum depth of each layer. We conjecture that the present
type system could be extended in this direction by allowing constrained move-
ment of ‘contents’ variables in the context to mimic the corresponding movement
of values in their container. However, we leave this to future work.

For containers with simpler contents which carry no potential (units, booleans
and pairs thereof in the above language) we can adopt a simpler solution. As
these values are assigned no potential, there is no approximation involved in
using the Split rule with q = 0 to ‘lift’ these variables to the outermost level of
the context. Then the inference procedure described above is able to use them
wherever necessary.

We have successfully applied this technique to infer bounds on a functional
heap sort, and in particular it can show that the internal routines in the sort use
stack space proportional to the heap depth.

7 Extensions

The analysis can be extended in several ways. Algebraic datatypes can be in-
corporated by assigning structured contexts to constructors in a similar manner
to function signatures and generalising the typing rules for trees. These struc-
tures can be derived automatically to provide bounds with respect to depth, or
left to the user for greater flexibility. For example, two forms of product can

202 B. Campbell

be defined using these datatypes: a plus-product that behaves as the product
presented above, and a max-product where the maximum of the potential of the
two values is taken.

The resource polymorphism extension hypothesised in the conclusions to Hof-
mann and Jost’s paper [1] can also be applied to allow different function signa-
tures to be inferred for different uses of a function, reflecting the local resource
requirements. Tail call optimisation can also be taken into account, and the
soundness proof can be extended to partial evaluations of non-terminating pro-
grams.

Details of these extensions, including a full soundness proof and formal details
of the inference procedure can be found in the author’s thesis [7, Chapters 6 and
7]. The extended type checker and inference procedures have been implemented
in Standard ML and are available online1 along with a small selection of example
programs.

8 Related Work

We have already mentioned some of the recent work on Hofmann-Jost, notably
the extension to the Hume language in the Embounded project [4,8]. Jost has also
worked on extensions for higher-order functions [9] and object oriented program-
ming and mutable references [10], although there is not currently an inference
procedure for the latter. These features are largely orthogonal to our work, as
they change the language but only infer linear total size bounds. Indeed, one
possible avenue of future work is to apply our techniques to these analyses.

Most other analyses are based upon some form of sized-types. An early exam-
ple is Reistad and Gifford’s system for finding execution time estimates to assist
parallelisation [11], although they avoid detailed analysis of recursive functions
by providing fixed types for a small range of library functions such as map and
fold instead. Hughes and Pareto used their sized-types work to certify heap
and stack space bounds in a first-order ‘embedded ML’ language [12], but do
not provide any inference.

A strand of inference work on sized-types systems starts with Chin and Khoo’s
inference [13]. Like Pareto’s checker, the system is based on solving systems of
Presburger formulae. Their later work considers properties about the values in
containers [14], a language with references [15], space bounds for object-oriented
languages [16], and applying similar techniques to assembly programs [17]. Vas-
concelos has also studied these inference systems in order to produce a sized
types analysis and heap and stack space bounds for Hume [18]. One of the main
advantages of a sized-types analysis over our approach is that the size informa-
tion can be reused for other analyses.

The use of Presburger solvers in these systems raises concerns about efficiency,
but it is unclear whether the generated constraints may include arbitrary formu-
lae, or if they are limited to some easily solved subset. The reports cited above
suggest that they are reasonable in practice. Similarly, certification using these
1 http://homepages.inf.ed.ac.uk/bcampbe2/depth-analysis/

http://homepages.inf.ed.ac.uk/bcampbe2/depth-analysis/

Amortised Memory Analysis Using the Depth of Data Structures 203

systems may require the verifier to perform some constraint solving, whereas for
our system they need only perform some simple arithmetic after reconstructing
the typing using suitable hints.

A different approach which can yield non-linear bounds is to use recurrence
solvers to deal with recursive functions, such as Debray and Lin’s execution time
analysis for logic programs [19], and Vasconcelos and Hammond’s analysis [20].
The power of these analyses is dependent on the power of the recurrence solver
used. Recent work by Albert et al. has tackled this by producing a specialised
recurrence solver for dealing with cost equations [21].

9 Conclusions

We have presented a new stack space analysis similar in concept to the Hofmann-
Jost heap space analysis, but with more structure to enable richer, more precise
bounds.

Further work on the system could include enhancing the language (perhaps us-
ing the existing Hofmann-Jost extensions mentioned above), removing the need
for users to provide the structure for type signatures and the containers extension
outlined in Section 6. It would also be interesting to apply these techniques to
heap space by devising a suitable replacement for the Let rule, especially as we
may be able to regain the fine-grained form of plus-contraction when considering
total space bounds.

References

1. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. In: POPL 2003: Proceedings of the 30th ACM Symposium on
Principles of Programming Languages, New Orleans. ACM Press, New York (2003)

2. O’Hearn, P.: On bunched typing. Journal of Functional Programming 13(4), 747–
796 (2003)

3. Aspinall, D., Gilmore, S., Hofmann, M., Sannella, D., Stark, I.: Mobile resource
guarantees for smart devices. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L.,
Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, pp. 1–26. Springer, Heidelberg
(2005)

4. Jost, S., Loidl, H.W., Hammond, K.: Report on stack-space analysis (revised).
Deliverable D05, The Embounded Project (IST-510255) (2007)

5. Campbell, B.: Prediction of linear memory usage for first-order functional pro-
grams. In: Trends in Functional Programming, vol. 9 (2008) (to appear)

6. Tarjan, R.E.: Amortized computational complexity. SIAM Journal on Algebraic
and Discrete Methods 6(2), 306–318 (1985)

7. Campbell, B.: Type-based amortized stack memory prediction. PhD thesis, Uni-
versity of Edinburgh (2008)

8. Jost, S., Loidl, H.W., Hammond, K.: Report on heap-space analysis. Deliverable
D11, The Embounded Project (IST-510255) (2007)

9. Jost, S.: Amortised Analysis for Functional Programs. PhD thesis, Ludwig-
Maximilians-University (forthcoming, provisional title) (2008)

204 B. Campbell

10. Hofmann, M., Jost, S.: Type-based amortised heap-space analysis (for an object-
oriented language). In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 22–37.
Springer, Heidelberg (2006)

11. Reistad, B., Gifford, D.K.: Static dependent costs for estimating execution time.
In: LFP 1994: Proceedings of the 1994 ACM conference on LISP and functional
programming, pp. 65–78. ACM Press, New York (1994)

12. Hughes, J., Pareto, L.: Recursion and dynamic data-structures in bounded space:
towards embedded ML programming. In: ICFP 1999: Proceedings of the fourth
ACM SIGPLAN International Conference on Functional Programming, pp. 70–81.
ACM Press, New York (1999)

13. Chin, W.N., Khoo, S.C.: Calculating sized types. Higher Order and Symbolic Com-
putation 14(2-3), 261–300 (2001)

14. Chin, W.N., Khoo, S.C., Xu, D.N.: Extending sized type with collection analysis.
In: PEPM 2003: Proceedings of the 2003 ACM SIGPLAN workshop on Partial
Evaluation and Semantics-based Program Manipulation, pp. 75–84. ACM Press,
New York (2003)

15. Chin, W.N., Khoo, S.C., Qin, S., Popeea, C., Nguyen, H.H.: Verifying safety policies
with size properties and alias controls. In: ICSE 2005: Proceedings of the 27th
International Conference on Software Engineering, pp. 186–195. ACM Press, New
York (2005)

16. Chin, W.N., Nguyen, H.H., Qin, S., Rinard, M.: Memory usage verification for OO
programs. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 70–86.
Springer, Heidelberg (2005)

17. Chin, W.N., Nguyen, H.H., Popeea, C., Qin, S.: Analysing memory resource bounds
for low-level programs. In: ISMM 2008: Proceedings of the 7th international sym-
posium on Memory management, pp. 151–160. ACM, New York (2008)

18. Vasconcelos, P.: Space Cost Analysis Using Sized Types. PhD thesis, University of
St Andrews (2008)

19. Debray, S.K., Lin, N.W.: Cost analysis of logic programs. ACM Transactions on
Programming Languages and Systems 15(5), 826–875 (1993)

20. Vasconcelos, P.B., Hammond, K.: Inferring cost equations for recursive, polymor-
phic and higher-order functional programs. In: Trinder, P., Michaelson, G.J., Peña,
R. (eds.) IFL 2003. LNCS, vol. 3145, pp. 86–101. Springer, Heidelberg (2004)

21. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Automatic inference of upper
bounds for recurrence relations in cost analysis. In: Alpuente, M., Vidal, G. (eds.)
SAS 2008. LNCS, vol. 5079, pp. 221–237. Springer, Heidelberg (2008)

The Financial Crisis, a Lack of Contract

Specification Tools: What Can Finance Learn
from Programming Language Design?

Jean-Marc Eber

LexiFi, 49 rue de Billancourt, F-92100 Boulogne-Billancourt, France
www.lexifi.com

The magnitude and dramatic consequences of the current “financial crisis” are
publicly well documented. Even non professionals may read in, say, newspapers
about notions like “derivatives”, “over the counter deals”, “complexity of con-
tracts”, “insufficient regulation” or “impossible to understand portfolios” while
reading about bankruptcy or bailouts of big financial institutions.

Even if this crisis has many reasons—a topic of future research for economists,
historians, sociologists, politicians and many others—it is often argued that “ex-
cessive complexity” or “excessive mathematization” should be considered as one
of the original faults. The financial sector—banks, asset managers, hedge funds,
insurance companies—is indeed viewed as a highly technical one, driven by rapid
innovation and using numerous quantitative analysts (“quants”) for achieving
precise calculations or risk analyses.

In this informal presentation, we argue on the contrary that the main technical
problem faced by the financial industry is not “solving complexity” but “master-
ing diversity”. Similarly to a company that would have to “manage” thousands of
informally specified algorithms, a big financial institution “manages” thousands
of client tailored financial bilateral contracts (described in “term-sheets” in fi-
nancial jargon), many of them lasting for years, mentioning important decisions
(exercise decisions) to be taken by the institution itself or its counterparty and
including transformations to apply to the contract in the future (typically called
fixings in finance). The technical difficulty stems not only from the necessity
of having a clear understanding of such a portfolio of contracts at a particular
date, but also to monitor correctly all “actions” to apply at precise dates. Even
if tremendous information technology resources are devoted for implementing
software in the finance sector, one should note that contrary to general belief,
this activity is typically mainly driven by a mixture of partially adapted “legacy
systems”, a lot of manual work and a large number of badly integrated spread-
sheet macros. This situation is not very publicized for clear reasons but sheds
light on why financial institutions have difficulties in knowing their exposures at
any time or why they incur significant “operational risk”, meaning the risk of
not managing correctly a given contract over its lifetime.

At this stage, any serious computer scientist would point to the necessity of a
well founded specification formalism with a clearly defined semantics. Designing
such a “domain specific language”—the semantics of which should of course
be compositional and allow for multiple uses—has been surprisingly difficult,

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 205–206, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

206 J.-M. Eber

especially when one is considering all implementation tricks necessary to scale
efficiently from little toy examples to the most complex real-world cases.

Building on the experience of working more than a decade in a major in-
vestment bank followed by the design and implementation since 2001 in our
company of such a formalism used by our customers, we present an intuitive,
simplified contract with its formal description. We show examples of different se-
mantics uses. Not surprisingly but of tremendous power in everyday use, pricing
a contract under certain model hypotheses (a fundamentally important topic)
appears to be a denotational semantics—currently implemented as a mapping
from the contract description to C source code—while managing a contract over
time amounts to implementing and applying operational semantics adequately.

We also comment on our implementation choices—our software is mainly writ-
ten with an enhanced OCaml system and strongly linked to OCaml’s run-time
system—and extensions needed to ease industrial acceptance and integration
with existing technology or systems. For this reason, we insist on the strategic
importance of having the possibility to adapt and enhance our main compiler
to our needs. We also show examples of how this machinery integrates into a
traditional gui application, hiding all complexity from end-users and giving the
look and feel of a traditional application. We finally comment on our attempts
to formally prove (some subsets of) our formalism or implementation.

We argue that the relative simplicity of such contract description language,
that does not need to be Turing complete as a full-fledged programming language
like C or Java, allows for the effective implementation and use of many interesting
approaches—let us mention here abstract interpretation, partial application and
run-time code generation—which are often very difficult if not impossible to use
automatically in a more general setting. The financial sector appears to be a
surprisingly good testbed for many of these techniques.

From a technical perspecitive, financial sector innovation is currently domi-
nated by mathematical models and efficient numerical implementation problems.
We are quite convinced that only a combined approach, mixing formal descrip-
tions and manipulations of contracts with efficient numerical approaches can
solve some recurrent and fundamental technical problems faced by the financial
industry today and in the future.

All Secrets Great and Small

Delphine Demange1 and David Sands2

1 University of Rennes 1, France
2 Chalmers University of Technology, Sweden

Abstract. Tools for analysing secure information flow are almost exclusively
based on ideas going back to Denning’s work from the 70’s. This approach em-
bodies an imperfect notion of security which turns a blind eye to information
flows which are encoded in the termination behaviour of a program. In exchange
for this weakness many more programs are deemed ”secure”, using conditions
which are easy to check. Previously it was thought that such leaks are limited
to at most one bit per run. Recent work by Askarov et al (ESORICS’08) offers
some bad news and some good news: the bad news is that for programs which
perform output, the amount of information leaked by a Denning style analysis is
not bounded; the good news is that if secrets are chosen to be sufficiently large
and sufficiently random then they cannot be effectively leaked at all. The prob-
lem addressed in this paper is that secrets cannot always be made sufficiently
large or sufficiently random. Contrast, for example, an encryption key with an
“hasHIV”-field of a patient record. In recognition of this we develop a notion of
secret-sensitive noninterference in which “small” secrets are handled more care-
fully than “big” ones. We illustrate the idea with a type system which combines
a liberal Denning-style analysis with a more restrictive system according to the
nature of the secrets at hand.

1 Introduction

Most tools for analysing information flow in programs such as Jif [MZZ+08] and Flow-
Caml [Sim03] build upon ideas going back to Denning’s work from the 70’s [DD77].
These systems enforce an imperfect notion of information flow which has become
known as termination-insensitive noninterference (TINI). Under this version of non-
interference, information leaks are permitted if they are transmitted purely by the pro-
gram’s termination behaviour (i.e., whether it terminates or not). This imperfection is
the price to pay for having a security condition which is relatively liberal (e.g. allowing
while-loops whose termination may depend on the value of a secret) and easy to check.

How bad is termination-insensitive noninterference? Previously there have been in-
formal arguments that termination-insensitive noninterference leaks at most one bit:
either a program terminates or it does not, so at most one bit of information can be
encoded in the termination state. However, recent work by Askarov et al [AHSS08]
shows that for programs which perform output, an arbitrary amount of information can
be leaked. The following program outputs an ascending sequence of natural numbers
on a public channel until the secret has been output, at which point it goes into a silent
loop:

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 207–221, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

208 D. Demange and D. Sands

for i = 0 to maxNat (
output i on public_channel
if (i = secret) then (while true do skip)

)

At the very least we can say that at each output step, the observer is able to narrow
down the possible values of the secret. This program (in suitable variants) is accepted
as secure by state-of-the-art information flow analysis tools such as Jif [MZZ+08],
FlowCaml [Sim03], and the SPARK Examiner [BB03, CH04].

Askarov et al formalise the notion of termination-insensitive noninterference and
show that although termination-insensitive noninterference can leak an arbitrary amount
of information, it cannot do so any more efficiently than the above example. The revised
intuition for programs performing public output is that the number of possible “term-
ination states” that can be used to encode information is of the order of the number of
public outputs performed by the program – since the program can diverge after 0 out-
puts, after 1 output, after 2 outputs, etc. This means that to leak n bits of information
the program needs to perform 2n outputs.

For Denning-style analyses this means that if secrets are sufficiently large and suffi-
ciently random then programs are computationally secure in the sense that the probabil-
ity of the attacker guessing the secret after observing a polynomial number of outputs
(again, in the size of the secret) gives only a negligible advantage over guessing the
secret without running the program.

What does this mean for information flow analysis in practice? Whereas previously
the imperfections of a Denning-style analysis were viewed as a reasonable tradeoff
between ease of analysis versus degree of security, we believe that in the light of
[AHSS08] we need a different perspective. The leak caused by termination-insensitivity
is only acceptable for sufficiently large and random secrets. But secrets, in general, are
not always parametric: one cannot always freely choose to make a secret larger and
more random. For example, an application cannot decide that a credit card CCV num-
ber should be made larger. An encryption key, on the other hand, might be something
that the application can control, and decide to scale up.

In this paper we consider the information flow problem in an arbitrary multi-level
security lattice. We present a way (Section 2) of refining each security level in an
information-flow lattice into two levels: big secrets, that are sufficiently large and ran-
domized to abide some leakage, and small secrets, for which even slow leakage is unac-
ceptable. Then, we define a two-level noninterference (Section 3), following Askarov et
al’s recent work, which combines the demands of termination-insensitive noninterfer-
ence (for big secrets) with the stricter requirements of termination-sensitive noninterfer-
ence (for small secrets). A type system is provided (Section 4) that ensures this notion
of noninterference. Additional novelties of the system are a somewhat more liberal
treatment of small secrets than found in previous termination-sensitive type systems.
Section 5 describes a strengthening of the definition of security to eliminate leakage
correlations between big and small secrets.

All Secrets Great and Small 209

2 A Refined Multilevel Lattice

In [AHSS08] a definition of termination-insensitive noninterference (TINI) was intro-
duced which is suitable for programs with outputs, assuming only two security levels
low and high. They proved that, even if programs verifying this condition can leak more
than a bit of information, the attacker cannot reliably (i.e in a single run) learn a secret in
polynomial time in the size of the secret. They also proved that, for programs satisfying
TINI, if secrets are uniformly distributed, then a particular observation of a computation
represents only a negligible hint for the attacker (Theorem 3).

The basic idea in this work is to refine the notion of high into two points bhigh and
shigh. These will correspond to “big” secrets and “small” secrets respectively. We will
define a notion of secret-sensitive noninterference which allows a low user to learn a
little about big secrets, and nothing at all about small secrets (relative to the notion of
observation that we model).

How are big and small secrets related? A key point here is that data labelled bhigh
will depend only on bhigh or low data sources, whereas data labelled shigh might also
depend on shigh data sources. Thus the label bhigh does not mean that the data is a
large secret – it just means that it does not depend on (contain any information about)
a small secret. We can then see that the resulting refined security lattice is as given in
Figure 1.

Now we generalise this refinement to the case of an ar-

Fig. 1. The refined 2-point
lattice

bitrary multi-level lattice of information levels [Den76].
Denning’s lattice model of information considers an ar-
bitrary complete lattice 〈L,�L,�L,�L,⊥L〉 where L is
the set of security clearance levels (henceforth just levels,
ranged over by i, j), and�L is the ordering relation which
determines when one level is higher than another. The idea
is that a principal with a clearance level i is permitted to
see data which is classified at level i or below according to

the partial ordering. Information from any levels may be combined, in which case the
classification for the resulting data is given deterministically by the least-upper-bound
operation �L.

To refine this general case we note that we must split each level i ∈ L, with the
exception of the bottom level ⊥L (which can always be thought of as public data)
into two points, corresponding to the big secrets (labelled b) and the small (labelled
s). Thus any non-bottom element i will be refined to (i, b) and (i, s). To define the
appropriate order between lattice elements we first note that (i, b) � (i, s) – with the
same motivation as given for the refined two-point lattice. Similarly, when comparing
secrets of the same kind we have (i, a) � (j, a) only when i �L j.

What about the relationship between two points (i, b) and (j, s) – when can infor-
mation flow between these points? The idea is that information at level b is potentially
leaked via a covert channel, so that it may be leaked to any level. Because of this we
can only permit flow from (i, b) to (j, s), and then only when i �L j. If we permitted
a small secret (i, s) to flow to any (j, b) for (j 	= i) then we would be able to launder
small secrets by first allowing them to flow to a big secret and then leaking via the covert
channel from there. In summary, we define the refinement of a given security lattice:

210 D. Demange and D. Sands

Definition 1. Let S denote the 2-point lattice formed from b and s under the ordering
b � s. We define the refinement of a security lattice L as the partial product of L
and S, which is the standard product lattice L × S, quotiented by the equivalence
(⊥L, b) ≡ (⊥L, s) – and this bottom element will be simply denoted by ⊥L.

Example. Consider the example where L = {secret, financial, medical, public} is
the set of the four security levels a program has to deal with, ordered according to the
Hasse diagram in Figure 2. Motivating a refinement of the lattice, there could be medical
data that is encrypted – or simply very large (e.g. high resolution image data) that could
be safely allowed to leak slowly, and other medical data that are to be handled with
more care, such as an “hasHIV” boolean flag in a patient record. The partial product of
lattices L and S is presented in Figure 3.

Fig. 2. Example L Fig. 3. The refinement of L

3 Secret-Sensitive Noninterference

In this section we define the security goal for programs computing over data labelled
with a refined lattice. This variant of the notion of noninterference, secret-sensitive
noninterference, combines the demands of termination-insensitive noninterference for
b-data, and the stronger termination-sensitive noninterference for s-data. Further, we
develop a bisimulation-style characterisation of secret-sensitive noninterference which
provides a convenient proof method.

Operational Semantics. We keep our presentation language independent, but we as-
sume some basic structure for an operational semantics. We will consider simple im-
perative computation modelled by a standard small-step operational semantics defined
over configurations of the form 〈M, C〉where M is a memory (store) – a finite mapping
from variables to values – and C (C′, D etc.) is a command. Each variable x is assumed
to have a fixed policy denoted Γ (x), which we take to be a member of the refinement
of some lattice L.

We assume an operational semantics consisting of deterministic labelled transitions
between configurations, where a label u is either (i) an observable output i(v), meaning
that a value v is output on a channel observable at level i ∈ L or above, or (ii) a silent

action labelled τ . We write e.g. 〈M, C〉 i(v)→ 〈M ′, C′〉.
On top of the basic labelled transitions we define a family of transition systems

labelled by a particular level:

All Secrets Great and Small 211

Definition 2 (i-observable transitions). We can define the transition relations
u→i, i ∈

L as:

〈M, C〉 j(v)→ 〈M ′, C′〉 j �L i

〈M, C〉 v→i 〈M ′, C′〉
〈M, C〉 u→ 〈M ′, C′〉 u = τ or u = j(n) where j 	�L i

〈M, C〉 τ→i 〈M ′, C′〉
Thus the i-observable transitions are obtained from the raw transitions by filtering out
(replacing by τ) all output actions that are not visible at level i. Note that the non-
τ transitions are just the value which is observed and not the channel on which it is
observed.

Now we define the “big step” transitions 〈M, C〉 u⇒i 〈M ′, C′〉 as follows

〈M, C〉 τ⇒i 〈M ′, C′〉 � 〈M, C〉 τ→∗
i 〈M ′, C′〉

〈M, C〉 v⇒i 〈M ′, C′〉 � 〈M, C〉 τ→∗
i

v→i〈M ′, C′〉

We also define the multi-step observations 〈M, C〉 �v⇒i 〈M ′, C′〉 with �v = v1v2 · · · vn

as follows:

〈M, C〉 v1⇒i 〈M1, C1〉 v2⇒i 〈M2, C2〉 v3⇒i · · · vn−1⇒ i 〈Mn−1, Cn−1〉 vn⇒i 〈M ′, C′〉
for some sequence of intermediate configurations 〈Mi, Ci〉. We define the multi-step
reduction for the empty vector to be synonymous with

τ⇒i.

Attacker’s knowledge. Our presentation follows the style of Askarov et al [AHSS08]
closely. The definition of noninterference developed here builds on the concept of at-
tacker knowledge which is what an attacker (an observer of a given clearance level i)
can deduce about the initial values of variables based on a particular observation of a
program run.

The attacker i knows the initial low part of the memory. The low part of the memory
from the perspective of a given level i is all variables with policy (i, s) or lower - and
observes some output trace �v that is not necessarily maximal, knows the program and
is able to make perfect deductions about the semantics of the program. For a memory
M we let M i denote the low part of the memory from the perspective of an observer at
level i, i.e. the part of the memory that he can see.

Definition 3 (Observations). Given a program C and a low memory M i, the i-observa-
tions is the set of all possible sequences of observable outputs that could arise from a run
of C with a memory compatible with M i. It is defined:

Obsi(C, M i) = {�v|〈N, C〉 �v⇒i 〈N ′, C′〉, N i = M i}
Definition 4 (Attacker’s knowledge). Given a program C, an initial choice M i of the
low part of the memory (for level i) and a trace of i-observable outputs �v, the attacker’s
knowledge gained from this observation is the set of all possible memories that could
have lead to this observation.

ki(C, M i, �v) = {N |〈N, C〉 �v⇒i 〈N ′, C′〉, N i = M i}

212 D. Demange and D. Sands

Note that increase in knowledge corresponds to a decrease in the size of the knowledge
set. Knowledge increases with outputs: the more outputs the attacker observes, the more
precise is his knowledge [AS07]:

∀C, M i, �v, v. ki(C, M i, �vv) ⊆ ki(C, M i, �v)

In order to distinguish between what is learnt about the “big” secrets (variables at levels
(i, b)) from what is learnt about the “small secrets” (variables at levels (i, s)) we define
the projections of knowledge sets to the b- and s-parts.

Definition 5 (b- and s-restricted memories). Given a memory M , and a security
size a ∈ S, we define M |ia to be the restriction of M to those variables x such that
Γ (x) = (j, a), j 	� i – i.e. the ”a-secrets” from i’s perspective. We extend the definition
pointwise to sets of memories.

Definition 6 (b- and s-restricted knowledge). Given a program C, a security size a ∈
S and an initial choice M i of the low part of the memory and a trace of outputs �v, the a-
restricted knowledge of the attacker i, written ka

i (C, M i, �v) is defined (ki(C, M i, �v))|ia.

Fig. 4. The finance-perspective on the example refined lattice

Informally, the restricted knowledge ka
i (C, M i, �v) is i’s knowledge about the a-secrets

(from i’s perspective) after having observed �v from initial memory M i.
The idea of “i’s secrets” can be illustrated using the lattice presented in Figure 3.

For example, the projection M |finance
s restricts M to just those variables with classifi-

cations (medical , s) or (secret , s). The finance-perspective on the lattice is illustrated
in Figure 4, where the b-secrets and s-secrets are marked. The low part of the lattice,
from the finance perspective, is also marked.

The s-restricted knowledge for an attacker at level finance is thus the knowledge
that can be deduced about the s-secret part of the memory.

Noninterference. Several kinds of noninterference can be defined from the notion of
knowledge. Here we adapt the definition of termination-(in)sensitive noninterference
that was proposed in [AHSS08] and then propose a definition of a two-levelled nonin-
terference.

All Secrets Great and Small 213

Definition 7 (Termination-Sensitive Noninterference (TSNI)). A program C satis-
fies TSNI if for all i, whenever �vv ∈ Obsi(C, M i) then

ki(C, M i, �v) = ki(C, M i, �vv).

TSNI means that at each step of output, nothing new about the high memory is learnt
by the attacker.

Definition 8 (Termination-Insensitive Noninterference (TINI)). A program C satis-
fies TINI if for all i, whenever �vv ∈ Obsi(C, M i) then

ki(C, M i, �vv) =
⋃

v′
ki(C, M i, �vv′).

TINI allows leakage at each low output step, but only through the fact that there is some
output step. The knowledge leaked by one output is the same as for any other.

In order to deal with our two different kinds of secret (b and s), the idea is here to
combine both TSNI and TINI: although we only accept TSNI for s-data which must be
handled with more care, we allow TINI for b-data, that abide some leakage since they
are randomized and large enough.

Definition 9 (Secret-Sensitive Noninterference (SSNI)). A program C satisfies SSNI
if for all i, whenever �vv ∈ Obsi(C, M i) then the following two properties hold:

ks
i (C, M i, �vv) = ks

i (C, M i, �v) (s-TSNI)
kb

i (C, M i, �vv) =
⋃

v′ kb
i (C, M i, �vv′) (b-TINI)

3.1 Characterising SSNI

The knowledge based definitions are (in our opinion) lucid because they give a clear
attacker perspective on the problem. However, for reasoning about secret-sensitive non-
interference we find it convenient to work with a more conventional characterisation in
terms of bisimulation relations. Here we develop this alternative characterisation, which
we will employ in Section 4 in order to prove that the type system there guarantees
secret-sensitive noninterference.

The basic idea is to establish the two components of SSNI via two forms of bisimu-
lation relations between configurations.

Definition 10 (Termination-sensitive i-bisimulation (i-TSB)). A symmetric relation
R on configurations is a termination-sensitive i-bisimulation, if 〈M, C〉R〈N, D〉
implies:

(i) M i = N i and M |ib = N |ib, and
(ii) whenever〈M, C〉 u→i 〈M ′, C′〉 then 〈N, D〉 u⇒i 〈N ′, D′〉 with 〈M ′, C′〉R〈N ′, D′〉.
Two configurations are said to be i-TSB equivalent (denoted by ∼=i) if there exists a
i-TSB relating them.

214 D. Demange and D. Sands

Here, the termination-sensitivity comes from the ability to produce the next output to-
gether with the symmetry of the relation.

Definition 11 (Termination-insensitive i-bisimulation (i-TIB)). We say that a con-
figuration 〈M, C〉 diverges for i, written 〈M, C〉⇑i, if 〈M, C〉 cannot perform any i-
observable output transition

v→i.
A symmetric relation R on configurations is defined to be a termination-insensitive

i-bisimulation if whenever 〈M, C〉R〈N, D〉 we have

(i) M i = N i and
(ii) if 〈M, C〉 u→i 〈M ′, C′〉 then either 〈N, D〉 u⇒i 〈N ′, D′〉 with 〈M ′, C′〉R〈N ′, D′〉,

or 〈N, D〉⇑i.

Two configurations are said to be i-TIB equivalent (denoted by �i) if there exists a
i-TIB relating them.

Note that the notion of “divergence” used here is purely from the perspective of a remote
observer who sees only the outputs on channels. We could make this more conventional
if we made program termination an observable event for all levels. We have chosen not
to do so, but the technical development in this paper does not depend in a crucial way
on this fact.

Before we show how these relations are sufficient to characterise SSNI, we need the
following lemmas about i-TSB and i-TIB.

Lemma 1
If 〈M, C〉 ∼=i 〈N, D〉 and 〈M, C〉 �v⇒i 〈M ′, C′〉 then 〈N, D〉 �v⇒i 〈N ′, D′〉 with
〈M ′, C′〉 ∼=i 〈N ′, D′〉.
Lemma 2

If 〈M, C〉 �i 〈N, D〉 and 〈M, C〉 �v⇒i 〈M ′, C′〉 then 〈N, D〉 �v′⇒i 〈N ′, D′〉 for some �v′

such that either �v = �v′ and 〈M ′, C′〉 �i 〈N ′, D′〉, or �v′ is a prefix of �v and 〈N ′, D′〉⇑i.

Proof. (Lemmas 1 and 2) By induction on the number of outputs (length of �v), and in
the base case by induction on the length of the raw transition sequence. �

Proposition 1
Suppose that for all levels i and all memories M and N such that M i = N i and
M |ib = N |ib we have 〈M, C〉 ∼=i 〈N, C〉. Then for all i, whenever �vv ∈ Obsi(C, M i)
then ks

i (C, M i, �vv) = ks
i (C, M i, �v).

Proof. See technical report [DS09]. �

A similar proposition can be stated about termination-insensitive noninterference con-
cerning bhigh data.

Proposition 2
Suppose that for all levels i and all M and N , such that M i = N i we have that 〈M, C〉
�i 〈N, C〉. Then �vv ∈ Obsi(C, Mi) implies kb

i (C, M i, �vv) =
⋃

v′ kb
i (C, M i, �vv′).

All Secrets Great and Small 215

Proof. See technical report [DS09]. �

Clearly, then, putting the propositions together we get a proof technique for SSNI:

Corollary 1. C satisfies SSNI if, for all levels i and all M and N , we have

• M i = N i implies 〈M, C〉 �i 〈N, C〉, and
• M i = N i and M |ib = N |ib implies 〈M, C〉 ∼=i 〈N, C〉.

3.2 Computational Security

Definition 9 clearly enforces termination-sensitive noninterference for s-data. Regard-
ing b-data, we can provide the computational security guarantees of [AHSS08] to show
that b-secrets, if chosen uniformly, cannot be leaked in polynomial time in their size. To
argue this we can first reclassify all secrets as b-data (or equivalently assume that there
are no s-secrets). Then we are back in the standard security lattice, and we simply need
to generalise the results of [AHSS08] from a two-point lattice to an arbitrary one. This
is, as usual, unproblematic since from the perspective of each individual level i there
are only two levels of interest: the levels which can be seen (i.e. the levels less than or
equal to i) and those which cannot. The main result is that if b-data is randomly chosen,
then an observer at level i learns a negligible amount of information (as a function of
the size of the b-data) about the data which i cannot see. We will not further develop the
details of this argument in the present article. The differences from the development in
[AHSS08] would be minor.

4 Secret-Sensitive Noninterference by Typing

In this section, we describe a type system that enforces noninterference Definition 9:
well-typed programs are secret-sensitive noninterfering. We study a classical determin-
istic while programming language defined with expressions and commands.

e ::= n | x | e op e

c ::= skip | x := e | c ; c | if e then c else c |
while e do c | for e do c | outputi(e)

Here n stands for any integer constant, x for any variable and op for any of the classical
binary arithmetical operators. Booleans are represented by integers the classical way
(0 is false, and everything else is true). We also assume that there are no exceptions
raised: all binary operators are totally defined.

Note that the language provides two types of loops: for loops are always terminating,
that is the guard expression is evaluated just once, leading to a constant that is decreased
each time the end of the loop body is reached, and while loops are potentially non
terminating. The distinction will be used in the type system to good effect.

The language includes the outputi primitive method that writes the value of its
argument to a channel with level i. The operational semantics is standard and is given
in the technical report [DS09].

216 D. Demange and D. Sands

4.1 Type System

This type system is based on the combination of a standard Denning-style analysis
(in type system form [VSI96]) for enforcing the termination-insensitive security for b-
secrets, and a more restrictive type system for handling the s-secrets. One such termina-
tion-sensitive type system is that described in [VS97], but that system is extremely
restrictive: loops are only allowed if the guard does not refer to anything except data
at the lowest lattice level, and if there is a branch on secret data at any level then no
loops are allowed inside the branches. Instead we adapt an idea common to the type
systems from [BC01] and [Smi01] for the termination-sensitive part. The idea is here
to allow high while loops (i.e. loops with high guards or arbitrary while loops occurring
in a high context) so long as no assignment or output to levels below the loop guards
follows them.

The form of the typing judgements follows the style of [BC01] in that it handles
indirect information flows by recording the write effect of a command (the lowest level
to which it writes data). This gives the same power as Denning’s popular approach
which uses a “program counter” level.

Consider both lattices L and S, and let P be their partial product as previously de-
fined. A type is either an expression type denoted e : τ , or a command type written
(τ, σ, δ)cmd, where both τ and σ are in P , the set of security levels, and δ, the termin-
ation flag is a member of the set {↓, ↑}, where we order the elements ↓ ≤ ↑.

Type judgments are of the form

Γ � C : (τ, σ, δ)cmd

where Γ is the typing environment i.e. a mapping from variables to variable types. In
the following, Γ is kept implicit. The syntactic meaning of such a judgment is that

– τ is a lower bound on the security levels of variables that are assigned to in C.
– σ is the least upper bound on the levels of (for,if,while) guards occurring in C.
– δ is ↓ if C contains no while loops, and is ↑ otherwise.

The semantic implication of these typings is that

– τ is a lower bound on the the write effect of the command – i.e., the command only
modifies variables of level τ or above, and

– σ is the termination effect: observing that C produces some output (i.e. “termi-
nates”) give us knowledge about data at level at most σ.

– δ is a termination flag: if δ = ↓ then the command always terminates.

With these intended meanings of τ , σ and δ, there is a natural partial order on types
which is contravariant in its first component and covariant in its second and third:

(τ, σ, δ)cmd ≤ (τ ′, σ′, δ′)cmd if τ ′ �P τ and σ �P σ′ and δ ≤ δ′

This relation is not used in the type system, but is used in the statement of e.g. the
subject reduction property below.

For elements of P (the first two components of a command type in particular) we
define the first and second projections in the obvious way: fst(i, a) = i and fst(⊥P) =
⊥L; snd(i, a) = a and snd(⊥P) = ⊥S = b.

All Secrets Great and Small 217

Rules of the security type system are displayed in Figure 5, where we drop the sub-
script for the relation �P .

Explicit flows are handled with rules for expressions, rules T-ASSIG, and T-OUT,
while implicit flows are treated in T-IF, T-WHILE and T-FOR which demand that
their body is at least as high as their guard level.

Most of the action takes place in the sequential composition rules. The interesting
case is T-SEQ2 where the termination effect σ1 of C1 is an s-secret, and C1 is indeed
potentially nonterminating. This means that we cannot allow arbitrary assignments in
C2 since these might leak information about the s-secrets which affected the termina-
tion of C1. Thus the write effect of C2 is constrained so that it does not write below
σ1, the termination effect of C1. For rule T-SEQ1 we are more liberal, since either the
guards do not depend on s-secrets, or C1 is always terminating.

The same reasoning is applied to while and for loops – their execution may be a
sequential composition of the body of the loop and the loop itself.

� n : τ
T-CONST

Γ (x) = τ var

� x : τ
T-VAREXP

� e : τ ′ τ ′ � τ
� e : τ

T-SUBEXP
� e1 : τ � e2 : τ

� e1 op e2 : τ
T-BINOP

� skip : (�P ,⊥P , ↓)cmdT-SKIP
� e : τ Γ (x) = τ var

� x := e : (τ,⊥P , ↓)cmd T-ASSIG

� e : τ fst(τ) �L i

� outputi(e) : ((i, s),⊥P , ↓)cmdT-OUT

� Ci : (τi, σi, δi)cmd snd(σ1) = b or δ1 = ↓
� C1;C2 : (τ1 � τ2, σ1 � σ2, δ1 � δ2)cmd T-SEQ1

� Ci : (τi, σi, δi)cmd σ1 � τ2 snd(σ1) = s δ1 = ↑
� C1;C2 : (τ1 � τ2, σ1 � σ2, ↑)cmd T-SEQ2

� e : θ � Ci : (τi, σi, δi)cmd θ � τi

� if e then C1 else C2 : (τ1 � τ2, σ1 � σ2 � θ, δ1 � δ2)cmdT-IF

� e : θ � C : (τ, σ, δ)cmd θ � τ snd(σ) = s⇒ σ � τ
� while e do C : (τ, σ � θ, ↑)cmd T-WHILE

� e : θ � C : (τ, σ, δ)cmd θ � τ snd(σ) = s ∧ δ = ↑ ⇒ σ � τ
� for e do C : (τ, σ, δ)cmd

T-FOR

Fig. 5. The security type system

4.2 Type Soundness

In this section we prove some results about well typed programs with regard to the
type system in Figure 5. The main proposition establishes that the type system indeed
enforces the secret-sensitive noninterference property we defined in Section 3.

218 D. Demange and D. Sands

Proofs of the following results are only sketched here. A full version of the proofs
can be found in the technical report corresponding to the present paper [DS09].

The first property is the standard notion of subject reduction which guarantees that
execution preserves types.

Theorem 1 (Subject reduction). If � C : (τ, σ, δ)cmd and 〈M, C〉 u→ 〈M ′, C′〉, then
� C′ : (τ ′, σ′, δ′)cmd with (τ ′, σ′, δ′)cmd ≤ (τ, σ, δ)cmd.

Proof. We proceed by induction on the typing derivation, and then by case analysis on
the last rule of the operational semantics. �

We need some preliminary lemmas in order to prove the SSNI enforcement. The follow-
ing lemmas (using the terminology from [VSI96]) confirm that the informal definitions
we gave about both components of a command type in Section 4.1 are enforced by the
type system.

Lemma 3 (Simple security). If � e : τ then every variable occurring in e has type
τ ′ var where τ ′ � τ .

Lemma 4 (Confinement). If � C : (τ, σ, δ)cmd, then every variable assigned to in
program C has type θ var with τ � θ.

Lemma 5 (Guard safety). If � C : (τ, σ, δ)cmd, then every while loop or conditional
guard in program C has type θ var with θ � σ.

Lemma 6 (Termination). If � C : (τ, σ, ↓)cmd, then C terminates on all memories.

These four lemmas can be easily proved by induction on the typing derivation.
In the formal development that follows for simplicity’s sake we only treat the case of

the three point lattice in Figure 1. The following results can be extended to the general
case: for a given clearance level i in L, as was depicted in the example of finance’s
perspective in Figure 4, the refinement of L can be rethought of as a three point lattice
- low level, bhigh and shigh secrets.

Proposition 3 (Noninterference of well typed commands)
If a command C is typable, i.e., � C : (τ, σ, δ)cmd, then C satisfies SSNI.

Proof. (Sketch; see technical report [DS09] for details) We use the proof technique
provided by Corollary 1. In the construction of the specific bisimulations we adapt the
proof from [BC01]. The first step is to show that � C : (τ, σ, δ)cmd implies 〈C, M〉 ∼=i

〈C, N〉 for all levels i, to have the s-TSNI property of Definition 9. The interesting case
is i = low since i = high is vacuous (memories and commands are in this case equal).

A command C is said to be shigh or bhigh if there exists τ and σ such that �
C : (τ, σ, δ)cmd with respectively τ = shigh or bhigh � τ . We show that � C :
(τ, σ, δ)cmd implies 〈C, M〉 ∼=l 〈C, N〉 for all M and N that are equal on their low
and bhigh parts. To do this we define a relationR1 : 〈M, C〉R1〈N, D〉 iff C and D are
typable, M l = N l and M |lb = N |lb , and one of the following four conditions holds:

(i) C and D are shigh; (ii) C = D
(iii) C = C1; C2, D = D1; C2 with 〈M, C1〉R1〈N, D1〉 and C2 is shigh
(iv) C is shigh, D = D1; D2 with 〈M, skip〉R1〈N, D1〉 and D2 is shigh

All Secrets Great and Small 219

We then show that R1 is a l-TSB by induction on the definition of R1, and con-
clude using Proposition 1. By Clause (ii) and Proposition 1, we have that in well typed
programs, there is no flow from shigh data to bhigh and low data.

The next step is to prove that the type system ensures TINI concerning the bhigh
data. We proceed in a similar way, providing a l-TIBR2 over configurations. The rela-
tion R2 is defined: 〈M, C〉R2〈N, D〉 iff C and D are typable, M l = N l, and one of
the following holds:

(i) C and D are bhigh (ii) C = D

(iii) 〈M, C〉R′
2〈N, D〉, where the relationR′

2 is defined inductively as:

C, D bhigh

〈M, C; C′〉 R′
2 〈N, D; C′〉R1

〈M, C〉 R′
2 〈N, D〉

〈N, C; C′〉 R′
2 〈N, D; C′〉R2

By Clause (ii) and Proposition 2, we then have the TINI property of well typed programs
concerning their bhigh data: there is no flow from bhigh data to low data except via
the termination channel. �

5 Correlation Leaks

In this section we mention a weakness in the definition of secret-sensitive noninterfer-
ence which allows the attacker to observe correlations between big and small secrets. We
show how the definition can be strengthened to remove such correlations, and conjecture
that the type-system guarantees correlation-freedom without need for modification.

Suppose that b is bhigh and s is shigh (in the lattice in Figure 1). Somewhat surpris-
ingly the program outputlow(b == s) is secret-sensitive noninterfering (note though
that it is not typeable). This is because the low observer can say nothing about the value
of e.g. s in isolation. The problem is that although the observer cannot deduce anything
about the individual kinds of secret, he can deduce information about their correlation
(in this example whether they are equal or not).

To eliminate the possibility of learning something about the correlation of big and
small secrets we need to demand that the knowledge learnt about big and small secrets
together is the same as for the combined knowledge learnt about them independently.
To express this precisely we need some additional notation.

In the definitions of secret-sensitive noninterference we have dealt with knowledge
as sets of projections of memories. We say that a memory M is full if dom(M) is the
set of all variables. In order to easily compare and combine knowledge sets we need
to work with full memories. Define M� to be the set of full memories obtainable by
completing M :

M� = {N | N |dom(M) = M, N is full}.
Now lift ·� to sets of memories K in the natural way by defining

K� =
⋃

M∈K

M�

220 D. Demange and D. Sands

Definition 12 (Correlation Freedom). A program C is Correlation Free if for all �v ∈
Obsi(C, M i), we have kbs

i (C, M i, �v)� = kb
i (C, M i, �v)� ∩ ks

i (C, M i, �v)�, where
kbs

i (C, M i, �v) = {M |i | M ∈ ki(C, M i, �v)} and M |i is the complement of M i – i.e.,
the projection of M to the variables not visible at level i.

In the case that C is secret-sensitive noninterfering we can show that this condition is
equivalent to kbs

i (C, M i, �v)� = kb
i (C, M i, �v)�, which says that nothing more is learnt

about the big and small secrets together than can be deduced from the big secrets alone.

Conjecture 1. Well-typed programs are correlation free.

We leave the proof of this conjecture to further work; the intuition here is that any
“correlation information” will always be typed as s-level data, and hence cannot be
leaked at all.

6 Conclusions

In this article we provided a way to refine an arbitrary complex security lattice in order
to distinguish two levels of secret, the big secrets b and the small ones s. Big secrets
can be handled more liberally on the grounds that they can be made sufficiently large
and random for slow leakage to be tolerable. We introduced an accompanying notion
of secret-sensitive noninterference which combines the relative merits of termination-
sensitive and termination-insensitive noninterference. We illustrated the use of the defi-
nition in the soundness argument for a simple type system for verifying secret-sensitive
noninterference.

Related Work. As mentioned previously, the starting point of this work is [AHSS08].
Our interpretation of the results there is that we need to treat different kinds of secrets in
different ways, and to our knowledge this paper is the first to do so in a noninterference
setting. It is, however, relatively common to give a special treatment to cryptographic
keys as compared to other kinds of secret – e.g. [AHS06] – but usually the goal here is
to deal with integrity (a key cannot be modified using a low value) or freshness (a key
cannot be used more than once).

Our type system is essentially a fusion of a type-based version of Denning’s sys-
tem [VSI96], and a stricter system based on [BC01]. The latter system is stricter than
a Denning-style analysis for quite a different purpose: to deal with multi-threaded pro-
grams. Our system, in a sequential setting, improves on [BC01] by additionally tracking
whether a program is terminating.

Further Work. A natural and interesting next step would be to combine such a type
system with cryptographic primitives (e.g. [Vol00][LV05][AHS06]). The notion of “big”
and “small” secrets have a natural interpretation in the cryptographic setting, since “big”
secrets correspond to e.g. cryptographic keys. In such a setting it might also be im-
portant to handle “size integrity”, so that one could know that a variable is not only
independent of small secrets, but that it is a big secret.

All Secrets Great and Small 221

Acknowledgements. Thanks to Andrei Sabelfeld for pointing out the correlation problem
discussed in Section 5, and to Niklas Broberg, David Pichardie, Thomas Jensen and the anony-
mous referees for very helpful comments on an earlier draft. This work was partly supported by
grants from the Swedish funding agencies SSF, Vinnova (The Swedish Governmental Agency for
Innovation Systems), VR, and by the European IST-2005-015905 MOBIUS project.

References

[AHS06] Askarov, A., Hedin, D., Sabelfeld, A.: Cryptographically-masked flows. In: Yi, K.
(ed.) SAS 2006. LNCS, vol. 4134, pp. 353–369. Springer, Heidelberg (2006)

[AHSS08] Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninter-
ference leaks more than just a bit. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008.
LNCS, vol. 5283. Springer, Heidelberg (2008)

[AS07] Askarov, A., Sabelfeld, A.: Gradual release: Unifying declassification, encryption
and key release policies. In: Proc. IEEE Symp. on Security and Privacy, pp. 207–221
(May 2007)

[BB03] Barnes, J., Barnes, J.G.: High Integrity Software: The SPARK Approach to Safety
and Security. Addison-Wesley Longman Publishing Co., Inc., Amsterdam (2003)

[BC01] Boudol, G., Castellani, I.: Noninterference for concurrent programs. In: Orejas, F.,
Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 382–395.
Springer, Heidelberg (2001)

[CH04] Chapman, R., Hilton, A.: Enforcing security and safety models with an information
flow analysis tool. ACM SIGAda Ada Letters 24(4), 39–46 (2004)

[DD77] Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
CACM 20(7), 504–513 (1977)

[Den76] Denning, D.E.: A lattice model of secure information flow. Comm. of the
ACM 19(5), 236–243 (1976)

[DS09] Demange, D., Sands, D.: All secrets great and small. Technical report, Chalmers
University of Technology, Sweden, Extended Version (2009)

[LV05] Laud, P., Vene, V.: A type system for computationally secure information flow. In:
Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 365–377.
Springer, Heidelberg (2005)

[MZZ+08] Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: Java information
flow. Software release (July 2001-2008),
http://www.cs.cornell.edu/jif

[Sim03] Simonet, V.: The Flow Caml system. Software release (July 2003),
http://cristal.inria.fr/˜simonet/soft/flowcaml/

[Smi01] Smith, G.: A new type system for secure information flow. In: Proc. IEEE Computer
Security Foundations Workshop, pp. 115–125 (June 2001)

[Vol00] Volpano, D.: Secure introduction of one-way functions. In: CSFW 2000: Proceed-
ings of the 13th IEEE workshop on Computer Security Foundations, p. 246. IEEE
Computer Society, Washington (2000)

[VS97] Volpano, D., Smith, G.: Eliminating covert flows with minimum typings. In: Proc.
IEEE Computer Security Foundations Workshop, pp. 156–168 (June 1997)

[VSI96] Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis. J.
Computer Security 4(3), 167–187 (1996)

http://www.cs.cornell.edu/jif
http://cristal.inria.fr/~simonet/soft/flowcaml/

Type-Based Automated Verification of

Authenticity in Cryptographic Protocols

Daisuke Kikuchi and Naoki Kobayashi

Graduate School of Information Sciences, Tohoku University
{kikuchi,koba}@kb.ecei.tohoku.ac.jp

Abstract. Gordon and Jeffrey have proposed a type and effect system
for checking authenticity in cryptographic protocols. The type system
reduces the protocol verification problem to the type checking problem,
but protocols must be manually annotated with non-trivial types and ef-
fects. To automate the verification of cryptographic protocols, we modify
Gordon and Jeffrey’s type system and develop a type inference algorithm.
Key modifications for enabling automated type inference are introduc-
tion of fractional effects and replacement of typing rules with syntax-
directed ones. We have implemented and tested a prototype protocol
verifier based on our type system.

1 Introduction

Gordon and Jeffrey [1,2,3] developed a series of type systems for verifying authen-
ticity in security protocols. The required authenticity properties are described
by using Woo and Lam’s correspondence assertions [4], and Gordon and Jeffrey’s
type systems guarantee that well-typed processes (describing security protocols)
satisfy the correspondence assertions. The type systems reduce the problem of
verifying authenticity properties in security protocols to the type checking prob-
lem. Based on the type systems, Haack and Jeffrey implemented a verifier for
cryptographic protocols [5].

One of the main shortcomings of their type systems was that protocols must
be explicitly annotated with types. Since the types may contain complex in-
formation about how communication channels, cryptographic keys, and nonces
should be used in protocols, it seems difficult for non-expert users (especially
those who are not familiar with the type systems) to supply such annotations.

In our previous work [6], we have extended Gordon and Jeffrey’s type system
for checking correspondence assertions [1] in the π-calculus (without crypto-
graphic primitives), the first and simplest one in the series of their type systems,
and developed a polynomial-time type inference algorithm for it. The key idea
of the extension was to introduce fractional effects, which allowed us to reduce
the type inference problem to linear programming over rational numbers, rather
than integer linear programming.

In this paper, we extend our previous work [6], and show that a similar tech-
nique can be used to develop a type inference algorithm for a variant of Gordon

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 222–236, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Type-Based Automated Verification of Authenticity 223

and Jeffrey’s type system for checking authenticity in cryptographic protocols [2].
The key technique for enabling efficient type inference is to allow fractional ef-
fects, as in our previous work [6]. Some new challenges, however, arise in deal-
ing with cryptographic primitives [2]. First, there are two rules for each mes-
sage/process constructor in their type system: one for trusted data, and the
other for untrusted data.1 Second, there is an explicit cast operation for cap-
turing the role of nonces in cryptographic protocols. These features make even
the simple type inference (without effects) non-trivial. We modify Gordon and
Jeffrey’s type system [2] to remove those problems, so that there is only one rule
for each message/process constructor, and no explicit cast operation is required.
That modification allows us to develop a type inference algorithm in a man-
ner similar to our previous work [6]. Although the expressive power of our type
system is incomparable to that of Gordon and Jeffrey’s type system [2] (there
are processes typable in their type system but not in our type system, and vice
versa), all the examples discussed in [2] are typable in our type system (modulo
an extension with labeled variants).

The rest of this paper is structured as follows. Section 2 introduces SpiCA,
an extension of the Spi-calculus with correspondence assertions, which is used
for describing cryptographic protocols. Section 3 introduces our new type sys-
tem for checking authenticity of cryptographic protocols. Section 4 describes a
type inference algorithm, which serves as an algorithm for automatic verifica-
tion of authenticity in cryptographic protocols. Section 5 reports preliminary
experiments. Section 6 discusses related work and Section 7 concludes. A longer
version of this paper is available from http://www.kb.ecei.tohoku.ac.jp/

~koba/esop09-long.pdf.

2 SpiCA: Spi-Calculus with Correspondence Assertions

In this section, we introduce the language SpiCA, an extension of the Spi-
calculus [8] with correspondence assertions. The language is similar to Gordon
and Jeffrey’s calculus [2]: our language is obtained from it by removing type
annotations and cast operations.

2.1 Syntax

Definition 1 (messages, processes). The sets of messages and processes,
ranged over by M and P respectively, are given by:

K, M, N ::= x | (M1, M2) | inl(M) | inr(M) | {M}K
P, Q ::= 0 |M !N |M?x.P | (P1 |P2) | ∗P | (νx)P | check x is M.P

| decrypt M is {x}K .P | case M is inl(x).P is inr(y).Q
| split M is (x, y).P | begin M.P | end M.P

Here, the meta-variables x and y range over the set N of variables.
1 In a subsequent paper [7], Gordon and Jeffrey uses subtyping and merges the two

rules into one. The subsumption rule still makes type inference difficult.

http://www.kb.ecei.tohoku.ac.jp/~koba/esop09-long.pdf
http://www.kb.ecei.tohoku.ac.jp/~koba/esop09-long.pdf

224 D. Kikuchi and N. Kobayashi

The variable x is bound in M?x.P , (νx)P and decrypt M is {x}K .P . x and
y are bound in case M is inl(x).P is inr(y).Q and split M is (x, y).P . We
write [M/x]P for the process obtained by replacing x in P with M .

(M1, M2) is a pair consisting of M1 and M2. inl(M) and inr(M) are con-
structors for sums. {M}K is the message obtained by encrypting M with key K.
Here, we assume perfect encryption; information about an encrypted message
can be obtained only if the key is known.

The process 0 is an inaction. The process M !N sends the message N on
the channel M . The process M?x.P waits to receive a message on channel
M , binds x to it, and then behaves like P . (P1 |P2) runs P1 and P2 in par-
allel, while ∗P runs infinitely many copies of P in parallel. The process (νx)P
creates a fresh name (which may be used as a channel, a nonce, or a sym-
metric key), binds x to it, and behaves like P . The process check x is M.P
behaves like P if the values of x and M are the same; otherwise the process
is aborted. The process decrypt M is {x}K .P decrypts the message M with
the symmetric-key K. If the decryption succeeds, the process binds x to the
decrypted message, and behaves like P ; otherwise, the process is aborted. The
process case M is inl(x).P is inr(y).Q behaves like [N/x]P if M is of the
form inl(N), and behaves like [N/y]Q if M is of the form inr(N). The process
split M is (x, y).P splits the pair M = (M1, M2), binds x to M1 and y to M2,
and behaves like P .

The processes begin M.P and end M.P are special processes for declaring
correspondence assertions; begin M.P raises a “begin M” event and then be-
haves like P , while end M.P raises an “end M” event and then behaves like
P . It is expected (and will be guaranteed by our type system) that whenever
an end-event occurs, a corresponding begin-event must have occurred before.
Authenticity properties (like “if Alice receives a message m, then Bob must have
sent the message”) are reduced to such relations between begin- and end-events:
See Example 1 below.

Example 1. Consider the following process System, taken from [2]:

System
�
= (νkey)(∗Sender(ch, key) | ∗Receiver(ch , key))

Sender(ch, key)
�
= ch?n.(νmsg)begin msg.ch!{(msg , n)}key

Receiver(ch, key)
�
= (νnon)(ch !non | ch?ctext .decrypt ctext is {x}key .

split x is (m,non ′).check non is non ′.end m)

System creates a shared key key, and runs infinitelymany copies ofSender (ch , key)
and Receiver(ch, key) in parallel. Here, ch is a public communication channel, on
which an attacker may also send/receive messages. The process Receiver(ch , key)
creates a fresh name non (which is often called a nonce in the terminology of secu-
rity protocols) and sends it on ch. The process Sender(ch, key) then receives the
nonce and creates a new message. It then raises a “beginmsg”-event and sends the
cyphertext {(msg,non)}key on ch. Here, the event “beginmsg” represents the fact
that the process certainly sent themessagemsg.Receiver(ch , key) then receives the
cyphertext, decrypts it (as a result, m and non ′ are bound to msg and non), and

Type-Based Automated Verification of Authenticity 225

checks that the second element of the decrypted message matches the nonce it has
sent before. The receiver then raises the event end msg , meaning that it has re-
ceived the message msg. The correspondence between end msg and begin msg ,
(i.e., the property that whenever an “end msg”-event happens, a “begin msg”-
eventmust have occurredbefore) assures that each timeReceiver(ch, key) executes
end msg, the message msg has certainly been sent by Sender(ch, key).

Note that the nonce check “check non is non ′. · · ·” in the protocol above
is essential; if there is no such check, then an attacker can confuse the receiver
by duplicating a message {(msg,non)}key (by running ch?x.(ch !x | ch!x), for
instance). ��

2.2 Semantics

The operational semantics is given in Figure 1. (The rules for split, case and
replications are omitted.) Here, a state is represented as a triple 〈Ψ, E, N〉, where
Ψ is a multiset of processes, N is a set of names, and E is a multiset of messages
M such that the event begin M has been raised but end L has not. In other
words, E describes capabilities (or, permissions) to raise end-events.

〈Ψ � {x?y.P, x!M}, E,N〉 −→ 〈Ψ � {[M/y]P}, E,N〉
〈Ψ � {P |Q}, E,N〉 −→ 〈Ψ � {P,Q}, E,N〉

〈Ψ � {(νx)P}, E,N〉 −→ 〈Ψ � {[y/x]P}, E,N ∪ {y}〉 (y /∈ N)
〈Ψ � {check x is x.P}, E,N〉 −→ 〈Ψ � {P}, E,N〉

〈Ψ � {decrypt {M}K is {x}K .P}, E,N〉 −→ 〈Ψ � {[M/x]P}, E,N〉
〈Ψ � {begin L.P}, E,N〉 −→ 〈Ψ � {P}, E � {L}, N〉
〈Ψ � {end L.P}, E � {L}, N〉 −→ 〈Ψ � {P}, E,N〉

Fig. 1. Operational Semantics

We write 〈Ψ, E, N〉 −→ Error if end L.P ∈ Ψ but L /∈ E. We write −→∗ for
the reflexive and transitive closure of −→. The required correspondence between
begin-events and end-events is stated as follows.

Definition 2 (safety). A process P is safe if 〈{P}, ∅, N〉
−→∗ Error, where
N is the set of free names in P .

For security protocols, the safety of the process running protocols alone is not
sufficient; the robust safety defined below means that the process is safe in the
presence of attackers running in parallel.

Definition 3 (robust safety). A process P is robustly safe if (P |O) is safe
for any process O that contains no begin/end/check-assertions.

Remark 1. In Gordon and Jeffrey’s definition [2], attackers may execute check
operations. We removed them, as the check operations do not increase the power
of attackers. check M is N.P can be simulated by decrypt {x}M is {y}N .P .

226 D. Kikuchi and N. Kobayashi

3 Type System

3.1 Types and Effects

Definition 4 (effects). The sets of types and effects, ranged over by T and e,
are given by:

T (types) ::= N(e) | Key(T) | T1 × T2 | T1 + T2

e (effects) ::= [A1 �→ r1, . . . , An �→ rn]
A (atomic effects) ::= end〈M〉 | chk〈α〉

α (extended names) ::= x | i
i (indices) ::= 0 | 1 | 2 | · · ·

Here, r1, . . . , rn ranges over the set of non-negative rational numbers.

The type N(e) describes names used as channels, nonces, or cyphertexts. When
the type describes a nonce, the effect e describes a capability to raise end-events
carried by the nonce. For example, non passed through ch in Example 1 carries a
capability to raise one “end msg”-event, so that its type is N([end〈msg〉 �→ 1]).
We often write Un for N([]). The type Key(T) describes keys used for decrypt-
ing messages of type T .

The type T1 × T2 describes pairs consisting of messages of types T1 and T2.
Indices are used to express dependencies of the second element on the first ele-
ment: For example, Un×N([end〈0〉 �→ 1]) describes a pair (a, b), where b’s type
is N([end〈a〉 �→ 1]). The type corresponds to (x:Un,N([end〈x〉 �→ 1]) in Gordon
and Jeffrey’s notation [2]. The type Un× (Un×N([end〈0〉 �→ 1, chk〈1〉 �→ 1]))
describes a message of the form (a, (b, c)) where a and b have type Un, and c
has type N([end〈b〉 �→ 1, chk〈a〉 �→ 1]). We use the nameless representation of
dependent types just for technical convenience for formalizing type inference; in
terms of the expressiveness of the type system, the nameless dependent types
are equivalent to Gordon and Jeffrey’s name dependent types [2].

The type T1 + T2 describes sums of the form inl(M) (where M is a message
of type T1) or inr(M) (where M is a message of type T2).

An effect [A1 �→ r1, . . . , An �→ rn] denotes the mapping f from the set of
atomic events to the set of rational numbers such that f(Ai) = ri for i ∈
{1, . . . , n} and f(M) = 0 for M /∈ {A1, . . . , An}. The atomic effect end〈M〉
denotes a capability to execute “end M ,” while the atomic effect chk〈α〉 de-
notes a capability to execute check α is x.P . The latter kind of effect is used
to guarantee that each nonce can be checked at most once. In the rest of this
paper, the words “effects” and “capabilities” are used interchangeably.

Example 2. Names in Example 1 have the following types.

ch : Un x : N([])×N([end〈0〉 �→ 1]) key : Key(N([])×N([end〈0〉 �→ 1]))

A substitution [x1/i1, . . . , xk/ik], denoted by meta-variable θ, is a mapping from
indices to names. The substitution, summation, and binary relation ≤ on effects
are defined by:

Type-Based Automated Verification of Authenticity 227

(θe)(A) = Σ{e(A′) | θA′ = A} (e1 + e2)(A) = e1(A) + e2(A)
e ≤ e′ ⇔ ∀A.e(A) ≤ e′(A)

The substitution θT on types is defined by:

[x/i]N(e) = N([x/i]e) [x/i]Key(T) = Key([x/i]T)
[x/i](T1 × T2) = [x/i]T1 × [x/(i + 1)]T2 [x/i](T1 + T2) = [x/i]T1 + [x/i]T2

3.2 Typing Rules

We introduce two type judgment forms: Γ ; e � M : T for messages and Γ ; e �
P for processes. Here, Γ , called a type environment, is a finite sequence of
bindings of names to types. Γ ; e � M : T means that given names described by
Γ and capabilities described by e, one can construct a message M of type T .
For example, we have

x : Un, y : Un; [end〈x〉 �→ 1] � (x, y) : Un×N([end〈0〉 �→ 1]).

In this manner, capabilities (to raise end-events or check nonces) can be attached
to a name, and passed to other processes.

Γ ; e � P means that given names described by Γ and capabilities described by
e, the process P can be safely executed. For example, x : Un, y : Un; [end〈x〉 �→
1] � end x is a valid judgment, but x:Un, y :Un; [end〈x〉 �→ 1] � end y is invalid
since there is no capability to execute end y. When we write Γ ; e � M : T or
Γ ; e � P , we implicitly assume that Γ , e, and T are well-formed, in the sense
that they do not contain undefined names. For example, when we write “Γ, x:T ,”
only the names bound in Γ may occur in T .

The typing rules for messages are given in Figure 2. In rule MT-Var, T + e
is defined as N(e′ + e) if T is of the form N(e′); otherwise T + e is T . The
capabilities e are transferred from the environment to x if x has type N(e′).
The role of the rule is similar to that of Gordon and Jeffrey’s typing rule for
cast-operations [2]. Unlike in Gordon and Jeffrey’s type system, however, the
transfer of capabilities from the environment to a name is implicitly performed
by MT-Var. The capabilities attached to a name can be extracted at most once
by a check operation: see the rule T-Check given later.

In rule MT-Pair, the index 0 in T2 refers to the first element, so that N must
have type [M/0]T2. The other rules are standard.

The typing rules for processes are given in Figure 3. Note that we have only
one rule for each process constructor (except T-SubEf, which can be easily
eliminated), while Gordon and Jeffrey’s type system [2] had two rules for each
process constructor: one for trusted data and the other for untrusted data.

In the figure, FN (e) denotes the set
⋃{FN (A) | e(A) > 0}, where FN (A)

is the set of extended names occurring in A. For example, FN ([end〈(x, y)〉 �→
0.5, end〈(y, z)〉 �→ 0]) = {x, y}.

228 D. Kikuchi and N. Kobayashi

The predicate pub(T) used in the figure is defined inductively by:

pub(N([]))
pub(T)

pub(Key(T))
pub(T1) pub(T2)

pub(T1 × T2)
pub(T1) pub(T2)

pub(T1 + T2)

In other words, pub(T) holds if T does not carry any effects. The predicate
gen(T) means that T is of the form N([]) or Key(T ′).

We explain some of the key typing rules below. A communication channel
in our calculus is an untrusted communication device, on which attackers may
intercept, duplicate messages, etc. In rules T-Out and T-In, therefore, the type
of messages sent on a channel must be public, meaning that they must not
contain effects. To send a name carrying effects, one must encrypt it; otherwise,
an attacker may abuse the effects (or, capabilities) carried by the name. Besides
the requirement that it must be public, there is no restriction on the type of
messages; thus, well-typed processes may suffer from type mismatch errors at
run-time (when executing split and case expressions).

The rule T-Par splits the capabilities e1 + e2 into e1 and e2 for P1 and P2

respectively. In rule T-Res, x is a fresh name, so that a capability to use x as a
nonce and check x is added to P .

The rule T-Check says that the check-expression extracts the capability e′

carried by N , by consuming the capability to check x; the consumption of the
capability chk〈x〉 ensures that the capability e′ can no longer be extracted. The
rules T-Begin and T-End say that the begin-expression adds the capability to
raise an end-event, while the end-expression consumes the capability to raise an
end-event. The rule T-SubEf allows some capabilities not to be used (so that
for a begin-event, there may be no corresponding end-event).

Γ, x : T ; e � x : T + e
(MT-Var)

Γ ; e1 �M : T1 Γ ; e2 � N : [M/0]T2

Γ ; e1 + e2 � (M,N) : T1 × T2

(MT-Pair)

Γ ; e �M : T1

Γ ; e � inl(M) : T1 + T2

(MT-Inl)

Γ ; e �M : T2

Γ ; e � inr(M) : T1 + T2

(MT-Inr)

Γ ; e �M : T Γ ; [] � K : Key(T)

Γ ; e � {M}K : Un
(MT-Encrypt)

Fig. 2. Typing for Messages

Type-Based Automated Verification of Authenticity 229

Γ ; [] � 0
(T-Zero)

Γ ; [] � x : Un Γ ; e � N : T pub(T)
Γ ; e � x!N (T-Out)

Γ ; [] � x : Un Γ, y : T ; e � P pub(T) y /∈ FN (e)
Γ ; e � x?y.P (T-In)

Γ ; e1 � P1 Γ ; e2 � P2

Γ ; e1 + e2 � P1 |P2

(T-Par)

Γ ; [] � P
Γ ; [] � ∗P (T-Rep)

Γ, x : T ; e+ [chk〈x〉
→ 1] � P x /∈ FN (e) gen(T)

Γ ; e � (νx)P
(T-Res)

Γ ; [] � x : Un Γ ; [] � N : N(e′) Γ ; e+ e′ � P
Γ ; e+ [chk〈x〉
→ 1] � check x is N.P

(T-Check)

Γ ; [] �M : Un Γ ; [] � K : Key(T) Γ, y : T ; e � P y /∈ FN (e)
Γ ; e � decrypt M is {y}K .P

(T-Decrypt)

Γ ; [] �M : T1 + T2 Γ, y : T1 ; e � P1 Γ, z : T2 ; e � P2 y, z /∈ FN (e)
Γ ; e � case M is inl(y).P1 is inr(z).P2

(T-Case)

Γ ; [] �M : T1 × T2 Γ, y : T1, z : [y/0]T2 ; e � P y, z /∈ FN (e)

Γ ; e � split M is (y, z).P
(T-Split)

Γ ; e+ [end〈M〉
→ 1] � P FN (M) ⊆ dom(Γ)
Γ ; e � begin M.P

(T-Begin)

Γ ; e � P FN (M) ⊆ dom(Γ)
Γ ; e+ [end〈M〉
→ 1] � end M.P

(T-End)

Γ ; e′ � P e′ ≤ e

Γ ; e � P (T-SubEf)

Fig. 3. Typing for Processes

230 D. Kikuchi and N. Kobayashi

Example 3. Recall Example 1. Sender(ch , key) is typed as follows.

Γ1 ; [] � ch : Un
Γ1 ; [] � key : T2

Γ1 ; [] � msg : Un Γ1 ; e � n : N(e)
Γ1 ; e � (msg, n) : T1

Γ1 ; [end〈msg〉 �→ 1] � {(msg, n)}key : Un
Γ1 ; [end〈msg〉 �→ 1] � ch!{(msg , n)}key

Γ1 ; [chk〈msg〉 �→ 1, end〈msg〉 �→ 1] � ch!{msg, n}key
Γ1 ; [chk〈msg〉 �→ 1] � begin msg. · · ·
ch : Un, key : T, n : Un ; [] � (νmsg) · · ·
ch : Un, key : T ; [] � Sender(ch, key)

Here, T1 = Un ×N([end〈0〉 �→ 1]), T2 = Key(T1), e = [end〈msg〉 �→ 1] and
Γ1 = ch : Un, key : T, n : Un,msg : Un.

The sub-process ch?ctext . · · · of Receiver(ch , key) is typed as follows.

Γ3 ; [] � non : Un Γ3 ; [] � non ′ : N(e′) Γ3 ; e′ � end m

Γ3 ; [chk〈non〉 �→ 1] � check non is non ′. · · ·
Γ2, x : Un×N([end〈0〉 �→ 1]) ; [chk〈non〉 �→ 1] � split x is (m,non ′). · · ·

Γ2 ; [chk〈non〉 �→ 1] � decrypt ctext is {x}key . · · ·
ch : Un, key : T2,non : Un ; [chk〈non〉 �→ 1] � ch?ctext . · · ·

Here, e′ = [end〈m〉 �→ 1], Γ2 = ch : Un, key : T,non : Un, ctext : Un and Γ3 =
Γ2, m : Un,non ′ : N([end〈m〉 �→ 1]). From this, we can get ch : Un, key : T ; [] �
Receiver(ch, key).

The entire system System is typed as ch : Un ; [] � System. ��

3.3 Type Soundness

The soundness of our type system is stated as follows.

Theorem 1 (robust safety). If x1:Un,. . . xn:Un;[]�P , then P is robustly safe.

The theorem says that if x1:Un, . . . xn:Un:[] � P holds, then the correspondence
assertions in P hold even in the presence of attackers.

The rest of this subsection sketches the proof of the above theorem. Gordon
and Jeffrey [2] proved the robust safety by showing (i) any well-typed process
is safe, and (ii) any attacker (an opponent process) is well-typed. Our proof is
similar, but a few modifications are required, because of the following points:

– An attacker process is not necessarily typed in our type system.
– The safety of a well-typed process usually follows from the fact that typing

is preserved by reductions. Our type system does not, however, satisfy the
type preservation property (recall that the rules T-In and T-Out imposes
no restriction on the type of messages, except the condition pub(T)).

