
Lecture Notes in Computer Science 5356
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

G. Ramalingam (Ed.)

Programming
Languages
and Systems

6th Asian Symposium, APLAS 2008
Bangalore, India, December 9-11, 2008
Proceedings

13

Volume Editor

G. Ramalingam
Microsoft Research India
196/36, 2nd Main, Sadashivnagar, Bangalore 560080, India
E-mail: grama@microsoft.com

Library of Congress Control Number: 2008939381

CR Subject Classification (1998): D.3, D.2, F.3, D.4, D.1, F.4.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-89329-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89329-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12564330 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 6th Asian Symposium on Program-
ming Languages and Systems (APLAS 2008), which took place in Bangalore,
December 9 – December 11, 2008. The symposium was sponsored by the Asian
Association for Foundation of Software (AAFS) and the Indian Institute of Sci-
ence. It was held at the Indian Institute of Science, as part of the institute’s
centenary celebrations, and was co-located with FSTTCS (Foundations of Soft-
ware Technology and Theoretical Computer Science) 2008, organized by the
Indian Association for Research in Computer Science (IARCS).

In response to the call for papers, 41 full submissions were received. Each
submission was reviewed by at least four Program Committee members with
the help of external reviewers. The Program Committee meeting was conducted
electronically over a 2-week period. After careful discussion, the Program Com-
mittee selected 20 papers. I would like to sincerely thank all the members of the
APLAS 2008 Program Committee for their excellent job, and all the external
reviewers for their invaluable contribution. The submission and review process
was managed using the EasyChair system.

In addition to the 20 contributed papers, the symposium also featured three
invited talks by Dino Distefano (Queen Mary, University of London, UK), Radha
Jagadeesan (DePaul University, USA), and Simon Peyton-Jones (Microsoft Re-
search Cambridge, UK).

Many people have helped to promote APLAS as a high-quality forum in
Asia to serve programming language researchers worldwide. Following a series of
well-attended workshops that were held in Singapore (2000), Daejeon (2001), and
Shanghai (2002), the first five formal symposiums were held in Beijing (2003),
Taipei (2004), Tsukuba (2005), Sydney (2006), and Singapore (2007).

I thank the General Chair, S. Ramesh, for his support and guidance. I am
indebted to our Local Arrangements Chairs, Venkatesh-Prasad Ranganath and
Prahlad Sampath, for their considerable efforts in planning and organizing the
meeting itself. I am grateful to Komondoor V. Raghavan for serving as the
Poster Chair. I would also like to thank the Program Chairs of the past APLAS
symposiums, especially Zhong Shao and Naoki Kobayashi, and the members of
the AAFS Executive Committee, especially Joxan Jaffar, for their advice. Last
but not least, I would like to thank Deepak D’Souza and Madhavan Mukund for
making it possible to colocate APLAS with FSTTCS and for their help in all
aspects of organizing the conferences.

September 2008 G. Ramalingam

Organization

General Chair

S. Ramesh India Science Lab, GM R&D

Program Chair

G. Ramalingam Microsoft Research India

Program Committee

Tyng-Ruey Chuang Institute of Information Science, Academia
Sinica, Taiwan

Xinyu Feng Toyota Technological Institute at Chicago,
USA

Mathew Flatt University of Utah, USA
Yuxi Fu Shanghai Jiaotong University, China
Rajiv Gupta University of California, Riverside, USA
Siau-Cheng Khoo National University of Singapore, Singapore
Naoki Kobayashi Tohoku University, Japan
P. Madhusudan University of Illinois at Urbana-Champaign,

USA
Soo-Mook Moon Seoul National University, Korea
Komondoor V. Raghavan Indian Institute of Science, Bangalore, India
G. Ramalingam Microsoft Research India
Mooly Sagiv Tel Aviv University, Israel
Koushik Sen University of California, Berkeley, USA
Zhendong Su University of California, Davis, USA
Martin Sulzmann IT University of Copenhagen, Denmark
Hongseok Yang Queen Mary, University of London, UK
Nobuko Yoshida Imperial College, London, UK

Local Arrangements Chairs

Venkatesh-Prasad
Ranganath Microsoft Research India

Prahladavaradan Sampath India Science Lab, GM R&D

Poster Chair

Komondoor V. Raghavan Indian Institute of Science, Bangalore

VIII Organization

External Referees

Vicki Allan
Zachary Anderson
Jim Apple
Martin Berger
Jacob Burnim
Florin Craciun
Marco Carbone
Marco Carbone
Chin-Lung Chang
Kung Chen
Taolue Chen
Wei-Ngan Chin
Hyung-Kyu Choi
Tiago Cogumbreiro
Derek Dreyer
Yahav Eran
Min Feng
Rodrigo Ferreira
Akihiro Fujiwara
Mark Gabel
Jacques Garrigue
Alexey Gotsman
Rajiv Gupta

Ryu Hasegawa
Martin Henz
Yoshinao Isobe
Dennis Jeffrey
Pallavi Joshi
Dong-Heon Jung
Sudeep Juvekar
Akash Lal
Martin Lange
Jaemok Lee
Seong-Won Lee
Tal Lev-Ami
David Lo
Louis Mandel
Leo Meyerovich
Samuel Mimram
Rasmus Mogelberg
Soo-Mook Moon
Shin-Cheng Mu
Vijay Nagarajan
Aleksandar Nanevski
Koki Nishizawa
Hyeong-Seok Oh

Chang-Seo Park
Mauro Piccolo
Corneliu Popeea
Francois Pottier
Venkatesh-Prasad

Ranganath
Noam Rinetzky
Abhik Roychoudhury
Raluca Sauciuc
Max Schaefer
RK Shyamasundar
Konrad Slind
Kohei Suenaga
Tachio Terauchi
Chen Tian
Yih-Kuen Tsay
Dimitrios Vytiniotis
Bow-Yaw Wang
Meng Wang
Reinhard Wilhelm
Yinqi Xiao
Greta Yorsh
Frank de Boer

Sponsoring Institutions

Asian Association for Foundation of Software (AAFS)
Indian Institute of Science

Table of Contents

Abductive Inference for Reasoning about Heaps (Invited Talk) 1
Dino Distefano

A Sound Floating-Point Polyhedra Abstract Domain 3
Liqian Chen, Antoine Miné, and Patrick Cousot

A Flow-Sensitive Region Inference for CLI . 19
Alexandru Stefan, Florin Craciun, and Wei-Ngan Chin

Context-Sensitive Relevancy Analysis for Efficient Symbolic
Execution . 36

Xin Li, Daryl Shannon, Indradeep Ghosh, Mizuhito Ogawa,
Sreeranga P. Rajan, and Sarfraz Khurshid

Static Detection of Place Locality and Elimination of Runtime
Checks . 53

Shivali Agarwal, RajKishore Barik, V. Krishna Nandivada,
Rudrapatna K. Shyamasundar, and Pradeep Varma

Certified Reasoning in Memory Hierarchies . 75
Gilles Barthe, César Kunz, and Jorge Luis Sacchini

The Complexity of Coverage . 91
Krishnendu Chatterjee, Luca de Alfaro, and Rupak Majumdar

Game Characterizations of Process Equivalences . 107
Xin Chen and Yuxin Deng

Extensional Universal Types for Call-by-Value . 122
Kazuyuki Asada

Harnessing the Multicores: Nested Data Parallelism in Haskell
(Invited Talk) . 138

Simon Peyton Jones

Minimal Ownership for Active Objects . 139
Dave Clarke, Tobias Wrigstad, Johan Östlund, and
Einar Broch Johnsen

Type-Based Deadlock-Freedom Verification for Non-Block-Structured
Lock Primitives and Mutable References . 155

Kohei Suenaga

Reasoning about Java’s Reentrant Locks . 171
Christian Haack, Marieke Huisman, and Clément Hurlin

X Table of Contents

ML Modules and Haskell Type Classes: A Constructive Comparison 188
Stefan Wehr and Manuel M.T. Chakravarty

The Essence of Form Abstraction . 205
Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop

On Affine Usages in Signal-Based Communication . 221
Roberto M. Amadio and Mehdi Dogguy

Abstraction of Clocks in Synchronous Data-Flow Systems 237
Albert Cohen, Louis Mandel, Florence Plateau, and Marc Pouzet

From Authorization Logics to Types for Authorization (Invited Talk) . . . 255
Radha Jagadeesan

Interface Types for Haskell . 256
Peter Thiemann and Stefan Wehr

Exception Handlers as Extensible Cases . 273
Matthias Blume, Umut A. Acar, and Wonseok Chae

Sound and Complete Type Inference for a Systems Programming
Language . 290

Swaroop Sridhar, Jonathan S. Shapiro, and Scott F. Smith

An Operational Semantics for JavaScript . 307
Sergio Maffeis, John C. Mitchell, and Ankur Taly

JavaScript Instrumentation in Practice . 326
Haruka Kikuchi, Dachuan Yu, Ajay Chander, Hiroshi Inamura, and
Igor Serikov

Author Index . 343

Abductive Inference for Reasoning about Heaps

Dino Distefano

Queen Mary, University of London

The driving force behind Space Invader [1,2,3] — an automatic tool aiming to
perform accurate static analysis of programs using pointers — is the idea of local
reasoning, which is enabled by the Frame Rule of separation logic [4]:

{P} C {Q}
{P ∗ R} C {Q ∗ R}

In this rule R is the frame, i.e., the part of the heap which is not touched by the
execution of the command C. The Frame Rule allows pre and postconditions to
concentrate on the footprint: the cells touched by command C.

In moving from by-hand to automatic verification the ability to deduce the
frame becomes a central task. Computation of the frame is done by frame infer-
ence, which can be formally defined as:

Given (separation logic) formulae H and H ′ compute a formula X such
that H � H ′ ∗ X holds.

An algorithm for inferring frames was introduced in [5]. Interestingly, crucial
tasks necessary to perform automatic heap analysis — such as rearrangement
(materialization) and abstraction — can be reduced to solving frame inference
questions [6].

In our attempts to deal with incomplete code and increase automation in
Space Invader, we discovered that the idea of abductive inference — introduced
by Charles Peirce in the early 1900s in his writings on the scientific process [7]
— is highly valuable. When reasoning about the heap, abductive inference, often
known as inference of explanatory hypotheses, is a natural dual to the notion of
frame inference, and can be defined as follows:

Given (separation logic) formulae H and H ′ compute a formula X such
that H ∗ X � H ′ holds.

Here we call X the “anti-frame”. Inference of frame and abduction of anti-frame
together are the ingredients which allow for an analysis method where pre/post
specs of procedures are inferred independently of their context. Abduction allows
us to automatically compute (approximations of) footprint of commands and
preconditions of procedures [8].

This talk, which describes joint work with Cristiano Calcagno, Peter O’Hearn,
and Hongseok Yang, will introduce abductive inference and its use in reasoning
about heap manipulating programs. Moreover, besides exploring the relation
between abductive and frame inference, it will describe our experience in the
application of abduction for designing compositional shape analyses [8].

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 1–2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 D. Distefano

References

1. Distefano, D., O’Hearn, P., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006)

2. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P., Wies, T., Yang, H.:
Shape analysis of composite data structures. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

3. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.:
Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV 2008.
LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

4. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter data
structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, p.
1. Springer, Heidelberg (2001)

5. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation logic.
In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidelberg
(2005)

6. Distefano, D., Parkinson, M.: jStar: Towards practical verification for java. In: OOP-
SLA 2008 (to appear, 2008)

7. Peirce, C.S.: Collected papers of Charles Sanders Peirce. Harvard University Press
(1958)

8. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis.
Technical Report 2008/12, Imperial College, London (July 2008)

A Sound Floating-Point Polyhedra Abstract Domain�

Liqian Chen1,2, Antoine Miné3, and Patrick Cousot1

1 École Normale Supérieure, Paris, France
{chen,mine,cousot}@di.ens.fr

2 National Laboratory for Parallel and Distributed Processing, Changsha, P.R.China
3 CNRS, École Normale Supérieure, Paris, France

Abstract. The polyhedra abstract domain is one of the most powerful and com-
monly used numerical abstract domains in the field of static program analysis
based on abstract interpretation. In this paper, we present an implementation of
the polyhedra domain using floating-point arithmetic without sacrificing sound-
ness. Floating-point arithmetic allows a compact memory representation and an
efficient implementation on current hardware, at the cost of some loss of preci-
sion due to rounding. Our domain is based on a constraint-only representation
and employs sound floating-point variants of Fourier-Motzkin elimination and
linear programming. The preliminary experimental results of our prototype are
encouraging. To our knowledge, this is the first time that the polyhedra domain is
adapted to floating-point arithmetic in a sound way.

1 Introduction

Static analysis is a technique to automatically discover program properties at compile-
time. One important application is to prove the absence of run-time errors in a program
before actually running it. Since, in general, the exact behavior of a program cannot be
computed statically, an analysis needs to use approximation. We only consider analy-
ses that are sound, that is, compute an over-approximation of all possible behaviors
including all real errors, but may fail to prove the correctness if the approximation is
too coarse.

The abstract interpretation framework [6] allows devising static analyses that are
sound by construction. A core concept in abstract interpretation is that of an abstract
domain, that is, a set of computer-representable properties together with operators to
model soundly the semantic actions of a program (assignments, tests, control-flow joins,
loops, etc.). Specifically, we are interested in numerical abstract domains that represent
properties of the numerical variables of a program.

Among them, one of the most famous is the polyhedra abstract domain introduced in
1978 by Cousot and Halbwachs [7] which can infer linear relationships between vari-
ables in a program. It has a wide range of applications in the field of the analysis and
verification of hardware and software systems. A number of implementations for ma-
nipulating polyhedra are currently available. Recent ones include the Parma Polyhedra
Library (PPL) [3] and the APRON library [1].

� This work is supported by the INRIA project-team Abstraction common to the CNRS and the
École Normale Supérieure. This work is partially supported by the Fund of the China Schol-
arship Council and National Natural Science Foundation of China under Grant No.60725206.

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 3–18, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

4 L. Chen, A. Miné, and P. Cousot

However, most implementations suffer from scalability problems [20]. One reason
is the use of arbitrary precision rationals which are slow and may lead to excessively
large numbers even when analyzing simple programs involving only small integer val-
ues. Alternatively, one can use fast machine integers but then overflows can cause much
precision loss. Floating-point numbers are not only fast but they also allow a gradual
loss of precision. Unfortunately, the pervasive rounding errors make it difficult to guar-
antee soundness. This is the problem we tackle in this paper.

This paper presents a sound floating-point implementation of the polyhedra abstract
domain. Our approach is based on three key points: a constraint-based representation
using floating-point coefficients, a sound version of Fourier-Motzkin elimination using
floating-point arithmetic, and a rigorous linear programming method proposed in [19].
The preliminary experimental results are promising when analyzing programs involving
coefficients of large magnitude, e.g., floating-point programs.

The rest of the paper is organized as follows. Section 2 discusses some related work.
In Section 3, we review the design of the polyhedra domain based on a constraint-only
representation over the rationals. In Section 4, we adapt this framework to the floating-
point world. Section 5 discusses precision and efficiency issues due to rounding and
proposes some solutions. Section 6 presents our prototype implementation together with
preliminary experimental results. Finally, conclusions as well as suggestions for future
work are given in Section 7.

2 Related Work

The Polyhedra Abstract Domain. Common implementations of the polyhedra domain
[1,3] are based on a dual representation [7]. A polyhedron can be described as the
conjunction of a finite set of linear constraints. Dually, in the frame representation, it can
be represented as a finite collection of generators, that is, vertices or rays. Some domain
operations (e.g., meet and test) can be performed more efficiently on the constraint
representation, while some others (e.g., projection and join) can be performed more
efficiently on the frame representation. Thus, it is often necessary to convert from one
representation to the other. The dual conversions are performed using the Chernikova
algorithm [13] which can produce an output that is exponential in the size of the input.

Recently, as an alternative to the dual representation, Simon and King [23] have
demonstrated that the polyhedra domain can be fully implemented using only con-
straints, with the aim to remove the complexity bottleneck caused by the frame rep-
resentation. Our work is based on the same principle.

In order to reduce the complexity, it has also been proposed to abandon general
polyhedra in favor of less expressive weakly relational domains which are polyhedra
of restricted forms that benefit from specialized algorithms with improved complexity.
Examples include the Octagon domain [17], the Two Variables Per Inequality (TVPI)
domain [24], and the Template Constraint Matrix (TCM) domain [22].

Linear Programming. Linear Programming (LP) [2] is a method used to find the op-
timal value of some affine function (so-called objective function) subject to a finite
system of linear constraints (defining the so-called feasible space) . It is a well-studied
problem for which highly efficient algorithms have already been developed that scale up

A Sound Floating-Point Polyhedra Abstract Domain 5

to hundreds of thousands of variables and constraints. Most state-of-the-art LP solvers
use floating-point arithmetic and only give approximate solutions which may not be the
actual optimum solution or may even lie outside the feasible space. It would be possible
but costly in practice to compute the exact solution using exact arithmetic. Instead, we
take advantage of recent progress that has been made on computing rigorous bounds
for the objective value using floating-point arithmetic [19]. In particular, the ability to
infer rigorous bounds provides a basis for soundly implementing some operations in
our domain.

Note that using LP in a polyhedral analysis is not new. Sankaranarayanan et al. [22]
use it in their TCM domain which is less expressive than general polyhedra. They use
approximate floating-point LP but the result is then checked using exact arithmetic.
Simon et al. [23] consider general polyhedra but use exact arithmetic. We will consider
here general polyhedra and use only floating-point arithmetic.

Static Analysis of Floating-Point Programs. A related problem is that of analyzing
programs featuring floating-point computations. In [8], Goubault analyzes the origin
of the loss of precision in floating-point programs. ASTRÉE [5] computes the set of
reachable values for floating-point variables in order to check for run-time errors. In this
paper, we will also apply our abstract domain to the reachability problem in floating-
point programs.

Note that the polyhedra abstract domain described in this paper abstracts sets of real
numbers. As in ASTRÉE, we rely on the linearization technique of [15] to soundly
abstract floating-point computations in the analyzed program into ones over the field
of reals. The use of floating-point arithmetic in the abstraction becomes very impor-
tant for efficiency when analyzing linearized floating-point programs as they involve
coefficients of large magnitude.

Although sound implementations of floating-point interval arithmetic have been
known for a long time [18], such adaptations to relational domains are recent and few
[15]. To our knowledge, we are the first to tackle the case of general polyhedra.

3 Rational Polyhedra Domain Based on Constraints

In this section, we describe the design of a polyhedra domain based on a constraint-only
representation using rational numbers, most of which has been previously known [23]
except for the implementation of the standard widening (Sect. 3.7). Internally, a rational
polyhedron P is described as an inequality system Ax ≤ b, where A is a matrix and b
is a vector of rational numbers. It represents the set γ(P) = {x ∈ Qn | Ax ≤ b} where
each point x is a possible environment, i.e., an assignment of rational values to abstract
variables. In practice, program variables have to be mapped to these abstract variables
by a memory model (see, e.g., [16]). We will now briefly describe the implementation
of the common domain operations.

3.1 Redundancy Removal

The constraint representation of a polyhedron is not unique. For efficiency reasons, it
is desirable to have as few constraints as possible. An inequality ϕ ∈ P is said to be

6 L. Chen, A. Miné, and P. Cousot

redundant when ϕ can be entailed by the other constraints in P, that is, P \ {ϕ} |= ϕ.
Given ϕ = (

∑
i aixi ≤ b) in P, we can check whether ϕ is redundant by solving the LP

problem: μ = max
∑

i aixi subject to P \ {ϕ}. If μ ≤ b, then ϕ is redundant and can be
eliminated from P. This process is repeated until no more inequality can be removed.

3.2 Emptiness Test

A polyhedron is empty if and only if its constraint set is infeasible. The feasibility of a
constraint system is implicitly checked by LP solvers when computing the maximum
(minimum) of an objective function. During program analysis, constraints are often
added one by one. Thus, the test for emptiness can also be done incrementally. When
adding a new constraint

∑
i aixi ≤ b to a nonempty polyhedron P, we solve the LP

problem μ= min
∑

i aixi subject to P. If b < μ, the new polyhedron is indeed empty.

3.3 Projection

An important operation on polyhedra is to remove all information pertaining to a vari-
able xi without affecting the relational information between other variables. To this end,

we define the projection operator π(P, xi)
def
= { x[xi/y] | x ∈ γ(P), y ∈ Q }, where x[xi/y]

denotes the vector x in which the i-th element is replaced with y. It can be computed by
eliminating all occurrences of xi in the constraints defining P, using the classic Fourier-
Motzkin algorithm:

Fourier(P, xi)
def
=

{
(−a−i)c+ + a+i c−

∣∣∣∣∣∣ c
+ = (

∑
k a+k xk ≤ b+) ∈ P, a+i > 0

c− = (
∑

k a−k xk ≤ b−) ∈ P, a−i < 0

}

∪ { (
∑

k akxk ≤ b) ∈ P | ai = 0 }.
The projection is useful to model the non-deterministic assignment of an unknown

value to a variable xi, namely by defining: [[xi := random()]]# (P)
def
= Fourier(P, xi),

where [[·]]# (P) denotes the effect of a program statement on the polyhedron P.

3.4 Join

To abstract the control-flow join, we need to compute the union of environments of
program variables. The smallest polyhedron enclosing this union is the topological clo-
sure of the convex hull. To compute it, we use the method proposed in [23]. Given
γ(P) = {x ∈ Qn | Ax ≤ b} and γ(P′) = {x ∈ Qn | A′x ≤ b′}, the convex hull of P and P′ is

γ(PH) =

{
x ∈ Qn

∣∣∣∣∣∣ x = σ1z + σ2z′ ∧ σ1 + σ2 = 1 ∧ σ1 ≥ 0 ∧
Az ≤ b ∧ A′z′ ≤ b′ ∧ σ2 ≥ 0

}

where σ1, σ2 ∈ Q and x, z, z′ ∈ Qn. To avoid the non-linear equation x = σ1z+σ2z′, we
introduce y = σ1z as well as y′ = σ2z′ and relax the system into

γ(PCH) =

{
x ∈ Qn

∣∣∣∣∣∣ x = y + y′ ∧ σ1 + σ2 = 1 ∧ σ1 ≥ 0 ∧
Ay ≤ σ1b ∧ A′y′ ≤ σ2b′ ∧ σ2 ≥ 0

}
. (1)

Projecting out σ1, σ2, y, y′ from (1) yields the closure of the convex hull of P and P′.

A Sound Floating-Point Polyhedra Abstract Domain 7

3.5 Transfer Functions

Test Transfer Function. An affine test with exact rational arithmetic can be converted
to the form

∑
i aixi ≤ c. The result of such a test

[[∑
i aixi ≤ c

]]# (P) is simply the poly-
hedron P with the constraint

∑
i aixi ≤ c added. Note that a test may introduce re-

dundancy or make the polyhedron infeasible. More complicated cases, such as tests
involving floating-point or non-linear operations, can be soundly abstracted to the form∑

i aixi ≤ c following the method in [15]. In the worst case, we can always ignore the
effect of a test, which is sound.

Assignment Transfer Function. The assignment of some expression e to x j can be
modeled using projection, test, and variable renaming as follows:

[[x j := e]]#(P)
def
= (Fourier([[x′j − e = 0]]#(P), x j))[x′j/x j] .

First, a fresh variable x′j is introduced to hold the value of the expression. Then, we
project out x j by Fourier-Motzkin elimination and the final result system is obtained by
renaming x′j back to x j. The temporary variable x′j is necessary for invertible assign-
ments such as x := x + 1.

3.6 Inclusion Test

Inclusion test between two polyhedra P1 and P2, denoted P1 	 P2, reduces to the
problem of checking whether each inequality in P2 is entailed by P1, which can be
implemented using LP. For each

∑
i aixi ≤ b in P2, compute μ = max

∑
i aixi subject to

P1 . If μ > b, the inclusion does not hold.

3.7 Widening

For loops, widening ensures an efficient analysis by accelerating the fixpoint computa-
tion [6]. The first widening operator on polyhedra was proposed in [7] using the dual
representation. Its improvement, presented in [9], is now the standard widening:

Definition 1 (Standard widening). Given two polyhedra P1 	 P2, represented by sets
of linear inequalities, we define

P1�P2
def
= S1 ∪ S2

where
S1 = { ϕ1 ∈ P1 | P2 |= ϕ1 },
S2 = { ϕ2 ∈ P2 | ∃ ϕ1 ∈ P1, γ(P1) = γ((P1 \ {ϕ1 }) ∪ {ϕ2 }) }.

The key point of the standard widening is to keep not only the inequalities S1 from P1

satisfied by P2, but also the inequalities S2 from P2 that are mutually redundant with
an inequality of P1 with respect to P1. S2 ensures that the result does not depend on the
representation of P1 and P2. Note that S1 can be computed using entailment checks.
The following property shows that S2 also reduces to entailment checks, which shows
that the standard widening can be efficiently implemented using LP only.

Property 1. ∀ϕ1 ∈ P1, ϕ2 ∈ P2, γ(P1) = γ((P1 \ {ϕ1}) ∪ {ϕ2}) iff P1 |= ϕ2 and ((P1 \
{ϕ1}) ∪ {ϕ2}) |= ϕ1.

8 L. Chen, A. Miné, and P. Cousot

4 Floating-Point Polyhedra Domain

In this section, we present a floating-point implementation of the polyhedra domain. A
floating-point polyhedron is represented as an inequality system Ax ≤ b where coeffi-
cients in A and b are now floating-point numbers. Such a system still represents a set of
environments with rational-valued variables, namely { x ∈ Qn | Ax ≤ b} where Ax ≤ b
is interpreted mathematically (rather than in floating-point semantics).

In order to distinguish floating-point arithmetic operations from exact arithmetic
ones, we introduce additional notations. As usual, {+,−,×, /} are used as exact ratio-
nal arithmetic operations. The corresponding floating-point operations are denoted by
{⊕r,r,⊗r,�r}, tagged with a rounding mode r ∈ {−∞,+∞} (−∞: downward; +∞: up-
ward). The floating-point unary minus is exact and does not incur rounding. For the
sake of convenience, we occasionally use the command roundup (respectively round-
down) to change the current rounding mode to upward (respectively downward). All the
algorithms in this section are implemented in floating-point arithmetic.

4.1 Linearization

We say that a point x satisfies some linear interval inequality ϕ :
∑

k [ak, bk] × xk ≤ c,
denoted by x ∈ γ(ϕ), when for all k there is some dk ∈ [ak, bk] such that

∑
k dk × xk ≤ c

holds. This definition lifts to systems of inequalities straightforwardly and corresponds
to the classic notion of weak solution in the field of linear interval optimization [21].

A linear inequality in the common sense is simply a linear interval inequality where
all the coefficients are singletons (scalars). Our internal representation of a polyhedron
supports only linear (non-interval) inequalities, while as we will see in the following
sections, some operations of our domain naturally output linear interval inequalities.
To convert a linear interval inequality ϕ to a linear inequality, we adapt the lineariza-
tion technique from [15]. Our linearization operator ζ(ϕ, x) is defined with respect to a
bounding box x of variables as follows:

Definition 2 (Linearization operator). Let ϕ :
∑

k [ak, bk] × xk ≤ c be a linear inter-
val inequality and x := [x, x] be the bounding box of x.

ζ(ϕ, x)
def
=
∑
k

dk × xk ≤ c ⊕+∞
⊕

k
+∞ (max{bk +∞ dk, dk +∞ ak} ⊗+∞ |xk|)

where dk can be any floating-point number inside [ak, bk] and |xk | = max{−xk, xk}.
In theory, dk can be any floating-point number in [ak, bk]. In practice, we often choose
the midpoint dk = (ak⊕r bk)�r 2 which causes the least loss of precision. More strategies
to choose a proper dk will be discussed in Sect. 5.3.

Example 1. Consider the linear interval inequality [0, 2]x + [1, 1]y ≤ 2 with respect
to the bounding box x, y ∈ [−10, 5]. If we choose the midpoint of [ak, bk] as dk, the
linearization result will be x + y ≤ 12 (since 2 ⊕+∞ max{2 +∞ 1, 1 +∞ 0} ⊗+∞ 10 ⊕+∞
max{1 +∞ 1, 1 +∞ 1} ⊗+∞ 10 = 12). Note that some loss of precision happens here,
e.g., the point (0,12) satisfies the result inequality x + y ≤ 12 but does not satisfy the
original interval inequality [0, 2]x + [1, 1]y ≤ 2.

A Sound Floating-Point Polyhedra Abstract Domain 9

Theorem 1 (Soundness of the linearization operator). Given a linear interval in-
equality ϕ and a bounding box x, ζ(ϕ, x) soundly over-approximates ϕ, that is, any
point in x that also satisfies ϕ satisfies ζ(ϕ, x): ∀x ∈ x, x ∈ γ(ϕ)⇒ x ∈ γ(ζ(ϕ, x)).

Proof. For any linear interval inequality ϕ :
∑

k [ak, bk] × xk ≤ c,∑
k [ak, bk] × xk ≤ c

⇐⇒ ∑k (dk + [ak − dk, bk − dk]) × xk ≤ c
⇐⇒ ∑k dk × xk ≤ c +

∑
k [dk − bk, dk − ak] × xk

=⇒ ∑
k dk × xk ≤ (c ⊕+∞

⊕
k
+∞(max{bk +∞ dk, dk +∞ ak} ⊗+∞ |xk |) ��

Note that although the value of the right hand of ζ(ϕ, x) depends on the evaluation or-
dering of the summation

⊕
+∞, the linearization operator is still sound because in fact

every ordering gives an upper bound of c +
∑

k [dk − bk, dk − ak] × xk in the real field.

4.2 Floating-Point Fourier-Motzkin Elimination

The key idea in building a sound floating-point Fourier-Motzkin elimination algorithm
is to use interval arithmetic with outward rounding (i.e., rounding upper bounds up and
lower bounds down). Then, using the linearization operator introduced in Sect. 4.1, the
interval coefficients in the result can be linearized to scalars.

Assume we want to eliminate variable xi from the following two inequalities
{

a+i xi +
∑

k�i a+k × xk ≤ c+, where a+i > 0
a−i xi +

∑
k�i a−k × xk ≤ c−, where a−i < 0.

(2)

After dividing (2) by the absolute value of the coefficient of xi using interval arithmetic
with outward rounding, we get
{

xi +
∑

k�i [a+k �−∞ a+i , a
+
k �+∞ a+i] × xk ≤ c+ �+∞ a+i , where a+i > 0

−xi +
∑

k�i [a−k �−∞ (a−i), a−k �+∞ (a−i)] × xk ≤ c− �+∞ (a−i), where a−i < 0

and by addition
∑

k�i [(a+k �−∞ a+i) ⊕−∞ (a−k �−∞ (a−i)), (a+k �+∞ a+i) ⊕+∞ (a−k �+∞ (a−i))] × xk

≤ (c+ �+∞ a+i) ⊕+∞ (c− �+∞ (a−i)).
(3)

Then (3) can be abstracted into a linear (non-interval) form by the linearization operator
ζ. We denote as Fourier f (P, xi) the result system with xi projected out from P this way.

Theorem 2 (Soundness of the floating-point Fourier-Motzkin elimination). Given
a polyhedron P, a variable xi and a bounding box x, any point in x that also sat-
isfies Fourier(P, xi) satisfies Fourier f (P, xi): ∀x ∈ x, x ∈ γ(Fourier(P, xi)) ⇒ x ∈
γ(Fourier f (P, xi)).

The key point is that the coefficient of the variable to be eliminated can always be re-
duced exactly to 1 or −1 by division. In some cases, an alternative algorithm can be
used. Suppose that a+i ⊗−∞ (a−i) = a+i ⊗+∞ (a−i), i.e., the floating-point multiplica-
tion of a+i and a−i is exact. Then, the Fourier-Motzkin elimination can be done in a
multiplicative way:

10 L. Chen, A. Miné, and P. Cousot

∑
k�i [(a+k ⊗−∞ (a−i)) ⊕−∞ (a−k ⊗−∞ a+i), (a+k ⊗+∞ (a−i)) ⊕+∞ (a−k ⊗+∞ a+i)] × xk

≤ (c+ ⊗+∞ (a−i)) ⊕+∞ (c− ⊗+∞ a+i) .
(4)

Note that the condition a+i ⊗−∞ (a−i) = a+i ⊗+∞ (a−i) guarantees that the coefficient
of xi is exactly 0 in (4). When all the coefficients in (2) are small integers, (4) often
gives an exact result, which is rarely the case of (3). In practice, the Fourier-Motzkin
elimination by multiplication is very useful for producing constraints with regular co-
efficients, especially for programs with only integer variables.

Example 2. Consider two inequalities 3x+ y ≤ 10 and −7x+ y ≤ 10 with respect to the
bounding box x, y ∈ (−∞, 10]. After eliminating the variable x, (4) will result in y ≤ 10
while (3) will result in y ≤ +∞.

4.3 Rigorous Linear Programming

The rigorous bounds for the objective function in floating-point linear programming can
be derived by a cheap post-processing on the approximate result given by a standard
floating-point LP solver [19].

Assume the linear program is given in the form

min cT x
s.t. Ax ≤ b

the dual of which is
max bT y
s.t. AT y = c, y ≤ 0.

Suppose that y is an approximate solution of the dual program, then we calculate a
rigorous interval r using interval arithmetic with outward rounding as follows:

r := AT y − c ∈ r = [r, r].

Recall that y ≤ 0 and Ax ≤ b, hence yT Ax ≥ yT b. By introducing the interval vector
x := [x, x], we get

cT x = (AT y − r)T x = yT Ax − rT x ≥ yT b − rT x ∈ yT b − rT x
and

μ := inf(yT b − rT x) (5)

is the desired rigorous lower bound for cT x. The value of (5) can be calculated as follows
using floating-point arithmetic:

rounddown;
r = AT y − c;
t = yT b;
roundup;
r = AT y − c;
μ = max{ rT x, rT x, rT x, rT x } − t;
μ = −μ;

Note that the precision of such a rigorous bound depends on the range of the bound-
ing box x. Moreover, finding a rigorous upper bound for the maximum objective func-
tion can be reduced to the minimum case as max cT x = −min (−c)T x.

A Sound Floating-Point Polyhedra Abstract Domain 11

4.4 Soundness of the Floating-Point Polyhedra Domain

Observe that the rational domain of Sect. 3 relies on two primitives: Fourier-Motzkin
elimination and linear programming. Substituting the two primitives with the floating-
point Fourier-Motzkin elimination algorithm (Sect. 4.2) and rigorous linear program-
ming (Sect. 4.3) yields the floating-point polyhedra domain. Note that both primitives
may produce floating-point overflows or the value NaN (Not a Number). In these cases,
a sound Fourier-Motzkin elimination can be obtained by discarding the constraint. With
respect to the rigorous linear programming, we return +∞ (respectively −∞) as the
maximum (respectively minimum) objective value.

The soundness of the whole floating-point polyhedra domain is guaranteed by the
soundness of each domain operation, which means that each operation should result in
a conservative answer with respect to the exact one. Due to the floating-point Fourier-
Motzkin elimination algorithm of Sect. 4.2, the projection operator will always result in
a sound over-approximated polyhedron compared to the exact one, which implies the
soundness of both the join (convex hull) operator and the assignment transfer operator.
The soundness of redundancy removal and the test transfer operator is obvious. For the
entailment check of an inequality with respect to a polyhedron by rigorous LP, a positive
answer indicates actual entailment while a negative answer is inconclusive. Indeed, if
an inequality is entailed but is close to or touches the polyhedron, rigorous LP may give
a too conservative objective value and fail to declare the entailment. As a consequence,
our inclusion test actually outputs either “true” or “don’t know”. This kind of approxi-
mation does not alter the overall soundness of an analysis by abstract interpretation. A
similar argument can be given for the incremental emptiness test. Another consequence
is that our widening may keep fewer inequalities than an exact implementation would,
but this is also sound.

5 Precision and Efficiency Issues

Each operation of the floating-point polyhedra domain outputs over-approximations of
those of the rational domain, which indicates that some loss of precision may happen
along with each operation. Also, the conservative results returned by rigorous LP cause
efficiency degradations since redundancy removal may fail to remove many constraints
generated during Fourier-Motzkin elimination, making the system larger and larger as
the analysis proceeds. This section addresses these problems from a practical point of
view. We propose some tactics to regain some precision and make the domain more
efficient while still retaining soundness.

5.1 Bounds Tightening

The bounds of variables play a very important role in our domain, as they determine how
much precision is lost in both the linearization and the rigorous LP. The bounds may
change along with the operations on the polyhedra, especially when the polyhedron is
restricted by adding new constraints. In this case, the bounds must be updated. Bounds
tightening can be achieved using different strategies.

12 L. Chen, A. Miné, and P. Cousot

Rigorous Linear Programming. A simple way to tighten the bound information of a
polyhedron P is to use the rigorous LP, to calculate max (min) xk subject to P and get the
upper (lower) bound of variable xk. However, since the result given by rigorous LP itself
depends on the range of the bounding box, the bounds found by rigorous LP may be too
conservative, especially when the bounds of some variable are very large or even lost
after widening. In addition, it is costly to run 2n linear programs after every operation
on an n-dimensional polyhedron. Thus we need some alternative lightweight methods
for bounds tightening.

Bound Propagation. Bound propagation is a kind of constraint propagation widely
used in constraint programming. Each inequality in the linear constraints of the poly-
hedron can be used to tighten the bounds for those variables occurring in it. Given an
inequality

∑
i aixi ≤ b, if ai > 0, a new candidate upper bound ν for xi comes from:

xi ≤ ν = (b − ∑ j�i a jx j)/ai. In practice, an over-approximation of ν can be computed
by interval arithmetic with outward rounding. If ai < 0, we find a new candidate lower
bound in the same way. If the new bounds are tighter, then xi’s bounds are updated. This
process can be repeated with each variable in that inequality and with each inequality
in the system.

Combining Strategies. In fact, the above two methods for bounds tightening are com-
plementary with respect to each other. Each of them may find tighter bounds than the
other one in some cases.

Example 3. Given {−x + 3y ≤ 0, x − 6y ≤ −3} with the bounds x, y ∈ (−∞,+∞), the
bound propagation fails to find any tighter bounds while the rigorous LP will only find
the tighter bounds x ∈ [3,+∞), y ∈ (−∞,+∞). Then, if we perform bound propagation
on {−x+3y ≤ 0, x−6y ≤ −3}with the bounds x ∈ [3,+∞) and y ∈ (−∞,+∞), the exact
bounds x ∈ [3,+∞) and y ∈ [1,+∞) can be found.

Therefore, we should combine the above strategies and strike a balance between cost
and precision. For example, we can use rigorous LP to tighten only the bounds of those
variables that appear with high frequency in the system, and then use bound propagation
to tighten the other variables. Note that both rigorous LP and bound propagation are
sensitive to the ordering of variables considered. More precision can be achieved, at
greater cost, by iterating the process.

5.2 Convex Hull Tightening

The convex hull computation is the most complicated part of our domain and also where
the most severe loss of precision may happen because it is internally implemented via
Fourier-Motzkin elimination. In many cases, part of the precision can be recovered by
applying certain heuristics, such as using the envelope [4] and bounds information.

Definition 3 (Envelope). Given two polyhedra P1 and P2, represented by sets of linear
inequalities, the envelope of P1 and P2 is defined as

env(P1, P2)
def
= S1 ∪ S2

where
S1 = { ϕ1 ∈ P1 | P2 |= ϕ1 },
S2 = { ϕ2 ∈ P2 | P1 |= ϕ2 }.

A Sound Floating-Point Polyhedra Abstract Domain 13

P2P1

(a) Envelope

P1 P2

(b) Convex Hull

P2P1

(c) Envelope & Bounds

P2P1

(d) Convex Hull Tightening

Fig. 1. (a) the envelope env(P1, P2) (solid lines), (b) the exact convex hull (solid bold lines) and a
possible approximate floating-point convex hull (dotted lines), (c) the smallest polyhedron which
can be determined by the envelope and bounding box (solid lines), (d) the floating-point convex
hull (dotted lines) and the convex hull after tightening by the envelope and bounding box (solid
bold lines)

It is easy to see that the envelope is an over-approximation of the convex hull and
contains a subset of the constraints defining the convex hull. In other words, all the
inequalities in the envelope can be safely added to the final convex hull. Using rigorous
LP, most of the envelope constraints can be determined by entailment checking on the
arguments, before the convex hull computation.

The bounding box of the convex hull can also be obtained exactly before the convex
hull computation as it is the join, in the interval domain, of the bounding box of the
arguments.

We add all constraints from the envelope and the bounding box to tighten the floating-
point convex hull and retrieve some precision while still retaining soundness, as shown
in Fig. 1. This is of practical importance because at the point of widening, such con-
straints often hold a large percentage of the stable ones.

5.3 Linearization Heuristics

In polyhedral analysis, new relationships between variables are often derived from the
convex hull operation. Their actual coefficients depend greatly on the choices made
during the linearization step, in particular the choice of dk ∈ [ak, bk]. In Sect. 4.1, we
advocated the use of the interval mid-point dk = (ak ⊕r bk) �r 2, a greedy choice as
it minimizes the constant term of the result constraint. However, choosing a more reg-
ular value, such as an integer, will improve the efficiency and numerical stability of

14 L. Chen, A. Miné, and P. Cousot

subsequent computations, such as LP solving. In addition, due to rounding errors, com-
putations that give the same result in exact arithmetic may give different floating-point
results in floating-point arithmetic. Thus, it is desirable that the same dk is chosen when
some slight shift occurs on the input interval [ak, bk]. This is particularly important
when looking for stable invariants in loops.

In practice, we use two strategies: rounding the mid-point to the nearest integer and
reusing the coefficient already chosen for another variable. Other strategies may be
devised. In fact, it is even possible to choose dk outside [ak, bk], by slightly adapting the
formula in Def. 2.

5.4 Efficient Redundancy Removal

As mentioned before, the rigorous LP may fail to detect some redundant constraints due
to the conservative over-approximation of the objective value, which greatly weakens
the tractability of our domain. However, it is worth mentioning that the removal opera-
tion is always sound even when some non-redundant constraints are removed, in which
case, the result is merely a larger polyhedron. In order to remove as many redundant
constraints as possible, we can use less conservative approaches which may remove
constraints that are likely to be redundant, but may not be. One approach is to employ a
standard LP solver instead of a rigorous one. We can even go further by removing in-
equalities ϕ =

∑
i aixi ≤ b in P when max

∑
i aixi subject to P \ {ϕ} is less than (1 + ε)b,

for some tolerance ε > 0.
In order to remove constraints more efficiently, it is worth using lightweight redun-

dancy removal methods first and resorting to the expensive LP-based method only when
necessary. First, we use a syntactic check: given a pair of inequalities

∑
i aixi ≤ b and∑

i a′i xi ≤ b′, if ∀i.a′i = ai, only the inequality with the smaller constant needs to be kept.
Second, we first check an inequality against the bounding box of the polyhedron before
the actual polyhedron. Finally, we employ methods proposed in [10,11] to tackle the
combinatorial explosion problem of redundant constraints occurring during sequences
of Fourier-Motzkin eliminations (e.g., in the join computations).

6 Implementation and Experimental Results

Our prototype domain, FPPol, is developed using only double precision floating-point
numbers. It makes use of GLPK (GNU Linear programming kit) [14] which imple-
ments the simplex algorithm for linear programming. FPPol is interfaced to the APRON
library [1] which provides a common interface for numerical abstract domains. Our ex-
periments were conducted using the Interproc [12] static analyzer. In order to assess
the precision and efficiency of FPPol, we compare the obtained invariants as well as
the performance of FPPol with the NewPolka library which is implemented using exact
arithmetic in APRON.

We tested FPPol on all examples from Interproc. Most of them are pure integer pro-
grams using exact arithmetic, except numerical which is a program involving both in-
teger and real variables with floating-point arithmetic. We also analyzed the ratelimiter
program presented in Fig.2, which is a more challenging example extracted from a real-
life system and uses single precision floating-point numbers. In theory, any interval

A Sound Floating-Point Polyhedra Abstract Domain 15

Y ← [−M, M];
while random() {

X ← [−128, 128];
D← [1, 16];
S ← Y ;

1© R← X ? S ;
Y ← X;
if R ≤ D { Y ← S ? D } else
if D ≤ R { Y ← S ⊕? D }

} 2©

Fig. 2. Floating-point rate limiter program. Different values of the parameter M give different
versions of the program (see Fig. 3). �? denotes single precision floating-point semantics with
arbitrary rounding mode (? ∈ {+∞,−∞}).

[−M,M], where M = 128 + ε and ε > ε0, is stable at 2©, for some very small positive
ε0. Because this example requires relational invariants, the non-relational interval do-
main fails to find any stable interval for Y, while the weakly relational octagon domain,
although better, can only find over-approximated stable intervals wherein M > M0 and
M0 ≈ 144.00005. The smallest stable interval that can be found using the polyhedra
domain is the interval [−M1,M1] wherein M1 ≈ 128.000047684. This example is in-
teresting since abstracting floating-point expressions to linear interval expressions over
reals [15] gives rise to rather complex expressions. For example, at 1©, the assignment
R← X ? S is abstracted into:

R← [1 − p, 1 + p] × X − [1 − p, 1 + p] × S + [−m f ,m f]

with p = 2−23 and m f = 2−149 (respectively corresponding to the relative error and
the smallest non-zero positive value in the single precision floating-point format). Note
that this expression contains numbers of large magnitude, which are costly to represent
using exact rationals.

Fig. 3 shows the type of each benchmark program: “int” means the program involves
only integer variables with exact arithmetic and “fp” means that the program involves
real variables with floating-point arithmetic. The column “#∇ delay” specifies the value
of the widening delay parameter for Interproc (i.e., the number of loop iterations per-
formed before applying the widening operator). The column “#iterations” gives the
number of loop iterations before a fixpoint is reached.

Invariants. The column “Result Invar.” compares the invariants obtained. A “=” indi-
cates that FPPol outputs exactly the same invariants as NewPolka. A “≈” means that
FPPol finds the same invariants as NewPolka, up to slight variations in coefficients due
to rounding. In this case, the polyhedra computed by FPPol are slightly larger than those
computed by NewPolka. A “>” denotes that FPPol finds strictly stronger invariants than
NewPolka. For the integer programs, all the invariants obtained by FPPol were the same
as those produced by NewPolka. Indeed, such programs involve only small integer val-
ues. In these cases, we can often use the multiplicative version of the Fourier-Motzkin
elimination, which incurs no precision loss.

16 L. Chen, A. Miné, and P. Cousot

Program Analyzer FPPol NewPolka Result
type name #∇delay #iterations #lp t(ms) #iterations t(ms) Invar.

int ackerman 1 6 1476 35 6 7 =

int bubblesort 1 8 675 24 8 8 =

int fact 1 9 2106 65 9 15 =

int heapsort 1 4 1968 76 4 15 =

int maccarthy91 1 4 418 13 4 3 =

int symmetricalstairs 1 6 480 18 6 6 =

fp numerical 1 1 250 17 1 31 ≈
fp ratelimiter(M=128) 3 5 1777 125 5 394 ≈
fp ratelimiter(M=128) 4 5 2555 227 6 809 >

fp ratelimiter(M=128.000047683) 6 9 4522 510 8 1889 ≈
fp ratelimiter(M=128.000047683) 7 8 3688 238 9 2435 >

fp ratelimiter(M=128.000047684) 1 3 1068 57 3 116 ≈

Fig. 3. Experimental results for benchmark examples

The numerical program involves floating-point arithmetic but without loops, so it
provides no challenge. For ratelimiter, FPPol can find the invariant −M1 ≤ x ≤ M1

where M1 ≈ 128.000047684 if the widening delay parameter is set large enough: at
least 4 when M=128, 7 when M=128.000047683, 1 when M=128.000047684, whereas
NewPolka can only find the invariant when M=128.00004 7684. Interestingly, for rate-
limiter with M = 128.000047683, NewPolka fails to find any invariant at 2© even when
delaying the widening for 100 iterations (413.2 seconds). In this case, the floating-point
over-approximations within FPPol actually accelerate the fixpoint computation even
before applying widening and help in reaching a fixpoint faster than when using New-
Polka.

Performance. Fig. 3 presents the analysis times in milliseconds when the analyzer
runs on a 2.4GHz PC with 2GB of RAM running Fedora Linux. For integer programs,
NewPolka outperforms FPPol. Because such programs involve small integer values,
the computation in NewPolka is very cheap while FPPol needs a number of expensive
LP queries. However, for the floating-point programs, FPPol greatly outperforms New-
Polka. Indeed, after floating-point abstractions, programs involve rational numbers of
large magnitude which degrade the performance of NewPolka, while the floating-point
number representation avoids such problems in our domain.

LP costs. Fig. 3 shows also statistics on the number of LP queries (#lp) in FPPol. In
addition, we found that, for floating-point programs, more than 75% of the LP queries
are used for redundancy removal, almost 80% of which come from the convex hull
computation. The performance of our domain completely relies on the LP solver we
use. During our experiments, we found that the time spent in the LP solver frequently
takes more than 85% of the total analysis time for floating-point programs and 70%
for integer programs. Note that a naive floating-point implementation of polyhedra,
without any soundness guarantee, could not bypass these LP computations either. Thus,
the soundness guarantee in our domain does not incur much overhead.

A Sound Floating-Point Polyhedra Abstract Domain 17

Numerical instability. During our experiments on floating-point programs, GLPK of-
ten encountered the “numerical instability” problem due to the simultaneous occurrence
of tiny and large coefficients. Indeed, during the analysis, tiny floating-point numbers
introduced due to rounding are propagated in the whole system and produce large co-
efficients by division. In our implementation, we solve the problem by shifting the tiny
term or huge term into the constant term following the same idea as linearization in
Sect. 4.1, e.g, choosing dk = 0. We believe a faster, more robust LP solver with better
scalability, such as the CPLEX LP solver, may greatly improve the precision, perfor-
mance and scalability of our domain.

7 Conclusion

In this paper, we presented a sound implementation of the polyhedra domain using
floating-point arithmetic. It is based on a constraint-only representation, together with
a sound floating-point Fourier-Motzkin elimination algorithm and rigorous linear pro-
gramming techniques. Moreover, we proposed advanced tactics to improve the preci-
sion and efficiency of our domain, which work well in practice. The benefit of our
domain is its compact representation and the ability to leverage the power of state-of-
the-art linear programming solvers. It remains for future work to examine the scalability
of our domain for large realistic programs and to reduce the number of LP queries.

Acknowledgments

We would like to thank Axel Simon, Ji Wang and the anonymous reviewers for their
helpful comments and suggestions.

References

1. APRON numerical abstract domain library, http://apron.cri.ensmp.fr/library/
2. Alexander, S.: Theory of Linear and Integer Programming. John Wiley & Sons, Chichester

(1998)
3. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a complete set

of numerical abstractions for the analysis and verification of hardware and software systems.
Quaderno 457, Dipartimento di Matematica, Università di Parma, Italy (2006)

4. Bemporad, A., Fukuda, K., Torrisi, F.D.: Convexity recognition of the union of polyhedra.
Computational Geometry 18(3), 141–154 (2001)

5. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: A static analyzer for large safety-critical software. In: ACM PLDI 2003, San Diego,
California, USA, June 2003, pp. 196–207. ACM Press, New York (2003)

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: ACM POPL 1977, Los Angeles,
California, pp. 238–252. ACM Press, New York (1977)

7. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: ACM POPL 1978, pp. 84–96. ACM, New York (1978)

8. Goubault, E.: Static analyses of floating-point operations. In: Cousot, P. (ed.) SAS 2001.
LNCS, vol. 2126, pp. 234–259. Springer, Heidelberg (2001)

http://apron.cri.ensmp.fr/library/

18 L. Chen, A. Miné, and P. Cousot

9. Halbwachs, N.: Détermination automatique de relations linéaires vérifiées par les variables
d’un programme. Ph.D thesis, Thèse de 3ème cycle d’informatique, Université scientifique
et médicale de Grenoble, Grenoble, France (March 1979)

10. Huynh, T., Lassez, C., Lassez, J.-L.: Practical issues on the projection of polyhedral sets.
Annals of Mathematics and Artificial Intelligence 6(4), 295–315 (1992)

11. Imbert, J.-L.: Fourier’s elimination: Which to choose? In: PCPP 1993, pp. 117–129 (1993)
12. Lalire, G., Argoud, M., Jeannet, B.: Interproc,
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/

13. LeVerge, H.: A note on Chernikova’s algorithm. Technical Report 635, IRISA, France (1992)
14. Makhorin, A.: The GNU Linear Programming Kit (2000),
http://www.gnu.org/software/glpk/

15. Miné, A.: Relational abstract domains for the detection of floating-point run-time errors. In:
Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer, Heidelberg (2004)

16. Miné, A.: Field-sensitive value analysis of embedded C programs with union types and
pointer arithmetics. In: LCTES 2006, Ottawa, Ontario, Canada, pp. 54–63. ACM Press, New
York (2006)

17. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation 19(1),
31–100 (2006)

18. Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)
19. Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer linear programming.

Math. Program. 99(2), 283–296 (2004)
20. Que, D.N.: Robust and generic abstract domain for static program analysis: the polyhedral

case. Technical report, École des Mines de Paris (July 2006)
21. Rohn, J.: Solvability of systems of interval linear equations and inequalities. In: Linear Op-

timization Problems with Inexact Data, pp. 35–77. Springer, Heidelberg (2006)
22. Sankaranarayanan, S., Sipma, H., Manna, Z.: Scalable analysis of linear systems using math-

ematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 25–41.
Springer, Heidelberg (2005)

23. Simon, A., King, A.: Exploiting sparsity in polyhedral analysis. In: Hankin, C. (ed.) SAS
2005. LNCS, vol. 3672, pp. 336–351. Springer, Heidelberg (2005)

24. Simon, A., King, A., Howe, J.M.: Two variables per linear inequality as an abstract domain.
In: Leuschel, M.A. (ed.) LOPSTR 2002. LNCS, vol. 2664, pp. 71–89. Springer, Heidelberg
(2003)

http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/
http://www.gnu.org/software/glpk/

A Flow-Sensitive Region Inference for CLI

Alexandru Stefan1, Florin Craciun2, and Wei-Ngan Chin1

1 Department of Computer Science, National University of Singapore
{alexandr,chinwn}@comp.nus.edu.sg

2 Department of Computer Science, Durham University, UK
florin.craciun@durham.ac.uk

Abstract. Region-based memory management can offer improved time
performance, relatively good memory locality and reuse, and also pro-
vide better adherence to real-time constraints during execution, when
compared against traditional garbage collection. We have implemented a
region-memory subsystem into the SSCLI 2.0 platform and then adapted
an inference system to region-enable CIL programs, with the aid of newly
introduced instructions. Initial results are promising, as the programs
running with regions have considerably smaller interrupting delays, com-
pared to those running with garbage collection. Regions can bring run-
time improvement for some programs (up to 50%), depending on how
complicated are the data structures used in execution.

1 Introduction

The Common Language Infrastructure (CLI) [16] is an ECMA standard that
describes the core of the .NET Framework. The Microsoft Shared Source CLI
[15] (SSCLI) is one of the implementations of the ECMA CLI standard, made
publicly available for research purposes.

We modified the SSCLI memory system such that its default garbage collector
can co-exist with our region-based memory system. This allowed us to study
performance aspects and the typical problems related to introducing this kind
of memory system at the bytecode level of .NET. The modified system is targeted
for using a stack of lexically scoped regions in which the last region created is the
first deleted. A region is used to give bounds to the lifetime of objects allocated
within it. Deallocating a region deletes all its contents in one operation, resulting
in better memory utilization at the cost of some predictable risks: the dangling
references. Our solution to this problem is to statically prevent the run programs
from creating any dangling references at all.

We also formalised and implemented a flow-sensitive region inference system
for CIL (the language used in CLI). The region inference is developed using
techniques from an earlier work [7], guaranteeing that low-level stack oriented
CIL programs never create dangling references while running on our modified
SSCLI platform. Notable contributions of the current work are:

– Modified SSCLI Platform for using Regions: We added region-based
memory features to the existing SSCLI 2.0 memory system found in the
execution engine, while also keeping the default garbage collector.

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 19–35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

20 A. Stefan, F. Craciun, and W.-N. Chin

– Region Inference for CIL: We have formalized and implemented a sys-
tem that rewrites plain CLI-targeted programs for running with regions,
using a type inference algorithmic approach. The inference is adapted for
CIL, a stack-based object oriented language used in CLI. The prototype im-
plementation covers essential parts of CIL program syntax and constructs,
also dealing with features such as polymorphism and method recursion.

– Improved Inference Techniques: We tested our CLI region inference
which lead to some new optimizations. We identified and studied different
ways for how region instructions could be inserted by our inference, so as to
achieve faster region management speed and better memory reuse.

– Evaluation: We evaluated our proposal on a set of benchmark programs.
We note significant runtime improvement for some programs using more
complex data structures.

2 Existing SSCLI Memory System

2.1 Garbage Collector

The default memory system in SSCLI is a generational garbage collector, man-
aging two generations of objects. This GC is also a copying/mark-and-sweep
collector depending on the generation being inspected. There is a distinction
made between small objects (stored in the two generations) and large objects
(with a size bigger than 85KB). Large objects are allocated in a large object
heap, a special heap having the same age as the old generation.

