
Lecture Notes in Computer Science 1782
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Gert Smolka (Ed.)

Programming
Languages and Systems

9th European Symposium on Programming, ESOP 2000
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2000
Berlin, Germany, March 25 – April 2, 2000
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

Gert Smolka
University of Saarland
Programming Systems Lab, Building 45,
P. O. Box 15 11 50, 66041 Saarbrücken, Germany
E-mail: smolka@ps.uni-sb.de

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Programming languages and systems : proceedings / 9th European
Symposium on Programming, ESOP 2000, held as part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2000,
Berlin, Germany, March 25 - April 2, 2000 / Gert Smolka (ed.). -
Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ;
Milan ; Paris ; Singapore ; Tokyo : Springer, 2000

(Lecture notes in computer science ; Vol. 1782)
ISBN 3-540-67262-1

CR Subject Classification (1991): D.3, D.1-2, F.3, F.4, E.1

ISSN 0302-9743
ISBN 3-540-67262-1 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag is a company in the BertelsmannSpringer publishing group.
© Springer-Verlag Berlin Heidelberg 2000
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Stefan Sossna
Printed on acid-free paper SPIN 10719936 06/3142 5 4 3 2 1 0

Foreword

ETAPS 2000 was the third instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference that was
established in 1998 by combining a number of existing and new conferences.
This year it comprised five conferences (FOSSACS, FASE, ESOP, CC, TACAS),
five satellite workshops (CBS, CMCS, CoFI, GRATRA, INT), seven invited
lectures, a panel discussion, and ten tutorials.

The events that comprise ETAPS address various aspects of the system deve-
lopment process, including specification, design, implementation, analysis, and
improvement. The languages, methodologies, and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice are
represented, with an inclination towards theory with a practical motivation on
one hand and soundly-based practice on the other. Many of the issues involved
in software design apply to systems in general, including hardware systems, and
the emphasis on software is not intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity,
with a separate program committee and independent proceedings. Its format is
open-ended, allowing it to grow and evolve as time goes by. Contributed talks
and system demonstrations are in synchronized parallel sessions, with invited
lectures in plenary sessions. Two of the invited lectures are reserved for “unify-
ing” talks on topics of interest to the whole range of ETAPS attendees. The
aim of cramming all this activity into a single one-week meeting is to create a
strong magnet for academic and industrial researchers working on topics within
its scope, giving them the opportunity to learn about research in related areas,
and thereby to foster new and existing links between work in areas that were
formerly addressed in separate meetings. The program of ETAPS 2000 included
a public business meeting where participants had the opportunity to learn ab-
out the present and future organization of ETAPS and to express their opinions
about what is bad, what is good, and what might be improved.

ETAPS 2000 was hosted by the Technical University of Berlin and was effi-
ciently organized by the following team:

Bernd Mahr (General Chair)
Hartmut Ehrig (Program Coordination)
Peter Pepper (Organization)
Stefan Jähnichen (Finances)
Radu Popescu-Zeletin (Industrial Relations)

with the assistance of BWO Marketing Service GmbH. The publicity was su-
perbly handled by Doris Fähndrich of the TU Berlin with assistance from the
ETAPS publicity chair, Andreas Podelski. Overall planning for ETAPS confe-
rences is the responsibility of the ETAPS steering committee, whose current
membership is:

VI Foreword

Egidio Astesiano (Genova), Jan Bergstra (Amsterdam), Pierpaolo Degano
(Pisa), Hartmut Ehrig (Berlin), José Fiadeiro (Lisbon), Marie-Claude
Gaudel (Paris), Susanne Graf (Grenoble), Furio Honsell (Udine), Heinrich
Hußmann (Dresden), Stefan Jähnichen (Berlin), Paul Klint (Amsterdam),
Tom Maibaum (London), Tiziana Margaria (Dortmund), Ugo Montanari
(Pisa), Hanne Riis Nielson (Aarhus), Fernando Orejas (Barcelona),
Andreas Podelski (Saarbrücken), David Sands (Göteborg), Don Sannella
(Edinburgh), Gert Smolka (Saarbrücken), Bernhard Steffen (Dortmund),
Wolfgang Thomas (Aachen), Jerzy Tiuryn (Warsaw), David Watt (Glas-
gow), Reinhard Wilhelm (Saarbrücken)

ETAPS 2000 received generous sponsorship from:

the Institute for Communication and Software Technology of TU Berlin
the European Association for Programming Languages and Systems
the European Association for Theoretical Computer Science
the European Association for Software Development Science
the “High-Level Scientific Conferences” component of the European

Commission’s Fifth Framework Programme

I would like to express my sincere gratitude to all of these people and organizati-
ons, the program committee members of the ETAPS conferences, the organizers
of the satellite events, the speakers themselves, and finally Springer-Verlag for
agreeing to publish the ETAPS proceedings.

January 2000 Donald Sannella
ETAPS Steering Committee chairman

Preface

This volume contains the 27 papers presented at ESOP 2000, the Ninth European
Symposium on Programming, which took place in Berlin, March 27–31, 2000.
The ESOP series originated in 1986 and addresses the design, specification, and
analysis of programming languages and programming systems. Since 1998, ESOP
has belonged to the ETAPS confederation.

The call for papers of ESOP 2000 encouraged the following topics: program-
ming paradigms and their integration, including concurrent, functional, logic,
and object-oriented; computational calculi and semantics; type systems, pro-
gram analysis, and concomitant constraint systems; program transformation;
programming environments and tools.

The volume starts with a contribution from Martin Odersky, the invited
speaker of the conference. The remaining 26 papers were selected by the program
committee from 84 submissions (almost twice as many as for ESOP 99). With
two exceptions, each submission received at least three reviews, done by the
program committee members or their subreferees (names appear below). Once
the initial reviews were available, we had two weeks for conflict resolution and
paper selection, supported by a database system with Web interfaces.

I would like to express my sincere gratitude to Christian Schulte who took
care of the software, handled the submissions, tracked the refereeing process, and
finally assembled the proceedings. Then, of course, I am grateful to my fellow
program committee members, the many additional referees, and the authors of
the submitted papers. Finally, I have to thank Don Sannella, who smoothly or-
ganized the program at the ETAPS level and relieved me of many organizational
burdens.

January 2000 Gert Smolka

VIII Organization

Organization

Program Chair

Gert Smolka UdS, Saarbrücken, Germany

Program Committee

Gerard Boudol INRIA, Sophia-Antipolis, France
Sophia Drossopoulou Imperial College, London, UK
Matthias Felleisen Rice University, Houston, USA
Michael Franz UC Irvine, USA
Manuel Hermenegildo TU Madrid, Spain
Xavier Leroy INRIA Rocquencourt, France
Alan Mycroft Cambridge University, UK
Martin Odersky EPF Lausanne, Switzerland
Andreas Podelski MPI, Saarbrücken, Germany
Gert Smolka UdS, Saarbrücken, Germany
Peter Thiemann Uni Freiburg, Germany
Mads Tofte Uni Copenhagen, Denmark
Pascal Van Hentenryck Uni Louvain, Belgium

Additional Referees

Mart́ın Abadi, Roberto Amadio, Zena Matilde Ariola, Andrea Asperti, Uwe
Assmann, Isabelle Attali, Gilles Barthe, David Basin, Alexander Bockmayr,
Maurice Bruynooghe, Francisco Bueno, Egon Börger, Robert Cartwright,
Giuseppe Castagna, Ilaria Castellani, Witold Charatonik, Olaf Chitil, Agostino
Cortesi, Patrick Cousot, Roy Crole, Paul Cunningham, Silvano Dal Zilio, Saumya
Debray, Bart Demoen, Damien Doligez, Thomas Ehrhard, Jérôme Feret, Gil-
berto Filé, Ian Foster, Cédric Fournet, Peter H. Froehlich, Martin Fränzle, Maŕıa
Garćıa de la Banda, Roberto Giacobazzi, Jens Christian Godskesen, Georges
Gonthier, Andy Gordon, Susanne Graf, Niels Hallenberg, Chris Hankin, Nevin
Heintze, Simon Helsen, Angel Herranz, Ralf Hinze, Sebastian Hunt, Graham
Hutton, Jean-Marie Jacquet, Suresh Jagannathan, C. B. Jay, Neil D. Jones,
Antonios Kakas, Sam Kamin, Andy King, Jan Willem Klop, Povl Koch,
Shriram Krishnamurthi, Herbert Kuchen, Arun Lakhotia, David Ephraim Lar-
kin, Ziemowit Laski, Baudouin Le Charlier, Fabrice Le Fessant, K. Rustan M.
Leino, Jean-Jacques Lévy, Michael Maher, Jan Maluszynski, John Maraist, Luc
Maranget, Mircea Marin, Julio Mariño, Kim Marriott, Laurent Mauborgne,
Erik Meijer, Massimo Merro, Laurent Michel, Yasuhiko Minamide, Eugenio
Moggi, Andrew Moran, Juan José Moreno Navarro, Anders Møller, Peter Møller

Organization IX

Neergaard, Lee Naish, Uwe Nestmann, Flemming Nielson, Jukka Paakki, Jens
Palsberg, Ross Paterson, Alberto Pettorossi, Iain Phillips, Enrico Pontelli,
François Pottier, Germàn Puebla, Christian Queinnec, Laurent Regnier, John
Reppy, Hanne Riis Nielson, David Rosenblueth, Andreas Rossberg, Abhik
Roychowdhury, Albert Rubio, Radu Rugina, Claudio Vittorio Russo, Didier
Rémy, Michel Rüher, Amr Sabry, Beverly Sanders, Davide Sangiorgi, Hiroyuki
Sato, David Schmidt, Wolfgang Schreiner, Christian Schulte, Peter Sestoft, Zhong
Shao, Richard Sharp, Yu Shi, Harald Sondergaard, Fausto Spoto, Harini
Srinivasan, Paul Steckler, Peter Stuckey, Jean-Ferdinand Susini, Don Syme,
Sophie Tison, Jan Vitek, Philip Wadler, David S. Warren, Reinhard Wilhelm,
Burkhard Wolff, Andrew Wright, Christoph Zenger, Matthias Zenger, Elena
Zucca, Frank S. de Boer.

Table of Contents

Invited Paper

Functional Nets . 1
Martin Odersky (École Polytechnique Fédérale de Lausanne)

Regular Papers

Faithful Translations between Polyvariant Flows and Polymorphic Types . . 26
Torben Amtoft (Boston University) and Franklyn Turbak
(Wellesley College)

On the Expressiveness of Event Notification in Data-Driven Coordination
Languages . 41

Nadia Busi and Gianluigi Zavattaro (Università di Bologna)

Flow-Directed Closure Conversion for Typed Languages 56
Henry Cejtin (Entertainment Decisions), Suresh Jagannathan
(NEC Research Institute), and Stephen Weeks (Intertrust STAR
Laboratories)

Directional Type Checking for Logic Programs: Beyond Discriminative Types 72
Witold Charatonik (Max-Planck-Institut für Informatik)

Formalizing Implementation Strategies for First-Class Continuations 88
Olivier Danvy (University of Aarhus)

Correctness of Java Card Method Lookup via Logical Relations 104
Ewen Denney and Thomas Jensen (IRISA)

Compile-Time Debugging of C Programs Working on Trees 119
Jacob Elgaard, Anders Møller, and Michael I. Schwartzbach
(University of Aarhus)

A Calculus for Compiling and Linking Classes . 135
Kathleen Fisher (AT&T Labs), John Reppy, and Jon G. Riecke
(Bell Laboratories, Lucent Technologies)

Abstract Domains for Universal and Existential Properties 150
Andrew Heaton, Patricia M. Hill (University of Leeds), and Andy King
(University of Kent)

A Type System for Bounded Space and Functional In-Place Update—
Extended Abstract . 165

Martin Hofmann (LFCS Edinburgh)

XII Table of Contents

Secure Information Flow as Typed Process Behaviour 180
Kohei Honda (Queen Mary and Westfield College), Vasco Vasconcelos
(University of Lisbon), and Nobuko Yoshida (University of Leicester)

Implementing Groundness Analysis with Definite Boolean Functions 200
Jacob M. Howe and Andy King (University of Kent)

The Correctness of Type Specialisation . 215
John Hughes (Chalmers University)

Type Classes with Functional Dependencies . 230
Mark P. Jones (Oregon Graduate Institute)

Sharing Continuations: Proofnets for Languages with Explicit Control 245
Julia L. Lawall and Harry G. Mairson (Boston University)

A Calculus for Link-Time Compilation . 260
Elena Machkasova (Boston University) and Franklyn A. Turbak
(Wellesley College)

Improving the Representation of Infinite Trees to Deal with Sets of Trees . 275
Laurent Mauborgne (École Normale Supérieure)

On the Translation of Procedures to Finite Machines 290
Markus Müller-Olm (Universität Dortmund) and Andreas Wolf
(Christian-Albrechts-Universität Kiel)

A Kleene Analysis of Mobile Ambients . 305
Flemming Nielson, Hanne Riis Nielson (Aarhus University), and
Mooly Sagiv (Tel Aviv University)

A 3-Part Type Inference Engine . 320
François Pottier (INRIA Rocquencourt)

First-Class Structures for Standard ML . 336
Claudio V. Russo (Cambridge University)

Constraint-Based Inter-Procedural Analysis of Parallel Programs 351
Helmut Seidl (Universität Trier) and Bernhard Steffen
(Universität Dortmund)

Alias Types . 366
Frederick Smith, David Walker, and Greg Morrisett
(Cornell University)

Polyvariant Flow Analysis with Constrained Types . 382
Scott F. Smith and Tiejun Wang (The Johns Hopkins University)

On Exceptions Versus Continuations in the Presence of State 397
Hayo Thielecke (Queen Mary and Westfield College)

Table of Contents XIII

Equational Reasoning for Linking with First-Class Primitive Modules 412
J. B. Wells and René Vestergaard (Heriot-Watt University)

Author Index . 429

Functional Nets

Martin Odersky

École Polytechnique Fédérale de Lausanne

Abstract. Functional nets combine key ideas of functional program-
ming and Petri nets to yield a simple and general programming nota-
tion. They have their theoretical foundation in Join calculus. This paper
presents functional nets, reviews Join calculus, and shows how the two
relate.

1 Introduction

Functional nets are a way to think about programs and computation which is
born from a fusion of the essential ideas of functional programming and Petri
nets. As in functional programming, the basic computation step in a functional
net rewrites function applications to function bodies. As in Petri-Nets, a rewrite
step can require the combined presence of several inputs (where in this case
inputs are function applications). This fusion of ideas from two different areas
results in a style of programming which is at the same time very simple and very
expressive.

Functional nets have a theoretical foundation in join calculus [15,16]. They
have the same relation to join calculus as classical functional programming has to
λ-calculus. That is, functional nets constitute a programming method which de-
rives much of its simplicity and elegance from close connections to a fundamental
underlying calculus. λ-calculus [10,5] is ideally suited as a basis for functional
programs, but it can support mutable state only indirectly, and nondetermi-
nism and concurrency not at all. The pair of join calculus and functional nets
has much broader applicability – functional, imperative and concurrent program
constructions are supported with equal ease.

The purpose of this paper is two-fold. First, it aims to promote functional
nets as an interesting programming method of wide applicability. We present
a sequence of examples which show how functional nets can concisely model
key constructs of functional, imperative, and concurrent programming, and how
they often lead to better solutions to programming problems than conventional
methods.

Second, the paper develops concepts to link our programming notation of
functional nets with the underlying calculus. To scale up from a calculus to
a programming language, it is essential to have a means of aggregating func-
tions and data. We introduce qualified definitions as a new syntactic construct
for aggregation. In the context of functional nets, qualified definitions provide
more flexible control over visibility and initialization than the more conventional

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 1–25, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

2 M. Odersky

record- or object-constructors. They are also an excellent fit to the underlying
join calculus, since they maintain the convention that every value has a name.
We will present object-based join calculus, an extension of join calculus with
qualified definitions. This extension comes at surprisingly low cost, in the sense
that the calculus needs to be changed only minimally and all concepts carry over
unchanged. By contrast, conventional record constructors would create anony-
mous values, which would be at odds with the name-passing nature of join.

The notation for writing examples of functional nets is derived from Silk,
a small language which maps directly into our object-based extension of join.
An implementation of Silk is publicly available. There are also other languages
which are based in some form on join calculus, and which express the constructs
of functional nets in a different way, e.g. Join[17] or JoCaml[14]. We have chosen
to develop and present a new notation since we wanted to support both functions
and objects in a way which was as simple as possible.

As every program notation should be, functional nets are intended to be
strongly typed, in the sense that all type errors should be detected rather than
leading to unspecified behavior. We leave open whether type checking is done
statically at compile time or dynamically at run time. Our examples do not men-
tion types, but they are all of a form that would be checkable using a standard
type system with recursive records, subtyping and polymorphism.

The rest of this paper is structured as follows. Section 2 introduces functional
nets and qualified definitions. Sections 3 and 4 show how common functional and
imperative programming patterns can be modeled as functional nets. Section 5
discusses concurrency and shows how functional nets model a wide spectrum
of process synchronization techniques. Section 6 introduces object-based join
calculus as the formal foundation of functional nets. Section 7 discusses how the
programming notation used in previous sections can be encoded in this calculus.
Section 8 discusses related work and concludes.

2 A First Example

Consider the task of implementing a one-place buffer, which connects producers
and consumers of data. Producers call a function put to deposit data into the
buffer while consumers call a function get to retrieve data from the buffer. There
can be at most one datum in the buffer at any one time. A put operation on a
buffer which is already full blocks until the buffer is empty. Likewise, a get on
an empty buffer blocks until the buffer is full. This specification is realized by
the following simple functional net:

def get & full x = x & empty,
put x & empty = () & full x

The net contains two definitions which together define four functions. Two of the
functions, put and get, are meant to be called from the producer and consumer
clients of the buffer. The other two, full and empty, reflect the buffer’s internal
state, and should be called only from within the buffer.

Functional Nets 3

Function put takes a single argument, x. We often write a function argument
without surrounding parentheses, e.g. put x instead of put(x). We also admit
functions like get that do not take any argument; one can imagine that every
occurrence of such a function is augmented by an implicit empty tuple as argu-
ment, e.g. get becomes get().

The two equations define rewrite rules. A set of function calls that matches
the left-hand side of an equation may be rewritten to the equation’s right-hand
side. The & symbol denotes parallel composition. We sometimes call & a fork if
it appears on an equation’s right-hand side, and a join if it appears on the left.
Consequently, the left-hand sides of equations are also called join patterns.

For instance, the equation

get & full x = x & empty

states that if there are two concurrent calls, one to get and the other to full x
for some value x, then those calls may be rewritten to the expression x & empty.
That expression returns x as get’s result and in parallel calls function empty.
Unlike get, empty does not return a result; it’s sole purpose is to enable via the
second rewrite rule calls to put to proceed. We call result-returning functions
like get synchronous, whereas functions like empty are called asynchronous.

In general, only the leftmost operand of a fork or a join can return a result.
All function symbols of a left-hand side but the first one are asynchronous.
Likewise, all operands of a fork except the first one are asynchronous or their
result is discarded.

It’s now easy to interpret the second rewrite rule,

put x & empty = () & full x

This rule states that two concurrent calls to put x & empty and may be rewritten
to () & full x. The result part of that expression is the unit value (); it signals
termination and otherwise carries no interesting information.

Clients of the buffer still need to initialize it by calling empty. A simple usage
of the one-place buffer is illustrated in the following example.

def get & full x = x & empty,
put x & empty = () & full x;

put 1 &
(val y = get ; val r = y + y ; print r ; put r) &
(val z = get ; val r = y ∗ y ; print r; put r) &
empty

Besides the initializer empty there are three client processes composed in parallel.
One process puts the number 1 into the buffer. The other two processes both try
to get the buffer’s contents and put back a modified value. The construct

val y = get ; ...

4 M. Odersky

evaluates the right-hand side expression get and defines y as a name for the
resulting value. The defined name y remains visible in the expression following
the semicolon. By contrast, if we had written def y = get; ... we would have
defined a function y, which each time it was called would call in turn get. The
definition itself would not evaluate anything.

As usual, a semicolon between expressions stands for sequencing. The com-
bined expression print r; put r first prints its argument r and then puts it into the
buffer.

The sequence in which the client processes in the above example execute is
arbitrary, controlled only by the buffer’s rewrite rules. The effect of running the
example program is hence the output of two numbers, either (2, 4) or (1, 2),
depending which client process came first.

Objects The previous example mixed the definition of a one-place buffer and
the client program using it. A better de-coupling is obtained by defining a con-
structor function for one-place buffers. The constructor, together with a program
using it can be written as follows.

def newBuffer = {
def get & full x = x & empty,

put x & empty = () & full x;
(get, put) & empty

};
val (get’, put’) = newBuffer;
put’ 1 &

(val y = get’ ; val r = y + y ; print r ; put’ r) &
(val z = get’ ; val r = y ∗ y ; print r ; put’ r)

The defining equations of a one-place buffer are now local to a block, from which
the pair of locally defined functions get and put is returned. Parallel to returning
the result the buffer is initialized by calling empty. The initializer empty is now
part of the constructor function; clients no longer can call it explicitly, since
empty is defined in a local block and not returned as result of that block. Hence,
newBuffer defines an object with externally visible methods get and put and
private methods empty and full. The object is represented by a tuple which
contains all externally visible methods.

This representation is feasible as long as objects have only a few externally
visible methods, but for objects with many methods the resulting long tuples
quickly become unmanageable. Furthermore, tuples do not support a notion
of subtyping, where an object can be substituted for another one with fewer
methods. We therefore introduce records as a more suitable means of aggregation
where individual methods can be accessed by their names, and subtyping is
possible.

The idiom for record access is standard. If r denotes a record, then r.f denotes
the field of r named f . We also call references of the form r.f qualified names. The
idiom for record creation is less conventional. In most programming languages,

Functional Nets 5

records are defined by enumerating all field names with their values. This notion
interacts poorly with the forms of definitions employed in functional nets. In
a functional net, one often wants to export only some of the functions defined
in a join pattern whereas other functions should remain hidden. Moreover, it
is often necessary to call some of the hidden functions as part of the object’s
initialization.

To streamline the construction of objects, we introduce qualified names not
only for record accesses, but also for record definitions. For instance, here is a
re-formulation of the newBuffer function using qualified definitions.

def newBuffer = {
def this.get & full x = x & empty,

this.put x & empty = () & full x;
this & empty

};
val buf = newBuffer;
buf.put 1 &

(val y = buf.get ; val r = y + y ; print r ; buf.put r) &
(val z = buf.get ; val r = y ∗ y ; print r ; buf.put r)

Note the occurrence of the qualified names this.get and this.put on the left-hand
side of the local definitions. These definitions introduce three local names:

– the local name this, which denotes a record with two fields, get and put, and
– local names empty and full, which denote functions.

Note that the naming of this is arbitrary, any other name would work equally
well. Note also that empty and full are not part of the record returned from
newRef, so that they can be accessed only internally.

The identifiers which occur before a period in a join pattern always define
new record names, which are defined only in the enclosing definition. It is not
possible to use this form of qualified definition to add new fields to a record
defined elsewhere.

Some Notes on Syntax We assume the following order of precedence, from strong
to weak:

() and (.) , (&) , (=) , (,) , (;) .

That is, function application and selection bind strongest, followed by parallel
composition, followed by the equal sign, followed by comma, and finally followed
by semicolon. Function application and selection are left associative, & is asso-
ciative, and ; is right associatve. Other standard operators such as +, ∗, == fall
between function application and & in their usual order of precedence. When
precedence risks being unclear, we’ll use parentheses to disambiguate.

As a syntactic convenience, we allow indentation instead of ;-separators inside
blocks delimited with braces { and }. Except for the significance of indentation,

6 M. Odersky

braces are equivalent to parentheses. The rules are as follows: (1) in a block deli-
mited with braces, a semicolon is inserted in front of any non-empty line which
starts at the same indentation level as the first symbol following the opening
brace, provided the symbol after the insertion point can start an expression or
definition. The only modification to this rule is: (2) if inserted semicolons would
separate two def blocks, yielding def D1 ; def D2 say, then the two def blocks
are instead merged into a single block, i.e. def D1, D2. (3) The top level program
is treated like a block delimited with braces, i.e. indentation is significant.

With these rules, the newBuffer example can alternatively be written as fol-
lows.

def newBuffer = {
def this.get & full x = x & empty
def this.put x & empty = () & full x
this & empty

}
val buf = newBuffer
buf.put 1 &

{ val y = buf.get ; val r = y + y ; print r ; buf.put r } &
{ val z = buf.get ; val r = y ∗ y ; print r ; buf.put r }

A common special case of a qualified definition is the definition of a record with
only externally visible methods:

(def this.f = ... , this.g = ... ; this)

This idiom can be abbreviated by omitting the this qualifier and writing only
the definitions.

(def f = ... , g = ...)

3 Functional Programming

A functional net that does not contain any occurrences of & is a purely functional
program. For example, here’s the factorial function written as a functional net.

def factorial n = if (n == 0) 1
else n ∗ factorial (n–1)

Except for minor syntactical details, there’s nothing which distinguishes this
program from a program written in a functional language like Haskell or ML.
We assume that evaluation of function arguments is strict: In the call f (g x), g x
will be evaluated first and its value will be passed to f.

Functional programs often work with recursive data structures such as trees
and lists. In Lisp or Scheme such data structures are primitive S-expressions,
whereas in ML or Haskell they are definable as algebraic data types. Our fun-
ctional net notation does not have a primitive tree type, nor has it constructs

Functional Nets 7

for defining algebraic data types and for pattern matching their values. It does
not need to, since these constructs can be represented with records, using the
Visitor pattern[18].

The visitor pattern is the object-oriented version of the standard Church
encoding of algebraic data types. A visitor encodes the branches of a pattern
matching case expression. It is represented as a record with one method for each
branch. For instance, a visitor for lists would always have two methods:

def Nil = ...
def Cons (x, xs) = ...

The intention is that our translation of pattern matching would call either the
Nil method or the Cons method of a given visitor, depending what kind of list
was encountered. If the encountered list resulted from a Cons we also need to
pass the arguments of the original Cons to the visitor’s Cons.

Assume we have already defined a method match for lists that takes a list
visitor as argument and has the behavior just described. Then one could write
an isEmpty test function over lists as follows:

def isEmpty xs = xs.match {
def Nil = true
def Cons (x, xs1) = false

}
More generally, every function over lists can be defined in terms of match. So, in
order to define a record which represents a list, all we need to do is to provide a
match method. How should match be defined? Clearly, its behavior will depend
on whether it is called on an empty or non-empty list. Therefore, we define two
list constructors Nil and Cons, with two different different implementations for
match. The implementations are straightforward:

val List = {
def Nil = { def match v = v.Nil }
def Cons (x, xs) = { def match v = v.Cons (x, xs) }

}
In each case, match simply calls the appropriate method of its visitor argument
v, passing any parameters along. We have chosen to wrap the Nil and Cons
constructors in another record, named List. List acts as a module, which provides
the constructors of the list data type. Clients of the List module then construct
lists using qualified names List.Nil and List.Cons. Example:

def concat (xs, ys) = xs.match {
def Nil = ys
def Cons (x, xs) = List.Cons (x, concat (xs1, ys))

}
Note that the qualification with List lets us distinguish the constructor Cons,
defined in List, from the visitor method Cons, which is defined locally.

8 M. Odersky

4 Imperative Programming

Imperative programming extends purely functional programming with the addi-
tion of mutable variables. A mutable variable can be modeled as a reference cell
object, which can be constructed as follows.

def newRef initial = {
def this.value & state x = x & state x,

this.update y & state x = () & state y

this & state initial
}

The structure of these definitions is similar to the one-place buffer in Section 2.
The two synchronous functions value and update access and update the variable’s
current value. The asynchronous function state serves to remember the variable’s
current value. The reference cell is initialized by calling state with the initial value.

Here is a simple example of how references are used:

val count = newRef 0
def increment = count.update (count.value + 1)
increment

Building on reference cell objects, we can express the usual variable access not-
ation of imperative languages by two simple syntactic expansions:

var x := E expands to val x = newRef E ; def x = x.value
x := E expands to x.update E

The count example above could then be written more conventionally as follows.

var count := 0
def increment = count := count + 1

In the object-oriented design and programming area, an object is often characte-
rized as having “state, behavior, and identity”. Our encoding of objects expresses
state as a collection of applications of private asynchronous functions, and be-
havior as a collection of externally visible functions. But what about identity? If
functional net objects had an observable identity it should be possible to define
a method eq which returns true if and only if its argument is the same object
as the current object. Here “sameness” has to be interpreted as “created by the
same operation”, structural equality is not enough. E.g., assuming that the – as
yet hypothetical – eq method was added to reference objects, it should be pos-
sible to write val (r1, r2) = (newRef 0, newRef 0) and to have r1.eq(r1) == true
and r1.eq(r2) == false.

Functional nets have no predefined operation which tests whether two na-
mes or references are the same. However, it is still possible to implement an eq
method. Here’s our first attempt, which still needs to be refined later.

Functional Nets 9

f1 & ... & fm = g1 & ... & gn

f

f

f

g

g

gm

2

1 1

2

n

Fig. 1. Analogy to Petri nets

def newObjectWithIdentity = {
def this.eq other & flag x = resetFlag (other.testFlag & flag true)

this.testFlag & flag x = x & flag x
resetFlag result & flag x = x & flag false

this & flag false
}

This defines a generator function for objects with an eq method that tests for
identity. The implementation of eq relies on three helper functions, flag, testFlag,
and resetFlag. Between calls to the eq method, flag false is always asserted. The
trick is that the eq method asserts flag true and at the same time tests whether
other.flag is true. If the current object and the other object are the same, that test
will yield true. On the other hand, if the current object and the other object are
different, the test will yield false, provided there is not at the same time another
ongoing eq operation on object other. Hence, we have arrived at a solution of
our problem, provided we can prevent overlapping eq operations on the same
objects. In the next section, we will develop techniques to do so.

5 Concurrency

The previous sections have shown how functional nets can express sequential
programs, both in functional and in imperative style. In this section, we will show
their utility in expressing common patterns of concurrent program execution.

Functional nets support an resource-based view of concurrency, where calls
model resources, & expresses conjunction of resources, and a definition acts as
a rewrite rule which maps input sets of resources into output sets of resources.
This view is very similar to the one of Petri nets [29,32]. In fact, there are
direct analogies between the elements of Petri nets and functional nets. This is
illustrated in Figure 1.

A transition in a Petri net corresponds to a rewrite rule in a functional net.
A place in a Petri net corresponds to a function symbol applied to some (formal
or actual) arguments. A token in a Petri net corresponds to some actual call
during the execution of a functional net (in analogy to Petri nets, we will also
call applications of asynchronous functions tokens). The basic execution step

10 M. Odersky

of a Petri net is the firing of a transition which has as a precondition that all
in-going places have tokens in them. Quite similarly, the basic execution step of
a functional net is a rewriting according to some rewrite rule, which has as a
precondition that all function symbols of the rule’s left-hand side have matching
calls.

Functional nets are considerably more powerful than conventional Petri nets,
however. First, function applications in a functional net can have arguments,
whereas tokens in a Petri net are unstructured. Second, functions in a functional
net can be higher-order, in that they can have functions as their arguments. In
Petri nets, such self-referentiality is not possible. Third, definitions in a functional
net can be nested inside rewrite rules, such that evolving net topologies are
possible. A Petri-net, on the other hand, has a fixed connection structure.

Colored Petri nets [24] let one pass parameters along the arrows connecting
places with transitions. These nets are equivalent to first-order functional nets
with only global definitions. They still cannot express the higher-order and evo-
lution aspects of functional nets. Bussi and Asperti have translated join calculus
ideas into standard Petri net formalisms. Their mobile Petri nets [4] support
first-class functions and evolution, and drop at the same time the locality re-
strictions of join calculus and functional nets. That is, their notation separates
function name introduction from rewrite rule definition, and allows a function
to be defined collectively by several unrelated definitions.

In the following, we will present several well-known schemes for process syn-
chronization and how they each can be expressed as functional nets.

Semaphores A common mechanism for process synchronization is a lock (or:
semaphore). A lock offers two atomic actions: getLock and releaseLock. Here’s
the implementation of a lock as a functional net:

def newLock = {
def this.getLock & this.releaseLock = ()
this & this.releaseLock

}
A typical usage of a semaphore would be:

val s = newLock ; ...
s.getLock ; “< critical region >” ; s.releaseLock

With semaphores, we can now complete our example to define objects with
identity:

val global = newLock
def newObjectWithIdentity = {

def this.eq other = global.getLock ; this.testEq other ; global.releaseLock
this.testEq other & flag x = resetFlag (other.testFlag & flag true)
this.testFlag & flag x = x & flag x
resetFlag result & flag x = x & flag false

this & flag false
}

Functional Nets 11

This code makes use of a global lock to serialize all calls of eq methods. This
is admittedly a brute force approach to mutual exclusion, which also serializes
calls to eq over disjoint pairs of objects. A more refined locking strategy is hard
to come by, however. Conceptually, a critical region consists of a pair of objects
which both have to be locked. A naive approach would lock first one object, then
the other. But this would carry the risk of deadlocks, when two concurrent eq
operations involve the same objects, but in different order.

Asynchronous Channels Quite similar to a semaphore is the definition of an
asynchronous channel with two operations, read and write:

def newAsyncChannel = {
def this.read & this.write x = x
this

}

Asynchronous channels are the fundamental communication primitive of asyn-
chronous π calculus [8,23] and languages based on it, e.g. Pict[30] or Piccola[1].
A typical usage scenario of an asynchronous channel would be:

val c = newAsyncChannel
def producer = {

var x := 1
while (true) { val y := x ; x := x + 1 & c.write y }

}
def consumer = {

while (true) { val y = c.read ; print y }
}
producer & consumer

The producer in the above scenario writes consecutive integers to the channel c
which are read and printed by the consumer. The writing is done asynchronously,
in parallel to the rest of the body of the producer’s while loop. Hence, there is
no guarantee that numbers will be read and printed in the same order as they
were written.

Synchronous Channels A potential problem with the previous example is that
the producer might produce data much more rapidly than the consumer consu-
mes them. In this case, the number of pending write operations might increase
indefinitely, or until memory was exhausted. The problem can be avoided by
connecting producer and consumer with a synchronous channel.

In a synchronous channel, both reads and writes return and each opera-
tion blocks until the other operation is called. Synchronous channels are the
fundamental communication primitive of classical π-calculus[27]. They can be
represented as functional nets as follows.

12 M. Odersky

def newSyncChannel = {
def this.read & noReads = read1 & read2,

this.write x & noWrites = write1 & write2 x,
read1 & write2 x = x & noWrites,
write1 & read2 = () & noReads

this
}

This implementation is more involved than the one for asynchronous channels.
The added complexity stems from the fact that a synchronous channel connects
two synchronous operations, yet in each join pattern there can be only one
function that returns. Our solution is similar to a double handshake protocol. It
splits up read and write into two sub-operations each, read1, read2 and write1,
write2. The sub-operations are then matched in two join patterns, in opposite
senses. In one pattern it is the read sub-operation which returns whereas in
the second one it is the write sub-operation. The noReads and noWrites tokens
are necessary for serializing reads and writes, so that a second write operation
can only start after the previous read operation is finished and vice versa. With
synchronous channels, our producer/consumer example can be written as follows.

val c = newSyncChannel
def producer = {

var x := 1
while (true) { c.write x ; x := x + 1 }

}
def consumer = {

while (true) { val y = c.read ; print y }
}
producer & consumer

Monitors Another scheme for process communication is to use a common store
made up of mutable variables, and to use mutual exclusion mechanisms to pre-
vent multiple processes from updating the same variable at the same time. A
simple mutual exclusion mechanism is the monitor [20,21] which ensures that
only one of a set of functions f1, ..., fk can be active at any one time. A monitor
is easily represented using an additional asynchronous function, turn. The turn
token acts as a resource which is consumed at the start of each function fi and
which is reproduced at the end:

def f1 & turn = ... ; turn,
...

fk & turn = ... ; turn

For instance, here is an example of a counter which can be incremented and
decremented:

Functional Nets 13

def newBiCounter = {
var count := 0
def this.increment & turn = count := count + 1 ; turn
def this.decrement & turn = count := count – 1 ; turn
this

}

Readers and Writers A more complex form of synchronization distinguishes bet-
ween readers which access a common resource without modifying it and writers
which can both access and modify it. To synchronize readers and writers we need
to implement operations startRead, startWrite, endRead, endWrite, such that:

– there can be multiple concurrent readers,
– there can only be one writer at one time,
– pending write requests have priority over pending read requests, but don’t

preempt ongoing read operations.

This form of access control is common in databases. It can be implemented using
traditional synchronization mechanisms such as semaphores, but this is far from
trivial. We arrive at a functional net solution to the problem in two steps.

The initial solution is given at the top of Figure 2. We make use of two
auxiliary tokens. The token readers n keeps track in its argument n of the number
of ongoing reads, while writers n keeps track in n of the number of pending writes.
A startRead operation requires that there are no pending writes to proceed, i.e.
writers 0 must be asserted. In that case, startRead continues with startRead1,
which reasserts writers 0, increments the number of ongoing readers, and returns
to its caller. By contrast, a startWrite operation immediately increments the
number of pending writes. It then continues with startWrite1, which waits for
the number of readers to be 0 and then returns. Note the almost-symmetry
between startRead and startWrite, where the different order of actions reflects
the different priorities of readers and writers.

This solution is simple enough to trust its correctness. But the present for-
mulation is not yet valid Silk because we have made use of numeric arguments in
join patterns. For instance readers 0 expresses the condition that the number of
readers is zero. We arrive at an equivalent formulation in Silk through factoriza-
tion. A function such as readers which represents a condition is split into several
sub-functions which together partition the condition into its cases of interest. In
our case we should have a token noReaders which expresses the fact that there
are no ongoing reads as well as a token readers n, where n is now required to be
positive. Similarly, writers n is now augmented by a case noWriters. After split-
ting and introducing the necessary case distinctions, one obtains the functional
net listed at the bottom of Figure 2.

14 M. Odersky

Initial solution:

def this.startRead & writers 0 = startRead1,
startRead1 & readers n = () & writers 0 & readers (n+1),

this.startWrite & writers n = startWrite1 & writers (n+1),
startWrite1 & readers 0 = (),

this.endRead & readers n = readers (n–1),
this.endWrite & writers n = writers (n–1) & readers 0

this & readers 0 & writers 0
}

After factorization:

def newReadersWriters = {
def this.startRead & noWriters = startRead1,

startRead1 & noReaders = () & noWriters & readers 1,
startRead1 & readers n = () & noWriters & readers (n+1),

this.startWrite & noWriters = startWrite1 & writers 1,
this.startWrite & writers n = startWrite1 & writers (n+1),

startWrite1 & noReaders = (),

this.endRead & readers n = if (n == 1) noReaders
else readers (n–1),

this.endWrite & writers n = noReaders &
if (n == 1) noWriters
else writers (n–1)

this & noReaders & noWriters
}

Fig. 2. Readers/writers synchronization

6 Foundations: The Join Calculus

Functional nets have their formal basis in join calculus [15]. We now present this
basis, in three stages. In the first stage, we study a subset of join calculcus which
can be taken as the formal basis of purely functional programs. This calculus is
equivalent to (call-by-value) λ-calculus[31], but takes the opposite position on
naming functions. Where λ-calculus knows only anonymous functions, functional
join calculus insists that every function have a name. Furthermore, it also insists
that every intermediate result be named. As such it is quite similar to common
forms of intermediate code found in compilers for functional languages.

The second stage adds fork and join operators to the constructs introduced
in the first stage. The calculus developed at this stage is equivalent in principle
to the original join calculus, but some syntactical details have changed.

The third stage adds qualified names in definitions and accesses. The calculus
developed in this stage can model the object-based functional nets we have used.

Functional Nets 15

Syntax:

Names a, b, c, . . . , x, y, z

Terms M, N = def D ; M | x(ỹ)
Definitions D = L = M

Left-hand sides L = x(ỹ)
Reduction contexts R = [] | def D ; R

Structural Equivalence: α-renaming.

Reduction:

def x(ỹ) = M ; R[x(z̃)] → def x(ỹ) = M ; R[[z̃/ỹ]M]

Fig. 3. Pure functional calculus

All three stages represent functional nets as a reduction system. There is
in each case only a single rewrite rule, which is similar to the β-reduction rule
of λ-calculus, thus closely matching intuitions of functional programming. By
contrast, the original treatment of join calculus is based on a chemical abstract
machine[6], a concept well established in concurrency theory. The two versions
of join calculus complement each other and are (modulo some minor syntactical
details) equivalent.

6.1 Pure Functional Calculus

Figure 3 presents the subset of join calculus which can express purely functional
programs. The syntax of this calculus is quite small. A term M is either a
function application x(ỹ) or a term with a local definition, def D ; M (we let
x̃ stand for a sequence x1, . . . , xn of names, where n ≥ 0). A definition D is
a single rewrite rule the form L = M . The left-hand side L of a rewrite rule is
again a function application x(ỹ). We require that the formal parameters yi of
a left-hand side are pairwise disjoint. The right-hand side of a rewrite rule is an
arbitrary term.

The set of defined names dn(D) of a definition D of the form x(ỹ) = M con-
sists of just the function name x. Its local names ln(D) are the formal parameters
ỹ. The free names fn(M) of a term M are all names which are not defined by or
local to a definition in M . The free names of a definition D are its defined names
and any names which are free in the definition’s right hand side, yet different
from the local names of D. All names occurring in a term M that are not free
in M are called bound in M . Figure 6 presents a formal definition of these sets
for the object-based extension of join calculus.

To avoid unwanted name capture, where free names become bound inadver-
tently, we will always write terms subject to the following hygiene condition: We
assume that the set of free and bound names of every term we write are disjoint.

16 M. Odersky

This can always be achieved by a suitable renaming of bound variables, accor-
ding to the α-renaming law. This law lets us rename local and defined names of
definitions, provided that the new names do not clash with names which already
exist in their scope. It is formalized by two equations. First,

def x(ỹ) = M ; N ≡ def u(ỹ) = [u/x]M ; [u/x]N

if u 6∈ fn(M) ∪ fn(N). Second,

def x(ỹ) = M ; N ≡ def x(ṽ) = [ṽ/ỹ]M ; N

if {ṽ} ∩ fn(M) = ∅ and the elements of ṽ are pairwise disjoint. Here, [u/x] and
[ṽ/ỹ] are substitutions which map x and ỹ to u and ṽ. Generally, substitutions
are idempotent functions over names which map all but a finite number of names
to themselves. The domain dom(σ) of a substitution σ is the set of names not
mapped to themselves under σ.

Generally, we will give in each case a structural equivalence relation ≡ which
is assumed to be reflexive, transitive, and compatible (i.e. closed under formation
of contexts). Terms that are related by ≡ are identified with each other. For the
purely functional calculus, ≡ is just α-renaming. Extended calculi will have richer
notions of structural equivalence.

Execution of terms in our calculus is defined by rewriting. Figure 3 defines
a single rewrite rule, which is analogous to β-reduction in λ-calculus. The rule
can be sketched as follows:

def x(ỹ) = M ; . . . x(z̃) . . . → def x(ỹ) = M ; . . . [z̃/ỹ]M . . .

That is, if there is an application x(z̃) which matches a definition of x, say
x(ỹ) = M , then we can rewrite the application to the definition’s right hand
side M , after replacing formal parameters ỹ by actual arguments z̃.

The above formulation is not yet completely precise because we still have to
specify where exactly a reducible application can be located in a term. Clearly,
the application must be within the definition’s scope. Also, we want to reduce
only those applications which are not themselves contained in another local
definition. For instance, in

def f (x, k) = k x ;
def g (x, k) = f (1, k) ;
f(2, k)

we want to reduce only the second application of f, not the first one which is
contained in the body of function g. This restriction in the choice of reducible
applications avoids potentially unnecessary work. For instance in the code frag-
ment above g is never called, so it would make no sense to reduce its body. More
importantly, once we add side-effects to our language, it is essential that the
body of a function is executed (i.e. reduced) only when the function is applied.

Functional Nets 17

The characterization of reducible applications can be formalized using the
idea of a reduction context1. A context C is a term with a hole, which is written
[]. The expression C[M] denotes the term resulting from filling the hole of the
context C with M . A reduction context R is a context of a special form, in which
the hole can be only at places where a function application would be reducible.
The set of possible reduction contexts for our calculus is generated by a simple
context free grammar, given in Figure 3. This grammar says that reduction can
only take place at the top of a term, or in the scope of some local definitions.

Reduction contexts are used in the formulation of the reduction law in Fi-
gure 3. Generally, we let the reduction relation → between terms be the smallest
compatible relation that contains the reduction law.

An alternative formulation of the reduction rule abstracts from the concrete
substitution operator:

def L = M ; R[σL] → def L = M ; R[σM]

if σ is a substitution from names to names with dom(σ) ⊆ ln(L).
The advantage of the alternative formulation is that it generalizes readily to

the more complex join patterns which will be introduced in the next sub-section.
As an example of functional reduction, consider the following forwarding

function:

def f(x) = g(x) ; f(y) → def f(x) = g(x) ; g(y)

A slightly more complex example is the following reduction of a call to an eva-
luation function, which takes two arguments and applies one to the other:

def apply(f,x) = f(x) ; apply(print, 1) → def apply(f,x) = f(x) ; print(1)

6.2 Canonical Join Calculus

Figure 4 presents the standard version of join calculus. Compared to the purely
functional subset, there are three syntax additions: First and second, & is now
introduced as fork operator on terms and as a join operator on left-hand sides.
Third, definitions can now consist of more than one rewrite rule, so that multiple
definitions of the same function symbol are possible.

The latter addition is essentially for convenience, as one can translate every
program with definitions consisting of multiple rewrite rules to a program that
uses just one rewrite rule for each definition [15]. The convenience is great enough
to warrant a syntax extension because the encoding is rather heavy.

The notion of structural equivalence is now more refined than in the purely
functional subset. Besides α-renaming, there are three other sets of laws which
identify terms. First, the fork operator is assumed to be associative and commu-
tative. Second, the comma operator which conjoins rewrite rules is also taken to
1 The concept is usually known as under the name “evaluation context” [11], but

there’s nothing to evaluate here.

18 M. Odersky

Syntax:

Names a, b, c, . . . , x, y, z

Terms M, N = def D ; M | x(ỹ) | M & N

Definitions D = L = M | D, D | ε

Left-hand sides L = x(ỹ) | L & L

Reduction contexts R = [] | def D ; R | R & M | M & R

Structural Equivalence: α-renaming +

1. (&) on terms is associative and commutative:
M1 & M2 ≡ M2 & M1

M1 & (M2 & M3) ≡ (M1 & M2) & M3

2. (,) on definitions is associative and commutative with ε as an identity:
D1, D2 ≡ D2, D1

D1, (D2, D3) ≡ (D1, D2), D3

D, ε ≡ D
3. Scope extrusion:

(def D ; M) & N ≡ def D ; (M & N) if dn(D) ∩ fn(N) = ∅.

Reduction:

def D, L = M ; R[σL] → def D, L = M ; R[σM]

where σ is a substitution from names to names with dom(σ) ⊆ ln(L).

Fig. 4. Canonical join calculus

be associative and commutative, with the empty definition ε as identity. Finally,
we have a scope extrusion law, which states that the scope of a local definition
may be extended dynamically over other operands of a parallel composition,
provided this does not lead to clashes between names bound by the definition
and free names of the terms that are brought in scope.

There is still just one reduction rule, and this rule is essentially the same as
in the functional subset. The major difference is that now a rewrite step may
involve sets of function applications, which are composed in parallel.

The laws of structural equivalence are necessary to bring parallel subterms
which are “far apart” next to each other, so that they can match the join pattern
of left-hand side. For instance, in the following example of semaphore synchro-
nization two structural equivalences are necessary before rewrite steps can be
performed.

Functional Nets 19

Syntax:

Names a, b, c, . . . , x, y, z

Identifiers I, J = x | I.x

Terms M, N = def D ; M | I(J̃) | M & N

Definitions D = L = M | D, D | ε

Left-hand sides L = I(ỹ) | L & L

Reduction contexts R = [] | def D ; R | R & M | M & R

Structural Equivalence: α-renaming +

1. (&) on terms is associative and commutative:
M1 & M2 ≡ M2 & M1

M1 & (M2 & M3) ≡ (M1 & M2) & M3

2. (,) on definitions is associative and commutative with ε as an identity:
D1, D2 ≡ D2, D1

D1, (D2, D3) ≡ (D1, D2), D3

D, ε ≡ D
3. Scope extrusion:

(def D ; M) & N ≡ def D ; (M & N) if dn(D) ∩ fn(N) = ∅.

Reduction:

def D, L = M ; R[σL] → def D, L = M ; R[σM]

where σ is a substitution from names to identifiers with dom(σ) ⊆ ln(L).

Fig. 5. Object-based join calculus

def getLock(k) & releaseLock() = k();
releaseLock() & (def k’() = f() & g(); getLock(k’))

≡ (by commutativity of &)
def getLock(k) & releaseLock() = k();
(def k’() = f() & g(); getLock(k’)) & releaseLock()

≡ (by scope extrusion)
def getLock(k) & releaseLock() = k();
def k’() = f() & g(); getLock(k’) & releaseLock()

→ def getLock(k) & releaseLock() = k(); def k’() = f() & g(); k’()
→ def getLock(k) & releaseLock() = k(); def k’() = f() & g(); f() & g()

6.3 Object-Based Calculus

Figure 5 presents the final stage of our progression, object-based join calculus.
The only syntactical addition with respect to Figure 4 is that identifiers can now
be qualified names. A qualified name I is either a simple name x or a qualified
name followed by a period and a simple name. Qualified names can appear as

20 M. Odersky

first(x) = x
first(I.f) = first(f)

dn(I(x̃) = first(I)
dn(L1&L2) = dn(L1) ∪ dn(L2)
dn(D1, D2) = dn(D1) ∪ dn(D2)

ln(I(x1, . . . , xn)) = {x1, . . . , xn}
ln(L1&L2) = ln(L1) ∪ ln(L2)

fn(I(J1, . . . , Jn)) = {first(I), first(J1), . . . , first(Jn)}
fn(def D ; M) = (fn(D) ∪ fn(M))\dn(D)
fn(M1&M2) = fn(M1) ∪ fn(M2)
fn(L = M) = dn(L) ∪ (fn(M)\ln(L))
fn(D1, D2) = fn(D1) ∪ fn(D2)

Fig. 6. Local, defined, aiand free names

the operands of a function application and as defined function symbols in a
definition.

Perhaps surprisingly, this is all that changes! The structural equivalences and
reduction rules stay exactly as they were formulated for canonical join calculus.
However, a bit of care is required in the definition of permissible renamings. For
instance, consider the following object-based functional net:

def this.f(k) & g(x) = k(x) ; k’(this) & g(0)

In this net, both this and g can be consistently renamed. For instance, the follo-
wing expression would be considered equivalent to the previous one:

def that.f(k) & h(x) = k(x) ; k’(that) & h(0)

On the other hand, the qualified function symbol f cannot be renamed without
changing the meaning of the expression. For instance, renaming f to e would
yield:

def this.e(k) & g(x) = k(x) ; k’(this) & g(0)

This is clearly different from the expression we started with. The new expression
passes a record with an e field to the continuation function k’, whereas the
previous expressions passed a record with an f field.

Figure 6 reflects these observations in the definition of local, defined, and free
names for object-based join calculus. Note that names occurring as field selectors
are neither free in a term, nor are they defined or local. Hence α-renaming does
not apply to record selectors.

The α-renaming rule is now formalized as follows. Let a renaming θ be a sub-
stitution from names to names which is injective when considered as a function
from dom(θ) (remember that dom(θ) = {x | θ(x) 6= x}). Then,

def D ; M ≡ def θD ; θM

if θ is a renaming with dom(θ) ⊆ dn(D) and codom(θ) ∩ (fn(D) ∪ fn(M)) = ∅.
Furthermore,

def D, L = M ; N ≡ def D, θL = θM ; N

Functional Nets 21

Silk program:
def newChannel = (def this.read & this.write(x) = x ; this);
val chan = newChannel;
chan.read & chan.write(1)

Join calculus program and its reduction:

def newChannel(k1) = (def this.read(k2) & this.write(x) = k2(x); k1(this));
def k3(chan) = chan.read(k0) & chan.write(1);
newChannel(k3)

→
def newChannel(k1) = (def this.read(k2) & this.write(x) = k2(x); k1(this));
def k3(chan) = chan.read(k0) & chan.write(1);
def this’.read(k′

2) & this’.write(x’) = k′
2(x’);

k3(this’)
→

def newChannel(k1) = (def this.read(k2) & this.write(x) = k2(x); k1(this));
def k3(chan) = chan.read(k0) & chan.write(1);
def this’.read(k′

2) & this’.write(x’) = k′
2(x’);

this’.read(k0) & this’.write(1);
→

def newChannel(k1) = (def this.read(k2) & this.write(x) = k2(x); k1(this));
def k3(chan) = chan.read(k0) & chan.write(1);
def this’.read(k′

2) & this’.write(x’) = k′
2(x’);

k0(1)

Fig. 7. Reduction involving an asynchronous channel object

if θ is a renaming with dom(θ) ⊆ ln(L) and codom(θ) ∩ fn(M) = ∅.
The definitions of Figure 6 and the α-renaming rule apply as stated to all

three versions of join calculus, not only to the final object-based version. When
reduced to the simpler syntax of previous calculi, the new definitions are equi-
valent to the old ones.

As an example of object-based reduction consider the Silk program at the
top of Figure 7. The program defines an asynchronous channel using function
newChannel and then reads and writes that channel.

This program is not yet in the form mandated by join calculus since it uses
a synchronous function and a val definition. We can map this program into join
calculus by adding continuation functions which make control flow for function
returns and value definitions explicit. The second half of Figure 7 shows how this
program is coded in object-based join calculus and how it is reduced. Schemes
which map from our programming notation to join calculus are further discussed
in the next section.

22 M. Odersky

7 Syntactic Abbreviations

Even the extended calculus discussed in the last section is a lot smaller than the
Silk programming notation we have used in the preceding sections. This section
fills the gap, by showing how Silk constructs which are not directly supported in
object-based join calculus can be mapped into equivalent constructs which are
supported.

Direct style An important difference between Silk and join calculus is that Silk
has synchronous functions and val definitions which bind the results of synchro-
nous function applications. To see the simplifications afforded by these additions,
it suffices to compare the Silk program of Figure 7 with its join calculus counter-
part. The join calculus version is much more cluttered because of the occurrence
of the continuations ki. Programs which make use of synchronous functions and
value definitions are said to be in direct style, whereas programs that don’t are
said to be in continuation passing style. Join calculus supports only continua-
tion passing style. To translate direct style programs into join calculus, we need
a continuation passing transform. This transformation gives each synchronous
function an additional argument which represents a continuation function, to
which the result of the synchronous function is then passed.

The source language of the continuation passing transform is object-based
join calculus extended with result expressions (I1, ..., In) and value definitions
val (x1, ..., xn) = M ; N. Single names in results and value definitions are also
included as they can be expressed as tuples of length 1.

For the sake of the following explanation, we assume different alphabets for
synchronous and asynchronous functions. We let Is range over identifiers whose
final selector is a synchronous function, whereas Ia ranges over identifiers whose
final selector is an asynchronous function. In practice, we can distinguish between
synchronous and asynchronous functions also by means of a type system, so that
different alphabets are not required.

Our continuation passing transform for terms is expressed as a function TC
which takes a term in the source language and a name representing a continuation
as arguments, mapping these to a term in object-based join calculus. It makes
use of a helper function TD which maps a definition in the source language
to one in object-based join calculus. To emphasize the distinction between the
transforms TC, TD and their syntactic expression arguments, we write syntactic
expressions in [[]] brackets. The transforms are defined as follows.

TC[[val (x̃) = M ; N]]k = def k’ (x̃) = TC[[N]]k ; TC[[M]]k’
TC[[(I1, ..., In)]]k = k(I1, ..., In)
TC[[Is(J1, ..., Jn)]]k = Is(J1, ..., Jn, k)
TC[[Ia(J1, ..., Jn)]]k = Ia(J1, ..., Jn)
TC[[def D ; M]]k = def TD[[D]] ; TC[[M]]k

TD[[L = M]] = TC[[L]]k’ = TC[[M]]k’
TD[[D, D’]] = TD[[D]], TD[[D’]]
TD[[ε]] = ε

Functional Nets 23

Here, the k’ in the first equations for TC and TD represent fresh continuation
names.

The original paper on join [15] defines a different contination passing trans-
form. That transform allows several functions in a join pattern to carry results.
Consequently, in the body of a function it has to be specified to which of the
functions of a left hand side a result should be returned to. The advantage of
this approach is that it simplifies the implementation of rendevouz situations
like the synchronous channel of Section 5. The disadvantage is a more complex
construct for function returns.

Structured Terms In Silk, the function part and arguments of a function ap-
plication can be arbitrary terms, whereas join calculus admits only identifiers.
Terms as function arguments can be expanded out by introducing names for
intermediate results.

M (N1,, Nk) ⇒ val x = M; val y1 = N1; ... val yk = Nk; x(y1,...,yk)

The resulting expression can be mapped into join calculus by applying the con-
tinuation passing transform TC. The same principle is also applied in other si-
tuations where structured terms appear yet only identifiers are supported. E.g.:

(M1,, Mk) ⇒ val x1 = M1; ... val xk = Mk; (x1,...,xk)
M.f ⇒ val x = M; x.f

We assume here that names in the expanded term which are not present in the
original source term are fresh.

8 Conclusion and Related Work

The first five sections of this paper have shown how a large variety of program
constructs can be modelled as functional nets. The last two sections have shown
how functional nets themselves can be expressed in object-based join calculus.
Taken together, these steps constitute a reductionistic approach, where a large
body of notations and patterns of programs is to be distilled into a minimal
kernel. The reduction to essentials is useful since it helps clarify the meaning of
derived program constructs and the interactions between them.

Ever since the inception of Lisp [26] and Landin’s ISWIM [25], functional
programming has pioneered the idea of developing programming languages from
calculi. Since then, there has been an extremely large body of work which aims to
emulate the FP approach in a more general setting. One strand of work has devi-
sed extensions of lambda calculus with state [13,34,36,28,3] or non-determinism
and concurrency [7,12,9]. Another strand of work has been designed concurrent
functional languages [19,33,2] based on some other operational semantics. Lan-
din’s programme has also been repeated in the concurrent programming field,
for instance with Occam and CSP [22], Pict [30] and π-calculus [27], or Oz and
its kernel [35].

24 M. Odersky

Our approach is closest to the work on join calculus [15,16,17,14]. Largely,
functional nets as described here constitute a simplification and streamlining
of the original treatment of join, with object-based join calculus and qualified
definitions being the main innovation.

Acknowledgements

Many thanks to Matthias Zenger and Christoph Zenger, for designing several of
the examples and suggesting numerous improvements.

References

1. F. Achermann, M. Lumpe, J.-G. Schneider, and O. Nierstrasz. Piccola -
a small composition language. Submitted for Publication, available from
http://www.iam.unibe.ch/˜scg/Research/Piccola, 1999.

2. G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor
computation. Journal of Functional Programming, 7(1):1–69, 1997.

3. Z. Ariola and A. Sabry. Correctness of monadic state: An imperative call-by-need
calculus. In Proc. 25th ACM Symposium on Principles of Programming Languages,
pages 62–74, 1998.

4. A. Asperti and N. Bussi. Mobile petri nets. Technical Report UBLCS-96-10,
University of Bolognia, May 1996.

5. H. P. Barendregt. The Lambda Calculus: its Syntax and Semantics, volume 103 of
Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam,
revised edition, 1984.

6. G. Berry and G. Boudol. The chemical abstract machine. In Proc. 17th ACM
Symposium on Principles of Programming Languages, pages 81–94, January 1990.

7. G. Boudol. Towards a lambda-calculus for concurrent and communicating systems.
In J. Dı́az and F. Orejas, editors, Proceedings TAPSOFT ’1989, pages 149–161,
New York, March 1989. Springer-Verlag. Lecture Notes in Computer Science 351.

8. G. Boudol. Asynchrony and the pi-calculus. Research Report 1702, INRIA, May
1992.

9. G. Boudol. The pi-calculus in direct style. In Proc. 24th ACM Symposium on
Principles of Programming Languages, pages 228–241, 1997.

10. A. Church. The Calculi of Lambda-Conversion, volume 6 of Annals of Mathematics
Studies. Princeton University Press, second edition, 1951.

11. E. Crank and M. Felleisen. Parameter-passing and the lambda-calculus. In Proc.
18th ACM Symposium on Principles of Programming Languages, pages 233–244,
January 1991.

12. U. de’Liguoro and A. Piperno. Non deterministic extensions of untyped λ-calculus.
Information and Computation, 122(2):149–177, 1 Nov. 1995.

13. M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science, 103:235–271, 1992.

14. F. L. Fessant. The JoCaml reference manual. INRIA Rocquencourt, 1998. Avai-
lable from http://join.inria.fr.

15. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the join-
calculus. In Proc. 23rd ACM Symposium on Principles of Programming Languages,
pages 372–385, Jan. 1996.

16. C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of
mobile agents. In 7th International Conference on Concurrency Theory (CON-
CUR’96), pages 406–421, Pisa, Italy, Aug. 26-29 1996. Springer-Verlag. LNCS
1119.

Functional Nets 25

17. C. Fournet and L. Maranget. The Join-Calculus Language. INRIA Rocquencourt,
1997. Available from http://join.inria.fr.

18. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns : Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

19. A. Giacalone, P. Mishra, and S. Prasad. Facile: A symmetric integration of concur-
rent and functional programming. International Journal of Parallel Programming,
18(2):121–160, April 1989.

20. P. B. Hansen. Structured multiprogramming. Communications of the ACM,
15(7):574–578, July 1972.

21. C. Hoare. Monitors: An operating system structuring concept. Communications
of the ACM, 12(10), Oct. 74.

22. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs, New Jersey, 1985.

23. K. Honda and N. Yoshida. On reduction-based process semantics. In Proc. 13th
Conf. on Foundations of Softawre Technology and Theoretical Computer Science,
pages 373–387, Dec. 1993.

24. K. Jensen. Coloured Petri Nets. Basic Concepts. EATCS Monographs on Theore-
tical Computer Science. Springer Verlag, 1992.

25. P. J. Landin. The next 700 programming languages. Communications of the ACM,
9:157–166, March 1966.

26. J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart, and I. L. Levin. Lisp
1.5 Programmer’s Manual. MIT Press, 1969.

27. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information
and Computation, 100:1–77, 1992.

28. M. Odersky, D. Rabin, and P. Hudak. Call-by-name, assignment, and the lambda
calculus. In Proc. 20th ACM Symposium on Principles of Programming Languages,
pages 43–56, January 1993.

29. C. Petri. Kommunikation mit Automaten. Schriften des IIM 2, Institut für Instru-
mentelle Mathematik, Bonn, 1962. English translation: Technical Report RADC-
TR-65-377, Vol. 1, Suppl. 1, Applied Data Research, Princeton, New Jersey, Con-
tract AF 30 (602)-3324, 1966.

30. B. C. Pierce and D. N. Turner. Pict: A programming language based on the
pi-calculus. Technical Report CSCI 476, Computer Science Department, Indiana
University, 1997.

31. G. D. Plotkin. Call-by-name, call-by-value, and the λ-calculus. Theoretical Com-
puter Science, 1:125–159, 1975.

32. W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, 1985.

33. J. H. Reppy. CML: A higher-order concurrent language. In Proceedings of the ACM
SIGPLAN ’91 Conference on Programming Language Design and Implementation,
pages 293–305, June 1991.

34. A. Sabry and J. Field. Reasoning about explicit and implicit representations of
state. In SIPL ’93 ACM SIGPLAN Workshop on State in Programming Languages,
Copenhagen, Denmark, pages 17–30, June 1993. Yale University Research Report
YALEU/DCS/RR-968.

35. G. Smolka, M. Henz, and J. Würtz. Object-oriented concurrent constraint pro-
gramming in Oz. In P. van Hentenryck and V. Saraswat, editors, Principles and
Practice of Constraint Programming, chapter 2, pages 29–48. The MIT Press, 1995.

36. V. Swarup, U. S. Reddy, and E. Ireland. Assignments for applicative languages. In
J. Hughes, editor, Functional Programming Languages and Computer Architecture,
pages 192–214. Springer-Verlag, August 1991. Lecture Notes in Computer Science
523.

Faithful Translations between
Polyvariant Flows and Polymorphic Types

Torben Amtoft1 and Franklyn Turbak2 ?

1 Boston University, Boston MA 02215, USA
tamtoft@bu.edu

2 Wellesley College, Wellesley MA 02481, USA
fturbak@wellesley.edu

Abstract. Recent work has shown equivalences between various type
systems and flow logics. Ideally, the translations upon which such equi-
valences are based should be faithful in the sense that information is
not lost in round-trip translations from flows to types and back or from
types to flows and back. Building on the work of Nielson & Nielson
and of Palsberg & Pavlopoulou, we present the first faithful translations
between a class of finitary polyvariant flow analyses and a type system
supporting polymorphism in the form of intersection and union types.
Additionally, our flow/type correspondence solves several open problems
posed by Palsberg & Pavlopoulou: (1) it expresses call-string based po-
lyvariance (such as k-CFA) as well as argument based polyvariance; (2)
it enjoys a subject reduction property for flows as well as for types; and
(3) it supports a flow-oriented perspective rather than a type-oriented
one.

1 Introduction

Type systems and flow logic are two popular frameworks for specifying program
analyses. While these frameworks seem rather different on the surface, both de-
scribe the “plumbing” of a program, and recent work has uncovered deep connec-
tions between them. For example, Palsberg and O’Keefe [PO95] demonstrated
an equivalence between determining flow safety in the monovariant 0-CFA flow
analysis and typability in a system with recursive types and subtyping [AC93].
Heintze showed equivalences between four restrictions of 0-CFA and four type
systems parameterized by (1) subtyping and (2) recursive types [Hei95].

Because they merge flow information for all calls to a function, monovari-
ant analyses are imprecise. Greater precision can be obtained via polyvariant
analyses, in which functions can be analyzed in multiple abstract contexts. Ex-
amples of polyvariant analyses include call-string based approaches, such as
k-CFA [Shi91,JW95,NN97], polymorphic splitting [WJ98], type-directed flow
analysis [JWW97], and argument based polyvariance, such as Schmidt’s ana-
lysis [Sch95] and Agesen’s cartesian product analysis [Age95]. In terms of the
? Both authors were supported by NSF grant EIA–9806747. This work was conducted

as part of the Church Project (http://www.cs.bu.edu/groups/church/).

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 26–40, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Faithful Translations between Polyvariant Flows and Polymorphic Types 27

flow/type correspondence, several forms of flow polyvariance appear to cor-
respond to type polymorphism expressed with intersection and union types
[Ban97,WDMT97,DMTW97,PP99]. Intuitively, intersection types are finitary
polymorphic types that model the multiple analyses for a given abstract closure,
while union types are finitary existential types that model the merging of ab-
stract values where flow paths join. Palsberg and Pavlopoulou (henceforth P&P)
were the first to formalize this correspondence by demonstrating an equivalence
between a class of flow analyses supporting argument based polyvariance and a
type system with union and intersection types [PP99].

If type and flow systems encode similar information, translations between
the two should be faithful, in the sense that round-trip translations from flow
analyses to type derivations and back (or from type derivations to flow analyses
and back) should not lose precision. Faithfulness formalizes the intuitive notion
that a flow analysis and its corresponding type derivation contain the same infor-
mation content. Interestingly, neither the translations of Palsberg and O’Keefe
nor those of P&P are faithful. The lack of faithfulness in P&P is demonstrated
by a simple example. Let e= (λ1x.succ x) @ ((λ2y.y) @ 3), where we have labeled
two program points of interest. Consider an initial monovariant flow analysis in
which the only abstract closure reaching point 1 is v1 = (λx.succ x, []) and the
only one reaching point 2 is v2 = (λy.y, []). The flow-to-type translation of P&P
yields the expected type derivation:

· · ·
[] ` λ1x.succ x : int → int

· · ·
[] ` λ2y.y : int → int · · ·

[] ` (λ2y.y) @ 3 : int

[] ` (λ1x.succ x) @ ((λ2y.y) @ 3) : int

However, P&P’s type-to-flow translation loses precision by merging into a
single set all abstract closures associated with the same type in a given derivation.
For the example derivation above, the type int → int translates back to the
abstract closure set V = {v1, v2}, yielding a less precise flow analysis in which
V flows to both points 1 and 2. In contrast, Heintze’s translations are faithful.
The undesirable merging in the above example is avoided by annotating function
types with a label set indicating the source point of the function value. Thus,

λ1x.succ x has type int
{1}→ int while λ2y.y has type int

{2}→ int.
In this paper, we present the first faithful translations between a broad class

of polyvariant flow analyses and a type system with polymorphism in the form
of intersection and union types. The translations are faithful in the sense that a
round-trip translation acts as the identity for canonical types/flows, and other-
wise canonicalizes. In particular, our round-trip translation for types preserves
non-recursive types that P&P may transform to recursive types. We achieve
this result by adapting the translations of P&P to use a modified version of the
flow analysis framework of Nielson and Nielson (henceforth N&N) [NN97]. As
in Heintze’s translations, annotations play a key role in the faithfulness of our
translations: we (1) annotate flow values to indicate the sinks to which they flow,
and (2) annotate union and intersection types with component labels. These an-
notations can be justified independently of the flow/type correspondence.

28 T. Amtoft and F. Turbak

Additionally, our framework solves several open problems posed by P&P:

1. Unifying P&P and N&N: Whereas P&P’s flow specification can readily
handle only argument based polyvariance, N&N’s flow specification can also
express call-string based polyvariance. So our translations give the first type
system corresponding to k-CFA analysis where k ≥ 1.

2. Subject reduction for flows: We inherit from N&N’s flow logic the property
that flow information valid before a reduction step is still valid afterwards.
In contrast, P&P’s flow system does not have this property.

3. Letting “flows have their way”: P&P discuss mismatches between flow and
type systems that imply the need to choose one perspective over the other
when designing a translation between the two systems. P&P always let types
“have their way”; for example they require analyses to be finitary and to
analyze all closure bodies, even though they may be dead code. In contrast,
our design also lets flows “have their way”, in that our type system does not
require all subexpressions to be analyzed.

Due to space limitations, the following presentation is necessarily somewhat
dense. Please see the companion technical report [AT00] for a more detailed
exposition with additional explanatory text, more examples, and proofs.

2 The Language

We consider a language whose core is λ-calculus with recursion:

ue ∈ UnLabExpr ::= z | µf.λx.e | e @ e | c | succ e | if0 e then e else e | . . .
e ∈ LabExpr ::= uel l ∈ Lab z ∈ Var ::= x | f x ∈ NVar f ∈ RVar

µf.λx.e denotes a function with parameter x which may call itself via f ; λx.e is
a shorthand for µf.λx.e where f does not occur in e. Recursive variables (ranged
over by f) and non-recursive variables (ranged over by x) are distinct; z ranges
over both. There are also integer constants c, the successor function, and the
ability to test for zero. Other constructs might be added, e.g., let1.

All subexpressions have integer labels. We often write labels on constructors
(e.g., write λlx.e for (λx.e)l and e1 @l e2 for (e1 @ e2)

l).

Example 1. The expression P1 ≡ (λ6g.((g3 @2 g4) @1 05)) @0 (λ8x.x7) shows the
need for polyvariance: λ8x.x7 is applied both to itself and to an integer.

Like N&N, but unlike P&P, we use an environment-based small step se-
mantics. This requires incorporating N&N’s bind and close constructs into our
expression syntax. An expression not containing bind or close is said to be pure.
Every abstraction body must be pure. A program P is a pure, closed expression
where each label occurs at most once within P ; thus each subexpression of P (∈
SubExprP) denotes a unique “position” within P .
1 Let-polymorphism can be simulated by intersection types.

Faithful Translations between Polyvariant Flows and Polymorphic Types 29

3 The Type System

Types are built from base types, function types, intersection types, and union
types as follows (where ITag and UTag are unspecified):

t ∈ ElementaryType ::= int | ∧
i∈I{Ki : ui → u′

i}
u ∈ UnionType ::=

∨
i∈I{qi : ti}

K ∈ P(ITag) k ∈ ITag q ∈ UTag

Such grammars are usually interpreted inductively, but this one is to be viewed
co-inductively. That is, types are regular (possibly infinite) trees formed accor-
ding to the above specification. Two types are considered equal if their infinite
unwindings are equal (modulo renaming of the index sets I).

An elementary type t is either an integer int or an intersection type of the
form

∧
i∈I{Ki : ui → u′

i}, where I is a (possibly empty) finite index set, each ui

and u′
i is a union type, and the Ki’s, known as I-tagsets, are non-empty disjoint

sets of I-tags. We write dom(t) for ∪i∈IKi. Intuitively, if an expression e has
the above intersection type then for all i ∈ I it holds that the expression maps
values of type ui into values of type u′

i.
A union type u has the form

∨
i∈I{qi : ti}, where I is a (possibly empty)

finite index set, each ti is an elementary type, and the qi are distinct U-tags. We
write dom(u) for ∪i∈I{qi}, and u.q = t if there exists i ∈ I such that q = qi and
t = ti. We assume that for all i ∈ I it holds that ti = int iff qi = qint where qint
is a distinguished U-tag. Intuitively, if an expression e has the above union type
then there exists an i ∈ I such that e has the elementary type ti.

If I = {1 · · ·n} (n ≥ 0), we write
∨

(q1 : t1, · · · , qn : tn) for
∨

i∈I{ti : qi} and
write

∧
(K1 : u1 → u′

1, · · · , Kn : un → u′
n) for

∧
i∈I{Ki : ui → u′

i}. We write
uint for

∨
(qint : int).

The type system is much as in P&P except for the presence of tags. These
annotations serve as witnesses for existentials in the subtyping relation and play
crucial roles in the faithfulness of our flow/type correspondence. U-tags track
the “source” of each intersection type and help to avoid the precision-losing
merging seen in P&P’s type-to-flow translation (cf. Sect. 1). I-tagsets track the
“sinks” of each arrow type and help to avoid unnecessary recursive types in the
flow-to-type translation.

3.1 Subtyping

We define an ordering ≤ on union types and an ordering ≤∧ on elementary types,
where u ≤u′ means that u′ is less precise than u and similarly for ≤∧. To capture
the intuition that something of type t1 has one of the types t1 or t2, ≤ should
satisfy

∨
(q1 : t1) ≤∨

(q1 : t1, q2 : t2). For ≤∧, we want to capture the following
intuition: a function that can be assigned both types u1 → u′

1 and u2 → u′
2

also (1) can be assigned one of them2 and (2) can be assigned a function type
2 I.e., for i ∈ {1, 2},

∧
(K1 : u1 → u′

1, K2 : u2 → u′
2) ≤∧

∧
(Ki : ui → u′

i).

30 T. Amtoft and F. Turbak

that “covers” both3. The following mutually recursive specification of ≤ and ≤∧
formalizes these considerations:

∨
i∈I{qi : ti} ≤∨

j∈J{q′
j : t′j}

iff for all i ∈ I there exists j ∈ J such that qi = q′
j and ti ≤∧ t′j

int≤∧ int
∧

i∈I{Ki : ui → u′
i} ≤∧

∧
j∈J{K ′

j : u′′
j → u′′′

j }
iff for all j ∈ J there exists I0 ⊆ I such that

K ′
j = ∪i∈I0Ki and ∀i ∈ I0. u′

i ≤u′′′
j and

∀q ∈ dom(u′′
j).∃i ∈ I0. q ∈ dom(ui) and u′′

j .q ≤∧ ui.q.

Observe that if t ≤∧ t′, then dom(t′) ⊆ dom(t). The above specification is not yet
a definition of ≤ and ≤∧, since types may be infinite. However, it gives rise to a
monotone functional on a complete lattice whose elements are pairs of relations;
≤ and ≤∧ are then defined as the (components of) the greatest fixed point of
this functional. Coinduction yields:

Lemma 1. The relations ≤ and ≤∧ are reflexive and transitive.

Our subtyping relation differs from P&P’s in several ways. The U-tags and
I-tags serve as “witnesses” for the existential quantifiers present in the specifica-
tion, reducing the need for search during type checking. Finally, our ≤ seems
more natural that the P&P’s ≤1 , which is not a congruence and in fact has the
rather odd property that if ∨(T1, T2) ≤1 ∨(T3, T4) (with the Ti’s all distinct),
then either ∨(T1, T2) ≤1 T3 or ∨(T1, T2) ≤1 T4.

3.2 Typing Rules

A typing T for a program P is a tuple (P, ITT ,UTT , DT), where ITT is a finite
set of I-tags, UTT is a finite set of U-tags, and DT is a derivation of [] ` P : u
according to the inference rules given in Fig. 1. In a judgement A ` e : u, A is
an environment with bindings of the form [z 7→ u]; we require that all I-tags in
DT belong to ITT and that all U-tags in DT belong to UTT .

Subtyping has been inlined in all of the rules to simplify the type/flow cor-
respondence. The rules for function abstraction and function application are
both instrumented with a “witness” that enables reconstructing the justification
for applying the rule. In [app]w

@
, the type of the operator is a (possibly empty)

union, all components of which have the expected function type but the I-tagsets
may differ; the app-witness w@ is a partial mapping from dom(u1) that given
q produces the corresponding I-tagset. In [fun]w

λ

, the function types resulting
from analyzing the body in several different environments are combined into an
intersection type t. This is wrapped into a union type with an arbitrary U-tag q,
3 I.e.,

∧
(K1 : u1 → u′

1, K2 : u2 → u′
2) ≤∧

∧
(K1 ∪ K2 : u12 → u′

12), where any value
having one of the types u′

1 or u′
2 also has type u′

12, and where any value having type
u12 also has one of the types u1 or u2.

Faithful Translations between Polyvariant Flows and Polymorphic Types 31

[var] A ` zl : u if A(z) ≤ u

[fun](q:t)
∀k ∈ K : A[f 7→ u′′

k , x 7→ uk] ` e : u′
k

A ` µf.λlx.e : u

if t =
∧

k∈K{{k} : uk → u′
k}

∧ ∨
(q : t) ≤ u

∧ ∀k ∈ K.
∨

(q : t) ≤ u′′
k

[app]w
@ A ` e1 : u1 A ` e2 : u2

A ` e1 @l e2 : u
if ∀q ∈ dom(u1). u1.q ≤∧

∧
(w@(q) : u2 → u)

[con] A ` cl : u if uint ≤ u

[suc]
A ` e1 : u1

A ` succl e1 : u
if u1 ≤ uint ≤ u

[if]
A ` e0 : u0 A ` e1 : u1 A ` e2 : u2

A ` if0l e0 then e1 else e2 : u
if u0 ≤ uint ∧ u1 ≤ u ∧ u2 ≤ u

Fig. 1. The typing rules

Ag ` g3 : ux Ag ` g4 : u′
x

Ag ` g3 @2 g
4 : u′

x Ag ` 05 : uint

Ag ` (g3 @2 g
4) @1 05 : uint

[] ` λ6g.((g3 @2 g
4) @1 05) : ug

Ax ` x7 : uint A′
x ` x7 : u′

x

[] ` λ8x.x7 : ux

[] ` (λ6g.((g3 @2 g
4) @1 05)) @0 (λ8x.x7) : uint

Fig. 2. A derivation DT1 for the program P1 from Example 1.

which provides a way of keeping track of the origin of a function type (cf. Sects. 1
and 5). Accordingly, the fun-witness wλ of this inference is the pair (q : t). Note
that K may be empty in which case the body is not analyzed.

Example 2. For the program P1 from Ex. 1, we can construct a typing T1 as
follows: ITT1 = {0, 1, 2}, UTT1 = {qx, qg}, and DT1 is as in Fig. 2, where

u′
x =

∨
(qx :

∧
({1} : uint → uint))

ux =
∨

(qx :
∧

({1} : uint → uint, {2} : u′
x → u′

x))
ug =

∨
(qg :

∧
({0} : ux → uint))

Ag = [g 7→ ux] Ax = [x 7→ uint] A′
x = [x 7→ u′

x]

Note that ux ≤u′
x, and that ux.qx ≤∧

∧
({2} : u′

x → u′
x) so that {qx 7→ {2}} is

indeed an app-witness for the inference at the top left of Fig. 2.

The type system in Fig. 1 can be augmented with rules for bind and close
such that the resulting system satisfies a subject reduction property. The so-
undness of the type system follows from subject reduction, since “stuck” expres-
sions (such as 7 @ 9) are not typable.

In a typing T for P , for each e in SubExprP there may be several judgements
for e in DT , due to the multiple analyses performed by [fun]. We assign to each

32 T. Amtoft and F. Turbak

judgement J for e in DT an environment ke (its address) that for all applications
of [fun] in the path from the root of DT to J associates the bound variables with
the branch taken. In DT1 (Fig. 2), the judgement Ax ` x7 : uint has address
[x 7→ 1] and the judgement A′

x ` x7 : u′
x has address [x 7→ 2].

The translation in Sect. 5 requires that a typing must be uniform, i.e., the
following partial function AT must be well-defined: AT (z, k) =u iff DT contains
a judgement of the form A ` e : u′ with address ke, where ke(z) = k and
A(z) =u. For T1 we have, e.g., AT1(x, 1) =uint and AT1(x, 2) =u′

x.

4 The Flow System

Our system for flow analysis has the form of a flow logic, in the style of N&N.
A flow analysis F for program P is a tuple (P,MemF , CF , ρF , ΦF), whose com-
ponents are explained below (together with some auxiliary derived concepts).

Polyvariance is modeled by mementoes, where a memento (m ∈ MemF)
represents a context for analyzing the body of a function. We shall assume
that MemF is non-empty and finite; then all other entities occurring in F will
also be finite. Each expression e is analyzed wrt. several different memento en-
vironments, where the entries of a memento environment (me ∈ MemEnvF)
take the form [z 7→ m] with m in MemF . Accordingly, a flow configuration
(∈ FlowConf F) is a pair (e, me), where FV (e) ⊆ dom(me).

The goal of the flow analysis is to associate a set of flow values to each
configuration, where a flow value (v ∈FlowValF) is either an integer Int or of the
form (ac, M), where ac (∈AbsClosF) is an abstract closure of the form (fn, me)
with fn a function µf.λx.e and FV (fn) ⊆ dom(me), and where M ⊆MemF . The
M component can be thought of a superset of the “sinks” of the abstract closure
ac, i.e. the contexts in which it is going to be applied. Our flow values differ from
N&N’s in two respects: (i) they do not include the memento that corresponds
to the point of definition; (ii) they do include the mementoes of use (the M
component), in order to get a flow system that is almost isomorphic to the
type system of Sect. 3. This extension does not make it harder to analyze an
expression, since one might just let M =MemF everywhere.

A flow set V (∈FlowSetF) is a set of flow values, with the property that if
(ac, M1) ∈V and (ac, M2) ∈V then M1 = M2. We define an ordering on FlowSetF

by stipulating that V1 ≤V V2 iff for all v1 ∈ V1 there exists v2 ∈ V2 such that
v1 ≤v v2, where the ordering ≤v on FlowValF is defined by stipulating that
Int ≤v Int and that (ac, M1) ≤v (ac, M2) iff M2 ⊆ M1. Note that if V1 ≤V V2 then
V2 is obtained From V1 by adding some “sources” and removing some “sinks (in
a sense moving along a “flow path” from a source to a sink), so in that respect
the ordering is similar to the type ordering in [WDMT97].

ΦF is a partial mapping from (LabsP ×MemEnvF)×AbsClosF to P(MemF),
where LabsP is the set of labels occurring in P . Intuitively, if the abstract closure
ac in the context me is applied to an expression with label l, then ΦF ((l, me), ac)
denotes the actual sinks of ac.

Faithful Translations between Polyvariant Flows and Polymorphic Types 33

CF is a mapping from LabsP × MemEnvF to (FlowSetF)⊥. Intuitively, if
CF (l, me) =V (6= ⊥) and CF is valid (defined below) for the flow configuration
(uel, me) then all semantic values that uel may evaluate to in a semantic en-
vironment approximated by me can be approximated by the set V . Similarly,
ρF (z, m) approximates the set of semantic values to which z may be bound when
analyzed in memento m.

Unlike N&N, we distinguish between CF (l, me) being the empty set and being
⊥. The latter means that no flow configuration (uel, me) is “reachable”, and so
there is no need to analyze it. The relation ≤V on FlowSetF is lifted to a relation
≤V on FlowSetF ⊥.

Example 3. For the program P1 from Ex. 1, a flow analysis F1 with MemF1 =
{0, 1, 2} is given below. We have named some entities (note that vx ≤v v′

x):
meg = [g 7→ 0] acg = (λg.· · ·, []) vg = (acg, {0})
mex1 = [x 7→ 1] acx = (λx.x7, []) v′

x = (acx, {1})
mex2 = [x 7→ 2] vx = (acx, {1, 2})

CF1 and ρF1 are given by the entries below (all other are ⊥):

{vg} = CF1(6, [])

{Int} = ρF1(x, 1) = CF1(7, mex1) = CF1(5, meg) = CF1(1, meg) = CF1(0, [])

{v′
x} = ρF1(x, 2) = CF1(7, mex2) = CF1(4, meg) = CF1(2, meg)

{vx} = ρF1(g, 0) = CF1(3, meg) = CF1(8, [])

Thus (g3 @2 g4) @1 05 is analyzed with g bound to 0, and x7 is analyzed twice:
with x bound to 1 and with x bound to 2. Accordingly, ΦF1 is given by

ΦF1((8, []), acg) = {0}, ΦF1((5, meg), acx) = {1}, ΦF1((4, meg), acx) = {2}.

4.1 Validity

Of course, not all flow analyses give a correct description of the program being
analyzed. To formulate a notion of validity, we define a predicate F |=me e
(to be read: F analyzes e correctly wrt. the memento environment me), with
(e, me) ∈ FlowConf F . The predicate must satisfy the specification in Fig. 3,
which gives rise to a monotone functional on the complete lattice P(FlowConf F);
following the convincing argument of N&N, we define F |=me e as the greatest
fixed point of this functional so as to be able to cope with recursive functions.

In [fun], we deviate from N&N by recording me, rather than the restriction
of me to FV (µf.λx.e0). As in P&P, this facilitates the translations to and from
types. In [app], the set M corresponds to P&P’s notion of cover, which in turn
is needed to model the “cartesian product” algorithm of [Age95]. In N&N’s
framework, M is always a singleton {m}; in that case the condition “∀v ∈
CF (l2, me). . . . ” amounts to the simpler “CF (l2, me) ≤V ρF (x, m)”.

By structural induction in uel we see that if F |=me uel then CF (l, me) 6= ⊥.
We would also like the converse implication to hold:

34 T. Amtoft and F. Turbak

[var] F |=me zl iff ⊥ 6= ρF (z, me(z)) ≤V CF (l, me)

[fun] F |=me µf.λlx.e0 iff {((µf.λx.e0, me),MemF)} ≤V CF (l, me)

[app] F |=me ue1
l1 @l ue2

l2 iff
CF (l, me) 6= ⊥ ∧ F |=me ue1

l1 ∧ F |=me ue2
l2 ∧

∀(ac0, M0) ∈ CF (l1, me)
let M = ΦF ((l2, me), ac0) and (µf.λx.ue0

l0 , me0) = ac0 in
M ⊆ M0 ∧ ∀v ∈ CF (l2, me). ∃m ∈ M. {v} ≤V ρF (x, m) ∧
∀m ∈ M : F |=me0[f,x7→m] ue0

l0 ∧
CF (l0, me0[f, x 7→ m]) ≤V CF (l, me) ∧
ρF (x, m) 6= ⊥ ∧ {(ac0,MemF)} ≤V ρF (f, m)

[con] F |=me cl iff Int ∈ CF (l, me)

[suc] F |=me succl e1 iff F |=me e1 ∧ Int ∈ CF (l, me)

[if] F |=me if0l e0 then ue1
l1 else ue2

l2 iff
F |=me e0 ∧ F |=me ue1

l1 ∧ F |=me ue2
l2 ∧

CF (l1, me) ≤V CF (l, me) ∧ CF (l2, me) ≤V CF (l, me)

Fig. 3. The flow logic

Definition 1. Let a flow analysis F for P be given. We say that F is valid iff
(i) F |=[] P ; (ii) whenever e = uel ∈SubExprP with (e, me) ∈FlowConf F and
CF (l, me) 6= ⊥ then F |=me e.

Using techniques as in N&N, we can augment Fig. 3 with rules for bind and
close and then prove a subject reduction property for flows which for closed E
reads: if E reduces to E′ in one evaluation step and F |=[] E then F |=[] E′.

So far, even for badly behaved programs like P = 7 @ 9 it is possible (just as
in N&N) to find a F for P such that F is valid. Since our type system rejects
such programs, we would like to filter them out:

Definition 2. Let a flow analysis F for P be given. We say that F is safe
iff for all uel in SubExprP and for all me it holds: (i) if ue = ue1

l1 @ e2 then
Int /∈ CF (l1, me); (ii) if ue = succ ue1

l1 then v ∈ CF (l1, me) implies v = Int; (iii)
if ue = if0 ue0

l0 then e1 else e2 then v ∈ CF (l0, me) implies v = Int.

Example 4. Referring back to Example 3, it clearly holds that F1 is safe, and it
is easy (though a little cumbersome) to verify that F1 is valid.

4.2 Taxonomy of Flow Analyses

Two common categories of flow analyses are the “call-string based” (e.g., [Shi91])
and the “argument-based” (e.g., [Sch95,Age95]). Our descriptive framework can
model both approaches (which can be “mixed”, as in [NN99]).

A flow analysis F for P such that F is valid is in CallStringP
β , where β is a

mapping from LabsP ×MemEnvF into MemF , iff whenever ΦF ((l2, me), ac) is de-

Faithful Translations between Polyvariant Flows and Polymorphic Types 35

fined it equals {β(l, me)} where l is such that4 e1 @l ue2
l2 ∈SubExprP . All k-CFA

analyses fit into this category: for 0-CFA we take MemF = {•} and β(l, me) = •;
for 1-CFA we take MemF =LabsP and β(l, me) = l; and for 2-CFA (the genera-
lization to k > 2 is immediate) we take MemF =LabsP ∪ (LabsP × LabsP) and
define β(l, me) as follows: let it be l if me = [], and let it be (l, l1) if me takes
the form me′[z 7→ m] with m either l1 or (l1, l2).

A flow analysis F for P such that F is valid is in ArgBasedP
α iff for all non-

recursive variables x and mementoes m it holds that whenever ρF (x, m) 6= ⊥
then εV (ρF (x, m)) =α(m) where εV removes the M component of a flow value.
For this kind of analysis, a memento m essentially denotes a set of abstract closu-
res. To more precisely capture specific argument-based analyses, such as [Age95]
or the type-directed approach of [JWW97], we may impose further demands on α.

Example 5. The flow analysis F1 is a 1-CFA and also in ArgBased
P1
α , with α(0) =

α(2) = {acx} and α(1) = {Int}.

Given a program P , it turns out that for all β the class CallStringP
β , and for

certain kinds of α also the class ArgBasedP
α , contains a least (i.e., most precise)

flow analysis; here the ordering on flow analyses is defined pointwise5 on CF , ρF

and ΦF . This is much as in N&N where for all total and deterministic “instan-
tiators” the corresponding class of analyses contains a least element, something
we cannot hope for since we allow ΦF to return a non-singleton.

4.3 Reachability

For a flow analysis F , some entries may be garbage. To see an example of this,
suppose that µf.λx.uel in SubExprP , and suppose that ρF (x, m) = ⊥ for all
m ∈ MemF . From this we infer that the above function is never calle so for all
me the value of CF (l, me) is uninteresting. It may therefore be replaced by ⊥,
something which is in fact achieved by the roundtrip described in Sect. 7.1.

To formalize a notion of reachability we introduce a set ReachF
P that is inten-

ded to encompass6 all entries of CF and ρF that are “reachable” from the root of
P . Let AnalyzesF

m(µf.λx.ue0
l0 , me) be a shorthand for CF (l0, me[f, x 7→ m]) 6= ⊥

and ρF (x, m) 6= ⊥ and {((µf.λx.ue0
l0 , me),MemF)} ≤V ρF (f, m). We define

ReachF
P as the least set satisfying:

[prg] (P, []) ∈ ReachF
P

[fun]
(
(µf.λlx.ue0

l0 , me) ∈ ReachF
P ∧ AnalyzesF

m(µf.λx.ue0
l0 , me))

)
⇒

{(ue0
l0 , me[f, x 7→ m]), (x, m), (f, m)} ⊆ ReachF

P

[app] (e1 @l e2, me) ∈ ReachF
P ⇒ {(e1, me), (e2, me)} ⊆ ReachF

P

4 It is tempting to write “ΦF ((l, me), ac0)” in Fig. 3 (thus replacing l2 by l), but then
subject reduction for flows would not hold.

5 Unlike [JWW97], we do not compare analyses with different sets of mementoes.
6 This is somewhat similar to the reachability predicate of [GNN97].

36 T. Amtoft and F. Turbak

[suc] (succl e1, me) ∈ ReachF
P ⇒ (e1, me) ∈ ReachF

P

[if] (if0l e0 then e1 else e2, me) ∈ ReachF
P ⇒

{(e0, me), (e1, me), (e2, me)} ⊆ ReachF
P

Example 6. It is easy to verify that for uel ∈SubExprP1
it holds that CF1(, l)me 6=

⊥ iff (uel, me) ∈ Reach
F1
P1

, and that ρF1(z, m) 6= ⊥ iff (z, m) ∈ Reach
F1
P1

.

Lemma 2. Let F be a flow analysis for P such that F is valid. If (uel, me) ∈
ReachF

P then (i) CF (l, me) 6= ⊥ and (ii) whenever (z 7→ m) ∈ me then (z, m) ∈
ReachF

P holds. Also, if (z, m) ∈ ReachF
P then ρF (z, m) 6= ⊥.

5 Translating Types to Flows

Let a uniform typing T for a program P be given. We now demonstrate how to
construct a corresponding flow analysis F = F(T) such that F is valid and safe.
First define MemF as ITT ; note that then an address can serve as a memento
environment. Next we define a function FT that translates from UTypT , that is
the union types that can be built using ITT and UTT , into FlowSetF :

FT (
∨

i∈I{qi : ti}) =
{((µf.λx.e, me), M) | ∃i ∈ I with M = dom(ti):

a judgement for µf.λlx.e occurs in DT with address me
and is justified by [fun](qi:t) where t ≤∧ ti}

∪ (if ∃i. such that qi = qint then {Int} else ∅)

The idea behind the translation is that FT (u) should contain all the closures
that are “sources” of elementary types in u; it is easy to trace such closures
thanks to the presence of U-tags. The condition t ≤∧ ti is needed as a “sanity
check”, quite similar to the “trimming” performed in [Hei95], to guard against
the possibility that two unrelated entities in DT incidentally have used the same
U-tag qi. As the types of P&P do not contain fun-witnesses, their translation
has to rely solely on this sanity check (at the cost of precision, cf. Sect. 1).

Lemma 3. The function FT is monotone.

Definition 3. With T a typing for P , the flow analysis F = F(T) is given by
(P, ITT , CF , ρF , ΦF), where CF , ρF , and ΦF are defined below:

CF (l, me) =FT (u) iff DT contains a judgement A ` uel : u with address me

ρF (z, m) =FT (u) iff u = AT (z, m)
ΦF ((l2, me), (µf.λx.e0, me′)) =M iff there exists q such that DT contains

a judgement for µf.λx.e0 at me′ derived by [fun](q:t),
a judgement for e1 @ ue2

l2 at me derived by [app]w
@

where w@(q) =M .

Example 7. With terminology as in Examples 2 and 3, it is easy to check that
FT1(u′

x) = {v′
x} and that FT1(ux) = {vx}, and that F1 = F(T1).

Faithful Translations between Polyvariant Flows and Polymorphic Types 37

We have the following result, where the proof that F is valid is by coinduction.

Theorem 1. With T a uniform typing for P , for F = F(T) it holds that
– F is valid and safe
– (uel, me) ∈ ReachF

P iff CF (l, me) 6= ⊥ (for ue ∈SubExprP)
– (z, m) ∈ ReachF

P iff ρF (z, m) 6= ⊥

6 Translating Flows to Types

Let a flow analysis F for a program P be given, and assume that F is valid
and safe. We now demonstrate how to construct a corresponding uniform typing
T = T (F). First we define ITT as MemF and UTT as AbsClosF ∪ {qint}. Next
we define a function TF that translates from FlowSetF into UTypT ; inspired by
P&P (though the setting is somewhat different) we stipulate:

TF (V) =
∨

v∈V {qv : tv} where
if v = Int then qv = qint and tv = int
if v = (ac, M) with ac= (µf.λx.e0

l0 , me)
then qv = ac
and tv =

∧
m∈M0

{{m} : TF (ρF (x, m)) → TF (CF (l0, me[f, x 7→ m]))}
where M0 = {m ∈ M | AnalyzesF

m(ac)}.

The above definition determines a unique union type TF (V), since recursion
is “beneath a constructor” and since FlowSetF is finite (ensuring regularity).

Example 8. With terminology as in Examples 2 and 3, it is easy to see—provided
that qx is considered another name for acx—first that TF1({v′

x}) =u′
x, and then

that TF1({vx}) =ux since TF1({vx}).qx can be found as
∧

({1} : TF1(ρF1(x, 1))→ TF1(CF1(7, mex1)), {2} : TF1(ρF1(x, 2))→ TF1(CF1(7, mex2)))

=
∧

({1} : TF1({Int})→ TF1({Int}), {2} : TF1({v′
x})→ TF1({v′

x}))
=

∧
({1} : uint → uint, {2} : u′

x → u′
x).

Note that without the M component in a flow value (ac, M), vx would equal v′
x

causing TF1({vx}) to be an infinite type (as in P&P).

Lemma 4. The function TF is monotone.

For z and m such that (z, m) ∈ ReachF
P , we define T ρ

F (z, m) as TF (ρF (z, m))
(by Lemma 2 this is well-defined). And for e = uel and me such that (e, me) ∈
ReachF

P , we construct a judgement T J
F (e, me) as

T A
F (me) ` e : TF (CF (l, me))

where T A
F (me) is defined recursively by T A

F ([]) = [] and T A
F (me[z 7→ m]) =

T A
F (me)[z 7→ T ρ

F (z, m)] (by Lemma 2 also this is well-defined).

38 T. Amtoft and F. Turbak

Definition 4. With F a flow analysis for P , the typing T = T (F) is given by
(P,MemF ,AbsClosF ∪ {qint}, DT), where DT is defined by stipulating that whe-
never (e, me) is in ReachF

P then DT contains T J
F (e, me), and that T J

F (e′, me′) is
a premise of T J

F (e, me) iff (e, me) ∈ ReachF
P is among the immediate conditions

(cf. the definition of ReachF
P) for (e′, me′) ∈ ReachF

P .

Example 9. It is easy to check that T1 = T (F1), modulo renaming of the U-tags.

Clearly DT is a tree-formed derivation, and T J
F (e, me) has address me in DT .

We must of course also prove that all judgements in DT are in fact derivable
from their premises using the inference rules in Fig. 1:

Theorem 2. If F is valid and safe then T = T (F) as constructed by Definition 4
is a uniform typing for P . The derivation DT has the following properties:
– if DT contains at address me a judgement for µf.λx.e, it is derived using

[fun]w
λ

where wλ = (ac : (TF ({(ac,MemF)})).ac) with ac= (µf.λx.e, me);
– if DT contains at address me a judgement for e1 @ ue2

l2 with the leftmost
premise of the form A ` e1 : u1, then it is derived using [app]w

@
where for

all q ∈ dom(u1) it holds that w@(q) =ΦF ((l2, me), q).

7 Round Trips

Next consider the “round-trip” translations F ◦T (from flows to types and back)
and T ◦F (from types to flows and back). Both roundtrips are idempotent7: they
act as the identity on “canonical” elements, and otherwise “canonicalize”.

Example 10. Exs. 7 and 9 show that F ◦ T is the identity on F1 and that T ◦ F
is the identity (modulo renaming of U-tags) on T1. In particular T ◦F does not
necessarily introduce infinite types, thus solving an open problem in P&P.

7.1 Round Trips from the Flow World

F ◦ T filters out everything not reachable, and acts as the identity ever after.

Theorem 3. Assume that F is valid and safe for a program P , and let F ′ =
F(T (F)). Then F ′ is valid and safe for P with MemF ′ =MemF , ReachF ′

P =
ReachF

P , and CF ′(l, me) 6= ⊥ iff
(
CF (l, me) 6= ⊥ and (uel, me) ∈ ReachF

P

)
in

which case CF ′(l, me) = filterF
P (CF (l, me)) where filterF

P (V) is given by
{(ac, M ′) | (ac, M) ∈ V and (µf.λx.e0, me0) ∈ ReachF

P where
ac= (µf.λx.e0, me0) and M ′ = {m ∈ M | (e0, me0[f, x 7→ m]) ∈ ReachF

P }
∪(if Int ∈ V then {Int} else ∅).

Finally, if F ′′ = F(T (F ′)) then F ′′ = F ′.
7 However, T (F(T (F))) = T (F) does in general not hold.

Faithful Translations between Polyvariant Flows and Polymorphic Types 39

Clearly everything not reachable may be considered “junk”. However, simple
examples demonstrate that some junk is reachable and is hence not removed by
F◦T . That our flow/type correspondence can faithfully encode such imprecisions
illustrates the power of our framework.

7.2 Round Trips from the Type World

The canonical typings are the ones that are strongly consistent :

Definition 5. A typing T is strongly consistent iff for all u that occur in DT

and for all q ∈ dom(u) with q 6= qint the following holds: DT contains exactly one
judgement derived by an application of [fun]w

λ

with wλ taking the form (q : t),
and this t satisfies t ≤c

∧ u.q. Here ≤c
∧ is a subrelation of ≤∧, defined by stipulating

that int≤c
∧ int and that

∧
i∈I{Ki : ui → u′

i} ≤c
∧

∧
i∈I0

{Ki : ui → u′
i} iff I0 ⊆ I.

Theorem 4. Assume that T is a uniform typing for a program P , and let T ′ =
T (F(T)). Then T ′ is a uniform typing for P with ITT ′ = ITT , and
– DT ′ contains a judgement for e with address ke iff DT contains a judgement

for e with address ke (i.e., the two derivations have the same shape);
– DT ′ is strongly consistent;
– if DT is strongly consistent then DT ′ = DT (modulo renaming of U-tags).

Example 11. Let T be the typing8 of the motivating example put forward in
Sect. 1. Then T is not strongly consistent, but T ′ = T (F(T)) is: the two fun-
witnesses occurring in DT ′ are of the form (qx : uint → uint) and (qy : uint → uint).
Nevertheless, T ′ is still imprecise: both function abstractions are assigned the
union type

∨
(qx : uint → uint, qy : uint → uint).

8 Discussion

Our flow system follows the lines of N&N, generalizing some features while omit-
ting others (such as polymorphic splitting [WJ98], left for future work). That
it has substantial descriptive power is indicated by the fact that it encompasses
both argument-based and call-string based polyvariance. In particular, the flow
analysis framework of P&P can be encoded into our framework. Unlike P&P, our
flow logic has a subject reduction property, inherited from the N&N approach.

The generality of our type system is less clear. The annotation with tags gives
rise to intersection and union types that are not associative, commutative, or
idempotent (ACI). This stands in contrast to the ACI types of P&P, but is similar
to the non-ACI intersection and union types of CIL, the intermediate language of
an experimental compiler that integrates flow information into the type system
[WDMT97,DMTW97]. Indeed, a key motivation of this work was to formalize
the encoding of various flow analyses in the CIL type system. Developing a
translation between the the type system of this paper and CIL is our next goal.
8 We convert it to our framework by substituting uint for int and by substituting∨

(q• :
∧

({•} : uint → uint)) for int → int.

40 T. Amtoft and F. Turbak

References

AC93. R. Amadio and L. Cardelli. Subtyping recursive types. ACM Trans. on
Prog. Langs. and Systs., 15(4):575–631, 1993.

Age95. O. Agesen. The cartesian product algorithm. In Proceedings of
ECOOP’95, Seventh European Conference on Object-Oriented Program-
ming, vol. 952, pp. 2–26. Springer-Verlag, 1995.

AT00. T. Amtoft and F. Turbak. Faithful translations between polyvariant flows
and polymorphic types. Technical Report BUCS-TR-2000-01, Comp. Sci.
Dept., Boston Univ., 2000.

Ban97. A. Banerjee. A modular, polyvariant, and type-based closure analysis. In
ICFP ’97 [ICFP97].

DMTW97. A. Dimock, R. Muller, F. Turbak, and J. B. Wells. Strongly typed flow-
directed representation transformations. In ICFP ’97 [ICFP97], pp. 11–24.

GNN97. K. L. S. Gasser, F. Nielson, and H. R. Nielson. Systematic realisation of
control flow analyses for CML. In ICFP ’97 [ICFP97], pp. 38–51.

Hei95. N. Heintze. Control-flow analysis and type systems. In SAS ’95 [SAS95],
pp. 189–206.

ICFP97. Proc. 1997 Int’l Conf. Functional Programming, 1997.
JW95. S. Jagannathan and S. Weeks. A unified treatment of flow analysis in

higher-order languages. In Conf. Rec. 22nd Ann. ACM Symp. Princ. of
Prog. Langs., pp. 393–407, 1995.

JWW97. S. Jagannathan, S. Weeks, and A. Wright. Type-directed flow analysis for
typed intermediate languages. In Proc. 4th Int’l Static Analysis Symp.,
vol. 1302 of LNCS. Springer-Verlag, 1997.

NN97. F. Nielson and H. R. Nielson. Infinitary control flow analysis: A collecting
semantics for closure analysis. In Conf. Rec. POPL ’97: 24th ACM Symp.
Princ. of Prog. Langs., pp. 332–345, 1997.

NN99. F. Nielson and H. R. Nielson. Interprocedural control flow analysis. In
Proc. European Symp. on Programming, vol. 1576 of LNCS, pp. 20–39.
Springer-Verlag, 1999.

PO95. J. Palsberg and P. O’Keefe. A type system equivalent to flow analysis.
ACM Trans. on Prog. Langs. and Systs., 17(4):576–599, 1995.

PP98. J. Palsberg and C. Pavlopoulou. From polyvariant flow information to
intersection and union types. In Conf. Rec. POPL ’98: 25th ACM Symp.
Princ. of Prog. Langs., pp. 197–208, 1998. Superseded by [PP99].

PP99. J. Palsberg and C. Pavlopoulou. From polyvariant flow information to in-
tersection and union types. A substantially revised version of [PP98]. Avai-
lable at http://www.cs.purdue.edu/homes/palsberg/paper /popl98.ps.gz.,
Feb. 1999.

SAS95. Proc. 2nd Int’l Static Analysis Symp., vol. 983 of LNCS, 1995.
Sch95. D. Schmidt. Natural-semantics-based abstract interpretation. In SAS ’95

[SAS95], pp. 1–18.
Shi91. O. Shivers. Control Flow Analysis of Higher Order Languages. PhD thesis,

Carnegie Mellon University, 1991.
WDMT97. J. B. Wells, A. Dimock, R. Muller, and F. Turbak. A typed intermediate

language for flow-directed compilation. In Proc. 7th Int’l Joint Conf.
Theory & Practice of Software Development, pp. 757–771, 1997.

WJ98. A. Wright and S. Jagannathan. Polymorphic splitting: An effective polyva-
riant flow analysis. ACM Trans. on Prog. Langs. and Systs., 20:166–207,
1998.

On the Expressiveness of Event Notification in
Data-Driven Coordination Languages?

Nadia Busi and Gianluigi Zavattaro

Dipartimento di Scienze dell’Informazione, Università di Bologna,
Mura Anteo Zamboni 7, I-40127 Bologna, Italy.

busi,zavattar@cs.unibo.it

Abstract. JavaSpaces and TSpaces are two coordination middlewares
for distributed Java programming recently proposed by Sun and IBM,
respectively. They are both inspired by the Linda coordination model:
processes interact via the emission (out), consumption (in) and the test
for absence (inp) of data inside a shared repository. The most interesting
improvement introduced by these new products is the event notification
mechanism (notify): a process can register interest in the incoming ar-
rivals of a particular kind of data, and then receive communication of
the occurrence of these events. We investigate the expressiveness of this
new coordination mechanism and we prove that even if event notifica-
tion strictly increases the expressiveness of a language with only input
and output, the obtained language is still strictly less expressive than a
language containing also the test for absence.

1 Introduction

In the last decades we assisted to a dramatic evolution of computing systems,
leading from stand-alone mainframes to a worldwide network connecting smal-
ler, yet much more powerful processors. The next expected step in this direction
is represented by the so-called ubiquitous computing, based on the idea of dyna-
mically reconfigurable federations composed of users and resources required by
those users. For instance, the Jini architecture [19] represents a first proposal of
Sun for a Java-based technology inspired by this new computing paradigm.

In this scenario, one of the most challenging topics is concerned with the
coordination of the federated components. For this reason, a renewed interest
in coordination languages – that have been around for more than fifteen years
– has arisen. For example, JavaSpaces [18] and TSpaces [20] are two recent
coordination middlewares for distributed Java programming proposed by Sun
and IBM, respectively. These proposals incorporate the main features of both
the two historical groups of coordination models [13]: the data-driven approach,
initiated by Linda [8] and based on the notion of a shared data repository,
and the control-driven model, advocated by Manifold [1] and centered around
the concepts of raising and reaction to events. Besides the typical Linda-like
? Work partially supported by Esprit working group n.24512 “Coordina”

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 41–55, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

42 N. Busi and G. Zavattaro

coordination primitives (processes interact via the introduction, consumption
and test for presence/absence of data inside a shared repository) both JavaSpaces
and TSpaces provide event registration and notification. This mechanism allows
a process to register interest in the future arrivals of a particular kind of data,
and then receive communication of the occurrence of these events.

In this paper we investigate the interplay of the event notification mechanism
with the classical Linda-like coordination paradigm. In particular we focus on the
expressive power of event notification and we prove the existence of a hierarchy
of expressiveness among the possible combinations of coordination primitives:
in, out , and inp are strictly more expressive than in, out , and notify , which in
turn are strictly more expressive than in and out only.

These results are proved by introducing a minimal language containing all the
coordination mechanisms we are dealing with, and by considering the sublangu-
ages corresponding to the various combinations of the coordination primitives.
The complete language (denoted by Lntf ,inp) is obtained by extending a Linda
based process algebra presented in [2] with the event notification mechanism.
We consider the following sublanguages: L containing only in and out , Lntf con-
taining also notify , and Linp containing in, out and inp.

L

Lntf

Lntf ,inp

Linp
encoding

sublanguage

no encoding

Fig. 1. Overview of the results.

The hierarchy of expressiveness sketched above follows from the three results
summarized in Figure 1.

The expressiveness gap between Lntf and L can be deduced by the following
facts:

(1) There exists an encoding of L on finite Place/Transition nets [14,16] which
preserves the interleaving semantics. As the existence of a terminating com-
putation is decidable in P/T nets [6], the same holds also in L.

(2) There exists a nondeterministic implementation of Random Access Machines
(RAM) [17], a well known Turing powerful formalism, in Lntf . The imple-
mentation preserves the terminating behaviour: a RAM terminates if and
only if the corresponding implementation has a terminating computation.
Thus, the existence of a terminating computation is not decidable in Lntf .

Hence there exists no encoding of Lntf in L which preserves at least the existence
of a terminating computation.

Expressiveness of Event Notification 43

The discrimination between Linp and Lntf proceeds in a similar way:

(3) There exists an encoding of Lntf on finite Place/Transition nets extended
with transfer arcs [7] which preserves the existence of an infinite computa-
tion. As this property is decidable in this kind of P/T nets, the same holds
also in Lntf .

(4) There exists a deterministic implementation of RAM in Linp such that a
RAM terminates if and only if all the computation of the corresponding
implementation terminate. Thus, the existence of an infinite computation is
not decidable in Linp .

Hence there exists no encoding of Linp in Lntf which preserves at least the
existence of an infinite computation.

Finally, the last result is:

(5) The event notification mechanism can be realized by means of the inp ope-
rator; indeed we provide an encoding of Lntf ,inp in Linp (and hence also of
Lntf in Linp).

The paper is organized as follows. Section 2 presents the syntax and semantics
of the language. Section 3, 4, and 5 discuss respectively the discriminating results
between Lntf and L, between Linp and Lntf , and the encoding of Lntf ,inp in Linp .
Section 6 reports some conclusive remarks.

2 The Syntax and the Operational Semantics

Let Name be a denumerable set of message names, ranged over by a, b, The
syntax is defined by the following grammar:

P ::= 〈a〉 | C | P |P
C ::= 0 | µ.C | inp(a)?C C | C |C

where:
µ ::= in(a) | out(a) | notify(a,C) | !in(a)

Agents, ranged over by P , Q , . . ., consist of the parallel composition of the data
already in the dataspace (each one denoted by one agent 〈a〉) and the concurrent
programs denoted by C , D , . . ., that share these data. A program can be a
terminated program 0 (which is usually omitted for the sake of simplicity), a
prefix form µ.P , an if-then-else form inp(a)?P Q , or the parallel composition
of programs.

A prefix µ can be one of the primitives in(a) or out(a), indicating the with-
drawing or the emission of datum a respectively, and the notify(a,P) operation
that registers interest in the incoming arrivals of new instances of datum a: every
time a new instance of 〈a〉 is produced, a new copy of process P is spawned. We
also consider the bang operator !in(a) which is a form of replication guarded on
input operations: the term !in(a).P is always ready to consume an instance of
〈a〉 and then activate a copy of P . The if-then-else form is used to model the
inp primitive: inp(a)?P Q is a program which requires an instance of 〈a〉 to be

44 N. Busi and G. Zavattaro

Table 1. Operational semantics (symmetric rules omitted).

(1) 〈a〉 a−→ 0 (2) out(a).P ~a−→ 〈a〉|P
(3) in(a).P a−→ P (4) notify(a,Q).P τ−→ on(a).Q |P
(5) on(a).P ȧ−→ P |on(a).P (6) !in(a).P a−→ P |!in(a).P

(7) inp(a)?P Q a−→ P (8) inp(a)?P Q ¬a−→ Q

(9)
P a−→ P ′ Q a−→ Q ′

P |Q τ−→ P ′|Q ′
(10)

P ¬a−→ P ′ Q a−→/
P |Q ¬a−→ P ′|Q

(11)
P ȧ−→ P ′ Q ȧ−→ Q ′

P |Q ȧ−→ P ′|Q ′
(12)

P ȧ−→ P ′ Q ȧ−→/
P |Q ȧ−→ P ′|Q

(13)
P ~a−→ P ′ Q ȧ−→ Q ′

P |Q ~a−→ P ′|Q ′
(14)

P ~a−→ P ′ Q ȧ−→/
P |Q ~a−→ P ′|Q

(15)
P α−→ P ′

P |Q α−→ P ′|Q
α 6= ¬a, ~a, ȧ

consumed; if it is present, the program P is executed, otherwise Q is chosen. In
the following, Agent denotes the set containing all possible agents.

The semantics of the language is described via a labeled transition system
(Agent , Label , −→) where Label = {τ} ∪ {a, a,¬a, ~a, ȧ | a ∈ Name} (ranged
over by α, β, . . .) is the set of the possible labels. The labeled transition relation
−→ is the smallest one satisfying the axioms and rules in Table 1. For the sake
of simplicity we have omitted the symmetric rules of (9) − (15).

Axiom (1) indicates that 〈a〉 is able to give its contents to the environment
by performing an action labeled with a. Axiom (2) describes the output: in one
step a new datum is produced and the corresponding continuation is activated.
The production of this new instance of 〈a〉 is communicated to the environment
by decorating this action with the label ~a. Axiom (3) associates to the action
performed by the prefix in(a) the label a, which is the complementary of a.

Axiom (4) indicates that notify(a,P) produces a new kind of agent on(a).P
(that we add to the syntax as an auxiliary term). This process spawns a new
instance of P every time a new 〈a〉 is produced. This behaviour is described in
axiom (5) where the label ȧ is used to describe this kind of computation step.
The term !in(a).P is able to activate a new copy of P by performing an action
labeled with a that requires an instance of 〈a〉 to be consumed (axiom (6)).

Axioms (7) and (8) describe the semantics of inp(a)?P Q : if the required
〈a〉 is present it can be consumed (axiom (7)), otherwise its absence is guessed
by performing an action labeled with ¬a (axiom (8)). Rule (9) is the usual
synchronization rule.

Expressiveness of Event Notification 45

Rules (10)−(14) regard the way actions labeled with the non-standard labels
¬a, ȧ, and ~a are inferred to structured terms. Rule (10) indicates that actions
labeled with ¬a can be performed only if no 〈a〉 is present in the environment
(i.e. no transition labelled with a can be performed). Rules (11) and (12) consider
actions labelled with ȧ indicating the interest in the incoming instances of 〈a〉.
If one process able to perform this kind of action is composed in parallel with
another one registered for the same event their local actions are combined in a
global one (rule (11)); otherwise, the process performs its own action leaving the
environment unchanged (rule (12)). Rules (13) and (14) deal with two different
cases regarding the label ~a indicating the arrival of a new instance of 〈a〉: if
processes waiting for the notification of this event are present in the environment
they are waked-up (rule (13)); otherwise, the environment is left unchanged (rule
(14)). The last rule (15) is the standard local rule that can be applied only to
actions different from the non-standard ¬a, ~a, and ȧ.

Note that rules (10), (12), and (14) use negative premises; however, our
operational semantics is well defined, because our transition system specification
is strictly stratifiable [9], condition that ensures (as proved in [9]) the existence
of a unique transition system agreeing with it.

We define a structural congruence (denoted by ≡) as the minimal congruence
relation satisfying the monoidal laws for the parallel composition operator:

P ≡ P |0 P |Q ≡ Q |P P |(Q |R) ≡ (P |Q)|R
As two structural congruent agents are observationally indistinguishable, in the
remainder of the paper we will reason up to structural congruence.

In the following we will only consider computations consisting of reduction
steps, i.e., the internal derivations that a stand-alone agent is able to perform
independently of the context. In our language, we consider as reductions not only
the usual derivations labeled with τ , but also the non-standard labeled with ¬a
and ~a. In fact, derivation P ¬a−→ P ′ indicates that P can become P ′ if no 〈a〉 is
available in the external environment, and P ~a−→ P ′ describes that a new agent
〈a〉 has been produced. Hence, in any of these cases, if P is stand-alone (i.e.
without external environment) it is able to become P ′. Indeed, these labels have
been used only for helping a SOS [15] formulation of the semantics, but they
correspond conceptually to internal steps. Formally, we define reduction steps as
follows:

P −→ P ′ iff P τ−→ P ′ or P ¬a−→ P ′ or P ~a−→ P ′ for some a
We use P −→/ to state that there exists no P ′ such that P −→ P ′.

An agent P has a terminating computation (denoted by P ↓) if it can block
after a finite amount of internal steps: P −→∗ P ′ with P ′ −→/ . On the other
hand, an agent P has an infinite computation (denoted by P ↑) if there exists
an infinite computation starting from P : for each natural index i there exists Pi
such that P = P0 and Pi −→ Pi+1. Observe that due to the nondeterminism of
our languages the two above conditions are not in general mutually exclusive,
i.e., given a process P both P ↓ and P ↑ may hold.

46 N. Busi and G. Zavattaro

3 Comparing Lntf and L

The discrimination between Lntf and L is a direct consequence of the facts (1)
and (2) listed in the Introduction.

The proof of (1) is a trivial adaptation of a result presented in [4]. Indeed,
as we made in that paper, it is possible to define for L a Place/Transition net
[14,16] semantics such that for each agent P the corresponding P/T net is finite
and preserves the interleaving semantics; thus, an agent can terminate if and
only if the corresponding net has a terminating computation. As this property
can be decided in finite P/T nets [6], we can conclude that given a process P of
L it is decidable if P ↓.

Result (2) uses Random Access Machines (RAM) [17] which is a Turing
equivalent formalism. A RAM is composed of a finite set of registers, that can
hold arbitrary large natural numbers, and by a program, that is a sequence of
simple numbered instructions, like arithmetical operations (on the contents of
registers) or conditional jumps.

To perform a computation, the inputs are provided in registers r1, . . . , rm ;
if other registers rm+1, . . . , rn are used in the program, they are supposed to
contain the value 0 at the beginning of the computation. The execution of the
program begins with the first instruction and continues by executing the other
instructions in sequence, unless a jump instruction is encountered. The execution
stops when an instruction number higher than the length of the program is
reached. If the program terminates, the result of the computation is the contents
of the registers.

In [12] it is shown that the following two instructions are sufficient to model
every recursive function:

– Succ(rj): adds 1 to the content of register rj ;
– DecJump(rj , s): if the content of register rj is not zero, then decreases it by

1 and go to the next instruction, otherwise jumps to instruction s.

We present an encoding of RAM based on the notify primitive. The encoding
we present is nondeterministic as it introduces some extra infinite computations;
nevertheless, it is ensured that a RAM terminates if and only if the corresponding
encoding has a terminating computation. As termination cannot be decided in
Turing equivalent formalisms, the same holds also for Lntf . A question remains
open in this section: “Is it possible to define in Lntf a more adequate deterministic
implementation of RAM which preserves also the divergent behaviour?”. The
answer is no, and it is motivated in Section 4 where we prove that the presence
of an infinite computation can be decided in Lntf . On the other hand, we will
show in the same Section that a deterministic implementation of RAM can be
defined in Linp .

The encoding implements nondeterministically DecJump operations: two pos-
sible behaviours can be chosen, the first is valid if the tested register is not zero,
the second otherwise. If the wrong choice is made, the computation is ensured to
be infinite; in this case, we cannot say anything about the corresponding RAM.

Expressiveness of Event Notification 47

Nevertheless, if the computation terminates, it is ensured that it corresponds to
the computation of the corresponding RAM. Conversely, any computation of the
RAM is simulated by the computation of the corresponding encoding in which
no wrong choice is performed.

Table 2. Encoding RAM in Lntf .

[[R]] = [[I1]]| . . . |[[Ik]]|in(loop).DIV

[[i : Succ(rj)]] = !in(pi).out(rj).notify(zeroj , INC).out(pi+1)

[[i : DecJump(rj , s)]] = !in(pi).out(loop).in(rj).in(loop).notify(zeroj ,DEC).out(pi+1)

|!in(pi).out(zeroj).in(zeroj).out(ps)

where:

INC = out(loop).in(match).in(loop)

DEC = out(match)

DIV = out(div).!in(div).out(div)

Given the RAM program R composed by the instructions I1 . . . Ik the cor-
responding encoding is defined in Table 2. Observe that DIV is an agent that
cannot terminate; we will prove that it is activated whenever a wrong choice is
made.

The basic idea of this encoding is to represent the actual content of each regi-
ster rj with a corresponding number of 〈rj 〉. Moreover, every time an increment
(or a decrement) on the register rj is performed, a new agent on(zeroj).INC
(or on(zeroj).DEC) is spawned by using the notify operation. In this way it is
possible to check if the actual content of a register rj is zero by verifying if the
occurrences of on(zeroj).INC corresponds to the ones of on(zeroj).DEC .

There are two possible wrong choices that can be performed during the com-
putation: (i) a decrement on a register containing zero or (ii) a jump for zero on
a non-empty register.

In the case (i), out(loop).in(rj).in(loop).notify(zeroj ,DEC).out(pi+1) is ac-
tivated with no 〈rj 〉 available. Thus, the program produces 〈loop〉 and blocks
trying to execute in(rj). The produced 〈loop〉 will be not consumed and the
agent DIV will be activated.

In the case (ii), the process out(zeroj).in(zeroj).out(ps) is activated when
there are more occurrences of the auxiliary agent on(zeroj).INC than the ones
of on(zeroj).DEC . When 〈zeroj 〉 is emitted, its production is notified to the
auxiliary agents; then the corresponding processes INC and DEC start. Each
DEC emits an agent 〈match〉 while each INC produces a term 〈loop〉, and re-
quires a 〈match〉 to be consumed before removing the emitted 〈loop〉. As there
are more INC processes than DEC , one of the processes INC will block waiting

48 N. Busi and G. Zavattaro

for an unavailable 〈match〉; thus it will not consume its corresponding 〈loop〉. As
before, DIV will be activated.

The formal proof of correctness of the encoding requires a representation of
the actual state of a RAM computation: we use (i , inc1, dec1, . . . , incm , decm),
where i is the index of the next instruction to execute while for each register
index l , incl (resp. decl) represents the number of increments (resp. decrements)
that have been performed on the register rl . The actual content of rl corresponds
to incl − decl . In order to deal with correct configurations only, we assume that
the number of increments is greater or equal than the number of decrements.

Given a RAM program R, we write
((i , inc1, dec1, . . . , incn , decn),R) −→ ((i ′, inc′

1, dec
′
1, . . . , inc′

n , dec′
n),R)

to state that the computation moves from the first to the second configuration
by performing the i th instruction of R; ((i , inc1, dec1, . . . , incn , decn),R) −→/
means that the program R has no instruction i , i.e., the computation is ter-
minated. As RAM computations are deterministic, given a RAM program R
and a configuration (i , inc1, dec1, . . . , incm , decm), the corresponding computa-
tion will either terminate (denoted by ((i , inc1, dec1, . . . , incm , decm),R) ↓) or
diverge (((i , inc1, dec1, . . . , incm , decm),R) ↑). As RAM permits to model all the
computable functions both the termination and the divergence of a computation
are not decidable.

According to this representation technique a configuration is modeled as
follows:

[[(i , inc1, dec1, . . . , incn , decn)]] =
〈pi〉|

∏
i=1...n(

∏
inci

on(zeroi).INC |∏deci
on(zeroi).DEC |∏inci−deci

〈rj 〉)
where

∏
i∈I Pi denotes the parallel composition of the indexed terms Pi .

It is not difficult to prove the following lemma stating that the encoding
is complete as each RAM computation can be simulated by the corresponding
encoding.

Theorem 1. Let R be a RAM program, if
((i , inc1, dec1, . . . , incn , decn),R) −→ ((i ′, inc′

1, dec
′
1, . . . , inc′

n , dec′
n),R)

then also
[[(i , inc1, dec1, . . . , incn , decn)]]|[[R]] −→∗ [[(i ′, inc′

1, dec
′
1, . . . , inc′

n , dec′
n)]]|[[R]]

On the other hand the encoding is not sound as it introduces infinite compu-
tations. Nevertheless, a weaker soundness for terminating computations holds.

Theorem 2. Let R be a RAM program, if
[[(i , inc1, dec1, . . . , incn , decn)]]|[[R]] −→∗ P −→/

then P = [[(i ′, inc′
1, dec

′
1, . . . , inc′

n , dec′
n)]]|[[R]] such that

((i , inc1, dec1, . . . , incn , decn),R) −→∗ ((i ′, inc′
1, dec

′
1, . . . , inc′

n , dec′
n),R) −→/

Corollary 1. Let R be a RAM program, then
((i , inc1, dec1, . . . , incn , decn),R) ↓ iff [[(i , inc1, dec1, . . . , incn , decn)]]|[[R]] ↓

Expressiveness of Event Notification 49

4 Comparing Linp and Lntf

The discrimination between Linp and Lntf is a direct consequence of the facts
(3) and (4) listed in the Introduction.

The result (4) has been already proved in [4]. In that paper an encoding of
RAM in a language corresponding to Linp is presented. Also that encoding (that
we do not report here due to the space limits) represents the content of register
rj by means of agents of kind 〈rj 〉. In this way, a DecJump instruction testing the
register rj can be simply implemented by means of an inp(rj) operation which
either consumes an available 〈rj 〉 or observes that the register is empty. In [4]
we prove that a RAM program can perform a computation step if and only if
its encoding can perform the corresponding step.

In order to prove the result (3) we recall, using a notation convenient for
our purposes, the definition of simple P/T nets extended with transfer arcs (see,
e.g., [7]).

Definition 1. Given a set S , we denote by Mfin(S) the set of the finite multi-
sets on S and by Fp(S ,S) the set of the partial functions defined on S. We use ⊕
to denote multiset union. A P/T net with transfer arcs is a triple N = (S ,T ,m0)
where S is the set of places, T is the set of transitions (which are triples
(c, p, f) ∈ Mfin(S) × Mfin(S) × Fp(S ,S) such that the domain of the partial
function f has no intersection with c and p), and m0 is a finite multiset of pla-
ces. Finite multisets over the set S of places are called markings; m0 is called
initial marking. Given a marking m and a place s, m(s) denotes the number of
occurrences of s inside m and we say that the place s contains m(s) tokens. A
P/T net with transfer arcs is finite if both S and T are finite.

A transitions t = (c, p, f) is usually written in the form c
f�−→ p and f is

omitted when empty. The marking c is called the preset of t and represents the
tokens to be consumed. The marking p is called the postset of t and represents
the tokens to be produced. The partial function f denotes the transfer arcs of
the transition which connect each place s in the domain of f to its image f (s).
The meaning of f is the following: when the transition fires all the tokens inside
a place s in the domain of f are transferred to the connected place f (s).

A transition t = (c, p, f) is enabled at m if c ⊆ m. The execution of the
transition produces the new marking m ′ such that m ′(s) = m(s) − c(s) + p(s) +∑

s′:f (s′)=s m(s ′), if s is not in the domain of f , m ′(s) =
∑

s′:f (s′)=s m(s ′),

otherwise. This is written as m t−→ m ′ or simply m −→ m ′ when the transition
t is not relevant. We use σ, σ′ to range over sequences of transitions; the empty
sequence is denoted by ε; let σ = t1, . . . , tn , we write m σ−→ m ′ to mean the firing
sequence m t1−→ · · · tn−→ m ′. The net N = (S ,T ,m0) has an infinite computation
if it has a legal infinite firing sequence.

The basic idea underlying the definition of an operational net semantics for
a process algebra is to decompose a process P into a multiset of sequential
components, which can be thought of as running in parallel. Each sequential

50 N. Busi and G. Zavattaro

component has a corresponding place in the net, and will be represented by a
token in that place. Reductions are represented by transitions which consume
and produce multisets of tokens.

In our particular case we deal with different kinds of sequential components:
programs of the form µ.P or inp(a)?P Q , agents 〈a〉, and terms on(a,P) re-
presenting idle processes on(a).P . Besides these classes of components corre-
sponding directly to terms of the language, we need to introduce a new kind of
components arrived(a,P) used to model event notification.

notify(a, P).Q

on(a, P)

〈a〉

out(a).R

dec(R)

dec(Q)

dec(P)

arrived(a, P)

Fig. 2. Modeling event notification.

The way we represent input and output operations in our net semantics is
standard. More interesting is the mechanism used to model event notification re-
presented in Figure 2. Whenever a new token is introduced in the place 〈a〉, each
token in a place on(a,P) is transferred to the corresponding place arrived(a,P).
In order to realize this, we use a transfer arc that moves all the tokens inside
the source place to the target one. Each token introduced in arrived(a,P) will
be responsible for the activation of the new instance of P . Moreover, when the
activation happens, also a token in on(a,P) is introduced in order to register
interest in the next production of a token in 〈a〉.

The main drawback of this procedure used to model event notification is that
it is not executed atomically. For instance, a new token in 〈a〉 can be produced
before it terminates. In this case, the processes whose corresponding token is still
in the place arrived(a,P) will be not notified of the occurrence of this event.
However, as we will prove in the following, even in the presence of this drawback
the net semantics respects the existence of infinite computation.

Expressiveness of Event Notification 51

After the informal description of the net semantics we introduce its formal de-
finition. Given the agent P , we define the corresponding contextual P/T system
Net(P). In order to do this, we need the following notations.

– Let S be the set
{P | P sequential program} ∪ {〈a〉 | a message name} ∪
{on(a,P), arrived(a,P) | a message name and P program}.

– Let the function dec : Agent → Mfin(S) be the decomposition of agents into
markings, reported in Table 3.

– Let T contain the transitions obtained as instances of the axiom schemata
presented in Table 4.

The axioms in Table 3, describing the decomposition of agents, state that the
agent 0 generates no tokens; the decomposition of the terms 〈a〉 and of the other
processes produces one token in the corresponding place; the decomposition of
the idle process on(a).P generates one token in place on(a,P); and the parallel
composition is interpreted as multiset union, i.e, the decomposition of P |Q is
dec(P) ⊕ dec(Q).

The axioms in Table 4 define the possible transitions. Axiom in(a,Q) deals
with the execution of the primitives in(a): a token from place 〈a〉 is consumed.
Axiom out(a,Q) describes how the emission of new datum is obtained: a new
token in the place 〈a〉 is introduced and the transfer arcs move all the tokens
from the places on(a,R) in the corresponding arrived(a,R). In this way, all the
idle agents are notified. The activation of the corresponding processes R requires
a further step described by the axiom arrived(a,Q): an instance of process Q
is activated (by introducing tokens in the corresponding places) and a token is
reintroduced in the place on(a,Q) in order to register interest in the next token
produced in 〈a〉. Axiom !in(a,Q) deals with the bang operator: if a token is
present in place !in(a).Q and a token can be consumed from place 〈a〉, then a
new copy of dec(Q) is produced and a token is reintroduced in !in(a).Q . Finally,
axiom notify(a,Q,R) produces a token in the place on(a,Q) in order to register
interest in the arrival of the future incoming token in 〈a〉.

Definition 2. Let P be an agent. We define the triple Net(P) = (S ,T ,m0)
where:
S = {Q | Q sequential subprogram of P} ∪

{〈a〉 | a message name in P} ∪
{on(a,Q), arrived(a,Q) | a message name in P and Q subprogam of P}

T = {c f |S�−→ p | c
f�−→ p ∈ T and dom(c) ⊆ S}

m0 = dec(P)
where by f |S we mean the restriction of function f to its subdomain S.

It is not difficult to see that Net(P) is well defined, in the sense it is a correct
P/T net with transfer arcs; moreover, it is finite. Moreover the net semantics is
complete as it simulates all the possible computations allowed by the operational
semantics.

52 N. Busi and G. Zavattaro

Table 3. Decomposition function.

dec(0) = ∅ dec(〈a〉) = {〈a〉}
dec(µ.P) = {µ.P} dec(on(a).P) = {on(a,P)}
dec(P |Q) = dec(P) ⊕ dec(Q)

Table 4. Transition specification.

in(a,Q) in(a).Q ⊕ 〈a〉 �−→ dec(Q)

out(a,Q) out(a).Q
f�−→ 〈〈a〉〉 ⊕ dec(Q)

where f = {(on(a,R), arrived(a,R)) | R is a program}
arrived(a,Q) arrived(a,Q) �−→ dec(Q) ⊕ on(a,Q)

!in(a,Q) !in(a).Q ⊕ 〈a〉 �−→ !in(a).Q ⊕ dec(Q)

notify(a,Q,R) notify(a,Q).R �−→ on(a,Q) ⊕ dec(R)

Theorem 3. Let Net(P) = (S ,T ,m0) and R be an agent s.t. dom(dec(R)) ⊆ S.
If R −→ R′ then there exists a transition sequence σ s.t. dec(R) σ−→ dec(R′).

The above theorem proves the completeness of the net semantics which, on the
other hand, is not sound. Indeed, as we have already discussed, the encoding
introduces some slightly different computations due to the non atomicity of the
way we model the event notification mechanism. However, the introduction of
these computations does not alterate the possibility to have an infinite compu-
tation. This is proved by the following Theorem.