Type-Based Automated Verification of Authenticity 231

To remedy the problems above, we first extend the type system. We add the fol-
lowing rules for subtyping and subsumption to the type system presented so far.

pub(T) pub(T ′)
T ≤ T ′

Γ ; e �M : T ′ T ′ ≤ T

Γ ; e �M : T

Let us write Γ ; e �EX M : T if Γ ; e � M : T is derivable in the extended type
system. Then, we can prove the following lemmas in a manner similar to [2]:

Lemma 1. If Γ ; [] �EX P , then P is safe.

Lemma 2. If O contains no begin/end/check-expressions and
FN (O) ⊆ {x1, . . . , xn}, then x1 : Un, . . . , xn : Un; [] �EX O holds.

We can now prove Theorem 1.

Proof of Theorem 1 Suppose that x1 : Un, . . . , xn : Un; e � P holds. Let O be
a process such that FN (O) ⊆ {x1, . . . , xn} and O contains no begin/end/check-
expressions. It suffices to show that P |O is safe.

By the definition of the extended type system,wehavex1:Un, . . . , xn:Un; [] �EX
P . By Lemma 2, we have x1 :Un, . . . , xn :Un; [] �EX O. By rule T-Par, we obtain
x1 : Un, . . . , xn : Un; [] �EX P |O. By Lemma 1, P |O is safe. �

3.4 On the Expressive Power of the Type System

The expressive power of our type system is incomparable to that of Gordon and
Jeffrey’s type system [2]. On one hand, the following process, which uses the
name x both as a pair and a sum, is typed under x :Un in Gordon and Jeffrey’s
type system, but not in our type system (without the extension).

split x is (y, z).case x is inl(y).0 is inr(z).0

On the other hand, consider the following process HalfCap.

(νy)(νz)(begin x.(c!{y}k | d!{z}k)
| c?u.d?v.decrypt u is {y′}k.decrypt v is {z′}k.

check y is y′.check z is z′.end x.)

The first process raises a begin-event, and passes the capability to raise an end-
event through the names y and z. The above process HalfCap is typed as follows
in our type system:

x : Un, c : Un, d : Un, k : Key(N([end〈x〉 �→ 0.5])) ; [] � HalfCap.

P is not, however, typable in Gordon and Jeffrey’s type system.
Despite the difference of the expressive power, however, we expect that both

the type systems are equally effective for realistic protocols. First, with the
extension discussed in Section 3.3, our type system is strictly more expressive
than Gordon and Jeffrey’s type system: If P is well-typed in their type system,
then the process obtained from P by removing type annotations and casts is well-
typed in our type system. Second, HalfCap given above is an artificial example,
and we are not aware of realistic protocols that use fractional capabilities.

232 D. Kikuchi and N. Kobayashi

4 Type Inference Algorithm

A type inference algorithm can be obtained in the same manner as in our previous
work [6]. The algorithm consists of the following steps.

– Step 1: Generate constraints on effects based on the typing rules.
– Step 2: Reduce the constraints on effects into linear inequalities on rational

numbers.
– Step 3: Check whether the linear inequalities have a solution.

The algorithm is sound and complete: Given a process P , the algorithm always
terminates, and it outputs a type-annotated process if and only if x1 :Un, . . . , xn :
Un; [] � P .

For the first step, we first eliminate the rule T-SubEf by combining it with
other rules. For example, the rule T-End can be replaced by:

Γ ; e′ � P FN (M) ⊆ dom(Γ) e′ + [end〈M〉 �→ 1] ≤ e

Γ ; e � end M.P
(T-End’)

The resulting typing rules are syntax-directed: there is exactly one rule for each
message/process constructor. Based on the typing rules, we can easily generate
constraints on type and effect variables, and then reduce them to constraints on
effect variables of the following forms:

e ≤ e′ FN (e) ⊆ {α1, . . . , αn} α
∈ FN (e)

Here, e is an expression constructed from effects, effect variables, +, and substi-
tutions.

The second step is also straightforward. We first obtain a set of atomic effects
{A1, . . . , Am} that may occur in effects. We then replace each effect variable ρ
with [A1 �→ ηρ,1, . . . , Am �→ ηρ,m] by preparing variables ηρ,1, . . . , ηρ,m ranging
over rational numbers. We can then reduce each effect to linear inequalities. For
example, ρ1 ≤ ρ2 is reduced to the set of constraints {ηρ1,1 ≤ ηρ2,1, . . . , ηρ1,m ≤
ηρ2,m}. α /∈ FN (e) is replaced by: {ηρ,i = 0 | α occurs in Ai}.

As in [6], the type inference algorithm runs in time polynomial in the size of
a process under the following assumptions:

1. The simple type of each message occurring in the process is bound by a
constant.

2. The arguments of begin/end-events cannot contain encrypted messages (of
the form {M}K).

Note that the first assumption ensures that the size of the effect constraints in
step 1 is polynomial in the size of the given process. The first and second condi-
tions ensure that the size of the set of relevant atomic effects is also polynomial,
hence so is the size of the linear inequalities.

Type-Based Automated Verification of Authenticity 233

Example 4. Recall Example 1. In step 1, we first prepare the following template
of type derivation for Sender(ch , key):

Γ2; ρ4 � ch : Un
Γ2; ρ6 � key : T

Γ2; ρ8 � msg : N(ρ14) Γ1; ρ9 � n : N(ρ13)
Γ2; ρ7 � (msg , n) : N(ρ11)×N(ρ12)

Γ2; ρ5 � {(msg , n)}key : N(ρ10)
Γ2; ρ3 � ch!{msg, n}key
Γ2; ρ2 � begin msg . · · ·

Γ1; ρ1 � (νmsg) · · ·
Γ0; ρ0 � Sender(ch , key)

Here, T, Γ0, Γ1, and Γ2 are given by:

T = Key(N(ρ15)×N(ρ16)) Γ0 = ch : Un, key : T
Γ1 = Γ0, n : N(ρn) Γ2 = Γ1,msg : N(ρmsg)

From the derivation tree, we obtain the following constraints:

ρ1 ≤ ρ0 ρ2 ≤ ρ1 + [chk〈msg〉 �→ 1] ρ3 ≤ ρ2 + [end〈msg〉 �→ 1]
ρ4 = ρ6 = [] ρ7 ≤ ρ5 ≤ ρ3 ρ8 + ρ9 ≤ ρ7

pub(N(ρn)) gen(N(ρmsg)) N(ρ15)×N(ρ16) = N(ρ11)×N(ρ12)
N(ρ11) = N(ρ14) N(ρ13) = [msg/0]N(ρ12) ρn + ρ9 = ρ13

FN (ρ15) ⊆ {ch} FN (ρ16) ⊆ {ch, 0} FN (ρn) ⊆ {ch, key} · · ·

(The constraints on the last line come from the well-formedness conditions of
type judgments.) The constraints on types can be easily reduced to those on
effects: for example, pub(N(ρn)) is replaced by ρn = [].

By analyzing the effect constraints generated from the whole process System,
we can infer that the relevant atomic effects are S = {end〈α〉, chk〈α〉 | α ∈
{0,msg,non,non ′, m}}. Let ρi(A) = ηi,A for A ∈ S. Then, we can generate linear
inequalities from the effect constraints. For example, from ρ2 ≤ ρ1+[chk〈msg〉 �→
1], we obtain the following linear inequalities:

η2,chk〈msg〉 ≤ η1,chk〈msg〉 + 1 ∀A ∈ S \ {chk〈msg〉}.η2,A ≤ η1,A

5 Experiments

We have implemented a prototype protocol verifier SpiCA based on our type
system. The implementation is available from http://www.kb.ecei.tohoku.
ac.jp/~koba/spica/. The system takes a protocol description without type
annotations as an input. If the input is well-typed, the system annotates it with
types and effects; otherwise, it just reports that the input is ill-typed. The current
system uses simplex method routines of the GLPK library [9] (via ocaml-glpk,
http://ocaml-glpk.sourceforge.net/) to solve linear inequalities; thus, the
implementation may suffer from exponential time complexity in the worst-case.

http://www.kb.ecei.tohoku.ac.jp/~koba/spica/
http://www.kb.ecei.tohoku.ac.jp/~koba/spica/
http://ocaml-glpk.sourceforge.net/

234 D. Kikuchi and N. Kobayashi

Table 1. Benchmark results

Processes Typing #EC #LC Time (ms)
nonce-handshake yes 49 13 20
flawed-handshake no 45 0 20
HalfCap yes 60 14 30
woo-lam yes 273 311 50
flawed-wide-mouth no 239 1208 90
wide-mouth yes 349 1328 100
otway-ree yes 462 2143 180

Table 1 summarizes the results of preliminary experiments. The experiments
are conducted on a machine with an Intel(R) Pentium(R) 1.2GHz processor and
500MB memory. The column “Typing” shows whether or not the processes were
judged to be well-typed. The columns “#EC” and “#LC” respectively show the
number of effect constraints and that of linear inequalities generated in Steps 1
and 2 of the algorithm. The column “Time” shows the running time. The pro-
cess nonce-handshake is the system in Example 1, while flawed-handshake is
a flawed version obtained from nonce-handshake by removing the check opera-
tion. The process HalfCap is the one discussed in Section 3.4. The other protocols
were taken from Gordon and Jeffrey’s paper [2]. The process woo-lam is a cor-
rected version of Woo and Lam’s protocol. The processes flawed-wide-mouth
and wide-mouth are flawed and corrected versions of Abadi and Gordon’s vari-
ant of wide mouth frog. The process otway-ree is Abadi and Needham’s variant
of Otway and Ree’s key exchange protocol.

All theprocesseswere correctly verified (or rejectedas ill-typed in the case for the
flawed protocols), and the inferred types and effects were as expected: for example,
Key(N([end〈x〉 �→ 0.5])) was automatically inferred as the type of k in HalfCap.

In some cases, the number of linear constraints is smaller than that of effect con-
straints.That is because constraints (such as unification constraints) are simplified
before the translation into linear constraints. In particular, for flawed-handshake,
inconsistency is detected in the simplification phase for effect constraints.

6 Related Work

This paper combines Gordon and Jeffrey’s work [2] on the type system for check-
ing authenticity with our previous work [6] of using fractional effects to enable
polynomial-time type inference for π-calculus with correspondence assertions.
The combination is non-trivial, however. Since Gordon and Jeffrey’s type sys-
tem has explicit type annotations and cast operations, non-trivial modifications
of the type system were necessary to adapt our previous technique.

Gordon and Jeffrey later extended their type system to deal with asymmetric
cryptographic protocols [7]. We expect that our approach can also be extended
to deal with them.

Type-Based Automated Verification of Authenticity 235

Gordon, Hüttel, and Hansen [10] have also recently proposed a type inference
algorithm for checking correspondence assertions in π-calculus. The algorithm
checks one-to-many correspondence (in which there may be more than one end-
events for each begin-event), rather than one-to-one correspondence considered
in the present paper and our previous work [6]. Their algorithm is quite different
from ours, and does not handle cryptographic primitives.

Bugliesi, Focardi, and Maffei [11,12] have proposed type-based static analy-
ses for authentication protocols that are closely related to Gordon and Jeffrey’s
type systems. They [13] later introduced an algorithm for automatically infer-
ring tags (which roughly correspond to Gordon and Jeffrey’s types [2,7]). Their
inference algorithm is based on exhaustive search of potential taggings by back-
tracking. Our type inference algorithm is therefore more efficient theoretically.
The advantage of our polynomial-time type inference may not be so important
in analyzing abstract descriptions of cryptographic protocols, which are usually
very short. The advantage may be more significant for analyzing the source code
of cryptographic protocols [14].

Blanchet [15] also proposed automated techniques for checking checking corre-
spondence assertions in cryptographic protocols. An advantage of our type-based
approach is that the result of type inference gives a better explanation of why
the protocol is safe. Blanchet [16] has recently proposed a quite different tech-
nique for authenticity verification. His technique can guarantee soundness in the
computational model, rather than in the formal model with the assumption of
perfect encryption.

The idea of using rational numbers in type systems goes back to the work of
Boyland [17], and has been extensively studied by Terauchi [18,19,20].

7 Conclusion

We have modified Gordon and Jeffrey’s type system for checking correspondence
assertions in cryptographic protocols, and obtained a type inference algorithm,
which serves as an algorithm for automated verification of cryptographic proto-
cols. Under certain reasonable assumptions, the algorithm runs in time polyno-
mial in the size of an input process.

Acknowledgment. We would like to thank Koki Nishizawa for comments and
discussions on thiswork, andKohei Suenaga for his help in using theGLPK library.

References

1. Gordon, A.D., Jeffrey, A.: Typing correspondence assertions for communication
protocols. Theor. Comput. Sci. 300, 379–409 (2003)

2. Gordon, A.D., Jeffrey, A.: Authenticity by typing for security protocols. Journal
of Computer Security 11(4), 451–520 (2003)

3. Gordon, A.D., Jeffrey, A.: Types and effects for asymmetric cryptographic proto-
cols. In: 15th IEEE Computer Security Foundations Workshop (CSFW-15), pp.
77–91 (2002)

236 D. Kikuchi and N. Kobayashi

4. Woo, T.Y., Lam, S.S.: A semantic model for authentication protocols. In: RSP:
IEEE Computer Society Symposium on Research in Security and Privacy, pp.
178–193 (1993)

5. Haack, C., Jeffrey, A.: Cryptyc (2004), http://www.cryptyc.org/
6. Kikuchi, D., Kobayashi, N.: Type-based verification of correspondence assertions

for communication protocols. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp.
191–205. Springer, Heidelberg (2007)

7. Gordon, A.D., Jeffrey, A.: Types and effects for asymmetric cryptographic proto-
cols. Journal of Computer Security 12(3-4), 435–483 (2004)

8. Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The Spi Cal-
culus. Information and Computation 148(1), 1–70 (1999)

9. GNU Linear Programming Kit, http://www.gnu.org/software/glpk
10. Gordon, A.D., Hüttel, H., Hansen, R.R.: Type inference for correspondence types.

In: 6th International Workshop on Security Issues in Concurrency (SecCo 2008)
(2008)

11. Bugliesi, M., Focardi, R., Maffei, M.: Compositional analysis of authentication pro-
tocols. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 140–154. Springer,
Heidelberg (2004)

12. Bugliesi, M., Focardi, R., Maffei, M.: Authenticity by tagging and typing. In: Pro-
ceedings of the 2004 ACM Workshop on Formal Methods in Security Engineering
(FMSE 2004), pp. 1–12 (2004)

13. Focardi, R., Maffei, M., Placella, F.: Inferring authentication tags. In: Proceedings
of the Workshop on Issues in the Theory of Security (WITS 2005), pp. 41–49 (2005)

14. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. In: Proceedings of the 21st IEEE Computer
Security Foundations Symposium (CSF 2008), pp. 17–32 (2008)

15. Blanchet, B.: From Secrecy to Authenticity in Security Protocols. In:
Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 342–359.
Springer, Heidelberg (2002)

16. Blanchet, B.: Computationally sound mechanized proofs of correspondence asser-
tions. In: 20th IEEE Computer Security Foundations Symposium (CSF 2007), pp.
97–111 (2007)

17. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

18. Terauchi, T., Aiken, A.: Witnessing side-effects. In: Proc. of ICFP, pp. 105–115.
ACM, New York (2005)

19. Terauchi, T., Aiken, A.: A capability calculus for concurrency and determinism.
ACM Trans. Prog. Lang. Syst. 30(5) (2008)

20. Terauchi, T.: Checking race freedom via linear programming. In: Proc. of PLDI,
pp. 1–10 (2008)

http://www.cryptyc.org/
http://www.gnu.org/software/glpk

A Theory of Non-monotone Memory

(Or: Contexts for free)�

Eijiro Sumii

Tohoku University
sumii@ecei.tohoku.ac.jp

Abstract. We develop a general method of proving contextual proper-
ties—including (but not limited to) observational equivalence, space im-
provement, and memory safety under arbitrary contexts—for programs
in untyped call-by-value λ-calculus with first-class, higher-order refer-
ences (ref, := and !) and deallocation (free). The method significantly
generalizes Sumii et al.’s environmental bisimulation technique, and gives
a sound and complete characterization of each proved property, in the
sense that the “bisimilarity” (the largest set satisfying the bisimulation-
like conditions) equals the set of terms with the property to be proved.
We give examples of contextual properties concerning typical data struc-
tures such as linked lists, binary search trees, and directed acyclic graphs
with reference counts, all with deletion operations that release memory.

This shows the scalability of the environmental approach from con-
textual equivalence to other binary relations (such as space improvement)
and unary predicates (such as memory safety), as well as to languages
with non-monotone store, where Kripke-style logical relations have
difficulties.

1 Introduction

1.1 Background

Memory management is tricky, be it manual or automatic. Manual memory
management is notoriously difficult, leading to memory leaks and segmentation
faults (or, even worse, security holes). Automatic memory management is usually
more convenient. Still, real programs often suffer from performance problems—
in terms of both memory and time—due to automatic memory management,
and require manual tuning. In addition, implementing memory management
routines—such as memory allocators and garbage collectors—is even harder than
writing programs that use them.

To address these problems, various theories for safe memory management
have been developed, including linear types [17], regions [16], and the capability
calculus [6], just to name a few. These approaches typically conduct a sound
and efficient static analysis—often based on types—on programs, and guarantee
their memory safety. However, since static analyses are necessarily incomplete
� Extended abstract with appendices online [13].

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 237–251, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

238 E. Sumii

dag = νz := null; 〈addn , deln, gc〉
addn = λx. λp. x+ 0; map(λy. y + 0)p;

incrx(!z)p; νn := 〈x, true, 0, p, !z〉; z :=n
incrx = fix f(n). λp.ifnull n then 〈〉 else

if #1(!n) int= x then diverge else

if member(#1(!n))p then #5
3(!n)←#3(!n) + 1; f(n)(remove(#1(!n))p) else

f(#5(!n))p
deln = λx.delnx(!z)
delnx = fix g(n). ifnull n then 〈〉 else

if #1(!n) int= x then #5
2(!n)← false else

g(#5(!n))
gc = λx. z := decr(!z)[]
decr = fix h(n). λp.ifnull n then null else

if member(#1(!n))p then #5
3(!n)←#3(!n)− 1; h(n)(remove(#1(!n))p) else

if #2(!n) ∨#3(!n) > 0 then #5
5(!n)←h(#5(!n))p;n else

h(#5(!n))(append(#4(!n))p) before free(n)

Fig. 1. Directed acyclic graph with garbage collection by reference counting

in the sense that some safe programs are rejected, the programs usually have to
be written in a style that is accepted by the analysis.

1.2 Our Contributions

In this paper, we develop a different approach, originating from Sumii et al.’s en-
vironmental bisimulations [7, 12, 14, 15]. Unlike most static analyses, our method
is not fully automated, but is (sound and) complete in the sense that all (and
only) safe programs can potentially be proved safe. Moreover, it guarantees
memory safety under any context, even if the context—or, in fact, the whole
language—is untyped.

For instance, consider the triple dag in Figure 1, which implements a directed
acyclic graph object with addition, deletion, and garbage collection by reference
counting. (Details of this implementation are explained in Section 6. The formal
syntax and semantics of our language are given in Section 3.) To verify the
memory safety of this implementation, it makes no sense to consider the triple by
itself; rather, we must consider all possible uses of it, i.e., put it under arbitrary
contexts. Our method gives such a proof in many examples.

Because our method is based on a relational technique (namely, bisimula-
tions), we can also prove binary properties such as observational equivalence,
in addition to unary properties such as memory safety. Furthermore, we can
prove more general binary properties like “the memory usage (i.e., number of
locations) is the same on the left hand side and the right” or “the left hand side
uses less memory than the right.” Again, such properties between programs are
preserved by contexts in the language, like contextual equivalence [10].

A Theory of Non-monotone Memory 239

1.3 Our Approach

Environmental bisimulations. Suppose that we want to prove the equivalence
of two programs e and e′.1 The basic idea of our approach is to consider the
set X of every possible “configuration” of the programs. A configuration takes
one of the two forms: (R, s � e, s′ � e′) and (R, s, s′). The former means that the
compared programs e and e′ are running under stores s and s′, respectively. The
latter means that the programs have stopped with stores s and s′. In both forms,
R is a binary relation on values and represents the knowledge of a context, called
an environment.

For instance, suppose that we have a configuration (R, s � e, s′ � e′) in X . (Typ-
ically, R is empty at first.) If s � e reduces to t � d in one step according to the
operational semantics of the language, then it must be that s′ � e′ also reduces
to some t′ � d′ in some number of steps, and the new configuration (R, t � d, t′ �
d′) belongs to X again. Knowledge R does not change yet, because the context
cannot learn anything from these internal transitions.

Now, suppose (R, s � e, s′ � e′) ∈ X and e has stopped running, i.e., e is a
value v. Then, s′ � e′ must also converge to some t′ �w′, and the context learns
the resulting values v and w′. Thus, R is extended with the value pair (v, w′),
and (R∪ {(v, w′)}, s, t′) must belong to X .

Once the compared programs have stopped, the context can make use of
elements from its knowledge to make more observations. For example, suppose
(R, s, s′) ∈ X and (�, �′) ∈ R. This means that location � (resp. �′) is known to
the context on the left (resp. right) hand side. If s = t�{� �→ v} and s′ = t′ �
{�′ �→ v′} (where �{ �→ } denotes store extension), then the context can read
the contents v (resp. v′) of � (resp. �′) on the left (resp. right) hand side, and
add them to its knowledge, requiring (R∪ {(v, v′)}, s, s′) ∈ X .

Or, the contents can be updated with any values composed from the knowledge
of the context. That is, for any (w, w′) ∈ R�, we require (R, t�{� �→w}, t′ �
{�′ �→w′}) ∈ X . Here, R� is the context closure of R and denotes the set of
(pairs of) terms that can be composed from values in R. Formally, it is defined
as

R� = {([v1, . . . , vn/x1, . . . , xn]e, [v′1, . . . , v
′
n/x1, . . . , xn]e) |

(v1, v
′
1), . . . , (vn, v′n) ∈ R, fv(e) ⊆ {x1, . . . , xn}, loc(e) = ∅}

where fv (e) is the set of free variables in e and loc(e) is the set of locations that
appear in e.

Moreover, the context can also deallocate locations it knows, or allocate fresh
ones. For the former case, we require (R, t, t′) ∈ X for any (R, t� {� �→ v}, t′ �
{�′ �→ v′}) ∈ X with (�, �′) ∈ R. For the latter case, (R ∪ {�, �}, t�{� �→ v}, t′ �
{� �→ v′}) ∈ X is required for any (R, t, t′) ∈ X with fresh � and (v, v′) ∈ R�.

Of course, there are also conditions on values other than locations. For
instance, if (R, s, s′) ∈ X and (λx. e, λx. e′) ∈ R, then (R, s � (λx. e)v, s′ �
1 Throughout this paper, we often (though not always) follow the notational conven-

tion that meta-variables with ′ are used for objects on the right hand side of binary
relations, and ones without for the left hand side (and unary relations).

240 E. Sumii

(λx. e′)v′) ∈ X is required for any (v, v′) ∈ R�, because the context can ap-
ply any functions it knows (λx. e and λx. e′) to any arguments it can compose
(v and v′).

Congruence of environmental bisimilarity. As we shall prove, the largest set X
satisfying the above conditions—which exists because all of them are monotone
on X—is “contextual” in the following sense:

– If a configuration (R, s � e, s′ � e′) is in X , then its context-closed version
(R�̂, s �E[e], s′ �E[e′]) is also in X , for any location-free evaluation context
E.

– If a configuration (R, s, s′) is in X , then its context-closed version (R�̂, s �
e, s′ � e′) is also in X , for any (e, e′) ∈ R�.

Here, R�̂ denotes the restriction of R� to values.
The restriction to location-free evaluation contexts in the first item is not

a limitation of our approach, as already shown in previous work [7, 15]: If one
wants to prove the equivalence of e and e′ under non-evaluation contexts, it suf-
fices to prove the equivalence of λx. e and λx. e′ (for fresh x) under evaluation
contexts only. In addition, if a context needs access to some locations �1, . . . , �n,
just requiring (�1, �1), . . . , (�n, �n) ∈ R is sufficient. Programs with free vari-
ables are not a problem, either: instead of open e and e′, it suffices to consider
λx1. . . . λxn. e and λx1. . . . λxn. e′ for {x1, . . . xn} ⊇ fv (e) ∪ fv (e′).

Generalization to contextual relations. The above approach is not limited to the
proof of contextual equivalence, but can be generalized for other binary relations
as well. For example, if we add a condition “|dom(s)| ≤ |dom(s′)| for any (R, s �
e, s′ � e′) ∈ X ,” then one can conclude that e uses fewer locations than e′ under
arbitrary (evaluation) contexts. In short, any predicate P on configurations can
be added to the conditions of X while keeping it contextual, as long as P itself is
contextual (i.e., preserved by contexts). It does not have to be a congruence (or
even a pre-congruence), hence the term “contextual” rather than “congruent”
(or pre-congruent).

Contextual predicates and memory safety. In fact, there is no reason why the
proved contextual relations have to be binary. Rather, they can be of arbitrary
arity. In particular, the arity can be 1, meaning unary predicates. To obtain
conditions for the unary version of X , we just have to remove everything that
belongs to the “right hand side.” Again, the resulting X is contextual as long as
the predicate P itself is contextual.

A prominent example of such unary properties is memory safety. For proving
memory safety under arbitrary contexts, let us first classify all locations into
“private” and “public” ones. The intent is that private locations are kept secret
to the program under consideration, whereas public locations are under the
control of the context. Then, let P (R, s � e) be false if and only if e is immediately
reading from, writing to, or deallocating a private location that is not in dom(s),
and P (R, s) be true if and only if any � ∈ R is public. Then, just as in the

A Theory of Non-monotone Memory 241

binary case, we can prove that the largest X satisfying the bisimulation-like
conditions is contextual. (Of course, here, we are not considering a congruence
or an equivalence relation—or even a binary relation at all!—but the set X is still
“bisimulation-like” in the sense that it involves co-induction and is contextual.)

Another example of unary contextual properties is an upper bound on the
number of private locations. To be concrete, let P (R, s � e) and P (R, s) be true
if and only if the number of private locations in dom(s) is less than a constant c.
Then, again, we can use our approach to prove that a term e allocates at most c
private locations under arbitrary contexts that do not create private locations.

1.4 Overview of the Paper

The rest of this paper is structured as follows. Section 2 discusses some (not all,
because of space constraints) related work. Section 3 defines our target language.
Section 4 develops the binary version of our proof technique and Appendix A
(available online [13]) gives examples (contextual relations between two multi-
set implementations). In addition, Appendix B introduces an auxiliary “up-to”
technique to simplify the proofs, with examples in Appendix C. Section 5 de-
fines the unary version of our approach and Section 6 gives an example (directed
acyclic graphs with garbage collection with reference counting). Appendix D
gives another example (bucket sort). Section 7 concludes with future work.

2 Related Work

As stated above, our technique is rooted in Sumii et al.’s previous work on envi-
ronmental bisimulations [7, 12, 14, 15]. In particular, our language and the binary
version of our proof method (for contextual equivalence) is an extension of their
environmental bisimulation for untyped call-by-value λ-calculus with references
(ref, := and !) in [12, Section 4], enriched with deallocation (free). It is also
similar to the language and bisimulation of [7], except that we adopt small-step
reduction semantics while they used big-step evaluation semantics. However, the
fact itself that the extension is possible is striking, especially because dealloca-
tion is known to be highly non-trivial in other approaches, including type-based
analyses and logical relations. In addition, our generalization of their technique—
from contextual equivalence to other properties such as memory safety—is en-
tirely new.

Denotational semantics can be used to prove contextual equivalence of pro-
grams (see, for example, [9, pp. 77, 344]). In short, two programs are contextually
equivalent if their denotations are the same (provided that the semantics is ade-
quate, of course). However, it is known to be hard to develop fully abstract—i.e.,
equivalence preserving—denotational semantics for languages with local store [8],
let alone full references or deallocation.

Logical relations are relations between (semantics of) programs defined by
induction on their types, and can be used for proving properties like contextual
equivalence and memory safety. Pitts and Stark [11] defined (binary) syntactic

242 E. Sumii

logical relations—i.e., relations between the syntax of programs itself rather than
their semantics—for a simply-typed call-by-value higher-order language with ref-
erences to integers, and proved that they characterize contextual equivalence in
this language. However, it is known to be hard to extend their result to languages
with general references [2, 5] (references to arbitrary values, including functions
and references themselves) or deallocation. In particular, the latter seems to
break monotonicity (of the domain of a store), which is a crucial assumption of
Kripke-style logical relations [9, p. 590] like theirs.

Ahmed [1, Chapter 7] defined (unary) step-indexed logical relations—i.e., rela-
tions defined by induction on the number of reduction steps instead of types—for
a continuation-passing-style higher-order language with regions and their deallo-
cation (like the capability calculus). In her definition, monotonicity is maintained
by marking deallocated regions “dead” instead of removing them, thereby forbid-
ding their reuse at the type level (still, region handles can be reused at the term
level). Completeness is not discussed. Ahmed, Fluet, and Morrisett [3, 4] defined
(unary) step-indexed logical relations in languages with linear types and deallo-
cation. Their developments depend on the static guarantee by linear types. None
of the work above considers contextual equivalence (or other binary properties).

3 The Language

The syntax of our language is given in Figure 2. It is a standard call-by-value
λ-calculus extended with references and deallocation, in addition to first-order
primitives (such as Boolean values and integer arithmetic) and tuples, which
are added solely for the sake of convenience. The operational semantics is also
standard and given in Figure 3 in the Appendices [13]. It is parametrized by
the semantics of primitives, given as a partial function [[]] to constants from
operations on constants.

A location �π is an atomic symbol that models a reference in ML (though it is
untyped and deallocatable in our language) or a pointer in C (although our lan-
guage omits pointer arithmetic for simplicity, it can easily be added by modeling
the store as a finite map from locations to arrays of values). It has a “security
level” � or ⊥ to distinguish private and public locations, as outlined in the in-
troduction. In what follows, we omit security levels when they are unimportant.
We assume that there exist a countably infinite number of locations, both pri-
vate and public. A special location null⊥ is reserved for representing a never
allocated location. This treatment is just for the sake of simplicity of examples.
We write loc(e) for the set of locations that appear in e (except null⊥), and
fv(e) for the set of free variables in e. Note that there is no binder for locations
in the syntax of our language.

Allocation νxπ := e1; e2 creates a fresh location �π of the specified security
level π, initializes the contents with the value of e1, binds the location to x, and
executes e2. (It is easy to separate allocation from initialization like νxπ . e, but
the present form is more convenient for examples. In addition, we do not like to
fix a single, arbitrary initial value of locations.) As outlined in the introduction,

A Theory of Non-monotone Memory 243

π, ρ ::= security level
� private
⊥ public

d, e,C,D ::= term
x variable
λx. e function
e1e2 application
c constant
op(e1, . . . , en) primitive
if e1 then e2 else e3

conditional branch
〈e1, . . . , en〉 tupling
#i(e) projection
�π location
νxπ := e1; e2 allocation
free(e) deallocation
e1 := e2 update
!e dereference
e1

ptr= e2 pointer equality

u, v, w ::= value
λx. e function
c constant
〈v1, . . . , vn〉 tuple
�π location

E,F ::= evaluation context
[] hole
Ee application (left)
vE application (right)
op(v1, . . . , vm, E, e1, . . . , en) primitive
if E then e1 else e2 conditional branch
〈v1, . . . , vm, E, e1, . . . , en〉 tupling
#i(E) projection
νxπ :=E; e allocation
free(E) deallocation
E := e update (left)
v :=E update (right)
!E dereference
E

ptr= e pointer equality (left)
v

ptr
= E pointer equality (right)

Fig. 2. Syntax

our intent is to disallow contexts to allocate private locations. This restriction is
a mere matter of a proof technique, and does not limit the computational power
of contexts at runtime. In other words, we can always divide locations so that
all locations under the control of a context are public.

Deallocation free(e) releases memory and lets it be reused later. Update
e1 := e2 overwrites the contents of a location.

Pointer equality e1
ptr= e2 compares locations themselves (not their contents).

We do not use it in our examples (except for comparison with null⊥), but it is
necessary for contexts to have a realistic observational power. If both locations
are live, their equality can be tested by writing to one of the locations and
reading from the other. However, this is not possible when either (or both) of
them is “dead,” i.e., already deallocated.

Throughout this paper, we focus on properties of closed terms and values only.
(This is not a limitation, as explained in the introduction.) Thus, we can model
a (possibly multi-hole) context C just by a term e with free variables x1, . . . , xn,
and a context application C[e1, . . . , en] by a variable substitution [e1, . . . , en/
x1, . . . , xn]e. For this reason, we use meta-variables C and D for terms that are
used for representing contexts. By convention, we implicitly assume that terms
denoted by capital letters are location-free (except for null⊥) and do not include
private allocation νx�.

For brevity, we use various syntactic sugar. We write let x = e1 in e2 for
(λx. e2)e1, and e1; e2 for let x = e1 in e2 where x does not appear free in
e2. Recursive function fix f(x). e is defined as (the value of) Y (λf. λx. e) by

244 E. Sumii

using some call-by-value fixed-point operator Y as usual. As in Standard ML,
e1 before e2 denotes let x = e1 in e2; x, again with x not free in e2. We also
write e1 ∧ e2 for if e1 then e2 else false and e1 ∨ e2 for if e1 then true
else e2. Note that these conjunction and disjounction operators are not sym-
metric, as in most programming languages with side effects or divergence. As in
Objective Caml, if e1 then e2 abbreviates if e1 then e2 else 〈〉, where 〈〉 is the
nullary tuple. Moreover, ifnull e1 then e2 else e3 abbreviates if e1

ptr
= null⊥

then e2 else e3. Finally, #i
j(!e1)← e2 stands for let x = e1 in x := 〈#1(!x),

. . . , #j−1(!x), e2, #j+1(!x), . . . , #i(!x)〉.
We give higher precedence to ; and before than λ, let, and if forms. Thus,

for instance, if e1 then e2 else e3; e4 and λx. e1; e2 mean if e1 then e2

else (e3; e4) and λx. (e1; e2), respectively, rather than (if e1 then e2 else e3); e4

or (λx. e1); e2. In addition, we take ; as right-associative, which is more conve-
nient when defining a bisimulation (see Appendix D [13]).

Our operational semantics is a standard small-step reduction semantics with
evaluation contexts and stores. Here, a store s is a finite map from locations
(except null⊥) to values. We write dom(s) for the domain of store s. We also
write s�{� �→ v} for the extension of store s with location � mapped to value v,
with the assumption that � �∈ dom(s). It is undefined if � ∈ dom(s). Similarly,
s1 � s2 is defined to be s1∪s2 if dom(s1)∩dom(s2) = ∅, and undefined otherwise.
s \ �̃ denotes the store obtained from s by removing �̃ from its domain. Again, it
is undefined if �̃ �∈ dom(s). We write � for the reflexive and transitive closure
of →.

Note that the reduction is non-deterministic, even up to renaming of locations.
For instance, consider e = νx := 〈〉; x ptr

= �. Then, we have both ∅ � e→ {� �→ 〈〉} �

(�
ptr
= �)→ {� �→ 〈〉} � true and ∅ � e→ {m �→ 〈〉} � (m

ptr
= �)→ {m �→ 〈〉} � false.

This is one of the characteristics of our language, where deallocation makes
dangling pointers (like � in the above example), which may or may not get
reallocated later.

Throughout the paper, we often abbreviate sequences A1, . . . , An to Ã, for
any kind of meta-variables Ai. We also abbreviate sequences of tuples, like
(A1, B1), . . . , (An, Bn), as (Ã, B̃). Thus, for example, [ṽ/x̃]e denotes [v1, . . . , vn/
x1, . . . , xn]e.

4 Binary Environmental Relations

In this section, we develop our approach for binary relations including contex-
tual equivalence, which is closer to (the small-step version [12] of) the original
environmental bisimulations [7, 14, 15].

First, we establish the basic terminology for our developments. Intuitions
behind the definitions are given in the introduction.

Definition 1 (state and binary configuration). The pair s � e of store s
and term e is called a state. A binary configuration is a quintuple of the form
(R, s � e, s′ � e′) or a triple of the form (R, s, s′), where R is a binary relation on
values.

A Theory of Non-monotone Memory 245

Note that we do not impose well-formedness conditions such as loc(e) ⊆ dom(s)
and loc(e′) ⊆ dom(s′), because deallocation may (rightfully) make dangling
pointers.

Definition 2 (context closure). The context closure R� of a binary relation
R on values, is defined by R� = {([ṽ/x̃]C, [ṽ′/x̃]C) | (ṽ, ṽ′) ∈ R, fv(C) ⊆ {x̃}}.
We write R�̂ for the restriction of R� to values. Note R ⊆ R� = (R�̂)�.

Then, we give the main definitions in this section. For brevity, we omit some
universal and existential quantifications on meta-variables in the conditions be-
low. They should be clear from the context—or, more precisely, from the posi-
tions of the first occurrences of the meta-variables. For instance, when we say

For every (R, s � d, s′ � d′) ∈ X , if s � d → t � e, then s′ � d′ � t′ � e′ and
(R, t � e, t′ � e′) ∈ X

it means

For every (R, s � d, s′ � d′) ∈ X , and for any t and e, if s � d→ t � e then
for some t′ and e′ we have s′ � d′ � t′ � e′ and (R, t � e, t′ � e′) ∈ X

because t and e first appear in the assumption, whereas t′ and e′ first appear in
the conclusion.

Definition 3 (reduction closure). A set X of binary configurations is
reduction-closed if, for every (R, s � d, s′ � d′) ∈ X,

i. If s � d→ t � e, then s′ � d′ � t′ � e′ and (R, t � e, t′ � e′) ∈ X.
ii. If s′ � d′ → t′ � e′, then s � d � t � e and (R, t � e, t′ � e′) ∈ X.
iii. If d = v and d′ = v′, then (R∪ {(v, v′)}, s, s′) ∈ X.

Intuitively, reduction closure means that the property in question is preserved
throughout the execution of the programs e and e′ (including the returned values
v and v′, which are then learned by the context). Note that we do not require
a condition like “if d = v, then s′ � d′ � t′ � v′” (and vice versa) here. It is a
specific property—defined P obs below—of contextual equivalence, while we are
interested in other more general properties as well.

In what follows, whenever we say “a predicate P on binary configurations,”
we silently impose the restriction that if P (R, s � d, s′ � d′) or P (R, s, s′), and
if (u, u′) ∈ R, then the outermost shape of u is the same as that of u′. (This
includes equality of constants—that is, u = c if and only if u′ = c. We assume
the existence of equality tests on all constants.) This is for excluding cases where
reduction gets stuck on the left hand side and not on the right (or vice versa).
For similar reasons, we additionally assume:

– If (�π, �′π
′
) ∈ R, then π = π′ = ⊥ and �⊥ ∈ dom(s) ⇐⇒ �′⊥ ∈ dom(s′).

– If (�⊥1 , �′1⊥) ∈ R and (�⊥2 , �′2⊥) ∈ R, then �⊥1 = �⊥2 ⇐⇒ �′1⊥ = �′2⊥.

Definition 4 (environmental P -simulation). Let P be a predicate on binary
configurations. A reduction-closed subset X of P is called an environmental P -
simulation if, for every (R, s, s′) ∈ X and (u, u′) ∈ R,

246 E. Sumii

1. If u = λx. e and u′ = λx. e′, then (R, s � uv, t � u′v′) ∈ X for any (v, v′) ∈
R�.

2. If u = 〈v1, . . . , vi, . . . , vn〉 and u′ = 〈v′1, . . . , v′i, . . . , v′n〉, then (R ∪ {(vi, v
′
i)},

s, s′) ∈ X.
3. If u = �⊥, u′ = �′⊥, s = t�{�⊥ �→ v} and s′ = t′ �{�′⊥ �→ v′}, then

(a) (R, t, t′) ∈ X.
(b) (R, t� {�⊥ �→w}, t′ �{�′⊥ �→w′}) ∈ X for any (w, w′) ∈ R�.
(c) (R∪ {(v, v′)}, s, s′) ∈ X.

4. For any �⊥ �∈ dom(s) and (v, v′) ∈ R�, we have (R ∪ {(�⊥, �′⊥)}, s�
{�⊥ �→ v}, s′ �{�′⊥ �→ v′}) ∈ X for some �′⊥ �∈ dom(s′).

An environmental P -simulation X is called an environmental P -bisimulation if
its inverse

X−1 = {(R−1, s′ � e′, s � e) | (R, s � e, s′ � e′) ∈ X}
∪ {(R−1, s′, s) | (R, s, s′) ∈ X}

is also an environmental P -simulation (or, if X is an environmental P−1-
simulation—this is equivalent because all the other conditions are symmetric).
An environmental bisimulation X is defined by taking P to be the following
P obs .

P obs(R, s � d, s′ � d′) = if d′ = v′, then s � d � t � v
P obs(R, s, s′) = true

Since all the conditions of environmental P -simulations are monotone on X , the
union of all environmental P -simulations is also an environmental P -simulation,
called the environmental P -similarity. In what follows, we often omit the adjec-
tive “environmental” and just write “a simulation” to mean an environmental
simulation. The same holds for all the combinations of P - and bi- simulations
and similarity.

As outlined in the introduction, the conditions of P -simulation reflect ob-
servations made by contexts. In Definition 3 (reduction closure), Conditions i
and ii mean reduction on the left can be simulated by the right hand side and
vice versa. Condition iii adds the returned values of programs to the knowledge
of a context.

In Definition 4 (P -simulation), Condition 1 corresponds to function appli-
cation, and Condition 2 to element projection from tuples. Conditions 3a, 3b,
3c, and 4 represent deallocation of, writing to, reading from, and allocation of
locations, respectively.

We are now going to prove the main result of this section: let P�→ be the
largest contextual, reduction-closed subset of P (which exists because the union
of contextual, reduction-closed sets is again contextual and reduction-closed);
then the P -similarity coincides with P�→, provided that P itself is contextual in
the following sense.

A Theory of Non-monotone Memory 247

Definition 5 (contextuality). A set P of configurations is contextual if its
context closure

P � = {(S, s � [ṽ/x̃]E[e], s′ � [ṽ′/x̃]E[e′]) |
(R, s � e, s′ � e′) ∈ P, S ⊆ R�̂, (ṽ, ṽ′) ∈ R, fv(E) ⊆ {x̃}}

∪ {(S, s � [ṽ/x̃]C, s′ � [ṽ′/x̃]C) |
(R, s, s′) ∈ P, S ⊆ R�̂, (ṽ, ṽ′) ∈ R, fv(C) ⊆ {x̃}}

∪ {(S, s, s′) | (R, s, s′) ∈ P, S ⊆ R�̂}
is included in P .

Note that P ⊆ P � = (P �)�. In short, contextuality means that P is preserved
under arbitrary contexts. The inclusion S ⊆ R�̂ is necessary for the following
technical reason: suppose we have a configuration (R, s � d, s′ � d′) ∈ X and put
it under an evaluation context E, like (R, s � E[d], s′ � E[d′]) ∈ X . If d and d′

reduce to values v and v′, respectively, then the context learns these values and
adds them to its knowledge, like (R∪{(v, v′)}, s �E[v], s′ �E[v′]) ∈ X . However,
according to the conditions of reduction closure, we need (R, s � E[v], s′ �E[v′]) ∈
X , where the knowledge R is smaller than R∪ {(v, v′)}. A similar case occurs
when the context by itself allocates a fresh location.

This is not a real problem because smaller knowledge means less observations,
i.e., more properties. In fact, instead of taking S ⊆ R�̂ here, it is also possible to
generalize the definition of simulation to allow the increase of knowledge in the
middle of an evaluation. This amounts to an up-to environment technique [12].

Theorem 1 (characterization). For any P , the P �-similarity coincides with
(P �)�→. In particular, if P is contextual, then the P -similarity coincides with
P�→.

It is easy to check—by simple induction on the evaluation context E—that the
previous P obs for contextual equivalence is indeed contextual. (It does not even
refer to R at all!) Thus:

Corollary 1 (bisimilarity equals contextual equivalence). The bisimilar-
ity coincides with the contextual equivalence P obs

�→ .

Appendix A [13] gives examples of the use of P -bisimulations, including a proof of
contextual equivalence and a property of space usage. Appendix B [13] develops
an up-to technique that lightens the burden of bisimulation proof.

5 Unary Environmental Predicates

Suppose that we want to prove the memory safety of the directed acyclic graph
implementation dag . To do so, we can use the “bisimulation” between dag and
dag itself! This idea formalizes to the following definitions.

Definition 6 (memory safety). State s � e is memory unsafe if e is either
E[free(��)], E[�� := v], or E[!��], with �� �∈ dom(s). It is memory safe if not
memory unsafe. We often omit “memory” and just say “safe” or “unsafe,” and
write safe for the set of safe s � e.

248 E. Sumii

Note that the definition above does not imply so-called “type safety,” which is
a more general property. For instance, safe does not preclude stuck states such
as ∅ � � 3.

Definition 7. A unary configuration is a triple of the form (R, s � e) or a pair
of the form (R, s), where R is a predicate on values.

Definition 8 (environmental P -predicate). Let P be a predicate on unary
configurations. A set X ⊆ P of unary configurations is called an environ-
mental P -predicate if its duplication X2 = {(R2, s � e, s � e) | (R, s � e) ∈
X} ∪ {(R2, s, s) | (R, s) ∈ X} is an environmental P 2-simulation, where
R2 = {(v, v) | v ∈ R}. To spell out all the conditions,

1. For every (R, s � d) ∈ X,
(a) If s � d→ t � e, then (R, t � e) ∈ X.
(b) If d = v, then (R∪ {v}, s) ∈ X.

2. For every (R, s) ∈ X and u ∈ R,
(a) If u = λx. e, then (R, s � uv) ∈ X for any v ∈ R�.
(b) If u = 〈v1, . . . , vi, . . . , vn〉, then (R∪ {vi}, s) ∈ X.
(c) If u = �⊥ and s = t�{�⊥ �→ v}, then (R, t) ∈ X, (R, t�{�⊥ �→w}) ∈ X

for any w ∈ R�, and (R∪ {v}, s) ∈ X.
(d) (R∪ {�⊥}, s�{�⊥ �→ v}) ∈ X for any �⊥ �∈ dom(s) and v ∈ R�.

where the unary version of context closure is defined as R� = {[ṽ/x̃]C | ṽ ∈
R, fv(C) ⊆ {x̃}}.
All the results from binary environmental P -simulations apply to this unary
version, because the latter is just a special case of the former (and because
equality satisfies all the restrictions on P). This includes soundness and the
up-to technique. For pedagogy, we spell out the conditions of environmental
P -predicate up-to context and allocation.

Definition 9 (allocation closure). The (unary) allocation closure of X is
defined as:

Xν = {(R, s � e) | (R, s � e) ∈ X}
∪ {(S, s \ m̃⊥ �{�̃⊥ �→ w̃}) | (R, s) ∈ X, m̃⊥ ∈ R, S = R∪ {�̃⊥}, w̃ ∈ S�}

Definition 10 (environmental P -predicate up-to). A set X ⊆ P of unary
configurations is called an environmental P -predicate up-to context and alloca-
tion (or just a “P -predicate up-to” in short) if:

1. For every (R, s � d) ∈ X,
(a) If s � d→ t � e, then (S, t � e) ∈ (Xν)�.
(b) If d = v, then (R∪ {v}, s) ∈ (Xν)�.

2. For every (R, s) ∈ X and u ∈ R,
(a) If u = λx. e, then for any (S, t) ∈ {(R, s)}ν and v ∈ S�, we have (S, t �

uv) ∈ X.
(b) If u = 〈v1, . . . , vi, . . . , vn〉, then (R∪ {vi}, s) ∈ (Xν)�.
(c) If u = �⊥ and �⊥ ∈ dom(s), then (R∪ {s(�⊥)}, s) ∈ (Xν)�.

A Theory of Non-monotone Memory 249

6 An Example

The code in Figure 1 implements directed acyclic graphs (DAGs), with garbage
collection by reference counting. For simplicity, we use immutable lists in this
example (in addition to a mutable data structure for representing the DAGs
themselves), and assume their basic operations such as member , append , and
remove.

Here, z is bound to the location of the last added node in the DAG. A node
is either null or a quintuple 〈i, b, n, p, �〉, where i is an integer ID of the node, b
a Boolean value meaning whether the node is “in the root set” (i.e., cannot be
garbage collected), n the reference count of the node, p the (immutable) list of
the integer IDs of child nodes, and � the pointer to the second last added node.
This pointer is different from child pointers, for which we use the list of integer
IDs.

Function addn takes integer x and integer list p, and adds a node with ID x
and children p. The code x + 0 and map(λy. y + 0)p ensures they are indeed an
integer and an integer list (assuming that + 0 is defined only for integers). An
auxiliary function incrx is used to increment the reference counts of nodes in p,
as well as to check if node x already exists (in which case it diverges). Note that
the same node may appear more than once in p. Its reference count is increased
by the number of appearance.

Function deln prepares to delete a node by (un)marking it as non-root. Func-
tion gc invokes the garbage collector decr , which takes a node pointer n and an
integer list p. It decreases the reference counts of nodes in p, again according to
the number of their appearances. If the reference count becomes 0, and if the
root flag is not set, then the node is deleted, and its children are added to p so
that their reference counts will be decreased recursively. In the end, decr returns
the updated node pointer n.

We define the shape predicate for DAGs by induction.

– DAGS(null, ∅, ∅)
– DAGS(�, [(i, b, S0)] @ L0, s0 �{� �→ 〈i, b, S(i), S0, �0〉})

if � �= null, DAGS+S0(�0, L0, s0), and i �= i0 for any (i0, ,) ∈ L0.

Here, the subscript S is a multiset of node IDs, representing the number of
references to each node.

We also give a specification of our garbage collector as follows. It is more
abstract than the implementation because it looks at only the positiveness of
the reference count S(i), not its concrete value (i.e., only whether the node is
referred to, not how many times).

GC S([]) = []
GC S([(i, b, S0)] @ L1) = [(i, b, S0)] @ GCS+S0(L1) if b = true or S(i) > 0
GC S([(i, false, S0)] @ L1) = GC S(L1) if S(i) = 0

GC S takes a list of triples (i, b, S0) that represent nodes, where i is the node
ID, b the root flag, and S0 the multiset of the IDs of the children. Here, the

250 E. Sumii

subscript S is the multiset of the IDs of nodes pointed to by “external” nodes,
i.e., by nodes that are not in the list.

Now, the following lemma can be proved.

Lemma 1. Suppose DAGS(�, L, s). Then, for any t and T , we have s� t �
decr(�)T � s0 � t � �0 with DAGS−T (�0,GCS−T (L), s0). (Here, we are abusing
notation and writing T for an integer list representing the integer multiset T .)

Given the lemma above, it is straightforward to give an environmental predicate
for dag and prove it to be memory safe under arbitrary (public) contexts. In
fact, we can prove more properties, e.g., that the number of private locations
matches the number of nodes (and therefore the number of live nodes after a
call to gc) plus one (for z). To be specific, take

X = {(∅, ∅ �dag)}
∪ {(Fω({�̃⊥}), t � e) | DAG∅(��, L, s), d ∈ Fω({�̃⊥}), v, w̃ ∈ (Fω({�̃⊥}))�,

s�{m� �→ ��}�{�̃⊥ �→ w̃} � d(v) � t � e}
∪ {(Fω({�̃⊥}), s�{m� �→ ��}) | DAG∅(��, L, s)}

where
F (R) = R∪ {[m�/z]addn, [m�/z]deln, [m�/z]gc}

∪ {[v/x][m�/z](λp. x + 0; . . .) | v ∈ R�}.
Then, X is an environmental P -predicate up-to, where

P = {(R, s�{m� �→ ��}� {�̃⊥ �→ w̃} � e) | safe(s�{m� �→ ��}� {�̃⊥ �→ w̃} � e)}
∪ {(R, s�{m� �→ ��}� {�̃⊥ �→ w̃}) | DAG∅(��, L, s)}.

Appendix D gives another example of memory safety proof by environmental
P -predicates.

7 Conclusion

As is often the case in programming language theories, our theory may seem
trivial in hindsight. In particular, all the proofs are arguably straightforward
(though sometimes just lengthy because of case analyses) once organized in the
way presented here. However, such an organization and the definitions were far
from trivial, especially because of the non-monotone stores and non-deterministic
reduction.

Future work includes deriving such definitions systematically from the opera-
tional semantics of a language (cf. [7]), so that the definitions and proofs do not
have to be repeated manually for every language. Another direction is mecha-
nization. Although complete automation is clearly impossible, ideas from model
checking and type-based analyses may be useful for sound approximation. Weak-
ening the contextuality to restrict the possible contexts—so that more programs
can be proved correct—would also be useful in practice.

A Theory of Non-monotone Memory 251

References

[1] Ahmed, A.: Semantics of Types for Mutable State. PhD thesis, Princeton Univer-
sity (2004)

[2] Ahmed, A., Dreyer, D., Rossberg, A.: State-dependent representation indepen-
dence. In: Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (2009) (to appear), http://ttic.uchicago.

edu/~amal/papers/sdri.pdf

[3] Ahmed, A., Fluet, M., Morrisett, G.: A step-indexed model of substructural state.
In: Proceedings of the Tenth ACM SIGPLAN International Conference on Func-
tional Programming, pp. 78–91 (2005)

[4] Ahmed, A., Fluet, M., Morrisett, G.: L3: A linear language with locations. TLCA
2005 77(4), 397–449 (2007); extended abstract appeared in: Typed Lambda Cal-
culi and Applications. LNCS, vol. 3461, pp. 293–307. Springer (2005)

[5] Bohr, N.: Advances in Reasoning Principles for Contextual Equivalence and Ter-
mination. PhD thesis, IT University of Copenhagen (2007)

[6] Crary, K., Walker, D., Morrisett, G.: Typed memory management in a calculus
of capabilities. In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 262–275 (1999)

[7] Koutavas, V., Wand, M.: Small bisimulations for reasoning about higher-order
imperative programs. In: Proceedings of the 33rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pp. 141–152 (2006)

[8] Meyer, A.R., Sieber, K.: Towards fully abstract semantics for local variables: Pre-
liminary report. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 191–203 (1988)

[9] Mitchell, J.C.: Foundations for Programming Languages. MIT Press, Cambridge
(1996)

[10] Morris Jr., J.H.: Lambda-Calculus Models of Programming Languages. PhD the-
sis, Massachusetts Institute of Technology (1968)

[11] Pitts, A.M., Stark, I.: Operational reasoning for functions with local state. In:
Higher Order Operational Techniques in Semantics, pp. 227–273. Cambridge Uni-
versity Press, Cambridge (1998)

[12] Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-
order languages. In: Twenty-Second Annual IEEE Symposium on Logic in Com-
puter Science, pp. 293–302 (2007)

[13] Sumii, E.: A theory of non-monotone memory (or: Contexts for free), http://

www.kb.ecei.tohoku.ac.jp/~sumii/pub/non-mono.pdf

[14] Sumii, E., Pierce, B.C.: A bisimulation for dynamic sealing. Theoretical Computer
Science 375, 1–3, 169–192 (2007); extended abstract appeared in: Proceedings of
the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 161–172 (2004)

[15] Sumii, E., Pierce, B.C.: A bisimulation for type abstraction and recursion. Journal
of the ACM 54, 5–26, 1–43 (2007); extended abstract appeared in: Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 63–74 (2005)

[16] Tofte, M., Talpin, J.-P.: Implementation of the typed call-by-value λ-calculus using
a stack of regions. In: Proceedings of the 21st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pp. 188–201 (1994)

[17] Wadler, P.: Linear types can change the world! In: Programming Concepts and
Methods. North Holland, Amsterdam (1990)

Abstraction for Concurrent Objects�

Ivana Filipović, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang

Queen Mary University of London, UK

Abstract. Concurrent data structures are usually designed to satisfy correctness
conditions such as sequential consistency and linearizability. In this paper, we
consider the following fundamental question: what guarantees are provided by
these conditions for client programs? We formally show that these conditions can
be characterized in terms of observational refinement. Our study also provides a
new understanding of sequential consistency and linearizability in terms of ab-
straction of dependency between computation steps of client programs.

1 Introduction

The design and implementation of correct and efficient concurrent programs is a chal-
lenging problem. Thus, it is not surprising that programmers prefer to develop concur-
rent software mainly by utilizing highly-optimized concurrent data structures that have
been implemented by experts.

Unfortunately, there is a gap in our theoretical understanding, which can have a se-
rious consequence on the correctness of client programs of those concurrent data struc-
tures. Usually, programmers expect that the behavior of their program does not change
whether they use experts’ data structures or less-optimized but obviously-correct data
structures. In the programming language community, this expectation has been formal-
ized as observational refinement [4,8,11]. On the other hand, concurrent data
structures are designed with different correctness conditions proposed by the concurrent-
algorithm community, such as sequential consistency [9] and linearizability [6]. Can
these correctness conditions meet programmers’ expectation? In other words, what are
the relationships between these conditions and observational refinement? As far as we
know, no systematic studies have been done to answer this question.

The goal of this paper is to close the aforementioned gap. We show that (1) lineariz-
ability coincides with observational refinement, and (2) as long as the threads are non-
interfering (except through experts’ concurrent data structures), sequential consistency
is equivalent to observational refinement. Our results pinpoint when it is possible to re-
place a concurrent data structure by another sequentially consistent or linearizable data
structure in (client) programs, while preserving observable properties of the programs.
One direction in this connection (that linearizability implies observational refinement)
has been folklore amongst concurrent-algorithm researchers, and our results provide
the first formal confirmation of this folklore. On the other hand, as far as we are aware
the other direction (when observational refinement implies linearizability or sequential
consistency) is not prefigured or otherwise suggested in the literature.

� We would like to thank anonymous referees, Viktor Vafeiadis and Matthew Parkinson for
useful comments. This work was supported by EPSRC.

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 252–266, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Abstraction for Concurrent Objects 253

Programs, Object Systems, and Histories. A concurrent data structure provides a set
of procedures, which may be invoked by concurrently executing threads of the client
program using the data structure. Thus, procedure invocations may overlap. (In our
setting, a data structure can neither create threads nor call a procedure of the client.) We
refer to a collection of concurrent data structures as an object system.

In this paper, we are not interested in the implementation of an object system; we
are only interested in the possible interactions between the client program and the ob-
ject system. Thus, we assume that an object system is represented by a set of histories.
Every history records a possible interaction between the client application program and
the object system. The interaction is given in the form of sequences of procedure in-
vocations made by the client and the responses which it receives. A program can use
an object system only by interacting with it according to one of the object system’s
histories. 1

Example 1. The history H0 = (t1, call q.enq(1)); (t1, ret() q.enq); (t2, call q.deq());
(t2, ret(1) q.deq) records an interaction in which thread t1 enqueues 1 into queue q
followed by a dequeue by thread t2. The histories

H1 = (t1, call q.enq(1))(t1, ret() q.enq)(t2, call q.enq(2))(t2, ret() q.enq)
H2 = (t2, call q.enq(2))(t2, ret() q.enq)(t1, call q.enq(1))(t1, ret() q.enq)
H3 = (t1, call q.enq(1))(t2, call q.enq(2))(t1, ret() q.enq)(t2, ret() q.enq)

record interactions in which thread t1 enqueues 1 into the queue and thread t2 enqueues
2. In H1, the invocation made by t1 happens before that of t2 (i.e., t1 gets a response
before t2 invokes its own procedure). In H2, it is the other way around. In H3, the two
invocations overlap.

Sequential Consistency and Linearizability. Informally, an object system OSC is se-
quentially consistent wrt. an object system OSA if for every history HC in OSC , there
exists a history HA in OSA that is just another interleaving of threads’ actions in HC :
in both HC and HA, the same threads invoke the same sequences of operations (i.e.,
procedure invocations) and receive the same sequences of responses. We say that such
HC and HA are weakly equivalent. (We use the term weak equivalence to emphasis
that the only relation between HC and HA is that they are different interleavings of
the same sequential threads.) OSC is linearizable wrt. OSA, if for every history HC

in OSC , there is some HA in OSA such that (1) HC and HA are weakly equivalent
and (2) the global order of non-overlapping invocations of HC is preserved in HA.2

In the context of this paper, the main difference between sequential consistency and
linearizability is, intuitively, that the former preserves only the happens-before relation
between operations of the same thread while the latter preserves this relation between
the operations of all threads.

1 This is a standard assumption in concurrent algorithms work, which Herlihy and Shavit refer
to as interference freedom [5]: it is an assumption which would have to be verified by other
means when applying the theory to particular programming languages or programs.

2 It is common to require that OSA be comprised of sequential histories, i.e., ones in which
invocations do not overlap. (In this setting, linearizability intuitively means that every oper-
ation appears to happen atomically between its invocation and its response.) However, this
requirement is not technically necessary for our results, so we do not impose it.

254 I. Filipović et al.

Example 2. The histories H1, H2, and H3 are weakly equivalent. None of them is
weakly equivalent to H0. The history H3 is linearizable wrt. H1 as well as H2, be-
cause H3 does not have non-overlapping invocations. On the other hand, H1 is not
linearizable with respect to H2; in H1, the enqueue of t1 is completed before that of t2
even starts, but this global order on these two enqueues is reversed in H2.

Observational Refinement. Our notion of observational refinement is based on observ-
ing the initial and final values of variables of client programs. (One can think of the
program as having a final command “print all variables”.) We say that an object sys-
tem OSC observationally refines an object system OSA if every program P with OSA,
replacing OSA by OSC does not generate new observations: for every initial state s,
the execution of P with OSC at s produces only those output states that can already be
obtained by running P with OSA at s.

The main results of this paper is the following characterization of sequential consis-
tency and linearizability in terms of observational refinement:

1. OSC observationally refines OSA iff OSC is sequential consistent with respect
to OSA, assuming client operations (e.g., assignments to variables) of each thread
access thread-local variables (or resources) only.

2. OSC observationally refines OSA iff OSC is linearizable with respect to OSA,
assuming that client operations may use at least one shared global variable.

We start the paper by defining a programming language and giving its semantics to-
gether with the formal definition of observational refinement (Sections 2, 3, 4 and 5).
Then, we describe a generic technique for proving observational refinement in
Section 6, and use this technique to prove the connection between observational re-
finement and linearizability or sequential consistency in Section 7. The next section
revisits the definitions of sequential consistency and linearizability, and provides the
analysis of them in terms of the dependency between computation steps. Finally, we
conclude the paper in Section 9. For space reasons, some proofs are omitted. They can
be found in the full version of the paper [3].

2 Programming Language

We assume that we are given a fixed collection O of objects, with method calls o.f(n).
For simplicity, all methods will take one integer argument and return an integer value.
We will denote method calls by x:=o.f(e).

The syntax of sequential commands C and complete programs P is given below:

C ::= c | x:=o.f(e) | C; C | C + C | C� P ::= C1 ‖ · · · ‖ Cn

Here, c ranges over an unspecified collection PComm of primitive commands, + is non-
deterministic choice, ; is sequential composition, and (·)� is Kleene-star (iterated ;).
We use + and (·)� instead of conditionals and while loops for theoretical simplicity:
given appropriate primitive actions the conditionals and loops can be encoded. In this
paper, we assume that the primitive commands include assume statements assume(b)
and assignments x:=e not involving method calls.3

3 The assume(b) statement acts as skip when the input state satisfies b. If b does not hold in the
input state, the statement deadlocks and does not produce any output states.

Abstraction for Concurrent Objects 255

3 Action Trace Model

Following Brookes [2], we will define the semantics of our language in two stages. In
the first there will be a trace model, where the traces are built from atomic actions. This
model resolves all concurrency by interleaving. In the second stage, which is shown in
Section 5, we will define the evaluation of these action traces with initial states.

Definition 1. An atomic action (in short, action) ϕ is a client operation or a call or
return action: ϕ ::= (t, a) | (t, call o.f(n)) | (t, ret(n) o.f). Here, t is a thread-id
(i.e., a natural number), a in (t, a) is an atomic client operation taken from an unspec-
ified set Copt (parameterized by the thread-id t), and n is an integer. An action trace
(in short, trace) τ is a finite sequential composition of actions (i.e., τ ::= ϕ; · · · ; ϕ).

We identify a special class of traces where calls to object methods run sequentially.

Definition 2. A trace τ is sequential when all calls in τ are immediately followed by
matching returns, that is, τ belongs to the set

(⋃

t,a,o,f,n,m

{ (t, a), (t, call o.f(n)); (t, ret(m) o.f) })∗(⋃

t,o,f,n

{ ε, (t, call o.f(n)) })
.

Intuitively, the sequentiality means that all method calls to objects run atomically. Note
that the sequentiality also ensures that method calls and returns are properly matched
(possibly except the last call), so that, for instance, no sequential traces start with a
return action, such as (t, ret(3) o.f).

The execution of a program in this paper generates only well-formed traces.

Definition 3. A trace τ is well-formed iff for all thread-ids t, the projection of τ to the
t-thread, τ |t, is sequential.

The well-formedness formalizes two properties of traces. Firstly, it ensures that all the
returns should have corresponding method calls. Secondly, it formalizes the intuition
that each thread is a sequential program, if it is considered in isolation. Thus, when the
thread calls a method o.f , it has to wait until the method returns, before doing anything
else. We denote the set of all well-formed traces by WTraces .

Our trace model T (−) defines the meaning of sequential commands and programs
in terms of traces, and it is shown in Figure 1. In our model, a sequential command C
means a set T (C)t of well-formed traces, which is parametrized by the id t of a thread
running the command. The semantics of a complete program (a parallel composition)
P , on the other hand, is a non-parametrized set T (P) of well-formed traces; instead of
taking thread-ids as parameters, T (P) creates thread-ids.

Two cases of our semantics are slightly unusual and need further explanations. The
first case is the primitive commands c. In this case, the semantics assumes that we
are given an interpretation [[c]]t of c, where c means finite sequences of atomic client
operations (i.e., [[c]]t ⊆ Cop+

t). By allowing sequences of length 2 or more, this as-
sumed interpretation allows the possibility that c is not atomic, but implemented by a
sequence of atomic operations. The second case is method calls. Here the semantics
distinguishes calls and returns to objects, to be able to account for concurrency (over-
lapping operations). Given x:=o.f(e), the semantics non-deterministically chooses two

256 I. Filipović et al.

T (c)t = { (t, a1); (t, a2); . . . ; (t, ak) | a1; a2; . . . ; ak ∈ [[c]]t }
T (x:=o.f(e))t = { τ ; (t, call o.f(n)); (t, ret(n′) o.f); τ ′ |

n, n′ ∈ Integers ∧ τ ∈ T (assume(e=n))t ∧ τ ′ ∈ T (x:=n′)t }
T (C1;C2)t= { τ1; τ2 | τi ∈T (Ci)t } T (C1+C2)t=T (C1)t∪T (C2)t T (C�)t= (T (C)t)�

T (C1 ‖ · · · ‖ Cn) =
⋃{ interleave(τ1, ..., τn) | τi ∈ T (Ci)i ∧ 1 ≤ i ≤ n }

Fig. 1. Action Trace Model. Here τ ∈ interleave(τ1, ..., τn) iff every action in τ is done by a
thread 1 ≤ i ≤ n and τ |i = τi for every such thread i.

integers n, n′, and uses them to describe a call with input n and a return with result n′.
In order to ensure that the argument e evaluates to n, the semantics inserts the assume
statement assume(e=n) before the call action, and to ensure that x gets the return value
n′, it adds the assignment x:=n′ after the return action. Note that some of the choices
here might not be feasible; for instance, the chosen n may not be the value of the pa-
rameter expression e when the call action is invoked, or the concurrent object never
returns n′ when called with n. The next evaluation stage of our semantics will filter out
all these infeasible call/return pairs.

Lemma 1. For all sequential commands C, programs P and thread-ids t, both T (C)t
and T (P) contain only well-formed traces.

4 Object Systems

The semantics of objects is given using histories, which are sequences of calls and
returns to objects. We first define precisely what the individual elements in the histories
are.

Definition 4. An object action is a call or return: ψ ::= (t, call o.f(n)) | (t, ret(n)
o.f). A history H is a finite sequence of object actions (i.e., H ::= ψ; ψ; . . . ; ψ). If a
history H is well-formed when viewed as a trace, we say that H is well-formed.

Note that in contrast to traces, histories do not include atomic client operations (t, a).
We will use A for the set of all actions, Ao for the set of all object actions, and Ac for
A−Ao, i.e., the set of all client operations.

We follow Herlihy and Wing’s approach [6], and define object systems.

Definition 5. An object system OS is a set of well-formed histories.

Notice that OS is a collective notion, defined for all objects together rather than for
them independently. Sometimes, the traces of a system satisfy special properties.

Definition 6. Let OS be an object system. We say that OS is sequential iff it contains
only sequential traces; OS is local iff for any well-formed history H , H ∈ OS ⇐⇒
(∀o. H |o ∈ OS).

Abstraction for Concurrent Objects 257

A local object system is one in which the set of histories for all the objects together
is determined by the set of histories for each object individually. Intuitively, locality
means that objects can be specified in isolation. Sequential and local object systems
are commonly used as specifications for concurrent objects in the work on concurrent
algorithms. (See, e.g., [5]).

5 Semantics of Programs

We move on to the second stage of our semantics, which defines the evaluation of traces.
Suppose we are given a trace τ and an initial state s, which is a function from variables
x, y, z, . . . to integers.4 The second stage is the evaluation of the trace τ with s, and it
is formally described by the evaluation function eval below:

eval : States ×WTraces → P(States)
eval(s, (t, call o.f(n)); τ) = eval(s, τ) eval(s, (t, ret(n) o.f); τ) = eval(s, τ)

eval(s, (t, a); τ) =
⋃

(s,s′)∈[[a]] eval(s
′, τ) eval(s, ε)= {s}

The semantic clause for atomic client operations (t, a) assumes that we already have an
interpretation [[a]] where a means a binary relation on States . Note that a state s does not
change during method calls and returns. This is because firstly, in the evaluation map, a
state describes the values of client variables only, not the internal status of objects and
secondly, the assignment of a return value n to a variable x in x:=o.f(e) is handled by
a separate client operation; see the definition of T (x:=o.f(e)) in Figure 1.

Now we combine the two stages, and give the semantics of programs P . Given a
specific object system OS , the formal semantics [[P]](OS) is defined as follows:

[[P]](OS) : States → P(States)
[[P]](OS)(s) =

⋃{ eval(s, τ) | τ ∈ T (P) ∧ getHistory(τ) ∈ OS }

Here getHistory(τ) is the projection of τ to object actions. The semantics first calculates
all traces T (P) for τ , and then selects only those traces whose interactions with objects
can be implemented by OS . Finally, the semantics runs all the selected traces with the
initial state s.

Our semantics observes the initial and final values of variables in threads, and ignores
the object histories. One can think of the program as having a final command “print
all variables”, which gives us our observable. We use this notion of observation and
compare two different object systems OSA and OSC .

Definition 7. Let OSA and OSC be object systems. We say that

– OSC observationally refines OSA ⇐⇒ ∀P, s. [[P]](OSC)(s) ⊆ [[P]](OSA)(s);
– OSC is observationally equivalent to OSA ⇐⇒ ∀P. [[P]](OSC) = [[P]](OSA).

Usually, OSA is a sequential local object system that serves as a specification, and
OSC is a concurrent object system representing the implementation. The observational

4 All the results of the paper except the completeness can be developed without assuming any
specific form of s. Here we do not take this general approach, to avoid being too abstract.

258 I. Filipović et al.

refinement means that we can replace OSA by OSC in any programs without introduc-
ing new behaviors of those programs, and gives a sense that OSC is a correct imple-
mentation of OSA.

In the remainder of this paper, we will focus on answering the question: how do cor-
rectness conditions on concurrent objects, such as linearizability, relate to observational
refinement?

6 Simulation Relations on Histories

We start by describing a general method for proving observational refinement. Later,
in Section 7, we will show that both linearizability and sequential consistency can be
understood as specific instances of this method.

Roughly speaking, our method works as follows. Suppose that we want to prove that
OSC observationally refines OSA. According to our method, we first need to choose
a binary relation R on histories. This relation has to be a simulation, i.e., a relation
that satisfies a specific requirement, which we will describe shortly. Next, we should
prove that every history H in OSC is R-related to some history H ′ in OSA. Once we
finish both steps, the soundness theorem of our method lets us infer that OSC is an
observational refinement of OSA.