A newly created object is usually placed in generation 0, and occupies mem-
ory (also after becoming dead) until garbage collection takes place. Garbage
collection is triggered by memory scarcity and other runtime considerations.
The simplified GC algorithm follows these lines:

– For generation 0, copy all live objects to generation 1
– For generation 1 and large heap, use mark-and-sweep (without compaction)
– Additional cleaning-up for both generations.
The GC follows the usual steps of a tracing collector for identifying live objects

in its copy and mark-and-sweep phases (‘tracing the roots’, recursively scanning
live references resulting in the transitive closure over the live objects set). The
mark-and-sweep phase is optional, being performed as necessary, and contains
no compaction of the live objects; that is, the objects from the old generation
and large object heap are never moved.

2.2 CIL and Allocation Instructions

Whenever the Shared Source CLI execution environment runs compiled code (in
the form of an .exe file), what it actually executes are CIL (Common Interme-
diate Language) instructions. Languages which target the CLI standard (C#,
Visual Basic, managed C++ and other .NET languages) compile to CIL, which
is assembled into bytecode. CIL resembles an object-oriented assembly language,

A Flow-Sensitive Region Inference for CLI 21

and is entirely stack-based. The language is platform independent, being run by
execution environments (virtual machines) such as the CLR (Common Language
Runtime) or SSCLI’s execution engine named CLIX. The following CIL opcodes
have most direct relations with the GC of the Shared Source CLI:

newobj - Creates a new object instance, pushing its object reference onto the
evaluation stack. Necessary arguments are popped from the stack and passed to
the constructor for object creation.

newarr - Pushes an object reference to a new one-dimensional array whose
elements are of a specific type onto the evaluation stack. The array length is
popped from the stack before the array creation and must be a 32-bit integer.

class A {
public int i = 3;
public double j = 5.2;
public A(int p, double q) { i = p; j = q; }

} class MainApp {
public static void Main() { A a = new A(2, 3.5); }

}

Fig. 1. Example C# program

.class private auto ansi beforefieldinit MainApp
extends [mscorlib]System.Object {

.method public hidebysig static void Main() cil managed {
.entrypoint //execution starts with this method
.maxstack 3 //approximative stack slots needed
.locals init (class A V_0) //a local variable, V_0
IL_0000: nop //no effect, used for opcode patching
IL_0001: ldc.i4.2 //loads value 2 on stack (4-byte int)
IL_0002: ldc.r8 3.5 //loads 3.5 on stack (8-byte float)
IL_000b: newobj instance void A::.ctor(int32, float64)

//calls the A constructor using the two values on stack
IL_0010: stloc.0 //stores the new object’s ref into V_0
IL_0011: ret //return from method

} // end of method MainApp::Main
..

} // end of class MainApp

Fig. 2. CIL program corresponding to the Fig.1 example

Fig.1 presents a simple C# program, with its corresponding CIL program
in Fig.2. Notice how the stack is used for passing parameters to newobj. The
newobj and newarr opcodes request the allocation of a new object and an array
respectively (represented as an object); the newly created entity will be allocated
in either generation 0 or the large object heap and be taken into account by GC’s
management.

22 A. Stefan, F. Craciun, and W.-N. Chin

3 Regions for SSCLI

3.1 Modifying the Environment

We aimed at using the large object heap (from the existing GC) for allocating
regions. This decision is accounted for by the usually broad sizes of regions and
the fact that the memory address of a region should not be moved (no copying
is made for the large object heap). So we modified the SSCLI code for the large
object heap to also hold regions, and these in turn were made to hold objects.
Allocating a region can correspond to allocating a large object of a special kind,
not having any contents at creation, directed only at reserving memory for future
allocations within it. Special care had to be taken regarding possible conflicts
between GC and the new subsystem (concerns like the visibility of regions and
region-contained objects to the GC).

3.2 New CIL Instructions

As new features are added into the SSCLI platform, the following new CIL
instructions (opcodes) become necessary:

letreg - Allocates a region into the large object heap. Requires two int32
parameters from the stack: the region index and the initial space size. If this
initial size is exceeded afterwards, an extension will be created.

freereg - Deallocates a region. Pops an index from the stack, denoting which
region to deallocate.

newrobj - Creates an object (inside a region) in a similar way to newobj, but
also requiring an extra parameter from the stack, designating a region index.

newrarr - Similar to newarr, but requiring an additional region index para-
meter from the stack.

A simple example program that creates a region and then allocates an object
inside is shown in Fig.3. The runtime engine is modified to act appropriately
when encountering these region opcodes, making full use of the new region sub-
system added to the engine.

Manipulating regions directly at the CIL level is the only possible start for
our approach to region-based memory for SSCLI, since CIL is the core language
for any .NET execution engine. As these instructions are rather low level, we
propose to insert them automatically with a region inference system.

4 Region Inference for CIL

We devised a modular region inference process for automating the translation of
CLI (.NET) programs into the region-aware versions. The inference is performed
at the CIL assembly level. One key difference from our previous (flow-insensitive)
system [7] is the adoption of a flow-sensitive region inference system to better
support the stack-based model of CIL programs.

A Flow-Sensitive Region Inference for CLI 23

.method public hidebysig static void Main() cil managed {
.entrypoint
.maxstack 5
.locals init (class A V_0)
IL_0000: nop
IL_0001: ldc.i4.1 // region’s index
IL_0002: ldc.i4 8000 // initial size of 8K for the region
IL_0003: letreg // create the region
IL_0005: nop
IL_0006: ldc.i4.2 // push an int
IL_0007: ldc.r8 3.5 // push a double
IL_0008: ldc.i4.1 // push an int used as region handle
IL_000b: newrobj instance void A::.ctor(int32, float64)

// the constructor takes the first two values from stack
// the third value from stack denotes a region index

IL_000c: stloc.0 // store reference of new object in V_0
..
IL_0010: ret

} // end of method MainApp::Main

Fig. 3. CIL program with region opcodes

4.1 Lexically-Scoped Regions

Our region inference presumes programs will use a stack of memory regions
during execution. We use fixed sizes for regions and region extensions (whenever
overflow occurs for a region, it will be extended with a fixed size increment).
We express the introduction and disposal of a region r with the pseudocode
construct: letreg r in e, where the region r can only be used for allocating
objects in the scope of the expression e. Although the new CIL instructions
letreg and freereg are not strictly required to be lexically scoped, we still
respect the lexical discipline because it is dictated by our type inference, which
inserts them automatically.

Typically, a method definition will be translated as presented in Fig.4
(pseudocode). The escaping objects (like o2 and o3) are objects found by the
inference to require living longer than the point when the method meth returns.
All other objects that do not respect this condition are considered localized ob-
jects. The technique of localization remains unchanged from the previous work
[7]. Object o2 cannot be localized because it is assigned to a parameter’s field,
and o3 because it is returned by the method, so they both escape. If any objects
are localized (like o1), the method will be assigned a new local region (r) for
holding them. This local region will be freed as soon as the method ends. Notice
how the method has some new parameters in Fig 4(b), denoting region handles
(such as r1 and r2, used also with the alternate notation meth<r1,r2>(..)).
These external regions will be used for allocating escaping objects (o2, o3), while
making sure they have suitable lifetimes.

24 A. Stefan, F. Craciun, and W.-N. Chin

meth(p1, p2) {
o1 = new A(); //local
o2 = new B(); //escaping
o3 = new C(); //escaping
p1.field = o2;
..
return o3;

}

meth(r1, r2, p1, p2) {
letreg r in {
o1 = new A() in r; //local
o2 = new B() in r1; //escaping
o3 = new C() in r2; //escaping
p1.field = o2;
..

}
return o3;

}

a) input code b) translated code

Fig. 4. Typical method translation via region inference

The inference will gather detailed lifetime information for any region or object
(or object field) that should go inside a region in the form of constraints, so that
its localization stages can easily determine which objects should go in what re-
gions and insert instructions like letreg, freereg, newrobj having appropriate
parameters. Loop blocks can also have localized regions, if some of their objects
do not live longer than the loop’s scope.

4.2 Inference Details

We will present the inference mechanism formally, mainly listing the inference
rules that are new or have changed considerably from those in our previous work
[7]. The differences originate from the distinct designs of the previous Core-Java
language (subset of Java) and now the more realistic CIL (assembly-like, OO).

When beginning the analysis, each CIL class definition is parameterized with
one or more regions to form a region type. For instance, a region type cn〈r1,...,rn〉
is a class name cn annotated with region parameters r1...rn. The first region
parameter r1 denotes the region in which the instance object of this class is
allocated, while r2...rn are regions corresponding to the fields of the object.
Using the constraint

∧n
i=2(ri � r1) we are capturing the condition that field

objects should not have shorter lifetimes than the region (r1) of the parent
object, thus forbidding dangling references. Constraints like r1 � r2 indicate
that the lifetime of region r1 is not shorter than that of r2; r1 = r2 denotes that
r1 and r2 must be the same region. Sets of such constraints are gathered for
each of the program’s classes (expressing class invariants) and methods (method
preconditions). Parameterization similar to the one for classes is also done for
methods, indicating regions for the method’s receiver object, arguments and
return object. The primitive types do not require region parameters.

Region constraints are gathered from virtually every relevant program point
inside every method (using a type inference based approach) and then grouped
as method preconditions for each method analyzed. Whenever encountering
instructions that deal with new objects or object declarations, fresh region

A Flow-Sensitive Region Inference for CLI 25

variables are considered. These abstract region variables will be translated into
actual region handles (or identifiers) in the final phases. Using a notation like
below we express that having the type environment Γ , the currently analyzed
method m and the operand stack S, the program expression e is translated (e.g.
adding annotation) into e′, resulting in a possibly modified stack S′ and the
region constraints ϕ:

Γ, m, S � e� e′ , S′, ϕ

If the expression e is not modified we simply use Γ, m, S � e , S′, ϕ . As
an addition, the inference rules now make use of a stack for storing (region)
information about any operands passed to method calls or to other operations.

Below is the sequence inference rule; this rule enforces the inference to be
flow-sensitive. As the sequence of operations that update or read the stack is
important, we need this flow-sensitive requirement to correctly keep track of the
stack S.

[Sequence]

Γ, m, S � e1 � e′1 , S1, ϕ1
Γ, m, S1 � e2 � e′2 , S2, ϕ2

Γ, m, S � e1 e2 � e′1 e′2 , S2 , ϕ1 ∧ ϕ2

The stack is a list of the form S = [el1, ... , eln] with eli = (name : type
〈regions〉). We express with ldprim any opcode that pushes a primitive value
on the stack (ldc.i4, ldc.i8, ldc.r4 ...). Pushing null value (ldnull) is a
similar situation. The newly stored items will contain no region information in
these cases.

[Primitive]

S′ = [anonymous : prim〈〉]++S

Γ, m, S � ldprim , S′, true

[Null]

S′ = [null : t⊥〈〉]++S

Γ, m, S � ldnull , S′, true

All CIL opcodes are used for their side-effects, none of them return a value.
Following is a list of more opcodes with their description and rules. The subtyp-
ing relation (t1〈r1〉 <: t2〈r2〉, ϕ), that infers the constraints ϕ, as in [7].

The pop opcode removes the value currently on top of the evaluation stack.
The dup opcode copies the current topmost value on the evaluation stack, and
then pushes the copy onto the evaluation stack.

[Pop]

S = [el1, ... , elm]
S′ = [el2, ... , elm]

Γ, m, S � pop , S′ , true

[Duplicate]

S = [el1, ... , elm]
S′ = [el1, el1, ... , elm]

Γ, m, S � dup , S′ , true

ldloc loads the local variable having the specified index onto the stack.
stloc pops the current value from the top of the evaluation stack and stores

it in the local variable list at the specified index. We use localV ar(m, i) for ob-
taining the i-th local variable of method m. We also mention that the type en-
vironment Γ contains all arguments and local variables of the analyzed method.
Similarly, argument(m, i) gets the i-th parameter name of the method m.

26 A. Stefan, F. Craciun, and W.-N. Chin

[LoadLocal]

localV ar(m, i) = v
(v : t〈r〉) ∈ Γ

S′ = [v : t〈r〉]++S

Γ, m, S � ldloc.i , S′, true

[StoreLocal]

S = [el1, ... , elm] S′ = [el2, ... , elm]
localV ar(m, i) = v (v : t〈r〉) ∈ Γ
el1 = (v′ : t〈r′〉) � t〈r′〉 <: t〈r〉, ϕ

Γ, m, S � stloc.i , S′, ϕ

In CIL any assignment takes at least two instructions (something similar
with a stack push, and then a store e.g. stloc, stfld). First we have to keep
information of whatever could be coming from the stack: variable name, type
and regions. When the actual assignment takes place only then will we have to
consider subtyping checks.

ldarg loads an argument (referenced by a specified index value) onto the
stack. If the method m is not static (¬isStatic(m)) then, in CIL conventions,
the this reference is considered argument 0. Thus the offset j could be 0 or 1.

[LoadArgument]

j = (0 � isStatic(m) � 1)
(¬isStatic(m) ∧ i = 0) ⇒ el = (this : t〈r〉) , el ∈ Γ

(isStatic(m) ∨ i
= 0) ⇒ el = (v : t′〈r′〉) , el ∈ Γ , argument(m, i − j) = v

Γ, m, S � ldarg.i , (el++S) , true

ldfld finds the value of a field in the object whose reference is currently on
the evaluation stack, and pushes the result on the stack.

[LoadField]

S = [el1, ... , elm] el1 = (v : t〈r〉)
� (tf 〈rf 〉 f) ∈ t〈r〉 S′ = [(v.f : tf 〈rf 〉), el2, ..., elm]

Γ, m, S � ldfld f , S′, true

stfld replaces the value stored in the field of an object reference with a new
value. Takes two elements off the stack: the first (el1) is the new value, the second
(el2) is the target parent object.

[StoreField]

S = [el1, el2, ... , elm] S′ = [el3, ... , elm]
el1 = (v1 : tf 〈r1〉) el2 = (v2 : t2〈r2〉)

� (tf 〈rf 〉 f) ∈ t2〈r2〉 � tf 〈r1〉 <: tf 〈rf 〉, ϕ
Γ, m, S � stfld f , S′, ϕ

ret returns from the current method, pushing a return value (if present) from
the callee’s evaluation stack onto the caller’s evaluation stack. Whatever is left
on the callee stack is of no interest so we can consider it empty afterwards.

[Return]

S = [el1, ...] (retm : t〈r〉) ∈ m
el1 = (v : t〈r′〉) � t〈r′〉 <: t〈r〉, ϕ

Γ, m, S � ret , [] , ϕ

A Flow-Sensitive Region Inference for CLI 27

call calls the method indicated by the passed method descriptor. The method’s
arguments are popped from the stack, and the return is pushed on the stack. For
object creation, via newobj, the analysis process is similar.

[MethodCall]

S = [elp, ... , el1, elp+1, ... , elm] eli = (vi : t′i〈r′i〉) i = 1..p
.method t0 mn2〈rthis, rpars, rret〉(ti vi)i:2..p where ϕ ∈ P ′

� t0 � t0〈r′ret〉 ρ = [rthis �→ r′1 , (rpars[i] �→ r′i)i:2..p , rret �→ r′ret]
S′ = [(anonymous : t0〈r′ret〉), elp+1, ... , elm]

Γ, m, S � call cn :: mn2(ti)i:2..p � call cn :: mn2〈r′1, r′2..p, r
′
ret〉(ti)i:2..p , S′, ρ ϕ

.method t0 mn2〈rthis, rpars, rret〉... is an annotated method name, with re-
gions corresponding to the receiver, parameters and return. It belongs to the par-
tially region-annotated program P ′. A substitution ρ is applied over the method’s
precondition constraints (ϕ) for them to be valid at the call site. This is an ex-
ample of an inference rule that annotates the analyzed expression (e� e′). The
region information annotated is needed later, when actual region handles (loads)
will be written in the program, as required.

If-then(-else) branches do not present a special problem in the inference. Their
effect is accomplished in CIL with the help of jump opcodes (specifying a label to
where the execution should be transfered). Loops are also translated into labels
and conditional jumps. When entering an if branch or a loop never information
from the previous stack state is necessary, variables and values are freshly pushed
on the stack before any operations - compiling to CIL assures this. It suffices
when the opcodes are inferred in order ([Sequence]), ignoring labels and jump
opcodes completely (for if branches and also loops, initially).

We are obliged to perform localization (briefly described below) only after we
have analyzed an entire method body, as opposed to our previous algorithm.
This is because all local variables have the scope of the entire method body,
thus we cannot say anything about the (localization of) regions tied to a certain
variable until all instructions of the method have been analyzed.

Localization is performed much like in the previous inference, with any region
parameter that lives longer than an outside (of the method) region being made
equal to a suitable outside region. The localized regions are made equal to a fresh
region, that will be allocated via letreg, and discarded with a corresponding
freereg, at each of the containing block’s margins. newrobj will be used instead
of newobj (likewise newrarr) and all other necessary inserts for region handle
passing to methods will also be carried out.

To make the localization even more precise we also insert letreg and freereg
also for loops. A loop block (not clearly marked in CIL) can be detected whenever
encountering jump opcodes targeting labels placed higher in the CIL program
sequence, thus implying recurrence. The method’s local regions can be parti-
tioned into sets corresponding to each of the (possibly nested) loops found in
the method body, thus each one with it’s own lexical region. In CIL all local
variables are usually declared at the beginning of the method with no need for
more variable declarations further down the program.

28 A. Stefan, F. Craciun, and W.-N. Chin

4.3 Special Techniques for Translation

To further improve memory management within our region memory system, we
experimented with three new techniques, that can help us obtain faster runtime
performance.

Region resetting. Instead of creating a new region everytime a loop block is
entered, we allocate one region prior to the block and reuse the same region
for all iterations by resetting it at the end of each iteration. This technique is
adapted from [17], but is different as it does not require region liveness analysis.
The approach is presented in Fig.5, using pseudocode. By resetting, we avoid
repeated memory allocation/deallocation in the large heap. The region’s exten-
sions are also kept after resets, further reducing execution overhead (generated
by repeated extending/deallocation). Keeping the extensions is acceptable as the
memory space required for each iteration usually remains about the same.

Resetting should be used for each loop-local region in the program, as there
is very little downside to this technique (maybe a risk of some cycles not filling
the reserved memory completely).

while (flag) {
letreg r in {
..

}
}

letreg r in {
while (flag) {
..
reset r;

}
}

a) loop region b) loop resetting region

Fig. 5. Region resetting

Region relegation. This is used to prevent the excessive fragmentation of memory
into regions. If the objects that should go inside a new region are too few or
simply occupy too little memory, then we allocate them into an already existing
region, instead of creating a new one. This brings reduced overhead of managing
too many regions and a better memory usage (from filling up more unused region
space).

In Fig.6, the B instance has been found to occupy too little space for it to
require a separate region. Relegation should only be used when the new objects
require just small amounts of memory; this is to avoid the risk of generating
excessively large upper regions. An object can be considered simple (or small)
if all its fields are primitive, thus implying small memory amounts required for
its storage. This size estimation relies on the fact that an object’s non-primitive
fields have high chance of ending up in the same region as the object itself, thus
taking up more space. Different criteria can be used too, e.g. a depth limit for
inner references: depth 1 allows fields to be objects that have only primitive
fields. If all the localized objects in a given scope are simple ones, then we use
relegation at that site, allocating the objects in a suitable existing region.

A Flow-Sensitive Region Inference for CLI 29

void meth<r1>(A p, ..) {
letreg r2 in {
v = new B() in r2;

}
}

void meth<r1>(A p, ..) {
v = new B() in r1;

}

a) using a new lexical region b) using an existing upper region

Fig. 6. Region relegation

Forced localization. Assigning a new region to some particular sequences of in-
structions that would not normally need their own lexical region. This is the
opposite of relegation. Our experiments have shown that some code portions
tend to fill unnecessary space (with dead objects) from the local block region.
Our inference may sometimes fail to assign local regions to those spots, without
this new adjustment.

For example, a method call could be creating a lot of temporary objects that
have to be allocated in the outside region r1 (as listed in Fig.7). This will lead to
the unnecessary storage of numerous dead objects inside r1 unless the method
call is enclosed in its own new region.

letreg r1 in {
..
meth<r1>(p);
..

}

letreg r1 in {
..
letreg r2 in {

meth<r2>(p);
}
..

}

a) using the same localized region b) raising meth in a new region

Fig. 7. Forced region localization

Some of the situations generating unexpected temporary objects, requiring a
(forced) enclosement in a new region, are:

– a method call whose returned object is not stored in a variable (the method
was called for its effects and not for the returned object)

– simple allocations of soon-to-become-dead objects made at the beginning of
a block of instructions, thus having to be unnecessarily kept in the local
region until the block is exited

– cases of relegation (resulting in dead objects generated by a method call)
when a method is used in multiple contexts.

30 A. Stefan, F. Craciun, and W.-N. Chin

program
1. .NET

code
3. CIL2. Portable

exe
4. AST

5. Region
 AST

6. Region
CIL code

7. Region
portable

exe

Compile Disassemble Parse Infer Output Assemble

Fig. 8. Pipeline of items and actions for the region-enabling process

The forced localization for code portions should be applied if the temporary
objects resulting from that code use significant memory space. The reference
depth criteria can help determine if objects will occupy enough memory. The
soundness of the forced new region is assured with the verification that only
temporary objects will be placed in this region.

4.4 Implementation

The implemented inference system was coded using F# [20], a mixed functional
and object-oriented language for the .NET platform. F#’s functional features
combined with .NET interoperability proved to be helpful in our application’s
design. The phases of the automated process we use are listed in Figure 8.

The last item (7.) is a program able to be run on our modified CLI runtime
environment. The phases between 3. and 6. are performed by the F# system. In
short, an Abstract Syntax Tree (AST) is built from the parsed CIL program, ad-
ditional information is then decorated into the tree through elaborate inference,
then the region program file is outputted at the end (translated from AST).

4.5 Experimental Evaluation

We measured performance aspects of test programs translated for running with
regions via inference. They were adapted from the RegJava [9] and Olden
benchmarks [4].

The initial small tests helped with isolating certain behaviors as for studying
likely causes and effects. These tests included some features like region relegation

Table 1. Micro-benchmarks for comparing regions with GC

Input size R1 R2 R3 GC GCp xm R m GC m
(ms) (ms) (ms) (ms) (int x ms) (kb) (kb)

1. Eratosthenes n=5000 672 672 672 719 4 x 20 3,906K 3,765K
n=10000 969 969 969 1453 15 x 87 12,757K 12,475K

2. Ackermann n=3*10+8 4614 1299 1299 1452 18 x 38 47K(R1) 818K
n=3*10+9 15645 2081 2081 3543 73 x 58 63K(R1) 819K

3. Merge Sort n=20000 1405 1405 1405 1609 12 x 153 1,309K 2,710K
n=25000 1499 1499 1499 2373 15 x 711 1,629K 3,360K

4. Mandelbrot n=800*400 1671 1094 1046 1046 12 x 19 13K 814K
n=1000*500 2343 1405 1343 1343 19 x 19 13K 814K

5. GC Trees fixed 6090 6090 5965 7277 64 x 72 18,908K 15,091K

A Flow-Sensitive Region Inference for CLI 31

and resetting being enabled/disabled. The first four columns of Table 1 present
millisecond timings for execution with region memory (R1 - no relegation, no re-
setting; R2 - relegation, no resetting; R3 - relegation and resetting) and execution
with the SSCLI GC (GC - timings; GC p x m - number of pauses and maximum
delay). We kept the GC’s default settings (e.g. its heap size).

Eratosthenes works with linked lists (also tests some data locality), Acker-
mann has big call stacks (lots of recursive function calls) but large amounts of
just temporary objects, and Merge Sort uses linked lists for its sorting, doing
moderate amounts of recursive calls. GC has to traverse the call stacks and ref-
erences at each collection session, thus losing some runtime speed. Mandelbrot
creates a lot of temporary objects, so GC’s tracing of live objects and also the
copying phase is done instantly (nothing marked or copied); there is no time ad-
vantage to be gained by regions with this test, only a quicker memory recovery.
The GC Trees[1] program builds tree structures in both top-down and bottom-
up fashion, bringing over 1 second faster time performance for regions (because
of the dense reference networks).

Notice how relegation (R2, R3 columns) plays a key role in the fourth and
second test. With relegation disabled (R1), the programs create a very large
number of regions that will host very few objects (as low as 1% of the regions’
fixed size, causing much memory waste). The cost of managing another new
region for just few simple objects looks very big when cumulated. Resetting of
regions (R2 vs R3) can also bring a small improvement to the overall speed.

The last two columns in Table 1 indicate the highest values (kilobytes) for
memory consumption for region and GC executions. We observe that regions
offer favorable memory consumption peaks, reflecting an efficient recycling of
memory. Only the Ackermann test presents two extremes: with relegation en-
abled regions are too big and holding unnecessary objects (with large, unaccept-
able memory demand), while disabling relegation brings good memory usage but
slower execution.

Next, we tried the pointer-intensive Olden benchmark, rewritten for C#.
While not being particularly a memory benchmark, four out of ten programs

from the Olden suite have notable speed advantage when run with regions (Ta-
ble 2). The improvement is largely based on the regions’ avoidance of the usual
GC interruptions and scans. The other Olden programs, which did not show
speed improvement, use simpler memory structures and have low memory de-
mand. Nonetheless, we observed in our testing that region programs are usually
at least as fast in execution as the ones running with GC.

Memory performance for regions is usually good, but has a tendency to require
more memory. On the other hand, regions will be freed as soon as they become
dead, which can bring better memory recycling than with GC, even if this doesn’t
guarantee short presence of dead objects inside regions.

What may slow region-memory down is excessive region creation/destruction
(including region extension). Relegation avoids this shortcoming by storing more
objects into the same region. Region resetting also prevents the same problem
by reusing regions and all of their existing extensions. Otherwise allocating an

32 A. Stefan, F. Craciun, and W.-N. Chin

Table 2. Olden benchmarks - 4 out of 10 show speed improvement

Olden suite Input size GC R Improv. GC p xm GC m R m
(ms) (ms) (int x ms) (kb) (kb)

1. BH 200 5703 5609 1.6 % 12 x 16 1,316K 1,863K
300 8984 8813 1.9 % 21 x 16 1,639K 2,772K

2. BiSort 100,000 9562 9531 1 x 18 1,337K 1,340K
200,000 19187 19062 3 x 20 2,648K 2,652K

3. Em3d 50 1187 1187 - 498K 499K
100 1297 1297 3 x 21 875K 887K

4. Health 100 2468 2422 2 x 17 1,171K 1,281K
200 4094 4062 5 x 19 1,636K 2,470K

5. MST 500 5843 5453 6.7 % 10 x 40 8,296K 8,305K
700 10609 9687 8.7 % 19 x 62 16,224K 16,238K

6. Perimeter 300 2828 2781 1.7 % 17 x 37 3,600K 3,600K
400 8531 8078 5.3 % 17 x 60 14,521K 14,521K

7. Power fixed 31515 32062 38 x 17 1,333K 3,736K
8. TreeAdd 20 2468 1609 34.8 % 25 x 107 20,999K 21,009K

21 5250 2188 58.3 % 51 x 223 41,971K 41,991K
9. TSP 2000 1312 1312 1 x 15 813K 903K

5000 2328 2328 5 x 16 1,099K 1,201K
10. Voronoi 1000 1109 1094 1 x 16 813K 826K

2000 1344 1329 2 x 16 1,376K 1,759K

object inside a region takes the same amount of time as allocating it inside a
GC generation. If the total time delay for regions’ creation/disposal/reset is less
than the summed garbage collection delays, then the region program will have
better time performance (with good likelihood).

Table 3 presents some of the factors influencing the two systems’ performance;
(+) denotes a speeding effect and (-) a slowing effect. These evaluations confirm
the previously stated cause for possible region memory speed loss (the two minus
signs in last column). Table 3 also indicates that GC seems to have a higher bias
towards runtime speed loss, as influenced by the factors presented.

To clarify the x86 processor optimizations: they comprise a way of executing
object allocation sequences by directly using native code for the processor type.
Our platform uses a batch of hand-written machine code for doing (within-
region) allocations. This considerably improves execution speed.

Besides the time improvement and better memory recycling of regions, there
is also another performance aspect, relating to response times, namely real-time
performance [3]. Real-time constraints are operational deadlines from an event
to system response. For example, if a critical portion of code needs to exe-
cute according to some real-time deadlines, then the GC constitutes a poten-
tial hindrance. Such code could be interrupted at runtime by an inopportune
garbage collection, thus suffering unbounded delays in its time-sensitive com-
putations (and possibly mission critical). Regions offer more predictability in
programs, as region management uses less time-consuming pauses, moreover not

A Flow-Sensitive Region Inference for CLI 33

Table 3. Factors influencing running performance

GC R
processor-specific (+) are used when allocating (+) are used when allocating

optimizations (x86) objects in generation 0 objects inside regions
(-) not possible for large (-) not possible when allocating
objects the regions (or disposing)

deallocation (+) (non-large) objects are (-) regions have to be
never explicitly deallocated, explicitly deallocated
but copied or overwritten (+) region reset brings

some speed
tracing (-) any main phase of garbage (+) never done for regions

(with c or m&s) collection requires tracing
environment (-) must be done during any (+) never done for regions

suspension garbage collection session
data locality (-) generations can eventually get (+) related objects usually

fragmented, offering poor locality grouped in common regions

necessitating environment (and program) suspension for garbage collection. In
our experiments GC pauses may be frequent for garbage-collected programs, but
hardly so (in fact never in our experiments) for those that are region-enabled.

5 Related Work and Conclusion

There are two main directions for related proposals in the area of compile-time
memory management: stack allocation via escape analysis, and region allocation
via region inference. The first approach, escape analysis, is based on distinguish-
ing the objects that do not escape their static scopes in order to allocate them
on the run-time stack instead of the heap, providing increased speed for memory
reclamation. Existing work in this area has first targeted functional languages
[10,13], and later on imperative languages [8,19] (dataflow analyses comput-
ing point-to graphs and escape information), [2] (flow-insensitive approach using
constraints). The region inference approach, also advocated in this paper, groups
heap objects into regions and then determines safe region deallocation points.
Techniques using region inference have been initially formulated for functional
languages [18] (lexically scoped regions), and more recently, they have been
applied to imperative languages [9,11,5,7] (most of the proposals using lexical
regions, except for [5] that supports unrestricted regions but requires a more
complex analysis). Also, a new direction in static memory management is indi-
vidual object deallocation, in which the compiler automatically inserts reclama-
tion statements for single object instances. Some proposals using this approach
rely on shape analysis in [14,6] and flow-insensitive points-to analysis in [12].

We built region-based memory support into the SSCLI 2.0 environment and
added new instructions in the CIL opcode set for supporting region operations.
We implemented a region inference system that automates the translation of
initially garbage collected CLI (.NET) programs into the region-aware versions.

34 A. Stefan, F. Craciun, and W.-N. Chin

Some notable features of this CIL adaptation of our older algorithm have been
presented in the paper. Then we measured performance aspects of executing
programs obtained with the inference. Execution of region programs exhibits
significant speed improvement for programs using more complex data structures.
Because regions have bounded delays throughout execution (unlike GC’s pauses),
they also possess a better real-time performance.

Acknowledgments. This work is supported by A*STAR research grant R-252-
000-233-305 and a gift from Microsoft.

References

1. Boehm, H.: http://www.hpl.hp.com/personal/Hans Boehm/gc/
2. Bogda, J., Hölzle, U.: Removing Unnecessary Synchronization in Java. ACM SIG-

PLAN Notices 34(10), 35–46 (1999)
3. Bollella, G., Brosgol, B., Dibble, P., Furr, S., Gosling, J., Hardin, D., Turnbull, M.:

The Real-Time Specification for Java. Addison-Wesley, Reading (2000)
4. Carlisle, M.C., Rogers, A.: Software Caching and Computation Migration in Olden.

In: ACM PPoPP, Santa Barbara, California, pp. 29–38. ACM Press, New York
(1993)

5. Cherem, S., Rugina, R.: Region Analysis and Transformation for Java Programs.
In: Proceedings of the International Symposium on Memory Management (ISMM
2004). ACM Press, New York (October 2004)

6. Cherem, S., Rugina, R.: Compile-Time Deallocation of Individual Objects. In:
Proceedings of the 2006 International Symposium on Memory Management (ISMM
2006) (June 2006)

7. Chin, W.N., Craciun, F., Qin, S.C., Rinard, M.: Region Inference for an Object-
Oriented Language. In: ACM PLDI, Washington, DC (2004)

8. Choi, J.D., Gupta, M., Serrano, M.J., Sreedhar, V.C., Midkiff, S.P.: Escape Analy-
sis for Java. In: Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pp. 1–19 (1999)

9. Christiansen, M.V., Velschow, P.: Region-Based Memory Management in Java.
Master’s Thesis, Department of Computer Science (DIKU), University of Copen-
hagen (1998)

10. Goldberg, B., Park, Y.G.: Higher Order Escape Analysis: Optimizing Stack Alloca-
tion in Functional Program Implementations. In: Proceedings of the 1990 European
Symposium on Programming, pp. 152–160 (1990)

11. Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., Cheney, J.: Region-
Based Memory Management in Cyclone. In: ACM PLDI. ACM Press, New York
(2002)

12. Guyer, S.Z., McKinley, K.S., Frampton, D.: Free-Me: A Static Analysis for Au-
tomatic Individual Object Reclamation. In: Proceedings of the SIGPLAN 2006
Conference on Program Language Design and Implementation (June 2006)

13. Park, Y.G., Goldberg, B.: Escape Analysis on Lists. In: Proceedings of the ACM
SIGPLAN 1992 conference on Programming language design and implementation,
pp. 116–127 (1992)

14. Shaham, R., Yahav, E., Kolodner, E.K., Sagiv, M.: Establishing Local Temporal
Heap Safety Properties with Application to Compile-Time Memory Management.
In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, Springer, Heidelberg (2003)

http://www.hpl.hp.com/personal/Hans_Boehm/gc/

A Flow-Sensitive Region Inference for CLI 35

15. Stutz, D., Neward, T., Shilling, G.: Shared Source CLI Essentials. O’Reilly, Se-
bastopol (2003)

16. ECMA-335 Standard: Common Language Infrastructure (CLI), 4th edition (2006)
17. Tofte, M., Birkedal, L., Elsman, M., Hallenberg, N., Olesen, T.H., Sestoft, P.:

Programming with Regions in the ML Kit (for Version 4). The IT University of
Copenhagen (September 2001)

18. Tofte, M., Talpin, J.: Implementing the Call-By-Value λ-calculus Using a Stack of
Regions. In: ACM POPL. ACM Press, New York (1994)

19. Whaley, J., Rinard, M.: Compositional Pointer and Escape Analysis for Java Pro-
grams. In: ACM OOPSLA, Denver, CO. ACM Press, New York (1999)

20. F# Language, http://research.microsoft.com/fsharp/fsharp.aspx

http://research.microsoft.com/fsharp/fsharp.aspx

Context-Sensitive Relevancy Analysis for
Efficient Symbolic Execution�

Xin Li1, Daryl Shannon2, Indradeep Ghosh3,
Mizuhito Ogawa1, Sreeranga P. Rajan3, and Sarfraz Khurshid2

1 School of Information Science,
Japan Advanced Institute of Science and Technology, Nomi, Japan

2 Department of Electrical and Computer Engineering,
University of Texas at Austin, Austin, TX, USA

3 Trusted Systems Innovation Group,
Fujitsu laboratory of America, Sunnyvale, CA, USA

Abstract. Symbolic execution is a flexible and powerful, but computa-
tionally expensive technique to detect dynamic behaviors of a program.
In this paper, we present a context-sensitive relevancy analysis algorithm
based on weighted pushdown model checking, which pinpoints memory
locations in the program where symbolic values can flow into. This in-
formation is then utilized by a code instrumenter to transform only rele-
vant parts of the program with symbolic constructs, to help improve the
efficiency of symbolic execution of Java programs. Our technique is eval-
uated on a generalized symbolic execution engine that is developed upon
Java Path Finder with checking safety properties of Java applications.
Our experiments indicate that this technique can effectively improve the
performance of the symbolic execution engine with respect to the ap-
proach that blindly instruments the whole program.

1 Introduction

A recent trend of model checking is to combine with the power of dynamic exe-
cution, such as simulation and constraint solving. Remarkable progress on both
hardware and efficient decision procedures, such as Presburger arithmetic, sat-
isfiability check on various logic, equality with uninterpreted function symbols,
and various constraint solving, has made such a combination of model check-
ing and off-the-shelf decision procedures more practical. For instance, symbolic
execution [1], a classic technique for test-input generation, has been integrated
into such model checking frameworks, including Bogor/Kiasan [2] and various
extensions of Java Path Finder (JPF) [3,4]. JPF has been combined with deci-
sion procedures such as first-order provers CVClite and Simplify, the SMT solver
Yices, the Presburger arithmetic constraint solver OMEGA, and the constraint
solver STP on bit-vectors and arrays, for correctness checking and automated
test-input generation. Symbolic execution interprets the program over symbolic

� D.Shannon was an intern at Fujistu Labs. Sunnyvale during this work.

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 36–52, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Context-Sensitive Relevancy Analysis 37

0. public class Limit{
1. int v = 0;
2. Limit (int x){this.v = x;}
3. int GetL(){return this.v;}
4. int IncL(int t) {return this.v + t;}
5. String CutExcess(String s){
6. if(s.length() > v)
7. return s.substring(0, v);
8. else return s;
9. }
10.}
11. public class Driver{
12. public static void main(String[] args){
13. String s = Symbolic.string();
14. int i = 7;
15. Limit limit = new Limit(i);
16. limit.IncL(i);
17. s = limit.CutExcess(s);
18. }
19. }

public class Limit implements Symbolic{
int v = 0;
Limit (int x){this.v = x;}
int GetL(){return this.v;}
int IncL(int t) {return this.v + t;}
String CutExcess(String s) {
return CutExcess(StringExpr.

constant(s)). getValue();
}
StringExpr CutExcess(StringExpr s){
if(Symbolic. GT(s. length(), v))
return s. substring(Symbolic.IntConstant(0),

Symbolic.IntConstant(v));
else return s;
}

}

public class Driver{
public static void main(String args[]){

StringExpr s = new Symbolic.string();
int i = 7;
Limit limit = new Limit(i);
limit.IncL(i);
s = limit. CutExcess(s);

}
public static void main(String args[]){

main(args);
}

}

Fig. 1. A Java Example for Code Instrumentation of Symbolic Execution

values and allows model checking to reason variables with infinite data domain.
Though such exhaustive checking is very powerful, it is computationally expen-
sive. Further sophistication is needed to make it scale to industrial size software
applications.

Fig. 1 shows an example of code instrumentation from the Java code fragment
(the left-hand side) into its symbolic counterpart (the right-hand side) for sym-
bolic execution. In the Driver class, the String s is designated as symbolic (by
the assignment of Symbolic.string() to s). The methods of IncL(), GetL(), and
the constructor Limit(int x) of the class Limit does not need a symbolic version
as no symbolic values ever flow into these methods. However, in the symbolic
execution of Java programs, most of existing approaches transform the entire
program with regarding all program entities as symbolic. Blind instrumentation
will incur unnecessary runtime overhead on symbolic execution along with the
extra time required to instrument the entire program. Therefore, some program
analysis is expected to help identify the part of program entities that are subject
to symbolic execution at run-time.

This paper makes the following primary contributions:

– We present an interprocedural relevancy analysis (RA), formalized and impl-
mented as weighted pushdown model checking [5] with PER-based abstrac-
tion [6]. Our RA is context-sensitive, field-sensitive, and flow-insensitive, and
conservatively detects the set of memory locations (i.e., program variables of
various kinds) where symbolic values can flow into. Then the instrumenter

38 X. Li et al.

can use this information to instrument only the relevant parts of the program
with symbolic constructs, thereby improving the performance of symbolic
execution and code instrumentation itself.

– We perform experiments on the generalized symbolic execution engine [3],
which is developed upon JPF, for checking safety properties on three Java
applications. Relevancy analysis is used as the preprocessing step to detect
program variables that may store symbolic values at run-time. Only these
portions of the applications are later transformed using a code instrumenter.
Experimental results indicate that our technique can effectively improve the
performance of the symbolic execution engine with respect to the approach
that blindly instruments the whole program.

The rest of the paper is organized as follows. In Section 2 the relevancy analysis
based on weighted pushdown model checking techniques is presented. In Section
3 we describe in detail how Java programs are abstracted and modelled for
relevancy analysis. Experimental results are presented and discussed in Section
4, and related work is surveyed in Section 5. Section 6 concludes the paper with
a description of our future work.

2 Context-Sensitive Relevancy Analysis

2.1 Interprocedural Program Analysis by Weighted Pushdown
Model Checking

Definition 1. A pushdown system P = (Q, Γ, Δ, q0, w0) is a pushdown au-
tomaton regardless of input, where Q is a finite set of states called control loca-
tions, and Γ is a finite set of stack alphabet, and Δ ⊆ Q×Γ ×Q×Γ ∗ is a finite set
of transition rules, and q0 ∈ Q and w0 ∈ Γ ∗ are the initial control location and
stack contents respectively. We denote the transition rule ((q1, w1), (q2, w2)) ∈ Δ
by 〈q1, w1〉 ↪→ 〈q2, w2〉. A configuration of P is a pair 〈q, w〉, where q ∈ Q and
w ∈ Γ ∗. Δ defines the transition relation ⇒ between pushdown configurations
such that if 〈p, γ〉 ↪→ 〈q, ω〉, then 〈p, γω′〉 ⇒ 〈q, ωω′〉, for all ω′ ∈ Γ ∗.

A pushdown system is a transition system with a finite set of control states and
an unbounded stack. A weighted pushdown system extends a pushdown system
by associating a weight to each transition rule. The weights come from a bounded
idempotent semiring.

Definition 2. A bounded idempotent semiring S = (D, ⊕, ⊗, 0, 1) consists
of a set D (0, 1 ∈ D) and two binary operations ⊕ and ⊗ on D such that

1. (D, ⊕) is a commutative monoid with 0 as its neutral element, and ⊕ is
idempotent, i.e., a ⊕ a = a for a ∈ D;

2. (D, ⊗) is a monoid with 1 as the neutral element;
3. ⊗ distributes over ⊕. That is, ∀a, b, c ∈ D, a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c)

and (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c);
4. ∀a ∈ D, a ⊗ 0 = 0 ⊗ a = 0;

Context-Sensitive Relevancy Analysis 39

5. The partial ordering � is defined on D such that ∀a, b ∈ D, a � b iff a⊕b = a,
and there are no infinite descending chains on D wrt �.

Remark 1. As stated in Section 4.4 in [5], the distributivity of ⊕ can be loosened
to a ⊗ (b ⊕ c) � (a ⊗ b) ⊕ (a ⊗ c) and (a ⊕ b) ⊗ c � (a ⊗ c) ⊕ (b ⊗ c).

Definition 3. A weighted pushdown system is a triple W = (P,S, f), where
P = (Q, Γ, Δ, q0, w0) is a pushdown system, S = (D, ⊕, ⊗, 0, 1) is a bounded
idempotent semiring, and f : Δ → D is a function that assigns a value from D
to each rule of P.

Definition 4. Consider a weighted pushdown system W = (P,S, f), where P =
(Q, Γ, Δ, q0, w0) is a pushdown system, and S = (D, ⊕, ⊗, 0, 1) is a bounded idem-
potent semiring. Assume σ = [r0, ..., rk] to be a sequence of pushdown transition
rules, where ri ∈ Δ(0 ≤ i ≤ k), and v(σ) = f(r0) ⊗ ... ⊗ f(rk). Let path(c,c′)
be the set of all rule sequences that transform configurations from c into c′. Let
C ⊆ Q × Γ ∗ be a set of regular configurations. The generalized pushdown
reachability problem(GPR) is to find for each c ∈ Q × Γ ∗:

δ(c) =
⊕

{v(σ)|σ ∈ path(c, c′), c′ ∈ C}

Efficient algorithms for solving GPR are developed based on the property that
the regular set of pushdown configurations is closed under forward and back-
ward reachability [5]. There are two off-the-shelf implementations of weighted
pushdown model checking algorithms, Weighted PDS Library1, and WPDS+2.
We apply the former as the back-end analysis engine for relevancy analysis.

The GPR can be easily extended to answer the“meet-over-all-valid-paths”
program analysis problem MOVP(EntryPoints, TargetPoints), which intends to
conservatively approximate properties of memory configurations at given pro-
gram execution points (represented as TargetPoints) induced by all possible ex-
ecution paths leading from program entry points (represented as EntryPoints).
A valid path here satisfies the requirement that a procedure always exactly re-
turns to the most recent call site in the analysis. The encoding of a program into
a weighted PDS in a (flow-sensitive) program analysis [5] typically models pro-
gram variables as control locations and program execution points (equivalently,
line numbers) as stack alphabet. The weighted domain is designed as follows:

– A weight function represents the data flow changes for each program execu-
tion step, such as transfer functions;

– f ⊕ g represents the merging of data flow at the meet of two control flows;
– f ⊗ g represents the composition of two sequential control flows;
– 1 implies that an execution step does not change each datum; and
– 0 implies that the program execution is interrupted by an error.

1 http://www.fmi.uni-stuttgart.de/szs/tools/wpds/
2 http://www.cs.wisc.edu/wpis/wpds++/

40 X. Li et al.

Moreover, assume a Galois connection (L, α, γ, M) between the concrete domain
L and the abstract domain M , and a monotone function space Fl : L → L.
Taking weight functions from the monotone function space Fm : M → M defined
as Fm = {fm | fm ⊇ α ◦ fl ◦ γ, fl ∈ Fl}, a sound analysis based on weighted
pushdown systems can be ensured according to abstract interpretation.

2.2 PER-Based Abstraction and Relevancy Analysis Infrastructure

For program verification at source code level, it is a well understood methodology
that program analysis can be regarded as model checking of abstract interpreta-
tion [7] on an intermediate representation (IR) of the target program. Our RA
is designed and implemented as weighted pushdown model checking following
this methodology.

The infrastructure of our RA is shown in Figure 2, with a soot3 compiler
as the front-end preprocessor and the Weighted PDS Library as the back-end
model checking engine. The analysis starts off preprocessing by soot from Java
to Jimple [8], which is a typed three-address intermediate representation of Java.
In the meantime, points-to Analysis (PTA) is performed and thus a call graph
is constructed. After preprocessing, Jimple codes are abstracted and modeled
into a weighted PDS, and the generated model is finally checked by calling the
Weighted PDS Library. The set of symbolic variables is detected and output into
an XML file for later use by the code instrumenter.

We choose Jimple as our target language since its language constructs are
much simpler than those of either Java source code or Java Bytecode. Although
the choice of PTA is independent of RA, the precision of RA depends on the pre-
cision of PTA, in that (i) call graph construction and PTA are mutually depen-
dent due to dynamic method dispatch; and (ii) a precise modelling on instance
fields (a.k.a., field-sensitivity [9]), array references, and containers (Section 4.3)
depends on PTA to cast aliasing.

The objective of our relevancy analysis is to compute the set of program
variables of interested type that are relevant to any designated variables that
are meant to be symbolic. We mark a variable as relevant if it can store symbolic
values at run-time. Our relevancy analysis is leveraged from an interprocedural
irrelevant code elimination [10]. The idea is that, if the change of a value does
not affect the value of outputs, we regard it as irrelevant, and relevant otherwise.

The weighted domain for this analysis is constructed on a 2-point abstract
domain L (Definition 5) based on a partial equivalence relation (PER). A PER
on a set S is a transitive and symmetric relation S × S. It is easy to see that
γ l is a PER for all l ∈ L. Our relevancy analysis works with an interpretation
on L as follows: any is interpreted as any values, and id is interpreted as fixed
values. Designating a seed variable x to be any in a program, a variable y is
relevant to x if its value can be any at run-time.

Definition 5. Define the 2-point abstract domain L as L = {any, id}, with
the ordering any ⊃ id. Taking the concrete domain D as integers or other data
3 http://www.sable.mcgill.ca/soot/

Context-Sensitive Relevancy Analysis 41

Fig. 2. The Analysis Infrastructure

sets of interest, the concretization γ of L is defined as γ any = {(x, y) | x, y ∈
D}, γ id = {(x, x) | x ∈ D}.

Definition 6. Define a set of transfer functions F : L → L as

F = {λx.x, λx.any, λx.id | x ∈ L}

Let f0 = λx.any, f1 = λx.x, and f2 = λx.id. We have ∀x ∈ L, f0 x ⊃
f1 x and f1 x ⊃ f2 x. Thus, F is a monotone function space with the ordering
f0 � f1 � f2, where f � f ′ iff ∀x ∈ L, fx ⊃ f ′x. The weighted domain in our
analysis thus consists of F plus 0 element, and binary operations over weights
are correspondingly induced by the ordering �.

3 Modelling Java Programs

3.1 Building the Weighted Dependence Graph

Provided with a Java points-to analyzer, the analysis first builds a weighted
dependence graph (WDG), a directed and labelled graph G = (N, L,�). The
WDG is then encoded as the underlying weighted pushdown system for model
checking. Let Var denote the set of program variables of interested type which
consist of local variables and field or array references, and let ProS denote the
set of method identifiers which is identified as a pair of class names and method
signatures. N ⊆ Var × ProS is a set of nodes and each of them represents a
program variable and the method where it resides. L ⊆ F is a set of labels,
and �⊆ N × L × N is a set of directed and labelled edges that represent some
dependence among variables regarding the changes of data flow. By v1

l� v2, we
mean that there is a data flow from v1 to v2 represented by a weight l. A WDG
can be regarded as an instance of the exploded supergraph [11].

42 X. Li et al.

Let Stmt be the set of Jimple statements and let P be the powerset operator.
An evaluation function A[[]] : Stmt → P(�), which models Jimple statements
(from a method f ∈ ProS) into edges in G, is given in Table 1, where

– GlobVar (⊆ Var) denotes the set of static fields and instance fields, as well
as array references, in the analysis after casting aliasing;

– env (∈ GlobVar) denotes the program environment that allocates new mem-
ories; SymVal and ConstVal denotes symbolic values and program constants
respectively; binop denotes binary operators;

– pta(r, cc) (cc ∈ CallingContexts(f)) denotes points-to analysis on a refer-
ence variable r with respect to calling contexts cc, and CallingContexts(f)
represents the calling contexts of a method f where r resides;

– [[o]] (o ∈ pta(r)) denotes the unique representative of array members r[i]
after calling points-to analysis on the base variable r;

– rp(∈ RetP) is a return point associated with a method invocation. Return
points denoted by RetP are introduced in addition to method identifiers, so
that each method invocation is assigned with a unique return point;

– f ′
ret (resp. f ′

argi
) is a variable that denotes a return value (resp. the i-th

parameter) of the method f ′ ∈ ProS.

λx.any models that env assigns symbolic values to seed variables; λx.id models
that env assigns variables with program constants; λx.x models that a data flow
is kept unchanged. For readability, the label λx.x (on�) is omitted in the table.

Our analysis is context-sensitive by encoding the program as a pushdown
system, and thus calling contexts that can be infinite are approximated as regular
pushdown configurations. A WDG G is encoded into a Weighted PDS as follows,

Table 1. Rules for Building the Weighted Dependence Graph

A[[x = SymVal]] = {(env, f) λ.any� (x, f)}
A[[x = ConstVal]] = {(env, f) λ.id� (x, f)}
A[[x = y]] = {(y, f)� (x, f)}
A[[z = x binop y]] = {(x, f)� (z, f), (y, f)� (z, f)}
A[[x = r[n]]] = {([[o]], f)� (x, f) | o ∈ pta(r, cc)}
A[[r[n] = x]] = {(x, f)� ([[o]], f) | o ∈ pta(r, cc)}
A[[x = r.g]] = {(o.g, f)� (x, f) | o ∈ pta(r,cc)}
A[[r.g = x]] = {(x, f)� (o.g, f) | o ∈ pta(r,cc)}
A[[x = lengthof r]] = {(o.len, f)� (x, f) | o ∈ pta(r,cc)}
A[[r = newarray RefType [x]]] = {(x, f)� (o.len, f) | o ∈ pta(r, cc)}
A[[return x]] = {(x, f)� (fret, f)}
A[[x := @parameterk : Type]] = {(fargk

, f)� (x, f)}
A[[x := (Type)y]] = {(y, f)� (x, f)}
A[[z = x.f ′(m1, ..., ml, ml+1, ...mn)]] =

{(mi, f)� (f ′
argi

, f ′) | 1 ≤ i ≤ l} ∪ {(f ′
ret, f

′)� (f ′
ret, rp)}

∪ {(f ′
ret, rp)� (z, f)} ∪ {(v, f)� (v, f ′) | v ∈ GlobVar}

∪ {(v, f ′)� (v, rp) | v ∈ GlobVar} ∪ {(v, rp)� (v, f) | v ∈ GlobVar}
where mi(1 ≤ i ≤ l) are variables of interested type, and cc ∈ CallingContexts(f).

Context-Sensitive Relevancy Analysis 43

– The set of control locations is the first projection of N (⊆ Var);
– The stack alphabet is ProS ∪ RetP;
– The weighted domain is the set of labels L;
– Let (v1, f1)

l� (v2, f2) ∈ E for l ∈ L such that

• 〈v1, f1〉 ↪→ 〈v2, f2〉 if f1 = f2,
• 〈v1, f1〉 ↪→ 〈v2, f2fr〉 if the method f1 calls f2 with fr designated as the

return point, and
• 〈v1, f1〉 ↪→ 〈v2, ε〉 if f2 ∈ RetP.

Our analysis is also field-sensitive, so that not only different instance fields of
an object are distinguished (otherwise called field-based analysis), but also are
instance fields that belong to different objects (otherwise called field-insensitive
analysis). Note that array references are treated similarly as instance fields. The
abstraction we take is to ignore the indices of arrays, such that members of an
array are not distinguished. Both field and array references can be nested, and
we choose to avoid tracking such a nesting in the analysis by cast aliasing on
their base variables with calling a points-to analysis.

Considering efficiency, we perform a flow-insensitive analysis, i.e., each method
is regarded as a set of instructions by ignoring their execution order. Note that
soot compiles Jimple in a SSA-like (Static Single Assignment) form. When a pro-
gram is in the SSA-like form, a flow-insensitive analysis on it is expected to enjoy
a similar precision of that of a flow-sensitive analysis [9], except that, in a flow-
insensitive analysis, the return points of call sites also shrink to the nodes (i.e.,
methods) of the call graph. Thus, calling contexts of a method that is multiply
invoked from one method are indistinguishable due to sharing the same return
points. We remedy such a precession loss by associating a unique return point
with each invocation site.

Definition 7. Assume that the program under investigation starts with the en-
try point ep ∈ ProS. Our relevancy analysis on a variable v ∈ Var that resides
in the method s ∈ ProS computes ra(v, m) = MOVP(S, T), where S = 〈env, ep〉
and T = 〈v, m.(RetP)∗〉. v is marked as relevant if and only if ra(v, m) returns
λx.any.

Remark 2. To compute MOVP(S, T), our analysis calls the Weighted PDS Library
to (i) first construct a weighted automaton that recognizes all pushdown con-
figurations reachable from S; and (ii) then read out weights associated with
pushdown configurations from T with respect to the variables of interest. The
latter phase seems not to be a dominant factor in practice, and the time com-
plexity of the former is O(m n2), where m is the number of variables and n is
the program size (Lemma 1 in [12]).

Remark 3. We are interested in variables of primite type, strings, and the classes
explicitly modelled (Appendix A) in the analysis. An array is regarded as sym-
bolic if its unique representative is detected as symbolic by the analysis. Since

44 X. Li et al.

0.public class Driver {
1. public static void main (String[] args){
2. int s = Symbolic.int();
3. Limit a = new Limit(s);
4. Limit b = new Limit(5);
5. int c = b.IncL(s);
6. int d = b.IncL(5);
7. int p = a.GetL();
8. int q = b.GetL();
9. }
10.}

Fig. 3. A Java Code Fragment Fig. 4. The WDG for lines 3-4, 5-6

our analysis is field-sensitive, an instance field f of a class is regarded as sym-
bolic, if it is detected as symbolic when belonging to any instance o of this class,
i.e., when o.f is detected as symbolic.

3.2 Precision Enhancement by Refined Modelling on Globals

A typical approach to perform context-sensitive analysis is based on context-
cloning. In such methods, program entities, such as methods and local variables,
typically have a separate copy for different calling contexts. Since possible call-
ing contexts can be infinite due to recursions, this infinity is often bounded by
limiting the call depth within which the precision is preserved (like k -CFA analy-
sis [13]) or by performing context-insensitive analysis on all the procedure calls
involved in any recursions [14]. In contrast, our approach to context-sensitivity
is based on context-stacking. That is, the infinite program control structures are
modelled by the pushdown stack with no limit on recursions and procedure calls.
The context-stacking-based approach has an advantage over the context-cloning-
based approach when there are deep procedure calls, or when a large number of
procedures is involved in various recursions in the program. However, in some
cases, it can be less precise than the context-cloning-based analysis.