Theorem 4. Let Net(P) = (S ,T ,m0) and R an agent s.t. dom(dec(R)) ⊆ S.
There exists an infinite firing sequence starting from dec(R) iff R ↑.

5 Comparing Lntf ,inp and Linp

In Section 3 we proved that in and out are not sufficiently powerful to encode
the event notification mechanism; now we show that the addition of the inp
operation permits to realize the encoding of Lntf ,inp in Linp .

In order to simulate event notification we force each process performing a
notify(a,P) to declare its interest in the incoming 〈a〉 by emitting 〈waita〉. Then,
the process remains idle, waiting for 〈arriveda〉, signaling that an instance of 〈a〉
appeared. When an output operation out(a) is performed, a protocol composed
of three phases is started.

Expressiveness of Event Notification 53

Table 5. Encoding the notify primitive (n(P) denotes the set of message names of P).

[[[P]]] = [[P]]|MEn(P)

[[0]] = 0 [[out(a).P]] = in(mea).out(wcaP)|O(a,P)

[[〈a〉]] = 〈a〉 [[inp(a)?P Q]] = inp(a)?[[P]] [[Q]]

[[in(a).P]] = in(a).[[P]] [[on(a).P]] = 〈waita〉|W (a,P)|!in(waP).W (a,P)

[[!in(a).P]] =!in(a).[[P]] [[P |Q]] = [[P]]|[[Q]]

[[notify(a,P).Q]] = in(mea).out(waita).out(waP).out(mea).(!in(waP).W (a,P)|[[Q]])

MEA =
∏

a∈A〈mea〉
W (a,P) = in(arriveda).out(waita).out(acka).out(waP).[[P]]

O(a,P) = !in(wcaP).inp(waita)?(out(creatinga).out(wcaP)) (out(a).out(caaP))|
!in(caaP).inp(creatinga)?(out(arriveda).out(askacka).out(caaP)) out(eaaP)|
!in(eaaP).inp(askacka)?(in(acka).out(eaaP)) (out(mea).[[P]])

In the first phase, each 〈waita〉 is replaced by 〈creatinga〉. At the end of this
phase 〈a〉 is produced.

In the second phase, we start transforming each 〈creatinga〉 in the pair of
agents 〈arriveda〉 and 〈askacka〉.

The agents 〈arriveda〉 will wake up the processes that were waiting for the
notification of the addition of 〈a〉; each of these processes produces a new instance
of 〈waita〉 (to be notified of the next emissions of 〈a〉) and an 〈acka〉, to inform
that it has been waked. We use two separated renaming phases (from waita to
creatinga and then to arriveda) in order to avoid that a just waked process (that
has emitted 〈waita〉 to be notified of the next occurrence of output of a) is waked
two times.

In the third phase the 〈acka〉 emitted by the waked processes are matched
with the 〈askacka〉 emitted in the second phase; this ensures that all the processes
waiting for emission of 〈a〉 have been waked.

The concurrent execution of two or more output protocols could provoke
undesired behaviour (for example, it may happen that some waiting process is
notified of a single occurrence of output, instead of two); for this reason the
output protocol is performed in mutual exclusion with other output protocols
producing a datum with the same name. For similar reasons we avoid also the
concurrent execution of the output protocol with a notification protocol con-
cerning the same kind of datum. This is achieved by means of 〈mea〉, which is
consumed at the beginning of the protocol and reproduced at the end.

Note that, in the implementation of this protocol, the inp operator is neces-
sary in order to apply a transformation to all the occurrences of a datum in the

54 N. Busi and G. Zavattaro

dataspace. Indeed, with only a blocking input in it is not possible to solve this
problem. The formal definition of the encoding is presented in Table 5.

The proof of the correctness of the encoding is essentially based on an in-
termediate mapping, where partially executed out and notify protocols are re-
presented with an abstract notation. We report here only the enunciates of the
main results.

The following theorem states that each move performed by a process in
Lntf ,inp can be mimicked by a sequence of moves of its encoding.

Theorem 5. Let P be a term of Lntf ,inp s.t. n(P) ⊆ A. If P −→ P ′ then
[[P]]|MEA|∏i=1...k O(ai ,Pi) −→+ [[P ′]]|MEA|∏i=1...h O(bi ,Qi).

The next result says that any computation of the encoding of P can be
extended in order to reach the encoding of a process reachable from P .

Theorem 6. Let P be a term of Lntf ,inp s.t. n(P) ⊆ A.
If [[P]]|MEA|∏i=1...k O(ai ,Pi) −→∗ Q then there exists P ′ such that P −→∗ P ′

and Q −→∗ [[P ′]]|MEA|∏i=1...h O(bi ,Qi).

6 Conclusion

We investigated the expressiveness of event notification in a data-driven coor-
dination model. We proved that the addition of the notify primitive strictly
increases the expressiveness of a language with only in and out , but leaves it
unchanged if the language contains also inp. On the other hand, we showed that
the inp primitive cannot be encoded by in, out , and notify .

We embedded the coordination primitives in a minimal language. The re-
levance of our results extends to richer languages in the following way. The
encodability result extends to any language comprising the minimal features of
our calculus. The negative results of non-encodability can be interpreted on a
Turing complete language as the necessity for an encoding to exploit the specific
computational features of the considered language.

We think that this kind of results has not only a theoretical relevance, but
they could be of interest also for designers and implementors of coordination
languages. For example, the powerful inp primitive has been a source of problems
during the first distributed implementations of Linda (see, e.g., [10]). The results
proved here suggest that the notify primitive may represent a good compromise
between easiness of implementation and expressive power.

In [3] we consider three different interpretations for the out operation and
in [4] we found an expressiveness gap between two of them. More precisely,
we proved that a language with in, out , and inp is Turing powerful under the
ordered semantics (the one considered here), while it is not under the unordered
one (where the emission and the effective introduction of data in the dataspace
are two independent steps). In [5] we investigate the impact of event notification
on the unordered semantics: we prove that the addition of the notify primitive
makes the language Turing powerful also under the unordered interpretation and

Expressiveness of Event Notification 55

it permits a faithful encoding of the ordered semantics on top of the unordered
one.

Here, we have chosen the ordered interpretation as it is the semantics adopted
by the actual JavaSpaces specifications, as indicated in the sections 2.3 and 2.8
of [18], and also confirmed us by personal communications with John McClain
of Sun Microsystems Inc. [11].

References

1. F. Arbab, I. Herman, and P. Spilling. An overview of Manifold and its implemen-
tation. Concurrency: Practice and Experience, 5(1):23–70, 1993.

2. N. Busi, R. Gorrieri, and G. Zavattaro. A Process Algebraic View of Linda Coor-
dination Primitives. Theoretical Computer Science, 192(2):167–199, 1998.

3. N. Busi, R. Gorrieri, and G. Zavattaro. Comparing Three Semantics for Linda-
like Languages. Theoretical Computer Science, to appear. An extended abstract
appeared in Proc. of Coordination’97.

4. N. Busi, R. Gorrieri, and G. Zavattaro. On the Expressiveness of Linda Coordina-
tion Primitives. Information and Computation, to appear. An extended abstract
appeared in Proc. of Express’97.

5. N. Busi and G. Zavattaro. Event Notification in Data-driven Coordination Langu-
ages: Comparing the Ordered and Unordered Interpretation. In Proc. of SAC2000,
ACM press. To appear.

6. A. Cheng, J. Esparza, and J. Palsberg. Complexity results for 1-safe nets. Theo-
retical Computer Science, 147:117–136, 1995.

7. C. Dufourd, A. Finkel, and P. Schnoebelen. Reset nets between decidability and
undecidability. In Proc. of ICALP’98, volume 1061 of Lecture Notes in Computer
Science, pages 103–115. Springer-Verlag, Berlin, 1998.

8. D. Gelernter. Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, 1985.

9. J.F. Groote. Transition system specifications with negative premises. Theoretical
Computer Science, 118:263–299, 1993.

10. J. Leichter. Shared Tuple Memories, Shared Memories, Buses and LANS: Linda
Implementations Across the Spectrum of Connectivity. PhD thesis, Yale University
Department of Computer Science, 1989.

11. J. McClain. Personal communications. March 1999.
12. M.L. Minsky. Computation: finite and infinite machines. Prentice-Hall, 1967.
13. G.A. Papadopoulos and F. Arbab. Coordination Models and Languages. Advances

in Computers, 46:329–400, 1998.
14. C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für Instrumen-

telle Mathematik, Bonn, Germany, 1962.
15. G. Plotkin. A structural approach to operational semantics. Technical Report

DAIMI FN-19, University of Aarhus, 1981.
16. W. Reisig. Petri Nets: An Introduction. EATCS Monographs in Computer Science.

Springer-Verlag, Berlin, 1985.
17. J.C. Shepherdson and J.E. Sturgis. Computability of recursive functions. Journal

of the ACM, 10:217–255, 1963.
18. Sun Microsystem, Inc. JavaSpaces Specifications, 1998.
19. Sun Microsystem, Inc. Jini Architecture Specifications, 1998.
20. P. Wyckoff, S.W. McLaughry, T.J. Lehman, and D.A. Ford. T Spaces. IBM

Systems Journal, 37(3), 1998.

Flow-Directed Closure Conversion for Typed
Languages

Henry Cejtin, Suresh Jagannathan, and Stephen Weeks

1 Entertainment Decisions, Inc. henry@clairv.com
2 NEC Research Institute, suresh@research.nj.nec.com
3 Intertrust STAR Laboratories, sweeks@intertrust.com

Abstract. This paper presents a new closure conversion algorithm for
simply-typed languages. We have have implemented the algorithm as
part of MLton, a whole-program compiler for Standard ML (SML).
MLton first applies all functors and eliminates polymorphism by code du-
plication to produce a simply-typed program. MLton then performs clo-
sure conversion to produce a first-order, simply-typed program. In con-
trast to typical functional language implementations, MLton performs
most optimizations on the first-order language, after closure conversion.
There are two notable contributions of our work:
1. The translation uses a general flow-analysis framework which inclu-

des OCFA. The types in the target language fully capture the results
of the analysis. MLton uses the analysis to insert coercions to trans-
late between different representations of a closure to preserve type
correctness of the target language program.

2. The translation is practical. Experimental results over a range of
benchmarks including large real-world programs such as the compiler
itself and the ML-Kit [25] indicate that the compile-time cost of
flow analysis and closure conversion is extremely small, and that the
dispatches and coercions inserted by the algorithm are dynamically
infrequent.

1 Introduction

This paper presents a new closure conversion algorithm for simply-typed langu-
ages. We have implemented the algorithm as part of MLton1 , a whole-program
compiler for Standard ML (SML). MLton first applies all functors and elimi-
nates polymorphism by code duplication to produce a simply-typed program.
MLton then performs closure conversion to produce a first-order, simply-typed
program. Unlike typical functional language implementations, MLton performs
most optimizations on the first-order language, after closure conversion. The
most important benefit of this approach is that numerous optimization techni-
ques developed for other first-order languages can be immediately applied. In
addition, a simply-typed intermediate language simplifies the overall structure
1 MLton is available under GPL from http://www.neci.nj.nec.com/PLS/MLton/.

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 56–71, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Flow-Directed Closure Conversion for Typed Languages 57

of the compiler. Our experience with MLton indicates that simply-typed inter-
mediate languages are sufficiently expressive to efficiently compile higher-order
languages like Standard ML.

An immediate question that arises in pursuing this strategy concerns the
representation of closures. Closure conversion transforms a higher-order program
into a first-order one by representing each procedure with a tag identifying the
code to be executed (typically a code pointer) when the procedure is applied,
and an environment containing the values of the procedure’s free variables. The
code portion of a procedure is translated to take its environment as an extra
argument.

Like previous work on defunctionalization [19,3], the translation implements
closures as elements of a datatype, and dispatches at call-sites to the appropriate
code. We differ in that the datatypes in the target language express all proce-
dures that may be called at the same call-site as determined by flow analysis.
Consequently, the size of dispatches at calls is inversely related to the precision
of the analysis.

Using dispatches instead of code pointers to express function calls has two
important benefits: (1) the target language can remain simply-typed without the
need to introduce existential types [16], and (2) optimizations can use different
calling conventions for different procedures applied at the same call-site. Howe-
ver, if the simplicity and optimization opportunities afforded by using dispatches
are masked by the overhead of the dispatch itself, this strategy would be inferior
to one in which the code pointer is directly embedded within the closure record.
We show that the cost of dispatches for the benchmarks we have measured is a
small fraction of the benchmark’s overall execution time. We elaborate on these
issues in Sections 4 and 6.

Our approach extends the range of expressible flow analyses beyond that of
previous work [26] by inserting coercions in the target program that preserve
a closure’s meaning, but change its type. Using coercions, the translation ex-
presses higher-order flow information in the first-order target language in a form
verifiable by the type system. Since the results of flow analysis are completely
expressed in the types of the target program, ordinary optimizations performed
on the target automatically take advantage of flow information computed on
the source. In Section 4, we show that representations can be chosen so that
coercions have no runtime cost.

Experimental results over a range of benchmarks including the compiler itself
(approximately 47K lines of SML code) and the ML Kit (approximately 75K
lines) indicate that the compile-time cost of flow analysis and closure conversion
is small, and that local optimizations can eliminate almost all inserted coercions.
Also, MLton often produces code significantly faster than the code produced by
Standard ML of New Jersey [1].

The remainder of the paper is structured as follows. Section 2 describes the
source and target languages for the closure converter. Section 3 defines the class
of flow analyses that the translation can use. Section 4 presents the closure con-
version algorithm. A detailed example illustrating the algorithm is given in Sec-
tion 5. Section 6 describes MLton and presents experimental results. Sections 7
presents related work and conclusions.

58 H. Cejtin, S. Jagannathan, and S. Weeks

2 Source and Target Languages

We illustrate our flow-directed closure conversion translation using the source
language shown on the left-hand side of Figure 1. A program consists of a collec-
tion of datatype declarations followed by an expression. As in ML, a datatype
declaration defines a new sum type along with constructors to create and di-
scriminate among values of that type. The source language is a lambda calculus
core augmented by constructor application, case, tuple construction, selection
of tuple components, and exceptions. Exceptions are treated as elements of a
datatype. The source language is simply-typed, where types are either type con-
structors, arrow types, or tuple types. We omit the type rules and assume that
every expression and variable is annotated with its type. We write e : τ to mean
that e has type τ . We write x : τ to mean that variable x has type τ . We assume
that all bound variables in a program are distinct. We use Exp, Bind, Lam, App,
and Tuple to name the sets of specific occurrences of subterms of the forms e,
b, fn x => e, y z, and (. . . , x, . . .), respectively, in the given program (occur-
rences can be defined formally using paths or unique expression labels). TyCon
names the set of datatypes declared in a program.

Like the source language, the target language (see right-hand side of Figure 1)
is simply-typed, but without arrow types, since the target language does not
contain lambda expressions. A target language program is prefixed by a collection
of mutually recursive first-order functions, and function application explicitly
specifies the first-order function to be called.

Source Language

C ∈ Con
t ∈ Tycon
w, x, y, z ∈ Var
τ ::= t

| τ -> τ
| . . . * τ * . . .

P ::= let . . . data . . . in e end
data ::= datatype t = . . . | C of τ| . . .
e ::= x

| let x = b in e end
b ::= e

| fn w => e
| y z
| C y
| case y of . . . | C z => e | . . .
| (. . . , y, . . .)
| #i y
| raise y
| e1 handle y => e2

Target Language

f ∈ Func
τ ::= t

| . . . * τ * . . .
P ::= let . . . data . . . in

let . . . fun . . . in e end
end

data ::= datatype t = . . . | C of τ| . . .
fun ::= fun f(. . . , x, . . .) = e

e ::= x
| let x = b in e end

b ::= e
| f(. . . , y, . . .)
| C y
| case y of . . . | C z => e | . . .
| (. . . , y, . . .)
| #i y
| raise y
| e1 handle y => e2

Fig. 1. Source and target languages.

Flow-Directed Closure Conversion for Typed Languages 59

v ∈ Value = (Lam × Env) + Value∗ + (Con × Value)
ρ ∈ Env = Var → Value

ρ, e ↪→ v/p

ρ, x ↪→ ρ(x)

ρ, b ↪→ vb ρ[x 7→ vb], e ↪→ v/p

ρ, let x = b in e end ↪→ v/p

ρ, b ↪→ p

ρ, let x = b in e end ↪→ p

ρ, b ↪→ v/p

ρ, fn w => e ↪→ 〈fn w => e, ρ|FV (fn w => e)〉
ρ(y) = 〈fn w => e, ρ′〉 ρ′[w 7→ ρ(z)], e ↪→ v

ρ, y z ↪→ v

ρ, C y ↪→ 〈C, (ρ(y))〉
ρ(y) = 〈C, v〉 ρ[z 7→ v], e ↪→ v ′

ρ, case y of . . . | C z => e | . . . ↪→ v ′

ρ(y) = 〈C, v〉 ρ[z 7→ v], e ↪→ p

ρ, case y of . . . | C z => e | . . . ↪→ p

ρ, (. . . , y, . . .) ↪→ (. . . , ρ(y), . . .)

ρ(y) = (. . . , vi, . . .)
ρ, #i y ↪→ vi

ρ, raise y ↪→ [ρ(y)]

ρ, e1 ↪→ v
ρ, e1 handle y => e2 ↪→ v

ρ, e1 ↪→ [v1] ρ[y 7→ v1], e2 ↪→ v2

ρ, e1 handle y => e2 ↪→ v2

Fig. 2. Source language semantics.

We specify the source language semantics via the inductively defined relations
in Figure 2. For example, expression evaluation defined via the relation written
ρ, e ↪→ v/p, is pronounced “in environment ρ, expression e evaluates either to
value v or an exception packet p.” In this regard, the semantics of exceptions
is similar to the presentation given in [15]. We write [v] to denote an exception
packet containing the value v. A value is either a closure, a tuple of values, or a
value built by application of a datatype constructor. The semantic rules for the
target language are identical except for the rule for function application:

[. . . xi 7→ ρ(yi) . . .], e ↪→ v/p

ρ, f(. . . , yi, . . .) ↪→ v/p

where fun f(. . . , xi, . . .) = e is a function declaration in the program.

60 H. Cejtin, S. Jagannathan, and S. Weeks

3 Flow Analysis

Our flow analysis is a standard monovariant analysis that uses abstract values
to approximate sets of exact values:

a ∈ AVal = TyCon + P(Lam) + AVal ∗

An abstract value may either be a Tycon, which represents all constructed values
of that type, a set of λ-occurrences, which represents a set of closures, or a
sequence of abstract values, which represents a set of tuples.

Definition 1. An abstract value a is consistent with a type τ if and only if one
of the following holds:

1. a = t and τ = t.
2. a ∈ P(Lam), τ = τ1 -> τ2, and for all f ∈ a, f : τ1 -> τ2.
3. a = (. . . , ai, . . .), τ = . . . * τi * . . ., ai is consistent with τi for all i.

We define our flow analysis as a type-respecting [12] function from variables,
constructors, and exception packets to abstract values in the program.

Definition 2. A flow is a function F : (Var + Con + {packet}) → AVal such
that

1. For all x in P, if x : τ then F (x) is consistent with τ .
2. For all C in P, if C carries values of type τ then F (C) is consistent with τ .

Informally, F (x) conservatively approximates the set of values that x may take
on at runtime. Similarly, F (C) over-approximates the set of values to which C
may be applied at runtime. The special token packet models exception values;
all exception values are collected into the abstract value F (packet).

To formally specify the meaning of an analysis, we define a pair of relations by
mutual induction. The first, between environments and flows (ρ v F), describes
when an environment is approximated by the flow.

ρ v F if for all x ∈ dom(ρ), ρ(x) vF F (x)

The second relation, between values and abstract values (v vF a), describes
when a value is approximated by an abstract value (relative to a flow).

1. C v vF t if C is a constructor associated with datatype t , and v vF F (C).
2. (. . . , vi, . . .) vF (. . . , ai, . . .) if vi vF ai for all i.
3. 〈fn x => e, ρ〉 vF a if fn x => e ∈ a and ρ v F .

Figure 3 defines a collection of safety constraints such that any flow meeting
them will conservatively approximate the runtime behavior of the program. We
use the following partial order on abstract values:

Definition 3. a ≥ a′ if and only if

– a = t = a′ for some t ∈ TyCon,
– a ⊇ a′, where a, a′ ∈ P(Lam), or
– a = (. . . , ai, . . .), a′ = (. . . , a′

i, . . .) and ai ≥ a′
i for all i.

Flow-Directed Closure Conversion for Typed Languages 61

Theorem 1. If F is safe and ρ v F then

– if ρ, e ↪→ v then v vF F (last(e)).
– if ρ, e ↪→ [v] then v vF F (packet).
– if ρ, b ↪→ v and x = b ∈ P then v vF F (x).
– if ρ, b ↪→ [v] then v vF F (packet).

Proof. By induction on ρ, e ↪→ v and ρ, b ↪→ v 2

Definition 4. The last variable of an expression, which yields the expression’s
value,
is defined as follows:

last(x) = x
last(let x = b in e end) = last(e)

Definition 5. A flow F is safe if and only if, for all x = b in P,

1. if b is e, then F (x) = F (last(e)).
2. if b is fn y => e, then F (x) ≥ {fn y => e}.
3. if b is y z, then for all fn w => e ∈ F (y),

a) F (w) ≥ F (z), and
b) F (x) ≥ F (last(e))

4. if b is C y, then F (C) ≥ F (y).
5. if b is x = case y of . . . | Ci zi => ei | . . ., then for all i,

a) F (zi) = F (Ci), and
b) F (x) ≥ F (last(ei))

6. if b is (. . . , yi, . . .), then F (x) = (. . . , F (yi), . . .).
7. if b is #i y and F (y) = (. . . , ai, . . .) then F (x) = ai.
8. if b is raise y then F (packet) ≥ Fy.
9. if b is e1 handle z => e2 then F (z) ≥ F (packet), F (x) ≥ F (last(e1)),

and F (x) ≥ F (last(e2)).

Fig. 3. Safety constraints on flows.

The constraints are standard for a monovariant control-flow analysis [9,17]
with the following two exceptions. First, rule 4 merges all arguments to a con-
structor. This is to avoid introducing recursive coercions, and to reduce the
number of coercions performed at runtime. Second, we use “=” instead of “≥”
in some flow constraints to simplify the specification of the translation, although
it is straightforward to incorporate the extra generality in practice. One can also
prove that for any program, there is a minimum safe flow; this corresponds to the
usual 0CFA. Another example of a safe flow is the unification-based flow analysis
described by Henglein [11] and used by Tolmach and Oliva [26]. We can view
this analysis as adhering to the safety constraints in Figure 3 with containment
(≥) replaced by equality in the rules.

62 H. Cejtin, S. Jagannathan, and S. Weeks

4 Closure Conversion

Given a safe flow F for the following source program:

let . . . (datatype t = . . . | C of τ| . . .) . . . in e end

the closure conversion algorithm produces the following target program:

let datatype t = . . . | C of T (F (C))| . . .
. . .
datatype T (L) = . . . | C(L, fn x => e) of (. . . * T (F (yi)) * . . .)| . . .
. . .

in let . . .
fun N (fn x => e)(r, x) = let . . . yi = #i r . . . in [[e]] end
. . .

in [[e]]
end

end

The translation inserts one datatype declaration for each set L that appears in
the range of F , with one constructor for each λ-expression in L. We write T (L)
to denote the new datatype for L and C(L, fn x => e) to denote the name of the
constructor corresponding to fn x => e ∈ L. The constructor’s argument has the
type of the tuple of free variables of fn x => e, that is (. . . , yi, . . .). We extend T
to abstract values by defining T (t) = t and T ((. . . , ai, . . .)) = . . . * T (ai) * . . .

The translation also creates one function declaration for each λ-expression
that occurs in the source program. The name of the target language first-order
function for fn x => e is denoted by N (fn x => e). Each function extracts all
the free variables of the closure record passed as the first argument, and then
continues with the translated body.

The translation uses auxiliary functions [[•]] : Exp → Exp and [[•]]x : Bind →
Bind, which appear in Figure 4. The interesting cases in the translation are for
λ-expressions and application. Rule 2b builds a closure record by applying the
appropriate constructor to the tuple of the procedure’s free variables. Rule 2c
translates an application to a dispatch on the closure record of the procedure
being applied. Because the safety constraints only require containment instead
of equality, the translation inserts coercions at program points where the flow
becomes less precise.

The coercion function X , defined in Figure 4, changes the representation of a
value from a more precise to a less precise type. For example, the translation of
an application may require coercions at two points. First, if the abstract value
of the argument is more precise than the formal, a coercion is inserted to change
the argument’s type to the formal’s. Second, a coercion is required if the abstract
value of the result is more precise than the abstract value of variable to which
it becomes bound.

Flow-Directed Closure Conversion for Typed Languages 63

1. a) [[let x = b in e end]] = let x = [[b]]x in [[e]] end
b) [[x]] = x

2. a) [[e]]x = [[e]]
b) [[fn w => e]]x = C(. . . , y, . . .),

where C = C(F (x), fn w => e) and FV(fn w => e) = . . . y
c) [[y z]]x = case y of

. . .
| C(F (y), fn w => e) r => let z′ = X (z,F (z),F (w))

v = N (fn w => e)(r, z′)
v′ = X (v,F (last(e)),F (x))

in v′

end
. . .

where there is one branch for each fn w => e ∈ F (y) and z′, v, and v′ are
fresh.

d) [[C y]]x = let y′ = X (y,F (y),F (C))
r = C y′

in r
end

where y′ and r are fresh variables.
e) [[case y of . . . | C z => e | . . .]]x =

case y of
. . .
| C z => let r = [[e]]

r′ = X (r,F (last(e)),F (x))
in r′

end
. . .

where r, r′ are fresh variables.
f) [[(. . . , y, . . .)]]x = (. . . , y, . . .)
g) [[#i y]]x = #i y
h) [[raise y]]x = raise y
i) [[e1 handle z => e2]]x = let y1= [[e1]]

y2= X (y1,F (last(e1)),F (x))
in y2 end
handle z => let y3= e2

y4= X (y2,F (last(e2)),F (last(x)))
in y4 end

Fig. 4. Closure conversion of expressions.

4.1 Practical Issues

Although for a simple type system we must express coercions as a case expres-
sion with each arm simply changing the constructor (and the type) representing
the closure, it is easy to pick an underlying representation for these datatypes
so that no machine code actually has to be generated. In terms of the under-
lying memory objects, all coercions are the identity. If these datatypes are all

64 H. Cejtin, S. Jagannathan, and S. Weeks

We define X : Var × AVal × AVal → Bind by cases on abstract values. (Note,
X (x, a, a′) is only defined when a ≤ a′.)

1. if a = a′ then X (x, a, a′) = x.
2. X (x, (. . . , ai, . . .), (. . . , a′

i, . . .)) = let . . .
yi = #i x
y′

i = X (yi, ai, a
′
i)

. . .
z′ = (. . . , y′

i, . . .)
in z′

end
where z′, . . . , yi, y

′
i, . . . are fresh variables.

3. X (x, L, L′) = case x of
. . .
| C(L, fn x => e) r => C(L′, fn x => e) r
. . .

where there is one branch for each fn x => e ∈ L.

Fig. 5. The coercion function.

represented as a tag word (whose only function is to distinguish between the
summands forming the datatype) followed by some fixed representation of the
value being carried by that summand, then the only thing which might be chan-
ged by the coercion function is the tag word. It is thus easy to pick the tags so
that they also don’t change (for instance, use the address for the code of the
procedure). However, we do not do this in MLton. As shown in Section 6, dy-
namic counts indicate coercions are so rare that their cost is unimportant. The
advantage of allowing the coercions to change representations is that one can
choose specialized representations for environment records.

The closure conversion algorithm is designed to be safe-for-space [1]. Note
that each closure record is destructed at the beginning of each first order func-
tion. The alternative of replacing each reference to a closed-over variable with a
selection from the closure record violates space safety because it keeps the entire
record alive. Another possible violation is rule 2c, which can turn a tail-call into
a non-tail-call by requiring a coercion after the call. However, since each such
coercion corresponds to a step up the lattice of abstract values which is of finite
height, the space usage of the program can only increase by a constant factor.

Finally, it is possible to share all of the dispatches generated for calls to a
given set of λ-expressions. However, MLton does not do this, since it has not
been necessary for performance.

Flow-Directed Closure Conversion for Typed Languages 65

5 Example

Consider the example in Figure 6.

let f = fn a => fn b => a
g = fn c => fn d => d
h = case ... of

...⇒ f

...⇒ g
m = h 13
= m 7

(a) Source program

F (f) = {fn a}
F (g) = {fn c}
F (h) = {fn a, fn c}
F (m) = {fn b, fn d}

(b) Flow

datatype t1 = C1 of unit (* fn a *)
datatype t2 = C2 of int (* fn b *)
datatype t3 = C3 of unit (* fn c *)
datatype t4 = C4 of unit (* fn d *)
datatype t5 = C5 of unit (* fn a ∈ F(h) *)

| C6 of unit(* fn c ∈ F(h) *)
datatype t6 = C7 of int (* fn b ∈ F(m) *)

| C8 of unit(* fn d ∈ F(m) *)
fun F (r, a) = C2 a (* fn a *)
fun F’ (r, b) =

let a = #1 r in a end (* code: fn b *)
fun G (r, c) = C4 () (* code: fn c *)
fun G’ (r, d) = d (* code: fn d *)
val f = C1()
val g = C3()
val h = case ... of

...⇒ case f of C1 r ⇒ C5 r

...⇒ case g of C3 r ⇒ C6 r
val m = case h of

C5 r ⇒(case F (r, 13) of C2 r ⇒ C7 r)
| C6 r ⇒(case G (r, 13) of C4 r ⇒ C8 r)

val = case m of
C7 r ⇒ F’ (r, 7)

| C8 r ⇒ G’ (r, 7)

(c) Target program

Fig. 6. Example.

The source appears in part (a), the 0CFA flow is in part (b), and the result
of closure conversion appears in part (c). We use fn a to represent the entire λ-
expression beginning with fn a. Consider the translation of the last expression,
the call to m. Since m may be bound to a procedure corresponding to fn b or
fn d, the call must dispatch appropriately. For the expression which defines h,
each branch of the case-expression must coerce a procedure corresponding to
a known λ-expression to one which is associated with an element of {fn a, fn
c}. In the expression defining m, both a dispatch and a coercion occur: first a
dispatch based on the λ-expression which provides the code for the h is required.
Then, each arm of this case expression must coerce the result (a function with
known code) to one associated with either fn b or fn d.

66 H. Cejtin, S. Jagannathan, and S. Weeks

6 Experiments

We have have implemented the algorithm as part of MLton, a whole-program
compiler for Standard ML. MLton does not support separate compilation, and
takes advantage of whole program information in order to perform many opti-
mizations. Here, we give a brief overview of the relevant compiler passes and
intermediate languages. First, MLton translates the input SML program into
an explicitly-typed, polymorphic intermediate language (XML)[8]. XML does
not have any module level constructs. All functor applications are performed at
compile-time[6], and all uses of structures and signatures are eliminated by mo-
ving declarations to the top-level and appropriately renaming variables. Next,
MLton translates the XML to SXML (a simply-typed language) by monomor-
phisation, eliminating all uses of polymorphism by duplicating each polymorphic
expression for each monotype at which it is used. After monomorphisation, small
higher-order functions are duplicated; a size metric is used to prevent excessive
code growth. MLton then performs flow analysis as described in Section 3 on the
resulting SXML, and closure converts procedures to FOL (a first-order simply-
typed language) via the algorithm described in Section 4. After a series of opti-
mizations (e.g., inlining, tuple flattening, redundant argument elimination, and
loop invariant code motion), the FOL program is translated to a C program,
which is then compiled by gcc. Like [22], a trampoline is used to satisfy tail-
recursion. To reduce trampoline costs, multiple FOL procedures may reside in
the same C procedure; a dispatch on C procedure entry jumps to the appropriate
code [7].

To demonstrate the practicality of our approach, we have measured its im-
pact on compile time and code size for benchmarks with sizes up to 75K lines.
Among the benchmarks, knuth-bendix, life, lexgen, mlyacc, and simple are
standard [1]; ratio-regions is integer intensive; tensor is floating-point inten-
sive, and count-graphs is mostly symbolic2. MLton is the compiler itself, and
kit is the ML-kit [25,24]. The benchmarks were executed on a 450 MHz Intel
Xeon with 1 GB of memory.

In Table 1, we give the number of lines of SML for each benchmark, along
with compile times both under SML/NJ (version 110.9.1)3 and MLton. The
number of lines does not include approximately 8000 lines of basis library code
that MLton prefixes to each program. The compile time given for SML/NJ is the
time to batch compile the entire program. In order to improve the performance
of the code generated by SML/NJ, the entire program is wrapped in a local
declaration whose body performs an exportFn. For MLton, we give the total
compile time, the time taken by flow analysis and closure conversion, and the
percentage of compile time spent by gcc to compile the C code.

The flow analysis times are shorter than previous work [2,10,4] would suggest,
for several reasons. First, the sets of abstract values are implemented using hash
2 ratio-regions was written by Jeff Siskind (qobi@research.nj.nec.com), tensor

was written by Juan Jose Garcia Ripoll (worm@arrakis.es), and count-graphs was
written by Henry Cejtin (henry@clairv.com).

3 Except for the kit which is run under SML/NJ version 110.0.3 because 110.9.1
incorrectly rejects the kit as being ill-typed.

Flow-Directed Closure Conversion for Typed Languages 67

consing and the binary operations (in particular set union) are cached to avoid
re-computation. Second, because of monomorphisation, running 0CFA on SXML
is equivalent to the polyvariant analysis given in [12]. Thus, it is more precise
than 0CFA performed directly on the (non-monomorphised) source alone, and
hence fewer set operations are performed. Third, the analysis only tracks higher-
order values. Finally, the analysis is less precise for datatypes than the usual
birthplace[13] approach (see rules 4 and 5a in Figure 3). Also, unlike earlier
attempts to demonstrate the feasibility of 0CFA [20] which were limited to small
programs or intramodule analysis, our benchmarks confirm that flow analysis is
practical for programs even in excess of 50K lines.

MLton compile-times are longer than SML/NJ. However, note that the ratio
of MLton’s to SML/NJ’s compile-time does not increase as program size increa-
ses. We believe MLton’s compile-time is in practice linear. In fact, gcc is a major
component of MLton’s compile-time, especially on large programs. We expect a
native back-end to remove much of this time.

Table 2 gives various dynamic counts for these benchmarks to quantify the
cost of closure conversion. To make the presentation tractable, the entries are
in millions per second of the running time of the program. Nonzero entries less
than .01 are written as ˜0. SXML Known and Unknown measure the number of
known and unknown procedure calls identified in the SXML program using only
syntactic heuristics [1]. FOL Known indicates the number of known procedure
calls remaining in the FOL program after flow analysis and all optimizations on
the FOL program have been performed. The difference between SXML and FOL
Known is due to inlining and code simplificaton. Dispatch indicates the number
of case expressions introduced in the FOL program to express procedure calls
where the flow set is not a singleton. Thus, the difference between Dispatch
and Unknown gives a rough measure of the effectiveness of flow analysis above
syntactic analyses in identifying the procedures applied at call-sites. Finally,

Table 1. Program sizes (lines) and compile times (seconds).

lines MLton
Program SML SML/NJ Total Flow Convert gcc%
count-graphs 204 1.2 4.02 .01 .25 38%
kit 73489 1375.75 2456.39 1.34 27.96 82%
knuth-bendix 606 2.7 6.55 .01 .32 47%
lexgen 1329 4.5 19.52 .03 .78 53%
life 161 .9 3.2 .01 .16 41%
MLton 47768 637.5 1672.0 1.94 33.84 81%
mlyacc 7297 30.1 144.86 .10 2.34 38%
ratio-regions 627 2.2 6.22 .01 .35 34%
simple 935 4.7 34.11 .04 .87 54%
tensor 2120 9.7 10.12 .03 .32 30%
tsp 495 .8 3.56 .01 .22 30%

68 H. Cejtin, S. Jagannathan, and S. Weeks

Table 2. Dynamic counts (millions/second).

SXML FOL
Program Known Unknown Known Dispatch Coerce
count-graphs 60.2 ˜0 1.0 0 0
kit 13.1 .11 5.8 .02 ˜0
knuth-bendix 28.8 ˜0 11.3 ˜0 0
lexgen 63.4 2.68 15.4 ˜0 0
life 28.4 0 22.3 0 0
MLton 14.5 .48 5.2 .34 .01
mlyacc 37.5 .03 10.6 ˜0 0
ratio-regions 119.4 0 14.3 0 0
simple 34.2 .26 6.2 .26 0
tensor 140.6 ˜0 7.6 ˜0 0
tsp 34.5 ˜0 3.4 ˜0 0

Coerce indicates the number of coercions performed on closure tags to ensure
that the closure’s type adheres to the appropriate flow set.

For most benchmarks, monomorphisation, and aggressive syntactic inlining
make most calls known. However, for several of the benchmarks, there still remain
a significant number of unknown calls. Flow analysis uniformly helps in reducing
this number. Indeed, the number of dispatches caused by imprecision in the
analysis is always less than 5% of the number of calls executed. Notice also that
the number of coercions performed is zero for the majority of the benchmarks;
this means imprecision in the flow analysis rarely results in unwanted merging
of closures with different representations.

Table 3 gives runtime results for both SML/NJ and MLton. Of course, be-
cause the two systems have completely different compilation strategies, optimi-
zers, backends, and runtime systems, these numbers do not isolate the perfor-
mance of our closure conversion algorithm. However, they certainly demonstrate
its feasibility.

Table 3. Runtimes (in seconds) and ratio of SML/NJ to MLton.

Program SML/NJ (sec) MLton (sec) NJ/MLton
count-graphs 28.8 11.9 2.40
kit 27.5 30.9 .89
knuth-bendix 44.1 15.2 2.90
lexgen 52.7 31.8 1.66
life 51.5 54.2 .95
MLton 198.7 101.3 1.96
mlyacc 43.4 20.6 2.11
ratio-regions 122.5 18.9 6.48
simple 25.3 18.4 1.38
tensor 154.4 19.8 7.78
tsp 191.7 25.4 7.54

Flow-Directed Closure Conversion for Typed Languages 69

7 Related Work and Conclusions

Closure conversion algorithms for untyped target languages have been explored
in detail [1,21]. Algorithms that use a typed target language, however, must solve
the problem created when procedures of the same type differ in the number and
types of their free variables. Since closure conversion exposes the types of these
variables through an explicit environment record, procedures having the same
source-level type may compile to closures of different types. Minamide et al. [16]
address this problem by defining a new type system for the target language that
uses an existential type to hide the environment component of a closure record
in the closure’s type, exposing the environment only at calls. Unfortunately, the
target language is more complex than the simply-typed λ-calculus and makes
it difficult to express control-flow information. For example, the type system
prevents expressing optimizations that impose specialized calling conventions
for different closures applied at a given call-site.

An alternative to Minamide et al.’s solution was proposed by Bell et al. [3].
Their approach has the benefit of using a simply-typed target language, but
does not express control-flow information in the target program. Inspired by a
technique first described by Reynolds [19], they suggest representing closures
as members of a datatype, with one datatype for each different arrow type in
the source program. Tolmach and Oliva [26] extend Bell et al. by using a weak
monovariant flow analysis based on type inference [11]. They refine the closure
datatypes so that there is one datatype for each equivalence class of procedures
as determined by unification. Although their approach does express flow ana-
lysis in a simply-typed target language, it is restricted to flow analyses based
on unification. We differ from these approaches by using datatype coercions to
produce a simply-typed target program and in our use of 0CFA.

Dimock et al. [5] describe a flow-directed representation analysis that can
be used to drive closure conversion optimizations. Flow information is encoded
in the type system through the use of intersection and union types. Like our
work, their system supports multiple closure representations in a strongly-typed
context. However, they support only a limited number of representation choices,
and rely critically on a more complex type system to express these choices. Our
work also uses flow information to make closure representation decisions, but
does so within a simply-typed λ calculus.

Palsberg and O’Keefe[18] define a type system that accepts the same set
of programs as 0CFA viewed as safety analysis. Their type system is based
on simple types, recursive types, and subtyping. Although they do not discuss
closure conversion, our coercions correspond closely to their use of subtyping.
By inserting coercions, we remove the need for subtyping in the target language,
and can use a simpler language based on simple types, sum types, and recursive
types.

Our work is also related to other compiler efforts based on typed intermediate
representations [23,14]. Besides helping to verify the implementation of compi-
ler optimizations by detecting transformations that violate type safety, typed
intermediate languages expose representations (through types) useful for code
generation. For example, datatypes in the target language describe environment

70 H. Cejtin, S. Jagannathan, and S. Weeks

representations as determined by flow analysis on the source language. Types
therefore provide a useful bridge to communicate information across different
compiler passes.

The results of our flow-directed closure conversion translation in MLton de-
monstrate the following:

1. First-order simply-typed intermediate languages are an effective tool for
compilation of languages like ML.

2. The coercions and dispatches introduced by flow-directed closure conversion
have negligible runtime cost.

3. Contrary to folklore, OCFA can be implemented to have negligible compile-
time cost, even for large programs.

References

1. Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
1992.

2. J. Michael Ashley. A practical and flexible flow analysis for higher-order langua-
ges. In ACM Symposium on Principles of Programming Languages, pages 195–207,
January 1996.

3. Jeffrey M. Bell, Françoise Bellegarde, and James Hook. Type-driven defunctiona-
lization. In Proceedings of the 1997 ACM SIGPLAN International Conference on
Functional Programming, pages 25–37, Amsterdam, The Netherlands, 9–11 June
1997.

4. Greg Defouw, David Grove, and Craig Chambers. Fast interprocedural class analy-
sis. In ACM Symposium on Principles of Programming Languages, pages 222–236,
January 1998.

5. Allyn Dimock, Robert Muller, Franklyn Turback, and J.B. Wells. Strongly-typed
flow-directed representation transformations. In International Conference on Fun-
ctional Programming, June 1997.

6. Matrin Elsman. Static interpretation of modules. In International Conference on
Functional Programming, September 1999.

7. Marc Feeley, James Miller, Guillermo Rozas, and Jason Wilson. Compiling higher-
order languages into fully tail-recursive portable c. Technical Report Technical
Report 1078, Department of Computer Science, University of Montreal, 1997.

8. Robert Harper and John C. Mitchell. On the type structure of Standard ML. ACM
Transactions on Programming Languages and Systems, 15(2):211–252, April 1993.

9. Nevin Heintze. Set-based analysis of ML programs. In ACM Conference on LISP
and Functional Programming, pages 306–317, 1994.

10. Nevin Heintze and David A. McAllester. Linear-time subtransitive control flow
analysis. In Proceedings of the ACM SIGPLAN’97 Conference on Programming
Language Design and Implementation (PLDI), pages 261–272, Las Vegas, Nevada,
15–18 June 1997. SIGPLAN Notices 32(5), May 1997.

11. Fritz Henglein. Simple closure analysis. Technical Report D-193, Department of
Computer Science, University of Copenhagen, March 1992.

12. Suresh Jagannathan, Stephen T. Weeks, and Andrew K. Wright. Type-directed
flow analysis for typed intermediate languages. In International Static Analysis
Symposium, September 1997.

Flow-Directed Closure Conversion for Typed Languages 71

13. Neil D. Jones and Stephen S. Muchnick. Flow Analysis and Optimization of LISP-
like Structures, chapter 4, pages 102–131. Prentice–Hall, 1981.

14. Simon L. Peyton Jones, John Launchbury, Mark Shields, and Andrew Tolmach.
Bridging the gulf: a common intermediate language for ML and Haskell. In ACM
Symposium on Principles of Programming Languages, pages 49–51, January 1998.

15. Robin Milner, Mads Tofte, Robert Harper, and David B. Macqueen. The Definition
of Standard ML (Revised). MIT Press, 1997.

16. Yasuhiko Minamide, J. Gregory Morrisett, and Robert Harper. Typed closure
conversion. In ACM Symposium on Principles of Programming Languages, pages
271–283, St. Petersburg, FL, January 1996.

17. Jens Palsberg. Closure analysis in constraint form. ACM Transactions on Pro-
gramming Languages and Systems, 17(1):47–62, January 1995.

18. Jens Palsberg and Patrick O’Keefe. A type system equivalent to flow analysis.
ACM Transactions on Programming Languages and Systems, 17(4):576–599, July
1995. Preliminary version in Principles of Programming Languages, pages 367–378,
January 1995.

19. John C. Reynolds. Definitional interpreters for higher-order programming langua-
ges. In ACM Annual Conference, pages 717–740, 1972.

20. Manuel Serrano and Pierre Weis. 1 + 1 = 1: an optimizing Caml compiler. In
Workshop on ML and its applications, Orlando, Florida, June 1994. ACM SIG-
PLAN. Also appears as INRIA RR-2301.

21. Zhong Shao and Andrew W. Appel. Space-efficient closure representations. In
ACM Conference on LISP and Functional Programming, pages 150–161, Orlando,
FL, Jun 1994.

22. David Tarditi, Anurag Acharya, and Peter Lee. No assembly required: Compiling
Standard ML to C. ACM Letters on Programming Languages and Systems, June
1992. Appears as CMU-CS-90-187.

23. David Tarditi, J. Gregory Morrisett, Perry Cheng, Chris Stone, Robert Harper, and
Peter Lee. TIL: A type-directed optimizing compiler for ML. In ACM Conference
on Programming Language Design and Implementation, May 1996.

24. Mads Tofte and Lars Birkedal. A region inference algorithm. Transactions on
Programming Languages and Systems, 20(4):724–767, 1998.

25. Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Olesen, Peter
Sestoft, and Peter Bertelsen. Programming with regions in the ML Kit. Techni-
cal Report Technical Report DIKU-TR-97/12, Department of Computer Science,
University of Copenhagen, 1997.

26. Andrew Tolmach and Dino Oliva. From ML to Ada: Strongly-typed langu-
age interoperability via source translation. Journal of Functional Programming,
8(4):367–412, July 1998.

Directional Type Checking for Logic Programs:
Beyond Discriminative Types

Witold Charatonik

Max-Planck-Institut für Informatik
Im Stadtwald, 66123 Saarbrücken, Germany

www.mpi-sb.mpg.de/˜witold
and

University of Wroc law, Poland

Abstract. Directional types form a type system for logic programs
which is based on the view of a predicate as a directional procedure
which, when applied to a tuple of input terms, generates a tuple of output
terms. It is known that directional-type checking wrt. arbitrary types is
undecidable; several authors proved decidability of the problem wrt. di-
scriminative regular types. In this paper, using techniques based on tree
automata, we show that directional-type checking for logic programs wrt.
general regular types is Dexptime-complete and fixed-parameter linear.
The latter result shows that despite the exponential lower bound, the
type system might be usable in practice.

Keywords: types in logic programming, directional types, regular types,
tree automata.

1 Introduction

It is commonly agreed that types are useful in programming languages. They help
understanding programs, detecting errors or automatically performing various
optimizations. Although most logic programming systems are untyped, a lot of
research on types in logic programming has been done [33].

Regular types. Probably the most popular approach to types in logic pro-
gramming uses regular types, which are sets of ground terms recognized by fi-
nite tree automata (in several papers, including this one, this notion is extended
to non-ground terms). Intuitively, regular sets are finitely representable sets of
terms, just as in case of regular sets of words, which are finitely representable
by finite word automata.

Actually, almost all type systems occurring in the literature are based on
some kinds of regular grammars which give a very natural (if not the only) way
to effectively represent interesting infinite collections of terms that denote e.g.
lists or other recursive data structures. Of course some of them use extensions
of regular sets with non-regular domains like numbers (see the discussion in
Section 3.3), nonground terms (where all types restricted to ground terms are

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 72–87, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

www.mpi-sb.mpg.de/~witold

Directional Type Checking for Logic Programs 73

regular), polymorphism (where all monotypes, that is ground instances of po-
lymorphic types, are regular). Very few systems go further beyond regular sets
(and usually say nothing about computability issues for combining types).

Prescriptive and descriptive approaches. There are two main streams
in the research on types in logic programming. In the prescriptive stream the
user has to provide type declarations for predicates; these declarations form an
integral part of the program. The system then checks if the program is well-
typed, that is, if the type declarations are consistent. The present paper falls
into the prescriptive stream.

In the descriptive stream the types are inferred by the system and used to
describe semantic properties of untyped programs. The basic idea here is to over-
approximate the least model of a given program by a regular set. This approach
can be found in particular in [30,39,25,19,16,26,21,17], or, using a type-graph
representation of regular sets (a type graph may be seen as a deterministic top-
down tree automaton), in [29,28]. An advantage of the descriptive approach is
that there is no need for type declarations; a disadvantage is that the inferred
types may not correspond to the intent of the programmer.

The approximation of the least model of the program by a regular set is
often not as precise as one would expect. A typical example here is a clause
append([], L, L). Most of the systems approximate the success set of this clause
by the set of triples 〈[], x, y〉 where x and y are any terms and thus loose the infor-
mation that a second and third argument are of the same type. To overcome this
problem, [24,20] introduced approximations based on magic-set transformation
of the input program. It was observed in [12] that types of the magic-set trans-
formation of a program coincide with directional types of the initial program as
they appear in [35,8,4,2,1,3,6,5,7].

Directional types. Directional types form a type system for logic programs
which is based on the view of a predicate as a directional procedure which, when
applied to a tuple of input terms, generates a tuple of output terms. They first
occurred in [35] as predicate profiles and in [8] as mode dependencies. Our use
of the terminology “directional type” stems from [1].

Discriminative types. In most type systems for logic programs that are ba-
sed on regular types, the types are restricted to be discriminative (equivalently,
path-closed or tuple-distributive or recognizable by deterministic top-down tree
automata). The reason for that is probably a hope for better efficiency or concep-
tual simplicity of such approach. Unfortunately, discriminative sets are closed
under neither union nor complementation. A union of two discriminative sets
is then approximated by a least discriminative set that contains both of them,
but then the distributivity laws for union and intersection do not hold anymore.
This is very unintuitive and has lead already to several wrong results. One of the
results of this paper is that in the context of directional types the restriction to
discriminative types, at least theoretically, does not pay: the exponential lower
bound for the discriminative case is matched by the exponential upper bound
for the general case. In fact, as shown in [14], even stronger restriction to unary
types (where all paths in a tree are disconnected from each other, see e.g. [39])

74 W. Charatonik

is not worth it, since type checking problem (even for non-directional types)
remains hard for Dexptime.

Complexity of type checking. The exponential lower bound of the type-
checking problem looks quite discouraging at the first view. A closer look into the
proof of the lower bound shows that the program used there was very short while
the types were quite large (the encoding of the Turing-machine computation was
done in the types, not in the program). The situation in practice looks usually
quite opposite: the type-checking problems are usually applied to large programs
and rather small types. This lead us to study the parameterized complexity of the
problem, where the parameter is given by the length of the type to be checked.
We obtained here quite a nice result: the problem is fixed-parameter linear,
which means that for a fixed family of types the type-checking problem can be
decided in time linear in the size of the program. This shows that there is a good
potential for the type system to be practical. A similar phenomenon is known
already for the functional language ML where bad theoretical lower bounds do
not match good practical behaviour of the time system. The explanation was
given by Henglein [27] who showed that typability by types of size bounded by
constant is polynomial time decidable.

Related work. It is pointed out in [1] that the type checking problem is unde-
cidable for arbitrary directional types. Therefore Aiken and Lakshman restrict
themselves to regular directional types. Although their algorithm for automatic
type checking is sound for general regular types, it is sound and complete only for
discriminative ones. It is based on solving negative set constraints and thus runs
in nondeterministic exponential time. Another algorithm (without complexity
analysis) for type-checking for discriminative directional types is given in [5].
In [12] it is proved that directional type checking wrt. discriminative types is
DEXPTIME-complete and an algorithm for inferring (regular, not necessarily
discriminative) directional types is given.

Rychlikowski and Truderung [36] proposed recently a system of polymorphic
directional types. The types there are incomparable with ours: on one hand
they are more general because of the use of the polymorphism; on the other
hand they are even more restricted than regular discriminative types (e.g. they
are not able to express lists of an even length). The authors presented a type-
checking algorithm working in Dexptime, but probably the most interesting
feature of this system is the inference of so-called main type of a predicate —
the type that provides a compact representation of all types of the predicate.

Our results. The methods used in the mentioned papers are not strong
enough to prove the decidability of directional type checking wrt. general re-
gular types. In this paper, using tree-automata techniques, we prove that this
problem is decidable in Dexptime, which, together with the result from [12] sta-
ting DEXPTIME-hardness, establishes DEXPTIME-completeness of the problem.
Moreover, we show that the problem is fixed-parameter linear – our procedure is
exponential in the size of the input types, but linear in the size of the program.
This improves the results by Aiken and Lakshman [1], Boye [5], and Charatonik
and Podelski [12], where decidability is restricted to discriminative types.

Directional Type Checking for Logic Programs 75

Decidability of directional type checking wrt. general regular types has al-
ready a quite long history. It was first proved [11] by a reduction to the encom-
passment theory [9]. The result was not satisfactory because of the complexity of
the obtained procedure: several (around five) times exponential. In [10] we found
another solution based on a different kind of automata and reduced the comple-
xity to NEXPTIME. The proof presented here is a refinement of the argument
from [10].

2 Preliminaries

If Σ is a signature (that is, set of function symbols) and Var is a set of variables
then TΣ is the set of ground terms and TΣ(Var) is the set of non-ground terms
over Σ and Var. We write Var(t) for the set of variables occurring in the term t.
The notation |S| is used, depending on the context, for the cardinality of the set
S or for the size of the object S (that is, the length of the word encoding S).

2.1 Tree Automata

The methods we use are based on tree-automata techniques. Standard techni-
ques as well as all well-known results that we mention here can be found e.g.
in [22,15,38]. Below we recall basic notions in this area.

Definition 1 (Tree automaton). A tree automaton is a tuple A =
〈Σ, Q, ∆, F 〉 where Σ, Q, ∆, F are finite sets such that

– Σ is a signature,
– Q is a finite set of states,
– ∆ is set of transitions of the form f(q1, . . . , qn) → q where f ∈ Σ,

q, q1, . . . , qn ∈ Q and n is the arity of f ,
– F ⊆ Q is a set of final states.

The automaton A is called

– bottom-up deterministic, if for all f ∈ Σ and all sequences q1, . . . , qn ∈ Q
there exists at most one q ∈ Q such that f(q1, . . . , qn)→ q ∈ ∆,

– top-down1 deterministic if |F | = 1 and for all f ∈ Σ and all q ∈ Q there
exists at most one sequence q1, . . . , qn ∈ Q such that f(q1, . . . , qn)→ q ∈ ∆,

– complete, if for all f ∈ Σ and all sequences q1, . . . , qn ∈ Q there exists at
least one q ∈ Q such that f(q1, . . . , qn)→ q ∈ ∆.

A tree automatonA = 〈Σ, Q, ∆, F 〉 translates to a logic program containing a
clause q(f(x1, . . . , xn))← q1(x1), . . . , qn(xn) for each transition f(q1, . . . , qn)→
q ∈ ∆, where one is interested only in queries about the predicates in F .
1 Intuitively, a top-down automaton reads trees top-down, and thus F is here the set

of initial (not final) states.

76 W. Charatonik

Definition 2 (Run). A run of a tree automaton A = 〈Σ, Q, ∆, F 〉 on a tree t ∈
TΣ is a mapping ρ assigning a state to each occurrence of a subterm f(t1, . . . , tn)
of t such that

f(ρ(t1), . . . , ρ(tn))→ ρ(f(t1, . . . , tn)) ∈ ∆.

A run ρ on t is successful if ρ(t) ∈ F .

Sometimes we will refer to runs over terms in TΣ∪Q. We then extend the
definition above by putting ρ(q) = q for all states in Q.

If there exists a successful run on a tree t then we say that the automaton
accepts, or recognizes, t. The set of all trees accepted by an automaton A,
denoted L(A), is called the language of the automaton A, or the set recognized
by this automaton. A set of trees is called regular if it is recognized by some tree
automaton.

A state q of the automaton A is called [bottom-up] reachable if there exists
a tree t ∈ TΣ and a run ρ of A on t such that ρ(t) = q.

It is well-known (cf. [22,15,38]) that regular languages are closed under Boo-
lean operations: one can effectively construct in polynomial time an automaton
that recognizes union or intersection of given two regular languages, and in expo-
nential time an automaton that recognizes complement. In polynomial time one
can compute the set of reachable states and thus test emptiness of the language
recognized by a given automaton. In exponential time one can determinize an
automaton, that is, construct a bottom-up deterministic automaton that reco-
gnizes the same set. Tree automata are not top-down determinizable.

Example 1. Consider the automaton A = 〈{a, f}, {q0, q1, q}, {a → q0, a →
q1, f(q0, q1) → q}, {q}〉. The run that assigns q0 to the first occurrence of a,
q1 to the second occurrence of a and q to f(a, a) is a successful run of A on
f(a, a). The automaton A is top-down deterministic, is not bottom-up determi-
nistic, and is not complete.

2.2 Directional Types

By logic programs we mean definite horn-clause programs (pure Prolog pro-
grams). For the sake of simplicity we assume that all predicate symbols oc-
curring in this paper are unary (there is no loss of generality since function
symbols may be used to form tuples). The set of predicate symbols occurring in
a program P is denoted Pred(P) or simply Pred if P is clear from the context.
For a program P, lm(P) denotes its least model. For p ∈ Pred(P) we define
[[p]]P = {t | p(t) ∈ lm(P)}.

A type is a set of terms closed under substitution [2]. A ground type is a set of
ground terms (i.e., trees), and thus a special case of a type. A term t has type T ,
in symbols t :T , if t ∈ T . A type judgment is an implication t1 :T1∧ . . .∧ tn :Tn →
t0 :T0. We say that such a judgment holds if the implication t1θ ∈ T1∧ . . .∧tnθ ∈
Tn → t0θ ∈ T0 is true for all term substitutions θ : Var→ TΣ(Var).

We recall that a set of ground terms is regular if it can be defined by a finite
tree automaton (or, equivalently, by a ground set expression as in [1] or a regular
grammar as in [16]). The definition below coincides with the types used in [1], it

Directional Type Checking for Logic Programs 77

extends the definition from [16] by allowing non-ground types, and is equivalent
to the definition from [5].

Definition 3 (Regular type). A type is regular if it is of the form Sat(T) for
a regular set T of ground terms, where the set Sat(T) of terms satisfying T is
the type

Sat(T) = {t ∈ TΣ(Var) | θ(t) ∈ T for all ground substitutions θ : Var→ TΣ}.

Definition 4 (Directional type of a program [8,1]). A directional type of
a program P is a family

T = (Ip → Op)p∈Pred

assigning to each predicate p of P an input type Ip and an output type Op such
that, for each clause p0(t0) ← p1(t1), . . . , pn(tn) of P, the following type judg-
ments hold.

t0 :Ip0 → t1 :Ip1

t0 :Ip0 ∧ t1 :Op1 → t2 :Ip2

...
t0 :Ip0 ∧ t1 :Op1 ∧ . . . ∧ tn−1 :Opn−1 → tn :Ipn

t0 :Ip0 ∧ t1 :Op1 ∧ . . . ∧ tn :Opn
→ t0 :Op0

We then also say that P is well-typed wrt. T .

Following [1] we define that a query q1(t1), . . . , qn(tn) is well-typed if for all
1 ≤ j ≤ n the judgment

∧
1≤k<j ti : Oqi

→ tj : Iqj
holds. It is then easy to

see that “well-typed programs do not go wrong” as defined in [31]. Namely, an
application of one step of SLD-resolution to a well-typed query results always
in a new well-typed query. This does not say, however, anything about whether
the query succeeds, fails or loops.

The definition above refers to the operational semantics of logic programs
based on left to right execution. There is also a more declarative (cf. [32], see
also Theorem 1) intuition behind it: Intuitively, the judgments say that if a
query has the correct input type and its call terminates successfully, then the
computed answer has the correct output type.

Definition 5 (Type checking). The type-checking problem is to decide for a
given program P and directional type T , whether P is well-typed wrt. T .

A program can have many directional types. For example, consider the pre-
dicate append defined by

append([], L, L).
append([X|Xs], Y, [X|Z])← append(Xs, Y, Z).

We can give this predicate the directional type (list, list,>) → (list, list, list),
where list denotes the set of all lists and > is the set of all terms, but also

78 W. Charatonik

(>,>, list) → (list, list, list), as well as (>,>,>) → (>,>,>). (Recall that
append is seen as a unary predicate here, and (list, list, list) is a set of terms
which are triples of lists.) A predicate defined by a single fact p(X) has a direc-
tional type τ → τ for all types τ .

Example 2. We show that (list, list,>) → (list, list, list) well-types the predi-
cate append defined above. For the first clause, append([], L, L), we have to show
only one judgment, namely

append([], L, L) : (list, list,>)→ append([], L, L) : (list, list, list).

The condition we have to check here is a tautology: the assumption that [] is a
member of list implies that [] is a member of list, and the assumption that L is
a member of both list and > implies that L is a member of list. For the second
clause, append([X|Xs], Y, [X|Z])← append(Xs, Y, Z) we have two judgments:

append([X|Xs], Y, [X|Z]) : (list, list,>)→ append(Xs, Y, Z) : (list, list,>),

and

append([X|Xs], Y, [X|Z]) : (list, list,>), append(Xs, Y, Z) : (list, list, list)
→ append([X|Xs], Y, [X|Z]) : (list, list, list).

The first one follows from the observation that if [X|Xs] is a list then Xs is a
list. The second, from the observation that if Z is a list then [X|Z] is a list.

A similar reasoning can be used to show that ((list, list,>)∪ (>,>, list))→
(list, list, list) well-types append. Then both append([a, b, X], [c], L) and
append(X, Y, [a, b, c]) are well-typed queries while append([a], X, Y) is not.

We do not use discriminative types in this paper. We include the definition
below to show what the contribution of the paper is. The notion of a path-closed
set below originates from [22]. It is equivalent to other notions occurring in the
literature: tuple-distributive [30,35], discriminative [1], or deterministic.

Definition 6 (Discriminative type). A regular set of ground terms is called
path-closed if it can be defined by a deterministic top-down tree automaton. A
directional type is called discriminative if it is of the form

(Sat(Ip)→ Sat(Op))p∈Pred,

where the sets Ip, Op are path-closed.

A deterministic top-down tree automaton translates to a logic program which
does not contain two different clauses with the same head (modulo variable
renaming), e.g., p(f(x1, . . . , xn)) ← p1(x1), . . . , pn(xn) and p(f(x1, . . . , xn)) ←
p′
1(x1), . . . , p′

n(xn). A discriminative set expression as defined in [1] translates
to a deterministic finite tree automaton, and vice versa. That is, discriminative
set expressions denote exactly path-closed regular sets. It is argued in [1] that

Directional Type Checking for Logic Programs 79

discriminative set expressions are quite expressive and are used to express com-
monly used data structures. Note that lists, for example, can be defined by the
program with the two clauses list(cons(x, y))← list(y) and list(nil).

There are, however, many regular types which are not discriminative. The
simplest is the set {f(a, a), f(b, b)}. Another simple example of a regular but not
path-closed set is given in Example 2: it is the set consisting of triples 〈x, y, z〉
where either x and y are lists and z is any term or x and y are any terms and
z is a list (which is useful for typing of the predicate append used either for
concatenating of the lists x and y or for splitting the list z).

The use of general regular types has also other advantages: it gives us over-
loading for free. For example, if an operator like + is used in addition of both
integers and reals, the corresponding automaton may have simply both transi-
tions +(int, int)→ expr and +(real, real)→ expr.

Further motivation for studying regular but not discriminative types co-
mes from program verification. Several papers, including [13,23,34] modeled
transition systems as logic programs. In many cases safety properties can be
tested by type checking: it is enough to prove that some predicates have
types of the form Goodstates → Goodstates where Goodstates is a set
which does not contain unsafe states. For example, if we reason about mu-
tual exclusion of two concurrent processes, the set Goodstates could con-
tain three terms: state(noncritical,noncritical), state(noncritical, critical) and
state(critical,noncritical). However, any discriminative set containing both
terms state(noncritical, critical) and state(critical,noncritical) must also con-
tain the term state(critical, critical) and thus we cannot verify mutual exclu-
sion within such a type system. It is known (cf. [13]) that regular (not limited
to discriminative) sets can capture all temporal properties expressible in the lo-
gic CTL for all finite systems as well as for some infinite ones, like pushdown
or some parameterized systems. Since most model-checkers are limited to finite-
state systems, there is a good potential for applications of the logic-programming
approach to the infinite case. But to apply a type system for verification we need
the full power of regular sets.

3 Directional Type Checking

In this section we prove that the directional type checking for logic programs
wrt. general regular types is DEXPTIME-complete and fixed-parameter linear.

We start with recalling a technique used in [12]. We transform the well-
typedness condition in Definition 4 into a logic program PInOut by replacing
t :Ip with the atom pIn(t) and t :Op with pOut(t).

Definition 7 (PInOut, the type program for P). Given a program P, the
corresponding type program PInOut defines an in-predicate pIn and an out-
predicate pOut for each predicate p of P. Namely, for every clause p0(t0) ←
p1(t1), . . . , pn(tn) in P, PInOut contains the n clauses defining in-predicates cor-
responding to each atom in the body of the clause,

80 W. Charatonik

pIn
1 (t1)← pIn

0 (t0)

pIn
2 (t2)← pIn

0 (t0), pOut
1 (t1)

...
pIn

n (tn)← pIn
0 (t0), pOut

1 (t1), . . . , pOut
n−1(tn−1)

and the clause defining the out-predicate corresponding to the head of the clause,

pOut
0 (t0)← pIn

0 (t0), pOut
1 (t1), . . . , pOut

n (tn).

The program above is known in the literature as a magic-set transformation
of the initial program P. It was used (among other things) to obtain more
precise information about answers computed by the program if the queries are
restricted to some specific form. If we denote by PIn a program that defines some
pIn predicates (intuitively, the queries to the program P are then restricted to
those defined in the program PIn) then it is easy to observe that

[[pOut]]PIn∪PInOut
= [[p]]P ∩ [[pIn]]PIn∪PInOut

,

which intuitively means that an atom pOut(t) is in the least model of the trans-
formed program if and only if p(t) is in the least model of the initial program
and pIn(t) is allowed as a query.

The following theorem is proved in [12]. Essentially, it says that a directional
type of the form T = (Sat(Ip)→ Sat(Op))p∈Pred, for ground types Ip, Op ⊆ TΣ ,
satisfies required type judgments if and only if the corresponding directional
ground type Tg = (Ip → Op)p∈Pred does.

Theorem 1 (Types and models of type programs). A program P is well-
typed wrt. the directional type

T = (Sat(Ip)→ Sat(Op))p∈Pred

(with ground types Ip, Op) if and only if the subset of the Herbrand base corre-
sponding to T ,

MT = {pIn(t) | t ∈ Ip} ∪ {pOut(t) | t ∈ Op},

is a model of the type program PInOut.

Note that the theorem above connects directional types with arbitrary mo-
dels of the type program, not only with the least model. Since every clause in
this program contains occurrences of predicates pIn and there are no facts defi-
ning these predicates, the least model is empty, which corresponds to the trivial
directional type ∅ → ∅ (and expresses that a program without input does not
produce output). On the other extremity we have the whole Herbrand base,
which is also a model of the type program and corresponds to the trivial type
> → >.

Directional Type Checking for Logic Programs 81

3.1 Exponential Upper Bound

Note that a subset of the Herbrand base is a model of a logic program if and only
if it is a model of each clause of the program. Thus, as an immediate consequence
of Theorem 1 above we obtain that the type-checking problem for directional
types reduces to the following model-checking problem.

Problem 1. Given a clause p0(t0) ← p1(t1), . . . , pn(tn) and a family of regular
sets Tp0 , Tp1 , . . . , Tpn , decide whether the set

⋃n
i=0{pi(t) | t ∈ Tpi} is a model of

the clause.

The problem above is closely related to another problem known in the theory
of tree automata (in particular, for reasoning about ground reducibility, see [15]),
namely, if for a given term t and regular set T there exists a ground instance of t
in T . We use similar techniques to prove its decidability. However, since we want
to carefully analyze its complexity, we find it easier to present a direct proof
rather than to find a suitable reduction. For the decidability proof we need the
following lemma.

Lemma 1. Let Ai = 〈Σ, Qi, ∆i, Fi〉 for i = 0, . . . , n be tree automata with
disjoint sets of states, and let # 6∈ Σ be a fresh function symbol of arity n + 1.
There exists a tree automaton A = 〈Σ ∪ {#}, Q, ∆, F 〉 such that

– A is bottom-up deterministic, and
– all states of A are reachable, and
– A recognizes the set #(TΣ − L(A0),L(A1), . . . ,L(An)), and
– A can be effectively constructed from A0, . . . ,An in single exponential time.

Proof. The idea of the proof below is to use standard complementation and
determinisation methods to construct an automaton A′ = 〈Σ ∪ {#}, Q′, ∆′, F ′〉
that satisfies all conditions except reachability of states. The only problem here
is that we have to complement and determinize at the same time to avoid a
doubly-exponential blowup. Then we obtain A by removing non-reachable states
from A′. The detailed construction is as follows.

We can assume that A0 is a complete automaton, otherwise we can sim-
ply add a new non-final state q (so-called “dead state”) to Q0 and all possible
transitions with q on the right-hand side to ∆0.

Let Q′ = 2Q0∪...∪Qn ∪ {sfin} be the powerset of Q0 ∪ . . . ∪ Qn plus one
additional state sfin, which is the only final state of A′, that is F ′ = {sfin}. For
s1, . . . , sk ∈ Q′ and k-ary f ∈ Σ we define that f(s1, . . . , sk)→ s ∈ ∆′ if s is the
set

{q ∈ Q0 ∪ . . . ∪Qn | ∃q1 ∈ s1 . . .∃qk ∈ sk f(q1, . . . , qk)→ q ∈ ∆0 ∪ . . . ∪∆n}.
For s0, . . . , sn ∈ Q′ we define that #(s0, . . . , sn)→ sfin ∈ ∆′ if

s0 ∩ F0 = ∅, s1 ∩ F1 6= ∅, . . . , sn ∩ Fn 6= ∅.
Finally we define Q as the set of reachable states from Q′ (it is well-known

that reachability for tree automata can be tested in polynomial time), ∆ as the
restriction of ∆′ to Q, and F as F ′.

82 W. Charatonik

The correctness of the construction follows immediately from the observation
that for i = 0, . . . , n, the automaton

A′
i = 〈Σ ∪ {#}, Q, ∆, {s ∈ Q | s ∩ Fi 6= ∅}〉

recognizes exactly the set L(Ai), and A′
0 restricted to Σ is complete. 2

Decidability of Problem 1. Let the clause p0(t0) ← p1(t1), . . . , pn(tn) and
the family of regular sets Tp0 , Tp1 , . . . , Tpn be an instance of Problem 1. We
did not specify here the formalism in which the sets Tp0 , . . . , Tpn

are given, but
without loss of generality we can assume that the automata recognizing them
are known. The translation from other formalisms like ground set expressions
from [1] or regular grammars from [16] is straightforward.

The idea of the proof is to test the emptiness of the intersection of the automa-
ton constructed in Lemma 1 with the set of instances of the term #(t0, . . . , tn).
Due to non-linear occurrences of variables in #(t0, . . . , tn) this last set is, howe-
ver, not regular. For our purposes it is enough, however, if we assign the same
state of an automaton to each occurrence of the same variable.

Lemma 2. Let A = 〈Σ, Q, ∆, F 〉 be a deterministic bottom-up tree automa-
ton without unreachable states, recognizing #(TΣ−{#} − T0, T1, . . . , Tn), as con-
structed in Lemma 1. Then the set

⋃n
i=0{pi(t) | t ∈ Tpi

} is not a model of
the clause p0(t0) ← p1(t1), . . . , pn(tn) if and only if there exists a mapping
θ : Var(#(t0, . . . , tn)) → Q such that the term #(t0, . . . , tn)θ is accepted by
the automaton A.

Proof. The above set is not a model of the clause if and only if there exists a
substitution σ : Var(#(t0, . . . , tn))→ TΣ−{#} such that t1σ ∈ Tp1 , . . . , tnσ ∈ Tpn

and t0σ 6∈ Tp0 . This is equivalent to the existence of such a σ that the automaton
A accepts the term #(t0, . . . , tn)σ. Thus it is enough to prove the equivalence
of the last condition with the acceptance of #(t0, . . . , tn)θ by A.

Now we prove this equivalence. Suppose that A accepts #(t0, . . . , tn)σ with
a run ρ. Note that by the determinism of A, there is only one possible run of
A on #(t0, . . . , tn)σ, and for each occurrence of xσ the state assigned by ρ is
the same, and thus we can speak about states assigned to terms (as opposed
to occurrences of terms). Taking θ(x) = ρ(σ(x)) we obtain ρ(#(t0, . . . , tn)θ) =
ρ(#(t0, . . . , tn)σ) ∈ F and the automaton accepts #(t0, . . . , tn)θ.

Conversely, suppose there exists θ such that #(t0, . . . , tn)θ is accepted by A.
Since all states in Q are reachable, there exists a tree tx accepted by the state
θ(x). Putting σ(x) = tx for all x ∈ Var(#(t0, . . . , tn)) we obtain a σ such that A
accepts the term #(t0, . . . , tn)σ. 2

Theorem 2. Problem 1 is decidable in DEXPTIME.

Proof. This is a consequence of the Lemma 2 above: there are |Q||Var(#(t0,...,tn))|

possible mappings θ; this number is exponential in the size of the input, since
|Q| is exponential and |Var(#(t0, . . . , tn))| is linear; each such θ can be tested in
polynomial time. 2

The following corollary is a direct consequence of Theorems 1 and 2, and the
DEXPTIME-hardness result from [12].

Directional Type Checking for Logic Programs 83

Corollary 1. Directional type checking for logic programs wrt. arbitrary regular
types is DEXPTIME-complete.

3.2 Parameterized Complexity of Type Checking

Let us recall the Dexptime-hardness proof for the type-checking of logic pro-
grams wrt. discriminative types. It is based on a reduction from the emptin-
ess problem for intersection of deterministic top-down tree automata [37]. It is
shown that the program consisting of a single clause p(X, . . . , X) is well-typed
wrt. (T1, . . . , Tn) → ∅ if and only if the intersection T1 ∩ . . . ∩ Tn is empty. For
the hardness proof the sets T1, . . . , Tn are chosen as discriminative regular sets of
trees, whose intersection encodes computation of an alternating Turing machine
with polynomialy bounded tape.

What strikes in this construction is that the program used here is very short
(it is only one fact) while the types are very large (the encoding of the Turing-
machine computation is done in the types, not in the program). The situation
in practice looks usually quite opposite: the type-checking problems are usually
applied to large programs and rather small types. A natural way to approach
such problem is to study its parameterized complexity [18].

A parameterized problem takes as input a pair 〈x, k〉 where x is a word (in
our case the encoding of a logic program and a directional type) and k is a
positive integer. Such a problem is called fixed-parameter linear if there exists a
function f : N→ N and an algorithm that decides the problem and runs in time
f(k)|x|.

In the formulation of the problems below, |T | denotes the size of T . Formally,
it is the sum of the lengths of the encodings of the automata recognizing the
regular sets occurring in T . Similarly, |T | denotes the size of T (the length of
the encoding of the automaton recognizing T).

Problem 2 (Parameterized type-checking).
Instance: a logic program P and a directional type T
Parameter: |T |
Question: is P well-typed wrt. T ?

Theorem 3. The parametrized type-checking problem is decidable in time
O(c|T | · |P|) for some constant c that does not depend on P.

The proof of this theorem follows directly from Lemma 3

Problem 3 (Parametrized version of Problem 1).
Instance: a clause p0(t0) ← p1(t1), . . . , pn(tn) and a family of regular sets
Tp0 , Tp1 , . . . , Tpn

Parameter:
∑

pi∈{p1,...,pn} |Tpi
|

Question: is the set
⋃n

i=0{pi(t) | t ∈ Tpi
} a model of the clause?

Lemma 3. Problem 3 is decidable in time O(ckm) for some constant c that does
not depend on m, where k is the parameter and m is the size of the clause.

84 W. Charatonik

Proof. The idea is again to use Lemma 2. We use notations from Lemmas 1
and 2. We traverse the term #(t0, . . . , tn) top-down checking which assumptions
have to be made on the value of the run on subterms to make the term accepted
by the automaton. These checks will succeed if the assumptions about the run
on variables give raise to a function from variables to states of the automaton.

Consider a set of pairs of the form {〈q1, s1〉, . . . , 〈qk, sk〉} where qi is a state
of the automaton A and si is a subterm of #(t0, . . . , tn). Intuitively, this set
will express the information “if there exists a run ρ of the automaton A such
that ρ(si) = qi then A accepts #(t0, . . . , tn)”. We call such a set S flat if all
terms occurring in S are variables. A flat set S is inconsistent if it contains two
different pairs 〈q, x〉 and 〈q′, x〉 with the same variable x and different states q, q′;
otherwise it is consistent. A flat and consistent set defines a function assigning
states to variables.

Consider a function check assigning a boolean value to such sets of pairs,
defined recursively as follows.

check(S) =

true, if S flat and consistent
false, if S flat and inconsistent∨
f(q1,...,qk)→q∈∆

check(S − {〈q, f(s1, . . . , sk)〉} ∪ {〈q1, s1〉, . . . , 〈qk, sk〉}),

otherwise

We claim that

1. check({〈sfin, #(t0, . . . , tn)〉}) = true if and only if there exists a function
θ : Var(#(t0, . . . , tn))→ Q such that the term #(t0, . . . , tn)θ is accepted by
the automaton A.

2. the value of check({〈sfin, #(t0, . . . , tn)〉}) can be computed in time
O(|#(t0, . . . , tn)| · |A|)
The first part can be easily proved by induction on the structure of the term

#(t0, . . . , tn). The run of the automaton must assign the final state sfin to the
term #(t0, . . . , tn), which is expressed by the pair 〈sfin, #(t0, . . . , tn)〉; each com-
putation step of the automaton must agree with some transition in ∆, which
is expressed by the disjunction over matching transitions in the definition of
check; finally the condition that θ is a function is expressed by the consistency
of the set S. Note also that by the associativity and commutativity of disjunc-
tion, the value of check does not depend on the choice of the non-flat element
〈q, f(s1, . . . , sn)〉 from S.

For the second part, note that for each subterm s of #(t0, . . . , tn) there are
at most |∆| calls to the function check that correspond to decomposing of the
term s. Since there are exactly |#(t0, . . . , tn)| such subterms, the whole work is
done in time O(|#(t0, . . . , tn)| · |A|). 2

3.3 Incrementality and Infinite Signature

A literal application of the algorithm presented above might lead to the following
problem. Suppose that some program is well-typed and we increment it by adding

Directional Type Checking for Logic Programs 85

a new, completely independent, fragment defining a new predicate. The new
fragment may contain new function symbols, which did not occur in the original
program. Since a signature is a part of the definition of a tree automaton, the
old type-check was done with automata over smaller signature, and one could
argue that now the type-checking procedure has to be rerun from scratch.

However, it is fairly straightforward to extend tree automata to deal with
infinite signature. We can simply consider an infinite signature Σinf containing
Σ, add a new state qany to the automaton and say that the transition relation ∆
implicitly contains all transitions of the form f(. . .)→ qany for all f ∈ Σinf . Such
an automaton has still finite set of states and infinite (but finitely representable)
transition relation.

With such an extension of tree automata our algorithm is still correct (a
little bit of work has to be done to correctly reason about implicit transitions
and reachable states during the determinization step); it is still fixed-parameter
linear (when traversing the term #(t0, . . . , tn) there is no need to look at function
symbols that do not occur in this term).

Another problem of the same nature is that numbers (integers or reals) do
not form a regular set. In order to extend tree automata to deal with these sets
it is enough to treat each number as a constant symbol, add two states int and
real and infinitely many implicit transitions i→ int and r → real for all integers i
and reals r.

4 Conclusion

We proved the decidability in Dexptime and fixed-parameter linearity of
directional-type checking for logic programs wrt. general regular types. This
solves a problem that was open since 1994 and improves several earlier partial
solutions.

The procedure we presented is optimal from the complexity point of view, it
is also incremental. This, together with linear complexity in the size of program
gives us a hope that the type system may be usable in practice.

There are some obvious directions for the future work. One is the implemen-
tation of the system to see how it behaves in practice. Further, an extension to
constraint logic programming, negation etc. would be interesting. The extension
to polymorphic types seems not to be very difficult.

Acknowledgments

I thank Andreas Podelski for interesting discussions and the anonymous referees
for their comments on the paper.

References

1. A. Aiken and T. K. Lakshman. Directional type checking of logic programs. In
B. L. Charlier, editor, 1st International Symposium on Static Analysis, volume 864
of Lecture Notes in Computer Science, pages 43–60, Namur, Belgium, Sept. 1994.
Springer Verlag.

86 W. Charatonik

2. K. R. Apt. Declarative programming in Prolog. In D. Miller, editor, Logic Program-
ming - Proceedings of the 1993 International Symposium, pages 12–35, Vancouver,
Canada, 1993. The MIT Press.

3. K. R. Apt. Program verification and Prolog. In E. Börger, editor, Specification and
Validation methods for Programming languages and systems, pages 55–95. Oxford
University Press, 1995.

4. K. R. Apt and S. Etalle. On the unification free Prolog programs. In A. M.
Borzyszkowski and S. Sokolowski, editors, Mathematical Foundations of Computer
Science 1993, 18th International Symposium, volume 711 of LNCS, pages 1–19,
Gdansk, Poland, 30 Aug.– 3 Sept. 1993. Springer.

5. J. Boye. Directional Types in Logic Programming. PhD thesis, Department of
Computer and Information Science, Linköping University, 1996.

6. J. Boye and J. Maluszynski. Two aspects of directional types. In L. Sterling,
editor, Proceedings of the 12th International Conference on Logic Programming,
pages 747–764, Cambridge, June13–18 1995. MIT Press.

7. J. Boye and J. Maluszynski. Directional types and the annotation method. Journal
of Logic Programming, 33(3):179–220, Dec. 1997.

8. F. Bronsard, T. K. Lakshman, and U. S. Reddy. A framework of directionality for
proving termination of logic programs. In K. Apt, editor, Proceedings of the Joint
International Conference and Symposium on Logic Programming, pages 321–335,
Washington, USA, 1992. The MIT Press.

9. A. Caron, J. Coquidé, and M. Dauchet. Encompassment properties and automata
with constraints. In C. Kirchner, editor, 5th international conference on Rewriting
Techniques and Applications, LNCS 690, pages 328–342, Montréal, 1993.

10. W. Charatonik. Automata on DAG representations of finite trees. Technical Re-
port MPI-I-1999-2-001, Max-Planck-Institut für Informatik, Mar. 1999. www.mpi-
sb.mpg.de/∼witold/papers/dag.ps.

11. W. Charatonik, F. Jacquemard, and A. Podelski. Directional type checking for
logic programs is decidable, 1998. Unpublished note.

12. W. Charatonik and A. Podelski. Directional type inference for logic programs. In
G. Levi, editor, Proceedings of the Fifth International Static Analysis Symposium
(SAS), LNCS 1503, pages 278–294, Pisa, Italy, 1998. Springer-Verlag.

13. W. Charatonik and A. Podelski. Set-based analysis of reactive infinite-state sy-
stems. In B. Steffen, editor, Fourth International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, LNCS 1384, pages 358–375,
Lisbon, Portugal, March-April 1998. Springer-Verlag.

14. W. Charatonik, A. Podelski, and J.-M. Talbot. Paths vs. trees in set-based pro-
gram analysis. In 27th Annual ACM Symposium on Principles of Programming
Languages, Jan. 2000.

15. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. www.grappa.univ-
lille3.fr/tata.

16. P. Dart and J. Zobel. A regular type language for logic programs. In F. Pfenning,
editor, Types in Logic Programming, pages 157–189. MIT Press, 1992.

17. P. Devienne, J.-M. Talbot, and S. Tison. Set-based analysis for logic programming
and tree automata. In Proceedings of the Static Analysis Symposium, SAS’97,
volume 1302 of LNCS, pages 127–140. Springer-Verlag, 1997.

18. R. G. Downey and M. Fellows. Parameterized complexity. Monographs in computer
science. Springer, New York, 1999.

Directional Type Checking for Logic Programs 87

19. T. Frühwirth, E. Shapiro, M. Vardi, and E. Yardeni. Logic programs as types for
logic programs. In Sixth Annual IEEE Symposium on Logic in Computer Science,
pages 300–309, July 1991.

20. J. Gallagher and D. A. de Waal. Regular approximations of logic programs and
their uses. Technical Report CSTR-92-06, Department of Computer Science, Uni-
versity of Bristol, 1992.

21. J. Gallagher and D. A. de Waal. Fast and precise regular approximations of logic
programs. In P. V. Hentenryck, editor, Proceedings of the Eleventh International
Conference on Logic Programming, pages 599–613, Santa Margherita Ligure, Italy,
1994. The MIT Press.

22. F. Gécseg and M. Steinby. Tree Automata. Akademiai Kiado, 1984.
23. G. Gottlob, E. Grädel, and H. Veith. Datalog LITE: Temporal versus deductive

reasoning in verification. Technical Report DBAI-TR-98-22, Institut für Informa-
tionssysteme, Technische Universität Wien, December 1998.

24. N. Heintze. Set based program analysis. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1992.

25. N. Heintze and J. Jaffar. A finite presentation theorem for approximating logic
programs. In Seventeenth Annual ACM Symposium on Principles of Programming
Languages, pages 197–209, January 1990.

26. N. Heintze and J. Jaffar. Semantic types for logic programs. In F. Pfenning, editor,
Types in Logic Programming, pages 141–156. MIT Press, 1992.

27. F. Henglein. Type inference with polymorphic recursion. Transactions on Pro-
gramming Languages and Systems, 15(2):253–289, 1993.

28. P. V. Hentenryck, A. Cortesi, and B. L. Charlier. Type analysis of Prolog using
type graphs. Journal of Logic Programming, 22(3):179–209, Mar. 1995.

29. G. Janssens and M. Bruynooghe. Deriving descriptions of possible values of pro-
gram variables by means of abstract interpretation. Journal of Logic Programming,
13(2-3):205–258, July 1992.

30. P. Mishra. Towards a theory of types in Prolog. In IEEE International Symposium
on Logic Programming, pages 289–298, 1984.

31. A. Mycroft and R. A. O’Keefe. A polymorphic type system for Prolog. Artificial
Intelligence, 23:295–307, 1984.

32. L. Naish. A declarative view of modes. In Proceedings of the 1996 Joint Inter-
national Conference and Symposium on Logic Programming, pages 185–199. MIT
Press, September 1996.

33. F. Pfenning, editor. Types in Logic Programming. MIT Press, 1992.
34. Y. Ramakrishna, C. Ramakrishnan, I. Ramakrishnan, S. Smolka, T. Swift, and

D. Warren. Efficient model checking using tabled resolution. In Computer Aided
Verification (CAV’97), LNCS 1254. Springer-Verlag, June 1997.

35. Y. Rouzaud and L. Nguyen-Phuong. Integrating modes and subtypes into a Prolog
type-checker. In K. Apt, editor, Proceedings of the Joint International Conference
and Symposium on Logic Programming, pages 85–97, Washington, USA, 1992. The
MIT Press.

36. P. Rychlikowski and T. Truderung. Polymorphic directional types for logic pro-
gramming. http://www.tcs.uni.wroc.pl/˜tomek/dirtypes/, 2000.

37. H. Seidl. Haskell overloading is DEXPTIME-complete. Information Processing
Letters, 52:57–60, 1994.

38. W. Thomas. Handbook of Theoretical Computer Science, volume B, chapter Au-
tomata on Infinite Objects, pages 134–191. Elsevier, 1990.

39. E. Yardeni and E. Shapiro. A type system for logic programs. Journal of Logic
Programming, 10:125–153, 1991.

Formalizing Implementation Strategies
for First-Class Continuations?

Olivier Danvy

BRICS??

Department of Computer Science, University of Aarhus
Building 540, Ny Munkegade, DK-8000 Aarhus C, Denmark

E-mail: danvy@brics.dk
Home page: http://www.brics.dk/˜danvy

Abstract. We present the first formalization of implementation stra-
tegies for first-class continuations. The formalization hinges on abstract
machines for continuation-passing style (CPS) programs with a special
treatment for the current continuation, accounting for the essence of
first-class continuations. These abstract machines are proven equivalent
to a standard, substitution-based abstract machine. The proof techni-
ques work uniformly for various representations of continuations. As a
byproduct, we also present a formal proof of the two folklore theorems
that one continuation identifier is enough for second-class continuations
and that second-class continuations are stackable.
A large body of work exists on implementing continuations, but it is
predominantly empirical and implementation-oriented. In contrast, our
formalization abstracts the essence of first-class continuations and provi-
des a uniform setting for specifying and formalizing their representation.

1 Introduction

Be it for coroutines, threads, mobile code, interactive computer games, or com-
puter sessions, one often needs to suspend and to resume a computation. Suspen-
ding a computation amounts to saving away its state, and resuming a suspended
computation amounts to restoring the saved state. Such saved copies may be
ephemeral and restored at most once (e.g., coroutines, threads, and computer
sessions that were ‘saved to disk’), or they may need to be restored repeatedly
(e.g., in a computer game). This functionality is reminiscent of continuations,
which represent the rest of a computation [22].

In this article, we consider how to implement first-class continuations. A
wealth of empirical techniques exist to take a snapshot of control during the
execution of a program (call/cc) and to restore this snapshot (throw): SML/NJ,
for example, allocates continuations entirely in the heap, reducing call/cc and
throw to a matter of swapping pointers [1]; T and Scheme 48 allocate conti-
nuations on a stack, copying this stack in the heap and back to account for
? Extended version available as the technical report BRICS RS-99-51.

?? Basic Research in Computer Science (http://www.brics.dk),
Centre of the Danish National Research Foundation.

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 88–103, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Formalizing Implementation Strategies for First-Class Continuations 89

call/cc and throw [16,17];1 and PC Scheme, Chez Scheme, and Larceny allocate
continuations on a segmented stack [2,4,15]. Clinger, Hartheimer, and Ost’s re-
cent article [4] provides a comprehensive overview of implementation strategies
for first-class continuations and of their issues: ideally, first-class continuations
should exert zero overhead for programs that do not use them.

Our goal and non-goal: We formalize implementation strategies for first-class
continuations. We do not formalize first-class continuations per se (cf., e.g., Fell-
eisen’s PhD thesis [12] or Duba, Harper, and MacQueen’s formal account of
call/cc in ML [10]).

Our work: We consider abstract machines for continuation-passing style (CPS)
programs, focusing on the implementation of continuations. As a stepping stone,
we formalize the folklore theorem that one register is enough to implement
second-class continuations. We then formalize the three implementation tech-
niques for first-class continuations mentioned above: heap, stack, and segmented
stack. The formalization and its proof techniques (structural induction on terms
and on derivation trees) are uniform: besides clarifying what it means to im-
plement continuations, be they second-class or first-class, our work provides a
platform to state and prove the correctness of each implementation. Also, this
platform is not restricted to CPS programs: through Flanagan et al.’s results [13],
it is applicable to direct-style programs if one represents control with a stack of
evaluation contexts instead of a stack of functions.

1.1 Related Work

The four works most closely related to ours are Clinger, Hartheimer, and Ost’s
overview of implementation strategies for first-class continuations [4]; Flana-
gan, Sabry, Duba, and Felleisen’s account of compiling with continuations and
more specifically, their two first abstract machines [13]; Danvy and Lawall’s
syntactic characterization of second-class and first-class continuations in CPS
programs [8]; and Danvy, Dzafic, and Pfenning’s work on the occurrence of con-
tinuation parameters in CPS programs [6,9,11].

1.2 Overview

Section 2 presents our source language: the λ-calculus in direct style and in CPS,
the CPS transformation, and an abstract machine for CPS programs that will be
our reference point here. This standard machine treats continuation identifiers on
par with all the other identifiers. The rest of this article focuses on continuation
identifiers and how to represent their bindings – i.e., on the essence of how to
implement continuations.
1 This strategy is usually attributed to Drew McDermott in the late 70’s [19], but

apparently it was already considered in the early ’70s at Queen Mary and Westfield
College to implement PAL (John C. Reynolds, personal communication, Aarhus,
Denmark, fall 1999).

90 O. Danvy

Section 3 addresses second-class continuations. In a CPS program with second-
class continuations, continuation identifiers are not only linear (in the sense of
Linear Logic), but they also denote a stackable resource, and indeed it is fol-
klore that second-class continuations can be implemented LIFO on a “control
stack”. We formalize this folklore by characterizing second-class continuations
syntactically in a CPS program and by presenting an abstract machine where
the bindings of continuation identifiers are represented with a stack. We show
this stack machine to be equivalent to the standard one.

Section 4 addresses first-class continuations. In a CPS program with first-
class continuations, continuation identifiers do not denote a stackable resource
in general. First-class continuations, however, are relatively rare, and thus over
the years, “zero-overhead” implementations have been sought [4]: implementa-
tions that do support first-class continuations but only tax programs that use
them. We consider the traditional strategy of stack-allocating all continuations
by default, as if they were all second-class, and of copying this stack in case
of first-class continuations. We formalize this empirical strategy with a new ab-
stract machine, which we show to be equivalent to the standard one.

Section 5 outlines how to formalize alternative implementation strategies,
such as segmenting the stack and recycling unshared continuations.

2 CPS Programs
We consider closed programs: direct-style (DS) λ-terms with literals. The BNF
of DS programs is displayed in Figure 1. Assuming a call-by-value evaluation
strategy, the BNF of CPS programs is displayed in Figure 2. CPS programs
are prototypically obtained by CPS-transforming DS programs, as defined in
Figure 3 [7,20,21].

Figure 4 displays our starting point: a standard abstract machine implemen-
ting β-reduction for CPS programs. This machine is a simplified version of ano-
ther machine studied jointly with Belmina Dzafic and Frank Pfenning [6,9,11].
We use two judgments, indexed by the syntactic categories of CPS terms. The
judgment

`CProg
std p ↪→ a

is satisfied whenever a CPS program p evaluates to an answer a. The auxiliary
judgment

`CExp
std e ↪→ a

is satisfied whenever a CPS expression e evaluates to an answer a. The machine
starts and stops with the initial continuation kinit, which is a distinguished fresh
continuation identifier. Answers can be either the trivial expressions ` or λx.λk.e,
or the error token.

For expository simplicity, our standard machine uses substitutions to imple-
ment variable bindings. Alternatively and equivalently, it could use an environ-
ment and represent functional values as closures [18]. And indeed Flanagan et
al. present a similar standard abstract machine which uses an environment [13,
Figure 4].

Formalizing Implementation Strategies for First-Class Continuations 91

p ∈ DProg — DS programs p ::= e
e ∈ DExp — DS expressions e ::= e0 e1 | t
t ∈ DTriv — DS trivial expressions t ::= ` | x | λx.e
` ∈ Lit — literals
x ∈ Ide — identifiers

Fig. 1. BNF of DS programs

p ∈ CProg — CPS programs p ::= λk.e
e ∈ CExp — CPS (serious) expressions e ::= t0 t1 c | c t
t ∈ CTriv — CPS trivial expressions t ::= ` | x | v | λx.λk.e
c ∈ Cont — continuations c ::= λv.e | k
` ∈ Lit — literals
x ∈ Ide — source identifiers
k ∈ IdeC — fresh continuation identifiers
v ∈ IdeV — fresh parameters of continuations
a ∈ Answer — CPS answers a ::= ` | λx.λk.e | error

Fig. 2. BNF of CPS programs

[[e]]DProg
cps = λk.[[e]]DExp

cps k – where k is fresh

[[e0 e1]]DExp
cps c = [[e0]]DExp

cps λv0.[[e1]]DExp
cps λv1.v0 v1 c – where v0 and v1 are fresh

[[t]]DExp
cps c = c [[t]]DTriv

cps

[[`]]DTriv
cps = `

[[x]]DTriv
cps = x

[[λx.e]]DTriv
cps = λx.λk.[[e]]DExp

cps k – where k is fresh

Fig. 3. The left-to-right, call-by-value CPS transformation

`CExp
std e[kinit/k] ↪→ a

`CProg
std λk.e ↪→ a

`CExp
std ` t c ↪→ error

`CExp
std e[t/x, c/k] ↪→ a

`CExp
std (λx.λk.e) t c ↪→ a

`CExp
std e[t/v] ↪→ a

`CExp
std (λv.e) t ↪→ a `CExp

std kinit t ↪→ t

Fig. 4. Standard machine for CPS programs

92 O. Danvy

3 A Stack Machine for CPS Programs with Second-Class
Continuations

As a stepping stone, this section formalizes the folklore theorem that in the ab-
sence of first-class continuations, one continuation identifier is enough, i.e., in
Figure 2, IdeC can be defined as a singleton set. To this end, we prove that in
the output of the CPS transformation, only one continuation identifier is indeed
enough. We also prove that this property is closed under arbitrary β-reduction.
We then rephrase the BNF of CPS programs with IdeC as a singleton set (Sec-
tion 3.1). In the new BNF, only CPS programs with second-class continuations
can be expressed. We present a stack machine for these CPS programs and we
prove it equivalent to the standard machine of Figure 4 (Section 3.2). Flanagan
et al. present a similar abstract machine [13, Figure 5], but without relating it
formally to their standard abstract machine.

3.1 One Continuation Identifier is Enough
Each expression in a DS program occurs in one evaluation context. Correspon-
dingly, each expression in a CPS program has one continuation. We formalize
this observation in terms of continuation identifiers with the judgment defined in
Figure 5, where FC(t) yields the set of continuation identifiers occurring free in t.

Definition 1 (Second-class position, second-class continuations). In
a continuation abstraction λk.e, we say that k occurs in second-class position
and denotes a second-class continuation whenever the judgment k |=CExp

2cc e is
satisfied.

Below, we prove that actually, in the output of the CPS transformation, all
continuation identifiers denote second-class continuations. In Figure 6, we thus
generalize our judgment to a whole CPS program.

Definition 2 (2Cont-validity). We say that a CPS program p is 2Cont-valid
whenever the judgment |=CProg

2cc* p is satisfied. Informally, |=CProg
2cc* p holds if and

only if all continuation abstractions λk.e occurring in p satisfy k |=CExp
2cc e.

Lemma 1 (The CPS transformation yields 2Cont-valid programs).
For any p ∈ DProg, |=CProg

2cc* [[p]]DProg
cps .

Proof. A straightforward induction over DS programs. 2

k 6∈ FC(t0) k 6∈ FC(t1) k |=Cont
2cc c

k |=CExp
2cc t0 t1 c

k |=Cont
2cc c k 6∈ FC(t)

k |=CExp
2cc c t

k |=CExp
2cc e

k |=Cont
2cc λv.e k |=Cont

2cc k

Fig. 5. Characterization of a second-class continuation abstraction λk.e

Formalizing Implementation Strategies for First-Class Continuations 93

k |=CExp
2cc* e

|=CProg
2cc* λk.e

|=CTriv
2cc* t0 |=CTriv

2cc* t1 k |=Cont
2cc* c

k |=CExp
2cc* t0 t1 c

k |=Cont
2cc* c |=CTriv

2cc* t

k |=CExp
2cc* c t

|=CTriv
2cc* ` |=CTriv

2cc* x |=CTriv
2cc* v

k |=CExp
2cc* e

|=CTriv
2cc* λx.λk.e

k |=CExp
2cc* e

k |=Cont
2cc* λv.e k |=Cont

2cc* k

Fig. 6. Characterization of a CPS program with second-class continuations

Furthermore, 2Cont-validity is closed under β-reduction, which means that it
is preserved by regular evaluation as well as by the arbitrary simplifications
of a CPS compiler [21]. The corresponding formal statement and its proof are
straightforward and omitted here: we rely on them in the proof of Theorem 1.

Therefore each use of each continuation identifier k is uniquely determined,
capturing the fact that in the BNF of 2Cont-valid CPS programs, one continua-
tion identifier is enough. To emphasize this fact, let us specialize the BNF of
Figure 2 by defining IdeC as the singleton set {?}, yielding the BNF of 2CPS
programs displayed in Figure 7.

p ∈ 2CProg — 2CPS programs p ::= λ?.e
e ∈ 2CExp — 2CPS (serious) expressions e ::= t0 t1 c | c t
t ∈ 2CTriv — 2CPS trivial expressions t ::= ` | x | v | λx.λ?.e
c ∈ 2Cont — continuations c ::= λv.e | ?
` ∈ Lit — literals
x ∈ Ide — source identifiers
? ∈ Token — single continuation identifier
v ∈ IdeV — fresh parameters of continuations
a ∈ 2Answer — 2CPS answers a ::= ` | λx.λ?.e | error

Fig. 7. BNF of 2CPS programs

Let [[·]]CProg
strip denote the straightforward homomorphic mapping from a 2Cont-

valid CPS program to a 2CPS program and [[·]]2CProg
name denote its inverse, such that

∀p ∈ CProg, [[[[p]]CProg
strip]]2CProg

name ≡α p whenever the judgment |=CProg
2cc* p is satisfied,

and ∀p′ ∈ 2CProg, [[[[p]]2CProg
name]]CProg

strip = p′. These two translations are generalized
in Section 4 and thus we omit their definition here.

3.2 A Stack Machine for 2CPS Programs

Figure 8 displays a stack-based abstract machine for 2CPS programs. We ob-
tained it from the standard machine of Section 2, page 91, by implementing the
bindings of continuation identifiers with a global “control stack” ϕ.

94 O. Danvy

ϕ ∈ 2CStack — control stacks ϕ ::= • | ϕ, λv.e

The machine starts and stops with an empty control stack •. When a function
is applied, its continuation is pushed on ϕ. When a continuation is needed, it
is popped from ϕ. If ϕ is empty, the intermediate result sent to the continua-
tion is the final answer. We distinguish tail calls (i.e., function calls where the
continuation is ?) by not pushing anything on ϕ, thereby achieving proper tail
recursion.

• `2CExp
2cc e ↪→ a

`2CProg
2cc λ?.e ↪→ a ϕ `2CExp

2cc ` t c ↪→ error

ϕ `2CExp
2cc e[t/x] ↪→ a

ϕ `2CExp
2cc (λx.λ?.e) t ? ↪→ a

ϕ, λv.e′ `2CExp
2cc e[t/x] ↪→ a

ϕ `2CExp
2cc (λx.λ?.e) t λv.e′ ↪→ a

ϕ `2CExp
2cc e[t/v] ↪→ a

ϕ `2CExp
2cc (λv.e) t ↪→ a • `2CExp

2cc ? t ↪→ t

ϕ `2CExp
2cc e[t/v] ↪→ a

ϕ, λv.e `2CExp
2cc ? t ↪→ a

Fig. 8. Stack machine for 2CPS programs

N.B. The machine does not substitute continuations for continuation identifiers,
and therefore one might be surprised by the rule handling the redex (λv.e) t.
Such redexes, however, can occur in the source program.

Formally, the judgment

`2CProg
2cc p ↪→ a

is satisfied whenever a CPS program p ∈ 2CProg evaluates to an answer a ∈
2Answer. The auxiliary judgment

ϕ `2CExp
2cc e ↪→ a

is satisfied whenever an expression e ∈ 2CExp evaluates to an answer a, given a
control stack ϕ ∈ 2CStack.

We prove the equivalence between the stack machine and the standard ma-
chine by showing that the computations for each abstract machine (represented
by derivations) are in bijective correspondence. To this end, we define a “control-
stack substitution” over the state of the stack machine (i.e., expression under
evaluation and current control stack) to obtain the state of the standard ma-
chine (i.e., expression under evaluation). We define control-stack substitution
inductively over 2CPS expressions and continuations.

Definition 3 (Control-stack substitution for 2CPS programs). Given a
stack ϕ of 2Cont continuations, the stack substitution of any e ∈ 2CExp (resp.
c ∈ 2Cont), noted e{ϕ}2 (resp. c{ϕ}2), yields a CExp expression (resp. a Cont
continuation) and is defined as follows.

Formalizing Implementation Strategies for First-Class Continuations 95

(t0 t1 c){ϕ}2 = [[t0]]2CTriv
name [[t1]]2CTriv

name (c{ϕ}2)
(c t){ϕ}2 = (c{ϕ}2) [[t]]2CTriv

name

(λv.e){ϕ}2 = λv.(e{ϕ}2)
?{•}2 = kinit

?{ϕ, λv.e}2 = λv.(e{ϕ}2)
Stack substitution is our key tool for mapping a state of the stack machine

into a state of the standard machine. It yields CExp expressions and Cont con-
tinuations that have one free continuation identifier: kinit.

Lemma 2 (2Cont-validity of stack-substituted expressions and conti-
nuations).

1. For any e ∈ 2CExp and for any stack of 2Cont continuations ϕ, the judgment
kinit |=CExp

2cc* e{ϕ}2 is satisfied.
2. For any c ∈ 2Cont and for any stack of 2Cont continuations ϕ, the judgment

kinit |=Cont
2cc* c{ϕ}2 is satisfied.

Proof. By mutual induction on the structure of e and c. 2

Lemma 3 (Control-stack substitution for 2CPS programs).

1. For any e′ ∈ CExp satisfying k |=CExp
2cc* e′ for some k and for any stack of

2Cont continuations ϕ, [[e′]]CExp
strip {ϕ}2 = e′[?{ϕ}2/k].

2. For any e ∈ 2CExp, for any t′ ∈ CTriv satisfying |=CTriv
2cc* t′, for any iden-

tifier i in Ide or in IdeV, and for any stack of 2Cont continuations ϕ,
e[[[t′]]CTriv

strip /i]{ϕ}2 = e{ϕ}2[t′/i].

Theorem 1 (Simulation). The stack machine of Figure 8 and the standard
machine are equivalent:

1. For any 2Cont-valid CPS program p,
`CProg

std p ↪→ a if and only if `2CProg
2cc [[p]]CProg

strip ↪→ [[a]]Answer
strip .

2. For any CPS expression e satisfying k |=CExp
2cc* e for some k and for any stack

of 2Cont continuations ϕ,
`CExp

std [[e]]CExp
strip {ϕ}2 ↪→ a if and only if ϕ `2CExp

2cc [[e]]CExp
strip ↪→ [[a]]Answer

strip .

Proof. The theorem follows in each direction by an induction over the structure
of the derivations, using Lemma 3. Let us show the case of tail calls in one
direction.

Case E =

E1

ϕ `2CExp
2cc e[t/x] ↪→ [[a]]Answer

strip

ϕ `2CExp
2cc (λx.λ?.e) t ? ↪→ [[a]]Answer

strip

,

where E1 names the derivation ending in ϕ `2CExp
2cc e[t/x] ↪→ [[a]]Answer

strip .

By applying the induction hypothesis to E1, we obtain a derivation

E ′
1

`CExp
std e[t/x]{ϕ}2 ↪→ a

96 O. Danvy

Since e[t/x] is a 2CPS expression, there exists a CPS expression e′ satisfying
k |=CExp

2cc* e′ for some k and there exists a CPS trivial expression t′ satisfying
|=CTriv

2cc* t′ such that e = [[e′]]CExp
strip and t = [[t′]]CTriv

strip .
By Lemma 3,

[[e′]]CExp
strip [[[t′]]CExp

strip /x]{ϕ}2 = [[e′]]CExp
strip {ϕ}2[t′/x]

= e′[?{ϕ}2/k][t′/x]
= e′[t′/x, ?{ϕ}2/k] – because t′ has no free k

and ϕ has no free x.

By inference,
`CExp

std e′[t′/x, ?{ϕ}2/k] ↪→ a

`CExp
std (λx.λk.e′) t′ (?{ϕ}2) ↪→ a

Now by definition of stack substitution,

(λx.λk.e′) t′ (?{ϕ}2) = [[(λx.λk.e) t k′]]CExp
strip {ϕ}2, – for some k′.

In other words, there exists a derivation

E ′
1

`CExp
std [[e[t/x]]]CExp

strip {ϕ}2 ↪→ a

`CExp
std [[(λx.λk.e) t k′]]CExp

strip {ϕ}2 ↪→ a

which is what we wanted to show. 2

3.3 Summary and Conclusion
As a stepping stone towards Section 4, we have formalized and proven two
folklore theorems: (1) for CPS programs with second-class continuations, one
identifier is enough; and (2) the bindings of continuation identifiers can be im-
plemented with a stack for CPS programs with second-class continuations. To
this end, we have considered a simplified abstract machine and taken the same
conceptual steps as in our earlier joint work with Dzafic and Pfenning [6,9,11].
This earlier work is formalized in Elf, whereas the present work is not (yet).
The rest of this article reports an independent foray. In the next section, we ad-
apt the stack machine to CPS programs with first-class continuations, thereby
formalizing an empirical implementation strategy for first-class continuations.

4 A Stack Machine for CPS Programs with First-Class
Continuations

First-class continuations occur because of call/cc. The call-by-value CPS trans-
formation of call/cc reads as follows.

[[call/cc e]]DExp
cps c = [[e]]DExp

cps λf.f (λx.λk.c x) c – where f , x, and k are fresh.

On the right-hand-side of this definitional equation, c occurs twice: once as a
regular, second-class continuation, and once more, in λx.λk.c x. In that term, k
is declared but not used – c is used instead and denotes a first-class continuation.

Formalizing Implementation Strategies for First-Class Continuations 97

Such CPS programs do not satisfy the judgments of Figures 5 and 6. And indeed,
Danvy and Lawall observed that in a CPS program, first-class continuations
can be detected through continuation identifiers occurring “out of turn”, so to
speak [8].

Because it makes no assumptions on the binding discipline of continuation
identifiers, the standard machine of Section 2, page 91, properly handles CPS
programs with first-class continuations. First-class continuations, however, dis-
qualify the stack machine of Section 3, page 94.

The goal of this section is to develop a stack machine for CPS programs with
first-class continuations. To this end, we formalize what it means for a conti-
nuation identifier to occur in first-class position. We also prove that arbitrary
β-reduction never promotes a continuation identifier occurring in second-class
position into one occurring in first-class position. We then rephrase the BNF
of CPS programs to single out continuation identifiers occurring in first-class
position and their declaration. And similarly to Section 3, we tag with “?” all
the declarations of continuation identifiers occurring in second-class position or
not occurring at all, and all second-class positions of continuation identifiers
(Section 4.1). We then present a stack machine for these 1CPS programs that
copies the stack when first-class continuation abstractions are invoked. We prove
it equivalent to the standard machine of Figure 4 (Section 4.2).

4.1 One Continuation Identifier is Not Enough

Following Danvy and Lawall [8], we now say that a continuation identifier occurs
in first-class position whenever it occurs elsewhere than in second-class position,
which is syntactically easy to detect. We formalize first-class occurrences with
the judgment displayed in Figure 9.

k ∈ FC(t0)
k |=CExp

1cc t0 t1 c

k ∈ FC(t1)
k |=CExp

1cc t0 t1 c

k |=Cont
1cc c

k |=CExp
1cc t0 t1 c

k |=Cont
1cc c

k |=CExp
1cc c t

k ∈ FC(t)
k |=CExp

1cc c t

k |=CExp
1cc e

k |=Cont
1cc λv.e

Fig. 9. Characterization of a first-class continuation abstraction λk.e

Definition 4 (First-class position, first-class continuations). In a conti-
nuation abstraction λk.e, we say that k occurs in first-class position and denotes
a first-class continuation whenever the judgment k |=CExp

1cc e is satisfied.

N.B. For any continuation abstraction λk.e, at most one of k |=CExp
1cc e and

k |=CExp
2cc e is satisfied.

98 O. Danvy

In Section 3, we stated that 2Cont-validity is closed under β-reduction. Si-
milarly here, β-reduction may demote a first-class continuation identifier into a
second-class one, but it can never promote a second-class continuation identi-
fier into a first-class one. The corresponding formal statement and its proof are
straightforward and omitted here: we rely on them in the proof of Theorem 2.

For example, in
λk.(λx.λk′.k x) ` k

k occurs in first-class position. However, β-reducing this term yields

λk.k `

where k occurs in second-class position.
In Section 3, we capitalized on the fact that each second-class position was

uniquely determined. Here, we still capitalize on this fact by only singling out
continuation identifiers in first-class position.2

Introduction: For all continuation abstractions λk.e satisfying k |=CExp
1cc e, we

tag the declaration of k with λ1 and we keep the name k. Otherwise, we
replace it with ?.

Elimination: When a continuation identifier occurs, if it is the latest one decla-
red, we replace it with ?; otherwise, we keep its name.

The resulting BNF for 1CPS programs is displayed in Figure 10. The back and
forth translation functions are displayed in Figures 11 and 12. They generalize
their counterpart in Section 3.

Lemma 4 (Inverseness of stripping and naming).
∀p ∈ CProg, [[[[p]]CProg

strip]]1CProg
name ≡α p and ∀p′ ∈ 1CProg, [[[[p′]]1CProg

name]]CProg
strip = p′.

4.2 A Stack Machine for CPS Programs with First-Class
Continuations

We handle first-class continuations by extending the formalization of Section 3
with a new syntactic form:

c ∈ 1Cont — continuations c ::= λv.e | ? | k | swap ϕ

The new form swap ϕ makes it possible to represent a copy of the control stack
ϕ. It requires us to extend control-stack substitution as follows.

Definition 5 (Control-stack substitution for 1CPS programs). Given a
stack ϕ of 1Cont continuations, The stack substitution of any e ∈ 1CExp (resp.
c ∈ 1Cont), noted e{ϕ}1 (resp. c{ϕ}1), yields a CExp expression (resp. a Cont
continuation) and is defined as follows.

(t0 t1 c){ϕ}1 = ([[t0]]1CTriv
name [[t1]]1CTriv

name) (c{ϕ}1)
(c t){ϕ}1 = (c{ϕ}1) [[t]]1CTriv

name

(λv.e){ϕ}1 = λv.(e{ϕ}1)
?{•}1 = kinit

?{ϕ, λv.e}1 = λv.(e{ϕ}1)
k{ϕ}1 = k

(swap ϕ′){ϕ}1 = ?{ϕ′}1
2 Andrzej Filinski suggested this concise notation (personal communication, Aarhus,

Denmark, summer 1999).

Formalizing Implementation Strategies for First-Class Continuations 99

p ∈ 1CProg — 1CPS programs p ::= λ?.e | λ1k.e
e ∈ 1CExp — 1CPS (serious) expressions e ::= t0 t1 c | c t
t ∈ 1CTriv — 1CPS trivial expressions t ::= ` | x | v | λx.λ?.e | λx.λ1k.e
c ∈ 1Cont — continuations c ::= λv.e | ? | k
` ∈ Lit — literals
x ∈ Ide — source identifiers
k ∈ IdeC — fresh continuation identifiers
? ∈ Token — single continuation identifier
v ∈ IdeV — fresh parameters of continuations
a ∈ 1Answer — 1CPS answers a ::= ` | λx.λ?.e | λx.λ1k.e | error

Fig. 10. BNF of 1CPS programs

[[λk.e]]CProg
strip =

{
λ1k.[[e]]CExp

strip k if k |=CExp
1cc e

λ?.[[e]]CExp
strip k otherwise

[[t0 t1 c]]CExp
strip k = [[t0]]CTriv

strip [[t1]]CTriv
strip ([[c]]Cont

stripk)
[[c t]]CExp

strip k = ([[c]]Cont
stripk) [[t]]CTriv

strip

[[`]]CTriv
strip = `

[[x]]CTriv
strip = x

[[v]]CTriv
strip = v

[[λx.λk.e]]CTriv
strip =

{
λx.λ1k.[[e]]CExp

strip k if k |=CExp
1cc e

λx.λ?.[[e]]CExp
strip k otherwise

[[λv.e]]Cont
stripk = λv.[[e]]CExp

strip k

[[k′]]Cont
stripk =

{
? if k = k′

k′ otherwise

Fig. 11. Translation from CPS to 1CPS – stripping continuation identifiers

[[λ?.e]]1CProg
name = λk.[[e]]1CExp

name k – where k is fresh
[[λ1k.e]]1CProg

name = λk.[[e]]1CExp
name k

[[t0 t1 c]]1CExp
name k = [[t0]]1CTriv

name [[t1]]1CTriv
name ([[c]]1Cont

name k)
[[c t]]1CExp

name k = ([[c]]1Cont
name k) [[t]]1CTriv

name

[[`]]1CTriv
name = `

[[x]]1CTriv
name = x

[[v]]1CTriv
name = v

[[λx.λ?.e]]1CTriv
name = λx.λk.[[e]]1CExp

name k – where k is fresh
[[λ1x.λk.e]]1CTriv

name = λx.λk.[[e]]1CExp
name k

[[λv.e]]1Cont
name k = λv.[[e]]1CExp

name k
[[?]]1Cont

name k = k
[[k′]]1Cont

name k = k′

[[`]]1Answer
name = `

[[λx.λ?.e]]1Answer
name = λx.λk.[[e]]1CExp

name k – where k is fresh
[[λ1x.λk.e]]1Answer

name = λx.λk.[[e]]1CExp
name k

[[error]]1Answer
name = error

Fig. 12. Translation from 1CPS to CPS – naming continuation identifiers

100 O. Danvy

• `1CExp
1cc e ↪→ a

`1CProg
1cc λ?.e ↪→ a

• `1CExp
1cc e[swap •/k] ↪→ a

`1CProg
1cc λ1k.e ↪→ a

ϕ `1CExp
1cc ` t c ↪→ error

ϕ `1CExp
1cc e[t/x] ↪→ a

ϕ `1CExp
1cc (λx.λ?.e) t ? ↪→ a

ϕ, λv.e′ `1CExp
1cc e[t/x] ↪→ a

ϕ `1CExp
1cc (λx.λ?.e) t λv.e′ ↪→ a

ϕ `1CExp
1cc e[t/x, swap ϕ/k] ↪→ a

ϕ `1CExp
1cc (λx.λ1k.e) t ? ↪→ a

ϕ, λv.e′ `1CExp
1cc e[t/x, swap (ϕ, λv.e′)/k] ↪→ a

ϕ `1CExp
1cc (λx.λ1k.e) t λv.e′ ↪→ a

ϕ′ `1CExp
1cc e[t/x] ↪→ a

ϕ `1CExp
1cc (λx.λ?.e) t (swap ϕ′) ↪→ a

ϕ′ `1CExp
1cc e[t/x, swap ϕ′/k] ↪→ a

ϕ `1CExp
1cc (λx.λ1k.e) t (swap ϕ′) ↪→ a

ϕ `1CExp
1cc e[t/v] ↪→ a

ϕ `1CExp
1cc (λv.e) t ↪→ a • `1CExp

1cc ? t ↪→ t

ϕ `1CExp
1cc e[t/v] ↪→ a

ϕ, λv.e `1CExp
1cc ? t ↪→ a

ϕ `1CExp
1cc swap • t ↪→ t

ϕ′ `1CExp
1cc e[t/v] ↪→ a

ϕ `1CExp
1cc swap (ϕ′, λv.e) t ↪→ a

Fig. 13. Stack machine for 1CPS programs

Figure 13 displays a stack-based abstract machine for 1CPS programs. This
machine is a version of the stack machine of Section 3 where the substitution
for continuation identifiers occurring in second-class position or not occurring
at all is implemented with a global control stack (as in Figure 8), and where
the substitution for continuation identifiers occurring in first-class position is
implemented by copying the stack into a swap form (which is new).

Calls: When a function declaring a second-class continuation is applied, its con-
tinuation is pushed on ϕ. When a function declaring a first-class continuation
is applied, its continuation is also pushed on ϕ and the resulting new stack
is copied into a swap form.

Returns: When a continuation is needed, it is popped from ϕ. If ϕ is empty,
the intermediate result sent to the continuation is the final answer. When a
swap form is encountered, its copy of ϕ is restored.

More formally, the judgment

`1CProg
1cc p ↪→ a

is satisfied whenever a CPS program p ∈ 1CProg evaluates to an answer a ∈
1Answer. The auxiliary judgment

ϕ `1CExp
1cc e ↪→ a

is satisfied whenever an expression e ∈ 1CExp evaluates to an answer a, given a
control stack ϕ ∈ 1CStack. The machine starts and stops with an empty control
stack.

Formalizing Implementation Strategies for First-Class Continuations 101

We prove the equivalence between the stack machine and the standard ma-
chine as in Section 3.2.

Theorem 2 (Simulation). The stack machine of Figure 13 and the standard
machine are equivalent:

1. `CProg
std p ↪→ a if and only if `1CProg

1cc [[p]]CProg
strip ↪→ [[a]]Answer

strip .
2. `CExp

std [[e]]CExp
strip k{ϕ}1 ↪→ a if and only if ϕ `1CExp

1cc [[e]]CExp
strip k ↪→ [[a]]Answer

strip , for
some k.

Proof. Similar to the proof of Theorem 1. 2

4.3 Summary and Conclusion

We have formalized and proven correct a stack machine for CPS programs with
first-class continuations. This machine is idealized in that, e.g., it has no provision
for stack overflow. Nevertheless, it embodies the most classical implementation
strategy for first-class continuations: the stack is copied at call/cc time, i.e.,
in the CPS world, when a first-class continuation identifier is declared; and
conversely, the stack is restored at throw time, i.e., in the CPS world, when
a first-class continuation identifier is invoked. This design keeps second-class
continuations costless – in fact it is a zero-overhead strategy in the sense of
Clinger, Hartheimer, and Ost [4, Section 3.1]: only programs using first-class
continuations pay for them.

Furthermore, and as in Section 3, our representation of ϕ embodies its LIFO
nature without committing to an actual representation. This representation can
be retentive (in which case ϕ is implemented as a pointer into the heap) or de-
structive (in which case ϕ is implemented as, e.g., a rewriteable array) [3]. In both
cases, swap ϕ is implemented as copying ϕ. Copying the pointer yields captured
continuations to be shared and copying the array yields multiple representations
of captured continuations.

5 A Segmented Stack Machine for First-Class
Continuations

Coroutines and threads are easily simulated using call/cc, but these simulations
are allergic to representing control as a rewriteable array. Indeed for every switch
this array is copied in the heap, yielding multiple copies to coexist without
sharing, even though these copies are mostly identical.

Against this backdrop, implementations such as PC Scheme [2] segment the
stack, using the top segment as a stack cache: if this cache overflows, it is flushed
to the heap and the computation starts afresh with an empty cache; and if it
underflows, the last flushed cache is restored. Flushed caches are linked LIFO
in the heap.3 A segmented stack accomodates call/cc and throw very simply: at
call/cc time, the cache is flushed to the heap and a pointer to it is retained; and
3 If the size of the stack cache is one, the segmented implementation coincides with a

heap implementation.

102 O. Danvy

at throw time, the flushed cache that is pointed to is restored. As for the bulk of
the continuations, it is not copied but shared between captured continuations.

It is simple to expand the stack machine of Section 4 into a segmented stack
machine. One simply needs to define the judgment

Φ ; ϕ `CExp
1cc′ e ↪→ a

where ϕ, e, and a are in Section 4 and Φ denotes a LIFO list of ϕ’s. (One also
needs an overflow predicate for ϕ.)

Thus equipped, it is also simple to expand the stack substitution of Section 4,
and to state and prove a simulation theorem similar to Theorem 2, thereby
formalizing what Clinger, Hartheimer, and Ost name the “chunked-stack stra-
tegy” [4]. Another moderate effort makes it possible to formalize the author’s
incremental garbage collection of unshared continuations by one-bit reference
counting [5]. One is also in position to formalize “one-shot continuations” [14].

Acknowledgments: I am grateful to Belmina Dzafic and Frank Pfenning for our
joint work, which forms the foundation of the present foray. Throughout, and
as always, Andrzej Filinski has been a precious source of sensible comments and
suggestions. This article has also benefited from the interest and comments of
Lars R. Clausen, Daniel Damian, Bernd Grobauer, Niels O. Jensen, Julia L.
Lawall, Lasse R. Nielsen, Morten Rhiger, and Zhe Yang. I am also grateful for
the opportunity to have presented this work at Marktoberdorf, at the University
of Tokyo, and at KAIST in the summer and in the fall of 1999. Finally, thanks
are due to the anonymous referees for stressing the issue of retention vs. deletion.

References

1. Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In
Third International Symposium on Programming Language Implementation and
Logic Programming, number 528 in Lecture Notes in Computer Science, pages 1–
13, Passau, Germany, August 1991.

2. David B. Bartley and John C. Jensen. The implementation of PC Scheme. In
Proceedings of the 1986 ACM Conference on Lisp and Functional Programming,
pages 86–93, Cambridge, Massachusetts, August 1986.

3. Daniel M. Berry. Block structure: Retention or deletion? (extended abstract). In
Conference Record of the Third Annual ACM Symposium on Theory of Computing,
pages 86–100, Shaker Heights, Ohio, May 1971.

4. William Clinger, Anne H. Hartheimer, and Eric M. Ost. Implementation strategies
for first-class continuations. Higher-Order and Symbolic Computation, 12(1):7–45,
1999.

5. Olivier Danvy. Memory allocation and higher-order functions. In Proceedings of
the ACM SIGPLAN’87 Symposium on Interpreters and Interpretive Techniques,
SIGPLAN Notices, Vol. 22, No 7, pages 241–252, Saint-Paul, Minnesota, June
1987.

6. Olivier Danvy, Belmina Dzafic, and Frank Pfenning. On proving syntactic pro-
perties of CPS programs. In Third International Workshop on Higher-Order Ope-
rational Techniques in Semantics, volume 26 of Electronic Notes in Theoretical
Computer Science, pages 19–31, Paris, France, September 1999.

Formalizing Implementation Strategies for First-Class Continuations 103

7. Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS
transformation. Mathematical Structures in Computer Science, 2(4):361–391, 1992.

8. Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class continuations.
In Proceedings of the 1992 ACM Conference on Lisp and Functional Programming,
LISP Pointers, Vol. V, No. 1, pages 299–310, San Francisco, California, June 1992.

9. Olivier Danvy and Frank Pfenning. The occurrence of continuation parameters
in CPS terms. Technical report CMU-CS-95-121, School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania, February 1995.

10. Bruce F. Duba, Robert Harper, and David B. MacQueen. Typing first-class con-
tinuations in ML. In Proceedings of the Eighteenth Annual ACM Symposium on
Principles of Programming Languages, pages 163–173, Orlando, Florida, January
1991.

11. Belmina Dzafic. Formalizing program transformations. Master’s thesis, DAIMI,
Department of Computer Science, University of Aarhus, Aarhus, Denmark, De-
cember 1998.

12. Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory of Con-
trol and State in Imperative Higher-Order Programming Languages. PhD thesis,
Department of Computer Science, Indiana University, Bloomington, Indiana, Au-
gust 1987.

13. Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence
of compiling with continuations. In Proceedings of the ACM SIGPLAN’93 Confe-
rence on Programming Languages Design and Implementation, SIGPLAN Notices,
Vol. 28, No 6, pages 237–247, Albuquerque, New Mexico, June 1993.

14. Christopher T. Haynes and Daniel P. Friedman. Embedding continuations in
procedural objects. ACM Transactions on Programming Languages and Systems,
9(4):582–598, 1987.

15. Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control in the
presence of first-class continuations. In Proceedings of the ACM SIGPLAN’90
Conference on Programming Languages Design and Implementation, SIGPLAN
Notices, Vol. 25, No 6, pages 66–77, White Plains, New York, June 1990.

16. Richard A. Kelsey and Jonathan A. Rees. A tractable Scheme implementation.
Lisp and Symbolic Computation, 7(4):315–336, 1994.

17. David Kranz, Richard Kesley, Jonathan Rees, Paul Hudak, Jonathan Philbin, and
Norman Adams. Orbit: An optimizing compiler for Scheme. In Proceedings of
the 1986 Symposium on Compiler Construction, SIGPLAN Notices, Vol. 21, No 7,
pages 219–233, Palo Alto, California, June 1986.

18. Peter J. Landin. The mechanical evaluation of expressions. Computer Journal,
6:308–320, 1964.

19. Drew McDermott. An efficient environment allocation scheme in an interpreter for
a lexically-scoped Lisp. In Conference Record of the 1980 LISP Conference, pages
154–162, Stanford, California, August 1980.

20. Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical
Computer Science, 1:125–159, 1975.

21. Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report AI-TR-474, Ar-
tificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, May 1978.

22. Christopher Strachey and Christopher P. Wadsworth. Continuations: A mathema-
tical semantics for handling full jumps. Higher-Order and Symbolic Computation,
13(1/2), 2000. Reprint of the technical monograph PRG-11, Oxford University
Computing Laboratory (1974).

Correctness of Java Card Method Lookup via Logical
Relations

Ewen Denney and Thomas Jensen

Projet Lande, IRISA, Rennes Cedex 35042, France

Abstract. We formalise the Java Card bytecode optimisation from class file to
CAP file format as a set of constraints between the two formats, and define and
prove its correctness. Java Card bytecode is formalised as an abstract operational
semantics, which can then be instantiated into the two formats. The optimisation
is given as a logical relation such that the instantiated semantics are observably
equal. The proof has been automated using the Coq theorem prover.

Using a high-level language for programming embedded systems may require a
transformation phase in order that the compiled code fits on the device. In this paper
we describe a method for formally proving the correctness of such a transformation.
The method makes extensive use of types to describe the various run-time structures
and relies on the notion of logical relation to relate the two representations of the code.
We present the method in the setting of mapping Java onto smart cards. The Java Card
language [10] is a trimmed down dialect of Java aimed at programming smart cards. As
with Java, Java Card is compiled into bytecode, which is then verified and executed on
a virtual machine [4], installed on a chip on the card itself. However, the memory and
processor limitations of smart cards necessitate a further stage, in which the bytecode
is optimised from the standard class file format of Java, to theCAP file format [11].
The core of this optimisation is atokenisationin which names are replaced with tokens
enabling a faster lookup of various entities.

We describe a semantic framework for proving the correctness of Java Card toke-
nisation. The basic idea is to give an abstract description of the constraints given in
the official specification of the tokenisation and show that any transformation satisfying
these constraints is ‘correct’. This is independent of showing that there actually exists
a collection of functions satisfying these constraints. This article concentrates on pro-
ving the correctness of the specification. The formal development of an algorithm is
the subject of another report. The main advantage of decoupling ‘correctness’ into two
steps is that we get a more general result: rather than proving the correctness of one
particular algorithm, we are able to show that the constraints described in Sun’s official
specification [11] (given certain assumptions) are sufficient. We give a formalisation and
correctness proof for the part concerned with dynamic method lookup.A comprehensive
formalisation appears as a technical report [2].

1 The Conversion

Java source code is compiled on a class by class basis into theclass fileformat. By
contrast, Java CardCAP filescorrespond to packages. They are produced by thecon-

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 104–118, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Correctness of Java Card Method Lookup via Logical Relations 105

versionof a collection of class files. In the class file format, methods, fields and so on
are referred to using strings. In CAP files, however, tokens are ascribed to the various
entities. The idea is that if a method, say, is publically visible1, then it is ascribed a token.
If the method is only visible within its package, then it is referred to directly using an
offset into the relevant data structure. Thus references are either internal or external.
The conversion groups entities from different class files into the components of a CAP
file. For example, all constant pools of the class files forming a package are merged into
one constant pool component, and all method implementations are gathered in the same
method component. One significant difference between the two formats is the way in
which the method tables are arranged. In a class file, the methods item contains all the
information relevant to methods defined in that class. In the CAP file, this information is
shared between the class and method components. The method component contains the
implementation details (i.e. the bytecode) for the methods defined in this package. The
class component is a collection of class information structures. Each of these contains
separate tables for the package and public methods, mapping method tokens to offsets
into the method component. The method tables contain the information necessary for
resolving any method call in that class.

The conversion is presented in [11] as a collection of constraints on the CAP file,
rather than as an explicit mapping between class and CAP formats. For example, if a class
inherits a method from a superclass then the conversion can choose to include the method
token in the relevant method table or, instead, that the table of the superclass should be
searched. There is a choice, therefore, between copying all inherited methods, or having
a more compressed table. The specification does not constrain this choice. We adopt
a simplified definition of the conversion, only considering classes, constant pools, and
methods (with inheritance and overwriting). In particular, we ignore fields, exceptions
and interfaces. The conversion also includes a number of mandatory optimisations such
as the inlining of final fields, and the type-based specialisation of instructions [10,11],
which we do not treat here.

2 Overview of Formalisation

The conversion from class file to CAP format is a transformation between formats of two
virtual machines. The first issue to be addressed is determining in what sense, exactly,
the conversion to token format should be regarded as an equivalence. We cannot simply
say that the JVM and JCVM have the same behaviour for all bytecodes, in class and
CAP file format respectively, because,a priori, the states of the virtual machines are
themselves in different formats. Instead, we adopt a simple form of equivalence based
on the notion ofrepresentation independence[5]. This is expressed in terms of so-called
observabletypes. This limits us to comparing the two interpretations in terms of words,
but this is sufficient to observe the operand stack and local variables, where the results
of execution are stored.

Representation independence may be proven by definingcoupling relationsbetween
the two formats that respect the tokenisation and are the identity at observable types.

1 We follow the terminology of [11], where a method ispublic visibleif it has either aprotected
or apublicmodifier, andpackage visibleif it is declaredprivate or has no visibility modifier.

106 E. Denney and T. Jensen

This can be seen as formalising adata refinementfrom class to CAP file. We formalise
the relations nondeterministically as any family of relations that satisfies certain con-
straints, rather than as explicit transformations. This is because there are many possible
tokenisations and we wish to prove any reasonable optimisation correct.

The virtual machines are formalised in an operational style, as transition relations
over abstract machines. We adopt the action semantics formalism of Mosses [6], using
a mixture of operational and denotational styles: the virtual machines are formalised
operationally, parameterised with respect to a number of auxiliary functions, which are
then interpreted denotationally. This modular presentation of the semantics facilitates
the comparison between the two formats. We illustrate this for dynamic method lookup,
used in the semantics of the method invocation instructions. The lookup function which
searches for the implementation of a method is dependent on the layout of the method
tables. The operational rule giving the semantics of the method invocation instructions,
presented in Section 5, is parameterised with respect to the lookup function. Then in
Section 6 two possible interpretations of lookup are given.

In Section 4, we define abstract types for the various entities converted during
tokenisation, which are common to the two formats. For example,Class ref and
Environment. It is this type structure which is used to define the logical relations.
In Section 5 we give an operational semantics which is independent of the underlying
class/CAP file format. The structure of the class/CAP file need not be visible to the
operational semantics. We need only be able to extract certain data corresponding to
a particular method, such as the appropriate constant pool. In Section 6, we give the
specific details of the class file and CAP file formats. defined as interpretations of types
and auxiliary functions,[[.]]name and[[.]]tok. We refer to these as thenameand thetoken
interpretation, respectively.

In Section 7, we define the logical relation,{Rθ}θ∈Abstract type. It is convenient to
group the definition into several levels. First, there are various basic observable types
(byte, short,etc.), γ, for which we haveRγ = idγ . Second, there are the references,ι,
such as package and class references, for which the relationRι represents the tokenisa-
tion of named items. Third, the constraints on the organisation into components (which
we will call thecomponentisation) are expressed inRκ, whereκ includes method infor-
mation structures, constant pools, and so on. This represents the relationship between
components in CAP files and the corresponding entities in class files. Using the above
three families of relations we can defineRθ for each type,θ, where

θ ::= γ | ι | κ | θ × θ′ | θ → θ′ | θ + θ′ | θ∗.