The key part of the method, of course, lies in the requirement that the chosen binary
relation R be a simulation. If we were allowed to use any relation for R, we could
pick the relation that relates all pairs of histories, and this would lead to the incorrect
conclusion that every OSC observationally refines OSA, as long as OSA is nonempty.

To describe our requirement onR and its consequence precisely, we need to formal-
ize dependency between actions in a single trace, and define trace equivalence based on
this formalization.

Definition 8 (Independent Actions). An action ϕ is independent of an action ϕ′, de-
noted ϕ#ϕ′, iff (1) getTid(ϕ)
= getTid(ϕ′) and (2) for all s ∈ States, eval(s, ϕϕ′) =
eval(s, ϕ′ϕ). Here, getTid(ϕ) is the thread-id (i.e., the first component) of ϕ.

Definition 9 (Dependency Relations). For each trace τ , we define the immediate de-
pendency relation <τ to be the following relation on actions in τ :5 τi <τ τj ⇐⇒
i < j ∧ ¬(τi#τj). The dependency relation <+

τ on τ is the transitive closure of <τ .

Definition 10 (Trace Equivalence). Traces τ, τ ′ are equivalent, denoted τ ∼ τ ′, iff
there exists a bijection π : {1, . . . , |τ |} → {1, . . . , |τ ′|} such that (∀i. τi = τ ′

π(i)) and

(∀i, j. τi <+
τ τj ⇐⇒ τ ′

π(i) <+
τ ′ τ ′

π(j)).

Intuitively, τ ∼ τ ′ means that τ ′ can be obtained by swapping independent actions in
τ . Since we swap only independent actions, we expect that τ ′ and τ essentially mean
the same computation. The lemma below justifies this expectation, by showing that our
semantics cannot observe the difference between equivalent traces.

5 Strictly speaking, <τ is a relation on the indices {1, . . . , |τ |} of τ so that we should have
written i <τ j. In this paper, we use a rather informal notation τi <τ τj instead, since we
found this notation easier to understand.

Abstraction for Concurrent Objects 259

Lemma 2. For all τ, τ ′ ∈WTraces , if τ ∼ τ ′, then (∀P. τ ∈ T (P)⇐⇒ τ ′ ∈ T (P))
and (∀s. eval(s, τ) = eval(s, τ ′)).

We are now ready to give the definition of simulation, which encapsulates our require-
ment on relations on histories, and to prove the soundness of our proof method based
on simulation.

Definition 11 (Simulation). A binary relationR on histories is a simulation iff for all
well-formed histories H and H ′ such that (H, H ′) ∈ R,

∀τ∈WTraces . getHistory(τ)=H =⇒ ∃τ ′∈WTraces . τ ∼ τ ′ ∧ getHistory(τ ′)= H ′.

One way to understand this definition is to read a history H as a representation of
the trace set means(H) = {τ ∈ WTraces | getHistory(τ) = H}. Intuitively, this
set consists of the well-formed traces whose interactions with objects are precisely H .
According to this reading, the requirement in the definition of simulation simply means
that means(H) is a subset of means(H ′) modulo trace equivalence∼. For every relation
R on histories, we define its lifting to a relation �R on object systems as follows:
OSC �R OSA ⇐⇒ ∀H ∈ OSC . ∃H ′ ∈ OSA. (H, H ′) ∈ R.

Theorem 1. If OSC �R OSA and R is a simulation, OSC observationally refines
OSA.

Proof. Consider a program P and states s, s′ such that s′ ∈ [[P]](OSC)(s). Then, by the
definition of [[P]], there exist a well-formed trace τ ∈ T (P) and a history H ∈OSC such
that getHistory(τ)= H and s′ ∈ eval(s, τ). Since H ∈OSC and OSC �R OSA by our
assumption, there exists H ′ ∈OSA with (H, H ′)∈R. Furthermore, H and H ′ are well-
formed, because object systems contain only well-formed histories. Now, since R is a
simulation, τ is well-formed and getHistory(τ)= H , there exists a well-formed trace
τ ′ such that (1) τ ∼ τ ′ and (2) getHistory(τ ′)= H ′. Note that because of Lemma 2,
the first conjunct here implies that τ ′ ∈T (P) and s′ ∈ eval(s, τ ′). This and the second
conjunct getHistory(τ ′)=H ′ together imply the desired s′ ∈ [[P]](OSA)(s).
�

7 Sequential Consistency, Linearizability and Refinement

Now we explain the first two main results of this paper: (1) linearizability implies ob-
servational refinement; (2) sequential consistency implies observational refinement if
client operations of each thread access thread-local variables (or resources) only.

It is not difficult to obtain high-level understanding about why our results hold. Both
linearizability and sequential consistency define certain relationships between two ob-
ject systems, one of which is normally assumed sequential and local. Interestingly, in
both cases, we can prove that these relationships are generated by lifting some sim-
ulation relations. From this observation follow our results, because Theorem 1 says
that all such simulation-generated relationships on object systems imply observational
refinements.

In the rest of this section, we will spell out the details of the high-level proof sketches
just given. For this, we need to review the relations on histories used by sequential
consistency and linearizability [6].

260 I. Filipović et al.

Definition 12 (Weakly Equivalent Histories). Two histories are weakly equiva-
lent, denoted H ≡H ′, iff their projections to threads are equal:6 H ≡H ′ ⇐⇒
∀t.H |t =H ′|t.
As its name indicates, the weak equivalence is indeed a weak notion. It only says that
the two traces are both interleavings of the same sequential threads (but they could be
different interleavings).

Definition 13 (Happen-Before Order). For each history H , the happen-before order
≺H is a binary relation on object actions in H defined by

Hi ≺H Hj ⇐⇒ ∃i′, j′. i ≤ i′ < j′ ≤ j ∧ retAct(Hi′) ∧ callAct(Hj′) ∧
getTid(Hi) = getTid(Hi′) ∧ getTid(Hj′) = getTid(Hj)

Here retAct(ψ) holds when ψ is a return and callAct(ψ) holds when ψ is a call.

This definition is intended to express that in the history H , the method call for Hi is
completed before the call for Hj starts. To see this intention, assume that H is well-
formed. One important consequence of this assumption is that if an object action ψ of
some thread t is followed by some return action ψ′ of the same thread in the history
H (i.e., H = ...ψ...ψ′...), then the return for ψ itself appears before ψ′ or it is ψ′.
Thus, the existence of Hi′ in the definition ensures that the return action for Hi appears
before or at Hi′ in the history H . By a similar argument, we can see that the call for
Hj appears after or at Hj′ . Since i′ < j′, these two observations mean that the return
for Hi appears before the call for Hj , which is the intended meaning of the definition.
Using this happen-before order, we define the linearizability relation �:

Definition 14 (Linearizability Relation). The linearizability relation is a binary re-
lation � on histories defined as follows: H � H ′ iff (1) H ≡ H ′ and (2) there
is a bijection π : {1, . . . , |H |} → {1, . . . , |H ′|} such that 7 (∀i. Hi = H ′

π(i)) and
(∀i, j. Hi ≺H Hj =⇒ H ′

π(i) ≺H′ H ′
π(j)).

Recall that for each relation R on histories, its lifting �R to the relation on object
systems is defined by: OS �R OS ′ ⇐⇒ ∀H ∈OS . ∃H ′ ∈OS ′. (H, H ′) ∈ R. Using
this lifting, we formally specify sequential consistency and linearizability.

Definition 15. Let OSA and OSC be object systems. We say that OSC is sequentially
consistent wrt. OSA iff OSC �≡OSA. We also say that OSC is linearizable wrt. OSA

iff OSC �� OSA.

Note that this definition does not assume the sequentiality and locality of OSA, unlike
Herlihy and Wing’s definitions. We use this more general definition here in order to em-
phasize that the core ideas of sequential consistency and linearizability lie in relations≡
and� on histories, not in the use of a sequential local object system (as a specification).

We first prove the theorem that connects linearizability and observational refinement.
Our proof uses the lemma below:

6 For the same definition, Herlihy and Wing use the terminology “equivalence”.
7 In this paper, we consider only those histories that arise from complete terminating compu-

tations; see the definition of [[P]] in Section 5. Consequently, we do not have to worry about
completing or removing pending calls in histories, unlike Herlihy and Wing’s definition.

Abstraction for Concurrent Objects 261

Lemma 3. Let H be a well-formed history and let i, j be indices in {1, . . . , |H |}. Then,

(∃τ ∈WTraces . getHistory(τ) = H ∧ Hi <+
τ Hj)

=⇒ (i < j) ∧ (getTid(Hi)= getTid(Hj) ∨ Hi≺H Hj).

Proof. Consider a well-formed history H , indices i, j of H and a well-formed trace τ
such that the assumptions of this lemma hold. Then, we have indices i1 < i2 < . . . < in
of τ such that

Hi = τi1 <τ τi2 <τ . . . <τ τin−1 <τ τin = Hj . (1)

One conclusion i < j of this lemma follows from this, because getHistory(τ) = H
means that the order of object actions in H are maintained in τ . To obtain the other
conclusion of the lemma, let t = getTid(Hi) and t′ = getTid(Hj). Suppose that
t
= t′. We will prove that for some ik, il ∈ {i1, . . . , in},

ik <il ∧ t = getTid(τik
) ∧ t′ = getTid(τil

) ∧ retAct(τik
) ∧ callAct(τil

). (2)

Note that this gives the conclusion we are looking for, because all object actions in τ
are from H and their relative positions in τ are the same as those in H . In the rest of the
proof, we focus on showing (2) for some ik, il. By the definition of #, an object action
ψ can depend on another action ϕ, only when both actions are done by the same thread.
Now note that the first and last actions in the chain in (1) are object actions by different
threads t and t′. Thus, the chain in (1) must contain client operations τix and τiy such
that getTid(τix) = t and getTid(τiy) = t′. Let τia be the first client operation by the
thread t in the chain and let τib

be the last client operation by t′. Then, ia < ib. This is
because otherwise, the sequence τia τia+1 . . . τin does not have any client operation
of the thread t′, while τia is an action of the thread t and τin is an action of the different
thread t′; these facts make it impossible to have τia <τ τia+1 <τ . . . <τ τin . Since
τi1 is an object action by the thread t and τia is a client operation by the same thread,
by the well-formedness of τ , there should exist some ik between i1 (including) and ia
such that τik

is a return object action by the thread t. By a symmetric argument, there
should be some il between ib and in (including) such that τil

is a call object action by
t′. We have just shown that ik and il satisfy (2), as desired.
�
Theorem 2. The linearizability relation� is a simulation.

Proof. For an action ϕ and a trace τ , define ϕ#τ to mean that ϕ#τj for all j ∈
{1, . . . , |τ |}. In this proof, we will use this ϕ#τ predicate and the following facts:

Fact 1. Trace equivalence∼ is symmetric and transitive.
Fact 2. If τ ∼ τ ′ and τ is well-formed, τ ′ is also well-formed.
Fact 3. If ττ ′ is well-formed, its prefix τ is also well-formed.
Fact 4. If ϕ#τ ′, we have that τϕτ ′ ∼ ττ ′ϕ.
Fact 5. If τ ∼ τ ′, we have that τϕ ∼ τ ′ϕ.

Consider well-formed histories H, S and a well-formed trace τ such that H � S and
getHistory(τ)= H . We will prove the existence of a trace σ such that τ ∼ σ and

262 I. Filipović et al.

getHistory(σ)= S. This gives the desired conclusion of this theorem; the only missing
requirement for proving that � is a simulation is the well-formedness of σ, but it can
be inferred from τ ∼ σ and the well-formedness of τ by Fact 2.

Our proof is by induction on the length of S. If |S| = 0, H has to the empty sequence
as well. Thus, we can choose τ as the required σ in this case. Now suppose that |S|
= 0.
That is, S = S′ψ for some history S′ and object action ψ. Note that since the well-
formed traces are closed under prefix (Fact 3), S′ is also a well-formed history. During
the proof, we will use this fact, especially when applying induction on S′.

Let δ be the projection of τ to client operations (i.e., δ = τ |Ac). The starting point
of our proof is to split τ, H, δ. By assumption, H � S′ψ. By the definition of �, this
means that

∃H ′, H ′′. H = H ′ψH ′′ ∧ H ′H ′′ � S′

∧ (∀j ∈ {1, . . . , |H ′′|}. ¬(ψ ≺H H ′′
j) ∧ getTid(ψ)
= getTid(H ′′

j)
)
.

(3)

Here we use the bijection between indices of H and S′ψ, which exists by the definition
of H � S′ψ. The action ψ in H ′ψH ′′ is what is mapped to the last action in S′ψ by
this bijection. The last conjunct of (3) says that the thread-id of every action of H ′′

is different from getTid(ψ). Thus, ψ#H ′′ (because an object action is independent of
all actions by different threads). From this independence and the well-formedness of
H , we can drive that H ′H ′′ψ is well-formed (Facts 2 and 4), and that its prefix H ′H ′′

is also well-formed (Fact 3). Another important consequence of (3) is that since τ ∈
interleave(δ, H), the splitting H ′ψH ′′ of H induces splittings of τ and δ as follows:
there exist τ ′, τ ′′, δ′, δ′′ such that

τ = τ ′ψτ ′′ ∧ δ = δ′δ′′ ∧ τ ′ ∈ interleave(δ′, H ′) ∧ τ ′′ ∈ interleave(δ′′, H ′′). (4)

The next step of our proof is to identify one short-cut for showing this theorem. The
short-cut is to prove ψ#τ ′′. To see why this short-cut is sound, suppose that ψ#τ ′′.
Then, by Fact 4,

τ = τ ′ψτ ′′ ∼ τ ′τ ′′ψ. (5)

Since τ is well-formed, this implies that τ ′τ ′′ψ and its prefix τ ′τ ′′ are well-formed
traces as well (Facts 2 and 3). Furthermore, getHistory(τ ′τ ′′) = H ′H ′′, because
of the last two conjuncts of (4). Thus, we can apply the induction hypothesis to
τ ′τ ′′, H ′H ′′, S′, and obtain σ with the property: τ ′τ ′′ ∼ σ ∧ getHistory(σ) = S′.
From this and Fact 5, it follows that

τ ′τ ′′ψ ∼ σψ ∧ getHistory(σψ) = getHistory(σ)ψ = S′ψ. (6)

Now, the formulas (5) and (6) and the transitivity of ∼ (Fact 1) imply that σψ is the
required trace by this theorem. In the remainder of the proof, we will use this short-cut,
without explicitly mentioning it.

The final step is to do the case analysis on δ′′. Specifically, we use the nested in-
duction on the length of δ′′. Suppose that |δ′′| = 0. Then, τ ′′ = H ′′, and by the last
conjunct of (3) (the universal formula), we have that ψ#τ ′′; since ψ is an object action,
it is independent of actions by different threads. The theorem follows from this. Now
consider the inductive case of this nested induction: |δ′′| > 0. Note that if ψ#δ′′, then

Abstraction for Concurrent Objects 263

ψ#τ ′′, which implies the theorem. So, we are going to assume that ¬(ψ#δ′′). Pick the
greatest index i of τ ′′ such that ψ <+

τ τ ′′
i . Let ϕ = τ ′′

i . Because of the last conjunct of
(3) and Lemma 3, τ ′′

i comes from δ, not H ′′. In particular, this ensures that there are
following further splittings of δ′′, τ ′′ and H ′′: for some traces γ, γ′, κ, κ′, T, T ′,

δ′′ = γϕγ′ ∧ τ ′′ = κϕκ′ ∧ H ′′ = TT ′ ∧
κ ∈ interleave(γ, T) ∧ κ′ ∈ interleave(γ′, T ′) ∧ ϕ#κ′.

Here the last conjunct ϕ#κ′ comes from the fact that ϕ is the last element of τ ′′ with
ψ <+

τ ϕ. Since γ′ is a subsequence of κ′, the last conjunct ϕ#κ′ implies that ϕ#γ′.
Also, τ ′ψκϕκ′ ∼ τ ′ψκκ′ϕ by Fact 4. Now, since τ = τ ′ψκϕκ′ is well-formed, the
equivalent trace τ ′ψκκ′ϕ and its prefix τ ′ψκκ′ both are well-formed as well (Facts 2
and 3). Furthermore, τ ′ψκκ′ ∈ interleave(δ′γγ′, H ′ψH ′′). Since the length of γγ′ is
shorter than δ′′, we can apply the induction hypothesis of the nested induction, and get

∃σ. τ ′ψκκ′ ∼ σ ∧ getHistory(σ) = S′ψ. (7)

We will prove that σϕ is the trace desired for this theorem. Because of ϕ#κ′ and
Fact 4, τ = τ ′ψκϕκ′ ∼ τ ′ψκκ′ϕ. Also, because of Fact 5 and the first conjunct of
(7), τ ′ψκκ′ϕ ∼ σϕ. Thus, τ ∼ σϕ by the transitivity of ∼. Furthermore, since
ϕ is not an object action, the second conjunct of (7) implies that getHistory(σϕ) =
getHistory(σ) = S′ψ. We have just shown that σϕ is the desired trace.
�
Corollary 1. If OSC is linearizable wrt. OSA, then OSC observationally refines OSA.

Next, we consider sequential consistency. For sequential consistency to imply observa-
tional refinement, we need to restrict programs such that threads can access local vari-
ables only in their client operations: ∀t, t′, a, a′. (t
=t′ ∧ a ∈ Copt ∧ a′ ∈Copt′) =⇒
a # a′.

Lemma 4. Suppose that all threads can access local variables only in their client op-
erations. Then, for all well-formed histories H and indices i, j in {1, . . . , |H |},

(∃τ∈WTraces . getHistory(τ)=H ∧Hi<
+
τ Hj) =⇒ i<j ∧ getTid(Hi)=getTid(Hj).

Proof. Consider a well-formed history H , indices i, j and a well-formed trace τ satis-
fying the assumptions of this lemma. Then, for some indices i1 < ... < in of τ ,

Hi = τi1 <τ τi2 <τ . . . <τ τin−1 <τ τin = Hj . (8)

One conclusion i < j of this lemma follows from this; the assumption getHistory(τ) =
H of this lemma means that the order of object actions in H are maintained in τ . To ob-
tain the other conclusion of the lemma, we point out one important property of #: under
the assumption of this lemma, ¬(ϕ#ϕ′) only when getTid(ϕ) = getTid(ϕ′). (Here
ϕ, ϕ′ are not necessarily object actions.) To see why this property holds, we assume
¬(ϕ#ϕ′) and consider all possible cases of ϕ and ϕ′. If one of ϕ and ϕ′ is an object
action, the definition of # implies that ϕ and ϕ′ have to be actions by the same thread.
Otherwise, both ϕ and ϕ′ are atomic client operations. By our assumption, all threads

264 I. Filipović et al.

access only local variables in their client operations, so that two client operations are in-
dependent if they are performed by different threads. This implies that ϕ and ϕ′ should
be actions by the same thread. Now, note that τk <τ τl implies ¬(τk#τl), which in turn
entails getTid(τk)= getTid(τl) by what we have just shown. Thus, we can derive the
following desired equality from (8): getTid(Hi) = getTid(τi1) = getTid(τi2) = . . . =
getTid(τin) = getTid(Hj).
�
Theorem 3. If all threads access local variables only in their client actions, the weak
equivalence≡ is a simulation.

Proof. The proof is similar to the one for Theorem 2. Instead of repeating the common
parts between these two proofs, we will explain what we need to change in the proof
of Theorem 2, so as to obtain the proof of this theorem. Firstly, we should replace
linearizability relation � by weak equivalence ≡. Secondly, we need to change the
formula (3) to

∃H ′H ′′. H =H ′ψH ′′ ∧ H ′H ′′≡S′ ∧ ∀j ∈{1, ..., |H ′′|}. getTid(ψ)
= getTid(H ′′
j).

Finally, we should use Lemma 4 instead of Lemma 3. After these three changes have
been made, the result becomes the proof of this theorem.
�
Corollary 2. If OSC is sequentially consistent wrt. OSA and all threads access local
variables only in their client actions, OSC is an observational refinement of OSA.

Completeness. Under suitable assumptions on programming languages and object sys-
tems, we can obtain the converse of Corollaries 1 and 2: observational refinement im-
plies linearizability and sequential consistency. First, we assume that object systems OS
contain only those histories all of whose calls have matching returns. This assumption
is necessary, because observational refinement considers only terminating, completed
computations. Next, we assume that threads’ primitive commands include the skip
statement. Finally, we consider specific assumptions for sequential consistency and lin-
earizability, which will be described shortly.

For sequential consistency, we suppose that the programming language contains
atomic assignments x:=n of constants n to thread-local variable x and has atomic as-
sume statements of the form assume(x=n) with thread-local variable x.8 Note that this
supposition does not require the use of any global variables, so that it is consistent with
the assumption of Corollary 2. Under this supposition, observational refinement implies
sequential consistency.

Theorem 4. If OSC observationally refines OSA then OSC �≡ OSA.

The main idea of the proof is to create for every history H ∈ OSC a program PH that
records the interaction of every thread t with the object system using t’s local variables.
For the details of the proof, see the full version of this paper [3].

For linearizability, we further suppose that there is a single global variable g shared
by all threads. That is, threads can assign constants to g atomically, or they can run

8 Technically, this assumption also means that T (x:=n)t and T (assume(x=n))t are singleton
traces (t, a) and (t, b), where [[b]](s)≡ if (s(x)=n) then {s} else {} and [[a]](s)≡{s[x �→n]}.

Abstraction for Concurrent Objects 265

the statement assume(g=n) for some constant n. Under this supposition, observational
refinement implies linearizability.

Theorem 5. If OSC observationally refines OSA, then OSC �� OSA.

The core idea of the proof is, again, to create for every history H ∈ OSC one specific
program PH . This program uses a single global variable and satisfies that for every
(terminating) execution τ of PH , the object history of τ always has the same happen-
before relation as H . See the full paper [3] for the details.

8 Abstract Dependency

Although our results on observational refinements give complete characterization of
sequential consistency and linearizability, they still do not explain where the relations
≡ and � in sequential consistency and linearizability come from. In this section, we
will answer this question using the dependency between actions.

The result of this section is based on one reading of a well-formed history H . In this
reading, the history H means not the single trace H itself but the set of all the well-
formed traces whose object actions are described by H . Formally, we let WHist be the
set of all the well-formed histories, and define function means :WHist→P(WTraces)
by means(H) = {τ ∈WTraces | getHistory(τ)= H}.

Using means, we define a new relation on well-formed histories, which compare
possible dependencies between actions in the histories.

Definition 16 (Abstract Dependency). For each well-formed history H , the abstract
dependency <#

H for H is the binary relation on actions in H determined as follows:
Hi <#

H Hj ⇐⇒ i < j ∧ ∃τ ∈means(H). Hi <+
τ Hj .

Definition 17 (Causal Complexity Relation). The causal complexity relation�# is
a binary relation on well-formed histories, such that H �# S iff there exists a bijection
π : {1, . . . , |H |} → {1, . . . , |S|} satisfying (1) ∀i ∈ {1, . . . , |H |}. Hi = Sπ(i) and (2)

∀i, j ∈ {1, . . . , |H |}. Hi <#
H Hj =⇒ Sπ(i) <#

S Sπ(j).

Intuitively, H �# S means that S is a rearrangement of actions in H that preserves
all the abstract causal dependencies in H . Note that S might contain abstract causal
dependencies that are not present in H .

The result below shows when sequential consistency or linearizability coincides with
causal complexity relation.

Theorem 6. If all threads access only local variables in their client operations, then
∀H, S ∈WHist . H ≡ S ⇐⇒ H �# S.

Theorem 7. Assume that for every pair (t, t′) of thread-ids with t
= t′, there exist
client operations a ∈ Copt and a′ ∈ Copt′ with ¬(a#a′). Under this assumption, we
have the following equivalence: ∀H, S ∈WHist . H � S ⇐⇒ H �# S.

266 I. Filipović et al.

9 Conclusions

Developing a theory of data abstraction in the presence of concurrency has been a
long-standing open question in the programming language community. In this paper,
we have shown that this open question can be attacked from a new perspective, by
carefully studying correctness conditions proposed by the concurrent-algorithm com-
munity, using the tools of programming languages. We prove that linearizability is a
sound method for proving observational refinements for concurrent objects, which is
complete when threads are allowed to access shared global variables. When threads ac-
cess only thread-local variables, we have shown that sequential consistency becomes
a sound and complete proof method for observational refinements. We hope that our
new understanding on concurrent objects can facilitate the long-delayed transfer of the
rich existing theories of data-abstraction [7,8,13,10,12] from sequential programs to
concurrent ones.

In the paper, we used a standard assumption on a programming language from the
concurrent-algorithm community. We assumed that a programming language did not
allow callbacks from concurrent objects to client programs, that all the concurrent ob-
jects were properly encapsulated [1], and that programs were running under “sequen-
tially consistent” memory models. Although widely used by the concurrent-algorithm
experts, these assumptions limit the applicability of our results. In fact, they also limit
the use of linearizability in the design of concurrent data structures. Removing these
assumptions and extending our results is what we plan to do next.

References

1. Banerjee, A., Naumann, D.A.: Representation independence, confinement and access con-
trol. In: POPL 2002 (2002)

2. Brookes, S.D.: A semantics for concurrent separation logic. In: Gardner, P., Yoshida, N.
(eds.) CONCUR 2004. LNCS, vol. 3170, pp. 16–34. Springer, Heidelberg (2004)

3. Filipović, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for concurrent objects. Tech-
nical report, Queen Mary University of London (December 2008)

4. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined. In: Robinet, B., Wilhelm, R.
(eds.) ESOP 1986. LNCS, vol. 213. Springer, Heidelberg (1986)

5. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann, San
Francisco (2008)

6. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM TOPLAS 12(3), 463–492 (1990)

7. Hoare, C.A.R.: Proof of correctness of data representations. Acta Inf. 1, 271–281 (1972)
8. Hoare, C.A.R., He, J., Sanders, J.W.: Prespecification in data refinement. Inf. Proc. Let-

ter 25(2), 71–76 (1987)
9. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Trans. Computers 28(9), 690–691 (1979)
10. Mitchell, J., Plotkin, G.: Abstract types have existential types. ACM TOPLAS 10(3), 470–

502 (1988)
11. Plotkin, G.: LCF considered as a programming language. TCS 5, 223–255 (1977)
12. Plotkin, G., Abadi, M.: A logic for parametric polymorphism. In: Bezem, M., Groote, J.F.

(eds.) TLCA 1993. LNCS, vol. 664. Springer, Heidelberg (1993)
13. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: Mason, R.E.A. (ed.)

Information Processing 1983, pp. 513–523. North-Holland, Amsterdam (1983)

Minimization Algorithm

for Symbolic Bisimilarity�

Filippo Bonchi1,2 and Ugo Montanari1

1 Dipartimento di Informatica, Università di Pisa
2 Centrum voor Wiskunde en Informatica (CWI)

Abstract. The operational semantics of interactive systems is usually
described by labeled transition systems. Abstract semantics is defined
in terms of bisimilarity that, in the finite case, can be computed via the
well-known partition refinement algorithm. However, the behaviour of in-
teractive systems is in many cases infinite and thus checking bisimilarity
in this way is unfeasible. Symbolic semantics allows to define smaller,
possibly finite, transition systems, by employing symbolic actions and
avoiding some sources of infiniteness. Unfortunately, the standard parti-
tion refinement algorithm does not work with symbolic bisimilarity.

1 Introduction

The operational semantics of interactive system is usually specified by labeled
transition systems (ltss). Behavioural equivalence is often defined as bisimi-
larity, namely the largest bisimulation. Many efficient algorithms and tools for
bisimulation checking in the finite case have been developed [21,7,8]. Among
these, the partition refinement algorithm [11,18] is the best known: first it gener-
ates the state space of the lts (i.e., the set of reachable states); then, it creates
a partition equating all the states and then, iteratively, refines this partitions
by splitting non equivalent states. At the end, the resulting partition equates all
and only the bisimilar states.

Most importantly, the same algorithm can be used to construct the minimal
automaton, that is the smallest (in terms of states and transitions) lts amongst
all those bisimilar. Construction of minimal automata allows to model check
efficiently for several properties by eliminating redundant states once and for
all. In fact most model checking logics are adequate w.r.t. bisimilarity, namely a
formula holds in the given system iff it holds in its minimal representative.

In practical cases, compositionality is also very relevant, since it is the key
to master complexity. Then a fundamental property is that bisimilarity be a
congruence. When this is not the case, behavioural equivalence is defined either
as the largest congruence contained into bisimilarity [13] or as the largest bisim-
ulation that is also a congruence [17]. In this paper we focus on the latter and
we call it saturated bisimilarity. Indeed it coincides with ordinary bisimilarity on
� This work was carried out during the tenure of an ERCIM “Alain Bensoussan”

Fellowship Programme and supported by the IST 2004-16004 SEnSOria.

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 267–284, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

268 F. Bonchi and U. Montanari

the saturated transition system, that is obtained by the original lts by adding
the transition p

c,a−→ q, for every context c, whenever c(p) a−→ q.
Many interesting abstract semantics are defined in this way. For example, since

late and early bisimilarity of π-calculus [14] are not preserved under substitution
(and thus under input prefixes), in [20] Sangiorgi introduces open bisimilarity
as the largest bisimulation on π-calculus agents which is closed under substitu-
tions. Other noteworthy examples are asynchronous π-calculus [1,10] and mo-
bile ambients calculus [6,12]. The definition of saturated bisimilarity as ordinary
bisimulation on the saturated lts, while in principle operational, often makes
infinite state the portion of lts reachable by any nontrivial agent, and in any
case is very inefficient, since it introduces a large number of additional states
and transitions. Inspired by [9], Sangiorgi defines in [20] a symbolic transition
system and symbolic bisimilarity that efficiently characterizes open bisimilarity.
After this, many formalisms have been equipped with a symbolic semantics.

In [4], we have introduced a general model that describes at an abstract level
both saturated and symbolic semantics. In this abstract setting, a symbolic tran-
sition p

c,α−→β p′ means that c(p) α−→ p′ and c is a smallest context that allows p
to performs such transition. Moreover, a certain derivation relation � amongst
the transitions of a systems is defined: p

c1,α1−−→ p1 � p
c2,α2−−→ p2 means that the

latter transition is a logical consequence of the former. In this way, if all and
only the saturated transitions are logical consequences of symbolic transitions,
then saturated bisimilarity can be retrievied via the symbolic lts.

However, the ordinary bisimilarity over the symbolic transition system differs
from saturated bisimilarity. Symbolic bisimilarity is thus defined with an asym-
metric shape. In the bisimulation game, when a player proposes a transition,
the opponent can answer with a move with a different label. For example in the

open π-calculus, a transition p
[a=b],τ−−−→ p′ can be matched by q

τ−→ q′. Moreover,
the bisimulation game does not restart from p′ and q′, but from p′ and q′{b/a}.

For this reason, algorithms and tools developed for bisimilarity cannot be
reused for symbolic bisimilarity. Inspired by [19,15] who developed ad hoc parti-
tion refinement algorithm for open and asynchronous bisimilarity, in this paper
we introduce a generical symbolic partition refinement algorithm, relying on the
theoretical framework presented in [4]. The algorithm is based on the notion of
redundant symbolic transitions. Intuitively, a symbolic transition p

c2,α2−−→β q is
redundant if there exists another symbolic transition p

c1,α1−−→β p1 that logically
implies it, that is p

c1,α1−−→β p1 � p
c2,α2−−→ p2 and q is bisimilar to p2. Now, if we

consider the lts having only not-redundant transitions, the ordinary notion of
bisimilarity coincides with saturated bisimilarity. Thus, in principle, we could
remove all the redundant transitions and then check bisimilarity with the stan-
dard partition refinement algorithm. But, how can we decide which transitions
are redundant, if redundancy itself depends on bisimilarity?

Our solution consists in computing bisimilarity and redundancy at the same
time. In the first step, the algorithm considers all the states bisimilar and all
the transitions (that are potentially redundant) as redundant. At any iteration,

Minimization Algorithm for Symbolic Bisimilarity 269

states are distinguished according to (the current estimation of) not-redundant
transitions and then not-redundant transitions are updated according to the new
computed partition. The main peculiarity of the algorithm is that in the initial
partition, we have to insert not only the reachable states, but also those that
are needed to check redundancy. An extended version of the paper is in [5].

2 Partition Refinement and Minimal Automaton

In CCS [13], bisimilarity (∼) is defined as the largest bisimulation relation, i.e.,
the largest relation R such that R ⊆ F(R) where F is a function such that for
each relation R, pF(R) q iff

– if p
a−→ p′ then q

a−→ q′ and p′Rq′,
– if q

a−→ q′ then p
a−→ p′ and p′Rq′.

Since F is monotonic for set inclusion, ∼ =
⋃{R | R ⊆ F(R)} follows from

standard results on fixed point theory. Moreover, ∼ is itself a fix point of F,
i.e., ∼= F(∼). Alternatively, bisimilarity can be characterized as the limit of
a decreasing chains of relations (none of them is a bisimulation) starting with
the universal relation. Hereafter, we use κ to denote ordinals numbers, κ + 1 for
successor of κ, λ for limits ordinals and O for the class of all ordinals. Formally,
the terminal sequence is defined for each ordinal κ as follow,

∼0= {P × P} ∼κ+1= F(∼κ) ∼λ=
⋂

κ<λ

∼κ

where P is the set of all CCS processes.
Bisimilarity coincides with the limit of the terminal sequence.

Proposition 1. ∼=
⋂

κ∈O ∼κ

Given a set S, a partition of S is a set of blocks, i.e. subsets of S, that are
all disjoint and whose union is S. A partition on S represents an equivalence
relation, where equivalent elements belong to the same block. In the following,
given a function G on equivalence relations, we denote by G the corresponding
function on partitions.

The characterization of bisimilarity through the terminal sequence suggests
a procedure for checking bisimilarity of a set of initial states IS. First of all,
we compute IS�, i.e., the set of all states that are reachable from IS. Then we
create the partition P 0 where all the elements of IS� belongs to the same block.
After the initialization, we iteratively refine the partitions by using the function
F (i.e., the function equivalent to F on partitions): two states p and q belong to
the same block in Pn+1, if and only if whenever p

a−→ p′ then q
a−→ q′ with p′ and

q′ in the same block of Pn and viceversa.The algorithm terminates whenever two
consecutive partitions are equivalent. In such partition two states belong to the
same block if and only if they are bisimilar. Notice that since F is monotonic,
any iteration splits blocks and never fuse them. For this reason if IS� is finite,
the algorithm terminates in at most |IS�| iterations.

270 F. Bonchi and U. Montanari

Algorithm 1. Partition-Refinement(IS)
Initialization

1. IS� is the set of all processes reachable from IS,
2. P 0 := {IS�},

Iteration Pn+1 := F(Pn),
Termination If Pn = Pn+1 then return Pn.

Proposition 2. If IS� is finite, then the algorithm terminates and the resulting
partition equates all and only the bisimilar state.

The partition refinement algorithm allows not only to check bisimilarity of a set
of states, but also to build the minimal automaton of a certain state p. Intuitively,
the minimal automaton is a labeled transition systems where all the bisimilar
states are identified. Hereafter, given a set A and an equivalence relation R, we
write A|R to denote the set of equivalence classes of A w.r.t. R. Moreover, given
p ∈ A, [p]R denotes the equivalence class of p w.r.t. R.

Definition 1 (Minimal Automaton). Let {p}� be the set of states reachable
from the state p. The minimal automaton of p (denoted by MA(p)) is a triple
〈i, M, trM 〉:
– the initial state i is equal to [p]∼,
– M = {p}�|∼ is the set of equivalence classes of ∼,
– trM is the transition relation defined according to the following rule.

q
a−→ r

[q]∼
a−→M [r]∼

Proposition 3. p ∼ q if and only if MA(p) is isomorphic to MA(q).

If the set of states reachable from p is finite, we can employ the partition refine-
ment algorithm to build the minimal automaton of p. We have just to quotient
the set of reachable states {p}� with the partition returned by the Partition-
Refinement({p}).

3 Saturated and Symbolic Semantics

In this section we recall the general framework for symbolic bisimilarity that
we have introduced in [4]. As running example, we will use open Petri nets
[2]. However, our theory has as special cases the abstract semantics of several
formalisms such as open [20] and asynchronous [1] π-calculus.

3.1 Saturated Semantics

A closed many-sorted unary signature (S, Σ) consists of a set of sorts S, and an
S × S sorted family Σ = {Σs,t | s, t ∈ S} of sets of operation symbols which are

Minimization Algorithm for Symbolic Bisimilarity 271

closed under composition, that is if f ∈ Σs,t and g ∈ Σt,u, then g ◦ f ∈ Σs,u.
Given f ∈ Σu,v, g ∈ Σt,u, h ∈ Σs,t, f ◦ (g ◦ h) = (f ◦ g) ◦ h and moreover ∀s ∈ S,
∃ids ∈ Σs,s such that ∀f ∈ Σs,t, idt ◦ f = f and f ◦ ids = f . A (S, Σ)-algebra
A consists of an S sorted family |A| = {As | s ∈ S} of sets and a function
fA : As → At for all f ∈ Σs,t such that (g ◦ f)A = gA(fA(−)) and idsA is the
identity function on As

1. When A is clear from the context, we will write f to
mean fA, and we will write As to mean the set of sort s of the family |A|.

The first definition of the theoretical framework presented in [4] is that of con-
text interactive systems. In our theory, an interactive system is a state-machine
that can interact with the environment (contexts) through an evolving interface.

Definition 2 (Context Interactive System). A context interactive system
I is a quadruple 〈(S, Σ), A, O, tr〉 where:

– (S, Σ) is a closed many-sorted unary signature,
– A is a (S, Σ)-algebra,
– O is a set of observations,
– tr ⊆ |A|×O×|A| is a labeled transition relation (p o−→ p′ means (p, o, p′) ∈ tr).

Roughly speaking sorts are interfaces of the system, while operators of Σ are
contexts. Every state p with interface s (i.e. p ∈ As) can be inserted into the
context c ∈ Σs,t, obtaining cA(p) that has interface t. Every state can evolve into
a new state (possibly with different interface) producing an observation o ∈ O.

The abstract semantics of interactive systems is usually defined through be-
havioural equivalences. In [4] we proposed a general notion of bisimilarity that
generalizes the abstract semantics of a large variety of formalisms. The idea is
that two states of a system are equivalent if they are indistinguishable from an
external observer that, in any moment of their execution, can insert them into
some environment and then observe some transitions.

Definition 3 (Saturated Bisimilarity). Let I = 〈(S, Σ), A, O, tr〉 be a con-
text interactive system. Let R = {Rs ⊆ As × As | s ∈ S} be an S sorted family
of symmetric relations. R is a saturated bisimulation iff, ∀s, t ∈ S, ∀c ∈ Σs,t,
whenever pRsq:

– cA(p)R cA(q),
– if p

o−→ p′, then q
o−→ q′ and p′Rq′.

We write p ∼S
s q iff there is a saturated bisimulation R such that pRsq.

An alternative but equivalent definition can be given by defining the saturated
transition system (satts) as follows: p

c,o−→S q if and only if c(p) o−→ q. Trivially
the ordinary bisimilarity over satts coincides with ∼S.

Proposition 4. ∼S is the coarsest bisimulation congruence.

1 A closed many-sorted unary signature (S,Σ) is a category C and a (S,Σ)-algebra is
a presheaf on C. We adopt the above notation to be accessible to a wider audience.

272 F. Bonchi and U. Montanari

3.2 Running Example: Open Petri Nets

Differently from process calculi, Petri nets have not a widely known interactive
behaviour. Indeed they model concurrent systems that are closed, in the sense
that they do not interact with the environment. Open nets [2] are P/T Petri
nets that can interact by exchanging tokens on input and output places.

Definition 4 (Open Net). An open net is a tuple N = (S, T, pre, post, l, I, O)
where S and T are the sets of places and transitions (S∩T = ∅); pre, post : T →
S⊕ are functions mapping each transition to its pre- and post-set; l : T → Λ is
a labeling function (Λ is a set of labels) and I, O ⊆ S are the sets of input and
output places. A marked open net is a pair 〈N, m〉 where N is an open net and
m ∈ S⊕ is a marking.

Fig.1 shows five open nets where, as usual, circles represents places and rectangles
transitions (labeled with α, β). Arrows from places to transitions represent pre,
while arrows from transitions to places represent post. Input places are denoted
by ingoing edges, thus the only input place of N1 is $. To make examples easier,
hereafter we only consider open input nets, i.e., open nets without output places.
The operational semantics of marked open nets is expressed by the rules on Table
1.The rule (tr) is the standard rule of P/T nets (seen as multisets rewriting).
The rule (in) states that in any moment a token can be inserted inside an
input place and, for this reason, the lts has always an infinite number of states.
Fig.1(A) shows part of the infinite transition system of 〈N1, a〉. The abstract
semantics (denoted by ∼N) is defined in [3] as the ordinary bisimilarity over
such an lts. It is worth noting that ∼N can be seen as an instance of saturated
semantics, where multisets over open places are contexts and transitions are only
those generated by the rule (tr).

In the following we formally define N = 〈(SN , ΣN), N, Λ, trN 〉 that is the
context interactive system of all open nets (labeled over the set of labels Λ).

The many-sorted signature (SN , ΣN) is formally defined as:
– SN = {I | I is a set of places},
– ∀I ∈ SN , ΣN

I,I = I⊕, idI = ∅ and i1 ◦ i2 = i1 ⊕ i2.

Intuitively sorts are sets of input places I, while operators of ΣN are multisets of
tokens on the input places. We say that a marked open net 〈N, m〉 has interface
I if the set of input places of N is I. For example the marked open nets 〈N1, a〉
has interface {$}. Let us define the (SN , ΣN)-algebra N. For any sort I, the
carrier set NI contains all the marked open nets with interface I. Any operator
i ∈ ΣI,I is defined as the function that maps 〈N, m〉 into 〈N, m⊕ i〉.

The transition structure trN (denoted by −→N) associates to a state 〈N, m〉
the transitions obtained by using the rule (tr) of Table 1. In [4], it is proved that

Table 1. Operational Semantics of marked open nets

(tr)
t ∈ T l(t) = λ m = •t⊕ c

N,m
λ−→ N, t• ⊕ c

(in)
i ∈ IN

N,m
+i−→ N,m⊕ i

Minimization Algorithm for Symbolic Bisimilarity 273

a
+$ ��

α
��

a$
+$ ��

α
��

a$2
+$ ��

α

��

. . .

b
+$ �� b$

+$ ��
β

��
. . .

(A)
a

∅,α

��
$,α

���

���
� $2,α
������

�������
$3,α

��������������������

b

$,β

��

$2,β

		

$3,β

$4,β

��b$∅,β�� b$2∅,β�� . . .

(B)

a
∅,α �� b

$,β

c

$5,α �� d

∅,β

e

$3,α �� f
∅,β �� g ∅,β �� h

∅,β �� i

$,β

l
$3,α ��

∅,α �����
��� m

∅,β �� n
∅,β �� o

∅,β �� p

$,β

��

q

$,β

r

$5,α

��

∅,α ������� s

∅,β

��

t

$,β

(C)

Fig. 1. The open nets N1, N2, N3, N4 and N5.(A)Part of the infinite transition sys-
tem of 〈N1, a〉. (B)Part of the infinite saturated transition system of 〈N1, a〉.(C)The
symbolic transition systems of 〈N1, a〉,〈N2, c〉,〈N3, e〉,〈N4, l〉 and 〈N5, r〉.

saturated bisimilarity for N coincides with ∼N . In the remainder of the paper
we will use as running example the open nets in Fig.1. Since all the places have
different names (with the exception of $), in order to make lighter the notation,
we write only the marking to mean the corresponding marked net, e.g. b2$ means
the marked net 〈N1, b

2$〉.
The marked net a (i.e., 〈N1, a〉) represents a system that provides a service

β. After the activation α, it provides β whenever the client pay one $ (i.e.,
the environment insert a token into $). The marked net c instead requires five
$ during the activation, but then provides the service β for free. The marked
net e, requires three $ during the activation. For three times, the service β is
performed for free and then it costs one $. It is easy to see that all these marked
nets are not bisimilar. Indeed, a client that has only one $ can have the service
β only with a, while a client with five $ can have the service β for six times only
with c. The marked net r represents a system that offers the behaviour of both
a and c, i.e. either the activation α is for free and then the service β costs one,
or the activation costs five and then the service is for free. Also this marked net
is different from all the others.

Now consider the marked net l. It offers the behaviour of both a and e, but
it is equivalent to a, i.e. l ∼N a. Roughly, the behaviour of e is absorbed by the
behaviour of a. This is analogous to what happens in asynchronous π-calculus
[1] where it holds that a(x).(ax | p) + τ.p ∼ τ.p.

274 F. Bonchi and U. Montanari

3.3 Symbolic Semantics

Saturated bisimulation is a good notion of equivalence but it is hard to check,
since it involves a quantification over all contexts. In [4], we have introduced a
general notion of symbolic bisimilarity that coincides with saturated bisimilarity,
but it avoids to consider all contexts. The idea is to define a symbolic transition
system where transitions are labeled both with the usual observation and also
with the minimal context that allows the transition.

Definition 5 (Symbolic Context Transition System). A symbolic context
transition system (scts for short) for a system I = 〈(S, Σ), A, O, tr〉 is a tran-
sition system β ⊆ |A| ×Σ ×O × |A|.
In [4], we have introduced a scts for open nets. Intuitively the symbolic tran-

sition N, m
i,λ−→η N, m′ is possible if and only if N, m ⊕ i

λ−→N N, m′ and i is
the smallest multiset (on input places) allowing such transition. This scts is
formally defined by the following rule.

t ∈ T l(t) = λ m = (m ∩ •t)⊕ n i ⊆ I⊕ •t = (m ∩ •t)⊕ i

N, m
i,λ−→η N, t• ⊕ n

The marking m∩ •t contains all the tokens of m that are needed to perform the
transition t. The marking n contains all the tokens of m that are not useful for
performing t, while the marking i contains all the tokens that m needs to reach
•t. Note that i is exactly the smallest multiset that is needed to perform the
transition t. Indeed if we take i1 strictly included into i, m ⊕ i1 cannot match
•t. As an example consider the net N2 in Fig.1 with marking cd$2 and let t be
the only transition labeled with α. We have that cd$2 ∩ •t = c$2, n = d and

i = $3. Thus N2, cd$2 $3,α−→η N2, dd. Fig.1(C) shows symbolic transition systems
of marked open nets discussed in the previous subsection.

Definition 6 (Inference System). An inference system R for a context in-
teractive system I = 〈(S, Σ), A, O, tr〉 is a set of rules of the following format,
where s, t ∈ S, o, o′ ∈ O, c ∈ Σs,s′ and d ∈ Σt,t′ .

ps
o−→ qt

c(ps)
o′−→ d(qt)

The above rule states that all processes with sort s that perform a transition with
observation o going into a state qt with sort t, when inserted into the context c
can perform a transition with the observation o′ going into d(qt).

In the following, we write c
o

o′ d to mean a rule like the above. The rules

c
o

o′ c′ and d
o′

o′′ d′ derive the rule d◦c o

o′′ d′◦c′ if d◦c and d′◦c′ are

defined. Given an inference system R, Φ(R) is the set of all the rules derivable
from R together with the identities rules (∀o ∈ O and ∀s, t ∈ S, ids

o

o
idt).

Minimization Algorithm for Symbolic Bisimilarity 275

Definition 7 (Derivations, soundness and completeness). Let I be a con-
text interactive system, β an scts and R an inference system.

We say that p
c1,o1−−→ p1 derives p

c2,o2−−→ p2 in R (written p
c1,o1−−→ p1 �R p

c2,o2−−→ p2)

if there exist d, e ∈ Σ such that d
o1

o2
e ∈ Φ(R), d ◦ c1 = c2 and eA(p1) = p2.

We say that β and R are sound and complete w.r.t. I if

p
c,o−→S q iff p

c′,o′
−→β q′ and p

c′,o′
−→β q′ �R p

c,o−→S q.

A sound and complete scts could be considerably smaller than the saturated
transition system, but still containing all the information needed to recover ∼S .
Note that the ordinary bisimilarity over scts (hereafter called syntactical bisim-
ilarity and denoted by ∼W) is usually stricter than ∼S. As an example con-
sider the marked open nets a and l. These are not syntactically bisimilar, since

l
$3,α−→η m while a cannot (Fig.1(C)). However, they are saturated bisimilar, as

discussed in the previous subsection. In order to recover∼S through the symbolic
transition system we need a more elaborated definition of bisimulation.

Definition 8 (Symbolic Bisimilarity). Let I = 〈(S, Σ), A, O, tr〉 be an in-
teractive system, R be a set of rules and β be a symbolic transition system. Let
R = {Rs ⊆ As ×As | s ∈ S} be an S sorted family of symmetric relations. R is
a symbolic bisimulation iff ∀s ∈ S, whenever pRsq:

– if p
c,o−→β p′, then q

c1,o1−−→β q′1 and q
c1,o1−−→β q′1 �R q

c,o−→ q′ and p′Rq′.

We write p ∼SY M
s q iff there exists a symbolic bisimulation R such that pRsq.

Theorem 1. Let I be a context interactive system, β an scts and R an infer-
ence system. If β and R are sound and complete w.r.t. I, then ∼SY M=∼S.

In the remainder of this section we focus on open Petri nets. The inference system
RN is defined by the following parametric rule.

N, m
λ−→N N, m′

N, m⊕ i
λ−→N N, m′ ⊕ i

The intuitive meaning of this rule is that for all possible observations λ and
multiset i on input places, if a marked net performs a transition with observation
λ, then the addition of i preserves this transition.

Now, consider derivations between transitions of open nets. It is easy to see
that N, m

i1,λ1−−→ N, m1 �RN N, m
i2,λ2−−→ N, m2 if and only if λ2 = λ1 and there

exists a multiset x on input places such that i2 = i1⊕x and m2 = m1⊕x. For all
the nets Nk of our example, this just means that for all observations λ and for all

multisets m, n, we have that 〈Nk, m〉 $i,λ−→η 〈Nk, n〉 �RN 〈Nk, m〉 $i+j ,λ−−−→ 〈Nk, n$j〉.
In [4] we have shown thatRN and η are sound and complete w.r.t. N . For this

reason, we can prove that two marked nets are bisimilar, by showing a symbolic
bisimulation that relates them.

276 F. Bonchi and U. Montanari

4 Saturated Terminal Sequences

In this section we introduce the terminal sequence for saturated and symbolic
bisimilarity. They are almost straightforward adaptation of the terminal se-
quence for ordinary bisimilarity presented in Section 2. Hereafter we always
implicitly refer to a context interactive system I = 〈(S, Σ), A, O, tr〉, a scts β
and an inference system R, such that β and R are sound and complete w.r.t. I.

The saturated terminal sequence is defined as follows,

∼0
S= {As ×As | s ∈ S} ∼κ+1

S = SAT(∼κ
S) ∼λ

S=
⋂

κ<λ

∼κ
S

where SAT is a function on S indexed families of relations such that, for all
R = {Rs ⊆ As ×As | s ∈ S}, pSAT(R)q iff

– if p
c,o−→S p′, then q

c,o−→S q′ and p′Rq′,
– if q

c,o−→S q′, then p
c,o−→S p′ and p′Rq′.

The only difference w.r.t. the terminal sequence of ordinary bisimilarity is in the
fact that we consider S indexed families of relations (recall that S is the set of
sorts, and As is carrier set of sort s of the algebra A).

It is easy to see that SAT is monotonic w.r.t. (indexed) set inclusion. From
classical results of fixed point theory (analogously to ordinary bisimilarity), we
have that saturated bisimilarity is the limit of the saturated terminal sequence.

Proposition 5. ∼S=
⋂

κ∈O ∼κ
S

The following lemma is fundamental to prove the correctness of our algorithm.

Lemma 1. ∀κ ∈ O, ∼κ
S is a congruence.

In Section 2, we have shown that the terminal sequence for ordinary bisimi-
larity provides an effective procedure for computing bisimilarity. We would like
to apply the same intuition to the saturated terminal sequence but, unfortu-
nately, the saturated transition system is usually infinite, since it considers all
possible contexts. Instead of using the satts, we could define the symbolic ter-
minal sequence relying just on the symbolic transition system. However, also
this approach immediately leads to work with infinitely many states.

5 Redundant Transitions

In Section 3, we have shown that syntactical bisimilarity (∼W), i.e. the ordinary
bisimilarity on the symbolic transition system, does not coincide with ∼S. Here
we show that this is due to the presence of redundant transitions. In order to
better explain this phenomenon, we have to show an important property of �R.

Lemma 2. ∀p, q, if p
c1,d1−−→ p1 �R p

c2,d2−−→ eA(p1), then q
c1,d1−−→ q1 �R q

c2,d2−−→ eA(q1).

Minimization Algorithm for Symbolic Bisimilarity 277

Now, consider a process p that performs only the symbolic transitions p
c1,o1−−→β p1

and p
c2,o2−−→β p2 such that p

c1,o1−−→β p1 �R p
c2,o2−−→ eA(p1) and p2 ∼S eA(p1). The

transition p
c2,o2−−→β p2 is redundant and it makes ∼W different from ∼S . Indeed,

take a process q that performs only q
c1,o1−−→β q1 such that p1 ∼S q1. Clearly p and

q are not syntactically bisimilar, because p
c2,o2−−→β p2 while q cannot. However,

p ∼S q, because q
c2,o2−−→S eA(q1) (assuming that β and R are sound and complete

and by Lemma 2) and, p2 ∼S eA(p1) ∼S eA(q1) (since ∼S is a congruence).
As an example consider the symbolic transition system of l (Fig.1). l

∅,α−→η q

and l
$3,α−→η m. Moreover, l

∅,α−→η q �RN l
$3,α−→ q$3 and q$3 ∼S m. Now consider a.

a
∅,α−→η b. Clearly l �∼W a but they are saturated bisimilar (Section 3).

Definition 9 (Redundant Transition). Let I = 〈(S, Σ), A, O, tr〉 be a con-
text interactive system, R be an inference system and X be an S sorted family of
relations. Let p

c1,o1−−→ p1 and p
c2,o2−−→ p2 be two different transitions. We say that the

former dominates the latter in X (written p
c1,o1−−→ p1 ≺X p

c2,o2−−→ p2) if and only
if p

c1,o1−−→ p1 �R p
c2,o2−−→ eA(p1) and p2 X eA(p1). A transition is redundant w.r.t.

X if it is dominated in X by another transition. Otherwise, it is irredundant.

In the remainder of this section, we introduce another characterization of satu-
rated bisimilarity that only checks irredundant symbolic transitions. The mini-
mization algorithm that we will present in Section 6 relies on this notion.

Definition 10 (Irredundant Bisimilarity). Let I = 〈(S, Σ), A, O, tr〉 be an
interactive system, R be a set of rules and β be a symbolic transition system.
Let R = {Rs ⊆ As × As | s ∈ S} be an S sorted family of symmetric relations.
R is an irredundant bisimulation iff ∀s ∈ S, whenever pRsq:

– if p
c,o−→β p′ is irredundant in R, then q

c,o−→β q′ and p′Rq′.

We write p ∼NR
s q iff an irredundant bisimulation R such that pRsq exists.

Theorem 2 states that ∼NR=∼S. However, in order to have such correspondence,
we have to add a constraint to our theory. Indeed, according to the actual defi-
nition of context interactive systems, there could exist infinite descending chains
like: · · · ≺R p

c2,o2−−→ p2 ≺R p
c1,o1−−→ p1. In this chain, all the transitions are redun-

dant and thus none of them is considered when checking irredundant bisimilarity.

Definition 11. A context interactive system is well-founded w.r.t. R if and
only if for all relations R there are no infinite descending chains of ≺R.

All the examples that we have shown in [4] are well-founded. In particular N is

well founded w.r.t. RN . Indeed, for all relations R, m
i1,λ1−−→ m1 ≺R m

i2,λ2−−→ m2

only if there exists a multiset x �= ∅ such that x ◦ i1 = i2. This means that
the multiset i1 is strictly included in the multiset i2, and since all multisets are
finite, there exist only finite descending chains of ≺R.

Theorem 2. If I is well founded w.r.t. R, then ∼NR=∼SY M .

278 F. Bonchi and U. Montanari

6 A Minimization Algorithm for Symbolic Bisimilarity

In this section we introduce the terminal sequence for irredundant bisimilarity
and we prove that it coincides with the saturated terminal sequence (Subsection
6.1). Relying on this, we introduce the symbolic partition refinement algorithm
that checks saturated bisimilarity (Subsection 6.2). Finally, we prove the exis-
tence of minimal symbolic automata and we provide a procedure to compute
them (Subsection 6.3). Hereafter, we assume that I is well-founded w.r.t. R.

6.1 Irredundant Terminal Sequence

The irredundant terminal sequence (∼κ
IR) is defined as the saturated terminal

sequence by replacing the function SAT with IR that is defined as follows: for
all R = {Rs ⊆ As × As | s ∈ S}, pIR(R)q iff

– if p
c,o−→β p′ is irredundant in R, then q

c,o−→β q′ and p′Rq′,
– if q

c,o−→β q′ is irredundant in R, then p
c,o−→β p′ and p′Rq′.

The function IR is clearly different from SAT, but they are equivalent when
restricting to congruences.

Proposition 6. Let R = {Rs ⊆ As × As | s ∈ S} be an S sorted family of
symmetric relations. If R is a congruence, then SAT(R) = IR(R).

Since by Lemma 1 all the relations of the saturated terminal sequence are con-
gruences, then the two terminal sequences coincide.

Theorem 3. ∀κ ∈ O, ∼κ
S=∼κ

IR.

6.2 Symbolic Partition Refinement

In Section 2 we have shown how the terminal sequence can be employed in order
to have an effective procedure to compute bisimilarity. In this section we apply
the same intuition to the irredundant terminal sequence. At the iteration n,
instead of computing F(Pn), we compute IR(Pn): two processes p and q belong
to the same block in Pn+1, if and only if whenever p

c,o−→β p′ is not redundant in
Pn then q

c,o−→β q′ with p′ and q′ in the same block of Pn.
It is worth noting that in the computation of IR(Pn) are involved also states

that could be not reachable from the initial states IS. As an example consider
the symbolic transition system of a and r (Fig.1(C)). The set of reachable states

is IS� = {a, b, r, s, t}. Recall that r
∅,α−→η t �RN r

$5,α−→η t$5. Thus, at the generic

iteration n + 1, we need to check if the transition j
$5,α−→η s is redundant. In

order to do that we have to check if t$5 and s belong to the same block in Pn.
However, the state t$5 is not reachable from IS = {a, r}.

Thus, we have to change the initialization step of our algorithm, by including
in the set IS� all the states that are needed to check redundancy. This is done,

Minimization Algorithm for Symbolic Bisimilarity 279

Table 2. Closure rules

(is)
p ∈ IS p ∈ As

p ∈ IS�
s

(rs)
p ∈ IS� p

c,o−→β q q ∈ As

q ∈ IS�
s

(rd)
p ∈ IS� p

c1,o1−−→β q1 p
c2,o2−−→β q2 p

c1,o1−−→β q1 �R p
c2,o2−−→ eA(q1) eA(q1) ∈ As

eA(q1) ∈ IS�
s

by using the closure rules in Table 2.The rule (rd) adds all the states that are
needed to check redundancy. Indeed, if p can perform p

c1,o1−−→β q1 and p
c2,o2−−→β q2

such that p
c1,o1−−→β q1 �R p

c2,o2−−→ eA(q1), the latter could be redundant whenever
q2 ∼S eA(q1). Thus also the state eA(q1) is needed. As an example, the closure of
IS = {a, r} is IS� = {a, b, r, s, t, t$1, t$2, t$3, t$4, t$5} (Fig.2(B)). Usually, IS� is
not just a set, but an S indexed family of sets of states and for this reason the
closure rules in Table 2 insert states in IS� according to their sorts.

Algorithm 2. Symbolic-Partition-Refinement(IS)
Initialization

1. Compute IS� with the rules in Table 2,
2. P 0 := {IS�

s |s ∈ S},
Iteration Pn+1 := IR(Pn),
Termination if Pn = Pn+1 then return Pn.

Notice that in the initial partition P 0 there is one block for each sort s ∈ S.
Thus P 0 equates all and the only the elements of IS� with the same interface.
Fig.2(A) shows the sequence of partitions computed by the algorithm taking
as initial state IS = {a, r}. It is important to note now that in the symbolic
transition system of IS� (Fig.2(B)) the only possibly redundant transition is

r
$5,α−→η s (because r

∅,α−→η t �RN r
$5,α−→ t$5). Thus, in order to check redundancy,

at any iteration we have only to check if t$5 and s belong to the same block.
In the initial partition all the states are equivalent since they all have the same
interface (recall that all the marked nets presented in Section 3 have interface $).
In P 1 there are three blocks. The states a and r are in the same block because
the transition r

$5,α−→η s is redundant since s and t$5 belong to the same block in
P 0. In the second iteration, the state t$1 is separated from {t$2, t$3, t$4, t$5, s}
because the former can perform

∅,β−→η {r, b} while all the others cannot. Note
that a and r are still in the same block because s and t$5 belong to the same
block in P 1. In each of the following iteration, a state t$i is separated from s.
In P 6, the state t$5 is separated from s and thus in P 7 the states a and r are

divided because the transition r
$5,α−→η s is not redundant anymore. Then P 8 is

equivalent to P 7 and the algorithm returns such partition.

280 F. Bonchi and U. Montanari

P 0 = {a, b, r, s, t, t$1, t$2, t$3, t$4, t$5}
P 1 = {a, r}{b, t}{t$1, t$2, t$3, t$4, t$5, s}
P 2 = {a, r}{b, t}{t$1}, {t$2, t$3, t$4, t$5, s}
P 3 = {a, r}{b, t}{t$1}, {t$2}{t$3, t$4, t$5, s}
P 4 = {a, r}{b, t}{t$1}, {t$2}{t$3}{t$4, t$5, s}
P 5 = {a, r}{b, t}{t$1}, {t$2}{t$3}{t$4}{t$5, s}
P 6 = {a, r}{b, t}{t$1}, {t$2}{t$3}{t$4}{t$5}{s}
P 7 = {a}{r}{b, t}{t$1}{t$2}{t$3}{t$4}{t$5}{s}
P 8 = {a}{r}{b, t}{t$1}{t$2}{t$3}{t$4}{t$5}{s}

r
$5,α ��

∅,α ������ s

∅,β

a

∅,α �� b

$,β

t

$,β

�� t$1
∅,β�� t$5

∅,β
��

t$2

∅,β

��

t$3
∅,β�� t$4

∅,β��

(A) (B)

Fig. 2. (A)The partitions computed by Symbolic-Partition-Refinement({a, r}).(B)
The symbolic transition systems of {a, r}�.

In order to prove the soundness of our algorithm we define the irredundant
terminal sequence for the set of initial states IS,

∼0
IS=∼0

β� IS� ∼κ+1
IS = IR(∼κ

IS) ∼λ
IS=

⋂

κ<λ

∼κ
IS

where R � A denotes the restriction of the relation R to the set A, IS� is the
closure of IS w.r.t. rules in Table 2.

The only difference with respect to the irredundant terminal sequence is in the
first element. Here instead of taking the whole state space of I, we restrict to IS�.
The following theorem guarantees that this is enough in order to characterize
the restriction of the irredundant terminal sequence to IS�. This is not trivial
and it strongly relies on the fact that we close IS w.r.t. the rule (rd) in Table
2. Indeed whenever we remove such rule, it does not hold anymore.

Theorem 4. ∀κ ∈ O, ∼κ
ND� IS� =∼κ

IS.

Theorem 5. If ∼κ
IS=∼κ+1

IS , then ∀k′ ≥ k + 1, ∼κ
IS=∼κ′

IS.

Corollary 1. If IS� is finite, then the algorithm terminates and the resulting
partition equates all and only saturated bisimilar states.

Since the algorithm applies to a lot of different formalisms, it is hard to provide a
meaningful complexity analysis. However, we want to remark that the operation
of checking redundancy is not expensive, since all the possible redundancies can
be computed during the initialization (when using the rule (rd) of Table 2)
and at any iteration, only those redundancies must be checked. Instead, the
closure IS� can be much larger than the set of reachable states (that is used by
the ordinary partition refinement). Even worst, in our theory, nothing guarantees
that if the set of reachable states (through the scts) is finite then also the closure
IS� is finite. However, we conjecture that this holds for many formalisms. The
following proposition states that this holds in our running example.

Proposition 7. Let N , η and RN be the context interactive system, the sym-
bolic transition system and the inference system for open nets that we have

Minimization Algorithm for Symbolic Bisimilarity 281

l
$3,α��

∅,α ���
��

� m
∅,β�� n$2

∅,β �� o$
∅,β �� p

$,β

q

$,β

�� q$1
∅,β�� q$2

∅,β�� q$3
∅,β��

P 0 = {l, p, q, q$1, o$, q$2, n, q$3,m}
P 1 = {l}{p, q}{q$1, o$, q$2, n, q$3,m}
P 2 = {l}{p, q}{q$1, o$}{q$2, n, q$3,m}
P 3 = {l}{p, q}{q$1, o$}{q$2, n}{q$3 ,m}
P 4 = {l}{p, q}{q$1, o$}{q$2, n}{q$3 ,m}

Fig. 3. The partions computed by Symbolic-Partition-Refinement({l})

introduced in Section 3. Let 〈N, m〉 be a marked open net. If the symbolic tran-
sition system of 〈N, m〉 is finite, then also the closure w.r.t. rules in Table 2 is
finite.

6.3 Minimal Symbolic Automaton

Now we introduce minimal symbolic automata, i.e. automata having only ir-
redundant symbolic transitions. We show that they are canonical representa-
tives for equivalence classes of saturated bisimilar states. Moreover, we pro-
vide an algorithm to compute them. Hereafter, given an S sorted family of sets
X = {Xs | s ∈ S} and an S sorted family of equivalence relations R = {Rs ⊆
Xs ×Xs | s ∈ S}, we write Xs |R to mean the set of equivalence classes of Xs

w.r.t. Rs and for each p ∈ X , [p]R to mean the equivalence class of p w.r.t. R.

Definition 12 (Minimal Symbolic Automaton). Let I = 〈(S, Σ), A, O, tr〉
be a context interactive system, β a symbolic transition system and R an infer-
ence system. Let p be a state of I and {p}� = {{p}�s | s ∈ S} be the S sorted
family of sets of states obtained by closing {p} with the rules in Table 2. The
minimal symbolic automaton of p (denoted by MSA(p)) is a triple 〈i, M, trM 〉:
– the initial state i is equal to [p]∼S ,
– M = {Ms ⊆ {p}�s |∼S | s ∈ S} is an S indexed family of set of equivalence

classes of ∼S,
– trM ⊆M ×Σ ×O ×M is a transition relation,

defined according to the following two rules.

p ∈ As

[p]∼S ∈Ms

[q]∼S ∈M q
c,o−→β r is irredundant in ∼S r ∈ As

[q]∼S
c,o−→M [r]∼S [r]∼S ∈Ms

The leftmost rule states that the equivalence class of the initial state p belongs
to the states of the minimal automaton. The other rule adds all the equivalence
classes that are reachable from p trough symbolic irredundant transitions. Notice
that in the minimal automaton for standard bisimilarity (Def.1) the set of states
consisted of all the equivalence classes of reachable states, and thus in order to
compute the minimal automata, we just needed to quotient the set of reachable
states. For minimal symbolic automata we have also to remove all those states
that are not reachable through irredundant symbolic transitions. As an example

282 F. Bonchi and U. Montanari

Algorithm 3. Symbolic-Minimization(p)
1. P :=Symbolic-Partition-Refinement({p}),
2. Quotient {p}� w.r.t. P ,
3. Remove the redundant transitions,
4. Remove the states that are not reachable.

consider the symbolic transition system of l (Fig.1(C)). Fig.3 shows the closure
{l}� and the partitions computed by Symbolic-Partition-Refinement({l}).
The minimal automata of l can be constructed as follows. First, we quotient the
states in {l}� with respect to the partition P 4 returned by the algorithm.

{l}
$3,α

��
∅,α �� {p, q}

$,β
�� {q$1, o$}∅,β�� {q$2, n}∅,β�� {q$3, m}∅,β��

Then we remove the redundant transitions.

{l} ∅,α �� {p, q}
$,β

�� {q$1, o$}∅,β�� {q$2, n}∅,β�� {q$3, m}∅,β��

Finally we take the set of states reachable from l: {l} ∅,α �� {p, q}
$,β��

. This is the
minimal symbolic automaton of l. Notice that it is isomorphic to the symbolic
transition system of a (Fig.1(C)). This is an alternative proof of a ∼S l. Indeed,
for minimal symbolic automata, analogously to minimal automata, two states p
and q are saturated bisimilar if and only if their minimal symbolic automata are
isomorphic, where by isomorphism we mean a bijection on states that preserves
sorts, transitions and initial states.

Proposition 8. p ∼S q if and only if MSA(p) is isomorphic to MSA(q).

7 Conclusions and Related Works

Relying on the framework of [4], we have introduced a symbolic partition re-
finement algorithm that allows to efficiently check saturated bisimilarity. Our
approach is absolutely general and it can be applied to many formalisms. How-
ever, when considering nominal calculi where systems are able communicate
names, the symbolic transition system is often infinite. Indeed, every time that
a system generates a new name and extrudes it, the system goes in a new state
that is different from all the previous. HD-Automata [16] are peculiar ltss that
allow to garbage collect names and avoid this other source of infiniteness. As
future work, we will extend our framework to HD-Automata, so that we will be
able to handle systems that generates infinitely many names. In particular we
conjecture that this algorithm will generalize both [19] and [15] that provide a
partition refinement algorithm for open [20] and asynchronous [1] bisimilarity.

Indeed, both our approach and [19,15] rely on irredundant transitions. In all
these algorithms, first the closure of the set of initial states is computed by

Minimization Algorithm for Symbolic Bisimilarity 283

adding, not only the reachable states, but also those states that are needed
to check redundancy. Then, at any iteration, only irredundant transitions are
considered. In [19], the closure is called saturated state graph and it is computed
analogously to our approach. Instead, in [15], the closure is computed by adding
negative transitions whenever there is a possible redundancy. Roughly, if p

a� q is
a negative transition, then a transition p

a−→ q′ is redundant whenever the arriving
state q and q′ are the same. A novel notion of bisimilarity is introduced for these
kind of transition systems, but it fails to be transitive. In our context interactive
systems we just rely on the algebraic structure of contexts and irredundant
bisimilarity coincides with the saturated one.

Moreover, the functions Φ and ΦA, that are used during the iteration of the
algorithms in [19,15], are not monotone and, as a consequence, the convergency
of the corresponding terminal sequences have to be proven by hand. Instead in
our approach the function IR generates exactly the same sequence of saturated
bisimilarity and thus convergence and coincidence with saturated bisimilarity are
for free. Moreover, we have shown that the correspondence between irredundant
bisimilarity and saturated bisimilarity is not by chance, but because IR and
SAT behaves exactly in the same way when restricted to congruences.