Example 1. Suppose the int s is designated as symbolic (by the assignment of
Symbolic.int()) in the Java code fragment in Fig. 3 that uses class Limit in Fig. 1.
For the driver, variables c and p are symbolic, but variables d and q are not.

Assume the heap objects allocated at lines 3 and 4 are respectively O1 and
O2. Fig. 4 shows part of the WDG corresponding to lines 3-4 and 5-6. Each
dotted circle demarcates a method. There are two kinds of nodes identified by
variable names: circles for local variables and rectangles for global variables, such
as instance fields and array references. Dashed edges are induced by the method
invocation at line 6, which is to be distinguished from the method invocation
at line 5. Return points for method invocations at lines 5 and 6 are represented

Context-Sensitive Relevancy Analysis 45

Table 2. Refined Modelling on Globals

A[[x = r[n]]] = {(([[o]], cc), f)� (x, f) | o ∈ pta(r, cc), cc ∈ CallingContexts(f)}
A[[z = x.f ′(m1, ..., ml, ml+1, ...mn)]] =

{(mi, f)� (f ′
argi

, f ′) | 1 ≤ i ≤ l} ∪ {(f ′
ret, f

′)� (f ′
ret, rp)} ∪ {(f ′

ret, rp)� (z, f)}
∪ {((v, cc), f)� ((v, cc′), f ′) | v ∈ GlobVar, cc ∈ CallingContexts(f),

cc′ ∈ CallingContexts(f ′)}
∪ {((v, cc′), f ′)� ((v, rp), rp) | v ∈ GlobVar, cc′ ∈ CallingContexts(f ′)}
∪ {((v, rp), rp)� ((v,cc), f) | v ∈ GlobVar, cc ∈ CallingContexts(f)}

where mi(1 ≤ i ≤ l) are variables of concerned type.

Fig. 5. The WDG for lines 2-4, 7-8 Fig. 6. Fig.5 with Refined Modeling

as triangles, and named r1 and r2 respectively. The variable ret represents the
return value of IncL(). Our analysis can precisely distinguish that c and d are
returned from two invocations on the same method, and only c is relevant to s.

However, the analysis cannot correctly conclude that q can only store concrete
values at run-time, whereas this case can be handled by the 1-CFA context-
sensitive approach based on context-cloning. Fig. 5 shows part of the WDG cor-
responding to lines 3-4 and 7-8, where dashed edges are induced by the method
invocation at line 6, and for readability, return points for line 7 and 8 are omitted
in the figure. GetL() are invoked on objects O1 and O2 respectively from line 7
and 8, and instance fields of both O1.v and O2.v can flow to ret under two calling
contexts. However, since the pushdown transition only depends on the control
location (i.e., variable) and the topmost stack symbol (i.e., the method where
the variable presently resides), the pushdown transitions are incapable of distin-
guishing under which calling contexts a global variable (∈ GlobVar) flows into
a method. Therefore, pushdown transitions that model edges e1 and e2 cannot
distinguish invocations from lines 7 and 8.

To remedy a precision, our choice is to refine modelling on global variables
from GlobVar to avoid an invalid data flow. Such an extension is obtained by
modifying rules from Table 1 in which global variables are involved. Table 2 shows
some of the extensions on array references and method invocations. Assume that

46 X. Li et al.

the calling context of main() is C0, the calling contexts of GetL() are C1 and
C2, and that the calling contexts of Limit(int x) are C3 and C4. Fig. 6 shows the
refined version of the WDG shown in Fig. 5. Note that the precision of refined
modelling closely depends on that of the underlying context-sensitive points-to
analysis.

4 Evaluations

4.1 Configuration of the Evaluation Steps

Our evaluation of checking safety properties of Java web applications through
symbolic execution generally consists of the following steps:

– Environment Generation: Since model checking techniques require a
closed system to run on, the first step is to convert a heterogeneous web
application that uses various components into a closed Java program. This
process is known as environment generation [15], which decomposes web
applications into the module that is typically the middle tier of web ap-
plications, which comprises the business logic and the environment with
which the module interacts with. The environment is further abstracted into
drivers from Java classes that hold a thread of control and stubs from the
rest of Java classes and components of the application. After this step, all
the applications consist of a driver file that provides all input values to the
application. Typically, these values are provided by a user using forms in a
webpage. The back-end database is abstracted as a series of stubs that use a
two-dimentional table structure, and also to store the input data if needed.

– Property Specification: Once the model is generated, some specific input
values in the drivers are made to be symbolic quantities, such as values of
integer, float, Boolean, or String. For example, if the requirement is that
the shopping cart total must be the product of the item price and the item
quantity specified by the user, then the item price, quantity, and cart-total
are made to be symbolic entities. Sometimes this can be achieved using
the input variables in the driver only. However, sometimes this also means
changing the database stubs for inputs that were stored in the database (such
as item price). The requirement is further inserted as an assertion comprising
the symbolic entities and placed in an appropriate location in the program.

– Code instrumentation: The program is thus instrumented using a code
instrumenter that replaces java codes that use concrete values with the coun-
terparts that can handle symbolic values. For this purpose, extensive libraries
have been developed that can handle symbolic integer, symbolic float, sym-
bolic Boolean, etc.. The instrumenter uses the relevancy analysis to pinpoint
the portions of the program that are required to tackle symbolic entities. The
results of the relevancy analysis are conveyed as series of classes, methods,
parameters, and variables to the instrumenter in an XML file.

Context-Sensitive Relevancy Analysis 47

– Symbolic program model checking: Finally, once the instrumentation
phase is completed, a state-based model checker is used to check safety prop-
erties of interest. The symbolic libraries create a system of equations with
the symbolic variables, whenever those variables are manipulated. At each
control point that consists of symbolic variables, an off-the-shelf decision
procedure is invoked to check whether the system of equations is satisfiable.
If not, the exploration is terminated along that path. An assertion containing
symbolic variables is inserted into the program at an appropriate point to
check for the negation of the property being checked. When the assertion is
hit, a solution to the equations points to the existence of a counterexample
or bug. If there are no solutions, then the requirement holds.

4.2 Experimental Results

Our experimental platform is built upon JPF at the University of Texas at
Austin. The targets of our experiments are Java applications as shown in Table 3.
Note that these numbers reflect the size of the generated Java model. The original
application is usually much larger since it is heterogeneous and consists of HTML
pages, JSP code, some database code, etc.. It is extremely difficult to estimate
the exact size of the original application.

Table 3. Benchmark Statistics

Application Description #classes #lines
WebStore Simple Web E-store 6 410
DB-Merge Database Application 26 706
Petstore SUN’s J2EE Sample App. 752 23,701

We now discuss the efficiency issues of this whole exercise. Table 4 shows the
CPU times (in seconds) for various parts of the process by comparing symbolic
execution with blind instrumentation and symbolic execution with RA-based
instrumentation. The underlying points-to analysis of the relevancy analysis is
provided by soot, which is 0-CFA context-insensitive analysis with call graph
constructed on-the-fly. Since symbolic execution is computationally expensive,
it was impractical to check all symbolic inputs in one pass for large-scale appli-
cations. As a result various symbolic execution instances of the same application
were created based on the requirement that was being checked. As shown in the
Table, multiple properties over symbolic variables are checked in separate passes.
Therefore, although the soot PTA phase is one of the dominant factors in the
execution time, it has been reused across all these requirements for a particular
application as only some different set of variables are marked as symbolic in the
program in each instance. Thus this analysis comprises of an one-time cost and
is amortized across all the requirements that are checked. Typically hundreds
of requirements need to be checked for a medium size application. Hence, this
time has not been included in the overall CPU runtimes. Moreover, note that

48 X. Li et al.

Table 4. Performance of symbolic execution with instrumenter using static analysis

App. Prop. Blind Instrumentation RA based Instrumentation RT CR
Program Instr. SECK Total PTA RA Instr. SECK Total
WebStore Prop.1 6.2 1.9 8.1 509 0.8 2.0 1.9 4.7 42% 43%

Prop.2 6.2 2.9 9.1 0.9 2.0 2.8 5.7 37% 41%
DB-Merge Prop.1 3.1 10.5 13.6 523 0.6 2.1 9.4 12.1 11% 19%
Petstore Prop.1 36.9 259.2 296.1 575 1.2 4.8 109.4 115.4 61% 16%

Prop.2 38.1 593.6 631.7 1.1 5.1 319.9 326.1 48% 16%
Prop.3 39.2 2566.2 2605.4 1.2 5.4 1053.6 1060.2 59% 17%

Prop.: property being checked Instr.: time for code instrumentation
PTA: time for points-to analysis RA: time for relevancy analysis
Total: time for both Instr. and SECK RT: percentage of runtime improvement
SECK: time for symbolic execution of requirement checking
CR: percentage of the reduction on the instrumented code size
All time above are measured in seconds

the Soot PTA time is relatively large even for small examples like WebStore and
does not increase that much for the larger example. This is due to its analysis
of many Java library classes used by the example which dominate the runtime.
These library analysis results can be cached and reused not only across differ-
ent requirements in the same application but across different applications that
use the same libraries. This will reduce the PTA overhead even further. We can
observe that there is an average gain in overall runtime as well as reduction
in instrumented code size due to the static analysis phase. The CPU time im-
provement can be as high as 61% for larger examples. This can only grow as
the number and influence of symbolic inputs become smaller compared to the
overall application size. The CPU times are for a 1.8Ghz dual core Opteron
machine running the Redhat Linux operating system and having a memory
of 4GB.

5 Related Work

Symbolic execution for model checking of Java programs has been proposed in
[3]. However, it is well known that symbolic execution is computationally ex-
pensive and efforts have been made to reduce its complexity by abstracting out
library classes [16]. A framework for type inference and subsequent program
transformation for symbolic execution is proposed in [17] which allows multi-
ple user-defined abstractions. Execution of a transformed program for symbolic
execution has been used in several approaches. In most of those approaches,
the whole program is transformed akin to our blind instrumentation technique
[18], [19]. In [20], the performance of symbolic execution is enhanced by ran-
domly concretizing some symbolic variables at the cost of coverage. Instead of
transforming the source code, an enhanced Java virtual machine is used to sym-
bolically execute code in [2].

Context-Sensitive Relevancy Analysis 49

The approach in [21] is closely related to this work. However, the focus of
that paper is precise instrumentation through static analysis whereas the focus
of this work is on performance enhancements through the static analysis phase.
Approaches adopted in [21] and this work consider two streams of performing
context-sensitive program analysis, i.e., context-cloning vs. context-stacking. The
analysis in [21] borrows ideas and algorithms from points-to analysis, e.g., the
match of field read and write operations are formalized as a CFL (Context Free
Language)-reachability problem. Their approach to context-sensitivity is based
on context-cloning following [14] and the k-CFA approach to handle procedural
calls, whereas our analysis based on pushdown system complemented with the
refined modelling on globals can reach a higher precision due to the absence
of restriction on recursions and call depth. Note that we cannot compare our
work with [21] as neither the tool described in that work or the versions of the
example programs used there are in the public domain. No performance statistics
are mentioned in that paper.

6 Conclusions

We formalized a context-sensitive, field-sensitive and flow-insensitive relevancy
analysis as weighted pushdown model checking, to help the symbolic execution
technique scale to realistic Java applications. Our analysis was used as a pre-
processing step of symbolic execution, which helps in identifying relevant sections
of a program where symbolic values can flow into.

We evaluated the methodology on the generalized symbolic execution plat-
form, built upon JPF at the Univiersity of Texas at Austin. Though the domi-
nant overhead of this methodology is the PTA phase, the results of PTA can be
cached and reused. Experimental results indicate that, as the program size in-
creases,, the performance gains obtained from the symbolic execution phase far
outweigh the overhead of analysis and thus produce a significant gain in overall
performance. Moreover, the symbolic programs thus obtained are much smaller
than the ones obtained by blind transformation, which avoids running out of
memory during symbolic execution.

The precision and scalability of the relevancy analysis is closely related to
that of the underlying points-to analysis. Currently, we performed a 0-CFA
context-insensitive on-the-fly points-to analysis provided by Soot. In this work,
we limit our focus to the performance improvement of symbolic execution. We
are planning to apply a context-sensitive points-to analysis based on weighted
pushdown model checking, to see the room of precision enhancement. Points-
to analysis on Java web applications is expensive since, even for a small web
application, the libraries of the web applications are huge and easily reach mil-
lions of lines. Thus, more sophisticated treatments for analyzing libraries are
expected. Another interesting direction is that our relevancy analysis can be re-
garded as an instance of the traditional taint-style analysis, thus it is applicable
to other application scenarios such as security vulnerability check on Java web
applications [22].

50 X. Li et al.

References

1. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

2. Deng, X., Lee, J., Robby: Bogor/Kiasan: A k-bounded symbolic execution for
checking strong heap properties of open systems. In: The 21st IEEE International
Conference on Automated Software Engineering (ASE 2006), pp. 157–166 (2006)

3. Khurshid, S., Pasareanu, C., Visser, W.: Generalized symbolic execution for model
checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 553–568. Springer, Heidelberg (2003)

4. Anand, S., Pasareanu, C.S., Visser, W.: JPF-SE: A symbolic execution extension to
Java PathFinder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 134–138. Springer, Heidelberg (2007)

5. Reps, T.W., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their
application to interprocedural dataflow analysis. Sci. Comput. Program. 58(1-2),
206–263 (2005)

6. Hunt, S.: PERs generalize projections for strictness analysis. In: Functional Pro-
gramming. Proc. 1990 Glasgow Workshop, pp. 114–125. Springer, Heidelberg
(1990)

7. Schmidt, D.A.: Data flow analysis is model checking of abstract interpretations.
In: The 25th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL 1998), pp. 38–48 (1998)

8. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L.J., Lam, P., Sundaresan, V.: Soot - a
Java bytecode optimization framework. In: Conference of the Centre for Advanced
Studies on Collaborative Research, CASCON 1999 (1999)

9. Hasti, R., Horwitz, S.: Using static single assignment form to improve flow-
insensitive pointer analysis. In: ACM SIGPLAN conference on Programming lan-
guage design and implementation (PLDI 1998), pp. 97–105 (1998)

10. Li, X., Ogawa, M.: Interprocedural program analysis for Java based on weighted
pushdown model checking. In: The 5th International Workshop on Automated
Verification of Infinite-State Systems (AVIS 2006), ETAPS (April 2006)

11. Reps, T.W.: Program analysis via graph reachability. In: International Logic Pro-
gramming Symposium (ILPS 1997), pp. 5–19. MIT Press, Cambridge (1997)

12. Reps, T.W., Lal, A., Kidd, N.: Program analysis using weighted pushdown sys-
tems. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 23–51.
Springer, Heidelberg (2007)

13. Shivers, O.: Control flow analysis in scheme. In: ACM SIGPLAN conference on
Programming Language design and Implementation (PLDI 1988), pp. 164–174
(1988)

14. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis us-
ing binary decision diagrams. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2004), pp. 131–144 (2004)

15. Tkachuk, O., Dwyer, M.B., Păsăreanu, C.: Automated environment generation for
software model checking. In: The 18th IEEE International Conference on Auto-
mated Software Engineering (ASE 2003), pp. 116–129 (2003)

16. Khurshid, S., Suen, Y.L.: Generalizing symbolic execution to library classes. In:
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools
and Engineering (PASTE 2005), pp. 103–110 (2005)

Context-Sensitive Relevancy Analysis 51

17. Dwyer, M., Hatcliff, J., Joehanes, R., Laubach, S., Pasareanu, C.S., Robby, Zheng,
H., Visser, W.: Tool-supported program abstraction for finite-state verification.
In: The 23rd International Conference on Software Engineering (ICSE 2001), pp.
177–187 (2001)

18. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Automat-
ically generating inputs of death. In: ACM Conference on Computer and Commu-
nications Security 2006 (CCS 2006), pp. 322–335 (2006)

19. Schulte, W., Grieskamp, W., Tillmann, N.: XRT-exploring runtime for.NET archi-
tecture and applications. Electronic Notes in Theoretical Computer Science 144(3),
3–26 (2006)

20. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
ESEC/FSE-13: Proceedings of the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international symposium on Foundations
of software engineering, pp. 263–272. ACM, New York (2005)

21. Anand, S., Orso, A., Harrold, M.J.: Type-dependence analysis and program trans-
formation for symbolic execution. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 117–133. Springer, Heidelberg (2007)

22. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in Java applications with
static analysis. In: The 14th conference on USENIX Security Symposium (SSYM
2005), p. 18. USENIX Association (2005)

23. Christensen, A., Møller, A., Schwartzbach, M.: Precise analysis of string expres-
sions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer, Heidel-
berg (2003)

A Application-Oriented Modelling for Efficiency

It is often intractable and unnecessary to explore the whole Java libraries. We
hence propose application-oriented explicit modelling on some popular Java li-
braries, such as containers and strings for better efficiency.

Container , such as HashMap, vectors and trees, is widely used in Java web ap-
plications, to store and fetch event attributes. A precise analysis on containers
is nontrivial, since the capacity (or the index space) of containers can be un-
bounded. Our treatment on containers is inspired by the treatment on instance
fields, based on the insight that keys of containers can be regarded as fields of
class instances. Compared with modelling on instance fields, the modelling on
containers differs in that keys of containers can be either string constants or
more often reference variables. Therefore, both containers and keys need to be
cast back to heap objects by calling points-to analysis. Table 5 gives rules of
modelling Map containers. As shown in Table 5, the key of a map is bound with
its corresponding value by the put and get methods. The pair of containers and
keys are treated as variables from GlobVar when building the WDG. In partic-
ular, a Map container is marked as symbolic if there is any symbolic value put
into or any symbolic key taken from it.

Strings. are also heavily used in Java web applications. For instance, the keys
and values of containers are usually of type String. The space of string values is
generally infinite, and to conduct a precise string analysis [23] will put too much

52 X. Li et al.

Table 5. Application-oriented Modelling

Map Container :
A[[map.put(key, value)]]={(value, f)� (om.ok, f) | om ∈ pta(map), ok ∈ pta(key)}
A[[value = map.get(key)]]={(om .ok, f)� (value, f) | om ∈ pta(map), ok ∈ pta(key)}

java.lang.String, java.lang.StringBuffer :
A[[str.getBytes(m0 , m1, m2, m3)]] = A[[str.getChars(m0 , m1, m2, m3)]]
= {(mi, f)� (m2, f) | 0 ≤ i ≤ 3 and i �= 2} ∪ {(str, f)� (m2, f)}
A[[strbuffer.getChars(m0 , m1, m2, m3)]]
= {(mi, f)� (m2, f) | 0 ≤ i ≤ 3 and i �= 2} ∪ {(strbuffer, f)� (m2, f)}

overhead on the static analysis phase. However, we are only interested in the
relevancy relationship among string variables. In our analysis, string constants
that syntactically appear in the program (and are thus essentially bounded)
are considered as distinguished string instances. Java library methods related to
strings, i.e., java.lang.String, java.lang.StringBuffer are explicitly mod-
elled. They fall into the following categories: (1) The receiver object is relevant
to all arguments for a constructor; (2) The return value, if any, is relevant to all
method arguments, as well as the receiver object, if any. Table 5 also shows a
few of examples that require specific treatments.

Static Detection of Place Locality and
Elimination of Runtime Checks

Shivali Agarwal, RajKishore Barik, V. Krishna Nandivada,
Rudrapatna K. Shyamasundar, and Pradeep Varma

IBM India Research Lab, New Delhi

Abstract. Harnessing parallelism particularly for high performance
computing is a demanding topic of research. Limitations and complexi-
ties of automatic parallelization have led to programming language no-
tations wherein a user programs parallelism explicitly and partitions a
global address space for harnessing parallelism. X10 from IBM uses the
notion of places to partition the global address space. The model of com-
putation for such languages involves threads and data distributed over
local and remote places. A computation is said to be place local if all the
threads and data pertaining to it are at the same place. Analysis and
optimizations targeting derivations of place-locality have recently gained
ground with the advent of partitioned global address space (PGAS) lan-
guages like UPC and X10, wherein efficiency of place local accesses is
performance critical.

In this paper, we present a novel framework for statically establish-
ing place locality in X10. The analysis framework is based on a static
abstraction of activities (threads) incorporating places and an extension
to classical escape analysis to track the abstract-activities to which an
object can escape. Using this framework, we describe an algorithm that
eliminates runtime checks that are inserted by the X10 compiler to en-
force place locality of data access. We also identify place locality checks
that are guaranteed to fail. Our framework takes advantage of the high
level abstraction of X10 distributions to reason about place locality of
array accesses in loops as well. The underlying issues, the framework and
its power are illustrated through a series of examples.

1 Introduction

As multi-core systems are gaining popularity, there is a definite need for lan-
guages and tools that can simplify programming high performance machines to
exploit the hardware features to a significant level and achieve higher through-
put. X10 [22] is an object-oriented explicitly parallel programming language be-
ing designed at IBM under the DARPA HPCS program that enables scalable,
high-performance, and high-productivity programming for high-end computer
systems.

X10 provides a notion of an activity as an independent execution sequence. An
activity runs at a place. Multiple activities (zero or more) could be running at any
one particular place at any point of time. Notion of activities and places becomes

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 53–74, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

54 S. Agarwal et al.

L0: async (FirstPlace) {
L1: final Y y = new Y();
L2: ateach(AllPlaces) {
L3: X x = new X();
L4: ... = x.f;
L5: final Z z = new Z();
L6: async (FirstPlace) {
L7: y.f = z;
L8: ... = y.f.g; }}}

Fig. 1. X10 compiler inserts pcas before L4, L7 and L8

clear through the association of activities to threads of execution and places to
processors in the program. Each place has a local memory and runs multiple
activities. An object created at place p is considered local to p, and for any
activity running at place p′(�= p) the location of the object is considered remote.
X10 restricts accesses to remote memory and a runtime exception is thrown if
an activity accesses remote data; note that X10 disallows migration of objects
and activities. For any object o, the field o.location yields the place at which
the object was created. The current X10 compiler conservatively inserts a place
check assertion (pca) to do a place check before every object dereference – leading
to inefficient code. These checks, if they fail, throw a runtime exception called
BadPlaceException. A pca preceding an object dereference gets translated to
the following runtime code:

if (o.location != here) throw BadPlaceException

Each pca not only introduces additional code but also introduces additional
control flow nodes. Since every object dereference needs to do a place check,
the program is peppered with pc-assertions all around; this has a severe impact
on the performance (execution time). The table below presents an experimental
confirmation to this effect by presenting the runtime impact of pcas (execution
time with and without the pcas being disabled) on two of the largest NAS [3]
parallel benchmarks (note that this benchmark suite contains highly parallel
applications).

Benchmark Exec Time -pcas (seconds) Exec Time +pcas (seconds)
CG 135 355
LU 22 60

It can be seen that the overhead of checking these assertions is significant. Besides
the runtime impact of these pc-assertions, pervasive presence of asserts makes it
hard to analyze and optimize programs. Also, certain constructs (for example,
atomic) in the X10 language require that no pca is violated in the body of the
statement. Our analysis can also be used by the compiler to enforce such a
language guarantee.

Static Detection of Place Locality and Elimination of Runtime Checks 55

We use the snippet of sample X10 program in Fig. 1 to motivate the problem
further; we shall use this program as the running example throughout the paper.
The program has been simplified in syntax for readability. Line L0 creates an
activity at FirstPlace that executes the compound statement L1-L8. Line L1
allocates an object at the current place (FirstPlace). Line L2 creates an activity
at each of the places in the set AllPlaces; each of these activities execute the
compound statement L3-L8. At each place, we create a new local object at L3.
This object is being dereferenced in L4. In L5, we create another local object,
and assign it to a final variable. Another activity is created in L6. This activity
runs at FirstPlace and dereferences objects pointed-to by y (in L7) and y.f (in
L8). In this example, there are three object dereferences, and the current X10
compiler introduces pcas before each of the object dereferences L4, L7, and L8.
However, it can be seen that variable y holds an object at place FirstPlace and
hence, it’s dereference in L7 that happens at place FirstPlace does not need a
preceding pca. Similarly, variable x is local to each activity and holds an object
local to the respective places. Again, there is no need of a preceding pca before
L4. However, the one preceding L8 is needed, in particular, for dereferencing the
field g of y.f.

In this paper, we present a static analysis framework to eliminate unnecessary
pcas during compilation and/or identify assertions that will always fail. The
analysis thus either leads to faster code or identifies illegal accesses or leads to
programmer productivity (or both). In other place-based languages like UPC [5]
and ParAlfl [10] where remote accesses are legal, such reasoning can be used to
specialize accesses (local and remote). We have manually applied our analysis
on several benchmarks and show that we can eliminate several pcas statically.

Our framework of eliminating pcas statically consists of the following steps:
1. Abstraction of activities: In order to reason about different object dereferences
and their places of creation, it is important to be able to reason about all the
possible activities and places statically. We define an abstraction for X10 places
and use this to design a system for activity abstraction.
2. Extension to the classical escapes-to analysis: For guaranteeing that object
dereferences do not violate pca, we need to guarantee that the object access
happens at the place, where the object is created. This is done by tracking all
the object creations and copying. For this purpose, we extend the traditional
escape analysis to incorporate the target activity that the object can escape and
present our escapes-to analysis by analyzing the heap using extensions to the
connection graph [9].
3. Algorithm to detect place locality of programs with arrays: Besides objects,
array accesses constitute the other source of pca insertions. In X10 a distributed
array has its slots distributed across multiple places and each access of an array-
slot is restricted to the place where the array slot resides. This is enforced by
a compiler generated pca before the access of each array element. Reasoning
about array accesses involves additional analysis about the values of the index
expressions used for access. We use a constraint-based system to analyse the

56 S. Agarwal et al.

values of the index expressions. Further,we extend the escapes-to analysis to
reason about array accesses within X10 loops.

Our contributions are summarized below.

i. Place Locality for Objects: We define a notion of place-locality and
present a framework to statically prove locality or non-locality of data. This
allows us to identify pcas that are guaranteed to be either true or false; these
identifications have special significance both to X10 and other PGAS languages.

ii. Place Locality for Arrays: We present a novel constraint based scheme
for reasoning about place locality of X10 arrays distributed over multiple places
as an extension to the algorithm described in (i). We present an optimized
scheme for solving our generated constraints with regards to two popular X10
distributions UNIQUE and CYCLIC.

Rest of the paper is organized as follows. First, we present a brief overview of
the relevant constructs of X10 in section 2. The activity abstraction is described
in section 3 followed by the escapes-to analysis in section 4. Section 5 presents a
place locality analysis and its’ application to verify the need of pcas. In section 6,
we describe a few case studies. This is followed by an analysis of distributed
arrays and an illustrative example in section 7. Comparison of our work with
related work is presented in section 8 followed by conclusions in section 9.

2 A Brief Overview of X10 Language

In this paper, we confine ourselves to simplified X10 programs that have only
simple expressions (similar to the expressions in three-address-codes) and every
statement has an associated label with it. Details about standard X10 can be
found in the X10 reference manual [22].

Some of the constructs, we use are as follows. async (p) S creates a con-
current activity to execute the statmenet S at place p. Every program can be
considered as an async statement which recursively starts off all parallel compu-
tation. The place argument is optional, so async (here) S can be written more
compactly as async S.

Any activity can reference only the final variables of its surrounding lexical
environment. Attempt to reference other variables is a static error.

finish S is a structured barrier statement wherein S is executed with a sur-
rounding barrier such that all activities created (recursively) inside S have to
terminate before the barrier completes.

Parallel computation can be spawned with a future besides an async. The
value of expr can be evaluated remotely and received using (future (p) expr).
force(). A future is different from an async in terms of returning a value;
force awaits for the value to become available before returning.

A distribution is a function from a set of points (called region) to a set of places.
X10 has several pre-defined distributions, such as UNIQUE and CYCLIC. The
former associates a set of points in one-to-one correspondence with the set of
places; the latter wraps a set of points on a set of places in a cyclic fashion.

Static Detection of Place Locality and Elimination of Runtime Checks 57

{0,1,2,...,M−1}{0} {1} {M−1} {0,1}. {0,M−1} {1,2} . . .{0,1,2} . . .

⊥

�

Fig. 2. Place Lattice

ateach (point p: D) S is a parallel, distributed loop wherein the statement
S is evaluated for each point p, in the domain of a distribution D, at the place
given by D(p). An ateach can be written in terms of explicit async statements
in a loop; however, our rules target ateachs explicitly for analysis. For this
paper, we allow a shorthand for ateach statements over UNIQUE distributions
by simply letting the user list the set of the distribution’s places X as ateach
(X) S.

A distributed array is described by its type and distribution T[D]. Construc-
tion of the array carries out a new operation over this specification e.g., new
T[UNIQUE].

3 Activity Representation

Efficient representation of parallel activities(threads) is critical to the complex-
ity of static analysis of fine-grained parallel programs. At the same time, the
precision of a static analysis would require enumeration of all instances of run-
time activities during compile-time and track all of their interactions. In circum-
stances where parallel activities are created in loops, it is hard to estimate the
upper bound of the loops during compile-time. To take into account precision
and complexity of compile-time analysis, we describe an abstract activity rep-
resentation that efficiently captures both single and multiple runtime activity
instances. This work extends the previous work by Barik [4].

We use the following notation to define abstract-activities
�L : Set of all labels in the program.
P : Set of all abstract places in the program.
AA : Set of abstract-activities in the program.

We first present an abstract representation of the places to aid in the activity
representation. In X10, places are represented by integer place identifiers that
range from 0 to M−1, where M is the total number of places. We represent the
place information of an abstract-activity using a place lattice shown in Fig. 2.
The set of abstract places P is given by

{⊥, {0}, {1} · · · {0, 1}, · · · {1, 2} · · · {0, 1, 2} · · · {0, 1 . . . M − 1}}

It consists of all the possible combinations of {0 · · ·M − 1}, besides ⊥, and
�. The special place ⊥ indicates an undefined place. This captures the place

58 S. Agarwal et al.

information of an activity before its’ creation. Singleton sets {0}, {1} · · ·{M−1}
correspond to places 0, 1, · · ·M − 1 respectively. An abstract-activity might be
created at multiple places. For example, if an activity is created in each iteration
of a loop (iterating over a set of places Sp), then we say that there exists a sin-
gle abstract-activity that represents all of the instances of the activity and this
abstract-activity must run at an abstract place given by Sp. Non-singleton sets
are used to represent the abstract places for such activities and they provide
must information. Thus, the abstract place {0, 1, · · ·M − 1} is used to repre-
sent the place of an abstract-activity created at all the places. The element �
indicates that the activity may be created at more than one place. Note that,
unlike the must-information represented by the other elements of the lattice, �
represents may-information; our place check analysis handles may-information
conservatively.

An abstract-activity at ∈ AA is represented by a tuple 〈Label, P laces〉, where
Label ∈ �L and Places ∈ P .The label uniquely identifies an abstract-activity.
Places denote the abstract-place where the activity runs. Since, we use program
labels to identify an activity, multiple activities (at different ‘places’) might be
mapped to the same abstract-activity. We shall extend the notion of abstract-
activities to suit our array analysis in section 7.

Consider the program shown in Fig. 1. The async statement in line L0 is
represented in our abstract-activity representation by 〈L0, {0}〉, where 0 is the
value of the place FirstPlace. However, the async statement in line L2 is
represented by 〈L2, {0, 1, ..., M − 1}〉. Looking at L6, it may be seen that the
async statement is invoked at every place, but the activity is created only at
FirstPlace. We represent the corresponding abstract-activity by 〈L6, {0}〉. 1

Issues in Computing Abstract-Activities Set (AA) for X10
There are two components in the representation of an abstract-activity: label
and place.Our simplified program representation helps us to compute unique
labels for each statement and the expressions there in.

In X10, the target place for an activity can be specified as the return value
of any arbitrary place expression [22]. That is, place expressions can be in
terms of arrays, object dereferences and function calls. For analyzing such non-
trivial place expressions we can use techniques similar to standard global value
numbering mechanisms [17] or flow analysis [12]. Even though the escapes-to
connection graph presented in section 4 can be extended to compute the values
of the place expressions, we avoid doing that to keep the paper focused. We use
a precomputed map

pV : �L × V → P ,

where V is the set of all variables, and pV (L, v) returns the abstract place value
of variable v at the statement labeled L. Note that, our intermediate language

1 In general, it may be useful to know if an abstract-activity represents an aggregation
of actual activities, or not. And this can be made part of the activity representation.
But for the scope of this paper we do not seek such detailed information.

Static Detection of Place Locality and Elimination of Runtime Checks 59

only has simple expressions and hence, each expression will have an unique label
associated with it.

We present an algorithm to compute the abstract-activity set AA in section 4
as part of the escapes-to analysis (See the rule to handle the Async statement).

4 Escapes to Analysis

Escape analysis in the context of Java like languages consists of determining
whether an object (1) may escape a method - the object is not local to the
method, and (2) may escape a thread - other threads access the object. Escape
analysis results can be applied in various compiler optimizations: (1) determining
if an object should be stack-allocatable, (2) determining if an object is thread-
local (used for eliminating synchronization operations on an object). For an
extensive study of escape analysis the reader is referred to [8,25].

In this section, we describe escapes-to analysis by extending the classical es-
cape analysis that is needed for analyzing X10-like languages. The key difference
lies in computing the set of threads (activities in the context of X10) to which
an object escapes. To our knowledge, this is the first generalization of the es-
cape analysis that takes into consideration the target activity to which an object
escapes.

In X10, objects are created by activities at various places. Once created, the
object is never migrated to another place during its entire lifetime. Objects created
at a local place can be accessed by all the activities associated with that place.

Definition 1. An object O is said to escape-to an activity A, if it is accessed
by A but not created in A.

We represent the escapes-to information by using a map

nlEscTo ∈ Objs → P(AA),
where Objs is the set of abstract-objects (we create an unique abstract-object for
each static allocation site). For each object in the program, nlEscTo returns a
set consisting of abstract-activities that the object might escape to; P(S) denotes
the power set of S.

Prior escape analysis techniques track the ‘escapement’ of an object based
on a lattice consisting of three values: (1) NoEscape: the object does not escape
an activity; (2) ArgEscape: the object escapes a method via its argument; (3)
GlobalEscape: the object is accessed by other activities and is globally accessible.

Escapes-to Connection Graph (ECG)
We present the escapes-to analysis by extending the connection graph of Choi et
al. [8]. We define an abstract relationship between activities and objects through
an Escapes-To Connection Graph (ECG). Apart from tracking points-to infor-
mation, ECG also tracks abstract activities in which objects are created and
accessed.

An ECG is a directed graph Ge=(N, E), The set of nodes N = NO∪Nv ∪Na∪
{O�, A�} where NO denotes the set of nodes corresponding to objects created

60 S. Agarwal et al.

in the program, Nv denotes the set of nodes corresponding to variables in the
program, Na is the set of nodes corresponding to different abstract-activities, O�
denotes a special node to summarize all the objects that we cannot reason about
and A� denotes a node corresponding to a special activity used to summarize
all the activities that cannot be reasoned about.

The set of edges E comprises of four types of edges:

• points-to edges: Ep is the set of points-to edges resulting out of assignments of
objects to variables. For x ∈ Nv and y ∈ NO ∪ {O�} x

p→ y denotes a points-to
edge from x to y.
• field edges: Ef is the set of field edges resulting from the assignment to the

fields of different variables. For x, y ∈ NO ∪ {O�}, x
f,g→ y denotes a field edge

from x to y for field g in x.
• created-by edges: Ec: For each object Oi, created in an abstract-activity Ai,
(Oi, Ai) ∈ Ec. For x ∈ NO ∪{O�} and y ∈ Na, x

c→ y denotes a created-by edge
from x to y.
• escapes-to edge: Ee is the set of edges resulting from accessing of an object at
a remote activity. For x ∈ NO ∪ {O�} and y ∈ Na, x

e→ y denotes an escapes-to
edge from x to y.

For simplification, we have omitted the deferred edges used by Choi et al. [8],
which are used to invoke the bypass function in a lazy-manner. However, we
invoke the bypass function eagerly.

Intraprocedural Flow-sensitive analysis
The goal of our escapes-to algorithm is to track the abstract-activities that any
object is created or accesses in. We present an intra-procedural, flow sensitive,
iterative data-flow analysis (standard abstract-interpretation), that maintains
and updates Ge at each program point. The algorithm terminates when we
reach a fix point.

Initialization. Our initial graph consists of nodes Nv, O� and A�. Our intra-
procedural analysis makes conservative assumptions about the function argu-
ments (including this pointer). For each v ∈ Va, where Va ⊆ Nv is the set of all
the arguments to the current function:

– add (v
p→ Oai) to E. The special object Oai represents the object referenced

by the ith argument passed to the function. Thus, we conservatively assume
that each argument points to an object that is unknown, but not O�. This
helps us reason about the activities created at the native place of these
objects more precisely.

– add (Oai

c→ Aai) to E. For each argument i create a new activity Aai and
use it to represent the activity that created the object referenced by the ith

argument.
– for any field dereferenced from O� and Oai add (O�

f,∗→ O�), and (Oai

f,∗→
O�) to E. The special edge

f,∗→ denotes all possible field access.

Static Detection of Place Locality and Elimination of Runtime Checks 61

(N, E)
L:async(p)

=⇒ (N ∪ {〈L, pV (L, p)〉}, E)

(N, E) L:a=new T=⇒ (N ∪ {OL}, E − {(a
p
→ y)|y ∈ N ∧ (a, y) ∈ E} ∪ {(a

p
→ OL), (OL

c
→ Ac)})

(N, E) L:a=b=⇒ (N, E − {(a
p
→ y)|y ∈ N ∧ (a, y) ∈ E} ∪ {(a

p
→ z)|z ∈ N ∧ (b

p
→ z) ∈ E})

(N, E)
L:a=b.g
=⇒ (N, E − {(a

p
→ y)|y ∈ N ∧ (a, y) ∈ E}

∪{(a
p
→ z), (x e

→ Ac)|x, z ∈ N ∧ (b
p
→ x) ∈ E ∧ (x

f,g
→ z) ∈ E ∧ (x c

→ Ac) 	∈ E})

(N, E)
L:a.g=b
=⇒ (N, E − {(x

f,g
→ y)|x, y ∈ N ∧ (a

p
→ x) ∈ E ∧ (x

f,g
→ y) ∈ E}

∪{(x
f,g
→ z), (x e

→ Ac)|x, z ∈ N ∧ (a
p
→ x) ∈ E ∧ (b

p
→ z) ∈ E ∧ (x c

→ Ac) 	∈ E})
(Strong Update).

(N, E)
L:a.g=b
=⇒ (N, E ∪ {(x

f,g
→ z), (x e

→ Ac)|x, z ∈ N ∧ (a
p
→ x) ∈ E ∧ (b

p
→ z) ∈ E ∧ (x c

→ Ac) 	∈ E})
(Weak Update).

(N, E)
L:a=f(b)

=⇒ (N, E ∪ {(a
p
→ O�)} ∪ {(x e

→ A�)|(b
p
→ z) ∈ E ∧ (z

f,∗
→ x) ∈ E})

Fig. 3. Rules for different instructions

We distinguish objects Oai and O�, and activities Aai and A�, as we want to
distinguish a field referenced from an argument to a field referenced from some
unknown object.

Statements and Operations. Fig. 3 presents the effects of the relevant X10
instructions on our analysis. The transformations to the ECG with respect to
the labeled construct L:S is denoted by

(N, E) L:S=⇒ (N ′, E′)

where (N ′, E′) denotes the updated graph as a result of the execution of state-
ment S labelled L. The updates can include the addition of new nodes, addition
of new edges, or updates to existing edges.

In X10, the statements that are of interest to us are: (a) async (p) S; (b) a
= new T; (c) a=b; (d) a.f=b; (e) a=b.f; (f) a = f(b). We now discuss the effect
of processing each of these statements.

Async: An async statement creates an abstract-activity node in the ECG.
pV (L, v) returns the place value of the variable p at the statement L (see sec-
tion 3). The X10 construct ateach can be represented using a basic async state-
ment inside a loop. The X10 construct future which also creates an activity is
handled similar to async.

a = new T (): We create an object node OL in the ECG. Since statements are
executed within the scope of an activity, we add a created-by edge from OL to
current abstract-activity, given by Ac (OL is ‘local’ to Ac). Each statement is
in the syntactic scope of exactly one activity. If the current statement is in the
syntactic scope of an async labeled L1, then the current abstract-activity is of
the form 〈L1, ∗〉. Note that, for all those cases where we cannot reason about
the current abstract-activity, Ac is set to ⊥. We eliminate any existing points-to
edges of the form (a

p→ y) ∈ E, for any y ∈ N . We introduce a new points-to
edge a

p→ OL.
a = b: We delete all the existing points-to edges starting at a, and for each

points-to edge that b points to, we add a points-to edge from a.

62 S. Agarwal et al.

a = b.g: We process this statement exactly like the copy statement (a = b),
above. For every dereference of an object, we add a new ‘escape-to’ edge from
the object to the current abstract-activity, if the object is not created in the
current activity.

a.g = b: Assignments to the fields is a bit more involved because we have to
take into consideration possible weak and strong updates. If there can be multiple
points-to edges from the node a, or if a has a single points-to edge to a node x
but multiple activities could be updating the field g of x in parallel (See may
happen analysis [1]) then ∀y ∈ N : (a

p→ y) ∈ E, we add a new edge (y
f,g→ b) to

the edge set E (weak update). Otherwise, we process the statement like the copy
statement above - eliminate existing points-to edges and add new edge (strong
update).

a = f(b): Since we are doing intra procedural analysis, we can only make
conservative assumptions about the arguments (that includes the receiver) and
the return values of a function call. We add an escapes-to edge from objects
pointed to by the arguments of the function to A� and a points-to edge from a
to O�.

Merge Operation. The meet/merge operation of the escapes-to analysis is
the union of the two ECGs emanating from two different control flow paths:
Merge((N1, E1), (N2, E2))=((N1 ∪ N2), (E1 ∪ E2)).

While processing all the above assignment statements and the merge opera-
tion, we ensure the following invariant: if a variable or a field of an object x has
a points-to edge (x

p→ O�) or ∃i (x
p→ Oai), then � ∃y ∈ N − {O�, ∀i Oai} such

that (x
p→ y) ∈ E. We ensure this property by checking for the special object

O� and Oai while editing the edges of the graph (not shown in the Fig. 3).

Termination. Our iterative data flow analysis follows the standard method of
execution and stops only after reaching a fixed point. It can be seen that for any
node the maximum number of edges (points-to or escapes-to) is bound by the
number of nodes. And in every iteration at least one new edge is added to the
set of edges, compared to any previous iteration. Hence, after a finite number of
iterations we cannot add any more edges and the algorithm will terminate.

Compute nlEscTo map. Given an ECG at program point l, for each object
Oi we populate nlEscTo (non local escape-to) and PtsTo (points-to) maps:

nlEscTo(l, Oi) = {(〈L, p〉|〈L, p〉 ∈ Na ∧ (Oi
e
→ 〈L, p〉) ∈ E ∧ ¬∃L′ such that (Oi

c
→ 〈L′, p〉)}

PtsTo(l, vi) = {(x|x ∈ No ∧ (vi

p
→ x) ∈ E}

Analysis of the running example. Fig. 4 shows the ECG for the example
shown in Fig. 1 after processing the last statement.

5 Place Locality

Traditionally, the notion of thread locality is used to denote the access of ob-
jects created in the same thread. In this section, we show that in languages like

Static Detection of Place Locality and Elimination of Runtime Checks 63

A0 = 〈L0, 0〉
A1 = 〈L2, A〉
A2 = 〈L6, 0〉

x

y

z

OL3

OL1

OL5

A0

A1

A2

O�

p

p

p

c

c

c

A�
c

points-to

created-by

field

escapes-to

p

c

f

e

f,f

e

e

Fig. 4. ECG generated by our algorithm for the example shown in Fig. 1 (as seen after
processing the last statement)

finish async (p) { // th0
S0: final global1 = new G();
async (p) {S1: global1.x = new Baz();} // th1
async (p) {S2: global1.x = new Baz();} // th2
async (p.next()) { ... } // th3

async (p) {global1.x.f ++;} // th4
}

Fig. 5. Place local ⇒ Does not require PC assertion

X10, where each activity is associated with a place, activity locality provides
insufficient information when we reason about locality of objects with respect to
places. Later in the section, we extend the notion of locality to places.

Fig. 5 illustrates the distinctions between the notion of place locality and
activity locality.

Traditional thread-local analysis would deduce that the object created in
statement S0 is not activity (thread) local. Using this information to decide
on the locality of the object being dereferenced would result in insertion of pcas
before every dereference of global1 in th1, th2, and th4. Similar argument
would follow for the dereference of global1.x in activity th4. However, say it is
verified that in async th3, global1 is not accessed (that is, the object accessible
by global1 does not escape place p and remains confined to the activities at
place-p). Thus, we can conclude that we do not need a pca before statement
S1. This is because although global1 is accessed in multiple activities, all of
the activities execute at the place of creation (p). An important point to note is
that none of these activities escape the object under consideration outside place
p. That is, global1 holds a place local reference (local to place p) and hence,
dereferencing of global1 does not require a preceding pca in th1, th2 and th4
(which execute at place p). Similarly, global.x can hold multiple references but

64 S. Agarwal et al.

all are local to place p. Hence, we do not require a pca in th4 for accessing
global1.x.f. In the following section, we propose an analysis that takes the
abstraction of places into consideration while reasoning about the locality of an
object.

Given an object Oa, we would like to know if dereference of Oa is done at
the place of its allocation or not. Note that, multiple activities can run at the
same place and hence, even if an object escapes to another activity running at
the same place, we still will be accessing the object locally; thus no place check
is required to dereference it. In essence, first we would like to know if object Oa

escapes an activity and if so, to which activity. We get this information from the
escapes-to analysis described in section 4. Further, for each of the dereferencing
sites of object Oa, if we can deduce that the dereference happens at the same
place as the place of allocation of Oa (say p) then we do not need a preceding
pca. For each other activity that Oa can escape to, if we can guarantee that the
activity executes only at place p, then we would not need a pca for any of the
dereferences of Oa.

Traditional thread-local algorithms declare an object to be thread-non-local,
if it gets assigned to a global (read static in Java/X10 context) variable or to a
field of an object accessible via any global variable. In comparison, a place-local
object can be assigned to a global g and/or be reachable via fields of objects
accessible via a global g′. The constraint is that globals g and g′ must only
be accessible from activities running at only one place. That is, an object may
escape to another activity running at the same place and still be place-local, as
long as it does not escape to an activity running at a different place. Traditional
notions of thread-locality caters to ‘activity-locality’ in X10.

In this section we present (i) the concept of place locality, (ii) an algorithm
to deduce place local information, and (iii) a scheme to apply the place local
information to eliminate useless pcas, and notify guaranteed pca failures.

Definition 1. An object is native to a place p, if it is created at place p.

Definition 2. An object is considered local to place p, if it is native to place p
and is accessed only at place p.

Definition 3. Dereference of an object o at place p is considered safe, if o is
local to p.

Remark. Safe dereferences of an object p do not need a preceding pca. Later,
we present an algorithm to eliminate pcas for safe dereferences of objects.

Algorithm

Fig. 6 presents an algorithm to identify variables that point to only place-local
objects. This algorithm is run after the escape-to analysis is run (i.e., nlEscTo
map is populated. See section 4).

The algorithm presented in Fig. 6 populates the following map.

℘ : (�L × V) → 〈local, nonLocal, unknown〉

Static Detection of Place Locality and Elimination of Runtime Checks 65

foreach li ∈ �L, and vi ∈ V do1

℘[(li, vi) ← unknown];2

foreach li ∈ �L, and vi ∈ V do3

Say li is part of the activity 〈Lj , pj〉;4

if pj == ⊥ OR pj == � then5

continue;6

boolean place-local = true ;7

boolean place-non-local = true;8

foreach ok ∈ PtsTo(li, vi) do9

if 〈Lj , pj〉 ∈ nlEscTo(li, ok) then10

place-local=false;11

if 〈Lj , pj〉 	∈ nlEscTo(li, ok) then12

place-non-local=false;13

if place-local then14

℘[(li, vi) ← local];15

if place-non-local then16

℘[(li, vi) ← place-non-local];17

Fig. 6. Algorithm to identify place local references

foreach dereference of of x ∈ V at program point li in activity 〈Li, pi〉 ∈ AA do1

if ℘(li, x) == local then2

eliminate pca before li.3

else if ℘(li, x) == nonLocal then4

report that pca before li will always fail.5

Fig. 7. Algorithm to eliminate useless pcas and identify guaranteed pca failures

At a program point l, map ℘(l, v) returns local if all the objects pointed-
to by variable v are place local, nonLocal if all the objects pointed-to by v
are non-local, and unknown otherwise. The algorithm first initializes the ℘ map
conservatively to indicate that at all program points the locality of the set of
objects pointed-to by all the variables is unknown (Line numbers 1-2). Lines 4-13
identify accesses of variables whose target objects are either guaranteed to be
local or non-local. We update the ℘ map at Lines 15 and 17.

In Fig. 7, we present a simple algorithm to apply place locality information to
eliminate useless place-local-checks and report guaranteed place check failures.
For each dereference (field access or method call) in activity ai, the algorithm
eliminates the preceding pca, if all the objects pointed-to by the variable are
place local. Similarly, it reports cases where pca will always fail. This can be
used to alert a user of the access error (in X10 context), or to specialize the
memory access to remote access (in UPC context).

66 S. Agarwal et al.

Analysis of the Running Example
Fig. 8 shows a run of the algorithms presented in this section.

It can be seen that out of the four pcas, our algorithm eliminates three of
them. The remaining one assertion (before L8) must be present and cannot be
eliminated.

Improvements to the Algorithm
It can be noted that the above presented algorithm does not take into account
the possible control flow between two statements. For example, Fig. 9 presents a
case where an object is created at place p1, and dereferenced at the same place.
After that, the object escapes to an activity executing at place p2. Any derefer-
encing of the object at place p2 requires a preceding pca. However, our algorithm
would declare object to be non-place-local and would eliminate neither of the
pcas preceding S1 and S2. An analysis aware of may-happen-parallelism [19] can
recognize such idioms and result in more precise results.

6 Examples

Here, we describe four examples that showcases the strengths and drawbacks of
our algorithm.

Consider first the example shown in Fig. 5 of section 5. Our analysis identifies
that reference OS0 is place local, and hence, its dereference at th1, th2 and th4
does not require a preceding pca.

Fig. 10(a) shows a snippet of a program for updating a dynamic linked list, as
part of master-slave work paradigm. The master goes over the list and invokes the
slave server if a boolean flag done is not set. The master also adds nodes regularly
to the end of the list. The slave, when invoked, sets the flag done randomly. Our
algorithm attaches a unique abstract object to each of the arguments and thus,
is able to eliminate all the pcas.

Fig. 10(b) shows a snippet of a program of a postorder traversal of a tree. In
this example, Tree is a value class. In X10, value classes have the property that
after initialization the fields of the objects cannot be modified. After recognizing
that a Tree object does not change, similar to the linked list example, we can

Objs={OL1, OL3, OL5} nlEscTo={((L8, OL5), 〈L6, {0}〉)}

Compute Place Local Information
Iter 1: ℘[(L4, x) ← place-local] Iter 2: ℘[(L7, y) ← place-local]
Iter 3: ℘[(L8, y.f) ← unknown]

Eliminate Place Local Assertion
Eliminate the pca before L4 Eliminate the pca before L7

Fig. 8. Eliminate pcas in the running example, shown in Fig. 1

Static Detection of Place Locality and Elimination of Runtime Checks 67

finish {
finish async (p1) {global1.x = new G();

S1: ... = global1.x.y}// th0

async (p2) { S2: ... = global1.x.y } // th1
}

Fig. 9. Limitations of of our Analysis: A smarter algorithm can eliminate the pca
before S1

void master() {

// Assert (head != null)

i = 0;

while (true) {

nullable Node tmp = head;

while (tmp != null) {

// goto the end of the worklist.

final node = tmp;

tmp = getNext(node);

boolean status=getStatus(node);

if (status) slave(node); }

final tail = tmp;

i = (i + 1)%NumPlaces;

addNewNode(tail,i); } }

void slave(Node n){

if (random()%2 == 1)

async (n) {n.done = true;} }

void getNext(Node n){

future (n) {n.next}.force();}

void getStatus(Node n){

future (n) {!n.done}.force();

void addNewNode(Node n, int i) {

finish async (i) {

finish async (n) {

n.next = future (i)

{new Node()}.force();

} } }

(a)

value class Tree {

int value;

Tree left, right;

public void postOrder() {

if (left != null) {

future (left)

{left.postOrder() }.force();}

if (right != null) {

future (right)

{right.postOrder()}.force();}

print(value); } }

(b)

async (p0) {

final z = new Z();

z.g = new G();

async (p1) {

final z1 = future (p0) z.g;

... = z1.h // escapes

}

async (p0) {

... = z.g.h.k; } }

(c)

Fig. 10. Three example programs (a)Master slave update program. (b) PostOrder tra-
versal : traverse a distributed binary tree (c) Dummy copies lead to non-elimination of
pca.

infer that all the pcas in the function postOrder are redundant and can be
eliminated.

Fig. 10(c) shows an example where an object created at place p0, is assigned
to a final variable z. A field g of z is initialized in place p0. Now, two activities
are created which can run in parallel. In one activity, running at place p1, the
object referenced by z.g escapes to place p1. In the other activity, running at
place p0, a field of the object referenced by z.g is dereferenced. Our algorithm

68 S. Agarwal et al.

identifies that the object referenced by z.g is created at place p0 and escapes
to place p1. Hence, we declare it as place-non-local, and add pca before the
dereference of z.g.h. However, the key point to note is that even though the
object escapes to another place (p1), none of the fields are updated there. Hence,
we do not require a pca for dereferencing the sub-fields, at p0. Our algorithm
needs to be extended to recognize such idioms.

We have also applied our analysis on the LU NAS parallel benchmark. Our
analysis could not remove most of the pcas as the program consisted of a large
number of tiny helper functions that were invoked at many places. We attributed
this to our conservative handling of function calls. Hence, we applied our analysis
on another version of the source file after inlining these functions. As guessed,
we could eliminate all the pcas in this version.

7 PCA Handling for Distributed Arrays

Arrays in X10 can be distributed over multiple places according to some prede-
fined distributions provided as part of the language. X10 guarantees that any
array slot located at place p can only be accessed by the activity running at p.
Similar to object dereferences, the current X10 compiler inserts a pca before each
array element access to maintain the above guarantee. In this section, we present
a scheme to eliminate the useless pcas and report pcas that are guaranteed to
fail for array accesses.

A distribution can be represented as a map D : X → P , where X is the set
of points (integers for one dimensional regions) over which the distribution is
defined. For each point i, D(i) returns the place of the point i. Similarly, we
define the inverse distribution function D−1 : P → P(X) that maps each place
to the corresponding set of points. For example, in a scenario with k places
p0, . . . pk−1, the cyclic distribution over n points can be defined as follows:
∀i ∈ {0..n − 1}, D(i) = i mod k. Similarly the inverse distribution function for
cyclic distribution can be defined as ∀i ∈ {0..k−1}D−1(pi) = {x|x = k×j+i, x ∈
N, 0 ≤ j ≤ (n−1)

k }.
Fig. 11 presents some additions to the escapes-to analysis presented in sec-

tion 4, to make it suitable for reasoning about array accesses. These rules are
given to process only arrays and non-nested loops; these are to be used on top
of the rules for non-array operations given in 3.

ateach(point x : A) Stmt: To model ateach loop bodies iterating over a
distribution, we use a new type of abstract-activity of the form: 〈Label, D〉,
where Label is the label of the ateach statement and D is the distribution
with respect to the ateach statement. We use a special abstract-activity A′�
to denote those activities where a specific distribution cannot be statically
determined.

a = new [A] T: An array object distributed over A is considered to be created
by an activity 〈L, A〉. We use ArrObjs to denote the set of all array objects, and
map Dx returns the underlying distribution of the array object x ∈ ArrObjs.
Similarly, map D−1

x returns the underlying inverse distribution map.

Static Detection of Place Locality and Elimination of Runtime Checks 69

(N, E)
L:ateach(point x:A) Stmt

=⇒ (N ∪ {Ac}, E)

(N, E)
L:a=new [A]T

=⇒ (N ∪ {OL, Ac}, E ∪ {(a
p
→ OL), (OL

c
→ Ac)})

(N, E) L:a=b=⇒ (N, E − {(a
p
→ y)|y ∈ N ∧ (a, y) ∈ E}

∪ {(a
p
→ z)|z ∈ N,∧(b

p
→ z) ∈ E})

(N, E)
L:ateach(point x:A) {..B[e]..}

=⇒ (N, E ∪ {(x e
→ Ac)|C1 ∧ (B

p
→ x) ∈ E})

and C1 = ∀(x, pi) ∈ A,∀(B
p
→ z) ∈ E, [e/x] ∈ D−1

z (pi)

(N, E)
L:ateach(point x:A) {..B[e]..}

=⇒ (N, E ∪ {(x e
→ Af)|C2 ∧ (B

p
→ x) ∈ E})

and C2 = ∀(x, pi) ∈ A,∀(B
p
→ z) ∈ E, [e/x] 	∈ D−1

z (pi)

(N, E)
L:a=f(b)

=⇒ N, E ∪ {(a
p
→ O�)}

Fig. 11. Generate ECG for reasoning about pcas before array accesses. Ac = 〈L, A〉.