The family of relations,{Rθ}θ ∈ Abstract type, represents the overall construction of
components in the CAP file format from a class file. The relations are ‘logical’ in the
sense that the definitions for defined types follow automatically. For example, we define
the type of the environment that contains the class hierarchy as

Environment = Package ref → Package.

and so the definition ofREnvironment follows from those ofRPackage ref, RPackage and
the standard construction ofR → ; similarly for RHeap.

Correctness of Java Card Method Lookup via Logical Relations 107

3 Related Work

There have been a number of formalisations of the Java Virtual Machine which have
some relevance for our work here on Java Card. Bertelsen [1] gives an operational
semantics which we have used as a starting point. He also considers the verification
conditions, which considerably complicates the rules, however. Pusch has formalised
the JVM in HOL [8]. Like us, she considers the class file to be well-formed so that the
hypotheses of rules are just assignments. The operational semantics is presented directly
as a formalisation in HOL, whereas we have chosen (equivalently) to use inference
rules. All these works make various simplifications and abstractions. However, since
these are formalisations of Java rather than Java Card they do not consider the CAP file
format. In contrast, the work of Lanet and Requet [3] is specifically concerned with Java
Card. They also aim to prove the correctness of Java Card tokenisation. Their work can
be seen as complementing ours. They concentrate on optimisations, including the type
specialisation of instructions, and do not consider the conversion as such. In contrast, we
have specified the conversion but ignored the subsequent optimisations. Their formalism
is based on the B method, so the specification and proof are presented as a series of
refinements. In [7], Pusch proves the correctness of an implementation of Prolog on an
abstract machine, the WAM. The proof structure is similar to ours, although there are
refinements through several levels. There are operational semantics for each level, and
correctness in expressed in terms of equivalence between levels. The differences between
the semantics are significant, since they are not factored out into auxiliary functions as
here. She uses a big-step operational semantics, which is not appropriate for us because
we wish to compare intermediate results. Moreover, she uses an abstraction function on
the initial state, the results being required to be identical, whereas we have arelation for
both initial and final states.

4 Abstract Types

We use types to structure the transformation. These are not the types of the Java Card
language, but rather are based on the simply-typed lambda calculus with sums, products
and lists. We use record types with the actual types of fields (drawn from the official
specification where not too confusing) serving as labels. Occasionally we use terms
as singleton types, such asOxFFFF and0. There are two sorts of types:abstractand
concrete. The idea is that abstract types are those we can think of independently of a
particular format. The concrete types are the particular realisations of these, as well as
types which only make sense in one particular model. For example,CP index is the
abstract type of indices into a constant pool for a given package. In the name inter-
pretation, this is modelled by a class name and an index into the constant pool of the
corresponding class file,i.e. Class name × Index whereIndex is a concrete type.
In the token interpretation, however, since all the constant pools are merged, we have
[[CP index]]tok = Package tok × Index. Another example is the various distinctions
that are made between method and field references in CAP files, but not class files,
and which are not relevant at the level of the operational semantics, which concerns
terms of abstract types. We arrange the types so that as much as possible is common

108 E. Denney and T. Jensen

between the two formats. For example, it is more convenient to uniformly define envi-
ronments as mappings of typePackage ref → Package, with Package interpreted as
Class name → Class file or CAP file.

There is a ‘type of types’ for the two forms of data type in Java Card — primitive
types,i.e., the simple types supported directly on the card, and reference types.

Type = {Boolean, Byte, Short} + Reference type.
Reference type = Array type + Class ref.

We use a separate type,Object ref, to refer to objects on the heap. The objects themsel-
ves contain a reference to the appropriate class or array of which they form an instance.

The typeWord is an abstract unit of storage and is platform specific. All we need
know is that object references and the basic types,Byte, Short andBoolean, can be
stored in aWord. Rather than use an explicit coercion, we assume

Word = Object ref + Null + Boolean + Byte + Short.

Thus a word is (i.e. represents) either a reference (possibly null) or an element of a
primitive type. Furthermore, we defineValue = Word. Although this is not strictly
necessary, there is a conceptual distinction. If we were to introduce values of typeint,
then a value could be either a word or a double word.

There are several forms of references used during tokenisation,viz., Package ref,
Class ref andMethod ref. We distinguishPackage from Package ref, and simi-
larly for the other items. Note that areferenceis a composite entity which can be context
dependent (e.g.in the CAP format a class reference can be in internal or external forms).
We assume, however, that sufficient information is given so that references make sense
globally. For example, class names are fully qualified, and class tokens are paired with
a package token. We take field and method references to be to particular members of
some class, and so contain a class reference. In contrast, anidentifier is a name or a
token (these are not used at the abstract level though). Using these basic types, we can
then construct complex types using the usual type constructors: (non-dependent) sum,
product, function and list types (denotedθ∗) as we did when defining the environment
at the end of Sect. 2.

5 Operational Semantics

We define an operational semantics framework that allows us to model the execution
of both class and CAP files. This is obtained by parameterising the semantics on a
number ofauxiliary functionsthat embody the differences between the two formats.
This factorisation of the semantics reduces the equivalence proof considerably.

The official specification of the JCVM (and JVM) is given in terms offrames. A
frame represents the state of the current method invocation, together with any other
useful data. We introduce the notion ofconfiguration, consisting of (the abstract syntax
of) the code of the current method still to be executed, the operand stack, the local
variables, and the current class reference. We write these asConfig (b, o, l, c) or just
〈b, o, l, c〉. To account for method invocations, we allow a configuration itself to be

Correctness of Java Card Method Lookup via Logical Relations 109

considered as an instruction. When a method is invoked, the current instruction becomes
a new configuration. Instead of a stack of frames, then, we have a single piece of ‘code’
(in this general sense). This form of closure is more general than the traditional idea of a
call stack but helps simplify the proof. Method invocation is modelled by replacing the
invoking instruction with a configuration that contains the code of the invoked method
(see the detailed description ofinvokevirtual below). Execution of a method body is
modelled by allowing transitions inside a configuration.

f ⇒ f ′

〈Config f, ops, l, c〉 ⇒ 〈Config f ′, ops, l, c〉

The method invocation instructions (and others) take an argument which is an index
into either the constant pool of a class file, or into the constant pool component of a CAP
file. This means that the ‘concrete’ bytecode is itself dependent on the implementation
and is therefore modelled by an abstract type. Formally, we define a transition relation

⇒ ⊆ Config × Arrow × Config

using the types

Config = Bytecode × Word∗ × Locals × Class ref
Arrow = Global state → Global state

Global state = Environment × Heap
Bytecode = Instruction + (Bytecode × Bytecode) + Config

As mentioned above, the structure of the class/CAP file need not be visible to the
operational semantics. We use a number of auxiliary functions, some of which have
preconditions that we take as concomitant with the well-formedness of the class file.
The definition of method invocation uses thelookup function

lookup : Class ref × Method ref → Class ref × Bytecode

that takes the actual class reference, together with the declared method reference (which
contains the class where the method is declared), and returns the class reference where
the method is defined together with the code. Functionmethod nargs : Method ref →
Nat returns the number of arguments for a given method reference. The instruction for
virtual method invocation is evaluated as follows:

1. The two byte index,i, into the constant pool is resolved to get the declared method
reference containing the declared class reference and a method identifier (either a
signature or token).

2. The number of arguments to the method is calculated.
3. The object reference,r, is popped off the operand stack.
4. Using the heap, we getheap(r) = 〈act cref , 〉, the actual class reference (fully

qualified name or a package/class token pair).
5. We then dolookup(act cref , dec mref), getting the class where the method is

implemented, and its bytecode. The lookup function is used with respect to the class
hierarchy (environment).

6. A configuration is created for this method and evaluation proceeds from there.

110 E. Denney and T. Jensen

dec mref := constant pool (c)(i) get declared method reference
n := method nargs(stat mref) get number of arguments
〈act cref , 〉 := heap(r) get actual class reference from heap
〈m cl, m cd〉 := lookup(act cref , dec mref) look up method
〈invokevirtual i, a1 . . . an :: r :: s, l, c〉 ⇒ 〈〈m cd, 〈〉, a1 . . . an :: r, m cl〉, s, l, c〉
In the following sections we show how to instantiate the semantic framework (in parti-
cular thelookup function) to obtain a class file and a CAP file semantics.

6 Interpretations

The name interpretation gives semantics using Java class files (see Figure 1). Since this
is fairly standard we give a brief description. Classes are described by fully qualified
names, whereas methods and fields are given signatures, consisting of an unqualified
name and a type, together with the class of definition. We assume a functionpack name
which gives the package name of a class name. The data is arranged into class files, each
of which contains all the information corresponding to a particular class. We only give
the interpretation of those parts used here. We group the class files by package into a
global environment soenv name(p)(c) denotes the class file in packagep with namec.

[[Package]]name = Class name → Class file

[[Class ref]]name = Class name

[[Method ref]]name = Class name × Sig

Sig = Method name×[[Type]]∗name

[[Class]]name = Class file

Class file = Class flags× Super× Methods item× Constant pool item× Class name

Super = Class name + Void

[[Pack methods]]name = Class name → Methods item

Methods item = Sig → Method info

Method info =
Method flags × Sig×([[Type]]name + Void) × Maxstack × Maxlocals × Bytecode

Fig. 1. Name Interpretation

Method signatures are not considered to include the return type. We assume that the
signature in the result of a methods item is the same as the argument.

There are a number of possibilities for how method lookup should be defined, de-
pending on the definition of inheritance. For example, [1,8] use a ‘naive’ lookup which
does not take account of visibility modifiers. A fuller discussion of this appears in [9].

In the JCVM, data is arranged by packages into CAP files. Each CAP file consists
of a number of components, but not all are used for method lookup (or, indeed, the rest

Correctness of Java Card Method Lookup via Logical Relations 111

lookup_name (act_class, (sig, dec_class)) =
let dec_pk = pack_name(dec_class)

act_pk = pack_name(act_class)
(_,_,meth_dec,_,_) = env_name (dec_pk) (dec_class)
(_,super,_,meth_act,_,_) = env_name (act_pk) (act_class)
(dec_flags,_,_,_,_,_) = meth_dec(sig) in

if meth_act(sig) = undefined
then lookup_name(super, (sig, dec_class))
else if

dec_flags(protected) or dec_flags(public) or act_pk = act_pk
then let (_,_,_,_,_,code) = meth_act(sig) in (act_class,code)
else lookup_name(super, (sig, dec_class))

Fig. 2. Thelookup function for the class file format.

of the operational semantics). We just include those components we need here, namely,
the constant pool, class and method components.

References to items external to a package are via tokens — for packages, classes,
and virtual methods — each with a particular range and scope. These are then used to
find internal offsets into the components. For example, a class reference is either an
internal offset into the class component of the CAP file of the class’ package, or an
external reference composed of a package token and a class token. However, since we
need to relate the reference to class names, we will assume that all references come with
package information, even though this is superfluous in the case of internal references.

[[Package]]tok = CAP file

CAP file = Constant pool comp × Class comp × Method comp

[[Package ref]]tok = Package tok

[[Class ref]]tok = Package tok × (Class tok + Offset)

[[Method ref]]tok = [[Class ref]]tok × Virtual method tok

[[Class]]tok = Class info

Class comp = Offset → Class info

Class info = Class flags × Super × Public table × Package table × Class ref

Public table = Public base × Public size × (Index → Offset + {OxFFFF})

Package table = Package base × Package size × (Index → Offset)

[[Pack methods]]tok = Method comp

Method comp = Offset → Method info

Method info = Method flags × Maxstack × Nargs × Max locals × Bytecode

Fig. 3.Token Interpretation

112 E. Denney and T. Jensen

The class component consists of a list of class information structures, each of which
has method tables, giving offsets into the method component, where the method imple-
mentations are found. The lookup algorithm uses tokens to calculate the corresponding
method table index. There are separate tables for public and package methods. Method
access information is given implicitly by the tokens rather than by flags. The two method
tables each contain a base, size and ‘list’of entries. The entries are defined from thebase
to base+size−1 inclusive. The entry for a public method will beOxFFFF if the method
is defined in another package.

For a given class reference, the functionclass info finds the corresponding class
information structure in the global environment. The variant,class info′ returns the
class information structure in a particular CAP file. The functionmethod array sim-
ply finds the method component for a given class reference. We assume the existence
of functionsclass offset andmethod offset for resolving external tokens to in-
ternal offsets It follows from the definition of the abstract typeEnvironment, that the
environment in the token format consists of a mapping from package tokens to their
corresponding CAP filei.e., envtok : Package tok → CAP file. The lookup function
takes a class reference (the declared class), a method reference (in the actual class), and
returns the reference to the class where the code is defined, together with the bytecode
itself. The main steps of the algorithm (see Fig. 4) are:

1. Get method array for the package of the actual class.
2. Get class information for the actual class.
3. If public: if defined thenget infoelselookup super.

If package: if defined and visible thenget infoelselookup super.

7 Formalisation of Equivalence

We formalise the equivalence between the class and CAP formats as a family of relations,
{Rθ : [[θ]]name ↔ [[θ]]tok}θ∈Abstract type indexed by abstract type,θ. The idea is that
x Rθ y wheny is apossibletransformation ofx. The relations are not necessarily total,
i.e. for somex : [[θ]]name, there may not be ay such thatx Rθ y. Formally, the relations
are defined as a mutually inductive collection of constraints,Rθ, for each typeθ, where
the types,θ, are given by the grammar:

γ ::= Bool | Nat | Object ref | Boolean | Byte | Short | Value | Word
ι ::= Package ref | Ext class ref | Class ref | Method ref
κ ::= CP index | CP info | Method info | Package | Class |

Constant pool | Pack methods
θ ::= γ | ι | κ | θ × θ′ | θ → θ′ | θ + θ′ | θ∗

where the observable types are built up inductively from theγ, i.e. do not contain theι
andκ. There are two sources of underspecification. First, the relations really can be non-
functional. Second, there is a choice for what some of the relations are. For example,
RClass ref is somebijection satisfying certain constraints. The relations between the
‘large’ structures, however, are completely defined in terms of those between smaller
ones. There are two parts to the transformation itself: the tokenisation, defined as the
relationsRι, and the ‘componentisation’, defined as theRκ.

Correctness of Java Card Method Lookup via Logical Relations 113

lookup_tok (act_class_ref, (dec_class_ref, method_tok)) =

let methods = method_array (act_class_ref)
(_, super,(public_base,_, public_table),

(package_base,_, package_table),_) : Class_info =
class_info(act_class_ref) in

if method_tok div 128 = 0 then /* public */
if method_tok >= public_base then
let method_offset = public_table[method_tok-public_base] in

if method_offset <> 0xFFFF
then (act_class_ref, methods[method_offset].Bytecode)
else /* look in superclass */

lookup_tok(super, (dec_class_ref, method_tok))
else /* look in superclass */

lookup_tok(super, (dec_class_ref, method_tok))
else /* package */

if method_tok >= package_base /\
same_package(dec_class_ref, act_class_ref)

then let method_offset =
package_table[method_tok mod 128 - package_base]

in (act_class_ref, methods[method_offset].Bytecode)
else /* look in superclass */

lookup_tok(super, (dec_class_ref, method_tok))

Fig. 4. Thelookup function for the CAP file format.

7.1 Tokenisation

The relations,Rι, represent the tokenisation of items. The general idea is to set up
relations between the names and tokens assigned to the various entities, subject to certain
constraints described in the specification.

In order to account for token scope, we relate names to tokens paired with the
appropriate context information. For example, method tokens are scoped within a class,
so the relationRMethod ref is between pairs of class names and signatures, and pairs of
class references and method tokens. We must add a condition, therefore, to ensure that
the package token corresponds to the package name of this class name.

We assume that each of these relations is a bijection, modulo the equivalence between
internal and external references (with one exception to account for the copying of virtual
methods, explained below). Formally,

a R b ∧ a′ R b ⇒ a = a′

a R b ⇒ (a R b′ ⇐⇒ Equiv(b, b′))

where equivalence,Equiv, of class references is defined as the reflexive symmetric
closure of:

Equiv(〈p tok, offset〉, 〈p tok, c tok〉) ⇐⇒ class offset(p tok, c tok) = offset

114 E. Denney and T. Jensen

The second condition contains two parts: that the relation is functional moduloEquiv,
and that it is closed underEquiv. We say thatR is anexternal bijectionwhen these
conditions hold. We extend the definition ofEquiv and external bijection to the other
references.

These relations are defined with respect to the environment (in name format). We use
a number of abbreviations for extracting information from the environment. We write
c < c′ for the subclass relation (i.e. the transitive closure of the direct subclass relation)
and≤ for its reflexive closure. In the token interpretation this is moduloEquiv. We write
m tok ∈ c ref when a method with tokenm tok is declared in the class with reference
c ref , andpack name(c) for the package name of the class namedc.

We define functionClass flag for checking the presence of attributes such as
public, final, etc. The tokenisation uses the notion ofexternal visibility.

Externally visible(c name) = Class flag(c name, Public)

We will also writepublic(sig) andpackage(sig) according to the visibility of a method.
Package ref : As mentioned above, we take package tokens to be externally visi-

ble. The relationRPackage ref is simply defined as any bijection between package names
and tokens.

Ext class ref : In order to define the relation for class references we first define
the relation for external class references. We defineRExt class ref as a bijection between
class names and external class references such that:
c name RExt class ref (p tok, c tok) ⇒
Externally visible(c name) ∧ pack name(c name) RPackage ref p tok

Method ref : This is not a bijection because of the possibility of copying. Alt-
hough ‘from names to tokens’ we do have:

〈c name, sig〉 RMethod ref 〈c ref , m tok〉 ∧
〈c′ name, sig′〉 RMethod ref 〈c ref , m tok〉 ⇒

{
c name = c′ name ∧
sig = sig′

for a converse we have:

〈c name, sig〉 RMethod ref 〈c ref , m tok〉 ∧
〈c name, sig〉 RMethod ref 〈c′ ref , m′ tok〉 ⇒

{
(c ref ≤ c′ ref ∨ c′ ref ≤ c ref)
∧ m tok = m′ tok

The first condition says that if a method overrides a method implemented in a superclass,
then it gets the same token. Restrictions on the language mean that overriding cannot
change the method modifier from public to package or vice versa.

〈c name, sig〉 RMethod ref 〈c ref , m tok〉 ∧
〈c′ name, sig〉 RMethod ref 〈c′ ref , m′ tok〉 ∧
c′ name < c name ∧
(package(sig) ⇒ same package(c name, c′ name))

⇒ m tok = m′ tok

The second condition says that the tokens for public introduced methods must have
higher token numbers that those in the superclass. We assume a predicate,newmethod,
which holds of a method signature and class name when the method is defined in the
class, but not in any superclass.

public(sig) ∧ new method(sig, c name) ∧
(c name, sig) RMethod ref (c ref , m tok) ⇒

{∀m′ tok ∈ super(c ref) .
m tok > m′ tok

Correctness of Java Card Method Lookup via Logical Relations 115

Package-visible tokens for introduced methods are similarly numbered, if the superclass
is in the same package.

package(sig) ∧ new method(sig, c name) ∧
(c name, sig) RMethod ref (c ref, m tok) ∧
same package(c name, super(c name))

⇒
{∀m′ tok ∈ super(c ref) .

m tok > m′ tok

The third condition says that public tokens are in the range 0 to 127, and package tokens
in the range 128 to 255.

〈c name, sig〉 RMethod ref 〈c ref , m tok〉 ⇒
(public(sig) ⇒ 0 ≤ m tok ≤ 127) ∧ (package(sig) ⇒ 128 ≤ m tok ≤ 255)

The specification [11] also says that tokens must be contiguously numbered starting
at 0 but we will not enforce this.

7.2 Componentisation

The relations in the previous section formalise the correspondence between named and
tokenised entities. When creating the CAP file components, all the entities are conver-
ted, including the package visible ones. Thus at this point we defineRClass ref as a
relation between named items and either external tokens or internal references, subject
to coherence constraints.

We must ensure that if a name corresponds to both an external token and to an internal
offset, then the token and the offset correspond to the same entity. We ensure this by
using the offset functionclass offset : Package tok × Class tok → Offset
which returns the internal offset corresponding to an external token, and thendefine
RClass ref from this andRExt class ref. Clearly, therefore,RClass ref is not a bijection.

Class ref : We define RClass ref as an external bijection which respects
RExt class ref, that is, such that

c name RClass ref (p tok, c tok) ⇐⇒ c name RExt class ref (p tok, c tok).

ThusRClass ref extendsRExt class ref to internal references.
Method info: We only treat certain parts of the method information here:

〈flags, sig, , , maxstack, maxlocals, code, 〉
RMethod info

〈flags′, maxstack′, nargs′, maxlocals′, code′〉
⇐⇒

flags RMethod flags flags′ ∧
maxstack = maxstack′∧
size(sig) = nargs′∧
maxlocals = maxlocals′∧
code RBytecode code′

In the name interpretation, information is grouped by the package and so, for example,
[[Pack methods]]name : Class name → Methods item is the ‘set’ of method data
for all classes. In the token format the method information is spread between the two
components. The coupling relations reflect this: the relationRClass ensures that a named
method corresponds to a particular offset, andRPack methods ensures that the entry at this
offset is related byRMethod info.

116 E. Denney and T. Jensen

Pack methods: The method item and method component contain the implementa-
tions of both static and virtual methods.

methods name
RPack methods

method comp
⇔

∀〈c name, sig〉 RMethod ref 〈p tok, c tok, m tok〉.
methods name(c name, sig) RMethod info

methods comp.methods(method offset(p tok, c tok, m tok)

Class: We defineRClass. There are a number of equivalences expressing correctness
of the construction of the class component. For the lookup, the significant ones are those
between the method tables. These say that if a method is defined in the name format,
then it must be defined (and equivalent) in the token format. Since the converse is not
required, this means we can copy method tokens from a superclass. Instead, there is
a condition saying that if there is a method token, then there must be a corresponding
signature in some superclass.

If a method is visible in a class, then there must be an entry in the method table,
indicating how to find the method information structure in the appropriate method com-
ponent. For package visible methods this implies that the method must be in the same
package. For public methods, if the two classes are in the same package, then this entry
is an offset into the method component of this package. Otherwise, the entry isOxFFFF,
indicating that we must use the method token to look in another package.

The class component only contains part of the information contained in the class
files. The full definition is given in Figure 5. (writingc name for cf.Class name and
c ref for ci.Class ref): The offset functions link the various relations. We make a
global assumption (in fact, local to an environment) of the existence ofclass offset
andmethod offset.

Equivalence proof: The full proof establishes that the auxiliary functions preserve the
appropriate relations [2]. Here, we state the main lemma for the functionlookup whose
type isClass ref × Method ref → Class ref × Bytecode.

Lemma 1. If the heap and environment are related in the two formats, then:

[[lookup]]name RClass ref×Method ref→Class ref×Bytecode[[lookup]]tok

In order to use the operational semantics with the logical relations approach it is
convenient to view the operational semantics as giving an interpretation. We define
[[code]](〈env, heap, op stack, loc vars, m ref 〉) as the resulting state from the (unique)
transition from〈code, op stack, loc vars〉 with environmentenv and heapheap. Thus
interpreted bytecode has typeState → Bytecode × State whereState is

State = Global state × Operand stack × Local variables × Class ref

Now, the following fact is trivial to show: ifRB = idB for all basic observable types,
thenRθ = idθ for all observableθ. In combination with the following theorem, then, this
says that if a transformation satisfies certain constraints (formally expressed by saying
that it is contained inR) then it is correct, in the sense that no difference can be observed
in the two semantics. In particular, we can observe the operand stack (of observable type
Word∗) and the local variables (of observable typeNat → Word) so these are identical
under the two formats.

Correctness of Java Card Method Lookup via Logical Relations 117

cf : Class file RClass ci : Class info ⇐⇒

cf.Class flags RClass flags ci.Class flags ∧
cf.Super RClass ref ci.Super ∧

∀sig ∈ cf.Methods item.
public(sig) ⇒
∃m tok . ci.Public base ≤ m tok < ci.Public base + ci.Public size ∧
〈c name, sig〉 RMethod ref 〈c ref , m tok〉 ∧
ci.Public table[m tok − ci.Public base] = method offset(c ref , m tok)
∧
package(sig) ⇒
∃m tok . ci.Package base ≤ m tok & 127 < ci.Package base + ci.Package size ∧
〈c name, sig〉 RMethod ref 〈c ref , m tok〉 ∧
ci.Package table[m tok & 127 − ci.Package base] = method offset(c ref , m tok)
∧
∀m tok ∈ ci.Public table ∪ ci.Package table.∃sig.∃c′ name.
〈c′ name, sig〉 RMethod ref 〈c ref , m tok〉 ∧ c name ≤ c′ name ∧
public(sig) ⇒ [(same package(c name, c′ name) ⇐⇒

ci.Public table[m tok − ci.Public base] 6= OxFFFF)]

Fig. 5.Definition ofRClass

Theorem 1. Assume thatenvname REnvironment envtok, heapname RHeap heaptok,
ls RLocal state ls′, andcode RBytecode code′. Then

[[code]]name(envname, heapname, ls) RBytecode×State [[code′]]tok(envtok, heaptok, ls′)

8 Conclusion

We have formalised the virtual machines and file formats for Java and Java Card, and
the optimisation as a relation between the two. Correctness of this optimisation was
expressed in terms of observable equivalence of the operational semantics, and this was
deduced from the constraints that define the optimisation. Although the framework we
have presented is quite general, the proof is specific to the instantiations of auxiliary
functions we chose. It could be argued that we might have proven the equivalence of
two incorrect implementations of lookup. The remedy for this would be to specify the
functions themselves, and independently prove their correctness. Furthermore, we have
made a number of simplifications which could be relaxed. We have used a simple
definition ofRBytecode here, which just accounts for the changing indexes into constant
pools (as well as method references in configurations). We have not considered inlining
or the specialisation of instructions, however. We expressed equivalence in terms of an
identity at observable types but we should also account for the difference in word size,
as in [3]. Although the specialisation of instructions could be handled by our technique,
the extension is less clear for the more non-local optimisations.

We emphasise that the particular form of operational semantics used here is orthogo-
nal to the rest of the proof. This version suffices for the instructions considered here, but

118 E. Denney and T. Jensen

could easily be changed (along with the definition ofRBytecode). The auxiliary functions
could be given different definitions; for example, an abstract interpretation or, going in
the opposite direction, including error information.

The definitions have been formalised in Coq, and the lemmas verified [9]. The di-
scipline this imposed on the work presented here was very helpful in revealing errors.
Even just getting the definitions to type-check uncovered many errors. We take the com-
plexity of the proofs (in Coq) as evidence for the merit in separating the correctness of
a particular algorithm from the correctness of the specification. In fact, the operational
semantics, correctness of the specification, and development of the algorithm are all
largely independent of each other.

As mentioned in the introduction, there are two main steps to showing correctness:

1. Give an abstract characterisation of all possible transformations and show that the
abstract properties guarantee correctness.

2. Show that an algorithm implementing such a transformation exists.

We are currently working on a formal development of a tokenisation algorithm using
Coq’s program extraction mechanism together with constraint-solving tactics.

Acknowledgments

This work was partially supported by the INRIAAction de recherche coop´erativeJava
Card

References

1. P. Bertelsen. Semantics of Java byte code. Technical report, Department of Information
Technology, Technical University of Denmark, March 1997.

2. Ewen Denney. Correctness of Java Card Tokenisation. Technical Report 1286, Projet Lande,
IRISA, 1999. Also appears as INRIA research report 3831.

3. Jean-Louis Lanet and Antoine Requet. Formal proof of smart card applets correctness. In
Third Smart Card Research and Advanced Application Conference (CARDIS’98), 1998.

4. T. Lindholm and F. Yelling.The Java Virtual Machine Specification. Addison-Wesley, 1997.
5. J. Mitchell. Foundations for Programming Languages. Foundations of Computing Series.

MIT Press, 1996.
6. Peter D. Mosses. Modularity in structural operational semantics. Extended abstract, Novem-

ber 1998.
7. Cornelia Pusch. Verification of Compiler Correctness for the WAM. In J. von Wright,

J. Grundy, and J. Harrison, editors,Theorem Proving in Higher Order Logics (TPHOLs’96),
pages 347–362. Springer-Verlag, 1996.

8. Cornelia Pusch. Formalizing the Java Virtual Machine in Isabelle/HOL. Technical Report
TUM-I9816, Institut für Informatik, Technische Universit¨at München, 1998.

9. Gaëlle Segouat. Preuve en Coq d’une mise en oeuvre de Java Card. Master’s thesis, Projet
Lande, IRISA, 1999.

10. Sun Microsystems.Java Card 2.0 Language Subset and Virtual Machine Specification,
October 1997. Final Revision.

11. Sun Microsystems.Java Card 2.1 Virtual Machine Specification, March 1999. Final Revision
1.0.

Compile-Time Debugging of
C Programs Working on Trees

Jacob Elgaard, Anders Møller, and Michael I. Schwartzbach

BRICS, University of Aarhus
{elgaard,amoeller,mis}@brics.dk

Abstract. We exhibit a technique for automatically verifying the safety
of simple C programs working on tree-shaped data structures. We do
not consider the complete behavior of programs, but only attempt to
verify that they respect the shape and integrity of the store. A verified
program is guaranteed to preserve the tree-shapes of data structures, to
avoid pointer errors such as NULL dereferences, leaking memory, and
dangling references, and furthermore to satisfy assertions specified in a
specialized store logic.
A program is transformed into a single formula in WSRT, an extension of
WS2S that is decided by the MONA tool. This technique is complete for
loop-free code, but for loops and recursive functions we rely on Hoare-
style invariants. A default well-formedness invariant is supplied and can
be strengthened as needed by programmer annotations. If a program fails
to verify, a counterexample in the form of an initial store that leads to
an error is automatically generated.
This extends previous work that uses a similar technique to verify a
simpler syntax manipulating only list structures. In that case, programs
are translated into WS1S formulas. A naive generalization to recursive
data-types determines an encoding in WS2S that leads to infeasible com-
putations. To obtain a working tool, we have extended MONA to directly
support recursive structures using an encoding that provides a neces-
sary state-space factorization. This extension of MONA defines the new
WSRT logic together with its decision procedure.

1 Introduction

Catching pointer errors in programs is a difficult task that has inspired many
assisting tools. Traditionally, these come in three flavors. First, tools such a Pu-
rify [3] and Insure++ [17] instrument the generated code to monitor the runtime
behavior thus indicating errors and their sources. Second, traditional compiler
technologies such as program slicing [21], pointer analysis [7], and shape analy-
sis [19] are used in tools like CodeSurfer [8] and Aspect [10] that conservatively
detect known causes of errors. Third, full-scale program verification is attempted
by tools like LCLint [6] and ESC [5], which capture runtime behavior as formulas
and then appeal to general theorem provers.

All three approaches lead to tools that are either incomplete or unsound (or
both), even for straight-line code. In practice, this may be perfectly acceptable
if a significant number of real errors are caught.

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 119–134, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

120 J. Elgaard, A. Møller, and M.I. Schwartzbach

In previous work [11], we suggest a different balance point by using a less
expressive program logic for which Hoare triples on loop-free code is decidable
when integer arithmetic is ignored. That work is restricted by allowing only
a while-language working on linear lists. In the present paper we extend our
approach by allowing recursive functions working on recursive data-types. This
generalization is conceptually simple but technically challenging, since programs
must now be encoded in WS2S rather than the simpler WS1S. Decision procedu-
res for both logics are provided by the MONA tool [13, 18] on which we rely, but
a naive generalization of the previous encoding leads to infeasible computations.
We have responded by extending MONA to directly support a logic of recursive
data-types, which we call WSRT. This logic is encoded in WS2S in a manner
that exploits the internal representation of MONA automata to obtain a much
needed state-space factorization.

Our resulting tool catches all pointer errors, including NULL dereferences,
leaking memory, and dangling references. It can also verify assertions provided
by the programmer in a special store logic. The tool is sound and complete for
loop-free code including if-statements with restricted conditions: it will reject
exactly the code that may cause errors or violate assertions when executed in
some initial store. For while-loops or functions, the tool relies on annotations in
the form of invariants and pre- and post-conditions. In this general case, our tool
is sound but incomplete: safe programs exist that cannot be verified regardless
of the annotations provided. In practical terms, we provide default annotations
that in many cases enable verification.

Our implementation is reasonably efficient, but can only handle programs of
moderate sizes, such as individual operations of data-types. If a program fails
to verify, a counterexample is provided in the form of an initial store leading
to an error. A special simulator is supplied that can trace the execution of a
program and provide graphical snapshots of the store. Thus, a reasonable form
of compile-time debugging is made available. While we do not detect all program
errors, the verification provided serves as a finely masked filter for most bugs.

As an example, consider the following recursive data-type of binary trees
with red, green, or blue nodes:

struct RGB {
enum {red,green,blue} color;
struct RGB *left;
struct RGB *right;

};

The following non-trivial application collects all green leaves into a right-linear
tree and changes all the blue nodes to become red:

/**data**/ struct RGB *tree;
/**data**/ struct RGB *greens;

enum bool {false,true};

enum bool greenleaf(struct RGB *t) {
if (t==0) return false;

Compile-Time Debugging of C Programs Working on Trees 121

if (t->color!=green) return false;
if (t->left!=0 || t->right!=0) return false;
return true;

}

void traverse(struct RGB *t) {
struct RGB *x;
if (t!=0) {

if (t->color==blue) t->color = red;
if (greenleaf(t->left)==true /**keep: t!=0 **/) {

t->left->right = greens;
greens = t->left;
t->left=0;

}
if (greenleaf(t->right)==true /**keep: t!=0 **/) {

t->right->right = greens;
greens = t->right;
t->right=0;

}
traverse(t->left); /**keep: t!=0 **/
traverse(t->right); /**keep: t!=0 **/

}
}

/**pre: greens==0 **/
main() { traverse(tree); }

The special comments are assertions that the programmer must insert to specify
the intended model (/**data**/), restrict the set of stores under consideration
(/**pre**/), or aid the verifier (/**keep**/). They are explained further in
Section 2.4.

Without additional annotations, our tool can verify this program (in 33 se-
conds on a 266MHz Pentium II PC with 128 MB RAM). This means that no
pointer errors occur during execution from any initial store. Furthermore, both
tree and greens are known to remain well-formed trees. Using the assertion:

all p: greens(->left + ->right)*==p => (p!=0 => p->color==green)

we can verify (in 74 seconds) that greens after execution contains only green
nodes. That greens is right-linear is expressed through the assertion:

all p: greens(->left + ->right)*==p => (p!=0 => p->left==0)

In contrast, if we assert that greens ends up empty, the tool responds with a
minimal counterexample in the form of an initial store in which tree contains a
green leaf.

An example of the simulator used in conjunction with counterexamples comes
from the following fragment of an implementation of red-black search trees.
Consider the following program, which performs a left rotation of a node n with
parent p in such a tree:

122 J. Elgaard, A. Møller, and M.I. Schwartzbach

struct Node {
enum {red, black} color;
struct Node *left;
struct Node *right;

};

/**data**/ struct Node *root;

/**pre: n!=0 & n->right!=0 &
(p!=0 => (p->left==n | p->right==n)) &
(p==0 => n==root) **/

void left_rotate(struct Node *n, struct Node *p) {
struct Node *t;
t = n->right;
n->right = t->left;
if (n==root) root = t;
else if (p->left==n) p->left = t;
else p->right = t;
t->left = n;

}

In our assertion language, we cannot express the part of the red-black data-type
invariant that each path from the root to a leaf must contain the same number
of black nodes; however we can capture the part that the root is black and that
a red node cannot have red children:

root->color==black &
all p: p->color==red =>

(p->left->color!=red & p->right->color!=red)

If we add the above assertion as a data-type invariant, we are (in 18 seconds)
given a counterexample. If we apply the simulator, we see the following example
run, which shows that we have forgotten to consider that the root may become
red (in which case we should add a line of code coloring it black):

black

red red

np troot

black

red red

np troot

black

red

red

np troot

red

black

red

np troot

black

red
red

np troot

Such detailed feedback at compile-time is clearly a useful debugging tool.

Compile-Time Debugging of C Programs Working on Trees 123

2 The Language

The language in consideration is a simple yet non-trivial subset of C. It allows
declaration of tree-shaped recursively typed data structures and recursive im-
perative functions operating on the trees. The subset is chosen such that the
verification we intend to perform becomes decidable. Thus, for instance, integer
arithmetic is omitted from the language; only finite enumeration types can be
expressed. Also, to smoothen presentation, many other C constructs have been
omitted although some of them easily could be included directly, and other by
approximating their behavior.

We begin by defining the core language. After that, we describe how pro-
grams can be annotated with formulas expressing additional requirements for
correctness.

2.1 The C Subset

The abstract syntax of the C subset is defined using EBNF notation, where fur-
thermore ~ is used to denote comma-separated lists with zero or more elements.
The semantics of the language is as known from C.

A program consists of declarations of structures, enumerations, variables, and
functions:

program → (struct | enum | var | function)∗

A structure contains an enumeration denoting its value and a union of structures
containing pointers to its child structures. An enumeration is a list of identifiers:

struct → struct id {
enum id id;
union {

(struct {
(struct id * id;)∗

} id;)∗

} id;
};

enum → enum id { id+ };
The enumeration values denote the kind of the structure, and the kind determines
which is the active union member. The association between enumeration values
and union members is based on their indices in the two lists. Such data structures
are typical in real-world C programs and exactly define recursive data-types. One
goal of our verification is to ensure that only active union members are accessed.

For abbreviation we allow declarations of structures and enumerations to be
inlined. Also, we allow (struct id * id;)∗ in place of union {. . . }, implicitly
meaning that all union members are identical. A variable is either a pointer to
a structure or an enumeration:

var → type id;

type → struct id * | enum id

124 J. Elgaard, A. Møller, and M.I. Schwartzbach

A function can contain variable declarations and statements:
function → (void | type) id((type id)~) {

var∗ stm?

(return rvalue;)?

}
A statement is a sequence, an assignment, a function call, a conditional state-
ment, a while-loop, or a memory deallocation:

stm → stm stm |
lvalue = rvalue; |
id((rvalue)~); |
if (cond) stm (else stm)? |
while (cond) stm |
free(lvalue);

A condition is a boolean expression evaluating to either true or false; the ex-
pression ? represents non-deterministic choice and can be used in place of those
C expressions that are omitted from our subset language:

cond → cond & cond | cond | cond | ! cond | rvalue == rvalue | ?

An lvalue is an expression designating an enumeration variable or a pointer
variable. An rvalue is an expression evaluating to an enumeration value or to
a pointer to a structure. The constant 0 is the NULL pointer, malloc allocates
memory on the heap, and id(. . .) is a function call:

lvalue → id (-> id (. id)?)∗

rvalue → lvalue | 0 | malloc(sizeof(id)) | id(rvalue~)

The nonterminal id represents identifiers.
The presentation of our verification technique is based on C for familiarity

reasons only—no intrinsic C constructs are utilized.

2.2 Modeling the Store

During execution of a program, structures located in the heap are allocated and
freed, and field variables and local variables are assigned values. The state of an
execution can be described by a model of the heap and the local variables, called
the store.

A store is modeled as a finite graph, consisting of a set of cells representing
structures, a distinguished NULL cell, a set of program variables, and pointers
from cells or program variables to cells. Each cell is labeled with a value taken
from the enumerations occurring in the program. Furthermore, each cell can
have a free mark, meaning that it is currently not allocated.

Program variables are those that are declared in the program either globally
or inside functions. To enable the verification, we need to classify these variables
as either data or pointer variables. A variable is classified as a data variable by
prefixing its declaration in the program with the special comment /**data**/;
otherwise, it is considered a pointer variable.

Compile-Time Debugging of C Programs Working on Trees 125

A store is well-formed if it satisfies the following properties:

– the cells and pointers form disjoint tree structures (the NULL cell may be
shared, though);

– each data variable points either to the root of a tree or to the NULL cell;
– each pointer variable points to any cell (including the NULL cell);
– a cell is marked as free if and only if it is not reachable from a program

variable; and
– the type declarations are respected—this includes the requirement that a cell

representing a structure has an outgoing pointer for each structure pointer
declared in its active union member.

With the techniques described in the remainder of this paper, it is possible to
automatically verify whether well-formedness is preserved by all functions in a
given program. Furthermore, additional user defined properties expressed in the
logic presented in Section 2.3 can be verified.

The following illustrates an example of a well-formed store containing some
RGB-trees as described in Section 1. Tree edges are solid lines whereas the values
of pointer variables are dashed lines; free cells are solid black:

green

green

red

blue green

blue red

blue red green

tree

greens

t

green

2.3 Store Logic

Properties of stores can conveniently be stated using logic. The declarative and
succinct nature of logic often allows simple specifications of complex require-
ments. The logic presented here is essentially a first-order logic on finite tree
structures [20]. It has the important characteristic of being decidable, which we
will exploit for the program verification.

A formula φ in the store logic is built from boolean connectives, first-order
quantifiers, and basic propositions. A term t denotes either an enumeration value
or a pointer to a cell in the store. A path set P represents a set of paths, where
a path is a sequence of pointer dereferences and union member selections ending
in either a pointer or an enumeration field. The signature of the logic consists of
dereference functions, path relations, and the relations free and root:

φ → ! φ | φ & φ | φ | φ | φ => φ | φ <=> φ |
ex id : φ | all id : φ | true | false |
id (P)? == t | free(t) | root(t)

126 J. Elgaard, A. Møller, and M.I. Schwartzbach

A path relation, id P == t, compares either enumeration values or cell pointers.
The identifier id may be either a bound quantified variable, a program variable,
or an enumeration value, and t is a term.

If both id and t denote cell pointers, a path relation is true for a given store
if there is a path in P from the cell denoted by id to the cell denoted by t in the
store. If P is omitted, the relation is true if id and t denote the same cell.

If id denotes a cell pointer and t is an enumeration value, a path relation is
true for a given store if there is a path satisfying P from the cell denoted by id
to an enumeration field with the value t in the store.

The relation free(t) is true in a given store if the cell denoted by t is marked
as not allocated in the store. The relation root(t) is true if t denotes the root
of some tree.

A term is a sequence of applications of the dereference function and union
member selections or the constant 0 representing the special NULL cell:

t → id (-> id (. id)?)∗ | 0

A path set is a regular expression:

P → -> id (. id)? | P + P | P P | P *

The path set defined by ->id1.id2 consists of a single dereference of id1 and
subsequent selection of the member id2. The expressions P + P , P P , and P *
respectively denote union, concatenation, and Kleene star.

2.4 Program Annotations and Hoare Triples

The verification technique is based on Hoare triples [9], that is, constructs of the
form {φ1}stm{φ2}. The meaning of this triple is that executing the statement
stm in a store satisfying the pre-condition φ1 always results in a store satisfying
the post-condition φ2, provided that the statement terminates. Well-formedness
is always implicitly included in both φ1 and φ2. We can only directly decide such
triples for loop-free code. Programs containing loops—either as while-loops or
as function calls—must be split into loop-free fragments.

A program can be annotated with formulas expressing requirements for cor-
rectness using a family of designated comments. These annotations are also used
to split the program into a set of Hoare triples that subsequently can be verified
separately.

/**pre: φ **/ and /**post: φ **/ may be placed between the signature and
the body of a function. The pre formula expresses a property that the verifier
may assume initially holds when the function is executed. The post formula
expresses a property intended to hold after execution of the function. The
states before and after execution may be related using otherwise unused
variables.

/**inv: φ **/ may be placed between the condition and the body of a while-
loop. It expresses an invariant property that must hold before execution of
the loop and after each iteration. It splits the code into three parts: the

Compile-Time Debugging of C Programs Working on Trees 127

statements preceding the while-loop, its body, and the statements following
it.

/**keep: φ **/ may be placed immediately after a function call. It expresses
a property that must hold both before and after the call. It splits the code
into two parts: the statements before and after the call. The keep formulas
can specify invariants for recursive function calls just as inv formulas can
specify invariants for while-loops.

/**assert: φ **/ may be placed between statements. It splits the statement
sequence, such that a Hoare triple is divided into two smaller triples, where
the post-condition of the first and the pre-condition of the second both are
φ. This allows modular analysis to be performed. The variant /**assert: φ
assume: φ **/ allows the post-condition and the pre-condition to be dif-
ferent, and thereby to weaken the verification requirements. This is needed
whenever a sufficiently strong property either cannot be expressed or requires
infeasible computations.

/**check: φ **/ stm informally corresponds to “if (!φ) fail; else stm”,
where fail is some statement that fails to verify. This can be used to check
that a certain property holds without creating two Hoare triples incurring a
potential loss of information.

Whenever a pre- or post-condition, an invariant, or a keep-formula is omitted, the
default formula true is implicitly inserted. Actually, many interesting properties
can be verified with just these defaults. As an example, the program:

/**data**/ struct RGB *x;
struct RGB *p;
struct RGB *q;

p = x;
q = 0;
while (p!=0 & q==0) /**inv: q!=0 => q->color==red **/ {

if (p->color==red) q = p;
else if (p->color==green) p = p->left;
else /**assert: p->color==blue **/ p = p->right;

}

yields the following set of Hoare triples and logical implications to be checked:

{ true } p = x; q = 0; { I }
(I & !B) => true
{ I & B & B1 } q = p; { I }
{ I & B & !B1 & B2 } p = p->left; { I }
(I & B & !B1 & !B2) => (p->color==blue)
{ I & B & !B1 & !B2 & p->color==blue } p = p->right; { I }

where B is the condition of the while-loop, I is the invariant, B1 is the condition
of the outer if-statement and B2 that of the inner if-statement. Note that the
generated Hoare triples are completely independent of each other—when a triple
is divided into two smaller triples, no information obtained from analyzing the
first triple is used when analyzing the second.

128 J. Elgaard, A. Møller, and M.I. Schwartzbach

3 Deciding Hoare Triples

The generated Hoare triples and logical implications—both the formula parts
and the program parts—can be encoded in the logic WS2S which is known to be
decidable. This encoding method follows directly from [11] by generalizing from
list structures to tree structures in the style of [16]. The MONA tool provides
an implementation of a decision procedure for WS2S, so in principle making a
decision procedure for the present language requires no new ideas.

As we show in the following, this method will however lead to infeasible com-
putations making it useless in practice. The solution is to exploit the full power
of the MONA tool: usually, WS2S is decided using a correspondence with ordi-
nary tree automata—MONA uses a representation called guided tree automata,
which when used properly can be exponentially more efficient than ordinary tree
automata. However, such a gain requires a non-obvious encoding.

We will not describe how plain MONA code directly can be generated from
the Hoare triples and logical implications. Instead we introduce a logic called
WSRT, weak monadic second-order logic with recursive types, which separates
the encoding into two parts: the Hoare triples and logical implications are first
encoded in WSRT, and then WSRT is translated into basic MONA code. This
has two benefits: WSRT provides a higher level of abstraction for the encoding
task, and, as a by-product, we get an efficient implementation of a general tree
logic which can be applied in many other situations where WS2S and ordinary
tree automata have so far been used.

3.1 Weak Monadic Second-Order Logic with Recursive Types

A recursive type is a set of recursive equations of the form:

Ti = v1(c1,1 : Tj1,1 , . . . , c1,m1 : Tj1,m1
), . . . , vn(cn,1 : Tjn,1 , . . . , cn,mn : Tjn,mn

)

Each T denotes the name of a type, each v is called a variant, and each c is
called a component. A tree conforms to a recursive type T if its root is labeled
with a variant v from T and it has a successor for each component in v such that
the successor conforms to the type of that component. Note that types defined
by structs in the language in Section 2.1 exactly correspond to such recursive
types.

The logic WSRT is a weak monadic second-order logic. Formulas are inter-
preted relative to a set of trees conforming to recursive types. Each node is
labeled with a variant from a recursive type. A tree variable denotes a tree con-
forming to a fixed recursive type. A first-order variable denotes a single node. A
second-order variable denotes a finite set of nodes.

A formula is built from the usual boolean connectives, first-order and weak
monadic second-order quantifiers, and the special WSRT basic formulas:

type(t, T) which is true iff the the first-order term t denotes a node which is
labeled with some variant from the type T ; and

variant(t, x, T, v) which is true iff the tree denoted by the tree variable x at the
position denoted by t is labeled with the T variant v.

Compile-Time Debugging of C Programs Working on Trees 129

Second-order terms are built from second-order variables and the set operations
union, intersection and difference. First-order terms are built from first-order
variables and the special WSRT functions:

tree root(x) which evaluates to the root of the tree denoted by x; and
succ(t, T, v, c) which, provided that the first-order term t denotes a node of the

T variant v, evaluates to its c component.

This logic corresponds to the core of the FIDO language [16] and is also remi-
niscent of the LISA language [1]. It can be reduced to WS2S and thus provides
no more expressive power, but we will show that a significantly more efficient
decision procedure exists if we bypass WS2S.

3.2 Encoding Stores and Formulas in WSRT

The idea behind the decision procedure for Hoare triples is to encode well-formed
stores as trees. The effect of executing a loop-free program fragment is then in a
finite number of steps to transform one tree into another. WSRT can conveniently
be used to express regular sets of finite trees conforming to recursive types, which
turns out to be exactly what we need to encode pre- and post-conditions and
effects of execution.

We begin by making some observations that simplify the encoding task. First,
note that NULL pointers can be represented by adding a “NULL kind” with no
successors to all structures. Second, note that memory allocation issues can be
represented by having a “free list” for each struct, just as in [11]. We can now
represent a well-formed store by a set of WSRT variables:

– each data variable is represented by a WSRT tree variable with the same
recursive type, where we use the fact that the types defined by structs
exactly correspond to the WSRT notion of recursive types; and

– each pointer variable in the program is represented by a WSRT first-order
variable.

For each program point, a set of WSRT predicates called store predicates is used
to express the possible stores:

– for each data variable d in the program, the predicate rootd(t) is true whe-
never the first-order term t denotes the root of d;

– for each pointer variable p, the predicate posp(t) is true whenever t and p
denote the same position;

– for each pointer field f occurring in a union u in some structure s, the
predicate succf,u,s(t1, t2) is true whenever the first-order term t1 points to
a cell of type s having the value u, and the f component of this cell points
to the same node as the first-order term t2;

– for each possible enumeration value e, the predicate kinde(t) is true whenever
t denotes a cell with value e; and

– to encode allocation status, the predicate frees(t) is true whenever t denotes
a non-allocated cell.

130 J. Elgaard, A. Møller, and M.I. Schwartzbach

A set of store predicates called the initial store predicates defining a mapping
of the heap into WSRT trees can easily be expressed in the WSRT logic. For
instance, the initial store predicates root, succ, and kind simply coincide with
the corresponding basic WSRT constructs.

Based on a set of store predicates, the well-formedness property and all store-
logic formulas can be encoded as other predicates. For well-formedness, the re-
quirements of the recursive types are expressed using the root, kind, and succ
predicates, and the requirement that all data structures are disjoint trees is a
simple reachability property. For store-logic formulas, the construction is in-
ductive: boolean connectives and quantifiers are directly translated into WSRT;
terms are expressed using the store predicates root, kind, and succ; and the basic
formulas free(t) and root(t) can be expressed using the store predicates free
and root. Only the regular path sets are non-trivial; they are expressed in WSRT
using the method from [14] (where path sets are called “routing expressions”).
Note that even though the logic in Section 2.3 is a first-order logic, we also need
the weak monadic second-order fragment of WSRT to express well-formedness
and path sets.

3.3 Predicate Transformation

When the program has been broken into loop-free fragments, the Hoare triples
are decided using the transduction technique introduced in [15]. In this techni-
que, the effect of executing a loop-free program fragment is simulated, step by
step, by transforming store predicates accordingly, as described in the following.

Since the pre-condition of a Hoare triple always implicitly includes the well-
formedness criteria, we encode the set of pre-stores as the conjunction of well-
formedness and the pre-condition, both encoded using the initial store predicates,
and we initiate the transduction with the initial store predicates. For each step,
a new set of store predicates is defined representing the possible stores after
executing that step. This predicate transformation is performed using the same
ideas as in [11], so we omit the details.

When all steps in this way have been simulated, we have a set of final store
predicates which exactly represents the changes made by the program fragment.
We now encode the set of post-stores as the conjunction of well-formedness and
the post-condition, both encoded using the final store predicates. It can be shown
that the resulting predicate representing the post-stores coincides with the wea-
kest precondition of the code and the post-condition. The Hoare triple is satisfied
if and only if the encoding of the pre-stores implies the encoding of the post-
stores.

Our technique is sound: if verification succeeds, the program is guaranteed to
contain no errors. For loop-free Hoare triples, it is also complete. That is, every
effect on the store can be expressed in the store logic, and this logic is decidable.
In general, no approximation takes place—all effects of execution are simulated
precisely. Nevertheless, since not all true properties of a program containing
loops can be expressed in the logic, the technique is in general not complete for
whole programs.

Compile-Time Debugging of C Programs Working on Trees 131

4 Deciding WSRT

As mentioned, there is a simple reduction from WSRT to WS2S, and WS2S
can be decided using a well-known correspondence between WS2S formulas and
ordinary tree automata. The resulting so-called naive decision procedure for
WSRT is essentially the same as the ones used in FIDO and LISA and as the
“conventional encoding of parse trees” in [4]. The naive decision procedure along
with its deficiencies is described in Section 4.1. In Section 4.2 we show an effi-
cient decision procedure based on the more sophisticated notion of guided tree
automata.

4.1 The Naive Decision Procedure

WS2S, the weak monadic second-order logic of two successors, is a logic that is
interpreted relative to a binary tree. A first-order variable denotes a single node
in the tree, and a second-order variable denotes a finite set of nodes. For a full
definition of WS2S, see [20] or [13].

The decision procedure implemented in MONA inductively constructs a tree
automaton for each sub-formula, such that the set of trees accepted by the
automaton is the set of interpretations that satisfy the sub-formula. This decision
procedure not only determines validity of formulas; it also allows construction
of counterexamples whenever a formula is not valid.

Note that the logic WSnS, where each node has n successors instead of just
two, easily can be encoded in WS2S by replacing each node with a small tree
with n leaves. The idea in the encoding is to have a one-to-one mapping from
nodes in a WSRT tree to nodes in a WSnS tree, where we choose n as the
maximal fanout of all recursive types.

Each WSRT tree variable x is now represented by b second-order variables
v1, . . . , vb where b is the number of bits needed to encode the possible type
variants. For each node in the n-ary tree, membership in v1 . . . vb represents
some binary encoding of the label of the corresponding node in the x tree.

Using this representation, all the basic WSRT formulas and functions can now
easily be expressed in WSnS. We omit the details. For practical applications, this
method leads to intractable computations requiring prohibitive amounts of time
and space. Even a basic concept such as type well-formedness yields immense
automata. Type well-formedness is the property that the values of a given set of
WS2S variables do represent a tree of a particular recursive type.

This problem can be explained as follows. The WS2S encoding is essentially
the same as the “conventional encoding of parse trees” in [4], and type well-
formedness corresponds to grammar well-formedness. In that paper, it is shown
that the number of states in the automaton corresponding to the grammar well-
formedness predicate is linear in the size of the grammar, which in our case
corresponds to the recursive types. As argued e.g. in [12], tree automata are
at least quadratically more difficult to work with than string automata, since
the transition tables are two-dimensional as opposed to one-dimensional. This
inevitably causes a blowup in time and space requirements for the whole decision
procedure.

132 J. Elgaard, A. Møller, and M.I. Schwartzbach

By this argument, it would be pointless making an implementation based
on the described encoding. This claim is supported by experiments with some
very simple examples; in each case, we experienced prohibitive time and space
requirements.

4.2 A Decision Procedure using Guided Tree Automata

The MONA implementation of WS2S provides an opportunity to factorize the
state-space and hence make implementation feasible. To exploit this we must,
however, change the encoding of WSRT trees, as described in the following.

The notion of guided tree automata (GTA) was introduced in [2] to combat
state-space explosions and is now fully implemented in MONA [13]. A GTA is a
tree automaton equipped with separate state spaces that—independently of the
labeling of the tree—are assigned to the tree nodes by a top-down automaton,
called the guide. The secret behind a good factorization is to create the right
guide.

A recursive type is essentially also a top-down automaton, so the idea is to
derive a guide from the recursive types. This is however not possible with the
naive encoding, since the type of a WSnS node depends on the actual value of
its parent node.

Instead of using the one-to-one mapping from WSRT tree nodes to WSnS
tree nodes labeled with type variants, we represent a WSRT tree entirely by the
shape of a WSnS tree, similarly to the “shape encoding” in [4]. Each node in
the WSRT tree is represented by a WSnS node with a successor node for each
variant, and each of these nodes have themselves a successor for each component
in the variant. A WSRT tree is then represented by a single second-order WSnS
variable whose value indicates the active variants.

The following illustrates an example of a tree conforming to the recursive
type Tree=A(left:Tree,right:Tree),B(next:Tree),NULL and its encodings:

10

10

00

01

A

NULL B

NULL
1

1

1

0

1

0

1

10 00

0

1

10 0

(a) a tree (b) its naive encoding (c) its shape encoding

This encoding has the desired property that a WSnS tree position always is
assigned the same type, independently of the tree values, so a GTA guide can
directly be derived from the types. This guide factorizes the state space such
that all variants and components in the recursive types have their own separate
state spaces. Furthermore, the intermediate nodes caused by the WSnS to WS2S
transformation can now also be given separate state spaces, causing yet a degree
of factorization.

One consequence is that type well-formedness now can be represented by
a GTA with a constant number of states in each state space. The size of this

Compile-Time Debugging of C Programs Working on Trees 133

automaton is thus reduced from quadratic to linear in the size of the type. Similar
improvements are observed for other predicates.

With these obstacles removed, implementation becomes feasible with typical
data-type operations verified in seconds. In fact, for the linear sub-language, our
new decision procedure is almost as fast as the previous WS1S implementation;
for example, the programs reverse and zip from [11] are now verified in 2.3
and 29 seconds instead of the previous times of 2.7 and 10 seconds (all using the
newest version of MONA). This is remarkable, since our decision procedure suffers
a quadratic penalty from using tree automata rather than string automata.

5 Conclusion

By introducing the WSRT logic and exploiting novel features of the MONA
implementation, we have built a tool that catches pointer errors in programs
working on recursive data structures. Together with assisting tools for extracting
counterexamples and graphical program simulations, this forms the basis for a
compile-time debugger that is sound and furthermore complete for loop-free
code. The inherent non-elementary lower bound of WSnS will always limit its
applicability, but we have shown that it handles some realistic examples.

Among the possible extensions or variations of the technique are allowing
parent and root pointers in all structures, following the ideas from [14], and
switching to a finer store granularity to permit casts and pointer arithmetic.
A future implementation will test these ideas. Also, it would be interesting to
perform a more detailed comparison of the technique presented here with pointer
analysis and shape analysis techniques.

References

[1] Abdelwaheb Ayari, David Basin, and Andreas Podelski. LISA: A specification
language based on WS2S. In Proceedings of CSL’97. BRICS, 1997.

[2] Morten Biehl, Nils Klarlund, and Theis Rauhe. Algorithms for guided tree au-
tomata. In First International Workshop on Implementing Automata, WIA’96,
volume 1260 of LNCS. Springer Verlag, 1996.

[3] Rational Software Corporation. Purify. URL: http://www.rational.com/.
[4] Niels Damgaard, Nils Klarlund, and Michael I. Schwartzbach. YakYak: Parsing

with logical side constraints. In Proceedings of DLT’99, 1999.
[5] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended

static checking. URL: http://www.research.digital.com/SRC/esc/Esc.html.
[6] David Evans. LCLint user’s guide. URL: http://www.sds.lcs.mit.edu/

lclint/guide/.
[7] Rakesh Ghiya and Laurie J. Hendren. Putting pointer analysis to work. In

Proceedings of POPL’98, 1998.
[8] GrammaTech Inc. CodeSurfer user guide and reference manual. URL:

http://www.grammatech.com/papers/.
[9] C.A.R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12(10):576–580, October 1969.

134 J. Elgaard, A. Møller, and M.I. Schwartzbach

[10] D. Jackson. Aspect: an economical bug-detector. In Proceedings of 13th Interna-
tional Conference on Software Engineering, 1994.

[11] Jacob L. Jensen, Michael E. Jørgensen, Nils Klarlund, and Michael I. Schwartz-
bach. Automatic verification of pointer programs using monadic second-order
logic. In PLDI ’97, 1997.

[12] Nils Klarlund. Mona & Fido: The logic-automaton connection in practice. In
Computer Science Logic, CSL ’97, LNCS, 1998.

[13] Nils Klarlund and Anders Møller. MONA Version 1.3 User Manual. BRICS
Notes Series NS-98-3 (2.revision), Department of Computer Science, University
of Aarhus, October 1998. URL: http://www.brics.dk/mona/manual.html.

[14] Nils Klarlund and Michael I. Schwartzbach. Graph types. In Proc. 20th Symp.
on Princ. of Prog. Lang., pages 196–205. ACM, 1993.

[15] Nils Klarlund and Michael I. Schwartzbach. Graphs and decidable transductions
based on edge constraints. In Proc. CAAP’ 94, LNCS 787, 1994.

[16] Nils Klarlund and Michael I. Schwartzbach. A domain-specific language for regular
sets of strings and trees. IEEE Transactions on Software Engineering, 25(3), 1997.

[17] Adam Kolawa and Arthur Hicken. Insure++: A tool to support total quality
software. URL: http://www.parasoft.com/products/insure/papers/tech.htm.

[18] Anders Møller. MONA project homepage. URL: http://www.brics.dk/mona/.
[19] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis pro-

blems in languages with destructive updating. Transactions on Programming
Languages and Systems, 20(1):1–50, January 1998.

[20] Wolfgang Thomas. Automata on infinite objects. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume B, pages 133–191. MIT
Press/Elsevier, 1990.

[21] Frank Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3):121–189, September 1995.

A Calculus for Compiling and Linking Classes

Kathleen Fisher1, John Reppy2, and Jon G. Riecke2

1 AT&T Labs — Research
180 Park Avenue, Florham Park, NJ 07932 USA

kfisher@research.att.com
2 Bell Laboratories, Lucent Technologies

700 Mountain Avenue, Murray Hill, NJ 07974 USA
{jhr,riecke}@research.bell-labs.com

Abstract. We describeλinkς (pronounced “links”), a low-level calculus designed
to serve as the basis for an intermediate representation in compilers for class-based
object-oriented languages. The primitives inλinkς can express a wide range of
class-based object-oriented language features, including various forms of inhe-
ritance, method override, and method dispatch. In particular,λinkς can model
the object-oriented features ofMoby, OCaml, andLoom, where subclasses may
be derived from unknown base classes.λinkς can also serve as the intermediate
representation for more conventional class mechanisms, such asJava’s. In this
paper, we formally describeλinkς, give examples of its use, and discuss how
standard compiler transformations can be used to optimize programs in theλinkς
representation.

1 Introduction

Class-based object-oriented languages provide mechanisms for factoring code into a
hierarchy of classes. For example, the implementation of a text window may be split
into a base class that implements windows and a subclass that supports drawing text.
Since these classes may be defined in separate compilation units, compilers for such
languages need an intermediate representation (IR) that allows them to represent code
fragments (e.g., the code for each class) and to generate linkage information to assem-
ble the fragments. For languages with manifest class hierarchies (i.e., languages where
subclass compilation requires the superclass representation, as is the case in C++ [Str97]
andJava [AG98]), representing code fragments and linkage information is straightfor-
ward. But for languages that allow classes as module parameters, such asMoby [FR99a]
andOCaml [RV98,Ler98], or languages that have classes as first-class values, such as
Loom [BFP97], the design of an IR becomes trickier (Section 2 illustrates the compli-
cations).

We are interested in a compiler IR that can handle inheritance from non-manifest
base classes. In addition, the IR should satisfy a number of other important criteria.
The IR should be expressive enough to support a wide range of statically typed surface
languages fromJava to Loom. The IR should be reasonably close to the machine and
should be able to express efficient object representations (e.g., shared method suites)
and both static and dynamic method dispatch. The IR should enable optimizations based
on simple and standard transformations. Lastly, the IR should be amenable to formal
reasoning about compiler transformations and class linking.

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 135–149, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

136 K. Fisher, J. Reppy, and J.G. Riecke

This paper presentsλinkς, which is an extension of the untypedλ-calculus that meets
these design goals.λinkς extends theλ-calculus withmethod suites, which are ordered
collections of methods;slots, which index into method suites; anddictionaries, which
map method labels to slots. Inλinkς, method dispatch is implemented by first using
a dictionary to find the method’s slot and then using the slot to index into a method
suite.λinkς can support true private names and avoid the fragile base class problem by
dynamically changing the dictionary associated with an object when the object’s view of
itself changes [RS98,FR99b]. Separating dynamic dispatch into two pieces also enables
more compiler optimizations. In this paper, we treatλinkς as a compiler IR, although
the reader should think of it as more of a framework or basis for a compiler’s IR.

By design,λinkς satisfies our goals. Because of the abstractions inλinkς, it can
express a wide range of surface class mechanisms, from the static classes found inJava
through the dynamic inheritance ofLoom (Section 5). By makingλinkς untyped, we
avoid limiting the applicability ofλinkς to languages with incompatible type systems.
The operations in the calculus allow compilers to leverage static information to optimize
message dispatch. For example, the type system in C++ guarantees the slot at which each
method may be found at run-time. Inλinkς, we may use this information to evaluate
the dictionary lookup operation associated with message dispatch at compile time —
providing the expected efficiency for message dispatch to C++ programmers. Because
λinkς is based on theλ-calculus, familiarλ-calculus optimizations apply immediately to
λinkς (Section 6), and these optimizations yield standard object-oriented optimizations
when applied toλinkς programs. Consequently, ad-hoc optimizations for the object-
oriented pieces of a compiler based onλinkς are not necessary. Becauseλinkς is a formal
language, it is amenable to formal reasoning. For example, one can show thatλinkς is
confluent and that the reductions tagged as linking redexes are strongly normalizing
(Section 4).

In the next section, we discuss the challenges involved in implementing inheritance
from an unknown base-class. In Section 3, we present the syntax, operational semantics,
and rewrite systems ofλinkς. To keep the discussion focused, we restrict the technical
presentation to a version ofλinkς with methods, but no fields (instance variables). The
techniques used to handle methods apply directly to fields (see Section 5.1). Section 4
defines a simple class languageScl and shows how it can be translated toλinkς. We
prove that the translation of any “well-ordered"Scl program has the property that all
linking steps can be reduced statically. In Section 5, we sketch howλinkς can serve as an
IR for Moby, Loom, a mixin extension forScl, and C++. Section 6 further demonstrates
the utility of the rewriting system forλinkς by showing how method dispatch can be
optimized in the calculus. We conclude with a discussion of related and future work.

2 Inheritance from Unknown Classes

One of our principal design goals is to support inheritance from unknown base classes.
Figure 1 shows where difficulties can arise when compiling languages with such a feature.
The example is written inMoby, although similar examples can be written inLoom and
OCaml. The module in Figure 1 defines a classColorPt that extends an unknown base
classPt.Point by inheriting itsgetX andgetY methods, overriding itsmove method,
and adding acolor field. When compiling the module, the compiler knows only that
the Pt.Point superclass has three methods (getX, getY, andmove). The compiler

A Calculus for Compiling and Linking Classes 137

signature PT {
class Point : {

public meth getX : Unit -> Int
public meth getY : Unit -> Int
public meth move : (Int, Int) -> Unit

}
}

module ColorPtFn (Pt : PT) {
class ColorPt {

inherits Pt.Point
field c : Color
public meth move (x : Int, y : Int) -> Unit {

if (self.c == Red)
then super.move(2*x, 2*y)
else super.move(x, y)

}
}

}

Fig. 1. Inheriting from an unknown superclass

does not know in what order these methods appear in the internal representation of the
Point class, nor what other private methods and fields thePoint class might have.
As an example of inheritance from such a class, suppose we have a classPolarPt
that implements thePt.Point interface and has additional polar-coordinate methods
getTheta andgetRadius. When we apply theColorPtFn module toPolarPt, we
effectively hide the polar-coordinate methods, making them private and allowing their
names to be reused for other, independent methods inColorPt and its descendants. Such
private methods, while hidden, are not forgotten, since they may be indirectly accessible
from other visible methods (e.g., thePolarPt class might implementgetX in terms of
polar coordinates). This hiding is a problem when compiling thePolarPt class, since
its code must have access to methods that might not be directly available in its eventual
subclasses.

3 λinkς

λinkς is aλ-calculus with method suites, slots, and dictionaries, which provides a nota-
tion for class assembly, inheritance, dynamic dispatch, and other object-oriented features.

3.1 Syntax

The syntax ofλinkς is given by the grammar in Figure 2. In addition to the standardλ-
calculus forms, there are eight expression forms for supporting objects and classes. The
term〈e1, . . . , en〉 constructs a method suite from the expressionse1, . . . , en, where each
ei is assigned sloti. The expressione@e′ extracts the value stored in the slot denoted by

138 K. Fisher, J. Reppy, and J.G. Riecke

e ::= x variable
| λx.e | e(e′) function abstraction/application
| (e1, ..., en) | πi e tuple creation/projection
| 〈e1, . . . , en〉 method suite construction
| e@e′ method suite indexing
| e||e′ method suite extension
| e@e′ ← e′′ method override
| i slot
| e + e′ slot addition
| {m1 7→ e1, . . . , mn 7→ en} dictionary construction
| e!m dictionary application

Fig. 2.The syntax ofλinkς

(λx.e)(v) ↪→ e[x 7→ v]

πi(v1, . . . , vn) ↪→ vi where1 ≤ i ≤ n

i + j ↪→ k wherek = i + j

{m1 7→ v1, . . . , mn 7→ vn}!mi ↪→ vi where1 ≤ i ≤ n

〈v1, . . . , vn〉 || 〈v′
1, . . . , v′

n′〉 ↪→ 〈v1, . . . , vn, v′
1, . . . , v′

n′〉
〈v1, . . . , vi, . . . , vn〉@i← v′ ↪→ 〈v1, . . . , v′, . . . , vn〉 where1 ≤ i ≤ n

〈v1, . . . , vn〉@i ↪→ vi where1 ≤ i ≤ n

Fig. 3.Reduction rules forλinkς

e′ from the method suite denoted bye. The method suite extensione||e′ concatenates the
suitese ande′. The last method suite operation is override, which functionally updates
a slot in a given suite to produce a new suite. A slot is specified by a slot expression,
which is either an integeri or the addition of two slot expressions. The expression
{m1 7→ e1, . . . , mn 7→ en} denotes a dictionary where each labelmi is mapped to the
slot denoted byei. Application of a dictionary to a labelm is writtene!m.

We identify terms up to the renaming of bound variables and usee[x 7→ e′] to denote
the capture-free substitution ofe′ for x in e. We assume that dictionaries are unordered
and must represent finite functions. For instance, the dictionary{m 7→ 1, m 7→ 2} is an
ill-formed expression, since it mapsm to two different values. To simplify notation, we
use the following shorthands:

let x = e in e′ for (λx.e′)(e)
λ(x1, . . . , xn).e for λp.((λx1. · · ·λxn.e) (π1 p) · · · (πn p))

3.2 Operational Semantics

We specify the operational semantics ofλinkς using an evaluation-context based rewrite
system [FF86]. Such systems rewrite terms step-by-step until no more steps can be taken.

A Calculus for Compiling and Linking Classes 139

At each step, the term to be reduced is parsed into an evaluation context and a redex.
The redex is then replaced, and evaluation begins anew with another parsing of the term.
Note that sinceλinkς is untyped there are legal expressions, such asπi (λx.e), that
cannot be reduced.

Two grammars form the backbone of the semantics. The first describes values, a
subset of expressions that are in reduced form:

v ::= x | λx.e | (v1, . . . , vn) | 〈v1, . . . , vn〉 | i | {m1 7→ v1, . . . , mn 7→ vn}

The second grammar describes the set of evaluation contexts.

E ::= [·] | E(e) | v(E) | πi E
| 〈v1, . . . , E, . . . , en〉 | E||e | v||E
| E@e← e | v@E ← e | v@v ← E | E@e | v@E
| E + e | v + E | {m1 7→ v1, . . . , mi 7→ E, . . . , mn 7→ en} | E!m

The primitive reduction rules forλinkς are given in Figure 3. We writee 7→ e′ if
e = E[e0], e′ = E[e′

0], ande0 ↪→ e′
0 by one of the rules above.

3.3 Reduction System

Under the operational semantics, there is no notion of transforming a program before
it is run: all reductions happen when they are needed. We want, however, a method for
rewritingλinkς terms to equivalent, optimized versions. The basis of the rewrite system
is the relation↪→. We write→ for the congruence closure of this relation;i.e., for the
system in which rewrites may happen anywhere inside a term. For example, reductions
like (λx.π1 (v1, x))(e)→ (λx.v1)(e) are possible, whereas in the operational semantics
they are not. We write→∗ for the reflexive, transitive closure of→.

The reduction system will be used in the next two sections when we discuss static
linking for a simple class language and optimizations. The reduction relation→ is non-
deterministic: multiple paths may emanate from a single expression, but it is confluent.

Theorem 1 If e→∗ e′ ande→∗ e′′, there is ane′′′ such thate′ →∗ e′′′ ande′′ →∗ e′′′.

The proof uses the Tait-Martin-L¨of parallel moves method [Bar84]; we omit the proof.

4 A Simple Class Language

To give evidence of the expressivity ofλinkς, we now give a translation of a simple class-
based language intoλinkς. Simpler translations may be possible, but the translation here
illustrates some techniques that are useful for more complex languages.

The source language is calledScl for “simple class language.” The syntax ofScl
appears in Figure 4. A program consists of a sequence of one or more class declarati-
ons followed by an expression; class declarations may only use those declarations that
appear before and may not be recursive. There are two forms of class declaration. The
first is abase-class declaration, which defines a class as a collection of methods. The

140 K. Fisher, J. Reppy, and J.G. Riecke

prog ::= dcl prog Programs
| exp

dcl ::= classC { meths} Class declarations
| classC { inheritC′ : { m∗ } meths}

meths::= ε
| meth meths

meth::= m(x)exp Methods

exp ::= x Expressions
| self
| exp⇐ m(exp)
| super⇐ m(exp)
| newC

Fig. 4.The syntax forScl

second form is asubclass declaration, which defines a class by inheriting methods from
a superclass, overriding some of them, and then adding new methods. The subclass
constrains the set of methods it visibly inherits from its superclass by listing the names
of such methods as{ m∗ }. Other method names can be called only by superclass,
not subclass, methods. This operation—in essence, a restriction operation—resembles
Moby’s support for private members [FR99b,FR99a] and subsumes mechanisms found
in Java and other languages.

At the expression level,Scl contains only those features relevant to linking. Methods
take exactly one argument and have expressions for bodies; expressions includeself,
method dispatch, super-method dispatch, and object creation.A more complete language
would include other expression forms,e.g., integers, booleans, and conditionals.

The translation fromScl into λinkς fixes representations for classes, objects, and
methods. Each fully-linked class is translated to a triple(σ, φ, µ), whereσ is the size
of the class (i.e., the number of slots in its method suite),φ is a dictionary for mapping
method names to method-suite indices, andµ is the class’s method suite. Each object is
translated to a pair of the object’s method suite and a dictionary for resolving method
names. Each method is translated into apre-method[AC96]; i.e., a function that takes
self as its first parameter.

The translation is defined by the following functions:

P[[prog]]Γ Program translation
C[[dcl]]Γ Class translation
M[[meth]]µsuper,φsuper,φself,Γ Method translation
E [[exp]]µsuper,φsuper,φself,Γ Expression translation

These functions take aclass environmentΓ as a parameter, which maps the name of a
class to itsλinkς representation.A class environment is tuple of fully-linking classes. The
symbolΓ (C) denotes the position in the tuple associated with classC, andΓ±{C 7→ e}
denotes the tuple withe bound to classC.

A Calculus for Compiling and Linking Classes 141

The translation of methods and expressions require more parameters than the trans-
lation of programs and classes. In addition to a class environment, the method and ex-
pression translation functions take additional parameters to translateself andsuper. In
particular, the dictionaryφself is used to resolve message sends toself, and the method
suiteµsuper and dictionaryφsuper are used to translatesuper invocations. Each method
is translated to aλinkς pre-method as follows:

M[[m(x)exp]]µsuper,φsuper,φself,Γ = λ(self, x).E [[exp]]µsuper,φsuper,φself,Γ

Expressions are translated as follows:

E [[x]]µsuper,φsuper,φself,Γ = x

E [[self]]µsuper,φsuper,φself,Γ = (π1self, φself)
E [[exp1 ⇐ m(exp2)]]µsuper,φsuper,φself,Γ = let obj = E [[exp1]]µsuper,φsuper,φself,Γ

let meth = (π1 obj)@((π2 obj)!m)
in meth(obj, E [[exp2]]µsuper,φsuper,φself,Γ)
whereobj andmethare fresh

E [[super⇐ m(exp)]]µsuper,φsuper,φself,Γ = (µsuper@(φsuper!m))(self, E [[exp]]µsuper,φsuper,φself,Γ)
E [[newC]]µsuper,φsuper,φself,Γ = let (σ, φ, µ) = Γ (C) in (µ, φ)

To translateself, we extract the method suite ofself and pair it with the current self
dictionary,φself. Note that because of method hiding,φself may have more methods than
(π2 self) [RS98,FR99b]. To translate message sends, we first translate the receiver object
and bind its value toobj. We then extract from this receiver its method suite(π1 obj)
and its dictionary(π2 obj). Using dictionary application, we find the slot associated
with methodm. Using that slot, we index into the method suite to extract the desired
pre-method, which we then apply toobj and the translated argument. We resolvesuper
invocations by selecting the appropriate code from the superclass method suite according
to the slot indicated in the superclass dictionary. Notice that this translation implements
the standard semantics of super-method dispatch;i.e., future overrides do not affect the
resolution of super-method dispatch. We translate thesuper keyword to the ordinary
variableself. In the translation ofnew, we look up the class to instantiate in the class
environment. In our simple language, the new object is a pair of the class’s method suite
and dictionary.

The translation for subclasses appears in Figure 5. In the translation, certain subterms
are annotated by a superscriptL; these subterms denote link-time operations that are
reduced during class linking. In addition, we use the function Names(meths) to extract
the names of the methods inmeths.

A subclassC is translated to a functionf that maps any fully-linked representation
of its base classB to a fully-linked representation ofC. The body of the linking function
f has three phases: slot calculation, dictionary definition, and method suite construction.
In the first phase, fresh slot numbers are assigned to new methods (σn), while overridden
(σov) and inherited methods (σinh) are assigned the slots they have inB. The size of the
subclass method suite (σC) is calculated to be the size ofB’s suite plus the number of
new methods. In the dictionary definition phase, each visible method name is associated
with its slot number. During method suite construction, the definitions of overridden
methods are replaced in the method suite forB. The function then extends the resulting
method suite with the newly defined methods to produce the method suite forC.

142 K. Fisher, J. Reppy, and J.G. Riecke

C[[classC { inheritB : { m∗ } meths}]]Γ =
λ(σB , φB , µB).

letL σn1 = σB +L 1 . . . letLσnk = σB +L k
letL σov1 = φB !Lov1 . . . letL σovj = φB !Lovj

letL σinh1 = φB !Linh1 . . . letL σinhi = φB !Linhi

letL σC = σB +L k
letL φC = { n1 7→ σn1 , . . . , nk 7→ σnk ,

ov1 7→ σov1 , . . . , ovj 7→ σovj ,
inh1 7→ σinh1 , . . . , inhi 7→ σinhi}

letL µ0 = µB

letL µ1 = µ0@Lσov1 ←M[[methov1]]µB ,φB ,φC ,Γ

...
letL µj = µj−1@Lσovj ←M[[methovj]]µB ,φB ,φC ,Γ

letL µC = µj ||L 〈M[[methn1]]µB ,φB ,φC ,Γ , . . . ,M[[methnk]]µB ,φB ,φC ,Γ 〉
in (σC , φC , µC)

where
NewNames = {n1, . . . , nk} = Names(meths) \ { m∗ }
OvNames = {ov1, . . . , ovj} = { m∗ } ∩ Names(meths)
InhNames = {inh1, . . . , inhi} = { m∗ } \ OvNames
{methn1 , . . . , methnk} = {m(x)exp| m(x)exp∈ methsandm ∈ NewNames}
{methov1 , . . . , methovj} = {m(x)exp| m(x)exp∈ methsandm ∈ OvNames}

Fig. 5.TranslatingScl classes toλinkς

For base-class declarations, the translation is similar, except that there are no inherited
or overridden methods. Furthermore, we use a special class(0, { }, 〈 〉) for the base-
class argument. We omit the details for space reasons. Finally, we translate programs as
follows:

P[[dcl prog]]Γ = P[[prog]]Γ ′ whereΓ ′ = Γ±{C 7→ C[[dcl]]Γ (Γ (B))}
P[[exp]]Γ = E [[exp]]〈 〉,{ },{ },Γ

TheB stands for the base class in the definition ofdcl.
The languageScl enjoys the property that for awell-ordered program— one in

which all classes have been defined, and every class is defined before it is used — all
linking operations labeledL can be eliminated statically. More formally,

Theorem 2 If prog is a well-ordered program andP[[prog]]Γ = e, then there is a term
e′ such thate→∗ e′ ande′ contains no linking operations labeledL.

This theorem can probably be proven using a size argument, but we use a strong-nor-
malization approach instead. The proof of strong normalization is a bit subtle because
expressions inλinkς can loop. We use a simple type system to show that afragment
of λinkς is strongly normalizing. The proof of strong normalization relies upon Tait’s
method [GLT89]. One may show that the translation of a well-ordered program is well-
typed in the system, and hence all linking reductions can be done statically. We omit the
proof for space reasons.

A Calculus for Compiling and Linking Classes 143

5 Other Examples

We now sketch howλinkς can be used to compile class mechanisms found in various
programming languages.

5.1 Moby Classes

We originally designedλinkς to supportMoby’s class mechanism in a compiler that
we are writing. Section 4’sScl models many of the significant parts ofMoby’s class
mechanism, including one of its most difficult features to compile, namely its treatment of
private names. In particular,Moby relies on signature matching in its module mechanism
to hide private methods and fields [FR99a] (we illustrated this feature with the example
in Section 2). BecauseMoby signatures define opaque interfaces, theMoby compiler
cannot rely on complete representation information for the superclass of any class it is
compiling. Instead, it must use theclass interfaceof the superclass (e.g., thePt class in
thePT signature) when compiling the subclass.Scl models this situation by requiring
each subclass to specify in theinherits clause which superclass methods are visible.

The main piece missing fromScl are fields (a.k.a.instance variables), which require
a richer version ofλinkς. While fields require extending the representation of objects
with per-object instance variables, the details of instance variable access are very similar
to those of method dispatch. As with methods, fields require dictionaries to map labels
to slots and slot assignment. Dictionary creation and application are the same as for
methods. When we create an object usingnew, we use the size of the class’s instance
variables as the size of the object to create — object initialization is done imperatively.

5.2 OCaml Classes

Like Moby, OCaml is a language with both parameterized modules and classes [Ler98].
For the most part, translatingOCaml classes toλinkς is similar to translatingMoby clas-
ses. The one difference is thatOCaml supports a simple form ofmultiple inheritance,
whereasMoby only has single inheritance. A class inOCaml can inherit from several
base classes, but there is no sharing between base classes — the methods of the base
classes are just concatenated. The one subtlety that we must address is that when compi-
ling a class definition, we cannot assume that access to its methods will be zero-based in
its subclasses. To solve this problem, weλ-abstract over the initial slot index. Otherwise,
translatingOCaml classes toλinkς is essentially the same as forMoby classes.1

5.3 Loom Classes

In the languageLoom [BFP97], the class construct is an expression form, and a deriving
class may use an arbitrary expression to specify its base class. Thus, unlike the translation
in Section 4, a translation ofLoom to our calculus cannot have the phase distinction
between class link-time and run-time. In a translatedLoom program, computation of
slots, dictionary construction, method overrides, and method suite extensions can all
happen at run-time. The fact that we can use one representation to handle both static and
dynamic classes demonstrates the flexibility of our approach.

1 To the best of our knowledge, the implementation techniques used for classes in theOCaml
system have not been formalized or described in print, so we are not able to compare approaches.

144 K. Fisher, J. Reppy, and J.G. Riecke

5.4 Mixins

Mixins are functions that map classes to classes [FKF98] and, unlike parameterized
modules, mixins properly extend the class that they are applied to (recall that applying
ColorPtFn toPolarPt hid the polar-coordinate interface). Supporting this kind of class
extension inλinkς requires a bit of programming. The trick is to include adictionary
constructor functionas an argument to the translated mixin. For example, consider the
following mixin, written in an extension ofScl syntax:

mixin Print (C <: {show}) {
meth print () { stdOut ⇐ print(self ⇐ show()) }

}
This mixin adds aprint method to any classC that has ashow method already. The
translation of this mixin toλinkς is similar to that of subclasses given in Section 4:

λ(σC,φC,µC,mkDict).
let σprint = σC+1
let φPrint = mkDict(φC, σprint)
let pre_print = λ(self).

let print = (π1 stdOut)@((π2 stdOut)!print)
let show = (π1 self)@(φPrint!show)
in print(stdOut, show(self))

let µPrint = µC || 〈pre_print〉
in (σprint, φPrint, µPrint)

The main difference is that we use themkDict function, supplied at the linking site,
to create the extended dictionary. An alternative to this approach is to add a dictionary
extension operation toλinkς. For purposes of this example, we assume that the surface
language does not permit method-name conflicts between the argument class and the
mixin, but it is possible to support other policies, such as C++-style qualified method
names, to resolve conflicts.

5.5 C++ and Java Classes

For a language with a manifest class hierarchy, such as C++ or Java, the language’s static
type system provides substantial information about the representation of dictionaries
and method suites. By exploiting this representation information, we can optimize away
all of the dictionary-related overhead in such programs, which results in the efficiency
of method dispatch that C++ and Java programmers expect. The disadvantage of this
approach is that it introduces representation dependencies that lead to the so-called
fragile base classproblem, in which changing the private representation of a base class
forces recompilation of its subclasses. We should note that we do not know how to handle
C++’s form of multiple inheritance inλinkς because of the object layout issues related to
sharing of virtual base classes [Str94].

6 Optimization

Many compilers for higher-order languages use some form ofλ-calculus as their inter-
mediate representation (IR). In this section, we show that the techniques commonly used
in λ-calculus-based compilers can be used to optimize our encoding of method dispatch
in λinkς. Becauseλinkς allows reuse of standard optimizations, the optimizer is simpler

A Calculus for Compiling and Linking Classes 145

and more likely to be correct. It is important to note that the optimizations described in
this section also apply to objects with instance variables. Even though instance varia-
bles are mutable, the optimizations focus on the dictionary and method-suite operations,
which arepure. Consequently, the compiler is free to move these operations, subject
only to the constraints of their data dependencies.

To make the discussion concrete, we consider theλinkς representation ofScl pro-
grams and their optimization. In general, method dispatch inScl requires an expensive
lookup operation to map a method’s label to its method-suite slot. Often, however, it is
possible to apply transformations to reduce or eliminate this cost. We assume that we
are optimizing well-typed programs that do not have run-time type errors (see Fisher
and Reppy [FR99b] for an appropriate type system). We also assume that we produce
the IR fromScl as described in Section 4, with the further step of normalizing the terms
into a direct-stylerepresentation [FSDF93,Tar96,OT98] (acontinuation-passing style
representation [App92] is also possible). In this IR, all intermediate results are bound to
variables, and the right-hand side of all bindings involve a single function application or
primitive operation applied toatomicarguments (i.e., either variables or constants).

6.1 Applying CSE and Hoisting

Common subexpression elimination (CSE) is a standard optimization whereby two iden-
tical pure expressions are replaced by a single expression. When method invocations are
expanded into theλinkς representation, there are many opportunities for CSE optimiza-
tions. For example, if there are two method invocations to the same object, fetching its
dictionary will be a common subexpression. If the method calls are to the same method,
then the dictionary application and method suite indexing operations will be common
subexpressions.

Another standard transformation is to hoist invariant expressions out of functions.
When applied to method dispatch, this transformation amortizes the cost of a dictionary
application over multiple function applications or loop iterations.2

6.2 Self-Method Dispatch

While CSE and hoisting apply to any method dispatch, we can do significantly better
when we have a message sent toself. Recall that the translation of the self-method
dispatchself⇐ m(exp) into λinkς is

let obj = (π1(self), φself)
let meth = π1(obj) @ (π2(obj)!m)
in meth(obj, exp)

Normalizing to our IR and applying the standardcontractionphase [App92] gives the
following:

let µ = π1(self)
let obj = (µ, φself)
let σ = φself!m
let meth = µ@σ
in meth(obj, a)

2 Note that loops are represented as tail-recursive functions in this style of IR.

146 K. Fisher, J. Reppy, and J.G. Riecke

wherea is the atom resulting from normalizing the argument expression. The expression
φself!m is invariant in its containing premethod, and thus the binding ofσ can be lifted out
of the premethod. This transformation has the effect of moving the dictionary application
from run-time to link-time and leaves the following residual:

let µ = π1(self)
let obj = (µ, φself)
let meth = µ@σ
in meth(obj, a)

While it is likely that a compiler will generate this reduced form directly from a source-
program self-method dispatch, this optimization is useful in the case where other op-
timizations (e.g., inlining) expose self-method dispatches that are not present in the
source.

6.3 Super-Method Dispatch

Calls to superclass methods can be resolved statically, so there should be no run-time
penalty for superclass method dispatch.While it is possible to “special-case" such method
calls in a compiler, we can get the same effect by code hoisting. Recall that the translation
of the super-method dispatchsuper⇐ m(exp) into λinkς is

(µsuper @ (φsuper!m)) (self, exp)
As before, we normalize to our IR and contract, which produces the following:

let σ = φsuper!m
let meth = µsuper@σ
in meth(self, a)

wherea is the atom resulting from normalizing the argument expression. In this case,
we can hoist both the dictionary application and the method-suite indexing out of the
containing method, which leaves the term “meth(self, a).”Thus, by using standardλ-
calculus transformations, we can resolve super-method dispatch statically. Furthermore,
if the superclass’s method suite is known at compile time, then the standard optimization
of reducing a selection from a known record can be applied to turn the call into a direct
function call. This reduction has the further effect of enabling the call to be inlined.

6.4 Using Static Analysis

The optimizations that we have described so far require only trivial analysis. More
sophisticated analyses can yield better optimizations [DGC95]. For example,receiver-
class prediction[GDGC95] may permit us to eliminate some dictionary applications in
method dispatches (as we do already for self-method dispatch).There may also be source-
language type information, such asfinal annotations, that can enable optimizations,
such as static method resolution.

6.5 Final Code Generation

We intentionally left the implementation of dictionaries abstract inλinkς so that the
optimization techniques described above can be used independently of their concrete
representation. Depending on the properties of the source language, dictionaries might
be tables [R´em92,DH95], a graph structure [CC98], or a simple list of method names.
We might also use caching techniques to improve dispatch performance when there is

A Calculus for Compiling and Linking Classes 147

locality [DS84].We might also maintain information in the compiler as to the origin of the
dictionary and use multiple representations, each tailored to a particular dictionary origin.
For example, aJava compiler can distinguish between dictionaries that correspond to
classes and dictionaries that correspond to interfaces. In the former case, the dictionary
is known at class-load time and dictionary applications can be resolved when the class
is loaded and linked. For interfaces, however, a dictionary might be implemented as an
indirection table [LST99].

7 Related Work

There is other published research on IRs for compiling class-based languages. The
Vortex project at the University of Washington, for instance, supports a number of class-
based languages using a common optimizing back-end [DDG+95]. The Vortex IR has
fairly high-level operations to support classes: class construction and method dispatch
are both monolithic primitives.λinkς, on the other hand, breaks these operations into
smaller primitives. By working at a finer level of granularity,λinkς is able to support a
wider range of class mechanisms in a single framework (e.g., Vortex cannot support the
dynamic classes found inLoom).

Another approach pursued by researchers is to encode object-oriented features in
typedλ-calculi. While such an approach can support any reasonable surface language
design, its effectiveness as an implementation technique depends on the character of
the encoding. For example, League,et. al., have recently proposed a translation of a
Java subset into the FLINT intermediate representation extended with row polymor-
phism [LST99]. Although they do not have an implementation yet, their encoding seems
efficient, but it is heavily dependent on the semantics ofJava. For example, their trans-
lation relies on knowing the exact set of interfaces that a class implements. The encoding
approach has also been recently tried by Vanderwaart forLoom [Van99]. In this case,
because of the richness ofLoom’s feature set, the encoding results in an inefficient
implementation of operations like method dispatch. We believe that a compiler based
on λinkς can do at least as well forJava as the encoding approach, while doing much
better for languages likeMoby andLoom that do not have efficient encodings in the
λ-calculus.

In other related work, Bono,et. al.have designed a class calculus, based on theλ-
calculus, for evaluating single and mixin inheritance [BPS99]. The focus of their work
differs from ours, in that their calculus describes the core functionality of a particular
surface language, whereas we provide the basic building blocks with which to imple-
ment a myriad of surface designs. Essentially, their language could be implemented in
λinkς; the translation from their calculus toλinkς would capture the implementation
information encoded in their operational semantics.

There are other formal linking frameworks [Car97,Ram96,GM99,AZ99,DEW99].
Of particular relevance here are uses ofβ-reduction to implement linking of modules, as
we do for the linking of classes. From the very beginning, the Standard ML of New Jersey
compiler has used theλ-calculus to express module linking [AM87]. More recently, Flatt
and Felleisen describe a calculus for separate compilation that mapsunits to functions
over their free variables [FF98].

148 K. Fisher, J. Reppy, and J.G. Riecke

8 Conclusions

We have presentedλinkς, a low-level calculus for representing class-based object-
oriented languages.λinkς satisfies the goals we set in designing an IR. In particular,
it provides support for inheritance from non-manifest base classes, such as occurs in
Moby, OCaml, andLoom. It is amenable to formal reasoning, such as in the proof
of termination of linking in Section 4. As illustrated in Section 5,λinkς is expressive
enough to support a wide-range of surface languages, from the concrete representati-
ons of Java to the dynamic classes ofLoom. Finally, simpleλ-calculus optimizations,
such as common subexpression elimination and hoisting, yield standard object-oriented
optimizations, such as method caching, when applied toλinkς terms.

We are currently implementing a compiler forMoby that usesλinkς as the basis
of the object fragment of its IR. One refinement that we use in our implementation is
to syntactically distinguish between the link-time and run-time forms ofλinkς. In the
future, we plan to explore the use ofλinkς to support dynamic class loading and mobile
code, and to develop a typed IR based onλinkς.

References

AC96. Abadi, M. and L. Cardelli.A Theory of Objects. Springer-Verlag, New York, NY,
1996.

AG98. Arnold, K. and J. Gosling.The Java Programming Language. Addison-Wesley,
Reading, MA, 2nd edition, 1998.

AM87. Appel, A. W. and D. B. MacQueen. A Standard ML compiler. InFPCA’87, vol. 274
of LNCS, New York, NY, September 1987. Springer-Verlag, pp. 301–324.

App92. Appel,A. W.Compiling with Continuations. Cambridge University Press, Cambridge,
England, 1992.

AZ99. Ancona, D. and E. Zucca. A primitive calculus for module systems. InPPDP’99,
LNCS. Springer-Verlag, September 1999, pp. 62–79.

Bar84. Barendregt, H. P.The Lambda Calculus, vol. 103 ofStudies in Logic and the Foun-
dations of Mathematics. North-Holland, revised edition, 1984.

BFP97. Bruce, K. B., A. Fiech, and L. Petersen. Subtyping is not a good “match” for object-
oriented languages. InECOOP’97, vol. 1241 ofLNCS, NewYork, NY, 1997. Springer-
Verlag, pp. 104–127.

BPS99. Bono, V., A. Patel, and V. Shmatikov. A core calculus of classes and mixins. In
ECOOP’99, vol. 1628 ofLNCS, New York, NY, June 1999. Springer-Verlag.

Car97. Cardelli, L. Program fragments, linking, and modularization. InPOPL’97, January
1997, pp. 266–277.

CC98. Chambers, C. and W. Chen. Efficient predicate dispatching.Technical report, Depart-
ment of Computer Science, University of Washington, 1998.

DDG+95. Dean, J., G. DeFouw, D. Grove, V. Litvinov, and C. Chambers. Vortex: An optimizing
compiler for object-oriented languages. InOOPSLA’96, October 1995, pp. 83–100.

DEW99. Drossopoulou, S., S. Eisenbach, and D. Wragg. A fragment calculus — towards a
model of separate compilation, linking and binary compatibility. InLICS-14, June
1999, pp. 147–156.

DGC95. Dean, J., D. Grove, and C. Chambers. Optimization of object-oriented programs using
static class hierarchy analysis. InECOOP’95, August 1995.

DH95. Driesen, K. and U. H¨olzle. Minimizing row displacement dispatch tables. In
OOPSLA’95, October 1995, pp. 141–155.

A Calculus for Compiling and Linking Classes 149

DS84. Deutsch, L. P. and A. M. Schiffman. Efficient implementation of the Smalltalk-80
system. InPOPL’84, January 1984, pp. 297–302.

FF86. Felleisen, M. and D. P. Friedman. Control operators, the SECD-machine, and the
λ-calculus. In M. Wirsing (ed.),Formal Description of Programming Concepts – III,
pp. 193–219. North-Holland, New York, N.Y., 1986.

FF98. Flatt, M. and M. Felleisen. Units: Cool modules for HOT languages. InPLDI’98,
June 1998, pp. 236–248.

FKF98. Flatt, M., S. Krishnamurthi, and M. Felleisen. Classes and mixins. InPOPL’98,
January 1998, pp. 171–183.

FR99a. Fisher, K. and J. Reppy. The design of a class mechanism for Moby. InPLDI’99, May
1999, pp. 37–49.

FR99b. Fisher, K. and J. Reppy. Foundations forMoby classes.Technical Memorandum, Bell
Labs, Lucent Technologies, Murray Hill, NJ, February 1999.

FSDF93. Flanagan, C., A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with
continuations. InPLDI’93, June 1993, pp. 237–247.

GDGC95. Grove, D., J. Dean, C. Garrett, and C. Chambers. Profile-guided receiver class predic-
tion. In OOPSLA’95, October 1995, pp. 108–123.

GLT89. Girard, J.-Y.,Y. Lafont, and P. Taylor.Proofs and Types. Cambridge University Press,
Cambridge, England, 1989.

GM99. Glew, N. and G. Morrisett. Type-safe linking and modular assembly language. In
POPL’99, January 1999, pp. 250–261.

Ler98. Leroy, X. The Objective Caml System (release 2.00), August 1998. Available from
http://pauillac.inria.fr/caml.

LST99. League, C., Z. Shao, andV. Trifonov. Representing Java classes in a typed intermediate
language. InICFP’99, September 1999, pp. 183–196.

OT98. Oliva, D. P. and A. P. Tolmach. From ML to Ada: Strongly-typed language interope-
rability via source translation.JFP, 8(4), July 1998, pp. 367–412.

Ram96. Ramsey, N. Relocating machine instructions by currying. InPLDI’96, May 1996, pp.
226–236.

Rém92. Rémy, D. Efficient representation of extensible records. InML’92 Workshop, San
Francisco, USA, June 1992. pp. 12–16.

RS98. Riecke, J. G. and C. Stone. Privacy via subsumption. InFOOL5, January 1998. A
longer version will appear inInformation and Computation.

RV98. Rémy, D. and J. Vouillon. Objective ML: An effective object-oriented extension to
ML. TAPOS, 4, 1998, pp. 27–50.

Str94. Stroustrup, B.The Design and Evolution of C++. Addison-Wesley, Reading, MA, 1994.
Str97. Stroustrup, B.The C++ Programming Language. Addison-Wesley, Reading, MA, 3rd

edition, 1997.
Tar96. Tarditi, D.Design and implementation of code optimizations for a type-directed com-

piler for Standard ML. Ph.D. dissertation, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, December 1996. Available as Technical Report
CMU-CS-97-108.

Van99. Vanderwaart, J. C. Typed intermediate representations for compiling object-oriented
languages, May 1999. Williams College Senior Honors Thesis.

Abstract Domains for Universal and Existential
Properties

Andrew Heaton1, Patricia M. Hill2, and Andy King3

1 School of Computer Studies, University of Leeds, LS2 9JT, UK,
heaton@scs.leeds.ac.uk,

Tel: +44 113 233 5322, Fax: +44 113 233 5468.
2 School of Computer Studies, University of Leeds, LS2 9JT, UK,

hill@scs.leeds.ac.uk.
3 Computing Laboratory, University of Kent at Canterbury, CT2 7NF, UK,

amk@ukc.ac.uk.

Abstract. Abstract interpretation theory has successfully been used for
constructing algorithms to statically determine run-time properties of
programs. Central is the notion of an abstract domain, describing certain
properties of interest about the program. In logic programming, program
analyses typically fall into two different categories: either they detect
program points where the property definitely holds (universal analyses)
or possibly holds (existential analyses). We study the relation between
such analyses in the case where the concrete domain is a lattice join-
generated by its set of join-irreducible elements. Although our intended
application is for logic programming, the theory is sufficiently general for
possible applications to other languages.

1 Introduction

Abstract interpretation theory has successfully been used for constructing al-
gorithms to statically determine run-time properties of programs. Traditionally,
the semantics of the program is specified with a concrete domain. The central no-
tion is to approximate program semantics by defining an abstract domain whose
operations mimic those of the concrete domain. The abstract domain describes
certain properties of interest about the program. Each element of the abstract
domain specifies information about a possibly infinite number of concrete sta-
tes. Thus, in order to construct an abstract domain tracing a property of the
program, the property needs to be considered as a property over sets of concrete
states.

Our aim is to provide new techniques for the construction of new abstract
domains from given ones. Many operations have been designed for systematically
constructing new domains. Domain operators studied include reduced product
[8,4], reduced power [8] and disjunctive completion [8,11]. Linear refinement is
introduced in [13] as an extension of the Heyting completion studied in [14]. In
[15], a new domain for freeness analysis of logic programs is defined using linear

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 150–164, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Abstract Domains for Universal and Existential Properties 151

refinement. In this paper, we suppose that the concrete domain is a lattice join-
generated by its set of join-irreducible elements. In this case, given any property
p defined over each individual concrete state, p can always be uniformly extended
to a property over sets of concrete states.

For example, in logic programming it is standard to define the concrete do-
main as the powerset of substitutions, ℘(Sub), partially ordered by set inclusion.
℘(Sub) is join-generated by Sub. For many properties of logic programs, it is na-
tural to first define the property on substitutions and then lift the property to
include sets of substitutions. Consider the property of groundness. A variable x
is ground under a substitution θ ∈ Sub if θ binds x to a term with no variables.
Letting X be the set of variables of interest, the mapping gr : Sub → ℘(X) is
defined:

gr(θ) = {x ∈ X | var(θ(x)) = ∅}.
Suppose we now want to consider groundness as a property with domain ℘(Sub).
We can consider either definite (universal) groundness or possible (existential)
groundness. For definite groundness, Gr∀ : ℘(Sub) → ℘(X) is defined:

Gr∀(Θ) =
⋂

{gr(θ) | θ ∈ Θ}.

For possible groundness, Gr∃ : ℘(Sub) → ℘(X) is defined:

Gr∃(Θ) =
⋃

{gr(θ) | θ ∈ Θ}.

Note that definite groundness traces positive information about the groundness
of program variables, whereas possible groundness traces negative information.
Knowledge of both positive and negative information about program properties
such as groundness is particularly useful for debugging applications.

In general, given a concrete domain C, an abstract domain D and a property
p mapping the join-irreducible elements of C to D, p is extended to C using the
join operation of D. We name this extension of p the D-lattice property of p. For
example, Gr∀ is the D∀

gr-lattice property of gr where D∀
gr is the lattice ℘(Sub),

partially ordered by ⊇ with set intersection as the join operation. Gr∃ is the
D∃

gr-lattice property of gr where D∃
gr is the lattice ℘(Sub), partially ordered by

⊆ with set union as the join operation.
The main theoretical results shown are as follows:

– Given a Galois connection (C,α,D, γ) (where C is completely distributive
and join-generated by its set of join-irreducible elements) specifying an ana-
lysis tracing positive information of p, we show how to construct a mirror
Galois connection (C,αm, Dd, γm) (where Dd is the dual lattice of D) spe-
cifying an analysis tracing negative information of p.

– Suppose op : C → C is a concrete operation and 〈D, op′〉 is a correct ab-
stract interpretation of 〈C, op〉 specified by (C,α,D, γ). We find conditions
on 〈D, op′〉 and 〈C, op〉 which ensure that 〈Dd, op′〉 is a correct abstract in-
terpretation of 〈C, op〉 specified by (C,αm, Dd, γm).

152 A. Heaton, P.M. Hill, and A. King

The paper is organised as follows: in Section 3 we define the notion of lattice
properties and mirror properties. Section 4 considers some applications with
the well-known domains Pos and Sharing of logic programming. In Section 5
we consider the safe approximation of concrete functions in analyses for mirror
properties. Finally, Section 6 gives some concluding remarks and directions for
future work.

2 Preliminaries

Throughout the paper, we assume familiarity with the basic notions of lattice
theory ([3]) and abstract interpretation ([7,8,9]). Below we introduce notation
and recall some of the central notions.

2.1 Lattice Theory

In the following, we assume 〈A,vA,uA,tA,>A,⊥A〉 is a complete lattice. The
dual lattice 〈A,vd

A,ud
A,td

A,>d
A,⊥d

A〉 is defined such that:

1. ∀a, b ∈ A.a vd
A b iff b vA a;

2. ud
A = tA;

3. td
A = uA;

4. >d
A = ⊥A;

5. ⊥d
A = >A.

We will often write Ad to denote the dual lattice 〈A,vd
A,ud

A,td
A,>d

A,⊥d
A〉. Given

a mapping f : A1 → A2, we will sometimes abuse notation by also writing f to
denote the dual mapping fd : Ad

1 → Ad
2 such that f(a) = fd(a) for all a ∈ A1.

An element a ∈ A is join-irreducible if, for any S ⊆ A, a = tAS implies
a ∈ S. The set of join-irreducible elements of A is denoted by JI(A). Letting
S ⊆ A, then A is join-generated by S if, for all a ∈ A, a = tA{x ∈ S | x @A a}.
For convenience, we assume ⊥A = tA∅. An element a ∈ A is an atom if a covers
⊥A, i.e. a 6= ⊥A and ∀x ∈ A.(⊥A @A x vA a) ⇒ (x = a). We denote by
atomA the set of atoms of A. Note that atomA ⊆ JI(A). A is atomistic if A is
join-generated by atomA. A is dual-atomistic if Ad is atomistic.

A complete lattice A is completely distributive if, for any {xi,k | i ∈ I, k ∈
K(i)} ⊆ A, the following identity holds:

i∈I

⊔
k∈K(i)

xi,k =
⊔

f∈I K i∈I

xi,f(i),

where for any i ∈ I, K(i) is a set of indices, and I K is the set of all functions
f from I to

⋃
i∈I K(i) such that ∀i ∈ I.f(i) ∈ K(i).

Example 1. The powerset of any set S, ℘(S), ordered with set-theoretic inclu-
sion, is completely distributive and join-generated by S. In this case ℘(S) is also
an atomistic lattice where the atoms are the elements of S.

Abstract Domains for Universal and Existential Properties 153

The key property of completely distributive lattices we shall use is:

Lemma 1 ([2]). Let A be a completely distributive lattice. Then, x ∈ JI(A)
iff for any S ⊆ A, x vA

⊔
A S implies x vA s for some s ∈ S.

2.2 Galois Connections

If C and D are posets and α : C → D, γ : D → C functions such that
∀c ∈ C.∀d ∈ D.α(c) vD d ⇔ c vC γ(d), then (C,α,D, γ) is a Galois connec-
tion between C and D. If in addition γ is 1-1, or, equivalently, α is onto then
(C,α,D, γ) is a Galois insertion of D in C. In the setting of abstract interpreta-
tion, C and D are called the concrete and abstract domains, respectively. Given
a Galois connection (C,α,D, γ), α and γ are uniquely determined by each other.
A practical consequence of this is that an abstract interpretation can be perfor-
med by defining only one of α or γ. We assume that every concrete domain C
and abstract domain D form complete lattices. Given a concrete domain C and
an abstract domain D, a property is defined as a (partial) mapping from C to
D. Every Galois connection (C,α,D, γ) can be viewed as a specification of the
property α : C → D.

An important property of Galois connections is the preservation of bounds.
Suppose C, D are complete lattices. A mapping α : C → D is additive if it
preserves least upper bounds. Thus if S ⊆ C then α(

⊔
C S) =

⊔
D{α(c) | c ∈ S}.

A mapping α : C → D is co-additive if α : Cd → Dd is additive. If (C,α,D, γ)
is a Galois connection, then α is additive. The converse is also true, i.e. if α
is additive then α entirely determines a unique Galois connection (C,α,D, γ).
Thus in order to define a Galois connection (C,α,D, γ) (where C,D are complete
lattices), it is sufficient to define an additive α.

One way of defining new Galois connections is by composition. Given two
Galois connections (C,αA, A, γA) and (A,αD, D, γD), (C,αA ◦ αD, D, γD ◦ γA)
is a Galois connection. We call (C,αA ◦ αD, D, γD ◦ γA) the composition of
(C,αA, A, γA) and (A,αD, D, γD).

Suppose (C,α,D, γ) is a Galois connection and opC : C → C, opD : D → D
are operations on C and D, respectively. 〈D, opD〉 is a correct abstract inter-
pretation of 〈C, opC〉 specified by (C,α,D, γ) if α(opC(γ(d))) vD opD(d) for
all d ∈ D. 〈D, opD〉 is optimal if opD = α ◦ opC ◦ γ. If 〈D, opD〉 is optimal,
then opD is the best approximation of opC relative to D. 〈D, opD〉 is complete if
α ◦ opC = opD ◦α. Completeness is a stronger property than optimality. Indeed,
whenever 〈D, opD〉 is complete, it can be shown that opD = α ◦ opC ◦ γ [10,12].
The completeness of opC depends on D and is a property of the abstract domain.

If (C,α,D, γ) is a Galois insertion, each value of the abstract domain D
is useful in the presentation of the concrete domain as all the elements of D
represent distinct members of C. Moreover, any Galois connection may be lifted
to a Galois insertion. This is done by identifying those values of the abstract
domain with the same concrete meaning into an equivalence class. This process
is known as reduction of the abstract domain. Each Galois insertion (C,α,D, γ)
can equivalently be considered as an upper closure operator on C, ρ = γ ◦α. For

154 A. Heaton, P.M. Hill, and A. King

every Galois connection (C,α,D, γ), let (C,α≡, D≡, γ≡) be the Galois insertion
obtained by reducing (C,α,D, γ). We associate the (upper) closure operator
ρ = γ≡ ◦ α≡ with (C,α,D, γ). The set of closure operators on C is partially
ordered such that ρ1 v ρ2 if ∀c ∈ C. ρ1(c) vC ρ2(c). In this approach, the order
relation on the set of closure operators on C corresponds to the order by means
of which abstract domains are compared with regard to precision. More formally,
if (C,α1, D1, γ1) and (C,α2, D2, γ2) are Galois connections with the associated
closure operators ρ1 and ρ2, respectively, then we say D1 is more precise than
D2 if ρ1 v ρ2.

3 Properties of Programs

In abstract interpretation, Galois connections are used to specify properties of
programs. To define a Galois connection (C,α,D, γ) between a concrete domain
C and an abstract domain D, all we need to do is define an additive function
α : C → D. It is well known that in the case where the concrete lattice C is
join-generated by JI(C), additive functions mapping C to an abstract domain
D are completely determined by their values for join irreducible elements. More
specifically, if α : C → D is additive then

α(c) =
⊔
D

{α(x) | x ∈ JI(C) ∧ x vC c}.

Example 2. For logic programs, a standard choice of concrete lattice is the ato-
mistic lattice CL = 〈℘(Sub),⊆,∩,∪, ∅, Sub〉, where Sub denotes the set of idem-
potent substitutions.

A program variable is ground if it is bound to a unique value. Groundness
can be thought of as a property over Sub, i.e. as a property over JI(CL). Let
X be the set of variables of interest. Then the set of variables ground under
θ ∈ Sub is given by gr : JI(CL) → ℘(X) defined

gr(θ) = {x ∈ X | var(θ(x)) = ∅}.
Let Θ ⊆ Sub. The set of variables that are definitely ground under all θ ∈ Θ is
given by Gr∀ : CL → ℘(X) where

Gr∀(Θ) = {x ∈ X | ∀θ ∈ Θ.var(θ(x)) = ∅} =
⋂

{gr(θ) | θ ∈ Θ}.

Alternatively, the set of variables that are possibly ground under all θ ∈ Θ is
given by Gr∃ : CL → ℘(X) where

Gr∃(Θ) = {x ∈ X | ∃θ ∈ Θ.var(θ(x)) = ∅} =
⋃

{gr(θ) | θ ∈ Θ}. 2

Definition 1. Let C be a lattice. Then p is an JI property for C if there exists
a set D such that p maps JI(C) to D (denoted p : JI(C) → D). 2

Abstract Domains for Universal and Existential Properties 155

Definition 2. Suppose C is join-generated by JI(C) and let p : JI(C) → D
be a JI property for C. Suppose D forms a complete lattice under the partial
ordering vD. Then the D-lattice property of p, P : C → D, is defined such that
for every c ∈ C,

P (c) =
⊔

D{p(x) | x ∈ JI(C) ∧ x vC c}.

Let Dd be the dual lattice of D. If P is the D-lattice property of p then we define
the mirror property of P to be the Dd-lattice property of p. 2

Note that the mirror of the mirror of P is P .

Example 3. Let Dgr be the complete lattice (℘(X),⊆,∩,∪, ∅, X). In Example 2,
Gr∃ is the Dgr-lattice property of gr, and Gr∀ is the Dd

gr-lattice property of gr.
Hence Gr∀ and Gr∃ are mirror properties. 2

In the case where C is also a completely distributive lattice, we have the following
theorem.

Theorem 1. Suppose C is a completely distributive lattice join generated by
JI(C) and D is a complete lattice. Let (C,α,D, γ) be a Galois connection. Then
there exists αm, γm such that

1. αm is the mirror property of α.
2. (C,αm, Dd, γm) is a Galois connection.

Proof. To prove 1, observe that as C is join-generated by JI(C), for each c ∈ C,

α(c) =
⊔

D{α(x) | x ∈ JI(C) ∧ x vC c}.

Hence by Definition 2,

αm(c) =
D

{α(x) | x ∈ JI(C) ∧ x vC c}.

To prove 2, it is sufficient to show that αm is additive. But

αm(
⊔

C S) =
D

{α(x) | x ∈ JI(C) ∧ x vC

⊔
C S} (by Definition 2)

=
D

{α(x) | x ∈ JI(C) ∧ x vC s ∧ s ∈ S} (by Lemma 1)

=
D

{αm(s) | s ∈ S}.

Hence αm is additive. 2

The compositional design of Galois connections is a method for specifying pro-
gram properties by successive refinements. The following lemma gives a suffic-
ient condition for the preservation of compositions of Galois connections between
mirror properties.

156 A. Heaton, P.M. Hill, and A. King

Lemma 2. Suppose C is a completely distributive lattice join-generated by
JI(C), and A, D are complete lattices. Suppose (C,αp, D, γp), (C,αm

p , D
d, γm

p),
(C,αA, A, γA) and (C,αm

A , A
d, γm

A) are Galois connections such that αp, αm
p

and αA, αm
A are mirror properties. Also suppose (A,αD, D, γD) is a Galois

connection such that (C,αp, D, γp) is the composition of (C,αA, A, γA) and
(A,αD, D, γD). Then if αD is co-additive, there exists γD : Dd → Ad such that
(Ad, αD, D

d, γD) forms a Galois connection and (C,αm
p , D

d, γm
p) is the compo-

sition of (C,αm
A , A

d, γm
A) and (Ad, αD, D

d, γD).

Proof. First note that αD : A → D is co-additive implies that αD : Ad → Dd is
additive, and so there exists γD : Dd → Ad such that (Ad, αD, D

d, γD) forms a
Galois connection.

To show that (C,αm
p , D

d, γm
p) is the composition of (C,αm

A , A
d, γm

A) and
(Ad, αD, D

d, γD), it is sufficient to show that αm
p = αD ◦αm

A . Suppose c ∈ C. By
Definition 2,

αm
p (c) =

D

{αp(x) | x ∈ JI(C) ∧ x vC c}.

Now αp(x) = αD(αA(x)) and so

αm
p (c) =

D

{αD(αA(x)) | x ∈ JI(C) ∧ x vC c}.

But αD is co-additive and so

αm
p (c) = αD(

A

{αA(x) | x ∈ JI(C) ∧ x vC c}) = αD(αm
A (c)).2

Let ρp, ρA be the associated closure operators of (C,αp, D, γp) and (C,αA, A, γA),
respectively. Note that whenever (C,αp, D, γp) is the composition of (C,αA, A, γA)
and (A,αD, D, γD), then ρA v ρp. Thus Lemma 2 can be interpreted as giving a
sufficient condition for the preservation of the relative precision between mirror
properties, that is, when ρA v ρp implies ρm

A v ρm
p (where ρm

p , ρ
m
A are the asso-

ciated closure operators of (C,αm
A , A

d, γm
A) and (C,αm

p , D
d, γm

p), respectively).

4 Applications

We consider the abstract domains Pos and Sharing from logic programming.
In the following, let Vars denote a countable set of variables, and X denote a
non-empty finite subset of Vars containing the variables of interest.

4.1 Pos

We briefly recall the definition of Pos. The domain Pos consists of the set of
positive propositional formulae on X, where a propositional formula is positive

Abstract Domains for Universal and Existential Properties 157

if it is satisfied when every variable is assigned the value true. Pos is a lattice
whose ordering is given by logical consequence, and the join and meet by logi-
cal disjunction and conjunction, respectively. Adding the bottom propositional
formula false to Pos, makes Pos a complete lattice. Letting CL be the concrete
domain defined in Example 2, the Galois insertion (CL, αpos,Pos, γpos) is such
that αpos : CL → Pos where for all Θ ∈ CL,

αpos(Θ) =
∨
θ∈Θ

∧
x∈X

{x ↔
∧
var(θ(x))}.

Note that αpos is the Pos-lattice property of the JI property ppos : Sub →Pos
defined such that

ppos(θ) =
∧

x∈X

{x ↔
∧
var(θ(x))}.

The abstract unification function for Pos, Unifpos : Pos× Pos → Pos, is given
by logical conjunction, that is, the meet operation of Pos.

Recall that in Examples 2 and 3, definite groundness is specified by Gr∀. In
fact Gr∀ maps CL onto Dd

gr and so there exists γ∀ such that (CL, Gr
∀, Dd

gr, γ
∀)

forms a Galois insertion. This domain is originally due to Jones and Søndergaard
[16]. In [18], when considering the concrete domain to be sets of substitutions
closed by instantiation, it is shown that Pos can be constructed by using only
the definition of groundness. More specifically, [18] shows that Pos is exactly the
least abstract domain which contains all the (double) intuitionistic implications
between elements of Dd

gr.
Let αD : Pos → Dd

gr be defined such that for all φ ∈ Pos,

αD(φ) = {x ∈ X | φ |= x}.
Now αD is additive since αD(φ1 ∨ φ2) = αD(φ1) ∩ αD(φ2). Hence there exists
γD such that (Pos, αD, D

d
gr, γD) forms a Galois connection. Also Gr∀(Θ) =

αD(αpos(Θ)) for all Θ ∈ CL, therefore (CL, Gr
∀, Dd

gr, γ
∀) is the composition of

(CL, αpos,Pos, γpos) and (Pos, αD, D
d
gr, γD).

The mirror property of Gr∀ is Gr∃. Now Gr∃ maps CL onto Dgr and so there
exists γ∃ such that (CL, Gr

∃, Dd
gr, γ

∃) forms a Galois insertion.
The mirror property of αpos is αm

pos : CL → Posd where

αm
pos(Θ) =

∧
θ∈Θ

∧
x∈X

{x ↔
∧
var(θ(x))}.

Lemma 3. There exists γm
pos such that (CL, α

m
pos,Pos

d, γm
pos) forms a Galois

connection. Also (CL, Gr
∃, Dgr, γ

∃) is the composition of (CL, α
m
pos,Pos

d, γm
pos)

and (Posd, αD, Dgr, γD).

Proof. By Theorem 1 there exists γm
pos such that (CL, α

m
pos, Pos

d, γm
pos) forms a

Galois connection. Now αD(φ ∧ ψ) = αD(φ) ∪ αD(ψ), and so αD : Pos → Dd
gr

is co-additive. Therefore by Lemma 2, (CL, Gr
∃, Dgr, γ

∃) is the composition of
(CL, α

m
pos,Pos

d, γm
pos) and (Posd, αD, Dgr, γD). 2

158 A. Heaton, P.M. Hill, and A. King

Lemma 4. If Card(X) ≥ 2, αm
pos is not onto, thus (CL, α

m
pos,Pos

d, γm
pos) is not

a Galois insertion.

Proof. By inspecting the definition of αm
pos, it can be seen that αm

pos(Θ) 6= ∨
X

when Card(X) ≥ 2, for any Θ ∈ CL. Hence αm
pos is not onto. 2

In order to obtain a Galois insertion, we apply the reduction process to Posd.
(CL, α

m
pos,Pos

d, γm
pos) reduces to (CL, α

m
pos/≡,Pos

d/ ≡, γm
pos/≡) where for φ, ψ ∈

Posd,

φ ≡ ψ ⇔ γm
pos(φ) = γm

pos(ψ), αm
pos/≡(c) = {φ | φ ≡ αm

pos(c)}.

Let Γ ⊆ Posd be defined such that

Γ = {x ↔
∧

{y1, . . . , yn} | ∀1 ≤ i ≤ n.x 6= yi}.

By inspecting the definition of αm
pos (and noting that Sub is the set of idempotent

substitutions, i.e. θ ∈ Sub implies x /∈ var(θ(x)) for all x), it can be seen that
Posd/ ≡ is the lattice Λ ⊆ Posd where Λ is the closure of Γ under conjunction.
From Lemma 3 we obtain:

Theorem 2. Posd/ ≡ is more precise than Dgr.

Thus the precision ordering has been preserved for the mirror properties.

4.2 Sharing

We define Sharing as in [1]. We define the set sharing domain SH = ℘(SG)
where SG = {S ⊆ ℘(X) | ∅ /∈ S}. SH is partially ordered by set inclusion such
that the join is given by set union and the meet by set intersection.

Let CL be the concrete domain defined in Example 2. The set of variables
occurring in a substitution θ through the variable v is given by the mapping
occs : Sub×X → ℘(X) defined such that

occs(θ, x) = {y ∈ X | x ∈ var(θ(y))}.
Given this, the Galois insertion (CL, αsh, SH, γsh) specifying SH can be defined
such that

αsh(Θ) =
⋃
θ∈Θ

{occs(θ, x) | x ∈ V ars, occs(θ, x) 6= ∅}.

Note that αsh is the SH-lattice property of the JI property psh : Sub → SH
defined such that

psh(θ) = {occs(θ, x) | x ∈ V ars, occs(θ, x) 6= ∅}.
For Sharing, the abstract unification function is defined as a mapping which
captures the effects of a binding x → t on an element of SH. The definition uses
the following three operations defined over SH.

Abstract Domains for Universal and Existential Properties 159

The function bin : SH × SH → SH, called binary union is given by

bin(S1, S2) = {s1 ∪ s2 | s1 ∈ S1, s2 ∈ S2}.
The star-union function (·)∗ : SH → SH is given by

S∗ = {s ∈ SG | ∃S′ ⊆ S.s =
⋃
S′}.

The relevant component function rel : ℘(X) × SH → SH is given by

rel(V, S) = {s ∈ S | s ∩ V 6= ∅}.
Let vx = {x}, vt = var(t) and vxt = vx ∪ vt. Then

Unifsh(S, x → t) = (S \ (rel(vxt, S)) ∪ bin(rel(vx, S)∗, rel(vt, S)∗).

A domain for pair sharing is PS = ℘(Pairs(X)) where Pairs(X) = {{x, y} |
x, y ∈ X, x 6= y}. PS is specified by the Galois insertion (CL, αps, PS, γps),
where

αps(Θ) =
⋃
θ∈Θ

{{x, y} ∈ Pairs(X) | var(θ(x)) ∩ var(θ(y)) 6= ∅}.

Note that αps is the PS-lattice property of the JI property pps : Sub → PS
defined such that

pps(θ) = {{x, y} ∈ Pairs(X) | var(θ(x)) ∩ var(θ(y)) 6= ∅}.
Defining αsp : SH → PS such that

αsp(S) =
⋃

{Pairs(s) | s ∈ S},

it follows that αps(Θ) = αsp(αsh(Θ)) for all Θ ∈ CL. Also αsp(S1 ∪ S2) =⋃{Pairs(s) | s ∈ S1 ∪ S2} = αsp(S1) ∪ αsp(S2). Therefore αsp is additive
and so there exists γsp such that (SH,αsp, PS, γsp) forms a Galois connection.
It follows that (CL, αps, PS, γps) is the composition of (CL, αsh, SH, γsh) and
(SH,αsp, PS, γsp), and so PS is more abstract than SH.

The mirror property of αsh is αm
sh : CL → SHd defined such that

αm
sh(Θ) =

⋂
θ∈Θ

{occs(θ, x) | x ∈ V ars, occs(θ, x) 6= ∅}.

Lemma 5. There exists γm
sh such that (CL, α

m
sh, SH

d, γm
sh) forms a Galois ins-

ertion.

Proof. By Theorem 1, there exists γm
sh such that (CL, α

m
sh, SH

d, γm
sh) forms a

Galois connection. To prove αm
sh is onto, we show ∀a ∈ SHd.∃θ ∈ Sub.αm

sh({θ}) =
a by induction on Card(a).

160 A. Heaton, P.M. Hill, and A. King

The base case is when a = ∅. Let θ = {x → t | x ∈ X} where t is a ground
term. Then αm

sh({θ}) = ∅.
Suppose ∃s ∈ a and let a′ = a \ {s}. Using the induction hypothesis, ∃θ′ ∈

Sub.αm
sh({θ′}) = a′. Let u ∈ V ars \ X be a variable such that u /∈ var(θ′(x))

for any x ∈ X. For every y ∈ s, suppose θ′(y) = t′y. Let ty be a term such that
var(ty) = var(t′y) ∪ {u}. Then defining θ such that θ(x) = tx for all x ∈ s and
θ(x) = θ′(x) otherwise, αm

sh({θ}) = a. 2

The mirror property of αps is αm
ps : CL → PSd defined such that

αm
ps(Θ) =

⋂
θ∈Θ

{{x, y} ∈ Pairs(X) | var(θ(x)) ∩ var(θ(y)) 6= ∅}.

Lemma 6. There exists γm
ps such that (CL, α

m
ps, PS

d, γm
ps) forms a Galois inser-

tion.

Proof. By Theorem 1, there exists γm
ps such that (CL, α

m
ps, PS

d, γm
ps) forms a

Galois connection. We show that αm
ps is onto.

First suppose a = >ps = Pairs(X). Let u ∈ V ars \X. Then if θ(x) = u for
every x ∈ X, αm

ps({θ}) = Pairs(X) as required.
Suppose a 6= >ps. PS is dual-atomistic with atompsd = {Pairs(X)\{{x, y}} |

{x, y} ∈ PS}. Therefore for every a 6= >ps, a =
⋂{x | x ∈ atompsd ∧ a ⊆ x}.

But αm
ps(Θ) =

⋂{pps(θ) | θ ∈ Θ}, and so it is sufficient to show that ∀a ∈
atompsd .∃θ ∈ Sub.pps(θ) = a.

Suppose a = Pairs(X) \ {{x, y}} and let u, v ∈ V ars \ X. Defining θ such
that θ(x) = u, θ(y) = v and θ(z) = f(u, v) for every z ∈ X \ {x, y}, pps(θ) = a.

2

Theorem 3. If Card(X) ≥ 3 then SHm is not more precise than PSm.

Proof. We need to show there exists Θ∈CL such that γm
sh(αm

sh(Θ))*γm
ps(α

m
ps(Θ)).

Suppose X = {x, y, z} (it is easy to generalise the proof for Card(X) >
3). Let Θ = {θ1, θ2} where θ1 = {x → y, z → y} and θ2 = {x → y}. It
follows that γm

sh(αm
sh({θ1, θ2})) = γm

sh({{x, y, x}}∩{{x, y}}) = γm
sh(∅) = Sub. But

γm
ps(α

m
ps({θ1, θ2})) = γm

ps({{x, y}}) ⊂ Sub. Therefore γm
sh(αm

sh(Θ)) * γm
ps(α

m
ps(Θ)).

2

Thus in general the precision ordering is not preserved for mirror properties.

Theorem 4. PSm is not more precise than SHm.

Proof. We need to show there exists Θ∈CL such that γm
ps(α

m
ps(Θ))*γm

sh(αm
sh(Θ)).

Let Θ = {ε} where ε is the identity substitution. Now γm
sh(αm

sh({ε})) =
γm

sh({{x} | x ∈ X}) ⊂ Sub and γm
ps(α

m
ps({ε})) = γm

ps(∅) = Sub. Therefore
γm

ps(α
m
ps(Θ

′)) * γm
sh(αm

sh(Θ′)). 2

Hence the precision of SHm and PSm is not comparable in general.

Abstract Domains for Universal and Existential Properties 161

5 Operations on Concrete Domains

When the concrete lattice C is join-generated by JI(C), many operations on C
can be defined in terms of operations on JI(C).

Definition 3. Suppose C is join-generated by JI(C). Then op is a JI operation
if op : J I(C) × JI(C) → JI(C)1. For each concrete operation Op : C × C → C,
we say Op is uniformly defined from a JI operation op if for all c1, c2 ∈ C,

Op(c1, c2) =
⊔

C{op(x1, x2) | x1, x2 ∈ J I(C) ∧ x1 vC c1 ∧ x2 vC c2}.

Example 4. In logic programming, unification and projection can both be de-
fined as JI operations unif : Sub × Sub → Sub, projV : Sub → Sub (for
V ⊆ V ars) as follows:

unif(θ1, θ2) = mgu(eqn(θ1), eqn(θ2)),

projV (θ) = θ′ where for each x ∈ V ars, θ′(x) =
{
θ(x) if x ∈ V
x otherwise

where eqn(θ) = {x = t | x → t ∈ θ}.
The concrete operations Unif : CL × CL → CL and ProjV : CL → CL can

be uniformly defined from unif and proj as follows:

Unif(Θ1, Θ2) =
⋃

{unif(θ1, θ2) | θ1 ∈ Θ1 ∧ θ2 ∈ Θ2},

P rojV (Θ) =
⋃

{projV (θ) | θ ∈ Θ}. 2

Given an abstract operation OpD, we show that if 〈D,OpD〉 is a complete (and
therefore also correct) abstract interpretation of 〈C,Op〉, then 〈D,Opd

D〉 is a
correct abstract interpretation of 〈C,Op〉.
Lemma 7. Suppose C,D are complete lattices and C is join-generated by JI(C).
Let Op : C × C → C be a concrete operation uniformly defined from the JI
operation op : J I(C)×J I(C) → J I(C). Let 〈D,OpD〉 be a complete abstract in-
terpretation of Op specified by (C,α,D, γ). Then 〈Dd, OpD〉 is a correct abstract
interpretation of 〈C,Op〉 specified by (C,αm, Dd, γm).

Proof. We need to show that Op(γm(d1), γm(d2)) vC γm(OpD(d1, d2)) for all
d1, d2 ∈ D.

Note that from Definition 3 it follows that Op is monotonic, i.e. if c1 vC c′1
and c2 vC c′2 then Op(c1, c2) vC Op(c′1, c

′
2). Since 〈D,OpD〉 is complete, OpD =

α ◦Op ◦ γ. Hence since Op, α, γ are all monotonic, OpD is also monotonic. Now
1 Note that to simplify the notation we assume that a JI operation has at most two

input arguments. The results presented can easily be extended to operations with
any number of arguments.

162 A. Heaton, P.M. Hill, and A. King

Op(γm(d1), γm(d2)) =⊔
C{op(x1, x2) | x1, x2 ∈ J I(C) ∧ x1 vC γm(d1) ∧ x2 vC γm(d2)}.

Therefore it is sufficient to show that op(x1, x2) vC γm(OpD(d1, d2)) for all
x1, x2 ∈ J I(C) such that x1 vC γm(d1) and x2 vC γm(d2). Now x1 vC γm(d1)
implies αm(x1) vd

D d1 and x2 vC γm(d2) implies αm(x2) vd
D d2. Hence since

OpD is monotonic,

OpD(αm(x1), αm(x2)) vd
D OpD(d1, d2).

But x1, x2 ∈ J I(C), thus OpD(αm(x1), αm(x2)) = OpD(α(x1), α(x2)). Since
OpD is complete,

OpD(α(x1), α(x2)) = α(Op(x1, x2)) = α(op(x1, x2)).

By Definition 3, op(x1, x2) ∈ J I(C) and so α(op(x1, x2)) = αm(op(x1, x2)). Thus
αm(op(x1, x2)) vd

D OpD(d1, d2) and so op(x1, x2) vC γm(OpD(d1, d2)). 2

Example 5. The abstract projection function for Pos, Projpos
V : Pos → Pos,

amounts to existentially quantifying a formula (see [6] for details). It is shown
that 〈Pos, Projpos

V 〉 is complete in Lemma 36 [6]2. Therefore by Lemma 7,
〈Posd, P rojpos

V 〉 is a correct abstract interpretation of 〈CL, P rojV 〉.
The abstract projection function for Sharing, Projsh

V : SH → SH, is defined
such that

Projsh
V (S) = {s ∩ V | s ∈ S}

Theorem 5.2 [5] shows that 〈SH,Projsh
V 〉 is complete. Therefore by Lemma 7,

〈SHd, P rojsh
V 〉 is a correct abstract interpretation of 〈CL, P rojV 〉.

On the other hand, [6] shows that 〈Pos,Unifpos〉 is not complete and [5]
shows that 〈SH,Unifsh〉 is not complete. 2

In fact, it can be shown that both 〈Posd,Unifpos〉 and 〈SHd,Unifsh〉 are
not correct abstract interpretations of 〈CL,Unif〉.
Lemma 8. 〈Posd,Unifpos〉 is not a correct abstract interpretation of
〈CL,Unif〉.
Proof. It is sufficient to find φ ∈ Posd such that

Unifpos(φ, φ) 2 αm
pos(Unif(γm

pos(φ), γm
pos(φ))).

Let φ be the formula x ↔ y and θ1 = {x → f(1, y)} and θ2 = {x → f(y, 1)}.
Note that θ1, θ2 ∈ γm

pos(φ). Now unif(θ1, θ2) = {x → f(1, 1), y → 1} and so it
follows that

αm
pos(Unif(γm

pos(φ), γm
pos(φ))) |= x ∧ y.

But Unifpos(φ, φ) = φ and so Unifpos(φ, φ) 2 αm
pos(Unif(γm

pos(φ), γm
pos(φ))),

as required. 2

2 Note that in [6] and [5], Pos and Sharing are formulated differently from our pre-
sentation. In [6] and [5], however, it is evident that the proofs can be adapted.