References

1. Amadio, R.M., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous
π-calculus. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119,
pp. 147–162. Springer, Heidelberg (1996)

2. Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open
Petri nets based on deterministic processes. M.S.C.S 15(1), 1–35 (2005)

3. Baldan, P., Corradini, A., Ehrig, H., Heckel, R., König, B.: Bisimilarity and
behaviour-preserving reconfiguration of open petri nets. In: Mossakowski, T., Mon-
tanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 126–142.
Springer, Heidelberg (2007)

4. Bonchi, F., Montanari, U.: Symbolic semantics revisited. In: Amadio, R. (ed.)
FOSSACS 2008. LNCS, vol. 4962, pp. 395–412. Springer, Heidelberg (2008)

5. Bonchi, F., Montanari, U.: Minimization algorithm for symbolic bisimilarity. Tech-
nical Report TR-08-27, Department of Informatics, University of Pisa (2008)

6. Cardelli, L., Gordon, A.D.: Mobile ambients. T.C.S. 240(1), 177–213 (2000)
7. Fernandez, J.C., Mounier, L.: “on the fly“ verification of behavioural equivalences

and preorders. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp.
181–191. Springer, Heidelberg (1992)

8. Ferrari, G.L., Gnesi, S., Montanari, U., Pistore, M., Ristori, G.: Verifying mobile
processes in the hal environment. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427,
pp. 511–515. Springer, Heidelberg (1998)

9. Hennessy, M., Lin, H.: Symbolic bisimulations. T.C.S. 138(2), 353–389 (1995)
10. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In:

America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg
(1991)

11. Kanellakis, P.C., Smolka, S.A.: Ccs expressions, finite state processes, and three
problems of equivalence. Information and Computation 86(1), 43–68 (1990)

284 F. Bonchi and U. Montanari

12. Merro, M., Zappa Nardelli, F.: Bisimulation proof methods for mobile ambients.
In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 584–598. Springer, Heidelberg (2003)

13. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

14. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, i and ii. Infor-
mation and Computation 100(1), 1–40 (1992)

15. Montanari, U., Pistore, M.: Finite state verification for the asynchronous pi-
calculus. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 255–269.
Springer, Heidelberg (1999)

16. Montanari, U., Pistore, M.: An introduction to history dependent automata. Electr.
Notes Theor. Comput. Sci. 10 (1997)

17. Montanari, U., Sassone, V.: Dynamic congruence vs. progressing bisimulation for
ccs. Fundamenta Informaticae 16(1), 171–199 (1992)

18. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Com-
put. 16(6), 973–989 (1987)

19. Pistore, M., Sangiorgi, D.: A partition refinement algorithm for the π-calculus.
Information and Computation 164(2), 264–321 (2001)

20. Sangiorgi, D.: A theory of bisimulation for the π-calculus. Acta Informatica 33(1),
69–97 (1996)

21. Victor, B., Moller, F.: The mobility workbench - a tool for the pi-calculus. In: Dill,
D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 428–440. Springer, Heidelberg (1994)

Conversation Types

Luı́s Caires and Hugo Torres Vieira

CITI / Departamento de Informática, FCT Universidade Nova de Lisboa, Portugal

Abstract. We present a type theory for analyzing concurrent multiparty interac-
tions as found in service-oriented computing. Our theory introduces a novel and
flexible type structure, able to uniformly describe both the internal and the inter-
face behavior of systems, referred respectively as choreographies and contracts
in web-services terminology. The notion of conversation builds on the fundamen-
tal concept of session, but generalizes it along directions up to now unexplored;
in particular, conversation types discipline interactions in conversations while ac-
counting for dynamical join and leave of an unanticipated number of participants.
We prove that well-typed systems never violate the prescribed conversation con-
straints. We also present techniques to ensure progress of systems involving sev-
eral interleaved conversations, a previously open problem.

1 Introduction

While most issues arising in the context of communication-based software systems do
not appear to be new when considered in isolation, the analysis of loosely-coupled dis-
tributed systems involving type based discovery, and multiparty collaborations such as
those supported by web-services technology raises many challenges and calls for new
concepts, specially crafted models, and formal analysis techniques (e.g., [1,2,3,6,7,12]).
In previous work [19] we introduced the Conversation Calculus (CC), a π-calculus
based model for service-oriented computing that builds on the concepts of process del-
egation, loose-coupling, and, crucially, conversation contexts.

A key concept for the organization of service-oriented computing systems is the no-
tion of conversation. A conversation is a structured, not centrally coordinated, possibly
concurrent, set of interactions between several participants. Then, a conversation con-
text is a medium where partners may interact in a conversation. It can be distributed in
many pieces, and processes in any piece may seamlessly talk to processes in the same
or any other piece of the same conversation context. Intuitively a conversation context
may be seen as a virtual chat room where remote participants exchange messages ac-
cording to some discipline, while simultaneously engaged in other conversations. Con-
versation context identities can be passed around, allowing participants to dynamically
join conversations. To join an ongoing conversation, a process may perform a remote
conversation access using the conversation context identifier. It is then able to partici-
pate in the conversation to which it has joined, while being able to interact back with
the caller context through the access point. To discipline multiparty conversations we
introduce conversation types, a novel and flexible type structure, able to uniformly de-
scribe both the internal and the interface behavior of systems, referred respectively as
choreographies and contracts in web-services terminology.

We give substantial evidence that our minimal extension to the π-calculus is already
effective enough to model and type sophisticated service-based systems, at a fairly high

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 285–300, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

286 L. Caires and H.T. Vieira

level of abstraction. Examples include challenging scenarios involving simultaneous
multiparty conversations, with concurrency and access to local resources, and conver-
sations with a dynamically changing and unanticipated number of participants, that fall
out of scope of other approaches for modeling and typing of service-based systems.

1.1 Conversation Contexts and Conversation Types

We explain the key ideas of our development by going through a motivating example.
Consider the following composition of two conversation contexts, named Buyer and
Seller , modeling a typical service collaboration:

Buyer � [new Seller · startBuy⇐ buy!(prod).price?(v)] |
Seller � [PriceDB | def startBuy⇒ buy?(prod).askPrice�!(prod).

readVal�?(v).price!(v)]

Notice that in the core CC, the bounded communication medium provided by a con-
versation context may also be used to model a partner local context, avoiding the in-
troduction of a primitive notion of site. The code in Buyer starts a new conversation
by calling service startBuy located at Seller using the service instantiation idiom
new Seller · startBuy ⇐ buy!(prod).price?(v). The code buy!(prod).price?(v)
describes the role of Buyer in the conversation: a buy message is sent, and afterwards
a price message should be received. Upon service instantiation, the system evolves to

(νc)(Buyer � [c � [buy!(prod).price?(v)]] |
Seller � [PriceDB | c � [buy?(prod).askPrice�!(prod).

readVal�?(v).price!(v)])

where c is the fresh name of the newly created conversation (with two pieces). The code

buy?(prod).askPrice�!(prod).readVal�?(v).price!(v)
describes the participation of Seller in the conversation c: a buy message is received,
and in the end, price message should be sent. In between, database PriceDB
located in the Seller context is consulted through a pair of � directed message ex-
changes (askPrice and readVal). Such messages are targeted to the parent conversa-
tion (Seller), rather than to the current conversation (c).

In our theory, message exchanges inside and at the interface of subsystems are cap-
tured by conversation types, which describe both internal and external participation of
processes in conversations. The Buyer and Seller conversation is described by type

BSChat � τbuy(Tp).τprice(Tm)
specifying the two interactions that occur sequentially within the conversation c, first a
message buy and after a message price (Tp and Tm represent basic value types).

The τ in, e.g., τbuy(Tp) means that the interaction is internal. A declaration such
as τbuy(Tp) is like an assertion such as buy(Tp) : Buyer → Seller in a message
sequence chart, or in the global types of [12], except that in our case participant identi-
ties are abstracted away, increasing flexibility. In general, the interactions described by
a type such as BSChat may be realized in several ways, by different participants. Tech-
nically, we specify the several possibilities by a (ternary) merge relation between types,
noted B = B1 �� B2, stating how a behavior B may be projected in two independent
matching behaviors B1 and B2. In particular, we have (among others) the projection

Conversation Types 287

BSChat = ? buy(Tp).! price(Tm) �� ! buy(Tp).? price(Tm)
The type ? buy(Tp).! price(Tm) will be used to type the Buyer participation, and
the type ! buy(Tp).? price(Tm) will be used to type the Seller participation (in
conversation BSChat). Thus, in our first example, the conversation type BSChat is
decomposed in a pair of “dual” conversation types, as in classical session types [10,11];
this does not need to be always the case, however. In fact, the notion of conversation
builds on the fundamental concept of session but extends it along unexplored directions,
as we now discuss. Consider a three-party variation (from [6]) of the example above:

Buyer � [new Seller · startBuy⇐ buy!(prod).price?(p).details?(d)] |
Seller � [PriceDB |

def startBuy⇒ buy?(prod).askPrice�!(prod).
readVal�?(p).price!(p).
join Shipper · newDelivery⇐ product!(prod)] |

Shipper � [def newDelivery⇒ product?(p).details!(data)]

The role of Shipper is to inform the client on the delivery details. The code is com-
posed of three conversation contexts, representing the three partners Buyer , Seller and
Shipper . The system progresses as in the first example: messages buy and price are
exchanged between Buyer and Seller in the fresh conversation. After that, Shipper is
asked by Seller , using idiom join Shipper · newDelivery⇐ · · · , to join the ongoing
conversation (till then involving only Buyer and Seller). The system then evolves to

(νa)(Buyer � [a � [details?(d)]] |
Seller � [a � [product!(prod)] | . . .] |
Shipper � [a � [product?(p).details!(data)]])

Notice that Seller does not lose access to the conversation after asking service Shipper ·
newDelivery to join in the current conversation a (partial session delegation). In fact,
Seller and Shipper will interact later on in the very same conversation, by exchanging
a product message. Finally, Shipper sends a message details directly to Buyer . In
this case, the global conversation a is initially assigned type

BSSChat � τ buy(Tp).τ price(Tm).τ product(Tp).τ details(Td)
We decompose type BSSChat in three “projections” (Bbu , Bse , and Bsh), by means of
the merge ��, first by BSSChat = Bbu �� Bss , and then by Bss = Bse �� Bsh , where

Bbu � ? buy(Tp).! price(Tm).! details(Td)
Bss � ! buy(Tp).? price(Tm).τ product(Tp).? details(Td)
Bse � ! buy(Tp).? price(Tm).? product(Tp)
Bsh � ! product(Tp).? details(Td)

These various “local” types are merged by our type system in a compositional way, al-
lowing e.g., service startBuy to be assigned type !startBuy([Bss]), and the contribu-
tion of each partner in the conversation to be properly determined. At the point where
join operation above gets typed, the (residual) conversation type corresponding to the
participation of Seller is typed τ product(Tp).? details(Td). At this stage, extru-
sion of the conversation name a to service Seller · newDelivery will occur, to en-
able Shipper to join in. Notice that the global conversation BSSChat discipline will

288 L. Caires and H.T. Vieira

nevertheless be respected, since the conversation fragment delegated to Shipper is typed
! product(Tp).? details(Td) while the conversation fragment retained by Seller is
typed ? product(Tp). Also notice that since conversation types abstract away from par-
ticipant identities, the overall conversation type can be projected into the types of the
individual roles in several ways, allowing for different implementations of the roles of a
given conversation (cf. loose-coupling). It is even possible to type systems with an un-
bounded number of different participants, as needed to type, e.g., a service broker.

Our type system combines techniques from linear, behavioral, session and spatial
types (see [4,11,13,14]): the type structure features prefix M.B, parallel composition
B1 | B2, and other operators. Messages M describe external (receive ? / send !) ex-
changes in two views: with the caller / parent conversation (�), and in the current
conversation (�). They also describe internal message exchanges (τ). Key technical
ingredients in our approach to conversation types are the amalgamation of global types
and of local types (in the general sense of [12]) in the same type language, and the
definition of a merge relation ensuring, by construction, that participants typed by the
projected views of a type will behave well under composition. Merge subsumes duality,
in the sense that for each τ -free B there are types B, B′ such that B �� B = τ (B′),
so sessions are special cases of conversations. But merge of types allows for extra flex-
ibility on the manipulation of projections of conversation types, in an open-ended way,
as illustrated above. In particular, our approach allows fragments of a conversation type
(e.g., a choreography) to be dynamically distributed among participants, while statically
ensuring that interactions follow the prescribed discipline.

The technical contributions of this work may be summarized as follows. First, we
define the new notion of conversation type. Conversation types are a generalization of
session types to loosely-coupled, possibly concurrent, multiparty conversations, allow-
ing mixed global / local behavioral descriptions to be expressed at the same level, while
supporting the analysis of systems with dynamic delegation of fragments of ongoing
conversations. Second, we advance new techniques to certify safety and liveness prop-
erties of service-based systems. We propose a type system for assigning conversation
types to core CC systems. Processes that get past our typing rules are ensured to be free
of communication errors, and races on plain messages (Corollary 3.6): this also implies
that well-typed systems enjoy a conversation fidelity property (i.e., all conversations
follow the prescribed protocols). Finally, we present techniques to establish progress of
systems with several interleaved conversations (Theorem 4.4), exploiting the combina-
tion of conversation names with message labels in event orderings, and, more crucially,
propagation of orderings in communications, solving a previously open problem.

Additional examples, complete definitions and detailed proofs can be found in [5].

2 The Core Conversation Calculus

In this section, we present the syntax and operational semantics of the core Conversa-
tion Calculus (CC) [19]. The core CC extends the π-calculus [16] static fragment with
the conversation construct n � [P], and replaces channel based communication with
context-sensitive message based communication. For simplicity, we use here a monadic
version. The syntax of the calculus is defined in Fig. 1. We assume given an infinite set
of names Λ, an infinite set of variables V , an infinite set of labels L, and an infinite set

Conversation Types 289

a, b, c, . . . ∈ Λ (Names) d ::= � | � (Directions)
x, y, z, . . . ∈ V (Variables)
n,m, o . . . ∈ Λ ∪ V α, β ::= ld!(n) (Output)
l, s . . . ∈ L (Labels) | ld?(x) (Input)
X ,Y, . . . ∈ χ (Process Vars) | this(x) (Conversation Awareness)

P,Q ::= 0 (Inaction) | recX .P (Recursion)
| P | Q (Parallel Composition) | X (Variable)
| (νa)P (Name Restriction) | Σi∈I αi.Pi (Prefix Guarded Choice)
| n � [P] (Conversation Access)

Fig. 1. The core Conversation Calculus

of process variables χ. The static fragment is defined by the inaction 0, parallel compo-
sition P | Q, name restriction (νa)P and recursion recX .P . The conversation access
construct n � [P], allows a process to interact, as specified by P , in conversation n.

Communication is expressed by the guarded choice construct Σi∈I αi.Pi, meaning
that the process may select some initial action αi and then progress as Pi. Communi-
cation actions are of two forms: ld!(n) for sending messages and ld?(x) for receiving
messages. Message communication is defined by the label l and the direction d. There
are two message directions: � (read “here”) meaning that the interaction should take
place in the current conversation or � (read “up”) meaning that the interaction should
take place in the enclosing (caller) conversation. To lighten notation we omit the � in
the �-directed messages without any ambiguity. A basic action may also be of the form
this(x), allowing a process to dynamically access the name of the current conversation.
Notice that message labels (from l ∈ L) are not names but free identifiers (cf. record
labels or XML tags), and therefore are not subject to fresh generation, restriction or
binding. Only conversation names (in Λ) may be subject to binding, and freshly gener-
ated via (νa)P . The distinguished occurrences of a, x, x andX are binding occurrences
in (νa)P , ld?(x).P , this(x).P and recX .P , respectively. The sets of free (fn(P)) and
bound (bn(P)) names, free variables (fv(P)), and free process variables (fpv(P)) in a
process P are defined as expected. We implicitly identify α-equivalent processes.

The operational semantics of the core CC is defined by a labeled transition system.
For clarity, we split the presentation in two sets of rules, one (in Fig. 3) containing
the rules for the basic operators, another (in Fig. 4) grouping the rules specific to the
conversations. A transition P λ−→ Q states that process P may evolve to process Q by
performing the action represented by the transition label λ. Transition labels (λ) and ac-
tions (σ) are defined in Fig. 2. An action τ denotes an internal communication, actions
ld!(a) and ld?(a) represent communications with the environment, and this represents
a conversation identity access; these correspond to the basic actions a process may per-
form in the context of a given conversation. To capture the observational semantics of
processes [19], transition labels register not only the action but also the conversation
where the action takes place. So, a transition label λ containing c σ is said to be lo-
cated at conversation c (or just located), otherwise is said to be unlocated. In (νa)λ the
distinguished occurrence of a is bound with scope λ (cf., the π-calculus bound output
actions). For a communication label λ we denote by λ the dual matching label obtaining

290 L. Caires and H.T. Vieira

σ ::= τ | ld!(a) | ld?(a) | this (Transition Labels) λ ::= c σ | σ | (νa)λ (Actions)

Fig. 2. Transition Labels and Actions

ld!(a).P
ld!(a)−→ P (out) ld?(x).P

ld?(a)−→ P{x/a} (inp)
αj .Pj

λ−→ Q j ∈ I
Σi∈I αi.Pi

λ−→ Q
(sum)

P
λ−→ Q a = out(λ)

(νa)P
(νa)λ−→ Q

(opn)
P

λ−→ P ′ Q
λ−→ Q′

P | Q τ−→ P ′ | Q′
(com)

P
(νa)λ−→ P ′ Q

λ−→ Q′

P | Q τ−→ (νa)(P ′ | Q′)
(clo)

P
λ−→ Q a �∈ na(λ)

(νa)P
λ−→ (νa)Q

(res)
P

λ−→ Q

P | R λ−→ Q | R
(par)

P{X/recX .P} λ−→ Q

recX .P λ−→ Q
(rec)

Fig. 3. Operational Semantics: Basic Operators (π-calculus)

P
λ�−→ Q

c � [P]
λ�−→ c � [Q]

(her)
P

λ�−→ Q

c � [P]
c·λ�−→ c � [Q]

(loc)
P

a λ�−→ Q

c � [P]
a λ�−→ c � [Q]

(thr)

P
τ−→ Q

c � [P]
τ−→ c � [Q]

(tau) this(x).P
c this−→ P{x/c} (thi)

P
c this−→ Q

c � [P]
τ−→ c � [Q]

(thl)

P
σ−→ P ′ Q

c σ−→ Q′

P | Q c this−→ P ′ | Q′
(tco)

P
σ−→ P ′ Q

(νa)c σ−→ Q′

P | Q c this−→ (νa)(P ′ | Q′)
(tcl)

Fig. 4. Operational Semantics: Conversation Operators

by swapping inputs with outputs, such that ld!(a) = ld?(a) and ld?(a) = ld!(a). By
na(λ) we denote the free and bound names and by bn(λ) the bound names of λ.

Transition rules presented in Fig. 3 closely follow the ones for the π-calculus [18]
and should be fairly clear to a reader familiar with mobile process calculi. For exam-
ple, rule (opn) corresponds to the bound output or extrusion rule, in which a bound
name a is extruded to the environment in an output message λ: we define out(λ) = a
if λ = ld!(a) or λ = c ld!(a) and c �= a. We discuss the intuitions behind the rules
for conversation contexts (Fig. 4). In (her) an � directed message (to the caller conver-
sation) becomes � (in the current conversation), after passing through the conversation
access boundary. We note by λd a transition label λd containing the direction d (�, �),
and by λd′

the label obtained by replacing d by d ′ in λd (e.g., if λ� is askPrice�?(a)
then λ� is askPrice�?(a)). In (loc) an unlocated � message (in the current conver-
sation) gets explicitly located at the conversation c in which it originates. Given an
unlocated label λ, we represent by c · λ the label obtained by locating λ at c (e.g., if λ�

is askPrice�?(p) then c · λ� is c askPrice�?(p)). In (thr) an already located com-
munication label transparently crosses some conversation boundary, and likewise for a
τ label in (tau). In (thi) a this label reads the conversation identity, and originates a
c this label. A c this labeled transition may only progress inside the c conversation,
as expressed in (thl), where a this label matches the enclosing conversation. In (tco)

Conversation Types 291

def s⇒ P � s?(x).x � [P] new n · s⇐ Q � (νc)(n � [s!(c)] | c � [Q])

join n · s⇐ Q � this(x).(n � [s!(x)] | Q)

Fig. 5. Service Idioms

and (tcl) an unlocated communication matches a communication located at c, originat-
ing a c this label, thus ensuring the interaction occurs in the given conversation c, as
required. The reduction relation of the core CC, noted P → Q, is defined as P

τ−→ Q.
Using conversation contexts and the basic message based communication mecha-

nisms, useful programming abstractions for service-oriented systems may be idiomati-
cally defined in the core CC, namely service definition and instantiation constructs (re-
dundantly introduced as primitives in [19]) and also a new conversation join construct,
as shown in Fig. 5. The def form publishes a service definition. There are two ways
of using such a service definition: either by the new form, which establishes a fresh
conversation between client and server; or by the join form which instead passes to the
service provider the identity of the current conversation, allowing parties to ask other
service providers to join in on ongoing conversations. Both usages refer the service
name s and the conversation n where the service is available at, thus service definitions
must be located in order to be instantiated (as e.g., methods must reside in objects).

3 Type System

In this section we formally present our type system for the core CC. As already mo-
tivated in the Introduction, our types specify the message protocols that flow between
and within conversations. The syntax for the types is shown in Fig. 6. Typing judgments
have the form P :: T , where T is a process type. Intuitively, a type judgement P :: T
states that if process P is placed in an environment that complies with type T , then the
resulting system is safe, in a sense to be made precise below (Corollary 3.6). In general,
a process type T has the form L | B, where L is a located type and B is a behavioral
type. An atomic located type associates a conversation type C to a conversation name
n. Conversation types C are given by [B], where B specifies the message interactions
that may take place in the conversation. Behavioral types B include the branch and
the choice constructs (�i∈I{Mi.Bi} and ⊕i∈I{Mi.Bi}, respectively), specifying pro-
cesses that can branch in either of the Mi.Bi behaviors and choose between one of the
Mi.Bi behaviors, respectively. Prefix M.B specifies a process that sends, receives, or
internally exchanges a message M before proceeding with behavior B. We also have
parallel composition B1 | B2, inaction 0, and recursion. Message types M are specified
by a polarity p (either output !, input ? or internal action τ), a pair label-direction ld,
and the type C of the name communicated in the message. For typing purposes, we split
the set of message labels L into shared L� and plain Lp labels (plain labeled messages
will be used linearly, and shared labeled messages will be used exponentially). Notice
that a message M may refer to an internal exchange between two partners, if it is of the
form τ l�(C). The unlocated part B of a process P type L | B specifies the behavior of
P in the current conversation (taking place in the context where P resides).

292 L. Caires and H.T. Vieira

B ::= B1 | B2

∣
∣ 0

∣
∣ recX .B ∣

∣ X ∣
∣⊕i∈I {Mi.Bi}

∣
∣ �i∈I{Mi.Bi} (Behavioral)

M ::= p ld(C) (Message) p ::= !
∣
∣ ?

∣
∣ τ (Polarity) C ::= [B] (Conversation)

L ::= n : C
∣
∣ L1 | L2

∣
∣ 0 (Located) T ::= L | B (Process)

Fig. 6. Syntax of Types

recX .T ≡ T{X/recX .T} (1) n : [B1 | B2] ≡ n : [B1] | n : [B2] (2)

M.B1 | B2 <: M.(B1 | B2) (M # B2) (3) � B | � B <: B (4)

Mi.Bi <: M ′
i .B

′
i (i ∈ I)

⊕i∈I{Mi.Bi} <: ⊕i∈I{M ′
i .B

′
i}

(5)
Mi.Bi <: M ′

i .B
′
i (i ∈ I) I ⊆ J

�i∈J{Mi.Bi} <: �i∈I{M ′
i .B

′
i}

(6)

Fig. 7. Selected Subtyping Rules

P :: L | B
n � [P] :: (L �
 n : [�B]) | loc(�B)

(piece)
P :: L | B1 | x : [B2] (x �∈ dom(L))

this(x).P :: L | (B1 �
 B2)
(this)

Pi :: L | Bi | xi : Ci (xi �∈ dom(L))

Σi∈I ldi ?(xi).Pi :: L | ⊕i∈I {!ldi (Ci).Bi} (inp)
P :: L | B

ld!(n).P :: (L �
 n : C) | ?ld(C).B
(out)

P :: T | a : [B] (closed(B), a �∈ dom(T))

(νa)P :: T
(res)

P :: T1 Q :: T2

P | Q :: T1 �
 T2
(par)

0 :: τ (L)
(stop)

P :: LM | B〈X 〉
recX .P :: �LM | recX .B〈X 〉 (rec) X :: X (var)

T <: T ′ P :: T ′

P :: T
(sub)

Fig. 8. Typing Rules

We introduce some auxiliary notations and notions. We abbreviate both ⊕{M.B}
and �{M.B} with M.B. We write M for M.0, and p l(C) for p l�(C). An important
auxiliary notion is the projection d(B) in direction d of a behavioral type B. It consists
in the selection of all messages that have the given direction d while filtering out ones
in the other direction, offering a partial view of behavior B from the d viewpoint. For
instance, if B � ! buy(Tp).? askPrice�(Tp).! readVal�(Tm).? price(Tm) then
� (B) = ! buy(Tp).? price(Tm) and � (B) = ? askPrice�(Tp).! readVal�(Tm).
We also write, e.g., �B for �(B), to lighten notation. Informally, we refer to �B as the
“here interface” of B, and likewise for �B as the “up interface”. If p is a polarity (!, ?,
τ), we denote by p(B) the projection type that selects all messages that have polarity p.

Types are related by the subtyping relation <:, for which we depict a selection of
rules in Fig. 7. The subtyping rules express expected relationships of types, such as the
commutative monoid rules for (− | −,0), congruence principles, and the split rule (2).
For types T1 and T2 we write T1 ≡ T2 if T1 <: T2 and T2 <: T1. A key subtyping
principle is (4), that allows a behavioral type to be decomposed (in the subtype) in its
two projections according to the message directions � and �. Another important sub-
typing principle is (3), that allows a message to be serialized (in the supertype). Notice
we do not allow width subtyping in choice type (5). Essentially we can not forget some
choices in the choice type, as this would allow undesired matches between choice and

Conversation Types 293

branch types: if the environment expected by a process does not fully reveal the choices
it may take, then placing the process in such environment may lead to unexpected (not
described by the type) behaviors (cf., [7], where a related issue is addressed).

We may now present our typing rules in Fig. 8. They rely on several auxiliary opera-
tions and predicates on types. The key ones are predicate apartness T1#T2 and relation
merge T = T1 �� T2. Intuitively, two types are apart when they may type subsystems
that may be safely composed without undesirable interferences. Apartness is defined
by checking disjointness of sets of message labels, more precisely it asserts disjoint-
ness of plain (“linear”) types, and consistency of shared (“exponential”) types, w.r.t.
conversations. The merge relation relates two types T1 and T2 to some composition, so
that if T = T1 �� T2 then T is a particular behavioral combination of the types T1 and
T2. Merge is defined not only in terms of spatial separation, but also, and crucially, in
terms of synchronization / shuffle of behavioral traces. Notice that there might not be
T such that T = T1 �� T2. On the other hand, if such T exists, we use T1 �� T2 to
non-deterministically denote any such T (e.g., in conclusions of type rules). Intuitively,
T = T1 �� T2 holds if T1 and T2 may safely synchronize or interleave so as to produce
behavioral type T . We formally define merge and apartness in the Appendix, but this
informal understanding already allows us to explain the key typing rules.

Rule (piece) types a (piece of a) conversation. Process P expects some located be-
havior L, and some unlocated behavior B in the current conversation. The type in the
conclusion is obtained by merging the type L with a type that describes the behavior of
the new conversation piece, in parallel with the type of the toplevel conversation, the
now current conversation. Essentially, the type of the projections in the two directions is
collected appropriately: the “here” projection �B is the behavior in conversation n, and
the “up” projection � of P becomes the “here” behavior at the toplevel conversation,
via loc(�B) which sets the direction of all messages to �. Rule (this) types the conver-
sation awareness primitive, requiring behavior B2 of conversation x to be a separate (in
general, just partial) view of the current conversation. This allows to bind the current
conversation to name x, and possibly sent to other parties that may need to join it.

In rule (inp) the premise states that processes Pi require some located behavior L,
some current conversation behavior Bi, and some behavior at conversation xi (dom(L)
denotes the set of conversation identifiers of located type L). Then, the conclusion states
that the input summation process is well-typed under type L, with the behavior inter-
face becoming the choice of the types of the continuations prefixed by the messages
! ldi (Ci), where the output capability ! corresponds to the message capability expected
from the external environment (as well as the choice that also refers to the capability of
performing a choice expected from the external environment). In rule (out) notice that
the context type is a separate �� view of the context, which means that the type being
sent may actually be some separate part of the type of some conversation, which will be
(partially) delegated away. This mechanism is crucial to allow external partners to join
in on ongoing conversations in a disciplined way. The behavioral interface of the output
prefixed process is an input type, as an input is expected from the external environment.

In rule (res) we use closed(B), to avoid hiding conversation names where un-
matched communications still persist (necessary to ensure deadlock absence). closed
behavioral types characterize processes that have matching receives for all sends.

294 L. Caires and H.T. Vieira

τ l�(C).B → B
T1 → T2

T1 | T3 → T2 | T3

T1 → T2

n : [T1]→ n : [T2]

Fig. 9. Type Reduction Selected Rules

Definition 3.1. A behavioral type B is closed, noted closed(B), if the polarities of
message types in B are only τ messages or outputs ! on shared labels.

In rule (rec) we denote by B〈X 〉 a behavioral type with a single occurrence of X . We
use
M as an abbreviation of rec X .M.X . Then, by LM we denote a located type of
the form n1 : [M1] | . . . | nk : [Mk], and by
LM we denote n1 : [
M1] | . . . | nk :
[
Mk]. The rule states that the process is well typed under an environment that persis-
tently offers messages Mi under conversations ni, and persistently offers behavior B
in the current conversation. The message types Mi must be defined with shared labels
with polarity ?. We now present our main soundness results. Subject reduction is de-
fined using a notion of reduction on types, since a reduction step at the process level
may require a modification in the type. Fig. 9 shows a selection of type reduction rules.

Theorem 3.2 (Subject Reduction). Let P be a process and T a type such that P :: T .
If P → Q then there is T ′ such that T → T ′ and Q :: T ′.

Our safety result asserts that certain error processes are unreachable from well-typed
processes. To define error processes we introduce static process contexts.

Definition 3.3 (Static context). Static process contexts, noted C[·], are defined as:

C[·] ::= (νa)C[·] ∣
∣ P | C[·] ∣

∣ c � [C[·]] ∣
∣ recX .C[·] ∣

∣ ·
We also use w(λ) to denote the sequence c ld of elements in the action label λ, for
example w((νa)c ld!(a)) = c ld and w((νa)ld!(a)) = ld.

Definition 3.4 (Error Process). P is an error process if there is a static context C
with P = C[Q | R] and there are Q′, R′, λ, λ′ such that Q

λ−→ Q′, R
λ′−→ R′ and

w(λ) = w(λ′), λ �= λ′ and w(λ) is not a shared label.

A process is not an error only if for each possible immediate interaction in a plain
message there is at most a single sender and a single receiver.

Proposition 3.5 (Error Freeness). Let P be such that P :: T . Then P is not an error.

By subject reduction (Theorem 3.2), we conclude that any process reachable from a
well-typed process is not an error. We note by

∗→ the reflexive transitive closure of→.

Corollary 3.6 (Type Safety). Let P be a process such that P :: T for some T . If there
is Q such that P

∗→ Q, then Q is not an error process.

Our type safety result ensures that, in any reduction sequence arising from a well-typed
process, for each plain-labeled message ready to communicate there is always at most a
unique input/output outstanding synchronization. More: arbitrary interactions in shared
labels do not invalidate this invariant. Another consequence of subject reduction is that

Conversation Types 295

any message exchange inside the process must be explained by a τM prefix in the
related conversation type (via type reduction), thus implying conversation fidelity, i.e.,
all conversations follow the protocols prescribed by their types. In the expected polyadic
extension of core CC and type system we would also exclude arity mismatch errors.

Before closing this section, we show the types of the Buyer -Seller -Shipper example
(BuySys) of the Introduction, assuming the expected typing for process PriceDB .

Bss � ! buy(Tp).? price(Tm).τ product(Tp).? details(Td)
Bsh � ! product(Tp).? details(Td) Bdb � τ askPrice(Tp).τ readVal(Tm)

BuySys :: Seller : [τ startBuy([Bss]).Bdb] | Shipper : [τ newDelivery([Bsh])]

4 Progress

In this section, we develop an auxiliary proof system to enforce progress properties
on systems. As most traditional deadlock detection methods (e.g., see [9,15,17]), we
build on the construction of a well-founded ordering on events. In our case, events are
message synchronizations occurring under conversations. Thus the ordering must relate
pairs (conversation identifier,message label), which allows us to cope with systems with
multiple interleaved conversations, and back and forth communications between two
or more conversations in the same thread. Since references to conversations can be
passed in message synchronization, the ordering also considers for each message the
ordering associated to the conversation which is communicated in the message. These
ingredients allow us to check that all events in the continuation of a prefix are of greater
rank than the event of the prefix, thus guaranteeing the event dependencies are acyclic.

The proof system, for which we depict a selection of rules in Fig. 10, is presented
by means of judgments of the form Γ �� P . The judgment Γ �� P states that the
communications of process P follow a well determined order, specified by Γ . In such a
judgment we note by Γ an event ordering: a well-founded partial order of events. Events
consist of both a pair (name,label) ((Λ∪V)×L) and an event ordering abstraction, i.e., a
parameterized event ordering, noted (x)Γ (where x is a binding occurrence with scope
Γ), which represents the ordering of the conversation which is to be communicated
in the message. We range over events with e, e1, . . . and denote by n.l.(x)Γ an event
where n is the conversation name, l is the message label and (x)Γ is the event ordering
abstraction. In Γ �� P , we use � to keep track of the names of the current conversation
(�(�)) and of the enclosing conversation (�(�)); if � = (n, m) then �(�) = n and
�(�) = m. We define some operations over event orderings Γ . The event ordering Γ \n
is obtained from Γ by removing all events that have n as conversation name, while

(�(d).li.(y)Γ
′
i⊥Γ) ∪ Γ ′

i{y/xi} �� Pi

Γ �� Σi∈I ldi ?(xi).Pi
(inp)

Γ �� P

Γ \ a �� (νa)P
(res)

(�(d).l.(x)Γ ′⊥Γ) �� P Γ ′{x/n} ⊆ (�(d).l.(x)Γ ′⊥Γ)

Γ �� ld!(n).P
(out)

Γ �(�(�),n) P

Γ �� n � [P]
(piece)

Fig. 10. Selection of Proof Rules for Progress

296 L. Caires and H.T. Vieira

keeping the overall ordering. By e1 ≺Γ e2 we denote that e1 is smaller than e2 under
Γ , and by dom(Γ) we denote the set of events which are related by Γ .

Definition 4.1. Given event e and event ordering Γ such that e ∈ dom(Γ) we define
e⊥Γ as the subrelation of Γ where all events are greater than e, as follows:

e⊥Γ � {(e1 ≺ e2) | (e1 ≺Γ e2) ∧ (e≺Γ e1)}
We briefly discuss the key proof rules of Fig. 10. Rules (inp) and (out) ensure commu-
nications originating in the continuations, including the ones in the conversation being
received/sent, are of a greater order. In rule (inp) the event ordering considered in the
premise is such that it contains elements greater than �(d).li.(x)Γ ′, the event associated
with the input, enlarged with the event ordering abstraction (x)Γ ′ of the event associ-
ated with the input, where the bound x is replaced by the input parameter xi. In rule
(out) the event ordering considered in the premise is such that it contains elements
greater than �(d).l.(x)Γ ′, the event associated to the output. Also the premise states
that the event ordering abstraction (x)Γ ′ of the event associated to the output is a sub-
relation of the event ordering Γ , when the parameter x is replaced by the name to be
sent in the output (n). We may now present our progress results.

Theorem 4.2 (Preservation of Event Ordering). Let P be a well typed process P :: T
and Γ an event ordering such that Γ �� P . If there is Q such that P → Q then Γ �� Q.

We define finished processes so to distinguish stable from stuck processes.

Definition 4.3 (Finished Process). P is finished if for any static context C and process
Q such that P = C[Q] then Q has no immediate output (λ = ld!(a)) transitions.

Finished processes have no reductions and also have no pending requests (outputs),
hence are in a stable state, but may have some active inputs (e.g., persistent definitions).

Theorem 4.4 (Progress). Let P be a well typed process such that P :: T , where
closed(T), and Γ an event ordering and a, b names (a, b �∈ fn(P)) such that Γ �(a,b) P .
If P is not a finished process then there is Q such that P → Q.

Theorem 4.4 ensures that well-typed and well-ordered processes never get stuck on an
output that has no matching input. This property entails that services are always avail-
able upon request and protocols involving interleaving conversations never get stuck.
In the light of these results, given we can show that the Buyer -Seller -Shipper exam-
ple of the Introduction has such an event ordering, we can assert it enjoys the progress
property. Notice that Seller leaves and reenters the received conversation, to consult
PriceDB ; such a scenario is not in the scope of other progress techniques for sessions.

5 Related Work

Behavioral Type Systems As most behavioral type systems (see [8,13]), we describe a
conversation behavior by some kind of abstract process. However, fundamental ideas
behind the conversation type structure, in particular the composition / decomposition of
behaviors via merge, as captured, e.g., in the typing rule for P | Q, and used to model
delegation of conversation fragments, have not been explored before.

Conversation Types 297

Binary Sessions. The notion of conversation originates in that of session (introduced
in [10,11]). Sessions are a medium for two-party interaction, where session partici-
pants access the session through a session endpoint. On the other hand conversations
are also a single medium but for multiparty interaction, where any of the conversation
participants accesses the conversation through a conversation endpoint (pieces). Ses-
sion channels support single-threaded interaction protocols between the two session
participants. Conversation contexts, on the other hand, support concurrent interaction
protocols between multiple participants. Sessions always have two endpoints, created
at session initialization. Participants can delegate their participation in a session, but the
delegation is full as the delegating party loses access to the session. Conversations also
initially have two endpoints. However the number of endpoints may increase (decrease)
as participants join in on (leave) ongoing conversations. Participants can ask a party to
join in on a conversation and not lose access to it (partial delegation). Since there are
only two session participants, session types may describe the entire protocol by describ-
ing the behavior of just one of the participants (the type of the other participant is dual).
Conversations types, on the other hand, describe the interactions between multiple par-
ties so they specify the entire conversation protocol (a choreography description) that
decomposes in the types of the several participants (e.g., Bt = Bbu �� Bse �� Bsh).

Multiparty Sessions. The goals of the works [2,12] are similar to ours. To support mul-
tiparty interaction, [12] considers multiple session channels, while [2] considers a mul-
tiple indexed session channel, both resorting to multiple communication pathways. We
follow an essentially different approach, by letting a single medium of interaction sup-
port concurrent multiparty interaction via labeled messages. In [2,12] sessions are es-
tablished simultaneously between several parties through a multicast session request.
As in binary sessions, session delegation is full so the number of initial participants
is kept invariant, unlike in conversations where parties can keep joining in. The ap-
proach of [2,12] builds on two-level descriptions of service collaborations (global and
local types), first introduced in a theory of endpoint projection [6]. The global types
mention the identities of the communicating partners, being the types of the individual
participants projections of the global type with respect to these annotations. Our merge
operation �� is inspired in the idea of projection [6], but we follow a different approach
where “global” and “local” types are treated at the same level in the type language and
types do not explicitly mention the participants identities, so that each given protocol
may be realized by different sets of participants, provided that the composition of the
types of the several participants produce (via ��) the appropriate invariant. Our approach
thus supports conversations with dynamically changing number of partners, ensuring a
higher degree of loose-coupling. We do not see how this could be encoded in the ap-
proach of [12]. On the other hand, we believe that core CC with conversation types can
express the same kind of systems as [12].

Progress in Session Types. There are a number of progress studies for binary sessions
(e.g., [1,3,9]), and for multiparty sessions [2,12]. The techniques of [2,9] are nearer to
ours as orderings on channels are imposed to guarantee the absence of cyclic depen-
dencies. However they disallow processes that get back to interact in a session after
interacting in another, and exclude interleaving on received sessions, while we allow
processes that re-interact in a conversation and interleave received conversations.

298 L. Caires and H.T. Vieira

6 Concluding Remarks

We have presented a core typed model for expressing and analyzing service and com-
munication based systems, building on the notions of conversation, conversation con-
text, and context-dependent communication. We believe that, operationally, the core
CC can be seen as a specialized idiom of the π-calculus [18], if one considers π ex-
tended with labeled channels or pattern matching. However, for the purpose of studying
communication disciplines for service-oriented computing and their typings, it is much
more convenient to adopt a primitive conversation context construct, for it allows the
conversation identity to be kept implicit until needed.

Conversation types elucidate the intended dynamic structure of conversations, in
particular how freshly instantiated conversations may dynamically engage and dismiss
participants, modeling in a fairly abstract way, the much lower level correlation mecha-
nisms available in Web-Services technology. Conversation types also describe the infor-
mation and control flow of general service-based collaborations, in particular they may
describe the behavior of orchestrations and choreographies. We have established sub-
ject reduction and type safety theorems, which entail that well-typed systems follow the
defined protocols. We also have studied a progress property, proving that well-ordered
systems never get stuck, even when participants are engaged in multiple interleaved
conversations, as is often the case in applications. Conversation types extend the no-
tion of binary session types to multiple participants, but discipline their communication
by exploiting distinctions between labeled messages in a single shared communication
medium, rather than by introducing multiple or indexed more traditional session typed
communication channels as, e.g., [12]. This approach allows us to unify the notions of
global type and local type, and type highly dynamic scenarios of multiparty concurrent
conversations not covered by other approaches. On the other hand, being more abstract
and uniform, our type system does not explicitly keep track of participant identities. It
would be interesting to investigate to what extent both approaches could be conciliated,
for instance, by specializing our approach so as to consider extra constraints on projec-
tions on types and merges, restricting particular message exchanges to some roles.

Acknowledgments. We thank IP Sensoria, CMU-PT and anonymous referees. We also
thank Mariangiola Dezani-Ciancaglini and Nobuko Yoshida for insightful discussions.

References

1. Acciai, L., Boreale, M.: A Type System for Client Progress in a Service-Oriented Calculus.
In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS,
vol. 5065, pp. 642–658. Springer, Heidelberg (2008)

2. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M., Yoshida,
N.: Global Progress in Dynamically Interleaved Multiparty Sessions. In: van Breugel, F.,
Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer, Heidelberg
(2008)

3. Bruni, R., Mezzina, L.G.: Types and Deadlock Freedom in a Calculus of Services, Sessions
and Pipelines. In: Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS, vol. 5140, pp. 100–
115. Springer, Heidelberg (2008)

Conversation Types 299

4. Caires, L.: Spatial-Behavioral Types for Concurrency and Resource Control in Distributed
Systems. Theoretical Computer Science 402(2-3), 120–141 (2008)

5. Caires, L., Vieira, H.T.: Conversation Types. UNL-DI-3-08, Departamento de Informática,
Universidade Nova de Lisboa (2008)

6. Carbone, M., Honda, K., Yoshida, N.: Structured Communication-Centred Programming for
Web Services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 2–17. Springer,
Heidelberg (2007)

7. Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for Web Services. In: 35th
Symposium on Principles of Programming Languages, POPL 2008, pp. 261–272. ACM,
New York (2008)

8. Chaki, S., Rajamani, S.K., Rehof, J.: Types as models: Model Checking Message-Passing
Programs. In: POPL 2002, pp. 45–57. ACM, New York (2002)

9. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On Progress for Structured Commu-
nications. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 257–275.
Springer, Heidelberg (2008)

10. Honda, K.: Types for Dyadic Interaction. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715,
pp. 509–523. Springer, Heidelberg (1993)

11. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline for
Structured Communication-Based Programming. In: Hankin, C. (ed.) ESOP 1998. LNCS,
vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

12. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In: 35th
Symposium on Principles of Programming Languages, POPL 2008, pp. 273–284. ACM,
New York (2008)

13. Igarashi, A., Kobayashi, N.: A Generic Type System for the Pi-Calculus. Theoretical Com-
puter Science 311(1-3), 121–163 (2004)

14. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the Pi-Calculus. In: 23rd Sympo-
sium on Principles of Programming Languages, POPL 1996, pp. 358–371. ACM, New York
(1996)

15. Lynch, N.: Fast Allocation of Nearby Resources in a Distributed System. In: 12th Symposium
on Theory of Computing, STOC 1980, pp. 70–81. ACM, New York (1980)

16. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I + II. Information
and Computation 100(1), 1–77 (1992)

17. Kobayashi, N.: A New Type System for Deadlock-Free Processes. In: Baier, C., Hermanns,
H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidelberg (2006)

18. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cambridge Uni-
versity Press, Cambridge (2001)

19. Vieira, H.T., Caires, L., Seco, J.C.: The Conversation Calculus: A Model of Service-Oriented
Computation. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 269–283.
Springer, Heidelberg (2008)

Appendix

In this appendix, we group the detailed definition of key technical notions, namely
apartness, merge, and conformance. We denote by LabelsL(B) the set of message types
with labels in L occurring in behavioral type B, and by LLabelsL(B) the set of directed
labels (ld) from L of a behavioral type B. For example, given some behavioral type B,
LabelsLp(B) is the set of all plain (from Lp) message types (p ld(C)) occurring in B.

300 L. Caires and H.T. Vieira

Given behavioral types B1 and B2, we let B1 � B2 state that message types with
shared labels occur in both B1 and B2 with identical argument types.

Definition 6.1. The conformance relation B1 � B2 on behavioral types is defined as:

B1 � B2 � if (p1 ld(C1)) ∈ LabelsL�(B1) and (p2 ld(C2)) ∈ LabelsL�(B2) then
C1 ≡ C2 and either p1 = p2 = ?, p1 = p2 = τ or pi = ! and pj = τ

Notice that two message types defined on shared labels and polarity ! are not confor-
mant: this allows us to disallow composition of processes that are listening on the same
shared message (expecting !), thus ensuring a unique handling principle.

Definition 6.2. The apartness relation B1 # B2 on behavioral types is defined as:

B1 # B2 � B1 � B2 and LLabelsLp(B1) ∩ LLabelsLp(B2) = ∅
Definition 6.3. The merge relation B = B1 ��u B2 on behavioral types is defined as:

B{? ld(C)/τ ld(C)} |
 ! ld(C) = B ��u
 ! ld(C) if l ∈ L� (1)

Π.⊕i∈I {τ l�i (Ci).Bi} = Π.⊕i∈I {! l�i (Ci).B+
i } ��u �i∈I{? l�i (Ci).B−

i } (2)

if l ∈ Lp and Π # ?l�i (Ci).B−
i and Bi = B−

i ��u B+
i

recX .B = recX .B+ ��u recX .B− if B = B− ��u B+ (3)

B1 | B2 = B+
1 | B+

2 ��u B−
1 | B−

2 if B1 # B2 and Bi = B−
i ��u B+

i (4)

X = X ��u X (5) B = B ��u 0 (6) B = 0 ��u B (7)

We denote by �� the congruence closure extension of ��u to both located and behavioral
types. In (1) we denote by B{? ld(C)/τ ld(C)} the type obtained by replacing all
occurrences of ? ld(C) by τ ld(C) in B. Shared labels synchronize and leave open the
possibility for further synchronizations, expecting further outputs from the environment
– rule (1). Instead, plain message synchronization captures the uniquely determined
synchronization on that plain label – rule (2). Also, through (2), it is possible to hoist a
sequence of messages Π , where Π abbreviates M1.(. . .).Mk, by interleaving with the
continuation, if Π is apart from the behavior to be placed in parallel.

Abstract Processes in Orchestration Languages�

Maria Grazia Buscemi1 and Hernán Melgratti2

1 IMT Lucca Institute for Advanced Studies, Italy
m.buscemi@imtlucca.it

2 FCEyN, University of Buenos Aires, Argentina
hmelgra@dc.uba.ar

Abstract. Orchestrators are descriptions at implementation level and may con-
tain sensitive information that should be kept private. Consequently, orchestra-
tion languages come equipped with a notion of abstract processes, which enable
the interaction among parties while hiding private information. An interesting
question is whether an abstract process accurately describes the behavior of a
concrete process so to ensure that some particular property is preserved when
composing services. In this paper we focus on compliance, i.e, the correct inter-
action of two orchestrators and we introduce two definitions of abstraction: one
in terms of traces, called trace-based abstraction, and the other as a generaliza-
tion of symbolic bisimulation, called simulation-based abstraction. We show that
simulation-based abstraction is strictly more refined than trace-based abstraction
and that simulation-based abstraction behaves well with respect to compliance.

1 Introduction

An orchestrator describes the execution flow of a single party in a composite service.
The execution of an orchestrator takes control of service invocation, handles service
answers and data flow among the different parties in the composition. Since orchestra-
tors are descriptions at implementation level and may contain sensitive information that
should be kept private to each party, orchestration comes equipped with the notion of
abstract processes, which enable the interaction of parties while hiding private infor-
mation. Essentially, abstract processes are partial descriptions intended to expose the
protocols followed by the actual, concrete processes. Typically, abstract processes are
used for slicing the interactions of a concrete process over a fixed set of ports. Consider
the following scenario in which an organization sells goods that are produced by a dif-
ferent company. The process that handles order requests can be written as follows (we
use CCS [15] extended with value-passing and arithmetic operations).

C1
def
= order(desc).askProd〈desc〉.answProd(cost).reply〈cost×1.1〉

The process C1 starts by accepting an order (i.e., a message on port order). Then, the
received order is forwarded to the actual producer (message askProd〈desc〉) to obtain
a quotation (message on port answProd). Finally, the client request is answered by
sending the production cost incremented by a 10% (message reply〈cost×1.1〉). We

� Research supported by the EU FET-GC2 IST-2004-16004 Integrated Project SENSORIA.

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 301–315, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

302 M.G. Buscemi and H. Melgratti

can define an abstract process that at the same time hides the sensible details of the
organization (e.g., the source of the offered goods and the percentages earned) and gives
enough information to the client for allowing interaction. In fact, it would be enough for
a client to know that orders are placed with a message in port order and the quotation
is received on port reply. For instance, we can define the following abstract process
(where τ stands for a silent, hidden action) showing the interaction of C1 with a client.

AC1

def
= order(desc).τ.τ.reply〈cost〉

Abstract processes can be also used to hide particular values and internal decisions
made by concrete processes. Consider the following process used for authorizing loans.

C2
def
= request(amount,salary).if (salary > amount/50salary) then refuse〈〉 else approved〈〉

Note that a loan is approved only when the requested amount is at most 50 times the
solicitor’s salary. Suppose also that the bank does not want to publicly declare this
policy. This can be achieved by providing an abstract processes where some values
are opaque, i.e., not specified. We denote opaque elements with �. Then, the abstract
process of C2 can be written as follows.

AC2

def
= request(amount,salary).if salary > � then refuse〈〉 else approved〈〉

The conditional process in AC2 has to be thought of as an internal, non-deterministic
choice in which the bank may decide either to approve or to refuse the application. That
is, the client cannot infer from AC2 the actual decision that the bank will take.

Then, the main question is whether an abstract process is a suitable abstraction of
a concrete one or, symmetrically, when a concrete process is a proper instantiation of
an abstract one. Suitable and proper mean that the abstraction relation should preserve
some particular property about composition. In this paper we will focus on compli-
ance [12], which specifies whether two partners are able to complete their interaction.
So, in terms of compliance, a suitable abstraction means that whenever a pair of ser-
vices are compliant, we can substitute a service with a more concrete one (according to
the abstraction relation) and the composition is still compliant.

In this work we give a formal definition of compliance and propose two alternative
definitions for the abstraction relation. Our first characterization of abstraction relies
on a notion of abstraction of the traces of a process: a process P is an abstraction of a
process Q with respect to a set of visible names V if the set of traces of P coincides
with the set of traces of Q after the removal of all hidden names. As expected, testing
whether two processes belong to this relation requires comparing infinite sets of traces.
Hence, we give an efficient version of trace abstraction that only requires checking
finitely-many symbolic traces and we prove that the two trace-based relations coincide.

The second notion of abstraction that we propose states that the abstract process and
the concrete process must be able to simulate each other behaviors when hiding a given
set of names in the concrete process. In general, this notion is not a bisimulation. For
example, a process P = τ.if a = � then y〈a〉 else z〈a〉 is the abstraction of a process
Q = x(u).if a = u then y〈a〉 else z〈a〉 when hiding x but, of course, P and Q are not
bisimilar since P has more computations. We show that our simulation-based relation

Abstract Processes in Orchestration Languages 303

is strictly finer than trace-based abstraction. Finally, we show that this second notion of
abstraction preserves compliance.

Related works. The problem of giving suitable abstractions of the behaviour of a con-
crete system is not new. In fact, different flavours of the same general problem have been
studied in the literature ([15,2,1,6,8], just to name a few). Session types [11,7,9] and,
more recently, contracts [12,5,4] provide a framework for checking whether a client is
compliant with a service and whether a process can be “safely” replaced with another
one (a detailed comparison among session types and contracts can be found in [13]).
Our proposal shares aims with the above approaches but there are three main differ-
ences with those models. First, our abstraction relations are neither trace inclusion nor
simulation. Hence, a≤ a+b for + an external choice does not hold in our case (roughly
speaking, we do not allow abstract processes to exhibit more behaviors than their as-
sociated concrete processes). Indeed, if we hide b it holds a + τ ≤{a} a + b. Second,
the main focus of contracts and session types is on the interplay between external and
internal choice, while the abstraction relations we define, which specify hiding data and
turning external choice and conditional statements into internal choice, have no imme-
diate counterpart in the those models. Third, our processes include actions that not only
record the type of communication but also the transmitted data and two branching struc-
tures, if-then-else and guarded choice, that do not tightly match internal and external
choice in contracts or branching and choice in session types.

2 Concrete Processes

The computation model we describe is highly inspired by the composition model of WS-
BPEL, which can be roughly described as follows: a composite service can be though
as the parallel composition of several orchestrators that interact by exchanging XML-
documents using one of the basic actions, i.e., invoke a service operation (< invoke>),
receive a message (< receive>), and reply to a previous invocation (< reply>). An
orchestrator is a program built up from basic actions that are composed into sequences
(< sequence>), parallel flows (< flow>), conditional statements (< switch>), it-
eration blocks (< while>), and in choice statements (< pick>). Moreover, an orches-
trator is not intended to use primitives < invoke>, < receive> and < reply> to
synchronize with itself. For this reason, we divide the presentation of the computation
model in two parts: (i) the language of concrete processes (introduced in this section),
which is intended to model the behavior of a single orchestrator; and (ii) the language
of concrete business processes (presented in § 8) that focuses on the interaction among
several orchestrators.

The remaining of this section is devoted to the presentation of the language of con-
crete processes, which is a version of value-passing CCS [16] with input guarded choices
and conditional statements but without recursion.

2.1 Syntax

We assume an infinite denumerable set of names N , ranged over by η, that is partitioned
into a set of port names X , ranged over by x,y,z, . . ., a set of data variables V , ranged

304 M.G. Buscemi and H. Melgratti

over by u,v, . . ., and a set of data constants C , ranged over by a,b,c, We let m,n, . . .
range over V ∪ C . We write η̃ for a tuple of names. Substitutions, ranged over by σ,
are partial maps from V onto V ∪ C . Domain and co-domain of σ, noted dom(σ) and
cod(σ), are defined as usual. By mσ we denote σ(m) if m ∈ dom(σ), and m otherwise.

Definition 1 (Concrete processes). The set of concrete processes P is given by the
following grammar:

P ::= 0
∣
∣ P |P ∣

∣ τ.P
∣
∣ x〈m̃〉.P ∣

∣ x1(ṽ1).P+ . . .+ xn(ṽn).P
∣
∣ if m = n then P else P

As usual, 0 stands for the inert process, P |P for the parallel composition of processes,
τ.P for the process that performs a silent action and then behaves like P, x〈m̃〉.P for
the process that sends the message m over the port x and then becomes P. The process
x1(ṽ1).P1 + . . .+xn(ṽn).Pn denotes an external choice in which some process xi(ṽi).Pi is
chosen when the corresponding guard xi(ṽi) is enabled. The conditional process if m =
n then P else P′ behaves either as P if m and n are syntactically equivalent, or as P′
otherwise. For convenience, here we restrict to equality constraints. However, more
complex constraints could be “encoded” under certain conditions. Hereafter, we adopt
the usual convention of omitting trailing 0’s.

In x1(ṽ1).P1 + . . . + xn(ṽn).Pn, the data variables vi are bound, for all i. We use the
standard notions of free and bound names of processes, noted respectively as fn(P) and
bn(P), and α-conversion on bound names. Without loss of generality, we assume that
the sets of free and bound names are disjoint and that the bound names of a process are
all distinct from each other. As usual, a process P is closed if fn(P)∩V = /0.

2.2 Operational Semantics

The operational semantics, as usual, is given in two steps: the definition of a structural
congruence, which rearranges processes into adjacent positions, and a notion of labeled
transition relation that captures computation on processes.

We define structural congruence,≡, as the least congruence over concrete processes
closed with respect to α-conversion and satisfying the following rules:

P|0≡ P P1|P2 ≡ P2|P1 (P1|P2)|P3 ≡ P1|(P2|P3)

Let actions α range over silent move, free input and free output:

α ::= τ | x〈ã〉 | x〈ã〉.
As usual, for α �= τ, subj(α) and obj(α) denote the subject and the object of α respec-
tively. For X a process or an action, Xσ denotes the expression obtained by replacing in
X each data variable u∈ fn(X) with uσ, possibly α-converting to avoid name capturing.

The labeled transition relation
α−→ over concrete closed processes is the least rela-

tion satisfying the inference rules in Table 1. The transition rules for processes are the
standard ones for value passing CCS. We only add rules (IF) and (ELSE) for handling
conditional statements of processes. As mentioned before, we do not include here the
standard communication rule, because our model allows synchronizations only among
different orchestrators (see Section 8).

Abstract Processes in Orchestration Languages 305

Table 1. LTS for concrete processes

(TAU) τ.P τ−→ P (OUT) x〈ã〉.P x〈ã〉−→ P (IN) x1(ṽ1).P1 + . . .+xn(ṽn).Pn
xi〈ã〉−→ Pi{ã/ṽi}

(IF)
P

α−→ P′

if a = a then P else Q
α−→ P′

(ELSE)
Q

α−→ Q′ a �= b

if a = b then P else Q
α−→ Q′

(PAR)
P

α−→ P′

P | Q α−→ P′ | Q
(STR)

P≡Q Q
α−→ Q′ Q′ ≡ P′

P
α−→ P′

The following result shows that the labeled transition relation is well-defined. The
proof is by induction on the structure of P and on the transition rules.

Proposition 1. Let P be a closed process. If P
α−→ Q then Q is a closed process.

3 Abstract Processes

Abstract processes are defined by using the primitives of the concrete processes plus
the possibility of having opaque definitions. An opaque element hides the precise value
of an element: for instance, an opaque assignment to a data variable hides the assigned
value. We denote an opaque element by the special name �, and we assume � �∈N .

The definition of abstract processes is analogous to the definition of concrete pro-
cesses, but making a,b, . . . range over C ∪ {�}, m,n, . . . range over V ∪ C ∪ {�}, and
x,y, . . . range over X ∪ {�}. Hence, opaque names can appear either as subjects of input
and output prefixes, values of output prefixes, or parts of conditions in if then else
processes, but not as a bound variables. We let P,Q,R . . . range over abstract processes.

The rules in Table 1 remain unchanged. We assume for the rule (IN) that every a j can
take the value � and, hence, Pi{ã/ṽi} is still a process. Rules (IF) and (ELSE) consider
only the cases in which the condition does not contain opaque elements. For the case of
opaque values we add the rules in Table 2 and the structural congruence axioms below.

�(ṽ).P ≡ τ.P{�̃/ṽ} �〈ã〉.P ≡ τ.P.

Note that a conditional statement becomes a non-deterministic choice when at least
one value in the condition is opaque, while a guarded choice becomes an internal choice

Table 2. Additional LTS rules for processes

(CHOICE-1)
P1

α−→ P′1 � ∈ {a,b}
if a = b then P1 else P2

α−→ P′1

(CHOICE-2)
P2

α−→ P′2 � ∈ {a,b}
if a = b then P1 else P2

α−→ P′2

(CHOICE-3) x1(ṽ1).P1 + . . .+�(ṽi).Pi + . . .+xn(ṽn).Pn
τ−→ Pi{�̃/ṽi

}

306 M.G. Buscemi and H. Melgratti

when the subject of the input guard is the opaque name. For instance, consider the

process R ≡ �(v1).P + x(v2).Q. A possible move for R is R
x〈a〉−→ Q{a/v2}, where the

input guard is executed. Another possibility is R
τ−→P{�/v1}, where R makes an internal

choice.
We define the notion of traces over processes as usual. A trace t is a sequence of

actions α1. · · · .αn. The set Tr(P) of traces of a process P is defined as follows:

Tr(P) = {t | P α1−→ P1 . . .Pn−1
αn−→ Pn ∧ t = α1. · · · .αn}.

4 Symbolic Semantics

This section gives a definition of the symbolic semantics of concrete and abstract pro-
cesses as a symbolic labeled transition relation over processes. Labels have two com-
ponents: a symbolic action λ and a Boolean condition M over the set of data variables
and data constants V ∪ C that must hold for the α-transition to be enabled.

We let symbolic actions λ range over the silent move, input and free output and we
let conditions M range over a language of Boolean formulas:

λ ::= τ | x(ṽ) | x〈m̃〉 M ::= true | false | m = n |m �= n |M∧M |M∨M.

The notions of free names fn(·), bound names bn(·), and α-conversion over actions
and conditions are as expected, considering that the occurrences of the names vi’s are
bound in x(ṽ) and that conditions have no bound names. By Mσ we mean the condition
obtained by simultaneously replacing in M each data variable v ∈ f n(M) with vσ. A
condition M is ground if M does not contain data variables. The evaluation Ev(M) of
a ground condition M into the set {true, false} is defined by extending in the expected
homomorphical way the following clauses:

Ev(true) = true Ev(a = a) = true Ev(a = b) = true if {a,b}∩� �= /0
Ev(false) = false Ev(a = b) = false if a,b �= � Ev(a �= b) = true if {a,b}∩� �= /0

A substitution σ respects M, written σ |= M, if Mσ is ground and Ev(Mσ) = true. A
condition M is consistent if there is a substitution σ such that σ |= M. A condition M
logically entails a condition N, written M⇒ N, if, for every σ, σ |= M implies σ |= N.
For instance, v = a∧u �= b∧v = u⇒ a �= b and true⇒ u = a∨u �= a. For λ a symbolic
action and σ a substitution such that every data variable in λ belongs to dom(σ), we
write λσ to denote the following action:

λσ def=

⎧
⎪⎨

⎪⎩

τ if λ = τ
x〈a1, . . . ,ak〉 if λ = x〈n1, . . . ,nk〉 and ai = niσ for i = 1, . . . ,k

x〈a1, . . . ,ak〉 if λ = x(v1, . . . ,vk) and ai = σ(vi) for i = 1, . . . ,k

By λ = λ′ we denote the following condition:

λ = λ′ def=

⎧
⎨

⎩

true if λ = λ′ = τ or λ = λ′ = x(ṽ)
m̃ = ñ if λ = x〈m̃〉 and λ′ = x〈ñ〉
false otherwise

Abstract Processes in Orchestration Languages 307

For M a condition and D = {M1, . . . ,Mn} a finite set of conditions, D is a M-decomposi-
tion if M⇒M1∨ . . .∨Mn. For instance, {u = a,u �= a} is a true-decomposition.

The symbolic labeled transition relation
M,λ−→ over concrete processes is the least re-

lation satisfying the inference rules in Table 3. The additional symbolic rules for pro-
cesses are given in Table 4. Each symbolic rule is the counterpart of a rule in Table
1. Intuitively, the condition M in the label M,λ of a transition collects the Boolean
constraints on the free data variables of the source process necessary for action λ
to take place. For instance, the rules for prefixes say that each prefix can be con-
sumed unconditionally. Differently from rule (IN) in Table 1, input variables are not
instantiated immediately (rule (S-IN)). Rules (S-IF) and (S-ELSE) make the equali-
ties or inequalities of the conditional statements explicit. As an example, the process
P ≡ x(v).if v = a then y〈v〉 else 0, after a first step, can make a transition under
condition that variable v is equal to a:

P
true,x(v)−−−→ if v = a then y〈v〉 else 0

v=a,y〈v〉−−−→ 0

Remark that the present rules are simpler than those given in [3] for the pi-calculus be-
cause our calculus is a value-passing CCS plus conditional statements and, thus, logical
conditions do not affect channel names.

Proposition 2. Let P be a closed process.

– If P
α−→Q then there exist R, M, λ, and σ |= M s.t. P

M,λ−→ R, α = λσ and Q = Rσ.

– If P
M,λ−→Q then there exists σ |= M such that P

α−→Qσ and α = λσ.

5 Notion of Abstraction

This section informally presents our notion of abstraction by introducing the ideas that
are formalized in the following sections. The abstraction relation is parametric with
respect to the names that should be shown by the abstract process. For instance, given
the concrete process P ≡ x〈a〉.y〈b,c〉 and the set V = {y,a,b} of visible names, we
require the abstract process (i) to show every interaction that takes place over channel
y, (ii) to hide every interaction occurring over a channel different from y, (iii) to show
every occurrence of the data values a and b in visible interactions and (iv) to hide every
occurrence of a data value different form a and b. Hence, we expect the abstraction of
P to be Q≡ τ.y〈b,�〉. Note that the output action on the hidden channel x is mimicked
by the silent movement τ (independently from the fact that a is a visible name) and the
output y〈b,c〉 over the channel y is represented in the abstraction as y〈b,�〉, where the
hidden value c has been replaced by the opaque element.

A side-effect of hiding concrete elements is the introduction of non-determinism at
the abstract level. This may happen either because decisions become opaque or because
input guarded choices become internal choices, as shown by the following example.

Example 1. Consider the following two processes

P ≡ x(u).if u = a then y〈b〉 else z〈c〉 Q ≡ x(u).if u = � then y〈b〉 else z〈c〉
We expect Q to be an abstraction of P when a is a hidden name.

308 M.G. Buscemi and H. Melgratti

Table 3. Symbolic LTS for concrete processes

(S-TAU)
τ.P true,τ−−→ P

(S-OUT)

x〈m̃〉.P true,x〈m̃〉−−−−→ P

(S-IN)

x1(ṽ1).P1 + . . .+xn(ṽn).Pn
true,xi(ṽi)−−−−→ Pi

(S-PAR)
P

M,λ−→ P′ bn(λ)∩ fn(Q) = /0

P | Q M,λ−→ P′ | Q
(S-IF)

P
M,λ−→ P′ m = n∧M consistent

if m = n then P else Q
m=n∧M,λ−−−−−→ P′

(S-STR)
P≡Q Q

M,λ−→ Q′ Q′ ≡ P′

P
M,λ−→ P′

(S-ELSE)
Q

M,λ−→ Q′ m �= n∧M consistent

if m = n then P else Q
m �=n∧M,λ−−−−−→ Q′

Table 4. Additional symbolic rules for processes

(S-CHOICE-1)

P
M,λ−→ P′ � ∈ {m,n}

if m = n then P else Q
M,λ−→ P′

(S-CHOICE-2)

Q
M,λ−→ Q′ � ∈ {m,n}

if m = n then P else Q
M,λ−→ Q′

(S-CHOICE-3) x1(ṽ1).P1 + . . .+�(ṽi).Pi + . . .+xn(ṽn).Pn
true,τ−−→ Pi

In addition, non-determinism is a valid abstraction only when either alternative is
actually present in the concrete process, namely abstraction must reflect real choices.
For instance, let P below be a concrete process and R be a process obtained from P by
turning the conditional statement into a non-deterministic choice:

P′ ≡ if a = a then P1 else P2 R ≡ if � = � then P1 else P2

We expect R not to be an abstraction of P′, since a = a is always true and P′ can never
evolve to P2. In fact, a suitable abstraction of P′ is simply P1.

6 Trace-Based Abstraction

We present a relation of abstraction based on symbolic traces. Roughly, for V a set
of ports and data names that must be kept visible, a process P is an abstraction of a
process Q with respect to V if the set of traces of P coincides with the set of concrete
traces derived by the symbolic traces of Q “up to” the names not in V .

Definition 2 (symbolic traces). A symbolic trace s is a sequence of symbolic actions
λ1. · · · .λn. The set STr(P) of symbolic traces of a process P is defined as follows:

STr(P) = {〈M,s〉 | P M1,λ1−−→ P1 . . .Pn−1
Mn,λn−−→ Pn and M = M1∧ . . .∧Mn and

s = λ1. · · · .λn and bn(λi)∩bn(λ j) = /0 for all i and j s.t. i �= j }

For s = λ1. · · · .λn and σ such that every data variable in s belongs to dom(σ), sσ
stands for λ1σ. · · · .λnσ. For instance, if s = x(u).z(v).y〈v〉 and σ = {a/u,b/v}, sσ =
x〈a〉.z〈b〉.y〈b〉. Given a process, we can recover its concrete traces by instantiating its
symbolic traces, as stated by the following definition.

Abstract Processes in Orchestration Languages 309

Definition 3 (derived concrete traces). The set DCTr(P) of derived concrete traces of
a process P is defined as follows:

DCTr(P) = {sσ | 〈M,s〉 ∈ STr(P) and σ |= M and sσ is a trace}.
Consider the process P ≡ x(v).if v = a then y〈v〉 else z〈v〉 shown in Ex. 1. The sets
of symbolic traces and of derived concrete traces of P are as follows.

STr(P) = {〈true,x(v)〉,〈v = a,x(v).y〈v〉〉,〈v �= a,x(v).z〈v〉〉}
DCTr(P) = {x〈a〉,x〈b〉, · · · ,x〈a〉.y〈a〉,x(b).z〈b〉,x(c).z〈c〉, . . .}.

Note that DCTr(P) is equal to the set Tr(P) of traces of P (shown in Ex. 1). The follow-
ing proposition formally states the equivalence of these two alternative characterizations
of the concrete traces of a process.

Proposition 3. Let P be a closed process. The sets Tr(P) and DCTr(P) coincide.

As stated before, an abstract process hides names used by the concrete process. The
following definitions describe the effect of hiding names in conditions, actions, and
symbolic traces. Hereafter, V stands for a set of names that are kept visible.

We write M|V for the abstraction of a condition M with respect to a set V . The effect
of the abstraction M|V is defined inductively as expected, once it is set that:

(m = n)|V = true if {m,n} \V �= /0 (m �= n)|V = true if {m,n} \V �= /0

Note that the operator |V makes a condition weaker, since all constraints involving hid-
den names are removed. For instance, given the condition M ≡ (v = a∧v = w∧u �= b),
the abstraction of M when hiding a is M|{v,w,u,b} ≡ (true∧ v = w∧u �= b).

The abstraction of a symbolic action λ with respect to a set V , written λ|V , is defined
by the following expression, with {�/m1, . . . ,�/mn} a partial map from V ∪ C to {�}.

λ|V =

{
λ{�/m1, . . . ,�/mn} if subj(λ) ∈V and mi ∈ (obj(λ)\V), for i = 1, . . . ,n

τ if subj(λ) /∈V or λ = τ

Abstraction on actions is naturally extended to sequences of symbolic actions as below.

s|V =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ|V if s = λ
τs′|V\ũ if s = x(ũ)s′ and x �∈V

x(ũ)s′|V∪ũ if s = x(ũ)s′ and x ∈V

λ|V s′|V if s = λs′ and λ �= x(ũ)

Note that any input action over a hidden channel (second line in the above definition) is
mapped to a silent action and all received names are considered hidden when abstracting
the remaining part of the trace. Differently, when abstracting an input action over a vis-
ible name (third line in the above definition) all received names are considered visible
for the rest of the trace. For instance, when considering the trace s = x(u).y(v).z〈u,v〉
and the set V = {x,z} of visible names, the abstraction of s when considering V is

310 M.G. Buscemi and H. Melgratti

s|V = x(u).τ.z〈u,�〉. The set of abstract symbolic traces of P is obtained as the abstrac-
tion of any symbolic trace of P:

STr(P)|V = {〈M|V ,s|V 〉 | 〈M,s〉 ∈ STr(P)}
Since STr(P)|V is a set of symbolic traces, we can define the set of the associated con-
crete traces. We call this set the abstraction of the derived concrete traces of a process
P with respect to a set V , written DCTr(P)|V and defined as follows.

DCTr(P)|V = {sσ | 〈M,s〉 ∈ STr(P)|V and σ |= M and sσ is a trace}.
Consider the process P = x(v).if v = a then y〈v〉 else z〈v〉 introduced in Ex. 1. The
abstraction of STr(P) when hiding a and the corresponding derived concrete traces are:

STr(P)|{x,y,z} = {〈true,x(v)〉,〈true,x(v).y〈v〉〉,〈true,x(v).z〈v〉〉}
DCTr(P)|{x,y,z} = {x〈a〉,x〈b〉, · · · ,x〈a〉.y〈a〉,x〈a〉.z〈a〉,x(b).y〈b〉,x(b).z〈b〉, . . .}.

Note that the set DCTr(P)|{x,y,z} coincides with the set of concrete traces of Q ≡
x(v).if v = � then y〈v〉 else z〈v〉 shown in Ex. 1, which is a suitable abstraction
of P when hiding a. Below we formally define the notion of trace abstraction.