L: ateach(point x : A) {...B[e]...}: An array access in the body of an
ateach loop introduces an escape-to edge from object pointed to by B to the
activity corresponding to the loop provided the distribution of the array does not
match the access pattern in the loop body (given by C1). The index expression
e may be data/control dependent on the value of x. Constraint C1 ensures that
for each point x located at place pi in the distribution A, the array slot number
e is located at place pi. To reason about pcas that are guaranteed to fail, we use
another special activity Af , where all the pcas are guaranteed to fail. For such
a scenario (given by C2), we add an escapes-to edge from the objects pointed to
by B to Af .

a = b: Assigning an array to another results in the removal of all the existing
edges from a and points-to edges are created from a to all the nodes that b
points-to. Note that, the rules specified for statements of the form a = b.f do
not require any special treatment in the context of arrays.

a = f(b): It may be noted that any array object that is passed as argument
doesn’t get its’ distribution modified. Thus, we need to add only a points-to edge
from a to O�.

We generate constraints C1 and C2 for each array access in the given pro-
gram and invoke a constraint solver (for example, [11]) to derive the ECGs at
different program points and then invoke the algorithm shown in Fig. 12. Un-
like scalar variables which may point to different objects at different program
points, the array distribution is an immutable state of the array and thus, it
simplifies our algorithm to remove pcas (compared to the algorithm presented
in section 5).

We now present a optimized scheme for generating and evaluating constraints
C1 and C2. The generation of constraints is illustrated through a subset of a
priori defined array distributions in X10 : UNIQUE and CYCLIC. Note that
the above distributions cover some of the most common idioms of X10 programs
including the set of X10 benchmarks presented at the HPC Challenge in the fall of
2007 (and won the class II challenge). The presented techniques can be extended
to other distributions as well. We first show that for the above distributions,
the number of elements in the range of x is bounded by the number of places.

70 S. Agarwal et al.

foreach access of the array variable v at program point li in activity ai ∈ AA do1

boolean local-access = true;2

foreach oi ∈ PtsTo(li, vi) do3

Say {cp} = nlEscTo(li, oi) ; Say ai = 〈L, D〉 ;4

if Dcp �= D then5

local-access=false;6

boolean non-local-access = true;7

foreach oi ∈ PtsTo(li, vi) do8

if Af �∈ nlEscTo(li, oi) then9

non-local-access = false;10

if local-access then11

eliminate pca.12

else if non-local-access then13

report guaranteed pca failure.14

Fig. 12. Algorithm to eliminate useless pcas and identify guaranteed pca failures for
array accesses

Lemma 1. ∀(x, pi)! ∈DA [e/x]∈D−1
B (pi) iff ∀pi ∈places(A) ∃x∈points(pi),

[e/x] ∈ D−1
B (pi), where points(pi) returns the set of points mapped onto pi.

Proof. Proof omitted for space.

The above lemma makes the constraint solving efficient by reducing the
search space. We take advantage of the lemma and the nature of the
distributions to present a simplification to constraints C1 and C2, for these
distributions.

Let I denote the set of simplified (syntactic) index expressions (of the form
a× i+ b) in the loop body (linear expressions over i), where i is a loop induction
variable. Constraints C1 and C2 for the above two distributions can be reformu-
lated as follows (‘mod’ is the modulo function) (say M = number of places in
the ateach loop):

UNIQUE CYCLIC
C1 ∀i ∈ {0..M− 1}

∧
e∈I

(|e − i| == 0) ∀i ∈ {0..M− 1}
∧

e∈I
(mod(|e − i|,M) == 0)

C2 ∀i ∈ {0..M− 1}.
∧

e∈I
(|e − i| �= 0) ∀i ∈ {0..M− 1}

∧
e∈I

(mod(|e − i|M) �= 0)

Constraint C1 (constraint C2) for UNIQUE states that for each index expression,
the absolute value of its difference from i must (must not) be zero. Constraint
C1 (C2) for CYCLIC states that for each index expression, the absolute value
of its’ difference from i should (should not) be a multiple of M.

Illustrative Example: Consider the scenario wherein one set of workers is di-
rected to compute a function f on a test-space using the ateach loop on one half
the set of machines and the second set of workers use the other half to compute
the inverse of the result and check whether the function and its inverse compose

Static Detection of Place Locality and Elimination of Runtime Checks 71

to the identity function. The program snippet only shows the code to create the
distributed array of jobs, and code to access the elements of the array in the two
ateach loops.

final int N = NumPlaces/2 - 1;
// Assume NumPlaces > 1

//Places 0..N reflect half the m/c
final job[UNIQUE] jobs =

new (i:UNIQUE(AllPlaces))
{return new job(initNum(i));}

int master() {
finish ateach(i : unique([0..N]))

{ job j = jobs[i]; ...f... }
finish ateach(i : unique([N+1..2*N+1]))

{ job j = jobs[id-N];
...inv_f... } }

Our analysis would find that in the first ateach loop constraint C1 is satisfied,
and the second loop satisfies C2. Thus, our analysis will eliminate the pcas before
the array access in the first loop, and warn about the illegal array access in the
second loop.

We have manually applied our analysis on two other NAS parallel bench-
marks: RandomAccess, and CG. After inlining different utility functions, we
could eliminate all the pcas in both the benchmarks.

8 Related Work

In this section, we place our work in the context of the existing literature.

Abstraction of runtime components: Abstraction of runtime components
like objects have long been used to help in static analysis [18]. We have extended
the thread abstraction techniques of Barik [4] to reason about the activities
of X10 and also presented an abstraction of places, that is critical to our
framework.

Locality of Context: The work that relates most closely to our addressed
problem is that of Chandra et al. [7], who improve upon the works of Zhu
and Hendren [26]. They present a dependent type system that can be used by
the programmer to specify place locality information. They further present an
inter-procedural type inference algorithm to infer the place locality information
and use it to eliminate useless pcas. We have presented an intra-procedural
data flow analysis based approach to infer place locality information, without
depending on the programmer input. Their unification based approach would
lead to conservative results compared to the results we obtain from the
escapes-to-graph: our precise representation of places and activities lead to
precise reasoning of activities and objects within loops. The following example
clarifies the same.

ateach (p: A) { final X x = new X(); async (p) {... =x.f;}}
While our algorithm can detect that the dereference of x is place local, their uni-
fication based algorithm cannot detect so. Further, we have partially integrated

72 S. Agarwal et al.

may-happen-parallel analysis into our scheme to generate more precise results.
Besides elimination of useless pcas our analysis reports guaranteed failures. It
would be interesting to combine our algorithm with the techniques of Chandra
et al. use for inter-procedural analysis.

Barton et al. [5] present memory affinity analysis, whereby local data accesses
are statically identified and that is used to avoid overhead of routing the ac-
cess through a machine-wide shared variable directory. Our language setting is
more general as unlike in UPC multiple activities can share the same place. We
have presented a scheme that tracks the heap statically to prove local, non-local
properties.

Work involving inference of place information for programs without user speci-
fied places is extensive. For example, false-sharing identification tries to partition
data so that a place does not have to deal with data not used by it and hence,
does not pay for it through bus traffic and cache-coherency costs [13,15,23].
These approaches all differ from us since in our framework activities are ex-
plicitly programmed with places, which requires its own set of extensive static
representations, analysis and optimizations.

There has been significant interest in proving the thread locality of
data [14,24,25,9]. All of these approaches limit themselves to identifying if the
object can be accessed in any thread besides the thread of creation. In this pa-
per, we have extended the context of thread locality further to the ‘place’ of
creation. An object whose reference is stored in a global variable and is accessed
in another thread might still be ‘place-local’, provided that all the activities in
which the object might be accessed are created at the same place.

Points-to and Escape Analysis: There has been a wide spread interest and
good amount of research in the area of points-to and escape analysis [2,8,25,21].
They propose different applications to points-to analysis and different solutions
there of. However, we are not aware of any work that tracks not only if an object
escapes a context, but also the target context.

Our Escapes-to Connection Graph (ECG) is inspired from the connection
graphs of Choi et al. [8]. Apart from tracking the points-to information, ECG
also tracks abstract activities in which objects are created and accessed.

Exceptions and Performance: Safe programming languages like Java in-
troduce a lot of runtime assertions, which may throw a runtime exception, in
case the assertion fails. Some well known runtime exceptions are Null-pointer-
exception, array-out-of-bounds exception and so on. Due to the nature of these
assertions un-optimized code is littered with these exceptions. Researchers have
shown that a majority of these can be eliminated statically [6,16]. Systems like
CCured [20] have a notion of a dynamic (runtime verified) pointers which are ex-
pensive to use. They present a scheme to verify and thus, translate the dynamic
pointers to static (statically, type safe) pointers. In our work, we have shown the
elimination of pcas introduced in X10 (an explicitly parallel language) arising
due to places.

Static Detection of Place Locality and Elimination of Runtime Checks 73

9 Conclusion and Future Work

In this paper, we have presented a static analysis framework for conservatively
computing the notion of place locality and have demonstrated the application of
the framework for objects and arrays in the context of X10. Our representation
of the abstract activities and places is general enough to allow us to extend our
intra-procedural analysis to inter-procedural analysis.

Our framework supports reasoning about locality of activities, which can be
useful for optimizing the invocation of the activities. We are working towards
refining the analysis via may-happen-parallelism analysis and generalizations of
the notion to other features of X10 and experimental validation of the concepts.

Acknowledgment. The results reported are based upon the work supported
by the Defense Advanced Research Projects Agency under its agreement no.
HR0011-07-9-0002. We thank Vivek Sarkar, Vijay Saraswat and the X10 team
for valuable discussions. Thanks go to Raghavan Komondoor and Mangala Gowri
for comments on an earlier draft.

References

1. Agarwal, S., Barik, R., Sarkar, V., Shyamasundar, R.K.: May-happen-in-parallel
analysis of X10 programs. In: Proceedings of the 12th ACM SIGPLAN symposium
on PPoPP, pp. 183–193 (2007)

2. Andersen, L.: Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen (1994)

3. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, D.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnan, V., Weeratunga, S.K.: The NAS Parallel Benchmarks. The In-
ternational Journal of Supercomputer Applications 5(3), 63–73 (Fall 1991)

4. Barik, R.: Efficient computation of may-happen-in-parallel information for concur-
rent java programs. In: Ayguadé, E., Baumgartner, G., Ramanujam, J., Sadayap-
pan, P. (eds.) LCPC 2005. LNCS, vol. 4339. Springer, Heidelberg (2006)

5. Barton, C., Cascaval, C., Almasi, G., Zheng, Y., Farreras, M., Chatterjee, S., Ama-
ral, J.N.: Shared memory programming for large scale machines. In: Proceedings
of the Conference on PLDI, pp. 108–117 (2006)

6. Bod́ık, R., Gupta, R., Sarkar, V.: ABCD: eliminating array bounds checks on
demand. In: Proceedings of the ACM SIGPLAN 2000 conference on PLDI, pp.
321–333 (2000)

7. Chandra, S., Saraswat, V.A., Sarkar, V., Bod́ık, R.: Type inference for locality
analysis of distributed data structures. In: Proceedings of the 13th ACM SIGPLAN
symposium on PPoPP, pp. 11–22. ACM, New York (2008)

8. Choi, J.-D., Gupta, M., Serrano, M., Sreedhar, V.C., Midkiff, S.: Escape analysis
for java. In: Proceedings of the ACM SIGPLAN conference on OOPSLA, pp. 1–19
(1999)

9. Choi, J.-D., Gupta, M., Serrano, M.J., Sreedhar, V.C., Midkiff, S.P.: Stack al-
location and synchronization optimizations for java using escape analysis. ACM
Transactions on Programming Languages and Systems 25(6), 876–910 (2003)

74 S. Agarwal et al.

10. Hudak, P., Smith, L.: Para-functional programming: A paradigm for programming
multiprocessor systems. In: Proc. of the ACM SIGPLAN Symposium on PoPP, pp.
243–254. ACM Press, New York (1986)

11. Huynh, T., Joskowicz, L., Lassez, C., Lassez, J.-L.: Reasoning about linear con-
straints using parametric queries. In: Veni Madhavan, C.E., Nori, K.V. (eds.)
FSTTCS 1990. LNCS, vol. 472, pp. 1–20. Springer, Heidelberg (1990)

12. Jagannathan, S., Thiemann, P., Weeks, S., Wright, A.K.: Single and loving it:
Must-alias analysis for higher-order languages. In: Proceedings of the 25th ACM
SIGPLAN Symposium on POPL (January 1998)

13. Jeremiassen, T.E., Eggers, S.J.: Reducing false sharing on shared memory mul-
tiprocessors through compile time data transformations. In: Proceedings of the
Symposium on PPoPP, pp. 179–188 (1995)

14. Jones, R., King, A.: A fast analysis for thread-local garbage collection with dynamic
class loading. In: Fifth IEEE International Workshop on Source Code Analysis and
Manipulation, September 2005, pp. 129–138 (2005)

15. Kandemir, M., Choudhary, A., Ramanujam, J., Banerjee, P.: On reducing false
sharing while improving locality on shared memory multiprocessors. In: Malyshkin,
V.E. (ed.) PaCT 1999. LNCS, vol. 1662, pp. 203–211. Springer, Heidelberg (1999)

16. Kawahito, M., Komatsu, H., Nakatani, T.: Effective null pointer check elimination
utilizing hardware trap. SIGPLAN Notices 35(11), 139–149 (2000)

17. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann, San Francisco (1997)

18. Nandivada, V.K., Detlefs, D.: Compile-time concurrent marking write barrier re-
moval. In: Proceedings of the international symposium on CGO, pp. 37–48 (2005)

19. Naumovich, G., Avrunin, G.S.: A conservative data flow algorithm for detecting
all pairs of statements that may happen in parallel. In: Proceedings of the ACM
SIGSOFT International symposium on FSE, pp. 24–34 (1998)

20. Necula, G.C., McPeak, S., Weimer, W.: Ccured: type-safe retrofitting of legacy
code. In: Proceedings of the 29th ACM SIGPLAN symposium on POPL, pp. 128–
139. ACM, New York (2002)

21. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages and Systems 24(3), 217–298 (2002)

22. Saraswat, V.: Report on the experimental language X10,
x10.sourceforge.net/docs/x10-101.pdf (2006)

23. Shuf, Y., Gupta, M., Franke, H., Appel, A., Singh, J.P.: Creating and preserving
locality of java applications at allocation and garbage collection times. In: Pro-
ceedings of the conference on OOPSLA, pp. 13–25 (2002)

24. Steensgaard, B.: Thread-specific heaps for multi-threaded programs. In: Proceed-
ings of the 2nd international symposium on Memory management, pp. 18–24 (2000)

25. Whaley, J., Rinard, M.: Compositional pointer and escape analysis for Java pro-
grams. In: Proceedings of the 14th ACM SIGPLAN conference OOPSLA, pp. 187–
206 (1999)

26. Zhu, Y., Hendren, L.: Locality analysis for parallel C programs. IEEE Transactions
on Parallel and Distributed Systems 10(2), 99–114 (1999)

Certified Reasoning in Memory Hierarchies�

Gilles Barthe1,2, César Kunz2, and Jorge Luis Sacchini2

1 IMDEA Software
Gilles.Barthe@imdea.org

2 INRIA Sophia Antipolis - Méditerranée
{Cesar.Kunz,Jorge-Luis.Sacchini}@inria.fr

Abstract. Parallel programming is rapidly gaining importance as a vec-
tor to develop high performance applications that exploit the improved
capabilities of modern computer architectures. In consequence, there is a
need to develop analysis and verification methods for parallel programs.

Sequoia is a language designed to program parallel divide-and-conquer
programs over a hierarchical, tree-structured, and explicitly managed
memory. Using abstract interpretation, we develop a compositional proof
system to analyze Sequoia programs and reason about them. Then, we
show that common program optimizations transform provably correct
Sequoia programs into provably correct Sequoia programs.

1 Introduction

As modern computer architectures increasingly offer support for high perfor-
mance parallel programming, there is a quest to invent adequate programming
languages that exploit their capabilities. In order to reflect these new archi-
tectures accurately, parallel programming languages are gradually abandoning
the traditional memory model, in which memory is viewed as a flat and uniform
structure, in favor of a hierarchical memory model [1,7,11], which considers a tree
of memories with different bandwidth and latency characteristics. Hierarchical
memory is particularly appropriate for divide-and-conquer applications, in which
computations are repeatedly fragmented into smaller computations that will be
executed lower in the memory hierarchy, and programming languages based on
this model perform well for such applications. Thus, programming languages
for hierarchical memories are designed to exploit the memory hierarchy and are
used for programs that require intensive computations on large amounts of data.
Languages for hierarchical memories differ from general-purpose concurrent lan-
guages in their intent, and in their realization; in particular, such languages are
geared towards deterministic programs and do not include explicit primitives
for synchronization (typically programs will proceed by dividing computations
between a number of cooperating subtasks, that operate on disjoints subsets of
the memory).

As programming languages for high performance are gaining wide acceptance,
there is an increasing need to provide analysis and verification methods to help
� This work is partially supported by the EU project MOBIUS.

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 75–90, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

76 G. Barthe, C. Kunz, and J.L. Sacchini

developers write, maintain, and optimize their high-performance applications.
However, verification methods have been seldom considered in the context of
high-performance computing. The purpose of this paper is to show for a specific
example that existing analysis and verification methods can be adapted to hi-
erarchical languages and are tractable. We focus on the Sequoia programming
language [8,12,10], which is designed to program efficient, portable, and reliable
applications for hierarchical memories. We adopt the framework of abstract in-
terpretation [5,6], and develop methods to prove and verify the correctness of
Sequoia programs. Our methods encompass the usual automated and interactive
verification techniques (static analyses and program logics) as well as methods to
transform correctness proofs along program optimizations, which are of interest
in the context of Proof Carrying Code [14]. In summary, the main technical con-
tributions are: i) a generic, sound, compositional proof system to reason about
Sequoia programs (Sect. 3.1); ii) a sound program logic derived as an instance
of the generic proof system (Sect. 3.2); iii) algorithms that transform proofs
of correctness along with program optimizations such as SPMD distribution or
grouping of tasks [12] (Sect. 4).

2 A Primer on Sequoia

Sequoia [8,12,10] is a language for developing portable and efficient parallel pro-
grams for hierarchical memories. It is based on a small set of operations over a
hierarchical memory, such as communication, memory movement and computa-
tion. Computations are organized into self-contained units, called tasks. Tasks
can be executed in parallel at the same level of the memory hierarchy, on a
dedicated address space, and may rely on subtasks that perform computations
on a lower level (and in practice smaller and faster) fragment of the hierarchical
memory (i.e., a subtree).

Hierarchical memory. A hierarchical memory is a tree of memory modules, i.e.
of partial functions from a set L of locations to a set V of values. In our setting,
values are either integers (Z) or booleans (B). Besides, locations are either scalar
variables, or arrays elements of the form A[i] where A is an array and i is an
index. The set of scalar variables is denoted by NS and the set of array variables
is denoted by NA. The set of variable names is N = NS ∪ NA.

Definition 1 (States). The set M = L ⇀ V of memory modules is defined
as the set of partial functions from locations to values. A memory hierarchy
representing the machine structure is a memory tree defined as:

T ::= 〈μ, T1, . . . , Tk〉 k ≥ 0, μ ∈ M .

Intuitively, 〈μ, �τ 〉 ∈ T represents a memory tree with root memory μ and a
possible empty sequence �τ of child subtrees.

The execution mechanism consists on splitting a task on smaller subtasks
that operate on a dedicated copy of a memory subtree. Upon completion of

Certified Reasoning in Memory Hierarchies 77

each task, the initial memory tree is updated with the final state of each locally
modified memory copy. However, inconsistencies may arise since, a priori, we
cannot require subtasks to modify disjoint portions of the memory. Then, an
auxiliary operator +μ is defined to capture, as undefined, those portions of the
state that are left with inconsistent values. The operator +μ : M × M → M,
indexed by a memory μ ∈ M, is formally defined as:

(μ1 +μ μ2)x =

���
��

μ1x if μ2x = μx, else
μ2x if μ1x = μx

undefined otherwise .

Note that the operator +μ is partial, and the result is undefined if both μ1 and
μ2 modify the same variable.

The operator +μ is generalized over memory hierarchies in T and sequences
�μ ∈ M�, where

∑μ
1≤i≤n μi = (((μ1 +μ μ2) +μ μ3) +μ . . . +μ μn).

Syntax. Sequoia features usual constructions as well as specific constructs for
parallel execution, for spawning new subtasks, and for grouping computations.

Definition 2 (Sequoia Programs). The set of programs is defined by the fol-
lowing grammar:

G ::= Copy↑(�A, �B) | Copy↓(�A, �B) | Copy(�A, �B)
| Kernel〈A = f(B1, . . . , Bn)〉 | Scalar〈a = f(b1, . . . , bn)〉
| Forall i = m : n do G | Group(H) | Execi(G)
| If cond then G1 else G2

where a, b are scalar variables, m, n are scalar constants, A, B are array vari-
ables, cond is a boolean expression, and H is a dependence graph of programs.
We use the operators ‖ and ; as a syntactic representation (respectively parallel
and sequential composition) of the dependence graph composing a Group task.

Atomic statements, i.e. Copy, Kernel, and Scalar operations, are given a specific
treatment in the proof system; we let atomStmt denote the set of atomic state-
ments. A program G in the dependence graph H is maximal if G is not specified
by H to depend on any other program in H .

Semantics. We now turn to the semantics of programs; in contrast to the orig-
inal definition [12], our semantics is syntax-directed. We motivate this slight
modification at the end of the paragraph.

The semantics of a program G is defined by a judgment σ 	 G → σ′ where
σ, σ′ ∈ H, and H = M×T . Every σ ∈ H is a pair 〈μp, τ〉 where μp is the parent
memory and τ is a child memory hierarchy. Abusing nomenclature, we refer to
elements of H as memories. The meaning such a judgment is that the evaluation
of G with initial memory σ terminates with final memory σ′. Note that for a
specific architecture, the shape of the memory hierarchy (that is, the shape of
the tree structure) is fixed and does not change with the execution of a program.

To manipulate elements in H, we define two functions: πi :H→H that returns
the i-th child of a memory, and ⊕i : H × H → H that, given two memories σ1

78 G. Barthe, C. Kunz, and J.L. Sacchini

μp, 〈μ,�τ 〉�Copy↑(�A, �B) → μp[B �→ μ(A)], 〈μ,�τ〉

μp, 〈μ,�τ〉�Kernel〈A = f(B1, . . . , Bn)〉 → μp, 〈μ[A �→ f(B1, . . . , Bn)], �τ〉

μp, 〈μ,�τ〉�Scalar〈a = f(b1, . . . , bn)〉 → μp, 〈μ[a �→ f(b1, . . . , bn)], �τ 〉

X the subset of maximal elements of H and H ′ = H \ X
∀g ∈ X, μ, τ �g → μg, τg�μ,τ

g∈X(μg, τg)�Group(H ′) → μ′, τ ′

μ, τ �Group(H) → μ′, τ ′

∀j ∈ [m, n] 	= ∅. μp, 〈μ[i �→ j], �τ 〉�G → μj
p, 〈μj , �τ j〉

μp, 〈μ,�τ〉�Forall i = m : n do G →
�μp,〈μ,τ〉

m≤j≤n (μj
p, 〈μj [i �→ μ(i)], �τ j〉)

πi(μ, τ)�G → μ′, τ ′

μ, τ �Execi(G) → (μ, τ) ⊕i (μ′, τ ′)

Fig. 1. Sequoia program semantics (excerpt)

and σ2, replaces the i-th child of σ1 with σ2. Formally, they are defined as
πi(μp, 〈μ, �τ〉) = (μ, τi) and (μp, 〈μ, �τ 〉) ⊕i (μ′, τ ′) = (μp, 〈μ′, �τ1〉), where τ1i = τ ′

and τ1j = τj for j �= i.

Definition 3 (Program semantics). The semantics of a program G is defined
by the rules given in Fig. 1.

We briefly comment on the semantics—the omitted rules are either the usual
ones (conditionals) or similar to other rules (copy).

The constructs Copy↓(�A, �B) and Copy↑(�A, �B) are primitives that enable data
to migrate along the tree structure, from the parent memory to the root of
the child memory hierarchy and conversely; and Copy(�A, �B) represents an intra-
memory copy in the root of the child memory hierarchy. Only the rule for Copy↑

is shown in Fig. 1, since the others are similar.
The constructs Kernel〈A = f(B1, . . . , Bn)〉 and Scalar〈a = f(b1, . . . , bn)〉 exe-

cute bulk and scalar computations. We implicitly assume in the rules that array
accesses are in-bound. If this condition is not met then there is no applicable
rule, and the program is stuck. The same happens if, in the rules for Group and
Forall, the addition of memories is not defined; that is, the program gets stuck.

The construct Forall i = m : n do G executes in parallel n − m + 1 instances
of G with a different value of i, and merges the result. Progress is made only if
the instances manipulate pairwise distinct parts of the memory, otherwise the
memory after executing the Forall construct is undefined. The rule in Fig. 1
considers exclusively the case where m ≤ n, otherwise the memory hierarchy
remains unchanged. The construct Execi(G) spawns a new computation on the
i-th subtree of the current memory.

Finally, the construct Group(H) executes the set X of maximal elements of
the dependence graph in parallel, and then merges the result before recursively

Certified Reasoning in Memory Hierarchies 79

executing Group(H \ X). A rule not shown in Fig. 1 states that if H = ∅ the
state is left unchanged.

We conclude this section with a brief discussion of the difference between
our semantics and the original semantics for Sequoia defined in [12]. First, we
define the notion of safety. A Sequoia program is safe if its parallel subtasks are
independent, i.e. if they modify disjoint regions of the memory hierarchy. 1

The original semantics and our semantics differ in the rule for Group(H):
whereas we require that X is the complete set of maximal elements, and is thus
uniquely determined from the program syntax, the original semantics does not
require X to be the complete set of maximal elements, but only a subset of
it. Therefore, our semantics is a restriction of the original one. However, the
semantics are equivalent in the sense that our semantics can simulate any run
of the unrestricted semantics—provided the program is safe.

Checking that a program is safe can be achieved by an analysis that over-
approximates the regions of the memory that each subtask reads and writes. A
program is safe if, for parallel subtasks, these regions do not overlap. For lack of
space, we do not give the complete definition the analysis.

For safe programs, the order of execution of parallel subtasks does not affect
the final result and both semantics coincide. Note that the intention of Sequoia
is to write safe programs; if a program is not safe, its execution might get stuck
because of two (or more) subtasks writing to the same location.

3 Analyzing and Reasoning about Sequoia Programs

This section presents a proof system for reasoning about Sequoia programs. We
start by generalizing the basics of abstract interpretation to our setting, using
a sound, compositional proof system. Then, we define a program logic as an
instance of our proof system, and show its soundness.

3.1 Program Analysis

We develop our work using a mild generalization of the framework of abstract
interpretation, in which the lattice of abstract elements forms a preorder do-
main.2 We also have specific operators over the abstract domain for each type
of program, as shown below.

Definition 4. An abstract interpretation is a tuple I = 〈A, T, +A, weak, π, ⊕, ρ〉
where:

– A = 〈A, �, �, �, �, �, ⊥〉 is a lattice of abstract states;
1 This notion of safety is similar to the notion of strict and-parallelism of logic pro-

gramming [9].
2 A preorder over A is a reflexive and transitive binary relation, whereas a partial

order is an antisymmetric preorder. We prefer to use preorders instead of partial
orders because one instance of an abstract interpretation is that of propositions; we
do not want to view it as a partial order since it implies that logically equivalent
formulae are equal, which is not appropriate in the setting of Proof Carrying Code.

80 G. Barthe, C. Kunz, and J.L. Sacchini

– for each s ∈ atomStmt, a relation Ts ⊆ A × A;
– +A : A × A → A;
– for each i ∈ NS , weaki : A → A;
– for each i ∈ N, πA

i : A → A and ⊕A
i : A × A → A;

– ρ : A × Bool → A, where Bool is the set of boolean expressions.

Intuitively, for each rule of the semantics, we have a corresponding operator that
reflect the changes of the memory on the abstract domain. For each atomic state-
ment s, the relation Ts characterizes the effect of the atomic semantic operation
on the abstract domain. A particular instance of T that we usually consider is
when s is a scalar assignment, i.e., Ti:=j, where i ∈ NS and j ∈ Z. Note that
we don’t use the common transfer functions to define the abstract operators re-
garding atomic statements. Instead, we use relations, which encompasses the use
of the more typical backward or forward functions. We can consider backward
transfer functions by defining a Ts b as a = fs(b) for a suitable fs (in fact, this
is the case for our definition of the verification framework), and forward transfer
functions by defining a Ts b as b = gs(a) for a suitable gs. Also, atomic state-
ments include Kernel and Scalar operations that can be arbitrarily complex and
whose behavior can be better abstracted in a relation. For instance, in the case
of verification, we will require that these atomic statements be specified with pre
and postconditions that define the relation.

The operator +A abstracts the operator + for memories (we omit the reference
to the domain when it is clear from the context).

Given an i ∈ NS and a ∈ A, the function weaki(a) removes any condition on
the scalar variable i from a. It is used when processing a Forall task, with i being
the iteration variable, to show that after execution, the value of the iteration
variable is not relevant. To give more intuition about this operator, consider,
for instance, that A is the lattice of first-order formulae (as is the case of the
verification framework of Sect. 3.2), then weaki(a) is defined as ∃i.a. If A has the
form NS → D, where D is a lattice, then weaki(a) can be defined as a�{i → �},
effectively removing any condition on i.

For each i ∈ N, the operators {πA
i }i∈N and {⊕A

i }i∈N abstract the operations
πi and ⊕i for memories (we omit the reference to the domain when it is clear
from the context).

Finally, the function ρ : A×Bool → A is a transfer function used in an If task
to update an abstract value depending on the test condition. It can be simply
defined as ρ(a, b) = a, but this definition does not take advantage of knowing
that b is true. If we have an expressive domain we can find a value that express
this; for instance, in the lattice of logic formulae, we can define ρ(a, b) = a ∧ b.

To formalize the connection between the memory states and the abstract
states, we assume a satisfaction relation |= ⊆ H × A that is an approximation
order, i.e., for all σ ∈ H and a1, a2 ∈ A, if σ |= a1 and a1 � a2 then σ |= a2.
The next definition formalizes the intuition given about the relation between the
operators of an abstract interpretation and the semantics of programs. Basically,
it states that satisfiability is preserved for each operator of the abstract inter-
pretation. Note that we can also restate these lemmas and definitions in terms

Certified Reasoning in Memory Hierarchies 81

X the set of maximal elements of H and H ′ = H \ X:
∀g ∈ X, 〈a〉�g 〈ag〉 〈

�
g∈X ag〉�Group(H ′) 〈a′〉

〈a〉�Group(H) 〈a′〉
[G]

〈a〉�Group(∅) 〈a〉
[G∅]

s ∈ atomStmt a Ts a′

〈a〉�s 〈a′〉
[A]

〈πi(a)〉�G 〈a′〉
〈a〉�Execi(G) 〈a ⊕i a′〉

[E]

∀j, m ≤ j ≤ n a Ti:=j aj 〈aj〉�G 〈a′
j〉

〈a〉�Forall i = m : n do G 〈
�n

j=m weaki(a′
j)〉

[F]

b a 〈a〉�G 〈a′〉 a′ b′

〈b〉�G 〈b′〉
[SS]

〈ρ(a, cond)〉�G1 〈a′〉 〈ρ(a,¬cond)〉�G2 〈a′〉
〈a〉� If cond then G1 else G2 〈a′〉

[I]

Fig. 2. Program analysis rules

of Galois connections, since we can define a Galois connection from the relation
|= by defining γ : A → H as γ(a) = {σ ∈ H : σ |= a}.

Definition 5. The abstract interpretation I = 〈A, T, +, weak, π, ⊕, ρ〉 is consis-
tent if the following holds for every σ, σ′ ∈ H, a, a1, a2 ∈ A, μ, μp ∈ M, τ ∈ T
and cond ∈ Bool:

– for every s ∈ atomStmt, if σ	s → σ′, σ |= a and a Ts a′, then σ′ |= a′;
– if σ1 |= a1 and σ2 |= a2 then σ1 +σ σ2 |= a1 + a2;
– if μp, 〈μ, τ〉 |= a, then for all k ∈ Z we have μp, 〈μ[i �→ k], τ〉 |= weaki(a);
– if σ |= a then πi(σ) |= πi(a);
– if σ |= a and σ′ |= a′, then σ ⊕i σ′ |= a ⊕i a′;
– if σ |= a and σ |=Bool cond, then σ |= ρ(a, cond).3

Given an abstract interpretation I, a judgment is a tuple 〈a〉	I G 〈a′〉, where G
is a program and a, a′ ∈ A. We will omit the reference to I when it is clear from
the context. A judgment is valid if it is the root of a derivation tree built using
the rules in Fig. 2. The interpretation of a valid judgment 〈a〉 	 G 〈a′〉 is that
executing G in a memory that satisfies a, we end up in a memory satisfying a′.
The following lemma claims that this is case, provided I is consistent.

Lemma 1 (Analysis Soundness). Let G be a Sequoia program and assume
that I = 〈A, T, +, weak, π, ⊕, ρ〉 is a consistent abstract interpretation. For every
a, a′ ∈ A and σ, σ′ ∈ H, if the judgment 〈a〉	G 〈a′〉 is valid and σ	G → σ′ and
σ |= a then σ′ |= a′.

3.2 Program Verification

We now define a verification framework I = 〈Prop, T, +Prop, weak, π, ⊕, ρ〉 as an
instance of the abstract interpretation, where Prop is the lattice of first-order
formulae. Before defining I, we need some preliminary definitions.
3 Given a memory σ and a boolean condition cond , the judgment σ |=Bool cond states

that the condition is valid in σ. The definition is standard so we omit it.

82 G. Barthe, C. Kunz, and J.L. Sacchini

The extended set of scalar names, NS+, is defined as

NS+ = NS ∪ {x↑ : x ∈ NS} ∪ {x↓i1 ...↓ik : x ∈ NS ∧ k ∈ N ∧ i1, . . . , ik ∈ N} .

We define, in a similar way, the sets NA+, N+, and L+ of extended locations.
These sets allow us to refer to variables at all levels of a memory hierarchy, as is
shown by the following definition. Given σ ∈ H, with σ = μp, 〈μ, τ〉, and l ∈ L+,
we define σ(l) with the following rules:

σ(l) =

⎧
⎪⎨

⎪⎩

μp(x) if l = x↑

μ(x) if l = x

(μ, τi1)(x↓i2 ...↓ik) if l = x↓i1↓i2 ...↓ik .

We also define the functions ↑i, ↓i : NS+ → NS+ with the following rules:

↓i(x) = x↓i

↓i(x↓j1 ...↓jn) = x↓i↓j1 ...↓jn

↓i(x↑) = x .

↑i(x) = x↑

↑i(x↓i↓j1 ...↓jk) = x↓j1 ...↓jk

Note that ↓i is a total function, while ↑i is undefined in x↑ and x↓j↓j1 ...↓jk if
j �= i. These functions are defined likewise for NA+, N+, and L+.

Given a formula φ, we obtain ↓iφ by substituting every free variable v ∈ N+

of φ with ↓iv. In the same way, the formula ↑iφ is obtained by substituting every
free variable v ∈ N+ of φ by ↑iv; if ↑iv is not defined, we substitute v by a fresh
variable, and quantify existentially over all the introduced fresh variables.

Definition of +. To define the operator + we require that each subprogram comes
annotated with the sets SW and AW specifying, respectively, the scalar vari-
ables and the array ranges that it may modify. Given two programs G1 and G2
annotated, respectively, with the modifiable regions SW1, AW1 and SW2, AW2,
and the postconditions Q1 and Q2, we define Q1 + Q2 as Q′

1 ∧ Q′
2, where Q′

1 is
the result of existentially quantifying in Q1 the variables that may be modified
by G2. More precisely, Q′

1 = ∃X ′. Q1[X
′
/X] ∧

∧
A[m,n]∈AW1

A′[m, n] = A[m, n],
X representing the set of scalar and array variables in SW2 ∪AW2 and X ′ a set
of fresh variables (and similarly with Q2).

To explain the intuition behind this definition, assume two tasks G1 and G2
that execute in parallel with postconditions Q1 and Q2. After verifying that
each Gi satisfies the postcondition Qi, one may be tempted to conclude that
after executing both tasks, the resulting state satisfies Q1 ∧ Q2. The reason for
which we do not define Q1 +Q2 simply as Q1 ∧Q2 is that while Q1 may be true
after executing G1, Q1 may state conditions over variables that are not modified
by G1 but are modified by G2. Then, since from the definition of the operator +
in the semantic domain the value of a variable not modified by G1 is overwritten
with a new value if modified by G2, Q1 may be false in the final memory state
after executing G1 and G2 in parallel.

Certified Reasoning in Memory Hierarchies 83

For the definition of Q1 + Q2 to be sound we require the annotations SW1,
AW1 and SW2, AW2 to be correct. For this, we can use a static analysis or gen-
erate additional proof obligations to validate the program annotations. However,
for space constraints and since such analysis can be applied earlier and indepen-
dently of the verification framework, we do not consider this issue. Certainly,
the applicability of the logic is limited by the precision of such static analysis.

We generalize the operator + for a set of postconditions {φi}i∈I and a set of
specifications of modified variables {SWi}i∈I and {AWi}i∈I , by defining

∑
i∈I φi

as
∧

i∈I φ′
i where φ′

i = ∃X ′. φi[X
′
/X] ∧

∧
A[m,n]∈AWi

A[m, n] = A′[m, n], s.t. X

represents every scalar or array variable in {SWj}j �=i∈I or {AWj}j �=i∈I , and X ′

a set of fresh variables. If an assertion φi refers only to scalar and array variables
that are not declared as modifiable by other member j �= i, we have φ′

i ⇒ φi.

Definition of other components of I. They are defined as follows:

– for each s ∈ atomStmt, the relation Ts is defined from the weakest precon-
dition transformer wps, as wps(φ) Ts φ for every logic formula φ. For Kernel
and Scalar statements, we assume that we have a pre and postcondition
specifying their behavior (the definition of {wps}s∈atomStmt is standard);

– weaki(φ) = ∃i.φ, where i ∈ NS+;
– πi(φ) = ↑iφ, where i ∈ N;
– φ1 ⊕i φ2 = φ1

i ∧↓iφ2, where i ∈ N, and φ1
i
is obtained from φ1 by replacing

every variable of the form x or x↓i↓j1 ...↓jk with a fresh variable and then
quantifying existentially all the introduced fresh variables;

– ρ(φ, cond) = φ ∧ cond .

The satisfaction relation σ |= φ is defined as the validity of �φ�σ, the in-
terpretation of the formula φ in the memory state σ. To appropriately adapt
a standard semantics �.� to a hierarchy of memories, it suffices to extend the
interpretation for the extended set of variables N+, as �n�σ = σ(n) for n ∈ N+.

In the rest of the paper, we denote as {P} 	 G {Q} the judgments in the
domain of logical formulae, and P and Q are said to be pre and postconditions
of G respectively. If the judgment {P}	G {Q} is valid, and the program starts
in a memory σ that satisfies P and finishes in a memory σ′, then σ′ satisfies Q.
The proposition below formalizes this result.

Proposition 1 (Verification Soundness). Assume that {P} 	 G {Q} is a
valid judgment and that σ 	 G → σ′, where G is a program, P , Q are assertions,
and σ, σ′ ∈ H. If σ |= P then σ′ |= Q.

3.3 Example Program

We illustrate the verification with an example. Consider a program, GAdd, that
add two input arrays (A and B) producing on output array C. The code of the
program is given by the following definitions:

84 G. Barthe, C. Kunz, and J.L. Sacchini

GAdd := Exec0(Forall i = 0 : n − 1 do Add)

Add := Group((CopyAX ‖ CopyBY);AddP;CopyZC)
CopyAX := Copy↓(A[i.S, (i + 1)S], X[i.S, (i + 1)S])
CopyBY := Copy↓(B[i.S, (i + 1)S], Y [i.S, (i + 1)S])
AddP := Kernel〈Z[i.S, (i + 1)S] = VectAdd(X[i.S, (i + 1)S], Y [i.S, (i + 1)S])〉
CopyZC := Copy↑(Z[i.S, (i + 1)S], C[i.S, (i + 1)S])

Assume that the arrays have size n.S, and note that the program is divided in
n parallel subtasks, each operating on different array fragments, of size S. The
best value for S may depend on the underlying architecture.

It is easy to see that this program is safe, since each subtask writes on a
different fragment of the arrays.

We show, using the verification framework, how to derive the judgment {true}	
GAdd {Post} , where Post = ∀k, 0 ≤ k < n.S ⇒ C[k] = A[k] + B[k]. Using the
rules [A], [G] and [SS] we derive, for each i ∈ [0 . . . n − 1], the following:

{true}	Add {Qi} , (1)

where Qi = ∀k, i.S ≤ k < (i + 1)S ⇒ C↑[k] = A↑[k] + B↑[k]. Applying the rule
[F] on (1) we obtain

{true}	Forall i = 0 : n − 1 do Add
{∑

0≤j<n Qj

}
. (2)

Note that the postcondition of the i-th subtask only refers to variables that
it modifies, therefore, it is not difficult to see that

∑
0≤j<n Qj ⇒

∧
0≤j<n Qj .

Applying the subsumption rule to (2), we obtain

{true}	Forall i = 0 : n − 1 do Add {Q} (3)

where Q = ∀k, 0 ≤ k < n.S ⇒ C↑[k] = A↑[k]+B↑[k]. Finally, applying rule [E]
to (3), we obtain the desired result, since Post = ↓0Q.

4 Certificate Translation

In this section, we focus on the interplay between program optimization and
program verification. To maximize the performance of applications, the Sequoia
compiler performs program optimizations such as code hoisting, instruction
scheduling, and SPMD distribution. We show, for common optimizations de-
scribed in [12], that program optimizations transform provably correct programs
into provably correct programs. More precisely, we provide an algorithm to trans-
form a derivation for the original program into a derivation for the transformed
program. The problem of transforming provably correct programs into provably
correct programs is motivated by research in Proof Carrying Code (PCC) [15,14],
and in particular by our earlier work on certificate translation [2,3].

We start by extending the analysis setting described in previous sections with
a notion of certificates, to make it suitable for a PCC architecture. Then, we
describe certificate translation in the presence of three optimizations: SPMD
distribution, Exec Grouping and Copy grouping.

Certified Reasoning in Memory Hierarchies 85

Certified setting. In a PCC setting, a program is distributed with a checkable
certificate that the code complies with the specified policy. To extend the ver-
ification framework defined in Section 3.2 with a certificate infrastructure, we
capture the notion of checkable proof with an abstract proof algebra.

Definition 6 (Certificate infrastructure). A certificate infrastructure con-
sists on a proof algebra P that assigns to every φ ∈ Prop a set of certificates
P(φ). We assume that P is sound, i.e. for every φ ∈ Prop, if φ is not valid,
then P(φ) = ∅. In the sequel, we write c : 	 φ instead of c ∈ P(φ).

We do not commit to an specific representation of certificates, since it is not
relevant for this paper. To give an intuition, we can define them in terms of the
Curry-Howard isomorphism by considering P(φ) = {e ∈ E | 〈〉 	 e : φ}, where E
is the set of expressions and 	 e : φ a typing judgment in some λ-calculus.

In addition, we refine the notion of certified analysis judgment, to enable
code consumers to check whether a judgment is a valid judgment. To this end,
the definition of rule [SS] is extended to incorporate certificates attesting the
validity of the (a priori undecidable) logical formulae required in rule [SS].

Definition 7 (Certified Verification Judgment). We say that the verifica-
tion judgment {Φ}	G {Ψ} is certified if it is the root of a derivation tree, built
from the rules in Fig. 2, such that every application of the subsumption rule

φ ⇒ φ′ {φ′}	G {ψ′} ψ′ ⇒ ψ

{φ}	G {ψ}
[SS]

is accompanied with certificates c and c′ s.t. c : 	 φ ⇒ φ′ and c′ : 	 ψ′ ⇒ ψ.

A certificate for the judgment {Φ}	G {Ψ} is a derivation tree together with a
tuple of certificates for each application of the subsumption rule.

A common characteristic of the optimizations considered in the following sec-
tions is that they are defined as a substitution of a subprogram g by another
subprogram g′ in a bigger program G. We denote with G[•] the fact that G is a
program with a hole. Given a program g, we denote with G[g] the program ob-
tained by replacing the hole • with g. Then, optimizations are characterized by
subprograms g and g′, defining a transformation from a program G[g] into a pro-
gram G[g′]. The following general result complements the results on certificate
translators explained in the following sections.

Lemma 2. Let G[•] be a program with a hole, g, g′ programs and Φ, Ψ logic
formulae. If the judgment {Φ}	G[g] {Ψ} is certified, then the derivation of the
latter contains a certificate for the judgment {φ} 	 g {ψ}, for some φ and ψ.
If there is a certificate for the judgment {φ} 	 g′ {ψ}, then we can construct a
certificate for the judgment {Φ}	G[g′] {Ψ}.

86 G. Barthe, C. Kunz, and J.L. Sacchini

4.1 SPMD Distribution

Consider a program that executes multiple times a single piece of code repre-
sented by a subprogram g. If every execution of g involves and independent
portion of data, the tasks can be performed in any sequential order or in paral-
lel. SPMD distribution is a common parallelization technique that exploits this
condition distributing the tasks among the available processing units.

Programs of the form Forall j = 0 : k.n − 1 do g are candidates for SPMD
distribution, since k.n instances of the single subprogram g are executed in
parallel along the range of the iteration variable j. Furthermore, for each value of
the iteration value j, the subprogram g operates over an independent partition
of the data, as assumed for every program subject to verification.

G′ is transformed from G by applying SPMD distribution if G′ is the result
of substituting every subprogram Execi(Forall j = 0 : k.n − 1 do g) by the
equivalent subprogram Group(G1 || . . . || Gk), with Gi defined as the program
Execi(Forall j = i.n : (i + 1)n − 1 do g) for all i ∈ [0, k − 1].

Normally, a real compiler will also consider whether it is convenient to span
the computation of g over other child nodes. However, since orthogonal to the
transformation of the verification judgment, we do not consider this issue.

Lemma 2 in combination with the following lemma that states that the local
substitutions defining SPMD distribution preserve certified judgments, implies
the feasibility of certificate translation.

Lemma 3. Given a program G = Execi(Forall j = 0 : k.n − 1 do g), and a
certified judgment {Φ} 	 G {Ψ}, it is possible to generate a certified judgment
{Φ} 	 Group(G1 || . . . || Gk) {Ψ}, where Gi is defined as Execi(Forall j = i.n :
(i + 1)n − 1 do g) for any i ∈ [0, k − 1].

Example: Consider again the program GAdd of Section 3.3. Assume that at the
level of the memory hierarchy at which GAdd is executed there are k available
child processing units, and that n = k.m for some m. Then, we are interested
in distributing the independent computations along the iteration range [0, n−1]
splitting them in k subsets of independent computations in ranges of length
m. We obtain then, after applying SPMD distribution to program GAdd, the
following transformed program:

G′
Add := Exec0(Forall i = 0 : m − 1 do Add)

‖ Exec1(Forall i = m : 2m − 1 do Add)
. . .

‖ Execk−1(Forall i = (k − 1)m : k.m − 1 do Add)

Applying the result stated above, we can transform the derivation of the judg-
ment {true} 	 GAdd {Post} into a derivation of {true} 	 G′

Add {Post}, prov-
ing that the verification judgment is preserved. Recall that we can derive the
judgment

{true}	Execr(Forall i = r.m : (r + 1)m − 1 do Add)

⎧
⎨

⎩
↑r(

∑

r.m≤j<(r+1)m

Qj)

⎫
⎬

⎭

Certified Reasoning in Memory Hierarchies 87

for every 0 ≤ r < k. One more application of rule [G] allows us to derive the
judgment {true}	G′

Add

{∑
0≤r<k ↑r(

∑
r.m≤j<(r+1)m Qj)

}
. Finally, requiring a

certificate of the distributivity of ↑r over the operator +, and a certificate for∑
0≤r<k

∑
r.m≤j<(r+1)m Qj ⇒

∑
0≤j<k.m Qj we get by rule [SS]

{true}	G′
Add

{
(
∑

0≤j<k.m ↑rQj)
}

.

By the same reasoning in Section 3.3 we have
∑

0≤j<k.m ↑rQj ⇒
∧

0≤j<n ↑rQj ,
and finally by subsumption rule we get {true}	G′

Add {Post}. Notice that judg-
ment reconstruction entails the application of the [SS] rule and, thus, requires
discharging extra proof obligations. These obligations include, for instance, prov-
ing commutativity of +, associativity of + and distributivity of ↑r over +.

4.2 Exec Grouping

An Exec operation pushes the execution of a piece of code down to one of the
memory subtrees. Since the cost of transferring code and data between different
levels of the hierarchy is not negligible, there is an unnecessary overhead when
several Exec operations contain code with short execution time. Hence, there is
a motivation to reduce the cost of invoking code in child nodes, by grouping the
computation defined inside a set of Exec operations into a single Exec operation.

We say that a program G′ is the result of applying Exec grouping, if it is the
result of replacing a set of Exec operations targeting the same child node, by an
single and semantically equivalent Exec operation. More precisely, every subpro-
gram Group({Execi(G1), . . . , Execi(Gk)}∪H) such that (Execi(Gj))

k
j=1 are max-

imal in the dependence graph and mutually independent, is substituted by the
equivalent subprogram Group({Execi(Group({G1, . . . , Gk}))} ∪ H). In addition,
the dependence relation that defines the graph {Execi(Group({G1, . . . , Gk}))}∪H
must be accordingly updated. More precisely, if the subprogram g ∈ H originally
depends on Gi for some i ∈ [1, k] then g depends on Execi(Group({G1, . . . , Gk}))
in the modified dependence graph.

The following result expresses that a certified judgment corresponding to set
of independent Exec operations can be translated to a certified judgment for the
result of merging the Exec operations into a single one. This result, together with
Lemma 2, implies the existence of a certificate translator for Exec grouping.

Lemma 4. Consider a set of mutually independent tasks G1, . . . , Gk and a de-
pendence graph {Execi(G1), . . . , Execi(Gk)} ∪H s.t. (Execi(Gj))1≤j≤k are maxi-
mal elements. Assume that {Φ} 	 Group({Execi(G1), . . . , Execi(Gk)} ∪ H) {Ψ}
is a certified judgment. Then, it is possible to generate a certified judgment
{Φ}	Group({Execi(Group({G1, . . . , Gk}))} ∪ H) {Ψ}.

4.3 Copy Grouping

Commonly, for the execution environments targeted by Sequoia programs, trans-
ferring several fragments of data to a different level of the memory hierarchy in

88 G. Barthe, C. Kunz, and J.L. Sacchini

a single copy operation is more efficient that transferring each fragment of data
in a separate operation. For this reason, and since array copy operations are
frequent in programs targeting data intensive applications, it is of interest to
cluster a set of copy operations involving small and independent regions of the
memory into a single transfer operation.

Naturally, this transformation may require an analysis to detect whether two
copy operations referring to regions of the same array are indeed independent.
However, for simplicity, we consider the case in which the original set of small
copy operations are performed over different array variables.

Consider a subprogram g = Group(H ∪ {g1, g2}), where g1 = Copy(A1, B1)
and g2 = Copy(A2, B2) are mutually independent and maximal in H . Copy
propagation consists on substituting g by the equivalent program g′ defined as
Group(H ∪ {g1,2}), where g1,2 is a copy operation that merges atomic programs
g1 and g2 into a single transfer operation. In addition, the dependence relation
on Group(H ∪ {g1,2}) must be updated accordingly, such that g′′ ∈ H depends
on g1,2 iff g′′ depended on g1 or g2 in the original dependence graph.

Lemma 5. Consider the programs g and g′ as defined above. Then, from a
certified judgment {Φ} 	 g {Ψ} we can construct a certified derivation for the
judgment {Φ}	g′ {Ψ}.

The program G′ is the result of applying copy grouping to program G, if every
subprogram of the form g in G is replaced by g′, where g and g′ are as charac-
terized above. The existence of certificate translators follows from Lemma 2.

Example: Consider again the program GAdd of Section 3.3, that adds two arrays.
From the definition of the subprogram Add, we can see that it is a candidate for a
copy grouping transformation, since it can be replaced by the equivalent subpro-
gram Add′ defined as Group(CopyAXBY; AddP; CopyZC), where CopyAXBY
is defined as Copy↓(A[i.S, (i + 1)S], B[i.S, (i + 1)S], X [i.S, (i + 1)S], Y [i.S, (i +
1)S]). Assume that judgment of for the example in Section 3.3 is certified.
To translate this result after applying the transformation above, we must cer-
tify the judgment {true} 	 CopyAXBY {QAX + QBY }. To this end, we reuse
the certified judgments {true} 	 CopyAX {QAX} and {true} 	 CopyBY {QBY }
that are included in the certificate for the judgment {true} 	 GAdd {Post},
where QAX is defined as

(
∀k, 0 ≤ k < S ⇒ X [k] = A↑[k + i.S]

)
and QBY as(

∀k, 0 ≤ k < S ⇒ Y [k] = B↑[k + i.S]
)
.

The fact that makes the translation through, is the validity of the formula
wpCopyAX(φ) ∧ wpCopyBY(ψ) ⇒ wpCopyAXBY(φ + ψ).

5 Related Work

The present work follows the motivations on the framework introduced by some
of the authors for certificate translation [2,3]. Certificate translation as originally
proposed [2] targets low level unstructured code and a weakest precondition
based verification, in contrast to the Hoare-like environment that we have defined

Certified Reasoning in Memory Hierarchies 89

to verify Sequoia programs. Another difference is that in previous work programs
transformations consist on standard compiler optimizations on sequential code,
whereas in this paper we deal with transformations that take advantage of the
concurrent programming model of Sequoia. Extending certificate translation for
Sequoia programs with transformations that optimize sequential components in
isolation is feasible.

Recent work on concurrent separation logic [16] can be used to reason about
Sequoia programs as well. Concurrent separation logic extends the standard
Owicki-Gries logic [17] for concurrent programs to enable one to reason about
heap operations. One key feature of separation logic is that it allows to express
whether a concurrent component owns a specific resource. From the application
of the logic rules, it is required that each resource is shared by at most one
process (although ownership may change along program execution), and that
a sequential component may only affect the resources it owns. Therefore, it is
possible to show independence of parallel subtasks using the logic rules.

However, since interleaving, and hence interaction, in a Sequoia program oc-
cur only in specific program points, the disjointness conditions are simpler to
check. Additionally, it is convenient that checking the disjointness conditions is
performed systematically by compilers, in which case it is reasonable to rely on
such information for proving properties of programs.

6 Conclusion

We have used the framework of abstract interpretation to develop a sound proof
system to reason about Sequoia programs, and to provide sufficient conditions for
the existence of certificate translators. Then, we have instantiated these results
to common optimizations described in [12].

There are several directions for future work. First, it would be of interest
to investigate whether our results hold for a relaxed semantics of Sequoia pro-
grams, allowing benign data races, where parallel subtasks are allowed to modify
the same variables, with the condition that they do it in an identical manner.
This notion of benign data races [13] is also closely related to non-strict and-
parallelism, as studied in [9]. Second, we intend to investigate certificate transla-
tion in the context of parallelizing compilers. Finally, it would be interesting to
see how separation logic compares with our work. In particular, if we can replace
the region analysis with classical separation logic [18] or permission-accounting
separation logic [4].