Abstract Domains for Universal and Existential Properties 163

Lemma 9. 〈SHd,Unifsh〉 is not a correct abstract interpretation of
〈CL,Unif〉.
Proof. It is sufficient to find S ∈ SHd and a binding x → t such that

Unifsh(S, x → t) * αm
sh(Unif(γm

sh(S), {{x → t}})).

Let S = {{x, y}}, t = f(1, y) and θ = {x → f(y, 1)}. Note that θ ∈ γm
sh(S). Now

unif(θ, {x → t}) = {x → f(1, 1), y → 1} and so it follows that

αm
sh(Unif(γm

sh(S), {{x → t}}) = ∅.

But Unifsh(S, x → t) = {{x, y}, {x}, {y}} and so the result follows. 2

Hence new abstract unification operations need to be devised for both Posd

and SHd.

6 Conclusion

We have shown how, given an abstract domainD specifying a lattice property αp,
an abstract domain Dd specifying the mirror property αm

p can be constructed.
We have also shown that if 〈D,OpD〉 is a complete abstract interpretation of
〈C,OpC〉, then 〈Dd, OpD〉 is a correct abstract interpretation of 〈C,OpC〉.

There are instances when non-complete abstract operations computing a pro-
perty can be used to improve the precision of operations computing the mirror
property. For example, formulae of the form x → y in Pos are interpreted as
meaning “x ground implies y ground”. The contrapositive of this is “y non-
ground implies x non-ground”. Thus this information could be used to improve
the precision of a Posd analysis. In fact, since non-groundness information is
approximated by freeness information, it would seem reasonable to implement
Posd as a reduced product construction with Pos and a domain expressing freen-
ess information. It would be interesting to see if generalisations of this method
could be meaningfully applied to other domains. Another direction for future
work is to see how our approach relates to lower/upper approximations used in
concurrency [17].

Acknowledgments

We thank the anonymous referees for their useful comments. This work was
supported by EPSRC Grant GR/M05645.

References

1. R. Bagnara, P. M. Hill, and E. Zaffanella. Set-sharing is redundant for pair-sharing.
In P. Van Hentenryck, editor, Static Analysis: Proceedings of the 4th International
Symposium, volume 1302, pages 53–67, Paris, France, 1997.

164 A. Heaton, P.M. Hill, and A. King

2. R. Balbes and P .Dwinger. Distributive Lattices. University of Missouri Press,
Columbia, Missouri, 1974.

3. G. Birkhoff. Lattice Theory. AMS Colloquium Publication, Providence, RI, 3rd
edition, 1967.

4. M. Codish, A. Mulkers, M. Bruynooghe, M. Garćıa de la Banda, and M. Herme-
negildo. Improving abstract interpretations by combining domains. ACM Tran-
sactions on Programming Languages and Systems, 17(1):28–44, 1995.

5. A. Cortesi and G. Filè. Sharing is Optimal. Journal of Logic Programming,
38(3):371–386, 1999.

6. A. Cortesi, G. Filè, and W. Winsborough. Optimal Groundness Analysis Using
Propositional Logic. Journal of Logic Programming, 27(2):137–167, 1996.

7. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. Fourth ACM Symp. Principles of Programming Languages, pages 238–252,
1977.

8. P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks.
In Proc. Sixth ACM Symp. Principles of Programming Languages, pages 269–282,
1979.

9. P. Cousot and R. Cousot. Abstract Interpretation and Applications to Logic Pro-
grams. Journal of Logic Programming, 13(2 & 3):103–179, 1992.

10. R. Giacobazzi and F. Ranzato. Refining and Compressing Abstract Domains.
In Proceedings of the 24th International Colloquium on Automata, Languages and
Programming ICALP 97, volume 1256 of Lecture Notes in Computer Science, pages
771–781. Springer-Verlag, 1997.

11. R. Giacobazzi and .F Ranzato. Optimal Domains for Disjunctive Abstract Inter-
pretation. Science of Computer Programming, 32:177–210, 1998.

12. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making Abstract Interpretations
Complete. Journal of the ACM. (to appear).

13. R. Giacobazzi, F. Ranzato, and F. Scozzari. Building Complete Abstract Inter-
pretations in a Linear Logic-based Setting. In G. Levi, editor, Static Analysis,
Proceedings of the Fifth International Static Analysis Symposium SAS 98, volume
1503 of Lecture Notes in Computer Science, pages 215–229. Springer-Verlag, 1998.

14. R. Giacobazzi and F. Scozzari. A Logical Model for Relational Abstract Do-
mains. ACM Transactions on Programming Languages and Systems, 20(5):1067–
1109, 1998.

15. P. Hill and F. Spoto. Freeness Analysis through Linear Refinement. In Static
Analysis: Proceedings of the 6th International Symposium, volume 1694, pages 85–
100, 1999.

16. N.D. Jones and H. Søndergaard. A Semantics-based Framework for the Abstract
Interpretation of Prolog. In S. Abramsky and C. Hankin, editors, Abstract Inter-
pretation of Declarative Languages, pages 123–142. Ellis Horwood Ltd, 1987.

17. F. Levi. A Symbolic Semantics for Abstract Model Checking. In Static Analysis:
Proceedings of the 5th International Symposium, volume 1503, pages 134–151, 1998.

18. F. Scozzari. Logical Optimality of Groundness Analysis. In P. Van Hentenryck,
editor, Proceedings of International Static Analysis Symposium, SAS’97, volume
1302 of Lecture Notes in Computer Science, pages 83–97. Springer-Verlag, 1997.

A Type System for Bounded Space and
Functional In-Place Update—Extended Abstract

Martin Hofmann

LFCS Edinburgh, Mayfield Rd, Edinburgh EH9 3JZ, UK
mxh@dcs.ed.ac.uk

Abstract. We show how linear typing can be used to obtain functional
programs which modify heap-allocated data structures in place.
We present this both as a “design pattern” for writing C-code in a func-
tional style and as a compilation process from linearly typed first-order
functional programs into malloc()-free C code.
The main technical result is the correctness of this compilation.
The crucial innovation over previous linear typing schemes consists of
the introduction of a resource type 3 which controls the number of con-
structor symbols such as cons in recursive definitions and ensures linear
space while restricting expressive power surprisingly little.
While the space efficiency brought about by the new typing scheme and
the compilation into C can also be realised by with state-of-the-art opti-
mising compilers for functional languages such as Ocaml [15], the pre-
sent method provides guaranteed bounds on heap space which will be of
use for applications such as languages for embedded systems or ‘proof
carrying code’ [18].

1 Introduction

In-place modification of heap-allocated data structures such as lists, trees, queues
in an imperative language such as C is notoriously cumbersome, error prone, and
difficult to teach.

Suppose that a type of lists has been defined1 in C by

typedef enum {NIL, CONS} kind_t;

typedef struct lnode {
kind_t kind;
int hd;
struct lnode * tl;

} list_t;

and that a function
1 Usually, one encodes the empty list as a NULL-pointer, whereas here it is encoded as

a list t with kind component equal to NIL. This is more in line with the encoding
of trees we present below. If desired, we could go for the slightly more economical
encoding, the only price being a loss of genericity.

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 165–179, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

166 M. Hofmann

list_t reverse(list_t l)

should be written which reverses its argument “in place” and returns it. Everyone
who has taught C will agree that even when recursion is used this is not an entirely
trivial task. Similarly, consider a function

list_t insert(int a, list_t l)

which inserts a in the correct position in l (assuming that the latter is sorted)
allocating one struct node.

Next, suppose, you want to write a function

list_t sort(list_t l)

which sorts its argument in place according to the insertion sort algorithm. Note
that you cannot use the previously defined function insert() here as it allocates
new space.

As a final example, assume that we have defined a type of trees

typedef struct tnode {
kind_t kind;
int label;
struct tnode * left;
struct tnode * right;

} tree_t;

(with kind t extended with LEAF, NODE) and that we want to define a function

list_t breadth(tree_t t)

which constructs the list of labels of tree t in breadth-first order by consuming
the space occupied by the tree and allocating at most one extra struct lnode.
While again, there is no doubt that this can be done, my experience is that all
of the above functions are cumbersome to write, difficult to verify, and likely to
contain bugs.

Now compare this with the ease with which such functions are written in a
functional language such as Ocaml [15]. For instance,

let reverse l = let rec rev_aux l acc =
match l with

[] -> acc
| a::l -> rev_aux l (a::acc)

in rev_aux l []

type tree = Leaf of int
| Node of int*tree*tree

let rec breadth t = let rec breadth_aux l =
match l with
[] -> []

| Leaf(a)::t -> a::breadth_aux(t)
| Node(a,l,r)::t -> a::breadth_aux(t @ [l] @ [r])
in breadth_aux [t]

A Type System for Bounded Space and Functional In-Place Update 167

These definitions are written in a couple of minutes and are readily verified using
induction and equational reasoning.

The difference, of course, is that the functional programs do not modify their
argument in place but rather construct the result anew by allocating fresh heap
space.

If the argument is not needed anymore it will eventually be reclaimed by
garbage collection, but we have no guarantee whether and when this will happen.
Accordingly, the space usage of a functional program will in general be bigger
and less predictable than that of the corresponding C program.

The aim of this paper is to show that by imposing mild extra annotations
one can have the best of both worlds: easy to write code which is amenable to
equational reasoning, yet modifies its arguments in place and does not allocate
heap space unless explicitly told to do so.

We will describe a linearly2 typed functional programming language with
lists, trees, and other heap-allocated data structure which admits a compilation
into malloc()-free C. This may seem paradoxical at first sight because one should
think that at least a few heap allocations would be necessary to generate initial
data. However, our type system is such that while it does allow for the definition
of functions such as the above examples, it does not allow one to define constant
terms of heap-allocated type other than trivial ones like nil.

If we want to apply these functions to concrete data we either move out-
side the type system or we introduce an extension which allows for controlled
introduction of heap space. However, in order to develop and verify functions as
opposed to concrete computations doing so will largely be unnecessary.

This is made possible in a natural way through the presence of a special
resource type 3 which in fact is the main innovation of the present system over
earlier linear type systems, see Section 6.

While experiments with “hand-compiled” examples show that the generated
C-code can compete with the highly optimised Ocamlopt native code compiler
and outperforms the Ocaml run time system by far we believe that the effi-
cient space usage can also be realised by state-of-the-art garbage collection and
caching.

The main difference is that we can prove that the code generated by our
compilation comes with an explicit bound on the heap space used (none at all in
the pure system, a controllable amount in an extension with an explicit allocation
operator). This will make our system useful in situations where space economy
and guaranteed resource bounds are of the essence. Examples are programming
languages for embedded systems (see [12] for a survey) or “proof-carrying code”.

In a nutshell the approach works as follows. The type 3 (dia t in the C
examples) gets translated into a pointer type, say void * whose values point to
heap space of appropriate size to store one list or tree node. It is the task of the
type system to maintain the invariant that overwriting such heap space does not
affect the result.
2 We always use “linear” in the sense of “affine linear”, i.e. arguments may be used at

most once.

168 M. Hofmann

When invoking a recursive constructor function such as cons() or node()
one must supply an appropriate number of arguments of type 3 to provide the
required heap space. Conversely, if in a recursion an argument of list or tree type
is decomposed these 3-values become available again.

Linear typing then ensures that overwriting the heap space pointed to by
these 3-values is safe.

It is important to realise that the C programs obtained as the target of the
translation do not involve malloc() and therefore must necessarily update their
heap allocated arguments in place. Traditional functional programs may achieve
the same global space usage by clever garbage collection, but there will be no
guarantee that under all circumstances this efficiency will be realised.

We also point out that while the language we present is experimental the
examples we can treat are far from trivial: insertion sort, quick sort, breadth
first traversal using queues, Huffman’s algorithm, and many more. We therefore
are lead to believe that with essentially engineering effort our system could be
turned into a usable programming language for the abovementioned applications.

2 Functional Programming with C

Before presenting the language we show how the translated code will look like
by way of some direct examples.

For the above-defined list type we would make the following definitions:
typedef void * dia t;
and
list t nil(){

list t res;
res.kind=NIL;
return res;

}

and list t cons(dia t d, int hd, list t tl){
list t res;
res.kind = CONS;
res.hd = hd;
*(list t *)d = tl;
res.tl = (list t *)d;
return res;

}
followed by
typedef struct {

kind t kind;
dia t d;
int hd;
list t tl;

} list destr t;

and list destr t list destr(list t l) {
list destr t res;
res.kind = l.kind;
if (res.kind == CONS) {

res.hd = l.hd;
res.d = (void *) l.tl;
res.tl = *l.tl;

}
return res;

}
The function nil() simply returns an empty list on the stack. The function
cons() takes a pointer to free heap space (d), an entry (hd) and a list (tl)
and returns on the stack a list with hd-field equal to hd and tl-field pointing
to a heap location containing tl. This latter heap location is of course the one
explicitly provided through the argument d.

A Type System for Bounded Space and Functional In-Place Update 169

The destructor function list destr() finally, takes a list (l) and returns a
structure containing a field kind with value CONS iff l.kind equals CONS and
in this case containing in the remaining fields head and tail of l, as well as a
pointer to a free heap location capable of storing a list node (d).

Once we have made these definitions we can implement reverse() in a fun-
ctional style as follows:

list_t rev_aux(list_t l0, list_t acc) {
list_destr_t l = list_destr(l0);
return l.kind==NIL ? acc
: rev_aux(l.tl, cons(l.d, l.hd, acc));

}

list_t reverse(list_t l) {
return rev_aux(l,nil());

}

Notice that reverse() updates its argument in place, as no call to malloc() is
being made.

To implement insert() we need an extra argument of type dia t since this
function, just like cons(), increases the length. So we write:

list_t insert(dia_t d, int a, list_t l0) {
list_destr_t l = list_destr(l0);
return l.kind==NIL ? cons(d,a,nil())
: a <= l.hd ? cons(d,a,cons(l.d,l.hd,l.tl))

: cons(d,l.hd,insert(l.d,a,l.tl));
}

Using insert() we can implement insertion sort with in place modification as
follows:

list_t sort(list_t l0) {
list_destr_t l = list_destr(l0);
return l.kind==NIL ? nil()
: insert(l.d,l.hd,sort(l.tl));

}

Notice, how the value l.d which becomes available in decomposing l is used to
feed the insert() function.

Finally, let us look at binary int-labelled trees. We define
tree t leaf(int label) {

tree t res;
res.kind = LEAF;
res.label = label;
return res;

}

and tree t node(dia t d1, dia t d2,
int label, tree t l, tree t r) {

tree t res;
res.kind = NODE;
res.label = label;
*(tree t *)d1 = left;
*(tree t *)d2 = right;
res.left = (tree t *)d1;
res.right = (tree t *)d2;
return res;

}

170 M. Hofmann

followed by
typedef struct {

kind t kind;
int label;
dia t d1, d2;
tree t left, right;

} tree destr t;

and tree destr t tree destr(tree t t) {
tree destr t res;
res.label = t.label;
if((res.kind = t.kind) == NODE) {
res.d1 = (dia t)t.left;
res.d2 = (dia t)t.right;
res.left = *(tree t *)t.left;
res.right = *(tree t *)t.right;

}
return res;

}
Notice that we must pay two 3s in order to build a tree node. In exchange, two
3s become available when we decompose a tree.

To implement breadth we have to define a type listtree t of lists of trees
analogous to list t with int replaced by tree t. Of course, the associated
helper functions need to get distinct names such as niltree(), etc.

We can then define a function br aux with prototype

list_t br_aux(listtree_t l)

by essentially mimicking the functional definition above (the complete code is omitted
for lack of space) and obtain the desired function breadth as

list_t breadth(dia_t d, tree_t t) {
return br_aux(cons(d,t,nil()));

}

Notice that the type of breadth shows that the result requires one memory region more
than the input.

All these functions do not use dynamic memory allocation because the heap space
needed to store the result can be taken from the argument. To construct concrete lists
in the first place we need of course dynamic memory allocation. The full paper shows
how this can be accommodated in a controlled fashion. Of course, for these programs
to be correct it is crucial that we do not overwrite heap space which is still in use. The
main message of this paper is that this can be guaranteed systematically by adhering
to a linear typing discipline.

In other words, a function must use its argument at most once.
For instance, the following code which attempts to double the size of its argument

would be incorrect:

list_t twice(list_t l0) {
list_destr_t l = list_destr(l0);

return l.kind==NIL ? nil()
: cons(l.d,0,(cons(l.d,0,twice(l.tl))));

}

Rather than returning a list of 0’s twice the size of its input it returns a circular list!
A similar effect happens, if we replace the last line of the code for insert() by

cons(d,l.hd,insert(d,a,l.tl));

In each case the reason is the double usage of the 3-values d and l.d.

A Type System for Bounded Space and Functional In-Place Update 171

3 A Linear Functional Programming Language

We will now introduce a linearly typed functional metalanguage and translate it sy-
stematically into C. This will be done with the following aims. First, it allows us to
formally prove the correctness of the methodology sketched above, second it will relieve
us from having to rewrite similar code many times. Suppose, for instance, you wanted
to use lists of trees (as needed to implement breadth first search). Then all the basic
list code (list t, nil(), cons(), etc.) will have to be rewritten (this problem could
presumably also be overcome through the use of C++ templates [13]). Thirdly, a for-
malised language with linear type system will allow us to enforce the usage restrictions
on which the correctness of the above code relies. Finally, this will open up the possi-
bility to extend the metalanguage to a fully-fledged functional language which would
be partly compiled into C whenever this is possible and executed in the traditional
functional way when this is not the case.

3.1 Syntax and Typing Rules

The zero-order types are given by the following grammar.

A ::= N | 3 | L(A) | T(A) | A1 ⊗ A2

More type formers such as sum types, records, and variants can easily be added.
A first-order type is an expression of the form T = (A1, . . . , An)→B where A1 . . . An

and B are zero-order types.
A signature Σ is a partial function from identifiers (thought of as function symbols)

to first-order types.
A typing context Γ is a finite function from identifiers (thought of as parameters)

to zero order types; if x 6∈ dom(Γ) then we write Γ, x:A for the extension of Γ with
x 7→ A. More generally, if dom(Γ) ∩ dom(∆) = ∅ then we write Γ, ∆ for the disjoint
union of Γ and ∆. If such notation appears in the premise of a rule below it is implicitly
understood that these disjointness conditions are met.

Types not including L(−), T(−), 3 are called heap-free, e.g. N and N ⊗ N are heap-
free.

Let Σ be a signature. The typing judgement Γ `Σ e : A read “expression e has
type A in typing context Γ and signature Σ” is defined by the following rules.

x ∈ dom(Γ)
Γ `Σ x : Γ (x)

(Var)

Σ(f) = (A1, . . . , An)→B Γi `Σ ei : Ai for i = 1 . . . n

Γ1, . . . , Γn `Σ f(e1, . . . , en) : B
(Sig)

Γ, x:A, y:A `Σ e : B A heap-free
Γ, x:A `Σ e[x/y] : B

(Contr)

c a C integer constant
Γ `Σ c : N

(Const)

Γ `Σ e1 : N ∆ `Σ e2 : N ? a C infix opn.
Γ, ∆ ` e1 ? e2 : N

(Infix)

172 M. Hofmann

Γ `Σ e : N ∆ `Σ e′ : A ∆ `Σ e′′ : A

Γ, ∆ `Σ if e then e′ else e′′ : A
(If)

Γ `Σ e : A ∆ `Σ e′ : B

Γ, ∆ `Σ e ⊗ e′ : A ⊗ B
(Pair)

Γ `Σ e : A ⊗ B ∆, x:A, y:B `Σ e′ : C

Γ, ∆ `Σ match e with x ⊗ y⇒e′ : C
(Split)

Γ `Σ nilA : L(A) (Nil)

Γd `Σ ed : 3 Γh `Σ eh : A Γt `Σ et : L(A)
Γd, Γh, Γt `Σ cons(ed, eh, et) : L(A)

(Cons)

Γ `Σ e : L(A)
∆ `Σ enil : B
∆, d:3, h:A, t:L(A) `Σ econs : B

Γ, ∆ `Σ match e with nil⇒enil|cons(d, h, t)⇒econs : B
(List-Elim)

Γ `Σ e : A

Γ `Σ leaf(e) : T(A)
(Leaf)

Γd1 `Σ ed1 : 3 Γd2 `Σ ed2 : 3 Γa `Σ ea : A
Γl `Σ el : T(A) Γr `Σ er : T(A)

Γd1, Γd2, Γa, Γl, Γr `Σ node(ed1, ed2, ea, el, er) : T(A)
(Node)

Γ `Σ e : T(A) ∆, a:A `Σ eleaf : B
∆, d1:3, d2:3, a:A, l:T(A), r:T(A) `Σ enode : B

Γ, ∆ `Σ match e with leaf(a)⇒eleaf|node(d1, d2, a, l, r)⇒enode : B
(Tree-Elim)

Remarks The symbol ? in rule Infix ranges over a set of binary infix operations such
as +, - ,/ , *, <=, ==, . . . We may include more such operations and also other
base types such as floating point numbers or characters.

As usual, we omit type annotations wherever possible. The constructs involving
match bind variables.

Application of function symbols or operations to their operands is linear in the
sense that several operands must in general not share common free variables. This is
because of the implicit side condition on juxtaposition of contexts mentioned above. In
view of rule Contr, however, variables of a heap-free type may be shared and moreover
the same free variable may appear in different branches of a case distinction as follows
e.g. from the form of rule If. Here is how we typecheck x + x when x:N. First, we have
x:N ` x : N and y:N ` y : N by Var. Then x:N, y:N ` x+y : N by Infix and finally
x:N ` x+x : N by rule Contr. It follows by standard type-theoretic techniques that
typechecking for this system is decidable in linear time.

Programs A program consists of a signature Σ and for each symbol

f : (A1, . . . , An)→B

contained in Σ a term

x1:A1, . . . , xn:An `Σ ef : B

A Type System for Bounded Space and Functional In-Place Update 173

3.2 Set-Theoretic Interpretation

In order to specify the purely functional meaning of programs we introduce a set-
theoretic interpretation as follows: types are interpreted as sets by

[[N]] = Z
[[3]] = {0}
[[L(A)]] = finite lists over [[A]]
[[T(A)]] = binary [[A]]-labelled trees
[[A ⊗ B]] = [[A]] × [[B]]

To each program (Σ, (ef)f∈dom(Σ)) we can now associate a mapping ρ such that
ρ(f) is a partial function from [[A1]] × . . . [[An]] to [[B]] for each f : (A1, . . . , An)→B.

This meaning is given in the standard fashion as the least fixpoint of an appropriate
compositionally defined operator:

A valuation of a context Γ is a function η such that η(x) ∈ [[Γ (x)]] for each x ∈
dom(Γ); a valuation of a signature Σ is a function ρ such that ρ(f) ∈ [[Σ(f)]] whenever
f ∈ dom(Σ). It is valid if it interprets the constructors and destructors for lists and
trees by the eponymous set-theoretic operations

To each expression e such that Γ `Σ e : A we assign an element [[e]]η,ρ ∈ [[A]] ∪{⊥}
in the obvious way, i.e. function symbols and variables are interpreted according to the
valuations; basic functions and expression formers are interpreted by the eponymous
set-theoretic operations, ignoring the arguments of type 3 in the case of construc-
tor functions. The formal definition of [[−]]η,ρ is by induction on terms. A program
(Σ, (ef)f∈dom(Σ)) is interpreted as the least valuation ρ such that

ρ(f)(v1, . . . , vn) = [[ef]]ρ,η

where η(xi) = vi.
We stress that this set-theoretic semantics does not say anything about space usage.

Its only purpose is to pin down the functional denotations of programs so that we can
formally state what it means to implement a function. Accordingly, the resource type
is interpreted as a singleton set and ⊗ product is interpreted as cartesian product.

It will be our task to show that the malloc()-free interpretation of our language is
faithful with respect to the set-theoretic semantics. Once this is done, the user of the
language can think entirely in terms of the semantics as far as extensional verification
and development of programs is concerned. In addition, he or she can benefit from the
resource bounds obtained from the interpretation but need not worry about how these
are guaranteed.

3.3 Examples

Reverse:

rev aux : (L(N), L(N))→L(N)
reverse : (L(N))→L(N)
erev aux(l, acc) = match l with

nil⇒acc
|cons(d, h, t)⇒rev aux(t, cons(d, h, acc))

ereverse(l) = rev aux(l, nilN)

174 M. Hofmann

Insertion sort
insert : (3, N, L(N))→L(N)
sort : (L(N))→L(N)
einsert(d, a, l) = match l with

nil⇒nil
|cons(d′, b, l)⇒if a ≤ b

then cons(d, a, cons(d′, b, l))
else cons(d, b, insert(d′, b, l))

esort(l) = match l with
nil⇒nil
|cons(d, a, l)⇒insert(d, a, sort(l))

Breadth-first search

snoc : (3, L(T(N)), T(N))→L(T(N))
breadth : (L(T(N)))→L(N)
esnoc(d, l, t) = match l with

nil⇒cons(d, t, nil())
|cons(d′, t′, q)⇒cons(d′, t′, snoc(d, q, t))

ebreadth(q) = match q with
nil⇒nil
|cons(d, t, q) = match t with

leaf(a)⇒cons(d, a, breadth(q))
node(d1, d2, a, l, r)⇒cons(d, a,
breadth(snoc(d2, snoc(d1, q, l), r)))

Other examples we have tried out include quicksort, treesort, and the Huffman algo-
rithm.

Remark 31 It can be shown that all definable functions are non-size-increasing, e.g.,
if f : (L(N))→L(N) then, semantically, |f(l)| ≤ |l|. This would not be the case if we
would omit the 3 argument in cons, even if we keep linearity. We would then, for
example, have the function f(l) = cons(0, l) which increases the length. The presence
of such a function in the body of a recursive definition gives rise to arbitrarily long
lists.

3.4 Compilation into C

By following the pattern of the examples in the introduction it is possible to associate
a piece of C-code [[P]]C to each program P = (Σ, (ef)f∈dom(Σ)) in such a way that

1. To each zero-order type A occurring in P a unique C identifier ν(A) is associated
and [[P]]C contains an appropriate type definition of this identifier along with appro-
priately typed helper functions, e.g. ν(A) cons, ν(A) list destr when A = L(. . .).

2. For each function symbol f : (A1, . . . , An)→B defined in P the code [[P]]C contains
a corresponding definition [[f]]C of a function f with prototype
ν(B) f(ν(A1) x1, . . . , ν(An) xn)

3. Whenever Γ `Σ e : A then we can exhibit a C expression [[e]]C of type ν(A) and
involving the identifiers in Γ and in Σ.

The details of this translation are omitted for lack of space; its gist is, however, con-
tained in the examples from the introduction.

A Type System for Bounded Space and Functional In-Place Update 175

3.5 Correctness of the Translation

We now have to show that the translation [[P]]C of a program P computes the partial
functions defined by the set-theoretic interpretation ρ of P . Since we have not given
all details of the translation we must content ourselves with a sketch of the correctness
theorem and its proof which should hopefully allow the inclined reader to reconstruct
it in full.

For each zero-order type A we define the set V(A) as the set of pairs (v, H) where
v is a C-stack-value of type ν(A) (under the type definitions [[P]]C) and H is a region
in the heap (a set of addresses).

For example, an element of V(L(N)) consists of a stack-value of

typedef struct lnode {
kind_t kind;int hd;struct lnode * tl;

} list_t;

i.e., a triple v = (k, h, t) where k, h are (4 byte) integers and t is a memory address
together with a set H of memory addresses. This set of memory addresses is meant to,
but at this point not required to, comprise all addresses reachable from t by iterated
dereferencing.

Next, we inductively define a relation A⊆ V(A)× [[A]] which singles out the values
which “implement” or “correspond to” a given semantic value.

– (n, ∅) N n′, if n encodes n′

– (p, H) 3 0, if H is a contiguous region of size max{sizeof(ν(A)) | A occurs in P}
and p points to the beginning of H.

– (v, H) A⊗B (a, b) if H = H1
.∪ H2 and v.fst, H1 A a and v.snd, H2 B b.

– (v, ∅) L(A) nil if v.kind = NIL.
– (v, H) L(A) cons(h, t), if v.kind = CONS and H = Hd

.∪ Hh

.∪ Ht and (v.tl, Hd)
3 0 and (v.hd, Ht) A h and (v.tl, Ht) L(A) t,

– (v, H) T(A) leaf(a) if v.kind = LEAF and (v.label, H) A a,
– (v, H) T(A) node(a, l, r) if v.kind = NODE and H = Hd1

.∪ Hd2
.∪ Ha

.∪ Hl

.∪ Hr

and (v.left, Hd1) 3 0 and (v.right, Hd2) 3 0 and (v.label, Ha) A a and
(v.left, Hl) T(A) l and (v.right, Hr) T(A) r

Here H = H1
.∪ H2 means that H = H1 ∪ H2 and H1 ∩ H2 = ∅.

Notice that whenever A is heap-free and (v, H) A a for some a then H = ∅.

Theorem 32 Assume the following:

– a program P = (Σ, (ef)f∈dom(Σ)),
– a well typed expression Γ `Σ e : A,
– for each x ∈ Γ a value (vx, Hx) ∈ V(Γ (x)) such that Hx ∩Hy = ∅ whenever x 6= y,
– a mapping η such that (vx, Hx) Γ (x) η(x) for each x ∈ dom(Γ),

Let ρ be the set-theoretic interpretation of P .
Then the evaluation of [[e]]C[x1 7→x1,...,xn 7→xn] in a runtime environment which maps

x ∈ dom(Γ) to vx will result in a value v such that (v, H) A [[e]]η,ρ for some subset
H ⊆ ⋃

x∈dom(Γ) Hx and moreover the part of the heap outside of
⋃

x∈dom(Γ) Hx will be
left unaffected by the evaluation.

Proof. Straightforward lexicographic induction on evaluation time and length of typing
derivations. Details are omitted for lack of space.

It follows by specialising to the defining expressions ef that a program computes its
set-theoretic interpretation.

176 M. Hofmann

4 Extensions

Dynamic allocation As it stands there is no way to create a value of type 3, so in
particular, it is not possible to create a non-nil constant of list type. The examples show
that this is often not needed. Sometimes, however, dynamic allocation and deallocation
may be required and to this end we can introduce functions new : ()→3 and disp :
(3)→N. The full paper explains how these are translated and used.

Polymorphism, higher-order functions We can extend the language with polymor-
phism (with two kinds of type variables ranging over zero- and first order types) and
higher-order functions, both linear and nonlinear. Recursive functions would then be
defined using a single constant

rec : ∀X.!(!X (X) (X

where X ranges over first-order types. The full paper contains a more detailed discus-
sion of this point.

Queues The program for breadth-first search could be made more efficient using queues
with constant time enqueuing. We can easily add a type former Q(A) (and appropriate
term formers) which gets translated into linked lists with a pointer to their end. The
correctness proof carries over with only minor changes.

Tail recursion The type system does not impose any restriction on the size of the
stack. If a bounded stack size is desired, all we need to do is restrict to a tail recursive
fragment and translate the latter into iteration.

More challenging would be some automatic program transformation which transla-
tes the existing definition of breadth and similar functions into iterative code. To what
extent this can be done systematically remains to be seen. It seems that at least for
linear recursion (only one recursive call) such transformation might always be possible
using continuations.

Expressivity In order to study complexity-theoretic expressivity it seems to be a rea-
sonable abstraction to view the type N as finite, e.g. the set of 32 bit words, and to
view the heap as infinite. In this case, we have the following expressivity result:

Theorem 41 If f : N → N is a non-increasing function computable in linear (in
log(n)) space then there exists a program containing a symbol f : (L(N))→L(N) such
that [[f]](u(x)) = u(f(x)) when u : N → {0, 1}∗ is an encoding of natural numbers as
lists of 0s and 1s.

Proof. If f(n) is computable in space c log(n) then we use the type T = L(N ⊗ . . . ⊗
N) with c factors to store memory configurations. We obtain f by iterating a one-
step function of type (T)→T and composing with an initialisation function of type
(L(N))→T and an output extraction function of type (T)→L(N) all of which are readily
seen to be implementable in our system.

If we restrict to a tail recursive fragment then programs can also be evaluated in linear
space so that we obtain a characterisation of linear space.

A Type System for Bounded Space and Functional In-Place Update 177

Recursive types We can extend the type system and the compilation technique to
arbitrary (even nested) first-order recursive types. To that end, we introduce (zero
order) type variables and a new type former µX.A which binds X in A. Elements of
µX.A would be introduced and eliminated using fold and unfold constructs

Γ `Σ e : A[(3 ⊗ µX.A)/X]
Γ `Σ fold(e) : µX.A

(Fold)

Γ `Σ e : µX.A

Γ `Σ unfold(e) : A[(3 ⊗ µX.A)/X]
(Unfold)

. This together with coproduct and unit types allows us to define lists and trees as
recursive datatypes. Notice that this encoding would also charge two 3s for a tree
constructor.

5 Conclusion

We have defined a linearly typed first-order language which gives the user explicit
control over heap space in the form of a resource type.

A translation of this system into malloc()-free C is given which in the case of simple
examples such as list reversal and quicksort generates the usual textbook solutions with
in-place update.

We have shown the correctness of this compilation with respect to a standard set-
theoretic semantics which disregards linearity and the resource type and demonstrated
the applicability by a range of small examples.

The main selling points of the approach are

1. that it achieves in place update of heap allocated data structures while retaining
the possibility of equational reasoning and induction for the verification and

2. that it generates code which is guaranteed to run in a heap of statically determined
size.

This latter point should make the system interesting for applications where resources
are limited, e.g. computation over the Internet, proof-carrying code, and embedded
systems. Of course further work, in particular an integration with a fully-fledged fun-
ctional language and the possibility of allocating a fixed amount of extra heap space
will be required. Notice, however, that this latter effect can already be simulated by
using input of the form L(3 ⊗ A) as opposed to L(A).

Also, a type inference system relieving the user from having to explicitly move
around the 3-resource might be helpful although the present system has the advan-
tage of showing the user in an abstract and understandable way where space is being
consumed. And perhaps some programmers might even enjoy spending and receiving
3s.

6 Related Work

While the idea of translating linearly typed functional code directly into C seems to be
new there exist a number of related approaches aimed at controlling the space usage
of functional programs.

178 M. Hofmann

Tofte-Talpin’s region calculus [19] tries to minimise garbage collection by dividing
the heap into a list of regions which are allocated and deallocated according to a stack
discipline. A type systems ensures that the deallocation of a region does not destroy
data which is still needed; an inference system [20] generates the required annotations
automatically for raw ML code.

The difference to the present work is not so much the inference mechanism (see
above) but the fact that even with regions the required heap size is potentially un-
bounded whereas the present system guarantees that the heap will not grow. Also in
place update does not take place.

Hughes and Pareto’s system of sized types annotates list types with their length,
e.g. the reversal function would get type ∀n.Ln(A) → Ln(A). While this system allows
one to estimate the required heap and stack size it does not perform in place update
either (and cannot due to the absence of linear types).

In a similar vein Crary and Weirich [7] have given a type system which allows one to
formalise and certify informal reasoning about time consumption of recursive programs
involving lists and trees. Their language is a standard one and no optimisation due to
heap space reuse is taken into account.

The relationship between linear types and garbage collection has been recognised
as early as ’87 by Lafont [14], see also [10,1,21,16]. But again, due to the absence of
3-types, these systems do not provide in place update but merely deallocate a linear
argument immediately after its use.

This effect, however, is already achieved by traditional reference counting which
may be the reason why linear functional programming hasn’t really got off the ground,
see also [6]. While the runtime advantages of the present approach might also be realised
through reference counting (and indeed seem to be by the Ocamlopt compiler) the
distinctive novelty lies in the fact that one can guarantee bounded heap size and obtain
a simple C program realising it which can be run on any machine or system supporting
C.

The type system itself is very similar to the system described by the author in [9]
which in turn was inspired by Caseiro’s analysis of recursive equations [5] and bears
some remote similarity with Bounded Linear Logic [8]

Mention should also be made of Baker’s Linear LISP [2,3] which bears some si-
milarity to our language. It does not contain the resource type 3 or a comparable
feature, thus it is not clear how the size of intermediate data structures is limited, cf.
Remark 31. Similar ideas, without explicit mention of linearity are also contained in
Mycroft’s thesis [17]

Other related approaches are uniqueness types in Clean [4], linear ADTs and mo-
nads [11] which will be compared in the full paper.

In a seminar talk in Edinburgh, John Reynolds has reported about ongoing work
on using linear types for in-place update. At the time of writing there was no conclusive
result, though and his attention seems to have since shifted to using linear types for
reasoning about shared heap allocated data structures. This together with a medium
depth literature research leads me to believe that the present article is in fact the first
to successfully apply linear types to the problem of functional in-place update.

Acknowledgement I would like to thank Samson Abramsky for helpful comments and
encouragements. Thanks are also due to Peter Selinger for spotting a shortcoming in
an earlier version of this paper.

A Type System for Bounded Space and Functional In-Place Update 179

References

1. Samson Abramsky. Computational interpretations of linear logic. Theoretical Com-
puter Science, 111:3–57, 1993.

2. Henry Baker. Lively Linear LISP—Look Ma, No Garbage. ACM Sigplan Notices,
27(8):89–98, 1992.

3. Henry Baker. A Linear Logic Quicksort. ACM Sigplan Notices, 29(2):13–18, 1994.
4. E. Barendsen and S. Smetsers. Uniqueness typing for functional languages with

graph rewriting semantics. Mathematical Structures in Computer Science, 6:579–
612, 1996.

5. Vuokko-Helena Caseiro. Equations for Defining Poly-time Functions. PhD thesis,
University of Oslo, 1997. Available by ftp from ftp.ifi.uio.no/pub/vuokko/0adm.ps.

6. J. Chirimar, C. Gunter, and J. Riecke. Reference counting as a computational
interpretation of linear logic. Journal of Functional Programming, 6(2), 1995.

7. K. Crary and S. Weirich. Resource bound certification. In Proc. 27th Symp.
Principles of Prog. Lang. (POPL). ACM, 2000. to appear.

8. J.-Y. Girard, A. Scedrov, and P. Scott. Bounded linear logic. Theoretical Computer
Science, 97(1):1–66, 1992.

9. Martin Hofmann. Linear types and non size-increasing polynomial time computa-
tion. In Logic in Computer Science (LICS). IEEE, Computer Society Press, 1999.
to appear.

10. Sören Holmström. A linear functional language. In Proceedings of the Workshop
on Implemenation of Lazy Functional Languages. Chalmers University, Göteborg,
Programming Methodology Group, Report 53, 1988.

11. Paul Hudak and Chih-Ping Chen. Rolling your own mutable adt — a connection
between linear types and monads. In Proc. Symp. POPL ’97, ACM, 1997.

12. J. Hughes and L. Pareto. Recursion and dynamic data structures in bounded
space: towards embedded ml programming. In Proc. International Conference on
Functional Programming. Paris, September ’99., 1999. to appear.

13. Kelley and Pohl. A book on C, third edition. Benjamin/Cummings, 1995.
14. Yves Lafont. The linear abstract machine. Theoretical Computer Science, 59:157–

180, 1988.
15. Xavier Leroy. The Objective Caml System, documentation and user’s guide. Re-

lease 2.02. http://pauillac.inria.fr/ocaml/htmlman, 1999.
16. P. Lincoln and J. Mitchell. Operational aspects of linear lambda calculus. In Proc.

LICS 1992, IEEE, 1992.
17. Alan Mycroft. Abstract interpretation and optimising transformations for applica-

tive programs. PhD thesis, Univ. Edinburgh, 1981.
18. George Necula. Proof-carrying code. In Proc. 24th Symp. Principles of Prog. Lang.

(POPL). ACM, 1997. to appear.
19. M. Tofte and J.-P. Talpin. Region-based memory management. Information and

Computation, 132(2):109–176, 1997.
20. Mads Tofte and Lars Birkedal. Region inference algorithm. ACM Transactions on

Programming Languages and Systems, 20(5):724–767, 1998.
21. D. Turner and P. Wadler. Operational interpretations of linear logic. Theoretical

Computer Science, 1999. to appear.

Secure Information Flow as Typed Process
Behaviour

Kohei Honda1, Vasco Vasconcelos2, and Nobuko Yoshida3

1 Queen Mary and Westfield College, London, U.K.
2 University of Lisbon, Lisbon, Portugal.
3 University of Leicester, Leicester, U.K.

Abstract. We propose a new type discipline for the π-calculus in which
secure information flow is guaranteed by static type checking. Secrecy
levels are assigned to channels and are controlled by subtyping. A be-
havioural notion of types capturing causality of actions plays an essen-
tial role for ensuring safe information flow in diverse interactive beha-
viours, making the calculus powerful enough to embed known calculi for
type-based security. The paper introduces the core part of the calculus,
presents its basic syntactic properties, and illustrates its use as a tool
for programming language analysis by a sound embedding of a secure
multi-threaded imperative calculus of Volpano and Smith. The embed-
ding leads to a practically meaningful extension of their original type
discipline.

1 Introduction

In present-day computing environments, a user often employs programs which
are sent or fetched from different sites to achieve her/his goals, either priva-
tely or in an organisation. Such programs may be run as a code to do a simple
calculation task or as interactive parallel programs doing IO operations or com-
munications, and sometimes deal with secret information, such as private data
of the user or classified data of the organisation. Similar situations may occur
in any computing environments where multiple users share common computing
resources. One of the basic concerns in such a context is to ensure programs do
not leak sensitive data to the third party, either maliciously or inadvertently.
This is one of the key aspects of the security concerns, which is often called
secrecy. Since it is difficult to dynamically check secrecy at run-time, it may as
well be verified statically, i.e. from a program text alone [7]. The information
flow analysis [7,11,25] addresses this concern by clarifying conditions when flow
of information in a program is safe (i.e. high-level information never flows into
low-level channels). Recent studies [2,35,33] have shown how we can integrate
the techniques of type inference in programming languages with the ideas of in-
formation flow analysis, accumulating the basic principles of compositional static
verification for secure information flow.

The study of type-based secrecy so far has been done in the context of fun-
ctional or imperative calculi that incorporate secrecy. Considering that concur-
rency and communication are a norm in modern programming environments,

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 180–199, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Secure Information Flow as Typed Process Behaviour 181

one may wonder whether a similar study is possible in the framework of process
calculi. There are two technical reasons why such an endeavour can be inte-
resting. First, process calculi have been accumulating mathematically rigorous
techniques to reason about computation based on communicating processes. In
particular, given that an equivalence on program phrases plays a basic role for
semantic justification of a type discipline for secrecy [35], the theories of be-
havioural equivalences [17,20,26,28], which are a cornerstone in the study of
process calculi, would offer a semantic basis for safe information flow in com-
municating processes. Second, type disciplines for communicating processes are
widely studied recently, especially in the context of name passing process cal-
culi such as the π-calculus, e.g. [6,15,20,28,32,36]. Further, recent studies have
shown that name passing calculi enjoy great descriptive power, uniformly repre-
senting diverse language constructs as name passing processes, including those
of sequential, concurrent, imperative, functional and object-oriented languages.
Since many real-life programming languages are equipped with diverse constructs
from different programming paradigms, it would be interesting to see whether we
can obtain a typed calculus based on name passing in which information flow in-
volving various language constructs are analysable on a uniform syntactic basis.

Against these backgrounds, the present work introduces a typed π-calculus
in which secure information flow is guaranteed by static typing. Secrecy levels
are attached to channels, and a simple subtyping ensures that interaction is
always secrecy-safe. Information flow in this context arises as transformation
of interactive behaviour to another interactive behaviour. Thus the essence of
secure information flow becomes that a low-level interaction never depends on
a high-level (or incompatible-level) interaction. Interestingly, this interaction-
based principle of secure information flow strongly depends on the given type
structures as prerequisites: that is, even semantically, certain behaviours can
become either secure or insecure according to the given types. This is because
types restrict a possible set of behaviours (which act as information in the present
context), thus affecting the notion of safe information flow itself. For this reason,
a strong type discipline for name passing processes for linear and deadlock-free
interaction [6,20,36] plays a fundamental role in the present typed calculus, by
which we can capture safety of information flow in a wide range of computational
behaviours, including those of diverse language constructs. This expressiveness
can be used to embed and analyse typed programming languages for secure
information flow. In this paper we explore the use of the calculus in this direction
through a sound embedding of a secure multi-threaded imperative calculus of
Volpano and Smith [33]. The embedding offers an analysis of the original system
in which the underlying observable scenario is made explicit and is elucidated
by typed process representation. As a result, we obtain a practically meaningful
extension of [33] with enlarged typability. We believe this example suggests a
general use of the proposed framework, given the fundamental importance of
the notion of observables in the analysis of secure computing systems [25,33,34].

Technically speaking, our work follows, on the one hand, Abadi’s work on
type-based secrecy in the π-calculus [1] and the studies on secure information

182 K. Honda, V. Vasconcelos, and N. Yoshida

flow in CCS and CSP [8,24,29,31], and, on the other, the preceding works on
type disciplines for name passing processes. In comparison with [1], the main
novelty of the present typing system is that it ensures safety of information flow
for general process behaviours rather than that for ground values, which is often
essential for the embedding of securely typed programming languages. Compared
to [8,24,31], a key difference lies in the fundamental role type information plays
in the present system for defining and guaranteeing secrecy. Further, these works
are not aimed at ensuring secrecy via static typing. Other notable works on the
study of security using name passing processes include [3,5]. These works are
not about information flow analysis, though they do address other aspects of
secrecy.

In the context of type disciplines for name passing processes, the full use of
dualised and directed types (cf. §3), as well as their combination with causality-
based dynamic types, is new, though the ideas are implicit in [4,10,14,20,36]. Our
construction is based on graph-based types in [36], incorporating the partial alge-
bra of types from [15] (the basic idea of modalities used here and in [15] originally
comes from linear logic [10]). The syntax of the present calculus is based on [32],
among others branching and recursion. We use the synchronous version since it
gives a much simpler typing system. The branching and recursion play an es-
sential role in type discipline, as we shall discuss in § 3. The calculus is soundly
embeddable into the asynchronous π-calculus (also called the ν-calculus [17])
by concise encoding [32]. The operational feasibility of branching and recursion
is further studied in [9,23]. For non-deterministic secrecy in general, security
literature offers many studies based on probabilistic non-interference, cf. [13].
The present calculus and its theory are introduced as a basic stratum for the
study of secure information flow in typed name passing processes, focussing on
a simpler realm of possibilistic settings. Incorporation of the probability distri-
bution in behavioural equivalences [22] is an important subject of future study.
Further discussions on related works, including comparisons with functional and
imperative secure calculi, are given in the full version [16].

This paper offers a summary of key technical ideas and results, leaving the de-
tailed theoretical development to the full version [16]. In the remainder, Section 2
informally illustrates the basic ideas using examples. Section 3 introduces types,
subtyping and the typing rules. Section 4 discusses key syntactic properties of
typed terms. Finally Section 5 presents the embedding result and discusses how
it suggests an extension of the original type discipline by Volpano and Smith.

Acknowledgement. We deeply thank anonymous referees for their significant
comments on an early version. Our thanks also go to Martin Berger, Gavin Lowe,
Peter O’Hearn, Edmund Robinson and Pasquale Malacaria for their comments
and discussions.

Secure Information Flow as Typed Process Behaviour 183

2 Basic Ideas

2.1 A Simple Principle

Let us consider how the notion of information flow arises in interacting processes,
taking a simplest example. A CCS term a.b.0 represents a behaviour which
synchronises at a as input, then synchronises at b as output, and does nothing.
Suppose we attach a secrecy level to each port, for example “High” to a and
“Low” to b. Intuitively this means that we wish interaction at a to be secret, while
interaction at b may be known by a wider public: any high-level security process
may interact at a and b, while a low-level security process can interact only at b.
Then this process represents insecure interactions: any process observing b, which
can be done by a low-level process, has the possibility to know an interaction
at a, so information is indeed transmitted to a lower level from a higher level.
Note that this does not depend on a being used for input and b used for output:
a.b.0 with the same assignment of secrecy levels is similarly unsafe. In both
cases, we are saying that if there is a causal dependency from an action at a
high-level channel to the one at a low-level channel, the behaviour is not safe
from the viewpoint of information flow. Further, if we have value passing in
addition, we would naturally take dependency in terms of communicated values
into consideration.

The above informal principle based on causal dependency1 is simple, but
may look basic as a way of stipulating information flow for processes. Since
many language constructs are known to be representable as interacting processes
[18,19], one may wonder whether the above idea can be used for understanding
safety in information flow in various programming languages. In the following, we
consider this question by taking basic examples of information flow in imperative
programs.

2.2 Syntax

Let a, b, c, . . . x, y, z, . . . range over names (which are both points of interaction
and values to be communicated), and X, Y, . . . over agent variables. We write
~y for a vector of names y0 · · · yn−1 with n ≥ 0. Then the syntax for processes,
written P, Q, R, . . . , is given by the following grammar. We note that this syntax
extends the standard polyadic π-calculus with branching and recursion. These
extensions play a fundamental role in the type discipline, in that intended types
are hard to deduce if we use their encoding into, say, the polyadic π-calculus
(see [16] for further discussions).

P ::= x(~y).P input | P |Q parallel
| x〈(ν ~z)~y〉.P output | (ν x)P hiding
| x[(~y).P & (~z).Q] branching input | 0 inaction
| x inl〈(ν ~z)~y〉.P left selection | X〈~x〉 recursive variable
| x inr〈(ν ~z)~y〉.P right selection | (µX(~x).P)〈~y〉 recursion

1 Related ideas are studied in the context of CCS [8] and CSP [31].

184 K. Honda, V. Vasconcelos, and N. Yoshida

There are two kinds of inputs, one unary and another binary: the former is the
standard input in the π-calculus, while the latter, the branching input, has two
branches, waiting for one of them to be selected with associated communication
[32]. Accordingly there are outputs with left and right selections, as well as the
standard one. We require all vectors of names in round parenthesis are pairwise
distinct, which act as binders. In the value part of an output (including selec-
tions), say 〈(ν ~z)~y〉, names in ~z should be such that {~z} ⊂ {~y} ({~x} is the set of
names in ~x), and the order of occurrences of names in ~z should be the same as
the corresponding names in ~y. Here (ν ~z) indicate names ~z are new names and
are exported by output. 〈(ν ~z)~y〉 is written 〈~y〉 if ~z = ∅, and (ν ~z) if ~y = ~z. We
often omit vectors of the length zero (for example, we write inr for inr〈 〉) as
well as the trailing 0. The binding and α-convertibility ≡α are defined in the
standard way. In a recursion (µX(~x).P)〈~y〉, we require that P is input guarded,
that is P is either a unary input or a branching input, and free names in P are
a subset of {~x}. The reduction relation −→ is defined in the standard manner,
which we illustrate below (the formal definition is given in [16]).

We illustrate the syntax by examples. First, the following agents represent
boolean constants denoting the truth and the conditional selection (let c and y
be fresh).

T〈b〉 = b(c).(c inl |T〈b〉) and If〈x, P, Q〉 def= x(ν y).y[().P&().Q]

The recursive definition of T〈b〉 is a notational convention and actually stands
for T〈b〉 def= (µX(b).b(c).(cinl |X〈b〉))〈b〉. The truth agent first inputs a name
c via b, then, via c, does the left selection with no value passing as well as
recreating the original agent. By replacing inl by inr, we can define the falsity.
The conditional process invokes a boolean agent, then waits with two branches.
If the other party is truth it generates P : if else it generates Q. We can now
show how these two processes interact:

If〈x, P, Q〉 |T〈x〉 −→ (ν y)(y [().P & ().Q] | y inl |T〈x〉) −→ P |T〈x〉
Next we consider a representation of imperative variable as a process.

Var〈xv〉 = x[(z).(z〈v〉 |Var〈xv〉) & (v′).Var〈xv′〉]
In this representation, we label the main interaction point of the process (called
principal port in Interaction Net [21]) by the name of the variable x. It has two
branches, of which the left one corresponds to the “read” option, while the right
one corresponds to the “write” option. If the “read” is selected and z is received,
the process sends the current value v to z, while regenerating the original self.
On the other hand, if the “write” branch is selected and v′ is received, then
the process regenerates itself with a new value v′. We can then consider the
representation of the assignment “x := y,” which first “reads” the value from
the variable y, then “writes” that value to the variable x.

Assign〈xy〉 def= y inl(ν z).z(v).x inr〈v〉

Secure Information Flow as Typed Process Behaviour 185

2.3 Imperative Information Flow in Process Representation

(1) Causal Dependency. We can now turn to the information flow. We first
consider the process representation of the following obviously insecure code [25].

xL := yH

Here the superscripts “L” and “H” indicate the secrecy levels of variables: thus y
is a high (or secret) variable and x is a low (or public) variable. This command is
insecure intuitively because the content of a secret variable becomes visible to the
public through x. Following the previous discussion, its process representation
becomes:

Assign〈xLyH〉 def= yH inl(ν c).cH(v). xL inr〈v〉. nteractional

Note we are labeling channels by secrecy levels. We can easily see that this pro-
cess violates the informal principle stipulated in §2.1, because its low-level beha-
viour (at x) depends on its preceding high-level behaviour (at y, c). Thus this ex-
ample does seem explainable from our general principle. Similarly, we can check
the well-known example of implicit insecure flow “if zH then xL := yL end”
(where the information stored in z can be indirectly revealed by reading x), is
translated into insecure process interaction “ zH(ν c).cH[().Assign〈xLyL〉 & ().0]”.
Here again the low-level interactions (in Assign〈xLyL〉) depend on the high-level
interactions at z and c.

(2) Deadlock-Freedom. So far there has been no difficulty in applying our
general principle to process presentation of imperative information flow. Howe-
ver there are subtleties to be understood, one of which arises in the following
sequential composition.

xH := yH ; zL := wL

The whole command is considered to be safe since whatever the content of x
and y would be, they do not influence the content of z and w. However the
following process representation of this command seems not safe in the light of
our principle:

yH inl(ν c1).cH
1 (v1). xH inr〈v1〉. wL inl(ν c2).cL

2 (v2). zL inr〈v2〉 (?)

Here the behaviours at low-level ports (w and z) depend on, via prefixing, those
at high-level ports (x and y). Does this mean our principle and the standard idea
in information flow are incompatible with each other? However, a closer look at
the above representation reveals that this problematic dependency does not exist
in effect, provided that the above process interacts with the processes for impe-
rative variables given in §2.2. If we assume so, the actions at y and x (together
with those at z and w) by the above process are always enabled: whenever a
program wishes to access a variable, it always succeeds (in the i parlance, we
are saying that interactions at these names are guaranteed to be deadlock-free).
Thus we can guarantee that, under the assumption, the action at say w above

186 K. Honda, V. Vasconcelos, and N. Yoshida

will surely take place, which means the dependency as expressed in syntax does
not exist. Observing there is no dependency at the level of communicated values
between the two halves of (?), we can now conclude that the actions at w and z
do not causally depend on the preceding actions at y and x.

(3) Innocuous Interaction. We now move to another subtle example, using
the following command.

if zH then xH := yL end

While this phrase is considered to be secrecy-wise safe [25], its representation in
the π-calculus becomes:

zH(ν cH).c[().yLinl(ν e).eL(v).xH inr〈v〉 & ().0] (??)

which again shows apparently unsafe dependency between the second action at
c and the third action at y. In this example, the process does get information
at c in the form of binary selection, even though c is deadlock-free. Moreover
the output at y does not occur in the right branch, so the output depends on
the action at c even observationally. But the preceding study [33,35] shows the
original imperative behaviour is indeed safe. How can it be so? Simple, because
this command only reads from y, without writing anything: so it is as if it did
nothing to y. Returning to (??), we find the idea we made resort to in (2), is
again effective: we consider this output action as not affecting the environment
(hence not transmitting any information) provided that the behaviour of the
environment is such that invoking its left branch has no real effect – in other
words, if it behaves just as the imperative variable given in §2.2 does. We call
such an output innocuous: thus, if we decide to ignore the effect of innocuous
actions, there is no unsafe dependency from the high-level to the low-level (note
the left branch as a whole now becomes high-level). We further observe that
the insecure examples in (1) are still insecure even after incorporating deadlock-
freedom and innocuousness.

The preceding discussions suggest two things: first, we may be able to for-
mally stipulate the interactional framework of safe information flow which may
have wide applicability along the line of the informal notion given in §2.1. Se-
condly, however, just for that purpose, we need a non-trivial notion of types for
behaviours which in particular concerns not only the behaviour of the process
but also that of the assumed environment. The formal development in the fol-
lowing sections shows how these ideas can be materialised as a typed process
calculus for safe information flow.

3 A Typed π-Calculus for Secure Information Flow

3.1 Overview

In addition to names and agent variables (cf. §2.1), the typed calculus we in-
troduce below uses a set of multiple secrecy levels, which are assumed to form

Secure Information Flow as Typed Process Behaviour 187

a lattice. s, s′, . . . range over secrecy levels, and s ≤ s′ etc. denotes the partial
order (where the lesser means the lower, i.e. more public). Using these data as
base sets, our objective in this section is to introduce a typing system whose
provable sequent has the following form:

Γ `s P . A a process P has an action type A under a base Γ with a secrecy level s

We offer an overview of the four elements in the above sequent.
(1) The base Γ is a finite function from names and agent variables to types and
vectors of types, respectively. Intuitively a type assigned to a channel denotes the
basic structure of possible interaction at that channel, for example input/output
and branching/selection. We also include refined modalities for recursive inputs
and their dual outputs, which indicate whether they involve state change or not.
(2) The process P is an untyped term in §2.2 which is annotated with types
in its bound names, e.g. a unary input becomes x(~y : ~α).P (here and elsewhere
we assume len(~α) = len(~y) where len(~y) denotes the length of a vector, so that
each yi is assigned a type αi). As one notable aspect, we only use those processes
whose outputs (in any of three forms) are bound, e.g. each unary output has a
form x(ν ~y :~α).P (this restricted output is an important mode of communication
which arises in the context of both π-calculus [30] and games semantics [19,18]).
Accordingly we set names in each vector instantiating agent variables to be pair-
wise distinct. These restrictions make typing rules simpler, while giving enough
descriptive power to serve our present purpose.
(3) The secrecy index s guarantees that P under Γ only affects the environment
at levels at s or higher: that is, it is only transmitting information (or tampering
the environment) at levels no less than s.
(4) The action type A gives abstraction of the causal dependency among (actions
on) free channels in P , ensuring, among others, certain deadlock-free properties
on its linear and recursive channels. The activation ordering is represented by a
partial order on nodes whose typical form is px where p denotes a type of action
to be done at x. There is a partial algebra over action types [15], by which we can
control the composability of two action types (hence of typed processes which
own them), thus enabling us to stipulate assumptions on the possible forms of
the environments, cf. §2.

3.2 Types and Subtyping

We start with the set of action modes, denoted m, m′, ..., whose underlying ope-
rational ideas are illustrated by the following table.

⇓ non-linear (non-deterministic) input ⇑ non-linear (non-deterministic) output
↓ truly linear input (truly once) ↑ truly linear output (truly once)
! recursive input (always available) ? zero or more output (always enabled)

The notations ! and ? come from Linear Logic [10], which first introduced these
modalities. We also let κ, κ′, . . . , called mutability indices, range over {ι,µ}.

188 K. Honda, V. Vasconcelos, and N. Yoshida

(Well-formedness and Compatibility)

−
` τ

` τ � τ ′

` 〈τ, τ ′〉
` τ � τ ′

` τ ′ � τ

` τi � τ ′
i

` (~τ)⇓
s � (~τ ′)⇑

s

` τi � τ ′
i s ≥ s′

` (~τ)↓
s � (~τ ′)↑

s′

` τi � τ ′
i s ≥ s′

` (~τ)!s,κ � (~τ ′)?s′,κ

` τij � τ ′
ij

` [~τ1&~τ2]⇓s � [~τ ′
1⊕~τ ′

2]⇑s

` τij � τ ′
ij s ≥ s′

` [~τ1&~τ2]↓s � [~τ ′
1⊕~τ ′

2]↑s′

` τij � τ ′
ij s ≥ s′

` [~τ1&~τ2]!s,κ1&κ2
� [~τ ′

1⊕~τ ′
2]?s′,κ1⊕κ2

(Subtyping)

` τi ≤ τ ′
i

` (~τ)⇓
s ≤ (~τ ′)⇓

s

` τi ≤ τ ′
i s ≥ s′

` (~τ)↓
s ≤ (~τ ′)↓

s′

` τi ≤ τ ′
i s ≥ s′

` (~τ)!s,κ ≤ (~τ ′)!s′,κ

` τi ≤ τ ′
i

` (~τ)⇑
s ≤ (~τ ′)⇑

s

` τi ≤ τ ′
i s ≤ s′

` (~τ)↑
s ≤ (~τ ′)↑

s′

` τi ≤ τ ′
i s ≤ s′

` (~τ)?s,κ ≤ (~τ ′)?s′,κ

` τij ≤ τ ′
ij

` [~τ1&~τ2]⇓s ≤ [~τ ′
1&~τ ′

2]⇓s

` τij ≤ τ ′
ij s ≥ s′

` [~τ1&~τ2]↓s ≤ [~τ ′
1&~τ ′

2]↓s′

` τij ≤ τ ′
ij s ≥ s′

` [~τ1&~τ2]!s,κ1&κ2
≤ [~τ ′

1&~τ ′
2]!s′,κ1&κ2

` τij ≤ τ ′
ij

` [~τ1⊕~τ2]⇑s ≤ [~τ ′
1⊕~τ ′

2]⇑s

` τij ≤ τ ′
ij s ≤ s′

` [~τ1⊕~τ2]↑s≤ [~τ ′
1⊕~τ ′

2]↑s′

` τij ≤ τ ′
ij s ≤ s′

` [~τ1⊕~τ2]?s,κ1⊕κ2
≤ [~τ ′

1⊕~τ ′
2]?s′,κ1⊕κ2

` 〈τ1, τ2〉 ` τ ≤ τ1 or ` τ ≤ τ2

` τ ≤ 〈τ1, τ2〉
` 〈τ ′

1, τ ′
2〉 ` τi ≤ τ ′

i

` 〈τ1, τ2〉 ≤ 〈τ ′
1, τ ′

2〉

Fig. 1. Subtyping

Mutability indices indicate whether a recursive behaviour is stateful or not: for
input, ι denotes the lack of state, which we call innocence, cf. [19], while µ means
it may be stateful, that is it may change behaviour after invocation; for output,
ι denotes innocuousness, that is the inputting party is innocent, while µ deno-
tes possible lack of innocuousness. Given these base sets, the grammar of types,
denoted α, β, . . . , are given by:

α ::= τ | 〈τ, τ ′〉 τ ::= αI | αO

αI ::= (~τ)⇓
s | (~τ)↓

s | (~τ)!s,κ | [~τ1&~τ2]⇓s | [~τ1&~τ2]↓s | [~τ1&~τ2]!s,κ1&κ2

αO ::= (~τ)⇑
s | (~τ)↑

s | (~τ)?s,κ | [~τ1⊕~τ2]⇑s | [~τ1⊕~τ2]↑s | [~τ1⊕~τ2]?s,κ1⊕κ2

Types of form 〈τ, τ ′〉 are pair types, indicating structures of interaction for both
input and output, while others are single types, which are only for either input or
output. We write md(α) for the set of action modes of the outermost type(s) in
α, e.g. md((~τ)m

s) = {m} and md(〈(~τ1)m1
s1

, (~τ2)m2
s2
〉) = {m1, m2}. We often write

md(α) = m for md(α) = {m}. Similarly, we write sec(τ) for the security level of
the outermost type in τ , e.g. sec((~τ)m

s) = s. We define the dual of m, written

Secure Information Flow as Typed Process Behaviour 189

m, as: ⇓ = ⇑, ⇑ = ⇓, ↑ =↓, ↓ =↑, ! = ? and ? = !. Then the dual of a type α,
denoted by α, is given by inductively dualising each action mode in α, as well
as exchanging & and ⊗. Among types, those with body (~τ) correspond to unary
input/output, those with body [~τ1&~τ2] correspond to branching input, and those
with body [~τ1⊕~τ2] correspond to output with selections.

We say α is well-formed, written ` α, if it is derivable from the rules in
Figure 1, where we also define the compatibility relation � over single types. A
pair type is well-formed iff its constituting single types are compatible. We also
say α is a subtype of β, denoted ` α ≤ β, if this sequent is derivable by the rules
in Figure 1. Some comments on types, subtyping and compatibility follow.

Remark 1. (nested types) Nested types denote what the process would do
after exporting or importing new channels (hence covariance of subtyping on
nested types): as an example, neglecting the secrecy and mutability, x : (()↓)↑

denotes the behaviour of doing a truly linear output at x exporting one single
new name, and at that name doing a truly linear input without importing any
name.
(secrecy levels, compatibility and subtyping) Since safe information flow
should never go from a higher level to a lower level, a rule of thumb is that
two types are compatible if such a flow is impossible. Thus, because a flow can
occur in both ways at non-deterministic channels (cf. §2.1), two non-linear types
can be related only when they have the same secrecy level. On the other hand,
for compatibility of linear types, we require that the inputting side is higher
than the outputting side in secrecy levels, since the flow never comes from the
inputting party (further, in truly linear unary types, even the outputting party
does not induce flow). Accordingly, the subtyping is covariant for output and
contravariant for input with respect to secrecy levels.
(mutability index) As we explained already, the index ι represents the re-
cursive input behaviour without state change (innocence) or, dually, the output
which does not tamper the corresponding recursive processes (innocuousness).
Note an index is only meaningful for recursive behaviours and their dual output.
Naturally we stipulate that an innocent input can only be compatible with an
innocuous output; and an innocent input can only be a subtype of an innocent
input, and an innocuous output can only be a subtype of an innocuous output.

3.3 Action Types

An action type A is a finite poset whose elements, called action nodes, are given
by the following grammar.

n ::= ↓x | ↑x | lx | !x | ?x | ?ιx | mx | X〈~x〉.
l x indicates x is already used exactly once for both input and output. ?ιx
indicates that all actions occurring at x so far are innocuous. X〈~x〉 (with len(~x) ≥
1 always) indicates the point to which the behaviour recurs. m indicates possibility
of nonlinear (nondeterministic) input and output. Other symbols are already

190 K. Honda, V. Vasconcelos, and N. Yoshida

explained in the table in §3.2. As an illustration of causality, write n→ n′ when
n′ is strictly bigger than n without any intermediate element. Then ↓ x →↑ y
says that a truly linear output at y becomes active just after a truly linear input
at x.

We only use those action types which conform to a well-formedness condition
that in particular includes linearity (for details see [16]). In the typing rules, we
use the following abbreviations for action types (let {xi} be free names in A).

↓↑A A only contains ↓xi or ↑xi A-x x does not occur in A
?A A only contains ?xi, ?ιxi or mxi A⊗B disjoint union, with A ∩B = ∅
?ιA A only contains ?ιxi ~px p0x0 ⊗ p1x1 · · · pn−1xn−1 (n ≥ 0)

We also say x is active in A if px (for some p) is minimal in A.

3.4 Typing System

We now introduce the main typing rules with illustration. We use the following
notation: given a base Γ , (1) x : α (resp. X : ~α) denotes Γ (x) = α (resp.
Γ (X) = ~α); and (2) Γ · ∆ denotes the disjoint union of two bases, assuming
their domains do not intersect. Henceforth we assume all types and bases are
well-formed. We start from the typing rules for basic process operators: the
inaction, parallel composition and hiding.

(Zero)

Γ `s 0 . ∅

(Par) A1 � A2

Γ `s Pi . Ai (i =1, 2)

Γ `s P1 | P2 . A1 �A2

(Res)
Γ · x : α `s P . A⊗ px p ∈ {l, !, m}
Γ `s (ν x :α)P . A

In (Par), we use coherence A1 � A2 and composition A1 � A2, both following
[36]. Essentially speaking, A1 � A2 says A1 and A2 are composable without
violating linearity or causing vicious circles; then A1 � A2 is the result of the
composition. See [16] for details. In (Res), we do not allow a name with a mode
in {↓,↑, ?, ?ι} to be restricted since these actions expect their complementary
actions to get composed — in other words, actions with these types assume
the existence of actions with their dual types in the environment. With the
complementary actions left uncomposed, the hiding leads to an insecure system.
In addition, we have the weakening rules for ?x, ?ιx, l x and mx, and the
degradation rule in which Γ `s P . A is degraded into Γ `s′ P . A when s′ ≤ s
(cf. § 3.1 (3)).

We next turn to non-liner prefix rules. The rules for prefix actually control
the secrecy levels of each action.

(In) ` (~τ)⇓
s ≤ Γ (x)

Γ · ~y :~τ `s P .−→py ⊗ ?A⊗ mx

Γ `s x(~y :~τ).P . A⊗ mx

(Out) ` (~τ)⇑
s ≤ Γ (x)

Γ · ~y :~τ `s P .−→py ⊗ ?A⊗ mx

Γ `s x(ν ~y :~α).P . A⊗ mx

Since the subtyping on non-linear types is trivial with respect to their secrecy
levels, `(~τ)⇑,s ≤ Γ (x) means Γ (x) has precisely the level s. Thus, in both rules,

Secure Information Flow as Typed Process Behaviour 191

the initial action at level s is followed by actions affecting the same or higher
levels (because P is typed with s). Note also all abstracted actions (−→py above)
should be active, which is essential for the subject reduction. Non-linear prefix
rules for branching and selections are essentially the same.

Among linear prefix rules, the following shows a stark contrast with the non-
linear (In) and (Out) rules.

(In↓) (where C/~y =↓↑B)

` (~τ)↓
s′ ≤ Γ (x)

Γ · ~y :~τ `s P . ?A⊗ C-x

Γ `s x(~y :~τ).P . A⊗ ↓x→B

(Out↑) (where C/~y =↓↑B)

` (~τ)↑
s′ ≤ Γ (x)

Γ · ~y :~τ `s P . ?A⊗ C-x

Γ `s x(ν ~y :~τ).P . A⊗ ↑x→B

The notation C/~y denotes the result of taking off nodes with names among ~y, as
well as stipulating the condition that each yi should be active in C. We observe
that the “true linearity” in these and later rules is stronger than those studied in
[15,20], which only requires “no more than once”. In the rule, since s′ is not given
any condition in the antecedent, both rules completely neglect the secrecy level
of x in Γ , saying we may not regard these actions as either receiving or giving
information from/to the environment. The operation n→B, which is given in
[16] following [36], records the causality.

The next rules show that branching/selection need a different treatment from
the unary cases when types are truly linear. Intuitively, the act of selection gives
rise to a non-trivial flow of information.

(Bra↓) (where Ci/~yi =↓↑B)

` [~τ1&~τ2]↓s ≤ Γ (x)
Γ · ~yi :~τi `s Pi . ?A⊗ C-x

i (i =1, 2)

Γ `s x[(~y1 :~τ1).P1 & (~y2 :~τ2).P2] . A⊗ ↓x→B

(Sel↑l) (where C/~y1 =↓↑B)

` [~τ1⊕~τ2]↑s ≤ Γ (x)
Γ · ~y1 :~τ1 `s P . ?A⊗ C-x

Γ `s xinl(ν ~y1 :~τ1).P . A⊗ ↑x→B

Here the subtyping is used non-trivially: in (Bra↓), the real level of x in Γ is
the same or lower than s, so the level elevates. In (Sel↑), the real level of x is the
same or higher, so the level may go down, but it is recorded in the conclusion. It
is notable that this inference crucially depends on the employment of branching
as a syntactic construct: without it, these rules should have the same strict
conditions as non-linear prefixes.

The final class of rules show the treatment of !-? modalities and mutability
indices, dealing with recursive inputs and their dual outputs, and are most in-
volved. We first have the variable introduction rule (Var!), in which we derive
Γ · X : ~α `s X〈~x〉 . X〈~x〉 when we have both ` αi ≤ Γ (xi) and md(α0) = !,
as well as (for consistency with repetitive invocation) md(αi) ∈ {?, ⇓, ⇑} (i 6= 0).
Here we give no restriction on s since when the introduced variable is later bo-
und, all potential tampering at free names would have been recorded except the
subject of this recursion, the latter not being tampering. Below we introduce
linear recursion rules, for which there are two pairs, one for unary prefix and
another for binary prefix. We show the rules for unary input/output.

192 K. Honda, V. Vasconcelos, and N. Yoshida

(In!)

` (~τ)!s,κ ≤ Γ (z0) ` αi ≤ Γ (zi){
Γ{~x/~z}·~y :~τ ·X :~α s̀ P .−→py⊗?ιA{~x/~z}⊗X〈~x〉 (κ=ι)

Γ{~x/~z}·~y :~τ ·X :~α s̀ P .−→py⊗?A{~x/~z}⊗X〈x~w〉(κ=µ)

Γ `s (µX(~x :~α).x0(~y :~τ).P)〈~z〉 . !z0 ⊗A

(Out?) (where C/~y =↓↑B)

` (~τ)?s′,κ≤Γ (x) p ∈ {?, ?ι}
Γ · ~y:~τ s̀ P . ?A⊗C⊗px
κ=µ ⇒ (s=s′ ∧ p=?)

Γ ` s . x(ν ~y :~τ).PA⊗B⊗px

In (In!), we check that the process is immediately recurring to precisely the same
behaviour (X〈~x〉) if it is innocent, or, if it is not innocent, it recurs to the same
subject (X〈x0 ~wj〉). The process can only do free actions with ?ι-modes in the
innocent case in addition to the recurrence (except at ~y, which are immediately
abstracted), so that the process is stateless in its entire visible actions. In the
conclusion, the new subject z0 is introduced with the mode !. In the dual (Out?),
if the prefix is an innocuous output (κ = ι), there is no condition on the level of x
(s′), so that the level is not counted either in the antecedent or in the conclusion
(e.g. even if s′ = ⊥ we can have s 6= ⊥): we are regarding the action as not
affecting, and not being affected by, the environment. However if the action is
not innocuous (κ = µ), it is considered as affecting the environment, so that we
record its secrecy level by requiring s′ = s. Note that, even if it is unary, a ?-mode
output action may indeed affect the environment simply because such an action
may or may not exist: just as a unary non-deterministic input/output induces
information flow. The corresponding rules for the branching and selection are
defined in the same way, see [16].

3.5 Examples of Typing

(Non-linear) Let sync⇓
s

def= ()⇓
s . Then a :sync⇓

s′ · b :sync⇓
s `s′ a.b . ma⊗mb, for

s′ ≤ s.

(Truly linear) Let sync↓
s

def= ()↓
s , and its dual sync↑

s
def= ()↑

s. Then, for ar-
bitrary s and s′, we have a :sync↑

s · b :sync↓
s′ `> a.b . ↑a→↓b.

(Branching) Let bool!
s

def= ([⊕]↑s)!s be the type of a boolean constant. Then
we have b :bool!

s `s T〈b〉 . !b. For the conditional If〈b, P1, P2〉 introduced in §2,
suppose that the two branches P1 and P2 can be typed at a security level above
that of the boolean constant b; that is, Pi is such that Γ ·b :bool?

s′ `s Pi.?A⊗?ιb,
for s′ ≤ s. Then Γ · b :bool?

s′ `s If〈b, P1, P2〉 . A⊗?ιb. The innocuousness at b is
crucial to show that (bool!

s′)?> ≤ (bool!
s′)?s′ in rule Out?.

(Copy-cat) The following agent concisely represents the idea of safe informa-
tion flow in the present calculus. It also serves as a substitute for free name
passing for various purposes, including the imperative variable below.

[bs ← b′s′
] = b(c : bool↑

s).(If〈b′, c inl, c inr〉 | [b← b′])

This agent transforms a boolean behaviour from b′ to b. If s′ ≤ s, then we have:
b :bool!

s, b
′ :bool?

s′ s̀ [b← b′] . !b⊗?ιb′.

Secure Information Flow as Typed Process Behaviour 193

(Imperative variable) We give a representation of an imperative variable,
alternative to that presented in §2.

Var〈xsbs′〉s = x[(z : (bool!s)↑
s).(z(ν b′ :bool?s).[b′ ← b]|Var〈xb〉) & (b′ :bool?s).Var〈xb′〉]

By the copy-cat, sending a new b′ has the same effect as sending b. To type
this process, let var!

s
def= [(bool!

s)
↑
s&bool?

s]!s,ι&µ. Then x : var!
s, b : bool!

s′ `s

Var〈xsb〉 . !x⊗?ιb for s′ ≤ s. Note b has the level s′ but the secrecy index is
still s, since at b the output is innocuous.
(Assignment) The following offers the typing of the behaviour representing
xH := yL. Let var?

s
def= var!

s and Γ = x :var?
H · y :bool!

L. Then

Γ `H yinl(z : (bool?
L)↓

L).z(b :bool?
H).xinr(b′ :bool!

H).[b′ ← b] . ?x⊗ ?ιy.

4 Elementary Properties of Typed Processes

This section presents the most basic syntactic properties of typed terms. We
also briefly discuss one key behavioural property typed terms enjoy. First, the
typing system satisfies the standard properties as weakening, strengthening and
substitution closure. We only list two important properties. Below (1) says that
every typable term has a canonical typing, i.e. whenever P is typable, P has the
minimum action type and the highest secrecy index, and (2) means that channel
types in Γ represent the constraints on the behaviour of P , rather than that of the
outside environment (below A ≤G A′ iff A = A′

0⊗
−→
?ιx and A′ = A′

0⊗−→?x⊗−→ly⊗−→mw
for some A′

0).

Proposition 1. (1) (canonical typing) If Γ `s P . A, then there exists s0 and
A0 such that Γ `s0 P . A0, and whenever Γ `s1 P . A1 we have s1 ≤ s0 and
A0 ≤G A1.

(2) (subsumption-narrowing) If Γ · x :α `s P . A and α ≤ α′, then Γ · x :α′ `s

P . A.
Also if Γ ·X :~α `s P . A and αi ≥ βi for each i, then Γ ·X : ~β `s P . A.

A fundamental property of the typing system follows. Below→→ is the multi-step
reduction over preterms, defined just as that over untyped terms.

Theorem 1. (subject reduction) If Γ `s P . A and P →→ Q with bn(Q) ∩
fn(Γ) = ∅, then Γ `s Q . A.

The theorem says that whatever internal reduction takes place, its composability
with the outside, which is controlled by both Γ and A, does not change; and
that, moreover, the process is still secure with a no less secrecy index. For the
proof, see [16].

The subject reduction is the basis of various significant behavioural properties
for typed processes. Here we discuss only one of them, a non-interference pro-
perty in typed terms (cf. [1,11,25]). A 〈Γ ·s·A〉-context is a typed context whose

194 K. Honda, V. Vasconcelos, and N. Yoshida

hole is typed under the triple 〈Γ, s, A〉. Then, with respect to security level s,
we can define the s-sensitive maximum sound typed congruence (cf. [17,28,36]),
denoted ∼=s, following the standard construction (see [16] for the full definition).
We then obtain:

(behavioural non-interference) Let C[·] be a 〈Γ0 ·s0 ·A0〉-context.
If s � s0 and Γ0 s̀0 Pi . A0 (i = 1, 2), then C[P1] ∼=s C[P2].

The statement says that the behaviour of the whole at lower levels are never
affected by its constituting behaviours which only act at higher levels. The proof
uses a secrecy-sensitive version of typed bisimilarity, which is a fundamental
element of the present theory and which turns out to be a subcongruence of the
above maximum sound equality at each secrecy level. By noting ground constants
are representable as constant behaviours, one may say the result extends Abadi’s
non-interference result for ground values [1] to typed process behaviours.

5 Imperative Information Flow as Typed Process
Behaviour

5.1 A Multi-Threaded Imperative Calculus

Smith and Volpano [33] presented a type discipline for a basic multi-threaded
imperative calculus in which well-typedness ensures secure information flow. In
this section we show how the original system can be embedded in the typed
calculus introduced in this paper, with a suggestion for a practically interesting
extension of the original type discipline through the analysis of the notion of
observables. We start with the syntax of untyped phrases of the original calculus,
using x, y, z, . . . for imperative variables.

e ::= x | b | e1 and e2 b ::= tt | ff

c ::= x := e | c1; c2 | c1 | c2 | if e then c1 else c2 | while e do c | skip
For simplicity we restrict data types to booleans. We also added the skip com-
mand, and use the parallel composition rather than a system of threads.

The typing system is given in Figure 2. It uses command types of form

ρ ::= s cmd⇓ | s cmd⇑.

Here s cmd⇓ (resp. s cmd⇑) indicates convergent (resp. divergent) phrases and
s, s′, . . . are secrecy levels as before. Note we take secrecy levels from an arbitrary
lattice rather than from the two point one. We also use a base E, which is a
finite map from variables to secrecy levels. Subsumption in expressions is merged
into their typing rules for simplicity. Notice the contravariance in the first two
subtyping rules [33,35] and the invariance in the last rule. The types in the
original system are embedded into the command types above by setting:

(H)◦ def= > (L)◦ def= ⊥ (H cmd)◦ def= > cmd⇓ (L cmd)◦ def= ⊥ cmd⇑,

Secure Information Flow as Typed Process Behaviour 195

(Subtyping) s′ ≤ s
s cmd⇓ ≤ s′ cmd⇓

s′ ≤ s
s cmd⇓ ≤ s′ cmd⇑ s cmd⇑ ≤ s cmd⇑

(Typing)

(var)
E(x) ≤ s

E ` x : s
(bool) E ` b : s (and)

E ` ei : s (i = 1,2)

` e1 and e2 : s

(skip)
E ` skip : s cmd⇓

(subs)

E ` c : ρ ρ ≤ ρ′

E ` c : ρ′

(compose)

E ` ci : ρ

E ` c1; c2 : ρ

(parallel)

E ` ci : ρ

E ` c1 | c2 : ρ

(assign)

E ` e : s E(x) = s

E ` x := e : s cmd⇓

(if)

E ` e : sec(ρ) E ` ci : ρ

E ` if e then c1 else c2 : ρ

(while)

E ` e : ⊥ E ` c : ⊥ cmd⇑

E ` while e do c : ⊥ cmd⇑

Fig. 2. Typing System of Smith-Volpano calculus

which makes explicit the notion of termination in the original types. With this
mapping, the present system is a conservative extension of the original one in
both subtyping judgement and typability.

5.2 Embedding

We start with the embedding of types and bases, given in Figure 3. Both com-
mand types and bases are translated into two forms, one using channel types and
the other using action types. In [[ρ]], a terminating type becomes a truly linear
synchronisation type, and a non-terminating type becomes a non-linear synchro-
nisation type, both described in §3.5. 〈〈ρ〉〉f gives an action type accordingly. We
note: given command types ρ, ρ′, ρ ≤ ρ′ iff either (1) sec([[ρ]]) ≥ sec([[ρ′]]) and
both are truly linear unary, (2) sec([[ρ]])≥sec([[ρ′]]), [[ρ]] is truly linear unary and
[[ρ′]] is nonlinear, or (3) [[ρ]] = [[ρ′]] and both are nonlinear. This dissects com-
mand types into (a) the secrecy level of the whole behaviour (which guarantees
the lowest tampering level and which can be degraded by the degradation rule)
and (b) the nature of the termination behaviour (noting “non-linear” means a
termination action is not guaranteed).

We next turn to the embedding of terms into processes in Figure 3. The
framework assumes two boolean constant agents whose behaviours are given
in §2.2 and which are shared by all processes, with principal channels tt and ff .
These free channels are given the ⊥-level, which is in accordance with Smith and
Volpano’s idea that constants have no secrecy. Following the translation of types,
each command becomes a process that upon termination emits an output signal
at a channel given as a parameter, typically f (cf. [26]). We are using copy-cat
in §3.5 to represent the functionality of value passing. The encoding of terms
should be easily understandable, following the known treatment as in [26]: the

196 K. Honda, V. Vasconcelos, and N. Yoshida

(Type and Base)

[[s cmd⇓]] def= sync↑
s 〈〈s cmd⇓〉〉f def= ↑f [[∅]] def= tt, ff :var⊥ 〈〈∅〉〉 def= ?ιtt⊗ ?ιff

[[s cmd⇑]] def= sync⇑
s 〈〈s cmd⇑〉〉f def= mf [[E · x :s]] def= [[E]] · x :vars 〈〈E · x :s〉〉 def= [[E]] · !x

(Command) (s = sec(e)E in all cases, vars
def= 〈var!s, var?s 〉)

[[E ` skip : ρ]]f
def= f

[[E ` c1; c2 : ρ]]f
def= (ν g :〈[[ρ]], [[ρ]]〉)([[E ` c1 : ρ]]g | g.[[E ` c2 : ρ]]f)

[[E ` c1 | c2 : ρ]]f
def= (ν f1, f2 :〈[[ρ]], [[ρ]]〉)([[E ` c1 : ρ]]f1 | [[E ` c2 : ρ]]f2 | f1.f2.f)

[[E ` x := e : ρ]]f
def= eval[[e]]E(bs′

).xinr(b′ :bool!s′).([b′ ← b] | P) (s′ = E(x))

[[E ` if e then c1 else c2 : ρ]]f
def= eval[[e]]E(bs).If〈b, [[E` c1 :ρ]]f , [[E` c2 :ρ]]f 〉

[[E ` while e do c : ρ]]f
def= (νg :〈[[ρ]], [[ρ]]〉)(g | E〈fg~x〉) (E = {~x :~s}, αi = varsi)

where E def= µX(f, g :〈[[ρ]], [[ρ]]〉, ~x :~α). g.eval[[e]]E(bs).If〈b, ([[E`c :ρ]]g|X〈fg~x〉), f〉
(Expression)

eval[[x]]E(bs).P def= xinl(z : (bool?s′)↓
s′).z(b :bool?s).P (s′ = E(x))

eval[[tt]]E(bs).P def= Link〈bs, [[b]]⊥, P 〉 ([[tt]] def= tt, [[ff]] def= ff)

eval[[e1 and e2]]E(bs).P def= eval[[e1]]E(bs1
1).eval[[e2]]E(bs2

2).

If〈bs1
1 ,Link〈bs, bs2

2 , P 〉,Link〈bs, bs1
1 , P 〉〉 (si = sec(ei)E , s ≥ s1 t s2)

Link〈bs, b′s′
, P 〉 def= (ν b :vars)(P | [b← b′]) (s′ ≤ s)

(Security of an expression)

sec(x)E
def= E(x) sec(b)E

def= ⊥ sec(e1 and e2)E
def= sec(e1)E t sec(e2)E

Fig. 3. Translation of the Smith-Volpano calculus

interest however lies in how typability is transformed via the embedding, and how
this transformation sheds light on safe information-flow in the original system.
The following theorem underpins this point. Below A dualises each mode in A
which is assigned to a name, taking ? as the dual of !.

Theorem 2 (Soundness). If E ` c : ρ, then [[E]] · f : [[ρ]] `s [[E ` c : ρ]]f .

〈〈E〉〉⊗〈〈ρ〉〉f with s = sec(ρ).

A significant consequence of Theorem 2 is that we obtain, via the non-interference
of typed processes mentioned in Section 4, the original non-interference result
by Volpano and Smith [33]. The result holds for all terms typable in rules with
Figure 2, including typed terms not coming from [33]. As another significant
point, the encoding illustrates the reason why the divergent command types
cannot be elevated as the convergent ones. Let E ` while e do c : s cmd⇑. In the

Secure Information Flow as Typed Process Behaviour 197

encoding, the body of the loop, which is at level s, depends on the branching
at level sec(e)E ≤ s: lowering s can make this dependency dangerous, hence we
cannot degrade s cmd⇑ as in the convergent types. Also note this argument does
not use the restriction s = ⊥ in the original type discipline.

5.3 Termination as Observable

After the preceding development, a natural question is whether we obtain any
new information by doing such an endeavour or not. In this section we outline
a technical development which may answer affirmatively to the question.

We first return to the restriction of the original system that allows only the
level ⊥ for divergent commands. This does seem a strong constraint, especially
with multiple security levels. How does this constraint appear in process repre-
sentation? It means we only assign sync⇑

⊥ to a channel for the termination, which
makes explicit the notion of termination as an observable, both as types and as
behaviours. Once we have this notion, we ask what is the real content of having
the observable only at ⊥. Clearly the answer is: “we allow everybody to observe
the termination.” We may then ask what would be the outcome of not allowing
everybody to observe the termination. Can this make sense? It seems it does:
since the time of Multics and as was recently introduced in a widely known
programming language [12], a mechanism by which we can prevent processes
from even realising the presence of other processes, depending on assigned secu-
rity levels, is a well-established idea in security, both from integrity and secrecy
concerns.

Further, there is a technically important observation that the encoding in
Figure 3 does not apparently impose restriction on levels of divergent types:
indeed the argument for Theorem 2 hardly depends on it. Thus we generalise
the while rule as follows.

(while)
E ` e : s E ` c : s cmd⇑
E ` while e do c : s cmd⇑

The new rule is significant in its loosened condition on the guard of the loop,
allowing us to type, say, (with M being a level between H and L), while eM do c :
H cmd⇑. With exactly the same encoding, we obtain the soundness result for the
extended system with a statement identical to Theorem 2.

Further, this new soundness result leads to a non-interference for the ex-
tended imperative calculus just as in the original calculus. The formulation is
however different since termination behaviours can change between two initial
configurations if we set different values at levels lower than the termination ob-
servable. Fixing a base E, let s′ be a stipulated level of observability of the
termination, and assume there are two environments (assignments of truth va-
lues to variables) which are equivalent with respect to s′, i.e. they only differ in
variables at levels higher than s′. Suppose also s is the level of the command
type of a well-typed c under E and s ≤ s′ (thus if c includes a while command,
its guard is not affected by the content of variables at levels above s′). Then
if c terminates under one of these environments, it will also terminate under

198 K. Honda, V. Vasconcelos, and N. Yoshida

the other environment, and the two resulting environments are equivalent with
respect to s′ (hence with respect to s). If we are without the condition s ≤ s′, we
cannot guarantee the same consequence, though observables except the termina-
tion at each state are equivalent with respect to s′, related in a coinductive way.
See [16] for details. Thus we are again guaranteed secure information flow with
added typability, by starting from a typed process representation of imperative
program behaviour.

References

1. Abadi, M., Secrecy by typing in security protocols. TACS’97, LNCS, 611-637,
Springer, 1997.

2. Abadi, M., Banerjee, A., Heintze, N. and Riecke, J., A core calculus of dependency,
POPL’99, ACM, 1999.

3. Abadi, M., Fournet, C. and Gonthier, G., Secure Communications Processing for
Distributed Languages. LICS’98, 868–883, IEEE, 1998.

4. Abramsky, S., Computational Interpretation of Linear Logic. TCS, vol 111, 1993.
5. Bodei, C, Degano, P., Nielson, F., and Nielson, H. Control Flow Analysis of π-

Calculus. CONCUR’98, LNCS 1466, 84–98, Springer, 1998.
6. Boudol, G., The pi-calculus in direct style, POPL’97, 228–241, ACM, 1997.
7. Denning, D. and Denning, P., Certification of programs for secure information flow.

Communication of ACM, ACM, 20:504–513, 1997.
8. Focardi, R. and Gorrieri, R., The compositional security checker: A tool for the

verification of information flow security properties. IEEE Transactions on Software
Engineering, 23(9), 1997.

9. Gay, S. and Hole, M., Types and Subtypes for Client-Server Interactions, ESOP’99,
LNCS 1576, 74–90, Springer, 1999.

10. Girard, J.-Y., Linear Logic, TCS, Vol. 50, 1–102, 1987.
11. Goguen, J. and Meseguer, J., Security policies and security models. IEEE Sympo-

sium on Security and Privacy, 11–20, IEEE, 1982.
12. Gong, L., Prafullchandra, H. and Shcemers, R., Going beyond sandbox: an over-

view of the new security architecture in the Java development kit 1.2. USENIX
Symposium on Internet Technologies and Systems, 1997.

13. Gray, J., Probabilistic interference. Symposium on Security and Privacy, 170–179,
IEEE, 1990.

14. Honda, K., Types for Dyadic Interaction. CONCUR’93, LNCS 715, 509-523, 1993.
15. Honda, K., Composing Processes, POPL’96, 344-357, ACM, 1996.
16. A full version of the present paper, QMW CS technical report 767, 1999. Available

at http://www.dcs.qmw.ac.uk/˜kohei.
17. Honda, K. and Yoshida, N. On Reduction-Based Process Semantics. TCS. 151,

437-486, 1995.
18. Honda, K. and Yoshida, N. Game-theoretic analysis of call-by-value computation.

TCS, 221 (1999), 393–456, 1999.
19. Hyland, M. and Ong, L., Pi-calculus, dialogue games and PCF, FPCA’93, ACM,

1995.
20. Kobayashi, N., Pierce, B., and Turner, D., Linear types and π-calculus, POPL’96,

358–371, 1996.
21. Lafont, Y., Interaction Nets, POPL’90, 95–108, ACM, 1990.

Secure Information Flow as Typed Process Behaviour 199

22. Larsen, K. and Skou, A. Bisimulation through probabilistic testing. Information
and Computation, 94:1–28, 1991.

23. Lopes, L, Silva, F. and Vasconcelos, F. A Virtual Machine for the TyCO Process
Calculus. PPDP’99, 244–260, LNCS 1702, Springer, 1999.

24. Lowe, G. Defining Information Flow. MCS technical report, University of Leicester,
1999/3, 1999.

25. McLean, J. Security models and information flow. IEEE Symposium on Security
and Privacy, 1990.

26. Milner, R., Communication and Concurrency, Prentice-Hall, 1989.
27. Milner, R., Parrow, J.G. and Walker, D.J., A Calculus of Mobile Processes,

Info. & Comp. 100(1), pp.1–77, 1992.
28. Pierce, B and Sangiorgi.D, Typing and subtyping for mobile processes, MSCS

6(5):409–453, 1996.
29. Roscoe, A. W. Intensional Specifications of Security Protocols, CSFW’96, IEEE,

1996.
30. Sangiorgi, D. π-calculus, internal mobility, and agent-passing calculi. TCS,

167(2):235–271, 1996.
31. Schneider, S. Security properties and CSP. Symposium on Security and Privacy,

174–187, 1996.
32. Vasconcelos, V., Typed concurrent objects. ECOOP’94, LNCS 821, pp.100–117.

Springer, 1994.
33. Volpano, D. and Smith, G., Secure information flow in a multi-threaded imperative

language, pp.355–364, POPL’98, ACM, 1998.
34. Volpano, D. and Smith, G., Language Issues in Mobile Program Security. to appear

in LNCS, Springer, 1999.
35. Volpano, D., Smith, G. and Irvine, C., A Sound type system for secure flow analysis.

J. Computer Security, 4(2,3):167–187, 1996.
36. Yoshida, N. Graph Types for Mobile Processes. FST/TCS’16, LNCS 1180, pp.371–

386, Springer, 1996. The full version as LFCS Technical Report, ECS-LFCS-96-350,
1996.

Implementing Groundness Analysis with
Definite Boolean Functions

Jacob M. Howe and Andy King

Computing Laboratory, University of Kent, CT2 7NF, UK
{j.m.howe, a.m.king}@ukc.ac.uk

Abstract. The domain of definite Boolean functions, Def , can be used
to express the groundness of, and trace grounding dependencies bet-
ween, program variables in (constraint) logic programs. In this paper,
previously unexploited computational properties of Def are utilised to
develop an efficient and succinct groundness analyser that can be coded
in Prolog. In particular, entailment checking is used to prevent unneces-
sary least upper bound calculations. It is also demonstrated that join
can be defined in terms of other operations, thereby eliminating code
and removing the need for preprocessing formulae to a normal form.
This saves space and time. Furthermore, the join can be adapted to
straightforwardly implement the downward closure operator that arises
in set sharing analyses. Experimental results indicate that the new Def
implementation gives favourable results in comparison with BDD-based
groundness analyses.

Keywords: Abstract interpretation, (constraint) logic programs, defi-
nite Boolean functions, groundness analysis.

1 Introduction

Groundness analysis is an important theme of logic programming and abstract
interpretation. Groundness analyses identify those program variables bound to
terms that contain no variables (ground terms). Groundness information is typi-
cally inferred by tracking dependencies among program variables. These depen-
dencies are commonly expressed as Boolean functions. For example, the function
x ∧ (y ← z) describes a state in which x is definitely ground, and there exists a
grounding dependency such that whenever z becomes ground then so does y.

Groundness analyses usually track dependencies using either Pos [3,4,8,15,21],
the class of positive Boolean functions, or Def [1,16,18], the class of definite posi-
tive functions. Pos is more expressive than Def , but Def analysers can be faster
[1] and, in practise, the loss of precision for goal-dependent groundness analysis
is usually small [18]. This paper is a sequel to [18] and is an exploration of using
Prolog as a medium for implementing a Def analyser. The rationale for this work
was partly to simplify compiler integration and partly to deliver an analyser that
was small and thus easy to maintain. Furthermore, it has been suggested that
the Prolog user community is not large enough to warrant a compiler vendor to

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 200–214, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Implementing Groundness Analysis with Definite Boolean Functions 201

making a large investment in developing an analyser. Thus any analysis that can
be quickly prototyped in Prolog is particularly attractive. The main drawback
of this approach has traditionally been performance.

The efficiency of groundness analysis depends critically on the way dependen-
cies are represented. C and Prolog based Def analysers have been constructed
around two representations: (1) Armstrong et al [1] argue that Dual Blake Cano-
nical Form (DBCF) is suitable for representing Def . This represents functions
as conjunctions of definite (propositional) clauses [12] maintained in a normal
(orthogonal) form that makes explicit transitive variable dependencies. For ex-
ample, the function (x← y)∧ (y ← z) is represented as (x← (y ∨ z))∧ (y ← z).
Garćıa de la Banda et al [16] adopt a similar representation. It simplifies join
and projection at the cost of computing and representing the (extra) transitive
dependencies. Introducing redundant dependencies is best avoided since pro-
gram clauses can (and sometimes do) contain large numbers of variables; the
speed of analysis is often related to its memory usage. (2) King et al show how
meet, join and projection can be implemented with quadratic operations based
on a Sharing quotient [18]. Def functions are essentially represented as a set
of models and widening is thus required to keep the size of the representation
manageable. Widening trades precision for time and space. Ideally, however, it
would be better to avoid widening by, say, using a more compact representation.

This paper contributes to Def analysis by pointing out that Def has impor-
tant (previously unexploited) computational properties that enable Def to be
implemented efficiently and coded straightforwardly in Prolog. Specifically, the
paper details:

– how functions can be represented succinctly with non-ground formulae.
– how to compute the join of two formulae without preprocessing the formulae

into orthogonal form [1].
– how entailment checking and Prolog machinery, such as difference lists and

delay declarations, can be used to obtain a Def analysis in which the most
frequently used domain operations are very lightweight.

– that the speed of an analysis based on non-ground formulae can compare
well against BDD-based Def and Pos analyses whose domain operations are
coded in C [1]. In addition, even without widening, a non-ground formulae
analyser can be significantly faster than a Sharing-based Def analyser [18].

Finally, a useful spin-off of our work is a result that shows how the downward
closure operator that arises in BDD-based set sharing analysis [10] can be im-
plemented straightforwardly with standard BDD operations. This saves the im-
plementor the task of coding another BDD operation in C.

The rest of the paper is structured as follows: Section 2 details the necessary
preliminaries. Section 3 explains how join can be calculated without resorting to
a normal form and also details an algorithm for computing downward closure.
Section 4 investigates the frequency of various Def operations and explains how
representing functions as (non-ground) formulae enables the frequently occurring
Def operations to be implemented particularly efficiently using, for example,

202 J.M. Howe and A. King

entailment checking. Section 5 evaluates a non-ground Def analyser against two
BDD analysers. Sections 6 and 7 describe the related and future work, and
section 8 concludes.

2 Preliminaries

A Boolean function is a function f : Booln → Bool where n ≥ 0. A Boolean
function can be represented by a propositional formula over X where |X| = n.
The set of propositional formulae over X is denoted by BoolX . Throughout this
paper, Boolean functions and propositional formulae are used interchangeably
without worrying about the distinction [1]. The convention of identifying a truth
assignment with the set of variables M that it maps to true is also followed.
Specifically, a map ψX(M) : ℘(X)→ BoolX is introduced defined by: ψX(M) =
(∧M) ∧ (¬ ∨X\M). In addition, the formula ∧Y is often abbreviated as Y .

Definition 1. The (bijective) map modelX : BoolX → ℘(℘(X)) is defined by:
modelX(f) = {M ⊆ X | ψX(M) |= f}.

Example 1. IfX = {x, y}, then the function {〈true, true〉 7→ true, 〈true, false〉 7→
false, 〈false, true〉 7→ false, 〈false, false〉 7→ false} can be represented by the
formula x ∧ y. Also, modelX(x ∧ y) = {{x, y}} and modelX(x ∨ y) = {{x}, {y},
{x, y}}.

The focus of this paper is on the use of sub-classes of BoolX in tracing
groundness dependencies. These sub-classes are defined below:

Definition 2. PosX is the set of positive Boolean functions over X. A function
f is positive iff X ∈ modelX(f). Def X is the set of positive functions over
X that are definite. A function f is definite iff M ∩M ′ ∈ modelX(f) for all
M,M ′ ∈ modelX(f).

Note that Def X ⊆ PosX . One useful representational property of Def X is that
each f ∈ Def X can be described as a conjunction of definite (propositional)
clauses, that is, f = ∧n

i=1(yi ← Yi) [12].

Example 2. SupposeX = {x, y, z} and consider the following table, which states,
for some Boolean functions, whether they are in Def X or PosX and also gives
modelX .

f Def X PosX modelX(f)
false ∅
x ∧ y • • { {x, y}, {x, y, z}}
x ∨ y • { {x}, {y}, {x, y}, {x, z}, {y, z}, {x, y, z}}
x← y • • {∅, {x}, {z}, {x, y}, {x, z}, {x, y, z}}

x ∨ (y ← z) • {∅, {x}, {y}, {x, y}, {x, z}, {y, z}, {x, y, z}}
true • • {∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}

Note, in particular, that x∨y is not in Def X (since its set of models is not closed
under intersection) and that false is neither in PosX nor Def X .

Implementing Groundness Analysis with Definite Boolean Functions 203

Def {x,y}

x ∧ y
cc ##

x x↔ y y@@ ��
x← y y ← x## cc

true

Pos{x,y}

x ∧ y
cc ##

x x↔ y y@@ ��
x← y x ∨ y y ← x

cc

cc
true

Fig. 1. Hasse diagrams

Defining f1∨̇f2 = ∧{f ∈ Def X | f1 |= f ∧f2 |= f}, the 4-tuple 〈Def X , |=,∧, ∨̇〉 is
a finite lattice [1], where true is the top element and ∧X is the bottom element.
Existential quantification is defined by Schröder’s Elimination Principle, that is,
∃x.f = f [x 7→ true] ∨ f [x 7→ false]. Note that if f ∈ Def X then ∃x.f ∈ Def X

[1].

Example 3. If X = {x, y} then x∨̇(x ↔ y) = ∧{(x ← y), true} = (x ← y), as
can be seen in the Hasse diagram for dyadic Def X (Fig. 1). Note also that x∨̇y
= ∧{true} = true 6= (x ∨ y).

The set of (free) variables in a syntactic object o is denoted var(o). Also,
∃{y1, . . . , yn}.f (project out) abbreviates ∃y1.∃yn.f and ∃Y.f (project onto)
denotes ∃var(f) \ Y.f . Let ρ1, ρ2 be fixed renamings such that X ∩ ρ1(X) =
X∩ρ2(X) = ρ1(X)∩ρ2(X) = ∅. Renamings are bijective and therefore invertible.
The downward and upward closure operators ↓ and ↑ are defined by ↓ f =
model−1

X ({∩S | ∅ ⊂ S ⊆ modelX(f)}) and ↑ f = model−1
X ({∪S | ∅ ⊂ S ⊆

modelX(f)}) respectively. Note that ↓f has the useful computational property
that ↓f = ∧{f ′ ∈ Def X | f |= f ′} if f ∈ PosX . Finally, for any f ∈ BoolX ,
coneg(f) = model−1

X ({X \M |M ∈ modelX(f)}).
Example 4. Note that coneg(x ∨ y) = model−1

{x,y}({{x}, {y}, ∅}) and therefore
↑coneg(x ∨ y) = true. Hence coneg(↑coneg(x ∨ y)) = true =↓ x ∨ y.
This is no coincidence as coneg(↑coneg(f)) =↓f . Therefore coneg and ↑ can be
used to calculate ↓.

3 Join and Downward Closure

Calculating join in Def is not as straightforward as one would initially think,
because of the problem of transitive dependencies. Suppose f1, f2 ∈ Def X so
that fi = ∧Fi where Fi = {yi

1 ← Y i
1 , . . . , y

i
ni
← Y i

ni
}. One naive tactic to

compute f1∨̇f2 might be F = {y ← Y 1
j ∧ Y 2

k | y ← Y 1
j ∈ F1 ∧ y ← Y 2

k ∈ F2}.
Unfortunately, in general, ∧F 6|= f1∨̇f2 as is illustrated in the following example.

Example 5. Put F1 = {x ← u, u ← y} and F2 = {x ← v, v ← y} so that
F = {x ← u ∧ v}, but f1∨̇f2 = (x ← (u ∧ v)) ∧ (x ← y) 6= ∧F . Note, however,
that if F1 = {x ← u, u ← y, x ← y} and F2 = {x ← v, v ← y, x ← y} then
F = {x← (u ∧ v), x← (u ∧ y), x← (v ∧ y), x← y} so that f1∨̇f2 = ∧F .

204 J.M. Howe and A. King

The problem is that Fi must be explicit about transitive dependencies (this idea
is captured in the orthogonal form requirement of [1]). This, however, leads to
redundancy in the formula which ideally should be avoided. (Formulae which not
necessarily orthogonal will henceforth be referred to as non-orthogonal formulae.)

It is insightful to consider ∨̇ as an operation on the models of f1 and f2. Since
both modelX(fi) are closed under intersection, ∨̇ essentially needs to extend
modelX(f1) ∪ modelX(f2) with new models M1 ∩M2 where Mi ∈ modelX(fi)
to compute f1∨̇f2. The following definition expresses this observation and leads
to a new way of computing ∨̇ in terms of meet, renaming and projection, that
does not require formulae to be first put into orthogonal form.

Definition 3. The map ġ : BoolX2 → BoolX is defined by: f1ġf2 = ∃Y.f1gf2
where Y =var(f1)∪var(f2) and f1gf2 =ρ1(f1)∧ρ2(f2)∧∧y∈Y y ↔ (ρ1(y)∧ρ2(y)).

Note that ġ operates on BoolX rather than Def X . This is required for the
downward closure operator. Lemma 1 expresses a key relationship between ġ
and the models of f1 and f2.

Lemma 1. Let f1, f2 ∈ BoolX . M ∈ modelX(f1ġf2) if and only if there exists
Mi ∈ modelX(fi) such that M = M1 ∩M2.

Proof. Put X ′ = X ∪ ρ1(X) ∪ ρ2(X).
Let M ∈ modelX(f1ġf2). There exists M ⊆ M ′ ⊆ X ′ such that M ′ ∈

modelX′(f1 g f2). Let Mi = ρ−1
i (M ′ ∩ ρi(Y)). Observe that M ⊆M1 ∩M2 since

(ρ1(y)∧ ρ2(y))← y. Also observe that M1 ∩M2 ⊆M since y ← (ρ1(y)∧ ρ2(y)).
Thus Mi ∈ modelX(fi) and M = M1 ∩M2, as required.

Let Mi ∈ modelX(fi) and put M = M1∩M2 and M ′ = M∪ρ1(M1)∪ρ1(M2).
Observe M ′ ∈ modelX′(f1 g f2) so that M ∈ modelX(f1ġf2). �

From lemma 1 flows the following corollary and also the useful result that ġ is
monotonic.

Corollary 1. Let f ∈ PosX . Then f = fġf if and only if f ∈ Def X .

Lemma 2. ġ is monotonic, that is, f1ġf2 |= f ′
1ġf ′

2 whenever fi |= f ′
i .

Proof. Let M ∈ modelX(f1ġf2). By lemma 1, there exist Mi ∈ modelX(fi) such
that M = M1 ∩M2. Since fi |= f ′

i , Mi ∈ modelX(f ′
i) and hence, by lemma 1,

M ∈ modelX(f ′
1ġf ′

2). �

The following proposition states that ġ coincides with ∨̇ on Def X . This gives a
simple algorithm for calculating ∨̇ that does not depend on the representation
of a formula.

Proposition 1. Let f1, f2 ∈ Def X . Then f1ġf2 = f1∨̇f2.
Proof. Since X |= f2 it follows by monotonicity that f1 = f1ġX |= f1ġf2 and
similarly f2 |= f1ġf2. Hence f1∨̇f2 |= f1ġf2 by the definition of ∨̇.

Now let M ∈ modelX(f1ġf2). By lemma 1, there exists Mi ∈ modelX(fi)
such that M = M1 ∩M2 ∈ modelX(f1∨̇f2). Hence f1ġf2 |= f1∨̇f2. �

Implementing Groundness Analysis with Definite Boolean Functions 205

Downward closure is closely related to ġ and, in fact, ġ can be used repea-
tedly to compute a finite iterative sequence that converges to ↓. This is stated
in proposition 2. Finiteness follows from bounded chain length of PosX .

Proposition 2. Let f ∈ PosX . Then ↓f = ∨i≥1fi where fi ∈ PosX is the
increasing chain given by: f1 = f and fi+1 = fiġfi.

Proof. Let M ∈ modelX(↓ f). Thus there exists Mj ∈ modelX(f) such that
M = ∪m

j=1Mj . Observe M1 ∩ M2,M3 ∩ M4, . . . ∈ modelX(f2) and therefore
M ∈ modelX(fdlog2(m)e). Since m ≤ 22n

where n = |X| it follows that ↓f |= f2n .
Proof by induction is used for the opposite direction. Observe that f1 |=↓f .

Suppose fi |=↓f . Let M ∈ modelX(fi+1). By lemma 1 there exists M1,M2 ∈
modelX(fi) such that M = M1 ∩M2. By the inductive hypothesis M1,M2 ∈
modelX(↓f) thus M ∈ modelX(↓f). Hence fi+1 |=↓f .

Finally, ∨i=1fi ∈ Def X since f1 ∈ PosX and ġ is monotonic and thus
X ∈ modelX(∨i=1fi). �

The significance of this is that it enables ↓ to be computed in terms of existing
BDD operations thus freeing the implementor from more low level coding.

4 Design and Implementation

There are typically many degrees of freedom in designing an analyser, even
for a given domain. Furthermore, work can often be shifted from one abstract
operation into another. For example, Garćıa de la Banda et al [16] maintain
DBCF by a meet that uses six rewrite rules to normalise formulae. This gives a
linear time join and projection at the expense of an exponential meet. Conversely,
King et al [18] have meet, join and projection operations that are quadratic in
the number of models. Note, however, that the numbers of models is exponential
(explaining the need for widening). Ideally, an analysis should be designed so that
the most frequently used operations have low complexity and are therefore fast.

4.1 Frequency Analysis

In order to balance the frequency of an abstract operation against its cost, a
BDD-based Def analyser was implemented and instrumented to count the num-
ber of calls to the various abstract operations. The BDD-based Def analyser is
coded in Prolog as a simple meta-interpreter that uses induced magic-sets [7]
and eager evaluation [22] to perform goal-dependent bottom-up evaluation.

Induced magic is a refinement of the magic set transformation, avoiding much
of the re-computation that arises because of the repetition of literals in the
bodies of magicked clauses [7]. It also avoids the overhead of applying the magic
set transformation. Eager evaluation [22] is a fixpoint iteration strategy which
proceeds as follows: whenever an atom is updated with a new (less precise)
abstraction, a recursive procedure is invoked to ensure that every clause that

206 J.M. Howe and A. King

has that atom in its body is re-evaluated. Induced magic may not be as efficient
as, say, GAIA [19] but it can be coded easily in Prolog.

The BDD-based Def analysis is built on a ROBDD package coded by Arm-
strong and Schachte [1]. The package is intended for Pos analysis and there-
fore supplies a ∨ join rather than a ∨̇ join. The package did contain, however,
a hand-crafted C upward closure operator ↑ enabling ∨̇ to be computed by
f1∨̇f2 =↓(f1∨f2) where ↓f = coneg(↑coneg(f)). The operation coneg(f) can be
computed simply by interchanging the left and right (true and false) branches
of an ROBDD. The analyser also uses the environment trimming tactic used by
Schachte to reduce the number of variables that occur in a ROBDD. Specifi-
cally, clause variables are numbered and each program point is associated with a
number, in such a way that if a variable has a number less than that associated
with the program point, then it is redundant (does not occur to the right of the
program point) and hence can be projected out. This optimisation is important
in achieving practical analysis times for some large programs.

The following table gives a breakdown of the number of calls to each abstract
operation in the BDD-based Def analysis of eight large programs. Meet, join,
equiv, project and rename are the obvious Boolean operations. Join (diff) is the
number of calls to a join f1∨̇f2 where f1∨̇f2 6= f1 and f1∨̇f2 6= f2. Project (trim)
are the number of calls to project that stem from environment trimming.

file strips chat parser sim v5-2 peval aircraft essln chat 80 aqua c
meet 815 4471 2192 2198 7063 8406 15483 112455
join 236 1467 536 632 2742 1668 4663 35007

join (diff) 33 243 2 185 26 177 693 5173
equiv 236 1467 536 632 2742 1668 4663 35007

project 330 1774 788 805 3230 2035 5523 38163
project (trim) 173 1384 770 472 2082 2376 5627 42989

rename 857 4737 2052 2149 8963 5738 14540 103795

Observe that meet and rename are called most frequently and therefore,
ideally, should be the most lightweight. Project, project (trim), join and equiv
calls occur with similar frequency but note that it is rare for a join to differ from
both its arguments. Join is always followed by an equivalence and this explains
why the join and equiv rows coincide.

Next, the complexity of ROBDD and DBCF (specialised for Def [1]) opera-
tions are reviewed in relation to their calling frequency. Suggestions are made
about balancing the complexity of an operation against its frequency by using a
non-orthogonal formulae representation.

For ROBDDs (DBCF) meet is quadratic (exponential) in the size of its argu-
ments [1]. For ROBDDs (DBCF) these arguments are exponential (polynomial)
in the number of variables. Representing Def functions as non-orthogonal for-
mulae is attractive since meet is concatenation which can be performed in con-
stant time (using difference lists). Renaming is quadratic for ROBDDs (linear
for DBCF) in the size of its argument [1]. Renaming a non-orthogonal formula is
O(m log(n)) where m (n) is the number of symbols (variables) in its argument.

Implementing Groundness Analysis with Definite Boolean Functions 207

For ROBDDs (DBCF), join is quadratic (quartic) in the size of its argu-
ments [1]. For non-orthogonal formulae, join is exponential. Note, however, that
the majority of joins result in one of the operands and hence are unnecessary.
This can be detected by using an entailment check which is quadratic in the
size of the representation. Thus it is sensible to filter join through an entailment
check so that join is called comparatively rarely. Therefore its complexity is less
of an issue. Specifically, if f1 |= f2 then f1∨̇f2 = f2. For ROBDDs, equivalence
checking is constant time, whereas for DBCF it is linear in the size of the re-
presentation. For non-orthogonal formulae, equivalence is quadratic in the size
of the representation. Observe that meet occurs more frequently than equality
and therefore a gain should be expected from trading an exponential meet and
a linear join for a constant time meet and an exponential join.

For ROBDDs (DBCF), projection is quadratic (linear) in the size of its ar-
guments [1]. For a non-orthogonal representation, projection is exponential, but
again, entailment checking can be used to prevent the majority of projections.

4.2 The GEP Representation

A call (or answer) pattern is a pair 〈a, f〉 where a is an atom and f ∈ Def var(a).
Normally the arguments of a are distinct variables. The formula f is a con-
junction (list) of propositional Horn clauses in the Def analysis described in
this paper. In a non-ground representation the arguments of a can be instantia-
ted and aliased to express simple dependency information [9]. For example, if
a = p(x1, ..., x5), then the atom p(x1, true, x1, x4, true) represents a coupled with
the formula (x1 ↔ x3)∧x2∧x5. This enables the abstraction 〈p(x1, ..., x5), f1〉 to
be collapsed to 〈p(x1, true, x1, x4, true), f2〉 where f1 = (x1 ↔ x3)∧x2∧x5∧f2.
This encoding leads to a more compact representation and is similar to the GER
factorisation of ROBDDs proposed by Bagnara and Schachte [3]. The represen-
tation of call and answer patterns described above is called GEP (groundness,
equivalences and propositional clauses) where the atom captures the first two
properties and the formula the latter. Note that the current implementation of
the GEP representation does not avoid inefficiencies in the representation such
as the repetition of Def formulae.

4.3 Abstract Operations

The GEP representation requires the abstract operations to be lifted from Boo-
lean formulae to call and answer patterns.

Meet The meet of the pairs 〈a1, f1〉 and 〈a2, f2〉 can be computed by unifying
a1 and a2 and concatenating f1 and f2.

Renaming The objects that require renaming are formulae and call (answer)
pattern GEP pairs. If a dynamic database is used to store the pairs [17], then
renaming is automatically applied each time a pair is looked-up in the database.
Formulae can be renamed with a single call to the Prolog builtin copy term.

208 J.M. Howe and A. King

Join Calculating the join of the pairs 〈a1, f1〉 and 〈a2, f2〉 is complicated by the
way that join interacts with renaming. Specifically, in a non-ground representa-
tion, call (answer) patterns would be typically stored in a dynamic database so
that var(a1) ∩ var(a2) = ∅. Hence 〈a1, f1〉 (or equivalently 〈a2, f2〉) have to be
appropriately renamed before the join is calculated. This is achieved as follows.
Plotkin’s anti-unification algorithm [20] is used to compute the most specific
atom a that generalises a1 and a2. The basic idea is to reformulate a1 as a pair
〈a′

1, f
′
1〉 which satisfies two properties: a′

1 is a syntactic variant of a; the pair
represents the same dependency information as 〈a1, true〉. A pair 〈a′

2, f
′
2〉 is li-

kewise constructed that is a reformulation of a2. The atoms a, a′
1 and a′

2 are
unified and then the formula f = (f1∧f ′

1)ġ(f2∧f ′
2) is calculated as described in

section 3 to give the join 〈a, f〉. In actuality, the computation of 〈a′
1, f

′
1〉 and the

unification a = a′
1 can be combined in a single pass as is outlined below. Suppose

a = p(t1, . . . , tn) and a1 = p(s1, . . . , sn). Let g0 = true. For each 1 ≤ k ≤ n, one
of the following cases is selected. (1) If tk is syntactically equal to sk, then put
gk = gk−1. (2) If sk is bound to true, then put gk = gk−1 ∧ (tk ← true). (3) If
sk ∈ var(〈s1, . . . , sk−1〉), then unify sk and tk and put gk = gk−1. (4) Otherwise,
put gk = gk−1 ∧ (tk ← sk) ∧ (sk ← tk). Finally, let f ′

1 = gn. The algorithm is
applied analogously to bind variables in a and construct f ′

2. The join of the pairs
is then given by 〈a, (f1 ∧ f ′

1)ġ(f2 ∧ f ′
2)〉.

Example 6. Consider the join of the GEP pairs 〈a1, true〉 and 〈a2, y1 ← y2〉
where a1 = p(true, x1, x1, x1) and a2 = p(y1, y2, true, true). The most specific
generalisation of a1 and a2 is a = p(z1, z2, z3, z3). The table below illustrates the
construction of 〈a′

1, f
′
1〉 and 〈a′

2, f
′
2〉 in the left- and right-hand columns.

k case gk θk case
′ g′

k θ′
k

0 true ε true ε
1 2 z1 ← true ε 4 y1 ↔ z1 ε
2 4 g1 ∧ (z2 ↔ x1) θ1 4 g′

1 ∧ (y2 ↔ z2) θ1
3 3 g2 {x1 7→ z3} 2 g′

2 ∧ (z3 ← true) θ1
4 1 g2 θ3 2 g′

3 ∧ (z3 ← true) θ1

Putting θ = θ′
4 ◦ θ4 = {x1 7→ z3}, the join is given by 〈θ(a), θ(g4 ∧ true)ġθ(g′

4 ∧
y1 ← y2)〉 = 〈a, (z1 ← true) ∧ (z2 ↔ z3)ġ(y1 ↔ z1) ∧ (y2 ↔ z2) ∧ (z3 ←
true) ∧ (y1 ← y2)〉 = 〈p(z1, z2, z3, z3), (z1 ← z2) ∧ (z3 ← z2)〉.
Note that often a1 is a variant of a2. This can be detected with a lightweight
variance check, enabling join and renaming to be reduced to unifying a1 and a2
and computing f = f1ġf2 to give the pair 〈a1, f〉.

Projection Projection is only applied to formulae. Each of the variables to be
projected out is eliminated in turn, as follows. Suppose x is to be projected out of
f . First, all those clauses with x as their head are found, giving {x← Xi | i ∈ I}
where I is a (possibly empty) index set. Second, all those clauses with x in the
body are found, giving {y ← Yj | j ∈ J} where J is a (possibly empty) index

Implementing Groundness Analysis with Definite Boolean Functions 209

set. Thirdly these clauses of f are replaced by {y ← Zi,j | i ∈ I ∧ j ∈ J ∧ Zi,j =
Xi ∪ (Yj \ {x}) ∧ y 6∈ Zi,j} (syllogizing). Fourthly, a compact representation
is maintained by eliminating redundant clauses (absorption). By appropriately
ordering the clauses, all four steps can be performed in a single pass over f . A
final pass over f retracts clauses such as x← true by binding x to true and also
removes clause pairs such as y ← z and z ← y by unifying y and z.

Entailment Entailment checking is only applied to formulae. A forward chai-
ning decision procedure for propositional Horn clauses (and hence Def) is used
to test entailment. A non-ground representation allows chaining to be imple-
mented efficiently using block declarations. To check that ∧n

i=1yi ← Yi entails
z ← Z the variables of Z are first grounded. Next, a process is created for each
clause yi ← Yi that blocks until Yi is ground. When Yi is ground, the process
resumes and grounds yi. If z is ground after a single pass over the clauses, then
(∧n

i=1yi ← Yi) |= z ← Z. By calling the check under negation, no problematic
bindings or suspended processes are created.

5 Experimental Evaluation

A Def analyser using the non-ground techniques described in this paper has been
implemented. This implementation is built in Prolog using the same induced
magic framework as for the BDD-based Def analyser, therefore the analysers
work in lock step and generate the same results. (The only difference is that
the non-ground analyser does not implement environment trimmed since the
representation is far less sensitive to the number of variables in a clause.) The
core of the analyser (the fixpoint engine) is approximately 400 lines of code and
took one working week to write, debug and tune.

In order to investigate whether entailment checking, the join (ġ) algorithm,
and the GEP representation are enough to obtain a fast and scalable analysis,
the non-ground analyser was compared with the BDD-based analyser for speed
and scalability. Since King et al [18] do not give precision results for Pos for
larger benchmarks, we have also implemented a BDD-based Pos analyser in
the same vein, so that firmer conclusions about the relative precision of Def
and Pos can be drawn. It is reported in [2], [3] that a hybrid implementation
of ROBDDs, separating maintenance of definiteness information and of various
forms of dependency information can give significantly improved performance.
Therefore, it is to be expected that an analyser based on such an implementation
of ROBDDs would be faster than that used here.

The comparisons focus on goal-dependent groundness analysis of 60 Prolog
and CLP(R) programs. The results are given in the table below. In this table,
the size column gives the number of distinct (abstract) clauses in the programs.
The abs column gives the time for parsing the files and abstracting them, that
is, replacing built-ins, such as arg(x, t, s), with formulae, such as x ∧ (s← t).

210 J.M. Howe and A. King

fixpoint precision
file size abs Def NG Def BDD Pos Def Pos %

rotate.pl 3 0.00 0.00 0.00 0.00 3 6 50
circuit.clpr 20 0.02 0.02 0.03 0.02 3 3 0

air.clpr 20 0.02 0.02 0.03 0.02 9 9 0
dnf.clpr 23 0.02 0.01 0.01 0.01 8 8 0

dcg.pl 23 0.02 0.01 0.01 0.02 59 59 0
hamiltonian.pl 23 0.02 0.01 0.01 0.01 37 37 0

poly10.pl 29 0.02 0.00 0.00 0.01 0 0 0
semi.pl 31 0.03 0.03 0.28 0.28 28 28 0
life.pl 32 0.02 0.01 0.02 0.02 58 58 0

rings-on-pegs.clpr 34 0.02 0.02 0.04 0.04 11 11 0
meta.pl 35 0.01 0.01 0.02 0.01 1 1 0

browse.pl 36 0.02 0.01 0.02 0.02 41 41 0
gabriel.pl 38 0.02 0.01 0.03 0.03 37 37 0

tsp.pl 38 0.03 0.01 0.04 0.04 122 122 0
nandc.pl 40 0.03 0.01 0.03 0.03 37 37 0
csg.clpr 48 0.04 0.01 0.02 0.02 12 12 0
disj r.pl 48 0.02 0.01 0.04 0.04 97 97 0

ga.pl 48 0.06 0.01 0.04 0.04 141 141 0
critical.clpr 49 0.03 0.03 0.04 0.04 14 14 0

scc1.pl 51 0.03 0.01 0.06 0.04 89 89 0
mastermind.pl 53 0.04 0.01 0.04 0.04 43 43 0
ime v2-2-1.pl 53 0.04 0.03 0.09 0.08 101 101 0

robot.pl 53 0.03 0.00 0.01 0.01 41 41 0
cs r.pl 54 0.05 0.01 0.04 0.04 149 149 0

tictactoe.pl 56 0.06 0.01 0.03 0.04 60 60 0
flatten.pl 56 0.03 0.04 0.09 0.08 27 27 0
dialog.pl 61 0.02 0.01 0.03 0.03 70 70 0

map.pl 66 0.02 0.01 0.08 0.08 17 17 0
neural.pl 67 0.05 0.01 0.05 0.05 123 123 0

bridge.clpr 69 0.08 0.01 0.02 0.03 24 24 0
conman.pl 71 0.04 0.00 0.02 0.02 6 6 0

kalah.pl 78 0.04 0.02 0.04 0.04 199 199 0
unify.pl 79 0.04 0.07 0.12 0.10 70 70 0

nbody.pl 85 0.07 0.06 0.10 0.11 113 113 0
peep.pl 86 0.11 0.03 0.06 0.05 10 10 0

boyer.pl 95 0.06 0.04 0.04 0.05 3 3 0
bryant.pl 95 0.07 0.20 0.15 0.15 99 99 0

sdda.pl 99 0.05 0.06 0.06 0.06 17 17 0
read.pl 105 0.07 0.06 0.11 0.10 99 99 0
press.pl 109 0.07 0.11 0.16 0.18 53 53 0
qplan.pl 109 0.08 0.02 0.08 0.07 216 216 0

trs.pl 111 0.11 0.11 0.31 0.60 13 13 0
reducer.pl 113 0.07 0.11 0.16 0.14 41 41 0

simple analyzer.pl 140 0.09 0.13 0.34 0.44 89 89 0
dbqas.pl 146 0.09 0.02 0.05 0.05 43 43 0

ann.pl 148 0.09 0.11 0.24 0.23 74 74 0
asm.pl 175 0.14 0.06 0.14 0.13 90 90 0

nand.pl 181 0.12 0.04 0.21 0.19 402 402 0
rubik.pl 219 0.16 0.15 0.39 0.40 158 158 0

lnprolog.pl 221 0.10 0.08 0.14 0.14 143 143 0
ili.pl 225 0.15 0.25 0.23 0.24 4 4 0

sim.pl 249 0.18 0.39 0.56 0.52 100 100 0
strips.pl 261 0.17 0.01 0.11 0.11 142 142 0

chat parser.pl 281 0.21 0.45 0.59 0.60 505 505 0
sim v5-2.pl 288 0.17 0.05 0.20 0.20 455 457 0.4

peval.pl 328 0.16 0.28 0.27 0.27 27 27 0
aircraft.pl 397 0.48 0.14 0.55 0.59 687 687 0

essln.pl 565 0.36 0.21 0.58 0.58 163 163 0
chat 80.pl 888 0.92 1.31 1.89 2.27 855 855 0
aqua c.pl 4009 2.48 11.29 104.99 897.10 1288 1288 0

Implementing Groundness Analysis with Definite Boolean Functions 211

The abstracter deals with meta-calls, asserts and retracts following the ele-
gant (two program) scheme detailed by Bueno et al [6]. The fixpoint columns
give the time, in seconds, to compute the fixpoint for each of the three analysers
(Def NG and Def BDD denote respectively the non-ground and BDD-based Def
analyser). The precision columns give the total number of ground arguments in
the call and answer patterns (and exclude those ground arguments for predicates
introduced by normalising the program into definite clauses). The % column ex-
press the loss of precision by Def relative to Pos. All three analysers were coded
in SICStus 3.7 and the experiments performed on a 296MHz Sun UltraSPARC-II
with 1GByte of RAM running Solaris 2.6.

The experimental results indicate the precision of Def is close to that of
Pos. Although rotate.pl is small it has been included in the table because it
was the only program for which significant precision was lost. Thus, whilst it is
always possible to construct programs in which disjunctive dependency informa-
tion (which cannot be traced in Def) needs to be tracked to maintain precision,
these results suggest that Def is adequate for top-down groundness analysis of
many programs.

The speed of the non-ground Def analyser compares favourably with both
the BDD analysers. This is surprising because the BDD analysers make use
of hashing and memoisation to avoid repeated work. In the non-ground Def
analyser, the repeated work is usually in meet and entailment checking, and these
operations are very lightweight. In the larger benchmarks, such as aqua c.pl, the
BDD analysis becomes slow as the BDDs involved are necessarily large. Widening
for BDDs can make such examples more manageable [15]. Notice that the time
spent in the core analyser (the fixpoint engine) is of the same order as that spent
in the abstracter. This suggests that a large speed up in the analysis time needs
to be coupled with a commensurate speedup in the abstracter.

To give an initial comparison with the Sharing-based Def analyser of King et
al [18], the clock speed of the Sparc-20 used in the Sharing experiments has been
used to scale the results in this paper. These findings lead to the preliminary
conclusion that the analysis presented in this paper is about twice as fast as the
Sharing quotient analyser. Furthermore, this analyser relies on widening to keep
the abstractions small, hence may sacrifice some precision for speed.

6 Related Work

Van Hentenryck et al [21] is an early work which laid a foundation for BDD-based
Pos analysis. Corsini et al [11] describe how variants of Pos can be implemen-
ted using Toupie, a constraint language based on the µ-calculus. If this analyser
was extended with, say, magic sets, it might lead to a very respectable goal-
dependent analysis. More recently, Bagnara and Schachte [3] have developed the
idea [2] that a hybrid implementation of a ROBDD that keeps definite informa-
tion separate from dependency information is more efficient than keeping the
two together. This hybrid representation can significantly decrease the size of an
ROBDD and thus is a useful implementation tactic.

212 J.M. Howe and A. King

Armstrong et al [1] study a number of different representations of Boolean
function for both Def and Pos. An empirical evaluation on 15 programs suggests
that specialising Dual Blake Canonical Form (DBCF) for Def leads to the fastest
analysis overall. This representation of a Def function f is in orthogonal form
since it is constructed from all the prime consequents that are entailed by f . It
thus includes redundant transitive dependencies. Armstrong et al [1] also perform
interesting precision experiments. Def and Pos are compared, however, in a
bottom-up framework that is based on condensing which is therefore biased
towards Pos. The authors point out that a top-down analyser would improve
the precision of Def relative to Pos and our work supports this remark.

Garćıa de la Banda et al [16] describe a Prolog implementation of Def that is
also based on an orthogonal DBCF representation (though this is not explicitly
stated) and show that it is viable for some medium sized benchmarks. Fecht [15]
describes another groundness analyser that is not coded in C. Fecht adopts ML
as a coding medium in order to build an analyser that is declarative and easy to
maintain. He uses a sophisticated fixpoint solver and his analysis times compare
favourably with those of Van Hentenryck et al [21].

Codish and Demoen [8] describe a non-ground model based implementa-
tion technique for Pos that would encode x1 ↔ (x2 ∧ x3) as three tuples
〈true, true, true〉, 〈false, , false〉, 〈false, false, 〉. Codish et al [9] propose a
sub-domain of Def that can only propagate dependencies of the form (x1 ↔
x2) ∧ x3 across procedure boundaries. The main finding of Codish et al [9] is
that this sub-domain loses only a small amount of precision for goal-dependent
analysis.

King et al [18] show how the equivalence checking, meet and join of Def can
be efficiently computed with a Sharing quotient. Widening is required to keep
the representation manageable.

Finally, a curious connection exists between the join algorithm described in
this paper and a relaxation that occurs in disjunctive constraint solving [14].
The relaxation computes the join (closure of the convex hull) of two polyhedra
P1 and P2 where Pi = {x ∈ R

n | Aix ≤ Bi}. The join of P1 and P2 can be
expressed as:

P =
{

x ∈ R
n

∣∣∣∣ A1ρ1(x) ≤ B1 ∧A2ρ2(x) ≤ B2 ∧
0 ≤ λ ≤ 1 ∧ x = λρ1(x) + (1− λ)ρ2(x)

}

which amounts to the same tactic of constructing join in terms of meet (conjun-
ction of linear equations), renaming (ρ1 and ρ2) and projection (the variables of
interest are x).

7 Future Work

Initial profiling has suggested that a significant proportion of the analysis time is
spent projecting onto (new) call and answer patterns, so recoding this operation
might impact on the speed of the analysis. Also, a practical comparison with a
DBCF analyser would be insightful. This is the immediate future work. In the

Implementing Groundness Analysis with Definite Boolean Functions 213

medium term, it would be interesting to apply widening to obtain an analysis
with polynomial guarantees. Time complexity relates to the maximum number
of iterations of a fixpoint analysis and this, in turn, depends on the length of the
longest ascending chain in the underlying domain. For both PosX and Def X the
longest chains have length 2n− 1 where |X| = n [18]. One way to accelerate the
analysis, would be to widen call and answer patterns by discarding the formulae
component of the GEP representation if the number of updates to a particular
call or answer pattern exceeded, say, 8 [18]. The abstraction then corresponds to
an EPosX function whose chain length is linear in X [9]. Although widening for
space is not as critical as in [18], this too would be a direction for future work. In
the long term, it would be interesting to apply Def to other dependency analysis
problems, for example, strictness [13] and finiteness [5] analysis.

The frequency analysis which has been used in this paper to tailor the costs
of the abstract operations to the frequency with which they are called could be
applied to other analyses, such as type, freeness or sharing analyses.

8 Conclusions

The representation and abstract operations for Def have been chosen by follo-
wing a strategy. The strategy was to design an implementation so as to ensure
that the most frequently called operations are the most lightweight. Previously
unexploited computational properties of Def have been used to avoid expensive
joins (and projections) through entailment checking; and to keep abstractions
small by reformulating join in such a way as to avoid orthogonal reduced mono-
tonic body form. The join algorithm has other applications such as computing
the downward closure operator that arises in BDD-based set sharing analysis.

By combining the techniques described in this paper, an analyser has been
constructed that is precise, can be implemented easily in Prolog, and whose
speed compares favourably with BDD-based analysers.