Definition 4. A closed process Q is a trace abstraction of a closed process P with re-
spect to a set V ⊆N such that fn(Q)⊆V, written Q �

V P, if Tr(Q) = DCTr(P)|V .

As mentioned before, the equation Tr(Q) = DCTr(P)|V holds for P and Q as defined in
Ex. 1 and for V = {x,y,z}. Therefore, Q �

V P for V = {x,y,z}.
Remark 1. The abstraction condition cannot be obtained directly by abstracting con-
crete traces, i.e., condition Tr(Q) = DCTr(P)|V is different from requiring either
Tr(Q) = Tr(P)|V or Tr(Q)|V = Tr(P)|V , where Tr(P)|V stands for the set obtained by
abstracting every trace in Tr(P) with respect to V . For instance, when considering the
processes P and Q of Ex. 1, their sets of concrete traces are as follows

Tr(P) = {x〈a〉,x〈b〉, · · · ,x〈a〉.y〈a〉,x〈b〉.z〈b〉,x〈c〉.z〈c〉, . . .}
Tr(Q) = {x〈a〉,x〈b〉, · · · ,x〈a〉.y〈a〉,x〈a〉.z〈a〉,x〈b〉.y〈b〉,x〈b〉.z〈b〉, . . .}

and their direct abstractions as below.

Tr(P)|V = {x〈�〉,x〈b〉, · · · ,x〈�〉.y〈�〉,x〈b〉.z〈b〉,x〈c〉.z〈c〉, . . .}
Tr(Q) = {x〈�〉,x〈b〉, · · · ,x〈�〉.y〈�〉,x〈�〉.z〈�〉,x〈b〉.y〈b〉,x〈b〉.z〈b〉, . . .}

Checking the abstraction relation introduced before is hard, since it requires to com-
pare infinite sets of traces. Because of this, we provide an alternative characterization
of trace abstraction that requires to consider finitely-many symbolic traces.

We start by introducing some auxiliary notions that will allow us to compare sets
of symbolic traces. Consider the sets S1 = {〈true,s〉} and S2 = {〈u = a,s〉,〈u �= a,s〉}.
They describe the same behavior since, for any substitution σ |= true, either σ |= u = a
or σ |= u �= a. Hence, the set of concrete traces derived from S1 and S2 coincide. The
following definition formally states when two sets of symbolic traces describe the same
behavior.

Abstract Processes in Orchestration Languages 311

Definition 5. Let S1 and S2 be sets of pairs of conditions and symbolic traces. We write
S1 � S2 iff for all 〈M,s〉 in S1 there exists an M-decomposition D such that for all N in
D there exists 〈N′,s′〉 in S2 such that N⇒ N′σα and s = s′σα for some renaming σα of
the bound names of s′. We write S1

�= S2 when both S1 � S2 and S2 � S1 hold.

We define below an alternative (and more efficient) characterization of abstraction in
terms of symbolic traces.

Definition 6. (trace abstraction) A process P is a symbolic trace abstraction of a pro-
cess Q with respect to a set V ⊆N s.t. fn(P)⊆V, written P�

V
s Q, if STr(P) �= STr(Q)|V .

We remark that the above definition extends the definition of abstraction over processes
that are not necessarily closed. The following proposition ensures that symbolic trace
abstraction coincides with trace abstraction when restricting to closed processes.

Proposition 4. Let P and Q be two closed processes. P�

V
s Q iff P�

V Q.

7 Abstraction as a Generalized Symbolic Bisimulation

A main challenge of defining a simulation-based abstraction relation is that the applica-
tion of substitutions when executing concrete processes makes the evaluation of branch-
ing statements deterministic while such statements should match non-deterministic
choices. As a solution, we propose an abstraction based on a generalization of symbolic
bisimulation [10,3]. Symbolic bisimulation is defined on top of a symbolic transition
system. Informally, to verify whether two processes P and Q are bisimilar with respect
to a given Boolean condition M it is required to find, for each symbolic move of P la-
beled with 〈N,λ〉, a partition of N ∧M such that each subcase entails a corresponding
symbolic move of Q, and vice-versa for Q and P. First, we give an auxiliary definition
that will be used in the subsequent characterization of abstraction.

Definition 7 (visible names). Given a set of visible names V and a symbolic action λ,
the set of visible received names of λ, written vn(λ)V , is defined as follows:

vn(λ)V
def=

{
ũ if λ = x(ũ) and x ∈V

/0 otherwise

We will omit the subscript V when it is clear from the context.

Definition 8 (simulation-based abstraction). The family R = {R V
M}M of process re-

lations is a family of simulation-based abstraction relations, indexed over the set of
conditions M, iff for all M and PR V

MQ:

1. If Q
N,λ−→ Q′ and bn(λ)∩ fn(P,Q,M) = /0 then there exists a M∧N-decomposition D

s.t. ∀M′ ∈D there exists P
N′ ,λ′−→ P′, with M′ ⇒ N′ ∧λ|V = λ′ and P′R V∪vn(λ)

M′ Q′.

2. if P
N,λ−→ P′ and bn(λ)∩ fn(P,Q,M) = /0 then there exists a M∧N-decomposition D

s.t. ∀M′ ∈D there exists Q
N′ ,λ′−→ Q′ with M′ ⇒ N′|V ∧λ = λ′|V and P′R V∪vn(λ′)

M′ Q′.

312 M.G. Buscemi and H. Melgratti

A process P is a simulation-based abstraction of a process Q with respect to a set V ⊆N ,
written P ∝V Q, if there is an abstraction relation R V

true s.t. PR V
true Q, with fn(P)⊆V.

Condition 1 above states that the abstraction P simulates the concrete process Q up
to hidden names. Note that we require λ|V = λ′ instead of the standard definition of
symbolic bisimulation that imposes the exact matching of action labels. Condition 2
states that the (concrete) process Q can simulate its abstraction P if we forget about the
constraints involving hidden values. That is, if P proposes a move with label 〈N,λ〉 we
allow Q to mimic the behavior for a more restrictive condition N′. (Actually, N′ may
contain several additional constraints involving hidden names.) Note that this makes the
abstraction relation not symmetric. For instance, consider the two processes below:

P≡ if v = � then y〈v〉 else z〈v〉 Q≡ if v = a then y〈v〉 else z〈v〉.

It holds that P ∝V Q for V = {v,y,z}. Indeed, when considering the transition P
true,y〈v〉−−−→ 0,

we can take Q
v=a,y〈v〉−−−→ 0 since true⇒ (v = a)|V ∧y〈v〉= y〈v〉|V . Conversely, P �∝V Q′ for

Q′ ≡ if a = a then y〈v〉 else y〈v〉 because P
true,z〈v〉−−−→ 0 but Q′ �M,z〈v〉−−→.

We remark that the relation ∝ is a simulation (since the abstract process simulates
the concrete one) but, in general, is not either a bisimulation or a similarity.

Remark 2. The abstraction relation generalizes symbolic early bisimulation [3,10]. If
we restrict to concrete processes, i.e., all names are visible (hence V = N), then
∝N =≈e. Indeed, the abstraction operator |V is the identity when V = N .

The following result states that simulation-based abstraction is finer than trace-based
abstraction.

Theorem 1. ∝V⊂�

V .

8 Composition of Orchestrators

This section addresses the problem of composing orchestrators, and the properties that
are ensured by the abstraction relation. Basically, an orchestrator is a concrete process
P plus the declaration of the operations it provides, which is a set I ⊆ X of channel
names, and a declaration of the operations it invokes, which is a set O ⊆ X .

Definition 9 (business processes). The set of business processes B is defined by the
following grammar:

B ::= (I ,O)P | B||B
We usually abbreviate B = (I1,O1)P1|| · · · ||(In,On)Pn with B = ||i≤n(Ii,Oi)Pi. We say that
a business process B = ||i≤n(Ii,Oi)Pi is well-formed iff the three conditions below hold:

1. For all i, if x ∈ fn(Pi) and x occurs as subject of an input prefix of Pi, then x ∈ Ii.
Similarly, if x ∈ fn(Pi) and x occurs as subject of an output prefix of Pi then x ∈ Oi.

2. Ii∩ I j = /0 for all i �= j.
3. For all i, Ii∩Oi = /0

Abstract Processes in Orchestration Languages 313

Table 5. LTS for business processes

(B-TAU)
P

M,τ−→ P′

(I ,O)P
M,τ−→ (I ,O)P′

(B-OUT)
P

M,x〈m̃〉−−−→ P′ x ∈ O

(I ,O)P
M,x〈m̃〉−−−→ (I ,O)P′

(B-IN)
P

M,x(ṽ)−−→ P′ x ∈ I

(I ,O)P
M,x(ṽ)−−→ (I ,O)P′

(B-COMM)
B1

M,x〈m̃〉−−−→ B′1 B2
N,x(ṽ)−−→ B′2 M∧N consistent

B1||B2
M∧N,τ−−−→ B′1||B′2{m̃/ṽ}

(B-PAR)
B1

M,λ−→ B′1 bn(λ)∩ fn(B2) = /0

B1||B2
M,λ−→ B′1||B2

(B-STR)
B≡C C

M,λ−→C′ C′ ≡ B′

B
M,λ−→ B′

The first condition requires every orchestrator Pi to correctly declare the operations it
provides and the operations it invokes. The second condition imposes operations pro-
vided by different orchestrators to be named differently. Last condition forbids self-
communications in orchestrators. Hereafter, we will assume all business processes to
be well-formed. The operational semantics of business processes is defined up-to the
structural congruence ≡ over business processes, which is the least congruence over
business processes closed with respect to the commutative and associative laws for ||
and the structural rules for concrete processes.

Definition 10. The symbolic labeled transition relation
M,λ−→ over business processes is

the least relation satisfying the inference rules in Table 5.

Rules (B-TAU), (B-IN), (B-OUT) lift silent, input and output actions performed by the
process P to corresponding actions of the business process (I ,O)P. The other rules are
standard.

8.1 Composition Compliance and Abstraction

We now study the notion of compliance among orchestrators and its relation with ab-
straction. Different notions of compliance have been proposed in the literature (notably
weak termination in the context of Workflow Nets [14]). We adopt here the proposal
of [14], which requires both the client and the server to complete in every possible in-
teraction. The following definition introduces the notion of compliance up-to a set of
visible names.

Definition 11 (business process compliance up-to V). We say that two business pro-
cesses B1 = (I1,O1)P and B2 = (I2,O2)Q are compliant with respect to a condition M
and a set of visible names V s.t. I1∩O2 ⊆V , O1∩I2 ⊆V, written B1 ��V

M B2, whenever
B1||B2 is well-formed and either P≡ Q≡ 0 or all the following conditions hold

– if B1
N,x〈m̃〉−−→ B′1 and x ∈ V and M ∧N consistent, then B2

N′ ,x(ṽ)−−→ B′2 and M ∧N ∧
N′ consistent and B′1 ��V

M∧N∧N′ B′2{m̃/ṽ}
– if B1

N,x(ṽ)−−→ B′1 and x ∈ V and M ∧N consistent, then B2
N′ ,x〈m̃〉−−−→ B′2 and M ∧N ∧

N′ consistent and B′1{m̃/ṽ} ��V
M∧N∧N′ B′2

314 M.G. Buscemi and H. Melgratti

– if B1
N,λ−→ B′1 and (λ = τ or subj(λ) �∈V) and M∧N consistent, then B′1 ��V

M∧N B2

– if B2
N,λ−→ B′2 and (λ = τ or subj(λ) �∈V) and M∧N consistent, then B1 ��V

M∧N B′2

We write B1 ��V B2 to denote B1 ��V
true B2, and B1 �� B2 for B1 ��N B2.

Note that above relation requires V to include all channels through which B1 and B2 may
synchronize. Then, the notion of compliance up-to V ensures that the interaction among
two business processes B1 and B2 completes provided with the fact that any other action
involving the synchronization of either B1 or B2 with a third party will take place at the
right moment. Furthermore, remark that the above relation is asymmetric. For instance,
for B1 = (/0,{x})x〈c〉.x〈a〉 and B2 = ({x}, /0)x(v).if v = � then x(z) else y(z), it holds
B1 �� B2 but not the converse B2 �� B1.

Next result ensures “safe replacement”, i.e. that substituting an abstract process P
with a more concrete one R, i.e. P ∝V R for some set of visible names V , we still obtain
a compliant composition if we ignore the interactions that take place over channels that
are not in the abstraction, namely that are not in V .

Theorem 2. If P1 ∝V Q and (I1,O1)P1 �� (I2,O2)P2, then (I ,O)Q ��V (I2,O2)P2.

9 Future Work

In this paper we have studied a notion of abstraction for orchestration languages. It
would be interesting to extend our approach by including recursion. Although being less
expressive, several models of orchestration consider finite fragments of process calculi
because they allow for the description of usual scenarios: most instances of business in-
teractions are finite in practice. Nevertheless, our main contribution, i.e., the definition
of abstraction as symbolic bisimulation and the composition result extend to a recursive
form of process like rec K in P with the usual operational semantics: (i) the definition
of abstraction remains unchanged, since it is given in terms of transitions independently
from the form of the process, (ii) abstractions will preserve all non terminating com-
putations of the concrete process, because the abstraction relation requires the abstract
process to exhibit ”at least the same computations as the concrete processes”, hence
(iii) the substitution of an abstraction by a concrete process in a compliant composition
will preserve termination. Extending the results presented in §6 would be more involved
since we would lose the property of having finite sets of finite symbolic traces.

We also plan a formal study of the relationship with session types and contracts. As
remarked in the introduction, even if these approaches have similarities with ours, a
precise comparison seems not to be immediate.

References

1. Alur, R., Henzinger, T., Kupferman, O., Vardi, M.: Alternating refinement relations. In: San-
giorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 163–178. Springer,
Heidelberg (1998)

2. Arun-Kumar, S., Natarajan, V.: Conformance: A precongruence close to bisimilarity. In:
STRICT. Springer Workshops in Computer Series, pp. 148–165. Springer, Heidelberg (1995)

Abstract Processes in Orchestration Languages 315

3. Boreale, M., De Nicola, R.: A symbolic semantics for the pi-calculus. Information and Com-
putation 126(1), 34–52 (1996)

4. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography conformance and
contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp.
34–50. Springer, Heidelberg (2007)

5. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services. In: Necula,
G.C., Wadler, P. (eds.) POPL 2008, pp. 261–272. ACM, New York (2008)

6. de Alfaro, L., Henzinger, T.: Interface theories for component-based design. In: Henzinger,
T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–165. Springer, Heidel-
berg (2001)

7. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session Types for
Object-Oriented Languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 328–
352. Springer, Heidelberg (2006)

8. Fournet, C., Hoare, C.A.R., Rajamani, S., Rehof, J.: Stuck-free conformance. In: Alur, R.,
Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 242–254. Springer, Heidelberg (2004)

9. Gay, S., Hole, M.: Subtyping for session types in the pi calculus. Acta Informatica 42(2),
191–225 (2005)

10. Hennessy, M., Lin, H.: Symbolic bisimulations. Theoretical Computer Science 138, 353–389
(1995)

11. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715,
pp. 509–523. Springer, Heidelberg (1993)

12. Laneve, C., Padovani, L.: The must preorder revisited. In: Caires, L., Vasconcelos, V.T. (eds.)
CONCUR 2007. LNCS, vol. 4703, pp. 212–225. Springer, Heidelberg (2007)

13. Laneve, C., Padovani, L.: The pairing of contracts and session types. In: Degano, P., De
Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 681–
700. Springer, Heidelberg (2008)

14. Massuthe, P., Schmidt, K.: Operating guidelines - an automata-theoretic foundation for the
service-oriented architecture. In: QSIC, pp. 452–457. IEEE Computer Society, Los Alamitos
(2005)

15. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg
(1980)

16. Milner, R.: Communication and Concurrency. Prentice Hall International, Englewood Cliffs
(1989)

Global Principal Typing in Partially Commutative
Asynchronous Sessions

Dimitris Mostrous1, Nobuko Yoshida1, and Kohei Honda2

1 Department of Computing, Imperial College London
2 Department of Computer Science, Queen Mary, University of London

Abstract. We generalise a theory of multiparty session types for the π-calculus
through asynchronous communication subtyping, which allows partial commuta-
tivity of actions with maximal flexibility and safe optimisation in message chore-
ography. A sound and complete algorithm for the subtyping relation, which can
calculate conformance of optimised end-point processes to an agreed global spec-
ification, is presented. As a complementing result, we show a type inference al-
gorithm for deriving the principal global specification from end-point processes
which is minimal with respect to subtyping. The resulting theory allows a pro-
grammer to choose between a top-down and a bottom-up style of communication
programming, ensuring the same desirable properties of typable processes.

1 Introduction

Programs which communicate by asynchronous message passing are abundant in criti-
cal computing scenes, from a simple web-service application between two parties to a
global financial network hosting thousands of nodes and billions of messages per year.
The design of such programs, which may be developed in geographically disparate sites,
demands a clear high-level specification of their conversation structure, against which
participating programs can be validated (conformance). Further such specifications may
change during development (refinement), and might even need to be synthesised from
individual endpoint programs, against which updated programs can be further validated
(synthesis of global specifications).

This paper develops a new theory of multiparty session types [1, 2, 4, 5, 13, 23],
which can handle uniformly these three concerns by seamlessly integrating the top-
down and bottom-up strategies for the development of communication-centred soft-
ware. The methodology for distributed programming put forward in [1, 13] centres on
the concept of a global type which plays the role of type signature for distributed com-
munications, presenting an abstract high-level description of the protocol that all the
participants have to honour when an actual conversation takes place. Building on this
framework, we propose the following two strategies for communication programming:

Top-Down Approach: Once this signature G is agreed upon by all parties as a global
protocol, a local protocol from each party’s viewpoint (local type Ti) is generated as a
projection of G to each party. Then each local type Ti can be locally refined to, say, T ′i ,
possibly giving a more optimised protocol, realised as a program, say, Pi. If all the re-
sulting local programs P1, ..,Pn can be type-checked against refined T ′1 , ..,T

′
n , then they

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 316–332, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Global Principal Typing in Partially Commutative Asynchronous Sessions 317

are automatically guaranteed to interact properly, without communication mismatch or
getting stuck inside a session, precisely following the intended scenario.

Bottom-Up Approach: In this case the programmers may work based on an informal
understanding of shared conversation structures, which, after appropriate development,
will get reified into a formal global protocol by synthesis of local behaviours of all end-
point programs: first, a type Ti is inferred from each program Pi, then a new global spec-
ification is synthesised from T1, ..,Tn. If this specification is validated to satisfy certain
conditions, P1, ..,Pn are guaranteed to interact properly. This process can be repeated
incrementally, using a succession of synthesised types as globally refined protocols.

This paper presents a general and rigorous foundation for these two approaches and
their seamless integration, based on multiparty session types. For the automatic refine-
ment, we introduce asynchronous communication subtyping over local types, which
allows permutation of actions to increase efficiency, while ensuring type-soundness and
communication-safety. As an example, suppose we are using an asynchronous commu-
nication transport where the message order is preserved but the sending is non-blocking,
as in TCP. Let us assume the following three simple processes:

P1
def= t?(y1);s!〈5〉;s!〈apple〉;Q1 P2

def= b?(y2);t!〈7〉;Q2 P3
def= s?(z1);s?(z2);Q3

where s?(y) is an input and s!〈5〉 is an output via channel s; and “;” is sequential com-
position. Then first P2 gets the value at b; then P2 sends 7 to P1; finally P1 sends 5 and
“apple” to P3 preserving the order. We note that P3 is blocked until b is fired at P2. To
execute P3 ahead, P1 might be locally optimised since y1 does not bind the subsequent
outputs at s. We can similarly optimise P2. The resulting processes given below still
preserve linearity and proper communication structures.

P′1
def= s!〈5〉;s!〈apple〉;t?(y1);Q1 P′2

def= t!〈7〉;b?(y2);Q2 P3
def= s?(z1);s?(z2);Q3

Asynchronous communication subtyping specifies safe permutations of actions, by
which we can refine a local protocol to maximise asynchrony without violat-
ing the global protocol. For example, in the above case, P′1 is given local type
s!〈nat〉;s!〈string〉;t?〈nat〉;T which is a subtype of t?〈nat〉;s!〈nat〉;s!〈string〉;T pro-
jected from the global type. Hence optimisations can be checked locally. The idea of this
subtyping is intuitive, but it requires delicate formal formulations due to the presence
of recursive types and branching/selection session types, whose combinations are vital
for typing many practical protocols [12, 22]. This subtlety is because type-permutations
affect the structures of session types, which makes straightforward constructions follow-
ing the preceding literature [10, 20] inapplicable. Intuitively, because partial commuta-
tivity is defined between a sequence of actions, it may require more than one unfolding
of recursive types to find a match. However, this calculation can be made automatic by
an algorithmic subtyping which completely characterises the semantic notion of sub-
typing and can be used to effectively (in)validate conformance of an optimised local
type to a global type.

For the bottom-up strategy, we formulate principal global typing by which we can
synthesise the most general global type from untyped endpoint programs, or can check
they can have no global type, i.e. their protocols are incompatible. The framework

318 D. Mostrous, N. Yoshida, and K. Honda

uses graph-shaped global types which generalise the original syntactic global types,
extending typability. Asynchronous communication subtyping plays a central role in
the synthesis process. We demonstrate the use of the theory for the two strategies by
providing correctness arguments for the development of a distributed parallel algo-
rithm. A full version, containing more examples and detailed proofs, is available from
http://www.doc.ic.ac.uk/˜mostrous/asyncsub.

2 Asynchronous Multiparty Sessions

Syntax. We use the π-calculus for multiparty sessions from [13], omitting polyadicity
and delegation for simplicity. We use the following base sets: shared names or names,
written a,b,x,y,z, . . . ; session channels or channels, written s, t, ...; labels (functioning
like labels in labelled records), written l, l′, . . . ; and process variables, written X ,Y,
For hiding, we use n for either a single shared name or a vector of session channels.
Then processes (P,Q . . .) and expressions (e,e′, . . .) are given below:

P ::= a[2..n](s̃).P request
| a[p] (s̃).P acceptance
| s!〈e〉;P sending
| s?(x);P reception
| s� l;P selection
| s�{li : Pi}i∈I branching
| if e then P else Q conditional

e ::= v | e and e′ | not e · · · expressions
v ::= a | true | false · · · values

| P | Q parallel
| 0 inaction
| (ν n)P hiding
| def D in P recursion
| X〈ẽs̃〉 process call
| s : h̃ message queue

h ::= l | v message values
D ::= {Xi(x̃i s̃i) = Pi}i∈I declaration

a[2..n](s̃).P initiates, through a shared name a, a new session with other participants,
each of shape a[p](s̃).Q with 2≤ p≤ n. The (bound) si in vector s̃ are session channels
used in the session. We call p, q,... (natural numbers) the participants of a session.
Session communications (which take place inside an established session) are performed
by the sending and receiving of a value; and by selection and branching (the former
chooses one of the branches offered by the latter). s : h̃ is a message queue representing
ordered messages in transit h̃ with destination s (which may be considered as a network
pipe in a TCP-like transport). The rest of the syntax is standard from [13]. We often
omit 0, and unimportant arguments of sending/receiving, e.g. s!〈〉 and s?();P.

Operational semantics. Some selected rules of reduction P→ P′ are given below:

a[2..n](s̃).P1 | a[2](s̃).P2 | · · · | a[n](s̃).Pn → (ν s̃)(P1 | P2 | ... | Pn | s1 : /0 | ... | sm : /0)
s!〈e〉;P | s : h̃→ P | s : h̃ · v (e ↓ v) s?(x);P | s :v · h̃ → P[v/x] | s : h̃

s� l;P | s : h̃→ P | s : h̃ · l s�{li : Pi}i∈I | s : l j · h̃ → Pj | s : h̃ (j ∈ I)

The first rule describes the initiation of a new session among n participants that syn-
chronise over the shared name a. After the initiation, they will share the private m fresh
session channels si and the associated m empty queues (/0 denotes the empty string). The
output rules enqueue a value and a label, respectively (e ↓ v denotes the evaluation of e
to v). The input rules perform the complementary operations. Processes are considered
modulo structural equivalence,≡, defined by the standard rules [13].

Global Principal Typing in Partially Commutative Asynchronous Sessions 319

Global types. A global type, written G,G′, .., describes the whole conversation sce-
nario of a multiparty session as a type signature [13].

Global G ::= p→ p′ : k 〈U〉;G′ values | μt.G recursive
| p→ p′ : k {l j : G j} j∈J branching | t variable
| G,G′ parallel | end end

Value U ::= bool | nat | · · · | G

Type p→ p′ : k 〈U〉;G′ says that participant p sends a message of type U to channel k
(represented as a finite natural number) received by participant p′ and then interactions
described in G′ take place. Value types range over U , and are either global types for
shared names, or base values. Type p→ p′ : k {l j : G j} j∈J says that participant p in-
vokes one of the li labels on channel k (at participant p′), then interactions described in
G j take place. Type μt.G is for recursive protocols, assuming type variables (t, t′, . . .)
are guarded in the standard way, i.e. they only occur under values or branches. We as-
sume G in value types is closed, i.e. without free type variables. Type end represents the
termination of a session. We often omit end and identify “G,end” and “end,G” with G.
We stipulate that each channel can only be used among two parties (but maybe repeat-
edly), one party using it for input/branching while the other party for output/selection.1

Local types. Local session types type-abstract sessions from each endpoint’s view.

Local T ::= k!〈U〉;T send | k&{li : Ti}i∈I branching
| k?〈U〉;T receive | μt.T | t recursion
| k⊕{li : Ti}i∈I selection | end end

Type k!〈U〉 expresses the sending to k of a value of type U . Type k?〈U〉 is its dual
input. Type k⊕{li : Ti}i∈I represents the transmission to k of a label li chosen in the
set {li | i ∈ I}, followed by the communications described by Ti. Type k&{li : Ti}i∈I

is its dual. The remaining types are standard. We say a type is guarded if it is neither
a recursive type nor a type variable. (An occurrence of) a type constructor not under
a recursive prefix in a recursive type is called top-level action (for example, k1!〈U1〉
and k2!〈U2〉 in k1!〈U1〉;k2!〈U2〉; μt.k3!〈U3〉; t are top-level, but k3!〈U3〉 in the same
type is not). k is the head of T if k appears at the left-most occurrence of the top-
level actions in T (e.g. k1!〈U1〉 is the head of the above type). The relation between
global and local types is formalised by projection, written G � p (called projection of
G onto p), defined as in [13]. For example, (p→ p′ : k 〈U〉;G′) � p = k!〈U〉;(G′ � p),
(p→ p′ : k 〈U〉;G′) � p′ = k?〈U〉;(G′ � p′) and (p→ p′ : k 〈U〉;G′) � q = (G′ � q). We
write Type for the collection of all closed local types.

3 Asynchronous Partially Commutative Sessions

3.1 Asynchronous Communication Subtyping: Top-Level Actions

This section introduces and studies a basic theory of asynchronous session subtyping.
Figure 1 defines the axioms for partial permutation of top-level actions for closed types,

1 This condition dispenses with the need for linearity-check to ensure well-formedness [1].

320 D. Mostrous, N. Yoshida, and K. Honda

(OI) k!〈U〉;k′?〈U ′〉;T � k′?〈U ′〉;k!〈U〉;T

(OB) k!〈U〉;k′&{l j :Tj} j∈J � k′&{l j :k!〈U〉;Tj} j∈J

(SI) k⊕{l j :k′?〈U〉;Tj} j∈J � k′?〈U〉;k⊕{l j :Tj} j∈J

(SB) k⊕{li :k′&{l′j :Ti j} j∈J}i∈I � k′&{l′j :k⊕{li :Ti j}i∈I} j∈J

(OO) k!〈U〉;k′!〈U ′〉;T � k′!〈U ′〉;k!〈U〉;T

(II) k?〈U〉;k′?〈U ′〉;T � k′?〈U ′〉;k?〈U〉;T

(SO) k⊕{li :k′!〈U〉;Ti}i∈I � k′!〈U〉;k⊕{li :Ti}i∈I

(OS) k′!〈U〉;k⊕{li :Ti}i∈I � k⊕{li :k′!〈U〉;Ti}i∈I

(SS) k⊕{li :k′ ⊕{l′j :Ti j} j∈J}i∈I � k′ ⊕{l′j :k⊕{li :Ti j}i∈I} j∈J

(Tr)
T1� T2 T2� T3

T1� T3
(CO)

T � T ′

k!〈U〉;T � k!〈U〉;T ′
(CI)

T � T ′

k?〈U〉;T � k?〈U〉;T ′

(CB)
∀i ∈ I. Ti� T ′i

k&{li :Ti}i∈I � k&{li :T ′i }i∈I
(CS)

∀i ∈ I. Ti� T ′i
k⊕{li :Ti}i∈I � k⊕{li :T ′i }i∈I

(E) end� end

(M) μt.T � μt.T

Fig. 1. Action Asynchronous Subtyping Rules ((BI, IB,BB) are omitted)

denoted �. We assume k
= k′ for all the axioms. T � T ′ is read: T is an action-
asynchronous subtype of T ′, and means T is more asynchronous than (or more opti-
mised than) T ′. We write T � T ′ for T ′ � T .

A partial permutation is applied only to finite parts of the top-level actions (with-
out unfolding recursive types); see Proposition 7. Note that we cannot exchange an
input and output in the reverse direction of (OI) even for different channels. Con-
sider: P = s?();r!〈〉 and Q = s!〈〉;r?(). These processes interact correctly. If we per-
mute the output and input of Q, we get Q′ = r?();s!〈〉. Then the parallel composition
(P | Q′) causes deadlock, losing progress. For the same reason, the reverse direction of
(OB,SI,SB) is not allowed. By combining these input and output permutation rules,
we can achieve a flexible local refinement for communications. For example, suppose
R = s?(x);r?(y);t!〈1〉;t ′!〈y〉 typed by TR = s?〈file〉;r?〈bool〉; t!〈nat〉; t ′!〈bool〉;end.
We might wish to receive the (small) value via r first, and immediately forward to t ′,
then receive the (larger) file at s in the end: we can obtain S = r?(y); t ′!〈y〉; t!〈1〉;s?(x)
typed by TS = r?〈bool〉;t ′!〈bool〉; t!〈nat〉;s?〈file〉;end, transformed from TR (i.e. TS�
TR) by using a combination of (OO,OI, II).

3.2 Asynchronous Communication Subtyping: Recursive Types

For handling recursive types in asynchronous subtyping, we extend the coinductive
method in [20, § 2.3] and [10, § 3.3]. In particular, we need to modify the unfolding
function for recursive types since � might be applicable to a sequence of types after
unfolding of recursions under guarded prefixes. The resulting definition integrates �
with the traditional session subtyping [10, 13]. For any recursive type T , unfoldn(T) is
the result of inductively unfolding the first recursion (even under guarded types) up to
a fixed level of nesting.

Global Principal Typing in Partially Commutative Asynchronous Sessions 321

Definition 1 (n-time unfolding)
unfold0(T) = T for all T unfold1+n(T) = unfold1(unfoldn(T))
unfold1(k!〈U〉;T) = k!〈U〉;unfold1(T) unfold1(k⊕{li : Ti}i∈I) = k⊕{li : unfold1(Ti)}i∈I

unfold1(k?〈U〉;T) = k?〈U〉;unfold1(T) unfold1(k&{li : Ti}i∈I) = k&{li : unfold1(Ti)}i∈I

unfold1(μt.T) = T [μt.T/t] unfold1(t) = t unfold1(end) = end

We also use unfoldn(U) which is defined as unfoldn(T) above. 2

For example, unfold2(k?〈U〉; μt.k′!〈U ′〉; t) = k?〈U〉;k′!〈U ′〉;k′!〈U ′〉; μt.k′!〈U ′〉; t.
Note that, because our recursive types are contractive, unfoldn(T) terminates. We can
now introduce the central notion of asynchronous communication subtyping.

Definition 2. A relation ℜ ∈ Type × Type is an asynchronous type simulation if
(T1,T2) ∈ℜ implies the following conditions:

– If T1 = end, then unfoldn(T2) = end.
– If T1 = k!〈U1〉;T ′1, then unfoldn(T2)� k!〈U2〉;T ′2, (T ′1 ,T

′
2) ∈ℜ and (U1,U2) ∈ℜ.

– If T1 = k?〈U1〉;T ′1 , then unfoldn(T2)� k?〈U2〉;T ′2 , (T ′1 ,T
′

2) ∈ℜ and (U2,U1) ∈ℜ.
– If T1 = k⊕{li : T1i}i∈I , then unfoldn(T2)� k⊕{l j : T2 j} j∈J and I ⊆ J and
∀i ∈ I.(T1i,T2i) ∈ℜ.

– If T1 = k&{li : T1i}i∈I , then unfoldn(T2)� k&{l j : T2 j} j∈J and J ⊆ I and
∀j ∈ J.(T1 j,T2 j) ∈ℜ.

– If T1 = μt.T , then (unfold1(T1),T2) ∈ℜ.

where a type simulation of (U1,U2)∈ℜ is defined as the standard bisimulation (since U
is invariant).3 The coinductive subtyping relation T1 �c T2 (read: T1 is an asynchronous
subtype of T2) is defined when there exists a type simulation ℜ with (T1,T2) ∈ℜ.

An output of T1 can be simulated after applying asynchronous optimisation � to the
unfolded T2. We also need to ensure object type U1 is a subtype of U2. For the input,
we ensure U2 is a subtype of U1. The definitions of selection and branching subsume
the traditional session branching/selection subtyping.4 In selection a label appearing in
T1 must be included in T2; dually, in branching a subtype T1 must cover all branches
declared in T2. For a value type, U1 �c U2 implies U2 �c U1 by definition. We show
examples to justify our subtyping.

Example 3. Below we write k! for k!〈U〉 and k? for k?〈U〉, omitting U .

1. Let T1 = μt.k?;k′!; t, T2 = μt.k′!;k?; t. Then we can prove T2 �c T1 using the sim-
ulation ℜ = {(T2,T1), (k′!;k?;T2,T1), (k?;T2,k?;T1)}. T2 represents more optimal
communications than T1 since it can output messages at k′ without waiting.

2. Let T ′2 = k′!;T1 which means first sending a signal at k′ then repeating input-output
actions. Then T ′2 �c T1 by taking ℜ = {(T ′2,T1), (T1,k?;T1), (k?;T ′2 ,k?;T1)} as a
simulation closure. Note also T2 �c T ′2 and T ′2 �c T2.

2 In [10], unfold(T) repeatedly unfolds consecutive top-level recursion until a guarded type is
obtained. In our definition, unfold1(T) expands a single recursion, not only top-level but also
under guarded types.

3 Note that G is invariant like standard channel types ˆ[T̃] [10].
4 We follow the subtyping relation in [7, 13] whose ordering is reversed from [10] since in our

judgement the session environment is declared on the right-hand side of a process.

322 D. Mostrous, N. Yoshida, and K. Honda

3. Let T ′4 = k1!;k2!;T3 with T3 = μt.k3?;k1!;k4?;k2!; t and T4 = μt.k1!;k3?;k2!;k4?; t.
These types are extended from T ′2 ,T1 and T2 with two signal messages at the top
level. Then T ′4 �c T3. To simulate T ′4, we require nested unfold for T3. More exactly,
the intermediate type k1!;k4?;k2!;T3 can be simulated by k4?;T3 if T3 unfolds and
k1! under recursion appears at the top-level. Similarly for T ′4 �c T4.

4. Take T5 = μt1.k1!; μt2.k1!;&{l1 : k2?;k1!; t1, l2 : k1!; t2} and let T6 = μt1.μt2.&{l1 :
k2?;k1!; t1, l2 : k1!; t2}. Then T5 �c T6. This example is proved similarly to (3).

Note that none of the above subtyping relations, except T2 �c T ′2 and T ′2 �c T2, can be
derived without including� in the typed simulation.

Before we prove that �c is a preorder, we show that there are connecting simulations
relating the components of two subtyping relations. We write T1 ℜ1 T2 for (T1,T2)∈ℜ1.

Lemma 4. If T1 ℜ1 T2 and T2 ℜ2 T3 for type simulations ℜ1 and ℜ2 then there exists a
type simulation ℜ3 such that if unfoldn(T2)� T ′2 , then T ′2 ℜ3 T3.

Definition 5 (Transitivity connection). For simulations ℜ1 and ℜ2, we say ℜ3 (from
the condition in Lemma 4) is a transitivity connection of T1 ℜ1 T2 and T2 ℜ2 T3. We write
trc(T1 ℜ1 T2 ℜ2 T3) for ℜ3. We define trc(ℜ1,ℜ2) as the smallest relation such that if
(T1,T2) ∈ℜ1 and (T2,T3) ∈ℜ2, then trc(T1 ℜ1 T2 ℜ2 T3)⊆ trc(ℜ1,ℜ2).

From the definition, trc(ℜ1,ℜ2) only contains type simulations, and as the union of
these it is also a type simulation. Note that the smallest relation exists, by set inclusion
of relation pairs, containing all the transitivity connections of elements in ℜ1/ℜ2. For
example, ℜ3 = trc(T1 ℜ1 T2 ℜ2 T3) does not contain (k!〈U〉;end,k?〈U〉;end), which
cannot be a member of any type simulation; and by set inclusion, it is smaller than
ℜ3∪ (k!〈U〉;end,k?〈U〉;end).

Theorem 6. The relation �c is a preorder.

Proof. Using as standard the relation {(T,T) |T ∈ Type}, we prove �c is reflexive. For
transitivity of �c, suppose T1 �c T2 �c T3 and let ℜ1 and ℜ2 be type simulations with
(T1,T2) ∈ℜ1 and (T2,T3) ∈ℜ2. To show T1 �c T3 we need to find a type simulation ℜ
such that (T1,T3) ∈ℜ. Define ℜ as (ℜ1 ·ℜ2)∪(ℜ1 · trc(ℜ1,ℜ2)). Clearly (T1,T3) ∈ℜ,
and it remains to show that ℜ is a type simulation. For any (T,T ′′) ∈ℜ, there are two
cases (relations above), and six subcases (simulation rules). For (U,U ′) ∈ℜ, the result
is easy as U types are invariant. We only show one of the most interesting cases.

Suppose (T,T ′′) ∈ ℜ1 ·ℜ2 and T = k!〈U1〉;T1. Then there exists (T,T ′) ∈ ℜ1 and
(T ′,T ′′) ∈ℜ2. By the definition of type simulation, we have unfoldn(T ′)� k!〈U ′1〉;T ′1
and (U1,U ′1)∈ℜ1 and (T1,T ′1) ∈ℜ1. Let trc(T ℜ1 T ′ℜ2 T ′′) = ℜ3 ⊆ trc(ℜ1,ℜ2), then
by Lemma 4 we obtain (k!〈U ′1〉;T ′1 ,T

′′) ∈ ℜ3, and by the definition of simulation we
have unfoldm(T ′′)� k!〈U ′′1 〉;T ′′1 and (U ′1,U

′′
1) ∈ℜ3 and (T ′1 ,T

′′
1) ∈ℜ3. Finally, by the

definition of ℜ1 · trc(ℜ1,ℜ2), (U1,U ′′1) ∈ℜ and (T1,T ′′1) ∈ℜ as required. Other cases
are similar. ��

3.3 Algorithmic Asynchronous Subtyping

The algorithmic subtyping of session types is studied in [10, § 5.1]. Due to the incor-
poration of asynchronous permutation and n-time unfolding in the type simulation, we

Global Principal Typing in Partially Commutative Asynchronous Sessions 323

need the bound of unfolding for constructing a terminating algorithm. We first list some

selected rewriting rules
k�→ which move the types with channel k to the head applying

the rules of� in Figure 1 in the reverse direction.

(OI) k′?〈U ′〉;k!〈U〉;T
k�→ k!〈U〉;k′?〈U ′〉;T (Tr) T1

k�→ T2 T2
k�→ T3

T1
k�→ T3

(CO) T
k�→ T ′

k′!〈U〉;T
k�→ k′!〈U〉;T ′

(CB)
Tj

k�→ T ′j
k′&{l1 :T1, .., l j :Tj, ..} k�→ k′&{l1 :T1, .., l j :T ′j , ..}

We omit the similar rules for (OB–SS), (CI,CS), which are defined similarly to

(OI) and (CO,CB). Note that we do not define
k�→ for (E) and (M). (CO,CB) are

for congruency. For a simple example, let T0 = k⊕ {l1 : k1?〈U1〉;k2!〈U2〉;end, l2 :

k2!〈U2〉;end}. Then T0
k2�→ k ⊕ {l1 : k2!〈U2〉;k1?〈U1〉;end, l2 : k2!〈U2〉;end} k2�→

k2!〈U2〉;k⊕ {k1?〈U1〉;end, l2 : end} by (CS,OS). We can easily show
k�→ is conflu-

ent and terminates, and T
k�→ T ′ implies T ′ � T . We can also prove if T � T ′, then

we always have T ′ k1�→ · k2�→ · · · kn�→ T where k1k2..kn are a (possibly empty) subse-
quence of channels occurring at the top-level in T with this order (e.g., k1k2k3k4 if
k1!;k2⊕{l1 : k3!, l2 : k4!}). Hence:

Proposition 7. Given T and T ′, T � T ′ is decidable.

The derivability of judgement Σ � T � T ′ is defined in Figure 2 where Σ is a sequence
of assumed instances of the subtyping relation. We use n-hole type contexts (T ,T ′, ...)
where []h∈H denotes a hole with index h.

T ::= []h∈H | k!〈U〉;T | k?〈U〉;T | k⊕{li : Ti}i∈I | k&{li : Ti}i∈I

For example, with H = {1,2} and T = k⊕{l1 : k1?〈U1〉; []1∈H , l2 : []2∈H}, we have
T [Ti]i∈H = k⊕{l1 : k1?〈U1〉;T1, l2 : T2}. A hole in T does not appear under recursion
since� permutes top-level actions only. We also use (1) function top(T) which returns
the channel at the head of T and (2) function depth〈k,T 〉 to calculate how many unfold-
ings are needed for k to appear at the top-level. If k does not appear in T , depth〈k,T 〉 is
undefined. When depth〈k,T 〉 is defined, depth〈k,T 〉 is finite.

top(end) = • top(k?〈U〉;T) = top(k!〈U〉;T) = top(k&{li : Ti}i∈I) = top(k⊕{li : Ti}i∈I) = k
depth〈k,T 〉= 0 if top(T) = k depth〈•,end〉= 0
depth〈k,k′?〈U〉;T 〉= depth〈k,k′!〈U〉;T 〉= depth〈k,T 〉 k
= k′
depth〈k,k′&{li : Ti}i∈I〉= depth〈k,k′ ⊕{li : Ti}i∈I〉= maxi∈I(depth〈k,Ti〉) k
= k′
depth〈k,μt.T 〉= depth〈k,T [μt.T/t]〉+1 depth〈•,μt.T 〉= depth〈•,T [μt.T/t]〉+1

In Figure 2, [ASMP,END] are standard. In [OUT], we fix the subtype and apply
k�→ to

place k!〈U〉 to the top level. Then we check the tail of the result of rewriting T [T ′2h]
h∈H

is a supertype of T1 (the rule subsumes the case k!〈U〉 already at the top level). Rule
[SEL] is similarly defined. Rule [RECL] is standard. Rule [RECR] unfolds T ′ until
a type with the same channel as the top of T appears at the top-level. The rule for
input/branching is defined like [OUT]/[SEL], respectively.

324 D. Mostrous, N. Yoshida, and K. Honda

[ASMP]T � T ′ ∈ Σ
Σ � T � T ′ [END] −

Σ � end � end

[OUT]
Σ �U1 � U2 Σ � T1 � T [T ′2h]

h∈H T [k!〈U2〉;T2h]h∈H k�→ k!〈U2〉;T [T ′2h]
h∈H

Σ � k!〈U1〉;T1 � T [k!〈U2〉;T2h]h∈H

[SEL]
∀i ∈ I.Σ � Ti � T [T ′′ih]h∈H T [k⊕{li : T ′ih}i∈J]h∈H k�→ k⊕{li : T [T ′′ih]h∈H}i∈J I ⊆ J

Σ � k⊕{li : Ti}i∈I � T [k⊕{li : T ′ih}i∈J]h∈H

[RECL]
Σ ,μt.T � T ′ � unfold1(μt.T) � T ′

Σ � μt.T � T ′ [RECR]

n = depth〈top(T),T ′〉 n≥ 1
Σ ,T � T ′ � T � unfoldn(T ′)

Σ � T � T ′

Fig. 2. Algorithmic Subtyping Rules

The rules give an algorithm for checking the algorithmic subtyping relation � (by
reading these rules from upwards). As usual, [ASMP] should always be used if it is
applicable, and when both [RECL] and [RECR] are applicable, [RECL] is used in pref-
erence to [RECR]. Similarly, other rules are applied in preference to [RECR], which can
only be applied if the top of T does not appear at the top level of T ′. As an example, let
T1 = k⊕{l1 : k1?〈U1〉;end}. Then we can derive k2!〈U2〉;T1 � T0 (T0 is given above)
by using [OUT]. At the top level, the algorithm is applied to the initial goal /0 � T � T ′
(which we often write T � T ′).

Lemma 8. 1. The subtyping algorithm always terminates.
2. If T �c T ′ then the algorithm does not return false when applied to Σ � T � T ′.

The proof uses techniques related to those developed in [10]; the main differences are,
for the proof of (1), we have to take the subterms up to � with the finite number of
unfolding when we argue the size of Σ cannot increase without bound. However since
� does not change the size of the judgement (defined in [10, Lemma 10]), we can prove
(1). The proof of (2) is standard from (1).

Theorem 9 (Soundness and Completeness of the Algorithmic Subtyping). For all
closed types T and T ′, T �c T ′ if and only if T � T ′.

The if-direction is by Lemma 8 (2) and the only-if direction by constructing a relation
following [10, Theorem 4].

3.4 Local Asynchronous Commutative Session Typing

The type judgement for end-point processes is of the shape Γ � P � Δ which reads:
“under the environment Γ , process P has typing Δ” where environments are defined as:

Γ ::= /0 | Γ ,u : U | Γ ,X : ŨT̃ Δ ::= /0 | Δ , s̃ : {Tp@p}p∈I

A sorting (Γ ,Γ ′, ..) is a finite map from names to value types and from process variables
to sequences of value types and session types. Typing (Δ ,Δ ′, ..) records linear usage of
session channels. T @p is called located type which means T is a session type of the

Global Principal Typing in Partially Commutative Asynchronous Sessions 325

participant p. In multiparty sessions, it assigns a family of located types to a vector
of session channels. The typing system is identical with [13]: we only have to add the
subsumption rule: i.e. Γ � P � Δ and Δ � Δ ′ then Γ � P � Δ ′ where Δ � Δ ′ is defined
by pointwise application of �.

Theorem 10 (Subject Congruence and Reduction). Γ � P� /0 and P ≡ Q imply Γ �
Q� /0; and Γ � P� /0 and P−→ Q imply Γ � Q� /0.

The proof follows the same routine as in [13], but we must take care that all per-
mutations defined by � do not affect the input-output causal dependencies of the
global types. We can also obtain the other three key proprieties, communication-safety,
session-fidelity and progress as stated in [13, § 5]. The rest of the paper can be read
without knowing the details of a typing system.

4 Principal Global Typing through Graph-Based Types

Why graph-based types. Let P
def= a[p](s̃).s1!〈3〉;s2?(x) and Q

def= a[p](s̃).
s2!〈true〉;s1?(y) where P is a participant named by p and Q is an initiator named by
q. Then P and Q are typable under essentially only two global types, G = p→ q :
k〈int〉; q→ p : h〈bool〉; end and G′ = q→ p : h〈bool〉; p→ q : k〈int〉; end. Note the
projection of G to p is �-minimal for P (i.e. other local types of P can be derived by
subsumption): but this is not true for its projection to q. Similarly G′ does not give a
minimal type for P. Thus there is no “best” global type for P|Q: this is because inter-
actions between P and Q take place in a criss-crossing way: the syntax of global types,
which can only represent tree-like causality, is too rigid to represent such a situation.

Local and global graphs. A local graph is a (finite or infinite) directed graph where
each node, called action, is labelled by one of k?〈U〉 (input), k!〈U〉 (output), k&[li]i∈I

(branching), k⊕ [li]i∈I (selection) and k⊕ l (label-output [1]); and, for edges: (1) each
edge from k&[li]i∈I or k⊕ [li]i∈I is labelled by one of {li}; and (2) k⊕ l (resp. k!〈U〉)
has a unique outgoing edge, and its target is always an output/selection/label-output at
k. A global graph for participants {p1, ..,pn}, written G ,G ′, . . ., is a disjoint union of
an {p1, ..,pn}-indexed family of local graphs. Given G for {p1, ..,pn}, its pi-component
is the local graph in G indexed by pi. A node is active if it has no incoming edges.

p q

h!<bool>

h?<bool>

k!<nat>

k?<nat>

p q

k!<nat> h!<bool>

k?<nat>h?<bool>

(a) (b)

In (a) above, we show a global graph for P and Q given above, consisting of two local
graphs (balloons labelled by p and q), each with an output, an input and no edges. If we
add an edge from input to output in each local graph, we get the global graph (b) for
a[p](s̃).s2?(x);s1!〈3〉 and a[p](s̃).s1?(y);s2!〈true〉, which now deadlocks.

326 D. Mostrous, N. Yoshida, and K. Honda

Linearity, progress and coherence. We equip global graphs with a notion of reduction
which abstracts that of processes. Below we write E [·]..[·] for a global graph with
one or more holes, each of which is to be filled with a sub-graph of a local graph, such
that all holes are active, i.e. have no incoming edges.

E [k?〈U〉][k!〈U〉] −→ E [/0] E [k&[li : Gi]i∈I][k⊕ l j] −→ E [G j][/0] (j ∈ I)

E [k⊕ [li : Gi]i∈I] −→ E [k⊕ li;Gi]

Above /0 is the empty graph. In each rule, the replacement in the hole(s) entails taking
off both the old graph and all the outgoing edge(s) from it and filling the hole with
the new graph. A reduction by the first two rules is called communication at k. In the
second rule, k&[li : Gi]i∈I is the disjoint union of k&[li]i∈I and {Gi}i∈I together with,
for each i ∈ I, li-labelled edges from k&[li]i∈I to all the active actions in Gi. In the third
(from [1]), k⊕ [li : Gi]i∈I is as k&[li : Gi]i∈I while k⊕ li;Gi is the disjoint union of k⊕ li
and Gi with edges from the former to the active output/selection/label-outputs at k in Gi.
A global graph G is linear when for each G ′ such that G −→∗ G ′, if G ′ has two active
actions at k, a reduction at k is possible, and no other active action shares k. A global
graph G has progress when for each G ′ such that G −→∗ G ′, either G ′ reduces or it is
empty. Finally we say G is coherent when it is linear and has progress.

Coherent global graphs from local types. A local graph is constructed from a local
type as the latter’s regular tree representations. Given Δ = {Ti@pi}i∈I , this immedi-
ately gives the global graph for {pi}i∈I , which we write [[Δ]]. The coherence of [[Δ]] is
decidable, as we outline below.

We first check Δ is well-directed in the sense that each channel in Δ is used by two
and only two participants and moreover one of them uses it only for input/branching
and the other only for output/selection/label-output, which can be checked by going
through Δ once. For well-directed Δ , there is an algorithm to ensure linearity of [[Δ]],
by checking if each pair of participants in Δ are compatible in their type structures,
closely following the algorithmic subtyping in § 3.2.

Through the validation of compatibility of Δ , we can equip [[Δ]] with the addi-
tional communication edges, from each output/selection/label-output to its potentially
interacting action(s), representing potential redexes. Using this added set of edges, we
reduce the progress of [[Δ]] to the acyclicity of its paths consisting of its local and com-
munication edges, completely characterising progress under linearity. The acyclicity of
[[Δ]] is then reducible to that of its initial finite sub-graph. Because linearity and com-
patibility are equivalent under progress, we obtain:

Theorem 11 (complete algorithmic characterisation of coherence). Let Δ =
{Ti@pi}i∈I be well-directed. Then the coherence of [[Δ]] with Δ given as input is de-
cidable.

Principal global typing through global graphs. Any projectable global type G for
participants say {pi}i∈I is equivalent to its projections Δ = {(G � pi)@pi}i∈I , and be-
cause such Δ is immediately compatible and acyclic, we can regard G as a coherent
global graph. This motivates the use of coherent global graphs instead of global types

Global Principal Typing in Partially Commutative Asynchronous Sessions 327

in the type discipline, presenting [[Δ]] as Δ itself.5 By replacing global types with co-
herent global graphs in types and typing rules, we obtain a new type discipline. We
write Γ �g P � Δ for typability in this new discipline (subsumption is consistent be-
cause if [[Δ]] is coherent and Δ ′ is point-wise �-smaller than Δ then [[Δ ′]] is also coher-
ent). By identifying G as the corresponding coherent global graph, Γ � P � Δ implies
Γ �g P � Δ . Further, since linearity and progress of [[Δ]] are reflected onto the dynam-
ics of typed processes (precisely following the arguments in [13]), the typability in �g
ensures communication safety and progress.

For the principal typing property, we add the �-least element ⊥ to the set of local
types; ⊥ is also used as local graph occurring in global graphs (where intuitively ⊥
denotes a placeholder for a local behaviour). The coherence and other notions for global
graphs are defined ignoring ⊥. Without loss of practical generality we assume each
shared name say a has a fixed arity which is the number of participants for a potential
session established through a; and that processes are type-annotated on bound variables
and free object names in the standard way. Through local type inference [6, 15] using
the point-wise join of coherent global types (calculated as in algorithmic subtyping),
together with Theorem 11, we obtain a principal global typing property. Below we
write Γ ′ � Γ for dom(Γ ′)⊂ dom(Γ) and Γ ′(a) � Γ (a) for each a ∈ dom(Γ ′). We say
P is closed if it has no free session channels nor free variables.

Theorem 12 (principal global typing). Let P be closed. (1) The typability of P with
respect to �g is decidable. (2) If P is typable then P has a principal global typing Γ0 in
the sense that Γ0 �g P� /0 holds and moreover Γ �g P� /0 implies Γ0 � Γ .

5 Application: Double-Buffering Algorithm

This section illustrates the use of our type theory using the double-buffering algorithm
[21], a basic distributed algorithm widely used in stream/media processing and high-
performance and multicore computing, presenting how the two strategies discussed in
Introduction can be applied through the theories presented in the previous sections.

The purpose of the double-buffering algorithm is to transform a large amount of data,
where a series of chunks of data are transferred from a source (Source) to a transformer
(called Kernel), gets processed there and delivered to a sink (Sink). Under potential tem-
poral variations in processing and communication time, it is necessary to synchronise
among these three parties through message passing. However a naive, and obviously
safe, protocol leads to a highly sequential, non-optimal distributed algorithm. Thus it is
beneficial to increase asynchrony of local programs without violating the shared proto-
col. We show the outline of an application of our theories to achieve this goal, starting
from a sequential and safe global protocol to optimised local protocols through asyn-
chronous communication subtyping, with a formal safety guarantee.

5 To be precise, we regard Δ up to the type isomorphism corresponding to �; and we take off,
from each branching type, its branches (if any) which never get invoked in any reduction path:
such “garbage” branches are precisely identified during the validation of coherence.

328 D. Mostrous, N. Yoshida, and K. Honda

Global Type : G =
μt.(
K→ So : r1〈〉;
So→ K : s1〈U〉;
Si→ K : t1〈〉;
K→ Si : u1〈U〉;

K→ So : r2〈〉;
So→ K : s2〈U〉;
Si→ K : t2〈〉;
K→ Si : u2〈U〉; t)

Pro jected Local Type o f Kernel :
T =
μt.r1!〈〉;s1?〈U〉; t1?〈〉;u1!〈U〉;

r2!〈〉;s2?〈U〉;t2?〈〉;u2!〈U〉; t

Local Type o f Kernel :

T � =
r1!〈〉;r2!〈〉;

μt.s1?〈U〉; t1?〈〉;u1!〈U〉;r1!〈〉;
s2?〈U〉;t2?〈〉;u2!〈U〉;r2!〈〉; t

Source:
a[1](r1r2s1s2t1t2u1u2).
μX .(

.. // assign data to y[1..n]
r1?(); s1!〈y[1..n]〉;
.. // assign data to y[1..n]
r2?() ;s2!〈y〉;X)

Sink:
a[2](r1r2s1s2t1t2u1u2).
μX .(

t1!〈〉; u1?(z);
.. // print z[1..n]
t2!〈〉; u2?(z);
.. // print z[1..n]
X)

Kernel:
a[1,2](r1r2s1s2t1t2u1u2).

r1!〈〉; r2!〈〉;
μX .(

s1?(xA);
.. // repeat:
.. // xA[i] ::= xA[i]⊕key
.. // key::= xA[i]
t1?(); u1!〈xA〉; r1!〈〉;
s2?(xB);
.. // repeat:
.. // xB[i] = xB[i]⊕key
.. // key = xB[i]
t2?(); u2!〈xB〉; r2!〈〉; X

)

Fig. 3. Double-Buffering Algorithm: Processes and Types

Top-down approach (1): global type. The development of programs starts from the
global type G on the left-most column in Figure 3. So, K and Si denote participant
names for Source, Kernel and Sink. U denotes a large int-array type. Assuming Kernel
will use two channels and the associated arrays for potential parallelism, the global type
G starts from a recursion, describing an infinite loop. In the loop, Kernel first notifies
Source via r1,2 that it is ready to receive data in its two channels (s1,2, with signal at ri

saying si is ready); Source complies, sending two chunks of data sequentially via s1,2.
Then Kernel (internally processes data and) waits for Sink to inform (via t1,2) that Sink
is ready to receive data via u1,2: upon receiving the signals, Kernel sends the two chunks
of processed data to Sink. This protocol is sequential but is safe and deadlock-free.

Top-down approach (2): local type and its refinement. Just below the global type
G, Figure 3 gives the local type T of Kernel as directly projected from the global type.
Our purpose is to refine T so that (1) the new local protocol is more asynchronous,
allowing overlap of communication and computation [9, 11]; and (2) it still conforms to
G — Kernel with the new optimised protocol will safely interact with Source and Sink
who conform to the original global type G. For this purpose the developer may come
up with a more asynchronous T �, given in Figure 3 after T . In this refined protocol,
Kernel notifies Source via both r1,2, but only once before entering the loop, allowing
Source to start its work. Now inside the loop, the refined protocol dictates Kernel first
receives data via its first channel s1 with Source, processes the data and sends out the
result to Sink via its first channel u1 with Sink and immediately notifies Source via r1

that it’s ready in its first channel, allowing Source to start sending data early. Kernel
then repeats the same work for its second channels with Source and Sink. In this way,
Kernel can process data it has already received in one channel while it is receiving data
in the other, noting it can take time for large data to sent, transferred and received.

We now show this optimised local protocol is safe w.r.t. other participants conform-
ing to G, through the asynchronous communication subtyping. The justification uses

Global Principal Typing in Partially Commutative Asynchronous Sessions 329

nested unfolding.We start from unfolding T once to match r1,r2 of T � as unfold1(T) =
r1!〈〉;s1?〈U〉; t1?〈〉;u1!〈U〉;r2!〈〉;s2?〈U〉; t2?〈〉;u2!〈U〉;T. Then r1!〈〉 matches T �. To
simulate r2!〈〉 of T �, r2!〈〉 is permuted by �. Let T � = r1!〈〉;r2!〈〉;T �

R . Thus
unfold1(T �

R) must be simulated by T ′ = s1?〈U〉;t1?〈〉;u1!〈U〉;s2?〈U〉; t2?〈〉;u2!〈U〉;T.
However to simulate r1!〈〉 in unfold1(T �

R), T must be unfolded again since the types in
the guarded position of T ′ do not include r1!〈〉. By [RECR], it now suffices to solve the
following:

r1!〈〉;s2?〈U〉; t2?〈〉;u2!〈U〉;r2!〈〉;T �
R � s2?〈U〉; t2?〈〉;u2!〈U〉;unfold1(T).

For this we apply [IN,OUT] of � with�, reaching the assumption in Σ in [ASMP].

Top-down approach (3): code development. Figure 3 depicts the skeleton of the three
(final) programs which conform to the global type. All participants initiate the session
at a in the first line. We only illustrate the behaviour of Kernel, considering a simple
transformation for stream encryption. Kernel, after initialising its variables including
the initial key value, signals to Source that its buffers are both empty, via r1 and r2:
then enters the main loop, where it does the following: it first receives the datum at
xA via s1, goes through the buffer taking the XOR element-wise with key, after which
it waits for Sink’s cue via t1 (which may have already arrived asynchronously), and
finally sends out the buffer content to Sink via u1, and tells Source it’s ready at A
via r1: then similarly works for the second buffer (given in the next column). Unlike
Source and Sink, the behaviour of Kernel does not conform to the projection of G to
Kernel (T): however T � does type-abstract its behaviour directly and because T � �
T by the argument above, Kernel does type-check under T with subsumption, hence
under G.

Integration with bottom-up approach. The development process described above
can be effectively and seamlessly integrated with the “bottom-up” strategy discussed in
Introduction through the type inference (synthesis) of global types in § 4, which allows
developers to directly refine programs and to synthesise a new global protocol reflecting
the refinement, incrementally validating compatibility. This added flexibility is useful
since, in actual development, programmers may often directly work on programs rather
than starting from refinement of local protocols.

Further examples showing the applicability of permutation of branching/selections
to parallel algorithms [14] can be found in the full version.

6 Related Work

Branching/selection subtyping in session types is first studied in [10] for binary session
types. We use their syntactic approach for defining a type-simulation, but a significant
extension from their technique is needed due to the incorporation of� and nested un-
foldings, which makes the proof of transitivity delicate and challenging. An initial idea
of asynchronous communication subtyping for binary sessions is presented in an unpub-
lished manuscript [18], where the treatment for recursive types and branching/selection

330 D. Mostrous, N. Yoshida, and K. Honda

types is left open. A recent work in a technical report [17] demonstrates a subtyping
rule similar to our (OI) rule is useful for an object calculus with asynchronous binary
sessions, with an iso-recursive system. It is an interesting future work to extend to the
HOπ-calculus [16] where a careful formulation for the algorithmic subtyping would
be required in the presence of arrow types. The top-down approach in multiparty ses-
sion types is first studied in [13], but a local refinement (asynchronous subtyping) is
not proposed there. The problem of synthesising a global specification from endpoint
behaviours has been a lingering question since the inception of the notion of global
descriptions for business protocols [24], being posed as an open problem in [1, 2, 13].
Inference of principal types is studied in [15] for binary session types (note in binary
sessions the issue of global synthesis does not arise). The present work gives clear and
general solutions to these extant technical problems.

In the context of multiparty session types, a typing system for a strong progress
property is studied in [1]. Asynchronous communication subtyping can be smoothly
applied to [1]. For delegations, the main definitions of�, �c and � stay as the same, but
proofs need to be revised to treat nesting types; and for the principal typing, ⊥ should
be added into a carried type in global graphs. The study of formal theories of contracts
are studied in [8] using CCS-like processes as a type representation. The work [19]
extends [8] with the treatment of asynchronous behaviours using orchestrators, through
the use of bounded buffers that control message flows between a client and servers.
Our own system in [7] developed a theory in which a global specification arises as a
programming language itself.

Conformance and refinement based on agreement of service specifications is studied
in [3], using a synchronous CCS-based calculus as a contract language, and testing-
preorders to check subcontract compliance. Neither type-checking of end-point pro-
cesses using projected contracts (in our case, Theorem 9) nor a bottom-up strategy
is presented there. The work [5] proposes a distributed calculus with sessions, in-
corporating the merging of running sessions. Another work [23] presents a calculus
for service orientations by extending the π-calculus with context-sensitive interac-
tions, equipped with service and request primitives and local exceptions. These pre-
ceding works do not treat the main technical problems addressed in the present work –
the asynchronous communication subtyping, type-based local refinement/conformance,
and a derivation of the minimum global types, backed-up by the efficient type-checking
and inference algorithms, ensuring strong safety properties based on the session type
discipline.

Acknowledgements. We thank the reviewers for their useful comments, Gary Brown
and Steve Ross-Talbot for discussions on the potential applications of the presented
framework for software development, and Matthew Rawlings for discussions on the
practical significance of asynchrony in financial protocols. We generalised�with input
commutativity following a suggestion by Raymond Hu. The work is partially supported
by EPSRC GR/T03208, GR/T03215, EP/F002114, EP/F003757 and IST2005-015905
MOBIUS.

Global Principal Typing in Partially Commutative Asynchronous Sessions 331

References

1. Bettini, L., et al.: Global progress in dynamically interleaved multiparty sessions. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer,
Heidelberg (2008)

2. Bonelli, E., Compagnoni, A.: Multipoint Session Types for a Distributed Calculus. In: Barthe,
G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 240–256. Springer, Heidelberg (2008)

3. Bravetti, M., Zavattaro, G.: A theory for strong service compliance. In: Murphy, A.L., Vitek,
J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 96–112. Springer, Heidelberg (2007)

4. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography conformance and
contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp.
34–50. Springer, Heidelberg (2007)

5. Bruni, R., Lanese, I., Melgratti, H., Tuosto, E.: Multiparty Sessions in SOC. In: Lea, D., Za-
vattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 67–82. Springer, Heidelberg
(2008)

6. Carbone, M., Honda, K., Yoshida, N.: A theoretical basis of communication-centered con-
current programming. To appear as a WS-CDL working report, www.dcs.qmul.ac.uk/

˜carbonem/cdlpaper/workingnote.pdf
7. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred programming for

web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 2–17. Springer,
Heidelberg (2007)

8. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services. In: POPL,
pp. 261–272 (2008)

9. Culler, D., et al.: Logp: towards a realistic model of parallel computation. SIGPLAN
Not. 28(7), 1–12 (1993)

10. Gay, S., Hole, M.: Subtyping for Session Types in the Pi-Calculus. Acta Informatica 42(2/3),
191–225 (2005)

11. Gschwind, M.: The cell broadband engine: Exploiting multiple levels of parallelism in a chip
multiprocessor. International Journal of Parallel Programming 35(3), 233–262 (2007)

12. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disciplines for
structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998. LNCS,
vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

13. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In: POPL
2008, pp. 273–284. ACM, New York (2008)

14. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming. Addison Wesley,
Reading (2005)

15. Mezzina, L.G.: How to infer finite session types in a calculus of services and sessions.
In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 216–231.
Springer, Heidelberg (2008)

16. Mostrous, D., Yoshida, N.: Two Sessions Typing Systems for Higher-Order Mobile Pro-
cesses. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 321–335. Springer,
Heidelberg (2007)

17. Mostrous, D., Yoshida, N.: A Session Object Calculus for Structured Communication-Based
Programming. Technical report, Imperial College London (2008), www.doc.ic.ac.uk/

˜mostrous
18. Neubauer, M., Thiemann, P.: Session Types for Asynchronous Communication. Universität

Freiburg (2004)
19. Padovani, L.: Contract-directed synthesis of simple orchestrators. In: van Breugel, F.,

Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 131–146. Springer, Heidelberg
(2008)

332 D. Mostrous, N. Yoshida, and K. Honda

20. Pierce, B., Sangiorgi, D.: Typing and subtyping for mobile processes. Journal of Mathemat-
ical Structures in Computer Science 6(5), 409–454 (1996)

21. Sancho, J.C., Kerbyson, D.J.: Analysis of Double Buffering on two Different Multicore Ar-
chitectures: Quad-core Opteron and the Cell-BE. In: International Parallel and Distributed
Processing Symposium (IPDPS), April 14–18. IEEE, Los Alamitos (2008)

22. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing system.
In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.) PARLE 1994. LNCS,
vol. 817, pp. 398–413. Springer, Heidelberg (1994)

23. Vieira, H.T., Caires, L., Seco, J.C.: The conversation calculus: A model of service-oriented
computation. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 269–283.
Springer, Heidelberg (2008)

24. Web Services Choreography Working Group. Web Services Choreography Description Lan-
guage, http://www.w3.org/2002/ws/chor/

Tisa: A Language Design and Modular Verification
Technique for Temporal Policies in Web Services�

Hridesh Rajan1, Jia Tao1, Steve Shaner1, and Gary T. Leavens2

1 Iowa State University, Ames, Iowa, USA
{hridesh,jtao,smshaner}@iastate.edu

2 University of Central Florida, Orlando, Florida, USA
leavens@eecs.ucf.edu

Abstract. Web services are distributed software components, that are decoupled
from each other using interfaces with specified functional behaviors. However,
such behavioral specifications are insufficient to demonstrate compliance with
certain temporal non-functional policies. An example is demonstrating that a pa-
tient’s health-related query sent to a health care service is answered only by a
doctor (and not by a secretary). Demonstrating compliance with such policies is
important for satisfying governmental privacy regulations. It is often necessary to
expose the internals of the web service implementation for demonstrating such
compliance, which may compromise modularity. In this work, we provide a lan-
guage design that enables such demonstrations, while hiding majority of the ser-
vice’s source code. The key idea is to use greybox specifications to allow service
providers to selectively hide and expose parts of their implementation. The over-
all problem of showing compliance is then reduced to two subproblems: whether
the desired properties are satisfied by the service’s greybox specification, and
whether this greybox specification is satisfied by the service’s implementation.
We specify policies using LTL and solve the first problem by model checking.
We solve the second problem by refinement techniques.

1 Introduction

Web services promote abstraction, loose coupling and interoperability of clients and
services [1]. The key idea of web services is to introduce a published interface (often a
description written in an XML-based language such as WSDL [2]), for communication
between services and clients [1]. By allowing components to be decoupled using a
specified interface, web services enable platform-independent integration.

Behavioral Contracts for Web Services. A behavioral contract for a web service spec-
ifies, for each of the web service’s methods the relationships between its inputs and
outputs. Such a contract treats the implementation of the service as a black box, hid-
ing all the service’s internal states from its clients. The benefit of this encapsulation
is that clients do not depend upon the service’s changeable design decisions. To illus-
trate, consider a healthcare service that allows patients to make appointments and ask
prescription and health-related questions from healthcare practioners [3].
� Rajan and Tao were supported in part by the NSF grant CNS 06-27354. Rajan, Shaner and

Leavens were supported in part by the NSF grant CNS 08-08913.

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 333–347, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

334 H. Rajan et al.

An example JML-like contract [4] for such a service follows.

service Patient {
/*@ requires pId >= 0; ensures result >=0; @*/
int query(int pId, int msg);
/*@ requires qId >= 0; ensures result >=0; @*/
int retrieve(int qId);

}

The service description in this contract is written in a form similar to our language,
Tisa, to make comparisons easier. It specifies that a service named Patientmakes two
web-methods available: query and retrieve. The query method takes a patient
identifier and a message as arguments. The message is represented as an integer for
simplicity (think of it as an index into a table of pre-defined questions, such as “does
the test show I have AIDS?”). The precondition of calling this web-method is that the
patient identifier is positive; the postcondition is that it returns a positive result. The
retrieve method takes a query identifier as argument; its precondition is that this
identifier must be positive. Its postcondition is that the result is also positive. These
contracts could be checked by observing the interface of the web-methods [5,6,7,8,9].

Demonstrating Compliance to Temporal Policies. Let us now consider the following
policy inspired from Barth et al.’s work [3]: “a health question about a patient should
only be answered by the doctor”, “furthermore such answers should only be disclosed to
the concerned patients”. We will refer to these as “HIPAA policies” as they are similar
to regulations in the US health insurance portability and accountability act (HIPAA).
The behavioral contract above is insufficient for demonstrating compliance with the
HIPAA policies, as it does not provide sufficient details about the internal state of the
service. For example, the entity that is finally receiving the query is hidden by query’s
contract. Demonstrating compliance to such policies is important. In our example, a
patient may feel much better about their queries regarding an AIDS test result, if such
compliances were demonstrated by the service.

Compliance and Modularity at Conflict. Alternatively suppose the implementation
of the two web-methods query and retrieve were available, including the compo-
nent services that they use. Then demonstrating compliance to the two HIPAA policies
would be equivalent to ensuring that the implementation avoids non-compliant states.
However, by making code for these methods available, clients might write code that de-
pends on implementation design decisions. As a result, changing these design decisions
will become harder, as these changes could break client’s code [10].

We thus believe that, for web services, modularity [10] and verification of temporal
policies are fundamentally in conflict. To make the service implementation evolvable,
modularity requires hiding the design decisions that are likely to change. But to demon-
strate compliance to key temporal policies, internal states need to be exposed.