References

1. Alpern, B., Carter, L., Ferrante, J.: Modeling parallel computers as memory hier-
archies. In: Proc. Programming Models for Massively Parallel Computers (1993)

2. Barthe, G., Grégoire, B., Kunz, C., Rezk, T.: Certificate translation for optimizing
compilers. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 301–317. Springer,
Heidelberg (2006)

90 G. Barthe, C. Kunz, and J.L. Sacchini

3. Barthe, G., Kunz, C.: Certificate translation in abstract interpretation. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 368–382. Springer, Hei-
delberg (2008)

4. Bornat, R., O’Hearn, P.W., Calcagno, C., Parkinson, M.: Permission accounting
in separation logic. In: Principles of Programming Languages, pp. 259–270. ACM
Press, New York (2005)

5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages, pp. 238–252 (1977)

6. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Principles of Programming Languages, pp. 269–282 (1979)

7. Dally, W.J., Labonte, F., Das, A., Hanrahan, P., Ho Ahn, J., Gummaraju, J., Erez,
M., Jayasena, N., Buck, I., Knight, T.J., Kapasi, U.J.: Merrimac: Supercomputing
with streams. In: Conference on Supercomputing, p. 35. ACM, New York (2003)

8. Fatahalian, K., Horn, D.R., Knight, T.J., Leem, L., Houston, M., Park, J.Y., Erez,
M., Ren, M., Aiken, A., Dally, W.J., Hanrahan, P.: Sequoia: programming the
memory hierarchy. In: Conference on Supercomputing, p. 83. ACM Press, New
York (2006)

9. Hermenegildo, M.V., Rossi, F.: Strict and nonstrict independent and-parallelism
in logic programs: Correctness, efficiency, and compile-time conditions. J. Log.
Program. 22(1), 1–45 (1995)

10. Houston, M., Young Park, J., Ren, M., Knight, T., Fatahalian, K., Aiken, A.,
Dally, W.J., Hanrahan, P.: A Portable Runtime Interface For Multi-Level Memory
Hierarchies. In: Scott, M.L. (ed.) PPOPP, ACM, New York (2008)

11. Kapasi, U.J., Rixner, S., Dally, W.J., Khailany, B., Ho Ahn, J., Mattson, P.R.,
Owens, J.D.: Programmable stream processors. IEEE Computer 36(8), 54–62
(2003)

12. Knight, T.J., Young Park, J., Ren, M., Houston, M., Erez, M., Fatahalian, K.,
Aiken, A., Dally, W.J., Hanrahan, P.: Compilation for explicitly managed memory
hierarchies. In: Yelick, K.A., Mellor-Crummey, J.M. (eds.) PPOPP, pp. 226–236.
ACM, New York (2007)

13. Narayanasamy, S., Wang, Z., Tigani, J., Edwards, A., Calder, B.: Automatically
classifying benign and harmful data races using replay analysis. In: Ferrante, J.,
McKinley, K.S. (eds.) PLDI, pp. 22–31. ACM, New York (2007)

14. Necula, G.C.: Proof-carrying code. In: Principles of Programming Languages, New
York, NY, USA, pp. 106–119. ACM Press, New York (1997)

15. Necula, G.C., Lee, P.: Safe kernel extensions without run-time checking. In: Operat-
ing Systems Design and Implementation, Seattle, WA, October 1996, pp. 229–243.
USENIX Assoc. (1996)

16. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoretical Computer
Science 375(1-3), 271–307 (2007)

17. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs. Acta
Informatica Journal 6, 319–340 (1975)

18. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Logic in Computer Science, Copenhagen, Denmark, July 2002. IEEE Computer
Society, Los Alamitos (2002)

The Complexity of Coverage�

Krishnendu Chatterjee1, Luca de Alfaro1, and Rupak Majumdar2

1 CE, University of California, Santa Cruz, USA
2 CS, University of California, Los Angeles, USA

c krish@eecs.berkeley.edu, luca@soe.ucsc.edu, rupak@cs.ucla.edu

Abstract. We study the problem of generating a test sequence that achieves max-
imal coverage for a reactive system under test. We formulate the problem as a
repeated game between the tester and the system, where the system state space
is partitioned according to some coverage criterion and the objective of the tester
is to maximize the set of partitions (or coverage goals) visited during the game.
We show the complexity of the maximal coverage problem for non-deterministic
systems is PSPACE-complete, but is NP-complete for deterministic systems. For
the special case of non-deterministic systems with a re-initializing “reset” action,
which represent running a new test input on a re-initialized system, we show
that the complexity is coNP-complete. Our proof technique for reset games uses
randomized testing strategies that circumvent the exponentially large memory re-
quirement of deterministic testing strategies.

1 Introduction

Code coverage is a common metric in software and hardware testing that measures the
degree to which an implementation has been tested with respect to some criterion. In its
simplest form, one starts with a model of the program, and a partition of the behaviors
of the model into coverage goals [3]. A test is a sequence of inputs that determines
a behavior of the program. The aim of testing is to explore as many coverage goals
as possible, ideally as quickly as possible. In this paper, we give complexity results
for several coverage problems. The problems are very basic in nature: they consist in
deciding whether a certain level of coverage can be attained in a given system.

Finite-state directed graphs have been used as program models for test generation of
reactive systems for a long time (see [15,7] for surveys). A coverage goal is a partition
of the states of the graph, and a test is a sequence of labels that determine a path in
the graph. The maximal coverage test generation problem is to hit as many partitions
as possible. In this paper, we show that the maximal coverage problem becomes NP-
complete for graphs with partitions. We also distinguish between system complexity
(the complexity of the problem in terms of the size of the graph) and the coverage
complexity (the complexity of the problem in terms of the number of coverage goals).
Then, the problem is NLOGSPACE in the size of the graph (but that algorithm uses
space polynomial in the number of partitions).

We consider the special case where the graph has a special “reset” action that takes
it back to the initial state. This corresponds in a testing setting to the case where the

� This research was supported in part by the NSF grants CCR-0132780 and CNS-0720884.

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 91–106, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

92 K. Chatterjee, L. de Alfaro, and R. Majumdar

system can be re-initialized before running a test (we refer to this special class of graphs
as re-initializable graphs). In this case, the maximal coverage problem can be solved in
polynomial time for graphs with partitions.

Directed graphs form a convenient representation for deterministic systems, in which
all the choices are under the control of the tester. Testing of non-deterministic systems
in which certain actions are controllable (under the control of the tester) and other ac-
tions are uncontrollable lead to game graphs [14]. A game graph is a directed labeled
graph where the nodes are partitioned into tester-nodes and system-nodes, and while
the tester can choose the next input at a tester node, the system non-deterministically
chooses the next state at a system node. Then, the test generation problem is to generate
a test set that achieves maximal coverage no matter how the system moves. For general
game graphs, we show the complexity of the maximal coverage problem is PSPACE-
complete. However, there is an algorithm that runs in time linear in the size of the game
graph but exponential in the number of coverage goals. Again, the re-initializability as-
sumption reduces the complexity of coverage: in case there is a re-initialization strategy
of the tester from any system state, the maximal coverage problem for games is coNP-
complete. Dually, we show that the problem of whether it is possible to win a safety
game while visiting fewer than a specified number of partitions is NP-complete.

Finally, we consider the coverage problem in bounded time, consisting in checking
whether a specified number of partitions can be visited in a specified number of steps.
We show that the problem is NP-complete for graphs and re-initializable graphs, and is
PSPACE-complete for game graphs.

In summary, our main contributions can be enumerated as follows (Table 1 gives a
summary of the complexity results).

1. Graphs and re-initializable graphs. We show the maximal coverage problem is
NP-complete for graphs, and can be solved in polynomial time for re-initializable
graphs. In contrast, the coverage problem in bounded time is NP-complete for both
graphs and re-initializable graphs.

2. Game graphs and re-initializable game graphs. The maximal coverage problem
is PSPACE-complete for game graphs, and for the special class of re-initializable
game graphs the problem is coNP-complete. The coverage in bounded time prob-
lem is PSPACE-complete for game graphs, and for re-initializable game graphs
the problem is both NP-hard and coNP-hard, and the problem can be solved in
PSPACE.

Optimization problems arising out of test generation have been studied before in
the context of both graphs and games [1,10,14,6]. However, to the best of our knowl-
edge, the complexities of the coverage problems studied here have escaped attention
so far.

While we develop our theory for the finite-state, discrete case, we can derive similar
results for more general models, such as those incorporating incomplete information
(the tester can only observe part of the system state) or timing. For timed systems mod-
eled as timed automata, the maximal coverage problem is PSPACE-complete. For timed
games as well as for (finite state) game graphs with incomplete information, the maxi-
mal coverage problem becomes EXPTIME-complete.

The Complexity of Coverage 93

Table 1. The complexity of coverage

Graphs Recurrent Graphs Game Graphs Recurrent Game Graphs

Maximal NP-complete PTIME PSPACE-complete coNP-complete
Coverage

Coverage in NP-complete NP-complete PSPACE-complete NP-hard and coNP-hard
Bounded time in PSPACE

2 Definitions

In this section we define labeled graphs and labeled games, and then define the two
decision problems of coverage, namely, maximal coverage problem and coverage with
bounded time problem. We start with definition of graphs and games. To simplify the
notation in subsequent arguments, it is convenient to define state-space partitions via
labeling functions from states to predicates; the (single) predicate associated with a
state indicates the partition to which the state belongs.

Definition 1 (Labeled graphs). A labeled graph G = ((V, E), vin , AP, L) consists of
the following component:

1. a finite directed graph with vertex set V and edge set E;
2. the initial vertex vin ;
3. a finite set of atomic propositions AP; and
4. a labeling (or a partition) function L : V → AP that assigns to each vertex v, the

atomic proposition L(v) ∈ AP true at v.

For technical convenience we will assume that for all vertices v ∈ V , there exists u ∈ V
such that (v, u) ∈ E, i.e., each vertex has at least one out-going edge.

Labeling and partition of vertex set. Given a labeled graph G = ((V, E), vin , AP, L),
the atomic propositions and the labeling (or the partition) function gives a partition of
the vertex set V . Let AP = {p1, p2, . . . , p�}, and for 1 ≤ i ≤ �, let V i = {v ∈ V |
L(v) = pi}. Then (V 1, V 2, . . . , V �) gives a partition of the vertex set V .

Paths in graphs and reachability. Given a labeled graph G, a path ω in G is an infinite
sequence of vertices 〈v0, v1, v2 . . .〉 starting from the initial vertex vin (i.e., v0 = vin)
such that for all i ≥ 0 we have (vi, vi+1) ∈ E. A vertex vi is reachable from vin if there
is a path ω = 〈v0, v1, v2 . . .〉 in G and j ≥ 0 such that the vertex vj in ω is the vertex vi.

Definition 2 (Labeled game graphs). A labeled game graph G = ((V, E), (V1, V2),
vin , AP, L) consists of the components of a labeled graph along with a partition of the
finite vertex set V into (V1, V2). The vertices in V1 are player 1 vertices where player 1
chooses outgoing edges, and analogously, the vertices in V2 are player 2 vertices where
player 2 chooses outgoing edges. Again for technical convenience we will assume that
for all vertices v ∈ V , there exists u ∈ V such that (v, u) ∈ E, i.e., each vertex has at
least one out-going edge.

94 K. Chatterjee, L. de Alfaro, and R. Majumdar

Plays and strategies in games. A play in a game graph is a path in the underlying
graph of the game. A strategy for a player in a game is a recipe to specify how to extend
the prefix of a play. Formally, a strategy π1 for player 1 is a function π1 : V ∗ · V1 → V
that takes a finite sequence of vertices w · v ∈ V ∗ · V1 ending in a player 1 vertex v
(w ·v represents the history of the play so far), and specifies the next vertex π1(w ·v) by
choosing an out-going edge from v (i.e., (v, π1(w ·v)) ∈ E). A strategy π2 : V ∗ ·V2 →
V is defined analogously. We denote by Π1 and Π2 the set of all strategies for player 1
and player 2, respectively. Given strategies π1 and π2 for player 1 and player 2, there
is a unique play (or a path) ω(vin , π1, π2) = 〈v0, v1, v2, . . .〉 such that (a) v0 = vin ;
(b) for all i ≥ 0, if vi ∈ V1, then π1(v0 · v1 . . . · vi) = vi+1; and if vi ∈ V2, then
π2(v0 · v1 . . . · vi) = vi+1.

Controllably recurrent graphs and games. Along with general labeled graphs and
games, we will also consider graphs and games that are controllably recurrent. A la-
beled graph G is controllably recurrent if for every vertex vi that is reachable from vin ,
there is a path starting from vi that reaches vin . A labeled game graph G is controllably
recurrent if for every vertex vi that is reachable from vin in the underlying graph, there
is a strategy π1 for player 1 such that against all player 2 strategies π2, the path starting
from vi given the strategies π1 and π2 reaches vin . Controllable recurrence models the
natural requirement that systems under test are re-initializable, that is, from any reach-
able state of the system, there is always a way to bring the system back to its initial state
no matter how the system behaves.

The maximal coverage problem. The maximal coverage problem asks whether at least
m different propositions can be visited, in other words, it asks whether at least m differ-
ent partitions of the vertex set (given by the proposition labeling) can be visited. We now
define the problem formally for graphs and games. Given a path ω = 〈v0, v1, v2, . . .〉,
let L(ω) =

⋃
i≥0 L(vi) be the set of propositions that appear in ω. Given a labeled

graph G and 0 ≤ m ≤ |AP|, the maximal coverage problem asks whether there is path
ω such that |L(ω)| ≥ m. Given a labeled game graph G and 0 ≤ m ≤ |AP|, the maxi-
mal coverage problem asks whether player 1 can ensure that at least m propositions are
visited, i.e., whether

max
π1∈Π1

min
π2∈Π2

|L(ω(vin , π1, π2))| ≥ m.

It may be noted that maxπ1∈Π1 minπ2∈Π2 |L(ω(vin , π1, π2))| ≥ m iff there ex-
ists a player 1 strategy π∗

1 such that for all player 2 strategies π∗
2 we have

|L(ω(vin , π∗
1 , π∗

2))| ≥ m.

The coverage with bounded time problem. The coverage with bounded time prob-
lem asks whether at least m different propositions can be visited within k-steps, that
is, whether at least m different partitions of the vertex set can be visited within
k-steps. We now define the problem formally for graphs and games. Given a path
ω = 〈v0, v1, v2, . . .〉 and k ≥ 0, we denote by ω � k the prefix of the path of length
k + 1, i.e., ω � k = 〈v0, v1, . . . , vk〉. Given a path ω = 〈v0, v1, v2, . . .〉 and k ≥ 0, we
denote by L(ω � k) =

⋃
0≤i≤k L(vi). Given a labeled graph G and 0 ≤ m ≤ |AP| and

k ≥ 0, the coverage with bounded time problem asks whether there is path ω such that

The Complexity of Coverage 95

|L(ω � k)| ≥ m. Given a labeled game graph G and 0 ≤ m ≤ |AP|, the maximal cov-
erage problem asks whether player 1 can ensure that at least m propositions are visited
within k-steps, i.e., whether

max
π1∈Π1

min
π2∈Π2

|L(ω(vin , π1, π2) � k)| ≥ m.

It may be noted that maxπ1∈Π1 minπ2∈Π2 |L(ω(vin , π1, π2) � k)| ≥ m iff there exists a
player 1 strategy π∗

1 such that for all player 2 strategies π∗
2 we have |L(ω(vin , π∗

1 , π∗
2) �

k)| ≥ m.

2.1 Examples

System-tester game. A system S = (Q, Σ, qin , Δ, AP, L) consists of the following
components:

– a finite set Q of states with the starting state qin ;
– a finite alphabet Σ of input letters;
– a transition relation Δ ⊆ Q × Σ × Q; and
– a finite set of atomic propositions AP and a labeling function L that assigns to each

state q the atomic proposition L(q) true at q.

We consider total systems such that for all q ∈ Q and σ ∈ Σ, there exists q′ ∈ Q
such that (q, σ, q′) ∈ Δ. A system is deterministic if for all q ∈ Q and σ ∈ Σ, there
exists exactly one q′ such that (q, σ, q′) ∈ Δ. The tester selects an input letter at every
stage and the system resolves the non-determinism in transition to choose the successor
state. The goal of the tester is to visit as many different propositions as possible. The
interaction between the system and the tester can be reduced to a labeled game graph
G = ((V, E), (V1, V2), vin , AP, L′) as follows:

– Vertices and partition. V = Q∪(Q×Σ); V1 = Q and V2 = Q×Σ; and vin = qin .
– Edges. E = {(q, (q, σ)) | q ∈ Q, σ ∈ Σ} ∪ {((q, σ), q′) | (q, σ, q′) ∈ Δ}.
– Labeling. L′(q) = L(q) and L′((q, σ)) = L′(q).

The coverage question for game between tester and system can be answered by answer-
ing the question in the game graph. Also observe that if the system is deterministic,
then for all player 2 vertices in the game graph, there is exactly one out-going edge, and
hence the game can be reduced to a labeled graph. A system consists of a set of vari-
ables, and a state represents the valuation of variables. If a subset of variable valuations
is of interest for the coverage criteria, then the partition of the state space of the system
is obtained through the valuations of variables of interest, and the desired partition of
the state space by the valuations of interest is captured by the labeling of the atomic
propositions. In this paper we will present all the results for the labeled graph and game
model. All the upper bounds we provide follow also for the game between tester and
system. All the lower bounds we present can also be easily adapted to the model of the
game between system and tester.

Graph Coverage Criteria. Graph-based coverage criteria, such as node or transi-
tion coverage on the control-flow graph or on a finite-state abstract model, are used

96 K. Chatterjee, L. de Alfaro, and R. Majumdar

commonly in software testing [3]. Such coverage criteria reduce to our notion of testing
on labeled graphs. Intuitively, we define a program state graph where each node repre-
sents a program state (location as well as valuations to all variables) or an abstraction
(e.g., a predicate abstraction [5]), and each edge (s, t) represents a program operation
that takes a state s to the state t. For node coverage, we label a node with the value
of the program location. The coverage goal is to maximize the number of visited loca-
tions. Other graph-based coverage criteria can be expressed by adding auxiliary state.
For example, to capture def-use coverage (for each pair of definition point d and use
point u of a variable, find a test such that the definition d is used at u), one can add
auxiliary state variables that track the point of current definition of a variable, and label
each node of the program state graph with a definition-use pair for each variable such
that the current definition of the variable is used by the incoming operation to the node.
The coverage goal is again to maximize the number of visited labels.

3 The Complexity of Maximal Coverage Problems

In this section we study the complexity of the maximal coverage problem. In subsec-
tion 3.1 we study the complexity for graphs, and in subsection 3.2 we study the com-
plexity for game graphs.

3.1 Graphs

We first show that the maximal coverage problem for labeled graphs is NP-complete.

Theorem 1. The maximal coverage problem for labeled graphs is NP-complete.

Proof. The proof consists of two parts.

1. In NP. The maximal coverage problem is in NP can be proved as follows. Given a
labeled game graph G, let n = |V |. We show first that if there is a path ω in G such
that |L(ω)| ≥ m, then there is a path ω′ in G such that |L(ω′ � (m · n))| ≥ m,
where m · n denotes the product of m and n. If ω visits at least m propositions,
and there is a cycle in ω that does not visit a new proposition that is already visited
in the prefix, then the cycle segment can be removed from ω and still the resulting
path visits m propositions. Hence if the answer to the maximal coverage problem
is “Yes”, then there is a path ω′ of length at most m ·n that is a witness to the “Yes”
answer. Since m ≤ |AP|, it follows that the problem is in NP.

2. NP-hardness. Now we show that the maximal coverage problem is NP-hard, and
we present a reduction from the SAT-problem. Consider a SAT formula Φ, and let
X = {x1, x2, . . . , xn} be the set of variables and C1, C2, . . . , Cm be the set of
clauses. For a variable xj ∈ X , let

(a) T(xj) = {� | xj ∈ C�} be the set of indices of the set of clauses C� that is
satisfied if xj is set to be true; and

(b) F(xj) = {� | xj ∈ C�} be the set of indices of the set of clauses C� that is
satisfied if xj is set to be false.

The Complexity of Coverage 97

Without loss of generality, we assume that T(xj) and F(xj) are non-empty for all
1 ≤ j ≤ n (this is because, for example, if F(xj) = ∅, then we can set xj to
be true and reduce the problem where the variable xj is not present). For a finite
set F ⊆ N of natural numbers, let max(F) and min(F) denote the maximum
and minimum number of F , respectively. For an element f ∈ F that is not the
maximum element let next(f, F) denote the next highest element to f that belongs
to F ; i.e., (a) next(f, F) ∈ F ; (b) f < next(f, F); and (c) if j ∈ F and f < j, then
next(f, F) ≤ j. We construct a labeled graph GΦ as follows. We first present an
intuitive description: there are vertices named x1, x2, . . . , xn, xn+1, and all of them
are labeled by a single proposition. The vertex xn+1 is an absorbing vertex (vertex
with a self-loop only), and all other xi vertex has two successors. The starting vertex
is x1. In every vertex xi given the right choice we visit in a line a set of vertices
that are labeled by clauses that are true if xi is true; and given the left choice we
visit in a line a set of vertices that are labeled by clauses that are true if xi is false;
and then we move to vertex xi+1. We now formally describe every component of
the labeled graph GΦ = ((V Φ, EΦ), vΦ

in , APΦ, LΦ).

(a) The set of vertices is

V Φ = {xi | 1 ≤ i ≤ n + 1}
∪ {xj,i | 1 ≤ j ≤ n, i ∈ T(xj)} ∪ {xj,i | 1 ≤ j ≤ n, i ∈ F(xj)}.

There is a vertex for every variable, and a vertex xn+1. There is a vertex xj,i

iff Ci ∈ T(xj), and there is a vertex xj,i iff Ci ∈ F(xj),
(b) The set of edges is

EΦ = {(xn+1, xn+1)}
∪ {(xj,max(T(xj)), xj+1), (xj,max(F(xj)), xj+1) | 1 ≤ j ≤ n}
∪ {(xj , xj,min(T(xj))), (xj , xj,min(F(xj))) | 1 ≤ j ≤ n}
∪ {(xj,i, xj,next(i,T(xj)) | 1 ≤ j ≤ n, i < max(T(xj))}
∪ {(xj,i, xj,next(i,F(xj)) | 1 ≤ j ≤ n, i < max(F(xj))}.

We now explain the role if each set of edges. The first edge is the self-loop at
xn+1. The second set of edges specifies that from xj,max(T(xj)) the next vertex
is xj+1 and similarly, from xj,max(F(xj)) the next vertex is again xj+1. The
third set of edges specifies that from xj there are two successors that are xj,i

and xj,i′ , where i = min(T(xj)) and i′ = min(F(xj)). The final sets of edges
specifies (a) to move in a line from xj,min(T(xj)) to visit the clauses that are
satisfied by setting xj as true, and (b) to move in a line from xj,min(F(xj)) to
visit the clauses that are satisfied by setting xj as false. Fig 1 gives a pictorial
view of the reduction.

(c) The initial vertex is vΦ
in = x1.

(d) APΦ = {C1, C2, . . . , Cm, X}, i.e., there is a proposition Ci for each clause Ci

and there is a proposition X for all variables;
(e) LΦ(xj) = X ; i.e., every variable vertex is labeled by the proposition X ; and

we have LΦ(xj,i) = Ci and LΦ(xj,i) = Ci, i.e., each vertex xj,i and xj,i is
labeled by the corresponding clause that is indexed.

98 K. Chatterjee, L. de Alfaro, and R. Majumdar

xj,next(i,F(xj))

x1

xj

xj+1

xn+1

xj,i

xj,min(F(xj))

xj,max(F(xj))

xj,min(T(xj))

xj,i

xj,next(i,T(xj))

xj,max(T(xj))

Fig. 1. The NP-hardness reduction in picture

The number of vertices in GΦ is O(n · m), and the reduction is polynomial in Φ.
In this graph the maximal number of propositions visited is exactly equal to the
maximal number of satisfiable clauses plus 1 (since along with the propositions
for clauses, the proposition X for all variables is always visited). The proof of the
above claim is as follows. Given a path ω in GΦ we construct an assignment A for
the variables as follows: if the choice at a vertex xj is xj,min(T(xj)), then we set xj

as true in A, else we set xj as false. Hence if a path in GΦ visits a set P ⊆ APΦ of
r propositions, then the assignment A satisfies r − 1 clauses (namely, P \ {X}).
Conversely, given an assignment A of the variables, we construct a path ωA in GΦ

as follows: if xj is true in the assignment A, then the path ωA chooses xj,min(T(xj))
at xj , otherwise, it chooses xj,min(F(xj)) at xj . If A satisfies a set Q of r−1 clauses,
then ωA visits r +1 propositions (namely, the set Q∪{X} of propositions). Hence

The Complexity of Coverage 99

Φ is satisfiable iff the answer to the maximal coverage problem with input GΦ and
m + 1 is true.

The desired result follows.

We note that from the proof of Theorem 1 it follows that the MAX-SAT problem (i.e.,
computing the maximal number of clauses satisfiable for a SAT formula) can be reduced
to the problem of computing the exact number for the maximal coverage problem. From
hardness of approximation of the MAX-SAT problem [4], it follows that the maximal
coverage problem for labeled graphs is hard to approximate.

Theorem 2. The maximal coverage problem for labeled graphs that are controllably
recurrent can be decided in PTIME.

Proof. To solve the maximal coverage problem for labeled graphs that are control-
lably recurrent, we compute the maximal strongly connected component C that vin
belongs to. Since the graph is controllably recurrent, all vertices that are reachable
from vin belong to C. Hence the answer to the maximal coverage problem is “Yes”
iff |

⋃
v∈C L(v)| ≥ m. The result follows.

3.2 Game Graphs

Theorem 3. The maximal coverage problem for labeled game graphs is PSPACE-
complete.

Proof. The proof consists of two parts.

1. In PSPACE. We argue that the maximal coverage problem for labeled game graphs
can be reduced to the coverage in bounded time problem. The reason is as follows:
in a labeled game graph with n vertices, if player 1 can visit m propositions, then
player 1 can visit m propositions within at most m · n steps; because player 1 can
always play a strategy from the current position that visits a new proposition that
is not visited and never needs to go through a cycle without visiting a new propo-
sition unless the maximal coverage is achieved. Hence it follows that the maximal
coverage problem for games reduces to the coverage in bounded time problem. The
PSPACE inclusion will follow from the result of Theorem 7 where we show that
the coverage in bounded time problem is in PSPACE.

2. PSPACE-hardness. The maximal coverage problem for game graphs is PSPACE-
complete, even if the underlying graph is strongly connected. The proof is a reduc-
tion from QBF (truth of quantified boolean formulas) that is known to be PSPACE-
complete [12], and it is a modification of the reduction of Theorem 1. Consider a
QBF formula

Φ = ∃x1.∀x2.∃x3 . . . ∃xn.C1 ∧ C2 ∧ . . . Cm;

defined on the set X = {x1, x2, . . . , xn} of variables, and C1, C2, . . . , Cm are the
clauses of the formula. We apply the reduction of Theorem 1 with the following
modification to obtain the labeled game graph GΦ: the partition (V Φ

1 , V Φ
2) of V Φ is

100 K. Chatterjee, L. de Alfaro, and R. Majumdar

as follows. For a variable xj if the quantifier before xj is existential, then xj ∈ V Φ
1

(i.e., for existentially quantified variable, player 1 chooses the out-going edges de-
noting whether to set the variable true or false); and for a variable xj if the quantifier
before xj is universal, then xj ∈ V Φ

2 (i.e., for universally quantified variable, the
opposing player 2 chooses the out-going edges denoting whether to set the variable
true or false). The vertex xn+1 is a player 2 vertex, and all other vertex has an single
out-going edges and can be player 1 vertex. Given this game graph we have Φ is true
iff player 1 can ensure that all the propositions can be visited in GΦ. Formally, let
ΠΦ

1 and ΠΦ
2 denote the set of all strategies for player 1 and player 2, respectively,

in GΦ. Then Φ is true iff maxπ1∈ΠΦ
1

minπ2∈ΠΦ
2

|LΦ(ω(x1, π1, π2))| ≥ m + 1. Ob-
serve that since xn+1 is a player 2 vertex if we add an edge from xn+1 to x1,
player 2 will never choose the edge xn+1 to x1 (since the objective for player 2 is
to minimize the coverage). However, adding the edge from xn+1 to x1 makes the
underlying graph strongly connected (i.e., the underlying graph of the game graph
becomes controllably recurrent; but player 1 does not have a strategy to ensure that
x1 is reached, so the game is not controllably recurrent).

The desired result follows.

Complexity of maximal coverage in controllably recurrent games. We will now
consider maximal coverage in controllably recurrent games. Our analysis will use fix-
ing memoryless randomized strategy for player 1, and fixing a memoryless random-
ized strategy in labeled game graph we get a labeled Markov decision process (MDP).
A labeled MDP consists of the same components as a labeled game graph, and for
vertices in V1 (which are randomized vertices in the MDP) the successors are cho-
sen uniformly at random (i.e., player 1 does not have a proper choice of the suc-
cessor but chooses all of them uniformly at random). Given a labeled game graph
G = ((V, E), (V1, V2), vin , AP, L) we denote by Unif(G) the MDP interpretation of G
where player 1 vertices chooses all successors uniformly at random. An end-component
in Unif(G) is a set U of vertices such that (i) U is strongly connected and (ii) U is
player 1 closed, i.e., for all u ∈ U ∩V1, for all u′ such that (u, u′) ∈ E we have u′ ∈ U
(in other words, for all player 1 vertices, all the out-going edges are contained in U).

Lemma 1. Let G be a labeled game graph that is controllably recurrent and let Unif(G)
be the MDP interpretation of G. Then the following assertions hold.

1. Let U be an end-component in Unif(G) with vin ∈ U . Then
maxπ1∈Π1 minπ2∈Π2 |L(ω(vin , π1, π2))| ≤ |

⋃
u∈U L(u)|.

2. There exists an end-component U ∈ Unif(G) with vin ∈ U such that
|
⋃

u∈U L(u)| ≤ maxπ1∈Π1 minπ2∈Π2 |L(ω(vin , π1, π2))|.

Proof. We prove both the claims below.

1. If U is an end-component in Unif(G), then consider a memoryless strategy π∗
2 for

player 2, that for all vertices u ∈ U ∩ V2, chooses a successor u′ ∈ U (such a
successor exists since U is strongly connected). Since U is player 1 closed (i.e., for
all player 1 out-going edges from U , the end-point is in U), it follows that for all
strategies of player 1, given the strategy π∗

2 for player 2, the vertices visited in a
play is contained in U . The desired result follows.

The Complexity of Coverage 101

2. An optimal strategy π∗
1 for player 1 in G is as follows:

(a) Let Z0 = {v ∈ V | L(v) = L(vin)} and i = 0;
(b) At iteration i, let Zi represent the vertices corresponding to the set of proposi-

tions already visited. At iteration i, player 1 plays a strategy to reach a vertex
in V \ Zi (if such a strategy exists), and then reaches back vin (a strategy to
reach back vin always exists since the game is controllably recurrent).

(c) If a new proposition pi is visited at iteration i, then let Zi+1 = Zi ∪ {v ∈ V |
L(v) = pi}. Goto step (b) for i + 1 iteration with Zi+1. If no vertex in V \ Zi

can be reached, then stop.
The strategy π∗

1 is optimal, and let the above iteration stop with Zi = Z∗. Let
X = V \ Z∗, and let X∗ be the set of vertices such that player 1 can reach X . Let
U∗ = V \X∗. Then vin ∈ U∗ and player 2 can ensure that from vin the game can be
confined to U∗. Hence the following conditions must hold: (a) for all u ∈ U∗ ∩ V2,
there exists u′ ∈ U∗ such that (u, u′) ∈ E; and (b) for all u ∈ U∗ ∩ V1, for all
u′ ∈ V such that (u, u′) ∈ E we have u′ ∈ U∗. Consider the sub-graph G′ where
player 2 restricts itself to edges only in U∗. A bottom maximal strongly connected
component U ⊆ U∗ in the sub-graph is an end-component in Unif(G), and we have

|
⋃

u∈U

L(u)| ≤ |
⋃

u∈U∗

L(u)| ≤ |
⋃

u∈Z∗

L(u)|.

It follows that U is a witness end-component to prove the result.

The desired result follows.

Theorem 4. The maximal coverage problem for labeled game graphs that are control-
lably recurrent is coNP-complete.

Proof. We prove the following two claims to establish the result.

1. In coNP. The fact that the problem is in coNP can be proved using Lemma 1.
Given a labeled game graph G, if the answer to the maximal coverage problem (i.e.,
whether maxπ1∈Π1 minπ2∈Π2 |L(ω(vin , π1, π2))| ≥ m) is NO, then by Lemma 1,
there exists an end-component U in Unif(G) such that |

⋃
u∈U L(u)| < m. The wit-

ness end-component U is a polynomial witness and it can be guessed and verified
in polynomial time. The verification that U is the correct witness is as follows: we
check (a) U is strongly connected; (b) for all u ∈ U ∩ V1 and for all u′ ∈ V such
that (u, u′) ∈ E we have u′ ∈ U ; (c) vin ∈ U ; and (d) |

⋃
u∈U L(u)| < m. Hence

the result follows.
2. coNP hardness. We prove hardness using a reduction from the complement of the

Vertex Cover problem. Given a graph G = (V, E), a set U ⊆ V is a vertex cover
if for all edges e = (u1, u2) ∈ E we have either u1 ∈ U or u2 ∈ U . Given a
graph G whether there is a vertex cover U of size at most m (i.e., |U | ≤ m) is NP-
complete [8]. We now present a reduction of the complement of the vertex cover
problem to the maximal coverage problem in controllably recurrent games. Given
a graph G = (V, E) we construct a labeled game graph G as follows. Let the set
E of edges be enumerated as {e1, e2, . . . , e�}, i.e., there are � edges. The labeled
game graph G = ((V , E), (V 1, V 2), vin , AP, L) is as follows.

102 K. Chatterjee, L. de Alfaro, and R. Majumdar

(a) Vertex set and partition. The vertex set V is as follows:

V = {vin} ∪ E ∪ {ej
i | 1 ≤ i ≤ �, 1 ≤ j ≤ 2}.

All vertices in E are player 2 vertices, and the other vertices are player 1 ver-
tices, i.e., V 2 = E, and V 1 = V \ V 2.

(b) Edges. The set E of edges are as follows:

E = {(vin , ej) | 1 ≤ j ≤ �} ∪ {(ei, e
j
i) | 1 ≤ i ≤ �, 1 ≤ j ≤ 2}

∪{(ej
i , vin) | 1 ≤ i ≤ �, 1 ≤ j ≤ 2}.

Intuitively, the edges in the game graph are as follows: from the initial vertex
vin , player 1 can choose any of the edges ei ∈ E. For a vertex ei in V , player 2
can choose between two vertices e1

i and e2
i (which will eventually represent

the two end-points of the edge ei). From vertices of the form e1
i and e2

i , for
1 ≤ i ≤ �, the next vertex is the initial vertex vin . It follows that from all
vertices, the game always comes back to vin and hence we have a controllably
recurrent game.

(c) Propositions and labelling. AP = V ∪ {$ | $ �∈ V }, i.e., there is a proposition
for every vertex in V and a special proposition $. The vertex vin and vertices
in E are labeled by the special proposition $, i.e., L(vin) = $; and for all
ei ∈ E we have L(ei) = $. For a vertex ej

i , let ei = (u1
i , u

2
i), where u1

i , u
2
i

are vertices in V , then L(e1
i) = u1

i and L(e2
i) = u2

i . Note that the above
proposition assignment ensures that at every vertex that represents an edge,
player 2 has the choices of vertices that form the end-points of the edge.

The following case analysis completes the proof.
– Given a vertex cover U , consider a player 2 strategy, that at a vertex ei ∈ V ,

choose a successor ej
i such that L(ej

i) ∈ U . The strategy for player 2 en-
sures that player 1 visits only propositions in U ∪ {$}, i.e., at most |U | + 1
propositions.

– Consider a strategy for player 1 that from vin visits all vertices e1, e2, . . . , e�

in order. Consider any counter-strategy for player 2 and let U ⊆ V be the set
of propositions other than $ visited. Since all the edges are chosen, it follows
that U is a vertex cover. Hence if all vertex cover in G is of size at least m, then
player 1 can visit at least m + 1 propositions.

Hence there is a vertex cover in G of size at most m if and only if the answer to
the maximal coverage problem in G with m + 1 is NO. It follows that the maximal
coverage problem in controllably recurrent games is coNP-hard.

The desired result follows.

Complexity of minimal safety games. As a corollary of the proof of Theorem 4 we
obtain a complexity result about minimal safety games. Given a labeled game graph G
and m, the minimal safety game problem asks, whether there exists a set U such that
a player can confine the game in U and U contains at most m propositions. An easy
consequence of the hardness proof of Theorem 4 is minimal safety games are NP-hard,
and also it is easy to argue that minimal safety games are in NP. Hence we obtain that
the minimal safety game problem is NP-complete.

The Complexity of Coverage 103

4 The Complexity of Coverage in Bounded Time Problem

In this section we study the complexity of the coverage in bounded time problem. In
subsection 4.1 we study the complexity for graphs, and in subsection 4.2 we study the
complexity for game graphs.

4.1 Graphs

Theorem 5. The coverage in bounded time problem for both labeled graphs and con-
trollably recurrent labeled graphs is NP-complete.

Proof. We prove the completeness result in two parts below.

1. In NP. Given a labeled graph with n vertices, if there is a path ω such that |L(ω �
k)| ≥ m, then there is path ω′ such that |L(ω′ � (m · n))| ≥ m. The above claim
follows since any cycle that does not visit any new proposition can be omitted.
Hence a path of length j = min(k, m ·n) can be guessed and it can be then checked
in polynomial time if the path of length j visits at least m propositions.

2. In NP-hard. We reduce the Hamiltonian-path (HAM-PATH) [8] problem to the
coverage in bounded time problem for labeled graphs. Given a directed graph
G = (V, E) and an initial vertex v, we consider the labeled graph G with the
directed graph G, with v as the initial vertex and AP = V and L(u) = u for all
u ∈ V , i.e., each vertex is labeled with a unique proposition. The answer to the
coverage in bounded time with k = n and m = n, for n = |V | is “YES” iff there
is a HAM-PATH in G starting from v.

The desired result follows.

Complexity in size of the graph. We now argue that the maximal coverage and the cov-
erage in bounded time problem on labeled graphs can be solved in non-deterministic
log-space in the size of the graph, and polynomial space in the size of the atomic propo-
sitions. Given a labeled graph G, with n vertices, we argued in Theorem 1 that if m
propositions can be visited, then there is a path of length at most m · n, that visits m
propositions. The path of length m · n, can be visited, storing the current vertex, and
guessing the next vertex, and checking the set of propositions already visited. Hence this
can be achieved in non-deterministic log-space in the size of the graph, and polynomial
space in the size of the proposition set. A similar argument holds for the coverage in
bounded time problem. This gives us the following result.

Theorem 6. Given a labeled graph G = ((V, E), vin , AP, L), the maximal coverage
problem and the coverage in bounded time problem can be decided in NLOGSPACE in
|V | + |E|, and in PSPACE in |AP|.

4.2 Game Graphs

Theorem 7. The coverage in bounded time problem for labeled game graphs is
PSPACE-complete.

Proof. We prove the following two cases to prove the result.

104 K. Chatterjee, L. de Alfaro, and R. Majumdar

1. PSPACE-hardness. It follows from the proof of Theorem 3 that the maximal cov-
erage problem for labeled game graphs reduces to the coverage in bounded time
problem for labeled game graphs. Since the maximal coverage problem for labeled
game graphs is PSPACE-hard (Theorem 3), the result follows.

2. In PSPACE. We say that an exploration game tree for a labeled game graph is a
rooted, labeled tree which represents an unfolding of the graph. Every node α of
the tree is labeled with a pair (v, b), where v is a node of the game graph, and
b ⊆ AP is the set of propositions that have been visited in a branch leading from
the root of the tree to α. The root of the tree is labeled with (vin , L(vin)). A tree
with label (v, b) has one descendant for each u with (v, u) ∈ E; the label of the
descendant is (u, b ∪ L(u)).
In order to check if m different propositions can be visited within k-steps, the
PSPACE algorithm traverses the game tree in depth first order. Each branch is ex-
plored up to one of the two following conditions is met: (i) depth k is reached, or
(ii) a node is reached, which has the same label as an ancestor in the tree. The bot-
tom nodes, where conditions (i) or (ii) are met, are thus the leaves of the tree. In the
course of the traversal, the algorithm computes in bottom-up fashion the value of
the tree nodes. The value of a leaf node labeled (v, b) is |b|. For player-1 nodes, the
value is the maximum of the values of the successors; for player-2 nodes, the value
is the minimum of the value of the successors. Thus, the value of a tree node α rep-
resents the minimum number of propositions that player 1 can ensure are visited,
in the course of a play of the game that has followed a path from the root of the tree
to α, and that can last at most k steps. The algorithm returns Yes if the value at the
root is at least m, and no otherwise.
To obtain the PSPACE bound, notice that if a node with label (v, b) is an ancestor
of a node with label (v′, b′) in the tree, we have b ⊆ b′: thus, along a branch, the
set of propositions appearing in the labels increases monotonically. Between two
increases, there can be at most |G| nodes, due to the termination condition (ii).
Thus, each branch needs to be traversed at most to depth 1 + |G| · (|AP| + 1), and
the process requires only polynomial space.

The result follows.

Theorem 8. The coverage in bounded time problem for labeled game graphs that are
controllably recurrent is both NP-hard and coNP-hard, and can be decided in PSPACE.

Proof. It follows from the (PSPACE-inclusion) argument of Theorem 3 that the max-
imal coverage problem for labeled game graphs that are controllably recurrent can be
reduced to the coverage in bounded time problem for labeled game graphs that are
controllably recurrent. Hence the coNP-hardness follows from Theorem 4, and the NP-
hardness follows from hardness in labeled graphs that are controllably recurrent (The-
orem 5). The PSPACE-inclusion follows from the general case of labeled game graphs
(Theorem 7).

Theorem 8 shows that for controllably recurrent game graphs, the coverage in bounded
time problem is both NP-hard and coNP-hard, and can be decided in PSPACE. A tight
complexity bound remains an open problem.

The Complexity of Coverage 105

Complexity in the size of the game. The maximal coverage problem can alternately
be solved in time linear in the size of the game graph and exponential in the num-
ber of propositions. Given a game graph G = ((V, E), (V1, V2), vin , AP, L), con-
struct the game graph G′ = ((V ′, E′), (V ′

1 , V ′
2), v′in , AP, L′) where V ′ = V × 2AP,

((v, b), (v′, b′)) ∈ E′ iff (v, v′) ∈ E and b′ = b ∪ L(v′), V ′
i = {(v, b) | v ∈ Vi} for

i ∈ {1, 2}, v′in = (vin , L(vin)), and L′(v, b) = L′(v). Clearly, the size of the game
graph G′ is linear in G and exponential in AP. Now consider a reachability game on G′

with the goal {(v, b) | v ∈ V and |b| ≥ m}. Player-1 wins this game iff the maximal
coverage problem is true for G and m propositions. Since a reachability game can be
solved in time linear in the game, the result follows. A similar construction, where we
additionally track the length of the game so far, shows that the maximal coverage prob-
lem with bounded time can be solved in time linear in the size of the game graph and
exponential in the number of propositions.

Theorem 9. Given a labeled game graph G = ((V, E), (V1, V2), vin , AP, L) the max-
imal coverage and the coverage in bounded time problem can be solved in time linear
in O(|V | + |E|) and in time exponential in |AP|.

5 Extensions

The basic setting of this paper on graphs and games can be extended in various direc-
tions, enabling the modeling of other system features. For example, all our results hold
even if every state is labeled with possibly multiple atomic propositions, instead of a
single atomic proposition. We mention two important directions in which our results
can be extended.

Incomplete Information. So far, we have assumed that at each step, the tester has com-
plete information about the state of the system under test. In practice, this may not be
true, and the tester might be able to observe only a part of the state. This leads to graphs
and games of imperfect information [13]. The maximal coverage and the coverage in
bounded time problem for games of imperfect information can be solved in EXPTIME.
The algorithm first constructs a perfect-information game graph by subset construc-
tion [13], and then run the algorithm of Theorem 9, that is linear in the size game
graph and exponential in the number of propositions, on the perfect-information game
graph. Thus, the complexity of this algorithm is EXPTIME. The reachability problem
for imperfect-information games is already EXPTIME-hard [13], hence we obtain an
optimal EXPTIME-complete complexity.

Timed Systems. Second, while we have studied the problem in the discrete, finite-state
setting, similar questions can be studied for timed systems modeled as timed automata
[2] or timed game graphs [11]. Such problems would arise in the testing of real-time
systems. We omit the standard definitions of timed automata and timed games. The
maximal coverage problem for timed automata (respectively, timed games) takes as in-
put a timed automaton T (respectively, a timed game T), with the locations labeled by
a set AP of propositions, and a number m, and asks whether m different propositions
can be visited. An algorithm for the maximal coverage problem for timed automata con-
structs the region graph of the automaton [2] and runs the algorithm of Theorem 6 on the

106 K. Chatterjee, L. de Alfaro, and R. Majumdar

labeled region graph. This gives us a PSPACE algorithm. Since the reachability prob-
lem for timed automata is PSPACE-hard, we obtain a PSPACE-complete complexity.
Similar result holds for the coverage in bounded time problem for timed automata. Sim-
ilarly, the maximal coverage and coverage in bounded time problem for timed games
can be solved in exponential time by running the algorithm of Theorem 9 on the region
game graph. This gives an exponential time algorithm. Again, since game reachability
on timed games is EXPTIME-hard [9], we obtain that maximal coverage and coverage
in bounded time in timed games is EXPTIME-complete.

References

1. Alur, R., Courcoubetis, C., Yannakakis, M.: Distinguishing tests for nondeterministic and
probabilistic machines. In: Proc. 27th ACM Symp. Theory of Comp. (1995)

2. Alur, R., Dill, D.: The theory of timed automata. In: Huizing, C., de Bakker, J.W., Rozenberg,
G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 45–73. Springer, Heidelberg
(1992)

3. Ammann, P., Offutt, J.: Introduction to software testing. Cambridge University Press, Cam-
bridge (2008)

4. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hard-
ness of approximation problems. J. ACM 45(3), 501–555 (1998)

5. Ball, T.: A theory of predicate-complete test coverage and generation. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2004. LNCS, vol. 3657, pp. 1–
22. Springer, Heidelberg (2005)

6. Blass, A., Gurevich, Y., Nachmanson, L., Veanes, M.: Play to test. In: Grieskamp, W., Weise,
C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 32–46. Springer, Heidelberg (2006)

7. Brinksma, E., Tretmans, J.: Testing transition systems: An annotated bibliography. In:
Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp.
187–195. Springer, Heidelberg (2001)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman and Co., New York (1979)

9. Henzinger, T., Kopke, P.: Discrete-time control for rectangular hybrid automata. Theoretical
Computer Science 221, 369–392 (1999)

10. Lee, D., Yannakakis, M.: Optimization problems from feature testing of communication pro-
tocols. In: ICNP: International Conference on Network Protocols, pp. 66–75. IEEE Computer
Society, Los Alamitos (1996)

11. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems.
In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, Springer, Heidelberg (1995)

12. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1993)
13. Reif, J.H.: The complexity of two-player games of incomplete information. Journal of Com-

puter and System Sciences 29, 274–301 (1984)
14. Yannakakis, M.: Testing, optimization, and games. In: LICS, pp. 78–88. IEEE Computer

Society, Los Alamitos (2004)
15. Yannakakis, M., Lee, D.: Testing for finite state systems. In: Gottlob, G., Grandjean, E., Seyr,

K. (eds.) CSL 1998. LNCS, vol. 1584, pp. 29–44. Springer, Heidelberg (1999)

Game Characterizations of Process Equivalences

Xin Chen� and Yuxin Deng��

Department of Computer Science and Engineering,
Shanghai Jiao Tong University, China

Abstract. In this paper we propose a hierarchy of games that allows us
to make a systematic comparison of process equivalences by characteriz-
ing process equivalences as games. The well-known linear/branching time
hierarchy of process equivalences can be embedded into the game hierar-
chy, which not only provides us with a refined analysis of process equiv-
alences, but also offers a guidance to defining interesting new process
equivalences.

1 Introduction

A great amount of work in process algebra has centered around process equiva-
lences as a basis for establishing system correctness. Usually both specifications
and implementations are written as process terms in the same algebra, where
a specification describes the expected high-level behaviour of the system under
consideration and an implementation gives the detailed procedure of achieving
the behaviour. An appropriate equivalence is then chosen to verify that the im-
plementation conforms to the specification. In the last three decades, a lot of
process equivalences have been developed to capture various aspects of system
behaviour. They usually fit in the linear/branching time hierarchy [10]; see Fig-
ure 1 for some typical process equivalences.

Process equivalences can often be understood from different perspectives such
as logics and games. For example, bisimulation equivalence can be characterized
by Hennessy-Milner logic [1] and the modal mu-calculus [2]. Equivalences which
are weaker than bisimulation equivalence in the linear/branching time hierarchy
can be characterized by some sub-logics of Hennessy-Milner logic [3]. It is also
well-known that bisimulation equivalence can be characterized by bisimulation
games [6] between an attacker and a defender in an elegant way; two processes
are bisimilar if and only if the defender of a bisimulation game played on the
processes has a history free winning strategy. Bisimulation games came from
Ehrenfeucht-Fräıssé games that were originally introduced to determine expres-
sive power of logics [9]. To some extent games can be considered as descriptive
languages like logics. In many cases we can design a game directly from the
semantics of a particular logic such that the game captures the logic. For exam-
ple, the bisimulation game with infinite duration is an Ehrenfeucht-Fräıssé game
� Supported by the National 973 Project (2003CB317005) and the National Natural

Science Foundation of China (60573002).
�� Supported by the National Natural Science Foundation of China (60703033).

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 107–121, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

108 X. Chen and Y. Deng

trace equivalence

completed trace equivalence

failure equivalence

failure trace equivalence readiness equivalence

ready trace equivalence

ready simulation equivalence

2-nested simulation equivalence

bisimulation equivalence

possible-futures equivalence

simulation equivalence

Fig. 1. The linear/branching time hierarchy [10]

that captures Hennessy-Milner logic [6], and the fixed point game that allows
infinite fixed point and modal moves captures the modal mu-calculus [8]. Games
indeed offer new sights into old problems, and sometimes let us understand these
problems easier than before.

In this paper we provide a systematic comparison of different process equiv-
alences from a game-theoretic point of view. More precisely, we present a game
hierarchy (cf. Figure 4) which has a more refined structure than the process
equivalence hierarchy in Figure 1. Viewing the hierarchies as partial orders, we
can embed the process equivalence hierarchy into the game hierarchy because
each process equivalence can be characterized by a corresponding class of games.
Moreover, there are games that do not correspond to any existing process equiv-
alences. This kind of games would be useful for guiding us to define interesting
new process equivalences.

To define games, we make use of a game template that is basically an abstract
two-player game leaving concrete moves unspecified. Then we define a few types
of moves. Instantiating the game template by different combinations of moves
generates different games. We compare the games using a preorder which says
that G1 � G2 if player II has a winning strategy in G1 implies she has a winning
strategy in G2. The preorder provides us with a neat means to compare process

Game Characterizations of Process Equivalences 109

equivalences. Suppose G1 and G2 characterize process equivalences ∼1 and ∼2,
respectively. Then we have that G1 � G2 if and only if ∼1 ⊆ ∼2, i.e. ∼2 is a
coarser relation than ∼1.

The rest of the paper is organized as follows. Section 2 briefly recalls the def-
initions of labelled transition systems and bisimulations. In Section 3, we design
several kinds of moves and a game template in order to define games. In Section
4, we present two game hierarchies, with or without considering alternations of
moves, and we combine them into a final hierarchy. In Section 5, we show that
the linear/branching time hierarchy can be embedded into our game hierarchy.
Section 6 concludes and discusses some future work.

2 Preliminaries

We presuppose a countable set of actions Act = {a, b, . . .}.

Definition 1. A labelled transition systems (LTS) is a triple (P , A, →), where

– P is a set of states,
– A ⊆ Act is a set of actions,
– →⊆ P × A × P is a transition relation.

As usual, we write P
a−→ Q for (P, a, Q) ∈→ and we extend the transition relation

to traces in the standard way, e.g. P0
t−→ Pn if P0

a1−→ P1
a2−→ P2 . . . Pn−1

an−−→ Pn,
where t = a1a2 . . . an. An LTS (P , A, →) is finitely branching if for all P ∈ P
and a ∈ A the set {P ′ | s

a−→ P ′} is finite. In this paper we only consider finitely
branching LTSs. Instead of drawing LTSs as graphs, we use CCS processes to
represent the LTSs generated by their operational semantics [4]. We say two
processes are isomorphic if their LTSs are isomorphic.

Definition 2. A binary relation R is a bisimulation if for all (P, Q) ∈ R and
a ∈ Act,

(1) whenever P
a−→ P ′, there exists Q

a−→ Q′ such that (P ′, Q′) ∈ R, and
(2) whenever Q

a−→ Q′, there exists P
a−→ P ′ such that (P ′, Q′) ∈ R.

We define the union of all bisimulations as bisimilarity, written ∼.

Bisimilarity can be approximated by a sequence of inductively defined relations.
The following definition is taken from [4], except that ∼k is replaced by ∼r

k. The
meaning of the superscript r will be clear in Section 5.

Definition 3. Let P be the set of all processes, we define

– ∼r
0= P × P,

– P ∼r
n+1 Q, for n ≥ 0, if for all t ∈ Act∗,

(1) whenever P
t−→ P ′, there exists Q

t−→ Q′ such that P ′ ∼r
n Q′,

(2) whenever Q
t−→ Q′, there exists P

t−→ P ′ such that P ′ ∼r
n Q′.

The definition of ∼a
k for k ≥ 0 is similar to the previous one, except that we

replace t−→ with a−→ where a ∈ Act. For finitely branching LTSs, it holds that
∼ =

⋂
n≥0 ∼r

n =
⋂

n≥0 ∼a
n.

110 X. Chen and Y. Deng

3 Game Template

We briefly review the bisimulation games [8]. A bisimulation game Gk(P, Q)
starting from the pair of processes (P, Q) is a round-based game with two players.
Player I, viewed as an attacker, attempts to show that the initial states are
different whereas player II, viewed as a defender, wishes to establish that they are
equivalent. A configuration is a pair of processes of the form (Pi, Qi) examined
in the i-th round, and (P, Q) is the configuration for the first round. Suppose we
are in the i-th round. The next configuration (Pi+1, Qi+1) is determined by one
of the following two moves:

〈a〉: Player I chooses a transition Pi
a−→ Pi+1 and then player II chooses a

transition with the same label Qi
a−→ Qi+1.

[a]: Player I chooses a transition Qi
a−→ Qi+1 and then player II chooses a

transition with the same label Pi
a−→ Pi+1.

Player I wins if she can choose a transition and player II is unable to match it
within k rounds. Otherwise, Player II wins. If k = ∞ then there is no limitation
on the number of rounds.

Below we define four other moves that will give rise to various games later on.

Definition 4 (Moves). Suppose the current configuration is (P, Q), we define
the following kinds (or sets, more precisely) of moves.

〈t〉: Player I performs a nonempty action sequence t = a1 · · ·al ∈ Act∗ from
P , P

a1−→ P1
a2−→ · · · al−→ Pl and then player II performs the same action

sequence from Q, Q
a1−→ Q1

a2−→ · · · al−→ Ql. Player I selects some 1 ≤ j ≤ l
and sets the configuration for the next round to be (Pj , Qj).

[t]: Player I performs a nonempty action sequence t = a1 · · · al ∈ Act∗ from
Q, Q

a1−→ Q1
a2−→ · · · al−→ Ql and then player II performs the same action

sequence from P , P
a1−→ P1

a2−→ · · · al−→ Pl. Player I selects some 1 ≤ j ≤ l
and sets the configuration for the next round to be (Pj , Qj).

r-〈t〉: Player I performs a nonempty action sequence t = a1 · · · al ∈ Act∗ from
P , P

a1−→ P1
a2−→ · · · al−→ Pl and then player II performs the same action

sequence from Q, Q
a1−→ Q1

a2−→ · · · al−→ Ql. The configuration for the next
round is (Pl, Ql).

r-[t]: Player I performs a nonempty action sequence t = a1 · · · al ∈ Act∗ from
Q, Q

a1−→ Q1
a2−→ · · · al−→ Ql and then player II performs the same action

sequence from P , P
a1−→ P1

a2−→ · · · al−→ Pl. The configuration for the next
round is (Pl, Ql).

For the sake of convenience, we define some unions of the moves above:

– t := 〈t〉 ∪ [t].
– r := r-〈t〉 ∪ r-[t].
– a := 〈a〉 ∪ [a].
– M is the set of all moves.

Game Characterizations of Process Equivalences 111

Clearly, 〈a〉 moves are special r-〈t〉 moves and r-〈t〉 moves are special 〈t〉 moves.
We have similar observation for box modalities.

– 〈a〉 � r-〈t〉 � 〈t〉.
– [a] � r-[t] � [t].

We now introduce the concept of alternation for games; it has an intimate
relation with quantifier alternation in logics.

Definition 5 (Alternation). An alternation consists of two successive moves
such that one of them is in 〈t〉 and the other is in [t]. The number of alternations
in a game is the number of occurrences of such successive moves in the game.

Note that bisimulation games have no restriction on their alternation numbers.

Definition 6 (Extra conditions). Given a round-based game and a set α
which is the set of moves player I can make in the game, an extra condition
can be one of the following, for some m ⊆ M,

m: The game is extended with one more round, where player I can only make a
move in m. Moreover, player I can make a move in m − α in each round,
but the game has to be finished regardless of the remaining rounds, which
implies that if player I fails to make player II stuck by this move, she loses.

−m: Similar to the case for m, except that if player I makes a move in m − α
to end the game, the last two moves must be an alternation. Therefore, this
condition could not be applied to a 0-round game.

c0: In the beginning of the game, all deadlock processes reachable from P0 and Q0
are colored C0. In each round, the two processes in the related configuration
should be in the same color (or neither of them is colored), otherwise player
II loses.

We now define a game template which is intuitively an abstract game in the
sense that concrete games can be obtained from it by instantiating its moves.