Acknowledgements We thank Mike Codish, Roy Dyckhoff and Andy Heaton
for useful discussions. We would also like to thank Peter Schachte for help with
his BDD analyser. This work was funded partly by EPSRC Grant GR/MO8769.

References

1. T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two Classes of
Boolean Functions for Dependency Analysis. Science of Computer Programming,
31(1):3–45, 1998.

2. R. Bagnara. A Reactive Implementation of Pos using ROBDDs. In Programming
Languages: Implementation, Logics and Programs, volume 1140 of Lecture Notes
in Computer Science, pages 107–121. Springer, 1996.

3. R. Bagnara and P. Schachte. Factorizing Equivalent Variable Pairs in ROBDD-
Based Implementations of Pos. In Seventh International Conference on Algebraic
Methodology and Software Technology, volume 1548 of Lecture Notes in Computer
Science, pages 471–485. Springer, 1999.

214 J.M. Howe and A. King

4. N. Baker and H. Søndergaard. Definiteness Analysis for CLP(R). In Australian
Computer Science Conference, pages 321–332, 1993.

5. P. Bigot, S. Debray, and K. Marriott. Understanding Finiteness Analysis using
Abstract Interpretation. In Joint International Conference and Symposium on
Logic Programming, pages 735–749. MIT Press, 1992.

6. F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Stan-
dard Prolog Programs. In European Symposium on Programming, volume 1058 of
Lecture Notes in Computer Science, pages 108–124. Springer, 1996.

7. M. Codish. Efficient Goal Directed Bottom-up Evaluation of Logic Programs.
Journal of Logic Programming, 38(3):355–370, 1999.

8. M. Codish and B. Demoen. Analysing Logic Programs using “prop”-ositional Logic
Programs and a Magic Wand. Journal of Logic Programming, 25(3):249–274, 1995.

9. M. Codish, A. Heaton, A. King, M. Abo-Zaed, and P. Hill. Widening Positive
Boolean Functions for Goal-dependent Groundness Analysis. Technical Report 12-
98, Computing Laboratory, May 1998. http://www.cs.ukc.ac.uk/pubs/1998/589.

10. M. Codish, H. Søndergaard, and P. Stuckey. Sharing and Groundness Dependencies
in Logic Programs. ACM Transactions on Programming Languages and Systems,
1999. To appear.

11. M.-M. Corsini, K. Musumbu, A. Rauzy, and B. Le Charlier. Efficient Bottom-
up Abstract Interpretation of Prolog by means of Constraint Solving over Finite
Domains. In Programming Language Implementation and Logic Programming,
volume 714 of Lecture Notes in Computer Science, pages 75–91. Springer, 1993.

12. P. Dart. On Derived Dependencies and Connected Databases. Journal of Logic
Programming, 11(1&2):163–188, 1991.

13. S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical Program Analysis
Using General Purpose Logic Programming Systems — A Case Study. In Program-
ming Language Design and Implementation, pages 117–126. ACM Press, 1996.

14. B. De Backer and H. Beringer. A CLP Language Handling Disjunctions of Linear
Constraints. In International Conference on Logic Programming, pages 550–563.
MIT Press, 1993.

15. C. Fecht. Abstrakte Interpretation logischer Programme: Theorie, Implementie-
rung, Generierung. PhD thesis, Universität des Saarlandes, 1997.

16. M. Garćıa de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier, G. Jans-
sens, and W. Simoens. Global Analysis of Constraint Logic Programs. ACM
Transactions on Programming Languages and Systems, 18(5):564–614, 1996.

17. M. Hermenegildo, R. Warren, and S. Debray. Global Flow Analysis as a Practical
Compilation Tool. Journal of Logic Programming, 13(4):349–366, 1992.

18. A. King, J.-G. Smaus, and P. Hill. Quotienting Share for Dependency Analysis. In
European Symposium on Programming, volume 1576 of Lecture Notes in Computer
Science, pages 59–73. Springer, 1999.

19. B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic
Abstract Interpretation Algorithm for Prolog. ACM Transactions on Programming
Languages and Systems, 16(1):35–101, 1994.

20. G. Plotkin. A Note on Inductive Generalisation. Machine Intelligence, 5:153–163,
1970.

21. P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Evaluation of the domain
Prop. Journal of Logic Programming, 23(3):237–278, 1995.

22. J. Wunderwald. Memoing Evaluation by Source-to-Source Transformation. In
Logic Program Synthesis and Transformation, Lecture Notes in Computer Science,
pages 17–32. Springer, 1995. 1048.

The Correctness of Type Specialisation

John Hughes

Chalmers University of Technology, S-41296 Göteborg.
rjmh@cs.chalmers.se, www.cs.chalmers/˜rjmh.

Abstract. Type specialisation, like partial evaluation, is an approach to
specialising programs. But type specialisation works in a very different
way, using a form of type inference. Previous articles have described the
method and demonstrated its power as a program transformation, but its
correctness has not previously been addressed. Indeed, it is not even clear
what correctness should mean: type specialisation transforms programs
to others with different types, so clearly cannot preserve semantics in the
usual sense.
In this paper we explain why finding a correctness proof was difficult, we
motivate a correctness condition, and we prove that type specialisation
satisfies it. Perhaps unsurprisingly, type-theoretic methods turned out to
crack the nut.

1 Introduction

Type specialisation, like partial evaluation, is an approach to specialising pro-
grams [13]. While partial evaluation focusses on specialising the control structu-
res of a program, type specialisation focusses on transforming the datatypes. A
type specialiser can produce programs operating on quite different types from
the source program, and as a result achieve very strong specialisations. Earlier
papers contain many illustrations of the power of the method [10,9,12,11,4].

However, these earlier papers do not address the correctness of the method:
are the programs which type specialisation produces equivalent to those they
are derived from? This question is harder to answer for type specialisation than
for partial evaluation for two reasons. Firstly, since the type specialiser changes
types, it is not even clear what ‘equivalent’ means. Secondly, for the most part,
a partial evaluator applies a sequence of small semantics preserving transfor-
mations whose correctness is obvious, but the type specialiser is described by
axiomatising the relation between source and residual programs in one go. Thus
there is more scope for error. Indeed, it transpires that the type specialiser does
not preserve semantics, but we are able to prove a weaker result which is ‘good
enough’.

In this paper, we present our proof of correctness. We shall begin by reviewing
type specialisation, and explaining the problems which foiled our earlier attempts
to find a proof. Then we explain what we actually prove, which is an analogue
of subject reduction. Finally, we will present some of the cases of the proof in
detail.

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 215–229, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

216 J. Hughes

2 What is Type Specialisation?

Type specialisation transforms a typed source program into a typed residual
program, and in constrast to partial evaluation, types play a major rôle during
the transformation itself. Both source and residual programs are simply typed,
but they are expressed in different languages, and their types are used for diffe-
rent purposes. In Figure 1 we specify the syntax of terms and types for a small
language we will study first.

e ::= n | e + e
| lift e

| x | λx.e | e@e

| fix e

τ ::= int
| int
| τ → τ

e′ ::= •
| n
| x | λx.e′ | e′ e′

| fix e′

τ ′ ::= n
| int
| τ ′ → τ ′

Fig. 1. Source and Residual Languages.

The source language is a form of two-level λ-calculus: constructions may come
in two forms, static or dynamic, with the dynamic form indicated by underlining.
Similarly, types may be either static or dynamic. In the figure, we consider only
static integers (constants or additions), dynamic integers (formed by applying
lift to static ones), and dynamic functions (λ-expressions, dynamic application,
and dynamic fix). The typing rules for this fragment are given in Figure 2.

Γ |− n : int

Γ |− ei : int
Γ |− e1 + e2 : int

Γ, x : τ |− x : τ

Γ |− e : int
Γ |− lift e : int

Γ, x : τ1 |− e : τ2

Γ |− λx.e : τ1 → τ2

Γ |− e1 : τ1 → τ2 Γ |− e2 : τ1

Γ |− e1@e2 : τ2

Γ |− e : τ → τ

Γ |− fix e : τ

Fig. 2. Source Typing Rules.

There are two subtleties here, however. Firstly, in contrast to other two-
level λ-calculi, we do not restrict the formation of two level types in any way.
For example, we allow dynamic functions to take static values as arguments,
and return static results, which is forbidden in the context of partial evaluation.

The Correctness of Type Specialisation 217

The reason is simply that the type specialiser is able to specialise such programs,
while partial evaluators are not. Intuitions from other specialisers lead one astray
here therefore: the reason that no restrictions on type formation are stated is
not that I have forgotten them, but that there are indeed no restrictions.

Secondly, we interpret the syntax of types co-inductively. That is, types may
be infinite expressions conforming to this syntax. This is the way in which we
handle recursive types: they are represented as their infinite unfolding, and no
special construction for type recursion is required. This is particularly useful
for residual types, since it allows the specialiser to synthesize recursive types
freely. While recursive types correspond only to regular infinite types, we need
no assumption of regularity in the proofs which follow. Recursive types are of
little use in the fragment in the Figure, but when we later extend the language
we consider they will of course play their usual useful rôle.

The residual language is also a form of simply typed λ-calculus, but with a
rich type system in which types carry static information. Thus there is a residual
type n for every integer n; a static integer expression in the source language
specialises to a residual expression with such a type. All static information is
expressed via residual types, and as a result need not be present in residual
terms. This explains the residual term •, which stands for ‘no value’: we can
specialise 2 + 2 for example to •, since the residual type (4) already tells us all
we need to know about the result. Type specialisation produces many residual
expressions of this sort, but they are easy to remove in a post-processor we call
the ‘void eraser’. The typing rules for residual terms are given in Figure 3.

Γ |− • : n

Γ, x : τ ′
1 |− e : τ ′

2

Γ |− λx.e : τ ′
1 → τ ′

2

Γ |− n : int

Γ |− e′
1 : τ ′

1 → τ ′
2 Γ |− e′

2 : τ ′
1

Γ |− e′
1 e′

2 : τ ′
2

Γ, x : τ ′ |− x : τ ′

Γ |− e′ : τ ′ → τ ′

Γ |− fix e′ : τ ′

Fig. 3. Residual Typing Rules.

Type specialisation is specified via a set of specialisation rules, analogous to
typing rules. Specialisation rules let us infer specialisation judgements, of the
form

Γ |− e : τ ↪→ e′ : τ ′

meaning that source expression e of type τ specialises to residual expression e′

of type τ ′. The context Γ contains assumptions about source variables, of the
form

x : τ ↪→ e′ : τ ′

Notice that variables may specialise to any residual expression; they do not have
to specialise to variables.

218 J. Hughes

Γ |− n : int ↪→ • : n

Γ |− ei : int ↪→ e′
i : ni n = n1 + n2

Γ |− e1 + e2 : int ↪→ • : n

Γ |− e : int ↪→ e′ : n

Γ |− lift e : int ↪→ n : int

Γ, x : τ ↪→ e′ : τ ′ |− x : τ ↪→ e′ : τ ′

Γ, x : τ1 ↪→ x′ : τ ′
1 |− e : τ2 ↪→ e′ : τ ′

2

Γ |− λx.e : τ1 → τ2 ↪→ λx′.e′ : τ ′
1 → τ ′

2
x′ /∈ FV (Γ)

Γ |− e1 : τ1 → τ2 ↪→ e′
1 : τ ′

1 → τ ′
2 Γ |− e2 : τ1 ↪→ e′

2 : τ ′
1

Γ |− e1@e2 : τ2 ↪→ e′
1 e′

2 : τ ′
2

Γ |− e : τ → τ ↪→ e′ : τ ′ → τ ′

Γ |− fix e : τ ↪→ fix e′ : τ ′

Fig. 4. Specialisation Rules.

The specialisation rules for the fragment we are considering here are given
in Figure 4. Using these rules we can conclude, for example, that

|− (λx.lift (x + 1))@2 : int ↪→ (λx′.3) • : int

The 2 : int specialises to • : 2, which forces the type of x′ to be 2. Consequently
x + 1 : int specialises to • : 3, and the lift moves this static information back
into the term, specialising to 3 : int. Void erasure in this case elides both • and
λx′, resulting in just 3 as the final specialised program.

Note that the residual type system is more restrictive than the source one,
so that well-typed source programs may fail to specialise. For example, the term

(λf.f@2 + f@3)@(λx.x + 1)

cannot be specialised, because x would need to be assigned both residual types
2 and 3. This is perfectly natural: when we introduce the possibility to specialise
types, we also introduce the possibility to do so inconsistently at different points
in the program.

Using types to carry static information enables us to specialise more programs
than a partial evaluator can. For example,

|− (λf.f@2)@(λx.lift (x + 1)) : int ↪→ (λf ′.f ′ •) (λx′.3) : int

where x′ must have type 2 to match the call of f ′, and so the body of f ′ specialises
to 3. Here we can specialise the body of λx.lift (x + 1), even though it does

The Correctness of Type Specialisation 219

not appear in an application. A partial evaluator, such as λ-MIX [6] or Similix
[2], would need to contract at least the outer β-redex in order to propagate a
static argument to x, but since this is a dynamic β-redex then this is forbidden;
this program is not well annotated for partial evaluation, but causes the type
specialiser no problems. In larger programs where it is important not to unfold
certain function calls, then this capability gives the type specialiser substantially
more power.

There is much more to the type specialiser than this, but we will introduce
further features later, along with their proofs of correctness.

3 Why is Correctness Difficult?

Of course, we would like to know that specialisation does not change the seman-
tics of programs; residual programs should be equivalent to the source programs
they were derived from. Yet we cannot hope to prove this for the type speciali-
ser. The very essence of the type specialiser is that it changes types. The source
and residual programs in general have quite different types, and so they lie in
different semantic domains: we certainly cannot expect them to be equal. For
example, 42 specialises to •, and of course these are different.

However, we note that dynamic type constructors always specialise to one-
level versions of themselves — in our fragment this refers to int and →. Thus, if
the type of an expression involves only these constructors, then it will specialise
to a residual expression with an isomorphic type. Thus we might hope to prove
equivalence in this case.

Unfortunately, it doesn’t hold. Consider the source term lift (fix (λx.x)),
which clearly denotes ⊥. If we assume x : int ↪→ x′ : 42, then we can specialise
λx.x to λx′.x′ : 42 → 42, and so specialise the fixpoint to a term with type 42.
Now the rule for lift lets us specialise the entire term to 42 : int, which is clearly
not equivalent to the source expression. In this case the implemented specialiser
would not actually choose this specialisation, but we can force it to exhibit
similar behaviour by supplying slightly more complex terms. For example,

lift (fix (λx.if true then x else 42))

specialises to 42, but denotes ⊥.
Instead of equivalence, therefore, we will aim to prove that the source term

approximates the residual one. That is, the type specialiser may transform non-
terminating programs into terminating ones, but it will never transform a ter-
minating program into one which produces a different answer. Many program
transformations behave similarly, so we will consider this weaker correctness
property to be acceptable.

4 Outline of the Proof

Since type specialisation is modelled closely on type inference, it is perhaps not
so surprising that type theoretic methods turn out to be useful. We will prove

220 J. Hughes

the correctness of the specialiser by showing a kind of subject reduction result.
We will define source and residual reduction relations, both of which we write
as →, and then we will prove

Theorem (Simulation). If Γ |− e1 : τ ↪→ e′
1 : τ ′ and e1 → e2, then there

exists an e′
2 such that Γ |− e2 : τ ↪→ e′

2 : τ ′ and e′
1 →∗ e′

2.

By this theorem we know that if e1 eventually reduces to a value, then e′
1 reduces

to the specialisation of a value. By

Lemma (Value Specialisation). If Γ |− v : τ ↪→ e′ : τ ′ (where v is a
source value), then e′ is a residual value.

then the following correctness theorem follows:

Theorem (Correctness). If Γ |− e : τ ↪→ e′ : τ ′ and e reduces to a value,
then so does e′.

In order to prove the Simulation theorem, then we will need two lemmata
about substitution — two, because we have two kinds of variables, and therefore
two kinds of substitution. The lemma for source substitution is

Lemma (Source Substitution). If Γ |− e1 : τ1 ↪→ e′
1 : τ ′

1 and Γ, x : τ1 ↪→
e′
1 : τ ′

1 |− e2 : τ2 ↪→ e′
2 : τ ′

2, then Γ |− e2[e1/x] : τ2 ↪→ e′
2 : τ ′

2.

No substitution is required into the residual term, because specialisation itself
substitutes e′

1 for x.
The residual subsitution lemma is even simpler.

Lemma (Residual Substitution). Let θ be a substition of residual terms
for the residual variables occurring free in Γ . If Γ |− e : τ ↪→ e′ : τ ′, then
Γθ |− e : τ ↪→ e′θ : τ ′.

We prove both these lemmata, and the Simulation theorem, by induction over
the structure of source terms. In the next section we present the proofs for the
fragment we are currently consideration, and then in later sections we show the
cases for extensions to this fragment.

5 The Correctness of the Fragment

Before we go further we must define reduction relations for the source and tar-
get languages. We do so in Figure 5; the reduction relations are the smallest
congruences satisfying the stated properties. By a value we mean a closed weak
head normal form: the values in the source language take the form n, lift n, or
λx.e, while the values in the residual language take the form •, n or λx.e′. The
Value Specialisation lemma now follows directly, by applying the appropriate
specialisation rule to each form of source value. We now prove the substitution
lemmata and the Simulation theorem in turn.

The Correctness of Type Specialisation 221

n1 + n2 → n if n = n1 + n2

(λx.e1)@e2 → e1[e2/x]
fix e → e@(fix e)

(λx.e′
1) e′

2 → e′
1[e′

2/x]
fix e′ → e′ (fix e′)

Fig. 5. Source and Residual Reduction Rules.

Proof of the Source Substitution Lemma. We are to prove that if Γ |− e1 : τ1 ↪→
e′
1 : τ ′

1 and Γ, x : τ1 ↪→ e′
1 : τ ′

1 |− e2 : τ2 ↪→ e′
2 : τ ′

2, then Γ |− e2[e1/x] : τ2 ↪→ e′
2 :

τ ′
2. The proof is by induction over the syntax of e2. The only interesting case is

that for variables. For the variable x, we must show that

Γ |− x[e1/x] : τ2 ↪→ e′
2 : τ ′

2

But from the second assumption, we know that

Γ, x : τ1 ↪→ e′
1 : τ ′

1 |− x : τ2 ↪→ e′
2 : τ ′

2

Consulting the specialisation rule for variables, it follows that e′
1 and e′

2 are the
same, as are τ1 and τ2, and τ ′

1 and τ ′
2. Since by the first assumption,

Γ |− e1 : τ1 ↪→ e′
1 : τ ′

1

then the result follows. For other variables, the proof is trivial.

Proof of the Residual Substitution Lemma. We are to prove that if θ is a sub-
stition of residual terms for residual variables, and Γ |− e : τ ↪→ e′ : τ ′, then
Γθ |− e : τ ↪→ e′θ : τ ′. Once again the proof is by induction on the syntax of e.
We will prove the cases for variables and λ-expressions, since these are the only
rules that can introduce residual variables into the residual term.

For a variable x, we assume that Γ |− x : τ ↪→ e′ : τ ′, which by the speciali-
sation rule for variables means that Γ must contain an assumption of the form
x : τ ↪→ e′ : τ ′. Γθ therefore contains the assumption x : τ ↪→ e′θ : τ ′, and it
follows that Γθ |− x : τ ↪→ e′θ : τ ′ as required.

For a λ-expression λx.e, we know that its specialisation uses the rule

Γ, x : τ1 ↪→ x′ : τ ′
1 |− e : τ2 ↪→ e′ : τ ′

2
Γ |− λx.e : τ1 → τ2 ↪→ λx′.e′ : τ ′

1 → τ ′
2

x′ /∈ FV (Γ)

Since x′ is not free in Γ , it cannot be renamed by θ, so we may conclude by the
induction hypothesis that

Γθ, x : τ1 ↪→ x′ : τ ′
1 |− e : τ2 ↪→ e′θ : τ ′

2

Applying the specialisation rule for λ again, we derive

Γθ |− λx.e : τ1 → τ2 ↪→ (λx′.e′)θ : τ ′
1 → τ ′

2

as required.

222 J. Hughes

Proof of the Simulation Theorem . We are to prove that if Γ |− e1 : τ ↪→ e′
1 : τ ′

and e1 → e2, then there exists an e′
2 such that Γ |− e2 : τ ↪→ e′

2 : τ ′ and e2 →∗ e′
2.

This proof is also by induction on the syntax of e1, and we will present it in some
detail.

– Case n. Trivial, since n does not reduce to anything.
– Case e1 + e2. According to the specialisation rule for +, we have

Γ |− ei : int ↪→ e′
i : ni n = n1 + n2

Γ |− e1 + e2 : int ↪→ • : n

Suppose first that e1 and e2 are both values. Since

Γ |− e1 : int ↪→ e′
1 : n1

then e1 must be n1, and similarly for e2. It follows that e1 + e2 → n, which
specialises to • : n. It remains to show that • →∗ •, which it does in zero
steps.
Alternatively, suppose without loss of generality that e1 + e2 → e3 + e2 by
reducing e1 → e3. Then by the induction hypothesis, there is an e′

3 such that
e′
1 →∗ e′

3 and
Γ |− e3 : int ↪→ e′

3 : n1

Applying the specialisation rule for +, we derive

Γ |− e3 + e2 : int ↪→ • : n

and it remains only to show • →∗ • as before.
– Case lift e. We have lift e → lift e0, and

Γ |− e : int ↪→ e′ : n
Γ |− lift e : int ↪→ n : int

We have e → e0, and so by the induction hypothesis there is an e′
0 such that

e′ →∗ e′
0 and Γ |− e0 : int ↪→ e′

0 : n. It follows that

Γ |− lift e0 : int ↪→ n : int

and since n →∗ n then the proof is complete.
– Case x. Trivial since there is no reduction rule for variables.
– Case λx.e. We have λx.e → λx.e0, and

Γ, x : τ1 ↪→ x′ : τ ′
1 |− e : τ2 ↪→ e′ : τ ′

2
Γ |− λx.e : τ1 → τ2 ↪→ λx′.e′ : τ ′

1 → τ ′
2

x′ /∈ FV (Γ)

So e → e0, and by the induction hypothesis there is an e′
0 such that e′ →∗ e′

0
and

Γ, x : τ1 ↪→ x′ : τ ′
1 |− e0 : τ2 ↪→ e′

0 : τ ′
2

It follows that

Γ |− λx.e0 : τ1 → τ2 ↪→ λx′.e′
0 : τ ′

1 → τ ′
2

and λx′.e′ →∗ λx′.e′
0 as required.

The Correctness of Type Specialisation 223

– Case e1@e2. An application can be reduced in three different ways: a reduc-
tion may be made inside e1, or inside e2, or the application itself may be a
β-redex which is reduced. The first two cases are proved in the same way as
the λ case above, so we consider only the third. Suppose therefore that e1 is
λx.e. Combining the specialisation rules for λ and @, we obtain

Γ, x : τ1 ↪→ x′ : τ ′
1 |− e : τ2 ↪→ e′ : τ ′

2
Γ |− λx.e : τ1 → τ2 ↪→ λx′.e′ : τ ′

1 → τ ′
2

Γ |− e2 : τ1 ↪→ e′
2 : τ ′

1

Γ |− (λx.e)@e2 : τ2 ↪→ (λx′.e′) e′
2 : τ ′

2

Substituting e′
2 for x′ using the Residual Substitution lemma, we know that

Γ, x : τ1 ↪→ e′
2 : τ ′

1 |− e : τ2 ↪→ e′[e′
2/x′] : τ ′

2

Now by the Source Substitution lemma, we have

Γ |− e[e2/x] : τ2 ↪→ e′[e′
2/x′] : τ ′

2

Since (λx.e)@e2 → e[e2/x] and (λx′.e′) e′
2 → e′[e′

2/x′], then the proof of this
case is complete.

– Case fix e. This case is similar to application, and is omitted.

This completes the proof of the Simulation theorem for the fragment.

6 Extensions

The tiny language we have considered so far illustrates only the basics of type
specialisation: it consists only of dynamic λ-calculus plus one kind of static
information. In reality the type specialiser accepts a much richer language. In
this section we discuss some of the extensions, and their proofs of correctness.

6.1 Enriching the Dynamic Language

In addition to dynamic function types with dynamic λ-expressions and appli-
cations, the type specialiser supports dynamic product types with tuples and
selectors, dynamic tagged sum types with constructor application and a case
expression, dynamic let expressions and conditionals. In each case we add a dy-
namic version of each construct to the source language, and a residual version
to the residual language. The new reduction rules in the source and residual
language correspond. Each dynamic construct specialises to its corresponding
residual construct, with specialised sub-expressions. The substitution lemmata
extend easily, and the proofs of the Simulation theorem all take the same form:
a reduction in a sub-expression is simulated by reductions in the corresponding
residual sub-expression, while a reduction using a new source reduction rule is
simulated using the corresponding new residual reduction rule. The proofs are
modelled on those for λx.e and e1@e2.

224 J. Hughes

6.2 Static Tagged Sums

One of the most interesting applications of the type specialiser is to remove type
tags when specialising an interpreter for a typed language. If such an interpreter
represents values using a universal type which is a tagged sum of the differently
typed alternatives, then the type specialiser can remove the tags, specialising
the universal type to an appropriate representation type at each use. To express
this, we must add static tagged sum types to our source language. We extend
the syntax of types and expressions as follows, where C is a tag, or ‘constructor’:

τ ::= Σn
i=1 C τ

e ::= C e
| case e of{C x → e}n

i=1 end

Since the tags are static, the corresponding residual types must record which
constructor was actually applied. Thus we extend residual types as follows:

τ ′ ::= C τ ′

There is no need to extend the language of residual terms, since application and
inspection of static constructors will be specialised away.

The specialisation rule for a constructor application just records the con-
structor in the residual type,

Γ |− e : τk ↪→ e′ : τ ′
k

Γ |− Ck e : Σn
i=1 Ci τi ↪→ e′ : Ck τ ′

k

while the rule for a case expression uses the statically-known constructor to
choose the corresponding branch:

Γ |− e : Σn
i=1 Ci τi ↪→ e′ : Ck τ ′

k

Γ, xk : τk ↪→ e′ : τ ′
k |− ek : τ0 ↪→ e′

k : τ ′
0

Γ |− case e of{Ci xi → ei}n
i=1 end : τ0 ↪→ e′

k : τ ′
0

The Source and Residual substitution lemmata extend easily to these cases.
There is one new source reduction rule, namely

case Ck e of{Ci xi → ei}n
i=1 end → ek[e/xk]

and one new form of source value: C v. Notice that in order to prove the Value
Specialisation lemma, we must require the argument of the constructor to be
evaluated.

We will prove just the case in the Simulation theorem when the new reduction
rule is applied. Thus we must prove that if

Γ |− case Ck e of{Ci xi → ei}n
i=1 end : τ0 ↪→ e′

k : τ ′
0

then there is an e′′ such that e′
k →∗ e′′ and

Γ |− ek[e/xk] : τ0 ↪→ e′′ : τ ′
0

The Correctness of Type Specialisation 225

We shall take e′′ to be just e′
k, and argue that from the assumption we know

that
Γ, xk : τk ↪→ e′ : τ ′

k |− ek : τ0 ↪→ e′
k : τ ′

0

where
Γ |− e : τk ↪→ e′ : τ ′

k

By the Source Substitution lemma, it follows that Γ |− ek[e/xk] : τ0 ↪→ e′
k : τ ′

0
as required.

6.3 Polyvariance

All interesting program specialisers are polyvariant, that is, they can specialise
one expression in the source code multiple times. Polyvariance is provided in the
type specialiser by extending the source and residual languages as follows:

e ::= poly e | spec e
τ ::= poly τ

e′ ::= (e′, . . . , e′) | πk e′

τ ′ ::= (τ ′, . . . , τ ′)

The idea is that poly e can be specialised to a tuple of specialisations of e,
from which spec e chooses an element. The residual type of such a tuple records
which specialisations it contains. We add reduction rules

spec (poly e) → e πk (e′
1, . . . , e

′
n) → e′

k

and new source values poly e, and residual values (e′
1, . . . , e

′
n).

The specialisation rules for these constructions are:

Γ |− e : τ ↪→ e′
i : τ ′

i , i = 1 . . . n
Γ |− poly e : poly τ ↪→ (e′

1, . . . , e
′
n) : (τ ′

1, . . . , τ
′
n)

Γ |− e : poly τ ↪→ e′ : (τ ′
1, . . . , τ

′
n)

Γ |− spec e : τ ↪→ πk e′ : τ ′
k

The proofs of the substitution lemmata and the Simulation theorem go through
easily for this extension. For the Simulation theorem, a reduction poly e1 →
poly e2 by e1 → e2 can be simulated by reductions in each specialisation, while
the reduction spec (poly e) → e is simulated by πk (e′

1, . . . , e
′
n) → e′

k.

6.4 Static Functions

All interesting specialisers provide static functions, that is, functions which are
unfolded at specialisation time. So, too, does the type specialiser, via static λ-
expressions and static applications. The specialisation rule for static λ given in
[10] is

{xi : τi ↪→ e′
i : τ ′

i} |−
λx.e : τa → τb ↪→ (e′

1, . . . , e
′
n) : close {xi : τi ↪→ τ ′ : i} in λx.e

226 J. Hughes

That is, a static function is represented in the residual program by a tuple of
its free variables, and the residual type carries the information needed to unfold
β-redexes.

Unfortunately, this specialisation rule violates the theorems we are trying
to prove. The Simulation Theorem fails because a reduction under a static λ
changes the residual type of the specialisation; since residual reduction does not
change types, it is impossible for the result of specialisation before the reduction
to reduce to the result of specialisation afterwards. The Source Substitution
lemma also fails, because a static λ specialises to a tuple with one element
per free variable; substituting for one of these variables changes the size of the
tuple. The problem here is that type specialisation essentially performs a closure
conversion, and closure conversion is not preserved by substitution.

Our solution is to instead consider specialisation of closure-converted pro-
grams. Thus we prove the correctness of a variant of the type specialisation
previously described. We extend the source and target languages as follows,

e ::= close {x = e}∗ in λx.e | e@e
τ ::= τ → τ

e′ ::= (e′, . . . , e′) | πk e′

τ ′ ::= close {x : τ ↪→ τ ′}∗ in λx.e

with the restriction that all the free variables of λx.e must be bound in the
associated definitions. Closures and residual tuples are both values.

We add a β reduction rule to the source language,

(close {xi = ei} in λx.e)@ex → e[ei/xi, ex/x]

and a rule for reducing projections to the residual language. Moreover, we forbid
reduction of the body of a static λ – the only reductions of closures take place
in the bindings {xi = ei}.

The specialisation rules for static closures and applications are

Γ |− ei : τi ↪→ e′
i : τ ′

i , i ∈ 1 . . . n
Γ |− close {xi = ei} in λx.e : τ1 → τ2 ↪→

(e′
1, . . . , e

′
n) : close {xi : τi ↪→ τ ′

i} in λx.e

Γ |− ef : τx → τy ↪→ e′
f : close {xi : τi ↪→ τ ′

i} in λx.e

Γ |− ex : τx ↪→ e′
x : τ ′

x

{xi : τi ↪→ πi e′
f : τ ′

i}, x : τx ↪→ e′
x : τ ′

x |− e : τy ↪→ e′ : τ ′
y

Γ |− ef@ex : τy ↪→ e′ : τ ′
y

With these definitions, the substitution and value specialisation lemmata
are easily proved. To prove the Simulation Theorem we must introduce another
(easily proved) lemma:

Lemma (Reduction in Context Lemma) Let Γ2 be obtained from Γ1 by
making a reduction in one of the residual expressions. If Γ1 |− e : τ ↪→
e′
1 : τ ′, then there exists e′

2 such that e′
1 →∗ e′

2 and Γ2 |− e : τ ↪→ e′
2 : τ ′.

The proof of the Simulation Theorem now goes through.

The Correctness of Type Specialisation 227

7 Related Work

In 1991, Gomard and Jones described λ-MIX, the first self-applicable partial
evaluator for the λ-calculus, which was so simple that much later work was
based on it. Gomard proved the correctness of the partial evaluator, that is, that
source and residual programs denote the same values [6]. The proof is based on
establishing a logical relation between the denotation of a two-level source term,
and the denotation of its one-level erasure. λ-MIX was the first partial evaluator
whose binding-time analysis was expressed as a type system, and the logical
relation is indexed by binding-time types.

Gomard’s original proof was somewhat flawed by an informal treatment of
fresh name generation. Moggi pointed this out, and gave a rigorous proof based
on an alternative semantics for λ-MIX using functor categories [15]. Using related
techniques, Filinksi has proved the soundness and completeness [5] of Danvy’s
type-directed partial evaluation (TDPE) [3].

These proofs have in common that they are based on establishing logical
relations between denotational semantics of source and residual terms. This is
essentially the approach we first tried to follow to show the correctness of the
type specialiser. But since λ-MIX and TDPE do not transform types, the logical
relations are simpler to define, and since neither allows recursive binding-time
types, the problems they cause with well-definedness of logical relations do not
arise. (Recursive types are not really needed in λ-MIX, since dynamic computa-
tions are essentially untyped).

Other recent work on the correctness of partial evaluators has focussed on
the correctness of binding-time analysis, rather than on specialisation proper.

A closer analogy can be found with other recent work on type-directed trans-
formations. John Hannan and Patrick Hicks have published a series of papers in
which they present such transformations of higher order languages, for example
[7,8]. Just like type specialisation, these transformations are specified by infe-
rence rules, whose judgements relate a source term, a transformed term, and a
type in an extended type language specifying how the former should be trans-
formed into the latter. Proofs of correctness are outlined, and are quite similar
to our own: source and target languages are given an operational semantics, and
there is an analogue of our Simulation Theorem relating the two. Hannan and
Hicks also prove that every well-typed source term can be transformed to a tar-
get term, which is of course untrue for type specialisation, and that reductions
of target terms can be simulated by the corresponding source terms.

8 Discussion and Conclusions

A first attempt to find a proof was based on giving a denotational semantics
to source and target languages, and establishing a logical relation indexed by
residual types between them. But this foundered when the relation proved to
be ill-defined. The problem is that residual types may involve arbitrary type
recursion under function arrows. A recursive type leads to a recursively defined

228 J. Hughes

logical relation, which only makes sense if the recursive definition has a least
fixed point. But since the formation of logical relations on function types is
antimonotonic in the left argument, then the usual monotonicity argument that
a least fixed point exists does not apply.

It is possible that this approach might succeed even so. We could try to define
a metric on relations, and show that the recursive definitions we are interested in
are contractive, just as MacQueen, Plotkin and Sethi did to show that recursive
types could be modelled by ideals [14]. But this would at best lead to a very
technical proof, dependent on the detailed structure of the underlying semantic
domains. Instead, we chose to pursue the more operational approach described
in this paper.

The proof we have presented is pleasingly simple, and we have some hope
that the proof method will be robust to extensions of the type specialiser, not
least since similar methods have been used successfully to prove the correctness
of other type-directed transformations. The operational approach, inspired by
subject reduction, proved to be much easier to carry through the denotationally-
based attempt. And of course, it is pleasing to know that type specialisation
actually is correct.

The proof does raise other questions, though. For example, earlier papers were
vague on whether the intended semantics of the object language was call-by-value
or call-by-name. In this paper we explicitly give it a call-by-name semantics. Is
type specialisation correct for a call-by-value language? One would hope that
a similar proof would go through, but the most obvious idea of restricting β-
reduction to βv redexes does not seem to work easily. Another interesting idea
would be to consider call-by-need reduction rules [1]: perhaps one could show
thereby that specialisation (of a suitably restricted language) does not duplicate
computations.

We have also focussed here on the relationship between source terms and
residual terms – the dynamic part of the specialisation. Residual types in contrast
play only a small rôle here. Yet we might also hope to be able to relate them to
the source program. Residual types purport to carry static information about the
source term they are derived from: in a sense they can be regarded as properties
of source terms. For example, if |− f : int →int ↪→ f ′ : 42 → 44, then we would
expect that f maps 42 to 44. Another interesting avenue would be to assign a
semantics to residual types as properties, and prove that specialisation produces
properties that really hold.

References

1. Zena Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler.
A call-by-need lambda calculus. In 22’nd Symposium on Principles of Programming
Languages, San Francisco, California, January 1995. ACM Press.

2. A. Bondorf. Automatic autoprojection of higher order recursive equations. Science
of Computer Programming, 17(1-3):3–34, December 1991. Selected papers of ESOP
’90, the 3rd European Symposium on Programming.

The Correctness of Type Specialisation 229

3. O. Danvy. Type-directed partial evaluation. In Symposium on Principles of Pro-
gramming Languages. ACM, jan 1996.

4. D. Dussart, J. Hughes, and P. Thiemann. Type Specialisation for Imperative
Languages. In International Conference on Functional Programming, pages 204–
216, Amsterdam, June 1997. ACM.

5. Andrzej Filinski. A Semantic Account of Type-Directed Partial Evaluation. In
Principles and Practice of Declarative Programming: International Conference
PPDP’99, volume 1702 of Lecture Notes in Computer Science, pages 378–395,
Paris, France, September 1999. Springer-Verlag.

6. C.K. Gomard. A self-applicable partial evaluator for the lambda calculus: Correctn-
ess and pragmatics. ACM Transactions on Programming Languages and Systems,
14(2):147–172, April 1992.

7. John Hannan and Patrick Hicks. Higher-Order Arity Raising. In Proceedings of
3rd ACM SIGPLAN International Conference on Functional Programming, pages
27–38, Baltimore, Maryland, September 1998.

8. John Hannan and Patrick Hicks. Higher-Order UnCurrying. In Proceedings of the
25th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 1–10, San Diego, January 1998.

9. J. Hughes. An Introduction to Program Specialisation by Type Inference. In
Functional Programming. Glasgow University, July 1996. published electronically.

10. J. Hughes. Type Specialisation for the Lambda-calculus; or, A New Paradigm
for Partial Evaluation based on Type Inference. In O. Danvy, R. Glück, and
P. Thiemann, editors, Partial Evaluation, volume 1110 of LNCS, pages 183–215.
Springer-Verlag, February 1996.

11. J. Hughes. A Type Specialisation Tutorial. In DIKU Summer School on Partial
Evaluation, 1998.

12. J. Hughes. Type Specialisation. In Olivier Danvy, Robert Glück, and Peter Thie-
mann, editors, 1998 Symposium on Partial Evaluation, volume 30 of Computing
Surveys, September 1998.

13. N. D. Jones, , C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice-Hall, 1993.

14. David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model for recursive
polymorphic types. Information and Control, 71(1/2):95–130, October/November
1986.

15. Eugenio Moggi. Functor categories and two-level languages. In FOSSACS, volume
1378 of Lecture Notes in Computer Science, pages 211–225. Springer-Verlag, 1998.

Type Classes with Functional Dependencies?

Mark P. Jones

Department of Computer Science and Engineering
Oregon Graduate Institute of Science and Technology

Beaverton, Oregon, USA
mpj@cse.ogi.edu

Abstract. Type classes in Haskell allow programmers to define func-
tions that can be used on a set of different types, with a potentially dif-
ferent implementation in each case. For example, type classes are used to
support equality and numeric types, and for monadic programming. A
commonly requested extension to support ‘multiple parameters’ allows a
more general interpretation of classes as relations on types, and has many
potentially useful applications. Unfortunately, many of these examples
do not work well in practice, leading to ambiguities and inaccuracies in
inferred types and delaying the detection of type errors.
This paper illustrates the kind of problems that can occur with multi-
ple parameter type classes, and explains how they can be resolved by
allowing programmers to specify explicit dependencies between the pa-
rameters. A particular novelty of this paper is the application of ideas
from the theory of relational databases to the design of type systems.

1 Introduction

Type classes in Haskell [11] allow programmers to define functions that can be
used on a set of different types, with a potentially different implementation in
each case. Each class represents a set of types, and is associated with a particular
set of member functions. For example, the type class Eq represents the set of all
equality types, which is precisely the set of types on which the (==) operator
can be used. Similarly, the type class Num represents the set of all numeric
types—including Int , Float , complex and rational numbers—on which standard
arithmetic operations like (+) and (−) can be used. These and several other
classes are defined in the standard Haskell prelude and libraries [11, 12]. The
language also allows programmers to define new classes or to extend existing
classes to include new, user-defined datatypes. As such, type classes play an
important role in many Haskell programs, both directly through uses of the
member functions associated with a particular class, and indirectly in the use of
various language constructs including a special syntax for monadic programming
(the do-notation).
? The research reported in this paper was supported by the USAF Air Materiel Com-

mand, contract # F19628-96-C-0161.

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 230–244, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Type Classes with Functional Dependencies 231

The use of type classes is reflected by allowing types to include predicates.
For example, the type of the equality operator is written:

(==) :: Eq a ⇒ a → a → Bool

The type variable a used here represents an arbitrary type (bound by an implicit
universal quantifier), but the predicate Eq a then restricts the possible choices
for a to types that are in Eq . More generally, functions in Haskell have types of
the form P ⇒ τ , where P is some list of predicates and τ is a monotype. If P
is empty, then we usually abbreviate P ⇒ τ as τ . In most implementations, the
presence of a predicate in a function’s type indicates that an implicit parameter
will be added to pass some appropriate evidence for that predicate at run-time.
For example, we might use an implementation of equality on values of type a as
evidence for a predicate of the form Eq a. Details of this implementation scheme
may be found elsewhere [14].

In a predicate such as Eq a, we refer to Eq as the class name, and to a as the
class parameter. Were it not for the use of a restricted character set, constraints
like this might instead have been written in the form a ∈ Eq , reflecting an in-
tuition that Eq represents a set of types of which a is expected to be a member.
The Haskell syntax, however, which looks more like a curried function applica-
tion, suggests that it might be possible to allow classes to have more than one
parameter. For example, what might a predicate of the form R a b mean, where
two parameters a and b have been provided? The obvious answer is to interpret
R as a two-place relation between types, and to read R a b as the assertion that
a and b are related by R. This is a natural generalization of the one parameter
case because sets are just one-place relations. More generally, we can interpret
an n parameter class by an n-place relation on types.

One potential application for multiple parameter type classes was suggested
(but not pursued) by Wadler and Blott in the paper where type classes were first
described [14]. The essence of their example was to use a two parameter class
Coerce to describe a subtyping relation, with an associated coercion operator:

coerce :: Coerce a b ⇒ a → b.

In the decade since that paper was published, many other applications for mul-
tiple parameter type classes have been discovered [13]; we will see some of these
in later sections of the current paper. The technical foundations for multiple
parameter classes have also been worked out during that time, and support for
multiple parameter type classes is now included in some of the currently available
Haskell implementations. So it is perhaps surprising that support for multiple
parameter type classes is still not included in the Haskell standard, even in the
most recent revision [11]. One explanation for this reticence is that some of
the proposed applications have not worked particularly well in practice. These
problems often occur because the relations on types that we can specify using
simple extensions of Haskell are too general for practical applications. In par-
ticular, they fail to capture important dependencies between parameters. More
concretely, the use of multiple parameter classes can often result in ambiguities
and inaccuracies in inferred types, and in delayed detection of type errors.

232 M.P. Jones

In this paper, we show that many of these problems can be avoided by gi-
ving programmers an opportunity to specify the desired relations on types more
precisely. The key idea is to allow the definitions of type classes to be annotated
with functional dependencies—an idea that originates in the theory of relational
databases. In Section 2, we describe the key features of Haskell type classes that
will be needed to understand the contributions of this paper. In Section 3, we
use the design of a simple library of collection types to illustrate the problems
that can occur with multiple parameter classes, and to motivate the introduction
of functional dependencies. Further examples are provided in Section 4. Basic
elements of the theory of functional dependencies are presented in Section 5, and
are used to explain their role during type inference in Section 6. In Section 7,
we describe some further opportunities for using dependency information, and
then we conclude with some pointers to future work in Section 8.

2 Preliminaries: Type Classes in Haskell

This section describes the class declarations that are used to introduce new
(single parameter) type classes in Haskell, and the instance declarations that
are used to populate them. Readers who are already familiar with these as-
pects of Haskell should probably skip ahead to the next section. Those requi-
ring more than the brief overview given here should refer to the Haskell re-
port [11] or to the various tutorials and references listed on the Haskell website
at http://haskell.org.

Class Declarations: A class declaration specifies the name for a class and lists
the member functions that each type in the class is expected to support. The
actual types in each class—which are normally referred to as the instances of the
class—are described using separate declarations, as will be described below. For
example, an Eq class, representing the set of equality types, might be introduced
by the following declaration:

class Eq a where
(==) :: a → a → Bool

The type variable a that appears in both lines here represents an arbitrary in-
stance of the class. The intended reading of the declaration is that, if a is a par-
ticular instance of Eq , then we can use the (==) operator at type a → a → Bool
to compare values of type a.

Qualified Types: As we have already indicated, the restriction on the use of the
equality operator is reflected in the type that is assigned to it:

(==) :: Eq a ⇒ a → a → Bool

Types that are restricted by a predicate like this are referred to as qualified
types [4]. Such types will be assigned to any function that makes either direct

Type Classes with Functional Dependencies 233

or indirect use of the member functions of a class at some unspecified type. For
example, the functions:

member x xs = any (x ==) xs
subset xs ys = all (\x → member x ys) xs

will be assigned types:

member :: Eq a ⇒ a → [a] → Bool
subset :: Eq a ⇒ [a] → [a] → Bool .

Superclasses: Classes may be arranged in a hierarchy, and may have multiple
member functions. The following example illustrates both with a declaration of
the Ord class, which contains the types whose elements can be ordered using
strict (<) and non-strict (<=) comparison operators:

class Eq a ⇒ Ord a where
(<), (<=) :: a → a → Bool

In this particular context, the ⇒ symbol should not be read as implication; in
fact reverse implication would be a more accurate reading, the intention being
that every instance of Ord is also an instance of Eq . Thus Eq plays the role of a
superclass of Ord . This mechanism allows the programmer to specify an expected
relationship between classes: it is the compiler’s responsibility to ensure that this
property is satisfied, or to produce an error diagnostic if it is not.

Instance Declarations: The instances of any given class are described by a collec-
tion of instance declarations. For example, the following declarations show how
one might define equality for booleans, and for pairs:

instance Eq Bool where
x == y = if x then y else not y

instance (Eq a, Eq b) ⇒ Eq (a, b) where
(x , y) == (u, v) = (x == u && y == v)

The first line of the second instance declaration tells us that an equality on values
of types a and b is needed to provide an equality on pairs of type (a, b). No such
preconditions are need for the definition of equality on booleans. Even with just
these two declarations, we have already specified an equality operation on the
infinite family of types that can be constructed from Bool by repeated uses of
pairing. Additional declarations, which may be distributed over many modules,
can be used to extend the class to include other datatypes.

3 Example: Building a Library of Collection Types

One of the most commonly suggested applications for multiple parameter type
classes is to provide uniform interfaces to a wide range of collection types [10].

234 M.P. Jones

Such types might be expected to offer ways to construct empty collections, to ins-
ert values, to test for membership, and so on. The following declaration, greatly
simplified for the purposes of presentation, introduces a two parameter class
Collects that could be used as the starting point for such a project:

class Collects e ce where
empty :: ce
insert :: e → ce → ce
member :: e → ce → Bool

The type variable e used here represents the element type, while ce is the type
of the collection itself. Within this framework, we might want to define instances
of this class for lists or characteristic functions (both of which can be used to
represent collections of any equality type), bit sets (which can be used to repre-
sent collections of characters), or hash tables (which can be used to represent
any collection whose elements have a hash function). Omitting standard imple-
mentation details, this would lead to the following declarations:

instance Eq e ⇒ Collects e [e] where . . .
instance Eq e ⇒ Collects e (e → Bool) where . . .
instance Collects Char BitSet where . . .
instance (Hashable e, Collects e ce)

⇒ Collects e (Array Int ce) where . . .

All this looks quite promising; we have a class and a range of interesting im-
plementations. Unfortunately, there are some serious problems with the class
declaration. First, the empty function has an ambiguous type:

empty :: Collects e ce ⇒ ce.

By ‘ambiguous’ we mean that there is a type variable e that appears on the left
of the ⇒ symbol, but not on the right. The problem with this is that, according
to the theoretical foundations of Haskell overloading, we cannot guarantee a well-
defined semantics for any term with an ambiguous type [2, 4]. For this reason,
a Haskell system will reject any attempt to define or use such terms.

We can sidestep this specific problem by removing the empty member from
the class declaration. However, although the remaining members, insert and
member , do not have ambiguous types, we still run into problems when we try
to use them. For example, consider the following two functions:

f x y coll = insert x (insert y coll)
g coll = f True ′a ′ coll

for which Hugs infers the following types:

f :: (Collects a c, Collects b c) ⇒ a → b → c → c
g :: (Collects Bool c, Collects Char c) ⇒ c → c.

Notice that the type for f allows the parameters x and y to be assigned different
types, even though it attempts to insert each of the two values, one after the

Type Classes with Functional Dependencies 235

other, into the same collection, coll . If we hope to model collections that contain
only one type of value, then this is clearly an inaccurate type. Worse still, the
definition for g is accepted, without causing a type error. Thus the error in this
code will not be detected at the point of definition, but only at the point of
use, which might not even be in the same module. Obviously, we would prefer
to avoid these problems, eliminating ambiguities, inferring more accurate types,
and providing earlier detection of type errors.

3.1 An Attempt to Use Constructor Classes

Faced with the problems described above, some Haskell programmers might be
tempted to use something like the following version of the class declaration:

class Collects e c where
empty :: c e
insert :: e → c e → c e
member :: e → c e → Bool

In fact this is precisely the approach taken by Okasaki [9], and by Peyton Jo-
nes [10], in more realistic attempts to build this kind of library. The key diffe-
rence here is that we abstract over the type constructor c that is used to form
the collection type c e, and not over that collection type itself, represented by
ce in the original class declaration. Thus Collects is an example of a constructor
class [6] in which the second parameter is a unary type constructor, replacing the
nullary type parameter ce that was used in the original definition. This change
avoids the immediate problems that we mentioned above:

– The empty operator has type Collects e c ⇒ c e, which is not ambiguous
because both e and c appear on the right of the ⇒ symbol.

– The function f is assigned a more accurate type:

f :: (Collects e c) ⇒ e → e → c e → c e.

– The function g is now rejected, as required, with a type error because the
type of f does not allow the two arguments to have different types.

This, then, is an example of a multiple parameter class that does actually work
quite well in practice, without ambiguity problems. The reason that it works,
at least intuitively, is that its two parameters are essentially independent of
one another and so there is a good fit with the interpretation of Collects as a
relatively unconstrained relation between types e and type constructors c.

Unfortunately, this version of the Collects class is not as general as the ori-
ginal class seemed to be. Only one of the four instances listed in Section 3 can
be used with this version of Collects because only one of them—the instance
for lists—has a collection type that can be written in the form c e, for some
type constructor c, and element type e. Some of the remaining instances can be

236 M.P. Jones

reworked to fit the constructor class framework by introducing dummy type and
value constructors, as in the following example:

newtype CharFun e = MkCharFun (e → Bool)
instance Eq e ⇒ Collects e CharFun where . . .

This approach, however, is not particularly attractive. It clutters up programs
with the artificial type constructor CharFun, and with uses of the value construc-
tor MkCharFun to convert between the two distinct but equivalent representa-
tions of characteristic functions. The workaround is also limited, and cannot, in
general, deal with cases like the BitSet example, where the element type is fixed
and not a variable e that we can abstract over.

3.2 Using Parametric Type Classes

Another alternative is to use parametric type classes [3] (PTC), with predicates
of the form ce ∈ Collects e, meaning that ce is a member of the class Collects e.
Intuitively, there is one type class Collects e for each choice of the e parameter.
The definition of a parametric Collects class looks much like the original:

class ce ∈ Collects e where
empty :: ce
insert :: e → ce → ce
member :: e → ce → Bool

All of the instances declarations that we gave for the original Collects class in
Section 3 can be adapted to the syntax of PTC, without introducing artificial
type constructors. What makes it different from the two parameter class in Sec-
tion 3 is the implied assumption that the element type e is uniquely determined
by the collection type ce. A compiler that supports PTC must ensure that the
declared instances of Collects do not violate this property. In return, it can use
this information to avoid ambiguity and to infer more accurate types. For ex-
ample, the type of empty is now ∀e, ce.(ce ∈ Collects e) ⇒ ce, and we do not
need to treat this as being ambiguous because the unknown element type e is
uniquely determined by ce.

Thus, PTC provides exactly the tools that we need to define and work with
a library of collection classes. In our opinion, the original work on PTC has not
received the attention that it deserves. In part, this may be because it was seen,
incorrectly, as an alternative to constructor classes and not, more accurately,
as an orthogonal extension. In addition, there has never been even a prototype
implementation for potential users to experiment with.

3.3 Using Functional Dependencies

In this paper, we describe a generalization of parametric type classes that allows
programmers to declare explicit functional dependencies between the parameters
of a predicate. For example, we can achieve the same effects as PTC, with no

Type Classes with Functional Dependencies 237

further changes in notation, by annotating the original class definition with a
dependency ce ; e, to be read as “ce uniquely determines e.”

class Collects e ce | ce ; e where
empty :: ce
insert :: e → ce → ce
member :: e → ce → Bool

More generally, we allow class declarations to be annotated with (zero or more)
dependencies of the form (x1, . . . , xn) ; (y1, . . . , ym), where x1, . . . , xn , and y1,
. . . , ym are type variables and m,n > 01. Such a dependency is interpreted as an
assertion that the y parameters are uniquely determined by the x parameters.
Dependencies appear only in class declarations, and not in any other part of the
language: the syntax for instance declarations, class constraints, and types is
completely unchanged. For convenience, we allow the parentheses around a list
of type variables in a dependency to be omitted if only a single variable is used.

This approach is strictly more general than PTC because it allows us to
express a larger class of dependencies, including mutual dependencies such as
{a ; b, b ; a}. It is also easier to integrate with the existing syntax of Haskell
because it does not require any changes to the syntax of predicates.

By including dependency information, programmers can specify multiple pa-
rameter classes more precisely. To illustrate this, consider the following examples:

class C a b where . . .
class D a b | a ; b where . . .
class E a b | a ; b, b ; a where . . .

From the first declaration, we can tell only that C is a binary relation. The
dependency a ; b in the second declaration tells us that D is not just a rela-
tion, but actually a (partial) function. From the two dependencies in the last
declaration, we can see that E represents a (partial) one-one mapping.

The compiler is responsible for ensuring that the instances in scope at any
given point are consistent with any declared dependencies2. For example, the fol-
lowing declarations cannot appear together because they violate the dependency
for D , even though either one on its own would be acceptable:

instance D Bool Int where . . .
instance D Bool Char where . . .

Note also that the following declaration is not allowed, even by itself:

instance D [a] b where . . .

The problem here is that this instance would allow one particular choice of [a]
to be associated with more than one choice for b, which contradicts the depen-
dency specified in the definition of D . More generally, this means that, in any
1 For practical reasons, a slightly different syntax is used for dependencies in the

current prototype implementation, details of which are included in the distribution.
2 Superclass declarations are handled in a similar way, leaving the compiler to ensure

that every instance of a given class is also an instance of any superclasses.

238 M.P. Jones

declaration of the form instance . . . ⇒ D t s where . . ., for some particular
types t and s, the only variables that can appear in s are the ones that appear
in t , and hence, if the type t is known, then s will be uniquely determined.

4 Further Examples

This section presents two additional examples to show how the use of functional
dependencies can allow us to give more accurate specifications and to make more
practical use of multiple parameter type classes.

Arithmetic Operations The Haskell prelude treats arithmetic functions like
addition (+) and multiplication (∗) as functions of type Num a ⇒ a → a → a,
which means that the result will always be of the same type as the arguments.
A more flexible approach would allow different argument types so that we could
add two Int values to get an Int result, or add an Int to a Float to get a Float
result. This more flexible approach can be coded as follows:

class Add a b c | (a, b) ; c where (+) :: a → b → c
class Mul a b c | (a, b) ; c where (∗) :: a → b → c

instance Mul Int Int Int where . . .
instance Mul Int Float Float where . . .
instance Mul Float Int Float where . . .
instance Mul Float Float Float where . . .

In a separate linear algebra package, we might further extend our classes with
arithmetic operations on vectors and matrices:

instance Mul a b c ⇒ Mul a (Vec b) (Vec c) where . . .
instance Mul a b c ⇒ Mul a (Mat b) (Mat c) where . . .
instance (Mul a b c, Add c c d)

⇒ Mul (Mat a) (Mat b) (Mat d) where . . .

Without dependency information, we quickly run into problems with ambiguity.
For example, even simple expressions like (1 ∗ 2) ∗ 3 have ambiguous types:

(1 ∗ 2) ∗ 3 :: (Mul Int Int a, Mul a Int b) ⇒ b.

Using the dependencies, however, we can determine that a = Int , and then that
b = Int , and so deduce that the expression has type Int . This example shows
that it can be useful to allow multiple types on the left hand side of a dependency.

Finite Maps A finite map is an indexed collection of elements that provides
operations to lookup the value associated with a particular index, or to add a
new binding. This can be described by a class:

class FiniteMap i e fm | fm ; (i , e) where
emptyFM :: fm
lookup :: i → fm → Maybe e
extend :: i → e → fm → fm

Type Classes with Functional Dependencies 239

Here, fm is the finite map type, which uniquely determines both the index type
i and the element type e. Association lists, functions, and arrays all fit naturally
into this framework. We can also use a bit set as an indexed collection of booleans:

instance (Eq i) ⇒ FiniteMap i e [(i , e)] where . . .
instance (Eq i) ⇒ FiniteMap i e (i → e) where . . .
instance (Ix i) ⇒ FiniteMap i e (Array i e) where . . .
instance FiniteMap Int Bool BitSet where . . .

This is a variation on the treatment of collection types in Section 3, and, if the
dependency is omitted, then we quickly run into very similar kinds of problem.
We have included this example here to show that it can be useful to allow
multiple types on the right hand side of a dependency.

5 Relations and Functional Dependencies

In this section, we provide a brief primer on the theory of relations and fun-
ctional dependencies, as well as a summary of our notation. These ideas were
originally developed as a foundation for relational database design [1]. They are
well-established, and more detailed presentations of the theory, and of useful
algorithms for working with them in practical settings, can be found in standard
textbooks on the theory of databases [8]. A novelty of the current paper is in
applying them to the design of a type system.

5.1 Relations

Following standard terminology, a relation R over an indexed family of sets
{Di}i∈I is just a set of tuples, each of which is an indexed family of values
{ti}i∈I such that ti ∈ Di for each i ∈ I . More formally, R is just a subset of
Πi ∈ I .Di , where a tuple t ∈ (Πi ∈ I .Di) is a function that maps each index
value i ∈ I to a value ti ∈ Di called the ith component of t . In the special case
where I = {1, . . . ,n}, this reduces to the familiar special case where tuples are
values (t1, . . . , tn) ∈ D1 × . . .×Dn . If X ⊆ I , then we write tX , pronounced “t at
X ”, for the restriction of a tuple t to X . Intuitively, tX just picks out the values
of t for the indices appearing in X , and discards any remaining components.

5.2 Functional Dependencies

In the context of an index set I , a functional dependency is a term of the form
X ; Y , read as “X determines Y ,” where X and Y are both subsets of I . If a
relation satisfies a functional dependency X ; Y , then the values of any tuple
at Y are uniquely determined by the values of that tuple at X . For example,
taking I = {1, 2}, relations satisfying {{1} ; {2}} are just partial functions
from D1 to D2, while relations satisfying {{1} ; {2}, {2} ; {1}} are partial,
injective functions from D1 to D2.

240 M.P. Jones

If F is a set of functional dependencies, and J ⊆ I is a set of indices, then
the closure of J with respect to F , written J+

F is the smallest set such that
J ⊆ J+

F , and that, if (X ; Y) ∈ F , and X ⊆ J+
F , then Y ⊆ J+

F . For example, if
I = {1, 2}, and F = {{1} ; {2}}, then {1}+

F = I , and {2}+
F = {2}. Intuitively,

the closure J+
F is the set of indices that are uniquely determined, either directly

or indirectly, by the indices in J and the dependencies in F . Closures like this
are easy to compute using a simple fixed point iteration.

6 Typing with Functional Dependencies

This section explains how to extend an implementation of Haskell to deal with
functional dependencies. In fact the tools that we need are obtained as a special
case of improvement for qualified types [5]. We will describe this briefly here;
space restrictions prevent a more detailed overview. To simplify the presentation,
we will assume that there is a set of indices (i.e., parameter names), written IC ,
and a corresponding set of functional dependencies, written FC , for each class
name C . We will also assume that all predicates are written in the form C t ,
where t is a tuple of types indexed by IC . This allows us to abstract away from
the order in which the components are written in a particular implementation.

The type system of Haskell can be described using judgements of the form
P | A ` E :τ . Each such judgement represents an assertion that an expression E
can be assigned a type τ , using the assumptions in A to type any free variables,
and providing that the predicates in P are satisfied. When we say that a set of
predicates is satisfied, we mean that they are all implied by the class and instance
declarations that are in scope at the corresponding point in the program. For a
given A and E , the goal of type inference is to find the most general choices for
P and τ such that P | A ` E : τ . If successful, we can infer a principal type for
E by forming the qualified type P ⇒ τ—without looking at the predicates in
P—and then quantifying over all variables that appear in P ⇒ τ but not in A.

One of the main results of the theory of improvement is that we can apply
improving substitutions to the predicate set P at any point during type inference
(and as often as we like), without compromising on a useful notion of principal
types. Intuitively, an improving substitution is just a substitution that can be
applied to a particular set of predicates without changing its satisfiability pro-
perties. To make this more precise, we will write bPc for the set of satisfiable
instances of P , which is defined by:

bPc = {SP | S is a substitution and the predicates in SP are satisfied }.

In this setting, we say that S is an improving substition for P if bPc = bSPc,
and if the only variables involved in S that do not also appear in P are ‘new’ or
‘fresh’ type variables. From a practical perspective, this simply means that the
subsitution will not change the set of environments or the set of types at which
a given value can be used. The restriction to new variables is necessary to avoid
conflicts with other type variables that might already be in use.

Type Classes with Functional Dependencies 241

Improvement cannot play a useful role in a standard Haskell type system:
The language does not restrict the choice of instances for any given type class,
and hence the only improving substitions that we can obtain are equivalent to an
identity substitution. With the introduction of functional dependencies, however,
we do restrict the set of instances that can be defined, and this leads to oppor-
tunities for improvment. For example, by prohibiting the definition of instances
of the form Collects a [b] where a 6= b, we know that we can use an improving
substitution [a/b] and map any such predicate into the form Collects a [a].

6.1 Ensuring that Dependencies are Valid

Our first task is to ensure that all declared instances for a class C are consistent
with the functional dependencies in FC . For example, suppose that we have an
instance declaration for C of the form:

instance . . . ⇒ C t where . . .

Now, for each (X ; Y) ∈ FC , we must ensure that TV (tY) ⊆ TV (tX) or
otherwise the elements of tY might not be uniquely determined by the elements
of tX . (The notation TV (X) refers to the set of type variables appearing free in
the object X .) A further restriction is needed to ensure pairwise compatibility
between instance declarations for C . For example, if we have a second instance:

instance . . . ⇒ C s where . . . ,

and a dependency (X ; Y) ∈ FC , then we must ensure that tY = sY whenever
tX = sX . In fact, on the assumption that the two instances will normally contain
type variables—which could later be instantiated to more specific types—we
will actually need to check that: for all (kind-preserving) substitutions S , if
StX = SsX , then StY = SsY . It is easy to see that this test can be reduced to
checking that, if tX and sX have a most general unifier U , then UtY = UsY . This
is enough to guarantee that the declared dependencies are satisfied. For example,
the instance declarations in Section 3 are consistent with the dependency ce ; e.

6.2 Improving Inferred Types

There are two ways that a dependency (X ; Y) ∈ FC for a class C can be used
to help infer more accurate types:

– If we have predicates (C t) and (C s) with tX = sX , then tY and sY must
be equal.

– Suppose that we have an inferred predicate C t , and an instance:
instance . . . ⇒ C t ′ where . . .

If tX = St ′
X , for some substitution S (which could be calculated by one-way

matching), then tY and St ′
Y must be equal.

In both cases, we can use unification to ensure that the equalities are satisfied,
and to calculate a suitable improving substitution [5]. If unification fails, then
we have detected a type error. Note that we will, in general, need to iterate this
process until no further opportunities for improvement can be found.

242 M.P. Jones

6.3 Detecting Ambiguity

As mentioned in Section 3, we cannot guarantee a well-defined semantics for any
function that has an ambiguous type. With the standard definition, a type of
the form (∀a1. . . .∀an .P ⇒ τ) is ambiguous if ({a1, . . . , an}∩TV (P)) 6⊆ TV (τ),
indicating that one of the quantified variables ai appears in TV (P) but not in
TV (τ). Our intuition is that, if there is no reference to ai in the body of the type,
then there will be no way to determine how it should be bound when the type is
instantiated. However, in the presence of functional dependencies, there might
be another way to find the required instantiation of ai . We need not insist that
every a ∈ TV (P) is mentioned explicitly in τ , so long as they are all uniquely
determined by the variables in TV (τ).

The first step to formalizing this idea is to note that every set of predicates
P induces a set of functional dependencies FP on the type variables in TV (P):

FP = {TV (tX) ; TV (tY) | (C t) ∈ P , (X ; Y) ∈ FC }.

This has a fairly straightforward reading: if all of the variables in tX are known,
and if X ; Y , then the components of t at X are also known, and hence so are
the components, and thus the type variables, in t at Y .

To determine if a type (∀a1. . . .∀an .P ⇒ τ) is ambiguous, we calculate the
set of dependencies FP , and then take the closure of TV (τ) with respect to FP to
obtain the set of variables that are determined by τ . The type is ambiguous only
if there are variables ai in P that are not included in this closure. More concisely,
the type is ambiguous if, and only if ({a1, . . . , an} ∩ TV (P)) 6⊆ (TV (τ))+FP

.
On a related point, we note that current implementations of Haskell are requi-

red to check that, in any declaration of the form instance P ⇒ C t where . . .,
only the variables appearing in t can be used in P (i.e., we must ensure that
TV (P) ⊆ TV (t)). In light of the observations that have been made in this sec-
tion, we can relax this to require only that TV (P) ⊆ (TV (t))+FP

. Thus P may
contain variables that are not explicitly mentioned in t , provided that they are
still determined by the variables in t .

6.4 Generalizing Inferred Types

In a standard Hindley-Milner type system, principal types are computed using
a process of generalization. Given an inferred but unquantified type P ⇒ τ , we
would normally just calculate the set of type variables T = TV (P ⇒ τ), over
which we might want to quantify, and the set of variables V = TV (A) that are
fixed in the current assumptions A, and then quantify over any variables in the
difference, T \ V . In the presence of functional dependencies, however, we must
be a little more careful: a variable a that appears in T but not in V may still
need to be treated as a fixed variable if it is determined by V . To account for
this, we should only quantify over the variables in T \ V +

FP
.

Type Classes with Functional Dependencies 243

7 Putting a Name to Functional Dependencies

The approach described in this paper provides a way for programmers to indicate
that there are dependencies between the parameters of a type class, but stops
short of giving those dependencies a name. To illustrate this point, consider the
following pair of class declarations:

class U a b | a ; b where . . .
class U a b ⇒ V a b where . . .

From the first declaration, we know that there is a dependency between the
parameters of U ; should there not also be a dependency between the parameters
of V , inherited from its superclass U ? Such a dependency could be added by
changing the second declaration to:

class U a b ⇒ V a b | a ; b where . . .

but this tells only part of the story. For example, given two predicates U a b
and V a c, nothing in the rules from Section 6 will allow us to infer that b = c.
Let us return to the dependency on U and give a name to it by writing u for
the function that maps each a to the b that it determines. This might even be
made explicit in the syntax of the language by changing the declaration to read:

class U a b | u :: a ; b where . . .

Now we can change the declaration of V again to indicate that it inherits the
same dependency u:

class U a b ⇒ V a b | u :: a ; b where . . .

Now, given the predicates U a b and V a c, we can infer that b = u a = c,
as expected. It is not yet clear how useful this particular feature might be, or
whether it might be better to leave the type checker to infer inherited depen-
dencies automatically, without requiring the programmer to provide names for
them. The current prototype includes an experimental implementation of this
idea (without making dependency names explicit), but the interactions with
other language features, particularly overlapping instances, are not yet fully un-
derstood. Careful exploration of these issues is therefore a topic for future work.
However, the example does show that there are further opportunities to exploit
dependency information that go beyond the ideas described in Section 6.

8 Conclusions and Future Work

The ideas described in this paper have been implemented in the latest version
of the Hugs interpreter [7], and seem to work well in practice. Pleasingly, some
early users have already found new applications for this extension in their own
work, allowing them to overcome problems that they had previously been unable
to fix. Others have provided feedback that enabled us to discover places where
further use of dependency information might be used, as described in Section 7.

244 M.P. Jones

In constructing this system, we have used ideas from the theory of relational
databases. One further interesting area for future work would be to see if other
ideas developed there could also be exploited in the design of programming lan-
guage type systems. Users of functional languages are, of course, accustomed to
working with parameterized datatypes. Functional dependencies provide a way
to express similar relationships between types, without being quite so specific.
For example, perhaps similar ideas could be used in conjunction with existential
types to capture dependencies between types whose identities have been hidden?

Acknowledgments

I would like to thank my colleagues at OGI for their interest in this work. Parti-
cular thanks go to Jeff Lewis for both insight and patches, and to Lois Delcambre
for explaining the role that functional dependencies play in database theory.

References

[1] W. W. Armstrong. Dependency structures of data base relationships. In IFIP
Cong., Geneva, Switzerland, 1974.

[2] S. M. Blott. An approach to overloading with polymorphism. PhD thesis, Depart-
ment of Computing Science, University of Glasgow, September 1991.

[3] K. Chen, P. Hudak, and M. Odersky. Parametric type classes (extended abstract).
In ACM conference on LISP and Functional Programming, San Francisco, CA,
June 1992.

[4] M. P. Jones. Qualified Types: Theory and Practice. PhD thesis, Programming
Research Group, Oxford University Computing Laboratory, July 1992. Published
by Cambridge University Press, November 1994.

[5] M. P. Jones. Simplifying and improving qualified types. In International Confe-
rence on Functional Programming Languages and Computer Architecture, pages
160–169, June 1995.

[6] M. P. Jones. A system of constructor classes: overloading and implicit higher-order
polymorphism. Journal of Functional Programming, 5(1), January 1995.

[7] M. P. Jones and J. C. Peterson. Hugs 98 User Manual, September 1999.
[8] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.
[9] C. Okasaki. Edison User’s Guide, May 1999.

[10] S. Peyton Jones. Bulk types with class. In Proceedings of the Second Haskell
Workshop, Amsterdam, June 1997.

[11] S. Peyton Jones and J. Hughes, editors. Report on the Programming Language
Haskell 98, A Non-strict Purely Functional Language, February 1999.

[12] S. Peyton Jones and J. Hughes (editors). Standard libraries for the Haskell 98
programming language, February 1999.

[13] S. Peyton Jones, M. Jones, and E. Meijer. Type classes: Exploring the design
space. In Proceedings of the Second Haskell Workshop, Amsterdam, June 1997.

[14] P. Wadler and S. Blott. How to make ad hoc polymorphism less ad hoc. In
Proceedings of 16th ACM Symposium on Principles of Programming Languages,
pages 60–76, Jan 1989.

Sharing Continuations: Proofnets for Languages
with Explicit Control

Julia L. Lawall? and Harry G. Mairson??

Department of Computer Science
111 Cummington Street

Boston University
Boston, Massachusetts 02215
{jll,mairson}@cs.bu.edu

Abstract. We introduce graph reduction technology that implements
functional languages with control, such as Scheme with call/cc, where
continuations can be manipulated explicitly as values, and can be opti-
mally reduced in the sense of Lévy. The technology is founded on pro-
ofnets for multiplicative-exponential linear logic, extending the techni-
ques originally proposed by Lamping, where we adapt the continuation-
passing style transformation to yield a new understanding of sharable
values. Confluence is maintained by returning multiple answers to a (sha-
red) continuation.
Proofnets provide a concurrent version of linear logic proofs, eliminating
structurally irrelevant sequentialization, and ignoring asymmetric distin-
ctions between inputs and outputs—dually, expressions and continuati-
ons. While Lamping’s graphs and their variants encode an embedding of
intuitionistic logic into linear logic, our construction implicitly contains
an embedding of classical logic into linear logic.
We propose a family of translations, produced uniformly by beginning
with a continuation-passing style semantics for the languages, employing
standard codings into proofnets using call-by-value, call-by-name—or hy-
brids of the two—to locate proofnet boxes, and converting the proofnets
to direct style. The resulting graphs can be reduced simply (cut elimi-
nation for linear logic), have a consistent semantics that is preserved
by reduction (geometry of interaction, via the so-called context seman-
tics), and allow shared, incremental evaluation of continuations (optimal
reduction).

1 Introduction

Expressions and continuations are dual, separate but equal computational struc-
tures in a programming language. The former provides a value; the latter consu-
mes it. Yet evaluating expressions is very familiar, while evaluating continuations
? Supported by NSF Grant EIA-9806718.

?? Supported by NSF Grants CCR-9619638 and EIA-9806718, and the Tyson Founda-
tion.

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 245–259, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

246 J.L. Lawall and H.G. Mairson

is considered esoteric, even though both are made of the same stuff. The incor-
poration of continuations as first-class citizens in programming languages was
not welcomed like the Emancipation Proclamation, but instead regarded warily
as a kind of witchcraft, with implementation pragmatics that are ill-defined and
unclear. If expressions and continuations are indeed dual, then so should be the
technology of their implementation, and the flexibility with which we reason ab-
out them. Efficient evaluation of one should reveal dual strategies for evaluating
the other. In short, everything we know about expressions we ought to know
about continuations.

We take a significant step towards this equality by formulating a general
version of graph reduction that implements the sharing and optimal incremental
evaluation of both expressions and continuations, each evaluated using the same
primitive operations. By founding our technology on generic tools from logic and
programming language theory, specifically the CPS transform and its relation
to linear logic, we are for the first time able to produce a family of related
implementations in an entirely mechanical way.

Nishizaki earlier produced a coding of Scheme with call/cc in linear logic,
via ad hoc reasoning, based on a proof of a proposition of linear logic corre-
sponding to the type of call/cc [22]. In contrast, our new contribution is to
produce Nishizaki’s coding, and many others, by a mechanical process based on
the denotational semantics of the programming language. Not only do we get a
much deeper insight into principles, we greatly simplify the problem of construc-
ting graph reduction implementations of other languages with explicit control.
In bringing ideas from logical theory closer to implementation technology, we
hope to make researchers think about the pragmatics of continuations in simple,
novel, and useful ways.

Our methodology is founded on proofnets for multiplicative-exponential li-
near logic, following the beautiful insights of John Lamping [17], who realized
Jean-Jacques Lévy’s specification of correct, optimal reduction for the λ-calculus
[18], and of Gonthier, Abadi, and Lévy, who reinterpreted Lamping’s insights in
the guise of Girard’s geometry of interaction, and the related embedding of intui-
tionistic logic in linear logic [12,13]. Linear logic [11] provides an ideal substrate
for the implementation of control operators, as it makes no asymmetric distinc-
tions between inputs and outputs, or analogous expressions and continuations.
We extend the optimal reduction technology to implement explicit control and
sharing of continuations, essentially via an embedding of classical logic in li-
near logic, following a line of research beginning with Griffin and then Murthy
[14,21]. Our construction is based on continuation-passing style, but generates
direct-style graphs. This approach extends to implement most any functional
language with abortive control operators whose semantics can be described in
continuation-passing style—for example, Filinski’s symmetric λ-calculus [8], and
Parigot’s λµ-calculus [23].1

1 We have implemented these languages using the techniques in this paper. This work
will be included in a later, extended version of the manuscript.

Sharing Continuations: Proofnets for Languages with Explicit Control 247

What do optimality and correctness mean in a language with explicit control?
To understand optimality and sharing in the context of continuations, consider
the evaluation of a Scheme expression

([fun1]
(call/cc (lambda (a) ([fun2]

(call/cc (lambda (b) [exp]))))))

in the context of some complex continuation k. The expression [exp] can impli-
citly access its current continuation c, or explicitly access continuations a and
b named by a and b. All of these continuations extend the continuation of the
entire expression k. Optimality ensures that a, b, and c share k, that b and c
share a, and so on. If continuations are shared, duplicate work can be avoided
as continuations are simplified.

A reduction strategy ρ is correct if for any expression E, if there is some stra-
tegy σ that reduces E to a normal form, then ρ also reduces E to a normal form.
In the absence of control operators, normal forms in the λ-calculus are unique, so
all correct strategies produce the same normal form, if one exists. However, con-
trol operators destroy the uniqueness of normal forms: let E be the Scheme ex-
pression (call/cc (lambda (k) ((lambda (x) 1) (k 2)))); a call-by-name
strategy reduces E to 1, while a call-by-value strategy reduces E to 2. A correct
evaluation strategy cannot simply choose one of these answers. Define context C
as (if (= [−] 1) 0 ⊥) and C ′ as (if (= [−] 1) ⊥ 0). Since C[E] evaluates
to 0 under call-by-name and diverges under call-by-value, a correct evaluation of
E must return 1. But since C ′[E] evaluates to 0 under call-by-value and diverges
under call-by-name, a correct evaluation of E must return 2. Returning both 1
and 2 in the evaluation of E is not contradictory: it merely amounts to supplying
both answers to a single shared continuation.

Technical contributions: The efficiency of optimal reduction is based on the
incremental propagation of sharing nodes. Implementations of optimal reduction
based on linear logic, as proposed by Gonthier, Abadi, and Lévy, and later by
Asperti, use proofnet boxes to coordinate these interactions. Nevertheless, the
boxing strategy only permits the sharing of values. To extend this technology to
languages with control operators, the key technical question is: where do we put
the boxes to allow the sharing of continuations?

Our solution exploits the continuation-passing style (CPS) transformation.
If a language with control operators can be translated into the pure λ-calculus
using a CPS transformation, we can use existing technology to construct the
graph of the CPS transformed term. The CPS translation of a term is more ver-
bose than the original term, and more expensive to reduce to a normal form. We
show that for a language with abortive continuations, the graphs of CPS terms
can be mechanically converted back to direct style, maintaining the boxing of
continuations induced by the CPS term. The transformation “rotates” principal
ports of boxes so that continuations can be copied. We prove that this trans-
formation does not change the underlying denotational semantics of the terms,
as defined by the geometry of interaction. This approach can be applied to any
variant of the CPS transformation, and any strategy for coding pure λ-terms as

248 J.L. Lawall and H.G. Mairson

proofnets. The result is a family of possible translations into graphs, and these
graphs can be optimally reduced in the sense of Lévy’s labelled terms.

Traditionally, compiler optimizations have addressed sharing of expressions.
The technology presented here provides a new systematic basis on which to
optimize the sharing of continuations.

In summary, all of the translations we outline possess a simple graph reduc-
tion on translated terms (cut elimination for linear logic), a consistent semantics
that is preserved by reduction (geometry of interaction, via the so-called con-
text semantics of Gonthier [12]), and a mechanism whereby continuations can
be incrementally evaluated (optimal reduction). The situation of this technology
within multiplicative-exponential linear logic ensures that the semantic charac-
terization given is equivalent to the operational semantics of graph reduction.
Viewing data types as games, and contexts (in the sense of Gonthier) as moves
in a composite game, one immediately suspects that categories of games should
provide the right kind of “more abstract” semantics for calculi with explicit con-
trol. Furthermore, full abstraction theorems for languages with control seem to
be easily accessible, given the full completeness results for linear logic.

2 Preliminaries

We briefly sketch the construction of graphs to implement λ-calculus; more de-
tails can be found elsewhere [1,12]. Graphs are composed of wires and fixed-arity
nodes, as well as boxes, which enclose subgraphs. The λ-calculus is encoded using
apply nodes (@), lambda nodes (λ), sharing nodes (5), weakening nodes (�),
and croissants (_). A box allows a subgraph to be duplicated by a sharing
node, or discarded by a weakening node. When sharing is no longer required, a
croissant can open the box, allowing interaction with the subgraph inside. The
meaning of the other nodes should be intuitive.

One port of each node or box is designated as the principal port. Other
ports are auxiliary ports. Reduction takes place when two graph constructs are
connected at their principal ports. A box can also interact with another box at
its auxiliary port. Global reduction rules are shown in Figure 1, where black dots
indicate principal ports. Graphs can also be reduced by local reduction rules,
described elsewhere [1,12]. Local reduction of the graph of a λ-term implements
Lévy’s optimal reduction [18].

@••
λ

⇒ •

G

5
⇒

• •

G G

5 5 G2

G1

•

•

⇒
G2

G1

•

•

•

G
⇒ G

Fig. 1. Global reduction rules

Sharing Continuations: Proofnets for Languages with Explicit Control 249

The big question in implementing λ-calculus within this framework is where
to put the boxes to allow the unrestricted sharing of values. We mention two
commonly used boxing disciplines; see [19] for others. The call-by-value (CBV)
coding boxes the graph of every λ-abstraction. Correspondingly, a croissant is
placed on the function position of every apply node. The call-by-name (CBN)
coding boxes the graph of the argument of every function application. Corre-
spondingly, a variable reference is implemented by a croissant. These codings
amount to Curry-Howard style embeddings of intuitionistic logic in linear logic.
Figure 2 illustrates the CBN coding of the λ-calculus, which we will use in this
paper. Note that the left side of a lambda node leads to the graph of the body,
while the right side leads to the (perhaps shared) occurrence of the bound varia-
ble. Correspondingly, the left side of an apply node leads to the context of the
application, while the right side leads to the argument. Our results are equally
applicable to the CBV coding, and to any other consistent boxing strategy.

x

λx

Gn[[M]]

@
Gn[[M]]

5

Gn[[N]]
•

Gn[[x]] Gn[[λx.M]] Gn[[MN]]

Fig. 2. CBN coding of λ-terms

Graphs of simply-typed λ-terms can be assigned linear-logic types. In par-
ticular, the type of a box is !A, allowing sharing of the A-typed value inside.
Regardless of the boxing strategy, the constraints of linear logic typing imply:

Proposition 1. Boxes never get in the way of β reductions.

As a consequence, optimal (local) reduction reduces any two graphs with the
same arrangement of apply, lambda, and sharing nodes in the same way.

Asperti has proposed some optimizations to these boxing strategies [1]. The
simplest is to apply the following rule to the translation of a λ-term:

• ⇒

We apply this optimization, without comment, throughout the paper.
Implementing control operators: The above codings make the continuation
and argument of an application equally accessible, the former on the left side,
and the latter on the right side of the apply node. References to these values
are similiarly equally accessible to a λ-abstraction, at the left and right side
of the lambda node. Because the λ-calculus can only express the sharing of
arguments, via parameter binding, the boxing strategies only ensure that the
value of the argument is boxed. Control operators such as Scheme’s call/cc,

250 J.L. Lawall and H.G. Mairson

however, introduce the possibility to name, and thus duplicate and discard, the
continuation.

3 Continuations in the λ-Calculus

We now derive a family of graph encodings for terms in the λ-calculus with
call/cc from encodings of the corresponding CPS terms. For pure λ-terms, this
approach produces graphs with the same arrangement of lambda, apply, and
sharing nodes as previous translations, and thus such graphs reduce to normal
form in the optimal number of beta steps, as given by Lévy’s specification.

3.1 The CPS Transformation

Continuation-passing style (CPS) is a style of programming in which the conti-
nuation at each point is represented explicitly as a function. Because the conti-
nuation function makes explicit the remaining computation at the current pro-
gram point, a CPS term necessarily specifies an evaluation order. A λ-calculus
program can be converted to CPS automatically using a CPS transformation.
Furthermore, the control operator call/cc can be translated into CPS. Typi-
cally a CPS transformation encodes a CBV or CBN evaluation order, however
any consistent mixture is possible [15].

Plotkin’s CBV and CBN CPS transformations, extended with the translation
of call/cc, are shown in Figures 3 and 4, respectively [24]. For typed terms,
these transformations induce a corresponding transformation on types. Define
α∗ ≡ α for any base type α (including ⊥) and (α → β)∗ ≡ α∗ → ¬¬β∗ where
¬τ ≡ τ → ⊥; then the CBV CPS transformation maps a derivation {x : σ ∈
Γ} ` E : τ to {x : σ∗ | x : σ ∈ Γ} ` Cv[[E]] : ¬¬τ∗. Similarly, define α† ≡ α, and
(α → β)† ≡ ¬¬α† → ¬¬β†; then the CBN CPS transformation maps the same
derivation to {x : ¬¬σ† | x : σ ∈ Γ} ` Cn[[E]] : ¬¬τ †.

Cv[[x]] ≡ λκ.κx
Cv[[λx.M]] ≡ λκ.κ(λx.λk.Cv[[M]]k)
Cv[[MN]] ≡ λκ.Cv[[M]](λv.Cv[[N]](λw.vwκ))

Cv[[call/cc]] ≡ λκ.κ(λf.λk.f(λv.λc.kv)k)

Fig. 3. CBV CPS transformation of the λ-calculus, including call/cc

Replacing the λ-terms produced by a CPS transformation by the correspon-
ding graphs gives a translation of terms into graphs in which the continuation is
accessible as a sharable value. Figure 5 presents the graph translation correspon-
ding to the CBV CPS transformations. We have used the CBN boxing strategy,
although any strategy can be used. The translation corresponding to the CBN
CPS transformation is similar. Only ⊥ types are indicated.

Sharing Continuations: Proofnets for Languages with Explicit Control 251

Cn[[x]] ≡ λκ.xκ
Cn[[λx.M]] ≡ λκ.κ(λx.λk.Cn[[M]]k)
Cn[[MN]] ≡ λκ.Cn[[M]](λv.v(Cn[[N]])κ)

Cn[[call/cc]] ≡ λκ.κ(λf.λk.f(λa.a(λq.q(λv.λc.vk))k))

Fig. 4. CBN CPS transformation of the λ-calculus, including call/cc

λk

@ x
⊥

λk

@ λx

λk

@

GCv
[[M]]

⊥ •

⊥

λk

@ λv

GCv
[[M]] @ λw

GCv
[[N]] @

@

⊥ •

⊥ •

⊥

λk

@ λf

λk

4

@

@ λv

λc

�@

⊥ •

⊥

•

⊥

GCv [[x]] GCv [[λx.M]] GCv [[MN]] GCv [[call/cc]]

Fig. 5. Graph translation based on the CBV CPS transformation, and the CBN boxing
strategy

This implementation strategy, while straightforward, is unsatisfactory. The
CPS transformation introduces lambda and apply nodes that are not part of the
original term. Thus, optimal reduction of the resulting graph does not reduce
the original term using the minimal number of β steps. Indeed, the number of
β steps is affected by the CPS transformation chosen. Furthermore, the graph
translation does not exploit the symmetry between the left side of a lambda or
apply node, which connects to the continuation of a function application, and the
right side, which connects to the argument. The CPS encoding does, however,
produce a graph in which continuations are consistently boxed. Thus, we would
like a graph translation generating the same arrangement of lambda and apply
nodes for pure λ-terms as the translations defined in Section 2, while retaining
the boxing of continuations suggested by the CPS transformation.

3.2 The DS Transformation on Graphs

Essentially, we would like to eliminate the lambda and apply nodes that construct
and manipulate continuations. To simplify the graph, we exploit the ⊥ return
type of every continuation and continuation abstraction. In a CPS program, we
are not interested in the result of type ⊥, but instead in the value passed to the
initial continuation. We can show that the computation of a value of a non-⊥ type

252 J.L. Lawall and H.G. Mairson

cannot depend on an edge transmitting a value of ⊥ type. The simple conclusion
is to remove all such edges. Because this transformation eliminates continuations
from CPS graphs, we refer to it as the direct-style (DS) transformation.

Removing edges from the graph of course affects the nodes incident upon
these edges. Figure 6 shows transformation rules sufficient to treat CPS terms.
⊥-typed edges in other positions are treated similarly.

λ? ⇒ @? ⇒

Fig. 6. DS graph transformation rules

While the graph codings of Section 2 were inspired by embeddings of intui-
tionistic logic into linear logic, they can equally well implement untyped terms.
Here, however, we do require that ⊥-typed values are used consistently.

The results of applying the DS transformation to the graph translations
based on the CBV and CBN CPS transformations are shown in Figures 7 and
8, respectively. We refer to these translations as the CBVCPS/N and CBNCPS/N
translations, respectively. Both achieve our goals: The arrangement of apply
and lambda nodes in the translation of a pure λ-term is identical to that of the
codings presented in Section 2, and continuations are boxed, allowing them to
be duplicated or discarded.

x

•
λx

GDv [[M]]

@

•

GDv [[M]]

GDv [[N]]

•
λf

4

@ λv

�

•

•

GDv [[x]] GDv [[λx.M]] GDv [[MN]] GDv [[call/cc]]

Fig. 7. DS graph translation derived from the CBV CPS transformation

3.3 Correctness of the DS Transformation

A graph can be viewed as a set of apply and lambda nodes connected by edges
that may contain sharing information, as controlled by sharing nodes, croissants,
and box boundaries. Because the DS transformation only modifies (i.e., elimina-
tes) apply and lambda nodes, it does not directly affect this sharing information.

Sharing Continuations: Proofnets for Languages with Explicit Control 253

x

•
λx

GDn [[M]]

@

•

GDn [[M]]

GDn [[N]]
•

λf

4

@ λv

�

•

•

••

GDn [[x]] GDn [[λx.M]] GDn [[MN]] GDn [[call/cc]]

Fig. 8. DS graph translation derived from the CBN CPS transformation

Consider the path between two edges that are ultimately connected by reduc-
tion. We prove that the DS transformation maintains the way in which such a
path traverses apply and lambda nodes. Because the arrangement of the other
nodes is not modified by the DS transformation, they continue to behave in the
same way as well.

Throughout, we assume the graph is simply typed.

Definition 1. A path is a directed sequence of connected edges, labelled as
shown below, where for each node traversed on the path, the two edges inci-
dent on the node connect respectively to the principal port, and to an auxiliary
port. The label of a path is the concatenation of the labels of the edges.

@
(L)R

λ
)L (R

@
]L [R

λ
[L]R

Definition 2. A well-balanced path is a path whose label is described by the
following grammar, where 1 is the empty word:

B ::= 1 | (LB)L | (RB)R | [LB]L | [RB]R | BB

An unbalanced path is a path that is not well-balanced and whose label is a
subword of a label derivable from B.

This definition of well-balanced path generalizes that of Asperti and Laneve
[2] to include paths that cannot occur in the translation of an ordinary λ-term,
but can occur in the image of the DS transformation. Note that some paths are
neither well-balanced nor unbalanced, for example a path that enters an apply
node on the left and immediately exits the next lambda node on the right, with
label (L]R. Unbalanced paths describe correct information flow (in the sense of
the geometry of interaction) in a well-typed graph, but cannot reduce to form a
beta redex.

254 J.L. Lawall and H.G. Mairson

Proposition 2. Let p be a path that is converted to an edge by the DS trans-
formation. Then, p is either well-balanced or unbalanced.

We can show the following by induction on the structure of a path in a
well-typed graph:

Proposition 3. In a well-balanced path, the first and last edges have identical
types.

An unbalanced path has a label of the form B)X or X(B, where) and (are
one of the four forms of open/closed parentheses, and X is a well-balanced or
unbalanced path. Applying Proposition 3 to B, we can show:

Proposition 4. In an unbalanced path, either the first or last edge has arrow
type.

For a path p, if D(p) is an edge, every node of p must be eliminated by the
DS transformation. Thus, using Proposition 4, we can show:

Proposition 5. Let p be an unbalanced path. If D(p) is an edge, then either the
first or last edge of p has type A → ⊥, for some A.

Theorem 1. (Soundness) Let G be the graph of a pure λ-term. Then the
diagram

G

D
G′

D

D(G) D(G′) ≡ G′′

commutes, where:

1. (The top path can be simulated by the bottom path): If G reduces to G′ by
global reductions, then D(G) reduces to D(G′) by global reductions.

2. (The bottom path can be simulated by the top path): If D(G) reduces to G′′ by
global reductions, then there is some G′ such that G reduces to G′ by global
reductions, and G′′ ≡ D(G′).

Proof. To prove that the top path can be simulated by the bottom path, we
use induction on the number of reduction steps in the top path. Observe that
the effect of the DS transformation on a node is completely local, determined
only by the types of edges incident on the node. Thus, the effect of the DS
transformation on source nodes not affected by the reduction step is the same in
both the source graph and the reduced graph; we need only consider the effect
of the DS transformation on the nodes involved in the reduction step. Consider
each possible redex in the source graph:

– A β-redex with function type A → B, where B 6= ⊥. Since the redex is not
affected by the DS transformation, we can perform the same reduction step
in D(G), and the resulting graph has the form D(G′).

Sharing Continuations: Proofnets for Languages with Explicit Control 255

– A β-redex with function type A → ⊥. Reducing a beta redex creates an
edge of the argument type (connecting the argument to the occurrence of
the parameter) and an edge of the return type (connecting the result of
the body to the context of the application). Thus, reducing a redex with
function type A → ⊥ creates an edge of type A and an edge of type ⊥ in G′.
The edge of type ⊥ is then eliminated by the DS transformation. Applying
the DS transformation to G directly also eliminates the ⊥-typed edges and
connects the A-typed edges, thus having the same effect as beta reduction.

– Box duplication, absorption, croissant-box interaction. These operations each
involve an edge of type !A, which is unaffected by the DS transformation.
Thus, the identical operation can be performed in D(G).

To show that reductions in the bottom path can be simulated by reductions
in the top path, we proceed by induction on the number of reduction steps from
D(G) to G′′. Since the DS transformation only converts λ- and apply nodes to
edges, an edge e between two interaction ports in D(G) corresponds to a path p
in G consisting of a sequence of lambda and apply nodes, such that D(p) = e. If
p is not an edge, we show that p must β-reduce to one; thus, a single reduction
step in D(G) is simulated by a sequence of β-steps in G, followed by the same
reduction step as performed in D(G). Because p consists of only λ- and apply
nodes, it suffices to show that p is a balanced path. Consider each possible redex
in D(G):

– A β-redex. If p were unbalanced, by Proposition 5, either the first or last
edge would have type A → ⊥, for some A. In that case, the lambda or apply
node connected to that edge would be eliminated by the DS transformation,
contradicting the fact that p connects nodes that form a beta redex in D(G).
Thus, p must be well-balanced.

– Box duplication, box absorption, croissant-box interaction. In all of these
cases, the type of the edge between the interaction ports is !A. Because the
boxes, croissants, and sharing nodes are not affected by the DS transforma-
tion, the first and last edges of p must also have type !A. By Proposition 4,
p cannot be unbalanced. Thus, by Proposition 2, p must be well-balanced.

3.4 Embeddings of Classical Logic

Each of our proofnet implementations implicitly encodes, via an extended Curry-
Howard correspondence, an embedding of classical logic in multiplicative-expo-
nential linear logic (MELL). This family of encodings results from the mix-and-
match of standard double-negation embeddings of classical logic into intuitio-
nistic logic, composed with embeddings of intuitionistic logic into MELL. We
discuss these constructions for minimal implicational logic with ¬¬-elimination.

Let [α → β] ≡![α] −◦ [β] be the Girard translation of intuitionistic implica-
tion in linear logic; similarly, let 〈α → β〉 ≡!(〈α〉 −◦ 〈β〉) be the Gonthier-Abadi-
Lévy translation (see [12]). By standard linear logic identities, [¬¬τ] =?![τ] and
〈¬¬τ〉 =!?〈τ〉, where ! and ? are the (dual) exponential modalities.

256 J.L. Lawall and H.G. Mairson

What does this mean in terms of graph reduction? When a subgraph G with
root typed ?!α is substituted into a sharable context C, the ? marks a croissant
at the root of G that breaks the box around C, which then shares the value of
type !α. Dually, if G has type !?β, the context has type ?!(β)⊥, and the protocol
for box opening and sharing reverses the role of context and value.

Recall (α → β)∗ ≡ α∗ → ¬¬β∗ is the translation of α → β induced by the
CBV CPS transformation, and (α → β)† ≡ ¬¬α† → ¬¬β† is the translation
induced by the CBN CPS transformation. The CPS translations of a function
(classical proof) E : α → β result in a function of type ¬¬(α → β)∗ or ¬¬(α →
β)†; we then have

[¬¬(α → β)∗] = ?!(! [α∗] −◦?! [β∗]) 〈¬¬(α → β)∗〉 = !?!(〈α∗〉 −◦!?〈β∗〉)[
¬¬(α → β)†] = ?!(!?!

[
α†] −◦?!

[
β†]) 〈¬¬(α → β)†〉 = !?!(!?〈α†〉 −◦!?〈β†〉)

Other variants of this mix-and-match style are possible. Fewer modalities mean
fewer boxes and greater implementation efficiency.

4 Related Work

We consider three areas of related work: other CPS transformations, other ap-
proaches to converting CPS programs back to direct style, and other connections
between control operators and linear logic.

Optimizing the CPS transformation: The Plotkin CPS transformations create
many “administrative” redexes involving the application of a continuation or
continuation abstraction [24]. Our DS transformation converts administrative
redexes into box-croissant redexes, adding a bureaucratic cost to optimal re-
duction [1,20]. More optimized CPS transformations [7,25] could generate more
efficient implementations.

Converting CPS programs back to direct style: Danvy first investigated the
problem of converting a CPS program back to direct style [5], later extended
with Lawall. The conversions were only on terms that could be output by CPS
transformation. Our DS transformation also relies on a uniform, but weaker
property: values of type ⊥ must occur consistently, and do not contribute to the
final result. At the extreme, our DS transformation is simply the identity on the
graphs of DS terms.

Relating languages with control operators to linear logic: Nishizaki also inve-
stigated encodings of λ-calculus plus call/cc in proofnets [22]. He showed that
normalization of these proofnets is complete with respect to normalization in
the term language. He began by adding modalities in an ad hoc manner (indu-
ced mechanically by our CBVCPS/N translation) to the type !A −◦ B, allowing
sharing of both values and continuations. His more complex translation is an
optimization of our CBVCPS/N translation, eliminating some box croissant in-
teractions corresponding to administrative redexes. Because Nishizaki derived a
translation from the types rather than from the semantics, he had to prove that
the resulting graphs model the semantics of the language. The correctness of
our approach relies only on the correctness of the CPS transformation, and on

Sharing Continuations: Proofnets for Languages with Explicit Control 257

the correctness of the DS transformation on graphs, which is independent of the
language being implemented.

In a sequel to his earlier work on symmetric λ-calculus, Filinski used linear
logic as a tool for understanding continuations [9]. Some of the linear types he
proposed for continuations appear in our codings, the most common being ?!α,
resulting from the DS transformation of a graph with type (α −◦⊥) −◦⊥. Grif-
fin, and later Murthy, showed the relation between so-called ¬¬-embeddings of
classical logic in intuitionistic logic, and the implementation of control opera-
tors [14,21]. In particular, they showed how varieties of the CPS transformation
provide the constructive content of such embeddings. We further translate such
terms into proofnets in direct style, eliminating the administrative redexes. The
result is a family of constructive embeddings of classical logic into linear logic.

5 Future Work

Since the continuation created by call/cc is abortive, a term containing call/cc
can reduce to different normal forms; its CPS counterpart, like all pure λ-terms,
has only one normal form. Because the DS transformation produces boxes ac-
cording to the CPS transformation providing its input, it should be possible to
identify, among the shared normal forms it can return, the answer that would
have been produced by the CPS-converted input. We leave further analyses of
these observations to future work.

Efficiently managing the reified continuation is a significant problem in imple-
menting languages with control operators [4,16]. Proofnet implementations sug-
gest the possibility of evaluating programs containing control operators using
optimal reduction, with a minimal copying of shared values. Nevertheless, we
are exchanging the savings of optimal reduction for the overhead of box mana-
gement. Further experiments are needed to understand whether the exchange is
cost-effective, and if it can be further optimized by better box technology.

Our proofnet technology might be extended to languages with functional
control operators, such as Danvy and Filinski’s shift and reset, and Sitaram
and Felleisen’s control and prompt [6,27]. While shift and reset are defined
in terms of a CPS transformation, continuations do not have return type ⊥; the
DS transformation is then inapplicable. Both shift and reset, and control
and prompt can be defined in terms of call/cc and a reference cell [10,27].
Bawden has shown how to implement reference cells using sharing graphs [3], so
this strategy may still lead to an interesting proofnet implementation.

6 Conclusions

We have shown how to implement various languages with explicit control using
graph reduction, where the structure of the graphs are proofnets from linear
logic. The principal technical difficulty in such codings is the location of boxes,
which allow computations to be shared. Rather than specifying a fixed scheme
for locating boxes, we have introduced a general methodology based on the CPS

258 J.L. Lawall and H.G. Mairson

transform. Different versions of CPS, followed by our DS transform on graphs,
produce a wide range of consistent schemes for locating boxes in proofnets. The
noble art of linear decorating, to repeat the phrase of Schellinx [26], has been
replaced by a factory.

The theoretical foundation of our implementation technology means that
we have a consistent semantics provided by the geometry of interaction, and
a means of incrementally evaluating continuations via optimal evaluation. The
codings may clarify full abstraction theorems for languages with explicit control,
given the full completeness results that are known for linear logic. But the ge-
nuine progress reflected in the presented techniques is the technology transfer of
logic and proofnets to the mundane algorithmics of implementation. The prag-
matics of double negation in logic, for example, is just packaging: the boxing of
sharable data so that they can interact with each other. Further implementation
improvements amount to a better understanding of where to put boxes. A gene-
ration of compiler writers has spent considerable effort optimizing the efficiency
of sharing expressions. We have presented a systematic basis on which to opti-
mize the sharing of continuations, providing new territory for similar efficiency
improvements.

Acknowledgments. We thank Alan Bawden and Olivier Danvy for commen-
ting on a draft of this paper.

References

1. A. Asperti. δ◦!ε = 1: Optimizing optimal λ-calculus implementations. In Rewriting
Techniques and Applications, pages 102–116, Kaiserslautern, Germany, 1995.

2. A. Asperti and C. Laneve. Paths, computations and labels in the lambda-calculus.
In Rewriting Techniques and Applications, 5th International Conference, volume
690, pages 152–167. Lecture Notes in Computer Science, 1993.

3. A. Bawden. Implementing distributed systems using linear naming. TR 1627,
MIT AI Lab, March 1993. (PhD thesis, originally titled Linear Graph Reduction:
Confronting the Cost of Naming. MIT, May 1992).

4. C. Bruggeman, O. Waddell, and R.K. Dybvig. Representing control in the presence
of one-shot continuations. In Proceedings of the ACM SIGPLAN’96 Conference on
Programming Language Design and Implementation, volume 31(5), pages 99–107,
Philadephia, Pennsylvania, May 1996. SIGPLAN Notices.

5. O. Danvy. Back to direct style. Science of Computer Programming, 22(3):183–195,
1994.

6. O. Danvy and A. Filinski. Abstracting control. In Proceeding of the 1990 ACM
Conference on Lisp and Functional Programming, pages 151–160, Nice, France,
June 1990. ACM Press.

7. O. Danvy and A. Filinski. Representing control: A study of the CPS transforma-
tion. Mathematical Structures in Computer Science, 4:361–391, 1992.

8. A. Filinski. Declarative continuations and categorical duality. Technical Report
89/11, University of Copenhagen, 1989. Masters Thesis.

9. A. Filinski. Linear continuations. In Conference Record of the Nineteenth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 27–38, Albuquerque, New Mexico, January 1992.

Sharing Continuations: Proofnets for Languages with Explicit Control 259

10. A. Filinski. Representing monads. In Conference Record of POPL ’94: 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
446–457, Portland, Oregon, January 1994.

11. J.-Y. Girard. Linear logic. Theoretical Computer Science, 46:1–102, 1986.
12. G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of optimal lambda reduc-

tion. In Conference record of the Nineteenth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 15–26, Albuquerque,
New Mexico, January 1992.

13. G. Gonthier, M. Abadi, and J.-J. Lévy. Linear logic without boxes. In Proceedings
of the Seventh Annual Symposium on Logic in Computer Science, pages 223–234,
June 1992.

14. T. Griffin. A formulae-as-types notion of control. In Conference Record of the
Seventeenth Annual ACM Symposium on Principles of Programming Languages,
pages 47–58, San Francisco, California, January 1990.

15. J. Hatcliff and O. Danvy. A generic account of continuation-passing styles. In
Conference Record of POPL ’94: 21st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 458–471, Portland, Oregon, January
1994.

16. R. Hieb, R.K. Dybvig, and C. Bruggeman. Representing control in the presence of
first-class continuations. In Proceedings of the ACM SIGPLAN’90 Conference on
Programming Language Design and Implementation, volume 25(6), pages 66–77,
White Plains, New York, June 1990. SIGPLAN Notices.

17. J. Lamping. An algorithm for optimal lambda calculus reduction. In Conference
Record of the Seventeenth Annual ACM Symposium on Principles of Programming
Languages, pages 16–30, San Francisco, California, January 1990.

18. J.-J. Lévy. Optimal Reductions in the Lambda-Calculus, pages 159–191. Academic
Press, 1980.

19. I. Mackie. The Geometry of Implementation. PhD thesis, University of London,
September 1994.

20. I. Mackie. YALE: Yet another lambda evaluator based on interaction nets. In
Proceedings of the ACM SIGPLAN International Conference on Functional Pro-
gramming, pages 117–128, Baltimore, Maryland, September 1998.

21. C.R. Murthy. Extracting Constructive Content from Classical Proofs. PhD thesis,
Cornell University, August 1990.

22. S. Nishizaki. Programs with continuations and linear logic. Science of Computer
Programming, 21(2):165–190, 1993.

23. M. Parigot. Lambda-mu-calculus: an algorithmic interpretation of classical natural
deduction. In A. Voronkov, editor, Logic Programming and Automated Reasoning:
International Conference LPAR ’92 Proceedings, St. Petersburg, Russia, pages 190–
201, Berlin, DE, 1992. Springer-Verlag.

24. G. D. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theoretical
Computer Science, 1:125–159, 1975.

25. A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing
style. Lisp and Symbolic Computation, 6(3/4):289–360, November 1993.

26. H. Schellinx. The Noble Art of Linear Decorating. PhD thesis, Institute for Logic,
Language and Computation, University of Amsterdam, 1994.

27. D. Sitaram and M. Felleisen. Control delimiters and their hierarchies. Lisp and
Symbolic Computation, 3(1):67–99, January 1990.

A Calculus for Link-Time Compilation

Elena Machkasova1 and Franklyn A. Turbak2?

1 Boston University, Boston MA 02215, USA,
elenam@bu.edu

2 Wellesley College, Wellesley MA 02481, USA,
fturbak@wellesley.edu

Abstract. We present a module calculus for studying a simple model of
link-time compilation. The calculus is stratified into a term calculus, a
core module calculus, and a linking calculus. At each level, we show that
the calculus enjoys a computational soundness property: if two terms are
equivalent in the calculus, then they have the same outcome in a small-
step operational semantics. This implies that any module transformation
justified by the calculus is meaning preserving. This result is interesting
because recursive module bindings thwart confluence at two levels of our
calculus, and prohibit application of the traditional technique for sho-
wing computational soundness, which requires confluence. We introduce
a new technique, based on properties we call lift and project, that uses a
weaker notion of confluence with respect to evaluation to establish com-
putational soundness for our module calculus. We also introduce the weak
distributivity property for a transformation T operating on modules D1

and D2 linked by ⊕: T (D1 ⊕D2) = T (T (D1) ⊕ T (D2)). We argue that
this property finds promising candidates for link-time optimizations.

1 Introduction

We present a module calculus for a purely functional language that is a tool for
exploring the design space for a simple form of link-time compilation. Link-time
compilation lies in the relatively unexplored expanse between whole-program
compilation, in which the entire source program is compiled to an executable,
and separate compilation, in which source program modules are independently
compiled into fragments, which are later linked to form an executable. In the
link-time compilation model (1) source program modules are first partially com-
piled into intermediate language modules; (2) intermediate modules are further
compiled when they are combined, taking advantage of usage information ex-
posed by the combination; and (3) when all intermediate modules have been
combined into a final closed module, it is translated into an executable.

Link-time compilation can potentially provide more reusability than whole-
program compilation and more efficiency than separate compilation. While se-
parate compilation offers well-known benefits for program development and code
? Both authors were supported by NSF grant EIA–9806747. This work was conducted

as part of the Church Project (http://www.cs.bu.edu/groups/church/).

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 260–274, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

A Calculus for Link-Time Compilation 261

reuse, a drawback is that the compilation of one module cannot take advantage
of usage information in the modules with which it is later linked. In contrast,
link-time compilation can use this information to perform optimizations and
choose specialized data representations more efficient than the usual uniform
representations for data passed across module boundaries.

In this paper we take some first steps towards formalizing link-time com-
pilation. There are three main contributions of this work. First, we present a
stratified untyped call-by-value module calculus that at every level satisfies a
computational soundness property1: if two expressions can be shown equiva-
lent via calculus steps, then their outcomes relative to a small-step operational
semantics will be observably equal. This implies that any transformation expres-
sible as a sequence of calculus steps (such as constant propagation and folding,
function inlining, and many others) is meaning preserving.

Second, our technique for proving soundness is interesting in its own right.
Traditional techniques for showing this property (e.g., [Plo75,AF97]) require the
language to be confluent, but the recursive nature of module bindings destroys
confluence. In order to show that our module calculus has soundness, we intro-
duce a new technique for proving this property based on a weaker notion we
call confluence with respect to evaluation. We replace the confluence and stan-
dardization of the traditional technique for proving soundness with symmetric
properties we call lift and project.

Third, we sketch a simple model of link-time compilation and introduce the
weak distributivity property as one way to find candidates for link-time opti-
mizations. We show that module transformations satisfying certain conditions
are weakly distributive, and demonstrate these conditions for some examples of
meaning preserving transformations.

Our work follows a long tradition of using untyped calculi for reasoning about
programming languages features: e.g., call-by-name vs. call-by-value semantics
[Plo75], call-by-need semantics [AFM+95,AF97], state and control [FH92], and
sharing and cycles [AK97,AB97]. Our notion of confluence with respect to eva-
luation avoids cyclic substitutions in the operational semantics, and so is related
to the acyclic substitution restriction of Ariola and Klop [AK97].

This work is part of a renewed interest in linking issues that was inspired by
Cardelli’s call to arms [Car97]. Recent work on module systems and linking has
focused on such issues as: sophisticated type systems for modules [HL94,Ler94];
the expressiveness of modules systems (e.g., handling features like recursive mo-
dules [FF98,CHP97,AZ99], inheritance and mixins [DS96,AZ99] and dynamic
linking [FF98,WV99]); binary compatibility in the context of program modifica-
tions [SA93,DEW99]; and modularizing module systems [Ler96,AZ99]. There
has been relatively little focus on issues related to link-time optimization; ex-
ceptions are [Fer95] and recent work on just-in-time compilers (e.g, [PC97]).

Our work stands out from other work on modules in two important respects.
First, we partition the reduction relation of the calculus (→) into evaluation
(sometimes called standard) steps (⇒) that define a small-step operational se-

1 We will often abbreviate the name of this property as “soundness”.

262 E. Machkasova and F.A. Turbak

mantics and non-evaluation (non-standard) steps (↪→). While this partitioning is
common in the calculus world (e.g., [Plo75,FH92,AF97]), it is rare in the module
world. Typical work on modules (e.g., [Car97,AZ99]) gives only an operational
semantics for modules. Yet in the context of link-time compilation, the notion
of reduction in a calculus is essential for justifying meaning preserving program
transformations. Without non-evaluation steps, even simple transformations like
transforming [F 7→ λx.(1 + 2)] to [F 7→ λx.3] or [A 7→ 4, F 7→ λx.x + A] to
[A 7→ 4, F 7→ λx.x + 4] are difficult to prove meaning preserving.

Second, unlike most recent work on modules (with the notable exception of
[WV99]), our work considers only an untyped module language. There are several
reasons for this. First, types are orthogonal to our focus on computational so-
undness and weak distributivity; types would only complicate the presentation.
Second, introducing types often requires imposing restrictions that we would
like to avoid. For example, to add types to their system, [AZ99] need to impose
several restrictions on their untyped language: no components with recursive
types, and no modules as components to other modules. Finally, we do not yet
have anything new to say in the type dimension. We believe that it is straightfor-
ward to adapt an existing simple module type system (e.g., [Car97,FF98,AZ99])
to our calculus. On the other hand, we think that enriching our module system
with polymorphic types is a very interesting avenue for future exploration.

Due to space limitations, our presentation is necessarily dense and telegra-
phic. Please see the companion technical report [MT00] for a more detailed
exposition with additional explanatory text, more examples, and proofs.

2 The Module Calculus

In this section, we present a stratified calculus with three levels: a term calculus
T , a core module calculus C, and a full module calculus F . The three calculi
are summarized in Fig. 1. Let X range over {T , C,F}. The definition for each
calculus X consists of the following:

– The syntax for calculus terms TermX and for general one-hole contexts
ContextX . If X ∈ ContextX , then X{Y } denotes the result of filling the
hole of X with a term Y . Due to the hierarchical structure of our module
calculus, Y is not necessarily a term of X . For instance, in our hierarchy T
contexts are filled with T terms; C contexts are filled with T terms; and F
contexts are filled with either C or F terms. We assume that the notation
X{Y } is only applied to such X and Y that the result of the filling is a well-
formed term in TermX . For instance, the notation D{M} is defined only if
the resulting module is well-defined element of TermC .

– A small-step operational semantics of X defined via an evaluation step rela-
tion ⇒X , and a complementary definition of a non-evaluation step relation
↪→X . For each of the three calculi we define a one-step calculus relation
→X

def=⇒X ∪ ↪→X .2 The relation ⇒X is often defined in terms of an evalua-
2 Alternatively we could have defined the rules for →X explicitly and then set ↪→X to

be →X \ ⇒X . However, giving explicit rules for ↪→X clarifies the presentation.

A Calculus for Link-Time Compilation 263

Syntax for the Term Calculus (T):
c ∈ Const = constant values x ∈ Variable = term variables
v ∈ Visible = external labels h ∈ Hidden = internal labels
k, l ∈ Label = Visible ∪Hidden
L, M, N ∈ TermT ::= c | x | l | (λx.M) |M1 @ M2 |M1 ôp M2

C ∈ ContextT ::= 2 | (λx.C) | C @ M |M @ C | C ôp M |M ôp C

V ∈ ValueT ::= c | x | λx.M

Notion of Reduction on Terms:
(λx.M @ V) T M [x := V] (β)

c1 ôp c2 T c, where c = δ(ôp, c1, c2) (δ)

Evaluation and Non-evaluation Steps:
E ∈ EvalContextT ::= 2 | E @ M | (λx.M) @ E | E ôp M | c ôp E

E{R} ⇒T E{Q}, where R T Q, (term-ev)
E{R} ↪→T E{Q}, where R T Q. (term-nev)

Syntax for the Core Module Calculus (C):
D ∈ TermC ::= [l1 7→M1, . . . , ln 7→Mn] (abbreviated [li

n7→
i=1

Mi]),

provided li = lj implies i = j, FV (D) = ∅, and Imports(D) ∩Hidden = ∅.
D ∈ ContextC ::= [li

k−17→
i=1

Mi, lk 7→ C, lj
n7→

j=k+1
Mj]

Projection Notation: [li
n7→

i=1
Mi] ↓ lj = Mj , if 1 ≤ j ≤ n, and otherwise undefined.

Evaluation and Non-evaluation Steps:

G ∈ EvalContextC ::= [li
k−17→
i=1

Mi, lk = E, lj
n7→

j=k+1
Mj]

G{R} ⇒C G{Q}, where R T Q. (comp-ev)
G{l} ⇒C G{V }, where G{l} ↓ l = V . (subst-ev)

[li
n7→

i=1
Mi, hj

m7→
j=1

Vj] ⇒C [li
n7→

i=1
Mi], where ∀1≤i≤m.hi 6∈ ∪n

j=1FL(Mj) (GC)

G{R} ↪→C G{Q}, where R T Q. (comp-nev)
G{l} ↪→C G{V }, where G{l} ↓ l = V . (subst-nev)

Syntax for the Full Module Calculus (F):
F ∈ TermF ::= D | I | F1 ⊕ F2 | F [l← l′] | let I = F1 in F2

F ∈ ContextF ::= 2 | F⊕ F | F ⊕ F | F[l← l′] | let I = F in F | let I = F in F

Evaluation and Non-evaluation Steps:
D ⇒F D′, where D ⇒C D′ (mod-ev)

F{[ki
n7→

i=1
Mi]⊕ [lj

m7→
j=1

Nj]} ⇒F F{[ki
n7→

i=1
Mi, lj

m7→
j=1

Nj]}, (link)

where (∪n
i=1ki) ∩ (∪m

j=1lj) = ∅
F{D[l← k]} ⇒F F{D[l := k]}, (rename)

where l ∈ BL(D) implies k 6∈ BL(D),
l ∈ Hidden implies k ∈ Hidden, and
k ∈ Hidden implies l 6∈ Imports(D).

F{let I = F1 in F2} ⇒F F{F1[I := F2]}, (let)

F{D} ↪→F F{D′}, where D →C D′ (mod-nev)
and F 6= 2 or D ↪→C D′

Fig. 1. The three levels of the module calculus.

264 E. Machkasova and F.A. Turbak

tion context EvalContextX ⊆ ContextX . A term Y is a →X -normal-form
(NF) if there is no term N s.t. M →X N , a ⇒X -NF is defined analogously.
For each calculus X , there is a classification function ClX that maps each
term to a “class” token that describes its state w.r.t. evaluation. The classes
for evaluatable terms must be disjoint from those in⇒X -NF. Also associated
with each calculus X is a set ValueX of values that is the union of one or
more classes of ⇒X -NFs. The function OutcomeX of a term is defined to be
the class of its ⇒-normal form or a symbol ⊥ if the term diverges.

We use the following notations and conventions. If X ranges over EvalContextX ,
then X ranges over ContextX \ EvalContextX (i.e. the set of non-evaluation
contexts). For pairs of rules such as (comp-ev) and (comp-nev), which only dif-
fer by the use of an evaluation versus a non-evaluation context, we introduce a
notation for the combined calculus rule. For instance, we say that D →C D′ by
the rule (comp) if either D ⇒C D′ by (comp-ev) or D ↪→C D′ by (comp-nev). If
→ is a one-step relation, then →∗ denotes its reflexive transitive closure, and ↔
denotes its reflexive, symmetric, and transitive closure.

The following properties of calculi are important in the sequel.

Definition 1 (Confluence). The → relation is confluent if M1 →∗ M2 and
M1 →∗ M3 implies the existence of M4 s.t. M2 →∗ M4, M3 →∗ M4. A calculus
X has confluence if →X is confluent.

Definition 2 (Standardization). A calculus X has the standardization pro-
perty if for any sequence M1 →∗

X M2 there exists M3 s.t. M1 ⇒∗
X M3↪→∗X M2.

2.1 Term Calculus (T)

The module calculus is built on top of a term calculus T , a typical call-by-value
λ-calculus that includes constants (which we assume include integers) and binary
operators (we assume ôp includes standard integer operations). For interfacing
with the module language in which it is embedded, the term syntax also includes
two disjoint classes of labels whose union, Label, is itself disjoint from Variable.

We adopt the convention that all λ-bound variables in a term must be di-
stinct. The free variables of a term M , written FV (M), are defined as usual
(recall that variables are distinct from labels). The set of labels appearing in
a term M is written FL(M); because labels cannot be λ-bound, they always
appear “free”. The result of a capture-avoiding substitution of M ′ for x in M is
written M [x := M ′]. In addition to using α-renaming to avoid variable capture
during substitution, it may be necessary to α-rename the result of substitution
to maintain the distinct variable naming invariant. The result of substituting a
term M ′ for a label l in M is written M [l := M ′].

Both⇒T and ↪→T are defined via a redex/contractum relation T specified
by a call-by-value β rule and a δ rule (unspecified) for binary functions on
constants. Terms in dom(T) are called term redexes. The relations ⇒T and
↪→T are contextual closures of T with respect to an evaluation context E and

A Calculus for Link-Time Compilation 265

a non-evaluation context E. It is easy to see that →T (defined as ⇒T ∪ ↪→T) is
the contextual closure of T with respect to a general context C.

A term M can be uniquely classified with respect to evaluation via ClT (M),
defined as:

const(c) if M = c
var if M = x

abs if M = λx.N
stuck(l) if M = E{l}

evaluatable if M = E{R}
error otherwise

It turns out that an evaluatable term M can be uniquely parsed into E and R
such that M = E{R}, so ⇒T is deterministic (i.e., it is a partial function rather
than a relation). The partial function EvalT (M) is defined as the ⇒T -NF of M
if it exists; otherwise, M is said to diverge. The total function OutcomeT (M) is
defined as ClT (EvalT (M)) if EvalT (M) is defined, and ⊥ if M diverges. Using
classical techniques [Plo75,Bar84], it is straightforward to prove that →T is
confluent, and T has the standardization property.

2.2 Core Module Calculus (C)

In our module calculus, modules are unordered collections of labeled terms.
There are two disjoint classes of labels: visible and hidden. Visible labels name
components to be exported to other modules, and also name import sites within
a component, while hidden labels name components that can only be referen-
ced within the module itself. (This distinction is similar to distinction between
deferred variables and expression names on one hand and local variables on the
other in [AZ99]). Intuitively, a module is a fragment of a recursively scoped re-
cord that can be dynamically constructed by linking, where visible labels serve
to “wire” the definitions in one module to the uses in another.

A module binding is written l 7→ M . A module is a bracketed set of such
bindings in which the labels of any two bindings are distinct. Note that a hole
in a module context D is filled with a T -term rather than another module. The
notation li

n7→
i=1

Mi stands for the bindings l1 7→ M1 . . . ln 7→ Mn, and D ↓ l

extracts the component M bound to l in D (if it exists).
Suppose that D = [li

n7→
i=1

Mi]. The free variables of D are FV (D) =

∪n
i=1FV (Mi). The substitution D[l := k] yields [l′i

n7→
i=1

Mi[l := k]], where l′i = k

if li = l and l′i = li otherwise. The set of bound labels in D is defined as
BL(D) = ∪n

i=1li, while the set of free labels is FL(D) = (∪n
i=1FL(Mi))/BL(D).

The exported labels of D are those that are both bound and visible (Exports(D) =
BL(D)∩Visible), while the imported labels are just the free ones (Imports(D) =
FL(D)). In order to be well-formed, a module D must satisfy three conditions:
(1) all its bound labels must be distinct; (2) it must not import any hidden labels;
and (3) it must not contain any free variables (such variables would necessarily
be unbound). In a well-formed module, the hidden labels are necessarily bound,
so we define Hid(D) = BL(D) ∩Hidden.

The evaluation relation ⇒C is defined using a module evaluation context G

which lifts term-level evaluation context E to the module level. The three rules

266 E. Machkasova and F.A. Turbak

of ⇒C allow the following reductions: (comp-ev) lifts ⇒T to the module level;
(subst-ev) substitutes a labeled value for a label occurrence in the module; (GC)
garbage collects hidden values not referenced elsewhere in the module. Unlike
⇒T , ⇒C is not deterministic, because it can perform an evaluation step on any
component. Nevertheless, ⇒C is confluent. The complementary relation ↪→C has
two rules (comp-nev) and (subst-nev) which differ from their evaluation analogs
by using a non-evaluation context in place of an evaluation context. Note that the
(GC) rule does not have a non-evaluation counterpart; i.e., all (GC)-reductions
are evaluation steps.

Let us consider some examples of module reductions.3 Any one-step reduc-
tion on a term component can be lifted to the module via the (comp) rule:
[F 7→ λx.1 + 2] ↪→C [F 7→ =λx.3]. This is a non-evaluation step, since the redex
occurs under a λ. As an example of (subst), consider [A 7→ 4, F 7→ A + 3] ⇒C
[A 7→ 4, F 7→ 4 + 3]. Here A in the second term appears in an evaluation con-
text. Note that a value may be substituted into itself: [F 7→ λx.F] ↪→C [F 7→
λx.(λx1.F)] ↪→C [F 7→ λx.(λx1.(λx2.(λx3.F)))] (where α-renaming preserves the
distinct variable invariant). This is a non-evaluation step, since F appears under
a λ. The (GC) rule garbage collects hidden values not referenced elsewhere in
the module. Consider:

[P 7→ λw.g @ (w + 1), f 7→ λx.h, g 7→ λy.y ∗ 2, h 7→ λz.f]
⇒C [P 7→ λw.g @ (w + 1), g 7→ λy.y ∗ 2]

The mutually recursive bindings for f and h can be removed because all refe-
rences to these hidden labels occur inside of the values named by these labels.
However, g cannot be removed, since an exported term references it.

It turns out that C has the standardization property. But interestingly, even
though ⇒C is confluent, →C is not confluent, due to the possibility of mutually
recursive (subst) redexes that appear under a λ and therefore not in an evaluation
context. Consider an example due to [AK97]: D0 = [F 7→ λx.G, G 7→ λy.F].
Then D0 ↪→C [F 7→ λx.λy′.F , G 7→ λy.F] = D1 and D0 ↪→C [F 7→ λx.G, G 7→
λy.λx′.G] = D2. D1 (resp. D2) has an even (resp. odd) number of λs for F and
an odd (resp. even) number for G, and in every reduction sequence starting with
D1 (resp. D2), all terms will have this property. Clearly, reduction sequences
starting at D1 and D2 can never meet at a common term.

The confluence of⇒C gives rise to a partial function EvalC(D) that, when de-
fined, returns a module whose components are all⇒T -normal forms. The classifi-
cation notion also lifts to the module level: ClC(D) = [li

n7→
i=1

ClT (Mi)], where D =

[li
n7→

i=1
Mi]. As in the term calculus, OutcomeC(D) = ClC(EvalC(D)) if EvalC(D)

exists, and ⊥ otherwise. We say that D = [li
n7→

i=1
Vi] is a module value (D ∈

ValueC) if Hid(D) = ∅ and Vi ∈ ValueT for all 1 ≤ i ≤ n.

3 In examples, we adopt the convention that visible labels have uppercase names
while hidden labels have lowercase names.

A Calculus for Link-Time Compilation 267

2.3 Full Module Calculus (F)

The full module calculus extends the core module calculus with three module
operators: linking, renaming, and binding. Intuitively, the linking of modules D1
and D2, written D1 ⊕ D2, takes the union of their bindings. To avoid naming
conflicts between both visible and hidden labels, BL(D1) and BL(D2) must be
disjoint. The fact that the import labels of a well-formed module may not be hid-
den prevents the components of one module from accessing hidden components
of another when they are linked.

The renaming operator renames any module label (visible or hidden, import
or export). Renaming import and export labels is the way to connect an exported
component of one module to an import site in another. Renaming a visible
label to a fresh hidden label hides a component; a user-level “hiding” operator
could be provided as syntactic sugar for such renaming. Finally, renaming of
hidden variables to other hidden variables is necessary to guarantee that hidden
variables are disjoint when they are linked. The side conditions on renaming
prevents certain undesirable scenarios: (1) attempting to rename one bound label
to another (causing a name clash); (2) renaming a hidden variable to a visible
one, thereby exposing it; and (3) renaming a (necessarily visible) import to a
hidden label, thereby making the module ill-formed.

The binding operator let I = F1 in F2 names the (result of evaluating the)
definition term F1 and uses the name within the body term F2. This models
situations in which the same module is used multiple times in different contexts.

The disjoint hidden label requirement for ⊕ simplifies reasoning about the
calculus, but is severe from the perspective of a user, who should not be able
to predict the names of the hidden labels of any module. We address this pro-
blem by supplying a user-level linking operator ⊕ that can be defined in terms
of the primitive linking operator ⊕ and renaming, as follows. Suppose that
F1 = [vi

n17→
i=1

Mi, hj
m17→
j=1

Nj] and F2 = [v′
i

m27→
i=1

M ′
i , h

′
j

n27→
j=1

N ′
j] . Then F1⊕F2 is de-

fined as:
F1[h1 ← h′′

1 , . . . , hn1 ← hn1
′′] ⊕ F2[h′

1 ← hn1+1
′′, . . . , h′

n2
← hn1+n2

′′],
where

(
(
⋃n1

i=1 hi) ∪ (
⋃n2

j=1 hj
′)

) ⋂ (⋃n1+n2
k=1 hk

′′
)

= ∅
The hidden labels of F1 and F2 are renamed to fresh hidden labels before the
modules are linked to avoid collisions. The renaming performed by ⊕ is is similar
to the α-renaming required in other module calculi linking operations (e.g., in
[FF98] when rewriting the compound linking form to the unit module form).

The definition of→F lifts core module reduction steps to the module expres-
sion level and adds evaluation rules for the link-level operators (link, rename,
and bind). The structure of ContextF allows the link-level operators to be eva-
luated in any order. The lifted core module reduction steps are only considered
evaluation steps if they are not surrounded by any link-level operators; this for-
ces all link-level steps to be performed first in a “link-time stage”, followed by a
“run-time stage” of core module steps.

The lack of confluence of →C is inherited by →F , but we are still able to
show that ⇒F is confluent and F has the standardization property. If F is

268 E. Machkasova and F.A. Turbak

a link, rename, or bind term, we define ClF (F) to be linkable; otherwise we
define ClF (F) to be ClC(F) (in this case, F ∈ TermC). OutcomeF is defined
analogously with OutcomeC , and ValueF = ValueC .

3 Meaning Preservation

The calculus defined in the previous section allows us to reason about module
transformations. A transformation T of a calculus X is a relation T : X × X .
Even though T in general is not a function, we sometimes write Z = T(Y) if
(Y, Z) ∈ T. Below we define a notion of observational equivalence and, based on
it, a notion of a meaning preserving transformation.

Definition 3 (Observational Equivalence). Two terms Y and Z of a cal-
culus X ′ are observationally equivalent in a calculus X (written Y ∼=X Z) if for
all contexts X s.t. X{Y } and X{Z} are well-formed terms of X , X{Y } ⇒∗

X W
iff X{Z} ⇒∗

X W ′ where W and W ′ ∈ ValueX and ClX (W) = ClX (W ′).

In the definition, note that X may or may not be the same as X ′. As an
example, two core modules are observationally equivalent in F if in any full
module context F they evaluate to module values of the same class, as defined
above. For instance, consider the following modules: D1 = [F 7→ λx.x + a, a 7→
1 + 2], D′

1 = [F 7→ λx.x + 3, a 7→ 3], D2 = [S 7→ N1 + N2], and D′
2 = [S 7→

N2 + N1]. D1 ∼=F D′
1 because the exported F behaves like an “add 3” function

for both modules in any context. Assuming that + is commutative, D2 ∼=F D′
2

because they evaluate to the same module value when they are placed in a
context that supplies integer values for N1 and N2, and none of the two modules
evaluates to a module value if the context does not supply such values.

Definition 4 (Meaning Preservation). A transformation T of a calculus X ′

is meaning preserving in a calculus X if (Y, Z) ∈ T implies Y ∼=X Z.

For instance, the constant folding/propagation transformation CFP in C is
meaning preserving in F , as seen in the above example with D1 and D′

1. The
example with D2 and D′

2 illustrates that a transformation SPO that swaps the
operands of + in C is also meaning preserving in F .

3.1 Computational Soundness

Proving that a transformation is meaning preserving can be difficult and tedious
work. However, if T is a calculus-based transformation in X , i.e. Y ↔X Z for
all (Y, Z) ∈ T, then it is automatically meaning preserving in a calculus X ′

satisfying the conditions of Lemma 1 below.
A key notion for showing the meaning preservation of calculus-based trans-

formations is computational soundness:

Definition 5 (Computational Soundness). A calculus X is computationally
sound if M ↔X N implies OutcomeX (M) = OutcomeX (N), where M, N ∈
TermX .

A Calculus for Link-Time Compilation 269

It follows from computational soundness that if two terms are equivalent in
the calculus then they are observationally equivalent in an empty context. For
observationally equivalence to hold in all contexts requires embedding:

Definition 6 (Embedding). A relation →X ′ is embedded in a relation →X
(written →X ′�→X) if Y →X ′ Z implies that X{Y } →X X{Z} for any context
X s.t. X{Y } and X{Z} are well-formed terms of X .

As examples of embeddings, in our module calculus,→T �→C (because term
reductions can be performed in the bindings of a module) and→C�→F (because
core module reductions can be performed within a full module term). The self-
embedding →X�→X means that the relation →X is a congruence relative to
the one-holed contexts of X . For instance, →T and →F are both congruences
since they are embedded in themselves.

Together, computational soundness and embedding imply that calculus-based
transformations are meaning preserving.

Lemma 1. If a calculus X is sound and →X ′�→X , then any calculus-based
transformation T in X ′ is meaning preserving in X .

Proof. By Definition 6, Y ↔X ′ T(Y) implies that for any context X, X{Y }
↔X X{T(Y)}. Then OutcomeX (X{Y }) = OutcomeX (X{T(Y)}) by soundness of
X . By the definition of OutcomeX , X{Y } ⇒∗

X W iff X{T(Y)} ⇒∗
X W ′, where W

and W ′ ∈⇒X -NF and ClX (W) = ClX (W ′). Since ValueX respects the ordering
of ClX , W and W ′ are either both in or both not in ValueX . ut

The soundness of the call-by-name and call-by-value λ-calculi are a classic
result due to Plotkin [Plo75]. Since the reduction relations of these caculi are
congruences (i.e., are self-embedded), Lemma 1 implies that all calculus-based
transformations in these calculi are meaning preserving.

A main result of our work is that T , C, and F are all computationally sound.
Given the four embeddings for these calculi enumerated above, Lemma 1 implies
that calculus-based transformations are meaning preserving in each of the four
cases. Many classic program transformations (both at the term and at the mo-
dule level) fall into this category: e.g., constant folding and propagation, function
inlining, and simple forms of dead-code elimination that eliminate unused value
bindings. All of these (and any combinations thereof) can easily be shown to be
meaning preserving because all are justified by simple calculus steps.

We emphasize that there are numerous common transformations that are not
calculus-based and so their meaning preservation cannot be shown via this tech-
nique. The operand-swapping SPO transformation introduced above is in this
category. Note that OutcomeC(D2) = [S 7→ stuck(N1)] and OutcomeC(D′

2) =
[S 7→ stuck(N2)], underscoring that SPO cannot possibly be expressed via calcu-
lus steps. Global transformations like closure conversion, assignment conversion,
uncurrying, etc., are other examples of non-calculus-based transformations.

270 E. Machkasova and F.A. Turbak

3.2 A Novel Technique for Proving Soundness

As in Plotkin’s approach, we show soundness of the module calculi in order to
prove that calculus-based transformations are meaning preserving. However, we
formulate and prove much more general conditions for soundness that do not
depend on the particulars of the module calculus or of the definition of a pro-
gram outcome. We also extend traditionally used definitions to a hierarchy of
calculi, allowing terms of one calculus to fill in contexts of another (see Defini-
tion 3 above). Our discussion is independent of the particulars of a calculus. The
notations M, N for terms and C for contexts are used below for clarity (since
these notations are more traditional); note that they are independent from the
same notations used in the term calculus T .

Traditional proofs of computational soundness depend on confluence of reduc-
tion in the calculus and on standardization, as well as on the following property,
which is often not articulated, but plays a critical role in soundness proofs:

Definition 7 (Class Preservation). Calculus X has the class preservation
property if M ↪→X N implies ClX (M) = ClX (N), where M, N ∈ TermX .