A Language Design and Verification Logic. To reconcile these requirements, we pro-
pose a technique based on greybox specifications [11] that exposes only some internal
states. This technique enables web service providers to demonstrate compliance to tem-
poral policies, such that above, by exposing only parts of their implementation. A client
can verify that the service complies with the desired policies by inspecting a greybox

Tisa: A Language Design and Modular Verification Technique for Web Services 335

1 service Secretary {
2 int query(int pId, int msg) {
3 preserve pId > 0 && msg > 0;
4 if (msg >= 2) {
5 query(pId,msg)@Doctor
6 }
7 else {
8 /* Appointment? */
9 establish result > 0

10 }
11 }
12 int retrieve(int qId) {
13 requires qId > 0 ensures result > 0
14 }
15 }

16 service Doctor {
17 int query(int pId, int msg) { /* Re: Test */
18 requires pId > 0 && msg >= 2 ensures result > 0
19 }
20 int retrieve(int qId) {
21 requires qId > 0 ensures result > 0
22 }
23 }
24 service Patient {
25 int query(int pId, int msg) {
26 query(pId, msg)@Secretary;
27 }
28 int retrieve(int qId) {
29 preserve qId > 0;
30 if ((qId/1000)==1) { retrieve(qId)@Secretary}
31 else if ((qId/1000)==2) { retrieve(qId)@Doctor}
32 } }

Fig. 1. An Example Greybox Specification

specification. Providers can also choose to hide many implementation details, so the
service’s implementation can evolve as long as it refines the specification [12,13].

To illustrate, consider the greybox specification shown in Figure 1. This example
has three services. In each service the methods are web-methods that may be called
by clients and other services. Specification expressions of the form preserve e,
establish e, and requires e1 ensures e2 are used within these methods to
hide internal details. The code that is not hidden by specification expressions is ex-
posed. Calls to web-methods are written using an at-sign (@), such as query(pId,
msg)@Secretary. For simplicity, Tisa only allows integers to be passed as argu-
ments in such remote calls, thus we encode questions using integers: 1 for appoint-
ments, 2 for prescriptions, and higher numbers for health-related questions. Contrary
to standard black box specifications, internal states of the service, including calls to
other services are exposed. By analyzing lines 26 and 4–6 (in that order) one could
conclude that “health questions by patients are answered by the doctor.” Demonstrat-
ing compliance to temporal policies thus becomes possible. Note that this specification
only exposes selected details about the implementation. For example, the specification
of retrieve on line 13 hides all details of how this service responds to appointment
questions. Therefore, it hides the design decisions made in the implementation of cre-
ating, storing, and forwarding responses.

Contributions. An important contribution is the identification of the conflict between
verification of temporal policies and modularity in web services. We show how to re-
solve this conflict using greybox specifications. Our language, Tisa, supports specifica-
tion of policies specified in a variant of linear temporal logic [14], greybox specification
[11] and a simple notion of refinement [12,13,15] for modular reasoning about correct-
ness of implementations with respect to such policies. As usual, implementations are
hidden, but policies and greybox specifications are public. To demonstrate these claims,
we present two preliminary verification techniques: one checks if a greybox specifica-
tion satisfies a temporal policy, the second checks whether a service implementation re-
fines its greybox specification. (The first technique could be used by the clients to select
a service whose specification satisfies their desired policies.) We also show soundness:

336 H. Rajan et al.

program ::= decl* client
decl ::= classdecl | servicedecl
classdecl ::= class c extends d { field* meth* }
servicedecl ::= service w { field* meth* }
client ::= client w { e }
field ::= t f;
meth ::= t m (form*) { e }
form ::= t var, where var �=this and var �=thisSite
t ::= c | int
e ::= n | e == e | e != e | e > e | e < e | e >= e | e <= e

| e + e | e - e | e * e | ! e | e && e | e ‘||’ e | isNull(e)
| if (e) { e } else { e } | new c() | var
| null | e.m(e*) | e.f | e.f = e | cast c e | form = e; e
| e; e | w | m(e*)@e | refining spec { e }

n ∈ N , the set of numeric, integer literals
c, d ∈ {Object, Site} ∪ C,

C is the set of class names
f ∈ F , the set of field names

m ∈ M, the set of method names
var ∈ {this, thisSite} ∪ V,

V is the set of variable names
w ∈ W ⊆ C,

W is the set of web service names

Fig. 2. Abstract syntax, based on [25, Figure 3.1, 3.7]

that the composition of these two verification techniques, applied modularly by clients
and all service providers, implies that the web service implementation satisfies the spec-
ified temporal policies. In practice, some additional technique, such as proof-carrying
code [16], or a hardware-based root of trust [17,18] would be needed to satisfy clients
that web services in fact satisfy their specifications.

2 Tisa Language Design

In this section, we describe Tisa, an object-oriented (OO) language that incorporates
ideas from existing work on specification languages, web services authentication lan-
guages and modeling languages. In particular, Tisa’s design is inspired by Argus [19]
and the work of Gordon and Pucella [20]. (Furthermore, some of our descriptions of
the language syntax are adapted from Ptolemy [21].) Tisa is a distributed programming
language with statically created web services and a single client, each of which has
its own address space. Web services are named and declare web-methods, which can
be called by the client and by other services. As a small, core language, the technical
presentation of Tisa shares much in common with MiniMAO1 [22], a variant of Feath-
erweight Java [23] and Classic Java [24]. Tisa has classes, objects, inheritance, and sub-
typing, but it does not have super, interfaces, exception handling, built-in value types,
privacy modifiers, or abstract methods. Furthermore, other features of web-service de-
scription languages (WSDLs) such as composite data types for exchanging messages
between services, messages, ports, one-way vs. request-response operations, etc, are
omitted to avoid complications in Tisa’s theory. However, most of these are syntactic
sugars that can be desugared to existing constructs in Tisa. Tisa features new mecha-
nisms for declaring policies and greybox specifications. Our description starts with its
programming features, and then describes its specification features.

2.1 Program Syntax

The syntax of Tisa executable programs is shown in Figure 2 and explained below. A
Tisa program consists of zero or more declarations, and a client (see Figure 3). Decla-
rations are either class declarations or web service declarations.

Tisa: A Language Design and Modular Verification Technique for Web Services 337

1 class Query extends Object {
2 int pId; int msg; int qId;
3 }
4 class Queue extends Object { //...
5 int add(int pId, int msg, int qId){
6 /* add to inner list */; qId
7 } }
8 service Secretary {
9 Queue queryQ; Hashtable responses;

10 int ticket; Log log;
11 int query(int pId, int msg) {
12 refining preserve pId > 0 && msg > 0 {
13 log.recordCurrentTime()
14 };
15 if (msg >= 2) {
16 query(pId, msg)@Doctor
17 } else { /* Re: Appointment */
18 refining establish result > 0 {
19 ticket = ticket + 1;
20 queryQ.add(pId, msg, ticket + 1000)
21 } } }
22 int respond(int qId,int pId,int msg){
23 /* Encode patient’s information */
24 responses.add(qId, pId*1000 + msg);
25 queryQ.remove(qId)
26 }
27 int retrieve(int qId) {
28 refining requires qId > 0
29 ensures result > 0 {
30 responses.get(qId)
31 } } }

32 service Doctor {
33 Queue topQ; Queue medQ; Queue lowQ;
34 int query(int pId, int msg) {
35 refining requires pId > 0 && msg >= 2
36 ensures result > 0 {
37 ticket = ticket + 1;
38 if (msg > 500) {
39 topQ.add(pId, msg, ticket + 2000)
40 } else if (msg > 250) {
41 medQ.add(pId, msg, ticket + 2000)
42 } else {
43 lowQ.add(pId, msg, ticket + 2000)
44 };
45 q.qId
46 } }
47 /* retrieve similar to Secretary’s */
48 }
49 service Patient {
50 int query(int pId, int msg) {
51 query(pId, msg)@Secretary
52 }
53 int retrieve(int qId) {
54 if ((qId/1000) == 1) {
55 retrieve(qId)@Secretary
56 } else if((qId/1000) == 2) {
57 retrieve(qId)@Doctor
58 } } }
59 client User{
60 int qid = query(101,3)@Patient;
61 retrieve(qid)@Patient
62 }

Fig. 3. An Example Tisa Implementation

Each web service has a name (w) representing that web service; thus web service
names can be thought of as web sites. (The mapping of web services to actual computers
is not specified in the language itself.) A web service can be thought of as a singleton
object; however, each web service has a separate address space and its methods can
only be called using a remote procedure call.

An example web service declaration for the service Patient appears on lines 49–
62 in Figure 3. This service contains two web-methods declaration, named query and
retrieve. The web-method query takes a patient Id and message as arguments and
returns a unique query Id generated according to the input arguments. The web-method
retrieve takes query Id as an argument and returns an answer message which en-
codes a patient Id. A client declares a name and runs an expression that is the main
expression of the program. We next explain class declarations and expressions.

Class Declarations. Class declarations may not be nested. Each class has a name
(c) and names its superclass (d), and may declare finite number of fields (field*) and
methods (meth*). Field declarations are written with a class name, giving the field’s
type, followed by a field name. Methods also have a C++ or Java-like syntax, although
their body is an expression.

Expressions. Tisa is an expression language. Thus the syntax for expressions includes
integer literals, various standard integer and logical operations, several standard OO
expressions and also some expressions that are specific to web services. The logical

338 H. Rajan et al.

specification ::= servicespec*
servicespec ::= service w { wmspec* }
wmspec ::= t m (form*) { se }
form ::= t var, where var �=thisSite
spec ::= requires sp ensures sp

se ::= sp | spec | se; se| form = se; se | m(sp*)@sp
| if (sp) { se } else { se }

sp ::= n | sp == sp | sp != sp | sp > sp | sp < sp | sp >= sp | sp <= sp
| sp + sp | sp - sp | sp * sp | ! sp | sp && sp | sp ‘||’ sp
| var | w

Fig. 4. Syntax for Writing Specifications in Tisa

operations operate on integers, with 0 representing false, and all other integer values
representing true. An if (e1) { e2 } else { e3 } expression tests if e1 is non-
zero; if so it returns the value of e2, otherwise it returns the value of e3.

The standard OO expressions include object construction (new c()), variable deref-
erence (var, including this), field dereference (e.f), null, cast (cast t e), assign-
ment to a field (e1.f = e2), sequencing (e1; e2), casts and a definition block (t var =
e1; e2). The other OO expressions are standard [25,22].

There are three new expressions: web service names, web-method calls, and refining
statements. Web service names of form w are constants. A web-method call has the
form (m(e*)@ew), where the expression following the at-sign (ew) denotes the name
of the web service name that will execute the web-method call named m with formals
e*. A refining statement, of the form refining spec { e }, is used in imple-
menting Tisa’s greybox specifications (see below). It executes the expression e, which
is supposed to satisfy the specification spec.

2.2 Specification Constructs

The syntax for writing specifications in Tisa is shown in Figure 4. In this figure, all
nonterminals that are used but not defined are the same as in Figure 2. Specifications
consist of several service specifications (servicespec). (Since we only permit integers
to be sent to and returned from web-method calls, we omit class declarations from
specifications.) A service specification may contain finite number of web-method spec-
ifications (wmspec). All fields are hidden, so field declarations are not allowed in a ser-
vice specification. The body of a web-method specification contains a side-effect free
expression (se). Many expressions from Figure 2 also appear as such side-effect free
expressions, but not field-related operations, method calls, and isNull. Web-method
call expressions are allowed and so are local variable definition expressions.

The main new feature of specifications, borrowed from the refinement calculus and
the greybox approach, is the specification expression (spec). Such an expression hides
(abstracts from) a piece of code in a correct implementation. The most general form of
specification expression is requires sp1 ensures sp2, where sp1 is a precondition
expression and sp2 is a postcondition. Such a specification expression hides program
details by specifying that a correct implementation contains a refining expression
whose body expression, when started in a state that satisfies sp1, will terminate in a
state that satisfies sp2 [15].

In examples we use two sugared forms of specification expression. The expression
preserve sp is sugar for requires sp ensures sp and establish sp is sugar
for requires 1 ensures sp.

An example greybox specification of the web service Patient appears in Figure 1.
The specification of the web-method query appears on line 26, and specifies (and

Tisa: A Language Design and Modular Verification Technique for Web Services 339

thus exposes) all the code for that method. The specification of retrieve hides a
bit more in its preserve expression (line 29). But it also exposes code that makes
a web-method call retrieve to the Secretary or Doctor. With these greybox
specifications, enough details are exposed about what the service does when invoking
other services, which makes it feasible to show compliance to the HIPAA policies.

2.3 Constructs for Specifying Policies

Our simple policy specification language is similar to Linear Temporal Logic [14].

Φ(specification) ::= P(specification) | ¬φ | φ1 ∧ φ2 | φ1 U φ2 | X φ

The language specifies histories that are sequences of web method calls. For a given
specification, a policy can be an atomic proposition in P(specification); a negation of a
policy or boolean combination of policies. For simplicity here we take the set of legal
propositionsP(specification) to be all legal web-method calls in the given specification.
This set can be statically computed from the specification against which the policy is to
be verified by traversing the abstract syntax tree of the specification up to the depth of
web-method specifications. The operator U is read as “until” and X as “next.” φ1Uφ2

states that policy φ2 must be satisfied after policy φ1 is satisfied along all executions of
the service. Xφ states that policy φ must be satisfied in the next state (i.e., at the next
web method call). We also use the following common abbreviations:

φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) φ1 → φ2 ≡ ¬φ1 ∨ φ2 true ≡ φ ∨ ¬φ
false ≡ ¬true F φ ≡ true U φ G φ ≡ ¬F ¬φ

The constant true means that the service does not have any obligation. The operator F
is read as “eventually" and G as “always". Below we present two sample policies for
our healthcare service example.

φ1 = G(query@Patient ∧ (XF(query@Secretary ∨ XFquery@Doctor)))
φ2 = G(retrieve@Patient ∧ XFretrieve@Doctor → ¬ XFretrieve@Secretary)

The policy φ1 states that whenever there is a web-method call query@Patient, there
is eventually a web-method call query at one of the sites Secretary or Doctor.
This policy says that a query is eventually delivered to one of the healthcare providers.
The policy φ2 encodes the constraint that a health answer that comes from doctors goes
directly to the patient, and is never forwarded to secretaries. In terms of the service
specification, if there is a web-method call retrieve@Patient and it is followed
by a web-method call retrieve@Doctor, then there is never a web-method call
retrieve at the site Secretary in the same trace.

2.4 Dynamic Semantics of Tisa’s Constructs

This section defines a small step operational semantics for Tisa programs (adapted from
Clifton’s work [25]). In the semantics, all declarations are formed into a single class
table that maps class names and web service names to class and service declarations,
respectively. However, despite this global view of declarations, the model of storage is
distributed, with each web service having an independent store.

340 H. Rajan et al.

Evaluation relation: ↪→: Γ → Γ

(WEB METHOD CALL)
Π = {vari : var ti | 1 ≤ i ≤ n}∪−{this : var c2}∪−{thisSite : var Site} ν = frame ρ Π

ρ = {vari �→ vi | 1 ≤ i ≤ n} ⊕ (this �→ loc) ⊕ (thisSite �→ w)
(loc, c2, t m(t1var1, . . . tnvarn){e}) = find(w, m)

〈E[m(v1, . . . , vn)@w], J, S〉 ↪→ 〈E[under e], ν + J, S〉

(REFINING)
n �= 0

〈
E[refining requires n ensures e′ {e′′}], J, S

〉
↪→ 〈

E[evalbody e′′e′], J, S
〉

(EVALBODY)
ρ = envOf (ν) Π = tenvOf (ν) w = thisSite(ν) t = typeOf (v, S, w)
ρ′ = Π∪−{result : v} Π′ = Π∪−{result : var t} ν′ = frame ρ′ Π′
〈
E[evalbody v e′], ν + J, S

〉
↪→ 〈

E[under evalpost v e′], ν′ + ν + J, S
〉

(EVALPOST)
n �= 0

〈E[evalpost v n], J, S〉 ↪→ 〈E[v], J, S〉

(UNDER)
〈E[under v], ν + J, S〉

↪→ 〈E[v], J, S〉

Fig. 5. Operational semantics of Tisa. Standard OO rules are omitted.

The operational semantics relies on four expressions, not part of Tisa’s surface syn-
tax, to record final or intermediate states of the computation. The loc expression repre-
sents locations in the store. The under expression is used as a way to mark when the
evaluation stack needs popping. The evalbody and evalpost are used in evalua-
tion of specification expressions. The three exceptions NullPointerException,
ClassCastException, and SpecException record various problems orthogo-
nal to the type system.

A configuration in the semantics contains an expression (e), an evaluation stack (J),
and a store (S). The current web service name is maintained in the evaluation stack
under the name thisSite. The auxiliary function thisSite extracts the current web
service name from a stack frame. Stacks are an ordered list of frames, each frame
recording the static environment, ρ, and a type environment. (The type environment,
Π , is only used in the type soundness proof.) The static environment ρ maps identifiers
to values. A value is a number, a web service name (site), a location, or null. Stores
are maps from locations to storable values, which are object records. Object records
have a class and also a map from field names to values.

The semantics is presented as a set of evaluation contexts E and an one-step reduc-
tion relation [26] that acts on the position in the overall expression identified by the
evaluation context as shown in Figure 5. Standard OO rules are presented in our techni-
cal report [27]. The key rule is (WEB METHOD CALL), which uses the auxiliary function
find to retrieve the body of the web method from a class table CT implicitly used by the
semantics. It creates the frame for execution of the web method with necessary static
environment and type environment and starts execution of the web method body. The
under e expression is used in the resulting configuration to mark that the stack should
be popped when the evaluation of e is finished.

Evaluation of a refining expression involves 3 steps. First the precondition is
evaluated (due to the context rules). If the precondition is non-zero (i.e., true), then the
next configuration is evalbody e′′ e′, where e′′ is the body and e′ is the postcondition

Tisa: A Language Design and Modular Verification Technique for Web Services 341

(regarded as an expression). The body is then evaluated; if it yields a value v, then
the next configuration is under evalpost v e′, with a new stack frame that binds
result to v pushed on the stack. The type of result in the type environment Π ′ is
determined by the auxiliary function typeOf . Finally, the (EVALPOST) rule checks that
the postcondition is true and uses the body’s value as the value of the expression.

3 Verification of Policies in Tisa

A key contribution of our work is to decouple, with Tisa’s language design, the verifi-
cation of whether a policy is satisfied by a web service implementation into two veri-
fication tasks that can proceed modularly and independently. The first task is to verify
whether a policy is satisfied by the service specification. The second task is to ver-
ify whether the service specification is satisfied by the service implementation. Three
benefits follow from this modular approach. First, the service implementation need not
be visible to clients, as a client uses the specification to determine whether their de-
sired policies hold. Thus, our approach achieves modularity for service implementa-
tions. Second, regardless of the number of clients, the second verification task must
only be done once; thus our approach is likely to be scalable for web service providers.
Last but not the least, policy verification is performed on the (generally smaller) speci-
fication. Thus, our approach has efficiency benefits for policy verification.

Determining whether a policy is satisfied by the specification can be reduced to a
standard model checking problem [14]. We claim no contribution here; rather, the nov-
elty of our approach is in a combination of these two techniques, enabled by a careful
language design. To show the feasibility of applying ideas from model checking [14]
and refinement calculus [12,13] to our problem, in the rest of this section we describe
our techniques for verifying policies and refinement.

3.1 Verifying Policies

We adopt the standard automata-theoretic approach for verifying linear temporal logic
formulas proposed by Vardi and Wolper [28] to verify policies in Tisa. Following Vardi
and Wolper [28], a policy φ ∈ Φ(S) is viewed as a finite-state acceptor and a specifica-
tion S as a finite-state generator of expression execution histories. Thus the specification
S satisfies policy φ if every (potentially infinite) history generated by S is accepted by
φ, in other words, if S ∩ ¬φ is empty.

Figure 6 shows main parts of an algorithm for constructing a finite-state machine
F(S) = (Z, z0, R, Δ) from a Tisa specification S. Here, Z is a finite set of states, z0

is the initial state, R is a total accessibility relation, Δ : Z → 2P(S), which determines
how truth values are assigned to propositions in each state [28, pp. 5]. All rules make
use of unions for joining set of states (Z) and disjoint union (�) for joining propositions.
Rules for standard OO expressions are omitted.

The (IF EXP FSM) rule demonstrates creation of non-deterministic transitions in the
state machine. It computes the FSMs corresponding to the true branch and the false
branch of the if expression with initial states z′ and z′′ and joins these two FSMs to
make a new FSM with initial state z. Corresponding to the state z′, which corresponds

342 H. Rajan et al.

Production relation: NT � se � (Z, z0, R, Δ), NT where NT ∈ NT = W × M → Z

(IF EXP FSM)
NT � se′ � (Z′, z′, R′, Δ′), NT′ NT′ � se′′ � (Z′′, z′′, R′′, Δ′′), NT′′ Z = Z′ ∪ Z′′ ∪ {z}

Δ = Δ
′ � Δ

′′ � {(z′
, {sp}), (z′′

, {!sp})} R = R
′ ∪ R

′′ ∪ {(z, z
′
), (z, z

′′
)}

NT � if (sp) {se
′} else {se

′′} � (Z, z, R, Δ), NT′′

(WEB METHOD CALL FSM 1)
¬(∃z :: NT(w, m) = z)

NT′ = NT ∪ ((w, m), z) m(t1, . . . tn){se} = find(w, m) NT′ � se � (Z′, z′, R′, Δ′), NT′′

Z = Z′ ∪ {z} Δ = Δ′ � {(z′, {m@w})} R = R′ ∪ {(z, z′)}
NT � m(v1, . . . , vn)@w � (Z, z, R, Δ), NT′′

(WEB METHOD CALL FSM 2)
z = NT(w, m)

NT � m(v1, . . . , vn)@w � ({z}, z, {}, {}), NT

(SPEC EXP FSM)
Z = {z1, z2, z3, z4} R = {(z, z1), (z, z2), (z1, z3), (z1, z4), (z3, z

′
)}

Δpre = {(z1, {sp1}), (z2, {!sp1})} Δ = Δpre � {(z3, {sp1, sp2}), (z4, {sp1, !sp2})}
NT � requires sp1 ensures sp2 � (Z, z, R, Δ), NT

Fig. 6. Finite-state machine construction, built from expressions in a specification

to the true branch, the proposition sp is added to Δ, which corresponds to the condi-
tional expression evaluating to the truth value true. Similarly for the state z′′, which
corresponds to the false branch, the proposition !sp is added to Δ, which corresponds
to the conditional expression evaluating to the truth value false.

The (SPEC EXP FSM) rule models the cases for satisfaction of precondition and post-
condition. The (WEB METHOD CALL FSM) rules make use of a table NT that maps pairs
of web service names and method names (w, m) to states. This table is used to account
for recursion in web-method calls. Finally, the finite-state machine for a service spec-
ification is created by first creating finite-state machines for each of its web-method
specifications as if it is being called and by joining them using an extra state that be-
comes the new initial state.

Given the FSM F(S) we construct a Büchi automaton [29], B(¬φ) for the policy
φ ∈ Φ(S) as shown by Vardi and Wolper [28]. Specification S satisfies the policy φ if
F(S) ∩ B(¬φ) is empty.

3.2 Verifying Refinement

Our technique for checking whether a program refines a specification in Tisa is similar
to the work of Shaner, Leavens and Naumann [15]. An implementation refines a specifi-
cation if it meets two criteria: first, that the code and specification are structurally similar
and second, that the body of every refining expression obeys the specification it is
refining. By structural similarity we mean that for every non-specification expression
in the specification, the implementation has the identical expression at that position in
the code. This is checked in a top-down manner as shown in Figure 7. The operational
semantics rules (REFINING), (EVALBODY) and (EVALPOST) ensure that the body of every
refining expression obeys the specification it is refining.

Tisa: A Language Design and Modular Verification Technique for Web Services 343

(PROGRAM REF)
∀i ∈ {1..m} ∃j ∈ {1...n} declj ∈ servicedecl ∧ servicespeci � declj

servicespec1 . . . servicespecm � decl1 . . . decln

(SP REF)
sp = e

sp � e

(SERVICE REF)
∀i ∈ {1..m} ∃j ∈ {1...n} wmspeci � methj

servicew {wmspec1 . . . wmspecn}
� servicew {field1 . . . fieldf meth1 . . . methn}

(WEB METHOD REF)
se � e

t m(form1 . . . formn) {se}
� t m(form1 . . . formn) {e}

(SEQ EXP REF)
se1 � e1 se2 � e2

se1; se2
� e1; e2

(IF EXP REF)
sp � eb seT � eT seF � eF

if (sp) {seT } else {seF }
� if (eb) {eT } else {eF }

(DEF EXP REF)
sp � einit se � ebody

form = sp;se
� form = einit;ebody

(WEBCALL EXP REF)
(∀i ∈ {1..n} :: spi � ei) spw � ew

m(sp1, . . . , spn)@spw � m(e1, . . . , en)@ew

(SPEC EXP REF)
(requires sp1 ensures sp2) = spec

requires sp1 ensures sp2 � refining spec {e}

Fig. 7. Inference rules for proving Tisa refinement

3.3 Soundness of Verification Technique

The proof of soundness of our verification technique uses the following three defini-
tions.

Definition 1 (A Path for S). Let S be a specification and F(S) = (Z, z0, R, Δ)
be the FSM for S constructed using algorithm shown in Figure 6. A path t for S is a
(possibly infinite) sequence of pairs (zi, Δ(zi)) starting with pair (z0, Δ(z0)), where
for each i ≥ 0, zi ∈ Z and (zi, zi+1) ∈ R.

Definition 2 (A Path for P). Let P be a program and CFG(P) = (Z ′, z′0, R′, Δ′)
be an annotated control flow graph for P , where Z ′ is the set of nodes representing
expressions in program, R′ is the control flow relation between nodes, and Δ′ : Z ′ →
2P(P) is such that for each z′i ∈ Z ′, if it represents a web-method call expression
m(..)@w then (z′i, {m@w}) ∈ Δ′. A path t′ for P is a (possibly infinite) sequence of
pairs (z′i, Δ(z′i)) starting with pair (z′0, Δ(z′0)), where for each i ≥ 0, z′i ∈ Z and
(z′i, z

′
i+1) ∈ R′.

Definition 3 (Path Refinement). Let t be a path for S and t′ be a path for P . Then t
is refined by t′, written t � t′, just when one of the following holds:

– t ≡ t′ i.e., for each i ≥ 0, (zi, δi) ∈ t and (z′i, δ
′
i) ∈ t′ implies zi = z′i and δi = δ′i,

– t = (z, δ) + t1 and t′ = (z′, δ′) + t′1 and δ ⇒ δ′ and t1 � t′1,
– t = (z, δ)+ t1 and t′ = (z′1, δ

′
1) + . . . + (z′n, δ′n) + t′1 and δ ⇒ (δ′1 � . . .� δ′n) and

t1 � t′1, or
– t = t1 + t2 and t′ = t′1 + t′2 and t1 � t′1 and t2 � t′2.

Lemma 1. Let P ∈ program and S ∈ specification be given. If P refines S, then for
each path t′ for P there exists a path t for S such that t � t′.

Proof Sketch: The proof for this lemma follows from structural induction on the refine-
ment rules shown in Figure 7. Details are contained in our technical report [27].

344 H. Rajan et al.

Lemma 2. Given a specification S and a policy φ ∈ Φ(S), the automaton F(S) ∩
B(¬φ) accepts a language, which is empty when the specification satisfies the policy.

The proof of this lemma follows from standard proofs in model checking, in particular,
from Lemma 3.1, Theorem 2.1 and Theorem 3.3. given by Vardi and Wolper [28, pp.
4,6]. Details are contained in our technical report [27].

Theorem 1. Let S be a specification, φ be a policy in Φ(S), and P be a program. Let
φ be satisfied by the specification S and P be a refinement of S (as defined in Figure 7).
Then the policy φ is satisfied by the program P .

Proof Sketch: The proof follows from lemma 1 and 2. From lemma 1, we have that
each path in the program refines a path in the specification. From lemma 2 and the
assumptions of this theorem, we have that φ is satisfied on all paths in S. Thus, φ,
which is written over P(S), is also satisfied for P .

4 Related Work

In this section, we discuss techniques that are closely related to our approach.

Greybox specifications. We are not the first to consider greybox specifications [11] as
a solution for verification problems. Barnett and Schulte [30,31] have considered using
greybox specifications written in AsmL [32] for verifying contracts for .NET frame-
work. Wasserman and Blum [33] also use a restricted form of greybox specifications
for verification. Tyler and Soundarajan [34] and most recently Shaner, Leavens, and
Naumann [15] have used greybox specifications for verification of methods that make
mandatory calls to other dynamically-dispatched methods. Compared to these related
ideas, to the best of our knowledge our work is the first to consider greybox specifica-
tions as a mechanism to decouple verification of web services without exposing all of
their implementation details. Secondly, most of these, e.g. Shaner, Leavens, and Nau-
mann [15] use the refinement of Hoare logic as their underlying foundation. This was
insufficient to tackle the problem that we address, which required showing refinement
of (a variant of) linear temporal logic. Thus adaptation of much of their work was not
possible, although we were able to adapt the notion of structural refinement.

Specification and Verification Techniques for Web Services. The technique proposed
by Bravetti and Zavattaro [35] for determining whether the behavioral contract of a
service correctly refines its desired requirements in a composition of web-services is
closely related and complementary to this work. The main difference between this work
and the current work is that we verify refinement of greybox specifications by service
implementations that allows us to reason about temporal policies, while hiding much
of the implementation. However, we foresee a combination of our work and Bravetti
and Zavattaro’s work for determining fitness of a service implementation in a desired
composition of web-services.

Some approaches have recently been proposed to verify contracts for web services,
as seen in the works of Acciai and Boreale [36], Kuo et al. [8], Baresi et al. [6],
Barbon et al. [5], etc. These ideas focus on verifying the behavioral contracts as defined
by the externally visible interface of the web services, whereas our work provides a

Tisa: A Language Design and Modular Verification Technique for Web Services 345

principled, modular technique for verifying such policies that require inspecting the
web service implementation to a limited extent.

Castagna, Gesbert and Padovani present a formalism for specifying web services
based on the notion of “filtering” the possible behaviors of an existing web service to
conform to the behavior of some contract [7]. These filters take the form of coercions
that limit when and how an available service may be consumed. These coercions per-
mits contract subtyping and support reasoning in a language-independent way about the
sequence of reads and writes performed between service clients and providers. Their
contracts are intended to constrain the usage scenarios of a web service, whereas the
present work describes a modular way to specify the observable behaviors that occur
inside service implementations.

Bartoletti et al. [37] provide a formalization of web service composition in order to
reason about the security properties provided by connected services. While they ignore
policy language details, our work shows how the amount of overhead used to relate
specifications to policies depends on the level of detail in the policy language. Further-
more, we believe greybox reasoning grants real benefits in readability and modularity
over their type system. We view later work developing executable specifications for
design of web services [38] as possible future work for Tisa.

Another approach [39] proposes an architecture to enforce these access policies at
component web services, but again the work is tightly coupled to the WS-SensFlow
and Axis implementations. Srivatsa et al. [40] propose an Access Control system for
composite services which does not take care of the Trust in the resulting service oriented
architecture. Skalka and Wang [41] introduced a trust but verify framework which is an
access control system for web services, but they do not provide temporal reasoning for
the verification of policies. By recording the sequence of program events in temporal
order, Skalka and Smith [42] are able to verify the policies such as whether the events
were happened in a reasonable order, but the mechanism does not support decoupling
the model and the implementation. Other approaches [43,44] either do not have a formal
model supporting them or are tightly coupled with implementations.

Future Work and Conclusions

We have designed Tisa to be a small core language to clearly communicate how it al-
lows users to balance compliance and modularity in web service specification. However,
our desire for simplicity and clarity led us to leave for future work many practical and
useful extensions. The most important future work in the area of Tisa’s semantics is to
investigate refinement of information flow properties. It would also be interesting to in-
vestigate the utility of Tisa’s specification forms for reasoning about the composition of
web services.

Verifying web services is an important problem [7,5,6,8,9], which is crucial for wider
adoption of this improved modularization technique that enables new integration possi-
bilities. There are several techniques for verifying web-services using behavioral inter-
faces, but none facilitates verification that requires access to internal states of the ser-
vice. To that end, the key contribution of this work is to identify the conflict between
verification of temporal properties and modularity requirements in web services. Our lan-
guage design, Tisa, addresses these challenges. It allows service providers to demonstrate

346 H. Rajan et al.

compliance to policies expressed in an LTL-like language [14]. We also showed that poli-
cies in Tisa can be verified by clients using just the specification. Furthermore, refinement
of specifications by program ensures that conclusion drawn from verifying policies are
valid for Tisa programs. Another key benefit of Tisa is that its greybox specifications [11]
allow service providers to encapsulate changeable implementation details by hiding them
using a combination of specandrefining expressions. Thus, Tisa provides significant
modularity benefits while balancing the verification needs.

References

1. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing: Introduction. Commun.
ACM 46(10), 24–28 (2003)

2. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services description lan-
guage (WSDL) 1.1. Technical report, World Wide Web Consortium (March 2001)

3. Barth, A., Mitchell, J., Datta, A., Sundaram, S.: Privacy and utility in business processes. In:
CSF 2007, pp. 279–294 (2007)

4. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral interface
specification language for Java. SIGSOFT Softw. Eng. Notes 31(3), 1–38 (2006)

5. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time monitoring of instances and
classes of web service compositions. In: ICWS 2006, pp. 63–71 (2006)

6. Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services. In: ICSOC 2004,
pp. 193–202 (2004)

7. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services. In: POPL
2008, pp. 261–272 (2008)

8. Kuo, D., Fekete, A., Greenfield, P., Nepal, S., Zic, J., Parastatidis, S., Webber, J.: Expressing
and reasoning about service contracts in service-oriented computing. In: ICWS 2006, pp.
915–918 (2006)

9. Wada, H., Suzuki, J., Oba, K.: Modeling non-functional aspects in service oriented architec-
ture. In: IEEE International Conference on Services Computing (SCC 2006), pp. 222–229
(2006)

10. Parnas, D.L.: On the criteria to be used in decomposing systems into modules 15(12), 1053–
1058 (1972)

11. Büchi, M., Weck, W.: The greybox approach: When blackbox specifications hide too much.
Technical Report 297, Turku Center for Computer Science (August 1999)

12. Back, R.J.R., von Wright, J.: Refinement calculus, part i: sequential nondeterministic pro-
grams. In: REX workshop, pp. 42–66 (1990)

13. Morris, J.M.: A theoretical basis for stepwise refinement and the programming calculus. Sci.
Comput. Program. 9(3), 287–306 (1987)

14. Edmund, M., Clarke, J., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge
(1999)

15. Shaner, S.M., Leavens, G.T., Naumann, D.A.: Modular verification of higher-order methods
with mandatory calls specified by model programs. In: OOPSLA 2007, pp. 351–368 (2007)

16. Necula, G.C.: Proof-carrying code. In: POPL 1997, pp. 106–119 (1997)
17. Rajan, H., Hosamani, M.: Tisa: Towards trustworthy services in a service-oriented architec-

ture. IEEE Transactions on Services Computing (SOC) 1(2) (2008)
18. Hosamani, M., Narayanappa, H., Rajan, H.: How to trust a web service monitor deployed in

an untrusted environment? In: NWESP 2007: Proceedings of the Third International Confer-
ence on Next Generation Web Services Practices, pp. 79–84 (2007)

19. Liskov, B., Scheifler, R.: Guardians and actions: Linguistic support for robust, distributed
programs. TOPLAS 5(3), 381–404 (1983)

Tisa: A Language Design and Modular Verification Technique for Web Services 347

20. Gordon, A.D., Pucella, R.: Validating a web service security abstraction by typing. Formal
Aspects of Computing 17(3), 277–318 (2005)

21. Rajan, H., Leavens, G.T.: Ptolemy: A language with quantified typed events. In: Vitek, J.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 155–179. Springer, Heidelberg (2008)

22. Clifton, C., Leavens, G.T.: MiniMAO1: Investigating the semantics of proceed. Science of
Computer Programming 63(3), 321–374 (2006)

23. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal core calculus for Java and
GJ. In: OOPSLA 1999, pp. 132–146 (1999)

24. Flatt, M., Krishnamurthi, S., Felleisen, M.: A programmer’s reduction semantics for classes
and mixins. In: Formal Syntax and Semantics of Java, pp. 241–269 (1999)

25. Clifton, C.: A design discipline and language features for modular reasoning in aspect-
oriented programs. Technical Report 05-15, Iowa State University (Jul 2005)

26. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information and Com-
putation 115(1), 38–94 (1994)

27. Rajan, H., Tao, J., Shaner, S.M., Leavens, G.T.: Reconciling trust and modularity in web
services. Technical Report 08-07, Dept. of Computer Sc., Iowa State U. (July 2008)

28. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.
In: Proceedings of the First Symposium on Logic in Computer Science, pp. 322–331 (1986)

29. Buchi, J.: On a decision method in restricted second order arithmetic. In: Proc. Internat.
Congr. Logic, Method. and Philos. Sci., pp. 1–12 (1960)

30. Barnett, M., Schulte, W.: Runtime verification of .net contracts. Journal of Systems and Soft-
ware 65(3), 199–208 (2003)

31. Barnett, M., Schulte, W.: Spying on components: A runtime verification technique. In: Work-
shop on Specification and Verification of Component-Based Systems (2001)

32. Barnett, M., Schulte, W.: The ABCs of specification: AsmL, Behavior, and Components.
Informatica 25(4), 517–526 (2001)

33. Wasserman, H., Blum, M.: Software reliability via run-time result-checking. J. ACM 44(6),
826–849 (1997)

34. Tyler, B., Soundarajan, N.: Black-box testing of grey-box behavior. In: Petrenko, A., Ulrich,
A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 1–14. Springer, Heidelberg (2004)

35. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography conformance and
contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp.
34–50. Springer, Heidelberg (2007)

36. Acciai, L., Boreale, M.: XPi: A typed process calculus for XML messaging. Science of Com-
puter Programming 71(2), 110–143 (2008)

37. Bartoletti, M., Degano, P., Ferrari, G.L.: Types and effects for secure service orchestration.
In: CSFW, pp. 57–69 (2006)

38. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Semantics-based design for secure web
services. IEEE Trans. Software Eng. 34(1), 33–49 (2008)

39. Wei, J., Singaravelu, L., Pu, C.: Guarding sensitive information streams through the jungle
of composite web services. In: ICWS 2007, pp. 455–462 (2007)

40. Srivatsa, M., Iyengar, A., Mikalsen, T., Rouvellou, I., Yin, J.: An access control system for
web service compositions. In: ICWS 2007, pp. 1–8 (2007)

41. Skalka, C., Wang, X.S.: Trust but verify: authorization for web services. In: SWS, pp. 47–55
(2004)

42. Skalka, C., Smith, S.F.: History effects and verification. In: Chin, W.-N. (ed.) APLAS 2004.
LNCS, vol. 3302, pp. 107–128. Springer, Heidelberg (2004)

43. Biskup, J., Carminati, B., Ferrari, E., Muller, F., Wortmann, S.: Towards secure execution
orders for composite web services. In: ICWS 2007, pp. 489–496 (2007)

44. Vorobiev, A., Han, J.: Specifying dynamic security properties of web service based systems.
In: SKG 2006, p. 34 (2006)

Automatic Parallelization with Separation Logic

Mohammad Raza, Cristiano Calcagno, and Philippa Gardner

Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2AZ, UK
{mraza,ccris,pg}@doc.ic.ac.uk

Abstract. Separation logic is a recent approach to the analysis of pointer pro-
grams in which resource separation is expressed with a logical connective in as-
sertions that describe the state at any given point in the program. We extend this
approach to express properties of memory separation between different points in
the program, and present an algorithm for determining independences between
program statements which can be used for parallelization.

1 Introduction

Automatic parallelization techniques are generally based on a detection of indepen-
dence between statements in a program, in the sense that two statements accessing
separate resources can be executed in parallel. Such techniques have been extensively
studied and successfully applied for programs with simple data types and arrays, but
there has been limited progress for programs that manipulate pointers and dynamic
data structures [8,9,12]. Separation logic is a recent approach to the study of pointer
programs [15] in which the separation of resource is expressed with the logical con-
nective ‘∗’. This approach has been implemented in many program analysis tools for
the purposes of shape analysis and safety verification [17,4,1]. However, these analyses
cannot be used for program parallelization, because the ∗ connective only expresses
separation of memory at a single program point and therefore cannot determine inde-
pendences between statements in a program. In this paper we extend the separation logic
approach to express memory separation properties throughout a program’s lifetime.

The basic idea is to extend separation logic formulae with labels, which are used
to keep track of memory regions through an execution. Symbolic execution based on
separation logic [2,5] is extended so that occurrences of the same label, even in differ-
ent formulae referring to different program points, refer to the same memory locations
throughout the execution. However, the symbolic execution mechanism is such that
memory locations cannot always be represented by the same label through an entire
execution: fresh labels have to be introduced during the execution to replace existing
labels and the new labels may represent memory regions that overlap with old ones.
For this reason, we keep an intersection log which relates labels that may represent
possibly overlapping memory regions. To keep track of the memory locations that are
accessed by a command, we keep a footprint log which records the labels of the part of
the call-site formula that the command depends on. These labels are clearly determined
for primitive commands. For procedure calls and while loops, the labels are determined

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 348–362, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Automatic Parallelization with Separation Logic 349

by a frame inference method [2] that keeps track of the labels by using a form of label
respecting entailment between formulae.

Our approach fits in the line of work of using static analysis to detect independent
statements in programs that manipulate pointer data structures [9,7,10,12,13]. Our de-
parture point is the use of separation logic-based shape analysis. A logic-based approach
is also advocated in [10], where aliasing axioms and theorem proving are used to detect
independence. However, this method has difficulty handling structural modifications to
the data structure, which do not cause problems in our case. Our method also does not
rely on reachability properties of data structures, as in [9]. Such approaches encounter
difficulties with data structure ‘segments’, such as non-nil-terminated list segments, and
the situation is even worse when there is internal sharing within the data structure, as
in the case of doubly linked lists. Our approach does not suffer from these inherent
limitations as it is based on detecting the footprints of statements, that is, the cells that
are actually accessed rather than all the ones that may possibly be accessed. We illus-
trate this on a program that converts a singly linked list segment into a doubly linked
segment. A somewhat different approach to parallelization is proposed in [16], where
commutativity analysis is used for identifying operations that produce the same output
regardless of the order of execution. This method works together with an independence
analysis, and works better depending on the strength of the independence analysis, and
it will therefore be interesting to explore its combination with our method in future
work.

In this paper we illustrate our method in a restricted setting adapted from [2], work-
ing with simple list and tree formulae. Our proposed method is engineered so that it
can be applied as a post-processing phase starting from the output of an existing shape
analysis based on separation logic, and requires only minor changes to existing sym-
bolic execution engines. We begin in the next section by introducing labelled symbolic
heaps, which are standard symbolic heap formulae extended with labels. In the next
section we describe the programming language we work with and an intermediate lan-
guage which is actually used in the analysis. We then describe the extended symbolic
execution algorithm for determining independences, and discuss examples. In the fol-
lowing section we describe the frame inference method that keeps track of the labels
in the inferred frame axiom. In the final section we demonstrate the soundness of the
method with respect to an action trace semantics of programs.

2 Labelled Symbolic Heaps

The concrete heap model is based on a set of fields Fields, and disjoint sets Loc of
locations and Val of non-addressable values, with nil ∈ Val. We assume a finite set
Var of program variables and an infinite set Var′ of primed variables. Primed variables
will not be used in programs, only within the symbolic heaps where they will be implic-
itly existentially quantified. We then set Heaps = Loc ⇀fin (Fields→ Val ∪ Loc)
and Stacks = (Var ∪ Var′) → Val ∪ Loc. We work with a class of separation logic
formulae called symbolic heaps, as described in [2,5], except that we introduce labels,
l ∈ Lab, on the spatial assertions in symbolic heaps.

350 M. Raza, C. Calcagno, and P. Gardner

x, y, .. ∈ Var program variables
x′, y′, .. ∈ Var′ primed variables
l, k.. ∈ Lab labels

f1, f2, .. ∈ Fields fields

E,F ::= nil | x | x′ expressions
ρ ::= f1 : E1, ..., fk : Ek record expressions
Π ::= true | E = E | E �= E | Π ∧Π pure assertions
S ::= E �→ [ρ] | ls(E,F) | dls(Ef , Eb, Ff , Fb) | tree(E) simple spatial assertions
Σ ::= emp | 〈S〉l | Σ ∗Σ labelled spatial assertions
SH ::= Π ��Σ symbolic heaps

The simple spatial assertions we consider in this paper are for list segments, doubly
linked list segments and binary trees, the formal semantics of which are given below.
Every simple spatial assertion (conjunct) in a symbolic heap has a label, which shall
be used to keep track of the part of the heap that the conjunct is describing. The empty
label • ∈ Lab shall be used in situations where the label is unspecified. Except for the
empty label, we require that every label has at most a unique occurrence in a symbolic
heap. We let L(Π ��Σ) denote the set of labels in the symbolic heap Π ��Σ.

Labels shall be interpreted in the context of a symbolic execution rather than on a
single symbolic heap. This is because they shall be used to relate the states at different
points through the execution of a program, and thus do not hold meaning on an individ-
ual state. The interpretation of symbolic heaps is therefore the standard one (ignoring
the labels), given by a forcing relation s, h |= A where s ∈ Stacks, h ∈ Heaps, and A
is a pure assertion, spatial assertion, or symbolic heap. We write h = h0 ∗h1 to indicate
that the domains of h0 and h1 are disjoint, and h is their graph union. We assume the
fields n, b, l, r ∈ Fields, where n is the next field for list segments, b is the back field
for doubly linked segments, and l and r are the left and right fields for trees.

�x�s = s(x) �x′
�s = s(x′) �nil�s = nil

s, h |= E1 = E2 iff �E1�s = �E2�s
s, h |= E1 �= E2 iff �E1�s �= �E2�s
s, h |= true always
s, h |= Π0 ∧Π1 iff s, h |= Π0 and s, h |= Π1

s, h |= 〈E0 �→ [f1 :E1,...,fk :Ek]〉l iff h = [�E0�s→ r] where r(fi) = �Ei�s for i ∈ 1..k
s, h |= 〈ls(E,F)〉l iff there is a linked list segment from E to F
s, h |= 〈dls(Ef , Eb, Ff , Fb)〉l iff there is a doubly linked list segment from Ef to Ff

with initial and final back pointers Eb and Fb

s, h |= 〈tree(E)〉l iff there is a tree at E
s, h |= emp iff h = ∅
s, h |= Σ0 ∗Σ1 iff ∃h0h1. h = h0 ∗ h1 and s, h0 |= Σ0 and s, h1 |= Σ1

s, h |= Π ��Σ iff ∃v.s(x′ �→v), h |= Π and s(x′ �→v), h |= Σ
where x′ is the collection of primed variables in Π |Σ

Automatic Parallelization with Separation Logic 351

The formal semantics of the data structure formulae is given as the least predicates
satisfying the following inductive definitions:

ls(E,F) ⇔ (E = F ∧ emp) ∨ (E �= F ∧ ∃y.E �→ [n : y] ∗ ls(y, F))
dls(Ef ,Eb,Ff ,Fb) ⇔ (Ef = Ff ∧Eb = Fb ∧ emp)∨

(Ef �= Ff ∧Eb �= Fb ∧ ∃y.Ef �→ [n : y, b : Eb] ∗ dls(y,Ef , Ff , Fb))
tree(E) ⇔ (E = nil ∧ emp) ∨ (∃x, y.E �→ [l : x, r : y] ∗ tree(x) ∗ tree(y))

3 Programming Language

We consider a standard programming language with procedures.

b ::= E = E | E �= E boolean expressions
A ::= x := E | x := E → f | E1 → f := E2 | new(x) atomic commands
c ::= i : A | i : f(

»
E1;

»
E2) | i : if b c1 c2 | i : while b c | c1; c2 indexed commands (i ∈ I)

p ::= . | f(#»x ; #»y) {local #»z ; c} ; p programs

A program is given by a number of procedure definitions. We assume that every
command i : c in a procedure body has a unique index i from some set of indices
I . We let I (c) be the set of indices of all command statements in c. In a procedure
with header f(#»x ; #»y), #»x = x1, .., xn are the variables not modified in the body, and
#»y = y1, .., ym are the variables that are. We assume that all variables occurring free
in the body are declared in the header. We define free(c) and mod(c) sets as the set of
free and modified variables of c. For atomic commands these are defined as usual. For
procedures we have free(f(#»x ; #»y)) = { #»x , #»y } and mod(f(#»x ; #»y)) = { #»y }.

For a given program, we assume that we have separation logic specifications for the
procedure calls and loop invariants for the while loops. These may be obtained from an
interprocedural shape analysis based on separation logic, such as that described in [4],
or could be given as annotations by hand [3]. Formally, a specification is represented
by a spec table, T : SH ⇀ P(SH), which is a partial function from symbolic heaps
to sets of symbolic heaps. A spec table T for a command represents the set of Hoare
triples in which, for every P ∈ dom(T), there is a triple with pre-condition P and post-
condition

∨
Q∈T (P) Q. In the case of while loops, the loop invariant may be given as

a set of symbolic heaps, the intended formula being the disjunction of all the symbolic
heaps in this set. For a while loop while b c with invariant S, we obtain the spec table
as the partial function that is only defined on symbolic heaps Π ��Σ ∈ S, and maps each
of these inputs to the set {¬b ∧Π ��Σ | Π ��Σ ∈ S}. Given these specifications, for our
analysis we shall consider an intermediate language for commands in which procedure
calls and while loops are replaced by specified commands, com[T], where T is a spec
table.

c ::= i : A | i : com[T] | i : if b c1 c2 | c1; c2

A com[T] command is some command which satisfies the specification given by T . We
assume that all symbolic heaps in the spec tables of specified commands have empty
labels. Atomic and specified commands may be referred to as basic commands, and
may be denoted by i : B. For any command c, we let Ib(c) be the set of indices of all
basic commands in c.

352 M. Raza, C. Calcagno, and P. Gardner

4 Independence Detection

In this section we describe the algorithm for determining when two statements in a given
program are independent in the sense that they do not access a common heap location
in any possible execution. The basic idea is to perform a symbolic execution [2] with
labelled symbolic heaps, in which the labels keep track of regions of memory through
the execution. The symbolic footprint of every program statement is recorded as the set
of labels which represent the memory regions that are accessed in the execution of that
statement. In order to determine independences between footprints, an intersection rela-
tion between labels needs to be maintained, which relates any two labels that represent
possibly overlapping regions of memory.

Formally, we define a symbolic state as a triple (Π ��Σ,F , I), where Π ��Σ is a la-
belled symbolic heap, F is a footprint log, and I is an intersection log. The footprint
log is as a partial function F : I ⇀ P(Lab) which maps indices of commands to
sets of labels which represent their footprint, and is updated for every command in-
dex when the command is encountered during symbolic execution. The intersection
log I ∈ P(P2(Lab)) is a set of unordered pairs of labels which determines a relation
between labels that represent possibly overlapping regions of the heap.

4.1 Symbolic Execution Rules

Symbolic execution is based on a set of operational and rearrangement rules which
determine the transformation of the symbolic states through the execution. The rules are
displayed in figure 1, where they should be read from top to bottom, and they employ
some expressions which we define below. The operational rules describe, for each kind
of command, the effect of the command on the symbolic heap on which it executes
safely. The footprint log is updated for the index of the command with the labels of the
accessed portion of the symbolic heap, and the intersection log is updated when fresh
labels are introduced that may possibly intersect with old ones. The first four rules are
those for the atomic commands, where the footprint log is updated with the label of the
accessed cell. The rules for mutation and lookup use the following definitions:

mutate(ρ, f, F) =

(
f : F, ρ′ if ρ = f : E,ρ′

f : F, ρ if f /∈ ρ
lookup(ρ, f) =

(
E if ρ = f : E, ρ′

x fresh if f /∈ ρ

In the case of allocation, a fresh label is introduced for the newly allocated cell, but
the intersection log is unchanged as the new label does not intersect with any old ones.

The last operational rule is for the specified commands. In this case the pre- and
post- conditions in the command’s spec table determine the transformation of the sym-
bolic heap. However, the assertion at the call-site may be larger than the command
pre-condition, since the pre-condition only describes the part of the heap that is ac-
cessed by the command. For this reason, the frame assertion needs to be discovered,
which is the part of the call-site heap that is not in the pre-condition of the command.
We describe the frame inference method in detail in section 6. For now, we use the
expression frame(Π ��Σ, Π1 ��Σ1) to denote the frame assertion obtained for call-site

Automatic Parallelization with Separation Logic 353

assertion Π ��Σ and pre-condition Π1 ��Σ1. The transformed symbolic heap is obtained
by the conjunction of the frame assertion with the post-condition. The frame inference
method ensures that the frame assertion preserves its labels from the call-site assertion.
The post-condition assertion, which has all empty labels in the spec table, is assigned
fresh non-empty labels with the expression freshlabs(Σ2, Σ

′
2), which means that Σ′

2 is
the formula Σ2 with fresh non-empty labels on all simple conjuncts.

As an example, consider the case where the call-site state is (〈x �→ [l : y, r : z]〉1 ∗
〈tree(y)〉2 ∗ 〈tree(z)〉3,F , I) and the specified command is a call to a procedure
which rotates a tree at y, having a spec table with pre- and post- condition 〈tree(y)〉•.
In this case the inferred frame assertion is 〈x �→ [l : y, r : z]〉1 ∗ 〈tree(z)〉3. The fresh
label 4 may be assigned to the post-condition, giving the transformed symbolic heap to
be 〈x �→ [l : y, r : z]〉1 ∗ 〈tree(y)〉4 ∗ 〈tree(z)〉3.

The footprint labels of the specified command are determined by the labels of the pre-
and post- condition assertions. In the example, the footprint of the procedure call will
be {2, 4}. Since fresh labels are introduced in the post-condition, the intersection log
should be updated with the information of which labels the new labels may possibly
intersect with. In the rule, we use the expression relFresh(L1, L2, I) to update the
intersection log I when a fresh set of labels L1 is introduced in such a way that any
label in L1 may possibly intersect with any label in the set L2, or with any label that
intersects with some label in L2 according to I.

relFresh(L1, L2, I) = I ∪ {{l1, l} | l1 ∈ L1 ∧ (l ∈ L2 ∨ ∃l′ ∈ L2. {l, l′} ∈ I)}

In our example, if I = {{1, 5} , {2, 5} , {3, 5}} then the transformed intersection log
is given by relFresh({4} , {2} , I) = {{1, 5} , {2, 5} , {3, 5} , {4, 2} , {4, 5}}, meaning
that the fresh label 4 possibly intersects with 2 and everything that 2 was already pos-
sibly intersecting with in I. Note that this example shows that the relation determined
by the intersection log is not transitive. The intended relation is of course reflexive and
symmetric, and this is taken into account in the independence detection algorithm.

The rearrangement rules are needed to make an expression E explicit in the symbolic
heap so that an operational rule for a command that accesses the heap cell at E can be
applied. Apart from the first simple substitution rule, these are basically unfolding rules
for each of the inductively defined data structure predicates, where fresh labels in the
unfolding are related to the original label using relFresh.

4.2 Independence Detection Algorithm

The independence detection algorithm is given in Figure 2. Given a command c with
a set of preconditions Pre, the getInd(c,Pre) function returns a set Ind ⊆ P2(Ib(c))
such that {i, j} ∈ Ind implies that the basic statements with indices i and j are indepen-
dent. For a conditional i : if b c1 c2, we can test independence with a statement j : c by
testing independence between j : c and all the basic statements in the conditional. The
track(S, c) function takes a command c and a set S of initial symbolic states, applies
the execution rules from Figure 1, and returns the set of all possible output symbolic

354 M. Raza, C. Calcagno, and P. Gardner

OPERATIONAL RULES

(Π ��Σ,F ,I)

(x = E[x′/x] ∧ (Π ��Σ)[x′/x],F [i → ∅], I)
i : x := E, x′fresh

(Π ��Σ ∗ 〈E 	→ [ρ]〉l,F ,I)

(x = F [x′/x] ∧ (Π ��Σ ∗ 〈E 	→ [ρ]〉l)[x
′/x],F [i → {l}], I)

i : x := E → f, x′ fresh, lookup(ρ, f) = F

(Π ��Σ ∗ 〈E 	→ [ρ]〉l,F , I)

(Π ��Σ ∗ 〈E 	→ [ρ′]〉l,F [i → {l}], I)
i : E → f := F, mutate(ρ, f, F) = ρ′

(Π ��Σ,F ,I)

((Π ��Σ)[x′/x] ∗ 〈x 	→ []〉l,F [i → {l}], I)
i : new(x), x′ fresh , l fresh

(Π ��Σ,F , I)

(Π ∧ Π2 ��Σ′
2 ∗ ΣF ,F [i → L(Σ′

2) ∪ (L(Σ)\L(ΣF))], relFresh(L(Σ′
2), L(Σ)\L(ΣF), I))

†

† i : com[T], Π2 ��Σ2 ∈ T (Π1 ��Σ1), ΣF = frame(Π ��Σ, Π1 ��Σ1), freshlabs(Σ2, Σ′
2)

REARRANGEMENT RULES

(Π ��Σ ∗ 〈F 	→ [ρ]〉l,F , I)

(Π ��Σ ∗ 〈E 	→ [ρ]〉l,F ,I)
Π � E = F

(Π ��Σ ∗ 〈ls(F, F ′)〉l, F ,I)

(Π ��Σ ∗ 〈E 	→ [n : x′]〉l1
∗ 〈ls(x′, F ′)〉l2

,F , relFresh({l1, l2} , {l} , I))
†

† Π ��Σ ∗ ls(F, F ′) � F
= F ′ ∧ E = F and x′ fresh and l1, l2 fresh

(Π ��Σ ∗ 〈dls(F, Fb, F ′, F ′
b)〉l

,F , I)

(Π ��Σ ∗ 〈E 	→ [n : x′, b : Fb]〉l1
∗ 〈dls(x′, E, F ′, F ′

b)〉l2
,F , relFresh({l1, l2} , {l} , I))

†

† Π ��Σ ∗ dls(F, Fb, F ′, F ′
b) � F
= F ′ ∧ E = F and x′ fresh and l1, l2 fresh

(Π ��Σ ∗ 〈dls(F, Fb, F ′, F ′
b)〉l

,F , I)

(Π ��Σ ∗ 〈dls(F, Fb, E, x′)〉l1
∗ 〈E 	→ [n : F ′, b : x′]〉l2

,F , relFresh({l1, l2} , {l} , I))
†

† Π ��Σ ∗ dls(F, Fb, F ′, F ′
b) � F
= F ′ ∧ E = F ′

b and x′ fresh and l1, l2 fresh

(Π ��Σ ∗ 〈tree(F)〉l,F ,I)

(Π ��Σ ∗ 〈E 	→ [l : x′, r : y′]〉l1
∗ 〈tree(x′)〉l2

∗ 〈tree(y′)〉l3
,F , relFresh({l1, l2, l3} , {l} , I))

†

† Π ��Σ ∗ tree(F) � F
= nil ∧ E = F and x′, y′ fresh and l1, l2, l3 fresh

Fig. 1. Rules for symbolic execution with footprint tracking

Automatic Parallelization with Separation Logic 355

states. The footprint and intersection logs from all of these states are used by the getInd
function to find the independences. Once we have detected heap independences, we can
use the free and mod sets of commands to determine stack independences, and then
apply standard parallelization techniques such as those discussed in [7,9].

getInd(c, Pre) =
S := ∅
for all Π ��Σ ∈ Pre

assign fresh non-empty labels in Π ��ΣF := ∅
I := ∅
S := S ∪ track(

{
(Π ��Σ,F ,I)

}
, c)

Ind := {i, j | i, j ∈ Ib(c)}
for all i, j ∈ Ib(c)

for all (Π ��Σ,F ,I) ∈ S
if there exist l ∈ F(i) and k ∈ F(j)

such that l = k or {l, k} ∈ I
then remove {(i, j)} from Ind

return Ind

track(S, c) =
if c is empty then return S
else let c = i : c′; c′′

S′ := ∅
for all (Π ��Σ,F ,I) ∈ S

if c′ is atomic command A and (Π ��Σ,F ,I) matches premise
of operational rule for A then add the conclusion to S′

elseif c′ is atomic command A accessing heap cell E and
(Π ��Σ,F , I) matches premise of a rearrangement rule for E
then add the conclusion to S′

elseif c′ = com[T] then
for all P ∈ dom(T) for which frame inference succeeds

for all Q ∈ T (P)
add the conclusions of operational rule for com[T] to S′

elseif c′ = if b c1 c2 then
S1 := track((b ∧ Π ��Σ,F , I), c1)
S2 := track((¬b ∧ Π ��Σ,F ,I), c2)
S′ := S′ ∪ S1 ∪ S2

else return fail
return track(S′, c′′)

Fig. 2. Independence Detection Algorithm

5 Examples

We begin by illustrating our algorithm on a tree rotation program which is based on
the main example from [9]. We have the procedure rotateTree(x;) {local x1, x2; c},
where the body c is shown in figure 3. The procedure takes a tree at x and rotates it
by recursively swapping its left and right subtrees. Given the spec table with a single
pre-condition 〈tree(x)〉• and single post-condition 〈tree(x)〉•, the execution of the
independence detection algorithm is shown in figure 3. At the end of the execution,
for final footprint log F6, we have F6(i6) = {3, 5} and F6(i7) = {4, 6}. Since these
labels do not intersect according to the final intersection log I3, we have that the two
recursive calls i6 and i7 are independent, and therefore may be executed in parallel.
Similar examples are given by other divide-and-conquer programs, such as copyTree
and mergeSort on linked lists, in which our algorithm determines the recursive calls to
be independent.

Previous approaches to independence detection such as [9] have been based on
reachability properties of certain pointer data structures, e.g., statements referring to
the left and right subtrees of a tree can be determined to be independent since no heap
location is reachable from both of them. The limitations of this approach can be seen
even on simple list segment programs, where reachability analysis is unable to guar-
antee independence since the list segment may in fact be part of a larger cyclic data
structure. Worse is the situation where there is internal sharing within the data struc-
ture, such as in the case of doubly linked lists. In contrast, our approach does not suffer

356 M. Raza, C. Calcagno, and P. Gardner

`
〈tree(x)〉

1
, ∅, ∅

´
i1 : if(x �= nil){`

x �= nil ��〈tree(x)〉1, ∅, ∅
´

`
x �= nil ��〈x �→ [l :x′, r :y′]〉

2
∗ 〈tree(x′)〉

3
∗ 〈tree(y′)〉

4
, ∅, I1

´
i2 : x1 := x → l;`

x1=x
′∧x �=nil ��〈x �→ [l :x′, r :y′]〉

2
∗ 〈tree(x′)〉

3
∗ 〈tree(y′)〉

4
,F1 = i2→{2},I1

´
i3 : x2 := x → r;`

x2=y
′∧x1=x

′∧x �=nil ��〈x �→ [l :x′, r :y′]〉
2
∗ 〈tree(x′)〉

3
∗ 〈tree(y′)〉

4
,F2 =F1[i3→{2}], I1

´
i4 : x → l := x2;`

x2=y
′∧x1=x

′∧x �=nil ��〈x �→ [l :x2, r :y′]〉
2
∗ 〈tree(x′)〉

3
∗ 〈tree(y′)〉

4
,F3 =F2[i4→{2}], I1

´
i5 : x → r := x1;`

x2=y
′∧x1=x

′∧x �=nil ��〈x �→ [l :x2, r :x1]〉2 ∗ 〈tree(x′)〉
3
∗ 〈tree(y′)〉

4
,F4 =F3[i5 →{2}],I1

´
i6 : rotateTree(x1;);`

x2=y
′∧x1=x

′∧x �=nil ��〈x �→ [l :x2, r :x1]〉2 ∗ 〈tree(x1)〉5 ∗ 〈tree(y′)〉
4
,F5 =F4[i6→{3, 5}], I2

´
i7 : rotateTree(x2;);`

x2=y
′∧x1=x

′∧x �=nil ��〈x �→ [l :x2, r :x1]〉2 ∗ 〈tree(x1)〉5 ∗ 〈tree(x2)〉6,F6 =F5[i7→{4, 6}], I3
´

}

where I1 = {{1, 2}, {1, 3}, {1, 4}}, I2 = I1 ∪ {{5, 3}, {5, 1}}, I3 = I2 ∪ {{6, 4}, {6, 1}}

Fig. 3. Independence detection for rotateTree

from these inherent limitations since it is based on detecting the footprints of state-
ments. We illustrate this with the example in figure 4. In this case we have the pro-
cedure setBack(x, y, z;) {local x1; c}, which transforms a singly linked list segment
from x to y into a doubly linked segment by recursively traversing the segment and
setting the back pointers. The body c is shown in the figure. The parameter z is the
back pointer to be set for the head element. In this case we have the spec table with a
single pre-condition 〈ls(x, y)〉• and single post-condition 〈dls(x, z, y, z′)〉•, where z′

is the existentially quantified pointer to the last element. As can be seen in figure 4, our
algorithm detects the recursive call at i4 to be independent of the statement i3, and they
can hence be executed in parallel. A reachability-based approach will fail to determine
this independence even though the statements are accessing disjoint locations.

6 Frame Inference with Label Respecting Entailment

We have discussed how, in the case of the operational rule for specified commands,
there is a need to infer the frame assertion in order to match the call-site assertion to the
command’s pre-condition. Given a call-site assertion Π ��Σ and command pre-condition
Π1 ��Σ1, the objective is to find a frame assertion ΣF such that Π ��Σ
 Π1 ��Σ1 ∗ ΣF .
We adapt the frame inference method of [2], which uses a proof theory for entailments
between symbolic heaps. However, in our case, as well as inferring the formula, we also
require that the frame assertion should correctly preserve its labels from the original
call-site assertion since these are used to determine the footprint labels of the specified
command. For this purpose we introduce the notion of label respecting entailment.

Automatic Parallelization with Separation Logic 357

`
〈ls(x, y)〉

1
, ∅, ∅

´
i1 : if(x �= y){`

x �=y ��〈ls(x, y)〉1, ∅, ∅
´

`
x �=y ��〈x �→ [n : x′]〉

2
∗ 〈ls(x′, y)〉

3
, ∅, I1

´
i2 : x1 := x → n;`

x1 =x
′∧x �=y ��〈x �→ [n : x′]〉

2
∗ 〈ls(x′, y)〉

3
,F1 = i2 →{2}, I1

´
i3 : x → b := z;`

x1 =x
′∧x �=y ��〈x �→ [n : x′, b : z]〉

2
∗ 〈ls(x′, y)〉

3
,F2 = F1[i3→{2}], I1

´
i4 : setBack(x1, y, x)`

x1 =x
′∧x �=y ��〈x �→ [n : x′, b : z]〉

2
∗ 〈dls(x1, x, y, z

′)〉
4
,F3 = F2[i4 →{3, 4}], I2

´
}

where I1 = {{2, 1}, {3, 1}} and I2 = I1 ∪ {{4, 3}, {4, 1}}

Fig. 4. Independence detection for setBack

The standard meaning of an entailment Π1 ��Σ1
 Π2 ��Σ2 between two symbolic
heaps is given as ∀s, h. s, h |= Π1 ��Σ1 implies s, h |= Π2 ��Σ2. For label respecting
entailment, we have the additional constraint that a label appearing on both sides of the
entailment ‘refers to the same heap locations’ on both sides. The formal definition of
this form of entailment is based on the following property of labelled symbolic heaps.

Lemma 1. If s, h |= Π ��Σ ∗ 〈S〉l and l �= •, then there is a unique h′ such that h =
h′ ∗ h′′ and s, h′ |= Π ��〈S〉l. In this case we define subheap(s, h, Π ��Σ ∗ 〈S〉l, l) = h′,
and it is undefined otherwise.

Definition 1 (Label respecting entailment). The entailment Π1 ��Σ1
 Π2 ��Σ2 holds
iff for all s, h, s, h |= Π1 ��Σ1 implies s, h |= Π2 ��Σ2, and if l ∈ L(Σ1) and l ∈ L(Σ2)
and l �= • then subheap(s, h, Π1 ��Σ1, l) = subheap(s, h, Π2 ��Σ2, l).

We have adapted the proof theory for entailments from [2] for label respecting entail-
ment in figure 5. We omit the normalization rules and rules for the tree and doubly
linked segment predicates as they adapt in a very similar manner. In the figure, the
expression op(E) is an abbreviation for E �→ [ρ], ls(E, F), dls(E, Eb, F, Fb) or
tree(E). The guard G(op(E)) asserts that the heap is non-empty, and is defined as

G(E �→ [ρ]) � true G(ls(E,F)) � E �= F G(tree(E)) � E �= nil

G(dls(E,Eb, Ff , Fb)) � E �= Ff G(dls(Ff , Fb, Ef , E)) � E �= Fb

The label respecting aspect of these rules can be best appreciated by considering the
way in which the frame inference method works. Assume we are given a call-site asser-
tion Π ��Σ and procedure pre-condition Π1 ��Σ1. To find ΣF such that Π ��Σ
 Π1 ��Σ1 ∗
ΣF , we apply the proof rules upwards starting from the entailment Π ��Σ
 Π1 ��Σ1, as
instructed by the following theorem which we inherit from [2].

Theorem 1. Suppose that we have an incomplete proof:

Π ′ ��ΣF � true ��emp...
Π ��Σ � Π1 ��Σ1

Then there is a complete proof of the label respecting entailment Π ��Σ
 Π1 ��Σ1 ∗ΣF .

358 M. Raza, C. Calcagno, and P. Gardner

Π

�
�emp � true

�
�emp

Π

�
�Σ � Π′

�
�Σ′

Π

�
�Σ � Π′ ∧ E = E

�
�Σ′

Π ∧ P

�
�Σ � Π′

�
�Σ′

Π ∧ P

�
�Σ � Π′ ∧ P

�
�Σ′

〈S〉l � 〈S′〉k Π

�
�Σ � Π′

�
�Σ′

Π

�
�〈S〉l ∗ Σ � Π′

�
�〈S′〉k ∗ Σ′

l, k ∈ {•} ∪ Lab\(L(Σ) ∪ L(Σ′))

〈S〉l � 〈S〉k

Π

�
�Σ � Π′

�
�Σ′

Π

�
�Σ � Π′

�
�〈ls(E, E)〉l ∗ Σ′

l ∈ {•} ∪ Lab\L(Σ′)

Π∧E1
=E3 �
�〈E1 �→E2〉l1

∗Σ � Π′

�
�〈E1 �→E2〉l2

∗〈ls(E2, E3)〉l3
∗Σ′

Π∧E1
=E3 �
�〈E1 �→E2〉l1

∗Σ � Π′

�
�〈ls(E1, E3)〉l4

∗Σ′
l4 ∈ {•} ∪ Lab\(L(Σ) ∪ L(Σ′) ∪ {l1,l2,l3})

Π

�
�〈ls(E1, E2)〉l1

∗ Σ � Π′

�
�〈ls(E1, E2)〉l2

∗ 〈ls(E2, nil)〉l3
∗ Σ′

Π

�
�〈ls(E1, E2)〉l1

∗ Σ � Π′

�
�〈ls(E1, nil)〉l4

∗ Σ′
l4 ∈ {•} ∪ Lab\(L(Σ) ∪ L(Σ′) ∪ {l1,l2,l3})

Π ∧ G(op(E3))

�
�〈ls(E1, E2)〉l1

∗ 〈op(E3)〉l2
∗ Σ � Π′

�
�〈ls(E1, E2)〉l3

∗ 〈ls(E2, E3)〉l4
∗ Σ′

Π ∧ G(op(E3))

�
�〈ls(E1, E2)〉l1

∗ 〈op(E3)〉l2
∗ Σ � Π′

�
�〈ls(E1, E3)〉l5

∗ Σ′
†

† l5 ∈ {•} ∪ Lab\(L(Σ) ∪ L(Σ′) ∪ {l1, l2, l3, l4})

Fig. 5. Rules for label respecting entailment

When applying the label-respecting proof rules upwards, labels can only be removed
from the left hand side of an entailment. Hence ΣF will retain its labels from the call-
site assertion Π ��Σ. By theorem 1, the entailment Π ��Σ
 Π1 ��Σ1 ∗ ΣF is label re-
specting, and so we have that the labels common to the call-site assertion and the frame
assertion refer to the same heap locations. Notice that when applying this method in
practice, since we are only concerned about preserving the labels in the frame as-
sertion, we do not care about the labels on the right hand side of the entailments as
we go up the proof. They can hence be chosen to be the empty label when applying
the rules upwards. As a simple illustration, in the case where the call-site assertion
is 〈x �→ [l : y, r : z]〉1 ∗ 〈tree(y)〉2 ∗ 〈tree(z)〉3 and the command pre-condition is
〈tree(y)〉•, the following derivation gives us the correctly labelled frame assertion:

〈x �→ [l : y, r : z]〉1 ∗ 〈tree(z)〉3 � emp
〈x �→ [l : y, r : z]〉1 ∗ 〈tree(y)〉2 ∗ 〈tree(z)〉3 � 〈tree(y)〉•

7 Soundness

We demonstrate the soundness of our algorithm in detecting independences, a property
which is necessary if we are to use the algorithm to safely parallelize a program. For
this we adapt an action trace semantics of programs from [6]. The action traces are
composed of primitive actions α:

α ::= x := E | x := E → f | E1 → f := E2 | newl(x) | assume(b) where l ∈ Loc

The assume(b) action is used to implement conditionals, as shown in the trace seman-
tics of commands below. It filters out states which do not satisfy the boolean b. The
newl(x) command allocates the location l if it is not already allocated. We choose this

Automatic Parallelization with Separation Logic 359

α �α�(s, h), loc(α, s, h)

x := E {s[x �→�E�s], h}, ∅

x := E → f

(
{s[x �→v], h}, {l} if �E�s = l, l ∈ Loc and h(l)(f) = v

�, ∅ otherwise

E1 → f := E2

(
{s, h[l �→r]}, {l} if �E1�s = l, �E2�s = v, l ∈ Loc and r = h(l)[f → v]

�, ∅ otherwise

newl(x)

(
{s, h ∗ l �→ r}, {l} if l ∈ Loc\dom(h) and r(f) = nil for all f ∈ Fields

∅, ∅ otherwise

assume(b)

(
{s, h}, ∅ if �b�s

∅, ∅ otherwise

Fig. 6. Denotational semantics and location sets of primitive actions

instead of a non-deterministic allocation primitive (which is usually used in separation
logic works) as keeping traces deterministic will be useful for our purposes.