Definition 7 (Game template). The game template n-Γ α,β
k (P, Q) with n ≥ 0

denotes a k-round game between player I and player II with the starting config-
uration (P, Q) such that the following conditions are satisfied.

1. The number of alternations in the game is at most n; it is omitted when
there is no restriction on the number of alternations.

2. β is an extra condition; it is omitted when there is no extra condition.
3. Player I can only make a move in α ⊆ M in each round if β is neither m

nor −m. Otherwise, player I can also make a move in m − α in each round,
but if she cannot make player II stuck by this move, she loses.

4. The players’ winning conditions are similar to those in bisimulation games.

Notice that k-round bisimulation games can be defined by Γ a
k . Although a lot of

games can be defined by various combinations of n, α and β; this paper mainly
focuses on some typical ones. Given a game Γ α,β

k (P, Q), we say player I (resp.
player II) wins Γ α,β

k (P, Q) if player I (resp. player II) has a winning strategy in it,
and we abbreviate the game to Γ α,β

k if the starting configuration is insignificant.

112 X. Chen and Y. Deng

4 Game Hierarchy

To facilitate the presentation, we classify our games into two hierarchies with
respect to a preorder relation between games; one hierarchy counts alternations
of moves and the other does not count. We show that all the relations in the
hierarchies are correct. Then we combine the two hierarchies into one, by intro-
ducing some new relations. At last, we prove that no more non-trivial relations
can be added into the final hierarchy. We shall see in Section 5 that the hierar-
chy of process equivalences in Figure 1 can be embedded into this hierarchy of
games.

The preorder relation between games is defined as follows.

Definition 8. Given two games G1 and G2, we write G1 � G2, if for any processes
P and Q,

player II wins G1(P, Q) =⇒ player II wins G2(P, Q).

Here � is indeed a preorder as this is inherited from logical implication. We
write G1 � G2 if G1 � G2 and G2 � G1.

4.1 Game Hierarchy I

We propose the game hierarchy I in Figure 2. Its correctness is stated by the
next theorem.

Theorem 1. In Figure 1, if G1 → G2 then G1 � G2.

The rest of this section is devoted to proving Theorem 1.
Let α, α′ ⊆ M and β be an extra condition. The following statements can be

derived from Definition 7 immediately:

(1) Γ α
0 = Γ α′

0 .
(2) Γ α,β

0 = Γ α′,β
0 .

(3) For k ≥ 0, Γ α,α
k = Γ α

k+1.
(4) For k ≥ 0, Γ α,t

k = Γ α,r
k .

Since t contains r, r contains a, and if two processes P , Q do not have the
same color, they can be distinguished in a round by a move in a, we get the
following statement:

Γ α
∞ = Γ α,c0∞ = Γ α,−a

∞ = Γ α,a
∞ , for α ∈ {a, r, t}.

Lemma 1. For any processes P and Q, the following statements are equivalent:

(1) P ∼ Q.
(2) player II wins Γ a

∞(P, Q).
(3) player II wins Γ r

∞(P, Q).
(4) player II wins Γ t∞(P, Q).

Game Characterizations of Process Equivalences 113

Γ a
0

Γ a,c0
0

Γ a
1 Γ r

1

Γ a,c0
1 Γ r,c0

1

Γ a,−a
1 Γ r,−a

1 Γ t,−a
1

Γ a
2 Γ r,a

1 Γ t,a
1

Γ r
2 Γ t

2

Γ a,c0
2 Γ r,c0

2 Γ t,c0
2

Γ a,−a
2 Γ r,−a

2 Γ t,−a
2

Γ a
3 Γ r,a

2 Γ t,a
2

Γ r
3 Γ t

3

...
...

...

Γ a
k−1 Γ r,a

k−2 Γ t,a

k−2

Γ r
k−1 Γ t

k−1

Γ a,c0
k−1 Γ r,c0

k−1 Γ t,c0
k−1

Γ a,−a

k−1 Γ r,−a

k−1 Γ t,−a

k−1

Γ a
k Γ r,a

k−1 Γ t,a

k−1

Γ r
k Γ t

k

...
...

...

Γ a
∞

g

Fig. 2. Game hierarchy I

114 X. Chen and Y. Deng

Proof. It is trivial that Γ a
∞ � Γ r

∞ � Γ t
∞, so we have (4)⇒(3)⇒(2). Observe that

Γ a
k is exactly the k-round bisimulation game, which means (1)⇔(2) (cf. [6]). We

now show (1)⇒(4). Assume P ∼ Q, we construct a winning strategy for player
II for the game Γ t

∞(P, Q): in any round, suppose the configuration is (Pi, Qi).
If player I performs Pi

a1−→ Pi1
a2−→ · · · al−→ Pil, then player II can respond with

Qi
a1−→ Qi1

a2−→ · · · al−→ Qil, such that Pij ∼ Qij for all 1 ≤ j ≤ l. Clearly,
whatever configuration for the next round player I selects, she cannot win the
game.

Lemma 1 yields the immediate corollary that Γ a
∞ = Γ r

∞ = Γ t
∞.

Lemma 2. (1) Γ a
k+1 � Γ r,a

k � Γ t,a
k for all k ≥ 1.

(2) Γ r
k � Γ t

k for all k ≥ 1.

Proof. Since a � r � t, both (1) and (2) can be easily derived. ��
Lemma 3. Γ r

k � Γ r,c0
k � Γ r,−a

k � Γ r,a
k � Γ r

k+1 for all k ≥ 1.

Proof. It is easy to see that Γ r
k � Γ r,c0

k � Γ r,a
k � Γ r

k+1 and Γ r
k � Γ r,−a

k � Γ r,a
k �

Γ r
k+1. We now prove Γ r,c0

k � Γ r,−a
k by induction on k. Given two processes P, Q,

suppose player II wins Γ r,−a
k (P, Q). We show that player II wins Γ r,c0

k (P, Q) as
well.

– k = 1. From the assumption, player II wins Γ r,−a
1 (P, Q). The game Γ r,c0

1 (P, Q)
has just one round and all deadlock processes reachable from P and Q are
colored C0, and the other processes are uncolored. (Clearly both P and Q are
colored C0 or neither of them is colored.) We distinguish four cases.

Case 1: Player I performs P
t−→ P ′, where t ∈ Act∗ is a nonempty action

sequence and P ′ is colored. Player II can perform Q
t−→ Q′ such that

Q′ is colored. Otherwise there is some a ∈ Act and player I can make
player II stuck by performing P

ta−→ P ′′ for some P ′′ in the first round
of Γ r,−a

1 (P, Q), which contradicts the assumption.
Case 2: Player I performs P

t−→ P ′, where t ∈ Act∗ is a nonempty action
sequence and P ′ is uncolored C0. Player II can perform Q

t−→ Q′ such
that Q′ is uncolored C0. Otherwise, in Γ r,−a

1 (P, Q), player I can make
player II stuck by making a move in [a] in the second round, contradicting
the assumption.

Case 3: Player I performs Q
t−→ Q′, where t ∈ Act∗ is a nonempty action

sequence and Q′ is colored. This case is similar to Case 1.
Case 4: player I performs Q

t−→ Q′, where t ∈ Act∗ is a nonempty action
sequence and Q′ is uncolored C0. This case is similar to Case 2.

– k > 1. We know player II wins Γ r,−a
k (P, Q). In the first round of Γ r,c0

k (P, Q),
whenever player I performs some action sequence from P (resp. Q) to P ′

(resp. Q′), player II can always perform the same action sequence from Q
(resp. P) to Q′ (resp. P ′) such that both P ′ and Q′ are colored C0, or neither
of them is colored. Otherwise, in Γ r,−a

k (P, Q), player I can make player II
stuck in the second round. In the second round of Γ r,c0

k (P, Q), the game
becomes Γ r,c0

k−1(P
′, Q′) and by induction player II wins the Γ r,c0

k−1(P
′, Q′). ��

Game Characterizations of Process Equivalences 115

Similar to Lemmas 2 and 3, all the other relations illustrated in Figure 2 can be
proven, thus Theorem 1 is established.

4.2 Game Hierarchy II

The games in Section 4.1 do not count alternations of moves, which are taken
into account in this section. For simplicity, we are not going to discuss all the
games defined from those in Figure 2 by restricting the number of alternations.
Instead, we focus on the games in which the players can only make moves in
a. To further simplify the exposition, Figure 3 only illustrates a game hierarchy
where the number of alternations n is restricted to 0 and 1. However, in the rest
of the paper the lemmas cover all n ≥ 0. From Definitions 6 and 7, the relations
illustrated in Figure 3 are apparent, so we omit the proof of the theorem below.

Theorem 2. In Figure 2, if G1 → G2 then G1 � G2. ��

4.3 The Whole Game Hierarchy

We now combine game hierarchies I and II into a single hierarchy, as described
in Figure 4. Similar to Figure 3, we have not drawn the games with alternations
exceeding 1, but our lemmas below cover them.

In the combined game hierarchy, we have the new relations, Γ t
n+1 � n-Γ a

∞,
Γ t,c0

n+1 � n-Γ a,c0∞ , Γ t,a
n+1 � n-Γ a,a∞ for n ≥ 0. We give a proof of Γ t

n+1 � n-Γ a∞ in
the lemma below; the others can be proven analogously.

Lemma 4. Γ t
n+1 � n-Γ a

∞ for all n ≥ 0.

Proof. We prove the statement by induction on n. Assume player II wins n-
Γ a
∞(P0, Q0) for some processes P0 and Q0.

– n = 0. Suppose player I performs P0
a1−→ P1

a2−→ . . .
al−→ Pl (resp. Q0

a1−→
Q1

a2−→ · · · al−→ Ql). Since player II wins 0-Γ a
∞(P0, Q0), she can respond with

Q0
a1−→ Q1

a2−→ . . .
al−→ Ql (resp. P0

a1−→ P1
a2−→ · · · al−→ Pl). Hence, player II

wins Γ t
1(P0, Q0).

– n > 0. From the assumption, player II wins n-Γ a
∞(P0, Q0). In the first round

of Γ t
n+1(P0, Q0), if player I performs P0

a1−→ P1
a2−→ . . .

al−→ Pl (resp. Q0
a1−→

Q1
a2−→ · · · al−→ Ql), player II can respond with Q0

a1−→ Q1
a2−→ . . .

al−→ Ql

(resp. P0
a1−→ P1

a2−→ · · · al−→ Pl), such that for each Pi and Qi, where 1 ≤ i ≤
l, player II wins (n − 1)-Γ a

∞(Pi, Qi). By induction, Γ t
n � (n − 1)-Γ a

∞, player
II wins Γ t

n(Pi, Qi) for any 1 ≤ i ≤ l. Hence, player II wins Γ t
n+1(P0, Q0). ��

We are in a position to state the main result of the paper.

Theorem 3. (1) In Figure 4, if G1 → G2 then G1 � G2.
(2) No more relations can be added to the game hierarchy in Figure 4, except for

those derived from the transitivity of �. ��

116 X. Chen and Y. Deng

Γ a
0

Γ a,c0
0

Γ a
1

Γ a,c0
1

Γ a,−a
1

Γ a
2

Γ a,c0
2

Γ a,−a
2

Γ a
3

...

Γ a
k−1

Γ a,c0
k−1

Γ a,−a

k−1

Γ a
k

...

Γ a
∞

0-Γ a
2

0-Γ a,c0
2

0-Γ a,−a
2

0-Γ a,a
2 1-Γ a

30-Γ a
3

...
...

...
...

1-Γ a
k−10-Γ a,a

k−20-Γ a
k−1

0-Γ a,c0
k−1

0-Γ a,−a

k−1

1-Γ a
k0-Γ a,a

k−10-Γ a
k

...
...

...
...

0-Γ a
∞ 0-Γ a,c0

∞ 0-Γ a,a
∞ 1-Γ a

∞

Fig. 3. Game hierarchy II

Game Characterizations of Process Equivalences 117

Γ a
0

Γ a,c0
0

Γ a
1 Γ r

1

Γ a,c0
1 Γ r,c0

1

Γ a,−a
1 Γ r,−a

1 Γ t,−a
1

Γ a
2 Γ r,a

1 Γ t,a
1

Γ r
2 Γ t

2

Γ a,c0
2 Γ r,c0

2 Γ t,c0
2

Γ a,−a
2 Γ r,−a

2 Γ t,−a
2

Γ a
3 Γ r,a

2 Γ t,a
2

Γ r
3 Γ t

3

...
...

...

Γ a
k−1 Γ r,a

k−2 Γ t,a

k−2

Γ r
k−1 Γ t

k−1

Γ a,c0
k−1 Γ r,c0

k−1 Γ t,c0
k−1

Γ a,−a

k−1 Γ r,−a

k−1 Γ t,−a

k−1

Γ a
k Γ r,a

k−1 Γ t,a

k−1

Γ r
k Γ t

k

...
...

...

Γ a
∞

0-Γ a
2

0-Γ a,c0
2

0-Γ a,−a
2

0-Γ a,a
2 1-Γ a

30-Γ a
3

...
...

...
...

1-Γ a
k−10-Γ a,a

k−20-Γ a
k−1

0-Γ a,c0
k−1

0-Γ a,−a

k−1

1-Γ a
k0-Γ a,a

k−10-Γ a
k

...
...

...
...

0-Γ a
∞ 0-Γ a,c0

∞ 0-Γ a,a
∞ 1-Γ a

∞

Fig. 4. The whole game hierarchy

118 X. Chen and Y. Deng

The first statement follows from Theorems 1, 2 and Lemma 4 provided we could
show that

(∗) In Figure 4, if G1 → G2 then G2 �� G1.

The rest of this section is devoted to proving (*) and the second statement
of Theorem 3 by providing counterexamples to prove the invalidities of some
relations. For that purpose, it suffices to establish Lemmas 5 to 7 below.

Lemma 5. For all k ≥ 1,

(1) Γ r
1 � Γ a

k .
(2) Γ t,−a

1 � Γ r
k .

Proof. (1) We define the processes below:

Example 1. A
def
= a.A and Ai

def
=

{
0 if i = 0
a.Ai−1 if i > 0

Consider Γ a
k (A, Ak), in each round player I can only perform action a from

one process, and player II can always respond properly, since both A and
Ak can perform action a for k times. Then player II wins Γ a

k (A, Ak). But
player I wins Γ r

1 (A, Ak), she performs an action sequence t = ak+1 from A
in the first round, player II fails to respond to such sequence from Ak, since
the process can only perform action a for k times.

(2) Consider the following processes.

Example 2.

P0
def
= b.0, Q0

def
= c.0,

Pi+1
def
= a.(Pi + d.0) + a.(Qi + e.0),

Qi+1
def
= a.(Pi + e.0) + a.(Qi + d.0).

It is not difficult to prove that player II wins Γ r
k (Pk+1, Qk+1) by induction

on k.
• k = 1. This case is easy.
• k > 1. We distinguish five sub-cases.
Case 1: Player I performs Pk+1

a−→ (Pk+d.0). Then player II can perform
Qk+1

a−→ (Qk + d.0). By induction player II wins Γ r
k−1(Pk, Qk) and

thus she also wins Γ r
k−1(Pk + d.0, Qk + d.0).

Case 2: Player I performs Pk+1
a−→ (Qk+e.0). Then player II can perform

Qk+1
a−→ (Pk + e.0). Similar to the previous case, player II wins

Γ r
k−1(Qk + e.0, Pk + e.0).

Case 3: Player I performs Qk+1
a−→ (Qk + d.0). Then player II can per-

form Pk+1
a−→ (Pk + d.0). The rest is similar to Case 1.

Case 4: Player I performs Qk+1
a−→ (Pk+e.0). Then player II can perform

Pk+1
a−→ (Qk + e.0). The rest is similar to Case 2.

Game Characterizations of Process Equivalences 119

Case 5: If player I performs Pk+1
t−→ P ′ (resp. Qk+1

t−→ Q′) for some
t ∈ Act∗ and |t| > 1, player II can always respond with Qk+1

t−→ Q′

(resp. Pk+1
t−→ P ′) such that P ′ and Q′ are isomorphic.

On the other hand, player I wins Γ t,−a
1 (Pk+1, Qk+1). A winning strategy is

to perform Pk+1
a−→ (Pk + d.0) a−→ (Pk−1 + d.0) a−→ · · · a−→ (b.0 + d.0), where

each process passed in the sequence can perform action d and the last process
can perform action b. But player II fails to perform such an action sequence
from Qk+1 and will become stuck in the second round. ��

Similar to Lemma 5, the next two lemmas can be proven by providing appropri-
ate counterexamples.

Lemma 6. For all k ≥ 1,

(1) 0-Γ a,c0
k � Γ t

k.
(2) 0-Γ a,−a

k � Γ t,c0
k .

(3) 0-Γ a
k+1 � Γ t,−a

k .
(4) 0-Γ a,c0

k � Γ a,−a
k . ��

Lemma 7. For all n ≥ 0,

(1) Γ a,c0
n+1 � n-Γ a

∞.
(2) Γ a,−a

n+1 � n-Γ a,c0∞ .
(3) (n + 1)-Γ a

n+3 � n-Γ a,a
∞ . ��

5 Characterizing Process Equivalences

In this section we revisit some important process equivalences1 in the linear/
branching time hierarchy showed in Figure 1.

Definition 9. Given a game G and a process equivalence ≈, we say ≈ is char-
acterized by G if for any processes P, Q, it holds that P ≈ Q iff player II wins
G(P, Q).

Theorem 4. (1) Trace equivalence is characterized by Γ r
1 .

(2) Completed trace equivalence is characterized by Γ r,c0
1 .

(3) Failures equivalence is characterized by Γ r,−a
1 .

(4) Failure trace equivalence is characterized by Γ t,−a
1 .

(5) Ready trace equivalence is characterized by Γ t,a
1 .

(6) Readiness equivalence is characterized by Γ r,a
1 .

(7) Possible-futures equivalence is characterized by Γ r
2 .

1 Due to lack of space we do not list the definitions of those process equivalences; they
can be found in [10].

120 X. Chen and Y. Deng

Proof. We only prove (5) and the others can be proven analogously. Suppose
P and Q are ready trace equivalent, written P ∼RT Q, we prove that player
II wins Γ t,a

1 (P, Q). In the first round, if player I performs some trace t from P
or Q, then player II considers t as a ready trace, since she has full knowledge
of player I’s move. Clearly, in the second round player I cannot make player II
stuck. Conversely, suppose player II wins Γ t,a

1 (P, Q). It is apparent that P , Q
have the same ready traces, and then P ∼RT Q. ��

Similar to the approximation of bisimilarity (cf.Definition 3),we candefine similar-
ity ∼S, completed similarity ∼CS, ready similarity ∼RS , 2-nested similarity ∼2S ,
and their approximants. We write ∼∗

k, where k ≥ 0, for the approximants of ∼∗.

Lemma 8. For all k ≥ 0,

(1) Γ a
k characterizes ∼a

k.
(2) Γ r

k characterizes ∼r
k.

(3) 0-Γ a
k characterizes ∼S

k .
(4) 0-Γ a,c0

k characterizes ∼CS
k .

(5) 0-Γ a,a
k characterizes ∼RS

k .
(6) 1-Γ a

k characterizes ∼2S
k .

Proof. All the statements can be easily proven by induction on k, so we omit
them. ��

Since we are dealing with finitely branching LTSs, the next theorem follows from
Lemma 8.

Theorem 5. (1) Simulation equivalence is characterized by 0-Γ a
∞.

(2) Completed simulation equivalence is characterized by 0-Γ a,c0∞ .
(3) Ready simulation equivalence is characterized by 0-Γ a,a

∞ .
(4) 2-nested simulation equivalence is characterized by 1-Γ a∞. ��

Furthermore, new equivalences can be defined using the games in Figure 4. For
example, we can define a new equivalence using game Γ t

2 which is stronger than
possible-futures equivalence and ready trace equivalence, but weaker than 2-
nested simulation equivalence. In addition, from the game hierarchy, we learn
the relationship between the approximants of bisimilarity, similarity, completed
similarity etc. For example, possible-futures equivalence is stronger than ∼S

2 ,
but is incomparable with ∼S

3 . Hence, the game hierarchy is interesting in that it
offers an intuitive way of comparing various process equivalences.

6 Concluding Remarks

We have presented a hierarchy of games that allows us to compare process equiv-
alences systematically in a game-theoretic way by characterizing process equiv-
alences as games. The hierarchy not only provides us with a refined analysis
of process equivalences, but also offers a guidance to defining interesting new
process equivalences.

Game Characterizations of Process Equivalences 121

The work closely related to ours is [5] which provides a Stirling class of games
to characterize various process equivalences. The methodology adopted in the
current work is different because we examine in a systematic way the theory
of games that could characterize typical equivalences in the process equivalence
hierarchy.

Paying our attention to the analysis of process equivalences is for the purpose
of studying the complexity of equivalence checking. We know that model checking
can be considered in a game-theoretic way [7], but the complexity depends on
particular models. Similar phenomena exist for equivalence checking. However,
equivalence checking is much harder than model checking, and sometimes it
cannot be done in similar ways. Further investigation in this respect would be
interesting.

Acknowledgement. We thank Enshao Shen, Yunfeng Tao and Chaodong He for
interesting discussions. We also thank the anonymous referees for their construc-
tive comments.

References

[1] Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.
Journal of the ACM 32(1), 137–161 (1985)

[2] Kozen, D.: Results on the propositional mu-calculus. Theoretical Computer Sci-
ence 27, 333–354 (1983)

[3] Kucera, A., Esparza, J.: A logical viewpoint on process-algebraic quotients. In:
Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 499–514.
Springer, Heidelberg (1999)

[4] Milner, R.: Communication and concurrency. Prentice-Hall, Inc., Englewood Cliffs
(1989)

[5] Shukla, S.K., Hunt III, H.B., Rosenkrantz, D.J.: Hornsat, model checking, verifi-
cation and games (extended abstract). In: Alur, R., Henzinger, T.A. (eds.) CAV
1996. LNCS, vol. 1102, pp. 99–110. Springer, Heidelberg (1996)

[6] Stirling, C.: Modal and temporal logics for processes. Notes for Summer School
in Logic Methods in Concurrency (1993)

[7] Stirling, C.: Local model checking games. In: Lee, I., Smolka, S.A. (eds.) CONCUR
1995. LNCS, vol. 962, pp. 1–11. Springer, Heidelberg (1995)

[8] Stirling, C.: Games and modal mu-calculus. In: Margaria, T., Steffen, B. (eds.)
TACAS 1996. LNCS, vol. 1055, pp. 298–312. Springer, Heidelberg (1996)

[9] Thomas, W.: On the Ehrenfeucht-Fräıssé game in theoretical computer science.
In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP / FASE 1993. LNCS, vol. 668,
pp. 559–568. Springer, Heidelberg (1993)

[10] van Glabbeek, R.J.: The linear time-branching time spectrum (extended abstract).
In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–
297. Springer, Heidelberg (1990)

Extensional Universal Types for Call-by-Value

Kazuyuki Asada

Research Institute for Mathematical Sciences, Kyoto University, Japan
asada@kurims.kyoto-u.ac.jp

Abstract. We propose λc2η-calculus, which is a second-order polymor-
phic call-by-value calculus with extensional universal types. Unlike prod-
uct types or function types in call-by-value, extensional universal types
are genuinely right adjoint to the weakening, i.e., β-equality and η-
equality hold for not only values but all terms. We give monadic style
categorical semantics, so that the results can be applied also to lan-
guages like Haskell. To demonstrate validity of the calculus, we construct
concrete models for the calculus in a generic manner, exploiting “rele-
vant” parametricity. On such models, we can obtain a reasonable class
of monads consistent with extensional universal types. This class admits
polynomial-like constructions, and includes non-termination, exception,
global state, input/output, and list-non-determinism.

1 Introduction

Polymorphic lambda calculi like System F [11,30] have been widely studied and
also used in some practical programing languages like ML and Haskell as their
semantical background. With universal types in them, we can abstract terms de-
fined uniformly for each type into one term, which improves usability, efficiency,
readability and safety. Moreover in impredicative polymorphic lambda calculi,
we can encode various datatypes like products, coproducts, initial algebras, and
final coalgebras with universal types. These datatypes have merely weak univer-
sal properties in System F, but they are truly universal if we assume relational
parametricity [31,34,29,1,16,7].

As well as purely functional calculi, extensions of polymorphic lambda calculi to
call-by-name calculi/languages with some computational effects have been stud-
ied: with a fixed-point operator [28,4,5], and with first-class continuations [14].

While call-by-value is one of the most frequently used evaluation strategy
in practical programing languages, extensions to call-by-value polymorphic lan-
guages raise a subtle problem on the treatment of universally typed values.
Suppose that we have a type-abstracted term Λα.M . Then, is this a value at
all? Or should we treat this as a value, only when M is a value? It corresponds
to the choice whether we evaluate M under the type abstraction, or do not (as
function closure). This problem does not occur in modern ML, because, due to
value restriction, M must always be a value.

When we set Λα.M as a value only when so is M , then we can obtain exten-
sional universal types, i.e., “type” η-equality, for some reasonable class of effects.

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 122–137, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Extensional Universal Types for Call-by-Value 123

We call the η-equality Λα.Mα = M (α /∈ FTV (M)) for type abstraction type
η-equality, and also the β-equality (Λα.M)σ = M [σ/α] for type abstraction
type β-equality. Clearly, if we treat Λα.M as a value for any term M , then type
η-equality does not hold in general, as function types in call-by-value.

We expect that such type η-equality can be useful for program transformation
to optimize programs. Also we can use it when reasoning with parametricity for
call-by-value, for type η-equality is often used in parametric reasoning.

In the present paper we propose a second-order polymorphic call-by-value
lambda calculus with extensional universal types. We give syntax and its sound
and complete categorical semantics, and describe how we can construct concrete
models with a variety of computational effects.

Our main contribution is to show that, for some parametric models or se-
mantic setting, we can obtain a reasonable class of effects which are compatible
with extensional universal types. The class includes non-termination, exception,
global state, input/output, and list-non-determinism. We can not show at present
whether (commutative) nondeterminism (like finite or infinite powersets, multi-
sets and probabilistic non-determinism) and continuations belong to the class of
models or not.

We use Moggi’s monadic semantics [25,26,27,2] rather than direct-style seman-
tics for call-by-value calculi [10,21]. One reason is that it is easier to represent
the class of effects considered in the present paper. The monads modeling the
effects mentioned above are respectively lifting monad (−)+1, exception monads
(−) + E, global state monads ((−) × S)S , input monads μβ. (−) + βU , output
monads μβ. (−) + (U × β), and the list monad μβ.1 + (−) × β. As these exam-
ples, this class is characterized as that of all “polynomial” monads constructed
by constants, products, separated sum, powers, final coalgebras, and linearly
initial algebras; the last construction is explained in Section 6.4.

One more reason to use monadic semantics is because we can apply the results
to call-by-name (meta-)languages with monads like Haskell, as well as to call-
by-value languages as object languages like ML. In (some simplified) Haskell,
only fixed-point operators involving the non-termination effect exists in the
call-by-name object language, and other effects are treated via monadic style
translations with various monads. The semantics which we give with “relevant”
parametricity and fixed-point operators in Section 6 is close to such subset of
Haskell, with extensional universal types.

1.1 Related Work

Harper et al. studied two kinds of call-by-value (and two kinds of call-by-name)
extensions of the higher order polymorphic lambda calculus System Fω with first-
class continuations [12]. The difference between the two call-by-value extensions
is exactly as above, i.e., whether, for a type-abstracted term, we evaluate the
inside of the body or not. They took an operational semantics-based approach,
and noted there the failure of proving the preservation theorem which asserts
that a closed answer-typed term is evaluated to a closed answer-typed term. Thus
first-class continuations raise difficulty to obtain extensional universal types.

124 K. Asada

Recently in [22], Møgelberg studied polymorphic FPC, a call-by-value func-
tional language with recursive types and hence a fixed-point operator. The uni-
versal types in this language are not designed to be extensional. However, it
seems that we can make it extensional because the effect used there is non-
termination, though the problems to adjust other features of the language like
recursive types are not trivial.

An extension of System F with parametricity to call-by-push-value [20] was
also studied [23]. The paradigm of call-by-push-value is similar to that of the
monadic metalanguages, and it might be possible to express our results in terms
of call-by-push-value. Call-by-push-value can be also used to translate call-by-
name languages as done in [24].

1.2 Outline

In Section 2, we introduce two second order computational lambda calculi. One
is λc2η-calculus which has extensionality on universal type, and the other is
λc2-calculus which does not.

Section 3 is devoted to preliminaries for semantics in later sections. In Section
4, we give categorical semantics for the calculi given in Section 2. These sections
3 and 4 may be skipped by readers who are not particularly interested in general
semantic framework.

In Section 5, we start to look at concrete models for λc2η-calculus. First we
describe a class of monads which admit extensional universal types, then we
show in two sections that they indeed form concrete models. In Section 5, we
treat parts which hold in relatively general, i.e., only by categorical property and
by parametricity. In Section 6, we consider more specific models with fixed-point
operators and “relevant” parametricity.

Lastly, we give some concluding remarks in Section 7.

2 Second Order Computational Lambda Calculi

In this section, we introduce two calculi: second order computational λ-calculus
(λc2-calculus for short) and secondorder computationalλ-calculuswith extensional
universal types (λc2η-calculus for short). These are extensions of Moggi’s compu-
tational lambda calculus (λc-calculus), listed in Figure 1, with universal types.

We give the λc2-calculus in Figure 2, and the λc2η-calculus in Figure 3. Note
that the classes of values include e.g. π1 〈V, V ′〉. A “value” here means an “effect-
free” term, rather than a canonical form.

The differences between the λc2-calculus and the λc2η-calculus are not in the
definitions of types or terms but only in equation theories, i.e., the values and
the axioms. The universal types in the λc2-calculus satisfy type β-equality for
any term and type η-equality for only values, while those in the λc2η-calculus
satisfy type β- and η-equality for any term. We call such universal types with full
type η-equality extensional universal types. In the paper we put the focus on the
λc2η-calculus, to demonstrate how many effects are consistent with extensional
universal types.

Extensional Universal Types for Call-by-Value 125

Types

Terms

Values

Evaluation Contexts

σ

M

V

E

::= b | σ → σ | 1 | σ × σ

::= x | cσ | λxσ.M | MM | ∗ | 〈M, M〉 | π0M | π1M

::= x | cσ | λxσ.M | ∗ | 〈V, V 〉 | π0V | π1V

::= [−] | EM | V E | 〈E, M〉 | 〈V, E〉 | π0E | π1E

where b ranges over base types, and cσ ranges over constants of type σ

Typing Rules:

Γ � x : σ
(x:σ ∈ Γ)

Γ � cσ : σ

Γ, x:σ � M : τ

Γ � λxσ.M : σ → τ

Γ � M : σ → τ Γ � N : σ

Γ � MN : τ

Γ � ∗ : 1
Γ � M : σ Γ � N : τ

Γ � 〈M, N〉 : σ × τ

Γ � M : σ × τ

Γ � π0M : σ

Γ � M : σ × τ

Γ � π1M : τ

Axioms:

(λxσ.M) V = M [V/x]

λxσ.V x = V

V = ∗
(x /∈ FV (V))

(V : 1)

πi 〈V0, V1〉 = Vi (i = 0, 1)

〈π0V, π1V 〉 = V

(λxσ.E [x]) M = E [M] (x /∈ FV (E))

Fig. 1. The λc-calculus

In Section 6, we give relevant parametric models with fixed-point operators
as concrete models for the λc2η-calculus. And there is a reasonably wide class
of monads on the models, including non-termination, exception, global state,
input, output, and list-non-determinism.

Such fixed-point operators are not included in the syntax of the λc2η-calculus.
Also, the λc2η-calculus includes no proper axioms which induce computational
effects, as well as the λc-calculus. However, with such models, we will be able
to extend the λc2η-calculus with suitable axioms and terms which induce such
computational effects, and also with call-by-value fixed-point operators [15]. Al-
ternatively, we will also be able to define “second order monadic metalanguages”
which have call-by-name fixed-point operators [32] and in which we can simulate
such extended λc2η-calculi by use of corresponding monads.

3 Preliminaries for Semantics

This section is devoted to preliminaries for some category theoretical notions.
Notation: ‘⇒’ is used for exponentials in a CCC (cartesian closed category).

An identity on A is written also as just A. For 2-cells, ‘∗’ and ‘◦’ mean horizontal
and vertical compositions respectively.

For a functor p being a fibration, we say an object X is over an object I (resp.
an arrow f is over an arrow u) if pX = I (resp. pf = u). A functor p : E −→ B is
called a fibration if for any arrow u : J −→ I in B and object X over I, there is
an object u∗X over J and an arrow ūX : u∗X −→ X over u which is cartesian:
for any object Z over K, arrow h : Z −→ X in E and arrow v : K −→ J in B s.t.
ph = u ◦ v, there is unique arrow g : Z −→ u∗X over v satisfying h = ūX ◦ g.

126 K. Asada

Types

Terms

σ

M

::= ... | α | ∀α.σ

::= ... | Λα.M | Mσ

Values

Evaluation Contexts

V

E

::= ... | Λα.M

::= ... | Eσ

Typing Rules: All the rules in the λc-calculus in which a kind context Ξ is added to
the all contexts, and:

Ξ, α | Γ � M : σ

Ξ | Γ � Λα.M : ∀α.σ
(α /∈ FTV (Γ))

Ξ | Γ � M : ∀α.σ

Ξ | Γ � Mτ : σ [τ/α]

Axioms: All the axioms in the λc-calculus where the evaluation contexts are extended
as above, and:

(Λα.M) σ = M [σ/α] Λα.V α = V (α /∈ FTV (V))

Fig. 2. The λc2-calculus, extended from the λc-calculus

Types

Terms

σ

M

::= ... | α | ∀α.σ

::= ... | Λα.M | Mσ

Values

Evaluation Contexts

V

E

::= ... | Λα.V | V σ

::= ... | Eσ

Typing Rules are the same as those in the second order λc-calculus (λc2-calculus).
Axioms: All the axioms in the λc-calculus where the evaluation contexts are extended
as above, and:

(Λα.M) σ = M [σ/α] Λα.Mα = M (α /∈ FTV (M))

Fig. 3. The λc2η-calculus, extended from the λc-calculus

For most of basic fibred category theory in the context of categorical seman-
tics, we refer to [19]. In the present paper we use fibred-category-theoretical no-
tions only with a fixed base category. FibB is the 2-category of all fibrations, fibred
functors and fibred natural transformations over a fixed base
category B.

A fibred monad (over B) is an internal monad in the 2-category FibB [33].
For a fibred monad T , we can construct the Kleisli adjunction U 	 F : p −→ pT

in FibB (cf. [17]). For a fibration (p, ⊗, I, α, λ, ρ) with fibred products, for which
we use the tensor notation, a strong fibred monad (T, η, μ, τ) over p is a fibred
monad (T, η, μ) and fibred natural transformation τ : ⊗ ◦ (p × T) =⇒ T ◦ ⊗
satisfying the four equations: λ ∗ T = (T ∗ λ) ◦ (τ ∗ 〈CI, p〉), (τ ∗ (⊗ × p)) ◦(
α ∗

(
p2 × T

))
= (T ∗ α) ◦ (τ ∗ (p × ⊗)) ◦ (⊗ ∗ τ), η ∗ ⊗ = τ ◦ (⊗ ∗ (p × η)),

τ ◦ (p × μ) = (μ ∗ ⊗) ◦ (T ∗ τ) ◦ (τ ∗ (p × T)), where CI := I ◦ ! : p −→ 1 −→ p
is the constant fibred functor of I.

4 Categorical Semantics for Second Order Computational
Lambda Calculi

In this section, we give categorical semantics for the λc2-calculus and the λc2η-
calculus. As mentioned in the introduction, we use monadic style semantics

Extensional Universal Types for Call-by-Value 127

rather than direct style semantics for call-by-value. They are equivalent [10],
since we include into the definitions below the equalizing requirement, which
asks each component ηA of the unit of a monad T is an equalizer of TηA and
ηTA.

First we define a “λc-version of polymorphic fibration”, which models the
λc-calculus and type variables, but does not model universal types.

Definition 1. A polymorphic λc-model consists of

(i) a cartesian polymorphic fibration, i.e. a fibration p : E −→ B which has
products in the base category, generic object Ω and fibred products,

(ii) a fibred strong monad T on p satisfying the equalizing requirement fiberwise,
and

(iii) fibred Kleisli exponentials, i.e., a family of right adjoint functors X� (−)

to the composite functors FI ((−) × X) : EI
(−)×X−→ EI

FI−→ (ET)I where I is
an object in B and X is over I in p, and which satisfies the Beck-Chevalley
condition:
for any u : J −→ I in B and X over I in p, the natural transformation from
u∗ ◦ (X� (−)) to (u∗X� (−)) ◦ u∗

T induced by the natural isomorphism
from FJ ((−) × u∗X) ◦ u∗ to u∗

T ◦ FI ((−) × X) is isomorphic. �

If we have the first and the second item in the above definition, and if the
fibration is a fibred CCC, then we get the third item of polymorphic λc-model
for free by composition of the Kleisli adjunction and the adjunction defining
cartesian closedness. All the examples in the present paper are such models.

In the following, we use Ω for a generic object of a fibration, if it exists and
there is no ambiguity.

Definition 2. Let p be a polymorphic λc-model. By change-of-base of the Kleisli
embedding F : p −→ pT along (−) × Ω : B −→ B, we have a fibred functor
FΩ : pΩ −→ pT

Ω. In addition, the reindexing functors induced by the projections
give a “weakening” fibred functor π∗

(−),Ω : p −→ pΩ. Then,

– Kleisli simple Ω-products is a fibred right adjoint functor to the composite
of these two fibred functors, and

– a λc2-model is a polymorphic λc-model p which has Kleisli simple Ω-
products. �

As the case of fibred Kleisli exponentials for a fibred CCC, if we have a poly-
morphic λc-model p which has simple Ω-products, then we obtain Kleisli simple
Ω-products in a quite similar way, and hence a λc2-model for free. So any λ2-
fibration [19] which has the second item in Definition 1 forms a λc2-model.

Definition 3. A λc2η-model is a polymorphic λc-model p whose Kleisli fibration
pT has simple Ω-products. �

It is easily seen that all λc2η-models are λc2-models.

128 K. Asada

An interpretation of the λc2η-calculus in a λc2η-model is defined by inductions
on type formation and on typing rules. This can be done in a quite similar way
to that of λc-calculus [25], with referring to that of System F [19], too.

On the type abstraction rule, [[Ξ | Γ 	 Λα.M : ∀α.σ]] : [[Γ]] −→ [[∀α.σ]] :=∏
[[σ]] in (pT)[[Ξ]] is defined as the transposition of the composite [[Ξ, α | Γ 	 M :

σ]] ◦ (“canonical isomorphism”) : π∗[[Γ]] ∼= [[Γ]] −→ [[σ]] in (pT)[[Ξ,α]] = (pT)[[Ξ]]×Ω

under simple Ω-products adjointness.
On the type application rule, first we have an arrow [[Ξ |Γ 	 M : ∀α.σ]] :

[[Γ]] −→ [[∀α.σ]] :=
∏

[[σ]] in (pT)[[Ξ]] with its transposition m : π∗[[Γ]] −→ [[σ]] in

(pT)[[Ξ]]×Ω, and also have an arrow [[τ]]� : [[Ξ]] −→ Ω in B, where (−)� is the corre-
spondence induced by the generic object. Then [[Ξ | Γ 	 Mτ : σ [τ/α]]] : [[Γ]] −→
[[σ [τ/α]]] in (pT)[[Ξ]] is defined as the composite [[Γ]] ∼=

〈
id[[Ξ]], [[τ]]�

〉∗
π∗[[Γ]] −→

〈
id[[Ξ]], [[τ]]�

〉∗
[[σ]] ∼= [[σ [τ/α]]], where the last isomorphism is the canonical iso-

morphism from a semantic type substitution lemma proved routinely, and the
middle arrow is the reindexing of m by

〈
id[[Ξ]], [[τ]]�

〉
.

Theorem 4 The class of all λc2η-models are sound and complete for the λc2η-
calculus with respect to the above interpretation.

Proof. 1 Soundness follows routinely by induction. For completeness, a term
model can be constructed in the same way as those for System F [19] and for the
λc-calculus [10]. �

Now we shall introduce a subclass of the class of λc2η-models. All concrete
models we give in the present paper belong to this class.

Definition 5. A monadic λc2η-model is a polymorphic λc-model such that p
and pT has simple Ω-products and the Kleisli embedding F : p −→ pT preserves
them. �

The notion of monadic λc2η-models is natural for monadic style translation. The
preservation of simple Ω-products by the identity-on-objects functor F means
that we use the same universal types before and after the monadic style trans-
lation. If we are interested in extensional universal types only for call-by-value
languages themselves, then we should expand the semantics to the class of λc2η-
models. However, if we are also interested in monadic metalanguages, then it is
very simple and hence important to use the same universal types between the
value (non-effect) language (base category of a monad) and various effectful lan-
guages (Kleisli categories), since in a monadic metalanguage we may use more
than one monad, as we do so in Haskell.

Proposition 6. Let p be a polymorphic λc-model such that p has simple Ω-
products.

(1) If pT has simple Ω-products, then the fibred right adjoint functor U : pT −→
p preserves simple Ω-products.

Extensional Universal Types for Call-by-Value 129

(2) p is a monadic λc2η-model, (i.e., pT has simple Ω-products and the fibred func-
tor F : p −→ pT preserves simple Ω-products,) if and only if the underlying
fibred endofunctor T of the monad preserves simple Ω-products. �

By this proposition, it turns out that, in order to find a monadic λc2η-model, we
only have to pay attention to the underlying endofunctor of a monad, without
considering η nor μ. This is because the canonical arrow T (

∏
A) −→

∏
TA

respects η and μ, since the reindexings preserve them. This simplification is very
useful as we use in the next section.

5 Concrete Models

In this section, we start to study concrete monadic λc2η-models.
In order to obtain monadic λc2η-models, we use Proposition 6 (2). For a λ2-

fibration and a fibred strong monad on it satisfying the equalizing requirement, if
the underlying fibred endofunctor of the monad preserves simple Ω-products, i.e.,
if T (

∏
A) ∼=

∏
TA holds, then they form a monadic λc2η-model. So we analyze

what kind of fibred functors preserve simple Ω-products in λ2-fibrations.

5.1 The Class of Monads

We describe here the class of monads considered in the present paper. For the
sake of simplicity, we concentrate on the underlying endofunctors of monads.

First let us consider the following class of functors. In order to consider initial
algebras and final coalgebras, we consider multi-ary functors as well as unary
endofunctors.

T ::= γ |C | 1 | T × T | T + T | T C | μγ.T | νγ.T

This class is constructed inductively by projections, (i.e., variables γ,) constant
functors, finite products, binary coproducts, powers, (i.e., exponentials whose
domains are constants,) initial algebras, and final coalgebras. Basically we would
like to consider something like the above class, but there is a problem.

All we need to show is that the underlying fibred endofunctors of fibred mon-
ads preserve simple Ω-products, so it is sufficient to prove that the construc-
tions defining inductively the above class (in the fibred setting) preserve simple
Ω-products. However, it is shown in Section 6.1 that coproducts do not neces-
sarily commute with universal quantifier in System F even with parametricity,
and so we need some special morphism in a λ2-fibration considered here. In
the paper, we use models having fixed-point operators to resolve it. So, in or-
der to avoid well-known conflict between fixed-point operators and coproducts,
we consider linear (more precisely, relevant) models by which we can relax re-
lational parametricity inducing coproducts as in [28,5], and replace coproducts
with separated sums and initial algebras with linearly initial algebras. Linearly
initial algebras are, roughly, something which are initial algebras only in a lin-
ear model. These notions of separated sums and linearly initial algebras will be
explained in Section 6.3 and 6.4 respectively.

130 K. Asada

Now let us describe the class of monads considered in the present paper. It is
the class of all fibred monads whose underlying fibred endofunctors are included
in the following class (1).

T ::= γ | 1 |T × T | T C | νγ.T | C | T⊕T | μ◦γ.T (1)

In the above, ⊕ is separated sum, and μ◦γ.T is linearly initial algebras. These
constructions form fibred functors, see Sections 5.2, 6.3, and 6.4 for final coalge-
bras, separated sums, and linearly initial algebras respectively.

From now on we show that simple Ω-products are preserved by (i): products,
powers, final coalgebras, (ii): constant fibred functors, (iii): separated sums, and
linearly initial algebras.

On the constructions of (i), we can show that they preserve simple Ω-products
by their categorical universal property, because they are right adjoint as well
as simple Ω-products. For constants of (ii), however, we need more property
like parametricity, and for separated sums and linearly initial algebras of (iii),
we need additionally more structures like fixed-point operators. We consider
products, powers, final coalgebras in the next subsection, constants are treated
in the next, and separated sums and linearly initial algebras are postponed to
the next section.

In the paper, we do not mind whether such constructions as above are available
or not, and do only show that they preserve simple Ω-products if they exist. If we
try to show existence of e.g. parameterized initial algebras for multi-ary functor,
to treat the list monad and input monads, then we need to introduce the notion of
“fibrations and fibred functors enriched over a monoidal fibration”, and perhaps
need to use fibrations with indeterminates [17]. For space reason we postpone
such detailed work elsewhere, which is less problematic because the existence of
the constructions represented in syntax is well known by polymorphic encoding
with parametricity.

5.2 Products, Powers and Final Coalgebras

Here, we investigate constructions which preserve simple Ω-products by only
universal property.

Lemma 7. Let B be a cartesian category, and K be any object of B.

(1) The subcategory of FibB consisting of all fibrations having simple K-
products, and all fibred functors preserving simple K-products, is cartesian
subcategory.

(2) Let p be a fibration having simple K-products and fibred finite products.
Then the fibred functors × : p × p −→ p, and 1 : 1 −→ p preserve simple
K-products.

(3) Moreover assume that p is a fibred CCC. Then for any X over 1 in p, the
“power” fibred functor X⇒ (−) : p −→ p preserves simple K-products. �

We can also add final coalgebras into the above list, if they exist sufficiently in
the sense described below. The same things hold from here to Definition 8 for

Extensional Universal Types for Call-by-Value 131

both initial algebras and final coalgebras in the dual way, so we do with initial
algebras, since more examples of effects use initial algebras.

Let p, q be fibrations with the same base category B, and F : q × p −→ p be a
fibred functor. We say that F : q × p −→ p has initial algebras with parameters,
if for any X over I in q, the endofunctor F (X, −) : EI −→ EI has initial algebra
(μFX, αX : F (X, μFX) −→ μFX), and if the reindexings preserve them, i.e.,
for any X over I in q and any arrow u : J −→ I in B, the unique algebra
map from the initial algebra μF (u∗X) to the algebra F (u∗X, u∗ (μFX)) ∼=
u∗F (X, μFX) u∗αX−→ u∗ (μFX) is isomorphism.

If F is in the case, then the assignment which maps an object X over I in q
to the object μFX over I in p extends to the unique fibred functor μF : q −→ p
such that the family of maps (αX : F (X, μFX) −→ μFX)X forms into a fibred
natural transformation from F (−, μF−) to μF .

Definition 8. For a fibred functor F : q × p −→ p having initial algebras with
parameters, there is the initial algebras fibred functor μF : q −→ p as above.

Similarly, if F : q × p −→ p has final coalgebras with parameters, which is
defined in the dual way, then we have the final coalgebras fibred functor νF :
q −→ p with the fibred natural transformation from νF to F (−, νF−). �
Lemma 9. Let B be a cartesian category, K be an object of B, p, q be fibrations
having simple K-products, and F : q × p −→ p be a fibred functor having final
coalgebras with parameters. Then, if F preserves simple K-products, the fibred
functor νF : q −→ p also preserves simple K-products. �

Typical usage of the above is to get endofunctors with q = p (or pn), but we will
use a coKleisli fibration for q with linear models in Section 6.4.

5.3 Constant

In this short subsection, the construction using constants is added.
For a λ2-fibration p and any object X over 1, the fibred functor X : 1 −→ p

preserves simple Ω-products if p satisfies suitable parametricity, including rela-
tional parametricity, linear parametricity, and focal parametricity.

In this case of constants we do not need additional arrows differently from the
case in the next section, because we can adopt the (unique) projection as the
inverse arrow of the canonical (diagonal) arrow X −→

∏
X .

At this point, we can add global state monads ((−) × S)S and output monads
μ◦β. (−)+(U × β) ∼= (−)×(μ◦β.1 + (U × β)) to the class of monads which form
monadic λc2η-models.

6 Separated Sums and Linearly Initial Algebras

We continue to show how we construct monads compatible with extensional
universal types. In this section we consider separated sums and linearly initial
algebras. For space reason, we give only a sketch.

132 K. Asada

6.1 Basic Ideas

First we describe basic ideas used in later, and also why we use separated sums
and linearly initial algebras instead of coproducts and initial algebras. Contrary
to the case of constants, for coproducts and initial algebras we have to use more
limited class of models with additional arrows. First let us see the reason for
coproducts in a syntactic way.

Naively thinking, to get the desired term of the type ∀α. (σ + τ) → ∀α.σ +
∀α.τ , we can think of a term like

λu:∀α. (σ + τ) . case u1 of (2)

in0 a′ → in0
(
Λα.case uα of (in0 a → a) | (in1 b → “this case nothing”)

)

|in1 b′ → in1
(
Λα.case uα of (in0 a → “this case nothing”) | (in1 b → b)

)

where “this case nothing”’s mean that the cases of the coproducts are not re-
alized, if we assume parametricity. In fact, we can prove in the Plotkin-Abadi
logic that, for any term u of a type ∀α. (σ + τ), every type instantiation of u has
the same index of the coproduct.

However, this is just a reasoning in logic, and there is no assurance to be
able to construct such terms as “this case nothing”. In fact, there is no term of
the type ∀α. (σ + τ) → ∀α.σ + ∀α.τ in System F for certain σ and τ : for the
case when σ is α and τ is α→0, the type ∀α. (α + (α→0)) → ∀α.α + ∀α. (α→0)
in System F corresponds to the proposition ∀α. (α ∨ ¬α) ⇒ ∀α.α ∨ ∀α.¬α in
second order intuitionistic logic, and the inhabitation contradicts the soundness
of second order classical logic. So we have to add more terms to realize the above
“this case nothing”.

To solve this problem, we use non-termination effects, with which we can
replace “this case nothing”’s with bottoms.

In the next place, let us think about initial algebras. For e.g. the list monad,
we may think a desired term f of the type ∀α.μβ.1+σ×β −→ μβ.1+(∀α.σ)×β
as the following.

let f = λu: (∀α.μβ.1+σ×β) . case u1 of Nil → Nil | Cons(a′, as′) →
Cons

(
Λα.case uα of (Nil → “this case nothing”) | (Cons(a, as) → a) ,

f
(
Λα.case uα of (Nil → “this case nothing”) | (Cons(a, as) → as)

))

The two “this case nothing”’s are the same as that in the case of coproducts, and
this is just because we use coproducts in the definition of lists. The essential here
is the occurrence of f in the definition of f . This is not induction which follows
from the universality of initial algebras, but recursion by fixed-point operators.

For fixed-point operators, we employ separated sums and linearly initial al-
gebras instead of coproducts and initial algebras respectively. These cause no
problem to construct monads, as we use these in Haskell in fact, because these
also have universal property, though limited into a linear model. In the following
subsections, we show that separated sums and linearly initial algebras preserve
simple Ω-products in relevant parametric models with fixed-point operators.

Extensional Universal Types for Call-by-Value 133

6.2 Linear Parametric Models

From now on, we consider domain theoretic models. Let us begin with describing
what kind of models we use.

We consider a PILLY model [6] l having fibred products. PILLY models are
λ2-version of linear categories which can also model fixed-point operators, see
loc. cit. for details. The requirement on fibred products is not strong at all, since
they can be obtained for free if we assume linear parametricity [5], and in fact we
assume a bit stronger one, i.e., relevant parametricity in the next subsection. For
the linear exponential fibred comonad ! on l, let U : l −→←− p : L be its coKleisli
fibred adjunction, where U is the right, so fiberwise identity-on-objects.

Then p is a λ2-fibration: It is well-known that the coKleisli category of a linear
model with cartesian products is a CCC, see e.g. [3]. A generic object is shared
with l, since U is fiberwise identity-on-objects and the base is shared. Simple
Ω-products are for free like fibred products.

We take this λ2-fibration p as the base fibration of monadic λc2η-models.
Then, the fibred monads T on p studied below are what we described in Section
5.1.

Since U is a fibred right adjoint functor, it preserves simple Ω-products, which
follow from just the universal property, and irrelevant to the fact that Ω is a
generic object or that U preserves it.

On the other hand, we do assume that the left fibred adjoint functor L pre-
serves simple Ω-products. The reason for assuming this is to show the compati-
bility of separated sums and of linearly initial algebras with simple Ω-products.
Thanks to this assumption, we can add the non-termination lifting monad to the
class of monads compatible with simple Ω-products, but this is just a (welcome)
secondary product. This is a reasonable assumption, since lifting monads usu-
ally preserve simple Ω-products in a parametric setting, as opposed to powerset
monads.

6.3 Relevant Parametricity for Separated Sum

The use of fixed-point operators involves two matters, i.e., we have to use sepa-
rated sums instead of coproducts in p, and have to use linear parametricity.

In fact, the use of separated sums is less problematic. Assuming linear para-
metricity, there are fibred coproducts in l, so we have also fibred separated sums
⊕ in p as U ◦ (+) ◦ L2. Here, (+) ◦ L2 has the same kind of universal prop-
erty as Kleisli exponentials, and by this we can construct familiar monads like
e.g. exception monads, the list monad, and input monads. When we use sepa-
rated sums for exception monads, it can be viewed also in terms of linearly used
effects [13].

Now we show that these separated sums commute with simple Ω-products.
We basically use the idea of the above term (2). After replacing “this case noth-
ing”’s with bottoms, still there remain two problems. The first is, in (2), we use
weakening rules for a′ and b′, and the second is the use of a contraction rule for
the two u’s in u1 and uα. (The two uα’s are essentially the same, since this is
from the distributivity of monoidal products over coproducts in l.)

134 K. Asada

The problem of weakening is resolved as the following. To prove that sep-
arated sums preserve simple Ω-products, it suffices to prove

∏◦ (!A+!B) ∼=∏◦!A+
∏◦!B in l, where

∏◦ is simple Ω-products in l. This is because,
we can then show that

∏
(A⊕B) def=

∏
U (LA+LB) ∼= U

∏◦ (LA+LB) =
U

∏◦ (!A+!B) ∼= U
(∏◦!A+

∏◦!B
) ∼= U (L

∏
UA+L

∏
UB) =

∏
A⊕

∏
B, not-

ing that U and L preserve simple Ω-products, and U is identity-on-objects. So,
we can use weakening rules by virtue of these two !’s.

On the other hand, to use a contraction rule, we need to strengthen a type
theory to allow contraction, i.e., to the “relevant” one. Fortunately, lifting mon-
ads are usually relevant monads as in [18]. Relevant lambda calculi are extension
of linear lambda calculi with contraction term formation rules. Then relevant
Plotkin-Abadi Logic is simply linear Plotkin-Abadi logic [5] on top of such the
second order relevant lambda calculus. As a result of this extension of the class
of linear terms, the class of admissible relations is also extended, for instance we
can use graph relations of such “relevant terms”.

Finally, we need one more rule for forming admissible relations: for an admis-
sible relation ρ between σ and τ , and a term 〈f, g〉 : σ′ × τ ′� σ × τ of linear
function type, the “inverse-image” relation (x : σ′, y : τ ′) .ρ (f 〈x, y〉 , g 〈x, y〉) is
also an admissible relation between σ′ and τ ′. This is modeled with the intuition
that admissible relations between σ and τ are subalgebras of the product of σ
and τ . This rule is used in the parametric reasoning to prove the equality be-
tween the identity on

∏◦ (!A+!B) and the composite term through
∏◦!A+

∏◦!B
involving the isomorphism

∏◦ (!A+!B) ∼=
∏◦!A+

∏◦!B.
We introduce some of models (l, p, ...) for such relevant parametricity which

satisfy the assumptions thus far: the models (PFam (AP(D)⊥), PFam (AP(D)),
...) of linear Plotkin-Abadi logic constructed from domain theoretic PERs, which
is described in [8]. Hence,

Proposition 10. The separated sums in PFam (AP(D)) preserve simple Ω-
products. �

6.4 Linearly Initial Algebras

In this last subsection, we consider about linearly initial algebras.
Once we determine to use fixed-point operators, there is an easier way than

considering of such a complicate term as in Section 6.1. That is, we can use
the fact that if both initial algebras and final coalgebras exist for sufficiently
many endofunctors, then the initial algebras and final coalgebras are canonically
isomorphic for such endofunctors if and only if fixed-point operators exists [9,5].
Then Lemma 9 is applicable.

All the remaining matter is that we have to use linearly initial algebras instead
of initial algebras. Now let q be a fibration which has the same base category
and generic object Ω as those of l and p, and has simple Ω-products. Then for
a fibred functor F : q × p −→ p preserving simple Ω-products, the composite
fibred functor F ′ := L ◦ F ◦ (q × U) : q × l −→ q × p −→ p −→ l also preserves
simple Ω-products.