Below we present a traditional proof of computational soundness that gene-
ralizes Plotkin’s approach.

Theorem 1 (Soundness of a Confluent Calculus). Confluence, standar-
dization, and class preservation imply soundness.

Proof. The diagram of the proof is shown in Fig. 2.4 Assume that M ↔X N
and that M ⇒∗ M ′ = Eval(M). By confluence there exists L s.t. M ′ →∗ L,
N →∗ L. Since M ′ is a normal form w.r.t. ⇒, there can not be an evaluation
sequence starting at M ′, so M ′↪→∗L. By standardization, N →∗ L implies that
there is N ′ s.t. N ⇒∗ N ′↪→∗L. Since M ′, L, and N ′ are connected only by ↪→,
by class preservation, Cl(M ′) = Cl(L) = Cl(N ′), and since N ′ is of the same
class as M ′, it must also be a normal form w.r.t. ⇒, so N ′ = Eval(N).

Now assume that M diverges. If Eval(N) exists, then by the above argument
we can show that Eval(M) exists as well. So if M diverges, then so does N . ut

The above approach does not work for a calculus that lacks confluence. But it
turns out that general confluence is not required for soundness! Since the outcome
of a term is defined via the evaluation reduction, we can instead use a weaker
form of confluence: confluence with respect to evaluation. The two properties
given below that we call lift and project (see also Fig. 3), together with the class
preservation property, are sufficient to show soundness.

Definition 8 (Lift). A calculus has the lift property if for any reduction se-
quence M ↪→ N ⇒∗ N ′ there exists a sequence M ⇒∗ M ′↪→∗N ′.

4 In Figs. 2 and 3, double-headed arrows denote reflexive, transitive closures of the
respective relations, and a line with arrows on both ends denotes the reflexive, sym-
metric, transitive closure of the respective relation.

A Calculus for Link-Time Compilation 271

M M ′ M ′ = Eval(M) Evaluation step

N L Cl(M ′) = Cl(L) = Cl(N ′) Non-evaluation step

N ′ N ′ = Eval(N) Calculus step

Fig. 2. Sketch of the traditional proof of computational soundness.

M M ′ M M ′ M ′′

N N ′ N N ′

Lift Project

Fig. 3. The lift and project properties.

Definition 9 (Project). A calculus has the project property if M ↪→ N , M ⇒∗

M ′ implies that there exist terms M ′′, N ′ s.t. M ′ ⇒∗ M ′′, N ⇒∗ N ′, and
M ′′↪→∗N ′.

The project property is the formalization of the notion of confluence w.r.t.
evaluation mentioned above. It says that an evaluation step and a non-evaluation
step leaving the same term can always be brought back together. The lift pro-
perty is equivalent to standardization: any reduction sequence can be transfor-
med into a standard sequence by pushing “backwards” sequences of evaluation
steps through single non-evaluation steps. There is a benefit in proving standar-
dization using the lift property (rather than directly): proofs of both the lift and
project properties use the same mechanism (certain properties of residuals and
finite developments [Bar84]) and share several intermediate results.

The following theorem embodies our new approach to proving soundness:

Theorem 2. Suppose that ⇒ is confluent. Then lift, project, and class preser-
vation imply soundness.

Proof. We want to show that if M ↔ N , then Outcome(M) = Outcome(N).
Without loss of generality assume that M and N are connected by a single step.

272 E. Machkasova and F.A. Turbak

Assume that Outcome(M) 6= ⊥. Let M ′ = Eval(M). In all four of the following
cases, Outcome(M) = Outcome(N):

– M ↪→ N . By the project property, M ⇒∗ M ′ implies that there exist M ′′, N ′

s.t. M ′ ⇒∗ M ′′, N ⇒∗ N ′, and M ′′↪→∗N ′. But M ′ is a normal form w.r.t.⇒,
so M ′ = M ′′. By the class preservation property Cl(M ′) = Cl(N ′), so N ′ is
also a normal form. Hence N ′ = Eval(N), and Outcome(M) = Outcome(N).

– N ↪→M . Similar to the previous case by the lift property.
– M ⇒ N . By confluence of ⇒ there exists N ′ s.t. N ⇒∗ N ′, M ′ ⇒∗ N ′. But

M ′ is a normal form, so N ⇒∗ M ′ = Eval(N).
– N ⇒M . Then by transitivity of ⇒∗, N ⇒∗ M ′ = Eval(N).

Now let Outcome(M) = ⊥. Assuming Outcome(N) 6= ⊥, by the above argu-
ment Outcome(M) = Outcome(N) 6= ⊥, and we get a contradiction. ut
C and F satisfy the lift, project, and class preservation properties, so they

enjoy the soundness property. For the technical details, consult [MT00].

4 Weak Distributivity

We say that a module transformation T is weakly distributive if and only if
T (D1 ⊕ D2) = T (T (D1) ⊕ T (D2)), where = is syntactic equality (modulo α-
renaming and module binding order).

Let Tlink be a single module transformation performing all link-time optimiza-
tions. Suppose that the translator from source modules to intermediate modules
is given by s2i(D) = Tlink(D)5. Also suppose that the linking operator on inter-
mediate modules is defined as D1⊕link D2 = Tlink(D1⊕D2). Then if Tlink is we-
akly distributive, we have that s2i(D1)⊕links2i(D2) = Tlink(Tlink(D1)⊕Tlink(D2))
= Tlink(D1 ⊕D2) = s2i(D1 ⊕D2). Thus, compiling a “link tree” of modules in
the link-time compilation model gives exactly the same code as compilation in
whole-program model. This is the sense in which weakly distributive transfor-
mations are promising candidates for link-time optimizations.

Here we briefly discuss two classes of weakly distributive module transforma-
tions T. We assume the following about T: (1) it is strongly normalizing; and (2),
if T can be applied to a module [Xi

n7→
i=1

Mi], then it can be applied to a module

[Xi
n7→

i=1
Mi, Yj

m7→
j=1

Nj], i.e. to the same module with extra bindings. To moti-

vate the second assumption, let FI be function inlining on modules restricted
to non-recursive substitutions (so that the first assumption is satisfied). Con-
sider the following inlining/linking sequence: [X 7→ λw.Y , Z 7→ λx.X] ⊕ [Y 7→
λy.Z] FI→ [X 7→ λw.Y , Z 7→ λx.λw′.Y] ⊕ [Y 7→ λy.Z] →F [X 7→ λw.Y , Z 7→
λx.λw′.Y , Y 7→ λy.Z] FI→ [X 7→ λw.λy.Z, Z 7→ λx.λw′.Y , Y 7→ λy.Z]. On the
other hand, linking first gives: [X 7→ λw.Y , Z 7→ λx.X, Y 7→ λy.Z], and at
this point the cycle becomes apparent, and no inlining is possible. Thus, extra
bindings can prevent weak distributivity by blocking the transformation.
5 For simplicity, we assume the source and intermediate languages are the same.

A Calculus for Link-Time Compilation 273

A simple class of weakly distributive transformations are those satisfying two
conditions: (1) idempotence: T (T (D)) = T (D); and (2) (strong) distributivity
over ⊕: T (D1 ⊕ D2) = T (D1) ⊕ T (D2). It is easy to show that such a T is
weakly distributive. Examples include many combinations of intra-term trans-
formations, such as constant folding/propagation, dead code elimination, and
function inlining (restricted to non-recursive cases). Note that the second condi-
tion implies that the transformation independently transforms the components
of a module; i.e., the transformation cannot use the (subst) or (GC) rule.

Closures of confluent transformations T form another class of weakly dis-
tributive transformations. It is possible to simulate any transformation step in
T (T (D1) ⊕ T (D2)) by a corresponding step in T (D1 ⊕ D2). Using confluence,
strong normalization, and the extra-bindings assumption, it can be shown that
the two expressions transform to the same result. For example, constant fol-
ding/propagation at the module level (i.e., including the (subst) rule) has all of
these properties, and so is weakly distributive.

5 Future Work

There are several directions in which we plan to extend the work presented here.
Types: We are exploring several type systems for our module calculus, es-

pecially ones which express polymorphism via intersection and union types.
These have intriguing properties for modular analysis and link-time compila-
tion [Jim96,Ban97,KW99].

Non-local Transformations: So far, we have only considered meaning preser-
vation and weak distributivity in the context of simple local transformations.
We are investigating global transformations like closure conversion, uncurrying,
and useless variable elimination in the context of link-time compilation.

Weakening Weak Distributivity: Weak distributivity requires the rather strong
condition of synactic equality between T (D1⊕D2) and T (T (D1)⊕T (D2)). Wea-
ker notions of equality may also be suitable. Note that “has the same meaning
as” is too weak, since it does not capture the pragmatic relationship between the
two sides; they should have “about the same efficiency”.

Abstracting over the Base Language: Our framework assumes that the module
calculus is built upon a particular base calculus. Inspired by [AZ99], we would
like to parameterize our module calculus over any base calculus.

Pragmatics: We plan to empirically evaluate if link-time compilation can give
reasonable “bang for the buck” in the context of a simple prototype compiler.

References

AB97. Z. M. Ariola and S. Blom. Cyclic lambda calculi. In TACS 97, Sendai,
Japan, 1997.

AF97. Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus. J. Funct.
Prog., 3(7), May 1997.

274 E. Machkasova and F.A. Turbak

AFM+95. Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. The
call-by-need lambda calculus. In Conf. Rec. 22nd Ann. ACM Symp. Princ.
of Prog. Langs., pp. 233–246, 1995.

AK97. Z. M. Ariola and J. W. Klop. Lambda calculus with explicit recursion. Inf.
& Comput., 139(2):154–233, 15 Dec. 1997.

AZ99. D. Ancona and E. Zucca. A primitive calculus for module systems. In
G. Nadathur, ed., Proc. Int’l Conf. on Principles and Practice of Declarative
Programming, LNCS, Paris, France, 29 Sept. – 1 Oct. 1999. Springer-Verlag.

Ban97. A. Banerjee. A modular, polyvariant, and type-based closure analysis. In
Proc. 1997 Int’l Conf. Functional Programming, 1997.

Bar84. H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-
Holland, revised edition, 1984.

Car97. L. Cardelli. Program fragments, linking, and modularization. In POPL ’97
[POPL97].

CHP97. K. Crary, R. Harper, and S. Puri. What is a recursive module? In Proc.
ACM SIGPLAN ’97 Conf. Prog. Lang. Design & Impl., 1997.

DEW99. S. Dossopoulou, S. Eisenbach, and D. Wragg. A fragment calculus – towards
a model of separate compilation, linking, and binary compatibility. In Proc.
14th Ann. IEEE Symp. Logic in Computer Sci., July 1999.

DS96. D. Duggan and C. Sourelis. Mixin modules. In Proc. 1996 Int’l Conf.
Functional Programming, pp. 262–273, 1996.

Fer95. M. F. Fernandez. Simple and effective link-time optimization of Modula-3
programs. In Proc. ACM SIGPLAN ’95 Conf. Prog. Lang. Design & Impl.,
pp. 103–115, 1995.

FF98. M. Flatt and M. Felleisen. Units: Cool modules for HOT languages. In
Proc. ACM SIGPLAN ’98 Conf. Prog. Lang. Design & Impl., 1998.

FH92. M. Felleisen and R. Hieb. The revised report on the syntactic theories of
sequential control and state. Theor. Comp. Sc., 102:235–271, 1992.

HL94. R. Harper and M. Lillibridge. A type-theoretic approach to higher-order
modules with sharing. In POPL ’94 [POPL94], pp. 123–137.

Jim96. T. Jim. What are principal typings and what are they good for? In Conf.
Rec. POPL ’96: 23rd ACM Symp. Princ. of Prog. Langs., 1996.

KW99. A. J. Kfoury and J. B. Wells. Principality and decidable type inference for
finite-rank intersection types. In Conf. Rec. POPL ’99: 26th ACM Symp.
Princ. of Prog. Langs., pp. 161–174, 1999.

Ler94. X. Leroy. Manifest types, modules, and separate compilation. In POPL ’94
[POPL94], pp. 109–122.

Ler96. X. Leroy. A modular module system. Tech. Rep. 2866, INRIA, Apr. 1996.
MT00. E. Machkasova and F. Turbak. A calculus for link-time compilation. Tech-

nical report, Comp. Sci. Dept., Boston Univ., 2000.
PC97. M. P. Plezbert and R. K. Cytron. Is “just in time” = “better late than

never”? In POPL ’97 [POPL97], pp. 120–131.
Plo75. G. D. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theor.

Comp. Sc., 1:125–159, 1975.
POPL94. Conf. Rec. 21st Ann. ACM Symp. Princ. of Prog. Langs., 1994.
POPL97. Conf. Rec. POPL ’97: 24th ACM Symp. Princ. of Prog. Langs., 1997.
SA93. Z. Shao and A. Appel. Smartest recompilation. In Conf. Rec. 20th Ann.

ACM Symp. Princ. of Prog. Langs., 1993.
WV99. J. B. Wells and R. Vestergaard. Confluent equational reasoning for linking

with first-class primitive modules (long version). Full paper with three
appendices for proofs, Aug. 1999.

Improving the Representation of Infinite Trees
to Deal with Sets of Trees

Laurent Mauborgne

LIENS – DMI, École Normale Supérieure, 45 rue d’Ulm, 75 230 Paris cedex 05, France
Tel: +33 (0) 1 44 32 20 66; Email: Laurent.Mauborgne@ens.fr

WWW home page: http://www.dmi.ens.fr/˜mauborgn/

Abstract. In order to deal efficiently with infinite regular trees (or other
pointed graph structures), we give new algorithms to store such structu-
res. The trees are stored in such a way that their representation is unique
and shares as much as possible. This maximal sharing allows substan-
tial memory gain and speed up. For example, equality testing becomes
constant time. The algorithms are incremental, and as such allow good
reactive behavior. This new algorithms are then applied to the represen-
tation of sets of trees. The expressive power of this new representation
is exactly what is needed by set-based analysis.

1 Introduction

When applying set-based analysis techniques for practical applications, one is
surprised to see that the representation of the sets of trees is not very efficient.
Even when we use tree automata, we cannot overcome this problem without
performing a minimization of the whole automaton at each step. We propose a
new way of dealing with this kind of structure to get a representation that is as
small as possible during the computation.

After analysis of the problem, it appears that the underlying structure we
want to optimize can be described mathematically as regular infinite trees. Be-
cause tree structures appear everywhere in computer science where a hierarchy
occurs, we found it interesting to present the algorithms in an independent way.
In this way, our technique appears as an extension of an efficient solution to
store finite trees.

The representation we extend uses just the minimum amount of memory by
sharing equivalent subtrees. This saves a lot of space. It is used, for example,
with sets of words represented as a tree to share common prefixes. It is possible
to share the subtrees incrementally, and at the same time to give a unique
representation to different versions of the same trees. Such a technique allows
constant time equality testing and a great speed up for many other algorithms
manipulating trees. It has been the source of the success of Binary Decision
Diagrams (BDDs) [2], which are considered the best representation for boolean
functions so far.

But as soon as a loop occurs somewhere in the data, finite tree techniques are
no longer adequate. The main contribution of this article is to extend the good

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 275–289, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

276 L. Mauborgne

results of unique sharing representation from finite trees to infinite trees. These
techniques are applied to the representation of sets of trees in set-based analysis,
but they can also be applied directly to the representation and manipulation of
finite automata, or infinite boolean functions [14].

After a recollection of the classic results over finite trees in section 2, we
present the solutions for the most difficult problems with infinite trees in the
section 3 on cycles. The general problem is then treated in section 4, with a
full example. Complexity issues and algorithms to manipulate infinite trees are
discussed in section 5. The application to sets of trees implies the description of a
new encoding to keep the uniqueness of the representation. This new contribution
is described in section 6.

2 Classic Representation of Trees

2.1 Trees and Graphs

As we deal with the computer representation of data structures, we must give a
clear meaning to the word representation, and in particular clearly distinguish
between what is represented and what is the representation. For this reason, we
will give a mathematical definition of what is a tree, and another one for the
way it is usually stored in a computer.

Let IN∗ be the set of words over IN, ε denoting the empty word. We note ≺
the prefix ordering on words and u.v the concatenation of the words u and v.
Let F be a finite set of labels.

Definition 1. A tree t labeled by F is a function of pos(t) → F such that
pos(t) ⊂ IN∗ and ∀ p∈ IN∗,∀ i∈ IN, p.i∈ pos(t) ⇒ (p∈ pos(t) and ∀ j < i, p.j ∈
pos(t))

Let p ∈ pos(t). The subtree of t in p, written t[p] is defined by: pos(t[p])
def=

{q ∈ IN∗ | p.q ∈ pos(t)}, and t[p](q)
def= t(p.q). A tree is uniquely determined by

the label of its root, t(ε), and by the children of the root, the different t[i], i ∈ IN.

In the sequel, a generic tree will be denoted
f

���� ��
66

t0 tn−1

, where f is the label of the

root, and (ti)i<n are the children of the root.
When representing a tree in a computer, we usually use one computer location

for each position p in pos(t), where we store the label t(p) and the location of
the different children (the p.i’s in pos(p)) of this position. Such a representation
is well modeled by a graph, where each node of the graph corresponds to a
computer location. We do not give the most general definition of graphs, but the
definition that is useful in this article to represent trees.

Definition 2. A graph G labeled by F is composed of two sets, the node set,
GN , and the edge set, GE ⊂ GN × GN × IN, and every node of the graph is
associated with a label in F .

Improving the Representation of Infinite Trees to Deal with Sets of Trees 277

We define the notion of path in a graph: let p ∈ IN∗, p is a path of the node N
if and only if p = ε or p = i.q and there is an M ∈ GN such that (N, M, i) ∈ GE

and q is a path of M . If O is the only node at the end of the path, we write
N.p = O. We define G(N) as the graph defined by the modes which can be
reached from N . We will often identify a node N and the graph G(N).

Definition 3. A node N represents a tree t if and only if the set of paths of N
is pos(t), and ∀p ∈ pos(t), N.p is well defined, and its label is t(p).

A finite tree t is a tree such that pos(t) is finite. There is always a possible
representation by a finite graph for finite trees. In the most common use, one
node corresponds to each path of the finite tree.

A regular tree t is a tree such that the number of distinct subtrees of t is
finite. Such a tree can be infinite, but it can still be represented by a finite graph
[6], see Fig. 1 for an example.

t =

(10)∗ → f
(10)∗0 → a
1(01)∗ → g

can be represented by
f

0
��
 1

��
00

0

a g 0

ll

Fig. 1. An infinite regular tree

2.2 Best Representation

The naive representation, which consists in using any graph representing the
tree [6], is very easy to deal with and quite widely used for small problems. But
we can do far better if we observe that some nodes can represent different paths
of the tree, as long as the subtrees at these paths are the same. This is called
sharing the subtrees (see e.g. [1]). In fact, the best we can do is to have exactly
one node for each distinct subtree. This is what we call the best representation
of a tree. In the case of finite trees, this can save a lot of space, and even time by
memoizing [15], and in the case of infinite regular trees, we avoid the possibility
of unbounded representation for a given tree.

When dealing with many trees, we can do even better: considering the entire
computer memory as one graph, we can optimize the representation for all the
trees, and have in effect exactly one memory location for each distinct tree we
need to store. An immediate consequence is that we just have to compare the
location of the roots (the node representing the trees) to compare entire trees.
Such a technique is used e.g. in BDDs [2] to achieve impressive speed up and
memory gain.

The technique to obtain the best representation of the trees uses a dictionary
mechanism linking keys to nodes of the graph, usually a hash table. The keys
are built incrementally: if the keys for the (ti)i<n are known and linked to the

278 L. Mauborgne

nodes (Ni)i<n, then the key for
f

���� ��
66

t0 tn−1

is (f, (Ni)i<n). Each time a key is not

present in the dictionary, it is associated with a new node N , with edges to the
Ni’s. If we come to a tree whose key is already in the dictionary, we use the
corresponding node. As the trees are always built from leaves to root, we have
indeed a best representation for the trees.

3 Dealing with Cycles

When representing infinite trees, though, we cannot go from the leaves to the
root, so we cannot start the key mechanism which leads to the best represen-
tation. The difficulty lies in the infinite paths of the tree, that is the cycles of
the graph representing the tree. Whereas in finite trees there is no need to see
beyond the immediate children of a given node, when dealing with cycles, we
can have reasons to look further, in order to detect the two causes of cycle un-
folding: cycle growth and root unfolding. For example, consider the cycle a

99 b
{{

.
b

a

--

a

mm

b

MM is an example of cycle growth, and a // b ;; a
yy

is an example of root

unfolding. In this very simple example, it is easy to reduce root unfolding by
looking at the key of the root, but it is much more difficult if the root itself is
still in another cycle. In order to concentrate on the real difficulties, we suppose
in this section that we deal with strongly connected graphs, that is graphs such
that there is a path between any pair of nodes.

3.1 Cycle Growth and Tree Keys

We give ≡tree as the equivalence between nodes representing the same tree. The
goal of cycle growth reduction is to find an equivalent graph with the minimum
number of nodes. In such a graph, whatever the nodes N and M , N ≡tree M ⇒
N = M . Such a problem is called a partitioning problem. It has been solved
in time n log(n) by Hopcroft [10] for finite automata, and in the general case
by [4]. We call share(N) the algorithm that takes a node N and modifies the
associated graph so that it has the fewest possible nodes (Fig. 2).

share

a
1 //

0

��

b ED

BC
0

@AOO
1

��
a

0

WW

1
// b

0

^^========
1

VV

= a0

$$
1

''
b

0

gg 1
zz

Fig. 2. Application of the share algorithm.

Improving the Representation of Infinite Trees to Deal with Sets of Trees 279

Cycle growth reduction corresponds to the state of the art in automata re-
presentation. But we want to go further: we need that the representation be
unique whatever the different versions of the same tree. To perform this, we give
a key which distinguishes between non isomorphic graphs. This key is associa-
ted to a given node N of the graph. It is a finite tree which corresponds to the
graph as long as we do not loop, but as soon as we loop, the label of the node
is replaced by its access path from N . It is described as treeKey(N). See Fig. 3
for an example. The isomorphism between graphs is not the same thing as ≡tree.

a
0

$$
1

&&
b

0

gg

1

zz ⇒

a

��

��
11

1

ε b

����
�

��
00

0

ε 1

and

b

��

��
11

1

a

��

��
11

1 ε

0 ε

Fig. 3. A graph, followed by the tree keys of its two nodes

In general it can differentiate two graphs which represent the same tree. The
interesting point is that it is indeed the same relation on graphs with a minimal
number of nodes.

Proposition 1. Whatever M and N , such that G(M) and G(N) are graphs with
minimal number of nodes, treeKey(M) = treeKey(N)⇔M ≡tree N .

Proof. The difficult point is M ≡tree N ⇒ treeKey(M) = treeKey(N). Suppose
there are M and N such that G(M) and G(N) are graphs with minimal number of
nodes, M ≡tree N and treeKey(M) 6= treeKey(N). Let tM = treeKey(M) and
tN = treeKey(N). Because tM 6= tN , there is a path p such that tM (p) 6= tN (p).
But if tM (p) is a label of the graph, tM (p) is the label of M.p, and the same
holds for N . Because M ≡tree N , M.p and N.p have the same label, so at least
one of tM (p) or tN (p) is not a label of the graphs (and so is in IN∗), say tM (p).
It means there is a q ≺ p such that M.q ≡tree M.p. So N.q ≡tree N.p, but by
minimality of the number of nodes of G(N), N.q and N.p must be the same
node, and so tN (p) = q = tM (p). ut

Because we can find an equivalent graph with minimal number of nodes
for strongly connected graphs, we have a valid key mechanism for any strongly
connected graph: we first apply share, then treeKey.

3.2 Root Unfolding and Partial Keys

With just share and treeKey (applied to every node), we can have a unique
representation that shares common subtrees. But as we need to start the whole
process from the beginning for each little modification in the trees, such a process
would be quite slow. Moreover, it is much better to apply the share algorithm on

280 L. Mauborgne

the smallest possible graphs. As it is not a linear algorithm, we have better results
if we can split the graph and apply the algorithm to each separate subgraph only.

The finite parts of the tree can always be treated in the classic way, while
the loops will need a special treatment. In order to decompose the graph and
mark those parts of the graph which have been definitely treated, we introduce
partial keys. A partial key looks like a node key for a finite tree, a label followed
by a vector of nodes, except that for some parts of the vector, there is no node
(see Sect 4.3 for an example). A partial key k has a name: name(k) ∈ F and
is a partial function from IN to nodes. A graph labeled by partial keys is such
that for every node N in the graph, if k is the partial key for N , the edges in
the graph correspond to those integers for which the partial key is not defined.
For example, if a node is labeled by f of arity 3, we can have a partial key
which is not defined on 0 and 1 (we write a •), and on 2 its value is the node
number 4. We write (f, ••�4) for this partial key. The only edges that can leave
from such a node would be labeled by 0 and 1. The idea is that what is in the
partial keys is uniquely represented. In our example, the node number 4, �4,
is a unique representation of some tree. Later on during the computation, it is
possible that we have a unique representation for the first component, say with
node �2, and the partial key becomes (f,�2 • �4). When a partial key is full
(defined everywhere), then the node should be a unique representation.

This new graphs have new equivalence relation, ≡pk which is implied by
≡tree. This new equivalence relation corresponds to ≡tree after the expansion of
the partial keys into the graph.

But now, with those partial keys, we can have a strongly connected graph
such that, by root unfolding, one of its nodes is equivalent to a node in a partial
key. Figure 4 shows a case of root unfolding, which can be as big as we want,
even after cycle growth reduction1. So, we must look for such a node, even before

a
1 //

0

''

b
1 //

0

��

b
1 //

0

��

. . . 1 // b
1 //

0

ww

b 1
zz

0

yy

a0
$$ 1

((
b

0

hh 1
zz

≡pk a0
$$

1
''
b

0

gg 1
zz

Fig. 4. Root unfolding of a cycle

applying the share algorithm.
The name of the algorithm performing this task is shareWithDone(N). It

returns N if and only if no other node in the partial keys is equivalent to N .
Otherwise, it returns the node in the partial keys that is equivalent to N . This

1 In this figure, dotted lines correspond to nodes stored in partial keys.

Improving the Representation of Infinite Trees to Deal with Sets of Trees 281

algorithm uses some properties of the graph to reduce the complexity of the
computation. Let G be the graph associated with N . As always in this section,
we suppose that G is strongly connected. We call H the graph already computed
and that is reachable from the partial keys of G. The algorithm determines
whether a node of G is equivalent to a node of H. If it is the case, then there
is root unfolding. If not, there is no root unfolding. We show that it is enough
to verify this property for one node to treat the entire graph G because G is
strongly connected. Suppose N is equivalent to M in H. Then, whatever the
legible path p, N.p is equivalent to M.p. Because H has been treated already,
any M.p is in H, and because G is strongly connected, any node of G is a N.p.

There is a kind of reciprocal property that is exploited too: for some subsets
of HN , if no node of the subset is equivalent to a particular node of G, then
they are not equivalent to any node of G. A subset of HN is said to be closed
if and only if, for every legible path p, for every node N in the subset, N.p is in
the subset.

Proposition 2. ∀H ′ ⊂ HN such that H ′ is closed, if ∃N ∈ GN such that
∀M ∈ H ′, N 6≡pk M , then this holds for every N ∈ GN .

Proof. Let H ′ be such a subset and N a node of G. If N is not equivalent to
any node in H ′, then, suppose there is a M ∈ GN and a O ∈ H ′ such that M
is equivalent to O. As G is strongly connected, there is a p such thatM.p = N .
So, N would be equivalent to O.p, which is in H ′. This proves that no element
of GN is equivalent to any element of H ′. ut

Because of these properties, we can use the following algorithm for share-
WithDone: we just compare every nodes of G with the nodes that are reachable
from their partial keys and not already encountered. This comparison can be
quite efficient by exploiting the fact that the nodes in the partial keys are unique
representations of trees, although we have a quadratic worst case complexity.

We will show in the next section, that by applying first shareWithDone,
then share and then treeKey, we can indeed represent uniquely (and with the
least possible number of nodes) any strongly connected graph, in an incremental
process.

4 The Best Representation for Infinite Trees

4.1 Informal Presentation

In order to show how we can produce the best representation for an infinite
tree, we solve the following problem: considering a graph representing a tree t,
return an equivalent graph with a minimal number of nodes. To achieve this
in an incremental way, we use two dictionary mechanisms and a decomposition
of the graph. First, we apply the classic algorithm, using the dictionary D, on
the finite subtrees of the tree. When a finite subtree is entirely treated, it is
incorporated in the graph through partial keys. Second, when there is no more
finite subtree, there is a subtree represented by a strongly connected graph. The

282 L. Mauborgne

dictionary DG stores the tree keys of such graphs, and after shareWithDone and
if necessary, share, we can decide whether another equivalent graph has already
been encountered, and if not, use new nodes. When the strongly connected graph
is treated, it is considered as just a node, and so we can iterate on our algorithm
until we give the representation of the root.

4.2 The Algorithm

We suppose given a dictionary D which maps full keys to nodes corresponding
to a unique representation of the associated tree, and a dictionary DG which
maps tree keys (in fact keys of these finite trees) to nodes corresponding to a
unique representation of the associated strongly connected graph.

The algorithm uses local dictionaries too, which we assume to be empty when
the process starts on a tree. The dictionary encountered contains the nodes of
the original representation already encountered (so that we do not loop). The
set returnNodes is used to detect the roots of the loops.

A node is considered “treated” when it is in the dictionary D (and so it
represents uniquely a tree). To decide whether a node is “treated”, we just have
to look at its key: it is “treated” if the key is full.

representation(t)
Step 1 if t ∈ encountered then

if encountered(t) is not treated add it in returnNodes
return encountered(t)

Step 2 N is a new node labeled by the empty partial key k of name
the label of t

Step 3 for each child ti of t do
3a Ni ←←← representation(ti)
3b if Ni is treated, then add it to k

else N.i ←←← Ni

Step 4 if k is full then
if k ∈ D return D(k)
else add k→N to D and return N

Step 5 remove N from returnNodes
Step 6 if returnNodes = ∅ then return representCycle(N)
Step 7 return N

representCycle(N)
Step 1 if shareWithDone(N) 6= N then return shareWithDone(N)
Step 2 share(N)
Step 3 if treeKey(N) ∈ DG then return DG(treeKey(N))
Step 4 for each node M in the graph defined by N do

4a add treeKey(M)→M to DG

4b add the children of M to its partial key m
4c add m→M to D

Step 5 return N

Improving the Representation of Infinite Trees to Deal with Sets of Trees 283

4.3 Example

We present the algorithm to represent regular trees on an example, the graph
of Fig. 5, where each node is assigned a number. We will write ti for the tree

f1

0

��~~
~~

~~
~

1

��

2

��
@@

@@
@@

@@

f20
&&

1

��

2

AA

AA
AA

AA
g5

0

II

1
xx

a6

g3

0

HH

1
xx

a4

Fig. 5. Example

represented by the node number i, �i.
representation(t1) calls representation for t2, t5 and t6. The call to

representation on t2 will return the node �2. It will also store various nodes
in D, and in particular (a)→�4. The call on t5 will just return an untreated
node �5, with nothing added in the dictionaries. The call on t6 will recognize
on step 4 that a is in D and so it will return �4.

Thus, at step 5, returnNodes = {�1} becomes empty, and we call re-

presentCycle with the graph2

(f,�2 •�4)

1
		

(g, ••)
0

II

1
bb

. A call to shareWithDone returns

the node �2. So the return value of representation on t1 is �2, the node

labeled by f in the graph

f20
''

1
��

2

AA

AA
AA

AA

g3

0

II

1
ww

a4

. Moreover, the dictionaries will be:

D = {(a)→�4, (g,�3�2)→�3, (f,�2�3�4)→�2}

DG =

(f, • •�4)

}}zz
zz

z
��

ε (g, ••)
||yy

yy
y

""F
FF

FF

ε 1

→�2,

(g, ••)
��

!!D
DD

DD

(f, • •�4)

||xx
xx

x
""F

FF
FF

ε

1 ε

→�3

2 Remember that (f,�2 • �4) is the partial key which is not defined on its second
component.

284 L. Mauborgne

4.4 Proof of the Algorithm

The algorithm returns the node of a graph. We must prove that this graph
represents the same tree as the original graph, and that it is a graph of maximal
sharing.

First, notice that the algorithm terminates, because of the dictionary en-
countered which implies that each node of the original graph is treated only
once.

The correctness of the algorithm is derived from the fact that we return the
same graph as the original, except when we recognize that an equivalent node
had already been encountered (through the node keys or the tree keys), in which
case we replace one node by the other. It is the case step 4 of representation,
and steps 1, 2 and 3 of representCycle

The fact that the resulting graph has the minimal number of nodes lies
in the use of the dictionaries D and DG to ensure that we never duplicate
any node. The dictionary D contains the node keys of every node encountered,
and the dictionary DG contains the tree key of every node of every strongly
connected graph with minimal number of nodes we encounter. We can prove that
each time we definitely introduce new nodes, there is no duplication. Definitive
introduction is performed in two points: step 4 of representation, and step 4
of representCycle.

Step 4 of representation, we know that the key k is not in D. Moreover,
each one of the Ni composing the key is unique because nodes in partial keys

have already been treated. So if a tree
f

���� ��
66

t0 tn−1

had already been encountered,

the key (f, (Ni)i<n) would already have been encountered.
Step 4 of representCycle, we know that the key treeKey(share(N)) has

never been encountered before. Because such a key is valid for strongly connec-
ted graphs, it means that no other node M such that M ≡tree N have been
encountered before. But the problem is that we have a partial key semantics on
these graphs, and ≡tree⊂≡pk, so we could have M 6≡tree N but M ≡pk N in
effect representing the same tree. Because M 6≡tree N , there is a path p such
that M.p and N.p do not have the same label, kM and kN . But as N and M
represent the same tree, kM and kN must have the same name, so their only
possible difference is in the partial function. It means there is an i such that
one of the keys is defined on i and not the other key (if both of them were de-
fined on i, their value would be the same on i, as the nodes in partial keys are
unique representations). By construction, the nodes M and N are in strongly
connected graphs. So if one of the keys is not defined on i, there is a q such that
M.piq = M or N.piq = N . If t is the tree represented by both nodes, it means
that t[piq] = t. Suppose kM is defined on i, then there is a node reachable from
kM (i) which represents the same tree as M , and as such it would have been
found by shareWithDone. So the graph defined by M would never have gone
beyond the step 1 of representCycle. It means that another representative is
stored for the cycle (we go on like this until we find one which is equivalent to
N , which means that the test step 3 could not have been false). If kN is defined

Improving the Representation of Infinite Trees to Deal with Sets of Trees 285

on i, by the same argument, we could not have been beyond the step 1, and so
no new node is created.

If no node equivalent to N has been encountered, it is the same for every other
node M in the graph represented by N . It is due to the strong connectivity of
the graph which implies that if M has already been encountered, N has already
been encountered.

5 Complexity Issues

Algorithms on shared trees can be more difficult than standard algorithms on
trees, because we must keep the uniqueness of the representation, and for effi-
ciency, we must do it incrementally. Comparing complexities of algorithms on
the two representations (the naive and the sharing ones) is difficult, though. The
complexity is measured with respect to the size of the inputs of the algorithms,
which can be reduced to the number of nodes of the inputs in our case. In the
case of shared regular trees, the number of nodes is exactly the number of di-
stinct subtrees of the tree, but when the tree is not shared, the number of nodes
can be of any value greater than the number of distinct subtrees. In the sequel,
we denote by n this number of nodes, but we must keep in mind that this n can
be much bigger in the case of non-shared trees.

The basic property of shared trees is the uniqueness of the representation.
Thus, testing tree equality is really immediate: we just compare the memory
location of the root. In the classic case, the best method uses a partitioning
algorithm. Another case where we can avoid such a computation with shared
trees is testing if a tree is a subtree of another one. In the shared case, we just
have to compare the root of the first tree with all the nodes of the second one.
Not only is it linear, but the second tree is very likely to have very less nodes in
the shared case than in the classic representation.

When building finite trees, we need only one operation, which we call root

construction: we give a label f and the nodes (Ni)i<n, and we build
f

���� ��
99

N0 Nn−1

.

Such an operation is constant time in the naive representation and in the sharing
representation for finite trees (assuming hashing is constant time [12, 3]). It is
indeed also constant time for infinite trees, but this operation does not suffice to
build any regular tree. We need also some loop building mechanism. We call this
second operation recursive construction. Considering a tree t and a label x, it
consists in replacing every edge going to x by an edge to the root, and then apply
representCycle to maintain the uniqueness of the representation. Concerning
the complexity of this algorithm, it seems that the prevailing operation is the final
(and unique) call to share, which is applied on the smallest possible subgraph,
but in the worst case, the quadratic complexity of shareWithDone will take
precedence.

Many other operations can be adapted to shared trees while preserving the
uniqueness of the representation by derivation from the representation algo-
rithm. But due to lack of space, we let the reader write their own adaptations.

286 L. Mauborgne

sharing representation naive representation
testing t1 = t2 O(1) O ((n1 + n2) log(n1 + n2))
testing t1 subtree of t2 O(n2) O ((n1 + n2) log(n1 + n2))
building t[p] O(|p|) O(|p|)
root construction O(1) O(1)
recursive construction O(n2) O(n)

Fig. 6. Summary of worst case time complexities

The summary suggests that if we are to perform equality testing, it can be
beneficial to perform sharing during the calculus. What we show here are worst
case complexity, though, and the difficult cases are quite pathological, and thanks
to some simple optimizations, they are quite rare. The situation is very similar
to the complexity of operations on BDDs [2] compared to the operations on
boolean formulas. The size of the formula representing a given boolean function
is unbounded, but the basic operations, like conjunctions, are linear in the size
of one of the formulas whereas they are quadratic for the BDDs. Nevertheless,
in practice BDDs are far more efficient.

6 Application: Set-Based Analysis

We propose to use these techniques to improve the representations of sets of trees.
The expressive power of this improved representation is exactly what is needed
in set-based analysis [9], where sets of trees are approximated by ignoring the
dependencies between variables (an idea which was already present in [16, 11]).

6.1 Tree Automata and Graphs

Because the cartesian approximation eliminates any dependencies between child-
ren of a tree, we can use deterministic top-down tree automata in set-based ana-
lysis. The idea we use here is that deterministic top-down tree automata can be
seen as graphs, where the only properties that matter are path properties, and
so it can be represented efficiently as a regular infinite tree.

A deterministic top-down tree automaton [17, 8] is a tuple (Q, I, δ, F) where
Q is a finite set of states, I ∈ Q is the initial state, F ⊂ Q is a set of final
states, and δ : A × Q→ Q × . . . × Q is the transition function which takes a
label in A and a state, and returns a sequence of states (as many as the arity of
the label). The corresponding graph G is such that GN = Q, GE = {(q, q′, ai) |
δ(a, q) = (. . . , q′, . . .) and q′ in ith position }. This connection means that we
can represent the sets used in set-based analysis without any variable name in
the representation, and in a shared way.

Improving the Representation of Infinite Trees to Deal with Sets of Trees 287

6.2 Tree Skeletons

In order to represent the sets of set-based analysis as trees, we use a new label
to represent the anonymous states of the tree automata. This label, which we
call a choice label corresponds to a possible union in the interpretation of the
infinite tree. We denote this label ©. We call the infinite trees with this extra
label a tree skeleton. The set of trees represented by a tree skeleton is defined3

by:

Set

(
f

���� ��
66

t0 tn−1

)
def=

{
f

���� ��
99

u0 un−1

∣∣∣∣∣ ∀i < n, ui ∈ Set (ti)

}

Set

(
©
���� ��

99

t0 tn−1

)
def=
⋃
i<n

Set (ti)

In order to have a unique representation of the sets of trees (and so keep
the constant time equality testing and memoizing properties), we make some
restrictions on what infinite trees are considered valid tree skeletons. First we
eliminate unnecessary choices: if a choice node has only one child, it is replaced
by its child. If a choice node is the child of a choice node, it is replaced by its
children. We perform the cartesian approximation: if two children of a choice
node have the same label, they are merged (replaced by their cartesian upper
approximation). Finally, the children of a choice node are ordered according to
their labels. See the summary of figure 7.

©
��

t

−→ t,

©
��		
		
�� ��

77
77

t0 ©
����

�
��

88
88

tn

u0 um

−→
©

{{vvvvv
��		
		

��
77

77

$$J
JJJJJ

t0 u0 um tn

,

f

��

�� ��

44
44

t0 © tn

−→ ©

©
��

��

55
5

t0 tn

⇒ all ti(ε) are in strict order.

Fig. 7. Rules to obtain a valid tree skeleton

Any deterministic top-down tree automaton can be represented by a valid
tree skeleton. Consider an automaton (Q, I, δ, F). We first build the infinite tree
labeled by Q and A, such that the root is labeled by I, the children of a given
3 Set is defined as the least fixpoint of this set of equations. The ordering is the

pointwise ordering of the inclusion of the images. If we wanted to include infinite
trees (as in [5]), we would take the greatest fixpoint.

288 L. Mauborgne

state q are the different a such that δ(q, a) is defined, an the children of such a a
are the δ(q, a). This tree is regular because there is at most one subtree labeled
by a given q ∈ Q, and at most |Q| subtrees labeled by a given a ∈ A. The second
step consists in removing every label of arity 0 which does not come from a state
in F , and in replacing every state by ©. Then we derive the valid tree skeleton.

6.3 Using Tree Skeletons in Analysis

Manipulation of tree skeletons uses basic algorithms on shared infinite regular
trees. Once we can keep the maximal sharing property, it is easy to keep track of
the other rules for tree skeletons. Then tree skeletons can be used everywhere we
consider a set of trees in the analysis. It can replace some of the tree automata
of [7] (if we keep the original restrictions of set-based analysis), or the tree
grammars of [13], as the approximation on union corresponds indeed to cartesian
approximation.

In practice, you can try to use the toolbox under development at the following
address: http://www.di.ens.fr/˜mauborgn/skeleton.tar.gz.

7 Conclusion

While trying to improve the representation of sets of trees in set-based analysis,
we presented generic algorithms to manipulate efficiently any structure encoded
as infinite regular trees. These algorithms allow a very compact representation
of such structures and a constant time equality testing. One of their advantages
is their incrementality which allows their use on dynamic structures. The com-
plexity analysis cannot describe the potential benefit of this new representation,
but it suggests the same gain as for Binary Decision Diagrams which use similar
techniques.

We also described a new way of representing sets of trees using infinite regular
trees. This new representation is sharing, incremental and unique. Current work
includes the integration of the representation in an actual analyzer to show
experimentally its benefits.

Acknowledgments

Many thanks are due to the anonymous referees for their very useful comments.

References

[1] Aho, A. V., Hopcroft, J. E., and Ullman, J. D. Data Structures and Algo-
rithms. Addison-Wesley, 1983.

[2] Bryant, R. E. Graph based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35 (August 1986), 677–691.

[3] Cai, J., and Paige, R. Using multiset discrimination to solve lan-
guage processing without hashing. Theoretical Computer Science (1994).
also, U. of Copenhagen Tech. Report, DIKU-TR Num. D-209, 94/16, URL
ftp://ftp.diku.dk/diku/semantics/papers/D-209.ps.Z.

Improving the Representation of Infinite Trees to Deal with Sets of Trees 289

[4] Cardon, A., and Crochemore, M. Partitioning a graph in O(|A| log2 |V |).
Theoretical Computer Science 19 (1982), 85–98.

[5] Charatonik, W., and Podelski, A. Co-definite set constraints. In 9th Interna-
tional Conference on Rewriting Techniques and Applications (March-April 1998),
T. Nipkow, Ed., vol. 1379 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 211–225.

[6] Colmerauer, A. PROLOG and infinite trees. In Logic Programming (1982),
K. L. Clark and S.-A. Tärnlund, Eds., vol. 16 of APIC Studies in Data Processing,
Academic Press, pp. 231–251.

[7] Devienne, P., Talbot, J., and Tison, S. Solving classes of set constraints
with tree automata. In 3th International Conference on Principles and Practice
of Constraint Programming (October 1997), G. Smolka, Ed., vol. 1330 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 62–76.

[8] Gécseg, F., and Steinby, M. Tree Automata. Akadémia Kiadó, 1984.
[9] Heintze, N. Set Based Program Analysis. PhD thesis, School of Computer

Science, Carnegie Mellon University, October 1992.
[10] Hopcroft, J. An n log n algorithm for minimizing states in a finite automaton.

In Theory of machines and computations (1971), Z. Kohavi and A. Paz, Eds.,
Academic Press, pp. 189–196.

[11] Jones, N. D., and Muchnick, S. S. Flow analysis and optimization of LISP-like
structures. In 6th POPL (January 1979), ACM Press, pp. 244–256.

[12] Knuth, D. E. Sorting and Searching, vol. 3 of The Art of Computer Programming.
Addison-Wesley, 1973.

[13] Liu, Y. A. Dependence analysis for recursive data. In IEEE International Con-
ference on Computer Languages (May 1998), pp. 206–215.

[14] Mauborgne, L. Binary decision graphs. In Static Analyis Symposium (SAS’99)
(1999), A. Cortesi and G. Filé, Eds., vol. 1694 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 101–116.

[15] Michie, D. “memo” functions and machine learning. Nature 218 (April 1968),
19–22.

[16] Reynolds, J. Automatic computation of data set definitions. In Information
Processing ’68 (1969), Elsevier Science Publisher, pp. 456–461.

[17] Thatcher, J. W., and Wright, J. B. Generalized finite automata with an
application to a decision problem of second-order logic. Mathematical Systems
Theory 2 (1968), 57–82.

On the Translation of Procedures
to Finite Machines

Abstraction Allows a Clean Proof

Markus Müller-Olm1 and Andreas Wolf 2 ?

1 Universität Dortmund, Fachbereich Informatik, LS V, 44221 Dortmund, Germany
mmo@ls5.cs.uni-dortmund.de

2 Christian-Albrechts-Universität, Institut für Informatik und Praktische
Mathematik, Olshausenstraße 40, 24098 Kiel, Germany

awo@informatik.uni-kiel.de

Abstract. We prove the correctness of the translation of a prototypic
While-language with nested, parameterless procedures to an abstract as-
sembler language with finite stacks. A variant of the well-known wp and
wlp predicate transformers, the weakest relative precondition transformer
wrp, together with a symbolic approach for describing semantics of as-
sembler code allows us to explore assembler programs in a manageable
way and to ban finiteness from the scene early.

Keywords: compiler, correctness, refinement, resource-limitation, pre-
dicate transformer, procedure, verification

1 Introduction

The construction of compilers is one of the oldest and best studied topics in
computer science and neither the interest in this subject nor its importance
has declined. Though the range of application of compiler technology has grown,
there is still a great need for further understanding the classical setup of program
translation. Even if we trust a source program or prove it correct, we cannot rely
on the executed object code, if compilation may be erroneous. This motivates
us to study the question of how to construct verified compilers.

Trusted compilers would permit to certify safety-critical code on the source
code level, which promises to be less time-consuming, cheaper, and more reliable
than the current practice to inspect the generated machine code [7,13]. The ulti-
mate goal of compiler verification [1,2,4,6,8,9,11,12] is to justify such confidence
into compilers.

In [10] we studied the question what semantic relationship we can expect
to hold between a target program and the source program from which is was
generated. Two natural candidate properties from the point of view of program
verification are preservation of total correctness (PTC) and preservation of par-
tial correctness (PPC). They require that all total or partial correctness asserti-
ons valid for the source program remain valid for the target program. Another
? The work of the second author is supported by DFG grant La 426/15-2.

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 290–304, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

On the Translation of Procedures to Finite Machines 291

characterization is as refinement of the wp and wlp transformers [3] associated to
the source and target program. We argued, however, that neither PTC nor PPC
is guaranteed by practical compilers. Limited resources on the target processor
prohibit the former: PTC implies that the target program terminates regularly,
i.e. without a run-time error, whenever regular termination is guaranteed for
the source program. But when we implement a source language with full recur-
sion on a finite machine, “StackOverflow” errors will be observed every now and
then. On the other hand, optimizing compilers generally do not preserve partial
correctness because common transformations, like dead-code elimination, may
eliminate code from the program that causes a run-time error. Thus, run-time
errors may be replaced by arbitrary results.

As a remedy we proposed in [10] the more general notion of preservation of
relative correctness (PRC) (recalled in Sect. 3). Relative correctness is parame-
terized in a set A of accepted failures and allows thus – in contrast to partial
or total correctness – to treat runtime errors and divergence differently. We also
studied a corresponding family of predicate transformers wrpA. It is conveni-
ent to refer to predicate transformer (PT) semantics in compiler proofs because
there is a powerful data refinement theory for PTs and refinement proofs can be
presented in a calculational style by using algebraic laws [5,6,9]. PTs also inter-
face directly to correctness proofs for source programs. wrp is meant to permit
an elegant treatment of runtime errors and finiteness of machines while staying
in the familiar and well-studied realm of predicates and predicate transformers.

The main purpose of the current paper is to show that wrp keeps this promise.
More specifically, we employ wrp-based reasoning to prove correct the transla-
tion of a prototypic While-language with nested, parameterless procedures to
an abstract assembler language with finite stacks, a proof that is also of inde-
pendent interest. We focus on the control flow implementation by jumps and a
return address stack. Due to finiteness of stacks, regular termination of target
programs generated from terminating source programs cannot be guaranteed.
Nevertheless, wrp allows to establish a variant of PTC in which “StackOverflow”
is treated as an accepted failure. As intended, finiteness of stacks vanishes from
the scene very early: by taking into account that “StackOverflow” is an accepted
error, the laws about wrp derived from the operational semantics are akin to
the ones of an idealized assembler with unbounded stacks. Thus, wrp allows to
reason about implementations on finite machines without burdening the verifi-
cation. Another interesting aspect of our proof is that we employ symbolic ways
of reasoning about assembler language semantics instead of referring to more
conventional descriptions by means of an instruction pointer.

The remainder of this paper is organized as follows. Sect. 2 recalls the basics
of predicates and predicate transformers. Preservation of relative correctness is
discussed briefly in Sect. 3. The abstract assembler language which will serve as
the target language is presented in Sect. 4 before the source language, a more
common high-level language, is introduced in Sect. 5. The translation scheme is
defined in Sect. 6 and the actual correctness proof is given in Sections 7 and 8.
We conclude with some remarks in Sect. 9.

292 M. Müller-Olm and A. Wolf

2 Preliminaries

Predicates. Assume given a set Σ of states s; typically a state is a mapping
from variables to values. We identify predicates with the set of satisfying states,
so predicates are of type Pred = 2Σ ranged over by φ and ψ. Pred , ordered by
set inclusion, forms a complete Boolean lattice with top-element true = Σ and
bottom-element false = ∅.

Predicate transformers. A predicate transformer (PT) is a mapping f : Pred →
Pred . Sequential composition of two predicate transformers f and g is defined by
(f ; g)(φ) = f(g(φ)) and, hence, is associative and has the identity Id , Id(ψ) = ψ,
as unit. We restrict the set of PTs to the monotonic ones because this makes
sequential composition monotonic. PTrans def= (Pred mon.−→ Pred) together with
the lifted order ≤ defined by f ≤ g ⇐⇒ ∀φ ∈ Pred : f(φ) ⊆ g(φ) for
f, g ∈ PTrans, is also a complete lattice with top-element >, >(ψ) = true, and
bottom-element ⊥, ⊥(ψ) = false.

Fixpoints in complete lattices. The famous theorem of Knaster and Tarski en-
sures that every monotonic function f on a complete lattice (L,≤) has a least
fixpoint µf and a greatest fixpoint νf . A well-known means for proving pro-
perties concerning fixpoints is the following.

Theorem 1 (Fixpoint induction). For P ⊆ L one has µf ∈ P provided that:

1. ∀C ⊆ P : C is totally ordered :
∨
C ∈ P . (Admissibility)

2. ⊥ ∈ P . (Base Case)
3. ∀x ∈ P : x ≤ f(x) =⇒ f(x) ∈ P . (Induction Step)

3 Relativized Predicate Transformers

In this section we recall relative correctness and relativized predicate transfor-
mers, which were introduced and discussed at length in [10], focusing on what’s
important for our purposes.

We consider imperative programs π intended to compute on a certain non-
empty set of states Σ. For the moment, the details of program execution are not
of interest; we are only interested in the final outcomes of computations. We thus
assume that each program π is furnished with a relation R(π) ⊆ Σ × (Σ ∪ Ω),
where Ω is a non-empty set of failure (or irregular) outcomes1 disjoint from Σ.
Typically, Ω contains error states like “DivByZero” and “StackOverflow” and a
special symbol ∞ representing divergence.

We use the following conventions for the naming of variables: Σ is ranged
over by s, Ω by ω, and Σ ∪Ω by σ. Intuitively, (s, s′) ∈ R(π) records that s′ is
a possible regular result of π from initial state s, (s, o) ∈ R(π) means that error
state o ∈ Ω \ {∞} can be reached from s, and (s,∞) ∈ R(π) that π may diverge
from s, i.e., run forever. R(π) can be thought to be derived from an operational
or denotational semantics. An example is discussed in Sect. 4.
1 We use the more neutral word ‘outcome’ instead of ‘result’ because some people

object to the idea that divergence is a result of a program.

On the Translation of Procedures to Finite Machines 293

Relative correctness. When evaluating partial correctness assertions all irregular
outcomes of programs are accepted; in contrast in total correctness assertions
all irregular outcomes are taken as disproof. Relative correctness is built around
the idea of parameterizing assertions w.r.t. the set of accepted outcomes. The
irregular outcomes that are not accepted are taken as disproof.

Assume given a set A ⊆ Ω of accepted outcomes; this set may contain di-
vergence as in partial correctness. For a given precondition φ and postcondition
ψ we call program π relatively correct w.r.t. φ, ψ and A if each π-computation
starting in a state satisfying φ terminates regularly in a state satisfying ψ or has
an accepted outcome in A (e.g. π may diverge if ∞ ∈ A). More formally:

〈φ〉π〈ψ〉A iff ∀s, σ : s ∈ φ ∧ (s, σ) ∈ R(π) ⇒ σ ∈ ψ ∪A .

The classical notions of partial and total correctness are special cases: partial
correctness amounts to 〈φ〉π〈ψ〉Ω and total correctness to 〈φ〉π〈ψ〉∅.

Weakest relative preconditions. Relative correctness gives rise to a corresponding
predicate transformer semantics of programs. The weakest relative precondition
of π w.r.t. ψ and A is the set of regular states from which all π-computations
either terminate regularly in a state satisfying ψ or have an outcome in A:

wrpA(π)(ψ) = {s ∈ Σ | ∀σ : (s, σ) ∈ R(π) ⇒ σ ∈ ψ ∪A} .

Note that wrpA(π) ∈ PTrans. Dijkstra’s wlp and wp transformers [3] are just
the border cases of wrp: wrpΩ = wlp and wrp∅ = wp. There is a fundamental
difference between wlp and wp regarding the fixpoint definition of repetitive
and recursive construct which generalizes as follows to the wrpA transformers: if
∞ ∈ A we must refer to greatest fixpoints, otherwise to least ones.

The following equivalence generalizes the well-known characterization of par-
tial and total correctness in terms of wlp and wp:

φ ⊆ wrpA(π)(ψ) ⇐⇒ 〈φ〉π〈ψ〉A .

Preserving relative correctness. A natural way to approach translation correc-
tness is to focus on properties that transfer from source to target programs.
Suppose, for instance, that π is a source program and π′ is its translation. We
say that the translation preserves relative correctness w.r.t. A if

∀φ, ψ : 〈φ〉π〈ψ〉A ⇒ 〈φ〉π′〈ψ〉A , (1)

i.e., if all relative correctness assertions transfer from π to π′. It is straightforward
to show that (1) is equivalent to the refinement inequality wrpA(π) ≤ wrpA(π′).
Refinement between predicate transformers can be established by algebraic cal-
culations. We can thus take advantage from such algebraic calculations in seman-
tic compiler proofs. The remaining part of this section is devoted to providing
suitable notations that enable this in the scenario studied in this paper.

294 M. Müller-Olm and A. Wolf

Concrete predicate transformers. Suppose given three basic sets of syntactic
objects: a set Var of variables x, a set Expr of expressions e, and a set BExpr of
Boolean expressions b. We assume interpretation functions for expressions and
Boolean expressions E(e) : Σ → (Val∪Ω) and B(b) : Σ → (B∪Ω); here Val is the
value set of variables and the set B = {tt,ff} represents the truth values. For the
remainder of this paper, states are valuations of variables, i.e. Σ = (Var → Val).
Intuitively, results E(e)(s),B(b)(s) ∈ Ω represent failures (including divergence)
arising during evaluation of (Boolean) expressions.

In order to deal with partially defined expressions we assume special types of
basic predicates: def(e) def= {s | E(e)(s) ∈ Val} and inA(e) def= {s | E(e)(s) ∈ A}
for expressions e and A ⊆ Ω. Analogously, we have the predicates def(b), inA(b)
and also b = tt def= {s | B(b)(s) = tt} and b = ff for Boolean expressions b.

We consider an assignment x := e. The expression e is evaluated in some
given state, and if evaluation delivers a regular result it is assigned to x. But
evaluation of e might also fail with an outcome ω. It depends on whether ω ∈ A
or not if we consider this acceptable. Hence, the weakest relative precondition
of this assignment w.r.t. A and postcondition ψ is given by

(x :=A e)(ψ) def= inA(e) ∪ (def(e) ∩ ψ[e/x]) .

Another example is a conditional with branches P and Q guarded by b,
where the PTs P and Q are wrpA-transformers. Obviously the weakest relative
precondition w.r.t. A and ψ of this construct is P (ψ) resp. Q(ψ) if b evaluates to
tt resp. ff. Since evaluation of b can also fail, the weakest relative precondition
PT w.r.t. A and postcondition ψ is given by

(P � b/A�Q)(ψ) def= inA(b) ∪ (b = tt ∩ P (ψ)) ∪ (b = ff ∩Q(ψ)) .

4 An Abstract Assembler Language

Syntax. The language defined in this section is intended to capture the essence
of flat, unstructured assembler code. In this, our main interest is a realistic tre-
atment of control structures. Therefore, labels l taken from a set Lab are used to
mark the destination of jump instructions as common in assembler languages.
In order to keeps things manageable, the language works on a state space with
named variables and we provide instructions embodying entire (Boolean) expres-
sions: asg(x, e) and cj(b, l). Such instructions should be thought to be ‘macros’
representing a sequence of more concrete assembler instructions. A language of
this kind might be used as a stepping stone on the way down to actual binary
machine code.

The set Instr consists of instructions of the following form.

– asg(x, e): an assignment instruction,
– cj(b, l): a conditional jump (on false) to label l,
– jsr(l): a subroutine jump to label l, and
– ret: a return jump.

On the Translation of Procedures to Finite Machines 295

We write goto(l) for cj(false, l). It represents an unconditional jump.
An assembler (or machine) program m is a finite sequence consisting of in-

structions and labels where we assume unique labeling, formally

m ∈ MP def= {m ∈ (Instr ∪ Lab)∗ | ∀i, j : mi = mj ∈ Lab ⇒ i = j} .

Concatenation of programs is denoted by an infix dot “·”. A program m is called
closed if every label that has an applied occurrence in m also has a defining
occurrence. The set of closed programs is denoted by CMP. Here is an example
of a closed program computing the factorial of x leaving the result in variable y:

asg(y, 1) · Loop · cj(x 6= 0,End) · asg(y, x ∗ y) · asg(x, x − 1) · goto(Loop) · End

Basic operational semantics. A processor executing a machine program will
typically use an instruction pointer that points to the next instruction to be
executed at any given moment. For reasoning about assembler code, however,
it is more convenient to represent the current control point in a more symbolic
manner: we partition the executed program m into two parts u, v such that
m = u ·v and that the next instruction to be executed is just the first instruction
of v. Progress of execution can nicely be expressed by partitioning the same
code sequence differently. PMP (partitioned machine programs) denotes the set
of pairs 〈u, v〉 such that u · v ∈ CMP.

Similarly, we prefer to work with a symbolic representation of the stack of
return addresses; such a stack is necessary to execute jump-subroutine and return
instructions. The idea is to use a stack of partitioned code sequences (modeled
by a member of PMP∗) instead of a stack of addresses.

The basic semantics of the abstract assembler language is an operational
semantics built around the ideas just described. It works on configurations of
the form 〈u, v, a, s〉, where 〈u, v〉 ∈ PMP models the current control point (u · v
is the executed program), a ∈ PMP∗ is the symbolic representation of the return
stack, and s ∈ Σ is the current state. Thus,

Γ
def= {〈u, v, a, s〉 | 〈u, v〉 ∈ PMP ∧ a ∈ PMP∗ ∧ s ∈ Σ}

is the set of regular configurations. In order to treat error situations, we use the
members of Ω as irregular configurations. Table 1 defines the transition relation
→ ⊆ Γ × (Γ ∪Ω) of an abstract machine executing assembler programs.

Let us consider the rules in more detail. [Asg1] applies if expression e evalua-
tes without error to a value in the current state s: the machine changes the value
of x accordingly – the new state is s[x 7→ E(e)(s)] – and transfers control to the
subsequent instruction by moving asg(x, e) to the end of the u-component. [Asg2]
is used if evaluation of e fails in the current state: the failure value E(e)(s) is just
propagated. [Cj1] describes that a conditional jump cj(b, l) is not taken if b eva-
luates to tt in the current state: control is simply transferred to the subsequent
instruction. If b evaluates to ff, rule [Cj2] applies and the control is transferred to
label l, the position of which is determined by the premise u · cj(b, l) · v = x · l · y.
[CJ3] propagates errors resulting from evaluation of b. [Jsr1] is concerned with a

296 M. Müller-Olm and A. Wolf

Table 1. Operational semantics of the assembler language

[Asg1]
E(e)(s) ∈ Σ

〈u, asg(x, e) · v, a, s〉 → 〈u · asg(x, e), v, a, s[x 7→ E(e)(s)]〉

[Asg2]
E(e)(s) ∈ Ω

〈u, asg(x, e) · v, a, s〉 → E(e)(s)

[Cj1]
B(b)(s) = tt

〈u, cj(b, l) · v, a, s〉 → 〈u · cj(b, l), v, a, s〉

[Cj2]
B(b)(s) = ff , u · cj(b, l) · v = x · l · y

〈u, cj(b, l) · v, a, s〉 → 〈x, l · y, a, s〉

[Cj3]
B(b)(s) ∈ Ω

〈u, cj(b, l) · v, a, s〉 → B(b)(s)

[Jsr1]
u · jsr(l) · v = x · l · y

〈u, jsr(l) · v, a, s〉 → 〈x, l · y, a · 〈u · jsr(l), v〉, s〉
[Jsr2] 〈u, jsr(l) · v, a, s〉 → “StackOverflow”

[Ret1] 〈u, ret · v, a · 〈x, y〉, s〉 → 〈x, y, a, s〉
[Ret2] 〈u, ret · v, ε, s〉 → “EmptyStack”

[Label] 〈u, l · v, a, s〉 → 〈u · l, v, a, s〉

subroutine jump to label l. Similarly to rule [Cj2], control is transferred to label
l. Additionally, the machine stores the return address by pushing 〈u · jsr(l), v〉
onto the symbolically modeled return stack a. If execution subsequently reaches
a ret instruction, execution of 〈u · jsr(l), v〉 is resumed as specified by [Ret1]. A
processor with finite memory will not always be able to stack a return address
when executing a jsr instruction. We model this by rule [Jsr2] that allows the ma-
chine to report “StackOverflow” spontaneously. Of course, in an actual processor
the choice between regular stacking and overflow will be mutually exclusive and
not just non-deterministic as in our model. This could be modeled by furnishing
[Jsr2] by a premise StackFull and [Jsr1] by a premise ¬StackFull, where StackFull
is a (complicated) condition depending on the current state of the machine. Fi-
nally, [Ret2] reports an error if a ret instruction is executed on an empty return
stack, and [Label] allows to skip labels.

The evaluation ofm in state s starts in the initial configuration 〈ε,m, ε, s〉, i.e.
with the first instruction of m and with an empty stack. Execution terminates
regularly if a configuration of the form 〈u, ε, a, s′〉 is reached; other possible
outcomes are reachable error configurations ω, and ∞, if there is an infinite
sequence of transitions from 〈ε,m, ε, s〉. Based on this intuition, we could now
define a relational semantics R(m) for a given program m ∈ CMP following
the lines of the definition below. R(m) would give rise to a family of predicate
transformers wrpA(m). Up to this point wrpA(m) would be known only with

On the Translation of Procedures to Finite Machines 297

reference to the operational semantics. In order to allow a reasoning on a more
abstract level we would like to derive sufficiently strong laws about wrpA(m)
from the operational semantics first; afterwards we would use just these laws in
our reasoning without referring directly to the operational semantics.

Unfortunately, this approach fails for wrpA(m): only very weak laws can be
established. The main problem is that the behavior of jump and jump-subroutine
instructions cannot adequately be described without having context information
available. We, therefore, work with a semantics of machine programs that takes
the sequential context as well as the stack context into account.

For 〈u, v〉 ∈ PMP and a ∈ PMP∗ we define

R(u, v, a) def= {(s, s′) | ∃u′, a′ : 〈u, v, a, s〉 →∗ 〈u′, ε, a′, s′〉}
∪ {(s, ω) | 〈u, v, a, s〉 →∗ ω}
∪ {(s,∞) | 〈u, v, a, s〉 →∞} ,

where →∗ denotes the reflexive and transitive closure of →, and →∞ the exi-
stence of an infinite path. This definition induces a family of predicate transfor-
mers wrpA(u, v, a) and it is this family that we are using in our reasoning. We can
define R(m) and wrpA(m) by R(m) = R(ε,m, ε) and wrpA(m) = wrpA(ε,m, ε).

The laws in Table 2 can now be proved from the operational semantics.
Technically these laws are just derived properties but they can also be read as
axioms about the total behavior of a machine. Law [Asg-wrp], e.g., tells us about
a machine started in a situation where it executes an asg-instruction first: its total
behavior can safely be assumed to be composed of the respective assignment to x
and the total behavior of a machine started just after the assignment instruction.
The other laws have a similar interpretation. Together the laws allow a kind
of symbolic execution of assembler programs. But we do not have to refer to
low-level concepts like execution sequences; instead we can use more abstract
properties, e.g., that ≥ is an ordering.

All these laws can be strengthened to equalities. We state them as inequalities
in order to stress that just one direction is needed in the following. Refinement
allows to use safe approximations on the right hand side instead of fully accurate
descriptions. This allows to reason safely about instructions whose effect is either
difficult to capture or not fully specified by the manufacturer of the processor
[9]. If, for example, [Jsr1] and [Jsr2] are furnished with a condition StackFull
as discussed above, the refinement inequality stated in [Jsr-wrp] becomes pro-
per, because jsr would definitely lead to the acceptable error “StackOverflow”
if StackFull holds. Therefore, the PT on the left hand side would succeed for
all states satisfying StackFull irrespective of the post-condition, while the right
hand side may fail.

Note that the premise “StackOverflow” ∈ A of the law [Jsr-wrp] is essential.
If “StackOverflow” is considered unacceptable (“StackOverflow” /∈ A), we have
wrpA(u, jsr(l) · v, a) = ⊥ as a consequence of [Jsr2]. This means that jsr cannot
be used to implement any non-trivial statement. If the more precise operational
model with a StackFull predicate is used, wrpA(u, jsr(l)·v, a) is better than ⊥ but
any non-trivial approximation will involve the StackFull predicate. This would
force us to keep track of the storage requirements when we head for a verified

298 M. Müller-Olm and A. Wolf

Table 2. wrp-laws for the assembler language

[Asg-wrp] wrpA(u, asg(x, e) · v, a) ≥ (x :=A e) ; wrpA(u · asg(x, e), v, a)

[Cj-wrp] wrpA(u, cj(b, l) · v, a) ≥ wrpA(u · cj(b, l), v, a) � b/A � wrpA(x, l · y, a) ,
if u · cj(b, l) · v = x · l · y

[Goto-wrp] wrpA(u, goto(l) · v, a) ≥ wrpA(x, l · y, a) ,
if u · goto(l) · v = x · l · y

[Jsr-wrp] wrpA(u, jsr(l) · v, a) ≥ wrpA(x, l · y, a · 〈u · jsr(l), v〉) ,
if u · jsr(l) · v = x · l · y and “StackOverflow” ∈ A

[Ret-wrp] wrpA(u, ret · v, a · 〈x, y〉) ≥ wrpA(x, y, a)

[Label-wrp] wrpA(u, l · v, a) ≥ wrpA(u · l, v, a)

[Term-wrp] wrpA(u, ε, a) ≥ Id

compilation. As the recursion depth of programs is in general not computable,
we could not justify translation of arbitrary recursive procedures.

5 A Simple High-Level Language

As a prototypic instance of a high-level language we consider a While-language
with parameterless, nested procedures. Such a language is adequate for studying
the control-flow aspects of translation of ALGOL-like programming languages.

Syntax. We define the set of programs, Prog, by the following grammar. In
order to distinguish programs clearly from the corresponding semantic predicate
transformers from Sect. 3 we use an abstract kind of syntax.

π ::= assign(x, e) | seq(π1, π2) | if(b, π1, π2) | while(b, π) | call(p) | blk(p, πp, πb)

In this grammar, x ranges over the variables in Var , b and e over BExpr and
Expr, and p over a set ProcName of procedure identifiers.

blk(p, πp, πb) is a block in which a (possibly recursive) local procedure p with
body πp is declared. πb is the body of the block; it might call p as well as more
globally defined procedures. The semantics below ensures static scoping and so
the translation of the next section has to guarantee static scoping as well. Note
that nesting of procedure declarations and even re-declaration is allowed. Our
exposition generalizes straightforwardly to blocks in which a system of mutually
recursive procedures can be declared instead of just a single procedure. We re-
frained from treating this more general case only, as it burdens the notation a
bit without bringing more insight. The intuitive semantics of the other syntactic
operators should be clear from their name.

Semantics. Now we furnish the While-language with a predicate transformer
semantics. Due to lack of space, we cannot follow the lines from the last section;

On the Translation of Procedures to Finite Machines 299

instead we postulate the resulting predicate transformer semantics directly. Ne-
vertheless the oncoming definitions should be read as laws derived from a more
concrete semantics. In [10] we justified such definitions briefly for a language
without procedures.

In order to give a compositional semantics, we refer as usual to environments
η ∈ Env def= (ProcName → PTrans), mapping procedure identifiers to the wea-
kest relative precondition transformer of their body. The environment is taken
by wrp as an additional argument written as a superscript.

wrpη
A(assign(x, e)) = (x :=A e)

wrpη
A(seq(π1, π2)) = wrpη

A(π1) ; wrpη
A(π2)

wrpη
A(if(b, π1, π2)) = wrpη

A(π1) � b/A� wrpη
A(π2)

wrpη
A(while(b, π)) = λW
wrpη

A(call(p)) = η(p)

wrpη
A(blk(p, πp, πb)) = wrpη[p7→λP]

A (πb)

In the clauses for while and blk, λ = ν if ∞ ∈ A, and λ = µ otherwise, i.e.
we have to take the greatest fixpoint if divergence is accepted (like in partial
correctness semantics) and the least fixpoint otherwise (see [10]).

Let us discuss briefly each of the clauses in turn. The assignment law ta-
kes advantage from the assignment combinator defined in Sect. 3. The wea-
kest precondition of a sequential composition is the weakest precondition of
the first statement establishing the weakest precondition of the second state-
ment. A conditional’s weakest precondition depends on the validity of the guard.
Operationally a loop is unrolled as long as the guard holds, hence the weakest
precondition PT of a loop is a fixpoint of the well known semantical function
W : PTrans → PTrans, where W(X) = (π;X) � b/A� Id . Application of the
environment in question captures the call-case. A block’s weakest precondition
in some given environment is the weakest precondition of the body in a varied
environment that contains a new binding for the local procedure declared in that
block. The weakest precondition of that procedure is a fixpoint of the function
P : PTrans → PTrans, where P(X) = wrpη[p7→X]

A (πp).
Complete programs are interpreted in the environment ⊥Env that bind all

procedures to the ⊥ predicate transformer, because otherwise the call of an
undeclared procedure would miraculously have a non-trivial meaning. Hence,
when comparing a complete program π to its translation, we refer to wrp⊥Env

A (π).

6 Specification of Compilation

In Table 3 we inductively define a compiling relation C ⊆ Prog × MP × Dict .
Here Dict = (ProcName fin→ Lab) is the set of dictionaries that intuitively map
procedure names to labels where code for the corresponding body can be fo-
und. We have C(π,m, δ) if machine program m is a possible compiling result of

300 M. Müller-Olm and A. Wolf

Table 3. Compiling relation

[Assign] C(assign(x, e), asg(x, e), δ)

[Seq]
C(π1, m1, δ), C(π2, m2, δ)
C(seq(π1, π2), m1 · m2, δ)

[If]
C(π1, m1, δ), C(π2, m2, δ)

C(if(b, π1, π2), cj(b, l1) · m1 · goto(l2) · l1 · m2 · l2, δ)

[While]
C(π, m, δ)

C(while(b, π), l0 · cj(b, l1) · m · goto(l0) · l1, δ)

[Call]
p ∈ dom(δ)

C(call(p), jsr(δ(p)), δ)

[Blk]
C(πp, mp, δ[p 7→ lp]), C(πb, mb, δ[p 7→ lp])

C(blk(p, πp, πb), goto(lb) · lp · mp · ret · lb · mb, δ)

source program π assuming that dictionary δ assigns appropriate labels to free
procedure names. The program

seq(assign(y, 1),while(x > 0, seq(assign(y, x ∗ y), assign(x, x − 1)))) ,

for instance, may be compiled to the assembler program computing the factorial
function in Sect. 4 irrespective of the dictionary δ.

Note that the typing constraint m ∈ MP guarantees that target programs
are labeled uniquely. An advantage of a relational specification over a functional
compiling-function is that certain aspects, like choice of labels here, can be left
open for a later design stage of the compiler.

7 Correctness of Compilation

This section is concerned with proving correctness of the translation specified
in the previous section. As discussed in the introduction, the translation can-
not be correct in the sense of preservation of total correctness (PTC), as our
assembler language might report “StackOverflow” on executing a jsr instruction
and thus regularly terminating source programs might be compiled to target
programs that do not terminate regularly. Nevertheless source programs that do
not diverge are never compiled to diverging target programs. But PTC identi-
fies divergence and runtime-errors and, therefore, it cannot treat this scenario
appropriately. A main purpose of this paper is to show how the greater selec-
tivity of wrpA-based reasoning allows a more adequate treatment by appropriate
choice of A. We treat “StackOverflow” as an acceptable outcome but ∞ as an
unacceptable one. This gives rise to a relativized version of PTC. We comment
on the proof for relativized versions of PPC in the conclusion.

On the Translation of Procedures to Finite Machines 301

Theorem 2. Suppose ∞ /∈ A and “StackOverflow” ∈ A. Then for all π, m:

C(π,m, ∅) ⇒ wrpA(m) ≥ wrp⊥Env
A (π) .

Thus, if a program π is compiled to an assembler program m in an empty
dictionary, relative correctness is preserved. Note that the premise of the com-
piling rule [Call] guarantees, that non-closed programs cannot be compiled with
an empty dictionary.

When we try to prove Theorem 2 by a structural induction we encounter
two problems. Firstly, when machine programs are put together to implement
composed programs, like in the [Seq] or [If] rule, the induction hypothesis cannot
directly be applied because it is concerned with code for the components in
isolation while, in the composed code, the code runs in the context of other
code. Our approach to deal with this problem is to establish a stronger claim
that involves a universal quantification over all contexts. More specifically, we
show wrpA(u,m · v, a) ≥ wrpη

A(π) ; wrpA(u · m, v, a) for all surrounding code
sequences u, v and stack contexts a. Note how the sequential composition with
wrpA(u · m, v, a) on the right hand side beautifully expresses that m transfers
control to the subsequent code and that the stack is left unchanged.

Secondly, when considering the call-case, some knowledge about the bindings
in the dictionary δ is needed. To solve this problem we use the following predicate.

fit(η, δ, u) def⇐⇒ ∀q ∈ dom(δ) : ∃x, y :
x · δ(q) · y = u ∧
∀e, f, g : wrpA(x, δ(q) · y, g · 〈e, f〉) ≥ η(q) ; wrpA(e, f, g) .

It expresses that the bindings in δ together with the assembler code u ‘fit’ to the
bindings in the semantic environment η. The first conjunct says that the context
provides a corresponding label for each procedure q bound by δ; the second
conjunct tells us that the code following this label implements q’s binding in
η and proceeds with the code on top of the return stack. This is just what is
needed in the call-case of the induction. The code generated for blocks has to
ensure that this property remains valid for newly declared procedures.

Putting the pieces together we are going to prove the following.

Lemma 3. Suppose ∞ /∈ A and “StackOverflow” ∈ A. For all π,m, u, v, a, η, δ:

C(π,m, δ) ∧ fit(η, δ, u ·m · v) ⇒ wrpA(u,m · v, a) ≥ wrpη
A(π) ; wrpA(u ·m, v, a) .

Theorem 2 follows by the instantiation u = v = ε, a = ε, η = ⊥Env , δ = ∅
using the [Term-wrp] law and the fact that wrpA(m) = wrpA(ε,m, ε).

8 Proof of Lemma 3

The proof is by structural induction on π. So consider some arbitrarily chosen
π,m, u, v, a, η, δ such that C(π,m, δ) and fit(η, δ, u ·m · v), and assume that for
all component programs the claim of Lemma 3 holds. As usual, we proceed by a

302 M. Müller-Olm and A. Wolf

case analysis on the structure of π. In each case we perform a kind of ‘symbolic
execution’ of the corresponding assembler code using the wrp-laws from Sect. 4.
The assumptions about fit will solve the call-case elegantly, the while- and blk-
case moreover involve some fixpoint reasoning.

Due to lack of space we can discuss here only the cases concerned with
procedures: call and blk.

Case a.) π = call(p). By the [Call] rule, m = jsr(δ(p)) and p ∈ dom(δ). As
a consequence of fit(η, δ, u · m · v) there exist x and y such that x · δ(p) · y =
u · jsr(δ(p)) · v. Now,

wrpA(u, jsr(δ(p)) · v, a)
≥ {Law [Jsr-wrp], “StackOverflow” ∈ A, existence of x and y}

wrpA(x, δ(p) · y, a · 〈u · jsr(δ(p)), v〉)
≥ {Second conjunct of fit(η, δ, u ·m · v)}
η(p) ; wrpA(u · jsr(δ(p)), v, a)

= {Definition of call semantics}
wrpη

A(π) ; wrpA(u · jsr(δ(p)), v, a) .

Case b.) π = blk(p, πp, πb). By the [Blk] rule, there are assembler programs
mp,mb and labels lp, lb such that m = goto(lb) · lp · mp · ret · lb · mb and
C(πp,mp, δ[p 7→ lp]) and C(πb,mb, δ[p 7→ lp]) hold.

We would like to calculate as follows:

wrpA(u, goto(lb) · lp ·mp · ret · lb ·mb · v, a)
≥ {Laws [Goto-wrp] and [Label-wrp]}

wrpA(u · goto(lb) · lp ·mp · ret · lb,mb · v, a)
≥ {Induction hypothesis: C(πb,mb, δ[p 7→ lp]) holds}

wrpη[p7→µP]
A (πb) ; wrpA(u · goto(lb) · lp ·mp · ret · lb ·mb, v, a)

= {Definition of block semantics}
wrpη

A(blk(p, πp, πb)) ; wrpA(u · goto(lb) · lp ·mp · ret · lb ·mb, v, a) .

In order to apply the induction hypothesis in the second step, however, we have
to check fit(η[p 7→ µP], δ[p 7→ lp], u ·m · v), i.e. that for all q ∈ dom(δ[p 7→ lp])

∃x, y : (2)
x · δ[p 7→ lp](q) · y = u ·m · v ∧
∀e, f, g : wrpA(x, δ[p 7→ lp](q) · y, g · 〈e, f〉) ≥ η[p 7→ µP](q) ; wrpA(e, f, g) .

So suppose given q ∈ dom(δ[p 7→ lp]). If q 6= p, (2) reduces to

∃x, y : x · δ(q) · y = u ·m · v ∧
∀e, f, g : wrpA(x, δ(q) · y, g · 〈e, f〉) ≥ η(q) ; wrpA(e, f, g) ,

On the Translation of Procedures to Finite Machines 303

which follows directly from fit(η, δ, u · m · v). For q = p, on the other hand, we
must prove

∃x, y : x · lp · y = u ·m · v ∧
∀e, f, g : wrpA(x, lp · y, g · 〈e, f〉) ≥ µP ; wrpA(e, f, g) .

Choosing x = u · goto(lb) and y = mp · ret · lb · mb · v makes the first conjunct
true. The second conjunct is established by a fixpoint induction for µP:

Admissibility is straightforward and the base case follows easily from the fact
that ⊥ ; wrpA(e, f, g) = ⊥. For the induction step assume that X is given such
that for all e, f, g

wrpA(x, lp · y, g · 〈e, f〉) ≥ X ; wrpA(e, f, g) . (3)

Now, fit(η[p 7→ X], δ[p 7→ lp], u · m · v) holds: for q 6= p we can argue as above
and for q = p this follows from (3). Thus, by using the induction hypothesis of
the structural induction applied to πp we can calculate as follows for arbitrarily
given e, f, g:

wrpA(x, lp · y, g · 〈e, f〉)
≥ {Law [Label-wrp] and unfolding of y}

wrpA(x · lp,mp · ret · lb ·mb · v, g · 〈e, f〉)
≥ {Induction hypothesis applied to πp}

wrpη[p7→X]
A (πp) ; wrpA(x · lp ·mp, ret · lb ·mb · v, g · 〈e, f〉)

≥ {Definition of P and law [Ret-wrp]}
P(X) ; wrpA(e, f, g) .

This completes the fixpoint induction. 2

9 Conclusion

Two interweaved aspects motivated us to write the present paper. First of all we
wanted to prove correct translation of a language with procedures to abstract
assembler code; not just somehow or other but in an elegant and comprehensible
manner. Algebraic calculations with predicate transformers turned out to be an
adequate means for languages without procedures (see, e.g., [9]), so we decided to
apply this technique in the extended scenario, too. The second stimulus is due
to [10], where we proposed to employ wrp-semantics in compiler proofs. Real
processors are always limited by their finite memory and a realistic notion of
translation correctness must be prepared to deal with errors resulting from this
limitation. We hope that the current paper demonstrates convincingly that wrp-
based reasoning can cope with finite machines without burdening the verification.

The target language studied in this paper provides an adequate level of ab-
straction for further refinement down to actual binary machine code. The instruc-
tions may be considered as ‘macros’ for instructions of a more concrete assembler

304 M. Müller-Olm and A. Wolf

or machine language. Labels facilitate this, as they allow to describe destination
of jumps independently from the length of code. An interesting aspect of our
proof is that it shows how to handle the transition from tree-structured source
programs to ‘flat’ target code. For this purpose we established a stronger claim
that involves a universal quantification over syntactic target program contexts.
This should be contrasted to the use of a tree-structured assembler language in
[11] where translation correctness for a While-language without procedures is
investigated. The proof in [11] does not immediately generalize to flat code.

Future work includes studying the relativized version of preservation of par-
tial correctness (∞ ∈ A). In this case, semantics of recursive constructs is given
by greatest rather than least fixpoints. As a consequence, fixpoint reasoning ba-
sed on the fixpoints in the source language does not seem to work. We intend
to use a fixpoint characterization of the target language’s semantics instead. We
also are working on concretizing from the abstract assembler language towards
a realistic processor.

References

1. E. Börger and I. Durdanović. Correctness of compiling Occam to transputer code.
The Computer Journal, 39(1), 1996.

2. L. M. Chirica and D. F. Martin. Towards compiler implementation correctness
proofs. ACM TOPLAS, 8(2):185–214, April 1986.

3. E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics.
Texts and Monographs in Computer Science. Springer-Verlag, 1990.

4. J. D. Guttman, J. D. Ramsdell, and M. Wand. VLISP: A verified implementation
of Scheme. Lisp and Symbolic Computation, 8:5–32, 1995.

5. C. A. R. Hoare, I. J. Hayes, H. Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders,
I. H. Sorenson, J. M. Spivey, and B. A. Sufrin. Laws of programming. Communi-
cations of the ACM, 30(8):672–687, August 1987.

6. C. A. R. Hoare, H. Jifeng, and A. Sampaio. Normal form approach to compiler
design. Acta Informatica, 30:701–739, 1993.

7. H. Langmaack. Software engineering for certification of systems: specification,
implementation, and compiler correctness (in German). Informationstechnik und
Technische Informatik, 39(3):41–47, 1997.

8. J. S. Moore. Piton, A Mechanically Verified Assembly-Level Language. Kluwer
Academic Publishers, 1996.

9. M. Müller-Olm. Modular Compiler Verification: A Refinement-Algebraic Approach
Advocating Stepwise Abstraction, LNCS 1283. Springer-Verlag, 1997.

10. M. Müller-Olm and A. Wolf. On excusable and inexcusable failures: towards an
adequate notion of translation correctness. In FM ’99, LNCS 1709, pp. 1107–1127.
Springer-Verlag, 1999.

11. H. R. Nielson and F. Nielson. Semantics with Applications: A Formal Introduction.
Wiley, 1992.

12. T. S. Norvell. Machine code programs are predicates too. In 6th Refinement
Workshop, Workshops in Computing. Springer-Verlag and British Computer So-
ciety, 1994.

13. E. Pofahl. Methods used for inspecting safety relevant software. In High Integrity
Programmable Electronics, pages 13–14. Dagstuhl-Sem.-Rep. 107, 1995.

A Kleene Analysis of Mobile Ambients

Flemming Nielson1, Hanne Riis Nielson
1
, and Mooly Sagiv2

1 Aarhus University
2 Tel Aviv University

Abstract. We show how a program analysis technique originally develo-
ped for C-like pointer structures can be adapted to analyse the hierarchi-
cal structure of processes in the ambient calculus. The technique is based
on modeling the semantics of the language in a two-valued logic; by rein-
terpreting the logical formulae in Kleene’s three-valued logic we obtain an
analysis allowing us to reason about may as well as must properties. The
correctness of the approach follows from a general Embedding Theorem
for Kleene’s logic; furthermore embeddings allow us to reduce the size of
structures so as to control the time and space complexity of the analysis.

1 Introduction

Mobile ambients. The ambient calculus is a prototype web-language that al-
lows processes (in the form of mobile ambients) to move inside a hierarchy of
administrative domains (also in the form of mobile ambients); since the pro-
cesses may continue to execute during their movement this notion of mobility
extends that found in Java where only passive code in the form of applets may
be moved. Mobile ambients were introduced in [1] and have been studied in
[2,3,4,9,13,16,17]. The calculus is patterned after the π-calculus but focuses on
named ambients and their movement rather than on channel-based communi-
cation; indeed, already the communication-free fragment of the calculus is very
powerful (and in particular Turing complete); we review it in Section 2.

Since processes may evolve when moving around it is hard to predict which
ambients may turn up inside what other ambients. In this paper we present an
analysis that allows us to validate whether all executions satisfy properties like:

– Is there always exactly one copy of the ambient p?
– Is p always inside at most one of the ambients r1, r2 and r3?

Kleene’s three-valued logic. In [18] Kleene’s three-valued logic is used to
obtain safe approximations to the shape of dynamically evolving C-like poin-
ter structures. From a programming language point of view, the setting of the
present paper is vastly different. In contrast to traditional imperative langua-
ges the ambient calculus has no separation of program and data, furthermore
non-determinism and concurrency are crucial ingredients and hence the notion
of program point is demoted. The central operations on C-like pointers are as-
signments, which are executed one at a time and with a local effect on the heap;

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 305–319, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

306 F. Nielson, H. Riis Nielson, and M. Sagiv

this is in contrast to the reductions of the ambient calculus which may happen
in a number of not a priori known contexts – thus the overall effect is hard to
predict. We present an overview of Kleene’s three-valued logic in Section 3.

Predicate logic as a meta-language. Our overall approach is a meta-language
approach as known for example from the denotational approach to program ana-
lysis [14]. However, here we are based on a predicate logic with equality and ap-
propriate non-logical predicates as well as operations for their transitive closure;
the choice of non-logical predicates is determined by the programming language
or calculus at hand. To deal with equality we rely on the presence of a special
unary summary predicate indicating whether or not an individual represents one
or more entities. The important point is that the logic must be powerful enough
to express both

– the properties of the configurations that we are interested in, and
– a postcondition semantics for transitions between configurations.

From a process algebra point of view, our representation of ambients (presented in
Section 4) is rather low-level as it operates over structures containing a universe
of explicit individuals; the non-logical predicates are then used to encode mobile
ambients within these structures. The benefit of using sets of individuals, over
the more standard formulation using multisets of subambients, is that it directly
allows us to use the logical formulae.

Static analysis. The aim of the analysis is to identify certain invariant pro-
perties that hold for all executions of the system; from the process algebra point
of view, the invariants are akin to types and they represent the sets of ambients
that can arise. Since the set of ambient structures may be infinite, the analysis
needs to perform an abstraction to remain tractable.

For a moment let us assume that we continue interpreting the specification
in a two-valued logic. From the classical program analysis point of view, the
maxim that “program analysis always errs on the safe side” amounts to saying
that the truth values false and true of the concrete world are being replaced
by 0 (for false or cannot) and a value 1/2 (for possibly true or may) in the
abstract world. As an example, if a reachability analysis says that a given value
(or ambient) cannot reach a given point (or ambient) then indeed it cannot, but
if the reachability analysis says that it might then it may be a “false positive”
due to the imprecision of the analysis.

The Embedding Theorem. The power of our approach comes from the ability
to reinterpret the transition formulae over Kleene’s three-valued logic. Here we
have the truth values 0 (for false or cannot), 1 (for true or must) and 1/2 (for
possibly true or may) [18]. The benefit of this is that we get a distinction between
may and must properties for free! Returning to the reachability example we are
now able to express certain cases where a value (or ambient) definitely reaches
a given point.

A Kleene Analysis of Mobile Ambients 307

It is straightforward to reinterpret the specification of the semantics over
structures that allow all three truth values (see Section 5). The correctness of
the approximate analysis with respect to the semantics follows using a general
Embedding Theorem that shows that the interpretation in Kleene’s three-valued
logic is conservative over the ordinary two-valued interpretation. Termination
is guaranteed thanks to our techniques for restricting attention to a bounded
universe of individuals and for combining certain structures into one (thereby
possibly introducing more 1/2’s); these techniques generally work by allowing us
to compress structures so that fewer individuals (perhaps only boundedly many)
are needed and thereby allowing us to control the time and space complexity of
our analysis.

2 The Ambient Calculus

Syntax and informal semantics. We shall study the communication-free
subset of the ambient calculus [1,2] and for simplicity of presentation we shall
follow [2] in dispensing with local names. Given a supply of ambient names n ∈ N
we define the syntax of processes P ∈ Proc and capabilities M ∈ Cap:

P ::= 0 | P []P ′ | !P | n[P] | M. P

M ::= in n | out n | open n

The first constructs are well-known from the π-calculus. The process 0 is the
inactive process; as usual we shall omit trailing 0’s. We write P []P ′ for the
parallel composition of the two processes P and P ′ and we write !P for the
replicated process that can evolve into any number of parallel occurrences of P .

The remaining constructs are specific to the ambient calculus. The construct
n[P] encapsulates the process P in the ambient n. In the basic ambient calculus
a process can perform three operations: it can move into a sibling ambient using
the in n capability, it can move out of the parent ambient using the out n
capability or it can dissolve a sibling ambient using the open n capability. These
operations are illustrated pictorially in Fig. 1 where we draw the processes as
trees: the nodes of the trees are labelled with names and capabilities and the
subtrees represent parallel processes “inside” the parent. The figure expresses
that when a process matches the upper part of one of the rules then it can be
replaced by a process of the form specified by the lower part. The reduction can
take place in a subprocess occurring deeply inside several ambients; however,
capabilities always have to be executed sequentially.

Example 1. Throughout the paper we shall consider the following example:

p[in r1[] ! open r] [] r1[! r[in p. out r1. in r2]]
[] r2[! r[in p. out r2. in r3] [] ! r[in p. out r2. in r1]]
[] r3[]

It illustrates how a package p is first passed to the site r1, then to r2 from which
it is either passed to r3 or back to r1.

308 F. Nielson, H. Riis Nielson, and M. Sagiv

Fig. 1. Semantics of capabilities and replication.

Formal semantics. Formally the semantics is specified by a structural con-
gruence relation P ≡ Q allowing us to rearrange the appearance of processes
(e.g. corresponding to reordering the order of the descendants of a node in a
tree) and a reduction relation P � Q modelling the actual computation; the
only deviation from [1] is that the semantics of replication is part of the transi-
tion relation rather than the congruence relation (see Fig. 1).

3 A Primer on Three-valued Logic

Syntax. It will be convenient to use a slight generalization of the logic used
in [18]. Let Pr[k] denote the set of predicate symbols of arity k and let Pr =⋃

k Pr[k] be their finite union. We shall write = for the equality predicate and
furthermore we shall assume that Pr[1] contains a special predicate sm. Here sm
stands for “summary-predicate” and we shall later interpret it as meaning that
its argument might represent multiple individuals. Without loss of generality
we exclude constant and function symbols from our logic; instead we encode
constant symbols as unary predicates and n-ary functions as n+1-ary predicates.

We write formulae over Pr using the logical connectives ∨, ¬ and the quan-
tifier ∃; the formal syntax is:

ϕ ::= v1 = v2 equality on individuals
| p(v1, v2, . . . , vk) predicate value, p ∈ Pr[k]
| Rk(v1, v2, . . . , vk) application of second order free variable
| p+(v1, v2) transitive closure of a relation p, p ∈ Pr[2]
| ϕ1 ∨ ϕ2 disjunction
| ¬ϕ1 negation
| ∃v : ϕ (first order) existential quantification

Capital letters of the form Rk are used for (second-order) relations of arity k. We
also use several shorthands: ∀v : ϕ stands for ¬∃v : ¬ϕ and ϕ1 ∧ ϕ2 stands for

A Kleene Analysis of Mobile Ambients 309

Table 1. Kleene’s three-valued interpretation of the propositional operators.

∧ 0 1 1/2
0 0 0 0
1 0 1 1/2

1/2 0 1/2 1/2

∨ 0 1 1/2
0 0 1 1/2
1 1 1 1

1/2 1/2 1 1/2

¬
0 1
1 0

1/2 1/2

¬(¬ϕ1∨¬ϕ2). The above shorthands are useful since three-valued logic formulae
obey De-Morgan laws. Also ϕ1 =⇒ ϕ2 stands for (¬ϕ1∨ϕ2) and v1 6= v2 stands
for ¬(v1 = v2). Finally, we assume the standard associativity and precedence
rules.

Semantics. A two-valued interpretation of the language of formulae over Pr is
a structure T = 〈U, ι〉2, where U is a set of individuals and ι maps each predicate
symbol p of arity k to a truth-valued function:

ι : Pr[k] → Uk → {0, 1}.

A three-valued interpretation is then a structure T = 〈U, ι〉3, where now ι maps
each predicate symbol p of arity k to a truth-valued function:

ι : Pr[k] → Uk → {0, 1, 1/2}.

We use Kleene’s three-valued semantics which operates with the three values: 0,
1 and 1/2. The values 0 and 1 are called definite values and 1/2 is an indefinite
value. The informal semantics of this logic is given in Table 1 where 1/2 repre-
sents situations were the result may be either true or false. Alternatively, think
of 1 as representing {true}, 0 as representing {false}, and 1/2 as representing
{false, true}. In the propositional case, our presentation of three-valued logics
here follows [7, Chapter 8]. We shall omit the subscripts 2 and 3 when it is clear
from the context whether we are in a two-valued or a three-valued world.

The semantics is rather standard given Table 1; due to space limitations we
dispense with the formalisation. There are, however, one slightly non-standard
aspect, namely the meaning of equality (denoted by the symbol ‘=’). This comes
from our desire to compactly represent multiple concrete elements with the same
“abstract element”. Therefore, the meaning of the predicate = is defined in terms
of the unary summary predicate, sm, that expresses that an individual represents
more than one entity, and the equality, =, upon individuals:

– Non-identical individuals are not equal: u1 = u2 yields 0 if u1 6= u2.
– A non-summary individual is equal to itself: u = u yields 1 if sm(u) = 0.
– A summary individual may be equal to itself: u = u yields 1/2 if sm(u)=1/2.

Here we exploit the fact that sm(u) is never allowed to give 1. This will be
made more precise when defining the notion of plain (two-valued) and blurred
(three-valued) structures in Section 4.

Since we are interested in program analysis it is important to observe that
there is an information ordering v where l1 v l2 denotes that l1 has more definite

310 F. Nielson, H. Riis Nielson, and M. Sagiv

Table 2. The intended meaning of the predicate symbols.

predicate intended meaning

pa(v1, v2) is v2 an immediate parent of v1?

m(v) does v denote an occurrence of an ambient named m?
in m(v) does v denote an occurrence of an action in m?
out m(v) does v denote an occurrence of an action out m?
open m(v) does v denote an occurrence of an action open m?
!(v) does v denote an occurrence of a replicator operation !?

sm(v) does v represent more than one element?

information than l2; formally, l1 v l2 if and only if l1 = l2 or l2 = 1/2. We write
t for the join operation with respect to v. Viewing 0 as meaning {false} etc. the
information ordering coincides with the subset ordering and t with set-union.
It is important to point out that Kleene’s logic is monotonic in this order.

4 The Abstract Domain

Motivation. The two ambients n[m[0]] and n[m[0][]m[0]] are distinct be-
cause the former has only one occurrence of m inside n whereas the latter has
two. In other words, the collection of constituents of an ambient denote a multiset
rather than a set.

To facilitate the use of classical notions from logic we want to view the
collection of constituents as a set rather than as a multiset. We do this by
introducing a set of individuals, so that the collection of constituents simply
are a set of individuals. Informally, the above ambients will be represented as
(u1 : n)[(u2 : m)[0]] and (u1 : n)[(u2 : m)[0][](u3 : m)[0]], respectively.

Once we have introduced the notion of individuals we are ready to model
ambients by structures of the kind already mentioned in Section 3 and defined
formally below. These structures are obtained by fixing the set of predicate
symbols so as to be able to represent ambients; we shall use the predicates
shown in Table 2. In particular, there is a binary relation pa to represent the
parent relation between individuals, and a number of unary relation symbols to
represent the ambient information associated with individuals. Returning to the
two ambients above we have that

n[m[0][]m[0]] yields ι(pa)(u, u′) =
{

1 if u ∈ {u2, u3} ∧ u′ = u1
0 otherwise

and similarly for n[m[0]].

Plain and blurred structures. We shall first fix the set of predicates to be
used in the logic. Let N be a finite and non-empty set of ambient names and let
Pr = Pr[1] ∪ Pr[2] be given by the following sets of predicates:

Pr[1] = {sm} ∪ {! } ∪ {in m, out m, open m | m ∈ N} ∪ {m | m ∈ N}
Pr[2] = {pa}

A Kleene Analysis of Mobile Ambients 311

u1 : p u2 : r1 u3 : r2 u4 : r3

u5 : in r1

OO

u6 : !

hhRRRRRR
u7 : !

OO

u8 : !

OO

u9 : !

iiSSSSSS

u10 : open r

OO

u11 : r

OO

u12 : r

OO

u13 : r

OO

u14 : in p

OO

u15 : in p

OO

u16 : in p

OO

u17 : out r1

OO

u18 : out r2

OO

u19 : out r2

OO

u20 : in r2

OO

u21 : in r3

OO

u22 : in r1

OO

Fig. 2. A plain (two-valued) structure for the running example.

A blurred structure is then a three-valued interpretation T = 〈U, ι〉3 in the sense
of Section 3 that satisfies the following conditions:

– The set U is countably infinite and ∀u ∈ U : ι(sm)(u) 6= 1.
– The set Uac defined below is finite:

Uac = {u ∈ U | ∃p ∈ Pr[1] \ {sm} : ι(p)(u) 6= 0 ∨
∃u′ ∈ U : (ι(pa)(u, u′) 6= 0 ∨ ι(pa)(u′, u) 6= 0)}

A plain structure S = 〈U, ι〉2 is a two-level structure satisfying the above condi-
tions; hence the unary predicate sm maps all individuals to 0. Plain structures
suffice for representing ambients precisely. Blurred structures are only needed in
order to obtain a computable analysis.

Example 2. Fig. 2 shows the plain structure that corresponds to the program
of Example 1. Directed edges represent the parent relation and individuals are
annotated with those unary predicates that give the value 1.

Fig. 3 shows a blurred structure for the same program. It is obtained by
merging individuals from Fig. 2 that satisfy the same unary predicates. As an
example the individuals u5 ad u22 in Fig. 2 are merged into a summary individual
u5,22 in Fig. 3; this individual is now surrounded by a dotted box since its sm
value is 1/2. Also, it has two outgoing dotted edges which describe the two
potential places in the ambient hierarchy were the capability can occur; dotted
edges means that the pa predicate evaluates to 1/2.

Representations of ambients. Table 3 defines a one-to-one (but not neces-
sarily onto) mapping ·̂ from mobile ambients into plain structures. It makes
use of the operation empty that returns a structure 〈U, ι〉 where all predicates
are interpreted so that they yield 0. The operation new(p, 〈U, ι〉) (for p ∈ Pr[1])
returns a structure 〈U ′, ι′〉 that is as 〈U, ι〉 except that now U ′

ac contains an

312 F. Nielson, H. Riis Nielson, and M. Sagiv

Fig. 3. A blurred (three-valued) structure for the running example.

Table 3. The mapping ·̂ from ambients to structures.

0̂ = empty ̂in m.P = new(in m, P̂)
m̂[P] = new(m, P̂) ̂out m.P = new(out m, P̂)

P̂1[]P2 = P̂1] P̂2 ̂open m.P = new(open m, P̂)
!̂P = new(!, P̂)

additional element r not in Uac; the predicate p is set to 1 on r and all other
predicates involving r are set to 0. Some of the individuals r′ of U will serve
as “roots” (of subprocesses represented by the structure) and the predicate pa
is set to 1 on the pairs (r′, r) and 0 elsewhere. We shall not formalise the con-
cept of “roots” but only mention that the individual r will be the “root” of the
new structure. Finally, the operation 〈U, ι〉] 〈U ′, ι′〉 returns a structure 〈U ′′, ι′′〉
where U ′′ = U ∪U ′ and we take case to rename the individuals of U and U ′ such
that U ∩ U ′ = ∅; the “roots” are the union of those of the two structures. Fig. 2
shows the result of applying ·̂ to the program of Example 1.

Embeddings. Next, we define an embedding order on structures.

Definition 1. Let T = 〈U, ι〉κ and T ′ = 〈U ′, ι′〉3 be two structures (for κ being
2 or 3) and let f : U → U ′ be a surjective function. We say that f embeds T in
T ′ (written T vf T ′) if

– for every p ∈ Pr[k] \ {sm}:

ι′(p)(u′
1, . . . , u′

k) w
⊔

f(ui)=u′
i,1≤i≤k

ι(p)(u1, . . . , uk) (1)

– for every u′ ∈ U ′:

ι′(sm)(u′) w
(

|{u|f(u) = u′}| > 1

)
t

⊔
f(u)=u′

ι(sm)(u) (2)

A Kleene Analysis of Mobile Ambients 313

The embedding is tight if equalities hold in (1) and (2).
We say that T can be embedded in T ′ (denoted by T v T ′) if there exists a

function f such that T vf T ′.

We can now establish an Embedding Theorem [18] that intuitively says:

If T can be embedded in T ′, then every piece of information extracted
from T ′ via a formula ϕ is a conservative approximation of the informa-
tion extracted from T via ϕ.

The first usage of the embedding order is to define the concretization: the set of
plain structures (and hence ambients) described by a blurred structure.

Definition 2. For a blurred structure T , we denote by E(T) the set of plain
structures S that can be embedded into T .

If a formula ϕ evaluates to 1 over a blurred structure T then it is true in all
plain structures S ∈ E(T); if it evaluates to 0 then it is false in all plain structures
S ∈ E(T); finally, if it evaluates to 1/2 it may be true in some S1 ∈ E(T) and
false in some S0 ∈ E(T).

Example 3. For the program of Example 1 we may be interested in the properties

unique ≡ ∀v1, v2 : p(v1) ∧ p(v2) =⇒ v1 = v2 (3)
position ≡ ∀v1, v2, v3 : p(v1) ∧ pa+(v1, v2) ∧ pa+(v1, v3) ∧ ro(v2) ∧ ro(v3)

=⇒ v2 = v3 (4)

where ro(v) ≡ r1(v)∨r2(v)∨r3(v). The formula (3) expresses that the structure
only contains a single copy of the ambient p. The formula (4) expresses that
the ambient p will be within at most one of the ambients r1, r2 and r3. These
formulae have the value 1 when evaluated on the structures of Figures 2 and 3.

Bounded Structures and Canonical Embeddings. A simple way to gua-
rantee the termination of our analysis is by ensuring that the number of blurred
structures is a priori bounded. A blurred structure T = 〈U, ι〉 is bounded if
for every two different elements u1, u2 ∈ Uac there exists a unary predicate
p ∈ Pr[1] \ {sm}, such that ι(p)(u1) 6= ι(p)(u2). Clearly, the number of different
individuals in Uac is then bounded by 3|Pr[1]|−1 = O(3|N|) and thus the number
of bounded structures is finite (up to isomorphism).

Moreover, every blurred structure can be embedded into a bounded structure
by “joining” the truth-values of individuals mapping into the same abstract
individual. More precisely, a special kind of tight embedding, called canonical
embedding, from structures into bounded structures is obtained by defining the
embedding f to map individuals u1 and u2 in Uac to the same individual if and
only if it is not the case that there is a predicate p ∈ Pr[1] \ {sm} such that
ι(p)(u1) 6= ι(p)(u2). Since the canonical embedding f is uniquely defined on T
(up to isomorphism) we denote f(T) simply as bT c.
Example 4. The blurred structure in Fig. 3 is the canonical embedding of the
plain structure of Fig. 2.

314 F. Nielson, H. Riis Nielson, and M. Sagiv

Table 4. Shorthand formulae used in the transition formulae.

5 A Simple Analysis

We now define the effect of ambient actions by formulae that compute new
structures from old. These formulae are quite natural since when interpreted
over plain structures they define a semantics which is equivalent to the one
of Section 2 but when interpreted over blurred structures, they are conservative
due to the Embedding Theorem. Restricting our attention to bounded structures
thus gives us a conservative and efficient analysis of ambients.

Capability actions. Table 5 defines the effect of capability actions using the
shorthand formulae defined in Table 4. The semantics of Table 5 is formally
defined in Definition 3. Informally, an action is characterized by the following
kinds of information:

– The condition in which the action is enabled. It is specified as a formula
with free logical variables fc, f1, f2, . . . , fn ranging over individuals. The
formal variable fc denotes the current individual and the rest of f1, f2, . . . , fn

denote surrounding individuals. Whenever an action is enabled, it binds the
free logical variables to actual individuals in the structure. Our operational
semantics is non-deterministic in the sense that many actions can be enabled
simultaneously and one of them is chosen for execution.

– Enabled actions create a new structure where the interpretations of every
predicate p ∈ Pr[k] is determined by evaluating a formula ϕp(v1, v2, . . . , vk)
which may use v1, v2, . . . , vk and fc, f1, f2, . . . , fn as well as all p ∈ Pr.

For simplicity, our semantics does not deal with the removal of individuals (and
hence our structures use an infinite set of individuals).

Consider the treatment of the in m action in Table 5. It is enabled when an
individual fc is non-blocking (i.e. when there are no capabilities or replication
operators on a path to a root of the structure), it denotes an in m action, it has a
parent fp, with a sibling individual fs which denotes an ambient named m. Next
the enabled in m action creates a parent relation, where fp is connected to fs,
predecessors of fc are connected to fp, and individuals which are not emanating

A Kleene Analysis of Mobile Ambients 315

Table 5. The structure update formulae for executing capability actions.

Action in m out m open m

Cond. cin m(fc, fp, fs) ≡ nba(fc)∧ cout m(fc, fp, fpp) ≡ nba(fc)∧ copen m(fc, fs) ≡ nba(fc)∧
on T pa(fc, fp) ∧ sib(fp, fs)∧ pa(fc, fp) ∧ pa(fp, fpp)∧ sib(fc, fs)∧

in m(fc) ∧ m(fs) out m(fc) ∧ m(fpp) open m(fc) ∧ m(fs)

Diag.
of T

fpp

fp

OO

fs : m

ffMMMM

fc : in m

OO

F

OO

fppp

fpp : m

OO

fp

OO

fc : out m

OO

F

OO

fp

fc : open m

OO

fs : m

ggOOOOO

F

OO

F ′

OO

ϕpa(v1,v2)

(v1 =fp ∧ v2 =fs)∨
(pa(v1, fc) ∧ v2 =fp)∨
(pa(v1, v2) ∧ v1 6=fc

∧v1 6=fp ∧ v2 6=fc)

(v1 =fp ∧ pa(fpp , v2))∨
(pa(v1, fc) ∧ v2 =fp)∨
(pa(v1, v2) ∧ v1 6=fc

∧v1 6=fp ∧ v2 6=fc)

(pa(v1, fc) ∧ pa(fc, v2))∨
(pa(v1, fs) ∧ pa(fs, v2))∨
(pa(v1, v2) ∧ v1 6=fc

∧v2 6=fc ∧ v1 6=fs

∧v2 6=fs)
p ∈ Pr[1]
ϕp(v) p(v) ∧ v 6= fc p(v) ∧ v 6= fc ∧ v 6= fs

Diag.
of T ′ fpp

fs : m

OO

fp

OO

F

OO

fppp

fp

OO

fpp : m

ddIII

F

OO

fp

F

OO

F ′

``BB

from fc or fp and not entering fc are not changed. On plain structures this ope-
ration exactly emulates the operational semantics (defined informally in Fig. 1).
However, on blurred structure it can yield indefinite values as demonstrated in
the blurred structure in Table 4, which is obtained by performing the action in
r1 on the blurred structure shown in Fig. 3.

Formally, the meaning of capability actions is defined as follows:

Definition 3. We say that a κ-valued structure T = 〈U, ι〉κ rewrites into a
structure T ′ = 〈U ′, ι′〉κ (denoted by T

κ→MT ′) where M ∈ {in m, out m, open m |
m ∈ N} if there exists an assignment Z such that [[cM (fc, f1, f2, . . . , fn)]]Tκ (Z) 6=
0 where the formula cM (fc, f1, f2, . . . , fn) is defined in the first row of Table 5,
and for every p ∈ Pr[k] and u1, . . . , uk ∈ U ′,

ι′(p)(u1, . . . , uk) = [[ϕp(v1, v2, . . . , vk)]]Tκ (Z[v1 7→ u1, v2 7→ u2, . . . , vk 7→ uk])

where ϕp(v1, · · · , vk) is the formula for p given in Table 5.

316 F. Nielson, H. Riis Nielson, and M. Sagiv

Table 6. The structure update formulae for executing the replication operation.

Action c!(fc, I2) ≡ nba(fc) ∧ !(fc)∧
∀v1 : pa+(v1, fc) =⇒ ∃v2 : (¬ac(v2) ∧ I2(v1, v2) ∧ (∀v3 : I2(v1, v3) =⇒ v2 = v3))

Diagram of T fp

fc : !

OO

F

OO

ϕpa(v1, v2) pa(v1, v2) ∨ (∃v′
1, v′

2 : pa(v′
1, v′

2) ∧ I2(v′
1, v1) ∧ I2(v′

2, v2))
∨ (∃v′

1 : pa(v′
1, fc) ∧ I2(v′

1, v1) ∧ pa(fc, v2))

p ∈ Pr[1] : ϕp(v) p(v) ∨ ∃v′ : p(v′) ∧ I2(v′, v)

Diagram of T ′ fp

fc : !

OO

F

bbEEEE

F

OO

Fig. 4. The bounded structures arising in analysis after the first iteration.

Replication actions. In Table 6 we define the meaning of the replication
action; we express this operation in logic by using a second order relation I2

that creates new isomorphic individuals for the replicated ambients:

– The condition under which the operation is enabled: that the current indi-
vidual fc is a non-blocking replication operation.

– The update formula ϕ. Here we use an extra preset relation I2(v1, v2) which is
set to true if v2 is a new instance of an individual v1. This relation is set before
the formulae ϕp(v1, v2, . . . , vk) is evaluated. The formulae ϕp(v1, v2, . . . , vk)
uses v1, v2, . . . , vk, fc, and the new relation I2.

A Kleene Analysis of Mobile Ambients 317

On plain structures the replication operation exactly emulates the operational
semantics. However, on blurred structure it can yield indefinite values and even
more when the resultant structure is converted into a bounded one.

Formally, replication is handled as follows:

Definition 4. We say that a κ-valued structure T = 〈U, ι〉 rewrites into a struc-
ture T ′ = 〈U ′, ι′〉 (denoted by T

κ→!T
′) if there exists an assignment Z such that

[[c!(fc, I
2)]]Tκ (Z) 6= 0 where the formula c!(fc, I

2) is defined in the first row of
Table 6, and for every p ∈ Pr[k] and u1, u2, . . . , uk ∈ U ′,

ι′(p)(u1, u2, . . . , uk) = [[ϕp(v1, v2, . . . , vk)]]Tκ (Z[v1 7→ u1, v2 7→ u2, . . . , vk 7→ uk])

where ϕp(v1, · · · , vk) is the formula for p given in Table 6.

Finally, we can formally define the analysis (or abstract semantics):

Definition 5. We say that a κ-valued structure T = 〈U, ι〉 rewrites into a struc-
ture T ′ = 〈U, ι′〉 (denoted by T

κ→T ′) if either T
κ→MT ′ or T

κ→!T
′. We say that T

canonically rewrites into T ′ (denoted by T
b3c→T ′) when T = bT c and there exists

T ′′ such that T ′ = bT ′′c and T
3→T ′′. We denote by 3 ∗→ the reflexive transitive

closure of 3→ and similarly for 2 ∗→ and
b3c∗→ .

Properties of the Abstract Semantics. The set of bounded structures

AnT
b3c∗→ T ′} (5)

is finite and can be computed iteratively in a straightforward manner.
We can show that the semantics of processes, P̂ �∗ Q̂, is correctly modelled

by our plain rewrite relation, P̂
2 ∗→ Q̂. It then follows from the Embedding

Theorem that the semantics of processes is correctly modelled by our blurred
rewrite relation:

Whenever P �∗ Q we have ∃T ∈ AnbP̂c : Q̂ v T. (6)

Thus, we can verify safety properties of ambients by evaluating formulae against
blurred structures in AnT . Of course, AnT may also include superfluous struc-
tures leading to imprecise results.

6 Conclusion

So far we have presented a very naive analysis of ambients (in the spirit of
the shape analysis algorithm in [5, Section 3]). The motivation was to show
the benefit of three-valued logics. We have implemented the analysis using the
TVLA system [12] but in its current form it is too costly and too imprecise to
give informative answers to the questions asked of the running example.

To get an efficient and sufficiently precise analysis we have refined the analysis
by using two techniques already mentioned in [18]. One is to maintain finer
distinctions on blurred structures based on values of so-called instrumentation
predicates and the other is to control the complexity by joining structures.

318 F. Nielson, H. Riis Nielson, and M. Sagiv

Table 7. Definition of instrumentation predicates.

action defining formula

in m for each ambient name z :
inside[z, m] = inside[z, m] ∨ ∃v : z(v) ∧ pa∗(v, fp)

out m for each ambient name z :
inside[z, m] = inside[z, m]∧

((∃v1, v2 : z(v1) ∧ pa∗(v1, fp) ∧ m(v2) ∧ pa+(fpp, v2))∨
(∃v1, v2 : z(v1) ∧ m(v2) ∧ pa+(v1, v2) ∧ ¬(pa∗(v1, fp) ∧ pa∗(fp, v2))))

open m for each ambient name z :
inside[z, m] = inside[z, m]∧

((∃v1, v2 : z(v1) ∧ pa+(v1, fs) ∧ m(v2) ∧ pa∗(fp, v2))∨
(∃v1, v2 : z(v1) ∧ m(v2) ∧ pa+(v1, v2) ∧ ¬(pa∗(v1, fs) ∧ pa∗(fs, v2))))

Instrumentation predicates. Technically, instrumentation predicates are just
predicates which store some context information. For our analysis we have added
two kinds of instrumentation predicates. One group of predicates simply labels
the individual ambients and capabilities of the program much as in [9,16]. As
an example, the initial blurred structure will now be similar to the initial plain
structure displayed in Fig. 2 as now the active individuals will have distinct labels
and hence will not be combined. The labels will remain unchanged throughout
the analysis and when a part of a structure is copied as in the analysis of re-
plication the new individuals inherit the labels of the original individuals. The
benefit of adding these instrumentation predicates is that the analysis can better
distinguish between the different routers in which the packet resides.

Another group of instrumentation predicates are designed to reflect the three
questions we have asked which all are concerned about which ambients are in-
side which ambients. We therefore define nullary predicatesinside[z1, z2] for each
combination of the ambient names (z1, z2) ∈ N × N ; it is defined by

inside[z1, z2] = ∃v1, v2 : z1(v1) ∧ z2(v2) ∧ pa+(v1, v2)

and it is updated whenever one of the capabilities are executed as shown in Table
7; it is unchanged when the replication action is executed.

Joining structures. While the goal of adding instrumentation predicates is to
get more precision, the goal of joining structures is to get more efficiency and
as usual this means that we are going to loose precision. We therefore merge
structures satisfying the same nullary instrumentation predicates.

With these modifications the system of [12] can indeed validate the two
properties of Example 3. This took 192.6 CPU seconds on a Pentium 256 Mhz
machine running NT 4.0 with JDK 1.2.

Acknowledgements. The running example was suggested by Luca Cardelli.
Tal Lev-Ami provided the implementation discussed in Section 6.

A Kleene Analysis of Mobile Ambients 319

References

1. L. Cardelli, A. D. Gordon: Mobile ambients. In Proc. FoSSaCS’98, vol. 1378 of
LNCS, pages 140–155, Springer, 1998.

2. L. Cardelli, A. D. Gordon: Types for mobile ambients. In Proc. POPL’99, ACM
Press, 1999.

3. L. Cardelli, G. Ghelli, A. D. Gordon: Mobility types for mobile ambients. In
Proc. ICALP’99, LNCS, Springer, 1999.

4. L. Cardelli and A. D. Gordon: Anytime, Anywhere: Modal Logics for Mobile Am-
bients. In Proc. POPL’00, ACM Press, 2000.

5. D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In
SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 296–310, ACM Press,
1990.

6. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Symp. on Princ. of Prog. Lang., pages 269–282, ACM Press, 1979.

7. R.L. Epstein. The Semantic Foundations of Logic, Volume 1: Propositional Logics.
Kluwer Academic Publishers, 1990.

8. M.L. Ginsberg. Multivalued logics: A uniform approach to inference in artificial
intelligence. In Comp. Intell., 4:265–316, 1988.

9. R. R. Hansen, J. G. Jensen, F. Nielson, H. Riis Nielson: Abstract Interpretation
of Mobile Ambients. In Proc. SAS’99, vol. 1694 of LNCS, Springer, 1999.

10. H. Hoddes. Three-Valued Logics: An Introduction, A Comparison of Various Logi-
cal Lexica, and Some Philosophical Remarks. In Annals of Pure and Applied Logic,
1989.

11. S.C. Kleene. Introduction to Metamathematics. North-Holland, second edition,
1987.

12. T. Lev-Ami: TVLA: a framework for Kleene based static analysis. M.Sc. thesis,
Tel Aviv University, January 2000.

13. F. Levi and D. Sangiorgi: Controlling Interference in Ambients. In Proc. POPL’00,
ACM Press, 2000.

14. F. Nielson: Semantics-Directed Program Analysis: A Tool-Maker’s Perspective. In
Proc. SAS’96, vol. 1145 of LNCS, Springer, 1996.

15. F. Nielson, H. Riis Nielson, C. L. Hankin: Principles of Program Analysis, Springer,
1999.

16. F. Nielson, H. Riis Nielson, R. R. Hansen, J. G. Jensen: Validating Firewalls in
Mobile Ambients. In Proc. CONCUR’99, vol. 1664 of LNCS, Springer, 1999.

17. F. Nielson, H. Riis Nielson: Shape Analysis for Mobile Ambients. In
Proc. POPL’00, ACM Press, 2000.

18. M. Sagiv, T. Reps, R. Wilhelm: Parametric Shape Analysis via 3-Valued Logic. In
Proc. POPL’99, ACM Press, 1999.

A 3-Part Type Inference Engine

François Pottier

INRIA Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France.
Francois.Pottier@inria.fr

Abstract. Extending a subtyping-constraint-based type inference frame-
work with conditional constraints and rows yields a powerful type infe-
rence engine. We illustrate this claim by proposing solutions to three
delicate type inference problems: “accurate” pattern matchings, record
concatenation, and “dynamic” messages. Until now, known solutions re-
quired significantly different techniques; our theoretical contribution is
in using only a single (and simple) set of tools. On the practical side,
this allows all three problems to benefit from a common set of constraint
simplification techniques, leading to efficient solutions.

1 Introduction

Type inference is the task of examining a program which lacks some (or even all)
type annotations, and recovering enough type information to make it acceptable
by a type checker. Its original, and most obvious, application is to free the
programmer from the burden of manually providing these annotations, thus
making static typing a less dreary discipline. However, type inference has also
seen heavy use as a simple, modular way of formulating program analyses.

This paper presents a common solution to several seemingly unrelated type
inference problems, by unifying in a single type inference system several pre-
viously proposed techniques, namely: a simple framework for subtyping-constraint-
based type inference [15], conditional constraints inspired by Aiken, Wimmers
and Lakshman [2], and rows à la Rémy [18].

Constraint-Based Type Inference

Subtyping is a partial order on types, defined so that an object of a subtype may
safely be supplied wherever an object of a supertype is expected. Type inference
in the presence of subtyping reflects this basic principle. Every time a piece
of data is passed from a producer to a consumer, the former’s output type is
required to be a subtype of the latter’s input type. This requirement is explicitly
recorded by creating a symbolic subtyping constraint between these types. Thus,
each potential data flow discovered in the program yields one constraint. This
fact allows viewing a constraint set as a directed approximation of the program’s
data flow graph – regardless of our particular definition of subtyping.

Various type inference systems based on subtyping constraints exist. One
may cite works by Aiken et al. [1, 2, 5], the present author [16, 15], Trifonov

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 320–335, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

A 3-Part Type Inference Engine 321

and Smith [22], as well as an abstract framework by Odersky, Sulzmann and
Wehr [12]. Related systems include set-based analysis [8, 6] and type inference
systems based on feature constraints [9, 10].

Conditional Constraints

In most constraint-based systems, the expression if e0 then e1 else e2 may,
at best, be described by

α1 ≤ α ∧ α2 ≤ α

where αi stands for ei’s type, and α stands for the whole expression’s type.
This amounts to stating that “e1’s (resp. e2’s) value may become the whole
expression’s value”, regardless of the test’s outcome. A more precise description
– “if e0 may evaluate to true (resp. false), then e1’s (resp e2’s) value may
become the whole expression’s value” – may be given using natural conditional
constraints:

true ≤ α0 ?α1 ≤ α ∧ false ≤ α0 ?α2 ≤ α

Introducing tests into constraints allows keeping track of the program’s control
flow – that is, mirroring the way evaluation is affected by a test’s outcome, at
the level of types.

Conditional set expressions were introduced by Reynolds [21] as a means
of solving set constraints involving strict type constructors and destructors.
Heintze [8] uses them to formulate an analysis which ignores “dead code”. He
also introduces case constraints, which allow ignoring the effect of a branch, in
a case construct, unless it is actually liable to be taken. Aiken, Wimmers and
Lakshman [2] use conditional types, together with intersection types, for this
purpose.

In the present paper, we suggest a single notion of conditional constraint,
which is comparable in expressive power to the above constructs, and lends itself
to a simple and efficient implementation. (A similar choice was made indepen-
dently by Fähndrich [5].) We emphasize its use as a way not only of introducing
control into types, but also of delaying type computations, thus introducing some
“laziness” into type inference.

Rows

Designing a type system for a programming language with records, or objects,
requires some way of expressing labelled products of types, where labels are
field or method names. Dually, if a programming language allows manipulating
structured data, then its type system shall likely require labelled sums, where
labels are names of data constructors.

Rémy [18] elegantly deals with both problems at once by introducing notation
to express denumerable, indexed families of types, called rows:

ρ ::= α, β, . . . , ϕ, ψ, . . . | a : τ ; ρ | ∂τ

322 F. Pottier

(Here, τ ranges over types, and a, b, . . . range over indices.) An unknown row
may be represented by a row variable, exactly as in the case of types. (By lack
of symbols, we shall not syntactically distinguish regular type variables and row
variables.) The term a : τ ; ρ represents a row whose element at index a is τ ,
and whose other elements are given by ρ. The term ∂τ stands for a row whose
element at any index is τ . These informal explanations are made precise via an
equational theory:

a : τa; (b : τb; ρ) = b : τb; (a : τa; ρ)
∂τ = a : τ ; ∂τ

For more details, we refer the reader to [18].
Rows offer a particularly straightforward way of describing operations which

treat all labels (except possibly a finite number thereof) uniformly. Because every
facility available at the level of types (e.g. constructors, constraints) can also be
made available at the level of rows, a description of what happens at the level
of a single label – written using types – can also be read as a description of the
whole operation – written using rows. This interesting point will be developed
further in the paper.

Putting It All Together

Our point is to show that the combination of the three concepts discussed above
yields a very expressive system, which allows type inference for a number of
advanced language features. Among these, “accurate” pattern matching con-
structs, record concatenation, and “dynamic” messages will be discussed in this
paper. Our system allows performing type inference for all of these features at
once. Furthermore, efficiency issues concerning constraint-based type inference
systems have already been studied [5, 15]. This existing knowledge benefits our
system, which may thus be used to efficiently perform type inference for all of
the above features.

In this paper, we focus on applications of our type system, i.e. we show how
it allows solving each of the problems mentioned above. Theoretical aspects of
constraint solving are discussed in [15, 17]. Furthermore, a robust prototype
implementation is publicly available [14]. We do not prove that the types given
to the three problematic operations discussed in this paper are sound, but we
believe this is a straightforward task.

The paper is organized as follows. Section 2 gives a brief technical overview
of the type system, focusing on the notion of constrained type scheme, which
should be enough to gain an understanding of the paper. Sections 3, 4, and 5
discuss type inference for “accurate” pattern matchings, record concatenation,
and “dynamic” messages, respectively, within our system. Section 6 sums up
our contribution, then briefly discusses future research topics. Appendix A gives
some more technical details, including the system’s type inference rules. Lastly,
Appendix B gives several examples, which show what inferred types look like in
practice.

A 3-Part Type Inference Engine 323

2 System’s Overview

The programming language considered throughout the paper is a call-by-value
λ-calculus with let-polymorphism, i.e. essentially core ML.

e ::= x, y, . . . | λx.e | (e e) | X,Y, . . . | let X = e in e

The type algebra needed to deal with such a core language is simple. The set
of ground terms contains all regular trees built over ⊥, > (with arity 0) and →
(with arity 2). It is equipped with a straightforward subtyping relationship [15],
denoted ≤, which makes it a lattice. It is the logical model in which subtyping
constraints are interpreted.

Symbols, type variables, types and constraints are defined as follows:

s ::= ⊥ | → | > v ::= α, β, . . .
τ ::= v | ⊥ | τ → τ | > c ::= τ ≤ τ

| s ≤ v ? τ ≤ τ

A ground substitution φ is a map from type variables to ground terms. A con-
straint of the form τ1 ≤ τ2, which reads “τ1 must be a subtype of τ2”, is satisfied
by φ if and only if φ(τ1) ≤ φ(τ2). A constraint of the form s ≤ α ? τ1 ≤ τ2,
which reads “if α exceeds s, then τ1 must be a subtype of τ2”, is satisfied by φ if
and only if s ≤S head(φ(α)) implies φ(τ1) ≤ φ(τ2), where head maps a ground
term to its head constructor, and ≤S is the expected ordering over symbols. A
constraint set C is satisfied by φ if and only if all of its elements are.

A type scheme is of the form

σ ::= ∀C. τ

where τ is a type and C is a constraint set, which restricts the set of σ’s ground
instances. Indeed, the latter, which we call σ’s denotation, is defined as

{τ ′ ; ∃φ φ satisfies C ∧ φ(τ) ≤ τ ′}

Because all of a type scheme’s variables are universally quantified, we will usually
omit the ∀ quantifier and simply write “τ where C”.

Of course, the type algebra given above is very much simplified. In gene-
ral, the system allows defining more type constructors, separating symbols (and
terms) into kinds, and making use of rows. (A full definition – without rows – ap-
pears in [17].) However, for presentation’s sake, we will introduce these features
only step by step.

The core programming language described above is also limited. To extend it,
we will define new primitive operations, equipped with an operational semantics
and an appropriate type scheme. However, no extension to the type system –
e.g. in the form of new typing rules – will be made. This explains why we do
not further describe the system itself. (Some details are given in Appendix A.)
Really, all this paper is about is writing expressive constrained type schemes.

324 F. Pottier

3 Accurate Analysis of Pattern Matchings

When faced with a pattern matching construct, most existing type inference
systems adopt a simple, conservative approach: assuming that each branch may
be taken, they let it contribute to the whole expression’s type. A more accurate
system should use types to prove that certain branches cannot be taken, and
prevent them from contributing.

In this section, we describe such a system. The essential idea – introducing
a conditional construct at the level of types – is due to [8, 2]. Some novelty
resides in our two-step presentation, which we believe helps isolate independent
concepts. First, we consider the case where only one data constructor exists.
Then, we easily move to the general case, by enriching the type algebra with
rows.

3.1 The Basic Case

We assume the language allows building and accessing tagged values.

e ::= . . . | Pre | Pre−1

A single data constructor, Pre, allows building tagged values, while the destruc-
tor Pre−1 allows accessing their contents. This relationship is expressed by the
following reduction rule:

Pre−1 v1 (Pre v2) reduces to (v1 v2)

The rule states that Pre−1 first takes the tag off the value v2, then passes it to
the function v1.

At the level of types, we introduce a (unary) variant type constructor [·].
Also, we establish a distinction between so-called “regular types,” written τ , and
“field types,” written φ.

τ ::= α, β, γ, . . . | ⊥ | > | τ → τ | [φ]
φ ::= ϕ,ψ, . . . | Abs | Pre τ | Any

A subtype ordering over field types is defined straightforwardly: Abs is its least
element, Any is its greatest, and Pre is a covariant type constructor.

The data constructor Pre is given the following type scheme:

Pre : α → [Pre α]

Notice that there is no way of building a value of type [Abs]. Thus, if an ex-
pression has this type, then it must diverge. This explains our choice of names.
If an expression has type [Abs], then its value must be “absent”; if it has type
[Pre τ], then some value of type τ may be “present”.

A 3-Part Type Inference Engine 325

The data destructor Pre−1 is described as follows:

Pre−1 : (α → β) → [ϕ] → γ

where ϕ ≤ Pre α

Pre ≤ ϕ ?β ≤ γ

The conditional constraint allows (Pre−1 e1 e2) to receive type ⊥ when e2 has
type [Abs], reflecting the fact that Pre−1 isn’t invoked until e2 produces some
value. Indeed, as long as ϕ equals Abs, the constraint is vacuously satisfied, so
γ is unconstrained and assumes its most precise value, namely ⊥. However, as
soon as Pre ≤ ϕ holds, β ≤ γ must be satisfied as well. Then, Pre−1’s type
becomes equivalent to (α → β) → [Pre α] → β, which is its usual ML type.

3.2 The General Case

We now move to a language with a denumerable set of data constructors.

e ::= . . . | K | K−1 | close
(We let K, L, . . . stand for data constructors.) An expression may be tagged,
as before, by applying a data constructor to it. Accessing tagged values beco-
mes slightly more complex, because multiple tags exist. The semantics of the
elementary data destructor, K−1, is given by the following reduction rules:

K−1 v1 v2 (K v3) reduces to (v1 v3)

K−1 v1 v2 (L v3) reduces to (v2 (Lv3)) when K 6= L

According to these rules, if the value v3 carries the expected tag, then it is passed
to the function v1. Otherwise, the value – still carrying its tag – is passed to the
function v2. Lastly, a special value, close, is added to the language, but no
additional reduction rule is defined for it.

How do we modify our type algebra to accommodate multiple data construc-
tors? In Section 3.1, we used field types to encode information about a tagged
value’s presence or absence. Here, we need exactly the same information, but
this time about every tag. So, we need to manipulate a family of field types,
indexed by tags. To do so, we add one layer to the type algebra: rows of field
types.

τ ::= α, β, γ, . . . | ⊥ | > | τ → τ | [ρ]
ρ ::= ϕ,ψ, . . . | K : φ; ρ | ∂φ
φ ::= ϕ,ψ, . . . | Abs | Pre τ | Any

We can now extend the previous section’s proposal, as follows:

K : α → [K : Pre α; ∂Abs]
K−1 : (α → β) → ([K : Abs; ψ] → γ) → [K : ϕ; ψ] → γ

where ϕ ≤ Pre α

Pre ≤ ϕ ?β ≤ γ

close : [∂Abs] → ⊥

326 F. Pottier

K−1’s type scheme involves the same constraints as in the basic case. Using a
single row variable, namely ψ, in two distinct positions allows expressing the fact
that values carrying any tag other than K shall be passed unmodified to K−1’s
second argument.

close’s argument type is [∂Abs], which prevents it from ever being invoked.
This accords with the fact that close does not have an associated reduction
rule. It plays the role of a function defined by zero cases.

This system offers extensible pattern matchings: k-ary case constructs may
be written using k nested destructor applications and close, and receive the
desired, accurate type. Thus, no specific language construct or type inference
rule is needed to deal with them.

4 Record Concatenation

Static typing for record operations is a widely studied problem [4, 13]. Com-
mon operations include selection, extension, restriction, and concatenation. The
latter comes in two flavors: symmetric and asymmetric. The former requires its
arguments to have disjoint sets of fields, whereas the latter gives precedence to
the second one when a conflict occurs.

Of these operations, concatenation is probably the most difficult to deal
with, because its behavior varies according to the presence or absence of each
field in its two arguments. This has led many authors to restrict their attention
to type checking, and to not address the issue of type inference [7]. An inference
algorithm for asymmetric concatenation was suggested by Wand [23]. He uses
disjunctions of constraints, however, which gives his system exponential com-
plexity. Rémy [19] suggests an encoding of concatenation into λ-abstraction and
record extension, whence an inference algorithm may be derived. Unfortunately,
its power is somewhat decreased by subtle interactions with ML’s restricted poly-
morphism; furthermore, the encoding is exposed to the user. In later work [20],
Rémy suggests a direct, constraint-based algorithm, which involves a special
form of constraints. Our approach is inspired from this work, but re-formulated
in terms of conditional constraints, thus showing that no ad hoc construct is
necessary.

Again, our presentation is in two steps. The basic case, where records only
have one field, is tackled using subtyping and conditional constraints. Then, rows
allow us to easily transfer our results to the case of multiple fields.