Semantically, the primitive actions correspond to total functions that are of the form
Stacks× Heaps → P(Stacks× Heaps)�. The � element represents a faulting ex-
ecution, that is, dereferencing a null pointer or an unallocated region of the heap. For
a primitive action α and a state (s, h) ∈ Stacks× Heaps, we define the location set
loc(α, s, h) as the set of locations that are accessed by α when executed on the state
(s, h). The denotational semantics and location sets of the primitive actions is given in
figure 6.

Definition 2 (Action trace). An action trace τ is a finite sequential composition of
atomic actions, τ ::= α; · · · ; α
Denotational semantics of action traces is given by the sequential composition of ac-
tions, which is defined as

�α1; α2�(s, h) =

8<
:

[
(s′,h′)∈�α1�(s,h)

�α2�(s
′, h′) if �α1�(s, h) �= �

� otherwise

Note that every trace τ is deterministic in that for any state (s, h), �τ�(s, h) either
faults or has at most a single outcome {(s′, h′)}.

T (x := E) = {x := E} T (x := [E]) = {x := [E]}

T ([E1] := [E2]) = {[E1] := [E2]} T (new(x)) = {newl(x) | l ∈ Loc}

T (com(T)) ⊆ {τ | ∀P ∈ dom(T).∀(s, h) ∈ �P �.∃Q ∈ T (P). �τ�(s, h) ⊆ �Q�}

T (c1; c2) = {τ1; τ2 | τ1 ∈ T (c1), τ2 ∈ T (c2)}

T (if b c1 c2) = {assume(b); τ1 | τ1 ∈ T (c1)} ∪ {assume(¬b); τ2 | τ2 ∈ T (c2)}

Fig. 7. Action trace semantics of commands

360 M. Raza, C. Calcagno, and P. Gardner

The action trace semantics of commands of our programming language is given in
figure 7. Just as our commands are indexed, we assign unique indices to the primi-
tive actions in every action trace of every command as follows. For each atomic com-
mand i : A, every trace is a single primitive action α, and we index this as (i, 1) : α.
For each specified command i : com(T), every trace α1; ...; αn is indexed as (i, 1) :
α1; ...; (i, n) : αn. For sequential composition the indices are obtained from the com-
ponent commands. For a conditional i : if b c1 c2, we index the assume actions as
(i, 1) : assume(b) and (i, 1) : assume(¬b) and the other indices are obtained from the
component commands. We shall write (i, j) : α ∈ τ to mean that τ = τ ′; (i, j) : α; τ ′′

for some τ ′ and τ ′′.

Definition 3 (Index subtrace). For a trace τ and a command index i, we define τ |i to
be the subtrace of τ containing all the actions of the form (i, j) : α. If there are no such
actions in τ then τ |i is undefined.

Lemma 2. For a command c, every trace τ ∈ T (c) is of the form τ |i1 ; ...; τ |in , where
i1, ..., in ∈ I (c).

We define the locations accessed by an atomic action in the execution of a trace.

Definition 4 (Location set of an action in a trace). The location set of an action
(i, j) : α in a trace τ from initial state (s, h) is defined as

loc((i, j) : α, τ, s, h) =

(
loc(α, s′, h′) if τ = τ1; (i, j) : α; τ2 and �τ1�(s, h) = {(s′, h′)}

∅ otherwise

We extend the definition of locations accessed by an action to the locations accessed by
a subtrace of τ .

Definition 5 (Location set of a subtrace). The location set of subtrace τ ′ of τ from
initial state (s, h) is defined as loc(τ ′, τ, s, h) =

⋃

(i,j):α∈τ ′
loc((i, j) : α, τ, s, h)

We now give the formal definition of independence between two basic statements in a
progam, for a given pre-condition.

Definition 6 (Independence). Given a command c and a pre-condition given by a
set of symbolic heaps Pre, for two basic commands with indices i and i′ in c, we say
that command i is independent of command i′, written indep(i, i′, c,Pre), iff for all
Π ��Σ ∈ Pre and for all (s, h) ∈ �Π ��Σ�, we have for every τ ∈ T (c) such that τ |i and
τ |i′ are defined, that loc(τ |i, τ, s, h) ∩ loc(τ |i′ , τ, s, h) = ∅.

Given the trace model developed above, we can now formally state the soundness prop-
erty of the independence detection algorithm given in figure 2.

Theorem 2. For a command c and a pre-condition set Pre , if for two basic commands
with indices i and i′ in c we have {i, i′} ∈ getInd(c,Pre), then indep(i, i′, c,Pre).

Automatic Parallelization with Separation Logic 361

The complete proof of this result can be found in the technical report [14], and we
give here an outline. The algorithm of figure 2 works by applying the operational and
rearrangement rules of figure 1 through the program, possibly branching on disjunctive
outcomes and conditionals. We can therefore think of it as determining a set of symbolic
execution traces. A symbolic execution trace, S, is a sequence of symbolic states related
by applications of operational or rearrangement rules, beginning with some initial state
ψI in the pre-condition and ending with some ψF in the final set of symbolic states that
is used to test independences.

The concrete and symbolic executions are related by a notion of satisfaction between
an action trace and a symbolic execution trace. An action trace τ satisfies a symbolic
execution trace S if it is of the form τ |i1 ; ...; τ |in , where i1, ..., in are the command
indices for the operational rules that generate S, and every intermediate concrete state
in τ (after the execution of each index subtrace) satisfies the symbolic heap in the corre-
sponding symbolic states. Thus this notion of satisfaction depends only on the symbolic
heap component of symbolic states and not on the footprint and intersection logs. By
soundness of standard symbolic execution [2], we have that every concrete trace of the
program satisfies some symbolic execution trace generated by the algorithm.

This relation connecting concrete and symbolic executions is then used to interpret
the labels in the symbolic heaps and the footprint and intersection logs. The underly-
ing idea is that, given a concrete initial state (s, h) and an action trace τ satisfying a
symbolic execution trace S, every label l occurring in any of the symbolic states in S
corresponds to a fixed set of heap locations throughout the entire concrete execution of
τ from (s, h). This location set, denoted labloc(l,S, τ, s, h), is used to reason about the
heap locations that the labels in the footprint and intersection logs represent. We show
that for any two subtraces τ |i and τ |i′ of τ , if the footprint labels of i and i′ in the final
footprint log of S do not intersect according to the final intersection log of S, then the
two subtraces access disjoint locations, that is, loc(τ |i, τ, s, h) ∩ loc(τ |i′ , τ, s, h) = ∅.

The algorithm determines two commands with indices i and i′ to be independent if
they have non-intersecting footprint labels according to each of the final symbolic states
generated by the algorithm. Since every action trace satisfies some symbolic execution
trace, we have that in every action trace of the program, the subtraces of i and i′ access
disjoint locations, which means that i and i′ are independent by definition 6.

8 Conclusion and Future Work

In this work we have focussed on laying the foundations of our extended separation
logic framework for independence detection. We plan to extend the method we describe
to the more complex data structures handled by separation logic shape analyses [1], to
integrate our method with the existing space invader tool for shape analysis [17,4], and
conduct practical experiments, conceivably exploiting the scalability of this tool to large
programs. A notable aspect of this integration is that, while our framework relies on the
atomic predicates being precise, sometimes imprecise predicates, e.g. ‘possibly cyclic
list’, are used in shape analyses. However, these predicates are ‘boundedly imprecise’,
so that case analysis can be performed to obtain finite disjunctions of precise predicates
from imprecise ones. Another direction for future work is to improve the precision

362 M. Raza, C. Calcagno, and P. Gardner

of label tracking by incorporating it into the shape analysis phase itself, which would
involve taking the footprint and intersection logs through the abstraction and fixpoint
calculations. Following this, we intend to investigate the application of our method to
other kinds of program optimizations.

Acknowledgements. We thank the anonymous referees for very helpful comments.
Raza acknowledges support of an ORS award and EPSRC grant “Smallfoot: static asser-
tion checking for C programs”. Gardner acknowledges support of a Microsoft Research
Cambridge/Royal Academy of Engineering Senior Research Fellowship. Calcagno ac-
knowledges support of an EPSRC advanced fellowship.

References

1. Berdine, J., Calcagno, C., Cook, B., Distefano, D., OHearn, P., Wies, T., Yang, H.: Shape
Analysis for Composite Data Structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic Execution with Separation Logic. In: Yi,
K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidelberg (2005)

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Automatic modular assertion checking
with separation logic. In: 4th FMCO (2006)

4. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional Shape Analysis. In: POPL
(2009)

5. Distefano, D., O’Hearn, P., Yang, H.: A Local Shape Analysis based on Separation Logic.
In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 287–302. Springer,
Heidelberg (2006)

6. Calcagno, C., O’Hearn, P., Yang, H.: Local Action and Abstract Separation Logic. In: LICS
(2007)

7. Ghiya, R., Hendren, L.J., Zhu, Y.: Detecting Parallelism in C programs with recursive data
structures. In: Koskimies, K. (ed.) CC 1998. LNCS, vol. 1383. Springer, Heidelberg (1998)

8. Gupta, R., Pande, S., Psarris, K., Sarkar, V.: Compilation Techniques for Parallel Systems.
In: Parallel Computing (1999)

9. Hendren, L.J., Nicolau, A.: Parallelizing programs with recursive data structures. In: IEEE
Transactions on Parallel and Distributed Systems (1990)

10. Hummel, J., Hendren, L.J., Nicolau, A.: A general data dependence test for dynamic, pointer-
based data structures. In: PLDI (1994)

11. Hoare, T., O’Hearn, P.: Separation Logic Semantics of Communicating Processes. In: FICS
(2008)

12. Horwitz, S., Pfeiffer, P., Reps, T.W.: Dependence analysis for poiner variables. In: PLDI
(1989)

13. Marron, M., Stefanovic, D., Kapur, D., Hermenegildo, M.: Identification of Heap-Carried
Data Dependence Via Explicit Store Heap Models. In: LCPC (2008)

14. Raza, M., Calcagno, C., Gardner, P.: Automatic Parallelization with Separation Logic. Impe-
rial College Technical Report DTR08-16 (2008)

15. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: 17th LICS
(2002)

16. Rinard, M.C., Diniz, P.C.: Commutativity Analysis: A New Analysis Technique for Paral-
lelizing Compilers. In: ACM Transactions on Programming Languages and Systems (1997)

17. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.: Scal-
able Shape Analysis for Systems Code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

Deny-Guarantee Reasoning

Mike Dodds1, Xinyu Feng2, Matthew Parkinson1, and Viktor Vafeiadis3

1 University of Cambridge, UK
2 Toyota Technological Institute at Chicago, USA

3 Microsoft Research Cambridge, UK

Abstract. Rely-guarantee is a well-established approach to reasoning about con-
current programs that use parallel composition. However, parallel composition is
not how concurrency is structured in real systems. Instead, threads are started by
‘fork’ and collected with ‘join’ commands. This style of concurrency cannot be
reasoned about using rely-guarantee, as the life-time of a thread can be scoped
dynamically. With parallel composition the scope is static.

In this paper, we introduce deny-guarantee reasoning, a reformulation of rely-
guarantee that enables reasoning about dynamically scoped concurrency. We build
on ideas from separation logic to allow interference to be dynamically split and
recombined, in a similar way that separation logic splits and joins heaps. To allow
this splitting, we use deny and guarantee permissions: a deny permission specifies
that the environment cannot do an action, and guarantee permission allow us to do
an action. We illustrate the use of our proof system with examples, and show that
it can encode all the original rely-guarantee proofs. We also present the semantics
and soundness of the deny-guarantee method.

1 Introduction

Rely-guarantee [10] is a well-established compositional proof method for reasoning
about concurrent programs that use parallel composition. Parallel composition provides
a structured form of concurrency: the lifetime of each thread is statically scoped, and
therefore interference between threads is also statically known. In real systems, how-
ever, concurrency is not structured like this. Instead, threads are started by a ‘fork’ and
collected with ‘join’ commands. The lifetime of such a thread is dynamically scoped in
a similar way to the lifetime of heap-allocated data.

In this paper, we introduce deny-guarantee reasoning, a reformulation of rely-guar-
antee that enables reasoning about such dynamically scoped concurrency. We build on
ideas from separation logic to allow interference to be dynamically split and recom-
bined, in a similar way that separation logic splits and joins heaps.

In rely-guarantee, interference is described using two binary relations: the rely, R,
and the guarantee, G. Specifications of programs consist of a precondition, a post-
condition and an interference specification. This setup is sufficient to reason about
lexically-scoped parallel composition, but not about dynamically-scoped threads. With
dynamically-scoped threads, the interference at the end of the program may be quite
different from the interference at the beginning of the program, because during execu-
tion other threads may have been forked or joined. Therefore, just as in Hoare logic

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 363–377, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

364 M. Dodds et al.

a program’s precondition and postcondition may differ from each other, so in deny-
guarantee logic a thread’s pre-interference and post-interference specification may dif-
fer from each other.

Main results. The main contributions of this paper are summarized below:

– We introduce deny-guarantee logic and apply it to an example (see §3 and §4).
– We present an encoding of rely-guarantee into deny-guarantee, and show that every

rely-guarantee proof can be translated into a deny-guarantee proof (see §5).
– We prove that our proof rules are sound (see §6).
– We have formalized our logic and all the proofs in Isabelle [4].

For clarity of exposition, we shall present deny-guarantee in a very simple setting where
the memory consists only of a pre-allocated set of global variables. Our solution extends
easily to a setting including memory allocation and deallocation (see §7).

Related work. Other work on concurrency verification has generally ignored fork/join,
preferring to concentrate on the simpler case of parallel composition. This is true of all
of the work on traditional rely-guarantee reasoning [10, 11]. This is unsurprising, as the
development of deny-guarantee depends closely on the abstract characterization of sep-
aration logic [3]. However, even approaches such as SAGL [5] and RGSep [12] which
combine rely-guarantee with separation logic omit fork/join from their languages.

There exist already some approaches to concurrency that handle fork. Feng et al. [6]
and Hobor et al. [9] both handle fork. However, both omit join with the justification
that it can be handled by synchronization between threads. However, this approach
is not compositional: it forces us to specify interference globally. Gotsman et al. [7]
propose an approach to locks in the heap which includes both fork and join. However,
this is achieved by defining an invariant over protected sections of the heap, which
makes compositional reasoning about inter-thread interference impossible (see the next
section for an example of this). Haack and Hurlin [8] have extended Gotsman et al.’s
work to reason about fork and join in Java, where a thread can be joined multiple times.

2 Towards Deny-Guarantee Logic

L0: x := 0;

L1: t1 := fork(if(x==1) error;

x := 1);

L2: t2 := fork(x := 2;

if (x==3) error);

L3: join t1;

L4: x := 2;

L5: join t2;

Fig. 1. Illustration of fork/join

Consider the very simple program given in
Fig. 1. If we run the program in an empty en-
vironment, then at the end, we will get x = 2.
This happens because the main thread will
block at line L3 until thread t1 terminates.
Hence, the last assignment to x will either be
that of thread t2 or of the main thread, both of
which write the value 2 into x. We also know
that the error in the forked code on L1 and
L2 will never be reached.

Now, suppose we want to prove that this program indeed satisfies the postcondition
x = 2. Unfortunately, this is not possible with existing compositional proof methods.

Deny-Guarantee Reasoning 365

Invariant-based techniques (such as Gotsman et al. [7]) cannot handle this case, because
they cannot describe interference. Unless we introduce auxiliary state to specify a more
complex invariant, we cannot prove the postcondition, as it does not hold throughout
the execution of the program.

Rely-guarantee can describe interference, but still cannot handle this program. Con-
sider the parallel rule:

R1,G1 � {P1}C1 {Q1} G1 ⊆ R2 R2,G2 � {P2} C2 {Q2} G2 ⊆ R1

R1∩R2,G1∪G2 � {P1∧P2} C1 ‖ C2 {Q1∧Q2}

In this rule, the interference is described by the rely, R, which describes what the en-
vironment can do, and the guarantee, G, which describes what the code is allowed to
do. The rely and guarantee do not change throughout the execution of the code, they
are ‘statically scoped’ interference, whereas the scope of the interference introduced by
fork and join commands is dynamic.

Separation logic solves this kind of problem for dynamically allocated memory, also
known as the heap. It uses the star operator to partition the heap into heap portions
and to pass the portions around dynamically. The star operator on heaps is then lifted
to assertions about heaps. In this work, we shall use the star operator to partition the
interference between threads, and then lift it to assertions about the interference.

Let us assume we have an assertion language which can describe interference. It has
a separation-logic-like star operation. We would like to use this star to split and join
interference, so that we can use simple rules to deal with fork and join:

{P1}C {P2} . . .

{P∗P1} x := fork C {P∗Thread(x,P2)} (fork)
. . .

{P∗Thread(E,P′)} join E {P∗P′} (join)

The fork rule simply removes the interference, P1, required by the forked code, C, and
returns a token Thread(x,P2) describing the final state of the thread.

{T1 ∗G2 ∗D3 ∗L ∗x � 1}
t1 := fork (if(x==1) error;

x := 1);

{G2 ∗D3 ∗L ∗Thread(t1,T1)}
t2 := fork (x := 2;

if(x==3) error);

{L ∗Thread(t1,T1)∗Thread(t2,G2 ∗D3)}
join t1;

{T1 ∗L ∗Thread(t2,G2 ∗D3)}
x := 2;

{T1 ∗L ∗Thread(t2,G2 ∗D3)∗x = 2}
join t2

{T1 ∗G2 ∗D3 ∗L ∗x = 2}

Fig. 2. Proof outline

The join rule, knowing the thread E is dead,
simply takes over its final state1.

Now, we will consider how we might
prove our motivating example. Let us imagine
we have some assertions that both allow us to
do updates to the state, and forbid the envi-
ronment from doing certain updates. We pro-
vide the full details in §4, and simply present
the outline (Fig. 2) and an informal explana-
tion of the permissions here. The first thread
we fork can be verified using the T1 and x� 1,
where T1 allows us to update x to be 1, and
prevents any other thread updating x to be
1. Next, we use G2 which allows us to up-
date x to be 2; and D3 which prevents the

1 As in the pthread library, we allow a thread to be joined only once. We could also adapt the
work of Haack and Hurlin [8] to our deny-guarantee setting to handle Java-style join.

366 M. Dodds et al.

environment from updating x to be 3. These two permissions are sufficient to ver-
ify the second thread. Finally, L is a leftover permission which prevents any other
thread updating x to be any value other than 1 or 2. When we get to the assign-
ment, we have T1 ∗ L which forbids the environment performing any update except
assigning x with 2. Hence, we know that the program will terminate with x = 2.

1

0

(me,¬env)

(¬me,¬env)

(¬me, env)

(me, env)
guar deny

Fig. 3. Possible interference

Now, we consider how to build a logic to rep-
resent the permission on interference used in the
proof outline. Let us consider the information
contained in a rely-guarantee pair. For each state
change it has one of four possibilities presented
in Fig. 3: guar permission, allowed by both the
thread and the environment (me,env); 1 permis-
sion, allowed by the thread, and not allowed for
the environment (me,¬env); 0 permission, not al-
lowed by the thread, but allowed by the environment (¬me,env); and deny permission,
not allowed by the thread or the environment (¬me,¬env).

To allow inter-thread reasoning about interference, we want to split full permissions
1 into either deny permissions or guar permissions. We also want to further split deny,
or guar, permissions into smaller deny or guar permissions respectively. The arrows
of Fig. 3 show the order of permission strength captured by splitting. If a thread has
a deny on a state change, it can give another thread a deny and keep one itself while
preserving the fact that the state change is prohibited for itself and the environment. The
same holds for guar.

To preserve soundness, we cannot allow unrestricted copying of permissions – we
must treat them as resources. Following Boyland [2] and Bornat et al. [1] we attach
weights to splittable resources. In particular we use fractions in the interval (0,1). For
example, we can split an (a+ b)deny into an (a)deny and a (b)deny, and similarly for
guar permissions. We can also split a full permission 1 into (a)deny and (b)deny, or
(a)guar and (b)guar, where a+b = 1.

In the following sections we will show how these permissions can be used to build
deny-guarantee, a separation logic for interference.

Aside. Starting with the parallel composition rules of rely-guarantee and of separation
logic, you might wonder if we can define our star as (R1,G1)∗ (R2,G2) = (R1∩R2,G1∪
G2) provided G1 ⊆ R2 and G2 ⊆ R1, and otherwise it is undefined. Here we have taken
the way rely-guarantee combines the relations, and added it to the definition of ∗.

This definition, however, does not work. The star we have defined is not cancellative,
a condition that is required for proving that separation is sound [3]. Cancellativity says
that for all x, y and z, if x ∗ y is defined and x ∗ y = x ∗ z, then y = z. Intuitively, the
problem is that ∩ and ∪ lose information about the overlap.

3 The Logic

Language. The language is defined in Fig. 4. This is a standard language with two
additional commands for forking a new thread and for joining with an existing thread.

Deny-Guarantee Reasoning 367

(Expr) E ::= x | n | E + E | E - E | . . .
(BExp) B ::= true | false | E = E | E � E | . . .
(Stmts) C ::= x := E | skip | C;C | if B then C else C | while B do C | x := fork C | join E

Fig. 4. The Language

Informally, the x := fork C command allocates an unused thread identifier t, creates a
new thread with thread identifier t and body C, and makes it run in parallel with the rest
of the program. Finally, it returns the thread identifier t by storing it in x. The command
join E blocks until thread E terminates; it fails if E is not a valid thread identifier.
For simplicity, we assume each primitive operation is atomic. The formal operational
semantics is presented in §6.

Deny-Guarantee Permissions. The main component of our logic is the set of deny-
guarantee permissions, PermDG. A deny-guarantee permission is a function that maps
each action altering a single variable2 to a certain deny-guarantee fraction:

Vars
def
= {x,y,z, . . . }

n ∈ Vals
def
= Z

σ ∈ States
def
= Vars→ Vals

a ∈ Actions
def
= {σ[x
→ n],σ[x
→ n′] | σ ∈ States ∧ n � n′}

f ∈ FractionDG
def
= {(deny,π) | π ∈ (0,1)} ∪ {(guar,π) | π ∈ (0,1)} ∪ {0,1}

pr ∈ PermDG
def
= Actions→ FractionDG

We sometimes write deny-guarantee fractions in FractionDG in shorthand, with πd for
(deny,π), and πg for (guar,π).

The fractions represent a permission or a prohibition to perform a certain action. The
first two kinds of fractions are symmetric: (deny,π) says that nobody can do the action;
(guar,π) says that everybody can do the action. The last two are not: 1 represents full
control over the action (only I can do the action), whereas 0 represents no control over
an action (others can do it, but I cannot).

From a deny-guarantee permission, pr, we can extract a pair of rely-guarantee condi-
tions. The rely contains those actions permitted to the environment, while the guarantee
contains those permitted to the thread (see Fig. 3).

� � ∈ PermDG→P(Actions)×P(Actions)

�pr�
def
= ({a | pr(a) = (guar,)∨ pr(a) = 0},
{a | pr(a) = (guar,)∨ pr(a) = 1})

As shorthand notations, we will use pr.R and pr.G to represent the first and the second
element in �pr� respectively.

2 We do not consider updates to simultaneous locations as it complicates the presentation.

368 M. Dodds et al.

σ, pr,γ |= B ⇐⇒ ([[B]]σ = tt)∧ (∀a. pr(a) = 0)∧ (γ = ∅)
σ, pr,γ |= pr′ ⇐⇒ (γ = ∅)∧ (pr = pr′)
σ, pr,γ |= full ⇐⇒ (γ = ∅)∧ (∀a. pr(a) = 1)

σ, pr,γ |= Thread(E,P) ⇐⇒ γ = [[[E]]σ
→ P]

σ, pr,γ |= P1 ∗P2 ⇐⇒ ∃pr1, pr2,γ1,γ2. pr = pr1⊕ pr2 ∧γ = γ1 �γ2
∧ (σ, pr1,γ1 |= P1)∧ (σ, pr2,γ2 |= P2)

where � means the union of disjoint sets.

σ, pr,γ |= P1−∗P2 ⇐⇒ ∀pr1, pr2,γ1,γ2. pr2 = pr⊕ pr1 ∧γ2 = γ�γ1
∧ (σ, pr1,γ1 |= P1) implies (σ, pr2,γ2 |= P2)

Fig. 5. Semantics of Assertions

Note that the deny and guar labels come with a fractional coefficient. These coeffi-
cients are used in defining the addition of two deny-guarantee fractions.

0⊕ x
def
= x⊕0

def
= x

(deny,π)⊕ (deny,π′) def
= if π+π′ < 1 then (deny,π+π′)

else if π+π′ = 1 then 1 else undef

(guar,π)⊕ (guar,π′) def
= if π+π′ < 1 then (guar,π+π′)

else if π+π′ = 1 then 1 else undef

1⊕ x
def
= x⊕1

def
= if x = 0 then 1 else undef

The addition of two deny-guarantee permissions, pr= pr1⊕ pr2, is defined so that for all
a ∈ Actions, pr(a)= pr1(a)⊕ pr2(a). The permission inverse inv is defined so inv(1)= 0,
inv(0) = 1, inv(guar,π) = (guar,1−π), and inv(deny,π) = (deny,1−π).

It is easy to show that addition is commutative, associative, cancellative, and has 0
as a unit element. This allows us to define a separation logic over PermDG.

Assertions and Judgements. The assertions are defined below.

P,Q ::= B | pr | full | false | Thread(E,P) | P⇒ Q | P ∗Q | P−∗Q | ∃x.P

An assertion P is interpreted as a predicate over a program state σ, a permission
token pr, and a thread queue γ. A thread queue, as defined below, is a finite partial
function mapping thread identifiers to the postcondition established by the thread when
it terminates.

t ∈ ThreadIDs
def
= N γ ∈ ThreadQueues

def
= ThreadIDs⇀fin Assertions

Semantics of assertions is defined in Fig. 5.
The judgments for commands are in the form of {P} C {Q}. As in Hoare Logic, a

command is specified by a precondition (P) and a postcondition (Q). Informally, it
means that if the precondition, P, holds in the initial configuration and the environment

Deny-Guarantee Reasoning 369

P1 precise {P1} C {P2} x � fv(P1 ∗ P3)
Thread(x,P2)∗P3⇒ P4 allowed([[x := ∗]],P3)

{P1 ∗P3} x := fork[P1,P2] C {P4} (fork)

{P∗Thread(E,P′)} join E {P∗P′} (join)
P1⇒ P′1 {P′1}C {P′2} P′2⇒ P2

{P1}C {P2} (cons)

{P}C {P′} stable(P0)
{P∗P0} C {P′ ∗P0} (frame)

P⇒ [E/x]P′ allowed([[x := E]],P)

{P} x := E {P′} (assn)

Fig. 6. Proof Rules

adheres to its specification, then the command C is safe to execute; moreover every
forked thread will fulfil its specification and if C terminates, the final configuration will
satisfy Q. A formal definition of the semantics is presented in §6.

The main proof rules are shown in Fig. 6. The proof rules are covered by a general
side-condition requiring that any assertion we write in a triple is stable. Intuitively this
means that the assertion still holds under any interference from the environment, as
expressed in the deny. Requiring stability for every assertion in a triple removes the need
for including explicit stability checks in the proof rules, simplifying the presentation.

Definition 1 (Stability). An assertion P is stable (written stable(P)) if and only if, for
all σ, σ′, pr and γ, if σ, pr,γ |= P and (σ,σ′) ∈ pr.R, then σ′, pr,γ |= P.

The fork and assign rules include allowed-statements, which assert that particular re-
writes are permitted by deny-guarantee assertions. Rewrites are given as relations over
states. In the rules, we write �x := E� for the relation over states denoted by assigning
E to x, where E can be ∗ for non-deterministic assignment.

Definition 2 (Allowed). Let K be a relation over states. Then allowed(K,P) holds if
and only if, for all σ, σ′, pr and γ, if σ, pr,γ |= P and (σ,σ′) ∈ K, then (σ,σ′) ∈ pr.G.

The assignment rule is an adaptation of Hoare’s assignment axiom for sequential pro-
grams. In order to deal with concurrency, it checks that the command has enough per-
mission (pr) to update the shared state.

The fork and join rules modify the rules given in [7]. The fork rule takes a pre-
condition and converts it into a Thread-predicate recording the thread’s expected post-
condition. The rule checks that any pr satisfying the context P3 is sufficient to allow
assignment to the thread variable x. It requires that the variable x used to store the thread
identifier is not in fv(P1 ∗P3), the free variables for the precondition. As with Gotsman
et al. [7], the rule also requires that the precondition P1 is precise.

The join rule takes a thread predicate and replaces it with the corresponding post-
condition. The frame and consequence rules are modified from standard separation-
logic rules. Other rules are identical to the standard Hoare logic rules.

370 M. Dodds et al.

1 {T1 ∗G2 ∗G2 ∗D3 ∗D3 ∗L′ ∗x � 1}
2 t1 := fork[T1∗(x�1),T1] (if(x==1) error; x := 1)

3 {G2 ∗G2 ∗D3 ∗D3 ∗L′ ∗Thread(t1,T1)}
4 t2 := fork[G2∗D3,G2∗D3] (x := 2; if(x==3) error)

5 {G2 ∗D3 ∗L′ ∗Thread(t1,T1)∗Thread(t2,G2 ∗D3)}
6 join t1;

7 {T1 ∗G2 ∗D3 ∗L′ ∗Thread(t2,G2 ∗D3)}
8 x := 2;

9 {T1 ∗G2 ∗D3 ∗L′ ∗Thread(t2,G2 ∗D3)∗x = 2}
10 join t2;

11 {T1 ∗G2 ∗G2 ∗D3 ∗D3 ∗L′ ∗x = 2}
where T1

def
= [x : Z� 1]1, G2

def
= [x : Z� 2] 1

2 g, D3
def
= [x : Z� 3] 1

2 d,

and L′ def
= [x : Z� {1,2,3}]1 −∗ full

Fig. 7. Proof outline of the fork / join example

4 Two-Thread Example

In §2 we said that the program shown in Fig. 1 cannot be verified in conventional
rely-guarantee reasoning. We now show that deny-guarantee allows us to verify this
example. The proof outline is given in Fig. 7.

We use the following notation to represent permissions. Here x ∈ Vars, A,B ⊆ Vals
and f ∈ FractionDG.

x : A� B
def
= {(σ[x
→ v],σ[x
→ v′]) | σ ∈ State∧ v ∈ A∧ v′ ∈ B∧ v � v′}

[X] f
def
= λa.

⎧
⎪⎪⎨
⎪⎪⎩

f if a ∈ X

0 otherwise

Lemma 3 (Permission splitting).

[x : A� B�B′] f ⇐⇒ [x : A� B] f ∗ [x : A� B′] f

[x : A� B] f ⊕ f ′ ⇐⇒ [x : A� B] f ∗ [x : A� B] f ′

Lemma 4 (Permission subtraction). If P is precise and satisfiable, then (P−∗ full) ∗
P ⇐⇒ full.

Proof. Holds because (P−∗Q) ∗P ⇐⇒ Q∧ (P ∗ true) and full⇒ P ∗ true hold for any
precise and satisfiable P and any Q. �

The fork / join program has precondition {full∗x � 1}, giving the full permission, 1, on
every action. The permission [x : Z� {1,2,3}]1 permits any rewrite of the variable x to
the value 1, 2 or 3, and prohibits all other rewrites. By Lemma 4,

full ⇐⇒ ([x : Z� {1,2,3}]1−∗ full) ∗ [x : Z� {1,2,3}]1

Deny-Guarantee Reasoning 371

By Lemma 3 can split [x : Z� {1,2,3}]1 as follows

[x : Z� {1,2,3}]1 ⇐⇒ [x : Z� 1]1 ∗ [x : Z� 2]1 ∗ [x : Z� 3]1

⇐⇒ T1 ∗G2 ∗G2 ∗D3 ∗D3

where T1, G2 and D3 are defined in Fig. 7. We define L′ as ([x : Z� {1,2,3}]1−∗ full)
(the L used in the proof sketch in Fig. 2 is L′ ∗G2 ∗D3). Consequently, we can derive
the precondition {T1 ∗G2 ∗G2 ∗D3 ∗D3 ∗ L′ ∗x � 1}

The specification for thread t1 is shown below. Note that x � 1 is stable because T1

prevents the environment from writing 1 into x. The post-condition does not include
x = 1, because T1 does not prohibit the environment from writing other values into x.

{ T1 ∗x � 1} if(x==1) error; x := 1; { T1}
The specification for thread t2 is shown below. The assertion x � 3 is stable because

the permission D3 is a deny prohibiting the environment from writing 3 in x. Note that
a deny is used rather than full permission because another instance of D3 is needed to
ensure stability of the assertion on line 9, before the main thread joins t2.

{G2 ∗D3} x := 2; {G2 ∗D3 ∗ x � 3} if(x==3) error {G2 ∗D3}
The specifications for t1 and t2 allow us to apply the fork rule (lines 2 and 4).

We then join the thread t1 and recover the permission T1 (line 6). Then we apply the
assignment rule for the assignment x := 2 (line 8).

The post-condition x = 2 on line 9 is stable because T1 ∗ L′ gives the exclusive per-
mission, 1, on every rewrite except rewrites of x with value 2 or 3, and the deny D3

prohibits rewrites of x with value 3. Consequently the only permitted interference from
the environment is to write 2 into x, so x = 2 is stable.

Finally we apply the join rule, collect the permissions held by the thread t2, and
complete the proof.

5 Encoding Rely-Guarantee Reasoning

In this section, we show that the traditional rely-guarantee reasoning can be embedded
into our deny-guarantee reasoning. First, we present an encoding of parallel composi-
tion using the fork and join commands, and derive a proof rule. Then, we prove that
every rely-guarantee proof for programs using parallel composition can be translated
into a corresponding deny-guarantee proof.

5.1 Adding Parallel Composition

We encode parallel composition into our language by the following translation:

C1 ‖(x,P1,Q1) C2
def
= x := fork[P1,Q1] C1; C2; join x

Here the annotations P1,Q1 are required to provide the translation onto the fork , which
requires annotations. x is an intermediate variable used to hold the identifier for thread

372 M. Dodds et al.

C1. We assume that x is a fresh variable that is not used in C1 or C2. The parallel
composition rule for deny-guarantee is as follows:

{P1} C1 {Q1} {P2} C2 {Q2} x � fv(P1,P2,C1,C2,Q1,Q2) P1 precise
{P1 ∗P2 ∗ full(x)}C1 ‖(x,P1 ,Q1) C2 {Q1 ∗Q2 ∗ full(x)} (par)

Modulo the side-conditions about x and precision, and the full(x) star-conjunct, this is
the same rule as in separation logic. The assertion full(x) stands for the full permission
on the variable x; that is, we have full permission to assign any value to x.

full(x)(σ,σ′) def
= if σ[x
→ v] = σ′ ∧ v � σ(x) then 1, else 0

We extend this notation to sets of variables: full({x1, . . . ,xn}) def
= full(x1)⊕ . . .⊕ full(xn).

Precision is required as the underlying fork rule requires it. This makes this rule
weaker than if we directly represented the parallel composition in the semantics.

Lemma 5. The parallel composition rule can be derived from the rules given in Fig. 6.

Proof. The proof has the following outline.

{P1 ∗P2 ∗ full(x)}
x := fork[P1,Q1] C1

{Thread(x,Q1) ∗P2 ∗ full(x)}
C2

{Thread(x,Q1) ∗Q2 ∗ full(x)}
join x

{Q1 ∗Q2 ∗ full(x)}
The first step uses the first premise, and the frame and fork rules. The second step uses
the second premise and the frame rule. The final step uses the frame and join rules.

5.2 Translation

Now let us consider the translation of rely-guarantee proofs into the deny-guarantee
framework. The encoding of parallel composition into fork and join introduces extra
variables, so we partition variables in constructed fork-join programs into two kinds:
Vars, the original program variables, and TVars, variables introduced to carry thread
identifiers. We will assume that the relies and guarantees from the original proof assume
that the TVars are unchanged.

In §3, we showed how to extract a pair of rely-guarantee conditions from permissions
pr ∈ PermDG. Conversely, we can encode rely-guarantee pairs into sets of PermDG
permissions as follows:

� � ∈ P(Actions)×P(Actions)→P(PermDG)

�R,G� def
= {〈R,G〉F | F ∈ Actions→ (0,1)}

〈R,G〉F def
= λa.

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(guar,F(a)) a ∈ R∧a ∈G
0 a ∈ R∧a �G
1 a � R∧a ∈G
(deny,F(a)) a � R∧a �G

Deny-Guarantee Reasoning 373

First, we show that our translation is non-empty: each pair maps to something:

Lemma 6 (Non-empty translation). ∀R,G. �R,G� � ∅
By algebraic manipulation, we can show that the definition above corresponds to the
following more declarative definition:

Lemma 7. �R,G� = {pr | �pr� = (R,G)}
Moreover, as R and G assume that the TVars are unchanged, the following lemma holds:

Lemma 8. If pr ∈ �R,G�, and X ⊆ TVars, then full(X)⊕ pr is defined.

Now, we can translate rely-guarantee judgements into a non-empty set of equivalent
triples in deny-guarantee. Non-emptiness follows from Lemmas 6 and 8.

Definition 9 (Triple translation).

�R,G �rg {P} C {Q}�X
def
= ∀pr ∈ �R,G�.∃C′. � {P ∗ pr ∗ full(X)} C′ {Q ∗ pr ∗ full(X)}

∧ C = erase(C′)

where the set X ⊆ TVars carries the set of identifiers used in the parallel compositions,
and erase(C′) is C′ with all annotations removed from parallel compositions.

Note that the judgement R,G �rg {P}C {Q} in traditional rely-guarantee reasoning does
not need annotations in C. The C is a cleaned-up version of some annotated statement
C′. We elide the standard rely-guarantee rules here. This translation allows us to state
the following theorem:

Theorem 10 (Complete embedding). If R,G �rg {P} C {Q} is derivable according to
the rely-guarantee proof rules, then �R,G �rg {P} C {Q}�X holds.

In other words, given a proof in rely-guarantee, we can construct an equivalent proof
using deny-guarantee. We prove this theorem by considering each rely-guarantee proof
rule separately, and showing that the translated versions of the rely-guarantee
proof rules are sound in deny-guarantee. Below we give proofs of the two most in-
teresting rules: the rule of parallel composition and of weakening. For each of these,
we first need a corresponding helper lemma for the translation of the rely-guarantee
conditions. These helper lemmas follow from the definitions of PermDG and �R,G�.

Lemma 11 (Composition). If G1 ⊆ R2, G2 ⊆ R1, and pr ∈ �R1 ∩R2,G1 ∪G2�, then
there exist pr1, pr2 such that pr = pr1⊕ pr2 and pr1 ∈ �R1,G1� and pr2 ∈ �R2,G2�.

Lemma 12 (Soundness of translated parallel rule).
If G2 ⊆ R1, G1 ⊆ R2, �R1,G1 �rg {P1}C1{Q1}�X and �R2,G2 �rg {P2}C2{Q2}�Y ,
then �R1∩R2,G1∪G2 �rg {P1∧P2}C1 ‖ C2{Q1∧Q2}�{x}�X�Y

Lemma 13 (Weakening). If R2 ⊆ R1, G1 ⊆G2, and pr ∈ �R2,G2� then there exist per-
missions pr1, pr2 such that pr = pr1⊕ pr2 and pr1 ∈ �R1,G1�.

Lemma 14 (Soundness of translated weakening rule). If R2 ⊆ R1, G1 ⊆ G2, and
�R1,G1 �rg {P}C {Q}�X, then �R2,G2 �rg {P}C {Q}�X.

374 M. Dodds et al.

6 Semantics and Soundness

The operational semantics of the language is defined in Fig. 8. The semantics is di-
vided into two parts: the local semantics and the global semantics. The local semantics
is closely related to the interpretation of the logical judgements, while the global se-
mantics can easily be erased to a machine semantics. This erasure and other additional
definitions and proofs can be found in the associated technical report [4].

Local Semantics. The local semantics represents the view of execution from a single
thread. It is defined using the constructs described in §3. The commands all work with
an abstraction of the environment: γ abstracts the other threads, and carries their final
states; and pr abstracts the interference from other threads and the interference that
it is allowed to generate. The semantics will result in abort if it does not respect the
abstraction.

The first two rules, in Fig. 8, deal with assignment. If the assignment is allowed by
pr, then it executes successfully, otherwise the program aborts signalling an error. The
next two rules handle the joining of threads. If the thread being joined with is in γ, then
that thread’s terminal pr′ and γ′ are added to the current thread before the current thread
continues executing. We annotate the transition with join (t, pr′,γ′), so the semantics
can be reused in the global semantics. If the thread identifier is not in γ, we signal an
error as we are joining on a thread that we do not have permission to join. The next two
rules deal with forking new threads. If part of the state satisfies P then we remove that
part of the state, and extend our environment with a new thread that will terminate in a
state satisfying Q. If there is no part of the state satisfying P, then we will raise an error
as we do not have the permission to give to the new thread. The remaining local rules
deal with sequential composition.

In the next section of Fig. 8, we define
r
� , which represents the environment per-

forming an action. We also define �∗ as the transitive and reflexive closure of the
operational semantics extended with the environment action.

Given this semantics, we say a local thread is safe if it will not reach an error state.

Definition 15. � (C,σ, pr,γ) safe ⇐⇒ ¬((C,σ, pr,γ)�∗ abort)

We can give the semantics of the judgements from earlier in terms of this local opera-
tional semantics.

Definition 16 (Semantics of a triple). |= {P}C{Q} asserts that, if σ, pr,γ |= P, then

– (1) � (C,σ, pr,γ) safe; and
– (2) if (C,σ, pr,γ)�∗ (skip,σ′, pr′,γ′), then σ′, pr′,γ′ |= Q.

As the programs carry annotations for each fork, we need to define programs that are
well-annotated, that is, the code for each fork satisfies its specification.

Definition 17 (Well-annotated command). We define a command as well-annotated,
�C wa, as follows

� fork[P,Q] C wa ⇐⇒ |= {P}C{Q} ∧ �C wa
� skip wa ⇐⇒ always
�C1;C2 wa ⇐⇒ �C1 wa ∧ �C2 wa

. . .

Deny-Guarantee Reasoning 375

Local semantics

[[E]]σ = n (σ,σ[x
→ n]) ∈ pr.G

(x := E,σ, pr,γ)� (skip,σ[x
→ n], pr,γ)
[[E]]σ = n (σ,σ[x
→ n]) � pr.G

(x := E,σ, pr,γ)� abort

[[E]]σ = t γ(t) = Q σ, pr′,γ′ |= Q

(join E,σ, pr,γ)
join (t,pr′,γ′)
� (skip,σ, pr⊕ pr′, (γ \ t)�γ′)

[[E]]σ = t t � dom(γ)
(join E,σ, pr,γ)� abort

t � dom(γ) σ, pr′,γ′ |= P pr = pr′ ⊕ pr′′ γ = γ′ �γ′′ (σ,σ[x
→ t]) ∈ pr.G

(x := fork[P,Q] C,σ, pr,γ)
fork (t,C,pr′ ,γ′)

� (skip,σ[x
→ t], pr′′,γ′′[t
→ Q])

σ, pr,γ �|= P∗ true

(x := fork[P,Q] C,σ, pr,γ)� abort
(σ,σ[x
→ t]) � pr.G

(x := fork[P,Q] C,σ, pr,γ)� abort

(C,σ, pr,γ)� (C′,σ′, pr′,γ′)
(C;C′′,σ, pr,γ)� (C′;C′′,σ′, pr′,γ′) (skip;C,σ, pr,γ)� (C,σ, pr,γ)

(C,σ, pr,γ)� abort
(C;C′,σ, pr,γ)� abort

Interference

(σ,σ′) ∈ pr.R

(C,σ, pr,γ)
r
� (C,σ′, pr,γ)

∀(t
→C, pr,γ) ∈ δ. (σ,σ′) ∈ pr.R

(σ,δ)
r
�=⇒ (σ′, δ)

Global semantics

(C,σ, pr,γ)� (C′,σ′, pr′,γ′) (σ,δ)
r
�=⇒ (σ′, δ′)

(σ, [t
→ C, pr,γ]�δ) �=⇒ (σ′, [t
→C′, pr′,γ′]�δ′)

(C,σ, pr,γ)
fork (t2,C2,pr2,γ2)

� (C′,σ′, pr′,γ′) (σ,δ)
r
�=⇒ (σ′, δ′)

(σ, [t1
→ C, pr,γ]�δ) �=⇒ (σ′, [t
→ C′, pr′,γ′]� [t2
→C2, pr2,γ2]�δ′)

(C,σ, pr,γ)
join (t2,pr2,γ2)
� (C′,σ′, pr′,γ′) (σ,δ)

r
�=⇒ (σ′, δ′)

(σ, [t1
→ C, pr,γ]� [t2
→ skip, pr2,γ2]�δ) �=⇒ (σ′, [t
→ C′, pr′,γ′]�δ′)

(C,σ, pr,γ)� abort
(σ, [t
→C, pr,γ]�δ) �=⇒ abort

(C,σ, pr,γ)
−
� (C,σ′, pr′,γ′) ¬(∃δ′. (σ,δ) r

�=⇒ (σ′, δ′))
(σ, [t
→ C, pr,γ]�δ) �=⇒ abort

(C,σ, pr,γ)
join (t2,pr3,γ3)
� (C′,σ′, pr′,γ′) ¬((C,σ, pr,γ)

join (t2,pr2,γ2)
� (C′,σ′, pr′,γ′))

(σ, [t1
→C, pr,γ]� [t2
→ skip, pr2,γ2]�δ) �=⇒ abort

Fig. 8. Operational Semantics

376 M. Dodds et al.

Given these definitions we can now state soundness of our logic with respect to the
local semantics.

Theorem 18 (Local soundness). If � {P}C{Q}, then |= {P}C{Q} and �C wa.

Global Semantics. Now we will consider the operational semantics of the whole ma-
chine, that is, for all the threads. This semantics is designed as a stepping stone between
the local semantics and the concrete machine semantics. We need an additional abstrac-
tion of the global thread-queue.

δ ∈ GThrdQ
def
= ThreadIDs⇀fin Stmts×PermDG×ThreadQueues

In the third part of Fig. 8, we present the global operational semantics. The first rule
progresses one thread, and advances the rest with a corresponding environment action.
The second rule deals with removing a thread from a machine when it is successfully
joined. Here the label ensures that the local semantics uses the same final state for the
thread as it actually has. The third rule creates a new thread. Again the label carries the
information required to ensure the local thread semantics has the same operation as the
global machine.

The three remaining rules deal with the cases when something goes wrong. The
first rule says that if the local semantics can fault, then the global semantics can also.
The second raises an error if a thread performs an action that cannot be accepted as a
legal environment action by other threads. The final rule raises an error if a thread has
terminated and another thread tries to join on it, but cannot join with the right final state.

We can prove the soundness of our logic with respect to this global semantics.

Theorem 19 (Global soundness). If � {P}C{Q} and σ,1,∅ |= P, then

– ¬((σ, [t
→C,1,∅]) �=⇒∗ abort); and
– if (σ, [t
→ C,1,∅]) �=⇒∗ (σ′, [t
→ skip, pr,γ]) then σ′, pr,γ |= Q.

This says, if we have proved a program and it does not initially require any other threads,
then we can execute it without reaching abort, and if it terminates the final state will
satisfy the postcondition.

7 Conclusions and Future Developments

In this paper we have demonstrated that deny-guarantee enables reasoning about pro-
grams using dynamically scoped threads, that is, programs using fork to create new
threads and join to wait for their termination. Rely-guarantee cannot reason about this
form of concurrency. Our extension borrows ideas from separation logic to enable an
interference to be split dynamically with a logical operation, ∗.

We have applied the deny-guarantee method to a setting with only a pre-allocated
set of global variables. However, deny-guarantee extends naturally to a setting with
memory allocation and deallocation.

Deny-guarantee can be applied to separation logic in much the same way as rely-
guarantee, because the deny-guarantee approach is largely orthogonal to the presence
of the heap. Deny-guarantee permissions can be made into heap permissions by defining
actions as binary relations over heaps, rather than over states with fixed global variables.

Deny-Guarantee Reasoning 377

The SAGL [5] and RGSep [12] approaches can be easily extended to a setting with fork
and join by using heap permissions in place of relies and guarantees.

Finally, deny-guarantee may allow progress on the problem of reasoning about dy-
namically-allocated locks in the heap. Previous work in this area, such as [7] and [9],
has associated locks with invariants. With deny-guarantee we can associate locks with
heap permissions, and make use of compositional deny-guarantee reasoning. However,
considerable challenges remain, in particular the problems of recursive stability check-
ing and of locks which refer to themselves (Landin’s ‘knots in the store’). We will
address these challenges in future work.

Acknowledgements. We should like to thank Alexey Gotsman, Tony Hoare, Tom Ridge,
Kristin Rozier, Sam Staton, John Wickerson and the anonymous referees for comments
on this paper. We acknowledge funding from EPSRC grant EP/F019394/1 (Parkinson
and Dodds) and a Royal Academy of Engineering / EPSRC fellowship (Parkinson).

References

[1] Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in separation
logic. In: POPL 2005, pp. 259–270. ACM Press, New York (2005)

[2] Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.) SAS
2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

[3] Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic. In: LICS
2007, pp. 366–378. IEEE Computer Society, Los Alamitos (2007)

[4] Dodds, M., Feng, X., Parkinson, M., Vafeiadis, V.: Deny-guarantee reasoning (extended
version and formalization in Isabelle). Technical Report UCAM-CL-TR-736, University of
Cambridge (2009),
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-736.html

[5] Feng, X., Ferreira, R., Shao, Z.: On the relationship between concurrent separation logic
and assume-guarantee reasoning. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
173–188. Springer, Heidelberg (2007)

[6] Feng, X., Shao, Z.: Modular verification of concurrent assembly code with dynamic thread
creation and termination. In: ICFP 2005, pp. 254–267. ACM Press, New York (2005)

[7] Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local reasoning for storable
locks and threads. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 19–37. Springer,
Heidelberg (2007)

[8] Haack, C., Hurlin, C.: Separation logic contracts for a java-like language with fork/join.
In: Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS, vol. 5140, pp. 199–215. Springer,
Heidelberg (2008)

[9] Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle semantics for concurrent separation logic. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 353–367. Springer, Heidelberg
(2008)

[10] Jones, C.B.: Tentative steps toward a development method for interfering programs. ACM
Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

[11] Jones, C.B.: Annoted bibliography on rely/guarantee conditions (2007),
http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/rg-hist.pdf

[12] Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In: Caires,
L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271. Springer,
Heidelberg (2007)

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-736.html
http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/rg-hist.pdf

A Basis for Verifying Multi-threaded Programs

K. Rustan M. Leino0 and Peter Müller1

0 Microsoft Research, Redmond, WA, USA
leino@microsoft.com
1 ETH Zurich, Switzerland

peter.mueller@inf.ethz.ch

Abstract. Advanced multi-threaded programs apply concurrency concepts in so-
phisticated ways. For instance, they use fine-grained locking to increase paral-
lelism and change locking orders dynamically when data structures are being
reorganized. This paper presents a sound and modular verification methodology
that can handle advanced concurrency patterns in multi-threaded, object-based
programs. The methodology is based on implicit dynamic frames and uses frac-
tional permissions to support fine-grained locking. It supports concepts such as
multi-object monitor invariants, thread-local and shared objects, thread pre- and
postconditions, and deadlock prevention with a dynamically changeable locking
order. The paper prescribes the generation of verification conditions in first-order
logic, well-suited for scrutiny by off-the-shelf SMT solvers. A verifier for the
methodology has been implemented for an experimental language, and has been
used to verify several challenging examples including hand-over-hand locking for
linked lists and a lock re-ordering algorithm.

0 Introduction

Mainstream concurrent programs use multiple threads and synchronization through
locks or monitors. To increase parallelism and to reduce the locking overhead, they
apply these concurrency concepts in sophisticated ways. They use fine-grained lock-
ing to permit several threads to access a data structure concurrently. They distinguish
between thread-local and shared objects to avoid unnecessary locking of thread-local
objects, and they allow objects to transition from thread-local to shared and back. They
dynamically change locking orders, which are used to prevent deadlocks, when data
structures are being reorganized. They distinguish between read and write accesses to
permit concurrent reading but ensure exclusive writing. Several other such concurrency
patterns are described in the literature [16,9].

These patterns improve the performance and flexibility of programs, but also com-
plicate reasoning. For instance, fine-grained locking often requires that several locks
be acquired before a field can be updated safely. Omitting one of the locks potentially
leads to inconsistent data structures. Consider for example a sorted linked list, where
each node has to maintain a monitor invariant such as next �= null ⇒ val ≤ next .val .
Updating a field n.val potentially breaks the invariant of n and n ’s predecessor in the
list. Consequently, the monitors of both objects have to be acquired before updating
n.val , and the monitor invariants of both monitors have to be checked when they are
released. This problem does not occur with coarse-grained locking, where invariants

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 378–393, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Basis for Verifying Multi-threaded Programs 379

over several objects can be associated with the (single) lock for the whole data struc-
ture. Other advanced concurrency patterns also lead to subtle correctness conditions,
which is one of the reasons why concurrent programs are so difficult to get right.

A standard verification technique for concurrent programs is to proceed in two steps.
First, the code is divided into atomic sections. Second, sequential reasoning is used
within each atomic section and rely-guarantee reasoning [14,20] between atomic sec-
tions. Advanced concurrency patterns complicate especially the first step because atom-
icity is not always achieved by acquiring a single lock; instead, the permission to access
a field may be justified by thread-locality, by acquiring one or more locks, or by sharing
fields just among readers.

In this paper, we present a verification methodology for multi-threaded, object-based
programs that handles all of these complications. It verifies the absence of data races
and deadlocks, and that implementations satisfy their contracts. We build on Smans
et al.’s implicit dynamic frames [18] and extend them to concurrent programs. Con-
tracts such as monitor invariants specify access permissions along with conditions on
variables. Evaluating these contracts transfers these access permissions, for instance
from a monitor to the thread that acquires the monitor. To support fine-grained locking
and concurrent reading, we use Boyland’s fractional permissions [4], which allow us
to split the access permission for a field among several monitors or threads. The per-
mission accounting is similar to previous work on concurrent separation logic [2,8],
but our approach generates verification conditions in first-order logic, well-suited for
off-the-shelf SMT solvers such as Z3 [6]. Finally, our methodology permits not a fixed
but a changeable locking order among monitors. We have implemented a verifier for
our methodology for an experimental language called Chalice, and have used it to ver-
ify automatically several challenging examples including hand-over-hand locking for
linked lists and a lock re-ordering algorithm.

Outline. The next three sections present our verification methodology informally: Sec-
tion 1 explains permissions, Section 2 discusses shared objects and thread synchroniza-
tion, and Section 3 shows how we prevent deadlocks. The formal encoding including
proof obligations is presented in Section 4. We discuss related work in Section 5 and
conclude in Section 6.

1 Permissions

A thread may access a heap location only if it has the permission to do so. Abstractly,
a permission is a percentage between 0 and 100% , inclusive. A permission of 100%
means the thread has exclusive access to the location, which in particular means it is
allowed to write the location. Any non-zero permission means the thread is allowed to
read the location. Our methodology ensures that for each location, the sum of permis-
sions held by the various threads is between 0 and 100% , inclusive; what remains up
to 100% is held by the system or by an un-acquired monitor.

Specification of Access Permissions. To support modular verification, we specify for
each method in its precondition the permissions that it requires from its caller, and

380 K.R.M. Leino and P. Müller

class Cell {
int val ;

Cell Clone()
requires rd(this.val) ;
ensures acc(result.val) ∧ rd(this.val) ;
{

Cell tmp := new Cell ;
tmp.val := this.val ;
return tmp ;
}
}

Fig. 0. A simple example with read and write permissions

in its postcondition the permissions that it returns to its caller. The full permission of
100% for a field f of an object o is denoted by acc(o.f) . A fractional permission
of n% is denoted by acc(o.f ,n) ; that is, acc(o.f) is a shorthand for acc(o.f , 100) .
Finally, rd(o.f) denotes one infinitesimal permission ε , rd(o.f , k) denotes k such
permissions, and rd(o.f , ∗) denotes an inexhaustible supply of ε permissions.

For instance, method Clone in Fig. 0 requires read permission for the location
this.val . For a call to o.Clone() , the executing thread must possess a non-zero permis-
sion for o.val . With implicit dynamic frames, frame axioms for methods are expressed
implicitly through the specification of access permissions in pre- and postconditions.
Instead of providing a separate frame axiom that describes changes of permissions, the
evaluation of an assertion changes the permissions. Upon a call to o.Clone() , the caller
is deprived of the permission required by the precondition, that is, an ε -permission for
o.val , which is transferred to the callee. Therefore, in the callee method, one may as-
sume that the current thread has at least an ε -permission for o.val . However, after the
call, the caller may assume this permission only if it is explicitly returned by the method
through an appropriate postcondition. This is the case in our example, where the post-
condition provides full permission for result.val and read permission for this.val .
If one omitted rd(this.val) from Clone ’s postcondition, the caller would not re-gain
the permission it had before the call; the executing thread would lose an ε -permission
for o.val , which would be retained by the system. From then on, no thread could ever
obtain full permission for o.val , and the location would be immutable.

This form of permission transfer is similar to reasoning in linear logic or capability
systems [19]. In particular, the predicate acc(x) ∧ acc(x) is equivalent to false, just
like x �→ ∗ x �→ is false in separation logic.

Since method calls change the permissions that may be assumed for the executing
thread, it is often useful to think of permissions as being held by method executions
rather than by threads. The situation is analogous for loops, where the loop invariant
specifies the permissions required and provided by a loop iteration.

Since the evaluation of specifications leads to a transfer of permissions, it must be
possible to infer from a specification which permissions to transfer. Therefore, the acc
and rd predicates may occur only in positive positions, and not under a quantifier.

A Basis for Verifying Multi-threaded Programs 381

Obtaining and Using Permissions. A thread can obtain permissions in four ways:
First, when a thread creates a new object o , it obtains full permission for all fields of o .
This exclusive access is justified because o is thread-local until it is explicitly shared
with other threads, as we explain below. Second, when a thread acquires the monitor of
an object o , it obtains the permissions held by the monitor. The monitor obtained these
permissions from the thread that initially shared the object. They are then transferred
between the monitor and a thread each time the monitor is acquired or released. Third,
when a new thread is forked for an object o , it obtains the permissions required by the
precondition of o ’s Run method. The forking thread is deprived of these permissions.
Fourth, when a thread is joined, the joining thread obtains the permissions provided by
the postcondition of the Run method of the joined thread, which has then terminated.

Permissions are used to access locations. Each read access to a location o.f gener-
ates a proof obligation that the current thread possesses a non-zero permission for o.f .
Each write access to o.f generates a proof obligation that the current thread possesses
full permission for o.f .

In method Clone (Fig. 0), the read access to this.val is permitted because the
precondition guarantees that the executing thread has a non-zero permission for this
location. The write access to tmp.val is permitted because after tmp ’s creation, the
executing thread has full permission. An attempt to modify this.val would fail because
Clone ’s precondition does not allow one to prove that the executing thread has full
permission for this location.

2 Shared Objects

It is possible to share objects between threads. To make a thread-local object available
for sharing, the object is first given to the system, which then synchronizes accesses
using monitors to ensure a suitable level of mutual exclusion. It is also possible for a
shared object to be un-shared, that is, to become thread-local after a period of being
shared. In this section, we describe sharing and synchronization, and how they affect
access permissions.

Monitors. Objects can be used as monitors—locks that protect a set of locations and
an invariant [5,10]. While an object is shared, a thread can acquire it using the acquire
statement and then release it using the release statement. We say that a thread holds a
monitor if it has acquired, but not yet released the monitor.

The system manages a shared object under a specified monitor invariant, declared
in the object’s class with an invariant declaration. Our methodology ensures that the
monitor invariant of an object o holds whenever o is shared and o ’s monitor is not
held by any thread. This can be proved by making the monitor invariant a precondition
of the share and release operations and a postcondition of the acquire operation.

Like method contracts, monitor invariants specify access permissions along with
conditions on variables. For shared objects, these permissions are held by the monitor
whenever it is not held by a thread. When a thread acquires the monitor, the permissions
are transferred to the acquiring thread, and they are transferred back to the monitor upon
release.

382 K.R.M. Leino and P. Müller

class Node {
int val ;
Node next ;
int sum ;

invariant acc(next) ∧ rd(val) ;
invariant next �= null ⇒ rd(next .val) ∧ val ≤ next .val ;
invariant acc(sum, 50) ∧ (next = null ⇒ sum = 0) ;
invariant next �= null ⇒ acc(next .sum, 50) ∧ sum = next .val + next .sum ;
invariant acc(μ, 50) ∧ (next �= null ⇒ acc(next .μ, 50) ∧ μ � next .μ) ;
}

Fig. 1. Nodes of a sorted linked list

We illustrate monitor invariants using the linked-list implementation in Fig. 1. Every
node of the list stores an integer value, a reference to the next node in the list, and the
sum of all values stored in all the successors of the current node. Here, we discuss the
first four invariants of class Node ; the fifth invariant has to do with sharing and the
locking order and is discussed later.

The first monitor invariant expresses that the monitor possesses full permission for
this.next and read permission for this.val . (We omit the receiver this in programs
and when it is clear from the context.) Consequently, when a thread acquires the mon-
itor of a node n , it may read and write n.next and read n.val . Having at least read
permission for these locations allows them to be mentioned in the monitor invariant. For
instance, the second invariant states that if there is a successor node, then the present
monitor also has read permission for the val field of the successor and that the two
nodes are sorted according to their values.

It is important to understand that the monitor invariant of an object o may depend
on a location x .f only if o ’s monitor has (at least) read permission for x .f . If this
is not the case, the invariant is rejected by the verifier. This requirement is necessary
for soundness. For instance, if the invariant of Node did not require rd(val) , then it
might be possible for some thread to obtain full permission for n.val without acquiring
n ’s monitor. The full permission could then be used to modify n.val and break n ’s
second invariant. When n ’s monitor is later acquired by another thread, that thread
would assume the invariant even though it does not hold, which is unsound.

The third invariant expresses that the monitor holds a fractional permission of 50%
for this.sum . Therefore, the invariant is allowed to depend on this location. The fourth
invariant states that if there is a successor node, then the present monitor also holds a
50%-permission for the successor’s sum location and may, thus, depend on it in its
invariant. Using 50%-permissions enables a thread to get full permission for n.sum
by acquiring the monitors of n and n ’s predecessor. It is indeed necessary to acquire
both monitors before updating this location because a modification potentially affects
the (third) monitor invariant of n as well as the (fourth) monitor invariant of n ’s pre-
decessor. So both invariants must be checked after an update of n.sum , which happens
when the monitors are released.

A Basis for Verifying Multi-threaded Programs 383

class List {
Node head ; // sentinel node
int sum ;

invariant acc(head) ∧ head �= null ;
invariant rd(head .val) ∧ head .val = −1 ;
invariant acc(sum, 20) ∧ acc(head .sum, 50) ∧ sum = head .sum ;
invariant rd(μ) ∧ acc(head .μ, 50) ∧ μ � head .μ ;

void Init()
requires acc(head) ∧ acc(sum) ;
requires acc(μ) ∧ μ = ⊥ ;
ensures acc(sum, 80) ∧ sum = 0 ;
ensures rd(μ) ∧ maxlock � μ ;
{

Node t := new Node ; t .val := − 1 ; t .next := null ; t .sum := 0 ;
share t between maxlock and ;
head := t ; sum := 0 ;
share this between maxlock and t ;
}
void Insert(int x)

requires acc(sum, 80) ∧ 0 ≤ x ∧ rd(μ) ∧ maxlock � μ ;
ensures acc(sum, 80) ∧ sum = old(sum) + x ∧ rd(μ) ∧ maxlock � μ ;
{

acquire this ; sum := sum + x ;
Node p := head ; acquire p ; p.sum := p.sum + x ;
release this ;
while (p.next �= null ∧ p.next .val < x)

invariant p �= null ∧ acc(p.next) ∧ acc(p.sum, 50) ∧ acc(p.μ, 50) ;
invariant rd(p.val) ∧ p.val ≤ x ∧ p.held ∧ maxlock = p.μ ;
invariant p.next = null ⇒ p.sum = x ;
invariant p.next �= null ⇒

rd(p.next .val) ∧ p.val ≤ p.next .val ∧ acc(p.next .μ, 50) ∧ p.μ � p.next .μ ∧
acc(p.next .sum, 50) ∧ p.sum = p.next .val + p.next .sum + x ;

lockchange p ;
{

Node nx := p.next ; acquire nx ; nx .sum := nx .sum + x ;
release p ; p := nx ;
}
Node t := new Node ; t .val := x ; t .next := p.next ;
if (t .next = null) { t .sum := 0 ; } else { t .sum := p.next .val + p.next .sum ; }
share t between p and p.next ;
p.next := t ;
release p ;
}
}
Fig. 2. Main class of the sorted linked list. The while statement in method Insert includes a
loop invariant and a lockchange clause that says how a loop iteration may affect what locks
the thread holds.

384 K.R.M. Leino and P. Müller

Fig. 2 shows the implementation of the main class of the linked list. According to
the third monitor invariant, the monitor of a List object l holds a 20%-permission
for l .sum , which allows the monitor invariant to depend on the location. Threads may
hold parts of the remaining 80% and read the location without acquiring l ’s monitor.
But only a thread that holds exactly 80% can obtain write permission for l .sum by
acquiring the monitor. The exact percentages for the fractional permissions here are
arbitrary; we could as well have chosen 50% or any other non-zero percentage.

Just like the monitor of a Node object holds a 50%-permission for the sum location
of the next node, the monitor of a List object l holds a 50%-permission for the sum
location of the first node l .head . Therefore, to obtain write permission for l .head .sum ,
a thread has to acquire not only the monitor of l .head but also the monitor of l , which
protects List ’s third monitor invariant.

Method Insert of class List inserts a new value into the list. It uses fine-grained
hand-over-hand locking to traverse the list. This locking strategy ensures that once the
method finds the appropriate place to insert the new element, it holds the lock of the new
node’s predecessor. Moreover, it enables us to update the sum field while traversing the
list. Hand-over-hand locking becomes possible by our use of fractional permissions in
the monitor invariant of Node .

Sharing and Unsharing. Every object is either thread-local or shared. An object is
thread-local upon creation. A thread-local object o is shared by the share o statement;
conversely, a shared object o is made thread-local by the unshare o statement.

Sharing an object o transfers the permissions required by o ’s monitor invariant from
the current thread to o ’s monitor. That is, the share o statement checks that o is
a thread-local object, after which it makes o shared. It then checks that o ’s monitor
invariant holds, in particular, that the current thread holds all the permissions required
by o ’s monitor invariant. Finally, it deprives the current thread of these permissions.

Conversely, unshare o checks that o is a shared object, after which it makes o
thread-local. Whereas share o requires o to be thread-local, which implies its monitor
is not held by any thread, unshare o requires o ’s monitor to be held by the current
thread and then releases the monitor of o .

Note that unshare o does not necessarily give the current thread full permissions
for o ’s fields. The thread obtains only the permissions held by o ’s monitor, but other
threads might still hold permissions. Therefore, thread-locality of o means only that no
thread can acquire o ’s monitor, but other threads might still access o ’s fields.

Method Init of class List (Fig. 2) illustrates sharing. The method plays the role of
a constructor, that is, it is expected to be called on newly allocated List objects. Hence,
it requires write permissions for the head and sum fields of its receiver. The second
precondition requires that the receiver be thread-local, as we discuss later. The method
creates and initializes a new Node object t . Since t is thread-local and since t .next
is null, the current thread possesses all the permissions required by t ’s monitor invari-
ant (Fig. 1). Therefore, the share t statement verifies (we will explain the between
clause in the next section). The share this statement verifies because the current
thread possesses all the permissions required by the monitor invariant of this . In par-
ticular, when t is being shared, the current thread retains a read permission for t .val
(since Node ’s monitor invariant requires only an ε -permission) and a 50%-permission

A Basis for Verifying Multi-threaded Programs 385

for t .sum (since Node requires only a 50%-permission). Init satisfies its first post-
condition because the current thread retains an 80%-permission for this.sum when
this is being shared (since List ’s invariant requires only 20%), and because sum is
set to zero by the method. We will discuss the second postcondition in the next section.

It is interesting to trace the permissions for t .val . After creating t , the current thread
possesses full permission for this location. Sharing t transfers an ε -permission to t ’s
monitor, such that the current thread retains 100%− ε . Consequently, by acquiring t ’s
monitor, the thread could now re-gain write permission for t .val . Later, when this is
being shared, another ε -permission is transferred to the monitor of this , which leaves
the current thread with 100%− 2 · ε . However, when the Init method terminates, this
remaining permission is not transferred to the caller. Therefore, it is effectively lost for
all threads, and t .val is from then on immutable.

3 Deadlock Prevention

To prevent deadlocks, locks must be acquired in ascending order, according to a user-
defined locking order. In this section, we show how this order is defined, how it is
enforced, and how programs can set and change an object’s position in the order.

Locking Order. To allow the locking order to be changed dynamically, we store each
object’s position in a predefined field μ . The type of μ is a lattice in which for any two
distinct, ordered elements u and v , there is some element w strictly in between them.
This requirement ensures that it is always possible to place an object between any two
existing objects in the locking order. We use u � v to denote that u is strictly less than
v in the lattice. The bottom element of the lattice is denoted by ⊥ .

As for other fields, accesses to μ require the appropriate permissions. However, μ
may be modified only through the share statement and the reorder statement de-
scribed below. The μ field may be used in specifications. For instance, the last invariant
of class Node (Fig. 1) specifies the locking order between a node and its successor.
To do so, it requires 50%-permissions for the μ fields of both nodes and orders this
before its successor. Consequently, the monitors of the nodes have to be acquired in the
order of the nodes in the list. Similarly, the last invariant of List (Fig. 2) orders this
before the first node; so the List object must be acquired before its nodes.