Extensional Universal Types for Call-by-Value 135

Now if F ′ has initial algebras with parameters and also final coalgebras with
parameters in the sense of Section 5.2, then the μF ′ and νF ′ are naturally
isomorphic thanks to the fixed-point operators as mentioned above. So by Lemma
9, μF ′ preserves simple Ω-products. Hence the linearly initial algebras fibred
functor U ◦ μF ′ : q −→ l −→ p also preserves simple Ω-products.

Proposition 11. Let F : PFam (AP(D))n+1 −→ PFam (AP(D)) be a fi-
bred functor such that F ′ defined as above has initial algebras with parame-
ters and final coalgebras with parameters. If F preserves simple Ω-products,
then the linearly initial algebras fibred functor U ◦ μF ′ : PFam (AP(D))n −→
PFam (AP (D)) also preserves simple Ω-products. �

Theorem 12 Let T be a fibred strong monad on PFam (AP(D)) satisfying the
equalizing requirement. If the underlying fibred endofunctor of T is included in
the class (1) in Section 5.1, then T and the λ2-fibration PFam (AP(D)) form a
monadic λc2η-model. �

7 Concluding Remark

We have given the second order computational λ-calculus with extensional uni-
versal types, which is a call-by-value lambda calculus with universal types sat-
isfying η-equality. Then we have formulated its sound and complete categorical
semantics, and also reasonable characterization in terms of monadic metalan-
guages. Finally, we have seen concrete domain theoretic models, in a somewhat
general way with relevant parametricity. Such models can accommodate many
familiar effects constructed polynomially to extensional universal types.

In Section 6, we have taken the domain theoretic approach. On the other
hand, we can also take a dependent type theoretic approach, by which we can
avoid “this case nothing” in the term (2) in Section 6, using strong coproducts.
Moreover, by inductive initial algebras in the sense of [19], we can deal with
some kinds of initial algebras including the list monad and input monads. In
this way, we can see that the typical models for parametricity constructed from
recursion theoretic PERs (see e.g. loc. cit.) also have a similar class of monads
which form λc2η-models. These will be treated in a separate paper.

It is interesting to clarify whether we can include powerset monads and/or
continuations monads into the class of models, and whether all lifting monads
commute with parametric simple Ω-products.

Also, it is an interesting challenge to investigate principles of parametric poly-
morphism in the two call-by-value calculi in the paper.

Acknowledgements

I would like to thank Masahito Hasegawa for many helpful discussions and com-
ments on earlier drafts. I am also grateful to Shin-ya Katsumata, Ichiro Hasuo,
and Naohiko Hoshino for useful comments and discussions. Also I thank anony-
mous reviewers for helpful comments.

136 K. Asada

References

1. Abadi, M., Cardelli, L., Curien, P.-L.: Formal parametric polymorphism. TCS:
Theoretical Computer Science 121 (1993)

2. Benton, N., Hughes, J., Moggi, E.: Monads and effects. In: Barthe, G., Dybjer, P.,
Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42–122. Springer,
Heidelberg (2002)

3. Benton, P.N.: A mixed linear and non-linear logic: Proofs, terms and models (ex-
tended abstract). In: CSL, pp. 121–135 (1994)

4. Bierman, G.M., Pitts, A.M., Russo, C.V.: Operational properties of Lily, a poly-
morphic linear lambda calculus with recursion. Electr. Notes Theor. Comput.
Sci. 41(3) (2000)

5. Birkedal, L., Møgelberg, R.E., Petersen, R.L.: Linear Abadi & Plotkin logic. Logical
Methods in Computer Science 2(5) (November 2006)

6. Birkedal, L., Møgelberg, R.E., Petersen, R.L.: Category-theoretic models of linear
Abadi and Plotkin logic. Theory and Applications of Categories 20(7), 116–151
(2008)

7. Birkedal, L., Møgelberg, R.E.: Categorical models for Abadi and Plotkin’s logic
for parametricity. Mathematical Structures in Computer Science 15(4), 709–772
(2005)

8. Birkedal, L., Møgelberg, R.E., Petersen, R.L.: Domain-theoretical models of para-
metric polymorphism. Theor. Comput. Sci. 388(1-3), 152–172 (2007)

9. Freyd, P.: Recursive types reduced to inductive types. In: Mitchell, J. (ed.) Pro-
ceedings of the Fifth Annual IEEE Symp. on Logic in Computer Science, LICS
1990, pp. 498–507. IEEE Computer Society Press, Los Alamitos (1990)

10. Führmann, C.: Direct models of the computational lambda calculus. Electr. Notes
Theor. Comput. Sci. 20 (1999)

11. Girard, J.-Y.: Interpretation fonctionelle et elimination des coupures de
l’arithmetique d’ordre superieur. These D’Etat, Universite Paris VII (1972)

12. Harper, R., Lillibridge, M.: Operational interpretations of an extension of Fω with
control operators. J. Funct. Program. 6(3), 393–417 (1996)

13. Hasegawa, M.: Linearly used effects: Monadic and CPS transformations into the
linear lambda calculus. In: Hu, Z., Rodŕıguez-Artalejo, M. (eds.) FLOPS 2002.
LNCS, vol. 2441, pp. 167–182. Springer, Heidelberg (2002)

14. Hasegawa, M.: Relational parametricity and control. Logical Methods in Computer
Science 2(3) (2006)

15. Hasegawa, M., Kakutani, Y.: Axioms for recursion in call-by-value. Higher-Order
and Symbolic Computation 15(2-3), 235–264 (2002)

16. Hasegawa, R.: Categorical data types in parametric polymorphism. Mathematical
Structures in Computer Science 4(1), 71–109 (1994)

17. Hermida, C.A.: Fibrations, Logical Predicates and Indeterminates. Ph.D thesis,
University of Edinburgh (1993)

18. Jacobs, B.: Semantics of weakening and contraction. Ann. Pure Appl. Logic 69(1),
73–106 (1994)

19. Jacobs, B.: Categorical Logic and Type Theory. In: Studies in Logic and the Foun-
dations of Mathematics, vol. 141. Elsevier, Amsterdam (1999)

20. Levy, P.B.: Call-By-Push-Value: A Functional/Imperative Synthesis. Semantics
Structures in Computation, vol. 2. Springer, Heidelberg (2004)

21. Levy, P.B., Power, J., Thielecke, H.: Modelling environments in call-by-value pro-
gramming languages. INFCTRL: Information and Computation (formerly Infor-
mation and Control) 185 (2003)

Extensional Universal Types for Call-by-Value 137

22. Møgelberg, R.E.: Interpreting polymorphic FPC into domain theoretic models of
parametric polymorphism. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I.
(eds.) ICALP 2006. LNCS, vol. 4052, pp. 372–383. Springer, Heidelberg (2006)

23. Møgelberg, R.E., Simpson, A.: Relational parametricity for computational effects.
In: LICS, pp. 346–355. IEEE Computer Society, Los Alamitos (2007)

24. Møgelberg, R.E., Simpson, A.: Relational parametricity for control considered as
a computational effect. Electr. Notes Theor. Comput. Sci. 173, 295–312 (2007)

25. Moggi, E.: Computational lambda-calculus and monads. Technical Report ECS-
LFCS-88-66, Laboratory for Foundations of Computer Science, University of Ed-
inburgh (1988)

26. Moggi, E.: Computational lambda-calculus and monads. In: LICS, pp. 14–23. IEEE
Computer Society, Los Alamitos (1989)

27. Moggi, E.: Notions of computation and monads. Information and Computa-
tion 93(1), 55–92 (1991)

28. Plotkin, G.D.: Type theory and recursion (extended abstract). In: LICS, p. 374.
IEEE Computer Society, Los Alamitos (1993)

29. Plotkin, G.D., Abadi, M.: A logic for parametric polymorphism. In: Bezem, M.,
Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 361–375. Springer, Heidelberg
(1993)

30. Reynolds, J.C.: Towards a theory of type structure. In: Robinet, B. (ed.) Sympo-
sium on Programming. LNCS, vol. 19, pp. 408–423. Springer, Heidelberg (1974)

31. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP
Congress, pp. 513–523 (1983)

32. Simpson, A.K., Plotkin, G.D.: Complete axioms for categorical fixed-point opera-
tors. In: LICS, pp. 30–41 (2000)

33. Street, R.: The formal theory of monads. Journal of Pure and Applied Algebra 2,
149–168 (1972)

34. Wadler, P.: Theorems for free! In: Functional Programming Languages and Com-
puter Architecture. Springer, Heidelberg (1989)

Harnessing the Multicores:
Nested Data Parallelism in Haskell

Simon Peyton Jones

Microsoft Research, Cambridge, U.K

Abstract. If youwant toprogramaparallel computer, a purely functional
language like Haskell is a promising starting point. Since the language is
pure, it is by-default safe for parallel evaluation, whereas imperative lan-
guages are by-default unsafe. But that doesn’t make it easy! Indeed it has
proved quite difficult to get robust, scalable performance increases through
parallel functional programming, especially as the number of processors
increases.

A particularly promising and well-studied approach to employing large
numbers of processors is to use data parallelism. Blelloch’s pioneering
work on NESL showed that it was possible to combine a rather flexible
programming model (nested data parallelism) with a fast, scalable execu-
tion model (flat data parallelism). In this talk I will describe Data Parallel
Haskell, which embodies nested data parallelism in a modern, general-
purpose language, implemented in a state-of-the-art compiler, GHC. I
will focus particularly on the vectorisation transformation, which trans-
forms nested to flat data parallelism, and I hope to present performance
numbers.

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, p. 138, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Minimal Ownership for Active Objects�

Dave Clarke1, Tobias Wrigstad2, Johan Östlund2, and Einar Broch Johnsen3

1 CWI, Amsterdam, The Netherlands
2 Purdue University, USA

3 University of Oslo, Norway

Abstract. Active objects offer a structured approach to concurrency,
encapsulating both unshared state and a thread of control. For efficient
data transfer, data should be passed by reference whenever possible,
but this introduces aliasing and undermines the validity of the active
objects. This paper proposes a minimal variant of ownership types that
preserves the required race freedom invariant yet enables data transfer by
reference between active objects (that is, without copying) in many cases,
and a cheap clone operation where copying is necessary. Our approach is
general and should be adaptable to several existing active object systems.

1 Introduction

Active objects have been proposed as an approach to concurrency that blends
naturally with object-oriented programming [37,61,1]. Several slightly differently
flavoured active object systems exist for Java [8], Eiffel [46, 17], C++ [43] et al.
Active objects encapsulate not only their state and methods, but also a single
(active) thread of control. Additional mechanisms, such as asynchronous method
calls and futures, reduce the temporal coupling between the caller and callee of a
method. Together, these mechanisms offer a large degree of potential concurrency
for deployment on multi-core or distributed architectures.

Internal data structures of active objects, used to store or transfer local data,
do not need independent threads of control. In contrast to the active objects,
these passive objects resemble ordinary (Java) objects. An immediate benefit of
distinguishing active and passive objects is that all the concurrency control is
handled by the active objects, and locking (via synchronised methods) becomes
redundant in the passive objects. This simplifies programming and enables the
(re-)use of standard APIs without additional concurrency considerations.

Unfortunately, introducing passive objects into the model gives rise to alias-
ing problems whenever a passive object can be shared between more than one
active object. This allows concurrent modification and/or observation of changes
to the passive data objects. Specifically, two active objects can access the same
passive data; if at least one thread modifies the data, then different access orders
� This work is in the context of the EU project IST-33826 CREDO: Model-

ing and analysis of evolutionary structures for distributed services (http://
credo.cwi.nl).

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 139–154, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

140 D. Clarke et al.

may produce different results unless we re-introduce locks into the programming
model. The resulting system would be as difficult to reason about as uncon-
strained shared variable concurrency. This problem can be addressed several
ways, neither of which we feel is entirely satisfactory:

Immutable Data Only. Active objects are mutable, but field values belong
to immutable data types; e.g., integers or booleans, immutable objects such
as Java-style strings or XML, or Erlang- and Haskell-style datatypes [5,35].

Cloning. Locally, active objects can arbitrarily access passive objects, but when
data is passed between active objects, the data must be deeply cloned. This
approach is taken for distributed active objects (e.g., [8, 18]).

Unique References. Only one reference to any passive object is allowed at
any time. Passive objects can be safely transferred between active objects.

Emerald [33,51] partly addresses this problem using the first approach. Objects
can be declared immutable to simplify sharing and for compiler optimisation, but
immutability is an unchecked annotation which may be violated. Emerald’s use
of immutability is optional, as adopting pure immutability means that programs
can no longer be implemented in an imperative object-oriented style.

ProActive [8] uses the second approach and copies all message parameters.
The programmer gets a very simple and straightforward programming model,
but the copying overhead is huge in message-intensive applications.

Last, using uniqueness requires a radical change in programming style and
may result in fragile code in situations not easily modelled without aliasing.

This paper investigates the application of ownership types in the context of
active object-based concurrency. We propose a combination of ownership-based
techniques that can identify the boundaries of active objects and statically verify
where reference semantics can be used in place of copy semantics for method
arguments and returns.

In previous work, we combined ownership types with effects to facilitate rea-
soning about disjointness [20] and with uniqueness to enable ownership trans-
fer [21]. Recently, we coalesced these to realise flexible forms of immutability and
read-only references [49]. In this paper we tune these systems to the active ob-
jects concurrent setting and extend the resulting system with the arg reference
mode from Flexible Alias Protection [48]. Furthermore, our specific choices of
ownership defaults make the proposed language design very concise in terms of
additional type annotations. The main contributions of this paper are:

– A synthesised minimal type system with little syntactic overhead that iden-
tifies active object boundaries. This type system enables expressing and sta-
tically checking (and subsequent compiler optimisations) safe practices that
programmers do manually today (framework permitting), such as:

* Statically guarantee total isolation of active objects;
* In a local setting, replace deep copying of messages with reference passing

for (parts of) immutable objects, or unique objects;
* In a distributed setting replace remote references to immutable (parts

of) objects with copying for more efficient local access; and

Minimal Ownership for Active Objects 141

* Immutability is per object and the same class can be used to instantiate
both immutable and mutable objects.

All necessary annotations are expressed in terms of ownership, plus a trivial
effects system which makes the formalisation (see [22]) clean and simple.

– We present our system in the context of a Java-like language, Joëlle, however
our results are applicable to any active object or actor based concurrency
model. Active object systems such as ProActive [8], Emerald [33, 51], and
Scoop [41] use unchecked immutability or active annotations. Integrating our
type system with these approaches for static checking seems straightforward.

The formal description of the system, which is a synthesized model of a large
body of previous work [20, 21, 59, 25, 49], can be found in [22].

Organisation. Section 2 surveys the alias control mechanisms upon which we
build our proposal. Section 3 further details the problem and presents our solu-
tion. Section 4 compares our work with related work, and Section 5 concludes.

2 Building Blocks

We now survey the alias control mechanisms used to construct our synthesized
system. They address the problem of reasoning about shared mutable state [31,
48], which is problematic as a shared object’s state can change unexpectedly,
potentially violating a sharer’s invariants or a client’s expectations. There are
three main approaches to this problem:

ownership: encapsulate all references to an object within some box ; such as
another object, a stack frame, a thread, a package, a class, or an active
object [48, 23, 19, 4, 30, 45, 3, 11, 13].

uniqueness: eliminate sharing so that there is only one active reference to an
object [30, 21, 14, 42, 3, 11].

immutability: eliminate or restrict mutability so an object cannot change, or
so that changes to it cannot be observed [10, 58, 48, 15, 55, 62].

2.1 Ownership

Ownership types [23] initially formalised the core of Flexible Alias Protection
[48]; variants have later been devised for a range of applications [48, 23, 19, 45,
3, 11, 13]. In general, object graphs form an unstructured “soup” of objects.
Ownership types impose structure on these graphs by first putting objects into
boxes [27], then imposing a topology [19, 2] on the boxes, and finally restricting
the way objects in different boxes can access each other, either prohibiting certain
references or limiting how the references can be used [45, 44].

Ownership types record the box in which an object resides, called the owner, in
the object’s type. The type system syntactically ensures that fields and methods
with types containing the name of a private box are encapsulated (thus only
accessible by this). This encapsulation ensures that the contents of private boxes

142 D. Clarke et al.

cannot be exported outside their owner. For this to work, the owner information
must be retained in the type. Consider the following code fragment:1

class Engine {} class Car { this::Engine e; }

In class Car, the owner of the Engine object is this, which indicates that the
object in the field e is owned by the current instance of Car (or, in other words,
that every car has its own engine). The type system ensures that the field e is
accessible only by this, the owning object.

Ownership types enforce a constraint on the structure of object graphs called
owners-as-dominators. This property ensures that access to an object’s internal
state goes through the object’s interface: the only way for a client of a Car object
to manipulate the Car’s Engine is via some method exposed in the Car’s public
interface. Some ownership types proposals [12, 3, 2, 45] weaken this property.

All classes, such as Engine above, have an implicit parameter owner which
refers to the owner of each instance of the class. Thus, arbitrary and extensible
linked data structures may be encapsulated in an object. Contrast this with
Eiffel’s expanded types [40] and C++’s value objects [57], which enable an object
to be encapsulated in another object, but require a fixed sized object. In the
following class

class Link { owner::Link next; int data; }

the next object has the same owner as the present object. This is a common
idiom, and we call such objects siblings. (The Universes system [45] uses the
keyword peer instead of owner.)

2.2 External Uniqueness

Object sharing can be avoided using unique or linear references [30,21,14,42,3,
11]: at any point in the execution of a program, only one accessible reference to
an object exists. Clarke and Wrigstad introduced the notion of external unique-
ness [21,59] which fits nicely with ownership types and permits unique references
to aggregate objects that are inherently aliased, such as circularly linked lists. In
external uniqueness, unique references must be (temporarily) made non-unique
to access or call methods on fields. The single external reference is thus the only
active reference making the aggregate effectively unique. External uniqueness
enables ownership transfer in ownership types systems.

External uniqueness is effectively equivalent to introducing an owner for the
field or variable holding a reference into the data structure, such that the only
occurrence of that owner is in the type of the field or variable. In the code below,
first holds the only pointer to the (sibling) link objects.

class List { unique::Link first; }

Uniqueness can be maintained with e.g., destructive reads or Alias Burying [14].
In summary, ownership deals with encapsulating an entire aggregate. Uniqueness
concerns having a single (usable) reference to an object. External uniqueness
combines them, resulting in a single (usable) reference to an entire aggregate.
1 In this section, code uses syntax from Joe-like languages [20,21,49].

Minimal Ownership for Active Objects 143

2.3 Immutability and ‘Safe’ Methods

Immutable objects can never change after they are created. An immutable ref-
erence prevents the holder from calling methods that mutate the target object.
Furthermore, references to representation objects returned from a method call
via an immutable reference are also immutable—or immutability would be lost.
Observational exposure [15] occurs when an immutable reference can be used to
observe changes to an object, which is possible if non-immutable aliases exist to
the object or its representation. Fortunately, strong encapsulation, uniqueness,
and read-only methods make the (staged2) creation of “truly immutable” objects
straightforward [49]. This is similar to Fähndrich and Xia’s Delayed Types [28].

In Flexible Alias Protection [48], ‘arg’ or safe references (our preferred ter-
minology) to an object may only access immutable parts of the object; i.e., the
parts which do not change after initialisation. Thus, clients accessing an object
via a safe reference can only depend on the object’s immutable state, which is
safe as it cannot change unexpectedly. Safe references can refer to any object,
even one which is being mutated by a different active object, without any risk
of observational exposure.

2.4 Owner-Polymorphic Methods

Owner-polymorphism is crucial for code reuse and flexibility in the ownership
types setting [19,59]. Owner-polymorphic methods are parameterised with owners
to give the receiver temporary permission to reference an argument object. For
example, the following method accepts an owner parameter foo in order to
enable a list owned by any other object to be passed as an argument:

<foo> int sum(foo::List values) { ... }

Clarke [19] established that owner-polymorphic methods can express a no-
tion of borrowing: an object may be passed to another object, which does not
own it, without the latter being able to capture a reference to the former. (For
further details, see [59].) Owner-polymorphic methods are reminiscent of region-
polymorphic procedures in Cyclone [29].

3 Active Ownership

In Concurrent programming in Java [38], Doug Lea writes that “To guarantee
safety in a concurrent system, you must ensure that all objects accessible from
multiple threads are either immutable or employ appropriate synchronisation,
and also must ensure that no other object ever becomes concurrently accessible
by leaking out of its ownership domain.”

The simple ways to guarantee the above are the first two we listed on Page 140:
making everything immutable or use deep copying semantics. While efficient, the
2 In staged object creation an object is initialised though a series of method calls,

potentially within different objects, rather than exclusively in its constructor [49].

144 D. Clarke et al.

Fig. 1. Active Ownership. Safe references are not depicted. Broker and Client are active
objects from the code example in Figure 2.

first is very restrictive and requires careful inspection of the code to determine
that the messages are truly immutable. The second is easier to check (just clone
all arguments) but has the downside of adding massive copying overhead.

We argue that the most effective approach is a pragmatic combination: using
unique references or immutable objects where possible and deep copying only
as a last resort. To enable this in a statically and modularly checkable fashion,
we introduce a few extra annotations on interfaces of active object classes. We
believe that requiring these extra annotations will be helpful for maintenance and
possibly also refactoring. Most importantly, we believe that the static checking
enabled by the annotations will save time, both programmer-time and run-time.

Our alias control mechanisms uphold the invariant that no two ‘threads’ con-
currently change or observe changes to an object, which is the invariant obtained
by the deep copying of message arguments in ProActive (with minor exceptions
unimportant to us here). Note that our type system is agnostic of the thread
model—it correctly infers the boundaries between active objects regardless.

3.1 Active and Passive Classes

Active and passive objects are instantiated from active and passive classes. Ac-
tive classes are declared with the active. Passive is default.

Active objects encapsulate a single thread of control. They primarily interact
via asynchronous method calls that return future values. A future is a placeholder
for a value which need not be currently available [9]. For asynchronous calls, the
future is the placeholder for the methods’ actual return values. Thus, the caller
need not wait for the call to complete. A future’s value is accessed using its get

method, which blocks until the future has a value, which is standard practise.
Synchronous calls may be encoded by calling get directly after asynchronous
method calls. Method calls to passive objects are always synchronous; i.e., they
are similar to standard method calls as found in Java. Multiple asynchronous

Minimal Ownership for Active Objects 145

active class Client {
void run() {

Request rm = ...; // formulate Request
future Offer offer = myBroker!book(rm.clone()); // †
... // evaluate offer
offer.getProvider()!accept(offer.clone()); // †

}
}
active class Broker {

void run() { ... } // go into reactive mode
// book returns first Offer that responds to the request
Offer book(Request request) { ... }

}
active class Provider {

void run() { ... } // go into reactive mode
Offer query(Request request) { ... }
boolean accept(Offer offer) { ... }

}
class Request {

Request(String desc) { ... }
void markAccepted() { ... }

}
class Offer {

Offer(Details d, Provider p, Request trackback) { ... }
Provider getProvider() { ... }

}

Fig. 2. Example of active objects exchanging arguments by copying (shown at †). Here
future Offer denotes a future of type Offer. For clarity, we use a !-notation on
asynchronous method calls, e.g., myBroker!book(rm).

calls to an active object are put in an inbox and executed sequentially. Creol
[25,34] uses release point to yield execution midway through a method, but this
is irrelevant to the minimal ownership system.

Figures 1 and 2 show a use of active objects that deliberately copy arguments
to avoid aliasing-induced data races. Figure 4 shows how we can annotate the
code in our system to avoid the copying without comprising safety. For brevity,
we focus simply on the interfaces, which suffices for the type annotations. The
figure shows the following scenario:

1. Client sends request to broker
2. Broker forwards request to provider(s) and negotiates a deal
3. Broker returns resulting offer to client
4. If client accepts offer, client sends acceptance to provider

The client, the broker, and all providers are represented as active objects and
execute concurrently. In contrast, requests and offers are passive objects, passed
between active ones by copying to avoid data races between the active objects.

3.2 Putting It Together: Language Constructs for Active Ownership

This section describes our synthesised system leading up to an encoding of the
example from Figure 2 that avoids copying. Figure 3 shows a few examples of

146 D. Clarke et al.

code using our annotations. While our annotations are similar to capabilities,
they are expressed as owners. This keeps the underlying formalism (see [22])
relatively simple. Our system has the following annotations:

active globally accessible owner of all active objects
owner the owner of the current object (in the scope of the annotation)
this the owner denoting the current object (in the scope of the annotation)
unique the owner denoting the current field or variable
immutable globally accessible owner of all immutable objects
safe globally accessible owner allowing safe access

The owners active, immutable, and safe are available in any context, and
denote the global owner of active objects, immutable references, and safe
references, respectively. unique is also available everywhere, but denotes field-
as-owner, as explained in Section 2.2. Nested inside each active object is a collec-
tion of passive objects, owned by the active object with owner this. The owner
owner is available only in passive classes for referring to the owner of the current
instance, and is used to create data structures within an active object.

Note that the ownership hierarchy is very flat, as there is no owner this inside
a passive class. Ownership encapsulates passive objects inside an active object.
Consequently, there is no need to keep track of nesting or other relationships
such as links between owners [2]. In addition, the classes in this system take
no owner parameters, in contrast to the original ownership types system [23].
Therefore, no run-time representation of ownership is required [60].

Immutable and Safe References. Immutable types have owner immutable.
In our system, only passive objects can have immutable type. Fields or variables
containing immutable references are not final unless explicitly declared final or if
the container enclosing the field is immutable. In order to preserve immutability,
only read-only and safe methods (see below) can be called on immutable objects.

Safe references (called argument references in Flexible Alias Protection [48])
have owner safe and can be used only to access the final fields of an object, and
the final fields of the values returned from methods, and so forth. These parts of
an object cannot be changed underfoot. Methods that obey these conditions are
called safe methods, denoted by a safe annotation. Any non-active type can be
subsumed into a safe type.

Immutable references can only be created from unique references. The op-
eration consumes the unique reference and thus guarantees the absence of any
aliases to the object that allows mutation. This is powerful and flexible as it al-
lows a single class to be used both as a template for both mutable and immutable
objects (see [21]) and staged object construction. Effectively, immutability be-
comes a property of the object, rather than of the class or of references.

Safe references do not preclude the existence of mutable aliases, which is safe
as it only allows access to the referenced object’s immutable parts. Consequently,
both safe and immutable references avoid observational exposure.

Minimal Ownership for Active Objects 147

active class Foo { // active class
this Bar f; // properly encapsulated field
owner Bar b; // invalid -- owner is not legal in active classes
active Bar k; // reference to (sibling) active object

}

class Bar { // passive class
owner Bar f; // sibling field (same level of encapsulation)
this Bar b; // invalid -- this is not legal in passive classes

}

unique Foo f = new Foo(); // new returns a unique reference
immutable Foo b = f--; // -- is destructive read, nullifies f

void foo() read { ... } // can only call read and safe methods
// on this, and not update fields

void foo() safe { ... } // can only call safe methods/read
safe Foo f; // final immutable/safe fields on this/f

void foo() write { ... } // regular method, write can be omitted

Fig. 3. Examples of active and passive classes, unique, safe and immutable types, and
read and safe methods

Read-only and Safe Methods. Following previous read-only proposals, e.g.,
[30,55,10,15], a read-only method preserves the immutability of objects, and does
not return non-immutable references to otherwise immutable objects. Read-only
methods cannot update any object with owner owner, which notably includes the
receiver. They are not, however, purely functional: they can be used to modify
unique references passed in as arguments or objects freshly created within the
method itself and they can call mutating methods on active objects.

As immutability is encoded in the owners, a return value from a read-only
method that has owner owner will (automatically) have the owner immutable

when the read-only method is called on an immutable reference, and hence will
not provide a means for violating the immutability of the original reference [49,
62]. To allow modular checking, read-only methods are annotated with read.

A safe method, annotated safe, is an additionally restricted read-only method
that may only access immutable parts of the receiver’s state, i.e., final fields con-
taining safe or immutable references. Conceptually, a read-only method prevents
mutation whereas a safe method also prevents the observation of mutation.

3.3 Data Transfer and Minimal Cloning

To ensure that the data race freedom invariant is preserved, care is needed when
passing data between active objects. How data is passed, depends on its owner.

Active-owned objects are safe to pass by reference as external threads of
control never enter them by virtue of asynchronous methods calls and futures.
Immutable and safe-owned objects are obviously safe to pass by reference as

148 D. Clarke et al.

their accessible parts cannot be changed. Last, unique objects are safe to pass
by reference as they are effectively transferred to the target3.

Other objects (owned by this, owner and owner-parameters to methods)
must be cloned. Cloning returns a unique reference which can be transferred
regardless of the owner of the expected parameter type. Cloning follows the
above rules to determine whether an object’s fields must be cloned or whether
it is safe to simply copy the reference—the only difference is that clone clones
fields holding unique references. A “minimal clone” operation can be trivially
inferred statically from the owner annotations. This is similar to the sheep clone
described for ownership types [47, 19] and Nienaltowski’s object import [46].

Notably, our clone rightfully avoids cloning of active objects, something a
naive clone would not do. This is necessary to allow returning a reference to a
provider in our example and lets active objects behave like regular objects.

Reducing Syntactic Baggage. We adopt a number of reasonable defaults for
owner annotations to reduce the amount of annotations required in a program,
and to use legacy code immediately in a sensible way.

Passive Classes (including all library code) have one implicit owner parameter
owner, which is the default owner of all fields and all method arguments.
Note that this means that library code, in general, requires no annotations.

Active Classes have the implicit owner active. In an active class, the default
owner is this for all fields and unique for all method arguments.

Together these defaults imply that all passive objects reachable from an ac-
tive object’s fields are encapsulated inside the active object, in the absence of
immutable and safe references. By default, all method parameters in the pub-
lic interface of active objects are unique. This is the only way to guarantee
that mutable objects are not shared between active objects. References passed
between active objects must be unique, either originally or as a result of perform-
ing a clone. Note that having unique as the default annotation does not apply
to active class types appearing in the interface, as these can only be active.
This choice of defaults is supported by the experimental results of Potanin and
Noble [50] and Ma and Foster [39], which show that many arguments between
objects could well be unique references.

3.4 Revisiting the Example

Figure 4 adds active ownership annotations to Figure 2. As a result, all copying
is avoided. Only six annotations are needed to express the intended semantics of
Figure 2. This might seem excessive for a 20-line program, but remember that we
only focus on the parts of the program that needs annotations. Furthermore, no
annotations are required for library code used by this program. But more impor-
tantly, we can now captures the programmer’s intentions in statically checkable
annotations.
3 We currently do not support borrowing on asyncronous method calls. A unique

object transferred to from active object A to B must be explicitly transferred back.

Minimal Ownership for Active Objects 149

active class Client {
void run() ‡ {

†Request rm = ...; // formulate Request
future immutable Offer offer = myBroker!book(rm); // (1)
... // evaluate offer
offer.getProvider()!accept(offer); // (2)

}
}
active class Broker {

void run() ‡ { ... } // go into reactive mode
// book returns first provider that responds to the request
immutable Offer book(safe Request request) ‡ { ... } // (3)

}
active class Provider {

immutable Offer query(safe Request request) ‡ { ... } // (4)
boolean accept(immutable Offer offer) ‡ { ... } // (5)

}
class Request {

Request(†String desc) ‡ { ... }
void markAccepted() ‡ { ... }

}
class Offer {

Offer(†Details d, †Provider p, safe Request r) ‡ ... // (6)
Provider getProvider() read { ... } // (7)

}

Fig. 4. The active objects example with active ownership. † indicates an implicit use
of a default, owner in passive classes and this in active. ‡ indicates an implicit use
of the write default for methods. These are not part of the actual code.

The offer is made immutable (4), which allows it to be safely shared between
concurrently executing clients, brokers and providers. The immutability require-
ment propagates to the type of the future variable (1) and formal parameter (5).
The request is received as a safe reference (3), so the broker may only access its
immutable parts which precludes both races and observational exposure. This
constraint is reasonable, since changing crucial parts of a request under foot
might lead to invalid offers. Parts of the request can still be updated by the
client (but not by the broker or any provider), e.g., to store a handle to the ac-
cepted offer in it. The safe annotation propagates to (6). Read-only methods are
annotated read (7). Reading the provider from an immutable offer (2) returns
a reference to an active object, which is safe as it does not share any state with
the outside world.

3.5 Other Relevant Features

For space reasons, we omit a discussion of exceptions, which is a straightforward
addition (they would be immutable), and a discussion on how to deal with globals
(see [22]) and focus on the issue of owner-polymorphic methods in the presence
of asynchronous method calls.

150 D. Clarke et al.

Owner-polymorphic methods (and their problems). The previous dis-
cussion ignored owner-polymorphic methods. An owner-polymorphic method of
an active object enables the active object to borrow passive objects from an-
other active object, with the guarantee that it will not keep any references to
the borrowed objects. Such methods require care, as they are problematic in the
presence of asynchronous method calls. It is easy to see that an asynchronous call
could easily lead to a situation where two active objects (Client and Broker)
have access to the same passive objects (Request):

1. Client lends Request to Broker via an asynchronous method call.
2. Client continues executing on Request.
3. Broker concurrently operates on Request.

We choose the simplest solution to avoid this problem by banning asynchro-
nous calls to owner-polymorphic methods. Alternative approaches would require
preventing Client from accessing Request—or more precisely, objects with the
same owner as Request—until the method call to Broker returned.

4 Related Work

4.1 Ownership Types

Several approaches using ownership types for concurrency control have been pro-
posed. [7, 11] introduce thread-local owners to avoid data races and deadlocks.
Guava [7] is presented as an informal collection of rules which would require a
significantly more complex ownership types system than the one we present here.
Boyapati et al.’s PRFJ [11] encodes a lock ordering in class headers. The rigid
structure imposed by this scheme along with explicit threads makes program
evolution tedious and the system complex. Another related approach uses Uni-
verses instead of ownership types for race safety [24]. In each case the underlying
concurrency model is threads and not active objects.

In X10 place types statically describe where data resides improving data lo-
cality [52], mainly for performance reasons. X10 also sports futures and a shared
space of immutable data. Remote data is remotely accessed, and there are no
unique references. However, due to the hierarchical memory model of X10, sim-
ilar to a distributed system, pointer transfer might not be as effective as in a
shared memory system.

StreamFlex [56] and its successor Flexotasks [6] are close in spirit to Joëlle.
They use a minimal notion of ownership, with little need for annotations, to
handle garbage collection issues in a real-time setting. Objects may be passed
between concurrent components without copying (Singularity OS [32] allows this
too). StreamFlex’s notion of immutability is however more limited than ours
and safe or unique references are not supported. In conclusion, the additional lim-
itations of the stream programming approach (compared to our general-purpose
approach) allows StreamFlex to use even less syntactic baggage than Joëlle.

Minimal Ownership for Active Objects 151

4.2 Actors and Active objects

Erlang [5] is relevant as a purely functional language with immutable data. This
is a bad fit for OO and encoding of data structures that rely on sharing or
object identifiers is difficult or impossible. Carlsson et al. [16] present an under-
approximate message analysis to detect when messages can be safely shared
rather than copied for a mini-Erlang system with cubic worst-case time com-
plexity. Our type-system based approach should fare better for the price of a
few additional concepts and annotations.

Symbian OS [43] and the ProActive Java framework [8] use active objects
for concurrency. Based on Eiffel, Eiffel// [17] is an active objects system with
asynchronous method calls with futures, and SCOOP [41] uses preconditions for
task scheduling. In SCOOP, active object boundaries are captured by separate

annotations on variables, which, in contrast to our proposal, are not statically en-
forced. (This is partially improved by Nienaltowski [46].) In the original SCOOP
proposal, method arguments across active objects have deep copying semantics,
with the aforementioned associated pains. Object migration through uniqueness
is not supported. Later versions of SCOOP [46] integrate an eager locking mecha-
nism to enable pass-by-reference arguments for non-value objects. An integration
of our approach with SCOOP seems fairly straightforward.

CoBoxes [53] impose a hierarchy structure on active objects to control the
access to groups of objects. Our proposal permits only a flat collection of active
objects. On the other hand, our system allows the transfer of objects between
active objects and the sharing of immutable and safe objects.

Different components or active objects communicate data by cloning in, e.g.,
the coordination language ToolBus [26] and in ASP [18]. In a distributed setting
this is vindicated, but, as ToolBus developers [26] observe, copying data is a
major source of performance problems. This is exactly the problem our approach
aims to address, without introducing data-races, in a statically checkable fashion.

4.3 Software Transactional Memory

Software Transactional Memory is a recent approach to avoiding data races [54].
Atomic blocks are executed optimistically without locking and versioning de-
tects conflicting updates. STM could be used under the hood to implement
Emerald’s mutually exclusive object regions [33,51]. Ongoing work by Kotselidis
et al. [36] adds software transactional memory to ProActive. Preliminary results
are promising, but the system retains ProActive’s deep-copying semantics even
for inter-node computations.

5 Concluding Remarks

We have applied ownership types to a data sharing problem of active objects.
Our solution involves a combination of ownership, external uniqueness, and im-
mutability. Our minimal ownership system was defined so that default annota-
tions can be chosen to give a low syntactic overhead. We expect few necessary
changes to code for passive objects if our system was implemented in ProActive.

152 D. Clarke et al.

Our system is close in spirit to several existing systems that lack our sta-
tic checking for things like immutability. No existing active objects system is
powerful enough to use minimal safe cloning the way we outlined in Section 3.3.

A prototype compiler for Joëlle is available from the authors.

References

1. Agha, G., Hewitt, C.: Actors: A conceptual foundation for concurrent object-
oriented programming. In: Research Directions in Object-Oriented Programming,
pp. 49–74. MIT Press, Cambridge (1987)

2. Aldrich, J., Chambers, C.: Ownership Domains: Separating Aliasing Policy from
Mechanism. In: Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 1–25.
Springer, Heidelberg (2004)

3. Aldrich, J., Kostadinov, V., Chambers, C.: Alias Annotations for Program Under-
standing. In: OOPSLA (November 2002)

4. Almeida, P.S.: Balloon Types: Controlling sharing of state in data types. In: Ak-
sit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 32–59. Springer,
Heidelberg (1997)

5. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

6. Auerbach, J., Bacon, D., Guerraoui, R., Spring, J., Vitek, J.: Flexible task graphs:
A unified restricted thread programming model for java. In: LCTES (2008)

7. Bacon, D.F., Strom, R.E., Tarafdar, A.: Guava: a dialect of Java without data
races. In: OOPSLA (2000)

8. Baduel, L., Baude, F., Caromel, D., Contes, A., Huet, F., Morel, M., Quilici, R.:
Grid Computing: Software Environments and Tools. In: Chapter Programming,
Composing, Deploying, for the Grid. Springer, Heidelberg (2006)

9. Baker Jr., H.G., Hewitt, C.: The incremental garbage collection of processes. In:
Proceeding of the Symposium on Artificial Intelligence Programming Languages,
ACMSIGPLAN Notices, August 1977, vol. 12, p. 11 (1977)

10. Birka, A., Ernst, M.D.: A practical type system and language for reference im-
mutability. In: OOPSLA, October 2004, pp. 35–49 (2004)

11. Boyapati, C., Lee, R., Rinard, M.: Ownership Types for Safe Programming: Pre-
venting Data Races and Deadlocks. In: OOPSLA (2002)

12. Boyapati, C., Liskov, B., Shrira, L.: Ownership Types for Object Encapsulation.
In: POPL (2003)

13. Boyapati, C., Rinard, M.: A Parameterized Type System for Race-Free Java Pro-
grams. In: OOPSLA (2001)

14. Boyland, J.: Alias burying: Unique variables without destructive reads. Software—
Practice and Experience 31(6), 533–553 (2001)

15. Boyland, J.: Why we should not add readonly to Java (yet). Journal of Object
Technology 5(5), 5–29 (June 2006) Special issue: ECOOP 2005 Workshop FTfJP.

16. Carlsson, R., Sagonas, K.F., Wilhelmsson, J.: Message analysis for concurrent pro-
grams using message passing. ACM TOPLAS 28(4), 715–746 (2006)

17. Caromel, D.: Service, Asynchrony, and Wait-By-Necessity. Journal of Object Ori-
entated Programming (JOOP), 12–22 (November 1989)

18. Caromel, D., Henrio, L.: A Theory of Distributed Objects. Springer, Heidelberg
(2005)

Minimal Ownership for Active Objects 153

19. Clarke, D.: Object Ownership and Containment. Ph.D thesis, School of Computer
Science and Engineering, University of New South Wales, Sydney, Australia (2001)

20. Clarke, D., Drossopolou, S.: Ownership, Encapsulation and the Disjointness of
Type and Effect. In: OOPSLA (2002)

21. Clarke, D., Wrigstad, T.: External uniqueness is unique enough. In: Cardelli, L.
(ed.) European Conference on Object-Oriented Programming. LNCS, vol. 2473,
pp. 176–200. Springer, Heidelberg (2002)

22. Clarke, D., Wrigstad, T., Östlund, J., Johnsen, E.B.: Minimal Ownership for Active
Objects. Technical Report SEN-R0803, CWI (June 2008),
http://ftp.cwi.nl/CWIreports/SEN/SEN-R0803.pdf

23. Clarke, D.G., Potter, J., Noble, J.: Ownership types for flexible alias protection.
In: OOPSLA, pp. 48–64 (1998)

24. Cunningham, D., Drossopoulou, S., Eisenbach, S.: Universe Types for Race Safety.
In: VAMP 2007, September 2007, pp. 20–51 (2007)

25. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: de
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

26. de Jong, H.: Flexible Heterogeneous Software Systems. PhD thesis, Faculty of
Natural Sciences, Math. and Computer Science, Uni. of Amsterdam (January 2007)

27. Drossopoulou, S., Clarke, D., Noble, J.: Types for hierarchic shapes. In: Sestoft, P.
(ed.) ESOP 2006. LNCS, vol. 3924, pp. 1–6. Springer, Heidelberg (2006)

28. Fahndrich, M., Xia, S.: Establishing object invariants with delayed types. SIG-
PLAN Not. 42(10), 337–350 (2007)

29. Grossman, D., Hicks, M., Jim, T., Morrisett, G.: Cyclone: A type-safe dialect of
C. C/C++ Users Journal 23(1) (January 2005)

30. Hogg, J.: Islands: Aliasing protection in object-oriented languages. In: OOPSLA
(November 1991)

31. Hogg, J., Lea, D., Wills, A., de Champeaux, D., Holt, R.: The Geneva Convention
on the treatment of object aliasing. OOPS Messenger 3(2), 11–16 (1992)

32. Hunt, G., Larus, J.: Singularity: Rethinking the software stack. Operating Systems
Review 40(2), 37–49 (2007)

33. Hutchinson, N.C., Raj, R.K., Black, A.P., Levy, H.M., Jul, E.: The Emerald pro-
gramming language report. Technical Report 87-10-07, Seattle, WA (USA) (1987)
(Revised 1997)

34. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

35. Jones, S.P., Hughes. J. (eds.): Haskell 98: A non-strict, purely functional language.
Technical report (February 1999)

36. Kotselidis, C., Ansari, M., Jarvis, K., Luján, M., Kirkham, C., Watson, I.: In-
vestigating software transactional memory on clusters. In: IWJPDC 2008. IEEE
Computer Society Press, Los Alamitos (2008)

37. Lavender, R.G., Schmidt, D.C.: Active object: an object behavioral pattern for
concurrent programming. In: Proc. Pattern Languages of Programs (1995)

38. Lea, D.: Concurrent Programming in Java, 2nd edn. Addison-Wesley, Reading
(2000)

39. Ma, K.-K., Foster, J.S.: Inferring aliasing and encapsulation properties for Java.
In: OOPSLA, pp. 423–440 (2007)

40. Meyer, B.: Eiffel: The Language. Prentice-Hall, Englewood Cliffs (1992)
41. Meyer, B.: Systematic concurrent object-oriented programming. CACM 36(9), 56–

80 (1993)

http://ftp.cwi.nl/CWIreports/SEN/SEN-R0803.pdf

154 D. Clarke et al.

42. Minsky, N.H.: Towards alias-free pointers. In: Cointe, P. (ed.) ECOOP 1996. LNCS,
vol. 1098, pp. 189–209. Springer, Heidelberg (1996)

43. Morris, B.: CActive and Friends. Symbian Developer Network (November 2007),
http://developer.symbian.com/main/downloads/papers/
CActiveAndFriends/CActiveAndFriends.pdf

44. Müller, P.: Modular Specification and Verification of Object-Oriented Programs.
LNCS, vol. 2262. Springer, Heidelberg (2002)

45. Müller, P., Poetzsch-Heffter, A.: Universes: A type system for controlling repre-
sentation exposure. In: Poetzsch-Heffter, A., Meyer, J. (eds.), Programming Lan-
guages and Fundamentals of Programming, pp. 131–140. Technical Report 263,
Fernuniversität Hagen (1999)

46. Nienaltowski, P.: Practical framework for contract-based concurrent object-
oriented programming. Ph.D thesis, Department of Computer Science, ETH Zurich
(2007)

47. Noble, J., Clarke, D., Potter, J.: Object ownership for dynamic alias protection.
In: TOOLS Pacific, Melbourne, Australia (November 1999)

48. Noble, J., Vitek, J., Potter, J.: Flexible Alias Protection. In: Jul, E. (ed.) ECOOP
1998. LNCS, vol. 1445. Springer, Heidelberg (1998)

49. Östlund, J., Wrigstad, T., Clarke, D., Åkerblom, B.: Ownership, uniqueness and
immutability. In: IWACO (2007)

50. Potanin, A., Noble, J.: Checking ownership and confinement properties. In: Formal
Techniques for Java-like Programs (2002)

51. Raj, R.K., Tempero, E., Levy, H.M., Black, A.P., Hutchinson, N.C., Jul, E.: Emer-
ald: A general-purpose programming language. Software: Practice and Experi-
ence 21(1), 91–118 (1991)

52. Saraswat, V.A., Sarkar, V., von Praun, C.: X10: concurrent programming for mod-
ern architectures. In: Yelick, K.A., Mellor-Crummey, J.M. (eds.) Principles and
Practice of Parallel Programming (2007)

53. Schäfer, J., Poetzsch-Heffter, A.: CoBoxes: Unifying active objects and structured
heaps. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp.
201–219. Springer, Heidelberg (2008)

54. Shavit, N., Touitou, D.: Software transactional memory. In: PODC 1995, pp. 204–
213. ACM Press, New York (1995)

55. Skoglund, M., Wrigstad, T.: Alias control with read-only references. In: Sixth Con-
ference on Computer Science and Informatics (March 2002)

56. Spring, J.H., Privat, J., Guerraoui, R., Vitek, J.: StreamFlex: High-throughput
Stream Programming in Java. In: OOPSLA (October 2007)

57. Stroustrup, B.: The C++ Programming Language. Addison-Wesley, Reading
(1986)

58. Tschantz, M.S., Ernst, M.D.: Javari: Adding reference immutability to Java. In:
OOPSLA, pp. 211–230 (October 2005)

59. Wrigstad, T.: Ownership-Based Alias Management. PhD thesis, Royal Institute of
Technology, Kista, Stockholm (May 2006)

60. Wrigstad, T., Clarke, D.: Existential owners for ownership types. Journal of Object
Technology 4(6), 141–159 (2007)

61. Yonezawa, A., Briot, J.-P., Shibayama, E.: Object-oriented concurrent program-
ming in ABCL/1. In: OOPSLA 1986. SIGPLAN Notices, vol. 21(11), pp. 258–268
(November 1986)

62. Zibin, Y., Potanin, A., Ali, M., Artzi, S., Kiezun, A., Ernst, M.D.: Object and
reference immutability using Java generics. In: Crnkovic, I., Bertolino, A. (eds.)
ESEC/SIGSOFT FSE, pp. 75–84. ACM Press, New York (2007)

http://developer.symbian.com/main/downloads/papers/CActiveAndFriends/CActiveAndFriends.pdf
http://developer.symbian.com/main/downloads/papers/CActiveAndFriends/CActiveAndFriends.pdf

Type-Based Deadlock-Freedom Verification for
Non-Block-Structured Lock Primitives and

Mutable References

Kohei Suenaga

Tohoku University

Abstract. We present a type-based deadlock-freedom verification for
concurrent programs with non-block-structured lock primitives and mu-
table references. Though those two features are frequently used, they are
not dealt with in a sufficient manner by previous verification methods.
Our type system uses a novel combination of lock levels, obligations and
ownerships. Lock levels are used to guarantee that locks are acquired in
a specific order. Obligations and ownerships guarantee that an acquired
lock is released exactly once.

1 Introduction

Concurrent programs are getting important as multi-processor machines and
clusters are getting popular. Many programs including operating systems and
various network servers are written as concurrent programs.

A problem with a concurrent program is the possibility of a deadlock: a state
in which every thread is waiting for a lock to be released by other threads. A
deadlock is considered to be a serious problem since a deadlock causes uninten-
tional halt of a system.

This paper presents a type-based method for deadlock-freedom verification.
Our verification framework supports non-block-structured lock primitives and
mutable references to locks. Those two features are heavily used in real-world
software. For example, non-block-structured lock primitives, whose locking op-
erations do not syntactically correspond to unlocking operations, are used in, for
example, C programs with POSIX thread library.

Figure 1 shows a program with non-block-structured lock primitives and mu-
table references to locks, which suffers from a deadlock. The example is based
on an actual bug found in nss ldap-226-20.rpm [5]. In that example, a function
nss ldap getgroups dyn first calls nss ldap enter and then executes two
branches. The first branch calls nss ldap leave before executing return , while
the second branch does not call nss ldap leave . Because nss ldap enter
acquires a global lock lock and returns without unlocking it, lock is kept
acquired if the second branch is executed after nss ldap getgroups dyn re-
turns. This causes a deadlock if nss ldap getgroups dyn is called twice with
an environment under which the second branch is executed.

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 155–170, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

156 K. Suenaga

static mutex_t __lock; void
_nss_ldap_enter() { ... mutex_lock(&__lock); ... } void
_nss_ldap_leave() { ... mutex_unlock(&__lock); ... } char
*_nss_ldap_getgroups_dyn(const char *user...) {
...
_nss_ldap_enter ();
if (...) { _nss_ldap_leave(); return NULL; }
/* _nss_ldap_leave is not called in this branch. */
if (...) { return NSS_STATUS_NOTFOUND; }
...

}

Fig. 1. A deadlock contained in nss ldap-226-20.rpm

static mutex_t lockA, lockB;

void accessA() {
mutex_lock(&lockA);
...
mutex_unlock(&lockA);

}
void accessB() {
mutex_lock(&lockB);
...
mutex_unlock(&lockB);

}

void thread1() {
mutex_lock(&lockB);
accessA();
mutex_unlock(&lockB);

}
void thread2() {
mutex_lock(&lockA);
accessB();
mutex_unlock(&lockA);

}

Fig. 2. An example of a deadlock caused by circular dependency between locks

Figure 2 shows another example of a deadlock, which is caused by circular
dependency between locks. In the example, a function accessA acquires and
releases a lock lockA , while accessB acquires and releases lockB . These two
functions are called from two threads thread1 and thread2 . In those threads,
accessA is called while lockB is acquired and accessB is called while lockA is
acquired, so that the program may lead to a deadlock because of the lock order
reversal between lockA and lockB .

The main idea of our type system is to guarantee that locks are acquired in
a specific order, and that an acquired lock is released exactly once. The first
property is guaranteed by lock levels, while the second property is guaranteed
by obligations and ownerships.

So far, much effort has been paid for static deadlock-freedom verification
[12,11,14,2,7,8,1]. However, non-block-structured lock primitives and mutable
references to locks are not dealt with in a sufficient manner. For example, the
analyses by Boyapati, Lee and Rinard [2] and by Flanagan and Abadi [8] consider
only block-structured synchronization primitives (i.e., synchronized blocks in

Type-Based Deadlock-Freedom Verification 157

x, y, z, f . . . ∈ Var
lck ::= L | L̂
P ::= �Ds
D ::= x(�y) = s
v ::= true | false
s ::= skip | x(�y) | (if x then s1 else s2) | putob(x, y)

| let x = v in s | let x = ref y in s | let x =!y in s | x := y
| spawn s | let x = newlock () in s | lock x | unlock x | s1; s2

E ::= [] | E; s

Fig. 3. Syntax

the Java language.) Kobayashi et al. [12,11,14] proposed a deadlock-freedom
analysis for the π-calculus. Although their analysis can, in principle, handle
references by encoding them into channels, the resulting analysis is too imprecise.

The rest of this paper is organized as follows. Section 2 defines our target
language. Section 3 introduces a type system for deadlock-freedom analysis.
Section 4 states soundness of our type system. After discussing related work
in Section 5, we conclude in Section 6.

2 Target Language

Figure 3 shows the syntax of our target language. A program P consists of
mutually recursive function definitions D̃ and a main statement s. A function
definition D consists of the name of the function x, a sequence of arguments ỹ
and a function body s.

The meta-variable s ranges over the set of statements. The statement skip
does nothing. The statement x(ỹ) is a function call. The conditional branch
if x then s1 else s2 executes s1 if x is true and s2 otherwise. The state-
ments let x = ref y in s, let x =!y in s and x := y are for generating,
dereferencing and assignment to a reference. We write let x = y in s for
let z = ref y in let x =!z in s if the variable z does not freely appear in s.
The statement spawn s spawns a new thread that executes s. putob(x, y),
which is used for type soundness proof and operationally equivalent to skip,
represents the end of scope of x in let x =!y in s. putob(x, y) should not be
included in a program. The statement let x = newlock () in s generates a fresh
lock, binds x to the lock and executes s. The statements lock x and unlock x
are for acquiring and releasing a lock x. The statement s1; s2 is a sequential
composition of s1 and s2. Figure 5 and 6 show how the programs in Figure 1
and 2 are encoded in our language. We omit the main statement of the program
in Figure 1.

The operational semantics of our calculus is defined as a transition relation
between configurations. Figure 4 presents an excerpt of the transition rules. A

158 K. Suenaga

x′ is fresh

(�D,Env , H,L, {let x = ref y in s} � S) → (�D,Env , H [x′ �→ y], L, {[x′/x]s} � S)
(E-Ref)

(�D,Env , H [x �→ y′], L, {x := y} � S) → (�D,Env , H [x �→ y], L, {skip} � S)
(E-Assign)

(�D,Env , H [y �→ z], L, {let x =!y in s} � S) →
(�D,Env , H [y �→ z], L, {([z/x]s);putob(z, y)} � S)

(E-LetDeref)

x′ is fresh

(�D,Env , H,L, {let x = newlock () in s} � S) →
(�D,Env , H,L[x′ �→ L̂], {[x′/x]s} � S)

(E-LetNewlock)
(�D, Env , H,L[x �→ L̂], {lock x} � S) → (�D, Env , H,L[x �→ L], {skip} � S)

(E-Lock)
(�D,Env , H,L[x �→ L], {unlock x} � S) → (�D, Env , H, L[x �→ L̂], {skip} � S)

(E-Unlock)
(�D,Env , H, L, {s} � S) → (�D′,Env ′, H ′, L′, {s′} � S′)

(�D,Env , H,L, {E[spawn s]} � S) → (�D′,Env ′, H ′, L′, {s, E[skip]} � S′)
(E-Spawn)

(�D, Env , H,L, putob(x, y)) → (�D, Env , H,L, skip) (E-Putob)

Fig. 4. Operational Semantics (excerpt)

nss ldap enter (lock) = lock lock
nss ldap leave(lock) = unlock lock
nss ldap getgroups dyn(ret , cond , lock) =

nss ldap enter (lock);
if cond then (nss ldap leave(lock); ret := 0)
else ret := 0

Fig. 5. An encoding of the program in Figure 1 in our language

accessA(lockA) = lock lockA;unlock lockA
accessB (lockB) = lock lockB ;unlock lockB
thread1 (lockA, lockB) = lock lockB ; accessA(lockA);unlock lockB
thread2 (lockA, lockB) = lock lockA; accessB(lockB);unlock lockA
let lockA = newlock() in let lockB = newlock() in

spawn (thread1 (lockA, lockB)); spawn (thread2 (lockA, lockB))

Fig. 6. An encoding of the program in Figure 2 in our language

Type-Based Deadlock-Freedom Verification 159

f(x, y) = unlock x;unlock y
main() = let x = newlock() in

lock(x); (let y = ref x in f(x, !y))

Fig. 7. Programs that contain aliasing to a lock occurs

configuration in our semantics is a tuple of a set of function definitions D̃, an
environment that maps a variable to a value Env , a heap H , a map from a lock
variable to a state of the lock L and a multiset of running threads S. A state of
a lock is either locked (L) or unlocked (L̂.) In Figure 4, S1 � S2 is the disjoint
union of multisets S1 and S2.

3 Type System

3.1 Overview

We first present an overview of our type system. As mentioned in Section 1, our
type system guarantees that locks are acquired in a specific order by using lock
levels and that an acquired lock is released exactly once by using obligations and
ownerships.