4.1 The Basic Case

We assume a language equipped with one-field records, whose unique field may
be either “absent” or “present”. More precisely, we assume a constant data con-
structor Abs, and a unary data constructor Pre; a “record” is a value built with
one of these constructors. A data destructor, Pre−1, allows accessing the contents
of a non-empty record. Lastly, the language offers asymmetric and symmetric

A 3-Part Type Inference Engine 327

concatenation primitives, written @ and @@, respectively.

e ::= . . . | Abs | Pre | Pre−1 | @ | @@

The relationship between record creation and record access is expressed by a
simple reduction rule:

Pre−1 (Pre v) reduces to v

The semantics of asymmetric record concatenation is given as follows:

v1 @ Abs reduces to v1

v1 @ (Pre v2) reduces to Pre v2

(In each of these rules, the value v1 is required to be a record.) Lastly, symmetric
concatenation is defined by

Abs@@ v2 reduces to v2

v1 @@ Abs reduces to v1

(In these two rules, v1 and v2 are required to be records.)
The construction of our type algebra is similar to the one performed in Sec-

tion 3.1. We introduce a (unary) record type constructor, as well as a distinction
between regular types and field types:

τ ::= α, β, γ, . . . | ⊥ | > | τ → τ | {φ}
φ ::= ϕ,ψ, . . . | Bot | Abs | Pre τ | Either τ | Any

Let us explain, step by step, our definition of field types. Our first, natural step
is to introduce type constructors Abs and Pre, which allow describing values
built with the data constructors Abs and Pre. The former is a constant type
constructor, while the latter is unary and covariant.

Many type systems for record languages define Pre τ to be a subtype of
Abs. This allows a record whose field is present to pretend it is not, leading
to a classic theory of records whose fields may be “forgotten” via subtyping.
However, when the language offers record concatenation, such a definition isn’t
appropriate. Why? Concatenation – asymmetric or symmetric – involves a choice
between two reduction rules, which is performed by matching one, or both, of the
arguments against the data constructors Abs and Pre. If, at the level of types,
we allow a non-empty record to masquerade as an empty one, then it becomes
impossible, based on the arguments’ types, to find out which rule applies, and
to determine the type of the operation’s result. In summary, in the presence of
record concatenation, no subtyping relationship must exist between Pre τ and
Abs. (This problem is well described – although not solved – in [4].)

This leads us to making Abs and Pre incomparable. Once this choice has been
made, completing the definition of field types is rather straightforward. Because
our system requires type constructors to form a lattice, we define a least element

328 F. Pottier

Bot, and a greatest element Any. Lastly, we introduce a unary, covariant type
constructor, Either, which we define as the least upper bound of Abs and Pre,
so that Abst(Pre τ) equals Either τ . This optional refinement allows us to keep
track of a field’s type, even when its presence is not ascertained. The lattice of
field types is shown in figure 1 on page 328.

Any

Either τ

OO

Abs

99ttttttttt
Pre τ

eeLLLLLLLLLL

Bot

eeJJJJJJJJJ

99rrrrrrrrrr

Fig. 1. The lattice of record field types

Let us now assign types to the primitive operations offered by the language.
Record creation and access receive their usual types:

Abs : {Abs}
Pre : α → {Pre α}

Pre−1 : {Pre α} → α

There remains to come up with correct, precise types for both flavors of record
concatenation. The key idea is simple. As shown by its operational semantics,
(either flavor of) record concatenation is really a function defined by cases over
the data constructors Abs and Pre – and Section 3 has shown how to accurately
describe such a function. Let us begin, then, with asymmetric concatenation:

@ : {ϕ1} → {ϕ2} → {ϕ3}
where ϕ2 ≤ Either α2

Abs ≤ ϕ2 ?ϕ1 ≤ ϕ3

Pre ≤ ϕ2 ? Pre α2 ≤ ϕ3

Clearly, each conditional constraint mirrors one of the reduction rules. In the
second conditional constraint, we assume α2 is the type of the second record’s
field – if it has one. The first subtyping constraint represents this assumption.
Notice that we use Pre α2, rather than ϕ2, as the second branch’s result type;
this is strictly more precise, because ϕ2 may be of the form Either α2.

A 3-Part Type Inference Engine 329

Lastly, we turn to symmetric concatenation:

@@ : {ϕ1} → {ϕ2} → {ϕ3}
where Abs ≤ ϕ1 ?ϕ2 ≤ ϕ3

Abs ≤ ϕ2 ?ϕ1 ≤ ϕ3

Pre ≤ ϕ1 ?ϕ2 ≤ Abs

Pre ≤ ϕ2 ?ϕ1 ≤ Abs

Again, each of the first two constraints mirrors a reduction rule. The last two
constraints disallow the case where both arguments are non-empty records. (The
careful reader will notice that any one of these two constraints would in fact
suffice; both are kept for symmetry.)

In both cases, the operation’s description in terms of constraints closely re-
sembles its operational definition. Automatically deriving the former from the
latter seems possible; this is an area for future research.

4.2 The General Case

We now move to a language with a denumerable set of record labels, written
l, m, etc. The language allows creating the empty record, as well as any one-
field record; it also offers selection and concatenation operations. Extension and
restriction can be easily added, if desired; we shall dispense with them.

e ::= ∅ | {l = e} | e.l | @ | @@

We do not give the language’s semantics, which should hopefully be clear enough.
At the level of types, we again introduce rows of field types, denoted by ρ.

Furthermore, we introduce rows of regular types, denoted by %. Lastly, we lift
the five field type constructors to the level of rows.

τ ::= α, β, γ, . . . | ⊥ | > | τ → τ | {ρ}
φ ::= ϕ,ψ, . . . | Bot | Abs | Pre τ | Either τ | Any
% ::= α, β, γ, . . . | l : τ ; % | ∂τ
ρ ::= ϕ,ψ, . . . | l : φ; ρ | ∂φ | Bot | Abs | Pre % | Either % | Any

This allows writing complex constraints between rows, such as ϕ ≤ Pre α, where
ϕ and α are row variables. A constraint between rows stands for an infinite family
of constraints between types, obtained component-wise. That is,

(l : ϕ′; ϕ′′) ≤ Pre (l : α′; α′′) stands for (ϕ′ ≤ Pre α′) ∧ (ϕ′′ ≤ Pre α′′)

We may now give types to the primitive record operations. Creation and
selection are easily dealt with:

∅ : {∂Abs}
{l = ·} : α → {l : Pre α; ∂Abs}

·.l : {l : Pre α; ∂Any} → α

330 F. Pottier

Interestingly, the types of both concatenation operations are unchanged from the
previous section – at least, syntactically. (For space reasons, we do not repeat
them here.) A subtle difference lies in the fact that all variables involved must
now be read as row variables, rather than as type variables. In short, the previous
section exhibited constraints which describe concatenation, at the level of a single
record field; here, the row machinery allows us to replicate these constraints over
an infinite set of labels. This increase in power comes almost for free: it does not
add any complexity to our notion of subtyping.

5 Dynamic Messages

So-called “dynamic” messages have recently received new attention in the static
typing community. Bugliesi and Crafa [3] propose a higher-order type system
which accounts for first-class messages. Nishimura [11] tackles the issue of type
inference and suggests a second-order system à la Ohori [13]. Müller and Nishi-
mura [10] propose a simplified approach, based on an extended feature logic.

The problem consists in performing type inference for an object-oriented lan-
guage where messages are first-class values, made up of a label and a parameter.
Here, we view objects as records of functions, and messages as tagged values.
(Better ways of modeling objects exist, but that is an independent issue.) Thus,
we consider a language with records and data constructors, as described in Sec-
tions 3.2 and 4.2. Furthermore, we let record labels and data constructors range
over a single name space, that of message labels. (To save space, we choose to deal
directly with the case of multiple message labels; however, our usual, two-step
presentation would still be possible.) Lastly, we define a primitive message-send
operation, written #, whose semantics is as follows:

{m = v1; . . . } (mv2) reduces to (v1 v2)

In plain words, # examines its second argument, which must be some message
m with parameter v2. It then looks up the method named m in the receiver
object, and applies the method’s code, v1, to the message parameter.

In a language with “static” messages, a message-send operation may only
involve a constant message label. So, instead of a single message-send operation,
a family thereof, indexed by message labels, is provided. In fact, in our simple
model, these operations are definable within the language. The operation #m,
which allows sending the message m to some object o with parameter p, may be
defined as λo.λp.(o.m p). Then, type inference yields

#m : {m : Pre (α → β); ∂Any} → α → β

Because the message label, m, is statically known, it may be explicitly mentioned
in the type scheme, making it easy to require the receiver object to carry an
appropriate method. In a language with “dynamic” messages, on the other hand,
m is no longer known. The problem thus appears more complex; it has, in fact,
sparked the development of special-purpose constraint languages [10]. Yet, the
machinery introduced so far in this paper suffices to solve it.

A 3-Part Type Inference Engine 331

Consider the partial application of the message send primitive # to some
record r. It is a function which accepts some tagged value (mv), then invokes an
appropriate piece of code, selected according to the label m. This should ring a
bell – it is merely a form of pattern matching, which this paper has extensively
discussed already. Therefore, we propose

: {ϕ} → [ψ] → β

where ψ ≤ Pre α

Pre ≤ ψ ?ϕ ≤ Pre (α → ∂β)

(Here, all variables except β are row variables.) The operation’s first (resp. se-
cond) argument is required to be an object (resp. a message), whose contents
(resp. possible values) are described by the row variable ϕ (resp. ψ). The first
constraint merely lets α stand for the message parameter’s type. The conditional
constraint, which involves two row terms, should again be understood as a family,
indexed by message labels, of conditional constraints between record field types.
The conditional constraint associated with some label m shall be triggered only
if ψ’s element at index m is of the form Pre , i.e. only if the message’s label may
be m. When it is triggered, its right-hand side becomes active, with a three-fold
effect. First, ϕ’s element at index m must be of the form Pre (→), i.e. the
receiver object must carry a method labeled m. Second, the method’s argument
type must be (a supertype of) α’s element at label m, i.e. the method must be
able to accept the message’s parameter. Third, the method’s result type must
be (a subtype of) β, i.e. the whole operation’s result type must be (at least) the
join of all potentially invoked methods’ return types.

Our proposal shows that type inference for “dynamic” messages requires
no dedicated theoretical machinery. It also shows that “dynamic” messages are
naturally compatible with all operations on records, including concatenation –
a question which was left unanswered by Nishimura [11].

6 Conclusion

In this paper, we have advocated enriching an existing constraint-based type
inference framework [15] with rows [18] and conditional constraints [2]. This
provides a single (and simple) solution to several difficult type inference pro-
blems, each of which seemed to require, until now, special forms of constraints.
From a practical point of view, it allows them to benefit from known constraint
simplification techniques [17], leading to an efficient inference algorithm [14].

We believe our system subsumes Rémy’s proposal for record concatena-
tion [20], as well as Müller and Nishimura’s view of “dynamic” messages [10].
Aiken, Wimmers and Lakshman’s “soft” type system [2] is more precise than
ours, because it interprets constraints in a richer logical model, but otherwise
offers similar features. In fact, the ideas developed in this paper could have been
presented in the setting of Bane [5], or, more generally, of any system which
allows writing sufficiently expressive constrained type schemes.

332 F. Pottier

References

[1] Alexander S. Aiken and Edward L. Wimmers. Type inclusion con-
straints and type inference. In Functional Programming & Com-
puter Architecture, pages 31–41. ACM Press, June 1993. URL:
http://http.cs.berkeley.edu/˜aiken/ftp/fpca93.ps.

[2] Alexander S. Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing
with conditional types. In Principles of Programming Languages, pages 163–173,
January 1994. URL: http://http.cs.berkeley.edu/˜aiken/ftp/popl94.ps.

[3] Michele Bugliesi and Silvia Crafa. Object calculi for dynamic messa-
ges. In The Sixth International Workshop on Foundations of Object-
Oriented Languages, FOOL 6, San Antonio, Texas, January 1999. URL:
ftp://ftp.cs.williams.edu/pub/kim/FOOL6/bugliesi.ps.

[4] Luca Cardelli and John Mitchell. Operations on records. Mathemati-
cal Structures in Computer Science, 1:3–48, 1991. Also in Carl A. Gun-
ter and John C. Mitchell, editors, Theoretical Aspects of Object-Oriented Pro-
gramming: Types, Semantics, and Language Design, MIT Press, 1994. URL:
http://research.microsoft.com/Users/luca/Papers/Records.ps.

[5] Manuel Fähndrich. Bane: A Library for Scalable Constraint-Based Program
Analysis. PhD thesis, University of California at Berkeley, 1999. URL:
http://research.microsoft.com/˜maf/diss.ps.

[6] Cormac Flanagan and Matthias Felleisen. Componential set-based analysis. In
Proceedings of the ACM SIGPLAN ’97 Conference on Programming Language
Design and Implementation, pages 235–248, Las Vegas, Nevada, June 1997. URL:
http://www.cs.rice.edu/CS/PLT/Publications/pldi97-ff.ps.gz.

[7] Robert Harper and Benjamin Pierce. A record calculus based on
symmetric concatenation. In Conference Record of the 18th Annual
ACM Symposium on Principles of Programming Languages (POPL ’91),
pages 131–142, Orlando, Florida, January 1991. ACM Press. URL:
http://www.cis.upenn.edu/˜bcpierce/papers/merge.ps.gz.

[8] Nevin Heintze. Set based analysis of ML programs. Technical Report CMU-CS-
93-193, Carnegie Mellon University, School of Computer Science, July 1993. URL:
ftp://reports.adm.cs.cmu.edu/usr/anon/1993/CMU-CS-93-193.ps.

[9] Martin Müller, Joachim Niehren, and Andreas Podelski. Ordering constraints over
feature trees. Constraints, an International Journal, Special Issue on CP’97, Linz,
Austria, 1999. URL: ftp://ftp.ps.uni-sb.de/pub/papers/ProgrammingSysLab
/ftsub-constraints-99.ps.gz.

[10] Martin Müller and Susumu Nishimura. Type inference for first-class mes-
sages with feature constraints. In Jieh Hsiang and Atsushi Ohori, editors,
Asian Computer Science Conference (ASIAN 98), volume 1538 of LNCS,
pages 169–187, Manila, The Philippines, December 1998. Springer-Verlag. URL:
ftp://ftp.ps.uni-sb.de/pub/papers/ProgrammingSysLab/FirstClass98.ps.gz.

[11] Susumu Nishimura. Static typing for dynamic messages. In Conference Re-
cord of POPL ’98: The 25th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 266–278, San Diego, California, January
1998. URL: ftp://ftp.kurims.kyoto-u.ac.jp/pub/paper/member/nisimura/
dmesg-popl98.ps.gz.

[12] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with
constrained types. Theory and Practice of Object Systems, 5(1), 1999. URL:
http://www.cs.yale.edu/˜sulzmann-martin/publications/tapos.ps.

http://http.cs.berkeley.edu/~aiken/ftp/fpca93.ps
http://http.cs.berkeley.edu/~aiken/ftp/popl94.ps
ftp://ftp.cs.williams.edu/pub/kim/FOOL6/bugliesi.ps
http://research.microsoft.com/Users/luca/Papers/Records.ps
http://research.microsoft.com/~maf/diss.ps
http://www.cs.rice.edu/CS/PLT/Publications/pldi97-ff.ps.gz
http://www.cis.upenn.edu/~bcpierce/papers/merge.ps.gz
ftp://reports.adm.cs.cmu.edu/usr/anon/1993/CMU-CS-93-193.ps
ftp://ftp.ps.uni-sb.de/pub/papers/ProgrammingSysLab/FirstClass98.ps.gz
http://www.cs.yale.edu/~sulzmann-martin/publications/tapos.ps

A 3-Part Type Inference Engine 333

[13] Atsushi Ohori. A polymorphic record calculus and its compilation. ACM Transac-
tions on Programming Languages and Systems, 17(6):844–895, November 1995.

[14] François Pottier. Wallace: an efficient implementation of type inference with
subtyping. URL: http://pauillac.inria.fr/˜fpottier/wallace/.

[15] François Pottier. Simplifying subtyping constraints: a
theory. Submitted for publication, December 1998. URL:
http://pauillac.inria.fr/˜fpottier/publis/fpottier-journal-98.ps.gz.

[16] François Pottier. Type inference in the presence of subtyping: from theory
to practice. Technical Report 3483, INRIA, September 1998. URL:
ftp://ftp.inria.fr/INRIA/publication/RR/RR-3483.ps.gz.

[17] François Pottier. Subtyping-constraint-based type inference with conditional
constraints: algorithms and proofs. Unpublished draft, July 1999. URL:
http://pauillac.inria.fr/˜fpottier/publis/fpottier-conditional.ps.gz.

[18] Didier Rémy. Projective ML. In 1992 ACM Conference on Lisp and
Functional Programming, pages 66–75, New-York, 1992. ACM Press. URL:
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/lfp92.ps.gz.

[19] Didier Rémy. Typing record concatenation for free. In Carl A. Gunter
and John C. Mitchell, editors, Theoretical Aspects Of Object-Oriented Pro-
gramming. Types, Semantics and Language Design. MIT Press, 1993. URL:
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/taoop2.ps.gz.

[20] Didier Rémy. A case study of typechecking with constrained types: Typing re-
cord concatenation. Presented at the workshop on Advances in Types for Com-
puter Science at the Newton Institute, Cambridge, UK, August 1995. URL:
http://cristal.inria.fr/˜remy/work/sub-concat.dvi.gz.

[21] John C. Reynolds. Automatic computation of data set definitions. In A. J. H.
Morrell, editor, Information Processing 68, volume 1, pages 456–461, Amsterdam,
1969. North-Holland.

[22] Valery Trifonov and Scott Smith. Subtyping constrained types. In
Proceedings of the Third International Static Analysis Symposium, vo-
lume 1145 of LNCS, pages 349–365. SV, September 1996. URL:
http://www.cs.jhu.edu/˜trifonov/papers/subcon.ps.gz.

[23] Mitchell Wand. Type inference for record concatenation and multiple inheritance.
Information and Computation, pages 1–15, 1993. A preliminary version appeared
in Proc. 4th IEEE Symposium on Logic in Computer Science (1989), pp. 92–97.
URL: ftp://ftp.ccs.neu.edu/pub/people/wand/papers/ic-91.dvi.

A Rules

This appendix gives a short description of the system’s type inference rules
(Figure 2). Even though only the core language is explicitly treated, these rules
are sufficient to deal with a full-featured programming language. Indeed, any
extra language construct may be viewed either as syntactic sugar, or as a new
primitive operation, which can be bound in an initial typing environment Γ0.
Also, note that these type inference rules use neither conditional constraints, nor
rows; these will come only from Γ0.

For simplicity, we distinguish identifiers bound by λ, denoted x, y, . . . from
those bound by let, denoted X,Y, . . . Furthermore, we expect λ-identifiers to
be unique; that is, each λ-identifier must be bound at most once in a given

http://pauillac.inria.fr/~fpottier/wallace/
http://pauillac.inria.fr/~fpottier/publis/fpottier-journal-98.ps.gz
ftp://ftp.inria.fr/INRIA/publication/RR/RR-3483.ps.gz
http://pauillac.inria.fr/~fpottier/publis/ fpottier-conditional.ps.gz
ftp://ftp.inria.fr/INRIA/Projects/cristal/ Didier.Remy/lfp92.ps.gz
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/taoop2.ps.gz
http://cristal.inria.fr/~remy/work/sub-concat.dvi.gz
http://www.cs.jhu.edu/~trifonov/papers/subcon.ps.gz
ftp://ftp.ccs.neu.edu/pub/people/wand/papers/ic-91.dvi

334 F. Pottier

α fresh

Γ `I x : ∀∅. 〈x : α〉 ⇒ α
(Vari)

Γ `I e : ∀C. A ⇒ τ ′ A(x) = τ

Γ `I λx.e : ∀C. (A \ x) ⇒ τ → τ ′ (Absi)

Γ `I e1 : ∀C1. A1 ⇒ τ1 Γ `I e2 : ∀C2. A2 ⇒ τ2

α fresh C = C1 ∪ C2 ∪ {τ1 ≤ τ2 → α}
Γ `I e1 e2 : ∀C. (A1 u A2) ⇒ α

(Appi)

Γ (X) = σ ρ fresh renaming of σ

Γ `I X : ρ(σ)
(LetVari)

Γ `I e1 : σ1 Γ + [X 7→ σ1] `I e2 : σ2

Γ `I let X = e1 in e2 : σ2
(Leti)

Fig. 2. Type inference rules

program. Lastly, in every expression of the form let X = e1 in e2, we require
X to appear free within e2. It would be easy to overcome these restrictions, at
the expense of heavier notation.

The rules are fairly straightforward. The main point of interest is the way
each application node produces a subtyping constraint. The only peculiarity is
in the way type environments are dealt with. The environment Γ , which appears
on the left of the turnstile, is a list of bindings of the form X : σ. Type schemes
are slightly more complex than initially shown in Section 2. They are, in fact,
of the form σ ::= ∀C.A ⇒ τ , where the context A is a set of bindings of the
form x : τ . The point of such a formulation is to obtain a system where no type
scheme has free type variables. This allows a simpler theoretical description of
constraint simplification.

As far as notation is concerned, 〈x : α〉 represents a context consisting of a
single entry, which binds x to α. A \ x is the context obtained by removing x’s
binding from A, if it exists. For the sake of readability, we have abused notation
slightly. In rule (Absi), A(x) stands for the type associated with x in A, if A
contains a binding for x; it stands for > otherwise. In rule (Appi), A1 u A2
represents the point-wise intersection of A1 and A2. That is, whenever x has
a binding in A1 or A2, its binding in A1 u A2 is A1(x) u A2(x). Because we
do not have intersection types, this expression should in fact be understood as
a fresh type variable, accompanied by an appropriate conjunction of subtyping
constraints.

The rules implicitly require every constraint set to admit at least one solution.
Constraint solving and simplification are described in [15, 17].

A 3-Part Type Inference Engine 335

B Examples

Example 1. We define a function which reads field l out of a record r, returning a
default value d if r has no such field, by setting extract = λd.λr.({l = d} @ r).l.
In our system, extract’s inferred type is

extract : α → {l : ϕ; ψ} → γ
where ϕ ≤ Either β ψ ≤ Either ε

Abs ≤ ϕ ?α ≤ γ Abs ≤ ψ ? Abs ≤ Any
Pre ≤ ϕ ?β ≤ γ Pre ≤ ψ ? Pre ε ≤ Any

The first constraint retrieves r.l’s type and names it β, regardless of the field’s
presence. (If the field turns out to be absent, β will be unconstrained.) The left-
hand conditional constraints clearly specify the dependency between the field’s
presence and the function’s result.

The right-hand conditional constraints have tautologous conclusions – the-
refore, they are superfluous. They remain only because our current constraint
simplification algorithms are “lazy” and ignore any conditional constraints whose
condition has not yet been fulfilled. This problem could be fixed by implementing
slightly more aggressive simplification algorithms.

The type inferred for extract 0 {l = 1} and extract 0 {m = 1} is int. Thus,
in many cases, one need not be aware of the complexity hidden in extract’s type.

Example 2. We assume given an object o, of the following type:

o : { getText : Pre (unit → string); setText : Pre (string → unit);
select : Pre (int × int → unit); ∂Abs }

o may represent, for instance, an editable text field in a graphic user interface
system. Its methods allow programmatically getting and setting its contents, as
well as selecting a portion of text.

Next, we assume a list data structure, equipped with a simple iterator:

iter : (α → unit) → α list → unit

The following expression creates a list of messages, and uses iter to send each of
them in turn to o:

iter (# o) [setText “Hello!”; select (0, 5)]

This expression is well-typed, because o contains appropriate methods to deal
with each of these messages, and because these methods return unit, as expected
by iter. The expression’s type is of course unit, iter’s return type.

Here is a similar expression, which involves a getText message:

iter (# o) [setText “Hello!”; getText ()]

This time, it is ill-typed. Indeed, sending a setText message to o produces a
result of type unit, while sending it a getText message produces a result of type
string. Thus, (# o)’s result type must be >, the join of these types. This makes
(# o) an unacceptable argument for iter, since the latter expects a function
whose return type is unit.

First-Class Structures for Standard ML

Claudio V. Russo?

Cambridge University Computer Laboratory, Cambridge CB2 3QG, UK
cvr21@cl.cam.ac.uk

Abstract. Standard ML is a statically typed programming language
that is suited for the construction of both small and large programs.
“Programming in the small” is captured by Standard ML’s Core langu-
age. “Programming in the large” is captured by Standard ML’s Modules
language that provides constructs for organising related Core language
definitions into self-contained modules with descriptive interfaces. While
the Core is used to express details of algorithms and data structures, Mo-
dules is used to express the overall architecture of a software system. The
Modules and Core languages are stratified in the sense that modules may
not be manipulated as ordinary values of the Core. This is a limitation,
since it means that the architecture of a program cannot be reconfigu-
red according to run-time demands. We propose a novel extension of the
language that allows modules to be manipulated as first-class values of
the Core language. The extension greatly extends the expressive power
of the language and has been shown to be compatible with both Core
type inference and a separate extension to higher-order modules.

1 Introduction

Standard ML [10] is a high-level programming language that is suited for the
construction of both small and large programs.

Standard ML’s general-purpose Core language supports “programming in
the small” with a rich range of types and computational constructs that includes
recursive types and functions, control constructs, exceptions and references.

Standard ML’s special-purpose Modules language supports “programming
in the large”. Constructed on top of the Core, the Modules language allows
definitions of identifiers denoting Core language types and terms to be pack-
aged together into possibly nested structures, whose components are accessed
by the dot notation. Structures are transparent : by default, the realisation (i.e.
implementation) of a type component within a structure is evident outside the
structure. Signatures are used to specify the types of structures, by specifying
their individual components. A type component may be specified opaquely, per-
mitting a variety of realisations, or transparently, by equating it with a particular
Core type. A structure matches a signature if it provides an implementation for
? This research was completed at the LFCS, Division of Informatics, University of

Edinburgh under EPSRC grant GR/K63795. Thanks to Don Sannella, Healfdene
Goguen and the anonymous referees.

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 336–350, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

First-Class Structures for Standard ML 337

all of the specified components, and, thanks to subtyping, possibly more. A signa-
ture may be used to opaquely constrain a matching structure. This existentially
quantifies over the actual realisation of type components that have opaque spe-
cifications in the signature, effectively hiding their implementation. A functor
definition defines a polymorphic function mapping structures to structures. A
functor may be applied to any structure that realises a subtype of the formal
argument’s type, resulting in a concrete implementation of the functor body.

Despite the flexibility of the Modules type system, the notion of computation
at the Modules level is actually very weak, permitting only functor application, to
model the linking of structures, and projection, to provide access to a structure’s
components. Moreover, the stratification between Core and Modules means that
the stronger computational mechanisms of the Core cannot be exploited in the
construction of structures. This severe limitation means that the architecture of
a program cannot be reconfigured according to run-time demands. For instance,
we cannot dynamically choose between the various back-ends of a cross compiler,
if those back-ends are implemented as separate structures.

In this paper, we relax the Core/Modules stratification, allowing structures to
be manipulated as first-class citizens of the Core language. Our extension allows
structures to be passed as arguments to Core functions, returned as results of
Core computations, stored in Core data structures and so on.

For presentation purposes, we formulate our extension for a representative toy
language called Mini-SML. The static semantics of Mini-SML is based directly
on that of Standard ML. Mini-SML includes the essential features of Standard
ML Modules but, for brevity, only has a simple Core language of explicitly typed,
monomorphic functions ([16] treats a Standard ML-like Core). Section 2 intro-
duces the syntax of Mini-SML. Section 3 gives a motivating example to illustrate
the limitations of the Core/Modules stratification. Section 4 reviews the static
semantics of Mini-SML. Section 5 defines our extension to first-class structures.
Section 6 revisits the motivating example to show the utility of our extension.
Section 7 presents a different example to demonstrate that Mini-SML becomes
more expressive with our extension. Section 8 discusses our contribution.

2 The Syntax of Mini-SML

The type and term syntax of Mini-SML is defined by the grammar in Figures 1
and 2, where t ∈ TypId, x ∈ ValId, X ∈ StrId, F ∈ FunId and T ∈ SigId range
over disjoint sets of type, value, structure, functor and signature identifiers.

A core type u may be used to define a type identifier or to specify the type of
a Core value. These are just the types of a simple functional language, extended
with the projection sp.t of a type component from a structure path. A signature
body B is a sequential specification of a structure’s components. A type com-
ponent may be specified transparently, by equating it with a type, or opaquely,
permitting a variety of realisations. Transparent specifications may be used to
express type sharing constraints in the usual way. Value and structure compo-
nents are specified by their type and signature. The specifications in a body

338 C.V. Russo

Core Types u ::= t type identifier
| u → u′ | int function space, integers
| sp.t type projection

Signature Bodies B ::= type t = u; B transparent type specification
| type t; B opaque type specification
| val x : u; B value specification
| structure X : S; B structure specification
| εB empty body

Signature Expressions S ::= sig B end encapsulated body
| T signature identifier

Fig. 1. Type Syntax of Mini-SML

Core Expressions e ::= x value identifier
| λx : u.e | e e′ function, application
| i | ifzero e then e′else e′′ integer, zero test
| fix e fixpoint of e (recursion)
| sp.x value projection

Structure Paths sp ::= X structure identifier
| sp.X structure projection

Structure Bodies b ::= type t = u; b type definition
| val x = e; b value definition
| structure X = s;b structure definition
| functor F (X : S) = s; b functor definition
| signature T = S; b signature definition
| εb empty body

Structure Expressions s ::= sp structure path
| struct b end structure body
| F(s) functor application
| s :> S opaque constraint

Fig. 2. Term Syntax of Mini-SML

are dependent in that subsequent specifications may refer to previous ones. A
signature expression S encapsulates a body, or is a reference to a bound sig-
nature identifier. A structure matches a signature expression if it provides an
implementation for all of the specified components, and possibly more.

Core expressions e describe a simple functional language extended with the
projection of a value identifier from a structure path. A structure path sp is a
reference to a bound structure identifier, or the projection of one of its sub-
structures. A structure body b is a dependent sequence of definitions: subsequent
definitions may refer to previous ones. A type definition abbreviates a type. Va-
lue and structure definitions bind term identifiers to the values of expressions. A
functor definition introduces a named function on structures: X is the functor’s
formal argument, S specifies the argument’s type, and s is the functor’s body
that may refer to X. The functor may be applied to any argument that matches
S. A signature definition abbreviates a signature. A structure expression s eva-
luates to a structure. It may be a path or an encapsulated structure body, whose

First-Class Structures for Standard ML 339

signature Stream = sig type nat = int; type state;
val start: state;
val next: state → state;
val value: state → nat

end;
structure TwoOnwards = struct type nat = int; type state = nat;

val start = 2;
val next = λs:state.succ s;
val value = λs:state.s

end;
signature State = Stream;
structure Start = TwoOnwards:>State;
functor Next (S:State) =

struct type nat = S.nat; type state = S.state;
val filter = fix λfilter:state→state.

λs:state. ifzero mod (S.value s) (S.value S.start)
then filter (S.next s) else s;

val start = filter S.start;
val next = λs:state.filter (S.next s);
val value = S.value

end;
functor Value (S:State) = struct val value = S.value (S.start) end

Fig. 3. Using structures to implement streams and a stratified, but useless, Sieve.

type, value and structure definitions (but not functor or signature definitions)
become the components of the structure. The application of a functor evaluates
its body with respect to the value of the actual argument. An opaque constraint
restricts the visibility of the structure’s components to those specified in the sig-
nature, which the structure must match, and hides the actual realisations of type
components with opaque specifications, introducing new abstract types.

By supporting local functor and signature definitions, structure bodies can
play the role of Standard ML’s separate top-level syntax. [18] formalises recursive
datatypes, local structure definitions and transparent signature constraints.

3 Motivating Example: The Sieve of Eratosthenes

We can illustrate the limitations of the Core/Modules stratification of Mini-SML
(and Standard ML) by attempting to implement the Sieve of Eratosthenes using
Modules level structures as the fundamental “data structure”. It is a moot point
that the Sieve can be coded directly in the Core: our aim is to highlight the
shortcomings of second-class modules. The example is adapted from [12].

The Sieve is a well-known algorithm for calculating the infinite list, or stream,
of prime (natural) numbers. We can represent such a stream as a “process”, defi-
ned by a specific representation nat of the set of natural numbers, an unspecified
set state of internal states, a designated initial or start state, a transition function
taking us from one state to the next state, and a function value returning the

340 C.V. Russo

natural number associated with each state. Reading the values off the process’s
sequence of states yields the stream.

Given a stream s, let sift(s) be the substream of s consisting of those values
not divisible by the initial value of s. Viewed as a process, the states of sift(s)
are just the states of s, filtered by the removal of any states whose values are
divisible by the value of s’s start state. The stream of primes is obtained by
taking the initial value of each stream in the sequence of streams:

twoonwards = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . .
sift(twoonwards) = 3, 5, 7, 9, 11, . . .
sift(sift(twoonwards)) = 5, 7, 11, . . .

...

The Sieve of Eratosthenes represents this construction as the following pro-
cess. The states of the Sieve are streams. The Sieve’s start state is the stream
twoonwards. The next state of the Sieve is obtained by sift ing the current state.
The value of each state of the Sieve is the first value of that state viewed as a
stream. Observe that our description of the Sieve also describes a stream.

Consider the code in Fig. 3. Given our description of streams as processes,
it seems natural to use structures matching the signature Stream to implement
streams: e.g. the structure TwoOnwards implements the stream twoonwards. The
remaining code constructs an implementation of the Sieve. The states of the Sieve
are structures matching the signature State (i.e. Stream). The Start state of
the Sieve is the structure TwoOnwards. The functor Next takes a structure S
matching State and returns a sifted structure that also matches State. The
functor Value returns the value of a state of the Sieve, by returning the initial
value of the state viewed as a stream.

Now we can indeed calculate the value of the nth prime (counting from 0):

structure NthValue = Value(Next(· · ·Next(Start)· · ·));
val nthprime = NthValue.value

by chaining n applications (underlined above) of the functor Next to Start and
then extracting the resulting value. The problem is that we can only do this for
a fixed n: because of the stratification of Core and Modules, it is impossible to
implement the mathematical function that returns the nth state of the Sieve
for an arbitrary n. It cannot be implemented as a Core function, even though
the Core supports iteration, because the states of the Sieve are structures that
do not belong to the Core language. It cannot be implemented as a Modules
functor, because the computation on structures is limited to functor application
and projection, which is too weak to express iteration. This means that our
implementation of the Sieve is useless.

Notice also that, in this implementation, the components of the Sieve do not
describe a stream in the sense of the signature Stream: the states of the Sieve
are structures, not values of the Core and the state transition function is a func-
tor, not a Core function. Our implementation fails to capture the impredicative
description of the Sieve as a stream constructed from streams.

First-Class Structures for Standard ML 341

α ∈ Var def= {α, β, δ, γ , . . .} type variables

P ,Q ∈ VarSet def= Fin(Var) sets of type variables
u ∈ Type ::= α | u → u ′ | int type variable, function space, integers

ϕ ∈ Real def= Var fin→ Type realisations

S ∈ Str def=

St ∪
Sx ∪
SX

∣∣∣∣∣∣∣

St ∈ TypId fin→ Type,

Sx ∈ ValId fin→ Type,

SX ∈ StrId fin→ Str

semantic structures

L ∈ Sig ::= ΛP .S semantic signatures
X ∈ ExStr ::= ∃P .S existential structures
F ∈ Fun ::= ∀P .S → X semantic functors

C ∈ Context def=

Ct ∪
CT ∪
Cx ∪
CX ∪
CF

∣∣∣∣∣∣∣∣∣∣∣

Ct ∈ TypId fin→ Type,

CT ∈ SigId fin→ Sig ,

Cx ∈ ValId fin→ Type,

CX ∈ StrId fin→ Str ,

CF ∈ FunId fin→ Fun

semantic contexts

Notation. For sets A and B, Fin(A) denotes the set of finite subsets of A, and A
fin→ B

denotes the set of finite maps from A to B. Let f and g be finite maps. D(f) denotes
the domain of definition of f . The finite map f + g has domain D(f) ∪ D(g) and

values (f + g)(a) def= if a ∈ D(g) then g(a) else f(a).

Fig. 4. Semantic Objects of Mini-SML

Once we allow structures as first-class citizens of the Core language, these
problems disappear.

4 Review: The Static Semantics of Mini-SML

Before we can propose our extension, we need to present the static semantics,
or typing judgements, of Mini-SML. Following Standard ML [10], the static
semantics of Mini-SML distinguishes syntactic types of the language from their
semantic counterparts, called semantic objects. Semantic objects play the role of
types in the semantics. Figure 4 defines the semantic objects of Mini-SML. We
let O range over all semantic objects.

Type variables α ∈ Var are just variables ranging over semantic types u ∈
Type. The latter are the semantic counterparts of syntactic Core types, and
are used to record the denotations of type identifiers and the types of value
identifiers. The symbols Λ, ∃ and ∀ are used to bind finite sets of type variables.

A realisation ϕ ∈ Real maps type variables to semantic types and defines
a substitution on type variables in the usual way. The operation of applying a
realisation ϕ to an object O is written ϕ (O).

Semantic structures S ∈ Str are used as the types of structure identifiers and
paths. A semantic structure maps type components to the types they denote,

342 C.V. Russo

and value and structure components to the types they inhabit. For clarity, we
define the extension functions t . u,S def= {t 7→ u} + S, x : u,S def= {x 7→ u} + S,
and X : S,S ′ def= {X 7→ S} + S ′, and let εS denote the empty structure ∅.

A semantic signature ΛP .S is a parameterised type: it describes the family
of structures ϕ (S), for ϕ a realisation of the parameters in P .

The existential structure ∃P .S, on the other hand, is a quantified type: varia-
bles in P are existentially quantified in S and thus abstract. Existential structu-
res describe the types of structure bodies and expression. Existentially quantified
type variables are explicitly introduced by opaque constraints s :> S, and impli-
citly eliminated at various points in the static semantics.

A semantic functor ∀P .S → X describes the type of a functor identifier: the
universally quantified variables in P are bound simultaneously in the functor’s
domain, S, and its range, X . These variables capture the type components of the
domain on which the functor behaves polymorphically; their possible occurrence
in the range caters for the propagation of type identities from the functor’s actual
argument: functors are polymorphic functions on structures.

A context C maps type and signature identifiers to the types and signatures
they denote, and maps value, structure and functor identifiers to the types they
inhabit. For clarity, we define the extension functions C, t . u def= C + {t 7→ u},
C, T . L def= C + {T 7→ L}, C, x : u def= C + {x 7→ u}, C, X : S def= C + {x 7→ S}, and
C, F : F def= C + {F 7→ F}.

We let V(O) denote the set of variables occurring free in O, where the notions
of free and bound variable are defined as usual. Furthermore, we identify seman-
tic objects that differ only in a renaming of bound type variables (α-conversion).

The operation of applying a realisation to a type (substitution) is extended
to all semantic objects in the usual, capture-avoiding way.

Definition 1 (Enrichment Relation) Given two structures S and S ′, S en-
riches S ′, written S � S ′, if and only if D(S) ⊇ D(S ′) and

– for all t ∈ D(S ′), S(t) = S ′(t),
– for all x ∈ D(S ′), S(x) = S ′(x), and
– for all X ∈ D(S ′), S(X) � S ′(X).

Enrichment is a pre-order that defines a subtyping relation on semantic struc-
tures (i.e. S is a subtype of S ′ if and only if S � S ′).

Definition 2 (Functor Instantiation) A semantic functor ∀P .S → X in-
stantiates to a functor instance S ′ → X ′, written ∀P .S → X > S ′ → X ′, if and
only if ϕ (S) = S ′ and ϕ (X) = X ′, for some realisation ϕ with D(ϕ) = P.

Definition 3 (Signature Matching) A semantic structure S matches a sig-
nature ΛP .S ′ if and only if S � ϕ (S ′) for some realisation ϕ with D(ϕ) = P.

The static semantics of Mini-SML is defined by the denotation judgements
in Fig. 5 that relate type phrases to their denotations, and the classification
judgements in Fig. 6 that relate term phrases to their semantic types. A complete
presentation and detailed explanation of these rules may be found in [18, 16, 17].

First-Class Structures for Standard ML 343

C ` u . u
t ∈ D(C)

C ` t . C(t)
C ` u . u C ` u′ . u ′

C ` u → u′ . u → u ′ C ` int . int
C ` sp : S t ∈ D(S)

C ` sp.t . S(t)

C ` B . L
C ` u . u C, t . u ` B . ΛP .S t 6∈ D(S) P ∩ V(u) = ∅

C ` (type t = u; B) . ΛP .(t . u, S)

α 6∈ V(C) C, t . α ` B . ΛP .S t 6∈ D(S) α 6∈ P
C ` (type t; B) . Λ{α} ∪ P .(t . α, S)

C ` u . u C, x : u ` B . ΛP .S x 6∈ D(S) P ∩ V(u) = ∅
C ` (val x : u; B) . ΛP .(x : u, S)

C ` S . ΛP .S P ∩ V(C) = ∅ C, X : S ` B . ΛQ .S ′ X 6∈ D(S ′) Q ∩ (P ∪ V(S)) = ∅
C ` (structure X : S; B) . ΛP ∪ Q .(X : S, S ′)

C ` εB . Λ∅.εS

C ` S . L C ` B . L
C ` sig B end . L

T ∈ D(C)
C ` T . C(T)

Fig. 5. Denotation Judgements

C ` e : u
x ∈ D(C)

C ` x : C(x)
C ` u . u C, x : u ` e : u ′

C ` λx : u.e : u → u ′
. . . C ` sp : S x ∈ D(S)

C ` sp.x : S(x)

C ` sp : S X ∈ D(C)
C ` X : C(X)

C ` sp : S X ∈ D(S)
C ` sp.X : S(X)

C ` b : X
C ` u . u C, t . u ` b : ∃P .S P ∩ V(u) = ∅

C ` (type t = u; b) : ∃P .(t . u, S)

C ` e : u C, x : u ` b : ∃P .S P ∩ V(u) = ∅
C ` (val x = e; b) : ∃P .(x : u, S)

C ` s : ∃P .S P ∩ V(C) = ∅ C, X : S ` b : ∃Q .S ′ Q ∩ (P ∪ V(S)) = ∅
C ` (structure X = s;b) : ∃P ∪ Q .(X : S, S ′)

C ` S . ΛP .S P ∩ V(C) = ∅ C, X : S ` s : X
C, F : ∀P .S → X ` b : X ′

C ` (functor F (X : S) = s; b) : X ′

C ` S . L C, T . L ` b : X
C ` (signature T = S; b) : X C ` εb : ∃∅.εS

C ` s : X C ` sp : S
C ` sp : ∃∅.S

C ` b : X
C ` struct b end : X

C ` s : ∃P .S P ∩ V(C(F)) = ∅ C(F) > S ′ → ∃Q .S ′′ S � S ′ Q ∩ P = ∅
C ` F(s) : ∃P ∪ Q .S ′′

C ` s : ∃P .S C ` S . ΛQ .S ′ P ∩ V(ΛQ .S ′) = ∅ S � ϕ (S ′) D(ϕ) = Q

C ` (s :> S) : ∃Q .S ′

Fig. 6. Classification Judgements (some rules for Core expressions omitted)

344 C.V. Russo

5 Package Types

The motivation for introducing first-class structures is to extend the range of
computations on structures. One way to do this is to extend structure expressi-
ons, and thus computation at the Modules level, with the general-purpose com-
putational constructs usually associated with the Core. Instead of complicating
the Modules language in this way, we propose to maintain the distinction bet-
ween Core and Modules, but relax the stratification. Our proposal is to extend
the Core language with a family of Core types, called package types, correspon-
ding to first-class structures. A package type is introduced by encapsulating, or
packing, a structure as a Core value. A package type is eliminated by breaking
an encapsulation, opening a Core value as a structure in the scope of another
Core expression. Because package types are ordinary Core types, packages are
first-class citizens of the Core. The introduction and elimination phrases al-
low computation to alternate between computation at the level of Modules and
computation at the level of the Core, without having to identify the notions of
computation.

Our extension requires just three new syntactic constructs, all of which are
additions to the Core language:

Core Types u ::=. . . | <S> package type
Core Expressions e ::=. . . | pack s as S package introduction

| open e as X : S in e′ package elimination

The syntactic Core type <S>, which we call a package type, denotes the
type of a Core expression that evaluates to an encapsulated structure value. The
actual type of this structure value must match the signature S: i.e. if S denotes
ΛP .S, then the type of the encapsulated structure must be a subtype of ϕ (S),
for ϕ a realisation with D(ϕ) = P . Two package types <S> and <S′> will be
equivalent if their denotations (not just their syntactic forms) are equivalent.

The Core expression pack s as S introduces a value of package type <S>.
Assuming a call-by-value dynamic semantics, the phrase is evaluated by evalua-
ting the structure expression s and encapsulating the resulting structure value as
a Core value. The static semantics needs to ensure that the type of the structure
expression matches the signature S. Note that two expressions pack s as S and
pack s′ as S may have the same package type <S> even when the actual types
of s and s′ differ (i.e. the types both match the signature, but in different ways).

The Core expression open e as X : S in e′ eliminates a value of package
type <S>. Assuming a call-by-value dynamic semantics, the expression e is
evaluated to an encapsulated structure value, this value is bound to the structure
identifier X, and the value of the entire phrase is obtained by evaluating the client
expression e′ in the extended environment. The static semantics needs to ensure
that e has the package type <S> and that the type of e′ does not vary with the
actual type of the encapsulated structure X.

The semantic Core types of Mini-SML must be extended with the semantic
counterpart of syntactic package types. In Mini-SML, the type of a structure
expression is an existential structure X determined by the judgement form C `

First-Class Structures for Standard ML 345

s : X . Similarly, the denotation of a package type, which describes the type of
an encapsulated structure value, is just an encapsulated existential structure:

u ∈ Type ::= . . . | <X> semantic package type

We identify semantic package types that are equivalent up to matching:

Definition 4 (Equivalence of Semantic Package Types) Two semantic
package types <∃P .S> and <∃P ′.S ′> are equivalent if, and only if,

– P ′ ∩ V(∃P .S) = ∅ and S ′ � ϕ (S) for some realisation ϕ with D(ϕ) = P;
– P ∩ V(∃P ′.S ′) = ∅ and S � ϕ′ (S ′) for some realisation ϕ′ with D(ϕ′) = P ′.

The following rules extend the Core judgements C ` u . u and C ` e : u:

C ` S . ΛP .S
C ` <S> . <∃P .S> (1)

Rule 1 relates a syntactic package type to its denotation as a semantic package
type. The parameters of the semantic signature ΛP .S stem from opaque type
specifications in S and determine the quantifier of the package type <∃P .S>.

C ` s : ∃P .S C ` S . ΛQ .S ′ P ∩ V(ΛQ .S ′) = ∅ S � ϕ (S ′) D(ϕ) = Q
C ` (pack s as S) : <∃Q .S ′>

(2)
Rule 2 is the introduction rule for package types. Provided s has existential

type ∃P .S and S denotes the semantic signature ΛQ .S ′, the existential quan-
tification over P is eliminated in order to verify that S matches the signature.
The side condition P ∩ V(ΛQ .S ′) = ∅ prevents the capture of free variables in
the signature by the bound variables in P and ensures that these variables are
treated as hypothetical types. The semantic signature ΛQ .S ′ describes a family
of semantic structures and the requirement is that the type S of the structure
expression enriches, i.e. is a subtype of, some member ϕ (S ′) of this family. In
the resulting package type <∃Q .S ′>, the existential quantification over Q hi-
des the actual realisation, rendering type components specified opaquely in S
abstract. Because the rule merely requires that S is a subtype of ϕ (S ′), the
package pack s as S may have fewer components than the actual structure s.

C ` e : <∃P .S> C ` S . ΛP .S P ∩ V(C) = ∅ C, X : S ` e′ : u P ∩ V(u) = ∅
C ` (open e as X : S in e′) : u

(3)
Rule 3 is the elimination rule for package types. Provided e has package

type <∃P .S>, where this type is determined by the denotation of the explicit
syntactic signature S, the client e′ of the package is classified in the extended
context C, X : S. The side-condition P ∩ V(C) = ∅ prevents the capture of free
variables in C by the bound variables in P and ensures that these variables are
treated as hypothetical types for the classification of e′. By requiring that e′ is

346 C.V. Russo

structure Sieve =
struct type nat = TwoOnwards.nat; type state = <Stream>;

val start = pack TwoOnwards as Stream;
val next = λs:state.open s as S:Stream in pack Next(S) as Stream;
val value = λs:state.open s as S:Stream in S.value S.start

end;
val nthstate = fix λnthstate:int->Sieve.state.

λn:int.ifzero n then Sieve.start
else Sieve.next (nthstate (pred n));

val nthprime = λn:int.Sieve.value (nthstate n);

Fig. 7. The Sieve implemented using package types.

polymorphic in P , the actual realisation of these hypothetical types is allowed to
vary with the value of e. Moreover, because S is a generic structure matching the
signature S, the rule ensures that e′ does not access any components of X that are
not specified in S: thus the existence of any unspecified components is allowed to
vary with the actual value of e. Finally, the side condition P ∩ V(u) = ∅ prevents
any variation in the actual realisation of P from affecting the type of the phrase.

Observe that the explicit signature S in the term open e as X : S in e′

uniquely determines the Core type of the expression e. This is significant for an
implicitly typed language like Standard ML’s Core: the explicit signature ensures
that the type inference problem for that Core remains tractable and has principal
solutions. Intuitively, the type inference algorithm [16] never has to guess the
type of an expression that is used as a package. The explicit signature in the term
pack s as S ensures that the package type of the expression corresponds to a
well-formed signature (this may not be the case for the actual type of s): testing
the equivalence of such well-formed package types (even modulo unification) can
be performed by two appeals to a signature matching algorithm [16].

Rules 2 and 3 are closely related to the standard rules for second-order exi-
stential types in Type Theory [12]. The main difference, aside from manipulating
n-ary, not just unary, quantifiers is that these rules also mediate between the
universe of Module types and the universe of Core types. [16, 18] sketch proofs
of type soundness for package types; [18] discusses implementation issues.

6 The Sieve Revisited

The addition of package types allows us to define the structure Sieve imple-
menting the Sieve of Eratosthenes (Fig. 7). The Core type Sieve.state is the
type of packaged streams <Stream>. The Core value Sieve.start is the packa-
ged stream TwoOnwards. The Core function Sieve.next returns the next state
of Sieve by opening the supplied state, sifting the encapsulated stream, and
packaging the resulting stream as a Core value. The Core function Sieve.value
returns the first value of its encapsulated stream argument.

It is easy to verify that Sieve has type:

∃∅.(nat. int, state. u, start: u, next: u → u, value: u → int),

First-Class Structures for Standard ML 347

whereu ≡ <∃{α}.(nat. int, state. α, start: α, next: α → α, value: α → int)>
is the type of packed streams.

Sieve elegantly captures the impredicative description of the Sieve as a
stream constructed from streams: its type also matches Stream, since

(nat. int, state. u, start: u, next: u → u, value: u → int) �
{α 7→ u} (nat. int, state. α, start: α, next: α → α, value: α → int).

Sieve is a useful implementation because it allows us to define the functions
nthstate and nthprime of Fig. 7. Since the states of Sieve are just ordinary
Core values, which happen to have package types, the function nthstate n can
use recursion on n to construct the nth state of Sieve. In turn, this permits the
function nthprime n to calculate the nth prime, for an arbitrary n. Recall that,
in the absence of package types, these functions could not be defined using the
implementation of the Sieve we gave in Section 3.

7 Another Example: Dynamically-Sized Arrays

Package types permit the actual realisation of an abstract type to depend on the
result of a Core computation. For this reason, package types strictly extend the
class of abstract types that can be defined in vanilla Mini-SML.

A familiar example of such a type is the type of dynamically allocated arrays
of size n, where n is a value that is computed at run-time. For simplicity, we
implement functional arrays of size 2n, for arbitrary n ≥ 0 (Fig. 8).

The signature Array specifies structures implementing integer arrays with
the following interpretation. For a fixed n, the type array represents arrays
containing 2n entries of type entry (equivalent to int). The function init e
creates an array that has its entries initialised to the value of e. The function
sub a i returns the value of the (i mod 2n)-th entry of the array a. The function
update a i e returns an array that is equivalent to the array a, except for the
(i mod 2n)-th entry that is updated with the value of e. Interpreting each index
i modulo 2n allows us to omit array bound checks.

The structure ArrayZero implements arrays of size 20 = 1. An array is
represented by its sole entry with trivial init, sub and update functions.

The functor ArraySucc maps a structure A, implementing arrays of size 2n,
to a structure implementing arrays of size 2n+1. The functor represents an array
of size 2n+1 as a pair of arrays of size 2n. Entries with even (odd) indices are
stored in the first (second) component of the pair. The function init e returns
a pair of initialised arrays of size 2n. The function sub a i (update a i e) uses
the parity of i to determine which subarray to subscript (update).

The Core function mkArray n uses recursion on n to construct a package
implementing arrays of size 2n. Notice that the actual realisation of the abstract
type array returned by mkArray n is a balanced, nested cross product of depth
n: the shape of this type depends on the run-time value of n. Interestingly, this is
an example of “data-structural bootstrapping” [14] yet does not use non-regular
recursive types or polymorphic recursion: it does not even use recursive types!

348 C.V. Russo

signature Array = sig type entry = int; type array; (* array is opaque*)
val init: entry → array;
val sub: array → int → entry;
val update: array → int → entry → array

end;
structure ArrayZero = struct type entry = int; type array = entry;

val init = λe:entry.e;
val sub = λa:array.λi:int.a;
val update = λa:array.λi:int.λe:entry.e

end;
functor ArraySucc (A:Array) =

struct type entry = A.entry; type array = A.array * A.array;
val init = λe:entry. (A.init e, A.init e)
val sub = λa:array.λi:int.

ifzero mod i 2 then A.sub (fst a) (div i 2)
else A.sub (snd a) (div i 2);

val update = λa:array.λi:int.λe:entry.
ifzero mod i 2 then (A.update (fst a) (div i 2) e, snd a)

else (fst a, A.update (snd a) (div i 2) e)
end;

val mkArray = fix λmkArray:int→<Array>.
λn:int. ifzero n then pack ArrayZero as Array

else open mkArray (pred n) as A:Array in
pack ArraySucc(A) as Array;

Fig. 8. mkArray n returns an abstract implementation of arrays of size 2n.

8 Contribution

For presentation purposes, we restricted our attention to an explicitly typed,
monomorphic Core language and a first-order Modules language. In [16], we
demonstrate that the extension with package types may also be applied to a
Standard ML-like Core language that supports the definition of type construc-
tors and implicitly typed, polymorphic values. For instance, Section 7.3 of [16]
generalises the example of Section 7 to an implementation of dynamically sized
polymorphic arrays where array is a unary type constructor taking the type
of entries as an argument and the array operations are suitably polymorphic.
Moreover, this extension is formulated with respect to a higher-order Modules
calculus that allows functors, not just structures, to be treated as first class citi-
zens of the Modules language and, via package types, the Core language too. This
proposal is practical: we present a well-behaved algorithm that integrates type
inference for the extended Core with type checking for higher-order Modules.
First-class and higher-order modules are available in Moscow ML V2.00[15].

Our approach to obtaining first-class structures is novel because it leaves the
Modules language unchanged, relies on a simple extension of the Core language
only and avoids introducing subtyping in the Core type system, which would
otherwise pose severe difficulties for Core-ML type inference. (Although Mit-
chell et al. [11, 5] first suggested the idea of coercing a structure to a first-class

First-Class Structures for Standard ML 349

existential type they did not require explicit introduction and elimination terms:
our insistence on these terms enables Core-ML type inference.) Our work refu-
tes Harper and Mitchell’s claim [2] that the existing type structure of Standard
ML cannot accommodate first-class structures without sacrificing the compile-
time/run-time phase distinction and decidable type checking. This is a limitation
of their proposed model, which is based on first-order dependent types, but does
not transfer to the simpler, second-order type theory [17] of Standard ML.

Our motivation for introducing first-class structures was to extend the range
of computations on structures. One way to achieve this is to extend structure
expressions directly with computational constructs usually associated with the
Core. Taken to the extreme, this approach relaxes the stratification between
Modules and the Core by removing the distinction between them, amalgamating
both in a single language. This is the route taken by Harper and Lillibridge [1, 8].
Unfortunately, the identification of Core and Modules types renders subtyping,
and thus type checking, undecidable. Leroy [6] briefly considers this approach
without formalising it but observes that the resulting interaction between Core
and Modules computation violates the type soundness of applicative functors
[7]. Odersky and Läufer [13] and Jones [4] adopt a different tack and extend
implicitly typed Core-ML with impredicative type quantification and higher-
order type constructors that can model some, but not all, of the features of
Standard ML Modules while providing first-class and higher-order modules.

Our approach is different. We maintain the distinction between Core and
Modules, but relax the stratification by extending the Core language with pack-
age types. The introduction and elimination phrases for package types allow
computation to alternate between computation at the level of Modules and
computation at the level of the Core, without having to identify the notions
of computation. This is reflected in the type system in which the Modules and
Core typing relations are distinct. This is a significant advantage for implicitly
typed Core languages like Core-ML. At the Modules level, the explicitly typed
nature of Modules makes it possible to accommodate subtyping, functors with
polymorphic arguments and true type constructors in the type checker for the
typing relation. At the Core-ML level, the absence of subtyping, the restric-
tion that ML functions may only take monomorphic arguments and that ML
type variables range over types (but not type constructors) permits the use of
Hindley-Milner [3, 9] type inference. In comparison, the amalgamated languages
of [1, 8] support type constructors and subtyping, but at the cost of an expli-
citly typed Core fragment; [13, 4] support partial type inference, but do not
provide subtyping on structures, type components in structures or a full treat-
ment of type constructors, whose expansion and contraction must be mediated
by explicit Core terms instead of implicit β-conversion.

Although not illustrated here, the advantage of distinguishing between Mo-
dules computation and Core computation is that they can be designed to satisfy
different invariants [16]. For instance, the invariant needed to support applicative
functors [7, 16], namely that the abstract types returned by a functor depend
only on its type arguments and not the value of its term argument, is violated

350 C.V. Russo

if we extend Modules computation directly with general-purpose computational
constructs. Applicative functors provide better support for programming with
higher-order Modules; general-purpose constructs are vital for a useful Core. In
[16], we show that maintaining the separation between Modules and Core com-
putation accommodates both applicative functors and a general-purpose Core,
without violating type soundness. Type soundness is preserved by the addition
of package types, because these merely extend the computational power of the
Core, not Modules (package elimination is weaker than including Core expressi-
ons in Module expressions). The languages of [1, 8] have higher-order functors,
but their single notion of computation implies a trade-off between supporting
either applicative functors or general-purpose computation. Since ruling out the
latter is too restrictive, the functors of these calculi are not applicative.

References

[1] R. Harper, M. Lillibridge. A type-theoretic approach to higher-order modules with
sharing. In 21st ACM Symp. Principles of Prog. Lang., 1994.

[2] R. Harper, J. C. Mitchell. On the type structure of Standard ML. In ACM Trans.
Prog. Lang. Syst., volume 15(2), pages 211–252, 1993.

[3] J. R. Hindley. The principal type scheme of an object in combinatory logic. Trans.
of the American Mathematical Society, 146:29-40, 1969.

[4] M. Jones. Using Parameterized Signatures to Express Modular Structure. In 23rd
ACM Symp. Principles of Prog. Lang., 1996.

[5] D. Katiyar, D. Luckham, J. Mitchell. A type system for prototyping languages. In
24th ACM Symp. Principles of Prog. Lang., 1994.

[6] X. Leroy. Manifest types, modules, and separate compilation. In Proc. 21st Symp.
Principles of Prog. Lang., pages 109–122. ACM Press, 1994.

[7] X. Leroy. Applicative functors and fully transparent higher-order modules. In Proc.
22nd Symp. Principles of Prog. Lang., pages 142–153. ACM Press, 1995.

[8] M. Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems.
PhD thesis, School of Computer Science, Carnegie Mellon University, 1997.

[9] R. Milner. A theory of type polymorphism in programming languages. Journal of
Computer and System Sciences, 17:348–375, 1978.

[10] R. Milner, M. Tofte, R. Harper, D. MacQueen. The Definition of Standard ML
(Revised). MIT Press, 1997.

[11] J. C. Mitchell, S. Meldal, N. Madhav. An extension of Standard ML modules with
subtyping and inheritance. In 18th ACM Symp. Principles of Prog. Lang., 1991.

[12] J. C. Mitchell and G. D. Plotkin. Abstract types have existential type. ACM
Transactions on Programming Languages and Systems, 10(3):470–502, July 1988.

[13] M. Odersky, K. Läufer. Putting Type Annotations To Work In 23rd ACM Symp.
Principles of Prog. Lang., 1996.

[14] C. Okasaki. Purely Functional Data Structures. Cambridge University Press,
1998.

[15] S. Romanenko, P. Sestoft. Moscow ML. (www.dina.kvl.dk/˜sestoft/mosml).
[16] C. V. Russo. Types For Modules. PhD Thesis, Laboratory for Foundations of

Computer Science, University of Edinburgh, 1998.
[17] C. V. Russo. Non-Dependent Types For Standard ML Modules. In 1999 Int’l

Conf. on Principles and Practice of Declarative Programming.
[18] C. V. Russo. First-Class Structures for Standard ML (long version). Forthcoming

Technical Report, LFCS, Division of Informatics, University of Edinburgh, 2000.

Constraint-Based Inter-Procedural Analysis of
Parallel Programs

Helmut Seidl1 and Bernhard Steffen2

1 FB IV – Informatik, Universität Trier,
D-54286 Trier, Germany,
seidl@uni-trier.de

2 Lehrstuhl für Programmiersysteme, Universität Dortmund,
Baroper Straße 301, D-44221 Dortmund, Germany,

Bernhard.Steffen@cs.uni-dortmund.de

Abstract. We provide a uniform framework for the analysis of programs
with procedures and explicit, unbounded, fork/join parallelism covering
not only bitvector problems like reaching definitions or live variables
but also non-bitvector problems like simple constant propagation. Due
to their structural similarity to the sequential case, the resulting algo-
rithms are as efficient as their widely accepted sequential counterparts,
and they can easily be integrated in existing program analysis environ-
ments like e.g. MetaFrame or PAG. We are therefore convinced that
our method will soon find its way into industrial-scale computer systems.

Keywords: Inter-procedural program analysis, explicit parallelism, bit-
vector problems, simple constant propagation, coincidence theorems.

1 Introduction

The analysis of parallel programs is known as a notoriously hard problem. Even
without procedures and with only bounded parallelism the analysis typically suf-
fers from the so-called state explosion problem: in general, already the required
control structures grow exponentially with the number of parallel components.
Bitvector analyses, dominant in most practical compilers, escape this problem
in the context of fork/join-parallelism [11, 9]: a simple pre-process is sufficient to
adapt sequential intra-procedural bitvector analyses to directly work on parallel
flow graphs which concisely and explicitly represent the program’s parallelism.
Key for this adaptation was to change from a property analysis (directly associa-
ting program points with properties) to an effect analysis1 associating program
points with a property transformer resembling the effect of the ‘preceding’ pro-
gram fragment. The simplicity of the adaption results from the fact that bitvector
analyses can conceptually be “sliced” into separate analyses for each individual
bit-component each of which only requires the consideration of a three-point
transformer domain.
In order to handle also procedures and unbounded parallelism, Esparza and
Knoop observed that the described problem profile also admits an automata
1 Second-order analysis in the terminology of [11].

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 351–365, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

352 H. Seidl and B. Steffen

theoretic treatment [5]. This observation has been carefully developed by Esparza
and Podelski in [6]. The resulting algorithm requires involved concepts, like e.g.
tree automata, and, from a program analyzer’s perspective, the results are rather
indirect: the reachability analysis computes regular sets characterizing the set of
states satisfying a particular property. More precisely, the algorithm treats each
bit-component of the analysis separately. For each such component an automata
construction is required which is linear in the product of the size of the program
and the size of an automaton describing reachable configurations. The latter
automaton can grow linearly in the size of the program as well – implying that
the analysis of each component is at least quadratic in the program size.
In this paper we present a much more direct framework for the inter-procedural
analysis of fork/join parallel programs. We propose a constraint-based approach
which naturally arises from an algebraic reformulation of the intra-procedural
method presented in [11, 9]. Our approach closely resembles the classical under-
standing of bitvector analysis, has a complexity which is linear in the program
size and admits elegant, algebraic proofs. Summarizing, we contribute to the
state of the art by

1. Providing a uniform characterization of the captured analysis profile which
simultaneously addresses all involved program entities, e.g., all program va-
riables at once for live variable analysis or all program expressions at once for
availability of expressions. Moreover, this profile goes beyond pure bitvector
analyses as it e.g. also captures simple constant propagation [9].

2. Basing our development on a constraint characterization of valid parallel
execution paths: the constraint system for the actual analyses simply results
from an abstract interpretation [3, 4, 2] of this characterization.

3. Presenting a framework which supports algebraic reasoning. E.g., the proof
for proposition 2(3) – resembling the central Main Lemma of [11] – straight-
forwardly evolves from our profile characterization.

4. Guaranteeing essentially the same performance as for purely inter-procedural
bitvector analyses by exploiting the results of a generalized possible interfe-
rence analysis [11].

As a consequence, the presented framework is tightly tailored for the intended
application area. It directly associates the program points with the required
information based on classical constraint solving through (e.g., worklist based)
fixpoint iteration. This can be exploited to obtain simple implementations in
current program analysis generators like DFA& OPT MetaFrame [10] or PAG
[1], which provide all the required fixpoint iteration machinery.
The paper is organized as follows. After formally introducing explicitly parallel
programs with procedures in section 2, we define the notion of parallel execution
paths in section 3, and specify our analysis problem in section 4. Section 5
then presents a precise effect analysis for procedures, which is the basis for the
precise inter-procedural reachability analysis given in section 6. Finally, section
7 discusses possible extensions of our formal development, while section 8 gives
our conclusions and perspectives.

Constraint-Based Inter-Procedural Analysis of Parallel Programs 353

2 Programs as Control-Flow Graphs

We assume that programs are given as (annotated) control-flow graphs (cfg’s for
short). An edge in the cfg either is a call of a single procedure, a parallel call to
two procedures, or a basic computation step. An example of such a cfg is given in
figure 1. There, we only visualized the annotation of call and parallel call edges.
Observe that this cfg indeed introduces an unbounded number of instances of
procedure q running in parallel.

0 1 2 3 6

5

4

7 8

q:main:

p

p:
p || q

Fig. 1. An Example Control-flow Graph.

Formally, a control-flow graph G for a program with procedures and explicit
parallelism consists of a finite set Proc of procedures together with a collection
Gp, p ∈ Proc, of disjoint intra-procedural control-flow graphs. We assume that
there is one special procedure main with which program execution starts. The
intra-procedural control-flow graph Gp of a procedure p consists of:

– A set Np of program points;
– A special entry point s ∈ Np as well as a special return point r ∈ Np;
– A set of edges Ep ⊆ Np × Np;
– A subset Cp ⊆ Ep of call edges where for e ∈ Cp, call e = p denotes that

edge e calls the procedure p; and finally,
– A subset Pp ⊆ Ep of parallel call edges where for e ∈ Pp, call e = p1 || p2

denotes that edge e calls the procedures p1 and p2 in parallel.

Edges which are not contained in Cp or Pp are also called basic edges.

Practical Remark: It is just for convenience that we allow only binary par-
allelism in our programs. Our methods can be easily adapted to work also for
more procedures being called in parallel or even parallel do-loops.
Also note that we do not consider synchronization between parallel threads by
barriers or semaphores. Such constructs limit the amount of possible execution
paths. By ignoring these, we may get more possible execution paths and thus
(perhaps less precise but) still safe analysis results.

3 Parallel Execution Paths

The semantics of a parallel program is determined w.r.t. the set of parallel exe-
cution paths. What we are now going to formalize is an interleaving semantics

354 H. Seidl and B. Steffen

for parallely executable threads. We need the following auxiliary definitions.
Let E denote a finite set of edges. Let w = e1 . . . en be a word from E∗ and
I = {i1 < . . . < ik} ⊆ {1, . . . , n} be a subset of positions in w. Then the
restriction of w to I is given by w|I = ei1 . . . eik

.
The interleaving of subsets M1, M2 ⊆ E∗ is defined by

M1 ⊗ M2 = {w ∈ E∗ | ∃I1 + I2 = {1, . . . , |w|} : w|I1 ∈ M1 and w|I2 ∈ M2}
Here, “+” denotes disjoint union of sets. Thus, M1 ⊗ M2 consists of all possible
interleavings of sequences from M1 and M2. Furthermore for M ⊆ E∗, let pre(M)
denote the set of all prefixes of words in M , i.e.,

pre(M) = {u ∈ E∗ | ∃v ∈ E∗ : uv ∈ M}
We consider the following sets of possible execution paths:

– For p ∈ Proc, the set Π(p) of all execution paths for p;
– For program point v of procedure p, the set Π(v) of all paths starting at the

entry point of p and reaching v on the same level (see below);
– For every procedure p, the set Πr(p) of all paths starting at from a call of

main and reaching some call of p;
– For every program point v, the set Πr(v) of all paths starting at from a call

of main and reaching program point v.

These sets are given through the least solutions of the following constraint sy-
stems (whose variables for simplicity are denoted by Π(p), Π(v), Πr(p), Πr(v) as
well). Let us start with the defining constraint system for the sets of same-level
execution paths.

Π(p) ⊇ Π(r) r return point of p (1)
Π(s) ⊇ {ε} s entry point of a procedure (2)
Π(v) ⊇ Π(u) · {e} e = (u, v) basic edge (3)
Π(v) ⊇ Π(u) · Π(p) e = (u, v) calls p (4)
Π(v) ⊇ Π(u) · (Π(p1) ⊗ Π(p2)) e = (u, v) calls p1 || p2 (5)

Lines (1) through (4) are the standard lines to determine the sets of all same-level
execution paths as known from inter-procedural analysis of sequential programs.
Line (1) says that the set of execution paths of procedure p is the set of same-level
paths reaching the return point of p. Line (2) says that at least ε is a same-level
execution path that reaches the entry point of a procedure. Line (3) says that
for every basic edge e = (u, v), the set of same-level execution paths reaching
the program point v subsumes all same-level execution paths to u extended by
e. Line (4) says that for every edge e = (u, v) calling a procedure p, the set
of same-level execution paths reaching the program point v subsumes all same-
level execution paths reaching u extended by any execution path through the
procedure p. Line (5) for a parallel call of p1 || p2 has the same form as line (4).
But now the same-level execution paths to the program point before the call are
extended by all interleavings of execution paths for p1 and p2.

Constraint-Based Inter-Procedural Analysis of Parallel Programs 355

In order to specify the sets Πr(p), Πr(v), let us introduce the auxiliary sets
Π(v, p), v a program point, p a procedure, which give the sets of execution
paths reaching v from a call of p. These auxiliary sets are defined as the least
solution of the following system of constraints:

Π(v, q) ⊇ Π(v) v program point of procedure q (1)
Π(v, q) ⊇ Π(u) · Π(v, p) e = (u,) calls p in q (2)
Π(v, q) ⊇ Π(u) · (Π(v, pi) ⊗ M) e = (u,) calls p1 || p2 in q (3)

where M in line (3) is given by M = pre(Π(p3−i)). The intuition behind this
definition is as follows. Line (1) says that whenever v is a program point of
procedure q, then the set of execution paths from q to v subsumes all same-
level execution paths from q to v. Line (2) says that whenever at some edge
e = (u,) in the body of procedure q, some procedure p is called, then the
set of execution paths from q to v subsumes all computation paths consisting
of a same-level execution path from q to the program point u followed by an
execution path from p to v. Finally, line (3) considers an edge e = (u,) in the
body of q which is a parallel call of p1 and p2. Then we have to append to the
same-level execution paths to u all interleavings of execution paths from pi to v
with prefixes of same-level execution paths for the parallel procedure.
Given the Π(v, q), we define the values Πr(v), Πr(p) as the least solution of:

Πr(v) ⊇ Π(v,main) v a program point
Πr(p) ⊇ Πr(u) edge (u,) calls p, p || or || p

For now, let us assume that all the sets of execution paths Π(v), Πr(v), Π(p), Πr(p)
are non-empty. In section 7 we will explain how this assumption can be removed.

4 Semantics

Let D denote a complete lattice and F ⊆ D → D a subset of monotonic functions
from D to D which contains λx.⊥ (the constant ⊥-function) and I = λx.x (the
identity) and is closed under composition “◦” and least upper bounds. While D

is meant to specify the set of abstract properties, F describes all possible ways
how properties may be transformed when passing from one program point to
the other. In this paper we make the following additional assumption:

– D is distributive, i.e., a t (b u c) = (a u b) t (a u c) holds for all a, b, c ∈ D;
– D has height h < ∞, i.e., every ascending chain of elements in D has length

at most h + 1;
– set F consists of all functions of the form f x = (a u x) t b with a, b ∈ D.

Since D is distributive, all functions f in F are distributive as well, i.e., f (atb) =
(f a)t(f b) for all a, b ∈ D. Let us also mention that neither D nor F is demanded
to be finite. However, since D has height h, the lattice F has height at most 2h.
The most prominent class of problems that satisfy our restrictions are bitvector
problems like available expressions, reaching definitions, life variables or very
busy expressions [7]. In these cases, we may choose D = B

h where B = {0 @ 1}.

356 H. Seidl and B. Steffen

There are, however, further analysis problems which meet our assumptions with-
out being bitvector problems. This is the case, e.g., for simple constant propa-
gation. Simple constant propagation tries to determine whether or not some
constant has been assigned to a variable which later-on remains unchanged. For
this application, we may choose D = V → B where V is the set of program
variables and B is the flat lattice of possible values for program variables. Thus,
an abstract value d ∈ D represents an assignment of variables to values. In par-
ticular, D has height h = 2 · #V . Note furthermore that for simple constant
propagation, all functions f ∈ F are of the special form f = λx.(a u x) t b with
a ∈ {⊥,>}. Thus, ascending chains of functions have length at most 3 · #V .
Let E denote a set of edges and [.] : E → F denote an assignment of functions
to edges. Then we extend [.] to sequences w = e1 . . . en ∈ E∗ and sets M ⊆ E∗

in the natural way, i.e., by

[w] = [en] ◦ . . . ◦ [e1] [M] =
⊔{[w] | w ∈ M}

Thus, especially, [∅] = λx.⊥ (the least element in F), and [{ε}] = [ε] = I.
Functions [w] and [M] are also called the effect of the sequence w and the set
M , respectively.
For the rest of this paper we assume that we are given an assignment

[e] = fe = λx.(ae u x) t be ∈ F

to each basic edge e of our input program. Then program analysis tries to com-
pute (approximations to) the following values:

Effects of Procedures: For each procedure p, Effect(p) := [Π(p)] denotes the
effect of the set of all same-level execution paths through p;

Reachability: For a start value d0 ∈ D, program point v and procedure p,
Reach(v) := [Πr(v)] d0 and Reach(p) := [Πr(p)] d0 denote the least upper
bounds on all abstract values reaching v along execution paths from main
and the least upper bound on all abstract values reaching calls to p, respec-
tively.

The system of these values is called the Merge-Over-all-Paths solution (abbrevia-
ted: MOP solution) of the analysis problem. Since the respective sets of execution
paths are typically infinite, it is not clear whether this solution can be computed
effectively. The standard approach proposed in data-flow analysis and abstract
interpretation [3, 4, 2] consists in putting up a set C of constraints on the values
we are interested in. The constraints are chosen in such a way that any solution
to C is guaranteed to represent a safe approximation of the values. Quite fre-
quently, however, the least solution of C equals the MOP solution [8, 13]. Then
we speak of coincidence of the solutions, meaning that C precisely characterizes
the MOP.
In our present application, we are already given a constraint system whose least
solution represents the sets of execution paths which are to be evaluated. By
inspecting this constraint system, we would naturally try to obtain constraint

Constraint-Based Inter-Procedural Analysis of Parallel Programs 357

systems for effect analysis and reachability just by abstracting the lattice of sets
of paths with our lattice F. Thus, the ordering “⊆” of set inclusion on sets of
paths is mapped to the ordering on F; set union and concatenation is mapped
to least upper bounds and composition of functions. Indeed, this abstraction
mapping [.] has the following properties:

Proposition 1. Let M1, M2 ⊆ E∗. Then the following holds:

1. [M1 ∪ M2] = [M1] t [M2];
2. [M1 · M2] = [M2] ◦ [M1] if both M1 and M2 are non-empty. ut

Proposition 1 suggests a direct translation of the constraint system for the sets
of execution paths into a constraint system which we are aiming at. The only
two obstacles withstanding a direct translation are (1) an abstract interleaving
operator (which for simplicity is denoted by “⊗” as well), and (2) a way how
to deal with prefixes. For our abstract lattices, these two problems turn out to
have surprisingly simple solutions.
For fi = λx.(ai u x) t bi, i = 1, 2, we define the interleaving of f1 and f2 by:

f1 ⊗ f2 = λx.(a1 u a2 u x) t b1 t b2

We have:

Proposition 2. Let f1, f2, f ∈ F. Then the following holds:

1. f1 ⊗ f2 = f1 ◦ f2 t f2 ◦ f1;
2. (f1 t f2) ⊗ f = f1 ⊗ f t f2 ⊗ f ;
3. [M1 ⊗ M2] = [M1] ⊗ [M2] for non-empty subsets M1, M2 ⊆ E∗.

For a proof of Proposition 2 see appendix A. Let us now consider the set pre(M)
of prefixes of a non-empty set M ⊆ E∗. Then the following holds:

Proposition 3. Let EM denote the edges occurring in elements of M where for
e ∈ EM , [e] = λx.(ae u x) t be. Then

[pre(M)] = λx.x t B where B =
⊔{be | e ∈ EM} ut

Thus, all the intersections with the ae have disappeared. What only remains is
the least upper bound on the values be.

5 Effect Analysis

Now we have all prerequisites together to present a constraint system for ef-
fect analysis. The least solution of the constraint system defines values [p] for
the effect of procedures p together with values [v] for the effects of same-level
execution paths reaching program point v.

[p] w [r] r return point of p (1)
[s] w I s entry point (2)
[v] w fe ◦ [u] e = (u, v) basic edge (3)
[v] w [p] ◦ [u] e = (u, v) calls p (4)
[v] w ([p1] ⊗ [p2]) ◦ [u] e = (u, v) calls p1 || p2 (5)

358 H. Seidl and B. Steffen

Lines (1) through (4) are the lines to determine the effects of procedures as
known from inter-procedural analysis of sequential programs. Line (1) says that
the effect of procedure p is the effect of what has been accumulated for the
return point of p. Line (2) says that accumulation of effects starts at entry
points of procedures with the identity function I = λx.x. Line (3) says that the
contribution of a basic edge e = (u, v) to the value for v is given by the value
for u extended by the application of the function fe associated with this edge.
Line (4) says that the contribution of an edge e = (u, v) calling a procedure p is
determined analogously with the only difference that the function fe in line (3) is
now replaced with the effect [p] of the called procedure. Also line (5) for a parallel
call has the same form. But now, in order to determine the combined effect of
the parallely executed procedures p1 and p2, we rely on the interleaving operator
“⊗”. This constraint system for effect analysis is the direct abstraction of the
corresponding constraint system for same-level reaching paths from section 3.
Therefore, we obtain (by distributivity of all involved operators):

Theorem 1. The least solution of the effect constraint system precisely descri-
bes the effect of procedures, i.e.,

Effect(p) = [p] and Effect(v) = [v]

for every procedure p and program point v. These values can be computed in time
O(h · n) where n is the size of the program. ut

6 A Constraint System for Reachability

As for effect analysis, we could mimic the least fixpoint definition of the sets
of reaching execution paths through a corresponding constraint system over F.
Observe, however, that our defining constraint system for reaching execution
paths in section 3 has quadratic size. Clearly, we would like to improve on this,
and indeed this is possible – even without sacrificing precision.
Instead of accumulating effects in a topdown fashion as was necessary in the pre-
cise definition of reaching execution paths, we prefer a bottom-up accumulation
– a strategy which is commonly used in inter-procedural analysis of sequential
programs. There, accumulation directly starts at the main program and then
successively proceeds to called procedures.
For each program point v, let B(v) denote the least upper bound of all be, for
all basic edges e possibly executed in parallel with v. This value is also called
possible interference of v. Formally, these values are determined through the
least solution of the following constraint system:

σ(p) w be e basic edge in procedure p
σ(p) w σ(q) procedure p calls q or q || or || q
B(v) w B(p) v program point in p
B(p) w B(u) (u,) calls procedure p
B(qi) w σ(q3−i) t B(u) (u,) calls q1 || q2

Constraint-Based Inter-Procedural Analysis of Parallel Programs 359

We used auxiliary values σ(p), p a procedure, to calculate the least upper bound
on be for all basic edges possibly executed during evaluation of p. The whole
system for computing the values σ(p), B(p) and B(v) is of linear size and uses
“t” as only operation in right-hand sides. Such kind of problems are also known
as “pure merge problems” and can be solved even in linear time.
We will now construct a constraint system as for inter-procedural reachability
analysis of sequential programs, but for each program point additionally take its
possible interference into account. Thus, we consider the values [[v]], v a program
point, [[p]], p a procedure, which are determined as the least solution of the
following constraint system:

[[main]] w d0 (1)
[[v]] w B(v) and (2)
[[v]] w [v][[p]] v program point in procedure p (3)
[[p]] w [[u]] e = (u,) calls p or p || or || p (4)

Only line (2) makes the difference to a corresponding constraint system for
reachability in sequential programs. The intuition behind the constraint system
is as follows. Line (1) says that initially the value reaching main should subsume
the initial value d0. Line (2) says that the value reaching program point v should
subsume its possible interference. Line (3) says that when v is a program point
of procedure p, then the reaching value should also subsume the intra-procedural
effect of v applied to the value reaching p. Line (4) finally says that the value
reaching a procedure should subsume the value of every program point where
such a call (possibly in parallel to another call) is possible.
This constraint system differs considerably from the constraint system for the
sets of reaching execution paths. Nonetheless, we are able to prove:

Theorem 2. The above constraint system computes precise reachability infor-
mation as well, i.e.,

Reach(p) = [[p]] and Reach(v) = [[v]]

for all program points v and procedures p. These values can be computed in time
O(h · n) where n is the size of the program.

For a proof see appendix B. Theorem 2 implies that programs with procedures
and parallelism are not harder to analyze than programs with procedures but
without parallelism!

7 Extensions

In this section, we discuss issues which are important for the practical applica-
bility of the presented results. We do not claim that this section contains any
new ideas or constructions. Rather we want to emphasize that the construc-
tions known from the inter-procedural analysis of sequential programs can be
extended to parallel programs in a straight-forward way.

360 H. Seidl and B. Steffen

7.1 Non-reachable Program Points

So far, we assumed that every program point is reachable by at least one execu-
tion path. In order to show that this assumption is not vital, let P and R denote
the sets of possibly terminating procedures and reachable program points, re-
spectively. In order to compute these sets, we instantiate our generic analysis
with D = {0 @ 1} where for each basic edge e, the function [e] = fe is given
by fe = I = λx.x, and the initial value d0 equals 1. The only functions from
D → D occurring during the analysis are λx.⊥ and I. Both functions are strict,
i.e., map ⊥ to ⊥. Therefore, we obtain:

Proposition 4. For every procedure p and program point v, the following holds:

1. [v] = I iff Π(v) 6= ∅ and [p] = I iff Π(p) 6= ∅;
2. [[v]] = 1 iff Πr(v) 6= ∅ and [[p]] = 1 iff Πr(p) 6= ∅.

In particular, p ∈ P iff [p] = I, and v ∈ R iff [[v]] = 1. ut
We conclude that the sets P and R can be computed in linear time.

A non-reachable program point should not influence any other program point.
Therefore, we modify the given cfg by removing all edges starting in program
points not in R. By this edge removal, the sets of reaching execution paths have
not changed. Let us call the resulting cfg normalized. Then we obtain:

Theorem 3. Assume the cfg is normalized. Then for every program point v and
procedure p,

1. Effect(v) = [v] and Effect(p) = [p];
2. Reach(v) = [[v]] and Reach(p) = [[p]]. ut

We conclude that, after the preprocessing step of normalization, our constraint
systems will compute a safe approximation which is precise.

Practical Remark: Normalization of the cfg may remove edges and thus some
constraints from the constraint systems of the analysis. Therefore, omitting nor-
malization may result in a less precise, but still safe analysis.

7.2 Backward Analysis

What we discussed so far, is called forward analysis. Examples of forward ana-
lysis problems are reaching definitions, available expressions or simple constant
propagation. Other important analyses, however, determine the value at a pro-
gram point v w.r.t. the possible future of v, i.e., the set of reverses of execution
paths possibly following a visit of v. Examples are live variables or very busy
expressions. Such analyses are called backward analyses. In case that every for-
ward reachable program point is also backward reachable, i.e., lies on an exe-
cution path from the start point to the return point of main, we can reduce
backward analysis to forward analysis – simply by normalizing the cfg followed
by a reversal of edge orientations and an exchange of entry and return points of
procedures.

Constraint-Based Inter-Procedural Analysis of Parallel Programs 361

7.3 Local and Global State

Consider an edge e = (u, v) in the cfg which calls a terminating procedure p
(the treatment of a terminating parallel call to two procedures p1 and p2 is
completely analogous). So far, the complete information at program point u is
passed to the entry point of p. Indeed, this is adequate when analyzing global
properties like availability of expressions which depend on global variables only.
It is not (immediately) applicable in presence of local variables which are visible
to the caller but should be hidden from the callee p, meaning that they should
survive the call unchanged [8, 13].
To make things precise, let us assume that D = Dl×Dg where Dl and Dg describe
local and global properties, respectively. Let us further assume that the global
part of the current state is passed as a parameter to p, and also returned as the
result of the call, whereas the local part of the program point before the call is
by-passed the call using some transformer βe : Dl → Dl. Recall that every f ∈ F

is of the form f = λx.(x u a) t b with a, b ∈ D. Since D is a Cartesian product,
this implies that f = fl ×fg where fl : Dl → Dl and fg : Dg → Dg independently
operate on the local states and global states, respectively.
Therefore, we can separate the analysis into two phases.
The first phase considers just global values from Dg. No local state need to be
preserved during the call, and we use the original call edge.
The second phase then is purely intra-procedural and deals with the lattice Dl.
But now, since the call at edge e has no effect onto the local state, we simply
change e into a basic edge with [e] = βe.

8 Conclusion and Perspectives

We have shown how to extend the intra-procedural method of [11] to uniformly
and efficiently capture inter-procedural bitvector analyses of fork/join parallel
programs. Our method, which comprises analysis problems like available expres-
sions, live variables or simple constant propagation, passes the test for prac-
ticality, as it ‘behaves’ as the widely accepted algorithms for sequential inter-
procedural program analysis. Moreover, even though precision can only be pro-
ved for fork/join parallelism, our algorithm may also be used for computing safe
approximations for languages with arbitrary synchronization statements. Finally,
due to its structural similarity to the sequential case, it can easily be integrated
in program analysis environments like e.g. MetaFrame or PAG, which already
contain the necessary fixpoint machinery.
As a next step, we plan a closer comparison with the automata theoretic ap-
proach of Esparza and Podelski. The considered program structures are obviously
similar, however, the range of possible analyses may be different. As shown in
[12], the automata theoretic approach is able to capture the model checking pro-
blem for all of the linear time temporal logic EF. It would be interesting to see
whether it is possible to adopt our technique to covering this logic as well, or
whether the automata theoretic approach, which is significantly more complex
already for the analysis problem considered here, is inherently more powerful.

362 H. Seidl and B. Steffen

References

[1] Martin Alt and Florian Martin. Generation of Efficient Interprocedural Analyzers
with PAG. In Proceedings of 2nd Static Analysis Symposium (SAS), pages 33–50.
LNCS 983, Springer Verlag, 1995.

[2] Patrick Cousot. Semantic Foundations of Program Analysis. In Steven S. Much-
nick and Neil D. Jones, editors, Program Flow Analysis: Theory and Applications,
chapter 10, pages 303–342. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

[3] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of Fix-
points. In Proceedings of 4th ACM Symposium on Principles of Programming
Languages (POPL), pages 238–252. ACM Press, 1977.

[4] Patrick Cousot and Radhia Cousot. Static Determination of Dynamic Properties
of Recursive Programs. In E.J. Neuhold, editor, Formal Descriptions of Program-
ming Concepts, pages 237–277. North-Holland Publishing Company, 1977.

[5] J. Esparza and J. Knoop. An Automata-theoretic Approach to Interprocedural
Data-flow Analysis. In FoSSaCS ’99, volume 1578 of Lecture Notes in Computer
Science (LNCS), pages 14–30. Springer-Verlag, 1999.

[6] J. Esparza and A. Podelski. Efficient Algorithms for pre∗ and post∗ on Interpro-
cedural Parallel Flow Graphs. In ACM International Conference on Princples of
Programming Languages (POPL), 2000. To appear.

[7] M.S. Hecht. Flow Analysis of Computer Programs. The Computer Science Library.
North-Holland, New York, 1977.

[8] J.Knoop and B.Steffen. The Interprocedural Coincidence Theorem. In 4th Inter-
national Conference on Compiler Construction (CC’92), volume 641 of Lecture
Notes in Computer Science (LNCS), pages 125–140. Springer-Verlag, 1992.

[9] J. Knoop. Parallel Constant Propagation. In 4th European Conference on Par-
allel Processing (Euro-Par), volume 1470 of Lecture Notes in Computer Science
(LNCS), pages 445–455. Springer-Verlag, 1998.

[10] J. Knoop, O. Rüthing, and B. Steffen. Towards a Tool Kit for the Automa-
tic Generation of Interprocedural Data Flow Analyses. Journal of Programming
Languages, 4(4):211–246, December 1996. Chapman & Hall, London (UK).

[11] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for Free: Efficient and Optimal
Bitvector Analyses for Parallel Programs. ACM Transactions on Programming
Languages and Systems, 18(3):268–299, 1996.

[12] D. Lugiez and P. Schnoebelen. The Regular Viewpoint on PA-Processes. In 9th
International Conference on Concurrency (CONCUR), volume 1466 of Lecture
Note In Computer Science (LNCS), pages 50–66. Springer-Verlag, 1998.

[13] H. Seidl and C. Fecht. Interprocedural Analyses: A Comparison. Journal of Logic
Programming (JLP), 43(2):123–156, 2000.

A Proof of Proposition 2

We only prove statement (3). Let M1, M2 be non-empty subsets of E∗. By sta-
tement (1), we have

[M1] ⊗ [M2] = [M1] ◦ [M2] t [M2] ◦ [M1]
= [M2 · M1 ∪ M1 · M2] v [M1 ⊗ M2]

Therefore, it remains to prove the reverse inequality. For that consider w =
e1 . . . em ∈ M1⊗M2 where for disjoint index sets I1, I2 with I1∪I2 = {1, . . . , m},
wi = w|Ii ∈ Mi. We claim:

[w] v [w1] ◦ [w2] t [w2] ◦ [w1]

Constraint-Based Inter-Procedural Analysis of Parallel Programs 363

Clearly, this claim implies the statement (3) of our proposition. In order to prove
the claim, let [ei] = λx.(aiux)tbi, i = 1, . . . , m, [wj] = λx.(Aj ux)tBj , j = 1, 2,
and [w] = λx.(A u x) t B. Then by definition,

A = a1 u . . . u am = A1 u A2

Now consider value B. By definition,

B =
m⊔

k=1

(bk u ak+1 u . . . u am)

We will show that for every k,

bk u ak+1 u . . . u am v B1 t B2

W.l.o.g. assume that k ∈ I1 (the case where k ∈ I2 is completely analogous) and
let {j1, . . . , jr} = {j ∈ I1 | j > k}. Then

bk u ak+1 u . . . u am v bk u aj1 u . . . u ajr
v B1

which implies the assertion. ut

B Proof of Theorem 2

Let us start with the following simple but useful observation:
Proposition 5. For every f ∈ F, b ∈ D and ∆ = λx.x t b,

f ⊗ ∆ = ∆ ◦ f ut
Next, we reformulate the constraint system for reachability as follows. We in-
troduce the new values [[v]]′, v a program point, and [[p]]′, p a procedure, which
collect the least upper bounds of directly reaching values by ignoring possible in-
terleavings with execution paths possibly executed in parallel to v (or p). These
values are determined as the least solution of the following constraint system:

[[main]]′ w d0 (1)
[[v]]′ w [v] ◦ [[p]]′ v program point in procedure p (2)
[[p]]′ w [[u]]′ e = (u,) calls p or p || or || p (3)

By standard fixpoint induction we find:
Proposition 6. For all program points v and procedures p,

[[v]] = [[v]]′ t B(v) and [[p]] = [[p]]′ t B(p) ut
In order to understand the “nature” of the values B(v), we consider the sets
P (v) of edges possibly executed in parallel with program points v. They are
determined through the least solution of the following constraint system:

E(p) ⊇ {e} e basic edge in procedure p
E(p) ⊇ E(q) procedure p calls q or q || or || q
P (v) ⊇ P (p) v program point in p
P (p) ⊇ P (u) (u,) calls procedure p
P (qi) ⊇ E(q3−i) ∪ P (u) (u,) calls q1 || q2

364 H. Seidl and B. Steffen

By comparison of this constraint system with the definition of the values σ(p)
and B(v), B(p) in section 6, we obtain:

Proposition 7. For every procedure p and program point v,

1. λx.x t σ(p) = I t [E(p)];
2. λx.x t B(p) = I t [P (p)] and λx.x t B(v) = I t [P (v)]. ut

Moreover, we have:

Proposition 8. For every procedure p,

[pre(Π(p))] = I t⊔[E(p)] = λx.x t σ(p) ut
In order to simplify the proof of theorem 2, let us assume that all calls are parallel
calls q1 || q2. This assumption does not incur a restriction, since an ordinary call
to a procedure p can easily be simulated by a call to p || q0 where q0 is a procedure
with just a single program point and no edges at all. Furthermore, it suffices to
prove the assertion of the theorem just for program points v (the assertion for
procedures then is an immediate consequence). We want to prove that for every
program point v, the value [[v]] is a safe approximation of the value Reach(v),
i.e., [[v]] w Reach(v). By definition,

Reach(v) = [Πr(v)] d0 = [Π(v,main)] d0

Therefore, let w ∈ Π(v,main). Then there are program points u0, . . . , um, exe-
cution paths w0, . . . , wm together with execution paths w′

i, procedures q
(i)
1 , q

(i)
2

and indices j(i) ∈ {1, 2} for i = 1, . . . , m such that:

– um = v;
– wi ∈ Π(ui) for i = 0, . . . , m;
– there are calls (ui−1,) to q

(i)
1 || q(i)

2 ;
– u0 is a program point in main and for i > 0, ui is a program point in q

(i)
j(i);

– w′
i ∈ pre(Π(q(i)

3−j(i))) for i = 1, . . . , m;
– w ∈ {w0} · ({w′

1} ⊗ ({w1} · (. . . {w′
m−1} ⊗ ({wm−1} · ({w′

m} ⊗ {wm})) . . .))).

Let ∆ = λx.x t P (v). Then by proposition 8,

[w′
i] v [pre(Π(q(i)

3−j(i)))] = I t [E(q(i)
3−j(i))] v I t [P (v)] = ∆

for all i = 1, . . . , m. Therefore by proposition 5,

[w] v (((. . . (([wm] ⊗ [w′
m]) ◦ [wm−1]) ⊗ [w′

m−1] . . .) ◦ [w1]) ⊗ [w′
1]) ◦ [w0]

v (((. . . (([wm] ⊗ ∆) ◦ [wm−1]) ⊗ ∆ . . .) ◦ [w1]) ⊗ ∆) ◦ [w0]
= ∆ ◦ (. . . (([wm] ⊗ ∆) ◦ [wm−1]) ⊗ ∆ . . .) ◦ [w1] ◦ [w0]
. . .
= ∆ ◦ [wm] ◦ [wm−1] ◦ . . . ◦ [w0]

Since ([wm] ◦ . . . ◦ [w0]) d0 v [[v]]′, we conclude that

[w] d0 v ∆ [[v]]′ = [[v]]′ t B(v) = [[v]]

Constraint-Based Inter-Procedural Analysis of Parallel Programs 365

which we wanted to prove.
It remains to prove the reverse inequality, i.e., that (1) [[v]]′ v Reach(v) and (2)
B(v) v Reach(v).
Let us first consider inequality (1). The value [[v]]′ is the least upper bound on
values [w] d0 such that there exit program points u0, . . . , um, execution paths
w0, . . . , wm together with procedures q

(i)
1 , q

(i)
2 and indices j(i) ∈ {1, 2} for i =

1, . . . , m such that:

– um = v;
– wi ∈ Π(ui) for i = 0, . . . , m;
– there are calls (ui−1,) to q

(i)
1 || q(i)

2 ;
– u0 is a program point in main and for i > 0, ui is a program point in q

(i)
j(i);

– w = w0 . . . wm.

By induction on r = m − i (from r = 0 to r = m − 1), we find that for i > 0,

wi . . . wm ∈ Π(v, q
(i)
j(i))

and for i = 0,
w = w0 . . . wm ∈ Π(v,main) = Πr(v)

Therefore,
[w] d0 v [Πr(v)] d0 = Reach(v)

which we wanted to prove.
Now let us consider inequality (2). By proposition 7, λx.x t B(v) = I t [P (v)].
Therefore, it suffices to prove for each edge e ∈ P (v), that be v Reach(v).
Since e ∈ P (v), there exist program points u0, . . . , um, execution paths w0, . . . , wm

together with procedures q
(i)
1 , q

(i)
2 , indices j(i) ∈ {1, 2} for i = 1, . . . , m, an index

k ∈ {1, . . . , m} and one execution path w′ such that

– um = v;
– wi ∈ Π(ui) for i = 0, . . . , m;
– there are calls (ui−1,) to q

(i)
1 || q(i)

2 ;
– u0 is a program point in main and for i > 0, ui is a program point in q

(i)
j(i);

– w′e ∈ pre(Π(q(k)
3−j(k)).

As above, we conclude that wk . . . wm ∈ Π(v, q
(k)
j(k)). By definition, then also

wk−1wk . . . wmw′e ∈ Π(v, q
(k−1)
j(k−1))

(where in case k = 1, we let q
(0)
j(0) = main) and therefore also

w0 . . . wk−1wk . . . wmw′e ∈ Π(v,main) = Πr(v)

We conclude that

be v be t (ae u ([w0 . . . wmw′] d0)) = [w0 . . . wmw′e] d0 v [Πr(v)] d0 = Reach(v)

which completes the proof. ut

Alias Types ?

Frederick Smith, David Walker, and Greg Morrisett

Cornell University

Abstract. Linear type systems allow destructive operations such as ob-
ject deallocation and imperative updates of functional data structures.
These operations and others, such as the ability to reuse memory at
different types, are essential in low-level typed languages. However, tra-
ditional linear type systems are too restrictive for use in low-level code
where it is necessary to exploit pointer aliasing. We present a new typed
language that allows functions to specify the shape of the store that they
expect and to track the flow of pointers through a computation. Our type
system is expressive enough to represent pointer aliasing and yet safely
permit destructive operations.

1 Introduction

Linear type systems [26, 25] give programmers explicit control over memory
resources. The critical invariant of a linear type system is that every linear value
is used exactly once. After its single use, a linear value is dead and the system
can immediately reclaim its space or reuse it to store another value. Although
this single-use invariant enables compile-time garbage collection and imperative
updates to functional data structures, it also limits the use of linear values. For
example, x is used twice in the following expression: let x = 〈1, 2〉 in let y =
fst(x) in let z = snd(x) in y + z. Therefore, x cannot be given a linear type,
and consequently, cannot be deallocated early.

Several authors [26, 9, 3] have extended pure linear type systems to allow
greater flexibility. However, most of these efforts have focused on high-level user
programming languages and as a result, they have emphasized simple typing
rules that programmers can understand and/or typing rules that admit effective
type inference techniques. These issues are less important for low-level typed
languages designed as compiler intermediate languages [22, 18] or as secure mo-
bile code platforms, such as the Java Virtual Machine [10], Proof-Carrying Code
(PCC) [13] or Typed Assembly Language (TAL) [12]. These languages are desi-
gned for machine, not human, consumption. On the other hand, because systems
such as PCC and TAL make every machine operation explicit and verify that
each is safe, the implementation of these systems requires new type-theoretic
mechanisms to make efficient use of computer resources.
? This material is based on work supported in part by the AFOSR grant F49620-97-

1-0013 and the National Science Foundation under Grant No. EIA 97-03470. Any
opinions, findings, and conclusions or recommendations expressed in this publication
are those of the authors and do not reflect the views of these agencies.

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 366–381, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Alias Types 367

In existing high-level typed languages, every location is stamped with a single
type for the lifetime of the program. Failing to maintain this invariant has re-
sulted in unsound type systems or misfeatures (witness the interaction between
parametric polymorphism and references in ML [23, 27]). In low-level langu-
ages that aim to expose the resources of the underlying machine, this inva-
riant is untenable. For instance, because machines contain a limited number
of registers, each register cannot be stamped with a single type. Also, when
two stack-allocated objects have disjoint lifetimes, compilers naturally reuse the
stack space, even when the two objects have different types. Finally, in a low-
level language exposing initialization, even the simplest objects change type. For
example, a pair x of type 〈int, int〉 may be created as follows:

malloc x, 2 ; (* x has type 〈junk, junk〉 *)
x[1]:=1 ; (* x has type 〈int, junk〉 *)
x[2]:=2 ; (* x has type 〈int, int〉 *)
...

At each step in this computation, the storage bound to x takes on a different
type ranging from nonsense (indicated by the type junk) to a fully initialized pair
of integers. In this simple example, there are no aliases of the pair and therefore
we might be able to use linear types to verify that the code is safe. However,
in a more complex example, a compiler might generate code to compute the
initial values of the tuple fields between allocation and the initializing assign-
ments. During the computation, a register allocator may be forced to move the
uninitialized or partially initialized value x between stack slots and registers,
creating aliases:

OBJECTOBJECT

STACKSTACK R1 R1

Copy To Register

If x is a linear value, one of the pointers shown above would have to be
“invalidated” in some way after each move. Unfortunately, assuming the pointer
on the stack is invalidated, future register pressure may force x to be physically
copied back onto the stack. Although this additional copy is unnecessary because
the register allocator can easily remember that a pointer to the data structure
remains on the stack, the limitations of a pure linear type system require it.

Pointer aliasing and data sharing also occur naturally in other data structures
introduced by a compiler. For example, compilers often use a top-of-stack pointer
and a frame pointer, both of which point to the same data structure. Compiling
a language like Pascal using displays [1] generalizes this problem to having an
arbitrary (but statically known) number of pointers into the same data structure.
In each of these examples, a flexible type system will allow aliasing but ensure
that no inconsistencies arise. Type systems for low-level languages, therefore,
should support values whose types change even when those values are aliased.

368 F. Smith, D. Walker, and G. Morrisett

We have devised a new type system that uses linear reasoning to allow me-
mory reuse at different types, object initialization, safe deallocation, and tracking
of sharing in data structures. This paper formalizes the type system and provi-
des a theoretical foundation for safely integrating operations that depend upon
pointer aliasing with type systems that include polymorphism and higher-order
functions.

We have extended the TAL implementation with the features described in
this paper.1 It was quite straightforward to augment the existing Fω-based type
system because many of the basic mechanisms, including polymorphism and
singleton types, were already present in the type constructor language. Popcorn,
an optimizing compiler for a safe C-like language, generates code for the new
TAL type system and uses the alias tracking features of our type system.

The Popcorn compiler and TAL implementation demonstrate that the ideas
presented in this paper can be integrated with a practical and complete pro-
gramming language. However, for the sake of clarity, we only present a small
fragment of our type system and, rather than formalizing it in the context of
TAL, we present our ideas in terms of a more familiar lambda calculus. Section 2
gives an informal overview of how to use aliasing constraints, a notion which ex-
tends conventional linear type systems, to admit destructive operations such
as object deallocation in the presence of aliasing. Section 3 describes the core
language formally, with emphasis on the rules for manipulating linear aliasing
constraints. Section 4 extends the language with non-linear aliasing constraints.
Finally, Section 5 discusses future and related work.

2 Informal Overview

The main feature of our new type system is a collection of aliasing constraints.
Aliasing constraints describe the shape of the store and every function uses them
to specify the store that it expects. If the current store does not conform to the
constraints specified, then the type system ensures that the function cannot
be called. To illustrate how our constraints abstract a concrete store, we will
consider the following example:

R1STACKSP

577

TRUE
42

Here, sp is a pointer to a stack frame, which has been allocated on the heap (as
might be done in the SML/NJ compiler [2], for instance). This frame contains a
pointer to a second object, which is also pointed to by register r1.

In our program model, every heap-allocated object occupies a particular me-
mory location. For example, the stack frame might occupy location `s and the
1 See http://www.cs.cornell.edu/talc for the latest software release.

Alias Types 369

second object might occupy location `o. In order to track the flow of pointers to
these locations accurately, we reflect locations into the type system: A pointer
to a location ` is given the singleton type ptr(`). Each singleton type contains
exactly one value (the pointer in question). This property allows the type sy-
stem to reason about pointers in a very fine-grained way. In fact, it allows us to
represent the graph structure of our example store precisely:

R1STACK

BOOL

SP

PTR(lo)

lo: INT

INTls: PTR(lo)PTR(ls)

We represent this picture in our formal syntax by declaring the program variable
sp to have type ptr(`s) and r1 to have type ptr(`o). The store itself is described
by the constraints {`s 7→ 〈int, bool, ptr(`o)〉} ⊕ {`o 7→ 〈int〉}, where the type
〈τ1, . . . , τn〉 denotes a memory block containing values with types τ1 through τn.

Constraints of the form {` 7→ τ} are a reasonable starting point for an
abstraction of the store. However, they are actually too precise to be useful
for general-purpose programs. Consider, for example, the simple function deref,
which retrieves an integer from a reference cell. There are two immediate pro-
blems if we demand that code call deref when the store has a shape described
by {` 7→ 〈int〉}. First, deref can only be used to derefence the location `, and
not, for example, the locations `′ or `′′. This problem is easily solved by adding
location polymorphism. The exact name of a location is usually unimportant; we
need only establish a dependence between pointer type and constraint. Hence
we could specify that deref requires a store {ρ 7→ 〈int〉} where ρ is a location
variable instead of some specific location `. Second, the constraint {` 7→ 〈int〉}
specifies a store with exactly one location ` although we may want to dereference
a single integer reference amongst a sea of other heap-allocated objects. Since
deref does not use or modify any of these other references, we should be able
to abstract away the size and shape of the rest of the store. We accomplish this
task using store polymorphism. An appropriate constraint for the function deref
is ε ⊕ {ρ 7→ 〈int〉} where ε is a constraint variable that may instantiated with
any other constraint.

The third main feature of our constraint language is the capability to distin-
guish between linear constraints {ρ 7→ τ} and non-linear constraints {ρ 7→ τ}ω.
Linear constraints come with the additional guarantee that the location on the
left-hand side of the constraint (ρ) is not aliased by any other location (ρ′). This
invariant is maintained despite the presence of location polymorphism and store
polymorphism. Intuitively, because ρ is unaliased, we can safely deallocate its
memory or change the types of the values stored there. The key property that ma-
kes our system more expressive than traditional linear systems is that although
the aliasing constraints may be linear, the pointer values that flow through a
computation are not. Hence, there is no direct restriction on the copying and
reuse of pointers.

370 F. Smith, D. Walker, and G. Morrisett

The following example illustrates how the type system uses aliasing con-
straints and singleton types to track the evolution of the store across a series of
instructions that allocate, initialize, and then deallocate storage. In this exam-
ple, the instruction malloc x, ρ, n allocates n words of storage. The new storage
is allocated at a fresh location ` in the heap and ` is substituted for ρ in the
remaining instructions. A pointer to ` is substitued for x. Both ρ and x are
considered bound by this instruction. The free instruction deallocates storage.
Deallocated storage has type junk and the type system prevents any future use
of that space.

Instructions Constraints (Initially the constraints ε)
1. malloc sp, ρ1, 2; ε ⊕ {ρ1 7→ 〈junk, junk〉} sp : ptr(ρ1)
2. sp[1]:=1; ε ⊕ {ρ1 7→ 〈int, junk〉}
3. malloc r1, ρ2, 1; ε ⊕ {ρ1 7→ 〈int, junk〉, ρ2 7→ 〈junk〉} r1 : ptr(ρ2)
4. sp[2]:=r1; ε ⊕ {ρ1 7→ 〈int, ptr(ρ2)〉, ρ2 7→ 〈junk〉}
5. r1[1]:=2; ε ⊕ {ρ1 7→ 〈int, ptr(ρ2)〉, ρ2 7→ 〈int〉}
6. free r1; ε ⊕ {ρ1 7→ 〈int, ptr(ρ2)〉, ρ2 7→ junk}
7. free sp; ε ⊕ {ρ1 7→ junk, ρ2 7→ junk}

Again, we can intuitively think of sp as the stack pointer and r1 as a register
that holds an alias of an object on the stack. Notice that on line 5, the initia-
lization of r1 updates the type of the memory at location ρ2. This has the effect
of simultaneously updating the type of r1 and of sp[1]. Both of these paths are
similarly affected when r1 is freed in the next instruction. Despite the presence
of the dangling pointer at sp[1], the type system will not allow that pointer to
be derefenced.

By using singleton types to accurately track pointers, and aliasing constraints
to model the shape of the store, our type system can represent sharing and
simultaneously ensure safety in the presence of destructive operations.

3 The Language of Locations

This section describes our new type-safe “language of locations” formally. The
syntax for the language appears in Figure 1.

3.1 Values, Instructions, and Programs

A program is a pair of a store (S) and a list of instructions (ι). The store maps
locations (`) to values (v). Normally, the values held in the store are memory
blocks (〈τ1, . . . , τn〉), but after the memory at a location has been deallocated,
that location will point to the unusable value junk. Other values include integer
constants (i), variables (x or f), and, of course, pointers (ptr(`)).

Figure 2 formally defines the operational semantics of the language.2 The
main instructions of interest manipulate memory blocks. The instruction
2 Here and elsewhere, the notation X[c1, . . . , cn/x1, . . . , xn] denotes capture-avoiding

substitution of c1, . . . , cn for variables x1, . . . , xn in X.

Alias Types 371

` ∈ Locations ρ ∈ LocationVar ε ∈ ConstraintVar x, f ∈ ValueVar

locations η ::= ` | ρ
constraints C ::= ∅ | ε | {η 7→ τ} | C1 ⊕ C2

types τ ::= int | junk | ptr(η) | 〈τ1, . . . , τn〉 | ∀[∆; C].(τ1, . . . , τn)→0
value ctxts Γ ::= · | Γ, x:τ
type ctxts ∆ ::= · | ∆, ρ | ∆, ε
values v ::= x | i | junk | ptr(`) | 〈v1, . . . , vn〉 | fix f [∆; C; Γ].ι | v[η] | v[C]
instructions ι ::= malloc x, ρ, n; ι | x=v[i]; ι | v[i]:=v′; ι | free v; ι |

v(v1, . . . , vn) | halt
stores S ::= {`1 7→ v1, . . . , `n 7→ vn}
programs P ::= (S , ι)

Fig. 1. Language of Locations: Syntax

malloc x, ρ, n allocates an unitialized memory block (filled with junk) of size n
at a new location `, and binds x to the pointer ptr(`). The location variable ρ,
bound by this instruction, is the static representation of the dynamic location
`. The instruction x=v[i] binds x to the ith component of the memory block
pointed to by v in the remaining instructions. The instruction v[i]:=v′ stores v′

in the ith component of the block pointed to by v. The final memory mana-
gement primitive, free v, deallocates the storage pointed to by v. If v is the
pointer ptr(`) then deallocation is modeled by updating the store (S) so that
the location ` maps to junk.

The program ({}, malloc x, ρ, 2; x[1]:=3;x[2]:=5; free x; halt) allocates, in-
itializes and finally deallocates a pair of integers. Its evaluation is shown below:

Store Instructions
{ } malloc x, ρ, n (* allocate new location `, *)

(* substitute ptr(`), ` for x, ρ *)
{` 7→ 〈junk, junk〉} ptr(`)[1]:=3 (* initialize field 1 *)
{` 7→ 〈3, junk〉} ptr(`)[2]:=5 (* initialize field 2 *)
{` 7→ 〈3, 5〉} free ptr(`) (* free storage *)
{` 7→ junk}

A sequence of instructions (ι) ends in either a halt instruction, which stops
computation immediately, or a function application (v(v1, . . . , vn)). In order to
simplify the language and its typing constructs, our functions never return. Ho-
wever, a higher-level language that contains call and return statements can be
compiled into our language of locations by performing a continuation-passing
style (CPS) transformation [14, 15]. It is possible to define a direct-style lan-
guage, but doing so would force us to adopt an awkward syntax that allows
functions to return portions of the store. In a CPS style, all control-flow trans-
fers are handled symmetrically by calling a continuation.

Functions are defined using the form fix f [∆; C; Γ].ι. These functions are
recursive (f may appear in ι). The context (∆; C; Γ) specifies a pre-condition

372 F. Smith, D. Walker, and G. Morrisett

that must be satisfied before the function can be invoked. The type context ∆
binds the set of type variables that can occur free in the term; C is a collection
of aliasing constraints that statically approximates a portion of the store; and Γ
assigns types to free variables in ι.

To call a polymorphic function, code must first instantiate the type variables
in ∆ using the value form: v[η] or v[C]. These forms are treated as values because
type application has no computational effect (types and constraints are only used
for compile-time checking; they can be erased before executing a program).

(S, malloc x, ρ, n; ι) 7−→ (S{` 7→ 〈junk1, . . . , junkn〉}, ι[`/ρ][ptr(`)/x])
where ` 6∈ S

(S{` 7→ v}, free ptr(`); ι) 7−→ (S{` 7→ junk}, ι)
if v = 〈v1, . . . , vn〉

(S{` 7→ v}, ptr(`)[i]:=v′; ι) 7−→ (S{` 7→ 〈v1, . . . , vi−1, v
′, vi+1, . . . , vn〉}, ι)

if v = 〈v1, . . . , vn〉 and 1 ≤ i ≤ n
(S{` 7→ v}, x=ptr(`)[i]; ι) 7−→ (S{` 7→ v}, ι[vi/x])

if v = 〈v1, . . . , vn〉 and 1 ≤ i ≤ n
(S, v(v1, . . . , vn)) 7−→ (S, ι[c1, . . . , cm/β1, . . . , βm][v′, v1, . . . , vn/f, x1, . . . , xn])

if v = v′[c1, . . . , cm]
and v′ = fix f [∆; C; x1:τ1, . . . , xn:τn].ι
and Dom(∆) = β1, . . . , βm (where β ranges over ρ and ε)

Fig. 2. Language of Locations: Operational Semantics

3.2 Type Constructors

There are three kinds of type constructors: locations3 (η), types (τ), and aliasing
constraints (C). The simplest types are the base types, which we have chosen
to be integers (int). A pointer to a location η is given the singleton type ptr(η).
The only value in the type ptr(η) is the pointer ptr(η), so if v1 and v2 both have
type ptr(η), then they must be aliases. Memory blocks have types (〈τ1, . . . , τn〉)
that describe their contents.

A collection of constraints, C, establishes the connection between pointers of
type ptr(η) and the contents of the memory blocks they point to. The main form
of constraint, written {η 7→ τ}, models a store with a single location η containing
a value of type τ . Collections of constraints are constructed from more primitive
constraints using the join operator (⊕). The empty constraint is denoted by ∅.
We often abbreviate {η 7→ τ} ⊕ {η′ 7→ τ ′} with {η 7→ τ, η′ 7→ τ ′}.

3 We use the meta-variable ` to denote concrete locations, ρ to denote location varia-
bles, and η to denote either.

Alias Types 373

3.3 Static Semantics

Store Typing The central invariant maintained by the type system is that the
current constraints C are a faithful description of the current store S. We write
this store-typing invariant as the judgement ` S : C. Intuitively, whenever a
location ` contains a value v of type τ , the constraints should specify that location
` maps to τ (or an equivalent type τ ′). Formally:

·; · `v v1 : τ1 · · · ·; · `v vn : τn

` {`1 7→ v1, . . . , `n 7→ vn} : {`1 7→ τ1, . . . , `n 7→ τn}
where for 1 ≤ i ≤ n, the locations `i are all distinct. And,

` S : C ′ · ` C ′ = C
` S : C

Instruction Typing Instructions are type checked in a context ∆; C; Γ . The jud-
gement ∆; C; Γ `ι ι states that the instruction sequence is well-formed. A related
judgement, ∆; Γ `v v : τ , ensures that the value v is well-formed and has type
τ . 4

Our presentation of the typing rules for instructions focuses on how each rule
maintains the store-typing invariant. With this invariant in mind, consider the
rule for projection:

∆; Γ `v v : ptr(η)
∆ ` C = C ′ ⊕ {η 7→ 〈τ1, . . . , τn〉} ∆; C; Γ, x:τi `ι ι

∆; C; Γ `ι x=v[i]; ι

(
x 6∈ Γ

1 ≤ i ≤ n

)

The first pre-condition ensures that v is a pointer. The second uses C to deter-
mine the contents of the location pointed to by v. More precisely, it requires that
C equal a store description C ′ ⊕{η 7→ 〈τ1, . . . , τn〉}. (Constraint equality uses ∆
to denote the free type variables that may appear on the right-hand side.) The
store is unchanged by the operation so the final pre-condition requires that the
rest of the instructions be well-formed under the same constraints C.

Next, examine the rule for the assignment operation:

∆; Γ `v v : ptr(η) ∆; Γ `v v′ : τ ′

∆ ` C = C ′ ⊕ {η 7→ 〈τ1, . . . , τn〉} ∆; C ′ ⊕ {η 7→ τafter}; Γ `ι ι

∆; C; Γ `ι v[i]:=v′; ι
(1 ≤ i ≤ n)

where τafter is 〈τ1, . . . , τi−1, τ
′, τi+1, . . . , τn〉

Once again, the value v must be a pointer to some location η. The type of the
contents of η are given in C and must be a block with type 〈τ1, . . . , τn〉. This
time the store has changed, and the remaining instructions are checked under
the appropriately modified constraint C ′ ⊕ {η 7→ τafter}.
4 The subscripts on `v and `ι are used to distinguish judgement forms and for no

other purpose.

374 F. Smith, D. Walker, and G. Morrisett

How can the type system ensure that the new constraints C ′ ⊕ {η 7→ τafter}
correctly describe the store? If v′ has type τ ′ and the contents of the location
η originally has type 〈τ1, . . . , τn〉, then {η 7→ τafter} describes the contents of
the location η after the update accurately. However, we must avoid a situation
in which C ′ continues to hold an outdated type for the contents of the location
η. This task may appear trivial: Search C ′ for all occurrences of a constraint
{η 7→ τ} and update all of the mappings appropriately. Unfortunately, in the
presence of location polymorphism, this approach will fail. Suppose a value is
stored in location ρ1 and the current constraints are {ρ1 7→ τ, ρ2 7→ τ}. We
cannot determine whether or not ρ1 and ρ2 are aliases and therefore whether
the final constraint set should be {ρ1 7→ τ ′, ρ2 7→ τ ′} or {ρ1 7→ τ ′, ρ2 7→ τ}.

Our solution uses a technique from the literature on linear type systems.
Linear type systems prevent duplication of assumptions by disallowing uses of
the contraction rule. We use an analogous restriction in the definition of con-
straint equality: The join operator ⊕ is associative, and commutative, but not
idempotent. By ensuring that linear constraints cannot be duplicated, we can
prove that ρ1 and ρ2 from the example above cannot be aliases. The other equa-
lity rules are unsurprising. The empty constraint collection is the identity for ⊕
and equality on types τ is syntactic up to α-conversion of bound variables and
modulo equality on constraints. Therefore:

∆ ` {ρ1 7→ 〈int〉} ⊕ {ρ2 7→ 〈bool〉} = {ρ2 7→ 〈bool〉} ⊕ {ρ1 7→ 〈int〉}
but,

∆ 6` {ρ1 7→ 〈int〉}⊕{ρ2 7→ 〈bool〉} = {ρ1 7→ 〈int〉}⊕{ρ1 7→ 〈int〉}⊕{ρ2 7→ 〈bool〉}
Given these equality rules, we can prove that after an update of the store

with a value with a new type, the store typing invariant is preserved:

Lemma 1 (Store Update). If ` S{` 7→ v} : C ⊕ {` 7→ τ} and ·; · `v v′ : τ ′

then ` S{` 7→ v′} : C ⊕ {` 7→ τ ′} .

where S{` 7→ v} denotes the store S extended with the mapping ` 7→ v (provided
` does not already appear on the left-hand side of any elements in S).

Function Typing The rule for function application v(v1, . . . , vn) is the rule one
would expect. In general, v will be a value of the form v′[c1] · · · [cn] where v′

is a function polymorphic in locations and constraints and the type construc-
tors c1 through cn instantiate its polymorphic variables. After substituting c1
through cn for the polymorphic variables, the current constraints must equal
the constraints expected by the function v. This check guarantees that the no-
duplication property is preserved across function calls. To see why, consider the
polymorphic function foo where the type context ∆ is (ρ1, ρ2, ε) and the con-
straints C are ε ⊕ {ρ1 7→ 〈int〉, ρ2 7→ 〈int〉}:

fix foo[∆; C; x:ptr(ρ1), y:ptr(ρ2), cont:∀[·; ε].(int)→0].
free x; (* constraints = ε ⊕ {ρ2 7→ 〈int〉} *)
z=y[0]; (* ok because y : ptr(ρ2) and {ρ2 7→ 〈int〉} *)
free y; (* constraints = ε *)
cont(z) (* return/continue *)

Alias Types 375

This function deallocates its two arguments, x and y, before calling its continua-
tion with the contents of y. It is easy to check that this function type-checks,
but should it? If foo is called in a state where ρ1 and ρ2 are aliases, a run-time
error will result when the second instruction is executed because the location
pointed to by y will already have been deallocated. Fortunately, our type system
guarantees that foo can never be called from such a state.

Suppose that the store currently contains a single integer reference: {` 7→
〈3〉}. This store can be described by the constraints {` 7→ 〈int〉}. If the program-
mer attempts to instantiate both ρ1 and ρ2 with the same label `, the function
call foo[`, `, ∅](ptr(`)) will fail to type check because the constraints {` 7→ 〈int〉}
do not equal the pre-condition ∅ ⊕ {` 7→ 〈int〉, ` 7→ 〈int〉}.

Figure 3 contains the typing rules for values and instructions. Note that the
judgement ∆ `wf τ indicates that ∆ contains the free type variables in τ .

3.4 Soundness

Our typing rules enforce the property that well-typed programs cannot enter
stuck states. A state (S, ι) is stuck when no reductions of the operational seman-
tics apply and ι 6= halt . The following theorem captures this idea formally:

Theorem 1 (Soundness) If ` S : C and ·; C; · `ι ι and (S, ι) 7−→ . . . 7−→
(S′, ι′) then (S′, ι′) is not a stuck state.

We prove soundness syntactically in the style of Wright and Felleisen [28].
The proof appears in the companion technical report [19].

4 Non-linear Constraints

Most linear type systems contain a class of non-linear values that can be used
in a completely unrestricted fashion. Our system is similar in that it admits
non-linear constraints, written {η 7→ τ}ω. They are characterized by the axiom:

∆ ` {η 7→ τ}ω = {η 7→ τ}ω ⊕ {η 7→ τ}ω

Unlike the constraints of the previous section, non-linear constraints may be
duplicated. Therefore, it is not sound to deallocate memory described by non-
linear constraints or to use it at different types. Because there are strictly fewer
operations on non-linear constraints than linear constraints, there is a natural
subtyping relation between the two: {η 7→ τ} ≤ {η 7→ τ}ω. We extend the
subtyping relationship on single constraints to collections of constraints with
rules for reflexivity, transitivity, and congruence. For example, assume add has
type ∀[ρ1, ρ2, ε; {ρ1 7→ 〈int〉}ω ⊕ {ρ2 7→ 〈int〉}ω ⊕ ε].(ptr(ρ1), ptr(ρ2))→0 and
consider this code:

Instructions Constraints (Initially ∅)
malloc x, ρ, 1; C1 = {ρ 7→ 〈junk〉}, x : ptr(ρ)
x[0]:=3; C2 = {ρ 7→ 〈int〉}
add[ρ, ρ, ∅](x, x) C2 ≤ {ρ 7→ 〈int〉}ω = {ρ 7→ 〈int〉}ω ⊕ {ρ 7→ 〈int〉}ω ⊕ ∅

Typing rules for non-linear constraints are presented in Figure 4.

376 F. Smith, D. Walker, and G. Morrisett

∆; Γ `v v : τ

∆; Γ `v i : int ∆; Γ `v x : Γ (x) ∆; Γ `v junk : junk

∆ `wf η

∆; Γ `v ptr(η) : ptr(η)
∆; Γ `v v1 : τ1 · · · ∆; Γ `v vn : τn

∆; Γ `v 〈v1, . . . , vn〉 : 〈τ1, . . . , τn〉

∆ `wf ∀[∆′; C].(τ1, . . . , τn)→0
∆, ∆′; C; Γ, f :∀[∆′; C].(τ1, . . . , τn)→0, x1:τ1, . . . , xn:τn `ι ι

∆; Γ `v fix f [∆′; C; x1:τ1, . . . , xn:τn].ι : ∀[∆′; C].(τ1, . . . , τn)→0
(f, x1, . . . , xn 6∈ Γ)

∆ `wf η ∆; Γ `v v : ∀[ρ, ∆′; C].(τ1, . . . , τn)→0

∆; Γ `v v[η] : ∀[∆′; C].(τ1, . . . , τn)→0[η/ρ]

∆ `wf C ∆; Γ `v v : ∀[ε, ∆; C′].(τ1, . . . , τn)→0

∆; Γ `v v[C] : ∀[∆; C′].(τ1, . . . , τn)→0[C/ε]
∆; Γ `v v : τ ′ ∆ ` τ ′ = τ

∆; Γ `v v : τ

∆; C; Γ `ι ι

∆, ρ; C ⊕ {ρ 7→ 〈junk1, . . . , junkn〉}; Γ, x:ptr(ρ) `ι ι

∆; C; Γ `ι malloc x, ρ, n; ι
(x 6∈ Γ, ρ 6∈ ∆)

∆; Γ `v v : ptr(η)
∆ ` C = C′ ⊕ {η 7→ 〈τ1, . . . , τn〉} ∆; C′ ⊕ {η 7→ junk}; Γ `ι ι

∆; C; Γ `ι free v; ι

∆; Γ `v v : ptr(η) ∆ ` C = C′ ⊕ {η 7→ 〈τ1, . . . , τn〉}
∆; Γ `v v′ : τ ′ ∆; C′ ⊕ {η 7→ 〈τ1, . . . , τi−1, τ

′, τi+1, . . . , τn〉}; Γ `ι ι

∆; C; Γ `ι v[i]:=v′; ι
(1 ≤ i ≤ n)

∆; Γ `v v : ptr(η′)
∆ ` C = C′ ⊕ {η′ 7→ 〈τ1, . . . , τn〉} ∆; C; Γ, x:τi `ι ι

∆; C; Γ `ι x=v[i]; ι

(
x 6∈ Γ

1 ≤ i ≤ n

)

∆; Γ `v v : ∀[·; C′].(τ1, . . . , τn)→0 ∆ ` C = C′

∆; Γ `v v1 : τ1 · · · ∆; Γ `v vn : τn

∆; C; Γ `ι v(v1, . . . , vn) ∆; C; Γ `ι halt

Fig. 3. Language of Locations: Value and Instruction Typing

Alias Types 377

∆; Γ `v v : ptr(η)
∆ ` C = C′ ⊕ {η 7→ 〈τ1, . . . , τn〉}ω ∆; C; Γ, x:τi `ι ι

∆; C; Γ `ι x=v[i]; ι

(
x 6∈ Γ

1 ≤ i ≤ n

)

∆; Γ `v v : ptr(η) ∆; Γ `v v′ : τ ′

∆ ` C = C′ ⊕ {η 7→ 〈τ1, . . . , τn〉}ω ∆ ` τ ′ = τi ∆; C; Γ `ι ι

∆; C; Γ `ι v[i]:=v′; ι
(1 ≤ i ≤ n)

∆; Γ `v v : ∀[·; C′].(τ1, . . . , τn)→0 ∆ ` C ≤ C′

∆; Γ `v v1 : τ1 · · · ∆; Γ `v vn : τn

∆; C; Γ `ι v(v1, . . . , vn)
` S : C′ ` C′ ≤ C

` S : C

Fig. 4. Language of Locations: Non-linear Constraints

4.1 Non-linear Constraints and Dynamic Type Tests

Although data structures described by non-linear constraints cannot be deal-
located or used to store objects of varying types, we can still take advantage
of the sharing implied by singleton pointer types. More specifically, code can
use weak constraints to perform a dynamic type test on a particular object and
simultaneously refine the types of many aliases of that object.

To demonstrate this application, we extend the language discussed in the
previous section with a simple form of option type ?〈τ1, . . . , τn〉 (see Figure 5).
Options may be null or a memory block 〈τ1, . . . , τn〉. The mknull operation
associates the name ρ with null and the tosum v, τ instruction injects the value v
(a location containing null or a memory block) into a location for the option type
?〈τ1, . . . , τn〉. In the typing rules for tosum and ifnull, the annotation φ may
either be ω, which indicates a non-linear constraint or ·, the empty annotation,
which indicates a linear constraint.

The ifnull v then ι1 else ι2 construct tests an option to determine whether
it is null or not. Assuming v has type ptr(η), we check the first branch (ι1)
with the constraint {η 7→ null}φ and the second branch with the constraint
{η 7→ 〈τ1, . . . , τn〉}φ where 〈τ1, . . . , τn〉 is the appropriate non-null variant. As
before, imagine that sp is the stack pointer, which contains an integer option.

(* constraints = {η 7→ 〈ptr(η′)〉, η′ 7→ ?〈int〉}, sp:ptr(η) *)
r1=sp[1]; (* r1:ptr(η′) *)
ifnull r1 then halt (* null check *)
else · · · (* constraints = {η 7→ 〈ptr(η′)〉}⊕{η′ 7→ 〈int〉}ω *)

Notice that a single null test refines the type of multiple aliases; both r1 and
its alias on the stack sp[1] can be used as integer references in the else clause.
Future loads of r1 or its alias will not have to perform a null-check.

378 F. Smith, D. Walker, and G. Morrisett

These additional features of our language are also proven sound in the com-
panion technical report [19].

Syntax:

types τ ::= . . . | ?〈τ1, . . . , τn〉 | null
values v ::= . . . | null
instructions ι ::= . . . | mknull x, ρ; ι | tosum v, ?〈τ1, . . . , τn〉 |

ifnull v then ι1 else ι2

Operational semantics:

(S, mknull x, ρ; ι) 7−→ (S{` 7→ null}, ι[`/ρ][ptr(`)/x])
where ` 6∈ S

(S, tosum v, ?〈τ1, . . . , τn〉; ι) 7−→ (S, ι)
(S{` 7→ null},

ifnull ptr(`) then ι1 else ι2) 7−→ (S{` 7→ null}, ι1)
(S{` 7→ 〈v1, . . . , vn〉},

ifnull ptr(`) then ι1 else ι2) 7−→ (S{` 7→ 〈v1, . . . , vn〉}, ι2)

Static Semantics:

∆; Γ `v null : null
∆, ρ; C ⊕ {ρ 7→ null}; Γ, x:ptr(ρ) `ι ι

∆; C; Γ `ι mknull x, ρ; ι
(x 6∈ Γ, ρ 6∈ ∆)

∆; Γ `v v : ptr(η) ∆ ` C = C′ ⊕ {η 7→ null}φ

∆ `wf ?〈τ1, . . . , τn〉 ∆; C′ ⊕ {η 7→ ?〈τ1, . . . , τn〉}φ; Γ `ι ι

∆; C; Γ `ι tosum v, ?〈τ1, . . . , τn〉; ι

∆; Γ `v v : ptr(η)
∆ ` C = C′ ⊕ {η 7→ 〈τ1, . . . , τn〉}φ ∆; C′ ⊕ {η 7→ ?〈τ1, . . . , τn〉}φ; Γ `ι ι

∆; C; Γ `ι tosum v, ?〈τ1, . . . , τn〉; ι

∆; Γ `v v : ptr(η) ∆ ` C = C′ ⊕ {η 7→ ?〈τ1, . . . , τn〉}φ

∆; C′ ⊕ {η 7→ null}φ; Γ `ι ι1 ∆; C′ ⊕ {η 7→ 〈τ1, . . . , τn〉}φ; Γ `ι ι2

∆; C; Γ `ι ifnull v then ι1 else ι2

Fig. 5. Language of Locations: Extensions for option types

5 Related and Future Work

Our research extends previous work on linear type systems [26] and syntactic
control of interference [16] by allowing both aliasing and safe deallocation. Se-
veral authors [26, 3, 9] have explored alternatives to pure linear type systems

Alias Types 379

to allow greater flexibility. Wadler [26], for example, introduced a new let-form
let ! (x) y = e1 in e2 that permits the variable x to be used as a non-linear
value in e1 (i .e. it can be used many times, albeit in a restricted fashion) and
then later used as a linear value in e2. We believe we can encode similar behavior
by extending our simple subtyping with bounded quantification. For instance,
if a function f requires some collection of aliasing constraints ε that are boun-
ded above by {ρ1 7→ 〈int〉}ω ⊕ {ρ2 7→ 〈int〉}ω, then f may be called with a
single linear constraint {ρ 7→ 〈int〉} (instantiating both ρ1 and ρ2 with ρ and
ε with {ρ 7→ 〈int〉}). The constraints may now be used non-linearly within the
body of f . Provided f expects a continuation with constraints ε, its continuation
will retain the knowledge that {ρ 7→ 〈int〉} is linear and will be able to deallo-
cate the storage associated with ρ when it is called. However, we have not yet
implemented this feature.

Because our type system is constructed from standard type-theoretic building
blocks, including linear and singleton types, it is relatively straightforward to
implement these ideas in a modern type-directed compiler. In some ways, our new
mechanisms simplify previous work. Previous versions of TAL [12, 11] possessed
two separate mechanisms for initializing data structures. Uninitialized heap-
allocated data structures were stamped with the type at which they would be
used. On the other hand, stack slots could be overwritten with values of arbitrary
types. Our new system allows us to treat memory more uniformly. In fact, our
new language can encode stack types similar to those described by Morrisett
et al. [11] except that activation records are allocated on the heap rather than
using a conventional call stack. The companion technical report [19] shows how
to compile a simple imperative language in such a way that it allocates and
deletes its own stack frames.

This research is also related to other work on type systems for low-level
languages. Work on Java bytecode verification [20, 8] also develops type systems
that allows locations to hold values of different types. However, the Java bytecode
type system is not strong enough to represent aliasing as we do here.