We use the μ field also to encode whether an object is thread-local or shared. An
object o is thread-local if and only if o.μ = ⊥ . For instance, the second precondi-
tion of method Init (Fig. 2) requires that the receiver be thread-local, and the second
postcondition ensures that it is shared (since for all u , u � μ implies o.μ �= ⊥).

Acquiring Monitors. To check that a thread acquires monitors in the specified order,
we have to keep track of the monitors held by each thread. We use the expression
maxlock � u to express that u is greater than o.μ for each object o currently locked
by the current thread. Since this expression implicitly reads o.μ for all objects held by
the current thread, we ensure that o.μ may be changed only by the thread that holds o ,
see below.

386 K.R.M. Leino and P. Müller

The proof obligation for acquire o ensures that monitors are acquired in ascending
order, that is, that the current thread has read permission for o.μ and that o is strictly
above all objects already held by the current thread. Note that because of this proof
obligation, it is (allowed but) not sensible to require full permission for this.μ in the
monitor invariant of an object o : when o is being shared, its monitor would obtain full
permission to o.μ ; so no thread could possess read permission for o.μ and, thus, no
thread could ever acquire o ’s monitor.

Determining the Locking Order. The locking order is specified and changed by the
between p and s clause of the share o and reorder o statements, for any (possibly
empty) lists of expressions p and s . It assigns a value to o.μ that is strictly above all
the lower bounds pi .μ and strictly below all the upper bounds sj .μ . The operations
require the current thread to have write permission for o.μ and read permission for all
pi .μ and sj .μ and require each lower bound pi .μ to be strictly below each upper bound
sj .μ . Whereas the share statement places a thread-local object in the locking order,
reorder o is used to change the position of a shared object o , which must be held
by the current thread to prevent one thread from confusing another thread’s maxlock
value.

In List ’s Init method (Fig. 2), the new (thread-local) Node object t is ordered
above maxlock , which lets share this order the (thread-local) this object between
maxlock and t , as required by the last postcondition of Init and List ’s last monitor
invariant, respectively. Since we are not interested in ordering t below any particular
object, the second expression list of the share t statement is empty.

It is an important feature of our verification methodology that the μ field of an object
can be assigned to more than once, that is, the locking order can be changed during pro-
gram execution. In our example, the monitor invariant of Node (Fig. 1) requires 50%-
permissions for this.μ and next .μ . Therefore, it is possible for a thread to acquire
the monitors of nodes n and n.next , and thus, obtain full permission for n.next .μ .
Consequently, the thread can change the place of n.next in the locking order. We used
this feature to implement an association list that re-orders its nodes after each lookup
to ensure that frequently-used elements appear toward the head of the list. List reversal
and balanced trees are other common examples that require a dynamic change of the
locking order.

4 Technical Treatment

In this section, we explain how our methodology is encoded in the program verifier.
We define the proof rules for the most interesting statements by translating them to a
simple guarded-command language, whose weakest precondition semantics is obvious.
In this translation, we use assert statements to denote proof obligations and assume
statements to state assumptions that may be used to prove the assertions. The heap is
encoded as a two-dimensional array that maps objects and field names to values. The
current heap is denoted by the global variable Heap .

A Basis for Verifying Multi-threaded Programs 387

Encoding of Permissions. A permission has the form (p,n) where p is a percentage
between 0 and 100, and n is either an integer or one of the special values −∞ or +∞ .
These special values are used to represent an inexhaustible supply of ε permissions,
as expressed by the predicate rd(o.f , ∗) . We use integral percentages rather than the
mathematically more appealing fractions, due to a limitation in many popular SMT
solvers in their handling of both integers and rationals. Intuitively, we define the value
of a permission (p,n) as p + n · ε , where ε is a positive infinitesimal.

Percentages are a simple way to encode fractions of a definite size, which are for
instance needed to split permissions over a statically-known number of monitors or
threads. Infinitesimals allow one to split permissions between arbitrarily many monitors
and threads, for instance, to allow a statically-unknown number of concurrent readers.

A permission (p,n) is called:

– full permission if p + n · ε = 100 , that is, p = 100 ∧ n = 0 ;
– some permission if p + n · ε > 0 , that is, p > 0 ∨ n > 0 ;
– no permission if p + n · ε = 0 , that is, p = 0 ∧ n = 0 .

Other combinations of p and n do not occur. Note that our encoding does not reflect
that ε is an infinitesimal. It simply counts the number of such ε ’s (or “tokens”).

We assume the following operations on permissions: incrementing (denoted by +)
and decrementing (denoted by −) by a percentage or by a possibly inexhaustible num-
ber of infinitesimal permissions ε , and comparison (= , < , ≤). The definitions of these
operations are straightforward and, therefore, omitted.

To keep track of the permissions it holds, each thread t has a (thread-local) variable
Pt that maps every location to t ’s permission for that location. Since specifications are
given with respect to one thread (the current thread, denoted by tid) and, likewise, ver-
ification conditions are prescribed for each thread, we usually refer only to one variable
Ptid , so we drop the subscript tid .

It is convenient to introduce shorthands for the two most common permission re-
quirements. CanRead(o.f) and CanWrite(o.f) express that the current thread holds
some permission and full permission for location o.f , respectively:

CanRead(o.f) ≡ o �= null ∧ let (p,n) = Ptid [o, f] in p > 0 ∨ n > 0
CanWrite(o.f) ≡ o �= null ∧ let (p,n) = Ptid [o, f] in p = 100 ∧ n = 0

Object Creation. For any class C and local variable x , the allocation statement is
given the following semantics:

x := new C ; ≡
havoc x ;
assume x �= null ∧ (∀ f • P [x , f] = (0, 0) ∧ Heap[x , f] = zero);
#foreach f { P [x , f] := (100, 0); }

The havoc x statement assigns an arbitrary value to x , which is then constrained
by the following assume statement. zero denotes the zero-equivalent value for each
type, in particular, ⊥ for the locking order. Note that this semantics is simplified. In
particular, we do not express here that the new object is an instance of class C or that
the f in the #foreach statement is a field of class C , because these are not relevant
for our discussion. #foreach loops can be statically expanded by the translator.

388 K.R.M. Leino and P. Müller

Field Access. Reading and writing locations first checks that the thread has the appro-
priate permission:

x := o.f ; ≡
assert CanRead(o.f);
x := Heap[o, f];

o.f := x ; ≡
assert CanWrite(o.f);
Heap[o, f] := x ;

Monitors. Each thread keeps track of the monitors it holds. For that purpose, we in-
troduce a thread-local boolean field held . As with P , this field would be subscripted
with the thread, but since we only refer to the field for the current thread, we drop the
subscripts. That is, Heap[o, held] denotes whether the monitor of object o is held by
the current thread. Since held is thread-local, it is not subject to permission checks;
each thread always has full permission for its held fields.

The expression maxlock is encoded using quantifiers over the objects whose moni-
tors are held by the current thread. For instance, maxlock � u is encoded as
(∀ p • Heap[p, held] ⇒ Heap[p, μ] � u) .

Permission Transfer. Several statements of our programming language transfer per-
missions between threads and monitors (for instance, acquire), two threads (for in-
stance, fork , see below), or between two method executions of the same thread (method
call). We model this permission transfer by two operations, Exhale and Inhale , which
describe the transfer from the current thread’s perspective.

Roughly speaking, Exhale�E� checks that expression E holds, in particular, that
the current thread holds the permissions required by E , and then takes away these
permissions. Inhale�E� assumes E and transfers the permissions required by E to
the current thread. If the current thread obtains some permission for a location o.f for
which it previously had no permission, Inhale assigns an arbitrary value to o.f , which
models the fact that another thread might have modified the location since the current
thread last accessed it. The definitions for both operations are shown in Fig. 3.

Acquiring and Releasing Monitors. The precondition of acquire o requires object
o to be ordered above all objects already held by the acquiring thread. This proof obli-
gation also ensures that o is shared, because our encoding is consistent with a model
where every thread holds an anonymous sentinel monitor; in particular, it is not pos-
sible to refute Heap[⊥, held] = true . To ensure mutual exclusion, the execution of
the acquire statement suspends until no other thread holds o ’s monitor. The Inhale
operations expresses that the acquiring thread may assume the monitor invariant of o ,
denoted by J (o) , and that it obtains the permissions held by o ’s monitor.

The release o statement requires o ’s monitor to be held by the current thread. Us-
ing the Exhale operation, it then asserts o ’s monitor invariant and transfers permissions
back to the monitor:

acquire o; ≡
assert CanRead(o.μ);
assert (∀ p • Heap[p, held] ⇒ Heap[p, μ] � Heap[o, μ]);
Heap[o, held] := true;
Inhale�J (o)�

release o; ≡
assert o �= null ;
assert Heap[o, held];
Exhale�J (o)�
Heap[o, held] := false;

A Basis for Verifying Multi-threaded Programs 389

Exhale�acc(E .f , r)� ≡
assert P [Tr�E�, f] ≥ Tr�r�;
P [Tr�E�, f] := P [Tr�E�, f]− Tr�r�;

Exhale�rd(E .f)� ≡
assert P [Tr�E�, f] ≥ ε;
P [Tr�E�, f] := P [Tr�E�, f]− ε;

Exhale�P ∧ Q� ≡
Exhale�Q�;
Exhale�P�;

Exhale�P ⇒ Q� ≡
if (Tr�P�) { Exhale�Q�; }

Otherwise:

Exhale�E� ≡
assert Tr�E�;

Inhale�acc(E .f , r)� ≡
if (P [Tr�E�, f] = (0, 0))

havoc Heap[Tr�E�, f];
P [Tr�E�, f] := P [Tr�E�, f] + Tr�r�;

Inhale�rd(E .f)� ≡
if (P [Tr�E�, f] = (0, 0))
{ havoc Heap[Tr�E�, f]; }
P [Tr�E�, f] := P [Tr�E�, f] + ε;

Inhale�P ∧ Q� ≡
Inhale�P�;
Inhale�Q�;

Inhale�P ⇒ Q� ≡
if (Tr�P�) { Inhale�Q�; }

Otherwise:

Inhale�E� ≡
assume Tr�E�;

Fig. 3. Exhale�E� and Inhale�E� are defined by structural induction over expression E . The
function Tr translates source expressions to our intermediate language. We assume here that
acc and rd expressions only occur on the outermost level of conjuncts and consequences of
implications. Therefore, Tr never encounters these expressions. Exhale�E� also asserts that E
is well-defined, in particular, that the current thread possesses the permissions needed for the field
accesses in E . We omit these checks and related technicalities for simplicity.

Finally, the reorder statement requires write permission for o.μ , that o is held by
the current thread, and that any lower bound pi .μ is below any upper bound sj .μ . It
then chooses an appropriate value w for o.μ and assigns it. Recall from Section 3 that
the lattice of positions in the locking order guarantees that for any two distinct, ordered
elements u and v , there is some element w strictly in between them. Therefore, it is
always possible to choose an appropriate value for o.μ :

reorder o between p and s; ≡
assert CanWrite(o, μ) ∧ Heap[o, held];
#foreach pi ∈ p, sj ∈ s {

assert pi = null ∨ sj = null ∨
(CanRead(pi .μ) ∧ CanRead(sj .μ) ∧ Heap[pi , μ] � Heap[sj , μ]);

}
havoc w ;
#foreach pi ∈ p { assume pi = null ∨ Heap[pi , μ] � w ; } ;
#foreach sj ∈ s { assume sj = null ∨ w � Heap[sj , μ]; } ;
Heap[o, μ] := w ;

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(∗)

390 K.R.M. Leino and P. Müller

Sharing and Unsharing. An object o can be shared if the current thread has write
permission for o.μ and if the object is not shared already. Like for release , the Exhale
operation is used to check that the current thread has the permissions required by o ’s
monitor invariant J (o) and transfers them to the monitor.

The unshare o statement releases o and at the same time makes it unavailable
for sharing by setting o.μ to ⊥ . Since it changes o.μ , the unshare statement re-
quires full permission for o.μ . This requirement also ensures mutual exclusion with
the acquire o statement, which requires read permission for o.μ .

share o between p and s; ≡
assert CanWrite(o, μ);
assert Heap[o, μ] = ⊥;
// see (∗) of reorder
Exhale�J (o)�

unshare o; ≡
assert CanWrite(o, μ);
assert Heap[o, held];
Heap[o, held] := false;
Heap[o, μ] := ⊥;

Thread Creation and Termination. Every object o can give rise to a computation,
which is performed in a separate thread as if, in Java, every object were an instance of
class Thread . The fork o statement starts such a computation by executing o ’s Run
method. Like in Java, we do not permit several overlapping computations on the same
object, which allows us in particular to identify a thread through the object on which it
was forked. To prevent overlaps, we introduce a boolean field active to record whether
there is an active computation on an object. For new objects, active is initially false.
The fork o statement asserts that the current thread has write permission for o.active
and that o is not active. It also asserts the precondition of o ’s Run method, denoted by
RunPre(o) , and transfers the required permissions to the new thread using the Exhale
operation. The new thread will then execute o ’s Run method.

The join o statement waits for the computation of the thread that has been forked
on object o to complete, and then marks o as no longer being active. The current
thread may assume the postcondition of o ’s Run method, denoted by RunPost(o) ,
and obtains the permissions of the joined thread.

fork o; ≡
assert CanWrite(o.active);
assert ¬Heap[o, active];
Exhale�RunPre(o)�
Heap[o, active] := true;

join o; ≡
assert CanWrite(o.active);
assert Heap[o, active];
Heap[o, active] := false;
Inhale�RunPost(o)�

Note that requiring write permission for o.active in both fork o and join o ensures
mutual exclusion. In particular, a thread can be joined only once, which prevents a
duplication of the permissions returned from that thread.

When the Run method is initiated by a fork , then its specification is interpreted
from two different threads: the precondition is exhaled by the forking thread and inhaled
by the forked thread; the postcondition is exhaled by the terminating thread and inhaled
by the joining thread. Therefore, it is necessary for soundness that these interpreta-
tions are consistent. We achieve that by restricting the use of thread-local fields. The
specification of Run must not mention the held field of any object. Moreover, since
maxlock is encoded in terms of held , it may be used only in the form maxlock � E
in positive contexts of the precondition.

A Basis for Verifying Multi-threaded Programs 391

Method Calls and Loops. The semantics of method calls exhales the precondition and
then inhales the postcondition. In this way, it is like the succession of a fork and a join,
except for the active machinery, and without the restrictions on the specification of the
Run method. Indeed, fork and join are nothing but an asynchronous call to a method
called Run .

The while statement exhales the loop invariant and then havocs the variables as-
signed to in the loop body. Then, it either inhales the loop invariant, assumes the nega-
tion of the loop guard, and continues after the loop, or it starts from an empty mask P ,
inhales the loop invariant, assumes the loop guard, executes the loop body, and exhales
the loop invariant. For brevity, we omit the formalization.

5 Related Work

Implicit dynamic frames were first used by Smans et al. [18] as a way to use Kassios’s
dynamic frames [15] but with access predicates instead of explicit modifies clauses.
The permissions required by a method precondition implicitly define an access set,
which is an upper bound on the fields modified by the method. We extend this work
by supporting fractional permissions, which call for the exhale and inhale operations
instead of just computing access sets. The havoc in the inhale operation corresponds to
the havoc of the heap in the encoding of a modifies clause.

Fractional permissions were proposed by Boyland [4] and used by Zhao [21] for
the analysis of concurrent Java programs. Zhao developed a type system to track read
and write permissions for fields and to enforce a (fixed) locking order. The type system
enforces the absence of data races and deadlocks, but does not support the verification
of a program w.r.t. to a programmer-supplied contract.

Methodologies similar to ours have been defined in separation logicby Bornat et al. [2],
by Gotsman et al. [8], and by Hobor et al. [11]. These extend Concurrent Separation
Logic [17] to allow an unbounded number of locks and threads and to allow fractional
permissions and counting permissions, which are similar to our infinitesimal permissions.
A difference is that we translate our methodology into first-order verification conditions
instead of needing a separate logic. A minor difference with separation logic is that we
can handle old expressions, which provide a natural way to write postconditions. Unlike
these pieces of work, we also verify that programs do not have deadlocks.

Checkers for separation logic include Smallfoot [1], jStar [7], and VeriFast [12],
which are all based on some symbolic execution with interspersed calls to a theorem
prover. By translating each method to just one formula, we can let the theorem prover
perform case splits that a symbolic execution engine would have to resolve at each
program point, which is not always possible. On the other hand, we currently have no
support for abstract predicates and currently do not check that permissions are not lost.

Boyapati et al. [3] present an ownership type system that prevents data races and
deadlocks. This system supports thread-local objects and coarse-grained locking of
shared objects, where the lock of an object o also protects all objects owned by o .
The type system permits concurrent reading only for immutable objects, whereas the
fractional permissions in our system support fine-grained locking and concurrent read-
ing. Similar to our work, Boyapati et al.’s system prevents deadlocks by enforcing that
locks are acquired in a given locking order, and this order can be changed dynamically.

392 K.R.M. Leino and P. Müller

Jacobs et al. [13] extend Spec#’s verification methodology to concurrent programs.
Like Boyapati, they use ownership to impose a coarse-grained locking strategy, whereas
our methodology supports fine-grained locking of arbitrary structures. We adopted their
technique of specifying the locking order as part of the share statement and extended
this capability by allowing locks to be re-ordered.

6 Conclusions

We presented a verification methodology for concurrent, object-based programs, which
enforces the absence of data races and deadlocks and allows one to verify code against
contracts. Our methodology uses fractional permissions, which allow us to support fine-
grained locking and multi-object monitor invariants, sharing and un-sharing of objects,
and concurrent reading. Our methodology encodes the locking order via fields in the
heap, which enables dynamic changes. These features make our methodology suffi-
ciently expressive to verify advanced concurrency patterns.

We have implemented our methodology in a translator from our experimental source
language Chalice to the intermediate verification language Boogie [0] and have used
it to verify several challenging examples including hand-over-hand locking for linked
lists and a lock re-ordering algorithm. We have designed our methodology to work well
with off-the-shelf SMT solvers and, indeed, all of our examples could be verified fully
automatically. Our implementation also supports reader-writer locks, which we omitted
here for lack of space.

The presented methodology is an expressive foundation for more comprehensive ver-
ification techniques. As future work, we plan to prove a formal soundness result includ-
ing the following properties: (0) Justification of assumptions: the conditions assumed
as part of the Inhale operation are guaranteed to hold. (1) Non-interference of threads,
in particular, stability of read expressions: no thread can be writing an expression that is
being read by another thread. (2) Absence of deadlocks in the presence of our changing
locking order. Other plans for future work are to extend our methodology by two-state
invariants to permit rely-guarantee reasoning and by abstraction via user-defined func-
tions or predicates. We also want to develop an automatic inference of access predicates
and extend Chalice to a full object-oriented language by adding subtyping.

Acknowledgments. We thank the referees for their useful comments. Müller’s work
was funded in part by the Information Society Technologies program of the European
Commission, Future and Emerging Technologies under the IST-2005-015905 MOBIUS
project.

References

0. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular
reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2006)

A Basis for Verifying Multi-threaded Programs 393

1. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic assertion checking
with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer, Heidelberg (2006)

2. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in separation
logic. In: POPL 2005, pp. 259–270. ACM, New York (2005)

3. Boyapati, C., Lee, R., Rinard, M.C.: Ownership types for safe programming: Preventing data
races and deadlocks. In: OOPSLA 2002, pp. 211–230. ACM, New York (2002)

4. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.) SAS
2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

5. Brinch Hansen, P.: Operating systems principles. Prentice-Hall, Englewood Cliffs (1973)
6. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.

(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)
7. Distefano, D., Parkinson, M.J.: jStar: Towards practical verification of Java. In: OOPSLA

2008, pp. 213–226. ACM, New York (2008)
8. Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local reasoning for storable

locks and threads. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 19–37. Springer,
Heidelberg (2007)

9. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann, San
Francisco (2008)

10. Hoare, C.A.R.: Monitors: an operating system structuring concept. Commun. ACM 17(10),
549–557 (1974)

11. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle semantics for concurrent separation logic. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 353–367. Springer, Heidelberg
(2008)

12. Jacobs, B., Piessens, F.: The VeriFast program verifier. Technical Report CW520, Katholieke
Universiteit Leuven (August 2008)

13. Jacobs, B., Smans, J., Piessens, F., Schulte, W.: A statically verifiable programming model
for concurrent object-oriented programs. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS,
vol. 4260, pp. 420–439. Springer, Heidelberg (2006)

14. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress, pp. 321–332.
North-Holland, Amsterdam (1983)

15. Kassios, I.T.: Dynamic frames: Support for framing, dependencies and sharing without re-
strictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
268–283. Springer, Heidelberg (2006)

16. Lea, D.: Concurrent Programming in Java: Design Principles and Patterns. Addison-Wesley,
Reading (1999)

17. O’Hearn, P.W.: Resources, concurrency, and local reasoning. TCS 375(1–3), 271–307 (2007)
18. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames. FTfJP 2008, Technical Report

ICIS-R08013, Radboud University, pp. 1–12 (2008)
19. Walker, D., Crary, K., Morrisett, G.: Typed memory management via static capabilities. ACM

TOPLAS 22(4), 701–771 (2000)
20. Xu, Q., de Roever, W.-P., He, J.: The rely-guarantee method for verifying shared variable

concurrent programs. Formal Aspects of Computing 9(2), 149–174 (1997)
21. Zhao, Y.: Concurrency Analysis based on Fractional Permission System. PhD thesis, The

University of Wisconsin–Milwaukee (2007)

SingleTrack: A Dynamic Determinism Checker

for Multithreaded Programs

Caitlin Sadowski1, Stephen N. Freund2, and Cormac Flanagan1

1 University of California at Santa Cruz, Santa Cruz, CA
2 Williams College, Williamstown, MA

Abstract. Multithreaded programs are prone to errors caused by un-
intended interference between concurrent threads. This paper focuses
on verifying that deterministically-parallel code is free of such thread
interference errors. Deterministically-parallel code may create and use
new threads, via fork and join, and coordinate their behavior with syn-
chronization primitives, such as barriers and semaphores. Such code
does not satisfy the traditional non-interference property of atomicity
(or serializability), however, and so existing atomicity tools are inade-
quate for checking deterministically-parallel code. We introduce a new
non-interference specification for deterministically-parallel code, and we
present a dynamic analysis to enforce it. We also describe SingleTrack,
a prototype implementation of this analysis. SingleTrack’s perfor-
mance is competitive with prior atomicity checkers, but it produces
many fewer spurious warnings because it enforces a more general non-
interference property that is applicable to more software.

1 Introduction

Multiple threads of control are widely used in software development for many
reasons, including their ability to utilize modern multi-core processors. Reason-
ing about the correctness of multithreaded code is notoriously difficult, however,
due to the potential for non-deterministic interference between threads. Thus,
methods for specifying and controlling thread interference are crucial for the
cost-effective development of reliable multithreaded software. Previous studies
have explored analyses for controlling interference by verifying, for example, that
a program is free of data races or that methods are atomic (in that they always
behave as if they execute serially). Some programs, however, are safe despite
the presence of non-atomic methods, and previous studies revealed numerous
examples of such methods. Motivated by this experience, this paper explores a
more general non-interference property, namely deterministic parallelism.

Deterministic Parallelism. A deterministically-parallel computation may use
multiple threads, but these threads either do not communicate (as in divide-
and-conquer parallelism) or they communicate in a deterministic manner (e.g.,
via barriers). In either case, the relative scheduling of threads in subcomputa-
tions does not affect the program’s overall behavior.

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 394–409, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Dynamic Determinism Checker for Multithreaded Programs 395

deterministic void quicksort(int[] a) {

synchronized (a) {

quicksort_helper(a, 0, a.length-1);

}

}

void quicksort_helper(int[] a, int lo, int hi) {

if (hi - lo > 1) {

int pivot = partition(a, lo, hi);

Thread t1 = fork { quicksort_helper(a, lo, pivot-1); }

Thread t2 = fork { quicksort_helper(a, pivot+1, hi); }

t1.join();

t2.join();

}

}

Fig. 1. Deterministically Parallel Sort Implementation

To illustrate this concurrency pattern, consider the multithreaded quicksort
implementation shown in Figure 1. That method synchronizes on the lock for
array a, and then calls a helper method to sort the array by partitioning it and
forking two threads to recursively sort each half. The quicksortmethod is anno-
tated with the non-interference specification “deterministic.” Each invocation
of quicksort produces a computation involving multiplie threads: the initial
thread and all threads forked by the quicksort helper method. We refer to the
execution of a deterministic method and its forked threads as a transaction.

In general, a program execution may involve multiple, possibly concurrent,
transactions, and each transaction may be internally multithreaded (if, as in the
quicksort function, its code forks new threads). The goal of this paper is to
verify that the entire program execution satisfies the following two important
non-interference properties. These two properties prevent interference problems
between threads in one transaction, and in different transactions, respectively.

1. Conflict Freedom. Threads insinde each transaction must be conflict-free.
That is, if two operations from the same transaction are enabled at the same
time, then those operations must not conflict. Thus, all intra-transaction race
conditions are forbidden, including those on regular variables, on volatile
variables, and on locks. Deterministic synchronization, such as fork-join pat-
terns and barrier synchronization, is allowed, as is synchronization between
transactions, as in the quicksort example.

2. External Serializability. Threads inside each transaction must not inter-
fere with threads outside that transaction. Note that this notion is different
than atomicity, which would require the quicksort method to behave as if
it executes serially, without interleaved operations from other threads. Since
quicksort helpermust wait for the forked threads to terminate, quicksort
cannot execute serially and is not atomic.

396 C. Sadowski, S.N. Freund, and C. Flanagan

Nevertheless, quicksort does enjoy a strong atomicity-like property, but
only when considering the operations of all threads in the entire quicksort
transaction, and not just the operations of the thread calling quicksort.
More specifically, a trace is externally serial if each (possibly multithreaded)
transaction executes contiguously, without interleaved operations from out-
side that transaction. A trace is externally serializable if it is equivalent to
an externally serial trace.

For the interesting special case when the main method of an application is
annotated as deterministic, external serializability becomes a trivial property
(since the execution contains only one transaction), but conflict freedom provides
a strong determinism guarantee–that the program will behave the same regard-
less of how its threads are scheduled.1 This special case of entirely deterministic
applications was also addressed by the Cilk Nondeterminator [7], whereas this
paper addresses the problem in a more general setting.

Another interesting case is when a deterministic method does not fork ad-
ditional threads, and so conflict freedom becomes trivial (since the transaction
contains only a single thread) and external serializability reduces to the tradi-
tional notion of serializability or atomicity. Thus, deterministic can be viewed
as a generalization of atomic that better supports deterministically-parallel com-
putations such as quicksort.

In the more general situation, a program execution may consist of multiple
(possibly concurrent) transactions, each of which is internally multithreaded, and
the above two correctness properties control thread interference both within and
between transactions.

SingleTrack. This paper presents a dynamic analysis for verifying conflict free-
dom and external serializability. To verify conflict freedom, the analysis employs
clock vectors [14] as a compact representation of the happens-before relation, and
it uses additional mechanisms to track the current transaction for each thread
and to distinguish intra-transaction conflicts (which are forbidden) from inter-
transaction conflicts (which are allowed). To verify external serializability, the
analysis dynamically constructs a transactional happens-before graph [10]. This
graph encodes which transactions have operations that happen before operations
of other transactions, and it contains a cycle if and only if the observed trace
violates external serializability.

Figure 2 contains two code fragments that illustrate common patterns for
deterministic parallelism found in programs. In the left column, the main method
starts three concurrent invocations of the worker method, where each worker
invocation repeatedly reads shared data, blocks on a barrier, and then updates
disjoint portions of that shared data. The barrier synchronization ensures the
absence of conflicts on the reads and writes of the shared data. Although main
is not atomic, our analysis verifies that it is deterministic. The right column
of Figure 2 shows an idealized implementation of thread pools, in which the
assignment of tasks from the work list to worker threads is scheduler-dependent

1 This property assumes that thread scheduling is the only source of non-determinism.

A Dynamic Determinism Checker for Multithreaded Programs 397

Barrier barrier = new Barrier(3);

int a[] = new int[3];

deterministic void main() {

fork { worker(0); }

fork { worker(1); }

worker(2);

}

void worker(int id) {

for (int i = 0; i < 10; i++) {

int tmp = f(a[0],a[1],a[2]);

barrier.await();

a[id] = tmp;

barrier.await();

}

}

(a) Barrier synchronization

class ThreadPool {

BlockingQueue<Runnable> workList

= new BlockingQueue<Runnable>();

ThreadPool(int numWorkers) {

for (int i = 0; i < numWorkers; i++) {

fork {

while (true) {

workList.dequeue().run();

}

}

}

}

void execute(Runnable task) {

workList.enqueue(task);

}

}

(b) Thread pools

Fig. 2. Common idioms for Deterministic Parallelism

and so non-deterministic. If a program uses a thread pool to execute tasks with
deterministic run methods, our analysis will still verify that these tasks are
deterministic, despite the non-determinism at the application level.

We have developed a prototype implementation, called SingleTrack, of this
dynamic analysis. Experimental results show thatSingleTrackprovides a signif-
icant improvement over prior atomicity checkers, largely because deterministic
is a more general non-interference specification than atomic and so is applicable
to more methods. In effect, this permits us to check more complex code with fewer
false alarms than existing tools.

For example, the sor benchmark [1] includes six methods that are not atomic
because they involve barrier synchronization along the lines shown in Figure 2(a).
Atomicity checkers provide no insight regarding thread interference problems in
these methods and, in fact, mask a subtle synchronization defect detected by
SingleTrack. (The barrier implementation incorrectly relied on writes to a
long variable being atomic.) After fixing that bug, SingleTrack verified the
entire sor benchmark as deterministic, whereas Velodrome, a dynamic atomic-
ity checker [10], still reported spurious atomicity violations on the six methods.
In addition, SingleTrack verified as deterministic many other problematic
non-atomic methods in our benchmarks. Despite its increased generality, Sin-
gleTrack’s performance is competitive with existing atomicity checkers.

Contributions. In summary, this paper:
– identifies a limitation of atomicity for reasoning about the common idiom of

deterministic parallelism;
– proposes deterministic as a concise specification for this concurrency idiom

that combines conflict freedom and external serializability;
– develops a dynamic analysis for verifying this non-interference specification;

398 C. Sadowski, S.N. Freund, and C. Flanagan

– shows that the analysis reports an error whenever the observed trace violates
this specification;

– presents an implementation for multithreaded Java programs; and
– validates the effectiveness and performance on a collection of benchmarks.

2 Semantics of Multithreaded Programs

To provide a sound basis for our dynamic analysis, we begin by formalizing the
semantics of multithreaded programs, as summarized in Figure 3. A program
consists of a number of concurrently executing threads that manipulate variables
x ∈ Var and locks m ∈ Lock . Each thread has a thread identifier t ∈ Tid . A
program state Σ maps program variables to values. The state also records the
holder (if any) of each lock m: if m held by thread t, then Σ(m) = t, and
otherwise Σ(m) = ⊥. The state also maps each thread identifier t to a local
store Σ(t) = π for that thread, which contains thread-local data such as the
program counter and call stack. The distinguished local stores NotStarted and
Finished indicate threads that have not started running yet and that have
finished running, respectively. Execution starts in an initial state Σ0, where
Σ0(t) = NotStarted for all threads t except the initial thread.

Operations. Each thread proceeds by performing a sequence of operations on
the global store. Thread t can perform all operations a from the following list:

– rd(t, x, v) and wr(t, x, v), which read and write a value v from variable x;
– acq(t, m) and rel(t, m), which acquire and release a lock m;
– begin(t) and end(t), which demarcate each deterministic block;
– fork (t, u, π), which forks a new thread u with initial local store π;
– stop(t), which stops thread t; and
– join(t, u), which blocks until thread t terminates via stop(t).

The relation T (t, π, a, π′) holds if the thread t can take a step from a local
store π to a new local store π′ by performing the operation a ∈ Operation on the
global store. We assume that T is not defined if either π or π′ is the distinguished
local stores NotStarted or Finished.

The transition relation Σ →a Σ′ performs a single step of execution. It chooses
an operation a by thread t that is applicable in the local state Σ(t), performs
that operation to yield a new local store π′, and returns a new (appropriately
updated) state. An operation a is enabled in Σ if ∃Σ′ such that Σ →a Σ′. A state
Σ is final if the local store for every thread in that state is either NotStarted
or Finished. We assume that each operation is deterministic: if tid(a) = tid(b)
and Σ →a Σ′ and Σ →b Σ′′ then a = b and Σ′ = Σ′′.

A trace α captures an execution of a multithreaded program by listing the
sequence of operations performed by the various threads. The behavior of a trace
α = a1.a2. · · · .an is defined by the relation Σ0 →α Σn, which holds if there exist
intermediate states Σ1, . . . , Σn−1 such that Σ0 →a1 Σ1 →a2 · · · →an Σn. We
assume that each valid trace is cycle free.

A Dynamic Determinism Checker for Multithreaded Programs 399

Domains:
Σ ∈ State = (Var → Value)

∪ (Lock → Tid⊥)
∪ (Tid → LocalStore)

a ∈ Operation ::= rd(t, x, v) | wr(t, x, v)
| acq(t, m) | rel(t, m)
| begin(t) | end(t)
| fork(t, u, π) | join(t, u) | stop(t)

u, t ∈ Tid
x ∈ Var
v ∈ Value

m ∈ Lock
π ∈ LocalStore

Transition relation: Σ →a Σ′

[step read]
a = rd(t, x, v) T (t, Σ(t), a, π′) Σ(x) = v

Σ →a Σ[t := π′]

[step write]
a = wr(t, x, v) T (t, Σ(t), a, π′)

Σ →a Σ[t := π′, x := v]

[step acquire]
a = acq(t, m) T (t, Σ(t), a, π′) Σ(m) = ⊥

Σ →a Σ[t := π′, m := t]

[step release]
a = rel(t, m) T (t, Σ(t), a, π′) Σ(m) = t

Σ →a Σ[t := π′, m := ⊥]

[step begin]
a = begin(t) T (t, Σ(t), a, π′)

Σ →a Σ[t := π′]

[step end]
a = end(t) T (t, Σ(t), a, π′)

Σ →a Σ[t := π′]

[step fork]
a = fork(t, u, π′′) T (t, Σ(t), a, π′)

Σ(u) = NotStarted π′ �= NotStarted

Σ →a Σ[t := π′, u := π′′]

[step join]
a = join(t, u)

T (t, Σ(t), a, π′) Σ(u) = Finished

Σ →a Σ[t := π′]

[step stop]
a = stop(t) T (t, Σ(t), a, π′)

Σ →a Σ[t := Finished]

Fig. 3. Semantics of Multithreaded Programs

Conflicts. Two operations in a trace conflict if they satisfy one of the following:

– Communication conflict: they read or write the same variable, and at
least one of the accesses is a write.

– Lock conflict: they acquire or release the same lock.
– Fork-join conflict: one operation is fork (t, u, π) or join(t, u) and the other

operation is by thread u.
– Program order conflict: they are performed by the same thread.

The happens-before relation <α for a trace α is the smallest transitively-closed
relation on operations in α such that if operation a occurs before b in α and a
conflicts with b, then a happens-before b.2

Two traces are equivalent if one can be obtained from the other by repeatedly
swapping adjacent non-conflicting operations. Equivalent traces yield the same
happens-before relation and exhibit equivalent behavior.

2 In theory, a particular operation a could occur multiple times in a trace. We
avoid this complication by assuming that each operation includes a unique
identifier, but, to avoid clutter, we do not include this unique identifier in the
concrete syntax of operations.

400 C. Sadowski, S.N. Freund, and C. Flanagan

Transactions. A transaction in a trace α is the sequence of operations executed
by a thread t starting with a begin(t) operation and containing all t operations up
to and including a matching end(t) operation. For each operation fork (t, u, π) in
a transaction, that transaction also includes all operations of the forked thread
u. Any operation that does not occur within another transaction is considered
to execute in its own (unary) transaction. To simplify some aspects of the for-
mal presentation, we assume begin(t) and end(t) operations are appropriately
matched and are not nested (although our implementation does support nested
deterministic specifications). We also assume that all locks acquired within a
transaction are released within that transaction.

3 Dynamically Verifying Internal Conflict Freedom

We next address how to dynamically verify our notion of conflict freedom, i.e.,
that each operation in the observed trace does not conflict with any other op-
eration in the same transaction. Thus, for example, a lock acquire should not
conflict with any other acquire in the same transaction. Similarly, any read oper-
ation in a transaction should not conflict with any write in the same transaction.
Note that conflicts between an acquire inside a transaction and an acquire out-
side the transaction are permitted; they may violate external serializability but
not conflict freedom.

Our analysis uses clock vectors [14] as a compact representation for the
happens-before relation and to identify which operations in a transaction are
concurrent. A clock vector CV : Tid → Nat maps thread identifiers to clocks.
Roughly speaking, if cv is the clock vector for an operation a in a trace, then
cv(t) identifies which operations of thread t happen-before that operation a (i.e.,
those t-operations for which t’s clock is less than or equal to cv(t)).

Clock vectors are partially-ordered (�) in a point-wise manner, with an as-
sociated join operation (�) and minimal element (c0). In addition, the helper
function inct increments the t-component of a clock vector:

cv1 � cv2 iff ∀t. cv1(t) ≤ cv2(t)
cv1 � cv2 = λt. max (cv1(t), cv2(t))

c0 = λt. 0
inct(cv) = λu. if u = t then cv(u) + 1 else cv(u)

Our conflict freedom analysis allocates a unique transaction identifier w ∈ Xid
for each transaction in the observed trace and records which threads belong to
that transaction. The analysis is an online algorithm based on an analysis state
σ = (X, C, U, R, W) where:

• X : Tid → Xid⊥ records the current transaction (if any) for each thread;
• C : Tid → CV records the clock vector of the current operation by each

thread;
• U : Lock ×Xid → CV records the clock vector of the last unlock of each lock

in each transaction;

A Dynamic Determinism Checker for Multithreaded Programs 401

[cf begin]
X(t) = ⊥

X
′ = X[t := w], w is fresh

C
′ = C[t := inct(c0)]

(X, C, U, R, W) ⇒begin(t) (X′, C
′, U, R, W)

[cf end]
X(t) �= ⊥

X
′ = X[t := ⊥]

(X, C, U, R, W) ⇒end(t) (X′, C, U, R, W)

[cf acquire]
X(t) = w �= ⊥

U(m, w) � C(t)

(X, C, U, R, W) ⇒acq(t,m) (X, C, U, R, W)

[cf release]
X(t) = w �= ⊥

U
′ = U[(m, w) := C(t)]

(X, C, U, R, W) ⇒rel(t,m) (X, C, U
′, R, W)

[cf read]
X(t) = w �= ⊥

W(x, w) � C(t)
R
′ = R[(x, w) := R(x, w) � C(t)]

(X, C, U, R, W) ⇒rd(t,x,v) (X, C, U, R
′, W)

[cf write]
X(t) = w �= ⊥

W(x, w) � C(t) R(x, w) � C(t)
W

′ = W[(x, w) := C(t)]

(X, C, U, R, W) ⇒wr(t,x,v) (X, C, U, R, W
′)

[cf fork]
X
′ = X[u := X(t)]

C
′ = C[t := inct(C(t)), u := incu(C(t))]

(X, C, U, R, W) ⇒fork(t,u,π) (X′, C
′, U, R, W)

[cf join]
C
′ = C[t := C(t) � C(u)]

(X, C, U, R, W) ⇒join(t,u) (X, C
′, U, R, W)

[cf stop]

(X, C, U, R, W) ⇒stop(t) (X, C, U, R, W)

[cf outside]
X(t) = ⊥

a ∈ {acq(t, m), rel(t, m), rd(t, x, v),wr(t, x, v)}
(X, C, U, R, W) ⇒a (X, C, U, R, W)

Fig. 4. Dynamically Verifying Conflict Freedom: σ ⇒a σ′

• R : Var ×Xid → CV records the join of all clock vectors for all reads to each
variable by each transaction; and
• W : Var × Xid → CV records the clock vector of the last write to each

variable in each transaction.

In the initial analysis state, no thread is in a transaction and all clock vectors
are initialized to c0, except each C(t) starts at inct(c0) to reflect that the first
steps by different threads are not ordered.

σ0 = (λt.⊥, λt. inct(c0), λ(m, w). c0, λ(x, w). c0, λ(x, w). c0)

The relation σ ⇒a σ′ is defined in Figure 4. The first rule [cf begin] for
begin(t) records that thread t is in a fresh transaction, and resets the clock
vector for t. The complementary rule for end(t) records that t is no longer in a
transaction. The rule [cf acquire] checks that each lock acquire happens after
the last acquire of that lock in the same transaction. If this check fails, then
no rule is applicable and the analysis reports a violation of conflict freedom.
Rules [cf read] and [cf write] check in a similar manner that reads and
writes do not conflict with other operations in the same transaction. We update
clock vectors for fork and join operations that perform real (non-redundant)
synchronization. The rule [cf fork] for fork (t, u, π) performs one “clock tick”
for threads t and u, and [cf join] records that a join operation happens-after the
last operation (i.e., the stop operation) of the joined thread. Finally, operations
outside a transaction are irrelevant and are ignored via [cf outside].

402 C. Sadowski, S.N. Freund, and C. Flanagan

We extend the relation σ ⇒a σ′ from operations to traces in the expected
manner: the relation σ0 ⇒α σn holds for a trace α = a1. · · · .an if there exist
intermediate analysis states σ1, . . . , σn−1 such that σ0 ⇒a1 σ1 ⇒a2 · · · ⇒an σn.

Correctness. The following lemma summarizes the non-interference guarantee
ensured by this analysis. If the entire program trace lies within a single transac-
tion, then conflict freedom guarantees determinism. That is, we can generalize
from a single observed trace of the target program to reason about behavior and
correctness of all possible traces for that program (assuming of course no sources
of non-determinism other than thread scheduling).

Lemma 1 (Single Transaction Determinism). Suppose Σ0 →α Σ where Σ
is final and σ0 ⇒α σ and α contains a single transaction. Then for any other
trace Σ0 →β Σ′ where Σ′ is final, we have that Σ = Σ′.

4 Dynamically Verifying External Serializability

We next describe our dynamic analysis for the second non-interference property
of external serializability. Our analysis allocates a Node for each transaction in
the observed trace. Then, for each operation in the trace that conflicts with a
preceding operation from a different transaction, our analysis adds a directed
edge between the nodes for these two transactions. Thus, the analysis computes
the transactional happens-before relation, where transaction A happens-before
transaction B in α (written A �α B) if there exists some operations a of A and
b of B such that a <α b. Then α is serializable if and only if the transactional
happens-before order �α is acyclic. This analysis generalizes the approach used
to identify atomicity violations in the Velodrome atomicity checker [10].

Our external-serializability analysis is an online algorithm that maintains an
analysis state φ = (C,L,U ,R,W ,H) where:

• C : Tid → {In,Out} identifies whether a thread is currently in a transaction;
• L : Tid → Node⊥ identifies the transaction that executed the last operation

(if any) of each thread;
• U : Lock → Node⊥ identifies the last transaction (if any) to unlock each lock;
• R : Var ×Tid → Node⊥ identifies the last transaction of each thread to read

from each variable;
• W : Var → Node⊥ identifies the last transaction (if any) to write to each

variable; and
• H ⊆ Node × Node is the happens-before relation on transactions. (More

precisely, the transitive closure H∗ of H is the happens-before relation, since,
for efficiency, H is not transitively closed.)

In the initial analysis state φ0, these components are all empty:

φ0 = (λt.Out, λt.⊥, λm.⊥, λ(x, t).⊥, λx.⊥, ∅)
The relation φ �a φ′ shown in Figure 5 updates the analysis state for each
operation a of the target program. The first rule [xs begin] for begin(t) uses

A Dynamic Determinism Checker for Multithreaded Programs 403

In all rules, φ = (C,L,U ,R,W,H).

[xs begin]
C(t) = Out
C′ = C[t := In]
L′ = L[t := n], n is fresh
H′ = H	 {(L(t), n)}

φ�begin(t) (C′,L′,U ,R,W,H′)

[xs end]
C(t) = In
C′ = C[t := Out]

φ�end(t) (C′,L,U ,R,W,H)

[xs acquire]
C(t) = In H′ = H	 {(U(m),L(t))}

φ�acq(t,m) (C,L,U ,R,W,H′)

[xs release]
C(t) = In U ′ = U [m := L(t)]

φ�rel(t,m) (C,L,U ′,R,W,H)

[xs read]
C(t) = In
H′ = H	 {(W(x),L(t))}
R′ = R[(x, t) := L(t)]

φ�rd(t,x,v) (C,L,U ,R′,W,H′)

[xs write]
C(t) = In

W ′ = W[x := L(t)]
H′ = H	{(W(x),L(t)), (R(x, u),L(t)) |u∈Tid}

φ�wr(t,x,v) (C,L,U ,R,W ′,H′)

[xs fork in]
C(t) = In

L′ = L[u := L(t)] C′ = C[u := In]

φ�fork(t,u,π)(C′,L′,U ,R,W,H)

[xs fork out]
C(t) = Out n is fresh L′ = L[t := n, u := n]
C′ = C[u := Out] H′ = H	 {(L(t), n)}

φ�fork(t,u,π) (C′,L′,U ,R,W,H′)

[xs join]
C(t) = In H′ = H	 {(L(u),L(t))}

φ�join(t,u) (C,L,U ,R,W,H′)

[xs stop]
C(t) = In

φ�stop(t) (C,L,U ,R,W,H)

[xs outside]
C(t) = Out

a ∈ {acq(t, m), rel(t, m), rd(t, x, v),wr(t, x, v), join(t, u), stop(t)}
φ�begin(t) φ1 φ1 �a σ2 φ2 �end(t) φ′

φ�a φ′

Fig. 5. Dynamically Verifying External-Serializability: φ �a φ′

the operation H
 E to extend the happens-before graph with additional edges
E ⊆ Node⊥ ×Node⊥, filtering out self-edges and edges that start or end on ⊥:

H
 E
def= H ∪ {(n1, n2) ∈ E | n1 �= n2, n1 �= ⊥, n2 �= ⊥}

Thus, in [xs begin], if L(t) = ⊥, then the happens-before graph is unchanged.
Otherwise it is extended with an edge from the last transaction of thread t to
the current transaction of t. The rule [xs acquire] for acq(t, m) updates the
happens-before graph with an edge from the last release U(m) of that lock. Con-
versely, [xs release] for rel(t, m) updates U(m) with the current transaction.

The rule [xs write] for wr(t, x, v) records that this write happens-after all
previous accesses to x, and updatesW(x) to denote the current transaction. The
rule [xs read] for rd(t, x, v) records that this read happens-after the last write
to x, and records that the last read to this variable by this thread is the current
transaction. For a fork operation within a transaction, the rule [xs fork in]
records that the forked thread also executes within that transaction. For forks

404 C. Sadowski, S.N. Freund, and C. Flanagan

outside a transaction, [xs fork out] creates a fresh unary transaction n for
the fork operation. For other operations outside a transaction, [xs outside]
enters a new transaction, performs that operation, and then exits that (unary)
transaction. We extend the relation φ �a φ′ from operations to traces.

Correctness. The set Error denotes analysis states that contain a non-trivial
cycle in the happens-before relation:

Error def= {(C,L,U ,R,W ,H) | H∗ contains a non-trivial cycle}
Our dynamic analysis is sound and in that it identifies exactly those traces that
are not externally serializable.

Lemma 2 (External Serializability). Suppose Σ0 →α Σ and φ0 �α φ. Then
α is externally serializable if and only if φ �∈ Error.

The preceding lemmas characterize the correctness guarantee provided by each
of the conflict-freedom and external-serializability analyses. We now describe
how the combination of these two analyses provides a determinism guarantee
for programs with multiple transactions (each of which may be internally mul-
tithreaded).

The begin-order of a serial trace is simply the projection of begin operations
in that trace, which identifies the order in which the transactions execute while
ignoring internal scheduling within each transaction.

begin-order(α) = projection of begin operations in α, where α is serial

We say that two serializable traces α and β have the same commit order if α
and β have equivalent serial traces α′ and β′ respectively, such that

begin-order(α′) = begin-order(β′)

Suppose that α is a program trace that satisfies our analyses. Clearly, a differ-
ent schedule β of the various transactions could change the program’s behavior
and, for example, cause it to execute code not covered by our analyses. How-
ever, if β is a serializable trace that has the same commit order as α, then β is
guaranteed to terminate in the same final state as α, and thus yield the same
observable behavior (where we assume all observations are made by inspecting
this final state).

Theorem 1 (Determinism). Suppose Σ0 →α Σ and σ0 ⇒α σ and φ0 �α φ
where Σ is a final state and φ �∈ Error. Then any serializable trace that has the
same commit order as α will terminate in the same final state.

5 Implementation and Evaluation

We have developed a prototype implementation, called SingleTrack, of our
dynamic analysis for deterministic parallelism. The analysis takes as input a

A Dynamic Determinism Checker for Multithreaded Programs 405

Java bytecode program and a specification of which methods should be deter-
ministic. It then monitors program execution and reports a warning whenever
a determinism specification is violated. For a conflict freedom error, Single-
Track identifies the two operations within a transaction that conflict. For an
external serializability error, SingleTrack identifies the corresponding cycle in
the transactional happens-before graph.

SingleTrack is implemented as a component in RoadRunner, a framework
we have designed for developing dynamic analyses for multithreaded software.
RoadRunner is written entirely in Java and runs on any standard JVM. Road-
Runner inserts instrumentation code into the target bytecode program at load
time. This code generates a stream of events for lock acquires and releases, field
and array accesses, method entries and exits, etc. Back-end tool components,
such as SingleTrack, process this event stream as it is generated. Re-entrant
lock acquires and releases (which are redundant) are filtered out by RoadRun-
ner to simplify these analyses.

Our SingleTrack implementation extends the analysis described so far in
a number of respects, including by supporting additional synchronization prim-
itives such as barriers and semaphores. It also supports nested deterministic
blocks. When a determinism error is identified, the tool reports a warning for
each deterministic block being violated, and so a single bug may lead to mul-
tiple determinism warnings. It also includes a fast happens-before analysis to
verify that all array elements and non-volatile fields are accessed in a race-
free manner. Hence, only synchronization operations and accesses to volatile
fields must be analyzed for conflict freedom and external serializability, which
significantly improves SingleTrack’s performance.

We have applied SingleTrack to eight JavaGrande [1] benchmarks (crypt,
lufact, series, sor, sparse, moldyn, montecarlo, and raytracer), hedc (a
query engine that downloads astronomical data from the web [23]), and four
additional programs written by us: quicksort, which recursively quicksorts an
array, spawning new threads for the recursive calls; matrixmultiply, which im-
plements a multithreaded, divide-and-conquer matrix multiplication; queue-mm,
which uses a thread pool and work queue to perform a number of matrix mul-
tiplies simultaneously; and queue-jg, which uses a thread pool and work queue
to execute the first five JavaGrande benchmarks. All JavaGrande benchmarks
were configured to use the small data size and four threads, hedc was configured
to use four worker threads, and the thread pool programs were configured to use
pools with two worker threads.

We performed all experiments on an Apple Mac Pro with dual quad-core
3GHz Pentium Xeon processors and 4GB of memory, using OS X 10.5 and Sun’s
Java HotSpot Client VM, version 1.5.7. All classes loaded by the benchmark
programs were instrumented, except those from the standard Java libraries.

Table 1 presents the size, number of threads, and uninstrumented base running
time of each program, as well as the slowdown (as a ratio to the base time) of each
program when checked by three dynamic analyses: EmptyTool (which does no
work and simply measures the instrumentation overhead), SingleTrack, and

406 C. Sadowski, S.N. Freund, and C. Flanagan

Table 1. Benchmark Programs

Base Slowdown Velodrome SingleTrack
Program Size Num. Time Empty Single- Velo- Atomicity Deterministic

(lines) Threads (sec) Tool Track drome Warnings Warnings
crypt 1,241 7 0.3 3.6 18.5 18.9 4 0
lufact 1,627 4 0.2 6.9 15.3 15.2 5 0
series 967 4 2.0 1.3 1.2 1.4 4 0
sor 876 4 0.2 3.8 7.7 7.5 6 6
sparse 868 4 0.3 7.7 24.6 24.4 4 0
moldyn 1,402 4 0.7 5.1 18.6 16.2 6 0
montecarlo 2,669 4 1.6 2.2 6.7 6.9 5 0
raytracer 1,970 4 0.9 13.3 19.5 19.9 5 1
matrixmult 301 7 0.04 4.1 5.8 6.0 5 0
quicksort 292 29 0.05 4.2 5.9 5.8 5 0
hedc 6,400 6 25.9 1.0 1.0 1.0 0 0
queue-jg 3,906 9 4.1 2.1 9.6 10.0 28 0
queue-mm 449 11 1.0 1.3 1.3 1.3 7 0

the Velodrome atomicity checker [10]. Both SingleTrack and Velodrome
used the same fast happens-before race detector mentioned above to avoid the
overhead of analyzing race-free data accesses. The average slowdowns for these
three tools are 4.3, 10.4, and 10.3, respectively, indicating that SingleTrack
does not introduce much additional overhead over Velodrome, despite checking
a more complex non-interference property.

The first ten programs in the table use various fork-join, barrier, and divide-
and-conquer idioms, and were designed to be deterministic. For these bench-
marks, all methods were specified as deterministic for SingleTrack and
atomic for Velodrome. Experiments using Velodrome produced 49 reports
of non-atomic methods. Further inspection revealed that these methods were
never intended to be atomic, however, since they involve multithreaded subcom-
putations. Thus, Velodrome is essentially enforcing the wrong non-interference
specification. Consequently, Velodrome provides no useful information about
the correctness of these methods. In contrast, SingleTrack eliminates all warn-
ings except those caused by two programming errors: raytracer has a known
race condition on a checksum field that causes nondeterminism, and sor contains
a barrier implementation that assumes operations on long values are atomic.
Fixing these two errors enables SingleTrack to verify that all ten programs
are deterministic.

The last three programs submit jobs to a work queue. As illustrated in Fig-
ure 2(b), concurrent worker threads introduce non-determinism. Velodrome
could verify only that the hedc tasks were atomic, but reported atomicity vi-
olations for the tasks in queue-jg and queue-mm. In contrast, SingleTrack
successfully verified that the tasks in all three of these benchmarks were deter-
ministic.

A Dynamic Determinism Checker for Multithreaded Programs 407

To summarize, SingleTrack can verify important non-interference prop-
erties for programs that are not supported by current checkers. This greatly
reduces the burden on the programmer by eliminating spurious warnings that
would otherwise have to be examined manually. In the programs studied, only
10% of the warnings reported by Velodrome reflect real interference errors,
whereas all of the SingleTrack warnings reflected real synchronization errors.

6 Related Work

Netzer and Miller [16] provide a good overview of various kinds of thread in-
ference errors in multithreaded programs. Much previous work has addressed
dynamically detecting race conditions, including via race detectors based on the
happens-before relation [4,20,5] as well as via extensions of Eraser’s lockset al-
gorithm [19], for example, to object-oriented languages [23] and for improved
precision or performance [3,17]. Dynamic race detectors have also been devel-
oped for other settings, including for nested fork-join parallelism [15].

A variety of tools have been developed to detect atomicity violations, both stat-
ically and dynamically. The Atomizer [8] uses Lipton’s theory of reduction [13] to
check serializability. Wang and Stoller developed more precise commit-node algo-
rithms that address both conflict-atomicity (referred to as atomicity in this paper)
and view-atomicity [24].

The Cilk project investigated verifying determinism of entire multithreaded
applications, first addressing a more restricted fork-join concurrency structure [7]
and later extending that approach to more general locking idioms [2]. While
successful for deterministic Cilk applications, this approach does not support
applications (like hedc, queue-jg, and queue-mm) that are non-deterministic
but contain deterministic subcomputations.

Lightweight transactions (see e.g. [21,11,12,22]) offer an interesting alternative
to explicit concurrency control, and we believe that a combination or synthesis of
these two approaches may yield an attractive programming model. In particular,
language runtimes could implement determinism via techniques similar to those
used to implement transactions, combined with a deterministic scheduler for
threads inside transactions.

Static analyses for verifying atomicity include type systems [9,18] as well as
techniques that look for cycles in the happens-before graph [6]. Compared to
dynamic techniques, static systems provide stronger soundness guarantees but
typically involve trade-offs between precision and scalability. An interesting topic
for future work is the development of static analyses that provide better support
for deterministically-parallel software.

7 Conclusions

Tools for identifying concurrency errors continue to grow in importance. To
be effective, they must be able to verify properties of complex software without
burdening the programmer with spurious warning messages. This work attempts

408 C. Sadowski, S.N. Freund, and C. Flanagan

to achieve this goal by (1) introducing deterministic, a new non-interference
specification that generalizes atomic, and which provides better support for
deterministically-parallel software, and (2) by developing a new sound dynamic
analysis to identify deterministic specification violations. Experimental re-
sults demonstrate the our analysis provides a significant improvement over prior
checkers, particularly in terms of its ability to detect bugs and verify non-
interference properties for deterministically-parallel software. One avenue for
future work is to explore how to best design systems around this property.

This work was supported in part by NSF Grants 0341179, 0341387, 0644130,
and 0707885.

References

1. Java Grande benchmark suite (2008), http://www.javagrande.org
2. Cheng, G.-I., Feng, M., Leiserson, C.E., Randall, K.H., Stark, A.F.: Detecting data

races in Cilk programs that use locks. In: SPAA, pp. 298–309 (1998)
3. Choi, J.-D., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., Sridhara, M.: Effi-

cient and precise datarace detection for multithreaded object-oriented programs.
In: PLDI, pp. 258–269 (2002)

4. Christiaens, M., Bosschere, K.D.: TRaDe: Data Race Detection for Java. In:
Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.)
ICCS-ComputSci 2001. LNCS, vol. 2074, pp. 761–770. Springer, Heidelberg (2001)

5. Elmas, T., Qadeer, S., Tasiran, S.: Goldilocks: a race and transaction-aware Java
runtime. In: PLDI, pp. 245–255 (2007)

6. Farzan, A., Madhusudan, P.: Causal atomicity. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 315–328. Springer, Heidelberg (2006)

7. Feng, M., Leiserson, C.E.: Efficient detection of determinacy races in Cilk programs.
In: SPAA, pp. 1–11 (1997)

8. Flanagan, C., Freund, S.N.: Atomizer: A dynamic atomicity checker for multi-
threaded programs. In: POPL, pp. 256–267 (2004)

9. Flanagan, C., Freund, S.N., Lifshin, M., Qadeer, S.: Types for atomicity: Static
checking and inference for Java. TOPLAS 30(4), 1–53 (2008)

10. Flanagan, C., Freund, S.N., Yi, J.: Velodrome: A sound and complete dynamic
atomicity checker for multithreaded programs. In: PLDI (2008)

11. Harris, T., Fraser, K.: Language support for lightweight transactions. In: OOPSLA,
pp. 388–402 (2003)

12. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory trans-
actions. In: PPOPP, pp. 48–60 (2005)

13. Lipton, R.J.: Reduction: A method of proving properties of parallel programs.
Communications of the ACM 18(12), 717–721 (1975)

14. Mattern, F.: Virtual time and global states of distributed systems. In: International
Workshop on Parallel and Distributed Algorithms (1988)

15. Mellor-Crummey, J.: On-the-fly detection of data races for programs with nested
fork-join parallelism. In: Supercomputing, pp. 24–33 (1991)

16. Netzer, R.H.B., Miller, B.P.: What are race conditions? some issues and formaliza-
tions. LOPLAS 1, 74–88 (1992)

17. Pozniansky, E., Schuster, A.: Efficient on-the-fly data race detection in mul-
tihreaded C++ programs. In: PPOPP, pp. 179–190 (2003)

http://www.javagrande.org

A Dynamic Determinism Checker for Multithreaded Programs 409

18. Sasturkar, A., Agarwal, R., Wang, L., Stoller, S.D.: Automated type-based analysis
of data races and atomicity. In: PPOPP, pp. 83–94 (2005)

19. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.: Eraser: A
dynamic data race detector for multi-threaded programs. TOCS 15(4), 391–411
(1997)

20. Schonberg, E.: On-the-fly detection of access anomalies. In: PLDI, pp. 285–297
(1989)

21. Shavit, N., Touitou, D.: Software transactional memory. In: PODC, pp. 204–213
(1995)

22. Vitek, J., Jagannathan, S., Welc, A., Hosking, A.L.: A semantic framework for
designer transactions. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp.
249–263. Springer, Heidelberg (2004)

23. von Praun, C., Gross, T.: Object race detection. In: OOPSLA, pp. 70–82 (2001)
24. Wang, L., Stoller, S.D.: Accurate and efficient runtime detection of atomicity errors

in concurrent programs. In: PPOPP, pp. 137–146 (2006)

Author Index

Aldrich, Jonathan 95

Barthwal, Aditi 160
Bonchi, Filippo 267
Buscemi, Maria Grazia 301

Caires, Lúıs 285
Calcagno, Cristiano 348
Cameron, Nicholas 128
Campbell, Brian 190
Chin, Wei-Ngan 112
Craciun, Florin 112

Demange, Delphine 207
de Moor, Oege 143
Dodds, Mike 363
Drossopoulou, Sophia 128

Eber, Jean-Marc 205
Ekman, Torbjörn 143
Eugster, Patrick 175

Felleisen, Matthias 32
Feng, Xinyu 363
Filipović, Ivana 252
Findler, Robert Bruce 1
Flanagan, Cormac 394
Freund, Stephen N. 394

Garcia, Ronald 17
Gardner, Philippa 348

He, Guanhua 112
Honda, Kohei 316

Jaskelioff, Mauro 64

Kikuchi, Daisuke 222
Kobayashi, Naoki 222

Lakin, Matthew R. 47
Leavens, Gary T. 333
Leino, K. Rustan M. 378

Malayeri, Donna 95
Melgratti, Hernán 301
Montanari, Ugo 267
Mostrous, Dimitris 316
Müller, Peter 378

Norrish, Michael 160

O’Hearn, Peter 252

Parkinson, Matthew 363
Pitts, Andrew M. 47
Plotkin, Gordon 80
Pretnar, Matija 80

Qin, Shengchao 112

Rajan, Hridesh 333
Raza, Mohammad 348
Reynolds, John C. 62
Rinetzky, Noam 252

Sadowski, Caitlin 394
Sands, David 207
Schäfer, Max 143
Shaner, Steve 333
Siek, Jeremy 17
Strickland, T. Stephen 32
Sumii, Eijiro 237

Taha, Walid 17
Tao, Jia 333
Tobin-Hochstadt, Sam 32

Vafeiadis, Viktor 363
Vieira, Hugo Torres 285

Wadler, Philip 1

Yang, Hongseok 252
Yoshida, Nobuko 316
Yuan, Hao 175

	front-matter
	fulltext
	Well-Typed Programs Can’t Be Blamed
	Introduction
	The Blame Calculus
	From Untyped to Typed
	Contracts and Subset Types
	The Blame Game
	Well-Typed Programs Can't Be Blamed

	Types, Reduction, Subtyping
	Types and Terms
	Reductions
	Subtyping
	Typed and Untyped Lambda Calculus
	Type Safety

	The Blame Theorem
	Related Work

	fulltext_001
	Exploring the Design Space of Higher-Order Casts
	Introduction
	From Lazy to Eager Detection of Higher-Order Cast Errors
	Blame Assignment and Subtyping
	Space Efficiency
	Variations on the Coercion Calculus
	Blame Assignment Strategies
	An Eager Error Detection Strategy for the Coercion Calculus

	A Space-Efficient Semantics for $\lambdac(X)$
	Conclusion and Future Work

	fulltext_002
	Practical Variable-Arity Polymorphism
	Types for Variable-Arity Functions
	Typed Scheme …
	Basic Typed Scheme
	Polymorphic Functions and Local Type Inference

	… with Variable-Arity Functions
	Uniform Variable-Arity Functions
	Beyond Uniform Variable-Arity Functions
	Non-uniform Variable-Arity Functions

	A Variable-Arity Type System
	Syntax
	Type System

	Evaluation
	Measurements of Existing Code
	Evaluation of Examples

	Related Work
	Conclusion

	fulltext_003
	Resolving Inductive Definitions with Binders in Higher-Order Typed Functional Programming
	Introduction
	α-Inductive Definitions
	α-Tree Constraint Problems
	αML
	α-Inductive Definitions as αML Recursive Functions
	Related and Future Work

	fulltext_004
	Using Category Theory to Design Programming Languages

	fulltext_005
	Modular Monad Transformers
	Introduction
	Preliminaries
	Operations and Lifting
	Unique Lifting of Algebraic Operations
	Lifting of Operations
	Conclusion

	fulltext_006
	Handlers of Algebraic Effects
	Introduction
	Exception Handlers
	Effects
	Effect Theories

	Handlers
	Semantics

	Computations
	Semantics

	Examples
	Exceptions
	Stream Redirection
	CCS Renaming and Hiding
	Explicit Nondeterminism
	Handlers with Parameter Passing
	Timeout
	Input Redirection
	Rollback

	Logic
	Recursion
	Conclusions

	fulltext_007
	Is Structural Subtyping Useful? An Empirical Study
	Introduction
	Corpus and Methodology
	Inferring Structural Types for Method Parameters
	Quantitative Results
	Qualitative Results
	Uses of Java Collections Library
	Related Work

	Throwing ``Unsupported Operation'' Exceptions
	Common Methods
	Frequency
	Accidental Name Clashes
	Code Clones

	Cascading ``Instanceof'' Tests
	Java Reflection Analysis
	Related Work
	Summary and Conclusions

	fulltext_008
	An Interval-Based Inference of Variant Parametric Types
	Introduction
	Variant Parametric Types as Interval Types
	Inference of Variant Parametric Types
	Main Algorithm
	Interval Types Versus Variant Parametric Types
	Main Flow and Conditional Flow
	Convergent Flow and Divergent Flow
	Field Flow and Object Flow

	Inference Algorithm
	Type Inference Rules
	Constraint Solver

	Method Overriding
	Conclusion

	fulltext_009
	Existential Quantification for Variant Ownership
	Introduction
	Example
	Jo\exists
	Jo\exists_{deep}
	Discussion
	Related Work
	Conclusion and Future Work

	fulltext_010
	Formalising and Verifying Reference Attribute Grammars in Coq
	Introduction
	Reference Attribute Grammars
	Abstract Syntax Trees
	The Attributes

	Formalisation of Reference Attribute Grammars
	Formalising Abstract Syntax
	Formalising Attributes
	Circularity

	Case Study: Name Analysis
	The Grammar
	Attributes for Name Analysis
	Circularity in Name Analysis
	Towards the Verification of Rename Refactorings

	Evaluation
	Statistics
	Extensibility

	Related Work
	Conclusions

	fulltext_011
	Verified, Executable Parsing
	Introduction
	Context-Free Grammars
	SLR Automata
	Constructing the Parser

	Proofs
	Validity of the Parse Tree Generated
	Equivalence of the Output Parse Tree and the Input String Parsed
	Soundness of the Parser
	Completeness of the Parser
	SLR Grammars Are Unambiguous

	An Executable Parser
	Executable Calculation of Nullable Non-terminals

	Future Work
	Related Work
	Conclusions

	fulltext_012
	An Efficient Algorithm for Solving the Dyck-CFL Reachability Problem on Trees
	Introduction
	Background and Related Work
	Motivation: Points-to Analysis
	Points-to Analysis via Dyck-CFL Reachability
	Special Tree Structure Case

	Preliminaries
	Problem Definition
	Basic Definitions

	Dyck-CFL Reachability Algorithm on Trees
	Loopless Property
	Basic Idea
	Divide and Conquer

	Conclusions

	fulltext_013
	Amortised Memory Analysis Using the Depth of Data Structures
	Language and Operational Semantics
	Type System
	Examples of Typing Derivations
	Soundness
	Checking and Inference
	Containers
	Extensions
	Related Work
	Conclusions

	fulltext_014
	The Financial Crisis, a Lack of Contract Specification Tools: What Can Finance Learn from Programming Language Design?

	fulltext_015
	All Secrets Great and Small
	Introduction
	A Refined Multilevel Lattice
	Secret-Sensitive Noninterference
	Characterising SSNI
	Computational Security

	Secret-Sensitive Noninterference by Typing
	Type System
	Type Soundness

	Correlation Leaks
	Conclusions

	fulltext_016
	Type-Based Automated Verification of Authenticity in Cryptographic Protocols
	Introduction
	{\tt SpiCA}: Spi-Calculus with Correspondence Assertions
	Syntax
	Semantics

	Type System
	Types and Effects
	Typing Rules
	Type Soundness
	On the Expressive Power of the Type System

	Type Inference Algorithm
	Experiments
	Related Work
	Conclusion

	fulltext_017
	A Theory of Non-monotone Memory (Or: Contexts for {\tt free})
	Introduction
	Background
	Our Contributions
	Our Approach
	Overview of the Paper

	Related Work
	The Language
	Binary Environmental Relations
	Unary Environmental Predicates
	AnExample
	Conclusion
	References

	fulltext_018
	Abstraction for Concurrent Objects
	Introduction
	Programming Language
	Action Trace Model
	Object Systems
	Semantics of Programs
	Simulation Relations on Histories
	Sequential Consistency, Linearizability and Refinement
	Abstract Dependency
	Conclusions

	fulltext_019
	Minimization Algorithm for Symbolic Bisimilarity
	Introduction
	Partition Refinement and Minimal Automaton
	Saturated and Symbolic Semantics
	Saturated Semantics
	Running Example: Open Petri Nets
	Symbolic Semantics

	Saturated Terminal Sequences
	Redundant Transitions
	A Minimization Algorithm for Symbolic Bisimilarity
	Irredundant Terminal Sequence
	Symbolic Partition Refinement
	Minimal Symbolic Automaton

	Conclusions and Related Works

	fulltext_020
	Conversation Types
	Introduction
	Conversation Contexts and Conversation Types

	The Core Conversation Calculus
	Type System
	Progress
	Related Work
	Concluding Remarks

	fulltext_021
	Abstract Processes in Orchestration Languages
	Introduction
	Concrete Processes
	Syntax
	Operational Semantics

	Abstract Processes
	Symbolic Semantics
	Notion of Abstraction
	Trace-Based Abstraction
	Abstraction as a Generalized Symbolic Bisimulation
	Composition of Orchestrators
	Composition Compliance and Abstraction

	Future Work

	fulltext_022
	Global Principal Typing in Partially Commutative Asynchronous Sessions
	Introduction
	Asynchronous Multiparty Sessions
	Asynchronous Partially Commutative Sessions
	Asynchronous Communication Subtyping: Top-Level Actions
	Asynchronous Communication Subtyping: Recursive Types
	Algorithmic Asynchronous Subtyping
	Local Asynchronous Commutative Session Typing

	Principal Global Typing through Graph-Based Types
	Application: Double-Buffering Algorithm
	Related Work
	References

	fulltext_023
	Tisa: A Language Design and Modular Verification Technique for Temporal Policies in Web Services
	Introduction
	Tisa Language Design
	Program Syntax
	Specification Constructs
	Constructs for Specifying Policies
	Dynamic Semantics of Tisa's Constructs

	Verification of Policies in Tisa
	Verifying Policies
	Verifying Refinement
	Soundness of Verification Technique

	Related Work

	fulltext_024
	Automatic Parallelization with Separation Logic
	Introduction
	Labelled Symbolic Heaps
	Programming Language
	Independence Detection
	Symbolic Execution Rules
	Independence Detection Algorithm

	Examples
	Frame Inference with Label Respecting Entailment
	Soundness
	Conclusion and Future Work
	Acknowledgements.

	fulltext_025
	Deny-Guarantee Reasoning
	Introduction
	Towards Deny-Guarantee Logic
	The Logic
	Two-Thread Example
	Encoding Rely-Guarantee Reasoning
	Adding Parallel Composition
	Translation

	Semantics and Soundness
	Conclusions and Future Developments

	fulltext_026
	A Basis for Verifying Multi-threaded Programs
	Introduction
	Permissions
	Shared Objects
	Deadlock Prevention
	Technical Treatment
	Related Work
	Conclusions

	fulltext_027
	SingleTrack: A Dynamic Determinism Checker for Multithreaded Programs
	Introduction
	Semantics of Multithreaded Programs
	Dynamically Verifying Internal Conflict Freedom
	Dynamically Verifying External Serializability
	Implementation and Evaluation
	Related Work
	Conclusions

	back-matter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