The development of our language was inspired by the Calculus of Capa-
bilities (CC) [4]. CC provides an alternative to the region-based type system
developed by Tofte and Talpin [24]. Because safe region deallocation requires
that no aliases be used in the future, CC tracks region aliases. In our new lan-
guage we adapt CC’s techniques to track both object aliases and object type
information.

Our work also has close connections with research on alias analyses [5, 21,
17]. Much of that work aims to facilitate program optimizations that require
aliasing information in order to be correct. However, these optimizations do not
necessarily make it harder to check the safety of the resulting program. Other
work [7, 6] attempts to determine when programs written in unsafe languages,
such as C, perform potentially unsafe operations. Our goals are closer to the
latter application but differ because we are most interested in compiling safe
languages and producing low-level code that can be proven safe in a single pass
over the program. Moreover, our main result is not a new analysis technique,

380 F. Smith, D. Walker, and G. Morrisett

but rather a sound system for representing and checking the results of analysis,
and, in particular, for representing aliasing in low-level compiler-introduced data
structures rather than for representing aliasing in source-level data.

The language of locations is a flexible framework for reasoning about sharing
and destructive operations in a type-safe manner. However, our work to date is
only a first step in this area and we are investigating a number of extensions. In
particular, we are working on integrating recursive types into the type system as
they would allow us to capture regular repeating structure in the store. When
we have completed this task, we believe our aliasing constraints will provide us
with a safe, but rich and reusable, set of memory abstractions.

Acknowledgements

This work arose in the context of implementing the Typed Assembly Language
compiler. We are grateful for the many stimulating discussions that we have
had on this topic with Karl Crary, Neal Glew, Dan Grossman, Dexter Kozen,
Stephanie Weirich, and Steve Zdancewic. Sophia Drossopoulou, Kathleen Fisher,
Andrew Myers, and Anne Rogers gave helpful comments on a previous draft of
this work.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

[2] Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In
Martin Wirsing, editor, Third International Symposium on Programming Langu-
age Implementation and Logic Programming, pages 1–13, New York, August 1991.
Springer-Verlag. Volume 528 of Lecture Notes in Computer Science.

[3] Erik Barendsen and Sjaak Smetsers. Conventional and uniqueness typing in graph
rewrite systems (extended abstract). In Thirteenth Conference on the Foundations
of Software Technology and Theoretical Computer Science, pages 41–51, Bombay,
1993. In Shyamasundar, ed., Springer-Verlag, LNCS 761.

[4] Karl Crary, David Walker, and Greg Morrisett. Typed memory management in
a calculus of capabilities. In Twenty-Sixth ACM Symposium on Principles of
Programming Languages, pages 262–275, San Antonio, January 1999.

[5] Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting.
In ACM Conference on Programming Language Design and Implementation, pages
230–241, Orlando, June 1994.

[6] Nurit Dor, Michael Rodeh, and Mooly Sagiv. Detecting memory errors via sta-
tic pointer analysis (preliminary experience). In ACM Workshop on Program
Analysis for Software Tools and Engineering (PASTE’98), Montreal, June 1998.

[7] David Evans. Static detection of dynamic memory errors. In ACM Conference
on Programming Language Design and Implementation, Philadelphia, May 1996.

[8] Stephen N. Freund and John C. Mitchell. A formal framework for the Java
bytecode language and verifier. In Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 147–166, Denver, November 1999.

[9] Naoki Kobayashi. Quasi-linear types. In Twenty-Sixth ACM Symposium on Prin-
ciples of Programming Languages, pages 29–42, San Antonio, January 1999.

Alias Types 381

[10] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 1996.

[11] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based Typed
Assembly Language. In Second International Workshop on Types in Compilation,
pages 95–117, Kyoto, March 1998. Published in Xavier Leroy and Atsushi Ohori,
editors, Lecture Notes in Computer Science, volume 1473, pages 28-52. Springer-
Verlag, 1998.

[12] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to
Typed Assembly Language. ACM Transactions on Programming Languages and
Systems, 3(21):528–569, May 1999.

[13] George Necula. Proof-carrying code. In Twenty-Fourth ACM Symposium on
Principles of Programming Languages, pages 106–119, Paris, 1997.

[14] G. D. Plotkin. Call-by-name, call-by-value, and the lambda calculus. Theoretical
Computer Science, 1:125–159, 1975.

[15] John C. Reynolds. Definitional interpreters for higher-order programming langu-
ages. In Conference Record of the 25th National ACM Conference, pages 717–740,
Boston, August 1972.

[16] John C. Reynolds. Syntactic control of interference. In Fifth ACM Symposium
on Principles of Programming Languages, pages 39–46, Tucson, 1978.

[17] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM Transactions on Programming Languages and
Systems, 20(1):1–50, January 1996.

[18] Z. Shao. An overview of the FLINT/ML compiler. In Workshop on Types in Com-
pilation, Amsterdam, June 1997. ACM. Published as Boston College Computer
Science Dept. Technical Report BCCS-97-03.

[19] Frederick Smith, David Walker, and Greg Morrisett. Alias types. Technical Report
TR99-1773, Cornell University, October 1999.

[20] Raymie Stata and Mart́ın Abadi. A type system for Java bytecode subroutines.
In Twenty-Fifth ACM Symposium on Principles of Programming Languages, San
Diego, January 1998.

[21] B. Steensgaard. Points-to analysis in linear time. In Twenty-Third ACM Sympo-
sium on Principles of Programming Languages, January 1996.

[22] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A
type-directed optimizing compiler for ML. In ACM Conference on Programming
Language Design and Implementation, pages 181–192, Philadelphia, May 1996.

[23] Mads Tofte. Type inference for polymorphic references. Information and Com-
putation, 89:1–34, November 1990.

[24] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Infor-
mation and Computation, 132(2):109–176, 1997.

[25] David N. Turner, Philip Wadler, and Christian Mossin. Once upon a type. In ACM
International Conference on Functional Programming and Computer Architecture,
San Diego, CA, June 1995.

[26] Philip Wadler. Linear types can change the world! In M. Broy and C. Jones,
editors, Programming Concepts and Methods, Sea of Galilee, Israel, April 1990.
North Holland. IFIP TC 2 Working Conference.

[27] A. K. Wright. Simple imperative polymorphism. LISP and Symbolic Computation,
8(4), December 1995.

[28] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type so-
undness. Information and Computation, 115(1):38–94, 1994.

Polyvariant Flow Analysis with Constrained Types

Scott F. Smith and Tiejun Wang?

Department of Computer Science
The Johns Hopkins University
Baltimore, MD 21218, USA
{scott,wtj}@cs.jhu.edu

Abstract. The basic idea behind improving the quality of a monovariant control
flow analysis such as 0CFA is the concept ofpolyvariantanalyses such asAgesen’s
Cartesian Product Algorithm (CPA) and Shivers’nCFA. In this paper we deve-
lop a novel framework for polyvariant flow analysis based on Aiken-Wimmers
constrained type theory. We develop instantiations of our framework to formalize
various polyvariant algorithms, includingnCFA and CPA. With our CPA forma-
lization, we show the call-graph based termination condition for CPA will not
always guarantee termination. We then develop a novel termination condition and
prove it indeed leads to a terminating algorithm. Additionally, we show how data
polymorphism can be modeled in the framework, by defining a simple extension
to CPA that incorporates data polymorphism.

1 Introduction

The basic idea behind improving the precision of a simple control flow analysis such
as 0CFA is the concept ofpolyvariantanalysis, also known asflow splitting. For better
analysis precision, the definition of a polymorphic function is re-analyzed multiple times
with respect to different application contexts. The original polyvariant generalization
of the monovariant 0CFA control flow algorithm is thenCFA algorithm, defined by
Shivers [17]. This generalization however has been shown to be not so effective: the
values ofn needed to obtain more accurate analyses are usually beyond the realm of the
easily computable, and even 1CFA can be quite slow to compute [19]. Better notions of
polyvariant analysis have been developed. In particular, Agesen’s CPA [1, 2] analyzes
programs with parametric polymorphism in an efficient and adaptive manner.

In this paper we develop a general framework for polyvariant flow analysis with
Aiken-Wimmers constrained types [3]. We represent each function definition with a po-
lymorphic constrained type scheme of form(∀ t . t → τ \ C). The subtyping constraint
setC bound in the type scheme captures the flow corresponding to the function body.
Each re-analysis of the function is realized by a new instantiation of the type scheme.

There have recently been several frameworks developed for polyvariant flow analysis,
in terms of union and intersection types [16], abstract interpretation [13], flow graphs
[12], and more implementation-centric [10]. Our purpose in designing a new framework
is not primarily to give “yet another framework” for polyvariant flow analysis, but to

? Partial funding provided by NSF grant CCR-9619843

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 382–396, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Polyvariant Flow Analysis with Constrained Types 383

develop a framework particularly useful for the development of new polyvariant analyses,
and for improving on implementations of existing analyses. We will give an example of a
new analysis developed within the framework, Data-Adaptive CPA, which extends CPA
to incorporate data polymorphism. There also are implementation advantages obtained
by basing analyses on polymorphic constrained types. Compared to the flow graph based
approach used in other implementations of flow analyses [2, 10, 14], our framework
has several advantages: using techniques described in [8, 15], constrained types can be
simplified on-the-fly and garbage collection of unreachable constraints can be performed
as well, leading to more efficient analyses; and, re-analysis of a function in a different
polyvariant context is also realized by instantiation of the function’s constrained type
scheme, and does not require re-analysis of the function body.

This paper presents the first proposal to use constrained type schemes to model
polyvariance; there are several other related approaches in the literature. Palsberg and
Pavlopoulou [16] develop an elegant framework for polyvariant analyses in a type system
with union/intersection types and subtyping. There are also subtype-free type-based
realizations of polymorphism which can be adapted to polyvariant flow analysis. Let-
polymorphism is the classic form of polymorphism used in type inference for subtype-
free languages, and has been adapted to constrained types in [3, 7], as well as directly
in the flow analysis setting by Wright and Jagannathan [19]. Another representation of
polymorphism found in subtype-free languages is via rank-2 intersection types [11],
which has also been applied to polyvariant flow analysis [4]. The Church group has
developed type systems of union/intersection types decorated with flow labels to indicate
the flow information [18].

The form of polyvariance we use is quite general: we show how CPA,nCFA, and
other analyses may be expressed in the framework. A∀ type is given to each function in
the program, and for every different call site and each different type of argument value
the function is applied to, a new contour (re-analysis of the function via instantiation
of the∀ type) is possible. The framework is flexible in how contours are generated: a
completely new contour can be assigned for an particular argument type applied to the
function, or for that argument type it can share a pre-existing contour. For example,
0CFA is the strategy which uses exactly one contour for every function.

One difficult problem for CPA is the issue of termination: without a termination
check, the analysis may loop forever on some programs, producing infinitely many con-
tours. We develop a termination condition which detects a certain kind of self-referential
flow in the constraints and prove that by merging some contours in this case, non-
termination is prevented and the analysis is implementable. Our termination condition is
different from the call-graph based condition commonly used in other algorithms, which
we show will not guarantee termination in all cases.

We also aim here to model polyvariant algorithms capable of handlingdata polymor-
phism: the ability of an imperative variable to hold values of different types at run-time.
Data polymorphism arises quite frequently in object-oriented programming, especially
with container classes, and it poses special problems for flow analysis. The one precise
algorithm for detecting data polymorphism is the iterative flow analysis (IFA) of Plevyak
and Chien [14]. We present a simple non-iterative algorithm, Data-Adaptive CPA, based
on an approach distinct from that of IFA.

384 S.F. Smith and T. Wang

2 A Framework for Polyvariant Flow Analysis

This section presents the framework of polyvariant constrained type inference. In the
next section we instantiate the framework for particular analyses.

2.1 The Language

The language we study here is an extension to the language used in Palsberg and Pavlo-
poulou’s union/intersection type framework for flow analysis [16], adding mutable state
so we can model data polymorphism. We believe the concepts of current paper should
scale with relative ease to languages with records, objects, classes, and other features,
as illustrated in [7, 6].

Definition 21 (The language):

e = x | n | succ e | if0 e e e | λx.e | e e | new | e := e | !e | e ; e

This is a standard call-by-value lambda calculus extended with reference cells. Exe-
cution of anew expression creates a fresh, uninitialized reference cell. We usenew
because it models the memory creation mode of languages like Java and C++, where
uninitialized references are routinely created. Recursive definitions may be constructed
in this language via theY -combinator.

2.2 The Types

Our basis is anAiken-Wimmers-style constraint system [3]; in particular it is most closely
derived from the system described in [7], which combines constraints and mutable state.

Definition 22 (Types): The type grammar is as follows.

τ ∈ Type ::= t | τv | read t | write τ | t1 → t2
t ∈ TypeVar ⊃ ImpTypeVar
u ∈ ImpTypeVar
t ∈ TypeVarSet = Pfin(TypeVar)
τv ∈ ValueType ::= int | (∀ t . t → τ \ C) | ref u
τ1 <: τ2 ∈ Constraint
C ∈ ConstraintSet = Pω(Constraint)

The types for the most part are standard. Function uses (call sites) are given type
t1 → t2. ValueType are the types for data values.ref u is the type for a cell whose
content has typeu. We distinguish imperative type variablesu ∈ ImpTypeVar for
the presentation of data polymorphism. Read and write operations on reference cells are
represented with typesread t andwrite τ respectively. Functions are given polymor-
phic types(∀ t . t → τ \ C), wheret is the type variable for the formal argument,τ
is the return type,C is the set of constraints bound in this type scheme, andt is the set
of bound type variables. Such types are also referred as∀ types or closure types in the
paper.

Polyvariant Flow Analysis with Constrained Types 385

(Var)
A(x) = t

A ` x : t \ {}
(Int)

A ` n : int \ {}
(Succ)

A ` e : τ \ C

A ` succ e : int \ {τ <: int} ∪ C

(If0)
A ` e1 : τ1 \ C1, e2 : τ2 \ C2, A ` e3 : τ3 \ C3

A ` if0 e1 e2 e3 : t \ {τ1 <: int, τ2 <: t, τ3 <: t} ∪ C1 ∪ C2 ∪ C3

(Abs)
A, {x : t} ` e : τ \ C

A ` λx.e : (∀ t . t → τ \ C) \ {}
wheret = FreeTypeVar(t → τ \ C) − FreeTypeVar(A)

(Appl)
A ` e1 : τ1 \ C1, e2 : τ2 \ C2

A ` e1 e2 : t2 \ {τ1 <: t1 → t2, τ2 <: t1} ∪ C1 ∪ C2

(New)
A ` new : ref u \ {}

(Read)
A ` e : τ \ C

A ` !e : t \ {τ <: read t}
(Write)

A ` e1 : τ1 \ C1, e2 : τ2 \ C2

A ` e1 := e2 : τ2 \ {τ1 <: write τ2} ∪ C1 ∪ C2

(Seq)
A ` e1 : τ1 \ C1, e2 : τ2 \ C2

A ` e1 ; e2 : τ2 \ C1 ∪ C2

Fig. 1.Type inference rules

2.3 The Type Inference Rules

We present the type inference rules in Figure 1. A type environmentA is a mapping
from program variables to type variables. Given a type environmentA, the proof system
assigns a type to expressione via the type judgmentA ` e : τ \ C, whereτ is the
type fore, andC is the set of constraints which models the flow paths ine. We abbreviate
A ` e : τ \ C as ` e : τ \ C when A is empty. The rules are deterministic
except that nondeterminism may arise in the choice of type variables. We restrict type
derivations to be of a form where fresh type variables are used whenever it is possible.
With this restriction, type inference is trivially decidable and is unique modulo choice
of type variable names.

Definition 23 (Type inference algorithm): For closed expressione, its inferred type
is τ \ C provided ` e : τ \ C.

The intuition behind those inference rules is that a subtyping constraintτ1 <: τ2
indicates a potential flow from expressions of typeτ1 to expressions of typeτ2. The
rules generally follow standard presentations ofAiken-Wimmer constrained type system,
except for the (Abs) and cell typing rules. Detailed descriptions of other rules could be
found in [7, 3]. The (Abs) rule assigns each function a polymorphic type(∀ t . t →
τ \ C). In this rule,FreeTypeVar(·) is a function that extracts free type variables,t
collects all the type variables generated when the inference is applied to the function

386 S.F. Smith and T. Wang

body, andC collects all the constraints corresponding to the function body. The manner
in which∀ type schemes are formed is similar to standard polymorphic constrained type
systems, but the significant difference here is that every function is given a∀ type. By
contrast, in a system based on let-polymorphism, thelet construct dictates where∀
types are introduced.

The (New) rule assigns the reference cell typeref u, with u, the type of the cell
content, initially unconstrained. In the (Read) rule,read t is the type for a cell whose
read result is of typet. In the (Write) rule,write τ2 is the type for a cell assigned with
a value of typeτ2.

We take an intensional view of types: two types are equivalent if and only if they are
syntactically identical. In particular,∀ types corresponding to different functions in the
program are always different, even though they might beα-variants. This is because we
wish to distinguish different functions in the analysis to obtain precise flow properties.
For type soundness properties, an extensional view could be taken.

We illustrate the inference rules with the example studied in [16]:

E1 ≡ (λf.succ ((f f) 0) (if0 n (λx.x) (λy.λz.z))

To ease presentation, each program variable is inferred with a type variable having
exactly the same name. We have
` (λf.succ ((f f) 0) : τf\{}, whereτf ≡ (∀ {f, t1, t2, t3, t4}.f → int \ {f <:
t1 → t2, f <: t1, t2 <: t3 → t4, int <: t3, t4 <: int}),
` (λx.x) : τx\{}, whereτx ≡ (∀ {x}.x → x\{}),
` (λy.λz.z) : τy\{}, whereτy ≡ (∀ {y}.y → (∀ {z}.z → z\{})\{}).
` E1 : t7 \ {int <: int, τx <: t5, τy <: t5, τf <: t6 → t7, t5 <: t6}

2.4 Computation of the Closure

The inference algorithm applied to programe results in a type judgment̀ e : τ \ C.
For a flow analysis, we need to generate all the possible data-flow and control-flow paths
and propagate value types along all the data-flow paths. This is achieved by applying
the closure rules of Figure 2 toC, propagating information via deduction rules on the
subtyping constraints.

The rule (Trans) is the transitivity rule which models run-time data flow by propa-
gating value types forward along flow paths. The (Read) closure rule applies when a
read operation is applied on a cell of typeref u, and the reading result is of typet. By
constraintu <: t, the cell content flows to the reading result. The (Write) closure rule
applies when a write operation is applied on a cell of typeref u, and a value of typeτ
is assigned to the cell. By constraintτ <: t, the value flows to the content of the cell.
With (Read) and (Write) rules together, any value assigned to a cell flows to the cell’s
reading result. Flanagan [9] uses a related set of rules for references and was the source
of the idea for us.

The most important closure rule is (Fun), which performs∀ elimination. The con-
straint(∀ t . t → τ \ C) <: t1 → t2 indicates a function flowing to a call site, where
(∀ t . t → τ \ C) is the type for the function andt1 → t2 is the type representing the
call site. The constraintτv <: t1 means that a value of typeτv flows in as the actual

Polyvariant Flow Analysis with Constrained Types 387

(Trans)
τv <: t, t <: τ

τv <: τ

(Fun)
(∀ t . t → τ \ C) <: t1 → t2, τv <: t1
τv <: Θ(t), Θ(τ) <: t2, Θ(C)
whereΘ = Poly((∀ t . t → τ \ C) <: t1 → t2, τv)

(Read)
ref u <: read t

u <: t

(Write)
ref u <: write τ

τ <: u

Fig. 2.Constraint Closure rules

argument. At run-time, upon each function application, all local variables of the func-
tion are allocated fresh locations on the stack. To model this behaviour in the analysis,
a renamingΘ ∈ TypeVar

p→ TypeVar is applied to type variables int . The partial
function Θ is extended to types, constraints, and constraint sets in the usual manner.
Θ(t) for t 6∈ t is defined to returnt. We callΘ(τ) an instantiationof τ . Following the
terminology of Shivers’nCFA [17], we call a renamingΘ acontour. The∀ is eliminated
from (∀ t . t → τ \ C) by applyingΘ to C. The (Fun) rule then generates additional
constraints to capture the flow from the actual argumentτv to the formal argumentΘ(t),
and from the return valueΘ(τ) to the application resultt2. The (Fun) rule is parameteri-
zed by functionPoly ∈ Constraint×ValueType → (TypeVar

p→ TypeVar),
which decides for this particular function, call site, and actual argument type, which
contour is to be used (i.e., created or reused). Providing a concretePoly instantiates the
framework to give a concrete algorithm. For example, the monovariant analysis 0CFA
is defined by lettingPoly always return the identity renaming. This particular example
shows howPoly may reuse existing contours. The differing analyses are defined by
differing Poly which use different strategies for sharing contours. In the next section
we show how this works by presenting some particularPoly.

Definition 24 (Closure): For a constraint setC, ClosurePoly(C) is the least superset
of C closed under the closure rules of Figure 2.

This closure is well-defined since the rules can be seen to induce a monotone function
on constraint sets. By this definition, somePoly may produce infinite closures since
infinitely many contours may be created. Such analyses are still worthy of study even
though they are usually unimplementable.

Definition 25 (Flow Analysis): DefineAnalysisPoly(e) = ClosurePoly(C), where the
inference algorithm infers̀ e : τ \ C.

The output of an analysis is a set of constraints, which is the closure of the constraint
set generated by the inference rules. The closure contains complete flow information
about the program, various program properties can be deduced from it.

388 S.F. Smith and T. Wang

Definition 26 (Type-Checking): A programe is well-typed iff AnalysisPoly(e) con-
tains no immediately type-contradictory constraints such asref u <: t → t′.

For example, analyzing programsucc (λx.x) would generate a type-contradictory
constraint(∀ {x}.x → x\{}) <: int, which indicates an type error. A computation
state iswrong if computation cannot continue due to a type error. Our type system does
not statically check for errors due to reading uninitialized cells.

To illustrate how the results of a conventional control flow analysis can be obtained
in our framework, we use the fact that by the structure of the inference rules, every∀
type in the closure corresponds to a unique lambda abstraction in the program.

Definition 27 (Control Flow Analysis): For an expressione in the program, ife is
assigned with typeτ by the inference rules, the function corresponding to(∀ t ′. t′ →
τ ′ \ C ′) is considered flowing toe, if either τ = (∀ t ′. t′ → τ ′ \ C ′) or (∀ t ′. t′ →
τ ′ \ C ′) <: t ∈ AnalysisPoly(e), and eitherτ = t or t is an instantiation ofτ .

The above definition includes two cases: eithere is directly assigned with a∀ type,
in this casee is a lambda abstraction which trivially flows to itself; ore is assigned with
a type variable by the inference rules, and the type variable or an instantiation of it has
a∀ type as lower bound.

A subject reduction property for our type system can be established, with a proof
similar to the one in [7]. The subject reduction property implies the type soundness and
flow soundness of the framework.

Theorem 28 (Subject Reduction, Type Soundness, Flow Soundness):1. The type
system has a subject reduction property;

2. A well-typed programe cannot gowrongduring execution;
3. If an expression evaluates to a closure value of a function, the function is considered

flowing to the expression by the the control flow analysis.

The soundness of the framework implies that any analysis defined as an instantiation
of the framework is also sound.

3 Instantiating the Framework

In this section we present various polyvariant algorithms as instantiations of our frame-
work.

3.1 nCFA Instantiation

In Shivers’nCFA analysis [17], each function application (call) is associated with a
call-string of length at mostn. The call-string contains the lastn or fewer calls on the
call-path leading to this application. Applications of the same function share the same
contour (i.e., analysis of the function) if they have the same call-string. To presentnCFA
in our framework, type variables are defined with superscripts that denote the call-string:

α ∈ Identifier
s ∈ Superscript = Identifier List
t ∈ TypeVar ::= αs

Polyvariant Flow Analysis with Constrained Types 389

We use the following list notation: The empty list is[], [α1, . . . , αm] is a list of m
elements,l1 @ l2 appends listsl1 and l2, andl(1..n) is the list consisting of the first
min(n, length(l)) elements of listl. Each type variableαs is tagged with a call-string
s. All type variables generated by the inference rules have empty lists as superscripts.
By the inference rule (Appl), a call site is inferred with a typeα

[]
1 → α

[]
2 , we useα2 to

identify this call site, thus a call-string is a list of such identifiers.All bound type variables
of a∀ type have empty list superscripts. When the∀ quantifier is eliminated by the (Fun)
closure rule, those bound type variables are renamed by changing the superscripts from
empty lists to the appropriate call-strings.

Definition 31 (nCFA Algorithm): ThenCFA algorithm is defined as the instantiation
of the framework withPoly = CFA, where

CFA((∀ t . t → τ \ C) <: t1 → αs2
2 , τv) = Θ, where for eachα[] ∈ t ,

Θ(α[]) = αs′
, wheres′ = ([α2] @ s2)(1..n)

It can be shown by induction thats′ is the call-string for application(∀ t . t →
τ \ C) <: t1 → αs2

2 . The definition ofΘ ensures that applications of the same function
share the same contour if and only if they have the same call-string.

Not only is nCFA inefficient, but even for largen it may be imprecise. Applying
nCFA to programE1, since(λf . . .) has only one application, the (Fun) rule generates
only one contourΘ for this function, resulting inτx <: Θ(f) andτy <: Θ(f). This
means both(λx.x) and(λy.λz.z) flow to f , and at the application sitef f there are
four applications. One of them,(λx.x) applying to(λy.λz.z) leads to a type error:
(∀ {z}.z → z\{}) <: int. HencenCFA fails to type-checkE1 for arbitraryn.

3.2 Idealized CPA

The Cartesian Product Algorithm (CPA) [1, 2] is a concrete type inference algorithm
for object-oriented languages. For a message sending expression, CPA computes the
cartesian product of the types for the actual arguments. For each element of the cartesian
product, the method body is analyzed exactly once with one contour generated. The
calling-contexts of a method are partitioned by the cartesian product, rather than by
call-strings as innCFA. In our language, each function has only one argument. For each
function, CPA generates exactly one contour for each distinct argument type that the
function may be applied to. Without a termination check, CPA may fail to terminate
for some programs. We first present an idealized CPA which may produce an infinite
closure, and in Section 5 show how a terminating CPA analysis may be defined which
keeps the closure finite. To present CPA, type variables are defined with structure:

α ∈ Identifier
t ∈ TypeVar ::= α | ατv

The inference rules are constrained to generate type variables without superscripts.

Definition 32 (Idealized CPA algorithm): The Idealized CPA algorithm is the instan-
tiation of the framework withPoly = CPA, where

CPA((∀ t . t → τ \ C) <: t1 → t2, τv) = Θ, where for eachα ∈ t , Θ(α) = ατv

390 S.F. Smith and T. Wang

The contoursΘ are generated based on the actual argument typeτv , independent of
the application sitet1 → t2. This is the opposite ofCFA, which ignores the value type
τv , and only uses the call sitet1 → t2. Given a particular function and its associated∀
type in a program, this algorithm will generate a unique contour (∀ elimination) for each
distinct value type the function is applied to. It however may share contours across call
sites. Agesen [2] presents convincing experimental evidence that the CPA approach is
both more efficient and more feasible thannCFA.

We now sketch what Idealized CPA will produce when applied to programE1. Even
though there is only one application site for(λf . . .), it applies to two different actual
argument values. So, the (Fun) rule generates two contoursΘ1 andΘ2 for (λf . . .) with
Θ1(f) = fτx , τx <: fτx , Θ2(f) = fτy , τy <: fτy . At application sitef f , there would
be only two applications:(λx.x) applying to itself and(λy.λz.z) applying to itself. Thus
the program is type-checked successfully.

4 Data Polymorphism

Data polymorphism is defined informally in [2] as the ability of an imperative program
variable to hold values of different types at run-time. In our language, a more precise
definition could be that cells created from a single imperative creation point (new ex-
pression) in the program could be assigned with run-time values of different types. CPA
addresses parametric polymorphism effectively, but may lose precision in the presence
of data polymorphism. For example, consider when CPA is applied to the program

E2 ≡ (λf.(λx. x := 0; succ !x)(f 1); (f 2) := (λy.y)) (λz.new)

Function(λy.y) has type(∀ {y}.y → y\{}), and(λz.new) has type(∀ {z, u}.z →
ref u\{}). The two applications of(λz.new) have same actual argument typeint, so one
contourΘ is shared by the two applications. At run-time the two applications return two
distinct cells, but in CPA closure, the two cells share typeref u′ (assumeΘ(u) = u′),
since there is only one contour for(λz.new). At run-time, one cell is assigned with
0, and the other is assigned with(λy.y). The two assignments are both reflected on
u′ as constraintsint <: u′ and(∀ {y}.y → y\{}) <: u′, as if there were only one
cell, which is assigned with values of two different types. This leads to a type error:
(∀ {y}.y → y\{}) <: int. But if distinct contours were used for the two applications
of (λz.new), the two cells would have separate cell types and the program would be
type-checked.

This small example illustrates that data polymorphism is a problem that arises in a
function that contains a creation point (anew expression). Different applications of the
function may create different cells which are assigned with values of different types, a
precise analysis should disambiguate these cells by letting them have separate cell types.
To illustrate how data polymorphism can be modeled in our framework, we present a
refinement of CPA to give better precision in the analysis of data polymorphic programs.

Consider two applications of a single function. If the applications have same actual
argument type, then CPA generates a single contour for them. But, if the two applications
return separate mutable data structures at run-time, and the data structures are modified
differently after being returned from the two different applications, CPA would lose

Polyvariant Flow Analysis with Constrained Types 391

precision by merging the data structures together. If two separate contours were used for
the two applications, the imprecision could be avoided. In the result of CPA analysis,
such a function has a return type which is a mutable data structure with polymorphic
contents. We call such functionsdata-polymorphic. In programE2, (λz.new) is data-
polymorphic, and the other functions are data-monomorphic.

Based on the above observation, our Data-Adaptive CPA algorithm is a two-pass ana-
lysis. The first pass is just CPA. From the CPA closure, we detect a set of functions which
are possibly data-polymorphic. In the second pass, for data-polymorphic functions, a
distinct contour is generated foreveryfunction application. In this way, imprecision asso-
ciated with data-polymorphic functions can be avoided; only CPA splitting is performed
for data-monomorphic functions, avoiding generation of redundant contours.

Mutable data structures with polymorphic contents are detected from the CPA closure
with following definition:

Definition 41 (Data Polymorphic Types): Type τ is data-polymorphic in constraint
setC if any of the following cases hold:

1. τ = ref u, τv1 <: u ∈ C, τv2 <: u ∈ C, andτv1 6= τv2;
2. τ is type variablet, τ ′ <: t ∈ C, andτ ′ is data-polymorphic inC;
3. τ = ref u andu is data-polymorphic inC;
4. τ = (∀ t ′. t′ → τ ′ \ C ′) andτ ′ is data-polymorphic inC.

The above definition is inductive. The first case is the base case, detecting cell types
with polymorphic contents.The second case declares a type variable as data-polymorphic
when it has a data polymorphic lower bound. The remaining two cases are inductive cases
based on the idea that a type is data-polymorphic if it has a data-polymorphic component.
Particularly, a closure type is declared as data-polymorphic when the type of its return
value is data-polymorphic. Note that, for purely functional programs with no usage of
cells, no types would be detected as data-polymorphic.

Recall that CPA type variables are either of the formα orατv . We define an operation
erase on type variables as:erase(α) = α, erase(ατv) = α. And we extend it naturally
to types, definingerase(τ) as the type with all superscripts erased from all type variables
in τ . In particular,erase maps a closure type to the type for the lambda abstraction in
the program corresponding to the closure type, and it maps a cell type to the type for the
corresponding creation point (new expression) in the program. From now on, we callτv
an instantiationof erase(τv).

Definition 42 (Data Polymorphic Functions): For functionλx.e assigned with type
(∀ t . t → τ \ C) by the inference rules,λx.e is a data-polymorphic function in
constraint setC ′ iff there appearsτ ′ in C ′ s.t.erase(τ ′) = τ andτ ′ is data-polymorphic
in C ′.

In the above definition we use the fact that every distinct function in the program is
given a unique type(∀ t . t → τ \ C) by the inference rules. The constraint setC ′ is a
flow analysis result of the program. The conditionerase(τ ′) = τ means that the function
λx.e may return a value of typeτ ′. Sinceτ ′ is data-polymorphic inC ′, we know that,
according to analysis resultC ′, the function may return mutable data structures with
polymorphic contents, and we declare it as a data-polymorphic function.

392 S.F. Smith and T. Wang

Definition 43 (Data-Adaptive CPA): For programe, Data-Adaptive CPA is an instan-
tiation of the framework withPoly = DCPA, where

DCPA((∀ t . t → τ \ C) <: t1 → t2, τv) = Θ, where for eachα ∈ t ,

Θ(α) =

α′ whereα′ is a fresh identifier, if erase(∀ t . t → τ \ C) is type for

a data-polymorphic function inAnalysisCPA(e)
ατv otherwise

The second pass of Data-Adaptive CPA differs from CPA only when the function is
detected as data polymorphic in the closure obtained by the first CPA pass. In this case, a
new contour is always generated for every application. We now illustrate Data-Adaptive
CPA on programE2. After the first CPA pass, we have

int <: u′, (∀ {y}.y → y\{}) <: u′) ∈ AnalysisCPA(E2)

Thus u′ is data-polymorphic, and so isref u′. Sinceλz.new is inferred with type
(∀ {z, u}.z → ref u\{}) anderase(ref u′) = ref u, λz.new is a data-polymorphic
function. In the second pass, the two applications ofλz.new have separate contours, and
the program type-checks.

We briefly sketch how Data-Adaptive CPA could be applied to data polymorphism
in object-oriented programming. We illustrate the ideas by assuming an encoding of
instance variables as cells, objects as records (which we expect can be added to our
language without great difficulty), classes as class functions, and object creation as
application of class functions. An example of such an encoding is presented in [7].

Consider applying such an encoding to the Java program fragment of Figure 3: The

class Box {
public Object content;
public void set(Object obj) {

content=obj;
}
public Object get() {

return content;
}

}
...
Box box1=new Box(); box1.set(new Integer(0));
Box box2=new Box(); box2.set(new Boolean(true));
... box1.get() ...

Fig. 3.Java program exhibiting the need for data polymorphism

two new Box() expressions would be encoded as two applications of the class function
for classBox.When CPA is applied, since the two applications always apply to arguments
of same type in any object encoding, the two applications share a single contour. Thus
the twoBox instances share a same object type, and the analysis would imprecisely

Polyvariant Flow Analysis with Constrained Types 393

conclude that the result ofbox1.get() includes object typeBoolean. When Data-
Adaptive CPA is applied, from the closure of the first CPA pass, the instance variable
contentwould be detected as being associated with a data-polymorphic cell type. Since
the class function for classBox returns a object value withcontent as a component,
the class function would be detected as a data-polymorphic function. During the second
pass, the two applications of the class function would have separate contours, thus the
two instances ofBox would have separate types and the imprecision would be avoided.

For programs with much data polymorphism, Data-Adaptive CPA may become im-
practical as many functions are detected as data-polymorphic. Similar to Agesen’s CPA
implementation [2], a practical implementation should restrict the number of contours
generated.

Plevyak and Chien’s iterative flow analysis (IFA) [14] uses an iterative approach for
precise analysis of data polymorphic programs. The first pass analyzes the program by
letting objects of the same class share the same object contour. Every pass detects a set of
confluence points (imprecise flow graph nodes where different data values merge) based
on the result of the previous pass, and generates more contours with aim to resolve the
imprecision at confluence points. The iteration continues until a fixed-point is reached.
The advantage of IFA is that splitting is performed only when it is profitable, yet every
pass is a whole-program analysis and the number of passes needed could be large. Use
of declarative parametric polymorphism [5] to guide the analysis of data polymorphism
could be a completely different approach that also could be considered.

5 Terminating CPA Analyses

Any instantiation of our polyvariant framework terminates when only finitely many di-
stinct contours are generated. ThenCFA algorithms we defined terminate for arbitrary
programs since the number of call-strings of length no more thann is finite. Unfortun-
ately, the Idealized CPA and Data-Adaptive CPA algorithms fail to terminate for some
programs.

Agesen [2] develops various methods to detect recursion and avoid the generation
of infinitely many contours over recursive functions in his CPA implementation. One
approach is to construct a call-graph during analysis, and restrict the number of contours
generated along a cycle in the call-graph. However, for Idealized CPA, adding call-graph
cycle detection is not enough to ensure termination. Consider the program

E3 ≡ (λc. c := λx.x; (λd. c := (λy. d y)) !c) new

Its call-graph has only one edge: function(λc . . .) calls(λd . . .). There is no cycle in it.
Consider running Idealized CPA on the program. For each value type lower bound of of
u (assume the cell has typeref u), there is a contour generated for function(λd . . .). At
first the type forf0 = (λx.x) becomes a lower bound ofu, one contour is generated for
function(λd . . .), and the type for closuref1 = (λy.f0 y) becomes another lower bound
ofu. So another contour is generated for(λd . . .), and the type for closuref2 = (λy.f1 y)
also becomes a lower bound ofu. This process would repeat forever, with an infinite
number of contours generated for function(λd . . .). This example shows that call-graph
based approach cannot ensure the termination of Idealized CPA.

394 S.F. Smith and T. Wang

Here we present a novel approach that ensures the termination of CPA for arbitrary
programs. Our approach is based on the following observation: when Idealized CPA
fails to terminate for a program, there must be a cyclic dependency relation among
those functions having infinitely many contours. In the example, there exists such a
cyclic relation: function(λy . . .) is lexically enclosed by(λd . . .), and(λd . . .) applies
to closure values corresponding to(λy . . .). If we detect such cycles and restrict the
number of contours generated for functions appearing in cycles, non-termination could
be avoided. To be precise, the key of our method is to construct a relation among value
types during closure computation. This relation is defined as:

Definition 51 (Flow Dependency,⇒): For constraint setC, define⇒ as a relation
among value types such that if either

τv1 <: t → t′, τv2 <: t ∈ C, τv1 = (∀ t1. t1 → τ1 \ C1)

or

τv1 occurs as a subterm of(∀ t2. t2 → τ2 \ C2), τv2 = (∀ t2. t2 → τ2 \ C2), τv1 6= τv2,
and there exists at ∈ t2 such thatt appears inτv1

holds, thenerase(τv1) ⇒ erase(τv2) in C.

The first case above defines a dependency when closure typeτv1 applies to value
typeτv2. The second case defines a dependency when closure typeτv2 contains value
typeτv1 as a subterm, so that when a new contour is generated for closure typeτv2, a
new value type is created which isτv1 with some of its free type variables renamed. If
τv1 ⇒ τv2 in C1, andC1 ⊆ C2, we haveτv1 ⇒ τv2 in C2. Thus relation⇒ could be
incrementally computed along with the incremental closure computation. We abbreviate
τv1 ⇒ τv2 in C asτv1 ⇒ τv2 whenC refers to the current closure under computation.
We call τv1 ⇒ τv2, . . . , τvn ⇒ τv1 a cycle, and we writeτv1

∗⇒ τvn if there exists a
sequenceτv1 ⇒ τv2, . . . , τvn−1 ⇒ τvn.

Definition 52 (Terminating CPA): Terminating CPA is the instantiation of the frame-
work obtained by definingPoly as:

Poly((∀ t . t → τ \ C) <: t1 → t2, τv ′) = Θ, where for eachα ∈ t ,

Θ(α) =

{
αerase(τv′) if erase(τv ′) ∗⇒ erase((∀ t . t → τ \ C))
ατv′

otherwise

The new algorithm differs from Idealized CPA in just one case: when a closure of
type (∀ t . t → τ \ C) is applied to argument typeτv ′ and we haveerase(τv ′) ∗⇒
erase((∀ t . t → τ \ C)) in the current closure, then by the definition of⇒, there would
be a cycle:erase(τv ′) ∗⇒ erase((∀ t . t → τ \ C)) ⇒ erase(τv ′). In this case, instead
of renaming type variables int as in Idealized CPA, they are renamed to a form only
dependent onerase(τv ′). In this way, even if(∀ t . t → τ \ C) applies to different types
which are different instantiations oferase(τv ′), there is only one contour generated for
them. We will prove shortly that this will ensure termination of the closure computation.

Applying the algorithm to exampleE3, suppose that, by the inference rule (Abs),
function(λd . . .) has typeτd and function(λy . . .) has typeτy. Since(λd . . .) lexically
encloses(λy . . .), we haveτy ⇒ τd; and, since(λd . . .) applies to closures of(λy . . .),
we also haveτd ⇒ τy. Thus a cycle is detected, only two contours are generated for
(λd . . .), and the algorithm terminates.

Polyvariant Flow Analysis with Constrained Types 395

Theorem 53 (Termination): The Terminating CPA analysis terminates for arbitrary
programs.

Proof: Suppose not,i.e., for some program, its Terminating CPA closureC contains
a ∀ type τv0 which has an infinite number of contours. Then, there must exist at least
oneτv1 s.t. τv0 takes as arguments an infinite number of instantiations oferase(τv1),
and an infinite number of contours are generated for those applications. To have an
infinite number of instantiations oferase(τv1), there must exist a∀ type τv2 s.t. τv2
containserase(τv1) as a sub-term, every new contour ofτv2 causes the generation of a
new instantiation oferase(τv1), andτv2 has an infinite number of contours. Repeating
this process gives an infinite sequenceerase(τv0), erase(τv1), . . . erase(τvi) . . . where
for eachi, τv2∗i has infinite number of contours when applying to instantiations of
erase(τv2∗i+1), anderase(τvi) ⇒ erase(τvi+1). Since the program is finite, there are
finitely manyerase(τv) and there must be a cycle in the sequence. Thus, there existsj

s.t.erase(τv2∗j) ⇒ erase(τv2∗j+1)
∗⇒ erase(τv2∗j) andτv2∗j has an infinite number

of contours for applying to instantiations oferase(τv2∗j+1). But, by the definition of
Poly for Terminating CPA, this is impossible. 2

A terminating Data-Adaptive CPA analysis can be similarly defined except that,
besides cycles in the Flow Dependency relation, cycles in call-graph also need to be
detected.

6 Conclusions

We have defined a polymorphic constrained type-based framework for polyvariant flow
analysis. Some particular contributions include: showing how a type system with para-
metric polymorphism may be used to model polyvariance as well as data polymorphism;
modelingnCFA and CPA in our framework; a refinement of CPA in the presence of data
polymorphism; and, an approach to ensure the termination of CPA-style analyses.

Acknowledgements

We would like to thank the anonymous referees for their helpful comments.

References

[1] Ole Agesen. The cartesian product algorithm. InProceedings ECOOP’95, volume 952 of
Lecture notes in Computer Science, 1995.

[2] OleAgesen.Concrete Type Inference: Delivering Object-Oriented Applications.PhD thesis,
Stanford University, 1996. Available as Sun Labs Technical Report SMLI TR-96-52.

[3] A. Aiken and E. L. Wimmers. Type inclusion constraints and type inference. InProceedings
of the International Conference on Functional Programming Languages and Computer
Architecture, pages 31–41, 1993.

[4] Anindya Bannerjee. A modular, polyvariant, and type-based closure analysis. InInterna-
tional Conference on Functional Programming, 1997.

396 S.F. Smith and T. Wang

[5] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the future
safe for the past: Adding genericity to the Java programming language. InProceedings of
the 13th Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA-98), volume 33, 10 ofACM SIGPLAN Notices, pages 183–200, New York,
October 18–22 1998. ACM Press.

[6] Jonathan Eifrig, Scott Smith, and Valery Trifonov. Sound polymorphic type inference for
objects. InOOPSLA ’95, pages 169–184, 1995.

[7] Jonathan Eifrig, Scott Smith, andValery Trifonov. Type inference for recursively constrained
types and its application to OOP. InProceedings of the 1995 Mathematical Foundations of
Programming Semantics Conference, volume 1 ofElectronic Notes in Theoretical Computer
Science. Elsevier, 1995. http://www.elsevier.nl/locate/entcs/volume1.html.

[8] Cormac Flanagan and Matthias Felleisen. Componential set-based analysis. InProceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI-97), volume 32, 5 ofACM SIGPLAN Notices, pages 235–248, NewYork, June 15–18
1997. ACM Press.

[9] Cormac Flanagan.Effective Static Debugging via Componential Set-Based Analysis. PhD
thesis, Rice University, 1997.

[10] David Grove, Greg DeFouw, Jerey Dean, and Craig Chambers. Call graph construction in
object-oriented languages. InACM Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), 1997.

[11] Trevor Jim. What are principal typings and what are they good for? InConference Record
of the Twenty-Third Annual ACM Symposium on Principles of Programming Languages,
1996.

[12] Suresh Jagannathan and Stephen Weeks. A unified treatment of flow analysis in higher-
order languages. InConference Record of the Twenty-Second Annual ACM Symposium on
Principles of Programming Languages, pages 393–408, 1995.

[13] Flemming Nielson and Hanne Riis Nielson. Infinitary control flow analysis: A collecting
semantics for closure analysis. InConference Record of the Twenty-Fourth Annual ACM
Symposium on Principles of Programming Languages, pages 332–345, 1997.

[14] John Plevyak andAndrew Chien. Precise concrete type inference for object-oriented langua-
ges. InProceedings of the Ninth Annual ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 324–340, 1994.

[15] François Pottier. A framework for type inference with subtyping. InProceedings of the
ACM SIGPLAN International Conference on Functional Programming (ICFP ’98), volume
34(1) ofACM SIGPLAN Notices, pages 228–238. ACM, June 1999.

[16] Jens Palsberg and Christina Pavlopoulou. From polyvariant flow information to intersec-
tion and union types. InProceedings of 25th Annual SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’98), pages 197–208, 1998.

[17] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie-
Mellon University, 1991. Available as CMU Technical Report CMU-CS-91-145.

[18] J. B. Wells, Allyn Dimock, Robert Muller, and Franklyn Turbak. A typed intermediate
language for flow-directed compilation. InTheory and Practice of Software Development
(TAPSOFT), number 1214 in Lecture notes in Computer Science. Springer-Verlag, 1997.

[19] Andrew K. Wright and Suresh Jagannathan. Polymorphic splitting: an effective polyvariant
flow analysis.ACM Transactions on Programming Languages and Systems, 20(1):166–207,
January 1998.

On Exceptions Versus Continuations in the
Presence of State

Hayo Thielecke?

Department of Computer Science
Queen Mary and Westfield College,

University of London
London E1 4NS UK
ht@dcs.qmw.ac.uk

Abstract. We compare the expressive power of exceptions and conti-
nuations when added to a language with local state in the setting of
operational semantics. Continuations are shown to be more expressive
than exceptions because they can cause a function call to return more
than once, whereas exceptions only allow discarding part of the calling
context.

1 Introduction

Exceptions are part of nearly all modern programming languages, including ma-
instream ones like Java and C++. Continuations are present only in Scheme
and the New Jersey dialect of ML, yet are much more intensely studied by theo-
reticians and logicians. The relationship between exceptions and continuations
is not as widely understood as one would hope, partly because continuations,
though in some sense canonical, are more powerful than would at first appear,
and because the control aspect of exceptions can be obscured by intricacies of
typing and syntax.

We have recently shown that exceptions and continuations, when added to
a purely functional base language, cannot express each other [11]. That paper
affords a comparison of, and contrast between, exceptions and continuations
under controlled laboratory conditions, without any contamination from other
effects so to speak. In this sequel paper we would like to complete the picture
by comparing exceptions and continuations in the presence of state. It is known
(and one could call it “folklore”) that in the presence of storable procedures,
exceptions can be implemented by storing a current handler continuation. It is
also plausible that the more advanced uses of continuations cannot be done with
exceptions, even if state is available too. Hence we would expect a hierarchy
rather than incomparability in the stateful setting.

Formally, we compare expressiveness by means of contextual equivalence. For
instance, we showed that (λx.pxx)M ' pMM is a contextual equivalence in a
language with exceptions, whereas continuations can break it, so that exceptions
? Supported by EPSRC grant GR/L54639

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 397–411, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

398 H. Thielecke

cannot macro-express continuations. Apart from the formal result, we would
like to see the equivalences in the stateless setting of [11] as formalizing, at
least to some extent, the distinction between the dynamic (exceptions) and the
static (continuations) forms of control. The equivalences here give a different
perspective, namely of how both forms of control alter the meaning of procedure
call. With exceptions, a procedure call may discard part of its calling context;
with continuations, a procedure call may return any number of times. It could
be said that this distinction reflects the way that control manipulates the call
stack: exceptions may erase portions of the stack; continuations may in addition
copy them. However, we can make this distinction using only fairly high-level
definitions of languages with exceptions and continuations, and a comparison of
expressiveness. (Though ideally one would hope for a precise connection between
the equivalences that hold for the various forms of control and the demands they
put on storage allocation.)

The notion of expressiveness used here was already mentioned by Landin [6,
7], and formalized by Felleisen [3]. The reader should be warned that this notion
of expressiveness is very different from the one used by Lillibridge [8]. Lillibridge
was concerned with the typing of exceptions in ML, whereas we are concerned
only with the actual jumping, that is, raising and handling exceptions, and
invoking continuations, respectively. The typing of exceptions in ML “is totally
independent of the facility which allows us to raise and handle these wrapped-up
objects or packets” [1]. While the language for exceptions used here most closely
resembles ML, we do not rely on typing, so that everything is also applicable
to the catch/throw construct in LISP [14, 13], as it is essentially a spartan
exception mechanism without handlers.

The remainder of the paper is organized as follows. The main constructs and
their operational semantics are defined in Section 2. We first answer a question
from [11], by showing that local exceptions are more powerful than global ones
in Section 3. The main result of the paper is that continuations in the presence of
state are more powerful than exceptions, which is proved in Section 4. Section 5
sketches how the result here could fit into a more systematic comparison between
exceptions and continuations based on how often the current continuation can
be used. Section 6 concludes.

2 The Languages and Their Operational Semantics

We extend the language used in the companion paper [11] with state by adopting
the “state convention” from the Definition of Standard ML [9]. To avoid clutter,
the store is elided in the rules unless specified otherwise. Formally a rule

M1 ⇓ P1 . . . Mn ⇓ Pn

M ⇓ P

is taken to be shorthand for a rule in which the state changes are propagated:

s0 ` M1 ⇓ P1, s1 . . . sn−1 ` Mn ⇓ Pn, sn

s0 ` M ⇓ P, sn

On Exceptions Versus Continuations in the Presence of State 399

Table 1. Natural semantics of the functional subset

P ⇓ (λx. P1) Q ⇓ V P1[x := V] ⇓ R

(P Q) ⇓ R

N ⇓ n

(succ N) ⇓ (n + 1)

N ⇓ 0
(pred N) ⇓ 0

N ⇓ (n + 1)
(pred N) ⇓ n

N ⇓ 0 P1 ⇓ R

(if0 N then P1 else P2) ⇓ R

N ⇓ (n + 1) P2 ⇓ R

(if0 N then P1 else P2) ⇓ R

V ⇓ V (rec f(x). P) ⇓ (λx. P [f := (rec f(x). P)])

Table 2. Natural semantics of exceptions

N ⇓ e P ⇓ V

(raise N P) ⇓ (raise e V)
N ⇓ e P ⇓ V ′ Q ⇓ (raise e′ V ′′) e 6= e′

(handle N P Q) ⇓ (raise e′ V ′′)

N ⇓ V P ⇓ V ′ Q ⇓ V ′′

(handle N P Q) ⇓ V ′′
N ⇓ e P ⇓ V Q ⇓ (raise e V ′) (V V ′) ⇓ R

(handle N P Q) ⇓ R

N ⇓ (raise e V)
(op N) ⇓ (raise e V)

N ⇓ (raise e V)
(if0 N then P1 else P2) ⇓ (raise e V)

P ⇓ (raise e V)
(P Q) ⇓ (raise e V)

P ⇓ V Q ⇓ (raise e V ′)
(P Q) ⇓ (raise e V ′)

N ⇓ (raise e V)
(raise N P) ⇓ (raise e V)

N ⇓ V P ⇓ (raise e V ′)
(raise N P) ⇓ (raise e V ′)

N ⇓ (raise e′ V)
(handle N P Q) ⇓ (raise e′ V)

N ⇓ V P ⇓ (raise e′ V ′)
(handle N P Q) ⇓ (raise e′ V ′)

Table 3. Natural semantics of state

s ` M ⇓ a, s1

s ` (!M) ⇓ s1(a), s1

s ` M ⇓ (raise e V), s1

s ` (!M) ⇓ (raise e V), s1

s ` M ⇓ V, s1 a /∈ dom(s1)
s ` (refM) ⇓ a, s1 + {a 7→ V }

s ` M ⇓ (raise e V), s1

s ` (refM) ⇓ (raise e V), s1

s ` M ⇓ a, s1 s1 ` N ⇓ V, s2

s ` (M:=N) ⇓ V, s2 + {a 7→ V }

s ` M ⇓ (raise e V), s1

s ` (M:=N) ⇓ (raise e V), s1

s ` M ⇓ V ′, s1 s1 ` N ⇓ (raise e V), s2

s ` (M:=N) ⇓ (raise e V), s2

400 H. Thielecke

Table 4. Evaluation-context semantics of continuations and state

V ::= x | n | a | λx.M | rec f(x). M | #E

E ::= [·] | (E M) | (V E) | (succ E) | (pred E) | (if0 E then M else M)

| (callcc E) | (throw E M) | (throw V E)

| (refE) | (!E) | (E:=M) | (V :=E)

s, E[(λx. P) V] → s, E[P [x := V]]
s, E[succ n] → s, E[n + 1]
s, E[pred 0] → s, E[0]
s, E[pred (n + 1)] → s, E[n]
s, E[if0 0 then M else N] → s, E[M]
s, E[if0 (n + 1) then M else N] → s, E[N]
s, E[rec f(x). M] → s, E[M [f := (λx. (rec f(x). M) x)]]
s, E[callcc (λx. P)] → s, E[P [x := (#E)]]
s, E[throw (#E′) V] → s, E′[V]
s, E[refV] → s + {a 7→ V }, E[a] where a /∈ dom(s)
s, E[! a] → s, E[s(a)]
s, E[a:=V] → s + {a 7→ V }, E[V]

This version of exceptions (based on the “simple exceptions” of Gunter, Rémy
and Riecke [5]) differs from those in ML in that exceptions are not constructors.
The fact that exceptions in ML are constructors is relevant chiefly if one does
not want to raise them, using exn only as a universal type. For our purposes,
there is no real difference, up to an occasional η-expansion.

Definition 1. We define the following languages:

– Let λV + be defined by the operational semantics rules in Table 1.
– Let λV +exn be defined by the operational semantics rules in Tables 1 and

2.
– Let λV +state be defined by the rules in Table 3 and those in Table 1 subject

to the state convention.
– Let λV +exn+state be defined by the rules in Table 3, as well as those in

Tables 1 and 2 subject to the state convention.

The rules for state are based on those in the Definition of Standard ML [9] (rules
(99) and (100) on page 42), except that ref, ! and := are treated as special forms,
rather than identifiers. A state is a partial function from addresses to values. For
a term M , let Addr(M) be the set of addresses occurring in M . A program is a
closed term P not containing any addresses, that is Addr(P) = ∅.

We also need a language with continuations and state:

Definition 2. Let λV +cont+state be the defined by the operational semantics
in Table 4.

On Exceptions Versus Continuations in the Presence of State 401

The small-step operational semantics of λV +cont+state with evaluation con-
texts is in the style of Felleisen [12], with store added. Both addresses a and
reified continuations #E are run-time entities that cannot appear in source pro-
grams.

Let a context C be a term with a hole not containing addresses.

Definition 3. Two terms P and P ′ are contextually equivalent, P ' P ′, iff for
all contexts C, we have ∅ ` C[P] ⇓ n, s for some integer n, iff ∅ ` C[P ′] ⇓ n, s′.

Contextual equivalence is defined analogously for the small-step semantics. Ho-
wever, in the small-step semantics we will be concerned with breaking equiva-
lences, a strong version of which is the following:

Definition 4. Two terms P and P ′ can be separated iff there is a context C
such that: ∅, C[P] →∗ s, n for some integer n, and ∅, C[P ′] →∗ s′, n′ with n 6= n′.

(Again, the definition for big-step is analogous.)
Local definitions and sequencing are the usual syntactic sugar:

(let x = M in N) ≡ (λx.N) M

(M ; N) ≡ (λx.N) M where x is not free in N

3 Local Exceptions Are More Powerful than Global Ones

In this section, we show that even a small amount of state affects our comparison
of continuations and exceptions. It may be surprising that local (that is, under
a λ) declarations should have state in them, but local exception declarations
generate new exception names (somewhat like gensym in LISP), and the equality
test implicit in the exception handler is enough to make this observable.

Proposition 1. There are terms that are contextually equivalent in the language
with global exceptions λV +exn, but which can be separated if local exceptions are
added.

Proof. In λV +exn, we have a contextual equivalence

(λx.pxx) M ' pMM

The proof of [11, Proposition 1] generalizes to the untyped setting. But local
exceptions can break this equivalence: see Figure 1 for a separating context. ut
From our perspective, we would maintain that the equivalence holds for the pure
control aspect of exceptions, and is broken only because local exceptions are a
somewhat hybrid notion with state in them.

Since all we need from local exceptions here is that one term evaluates to
1 and another to 2, we do not give a formal semantics for them, referring the
reader to the Definition of Standard ML [9] (for a notation closer to the one used
here, see also [5]).

402 H. Thielecke

fun single m p = let val y = m 0 in p y y end;

fun double m p = p (m 0) (m 0);

fun localnewexn d =
let

exception e
fun r d = raise e
fun h f x = ((f 0) handle e => x)

in
fn q => q r h

end;

fun separate copier =
(copier localnewexn)

(fn q1 => fn q2 =>
q1 (fn r1 => fn h1 =>

q2 (fn r2 => fn h2 =>
h1 (fn d => h2 r1 1) 2)));

separate single;
val it = 1 : int
separate double;
val it = 2 : int

Fig. 1. A separating context using local exceptions in Standard ML

The point in separating (Figure 1) is that each call of localnewexn gene-
rates a new exception. The handler in h2 can only handle the exception raised
from r1 if h2 and r1 come from the same call of localnewexn, as they do in
separate single, but not in separate double.

Local exceptions are relevant for us for two reasons: first, they make the equi-
valence for exceptions used in [11] inapplicable; second, they can to some extent
approximate downward continuations. The example in Figure 1 does perhaps not
witness expressive power in any intuitive sense. A more practical example may be
the following: can one define a function f that passes to some unknown function
g a function h that when called jumps back into f (assuming h is called before
the call of f has terminated, because otherwise this would be beyond excepti-
ons). With downward continuations, one can easily do that: in λV +cont+state,
we would write f as λg.callcc(λk.g (λx.throw k x)). Even such pedestrian con-
trol constructs as goto in ALGOL and longjmp() in C could do this. Yet with
the simple version of exceptions we have in λV +exn, a handler in g may catch
whatever exception h wanted to use to jump into f. With local exceptions howe-
ver, f could declare a local exception for h to raise, which would thus be distinct
from any that g could handle. On the other hand, language designers specifically
chose to equip g so that it can intercept jumps from h to f: in ML even local

On Exceptions Versus Continuations in the Presence of State 403

exceptions can be handled by using a variable (or just a wildcard) pattern in the
handler, while LISP provides unwind-protect.

4 Exceptions Cannot Make Functions Return Twice

Encodings of exceptions in terms of stored continuations have been known for
some time, and can probably be regarded as folklore [5]; see also Reynolds’s
textbook [10]. It would still be worthwhile to analyze encodings of the various
notions of exceptions in more detail. But the fact that such an encoding is pos-
sible, and that consequently continuations and state are at least as expressive
as exceptions and state, will be treated as a known result here. We will strengt-
hen it by showing that continuations in the presence of state are strictly more
expressive than exceptions.

Define terms R1 and R2 in λV +state by

Rj ≡ λz.((λx.λy.(z 0; x:= !y; y:=j; !x)) (ref 0) (ref 0))

Informally, the idea is that j is hidden inside Rj . As the variables x and y are
local, the only way to observe j would be to run the assignments after the call
to z twice, so that j is first moved into y, and then x, whose value is returned
at the end. With exceptions, that is impossible.

The proof uses a variant of the technique used for exceptions in [11], exten-
ded to deal with the store. First we define a relation needed for the induction
hypothesis:

Definition 5. We define relations ∼ and ∼A, where A is a set of addresses, as
follows:

– on terms, let ∼ be the least congruence such that M ∼ M and Rj ∼ Rj′ for
any integers j and j′;

– for stores, let s ∼A s′ iff A ⊆ dom(s) = dom(s′) and for all a ∈ A, s(a) ∼
s′(a) and Addr(s(a)) ⊆ A;

– for stores together with terms, let s, M ∼A s′, M ′ iff s ∼A s′ and M ∼ M ′,
and also Addr(M) ⊆ A.

Intuitively, s, M ∼A s′, M ′ implies that M in store s and M ′ in store s′ are
linked in lockstep; but the stores may differ in addresses outside A, which are
inaccessible from M .

Lemma 1. Assume s, P ∼A s′, P ′ and s ` P ⇓ Q, s1. Then there exist a term
Q′, a store s′

1 and a set of addresses A1 such that

– s′ ` P ′ ⇓ Q′, s′
1;

– s1, Q ∼A1 s′
1, Q

′;
– A ⊆ A1 and (dom(s) \ A) ⊆ (dom(s1) \ A1);
– for all addresses a ∈ dom(s) \ A, the stores satisfy s1(a) = s(a) and s′

1(a) =
s′(a).

404 H. Thielecke

Proof. Proof by induction on the derivation of s ` P ⇓ Q, s1. We assume s, P ∼A

s′, P ′ and proceed by cases on the last rule applied in the derivation.

Case P ≡ MN and s ` MN ⇓ Q, s4. The last rule is

s ` M ⇓ λz.M1, s1 s1 ` N ⇓ V2, s2 s2 ` M1[z := V2] ⇓ Q, s4

s ` M N ⇓ Q, s4

As MN = P ∼ P ′, P ′ must be of the form M ′N ′. By the induction hypo-
thesis applied to s ` M ⇓ (λz.M1), s1, we have s′ ` M ′ ⇓ (λz.M ′

1), s
′
1, with

s1, λz.M1 ∼A1 s′
1, λz.M ′

1.
There are two possible cases implied by λz.M1 ∼ λz.M ′

1: either M1 ∼ M ′
1;

or λz.M1 = Rj and λz.M ′
1 = Rj′ . In the first case, the claim follows by

repeatedly applying the induction hypothesis. So suppose the second, that
λz.M1 = Rj and λz.M ′

1 = Rj′ . We apply the induction hypothesis, giving
us s′

1, N
′ ⇓ V ′

2 , s′
2 with s2, V2 ∼A2 s′

2, V
′
2 . Now

M1[z := V2] = (λx.λy.(V2 0; x:= !y; y:=j; !x)) (ref 0) (ref 0)

This term will allocate two new addresses, so let a, b /∈ dom(s2). Then s2 `
M1[z := V2] ⇓ Q, s4 iff

s2 + {a 7→ 0, b 7→ 0} ` V2 0; a:= !b; b:=j; !a ⇓ Q, s4

There are two possible cases, depending on whether V2 0 in store s2 + {a 7→
0, b 7→ 0} raises an exception or not. First, suppose it does, that is,

s2 + {a 7→ 0, b 7→ 0} ` V2 0 ⇓ raise e V3, s3 (1)

As s2 + {a 7→ 0, b 7→ 0}, V2 0 ∼A2 s2 + {a 7→ 0, b 7→ 0}, V ′
2 0, the induction

hypothesis implies

s′
2 + {a 7→ 0, b 7→ 0} ` V ′

2 0 ⇓ raise e V ′
3 , s′

3

with raise e V3, s3 ∼A2 raise e V ′
3 , s′

3. The exception propagates, devouring
the difference between j and j′ in this call of Rj , more technically:

s2 + {a 7→ 0, b 7→ 0} ` V2 0 ⇓ raise e V3, s3

s2 + {a 7→ 0, b 7→ 0} ` V2 0; a:= !b ⇓ raise e V3, s3

s2 + {a 7→ 0, b 7→ 0} ` V2 0; a:= !b; b:=j ⇓ raise e V3, s3

s2 + {a 7→ 0, b 7→ 0} ` V2 0; a:= !b; b:=j; !a ⇓ raise e V3, s3

That is, s2 +{a 7→ 0, b 7→ 0} ` M1[z := V2] ⇓ raise e V3, s3, hence the whole
call raises an exception

s2 + {a 7→ 0, b 7→ 0} ` MN ⇓ raise e V3, s3 (2)

Analogously for V ′
2 . Letting Q = raise e V3 and s4 = s3, we are done for

this subcase. Now assume V2 0 does not raise an exception, so that there is
a value V3 returned by the call:

s2 + {a 7→ 0, b 7→ 0} ` V2 0 ⇓ V3, s3 (3)

On Exceptions Versus Continuations in the Presence of State 405

We apply the induction hypothesis to the call V2 0, relying on the fact that V2
can only reach addresses in A2, so that it cannot modify the newly allocated
a and b:

s2 + {a 7→ 0, b 7→ 0}, V2 0 ∼A2 s′
2 + {a 7→ 0, b 7→ 0}, V ′

2 0

The induction hypothesis thus gives us s′
2 + {a 7→ 0, b 7→ 0} ` V ′

2 0 ⇓ V ′
3 , s′

3,
and s3, V3 ∼A3 s′

3, V
′
3 . As b ∈ dom(s2 +{a 7→ 0, b 7→ 0}), but b /∈ A2, we have

s3(b) = 0, and s′
3(b) = 0, and also b /∈ A3. Putting the pieces together, we

derive:

s2 + {a 7→ 0, b 7→ 0} ` (V2 0; a:= !b; b:=j; !a) ⇓ 0, s3 + {b 7→ j}
hence

s2 + {a 7→ 0, b 7→ 0}, (λx.λy.(V2 0; x:= !y; y:=j; !x)) (ref 0) (ref 0)
⇓ 0, s3 + {b 7→ j}

Analogously

s′
2 + {a 7→ 0, b 7→ 0} ` (V ′

2 0; a:= !b; b:=j′; !a) ⇓ 0, s′
3 + {b 7→ j′}

hence

s′
2 + {a 7→ 0, b 7→ 0}, (λx.λy.(V ′

2 0; x:= !y; y:=j′; !x)) (ref 0) (ref 0)
⇓ 0, s′

3 + {b 7→ j′}

Thus

s ` MN ⇓ 0, s3 + {b 7→ j} (4)

and s′ ` M ′N ′ ⇓ 0, s3+{b 7→ j′} with s3+{b 7→ j}, 0 ∼A3 s′
3+{b 7→ j′}, 0, as

required. This is the linchpin of the whole proof: b holds j or j′, respectively;
but that is of no consequence, because b, lying outside of A3, is garbage.

Case P ≡ !M and s ` !M ⇓ s1(a), s1. Hence s ` M ⇓ a, s1. As !M ∼ P ′, P ′

must be of the form !M ′ with M ∼ M ′. By the induction hypothesis, s′ `
M ′ ⇓ Q′, s′

1 with s1, a ∼A1 s′
1, Q

′, and Addr(s(a)) ⊆ A1. As this implies
a ∼ Q′, we have a = Q′, so that s′ ` M ′ ⇓ a, s′

1, which implies s′ ` !M ′ ⇓
s′
1(a), s′

1. As a = Addr(Q′) ⊆ A1, s1(a) ∼ s′
1(a). Thus s1, s1(a) ∼A1 s′

1, s
′
1(a),

as required.
Case P ≡ refM and s ` refM ⇓ a, s1 + {a 7→ V }. Hence s ` M ⇓ V, s1 with

a /∈ dom(s1). As refM ∼ P ′, P ′ must be of the form refM ′ with M ∼ M ′.
By the induction hypothesis, s′ ` M ′ ⇓ V ′, s′

1, with s1, V ∼A1 s′
1, V

′ where
A ⊆ A1. Thus s′ ` refM ′ ⇓ a, s′

1 + {a 7→ V ′}. (We can pick the same a,
because a /∈ dom(s′

1) = dom(s1).) Thus, s′ ` refM ′ ⇓ a, s′
1 +{a 7→ V ′} with

s1 + {a 7→ V }, a ∼A1∪{a} s′
1 + {a 7→ V ′}, a

Furthermore, A ⊆ A1∪{a} and dom(s)\A ⊆ dom(s1+{a 7→ V })\(A1 ∪ {a}).

406 H. Thielecke

Case P ≡ (M:=N) and s ` M:=N ⇓ V, s2 + {a 7→ V }. Hence s ` M ⇓ a, s1 and
s1 ` N ⇓ V, s2. As M:=N ∼ P ′, P ′ must be of the form M ′:=N ′, with
M ∼ M ′ and N ∼ N ′. Applying the induction hypothesis to s ` M ⇓ a, s1
gives us Q′ and s′

1 such that s′ ` M ′ ⇓ Q′, s′
1 and s1, a ∼A1 s′

1, Q
′. So a ∼ Q′,

which means Q′ = a. Applying the induction hypothesis to s1 ` N ⇓ V, s2
and s1, N ∼A1 s′

1, N
′ gives us V ′ and s′

2 such that s2, V ∼A2 s′
2, V

′. Thus
s′ ` M ′:=N ′ ⇓ V ′, s′

2 + {a 7→ V ′} with

s2 + {a 7→ V }, V ∼A2 s′
2 + {a 7→ V ′}, V ′

as required. Assume b is an address with b ∈ dom(s) \ A. Then b /∈ A2, and
s2(b) = s1(b) = s(b). Because a ∈ A2, we have b 6= a, so that the store
s2 + {a 7→ V } still maps b to s(b).

Otherwise. The last rule in the derivation must be of the form

s ` P1 ⇓ Q1, s1 . . . sn−1 ` Pn ⇓ Qn, sn

s ` P ⇓ Q, sn

Observe that the Pi in the antecedents are the immediate subterms of the P
in the conclusion, and that conversely the Q in the conclusion is assembled
from subterms of P and some of the Qi in the antecedents. Hence:

Addr(P1) ∪ . . . ∪ Addr(Pn) ⊆ Addr(P)
Addr(Q) ⊆ Addr(P) ∪ Addr(Q1) ∪ . . . ∪ Addr(Qn)

Because s, P ∼A s′, P ′, we have s ∼ s′ and P ∼ P ′. The case P ≡ Rj is
trivial; otherwise we have P ∼ P ′ due to congruence, so there are P ′

1, . . . , P
′
n

with Pi ∼ P ′
i . Now s, P1 ∼A s′, P ′

1 (because Addr(P1) ⊆ Addr(P) ⊆ A). By
the induction hypothesis, there exist Q′

1, s′
1 and A1 such that s1, Q1 ∼A1

s′
1, Q

′
1 and A ⊆ A1. Hence s1, P2 ∼A1 s′

1, P
′
2, so that we can apply the induc-

tion hypothesis again to s1 ` P2 ⇓ Q2, s2, and so on for all the antecedents.
Finally, let Q′ be built up from the Q′

i in the same way as Q is built up from
the Qi. By congruence, we have Q ∼ Q′. As sn ∼ s′

n and Addr(Q) ⊆ An, we
have sn, Q ∼An

s′
n, Q′, as required. ut

We have thus shown that terms containing R1 and R2, respectively, proceed in
lockstep. This implies that the Rj are contextually equivalent:

Lemma 2. R1 and R2 are contextually equivalent in λV +exn+state.

Proof. Let C be a context. Suppose ∅ ` C[R1] ⇓ n, s for some integer n. We
need to show that C[R2] also reduces to n. First, note that because ∼ on terms
is defined to be a congruence with R1 ∼ R2, we have C[R1] ∼ C[R2]. As neither
of these terms contains any addresses, they are related in the empty store with
respect to the empty set of addresses, that is ∅, C[R1] ∼∅ ∅, C[R2]. By Lemma 1,
we have ∅ ` C[R2] ⇓ Q′, s′, for some s′, Q′ and A such that s, n ∼A s′, Q′. This
implies n ∼ Q′, so that n = Q′. The argument for showing that ∅ ` C[R2] ⇓ n, s
implies that C[R1] in the empty store also reduces to n is symmetric. ut

On Exceptions Versus Continuations in the Presence of State 407

fun R j z = (fn x => fn y => (z 0; x := !y; y := j; !x))(ref 0)(ref 0);

fun C Rj =
callcc(fn top =>

let
val c = ref 0
val s = ref top
val d = Rj (fn p => callcc(fn r => (s := r; 0)))

in
(c := !c + 1;
if !c = 2 then d else throw (!s) 0)

end);

C(R 1);
val it = 1 : int
C(R 2);
val it = 2 : int

Fig. 2. A separating context using continuations and state in SML/NJ

Note that the proof would still go through if we changed the notion of observation
to termination, or if we restricted to the typed subset.

It remains to show that the two terms that are indistinguishable with ex-
ceptions and state can be separated with continuations and state. To separate,
the argument to Rj should save its continuation, then restart that continuation
once, so the assignments get evaluated twice, thereby assigning j to x, and thus
making the concealed j visible to the context.

Lemma 3. In λV +cont+state, R1 and R2 can be separated: there is a context
C[·] such that

∅, C[R1] →∗ s1, 1
∅, C[R2] →∗ s′

1, 2

This is actually strictly stronger than R1 and R2 not being contextually equiva-
lent (and it is machine-checkable by evaluation). We omit the lengthy calculation
here, but see Figure 2 for the separating context written in Standard ML of New
Jersey. From Lemmas 2 and 3, we conclude our main result:

Proposition 2. There are λV +state terms that are contextually equivalent in
λV +exn+state, but which can be separated in λV +cont+state.

Combined with the known encodings of exceptions in terms of continuations and
state, Proposition 2 means that continuations in the presence of state are strictly
more expressive than exceptions.

408 H. Thielecke

5 Exceptions Can Discard the Calling Context

We have established that continuations are more expressive than exceptions by
showing how they affect functions calls: using continuations, a call can return
more than once. In this section, we aim at an analogous result for showing how
exceptions give rise to added power compared to a language without control:
using exceptions, a function call may discard part of the calling context. To put
it facetiously as a contest between a term and its context, in the previous section
we concocted a calling context whose main ingredient

. . . z 0; x:=!y; y:=j; !x . . .

was chosen such that something good (for separating) would happen if only the
callee z could return twice. Now we need a calling context in which something bad
happens if the callee returns at all. One such context is given by sequencing with
divergence. (The callee could avoid ever returning to the divergence by diverging
itself, but for separating that would defeat the purpose.) More formally, there are
terms that are contextually equivalent in the language with state but no control,
and which can be separated in the language with exceptions and state (in fact,
in any language with control). Let Ω be the diverging term ((rec f(x). f x) 0).
The recursion construct is used here so that everything generalizes to the typed
subset of λV +state; if we are only concerned with the untyped language, we
could just as well put Ω = (λx.xx)(λx.xx). Analogously to Lemma 2, we have

Lemma 4. (M ; Ω) and (N ; Ω) are contextually equivalent in λV +state.

Proof. (Sketch) Let ∼ be the least congruence such that M ∼ M and M ; Ω ∼
N ; Ω for any M and N . Let ∼ be defined on states pointwise, and let s, P ∼ s′, P ′

iff s ∼ s′ and P ∼ P ′. As in Lemma 1, we need to show that if s, P ∼ s′, P ′

and s ` P ⇓ Q, s1, there is a Q such that s′ ` P ′ ⇓ Q′, s′
1 with s1, Q ∼ s′

1, Q
′.

The only non-trivial case if P ≡ (M ; Ω) and P ′ ≡ (N ; Ω). Suppose one of them
reduces to integer. If we do not have control constructs, that can only be the case
if Ω reduces to a value. But here is no V such that s, Ω ⇓ V, s1. (For suppose
they were: there would be a derivation of minimal height, which would have to
contain a smaller one.) ut
The proof is simpler than for exceptions because when we relate two terms
(M ; Ω) and (N ; Ω) it does not matter what M and N do, or what storage they
allocate, as the Ω prevents any observation.

Lemma 5. (M ; Ω) and (N ; Ω) can be separated in λV +exn+state.

Proof. Let

M = raise e 1
N = raise e 2
C = handle e [·] (λx.x)

Then we have ∅ ` C[M ; Ω] ⇓ 1, ∅ and ∅ ` C[N ; Ω] ⇓ 2, ∅ in λV +exn+state. ut

On Exceptions Versus Continuations in the Presence of State 409

Proposition 3. There are two terms in λV + that are contextually equivalent
in λV +state, but which can be separated in λV +exn+state.

So far we have used operational semantics and contextual equivalence as
a kind of probe to observe what control constructs can and cannot do. The
astute reader may however have begun to suspect what the preoccupation with
discarding the current continuation, or using it more than once, is driving at.
In the remainder of this section, we sketch how the earlier material fits in with
linearity in the setting of continuation semantics.

It is evident that in the continuation semantics of a language without control
operators the current continuation is used in a linear way. For the function type
we have

[[A → B]] = ([[B]] → Ans)(([[A]] → Ans)

In a language with callcc, the (would have to be replaced by a →, because
the current continuation could be discarded or copied. Domain-theoretically, the
linear arrow (can be interpreted as strict function space. So in the case of
M ; Ω, the meaning of a looping term is [[Ω]] =⊥, and because

[[M]] : Env → ([[B]] → Ans)(Ans

is strict in its continuation argument, it preserves ⊥. So it is immediate that

[[M ; Ω]] = ⊥ = [[N ; Ω]]

Moreover, this argument is robust in the sense that it works the same in the
presence of state. In the semantics of a language with state, expression conti-
nuations take the store as an additional argument, so that the meaning of M is
now:

[[M]] : Env → Store → ([[B]] → Store → Ans)(Ans

This is still strict in its continuation argument, mapping the divergent continua-
tion ⊥ to ⊥.

All this requires little more than linear typechecking of the CPS transform.
What seems encouraging, however, is that exceptions begin to fit into the same
framework. For a language with exceptions or dynamic catch, the continuation
semantics passes a current handler continuation. Here the current continuation
and the handler continuation together are subject to linearity (this linearity is
joint work in progress with Peter O’Hearn and Uday Reddy, which may appear
elsewhere). Assuming that all exceptions are injected into some type E (like exn
in ML), the linearity is seen most clearly in the function type:

[[A → B]] = (([[B]] → Ans)&([[E]] → Ans))(([[A]] → Ans)

(Note that this linear use of non-linear continuations is quite different from
“linear continuations” [4]). Again the linearity would remain the same if state
were added to the continuations. The current continuation can be discarded in
favour of the handler, but never used twice. Exceptions thus occupy a middle

410 H. Thielecke

ground between no control operators (linear usage of the current continuation)
and first-class continuations (intuitionistic, that is unrestricted, usage). For this
reason we regard Lemma 2, which confirms that with exceptions no function call
can return twice, as more than a random equivalence: it seems to point towards
deeper structural properties of control made observable by the presence of state
(in that the ref construct allowed us to “stamp” continuations uniquely, and
then to count their usage with assignments).

6 Conclusions and Directions for Further Research

It is striking how sensitive the comparison between exceptions and continuations
is to the chosen measure of expressiveness: in Lillibridge’s terms, “exceptions are
strictly more powerful” than continuations [8]; in terms of contextual equivalence
and in the absence of state they are incomparable [11]; while in the presence of
state, continuations are strictly more expressive than exceptions. The last of
these is perhaps the least surprising because closest to programming intuition.

Each of these notions is to some extent brittle. For instance, comparisons of
expressiveness based on the ability to encode recursion are inapplicable if the
language under consideration already has recursion—and in the presence of state
(including storable procedures) that is inevitable, as one can use Landin’s tech-
nique of “tying a knot in the store” to define the “imperative Y-combinator”.
On the other hand, the technique of witnessing expressive power by breaking
equivalences, while more widely applicable, is not completely robust either, if
other effects are added to the language that already break the equivalence:
compare Proposition 1 and [11, Proposition 1]. (Equivalences may be broken
for uninteresting as well as interesting reasons.) Furthermore, while we would
claim that Proposition 2 confirms and backs up programming intuition, it can
hardly be said to express the difference between exceptions and continuations.
A type system for the restricted (linear or affine) use of the current continua-
tion would come much closer to achieving this. Ideally, such a linear typing for
continuation-passing style together with typed equivalences of the target langu-
age should entail the equivalences considered here; we hope that our results will
give such a unified treatment something to aim for. It has been suggested to us
that “of course exceptions are weaker—they’re on the stack”. Some substance
might conceivably be added to such statements if it could be shown that linearity
in the use of continuations by dynamic control constructs is what allows control
information to be stack-allocated (see also [2, 15]).

Acknowledgements

Thanks to Jon Riecke, Peter O’Hearn and Josh Berdine.

On Exceptions Versus Continuations in the Presence of State 411

References

[1] Andrew Appel, David MacQueen, Robin Milner, and Mads Tofte. Unifying ex-
ceptions with constructors in Standard ML. Technical Report ECS LFCS 88 55,
Laboratory for Foundations of Computer Science, University of Edinburgh, June
1988.

[2] Carl Bruggeman, Oscar Waddell, and R. Kent Dybvig. Representing control in
the presence of one-shot continuations. ACM SIGPLAN Notices, 31(5):99–107,
May 1996.

[3] Matthias Felleisen. On the expressive power of programming languages. In Science
of Computer Programming, volume 17, pages 35–75, 1991.

[4] Andrzej Filinski. Linear continuations. In Proceedings of the Nineteenth Annual
ACM Symposium on Principles of Programming Languages, 1992.

[5] Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generalization of excep-
tions and control in ML-like languages. In Proceedings of the Seventh Interna-
tional Conference on Functional Programming Languages and Computer Archi-
tecture (FPCA’95), pages 12–23, La Jolla, California, June 25–28, 1995. ACM
SIGPLAN/SIGARCH and IFIP WG2.8, ACM Press.

[6] Peter J. Landin. A generalization of jumps and labels. Report, UNIVAC Systems
Programming Research, August 1965.

[7] Peter J. Landin. A generalization of jumps and labels. Higher-Order and Symbolic
Computation, 11(2), 1998. Reprint of [6].

[8] Mark Lillibridge. Exceptions are strictly more powerful than Call/CC. Technical
Report CMU-CS-95-178, Carnegie Mellon University, July 1995.

[9] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). MIT Press, 1997.

[10] John C. Reynolds. Theories of Programming Languages. Cambridge University
Press, 1998.

[11] Jon G. Riecke and Hayo Thielecke. Typed exceptions and continuations cannot
macro-express each other. In J̌ıŕı Wiedermann, Peter van Emde Boas, and Mogens
Nielsen, editors, Procedings ICALP ’99, volume 1644 of LNCS, pages 635–644.
Springer Verlag, 1999.

[12] Dorai Sitaram and Matthias Felleisen. Reasoning with continuations II: full ab-
straction for models of control. In M. Wand, editor, Lisp and Functional Pro-
gramming. ACM, 1990.

[13] Guy L. Steele. Common Lisp: the Language. Digital Press, 1990.
[14] Guy L. Steele and Richard P. Gabriel. The evolution of Lisp. In Richard L. Wexel-

blat, editor, Proceedings of the Conference on History of Programming Languages,
volume 28(3) of ACM Sigplan Notices, pages 231–270, New York, NY, USA, April
1993. ACM Press.

[15] Mitchell Wand and Dino P. Oliva. Proving the correctness of storage represen-
tations. In 1992 ACM Conferenc on Lisp and Functional Programming, pages
151–160. ACM, ACM, August 1992.

Equational Reasoning for Linking
with First-Class Primitive Modules

J. B. Wells1? and René Vestergaard1

Heriot-Watt University

Abstract. Modules and linking are usually formalized by encodings
which use the λ-calculus, records (possibly dependent), and possibly
some construct for recursion. In contrast, we introduce the m-calculus,
a calculus where the primitive constructs are modules, linking, and the
selection and hiding of module components. The m-calculus supports
smooth encodings of software structuring tools such as functions (λ-
calculus), records, objects (ς-calculus), and mutually recursive definiti-
ons. The m-calculus can also express widely varying kinds of module
systems as used in languages like C, Haskell, and ML. We prove the m-
calculus is confluent, thereby showing that equational reasoning via the
m-calculus is sensible and well behaved.

1 Introduction

A long version of this paper [44] which contains full proofs, more details and ex-
planations, and comparisons with more calculi (including the calculus of Ancona
and Zucca [5]), is available at http://www.cee.hw.ac.uk/˜jbw/papers/.

1.1 Support for Modules in Established Languages

All programming languages need support for modular programs. For languages
like C, conventions outside the definition of the language provide this support.
Each source file is compiled to an object (“.o”) file which plays the role of the
module. The namespace of modules is simply the file system and linking of mo-
dules is specified via extra-linguistic mechanisms such as makefiles. Connections
are hard-wired to the component name rather than the module name: If module
X uses module Y, modules Z and W supplying components with the same names
as those of Y can be substituted for Y. There is a single global namespace for
component names. Mutual dependencies between modules is possible, but there
is no mechanism for black-box reuse of modules and no support for hierarchical
structuring of modules within modules.

Languages like Ada [10], Modula-3 [26], and Haskell [1] support a kind of
module which we will call packages. With packages, there is a flat namespace of
modules; by convention module names correspond to filenames. Connections are
hard-wired to module names: If module X uses module Y, then any replacement
? Supporting grants: EPSRC GR/L 36963, NSF CCR–9417382 and CCR–9806747.

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 412–428, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Equational Reasoning for Linking with First-Class Primitive Modules 413

for Y must also be named Y and support at least the components used by X. As
with C, mutual dependencies are supported but black-box reuse and hierarchical
structuring are not.

The Standard ML language [36] has a very sophisticated module system
which supports functions from modules to modules. There is again a namespace
of modules, but modules can be nested hierarchically. Connections can be speci-
fied by components of module X referring to a previously defined module Y by
name. Connections can also be specified by defining a functor, a function from
modules to modules: If module X depends on a module named Y, then a functor
F can be defined whose meaning is the function (λY.X). The functor F can be
applied to other modules to yield new concrete modules. This provides flexibi-
lity in linking modules. Although ML supports black-box reuse and hierarchical
structuring, mutually recursive modules are not allowed. (Current research is
addressing this issue, e.g., [15].)

1.2 Reasonable Goals for a Module Formalism

The wide variety of existing module systems have evolved to satisfy a number of
goals. We have designed a formal system, the m-calculus, for specifying and rea-
soning about the behavior of such module systems. In designing the m-calculus,
we believed that it should satisfy as many of the following goals as possible:

Reuse without copying or modification: It should be possible (1) to use an
individual module more than once in a program, (2) for each use of a module
to be connected to other modules in different ways, and (3) for this to be done
without changing or duplicating the source code of the module. This is called
“black-box reuse” or extensibility [32]. Satisfying this requires that inter-module
connections need not be specified inside the modules. We handle this in our
m-calculus with incomplete (or abstract) modules and a linking operator.

Modules within the language: It should be possible to represent modules and
linking together with the features of a core language in a single formalism. Rea-
soning about the behavior of real systems requires reasoning about all of the
components of the real system simultaneously. Satisfying this goal requires eit-
her (1) that the module formalism should be able to represent core language
features or (2) that it should be possible to combine the module formalism with
formal systems for core languages. For our m-calculus we prefer approach (1)
although approach (2) should be possible for many core languages.

First-class modules: It should be possible (1) for linking of modules to depend
on arbitrary computations, (2) for modules to be created and loaded dynamically,
(3) for modules to be passed as parameters and stored in data structures. This
kind of power is necessary for reasoning about dynamic linking, a feature which
is used in many C implementations on an ad hoc basis and is even appearing in
language definitions such as that of Java [25]. Satisfying this requires either that
the module formalism should support general computation or that it should be
able to interact with the formalism used to represent the core language.

Closer fit to real systems: The module formalism should closely fit the actual
features of real systems. For example, this means that the coding of modules

414 J.B. Wells and R. Vestergaard

and linking via λ-calculus, records, and a fix-point operator is inappropriate
and cumbersome for languages with package-based module systems. This also
means that the module formalism should have direct support for features of
existing module systems such as mutual dependencies between modules as well
as hierarchical structuring of modules. Our m-calculus easily models all three
styles of module system that were described above. (Note that we do not deal
with type issues in this paper.)

Sound and flexible equational reasoning: The module formalism should easily
support (1) defining how a particular program will behave and (2) understan-
ding the effect of program transformations. While many techniques have been
developed for achieving (1), a particularly simple method is to define a reduction
semantics, i.e., to define a set of evaluation contexts and a set of program-to-
program rewrite rules. If this method is followed, (2) can be achieved by allowing
the use of the rewrite rules in any context, not just in evaluation contexts, pro-
vided the consistency of the rules can be established. For our m-calculus, we
establish internal consistency of the rewrite rules by proving the system is con-
fluent.

1.3 A More General Notion of Module

The key to achieving the above-mentioned goals in the m-calculus is the use of a
more general notion of module together with a linking operation. An incomplete
or abstract module (introduced as a mixin module or a mixin in [4], formalized
in a calculus in [5], and related to the notions of mixin in [17, 18, 13, 12]) is a
collection of components of which some are exported (externally visible), some
are private, and some are declared but not defined. We call the latter deferred
components. For example, consider the following incomplete modules M1 and
M2, where N(f,g,i) is an expression that depends on f, g, and i and similarly
for O(h) and P(f,i):

M1 = (module
exported f = N(f,g,i)
deferred g
deferred h
private i = O(h))

M2 = (module
deferred f
exported g = P(f,i)
deferred h
private i = Q)

Although the module components are named, the modules themselves do not
bear names, i.e., they are anonymous, like abstractions in the λ-calculus [9]. In
the m-calculus, we would write the above as:

M1 = {f . w = N(w, x, z), g . x = •, h . y = •, . z = O(y)}
M2 = {f . w = •, g . x = P(w, z), h . y = •, . z = Q}

In the m-calculus, each component has separate external and internal names
from different namespaces (like in [27]). The internal names are subject to α-
conversion and are necessary to support correctness of substitution in the m-
calculus. The private components have only an internal name; the label “ ”

Equational Reasoning for Linking with First-Class Primitive Modules 415

means “no name”. Using standard m-calculus abbreviations, we can write the
component (. z = O(y)) as simply (z = O(y)). The component body “•” indi-
cates a deferred component where the body needs to be filled in by linking.

The meaning of deferred components is established by the linking operation.
The result of the operation of linking M1 and M2, written M1 ⊕ M2, is the new
module M3:

M3 = (module
exported f = N(f,g,i)
exported g = P(f,i’)
deferred h
private i = O(h)
private i’ = Q)

In linking, deferred components are concreted by exported components of the
other module. The two modules must not export components with the same
name. Private components get renamed as necessary to avoid conflicts. Mu-
tually recursive intermodule dependencies are supported — the example f and
g components above depend on each other. In the m-calculus, M3 is:

M3 = {f . w = N(w, x, z), g . x = P(w, z′), h . y = •, . z = O(y), . z′ = Q}

The internal name of a component whose name does not match a component
in the other module can be α-converted to a fresh name to avoid conflicts.
The example does not illustrate this, but internal names of components with
matching external names are α-converted to be the same to enable linking. In
the m-calculus, M3 being the result of M1 ⊕ M2 is expressed by the single rewrite
step M1 ⊕ M2 −→ M3.

In addition to modules (which may be incomplete) and linking, only two other
kinds of operations are needed for the m-calculus. One is selecting a component
of a module, written M.f . The other needed operations are component hiding
and sieving, written M\f and M\−F , necessary for certain kinds of namespace
management. (There is also a “letrec” construct 〈M | D〉 which we could have
chosen to encode as {f . x = M, D}.f .)

1.4 Contributions of This Paper

In section 2, we define the m-calculus, a calculus with modules and linking as
primitive constructs. In the m-calculus modules are first-class. In section 3, we
illustrate how various program construction mechanisms and module systems
can be smoothly encoded in the m-calculus. In section 4, we give an overview of
the proof of confluence, the bulk of which is treated in [44]. Confluence shows
that equational reasoning via the m-calculus is sensible and well behaved and
effectively means that rewriting is “meaning”-preserving. The m-calculus is the
first calculus of linking for first-class primitive modules which has been proved
confluent. (Modules are not first-class in [14, 35] and rewriting is not proven
sound in [5].) In addition, in section 5, we discuss the related work.

416 J.B. Wells and R. Vestergaard

As limitations, this paper does not deal with issues of types, strict evalua-
tion, imperative effects, or classes and subclassing. As the λ-calculus serves for
functions, the m-calculus serves as a theoretical foundation for examining the
essence of modularity and linking. Analyses of further issues can be built on the
m-calculus as they have been built on the λ-calculus.

1.5 Acknowledgements

We thank Zena Ariola and Lyn Turbak for inspirational discussions.

2 The m-Calculus

2.1 Syntax: Preterms and Raw Terms

The preterms of the m-calculus (the members of the set PreTerm) are given by
the following grammar for M :

w, x, y, z ∈ Var (variables)
f, g, h ∈ CompName (component names)

F ⊆ CompName (sets of component names)
F ::= f | (component label)
B ::= M | • (component body)
c ::= (F . x = B) (component)

D ::= c1, . . . , cn where n ≥ 0 (component collection)
M, N ::= x (variable)

| (M\f) (component hiding)
| (M\−F) (component sieving)
| (M ⊕ N) (linking)
| (M.f) (component selection)
| {D} (module)
| 〈M | D〉 (letrec)

Let < when used on component names be some strict total order. The follo-
wing operations on components and component collections are defined. Given
a component c = (F . x = B), we define Label(c) = F , Name(c) = Label(c)
if Label(c) 6= (otherwise undefined), Binder(c) = x, and Body(c) = B. Gi-
ven a component collection D = c1, . . . , cn, we define |D| = n, D[i] = ci if
1 ≤ i ≤ n and is otherwise undefined, D[i := c] = c1, . . . , ci−1, c, ci+1, . . . , cn if
1 ≤ i ≤ n (otherwise undefined), Names(D) = {Label(c1), . . . ,Label(cn)} \ { },
and Binders(D) = {Binder(c1), . . . ,Binder(cn)}. Let D[I] = D[i1], . . . , D[in]
where {i1, . . . , in} = I ∩ {1, . . . , |D|} and i1 < . . . < in. Let D[F] =
D[i1], . . . , D[in] where {i1, . . . , in} = { i | Name(D[i]) ∈ F } and Name(D[i1]) <
. . . < Name(D[in]) (“components in D with names in F”). Let D[−F] =
D[{ i | Label(D[i]) = F /∈ F }] (“components in D with labels not in F”).

The following terminology is defined. Let c = (F . x = B) be a component
occurring at the top-level (not nested) in a collection D (i.e., c = D[i] for some

Equational Reasoning for Linking with First-Class Primitive Modules 417

i). If the label F = Label(c) is a name f (and D belongs to a module), then c can
be referred to by its name from outside the module for the purposes of linking,
selection, or hiding. In this case we may call f an external name to distinguish
it from the binder x which we may call an internal name. If F is the anonymous
marker, written “ ”, then c is unnamed and is only accessible (internally) via its
binder x. The variable x = Binder(c) is a binding occurrence of x which binds
free occurrences of x in the bodies of all of the components of D to the body of
c. If D is the environment of a letrec 〈M | D〉, then the binder for x also binds
free occurrences of x in M . Non-binding variable occurrences are normal. The
body B = Body(c) is either a preterm M or the empty body, written “•”. The
component c can be of four possible kinds, one of which will be forbidden:

– If c = (f . x = M) , then c is an exported or output component.
– If c = (f . x = •) , then c is a deferred or input component.
– If c = (. x = M) , then c is private or a binding.
– If c = (. x = •) , then this is an error (forbidden below).

A module with input components is incomplete or abstract and otherwise is
complete or concrete.

The raw terms of the m-calculus (the members of RawTerm) are the preterms
satisfying these conditions: (1) An unnamed component does not have an empty
body. (2) Two named components in a collection do not have the same name. (3)
Components in a collection bind distinct variables. (4) Components in a letrec
environment are bindings (unnamed, non-empty bodies).

We use the following conventions for syntactic abbreviations. When writing
a member of Term (cf. Section 2.3), a component (F . x = B) may be writ-
ten (F . = B) if no normal occurrences of x are bound by the component’s
binder. A component (. x = B) may be written as (x = B); a component
(f . = B) may be written (f = B). The notation M\{f1, . . . , fn} stands for
M\f1\f2 · · ·\fn where f1 < · · · < fn. The expression (let x = M in M ′) stands
for 〈M ′ | x = M〉, provided x /∈ FV(M). Parentheses may be omitted; the pos-
sible ambiguities are resolved as by giving “.”, “\”, and “\−” higher precedence
than “⊕” and making “⊕” left associative.

The free variables of a raw term are defined thus:

FV(•) = ∅ FV(x) = {x}
FV(M\f) = FV(M\−F) = FV(M.f) = FV(M)

FV(M1 ⊕ M2) = FV(M1) ∪ FV(M2)
FV({D}) = FV(D) = (

⋃
1≤i≤|D| FV(Body(D[i]))) \ Binders(D)

FV(〈M | D〉) = (FV(M) \ Binders(D)) ∪ FV(D)

The expression Capturex(M) denotes the set of bound variables in raw term M
whose binding scope includes a free occurrence of the specific variable x. The
operation M [[x := y]] renames to y all free occurrences of the variable x in M
that are not in the scope of a binding of y.

A distinguished variable 2, which is forbidden from being bound, is used as
the context hole. A context is a raw term with one occurrence of 2. Let C be

418 J.B. Wells and R. Vestergaard

a metavariable over contexts. The result of replacing the hole in C by the raw
term M (without any variable renaming) is written C [M].

2.2 Semantics: Structural and Computational Rewriting on Raw
Terms

A rule “X Y if Z” is a schema which defines a contraction relation such
that M N iff replacing the metavariables in X, Y , and Z by syntactic con-
structs of the appropriate sort yields, respectively, the terms M and N and a
true proposition. A rule schema of the form D D′ abbreviates the pair of rule
schemas {D} {D′} and 〈M | D〉 〈M | D′〉. If a rewrite relation −→ is the
contextual closure of a contraction relation , this means that −→ is the least
relation such that M N implies C[M] −→ C[N] for any context C.

The structural rewrite rules will use the following auxiliary definitions:

UnsafeNames(x, D) =
⋃

1≤i≤|D| Capturex(Body(D[i])) ∪ FV(D) ∪ Binders(D)

UnsafeNames(x, {D}) = UnsafeNames(x, D)

UnsafeNames(x, 〈M | D〉) = Capturex(M) ∪ FV(M) ∪ UnsafeNames(x, D)

BinderRenamed(i, x, y, D, D′)

⇐⇒

D = (F1 . x1 = B1), . . . ,(Fi . x = Bi), . . . ,(Fn . xn = Bn),
and D′ = (F1 . x1 = B′

1), . . . ,(Fi . y = B′
i), . . . ,(Fn . xn = B′

n),
and B′

j = Bj [[x := y]] for 1 ≤ j ≤ n

The structural rewrite rules are as follows:

(α-letrec) 〈M | D〉 〈M [[x := y]] | D′〉
if

{
y 6∈ UnsafeNames(x, 〈M | D〉),
BinderRenamed(i, x, y, D, D′)

(α-module) {D} {D′}
if

{
y 6∈ UnsafeNames(x, {D}),
BinderRenamed(i, x, y, D, D′)

(comp-order) D1, c1, D2, c2, D3 D1, c2, D2, c1, D3

(link-commute) M1 ⊕ M2 M2 ⊕ M1

The computational rewrite rules, which are presented in Figure 1, use the
following auxiliary definitions. The expression PickBody(B, B′) yields B if B′ =
•, B′ if B = •, and is otherwise undefined. DependsOnD is the least transitive,
reflexive relation on {1, . . . , |D|} such that for all i, j ∈ {1, . . . , |D|},

DependsOnD(i, j) ⇐=
(

Binder(D[j]) ∈ FV(Body(D[i]))
or (Body(D[i]) = • and Label(D[j]) 6=)

)

The structural and computational contraction relations, s and c, are
respectively the unions of the contraction relations of the structural and com-
putational rules. The structural and computational rewrite relations, 99Ks and

Equational Reasoning for Linking with First-Class Primitive Modules 419

(link) {D} ⊕ {D′} {D[−F], D′[−F], D′′}

if

F = {f1, . . . , fn} = Names(D) ∩ Names(D′),
Binders(D[−F]) ∩ (Binders(D′) ∪ FV(D′)) = ∅,
Binders(D′[−F]) ∩ (Binders(D) ∪ FV(D)) = ∅,
D[F] = (f1 . x1 = B1), . . . , (fn . xn = Bn),
D′[F] = (f1 . x1 = B′

1), . . . , (fn . xn = B′
n),

D′′ = (f1 . x1 = B′′
1), . . . ,(fn . xn = B′′

n),
B′′

i = PickBody(Bi, B
′
i) is defined for 1 ≤ i ≤ n

(subst) D D[i := (Fi . xi = C [Mj])]

if

D[i] = (Fi . xi = C [xj]),
D[j] = (Fj . xj = Mj),
Capture2(C) ∩ ({xj} ∪ FV(Mj)) = ∅,
not DependsOnD(j, i)

(subst-letrec) 〈C [x] | D〉 〈C [M] | D〉
if

{
D[i] = (. x = M) for some i,
Capture2(C) ∩ ({x} ∪ FV(M)) = ∅

(select) {D}.f 〈xi | D′〉
if

{
D = (F1 . x1 = M1), . . . ,(f . xi = Mi), . . . ,(Fn . xn = Mn),
D′ = (. x1 = M1), . . . , (. xi = Mi), . . . , (. xn = Mn)

(gc-module) {D} {D[I]}

if

I, J partition {1, . . . , |D|},
J 6= ∅,
Binders(D[J]) ∩ FV(D[I]) = ∅,
Names(D[J]) = ∅

(gc-letrec) 〈M | D〉 〈M | D[I]〉

if

I, J partition {1, . . . , |D|},
J 6= ∅,
Binders(D[J]) ∩ (FV(M) ∪ FV(D[I])) = ∅

(empty-letrec) 〈M | 〉 M

(closure) 〈{D} | D′〉 {D, D′}
if

{|D′| > 0,
Binders(D) ∩ (Binders(D′) ∪ FV(D′)) = ∅

(hide-present) {D[i := (f . x = M)]}\f {D[i := (. x = M)]}
(hide-absent) {D}\f {D}

if f 6∈ Names(D)

(sieve) {D}\−F {D′}

if

D = (F1 . x1 = B1), . . . ,(Fn . xn = Bn),
D′ = (F ′

1 . x1 = B1), . . . ,(F ′
n . xn = Bn)

F ′
i =

{
if Fi /∈ F and Bi 6= •

Fi if Fi ∈ F for 1 ≤ i ≤ n

Fig. 1. The computational rewrite rules.

420 J.B. Wells and R. Vestergaard

99Kc, are the contextual closures of s and c, respectively. The structural
equivalence relation, =s, is the transitive, reflexive, and symmetric closure of
99Ks. The (combined) contraction relation on raw terms is = s ∪ c and
the (combined) rewrite relation on raw terms is 99K = 99Ks ∪99Kc. The relations
99KKs, 99KKc, and 99KK are the transitive, reflexive closures respectively of 99Ks,
99Kc, and 99K.

While variables are subject to α-conversion, component names are not. This
is similar to the way that a linker freely relocates (rename) offsets (internal
names) within object files as necessary but does not generally rename symbol
table entries (external names).

In the presence of cyclic bindings, the usual meta-level substitution and expli-
cit substitution both result in size explosions and generally fail to provide the de-
sired equations between programs. To avoid these difficulties, unlike the calculus
of Ancona and Zucca [5], the m-calculus substitutes for one target at a time (via
the (subst) and (subst-letrec) rules) in a style pioneered by Ariola, Blom, and
Klop [8, 6, 7]. The m-calculus letrec contruct is, in a sense, a delayed substitution
that allows avoiding duplication when a component is selected from a module.

The (subst) rule in Figure 1 uses the notion of one component of a collec-
tion depending on another to exclude certain rewriting possibilities. Without
this condition of the (subst) rule, the m-calculus would not be confluent and
would need a more complicated method as in [35] to prove soundness. Read
DependsOnD(j, i) as “component D[j] depends on component D[i] in collection
D”. The first condition of DependsOnD handles syntactically evident dependen-
cies. The second condition handles the possibility that a dependency will arise
after linking the module {D} with another module. Every input component is
presumed to (potentially) depend on every output component, because there is
always a module to link with that will cause the dependency to become real.

Most of the side conditions of the computational rules which concern the
names of bound variables can be met by applying the structural rules first. This
is the case for the use of Binders by (link) and (closure), the use of Capture by
(subst) and (subst-letrec), and the way that (link) ensures that the binders
of common components have the same name before linking. The side condition
in (closure) that the component collection is non-empty merely avoids a trivial
critical pair with (empty-letrec), making proofs easier.

The possible dynamic errors that can occur during computation in the m-
calculus are (1) linking two modules whose output components are not disjoint,
(2) selecting a component from an incomplete module, (3) selecting a component
named f from a module which has no component named f , (4) hiding an input
component, and (5) sieving out an input component. The following are examples
of each of the kinds of errors:

(1) {f . w = •, g . x = M} ⊕ {f . y = N, g . z = N′}
(2) {f . w = •, g . x = M}.g
(3) {f . w = M, g . x = N}.h
(4) {f . w = •, g . x = N}\f
(5) {f . w = •, g . x = N}\−{g}

Equational Reasoning for Linking with First-Class Primitive Modules 421

2.3 The Calculus: Terms and Rewriting

The actual m-calculus is defined as M = (Term,−→) = (RawTerm, 99Kc)/ =s.
By this we mean that:

– The set Term of (real) terms is the set of equivalence classes of the raw terms
under =s (the structural equivalence relation).

– A term [M]=s (the equivalence class of raw term M under =s) rewrites to
a term [N]=s , written [M]=s −→ [N]=s , iff there are raw terms M ′ ∈ [M]=s

and N ′ ∈ [N]=s such that M ′ 99Kc N ′.

We assume throughout that raw terms are implicitly coerced to (real) terms when
placed in a context requiring a term, e.g., M −→ N means [M]=s −→ [N]=s .
Let −� be the transitive, reflexive closure of −→.

3 Encoding Features in the m-Calculus

This section illustrates smooth encodings of various program construction me-
chanisms in the m-calculus.

3.1 Functions (λ-Calculus)

We define λ-calculus as syntactic sugar for m-calculus terms as follows, where
“arg” and “res” are fixed component names (meaning “argument” and “result”):

(λx.M) = {arg . x = •, res = M}
(MM ′) = (M ⊕ {arg = M ′}).res

This encoding is faithful to the meaning of the λ-calculus. We can verify the
simulation of β-reduction as follows (where M [x := M ′] is defined appropriately):

(λx.M)M ′

= ({arg . x = •, res = M} ⊕ {arg = M ′}).res
= ({arg . x = •, res . y = M} ⊕ {arg . x = M ′}).res

where y /∈ FV(M) ∪ FV(M ′) and x /∈ FV(M ′)
(link) −→ {arg . x = M ′, res . y = M}.res
(select) −→ 〈y | x = M ′, y = M〉
(subst-letrec) −→ 〈M | x = M ′, y = M〉
(gc-letrec) −→ 〈M | x = M ′〉
(subst-letrec) −� 〈M [x := M ′] | x = M ′〉
(gc-letrec) −→ 〈M [x := M ′] | 〉
(empty-letrec) −→ M [x := M ′]

This encoding is similar to an independently developed encoding in [5]. It is only
superficially related to the encoding of λ-calculus in ς-calculus [3].

422 J.B. Wells and R. Vestergaard

3.2 Records and Record Operations

By the syntactic abbreviations defined in Section 2, record syntax is already
accepted by the m-calculus. Furthermore, the expected rewrite rule for selection
is simulated.

{f1 = M1, . . . , fn = Mn}.fi −�Mi if 1 ≤ i ≤ n

The simulation uses (select), (gc-letrec) (which can be applied because the
internal names are not used), and (empty-letrec).

3.3 Objects (ς-Calculus)

The following record-of-methods encoding for the ς-calculus [3] works fine. We
write “!” for the method invocation operator to avoid confusion with our com-
ponent selection operator “.”.

[f1 = ς(x)M1, . . . , fn = ς(x)Mn] = {f1 = λx.M1, . . . , fn = λx.Mn}
(M ⇐ f = ς(x)M ′) = M\f ⊕ [f = ς(x)M ′]

M !f = (let x = M in (x.f)x) where x is fresh

It is not hard to verify that the rewrite rules of the ς-calculus are simulated:

M !fi −�Mi[x := M]
where M = [f1 = ς(x)M1, . . . , fn = ς(x)Mn] and 1 ≤ i ≤ n

[f1 = ς(x)M1, . . . , fn = ς(x)Mn] ⇐ fi = ς(x)M ′

−� [f1 = ς(x)M1, . . . , fi = ς(x)M ′, . . . , fn = ς(x)Mn] where 1 ≤ i ≤ n

Of course, the real difficulty in dealing with objects is not in expressing their
computational meaning but rather in devising the type system, an issue which
we do not address in this paper.

3.4 Modules

C-style The m-calculus directly supports the modules of C-like languages. (The
call-by-value evaluation and imperative features of C are left to future work.)
Each object file O can be represented as a module M , and the linking of the
modules M1, . . . , Mn to form a program is represented as P = (M1 ⊕ . . . ⊕ Mn).
Invoking the program start routine is represented as (P.main).

Package-style For the package style of module system, a module named A
which imports modules named B1, . . . , Bn and exports entities named f1, . . . ,
fm is represented by an m-calculus module with one output component named
A, and n input components named B1, . . . , Bn. The output component is in
turn a module with n output components named f1, . . . , fm and some number
of private components. The linking of modules M1, . . . , Mn to form a program
is again represented as P = (M1 ⊕ . . . ⊕ Mn). Invoking the start routine of

Equational Reasoning for Linking with First-Class Primitive Modules 423

the program is now represented as (P.Main.main), i.e., there is a distinguished
module named “Main” which must export a component named “main”.

Consider for example the following Haskell program, where P(A.f) is an
expression mentioning A.f and similarly for Q(B.f,B.g) and N:

module A (f) where
f = N

module B (f, g) where
import A
g = P(A.f)

module Main (main) where
import qualified B
f = 5
main = Q(B.f,B.g,f)

This program can be encoded in the m-calculus with these three modules, where
A, B, main, and Main are component names:

MA = {A = {f = N}}
MB = {A . x = •, B = {g = P(x.f), f = x.f}}
MMain = {B . x = •, Main = {y = 5, main = Q(x.f, x.g, y)}}

Note that the unexported “f” definition in Main is handled by a private com-
ponent, so a variable “y” must be used instead of a component name. We can
check the meaning of the program by rewriting:

(MA ⊕ MB ⊕ MMain)

−�
{

A . x = {f = N}, B . z = {g = P(x.f), f = x.f},
Main = {y = 5, main = Q(z.f, z.g, y)}

}

−� {A = {f = N}, B = {g = P(N), f = N}, Main = {main = Q(N, P(N), 5)}}
Thus, the overall meaning of the program is given by:

(MA ⊕ MB ⊕ MMain).Main.main −� Q(N, P(N), 5)

In the Haskell example above, we used qualified names of the form A.f. In
module B we could have used the unqualified name f to refer to the entity A.f.
When a module imports more than one other module, a Haskell implementation
uses its knowledge of the imported modules to determine the correct meaning
of unqualified names. To encode Haskell modules into the m-calculus, we could
use a translation that fully qualifies all names in each using information about
the entire program.

However, it is desirable to reason about unqualified names in order to reason
about modules separately. Consider for example the above Haskell program with
module B replaced by the following modules:

module B (f, g, i) where
import A
import C
i = 10
g = P(f,h,i)

module C (h) where
h = R

424 J.B. Wells and R. Vestergaard

The name f in module B will end up referring to A.f, because there is no C.f,
but this can not be determined without inspecting modules A and C. The name
i in module B will only be legal if A.i and C.i do not exist. We can encode these
modules as the following (extended) m-calculus modules:

M′
B =

{
A . y = •, C . z = •, B . w = {i = 10, g = P(x.f, x.h, x.i), f = x.f},
x = (y \− {f, h, i}) ⊕ (z \− {f, h, i}) ⊕ (w \− {f, h, i})

}

MC = {C = {h = R}}

The key idea of this encoding is adding the extra private component defining x
to automatically resolve the unqualified names by picking them from whichever
module is supplying them. Then we can verify that:

(MA ⊕ M′
B ⊕ MC ⊕ MMain).Main.main −� Q(N, P(N, R, 10), 5)

In the above example, observe that if M′
B is linked with two modules M′

A and
M′

C whose A and C components both supply f, then the linking operation in M′
B

which yields the private definition of x will get stuck. This corresponds to the
fact that this is (usually) illegal in Haskell. (It is legal in Haskell for modules B
and C to import module A and export A.f, and for module D to import both B
and C and refer to the unqualified name f, because both B.f and C.f are aliases
for A.f. It seems that the m-calculus would need to be extended to reason about
sharing in order to encode this behavior.)

The Haskell module system has other features such as the ability to list which
entities to import from a module, the ability to list entities not to import with
unqualified names, local aliases for imported modules, and the ability to reexport
all of the entities imported from another module. All of these features can be
represented in the m-calculus.

ML-style The m-calculus can also represent the type-free aspects of ML-style
modules. (The types, call-by-value evaluation, and imperative features of ML are
left to future work.) Such module systems provide modules called structures as
well as a λ-calculus (functors and functor applications) for manipulating them.
A structure is essentially a dependent record; it is dependent in the sense that
later fields can refer to the values of earlier fields. A functor is essentially a λ-
abstraction whose body denotes a structure; a functor definition is the top-level
binding of a functor to its name. ML structures can be encoded in the m-calculus
as concrete modules. ML functors and functor applications can be encoded in
the m-calculus via the λ-calculus encoding given in Section 3.1.

4 The Well-Behavedness of the Rewrite Rules

This section sketches the proof that the m-calculus is not only confluent but
that it also satisfies the finite developments property. Due to space limitations,
the details are only in the long version [44].

Equational Reasoning for Linking with First-Class Primitive Modules 425

Proving these results uses a variation of the m-calculus which adds redex
marks for tracking residuals of redexes of the computational rules and pre-
venting contraction of freshly created redexes. Redexes of the (link), (select),
(empty-letrec), (closure), (hide-present), (hide-absent), and (sieve) rules
are marked at the root in the usual way. Redexes of (subst) and (subst-letrec)
are marked at the variable which is the substitution target rather than at the
root. Redexes of (gc-module) and (gc-letrec) are also not marked at the root;
instead each component that can be garbage collected is marked. All marks are
0 except for substitution marks which must be 1 greater than all of the marks in
the substitution source component body. (Due to the side condition on (subst)
using DependsOn, it is always possible to mark all redexes in a term.)

Strong normalization (termination of rewriting) of the marked m-calculus is
proved using a decreasing measure, the multiset of all marks in the term, in
the well founded multiset ordering. Weak confluence of the marked m-calculus
is proved by several lemmas established by careful case analyses together with a
top-level proof structure that separately considers structural and computational
rewrite steps. Our proof deals with and accounts for every structural operation
(i.e., α-conversion and re-ordering) explicitly.

The combination of strong normalization and weak confluence of the marked
m-calculus yields confluence of the marked m-calculus. Then developments are
defined as those rewrite sequences of the m-calculus that can be lifted to the
marked m-calculus. Using the confluence of the marked m-calculus, we prove
that the results of any two coinitial developments can be joined by two further
developments. Standard techniques then finish the proof of confluence of the m-
calculus. Confluence is shown both for −→ (on terms) and 99K (on raw terms).

5 Related Work

5.1 Calculi with Linking

Cardelli presents a simply-typed linking calculus for outermost-only modules
without recursion [14]. Drossopoulou, Eisenbach, and Wragg give a module calcu-
lus for reasoning about the quirks of Java [16]. Ancona and Zucca give a calculus
for linking modules which, although similar to ours, has a notion of substitution
which we believe is less convenient and no published proof of rewriting pro-
perties [5]. Earlier, Ancona and Zucca also presented an algebra for simplifying
module expressions which is not powerful enough to represent general compu-
tation [4]. Machkasova and Turbak give a calculus for linking outermost-only
modules in a call-by-value language [35].

From a non-equational-reasoning point of view, Flatt and Felleisen give a
calculus of modules with similar capabilities to ours [21]. Glew and Morrisett
present a module calculus tailored towards dealing with linking of object files
containing assembly-language-level code [24]. Waddell and Dybvig show how to
encode modules and linking using Scheme’s macro system [42].

426 J.B. Wells and R. Vestergaard

5.2 Mixins

Duggan and Sourelis present a system of “mixin modules” which has the unique
feature that when both modules have components with the same name, linking
the modules results in a form of merging of the same-named components [17,
18]. Bracha and Lindstrom encode mixins using λ-calculus, records, and fix-
point operators [13, 12]. Findler and Flatt describe using mixins and incomplete
modules in actual programming [19]. Flatt and Krishnamurthi and Felleisen
present a calculus with an operational semantics for mixins and classes in the
context of Java [22].

5.3 Calculi for Cycles

Inspiring much of our formulation, Ariola and Klop did ground-breaking work
on reasoning about λ-terms combined with a construct for mutually recursive
definitions [8]. Ariola and Blom refined this work to prove consistency in the
absence of confluence [6, 7].

5.4 ML-Style Modules vs. Types

Crary, Harper, and Puri describe how to extend the ML module system to deal
with recursion [15]. Earlier work to add first-class modules (i.e., higher-order
functors) to ML includes that of Russo [41], Harper and Lillibridge [27, 34], and
Leroy [33]. Harper, Mitchell, and Moggi devised the phase distinction to show the
decidability of type checking for the ML module system [28]. Jones shows how
to avoid much of the complexity of typing ML-style modules via higher-order
(parametric) signatures [31, 30].

5.5 Types vs. Concatenation and Extension for Records and
Objects

When we extend our system with types, we will closely consider previous work on
types for record concatenation [43, 29], extensible records [39, 23], and extensible
objects [20, 40, 11].

References

[1] Haskell 98: A non-strict, purely functional language. Technical report, The Haskell
98 Committee, 1 Feb. 1999. Currently available at http://haskell.org.

[2] LNCS. Springer-Verlag, 2000.
[3] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
[4] D. Ancona and E. Zucca. An algebra of mixin modules. In F. P. Presicce, editor,

Recent Trends in Algebraic Development Techniques (12th Int’l Workshop, WADT
’97 — Selected Papers), number 1376 in LNCS, pages 92–106. Springer-Verlag,
1998.

Equational Reasoning for Linking with First-Class Primitive Modules 427

[5] D. Ancona and E. Zucca. A primitive calculus for module systems. In G. Nada-
thur, editor, Proc. Int’l Conf. on Principles and Practice of Declarative Program-
ming, LNCS, Paris, France, 29 Sept. – 1 Oct. 1999. Springer-Verlag.

[6] Z. M. Ariola and S. Blom. Cyclic lambda calculi. In Theoretical Aspects Comput.
Softw. : Int’l Conf., 1997.

[7] Z. M. Ariola and S. Blom. Lambda calculi plus letrec. Submitted, 3 July 1997.
[8] Z. M. Ariola and J. W. Klop. Lambda calculus with explicit recursion. Inf. &

Comput., 139:154–233, 1997.
[9] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-

Holland, revised edition, 1984.
[10] J. G. P. Barnes. Programming in Ada 95. Addison-Wesley, 1996.
[11] V. Bono, M. Bugliesi, M. Dezani-Ciancaglini, and L. Liquori. Subtyping con-

straints for incomplete objects. Fundamenta Informaticae, 199X. To appear.
[12] G. Bracha. The Programming Language Jigsaw: Mixins, Modularity, and Multiple

Inheritance. PhD thesis, Univ. of Utah, Mar. 1992.
[13] G. Bracha and G. Lindstrom. Modularity meets inheritance. In Proc. Int’l Conf.

Computer Languages, pages 282–290, 1992.
[14] L. Cardelli. Program fragments, linking, and modularization. In Conf. Rec. POPL

’97: 24th ACM Symp. Princ. of Prog. Langs., 1997.
[15] K. Crary, R. Harper, and S. Puri. What is a recursive module? In Proc. ACM

SIGPLAN ’99 Conf. Prog. Lang. Design & Impl., 1997.
[16] S. Drossopoulou, S. Eisenbach, and D. Wragg. A fragment calculus — towards

a model of separate compilation, linking and binary compatibility. In Proc. 14th
Ann. IEEE Symp. Logic in Computer Sci., July 1999.

[17] D. Duggan and C. Sourelis. Mixin modules. In Proc. 1996 Int’l Conf. Functional
Programming, pages 262–273, 1996.

[18] D. Duggan and C. Sourelis. Parameterized modules, recursive modules, and mixin
modules. In ACM SIGPLAN Workshop on ML and its Applications, 1998.

[19] R. B. Findler and M. Flatt. Modular object-oriented programming with units
and mixins. In Proc. 1998 Int’l Conf. Functional Programming, 1998.

[20] K. Fisher, F. Honsell, and J. C. Mitchell. A lambda calculus of objects and method
specialization. Nordic Journal of Computing, 1(1):3–37, 1994.

[21] M. Flatt and M. Felleisen. Units: Cool modules for HOT languages. In Proc.
ACM SIGPLAN ’98 Conf. Prog. Lang. Design & Impl., 1998.

[22] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Conf. Rec.
POPL ’98: 25th ACM Symp. Princ. of Prog. Langs., 1998.

[23] B. R. Gaster and M. P. Jones. A polymorphic type system for extensible records
and variants. Technical Report NOTTCS-TR-96-3, Univ. of Nottingham, 1996.

[24] N. Glew and G. Morrisett. Type-safe linking and modular assembly language. In
POPL ’99 [38].

[25] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison
Wesley, 1996.

[26] S. P. Harbison. Modula-3. Prentice Hall, 1991.
[27] R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules

with sharing. In POPL ’94 [37], pages 123–137.
[28] R. Harper, J. C. Mitchell, and E. Moggi. Higher-order modules and the phase

distinction. In Conf. Rec. 17th Ann. ACM Symp. Princ. of Prog. Langs., 1990.
[29] R. Harper and B. Pierce. A record calculus based on symmetric concatenation.

Technical Report CMU-CS-90-157R, Carnegie Mellon Univ., 2 July 1991.
[30] M. P. Jones. From Hindley-Milner types to first-class structures. In Proceedings

of the Haskell Workshop, La Jolla, California, U.S.A., 25 June 1995.

428 J.B. Wells and R. Vestergaard

[31] M. P. Jones. Using parameterized signatures to express modular structure. In
Conf. Rec. POPL ’96: 23rd ACM Symp. Princ. of Prog. Langs., 1996.

[32] S. Krishnamurthi and M. Felleisen. Toward a formal theory of extensible software.
In Sixth ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Nov. 1998.

[33] X. Leroy. Manifest types, modules, and separate compilation. In POPL ’94 [37],
pages 109–122.

[34] M. Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Sy-
stems. PhD thesis, Carnegie Mellon Univ., May 1997.

[35] E. Machkasova and F. Turbak. A calculus for link-time compilation. In Proc.
European Symp. on Programming [2].

[36] R. Milner, M. Tofte, R. Harper, and D. B. MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1990.

[37] Conf. Rec. 21st Ann. ACM Symp. Princ. of Prog. Langs., 1994.
[38] Conf. Rec. POPL ’99: 26th ACM Symp. Princ. of Prog. Langs., 1999.
[39] D. Rémy. Projective ML. In Proc. 1992 ACM Conf. LISP Funct. Program., 1992.
[40] J. G. Riecke and C. A. Stone. Privacy via subsumption. Theory and Practice of

Object Systems, 199X. To appear.
[41] C. V. Russo. Types for Modules. PhD thesis, Univ. of Edinburgh, 1998.
[42] O. Waddell and R. K. Dybvig. Extending the scope of syntactic abstraction. In

POPL ’99 [38].
[43] M. Wand. Type inference for record concatenation and multiple inheritance. In

Proc. 4th Ann. Symp. Logic in Computer Sci., pages 92–97, Pacific Grove, CA,
U.S.A., June 5–8 1989. IEEE Comput. Soc. Press.

[44] J. B. Wells and R. Vestergaard. Confluent equational reasoning for linking with
first-class primitive modules (long version). A short version is [45]. Full paper
with three appendices for proofs, Aug. 1999.

[45] J. B. Wells and R. Vestergaard. Equational reasoning for linking with first-class
primitive modules. In Proc. European Symp. on Programming [2]. A long version
is [44].

Author Index

Amtoft, Torben 26

Busi, Nadia 41

Cejtin, Henry 56
Charatonik, Witold 72

Danvy, Olivier 88
Denney, Ewen 104

Elgaard, Jacob 119

Fisher, Kathleen 135

Heaton, Andrew 150
Hill, Patricia M. 150
Hofmann, Martin 165
Honda, Kohei 180
Howe, Jacob M. 200
Hughes, John 215

Jagannathan, Suresh 56
Jensen, Thomas 104
Jones, Mark P. 230

King, Andy 150, 200

Lawall, Julia L. 245

Machkasova, Elena 260
Mairson, Harry G. 245
Mauborgne, Laurent 275
Møller, Anders 119
Morrisett, Greg 366
Müller-Olm, Markus 290

Nielson, Flemming 305

Odersky, Martin 1

Pottier, François 320

Reppy, John 135
Riecke, Jon G. 135
Riis Nielson, Hanne 305
Russo, Claudio V. 336

Sagiv, Mooly 305
Schwartzbach, Michael I. 119
Seidl, Helmut 351
Smith, Frederick 366
Smith, Scott F. 382
Steffen, Bernhard 351

Thielecke, Hayo 397
Turbak, Franklyn A. 26, 260

Vasconcelos, Vasco 180
Vestergaard, René 412

Walker, David 366
Wang, Tiejun 382
Weeks, Stephen 56
Wells, J.B. 412
Wolf, Andreas 290

Yoshida, Nobuko 180

Zavattaro, Gianluigi 41

	front-matter
	Lecture Notes in Computer Science
	ProgrammingLanguages and Systems
	Foreword
	Preface
	Organization
	Program Chair
	Program Committee
	Additional Referees

	Table of Contents

	fulltext
	Introduction
	A First Example
	Functional Programming
	Imperative Programming
	Concurrency
	Foundations: The Join Calculus
	Pure Functional Calculus
	Canonical join calculus
	Object-Based Calculus

	Syntactic Abbreviations
	Conclusion and Related Work

	fulltext_001
	Introduction
	The Language
	The Type System
	Subtyping
	Typing Rules

	The Flow System
	Validity
	Taxonomy of Flow Analyses
	Reachability

	Translating Types to Flows
	Translating Flows to Types
	Round Trips
	Round Trips from the Flow World
	Round Trips from the Type World

	Discussion

	fulltext_002
	Introduction
	The Syntax and the Operational Semantics
	Comparing $unhbox voidb @x hbox {bf L}_{ntf}$ and $unhbox voidb @x hbox {bf L}$
	Comparing $unhbox voidb @x hbox {bf L}_{inp}$ and $unhbox voidb @x hbox {bf L}_{ntf}$
	Comparing $unhbox voidb @x hbox {bf L}_{ntf,inp}$ and $unhbox voidb @x hbox {bf L}_{inp}$
	Conclusion

	fulltext_003
	Introduction
	Source and Target Languages
	Flow Analysis
	Closure Conversion
	Practical Issues

	Example
	Experiments
	Related Work and Conclusions

	fulltext_004
	Introduction
	Preliminaries
	Tree Automata
	Directional Types

	Directional Type Checking
	Exponential Upper Bound
	Parameterized Complexity of Type Checking
	Incrementality and Infinite Signature

	Conclusion

	fulltext_005
	Introduction
	Related Work
	Overview

	CPS Programs
	A Stack Machine for CPS Programs with Second-Class Continuations
	One Continuation Identifier is Enough
	A Stack Machine for 2CPS Programs
	Summary and Conclusion

	A Stack Machine for CPS Programs with First-Class Continuations
	One Continuation Identifier is Not Enough
	A Stack Machine for CPS Programs with First-Class Continuations
	Summary and Conclusion

	A Segmented Stack Machine for First-Class Continuations

	fulltext_006
	The Conversion
	Overview of Formalisation
	Related Work
	Abstract Types
	Operational Semantics
	Interpretations
	Formalisation of Equivalence
	Tokenisation
	Componentisation

	Conclusion

	fulltext_007
	Introduction
	The Language
	The C Subset
	Modeling the Store
	Store Logic
	Program Annotations and Hoare Triples

	Deciding Hoare Triples
	Weak Monadic Second-Order Logic with Recursive Types
	Encoding Stores and Formulas in WSRT
	Predicate Transformation

	Deciding WSRT
	The Naive Decision Procedure
	A Decision Procedure using Guided Tree Automata

	Conclusion

	fulltext_008
	Introduction
	Inheritance from Unknown Classes
	textit {$lambda inkvarsigma $}
	Syntax
	Operational Semantics
	Reduction System

	A Simple Class Language
	Other Examples
	textsc {Moby}{} Classes
	ocaml {} Classes
	loom {} Classes
	Mixins
	Cplusplus {} and java {} Classes

	Optimization
	Applying CSE and Hoisting
	Self-Method Dispatch
	Super-Method Dispatch
	Using Static Analysis
	Final Code Generation

	Related Work
	Conclusions

	fulltext_009
	Introduction
	Preliminaries
	Lattice Theory
	Galois Connections

	Properties of Programs
	Applications
	it Pos
	it Sharing

	Operations on Concrete Domains
	Conclusion

	fulltext_010
	Introduction
	Functional Programming with C
	A Linear Functional Programming Language
	Syntax and Typing Rules
	Set-Theoretic Interpretation
	Examples
	Compilation into C
	Correctness of the Translation

	Extensions
	Conclusion
	Related Work

	fulltext_011
	Introduction
	Basic Ideas
	A Simple Principle
	Syntax
	Imperative Information Flow in Process Representation

	A Typed $pi $-Calculus for Secure Information Flow
	Overview
	Types and Subtyping
	Action Types
	Typing System
	Examples of Typing

	Elementary Properties of Typed Processes
	Imperative Information Flow as Typed Process Behaviour
	A Multi-Threaded Imperative Calculus
	Embedding
	Termination as Observable

	fulltext_012
	Introduction
	Preliminaries
	Join and Downward Closure
	Design and Implementation
	Frequency Analysis
	The GEP Representation
	Abstract Operations

	Experimental Evaluation
	Related Work
	Future Work
	Conclusions

	fulltext_013
	Introduction
	What is Type Specialisation?
	Why is Correctness Difficult?
	Outline of the Proof
	The Correctness of the Fragment
	Extensions
	Enriching the Dynamic Language
	Static Tagged Sums
	Polyvariance
	Static Functions

	Related Work
	Discussion and Conclusions

	fulltext_014
	Introduction
	Preliminaries: Type Classes in Haskell
	Example: Building a Library of Collection Types
	An Attempt to Use Constructor Classes
	Using Parametric Type Classes
	Using Functional Dependencies

	Further Examples
	Relations and Functional Dependencies
	Relations
	Functional Dependencies

	Typing with Functional Dependencies
	Ensuring that Dependencies are Valid
	Improving Inferred Types
	Detecting Ambiguity
	Generalizing Inferred Types

	Putting a Name to Functional Dependencies
	Conclusions and Future Work

	fulltext_015
	Introduction
	Preliminaries
	Continuations in the $lambda $-Calculus
	The CPS Transformation
	The DS Transformation on Graphs
	Correctness of the DS Transformation
	Embeddings of Classical Logic

	Related Work
	Future Work
	Conclusions

	fulltext_016
	Introduction
	The Module Calculus
	Term Calculus (ensuremath {@mathcal {T}})
	Core Module Calculus (ensuremath {@mathcal {C}})
	Full Module Calculus (ensuremath {@mathcal {F}})

	Meaning Preservation
	Computational Soundness
	A Novel Technique for Proving Soundness

	Weak Distributivity
	Future Work

	fulltext_017
	Introduction
	Classic Representation of Trees
	Trees and Graphs
	Best Representation

	Dealing with Cycles
	Cycle Growth and Tree Keys
	Root Unfolding and Partial Keys

	The Best Representation for Infinite Trees
	Informal Presentation
	The Algorithm
	Example
	Proof of the Algorithm

	Complexity Issues
	Application: Set-Based Analysis
	Tree Automata and Graphs
	Tree Skeletons
	Using Tree Skeletons in Analysis

	Conclusion

	fulltext_018
	Introduction
	Preliminaries
	Relativized Predicate Transformers
	An Abstract Assembler Language
	A Simple High-Level Language
	Specification of Compilation
	Correctness of Compilation
	Proof of Lemma T @ref {lem:PRCtotal}
	Conclusion

	fulltext_019
	Introduction
	The Ambient Calculus
	A Primer on Three-valued Logic
	The Abstract Domain
	A Simple Analysis
	Conclusion

	fulltext_020
	Introduction
	System's Overview
	Accurate Analysis of Pattern Matchings
	The Basic Case
	The General Case

	Record Concatenation
	The Basic Case
	The General Case

	Dynamic Messages
	Conclusion
	Rules
	Examples

	fulltext_021
	Introduction
	The Syntax of Mini-SML
	Motivating Example: The Sieve of Eratosthenes
	Review: The Static Semantics of Mini-SML
	Package Types
	The Sieve Revisited
	Another Example: Dynamically-Sized Arrays
	Contribution

	fulltext_022
	Introduction
	Programs as Control-Flow Graphs
	Parallel Execution Paths
	Semantics
	Effect Analysis
	A Constraint System for Reachability
	Extensions
	Non-Reachable Program Points
	Backward Analysis
	Local and Global State

	Conclusion and Perspectives
	Proof of Proposition T @ref {p:tensor}
	Proof of Theorem T @ref {t:reach}

	fulltext_023
	Introduction
	Informal Overview
	The Language of Locations
	Values, Instructions, and Programs
	Type Constructors
	Static Semantics
	Soundness

	Non-Linear Constraints
	Non-Linear Constraints and Dynamic Type Tests

	Related and Future Work

	fulltext_024
	Introduction
	A Framework for Polyvariant Flow Analysis
	The Language
	The Types
	The Type Inference Rules
	Computation of the Closure

	Instantiating the Framework
	nCFA Instantiation
	Idealized CPA

	Data Polymorphism
	Terminating CPA Analyses
	Conclusions

	fulltext_025
	Introduction
	The Languages and Their Operational Semantics
	Local Exceptions Are More Powerful than Global Ones
	Exceptions Cannot Make Functions Return Twice
	Exceptions Can Discard the Calling Context
	Conclusions and Directions for Further Research

	fulltext_026
	Introduction
	Support for Modules in Established Languages
	Reasonable Goals for a Module Formalism
	A More General Notion of Module
	Contributions of This Paper
	Acknowledgements

	The m-Calculus
	Syntax: Preterms and Raw Terms
	Semantics: Structural and Computational Rewriting on Raw Terms
	The Calculus: Terms and Rewriting

	Encoding Features in the m-Calculus
	Functions ($boldsymbol lambda $-Calculus)
	Records and Record Operations
	Objects ($boldsymbol varsigma $-Calculus)
	Modules

	The Well-Behavedness of the Rewrite Rules
	Related Work
	Calculi with Linking
	Mixins
	Calculi for Cycles
	ML-Style Modules vs. Types
	Types vs. Concatenation and Extension for Records and Objects

	back-matter
	Author Index