Lock levels. Each lock type in our type system is associated with a natural
number called lock level. The type system prevents deadlocks by guaranteeing
that locks are acquired in a strict increasing order of lock levels. For example,
the statement spawn (lock x; lock y;unlock y;unlock x);
(lock y; lock x;unlock x;unlock y) is rejected because the first thread requires
the level of x to be less than that of y, while the second thread requires the level
of y should be less than x.

Obligations. In order to guarantee that an acquired lock is released exactly
once, each lock type in our type system has information on obligation to release
the lock. A lock type lock(lev , U) in our type system has a flow-sensitive com-
ponent U called a usage, in addition to a lock level lev . A usage is either ob,
which denotes an obligation to release the lock, or 1, which shows there is no
such obligation.

More precisely, the type system deals with obligations based on the following
principles.

1. lock x can be executed if and only if (1) x does not have an obligation and
(2) the level of every lock with an obligation is less than the level of x. x has
an obligation after lock x is performed.

2. unlock x can be performed if and only if x has an obligation. x does not
have the obligation after unlock x is performed.

3. An obligation is treated linearly, that is, if an alias to a lock with an oblig-
ation is generated, then exactly one of the lock or the alias inherits the
obligation.

160 K. Suenaga

let x = newlock() in let y = newlock() in
let z = newlock() in let r = ref x in

spawn (lock(z); lock(!r);unlock(z); lock(z);unlock(!r);unlock(z));
(lock(z); r := y;unlock(z))

Fig. 8. A program in which a lock contained in a reference is not correctly released

For example, the type system rejects the program

f(x) = lock x
let x = newlock() in f(x); lock x

because x has an obligation after the function call f(x) returns, which is followed
by lock x, so that (1) in the first condition above is violated. The program in
Figure 7 is also rejected because, from the third condition above, only one of x or
y inherits the obligation generated by lock x after the reference y is generated,
while both x and y are required to have an obligation just before f(x, !y).

Note the difference between our obligations and flow-sensitive type qualifiers
in CQual [9]. Flow-sensitive type qualifiers in CQual represent the current state
of values, while our obligations represent how variables should be used afterwards.
This difference matters when we consider a program with aliasing. For example,
consider the program (lock x; let y = x in s). In our type system, x has the
type lock(lev , ob) just after lock x, which means the lock should be released
through x afterwards. After the alias y of x is created, the type environment may
be either x : lock(lev , ob), y : lock(lev ,1) or x : lock(lev ,1), y : lock(lev , ob)
depending on how x and y are used in s. On the other hand, in CQual, if x is
put in an abstract location ρ, then the flow-sensitive type qualifier assigned to
ρ just after lock x is locked, which means that x is currently locked. After the
alias y is created, x and y have the same type as they are bound to the same
lock.

Ownership. In order to guarantee deadlock-freedom of a program with thread
creation and accesses to mutable references, obligations are still insufficient to
guarantee that an acquired lock is released exactly once. For example, consider
the program in Figure 8. That program consists of two threads. The first thread
acquires and releases a lock contained in the reference r, while the second thread
assigns another lock to the same reference. Then, the lock released by the first
thread may be different from acquired one, so that the acquired lock may not
be released.

The problem here can be described as follows: a write to a reference to a lock
should not occur while the lock is held. Note that this property differs from race-
freedom because race-freedom only guarantees that a write to a reference and
another read or write to the reference do not occur at the same time. In fact,
though the program in Figure 8 is race-free because each access to the reference
r is guarded by a lock z, it still has a problem described above.

Type-Based Deadlock-Freedom Verification 161

lev ∈ {0, 1, . . .} ∪ {∞}
U ::= ob | 1
r ∈ [0, ∞)
τ ::= bool | lock(lev , U) | τ refr | (τ1, . . . , τn)lev→(τ ′

1, . . . , τ
′
n)

Fig. 9. Syntax of types

To solve such problem, our type system uses ownerships, a thread’s capa-
bility to access a reference. As in Boyland [3], Terauchi [17] and Kikuchi and
Kobayashi [10] do, we use rational-numbered ownerships. A well-typed program
obeys the following rules on ownerships in manipulating references.

1. An ownership less than or equal to 1 is assigned to a reference to a lock when
the reference is generated.

2. A thread is required to have an ownership greater than 0 on a reference in
order to read a lock from the reference.

3. A thread is required to have an ownership 1 on a reference in order to write
a lock to the reference.

4. When a thread is spawned, an ownership of each reference is divided and
distributed to each thread.

Based on those rules, a thread has to have an ownership greater than 0 to acquire
a lock through a reference, which prevents other threads from overwriting the ref-
erence while the lock is acquired. For example, the program in Figure 8 is rejected
because the total ownership required on the reference r exceeds 1: the first thread
requires an ownership more than 0 while the second thread requires 1.

3.2 Syntax

Figure 9 shows the syntax of types. The set of lock levels, ranged over by a
meta-variable lev , is the set of natural numbers with ∞. We extend the standard
partial order ≤ on the set of natural numbers to that on lock levels by lev ≤ ∞
for any lev . We write lev1 < lev2 for lev1 ≤ lev2 ∧ lev1 �= lev2.

Usage, ranged over by a meta-variable U , represents whether there is an oblig-
ation to release a lock. A usage ob represents an obligation to release a lock, while
a usage 1 represents that there is not such obligation.

The meta variable τ ranges over types. A lock type lock(lev , U) is for locks
that should be used according to lev and U . For example, if a variable x has the
type lock(1,1), then the lock can be acquired through x if locks whose levels are
more than 1 are not already acquired. If a variable x has the type lock(1, ob)
then the lock should be released exactly once through the variable x.

The type τ refr is for references, whose content should be used according to
τ after it is read from the reference. The meta variable r, which is associated
with a reference type, is a rational number in the set [0, ∞) and represents a
thread’s capability to access the reference. An ownership being greater than 0

162 K. Suenaga

U1 ⊗ U2

ob ⊗ ob = undefined
ob ⊗ 1 = ob
1 ⊗ ob = ob
1 ⊗ 1 = 1

τ1 ⊗ τ2

τ1 refr1 ⊗ τ2 refr2 = τ1 ⊗ τ2 ref r1+r2

lock(lev , U1) ⊗ lock(lev , U2) =
lock(lev , U1 ⊗ U2)

τ ⊗ τ = τ
(where τ is int,bool,
or a function type.)

Γ1 ⊗ Γ2

(Γ1 ⊗ Γ2)(x) =

��
�

Γ1(x) (if x ∈ Dom(Γ1)\Dom(Γ2))
Γ2(x) (if x ∈ Dom(Γ2)\Dom(Γ1))
Γ1(x) ⊗ Γ2(x) (if x ∈ Dom(Γ1) ∩ Dom(Γ2))

noob(U),noob(τ)

noob(1)
(NoOb-Unlocked)

τ is bool or a function type.
noob(τ)

(NoOb-Other)

noob(U)

noob(lock(lev , U))
(NoOb-Lock)

noob(τ)

noob(τ refr)
(NoOb-Ref)

Fig. 10. Definition of auxiliary operators and predicates

means that one can read a value through the reference. An ownership 1 means
that one can write a value to the reference. A function type τ̃

lev→τ̃ ′ consists of
the following components.

– τ̃ : the types of arguments before execution of the functions.
– τ̃ ′: the types of arguments after execution of the functions.
– lev : the minimum level of locks that may be acquired by the functions.

3.3 Type Judgment

The type judgment for statements is Γ � s ⇒ Γ ′ & lev . Type environments Γ
and Γ ′ describe the types of free variables in s before and after execution of s.
A lock level lev is an effect of s, which is a minimum level of locks that may be
acquired during execution of s.

The type judgment intuitively means that (1) locks are acquired in an strict
increasing order of their levels, (2) an acquired lock is released exactly once and,
(3) the levels of acquired locks are greater than or equal to lev if s is executed
under an environment described by Γ and with a continuation that respects
types in Γ ′.

The type judgment is defined as the least relation that satisfies the typing rules
in Figure 11. In those rules, we use the operation ⊗ defined in Figure 10. U1 ⊗U2

Type-Based Deadlock-Freedom Verification 163

∅ � skip ⇒ ∅ & ∞ (T-Nop)

Γ1 � s1 ⇒ Γ2 & lev Γ2 � s2 ⇒ Γ3 & lev

Γ1 � s1; s2 ⇒ Γ3 & lev
(T-Seq)

x : bool, Γ � s ⇒ x : bool, Γ ′ & lev
Γ � let x = v in s ⇒ Γ ′ & lev

(T-LetBool)

x : lock(lev ′,1), Γ � s ⇒ x : lock(lev ′, 1), Γ ′ & lev
Γ � let x = newlock () in s ⇒ Γ ′ & lev

(T-Newlock)

x : lock(lev ,1) � lock x ⇒ x : lock(lev , ob) & lev (T-Lock)

x : lock(lev , ob) � unlock x ⇒ x : lock(lev ,1) & ∞ (T-Unlock)

τ = (τ1, . . . , τn)lev→(τ ′
1, . . . , τ

′
n)

y1 : τ1 ⊗ · · · ⊗ yn : τn ⊗ x : τ � x(y1, . . . , yn) ⇒ y1 : τ ′
1 ⊗ · · · ⊗ yn : τ ′

n ⊗ x : τ & lev
(T-App)

x : bool, Γ � s1 ⇒ Γ ′ & lev x : bool, Γ � s2 ⇒ Γ ′ & lev

x : bool, Γ � if x then s1 else s2 ⇒ Γ ′ & lev
(T-If)

x : τ1 ref r, y : τ2, Γ � s ⇒ x : τ ′
1 ref r′

, y : τ ′
2, Γ

′ & lev noob(τ ′
1)

r ≤ 1 if ¬nolock(τ1) wf(τ1 refr) wf(τ2)

y : τ1 ⊗ τ2, Γ � let x = ref y in s ⇒ y : τ ′
2, Γ

′ & lev
(T-Ref)

x : τ1, y : τ2 refr, Γ � s ⇒ x : τ ′
1, y : τ ′

2 ref r′′
, Γ ′ & lev r′ > 0

wf(τ1) wf(τ2 refr)

y : τ1 ⊗ τ2 refr+r′
, Γ � let x =!y in s ⇒ y : τ ′

1 ⊗ τ ′
2 ref r′′

, Γ ′ & lev
(T-Deref)

noob(τ3) wf(τ1) wf(τ2)

x : τ3 ref1, y : τ1 ⊗ τ2 � x := y ⇒ x : τ1 ref1, y : τ2 & ∞
(T-Assign)

x : τ1 ⊗ τ2, y : τ3 refr � putob(x, y) ⇒ x : τ1, y : τ2 ⊗ τ3 ref r & ∞
(T-Putob)

Γ1 � s ⇒ Γ3 & lev noob(Γ3) wf(Γ1) wf(Γ2)

Γ1 ⊗ Γ2 � spawn s ⇒ Γ2 & lev
(T-Spawn)

Γ � s ⇒ Γ ′ & lev lev ′ ≤ lev max(levelob(Γ ′′)) < lev ′

Γ, Γ ′′ � s ⇒ Γ ′, Γ ′′ & lev ′

(T-Weak)

Fig. 11. Typing rules for statements

gives the usage that means both obligations in U1 and U2 have to be fulfilled.
ob ⊗ ob is undefined because releasing an acquired lock twice is prohibited. The
operator ⊗ on usages are naturally extended to types.

We also use the following definitions in Figure 11.

164 K. Suenaga

�D = {f(x11, . . . , x1m1) = s1, . . . , f(xn1, . . . , xnmn) = sm}
Γ = f1 : (τ1,1, . . . , τ1,m1)

lev1→ (τ ′
1,1, . . . , τ

′
1,m1), . . . ,

fn : (τn,1, . . . , τn,mn)levn→ (τn,1, . . . , τn,mn)
Γ, xi,1 : τi,1, . . . , xi,mi : τi,mi � si ⇒ Γ, xi,1 : τ ′

i,1, . . . , xi,mi : τ ′
i,mi

& lev i

�Def �D : Γ
(T-Fundef)

�Def �D : Γ Γ � s ⇒ Γ ′ & lev noob(Γ ′)

�Prog �Ds
(T-Prog)

Fig. 12. Typing rules for programs

Definition 1 (No obligation). noob(τ) is defined as the least predicate that
satisfies the rules in Figure 10.

The predicate noob(τ) asserts that τ does not have any obligation to fulfil.

Definition 2. levelU , a function that takes a type and returns a set of lock
levels, is defined as follows.

levelU (τ refr) = levelU (τ)
levelU (lock(lev , U ′)) = {lev} (where U = U ′)

levelU (τ) = ∅ (otherwise)

levelU (Γ) is defined as {lev |x : τ ∈ Γ ∧ lev ∈ levelU (τ)}.

The function levelU collects levels of locks whose usages are equal to U .

Definition 3. A predicate wf is defined as the least one that satisfies the fol-
lowing rules.

τ is bool, lock(lev , U)
or a function type.

wf(τ)

wf(τ) ¬noob(τ) ⇒ r > 0
wf (τ ref r)

∀x : τ ∈ Γ.wf (τ)
wf(Γ)

The predicate wf(Γ) asserts that ownerships of each reference type in Γ are
consistent with its content type. Note that wf(τ refr) requires r > 0 if τ has an
obligation to release a lock because one has to read the reference to release the
lock.

We explain important rules in Figure 11. In the rule (T-Newlock), noob(U1)
means that the newly generated lock has no obligation. noob(U2) means that all
the obligations in the type of x should be fulfilled at the end of s because x
cannot be accessed after execution of s.

(T-Lock) guarantees that there is no obligation before execution of lock x.
After execution of lock x, x has an obligation to release the lock.

In the rule (T-Ref), we use a predicate nolock (τ). This predicate holds if and
only if τ does not contain lock types as its component. The rule (T-Ref) states

Type-Based Deadlock-Freedom Verification 165

...
Γ3 � unlock z ⇒ Γ4

Γ1 � let z =!x in unlock z ⇒ Γ2 noob(lock(1, 1))
y : lock(1, ob) � let x = ref y in let z =!x in unlock z ⇒ y : lock(1,1)

Fig. 13. A derivation tree of let x = ref y in unlock x under the assumption y :
lock(1, ob)

that the ownership assigned to the new reference x in typing s is less than or
equal to 1 if the type of x contains lock types as its component. At the end of s,
x should not have any obligation because x cannot be accessed after execution
of s.

In the rule (T-Deref), if y has an obligation to release a lock, only one of x
and y inherits that obligation during execution of s. The rule (T-Deref) also
states that the ownership assigned to the type of y should be greater than 0.

A derivation of a statement let x = ref y in let z =!x in unlock z under
the type environment y : lock(1, ob) in Figure 13 shows how (T-Ref) and
(T-Deref) work. The type environments Γ1, . . . , Γ4 in that figure are defined
as follows.

Γ1 = x : lock(1, ob) ref1, y : lock(1,1)
Γ2 = x : lock(1,1) ref1, y : lock(1,1)
Γ3 = x : lock(1,1) ref1−r, y : lock(1,1), z : lock(1, ob)
Γ4 = x : lock(1,1) ref1−r, y : lock(1,1), z : lock(1,1).

Here, r is an arbitrary rational number in the set (0, 1). Note that the obligation
of y is passed to the newly generated reference x, delegated to z and fulfilled
through z.

The rule (T-Assign) guarantees that there is no obligation that must be
fulfilled through the reference x because x is being overwritten. If y has an
obligation, then either x or y inherits that obligation after execution of x := y.
For example, both

x : lock(0,1) ref1, y : lock(0, ob) � x := y ⇒ x : lock(0,1) ref1, y : lock(0, ob)
x : lock(0,1) ref1, y : lock(0, ob) � x := y ⇒ x : lock(0, ob) ref1, y : lock(0,1)

hold. After the assignment, the obligation originally owned by y should be ful-
filled through y in the first case, while it should be fulfilled through the reference
x in the second case. However,

x : lock(0,1) ref1, y : lock(0, ob) � x := y ⇒ x : lock(0, ob) ref1, y : lock(0, ob)

does not hold.
In the rule (T-Spawn), the pre type environment of the conclusion part is

split into Γ1 and Γ2. The environment Γ1 is for the newly generated thread s,

166 K. Suenaga

while Γ2 is for the continuation of spawn s. The condition noob(Γ3) imposes
that all the obligations in Γ1 should be fulfilled in the newly generated thread s.

The rule (T-Weak) is for adding redundant variables to type environments.
In that rule, the condition max(levelob(Γ ′′)) < lev ′ guarantees that if newly
added lock-typed variables have obligations, then the levels of those lock types
(levelob(Γ ′′)) should be less than the level of locks that may be acquired in s
(lev ′). With this condition, we can guarantee that locks are acquired in a strict
increasing order of lock levels.

The type judgment for programs �Prog D̃s is defined as the least relation
that satisfies the rules in Figure 12. The rule (T-Prog) states that a program
D̃s is well-typed if (1) the defined functions have the types described in a type
environment Γ and (2) the main statement s is well-typed under Γ and (3)
all the obligations generated during execution of the program are fulfilled after
execution of s. The rule (T-Fundef), which is a rule for function definitions,
guarantees that each function has the type described in Γ .

Example. In the program in Figure 5, the function nss ldap leave has type
lock(lev , ob)lev→lock(lev ,1) where lev is an arbitrary natural number. Thus,

lock in the body of nss ldap getgroups dyn has type lock(lev ,1) at the end of
the first branch and lock(lev , ob) at the end of the second branch, which violates
the condition of (T-If) that type environments at the end of two branches have
to agree. In the example in Figure 6, the condition max(levelob(Γ ′′)) < lev ′ in
(T-Weak) imposes that the level of lockB has to be less than that of lockA in
the body of thread1 . For the same reason, the level of lockA has to be less than
that of lockB in the body of thread2 , so that the program is ill-typed.

3.4 Type Inference

We informally describe a type inference algorithm in this section. Our algorithm
is a standard constraint-based one; the algorithm takes a program as input,
generates a constraint set based on the typing rules in Figure 11 and reduces
those constraints.

We omit an explanation on the constraint generation phase which is done
in a standard manner. A generated constraint is either (1) lexp1 ≤ lexp2, (2)
ρ = ob ⇒ lexp1 ≤ lexp2, (3) ρ = Uexp1 ⊗ · · · ⊗ Uexpn or (4) a linear inequality
on ownerships. Here, lexp and Uexp are defined by the following syntax.

lexp ::= φ (lock level variables) | ∞ | lexp + 1
Uexp ::= ρ (usage variables) | ob | 1.

Generated constraints are reduced as follows. First, linear inequalities on
ownerships are solved using an external solver. Then, constraints of the form
ρ = Uexp1 ⊗ · · · ⊗ Uexpn are reduced to a substitution on usage variables. This
is done by applying a standard constraint reduction algorithm for linear type
systems (e.g., one presented in [13].) By applying the obtained substitution to
constraints of the form ρ = ob ⇒ lexp1 ≤ lexp2, we obtain a constraint set of the

Type-Based Deadlock-Freedom Verification 167

�Def �D : Γfun Γfun(x) = τ

� (�D � {x(�y) = s},Env , H,L, x) : τ, ∅, ∅
(TC-Fundef)

� (�D,Env � {x �→ v}, H,L, x) : bool, ∅, ∅ (TC-Env)

� (�D,Env , H � {x �→ x′}, L, x′) : τ, P, O

� (�D, Env , H � {x �→ x′}, L, x) : τ refr, P, O ⊗ {x �→ r}
(TC-Heap)

� (�D,Env , H,L � {x �→ lck}, x) : lock(lev , U), {x �→ U}, ∅
(TC-Lockstate)

∀x ∈ Dom(�D ∪ Env ∪ H ∪ L). � (�D,Env , H, L, x) : Γ (x), Px, Ox

P =
�

x∈Dom(�D∪Env∪H∪L)

Px O =
�

x∈Dom(�D∪Env∪H∪L)

Ox

∀x ∈ Dom(L). if L(x) = L̂ then P (x) = 1 else P (x) = ob
∀y ∈ Dom(H).¬nolock(Γ (y)) =⇒ O(y) ≤ 1

�E (�D,Env , H, L) : Γ
(T-Env)

�E (�D,Env , H,L) : (Γ1 ⊗ · · · ⊗ Γn) Γi � si ⇒ Γ ′
i & lev i

wf(Γi) noob(Γ ′
i) (si ∈ S)

�Conf (�D,Env , H,L, S)
(T-Config)

Fig. 14. Typing rules for configurations

form {lexp1 ≤ lexp′
1, . . . , lexp1 ≤ lexp′

n}. This constraint set on lock levels can
be solved in the same way as Kobayashi’s deadlock-freedom analysis [11].

4 Type Soundness

This section states soundness of the type system introduced in the previous
section. The proof of the soundness statement will appear in the full version of
the current paper.

Because a deadlock is expressed as a stuck state in our language, soundness
of the type system introduced in the previous section is stated as follows.

Theorem 1 (Type soundness). If �Prog D̃s and (D̃, ∅, ∅, ∅, {s}) →∗ (D̃′,
Env ′, H ′, L′, S′), then S = ∅ or there exists a configuration (D̃′′,Env ′′, H ′′, L′′, S′′)
that satisfies (D̃′,Env ′, H ′, L′, S′) → (D̃′′,Env ′′, H ′′, L′′, S′′).

To state lemmas that are used in the proof of the theorem above, we first introduce
a type judgment for configurations. Type judgments �Conf (D̃,Env , H, L, S), �E

(D̃,Env , H, L) : Γ and � (D̃,Env , H, L, x) : τ, P are defined as the least relation
that satisfies the rules in Figure 14. Here, the meta-variable P represents a map
from lock-typed variables to usages and is used to describe which variable has

168 K. Suenaga

an obligation to release each lock. The meta-variable O is a map from reference-
typed variables to ownerships and used for calculating the sum of ownerships
assigned to each reference. Operators P1 ⊗P2 and O1 ⊗O2 are defined as follows.

(P1 ⊗ P2)(x) =

⎧
⎨

⎩

P1(x) (x ∈ Dom(P1)\Dom(P2))
P2(x) (x ∈ Dom(P2)\Dom(P1))
P1(x) ⊗ P2(x) (x ∈ Dom(P1) ∩ Dom(P2))

(O1 ⊗ O2)(x) =

⎧
⎨

⎩

O1(x) (x ∈ Dom(O1)\Dom(O2))
O2(x) (x ∈ Dom(O2)\Dom(O1))
O1(x) + O2(x) (x ∈ Dom(O1) ∩ Dom(O2))

The judgment � (D̃,Env , H, L, x) : τ, P, O means that (1) x has a type τ under
D̃,Env , H and L, (2) x or a value reachable from x through H has obligations
to release a lock y if P (y) = ob and (3) references reachable from x are assigned
ownerships as in O. By using this judgment, the rule (T-Env) guarantees that,
for each held lock, there exists exactly one variable that is reachable to the lock
and that has the obligation to release the lock. The rule (T-Config) guarantees
that each obligation is fulfilled by exactly one thread.

The theorem above is proved using the following three lemmas.

Lemma 1. �Prog D̃s implies �Conf (D̃, ∅, ∅, ∅, {s}).

Lemma 2 (Preservation). If �Conf (D̃,Env , H, L, S) and (D̃,Env , H, L, S)
→ (D̃′,Env ′, H ′, L′, S′), then �Conf (D̃′,Env ′, H ′, L′, S′).

Lemma 3 (Progress). If �Conf (D̃,Env , H, L, S) then S = ∅ or there exists
a configuration (D̃′,Env ′, H ′, L′, S′) such that (D̃,Env , H, L, S) → (D̃′,Env ′,
H ′, L′, S′).

5 Related Work

Kobayashi et al. [12,11,14] proposed type systems for deadlock-freedom of π-
calculus processes. Their idea is (1) to express how each channel is used by a us-
age expression and (2) to add capability levels and obligation levels to the inferred
usage expressions in order to detect circular dependency among input/output
operations to channels. Our usages can be seen as a simplified form of their
usage expressions; following their encoding [11], lock(lev , ob) corresponds to
()/ ∗ I∞lev .Olev

∞ and lock(lev ,1) to ()/Olev
∞ | ∗ I∞lev .Olev

∞ . Their verification method
is applicable to programs which use various synchronization primitives other
than mutexes because they use π-calculus as their target language. However,
their framework does not have references as primitives and cannot deal with
references encoded using channels accurately.

Boyapati, Lee and Rinard [2] proposed a type-based deadlock- and race-
freedom verification of Java programs. In our previous work [16], we have pro-
posed a type-based deadlock-freedom analysis for concurrent programs with

Type-Based Deadlock-Freedom Verification 169

block-structured lock primitives, references and interrupts. The main difference
between those type systems and our type system is that our type system deals
with non-block-structured lock primitives, while their type system only deals
with block-structured lock primitives.

Foster, Terauchi and Aiken [9] proposed a type system with flow-sensitive type
qualifiers [9] and applied their type system to an analysis which checks locks are
not doubly acquired nor released. Their type system adds a flow-sensitive type
qualifier (locked or unlocked in their lock usage analysis) to each abstract
memory location which contains locks, and checks whether qualifiers are in an
expected state. They check that each locking operation is followed by an unlock-
ing operation but do not guarantee deadlock-freedom. They do not deal with
concurrency, either. As discussed in Section 3.1, the meaning of our obligations
differs from that of their flow-sensitive type qualifiers.

6 Conclusion

We have proposed a type-based deadlock-freedom verification method for con-
current programs with non-block-structured lock primitives and references. Our
type system verifies deadlock-freedom by guaranteeing that locks are acquired in
a specific order by using lock levels and that an acquired lock is released exactly
once by using obligations and ownerships.

Future work includes conducting deadlock-freedom verification experiments of
practical software. We have implemented a prototype of a verifier based on our
framework and have successfully verified deadlock-freedom of a network device
driver.We are trying to apply our verifier to larger software such as network servers.

Another future work is to extend our framework with several practical features
such as interrupts, recursive types and synchronization primitives other than mu-
texes. We are especially interested in dealing with interrupts which are essential
in verifying low-level software such as operating system kernels as pointed out
in several papers [16,15,4,6]. We consider extending usages with information on
whether the lock may be held while interrupts are enabled.

Acknowledgement. We thank Naoki Kobayashi for his fruitful comments on
our research. We also thank the members of Kobayashi-Sumii group in Tohoku
University and anonymous reviewers for their comments. This research is par-
tially supported by Grant-in-Aid for JSPS Fellows (19·1504) and JSPS Research
Fellowships for Young Scientists.

References

1. Abadi, M., Flanagan, C., Freund, S.N.: Types for safe locking: Static race detection
for Java. ACM Transactions on Programming Languages and Systems 28(2), 207–
255 (2006)

2. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: Prevent-
ing data races and deadlocks. In: Proceedings of the 2002 ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA 2002), SIGPLAN Notices, November 2002. vol. 37, pp. 211–230 (2002)

170 K. Suenaga

3. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

4. Chatterjee, K., Ma, D., Majumdar, R., Zhao, T., Henzinger, T.A., Palsberg,
J.: Stack size analysis for interrupt-driven programs. Information and Computa-
tion 194(2), 144–174 (2004)

5. Dahyabhai, N.: Bugzilla Bug 439215: dbus-daemon-1 hangs when using the option
nss initgroups ignoreusers in /etc/ldap.conf. with the user root. Red Hat, Inc (ac-
cessed on June 19, 2008) (March 2008),
https://bugzilla.redhat.com/show bug.cgi?id=439215

6. Feng, X., Shao, Z., Dong, Y., Guo, Y.: Certifying low-level programs with hard-
ware interrupts and preemptive threads. In: Programming Language Design and
Implementation (PLDI) (June 2008)

7. Flanagan, C., Abadi, M.: Object types against races. In: Baeten, J.C.M., Mauw, S.
(eds.) CONCUR 1999. LNCS, vol. 1664, pp. 288–303. Springer, Heidelberg (1999)

8. Flanagan, C., Abadi, M.: Types for safe locking. In: Swierstra, S.D. (ed.) ESOP
1999. LNCS, vol. 1576, pp. 91–108. Springer, Heidelberg (1999)

9. Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: Proceedings
of ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, pp. 1–12 (2002)

10. Kikuchi, D., Kobayashi, N.: Type-based verification of correspondence assertions
for communication protocols. In: Proceedings of the Fifth ASIAN Symposium on
Programming Languages and Systems (November 2007)

11. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta In-
formatica 42(4-5), 291–347 (2005)

12. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Her-
manns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidel-
berg (2006)

13. Kobayashi, N.: Substructural type systems for program analysis. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, p. 14. Springer, Heidel-
berg (2008), http://www.kb.ecei.tohoku.ac.jp/∼koba/slides/FLOPS2008.pdf

14. Kobayashi, N., Saito, S., Sumii, E.: An implicitly-typed deadlock-free process cal-
culus. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 489–503.
Springer, Heidelberg (2000)

15. Palsberg, J., Ma, D.: A typed interrupt calculus. In: Damm, W., Olderog, E.-R.
(eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 291–310. Springer, Heidelberg (2002)

16. Suenaga, K., Kobayashi, N.: Type-based analysis of deadlock for a concurrent
calculus with interrupts. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
490–504. Springer, Heidelberg (2007)

17. Terauchi, T.: Types for Deterministic Concurrency. PhD thesis, Electrical Engi-
neering and Computer Sciences, University of California at Berkeley (August 2006)

https://bugzilla.redhat.com/show_bug.cgi?id=439215
http://www.kb.ecei.tohoku.ac.jp/~koba/slides/FLOPS2008.pdf

Reasoning about Java’s Reentrant Locks

Christian Haack1,�, Marieke Huisman2,�,†,‡, and Clément Hurlin3,�,†

1 Radboud Universiteit Nijmegen, The Netherlands
2 University of Twente, The Netherlands

3 INRIA Sophia Antipolis - Méditerranée, France

Abstract. This paper presents a verification technique for a concurrent Java-like
language with reentrant locks. The verification technique is based on permission-
accounting separation logic. As usual, each lock is associated with a resource
invariant, i.e., when acquiring the lock the resources are obtained by the thread
holding the lock, and when releasing the lock, the resources are released. To ac-
commodate for reentrancy, the notion of lockset is introduced: a multiset of locks
held by a thread. Keeping track of the lockset enables the logic to ensure that re-
sources are not re-acquired upon reentrancy, thus avoiding the introduction of new
resources in the system. To be able to express flexible locking policies, we com-
bine the verification logic with value-parameterized classes. Verified programs
satisfy the following properties: data race freedom, absence of null-dereferencing
and partial correctness. The verification technique is illustrated on several exam-
ples, including a challenging lock-coupling algorithm.

1 Introduction

Writing correct concurrent programs, let alone verifying their correctness, is a highly
complex task. The complexity is caused by potential thread interference at every pro-
gram point, which makes this task inherently non-local. To reduce this complexity,
concurrent programming languages provide high-level synchronization primitives. The
main synchronization primitive of today’s most popular modern object-oriented lan-
guages — Java and C# — are reentrant locks. While reentrant locks ease concurrent
programming, using them correctly remains difficult and their incorrect usage can re-
sult in nasty concurrency errors like data races or deadlocks. Multithreaded Java-like
languages do not offer enough support to prevent such errors, and are thus an important
target for lightweight verification techniques.

An attractive verification technique, based on the regulation of heap space access, is
O’Hearn’s concurrent separation logic (CSL) [18]. In CSL, the programmer formally
associates locks with pieces of heap space, and the verification system ensures that a
piece of heap space is only accessed when the associated lock is held. This, of course,
is an old idea in verification of shared variable concurrent programs [2]. The novelty of
CSL is that it generalizes these old ideas in an elegant way to languages with unstruc-
tured heaps, thus paving the way from textbook toy languages to realistic programming
languages. This path has been further explored by Gotsman et al. [10] and Hobor et

� Supported in part by IST-FET-2005-015905 Mobius project.
† Supported in part by ANR-06-SETIN-010 ParSec project.
‡ Research done while at INRIA Sophia Antipolis - Méditerranée.

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 171–187, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

172 C. Haack, M. Huisman, and C. Hurlin

al. [13], who adapt CSL from O’Hearn’s simple concurrent language (with a static set
of locks and threads) to languages with dynamic lock and thread creation and concur-
rency primitives that resemble POSIX threads. However, in these variants of CSL, locks
are single-entrant; this paper adapts CSL to a Java-like language with reentrant locks.

Unfortunately, reentrant locks are inherently problematic for separation-logic rea-
soning, which tries to completely replace “negative” reasoning about the absence of
aliasing by “positive” reasoning about the possession of access permissions. The prob-
lem is that a verification system for reentrant locks has to distinguish between initial
lock entries and reentries, because only after initial entries is it sound to assume a lock’s
resource invariant. This means that initial lock entries need a precondition requiring that
the current thread does not already hold the acquired lock. Establishing this precondi-
tion boils down to proving that the acquired lock does not alias a currently held lock,
i.e., to proving absence of aliasing.

This does not mean, however, that permission-based reasoning has to be abandoned al-
together for reentrant locks. It merely means that permission-based reasoning alone is in-
sufficient. To illustrate this, we modularly specify and verify a fine-grained lock-coupling
list (where lock reentrancy complicates verification) that has previously been verified
with separation logic rules for single-entrant locks [10]. This example crucially uses that
our verification system includes value-parameterized types. Value-parameterized types
are generally useful for modularity, and are similar to type-parameterized types in Java
Generics [17]. In the lock-coupling example, we use that value-parameterized types can
express type-based ownership [7,5], which is a common technique to relieve the aliasing
problem in OO verification systems based on classical logic [16].

Another challenge for reasoning about Java-like languages is the handling of inher-
itance. In Java, each object has an associated reentrant lock, its object lock. Naturally,
the resource invariant that is associated with an object lock is specified in the object’s
class. For subclassing, we need to provide a mechanism for extending resource invari-
ants in subclasses in order to account for extended object state. To this end, we rep-
resent resource invariants as abstract predicates [21]. We support modular verification
of predicate extensions, by axiomatizing the so-called “stack of class frames” [9,3] in
separation logic, as described in our previous work [12].

This paper is structured as follows. First, Section 2 describes the Java-like language
that we use for our theoretical development. Next, Section 3 provides some background
on separation logic and sketches the axiomatization of the stack of class frames. Sec-
tion 4 presents Hoare rules for reentrant locking. The rules are illustrated by several
examples in Section 5. Last, Section 6 sketches the soundness proof for the verification
system, and Section 7 discusses related work and concludes.

2 A Java-Like Language with Contracts

This section presents the Java-like language that is used to write programs and specifica-
tions. The language distinguishes between read-only variables ı, read-write variables �,
and logical variables α . The distinction between read-only and read-write variables is
not essential, but often avoids the need for syntactical side conditions in the proof rules
(see Section 4 and [12]). Method parameters (including this) are read-only; read-write

Reasoning about Java’s Reentrant Locks 173

variables can occur everywhere else, while logical variables can only occur in specifi-
cations and types. Apart from this distinction, the identifier domains are standard:

C,D ∈ ClassId I ∈ IntId s,t ∈ TypeId = ClassId ∪ IntId o, p,q,r ∈ ObjId f ∈ FieldId
m ∈ MethId P ∈ PredId ı ∈ RdVar � ∈ RdWrVar α ∈ LogVar

x,y,z ∈ Var = RdVar ∪ RdWrVar ∪ LogVar

Values are integers, booleans, object identifiers and null. For convenience, read-
only variables can be used as values directly. Read-only and read-write variables can
only contain these basic values, while logical variables range over specification values
that include both values and fractional permissions [6]. Fractional permissions are frac-
tions 1

2n in the interval (0,1]. They are represented symbolically: 1 represents itself, and
if symbolic fraction π represents concrete fraction fr then split(π) represents 1

2 · fr.
The full fraction 1 grants read-write access right to an associated heap location, while
split fractions grant read-only access rights. The verification system ensures that the
sum of all fractional permissions for the same heap location is always at most 1. As a
result, the system prevents read-write and write-write conflicts, while permitting con-
current reads. Formally, the syntactic domain of values is defined as follows:

n ∈ Int v,w ∈ Val ::= null | n | b | o | ı
b ∈ Bool = {true,false} π ∈ SpecVal ::= α | v | 1 | split(π)

Now we define the types used in our language. Since interfaces and classes (defined
next) can be parameterized with specification values, object types are of the form t<π̄>.
Further, we define special types perm (for fractional permissions) and lockset (for
sets of objects).

T,U,V,W ∈ Type ::= void | int | bool | t<π̄> | perm | lockset

Next, class declarations are defined. Classes declare fields, abstract predicates (as
introduced by Parkinson and Bierman [21]), and methods. Following [21], predicates
are always implicitly parameterized by the receiver parameter this, and can explic-
itly list additional parameters. Methods have pre/postcondition specifications, parame-
terized by logical variables. The meaning of a specification is defined via a universal
quantification over these parameters. In examples, we usually leave the parameteriza-
tion implicit, but it is treated explicitly in the formal language.

F ∈ Formula specification formulas (see Sec. 3 and 4)
spec ::= reqF ;ensF ; pre/postconditions
fd ::= T f ; field declarations
pd ::= pred P<T̄ ᾱ>=F ; predicate definitions
md ::= <T̄ ᾱ>spec U m(V̄ ı̄){c} methods (scope of ᾱ, ı̄ is T̄ ,spec,U,V̄ ,c)
cl ∈ Class ::= classes

classC<T̄ ᾱ> extU impl V̄ {fd* pd* md*} (scope of ᾱ is T̄ ,U,V̄ , fd*,pd*,md*)

In a similar way, interfaces are defined formally as follows:

int ∈ Interface ::= interface I<T̄ ᾱ>ext Ū {pt* mt*}

where pt* are predicate types and mt* are method types including specifications (see [11]
for a formal definition). Class and interface declarations allow to define class tables:
ct ⊆ Interface ∪ Class. We assume that class tables contain the classes Object and

174 C. Haack, M. Huisman, and C. Hurlin

Thread. The Thread class declares a run() and a start()method. The run()method
is meant to be overridden, whereas the start() method is implemented natively and
must not be overridden. For thread objects o, calling o.start() forks a new thread
(whose thread id is o) that will execute o.run(). The start()-method has no speci-
fication. Instead, our verification system uses run()’s precondition as start()’s pre-
condition, and true as its postcondition.

We impose the following syntactic restrictions on interface and class declarations:
(1) the types perm and lockset may only occur inside angle brackets or formulas;
(2) cyclic predicate definitions in ct must be positive. The first restriction ensures that
permissions and locksets do not spill into the executable part of the language, while the
second ensures that predicate definitions (which can be recursive) are well-founded.

Subtyping, denoted <:, is defined as usual. Commands are sequences of head com-
mands hc and local variable declarations, terminated by a return value:

c ∈ Cmd ::= v | T �; c | final T ı=�; c | hc; c
hc ∈ HeadCmd ::= �=v | �=op(v̄) | �=v. f | v. f =v | �=newC<π̄> | �=v.m(v̄) |

if(v){c}else{c} | v.lock() | v.unlock() | sc
sc ∈ SpecCmd ::= assert(F) | π.commit

To simplify the proof rules, we assume that programs have been “normalized” prior to
verification, so that every intermediate result is assigned to a local variable, and the right
hand sides of assignments contain no read-write variables. Specification commands sc
are used by the proof system, but are ignored at runtime. The specification command
assert(F) makes the proof system check that F holds at this program point, while
π .commit makes it check that π’s resource invariant is initialized (see Section 4).

3 A Variant of Intuitionistic Separation Logic

We now sketch the version of intuitionistic separation logic that we use [12]. Intuitionis-
tic separation logic [14,22,21]is suitable for reasoning about properties that are invariant
under heap extensions, and is appropriate for garbage-collected languages.

Specification formulas are defined by the following grammar:

lop ∈ {*,-*,&,|} qt ∈ {ex,fa} κ ∈ Pred ::= P | P@C
F ∈ Formula ::= e | PointsTo(e. f ,π,e) | π.κ<π̄> | F lop F | (qt T α)(F)

We now briefly explain these formulas:
Expressions e are built from values and variables using arithmetic and logical oper-

ators, and the operators e instanceof T and C classof e. (The latter holds if C is e’s
dynamic class.) Expressions of type bool are included in the domain of formulas.

The points-to predicate PointsTo(e. f ,π ,v) is ASCII for e. f
π→ v [4]. Superscript π

must be of type perm (i.e., a fraction). Points-to has a dual meaning: firstly, it asserts
that field e. f contains value v, and, secondly, it represents access right π to e. f . As
explained above, π = 1 grants write access, and any π grants read access.

The resource conjunction F * G expresses that resources F and G are independently
available: using either of these resources leaves the other one intact. Resource conjunc-
tion is not idempotent: F does not imply F * F . Because Java is a garbage-collected
language, we allow dropping assertions: F * G implies F .

Reasoning about Java’s Reentrant Locks 175

The resource implication F -*G (a.k.a. separating implication or magic wand) means
“consume F yielding G”. Resource F -*G permits to trade resource F to receive re-
source G in return. Resource conjunction and implication are related by the modus po-
nens: F *(F -*G) implies G.

We remark that the logical consequence judgment of our Hoare logic is based on
the natural deduction calculus of (affine) linear logic [23], which coincides with BI’s
natural deduction calculus [19] on our restricted set of logical operators. To avoid a
proof theory with bunched contexts, we omit the ⇒-implication between heap formulas
(and did not need it in our examples). However, this design decision is not essential.

The predicate application π .κ<π̄> applies abstract predicate κ to its receiver para-
meter π and the additional parameters π̄ . As explained above, predicate definitions in
classes map abstract predicates to concrete definitions. Predicate definitions can be ex-
tended in subclasses to account for extended object state. Semantically, P’s predicate
extension in class C gets *-conjoined with P’s predicate extensions in C’s superclasses.
The qualified predicate π .P@C<π̄> represents the *-conjunction of P’s predicate exten-
sions in C’s superclasses, up to and including C. The unqualified predicate π .P<π̄> is
equivalent to π .P@C<π̄>, where C is π’s dynamic class.

The following derived forms are convenient:

PointsTo(e. f ,π,T)
Δ= (ex T α)(PointsTo(e. f ,π,α))

F *-*G
Δ= (F -*G) & (G -*F) F ispartof G

Δ= G -* (F *(F -*G))

Intuitively, F ispartof G says that F is a physical part of G: one can take G apart into
F and its complement F -*G, and can put the two parts together to obtain G back.

The logical consequence of our Hoare logic is based on the standard natural deduc-
tion rules of (affine) linear logic. Sound axioms capture additional properties of our
model. We now present some selected axioms1:

The following axiom regulates permission accounting (π
2 abbreviates split(π)):

Γ � PointsTo(e. f ,π,e′) *-* (PointsTo(e. f , π
2 ,e′) * PointsTo(e. f , π

2 ,e′))

The next axiom allows predicate receivers to toggle between predicate names and pred-
icate definitions. The axiom has the following side conditions: Γ � this : C<π̄ ′′>, the
extension of P<π̄, π̄ ′> in class C<π̄ ′′> is F , and C<π̄ ′′>’s direct supertype is D< >:

Γ � this.P@C<π̄, π̄ ′> *-* (F *this.P@D<π̄>) (Open/Close)

Note that P@C may have more parameters than P@D: following Parkinson and Bier-
man [21] we allow subclasses to extend predicate arities. Missing predicate parameters
are existentially quantified, as expressed by the following axiom:

Γ � π.P<π̄> *-* (ex T̄ ᾱ)(π.P<π̄, ᾱ>) (Missing Parameters)

Finally, the following axiom says that a predicate at a receiver’s dynamic type (i.e.,
without @-selector) is stronger than the predicate at its static type. In combination
with (Open/Close), this allows to open and close predicates at the receiver’s static type:

Γ � π.P@C<π̄> ispartof π.P<π̄> (Dynamic Type)

1 Throughout this paper, Γ ranges over type environments assigning types to free variables and
object identifiers.

176 C. Haack, M. Huisman, and C. Hurlin

We note that our axioms for abstract predicates formalize the so-called “stack of class
frames” [9,3] using separation logic.

Our Hoare rules combine typing judgment with Hoare triples. In a Java-like lan-
guage, such a combination is needed because method specifications are looked up based
on receiver types. As common in separation logic, we use local Hoare rules combined
with a frame rule [22]. Except from the rules for reentrant locks, the Hoare rules are
pretty standard and we omit them. We point out that we do not admit the structural rule
of conjunction. As a result, we do not need to require that resource invariants associated
with locks (as presented in Section 4) are precise or supported formulas2.

4 Proof Rules for Reentrant Locks

We now present the proof rules for reentrant locks: as usual [18], we assign to each
lock a resource invariant. In our system, resource invariants are distinguished abstract
predicates named inv. They have a default definition in the Object class and are meant
to be extended in subclasses:

class Object { ... pred inv = true; ... }

The resource invariant o.inv can be assumed when o’s lock is acquired non-reentrantly
and must be established when o’s lock is released with its reentrancy level dropping
to 0. Regarding the interaction with subclassing, there is nothing special about inv. It
is treated just like other abstract predicates.

In CSL for single-entrant locks [18], locks can be acquired without precondition. For
reentrant locks, on the other hand, it seems unavoidable that the proof rule for acquiring
a lock distinguishes between initial acquires and re-acquires. This is needed because it
is quite obviously unsound to simply assume the resource invariant after a re-acquire.
Thus, a proof system for reentrant locks must keep track of the locks that the current
thread holds. To this end, we enrich our specification language:

π ∈ SpecVal ::= . . . | nil | π ·π
F ∈ Formula ::= . . . | Lockset(π) | π contains e

Here is the informal semantics of the new expressions and formulas:

– nil: the empty multiset.
– π ·π ′: the multiset union of multisets π and π ′.
– Lockset(π): π is the multiset of locks held by the current thread. Multiplicities

record the current reentrancy level. (non-copyable)
– π contains e: multiset π contains object e. (copyable)

We classify the new formulas (of which there will be two more) into copyable and non-
copyable ones. Copyable formulas represent persistent state properties (i.e., properties
that hold forever, once established), whereas non-copyable formulas represent transient
state properties (i.e., properties that hold temporarily). For copyable F , we postulate
the axiom (G & F) -* (G *F), whereas for non-copyable formulas we postulate no
such axiom. Note that this axiom implies F -* (F *F), hence the term “copyable”. As
indicated above, π contains e is copyable, whereas Lockset(π) is not.

2 See O’Hearn [18] for definitions of precise and supported formulas, and why they are needed.

Reasoning about Java’s Reentrant Locks 177

Initial locksets. When verifying the body of Thread.run(), we assume Lockset(nil)
as a precondition.

Initializing resource invariants. Like class invariants must be initialized before method
calls, resource invariants must be initialized before the associated locks can be acquired.
In O’Hearn’s simple concurrent language [18], the set of locks is static and initializa-
tion of resource invariants is achieved in a global initialization phase. This is not pos-
sible when locks are created dynamically. Conceivably, we could tie the initialization
of resource invariants to the end of object constructors. However, this is problematic
because Java’s object constructors are free to leak references to partially constructed
objects (e.g., by passing this to other methods). Thus, in practice we have to distin-
guish between initialized and uninitialized objects semantically. Furthermore, a seman-
tic distinction enables late initialization of resource invariants, which can be useful for
objects that remain thread-local for some time before getting shared among threads. To
support flexible initialization of resource invariants, we introduce two more formulas:

F ∈ Formula ::= . . . | e.fresh | e.initialized
Restriction: e.initialized must not occur in negative positions.

– e.fresh: e’s resource invariant is not yet initialized. (non-copyable)
– e.initialized: e’s resource invariant has been initialized. (copyable)

The fresh-predicate is introduced as a postcondition of new:

C<T̄ ᾱ> ∈ ct Γ � π̄ : T̄ [π̄/α] C<π̄> <: Γ (�)
(New)

Γ � {true}�=newC<π̄>{�.init *C classof � * �Γ (u)<:Object �!=u * �.fresh}

In addition, the postcondition grants access to all fields of the newly created object �
(by the special abstract predicate �.init), and records that �’s dynamic class is known
to be C. Furthermore, the postcondition records that the newly created object is distinct
from all other objects that are in scope. This postcondition is usually omitted in sepa-
ration logic, because separation logic gets around explicit reasoning about the absence
of aliasing. Unfortunately, we cannot entirely avoid this kind of reasoning when estab-
lishing the precondition for the rule (Lock) below, which requires that the lock is not
already held by the current thread.

The specification command π .commit triggers π’s transition from the fresh to the
initialized state, provided π’s resource invariant is established:

Γ � π : Object Γ � π ′ : lockset
(Commit)Γ � {Lockset(π ′)*π.inv*π.fresh}

π.commit
{Lockset(π ′)*!(π ′ contains π)*π.initialized}

Locking and unlocking. There are two rules each for locking and unlocking, depending
on whether or not the lock/unlock is associated with an initial entry or a reentry:

Γ � v : Object Γ � π : lockset
(Lock)Γ � {Lockset(π)*!(π contains v)*v.initialized}

v.lock()
{Lockset(v ·π)*v.inv}

Γ � v : Object Γ � π : lockset
(Re-Lock)

Γ � {Lockset(v ·π)}v.lock(){Lockset(v · v ·π)}

178 C. Haack, M. Huisman, and C. Hurlin

The rule (Lock) applies when lock v is acquired non-reentrantly, as expressed by the pre-
condition Lockset(π)*!(π contains v). The precondition v.initialized makes
sure that (1) threads only acquire locks whose resource invariant is initialized, and (2)
no null-error can happen (because initialized values are non-null). The postcondition
adds v to the current thread’s lockset, and assumes v’s resource invariant. The rule (Re-
Lock) applies when a lock is acquired reentrantly.

Γ � v : Object Γ � π : lockset
(Re-Unlock)

Γ � {Lockset(v · v ·π)}v.unlock(){Lockset(v ·π)}

Γ � v : Object Γ � π : lockset
(Unlock)

Γ � {Lockset(v ·π)*v.inv}v.unlock(){Lockset(π)}

The rule (Re-Unlock) applies when v’s current reentrancy level is at least 2, and (Unlock)
applies when v’s resource invariant gets established in the precondition.

Some non-solutions. One might wish to avoid the disequalities in (New)’s postcondi-
tion. Several approaches for this come to mind. First, one could drop the disequalities
in (New)’s postcondition, and rely on (Commit)’s postcondition !(π ′ contains π) to
establish (Lock)’s precondition. While this would be sound, in general it is too weak,
as we are not be able to lock π if we first lock some other object x (because from
!(π ′ containsπ)we cannot derive !(x ·π ′ containsπ) unless we know π !=x). Sec-
ond, the Locksetpredicate could be abandoned altogether, using a predicate π .Held(n)
instead, that says that the current thread holds lock π with reentrancy level n. In partic-
ular, π .Held(0) means that the current thread does not hold π’s lock at all. We could
reformulate the rules for locking and unlocking using the Held-predicate, and introduce
�.Held(0) as the postcondition of (New), replacing the disequalities. However, this ap-
proach does not work, because it grants only the object creator permission to lock the
created object! While it is conceivable that a clever program logic could somehow intro-
duce π .Held(0)-predicates in other ways (besides introducing it in the postcondition of
(New)), we have not been able to come up with a workable solution along these lines.

5 Examples

In this section, we illustrate our proof rules by several examples. We use the following
convenient abbreviations:

π.locked(π ′)
Δ= Lockset(π ·π ′) π.unlocked(π ′)

Δ= Lockset(π ′)*!(π ′ contains π)

The formula π .locked(π ′) says that the current thread’s lockset π ·π ′ contains lock π ,
and π .unlocked(π ′) that the current thread’s lockset π ′ does not contain lock π .

Example 1: A Method with Callee-side Locking. We begin with a very simple example
of a race free implementation of a bank account. The account lock guards access to the
account balance, as expressed by inv’s definition below.

class Account extends Object {

private int balance;

pred inv = PointsTo(this.balance, 1, int);

Reasoning about Java’s Reentrant Locks 179

req this.initialized * this.unlocked(s); ens Lockset(s);
int deposit(int x) {

{ this.initialized * this.unlocked(s) } (expanding unlocked)

{ this.initialized * Lockset(s) * !(s contains this) }
lock();

{ Lockset(this·s) * this.inv }
(opening inv)

{ Lockset(this·s) * PointsTo(this.balance, 1, int) * (this.inv@Account -* this.inv) }
balance = balance + x;

{ Lockset(this·s) * PointsTo(this.balance, 1, int) * (this.inv@Account -* this.inv) }
(closing inv)

{ Lockset(this·s) * this.inv }
unlock();

{ Lockset(s) } } }

The precondition of deposit() requires that prior to calling acc.deposit() the ac-
count’s resource invariant must be initialized and the current thread must not hold the
account lock already. The postcondition ensures that the current thread’s lockset after
the call equals its lockset before the call. We have annotated deposit()’s body with
a proof outline and invite the reader to match the outline to our proof rules. Note that
when opening inv, we use the axioms (Dynamic Type) and (Open/Close). When clos-
ing inv, we use (Open/Close) and the modus ponens.

Example 2: A Method with Caller-side Locking. In the previous example, deposit()’s
contract does not say that this method updates the account balance. In fact, because our
program logic ties the balance field to the account’s resource invariant, it prohibits
the contract to refer to this field unless the account lock is held before and after calling
deposit(). Note that this is not a shortcoming of our program logic but, on the con-
trary, is exactly what is needed to ensure sound method contracts: pre/postconditions
that refer to the balance field when the account object is unlocked are subject to thread
interference and thus lead to unsoundness.

However, we can also express a contract for a deposit()-method that enforces that
callers have acquired the lock prior to calling deposit(), and furthermore expresses
that deposit() updates the balance field. To this end, we make use of the feature that
the arity of abstract predicates can be extended in subclasses. Thus, we can extend the
arity of the inv-predicate (which has arity 0 in the Object class) to have an additional
integer parameter in the Account class:

class Account extends Object {

private int balance;

pred inv<int balance> = PointsTo(this.balance, 1, balance);

req inv<balance>; ens inv<balance + x>;
void deposit(int x){ balance = balance + x; } }

Here, deposit()’s contract is implicitly quantified by the variable balance. When
a caller establishes the precondition, the balance variable gets bound to a concrete

180 C. Haack, M. Huisman, and C. Hurlin

integer, namely the current content of the balance field. Note that acc.deposit()
can only be called when acc is locked (as locking acc is the only way to establish the
precondition acc.inv< >). Furthermore, deposit()’s contract forces deposit()’s
implementation to hold the receiver lock on method exit.

Example 3: A Method Designed for Reentry. The implementations of the deposit()
method in the previous examples differ. Because Java’s locks are reentrant, a single
implementation of deposit() actually satisfies both contracts:

class Account extends Object {
private int balance;

pred inv<int balance> = PointsTo(this.balance, 1, balance);

req unlocked(s) * initialized; ens Lockset(s);
also
req locked(s) * inv<balance>; ens locked(s) * inv<balance + x>;
void deposit(int x) { lock(); balance = balance + x; unlock(); } }

This example makes use of contract conjunction. Intuitively, a method with two con-
tracts joined by “also” satisfies both these contracts. Technically, contract conjunction
is a derived form [20]:

req F1;ens G1; also req F2;ens G2;
Δ= req (F1 & α == 1) | (F2 & α == 2); ens (G1 & α == 1) | (G2 & α == 2);

In the example, the first clause of the contract conjunction applies when the caller does
not yet hold the object lock, and the second clause applies when he already holds it.
The precondition locked(s) in the second clause is needed as a pre-condition for re-
acquiring the lock, see the rule (Re-Lock). In Example 2, this precondition was not
needed because there deposit()’s implementation does not acquire the account lock.

Example 4: A Fine-grained Locking Policy. To illustrate that our solution also supports
fine-grained locking policies, we show how we can implement lock coupling. Suppose
we want to implement a sorted linked list with repetitions. For simplicity, assume that
the list has only two methods: insert() and size(). The former inserts an integer
into the list, and the latter returns the current size of the list. To support a constant-time
size()-method, each node stores the size of its tail in a count-field.

In order to allow multiple threads inserting simultaneously, we want to avoid using
a single lock for the whole list. We have to be careful, though: a naive locking policy
that simply locks one node at a time would be unsafe, because several threads trying
to simultaneously insert the same integer can cause a semantic data race, so that some
integers get lost and the count-fields get out of sync with the list size. The lock coupling
technique avoids this by simultaneously holding locks of two neighboring nodes at
critical times.

Lock coupling has been used as an example by Gotsman et al. [10] for single-entrant
locks. The additional problem with reentrant locks is that insert()’s precondition
must require that none of the list nodes is in the lockset of the current thread. This is
necessary to ensure that on method entry the current thread is capable of acquiring all
nodes’s resource invariants:

Reasoning about Java’s Reentrant Locks 181

class LockCouplingList implements SortedIntList {

Node<this> head;

pred inv<int c> = (ex Node<this> n)(
PointsTo(head, 1, n) * n.initialized * PointsTo(n.count, 1/2, c));

req this.inv<c>; ens this.inv<c> * result==c;
int size() { return head.count; }

req Lockset(s) * !(s contains this) * this.traversable(s); ens Lockset(s);
void insert(int x) {

lock(); Node<this> n = head;
if (n!=null) {

n.lock();
if (x <= n.val) {

n.unlock(); head = new Node<this>(x,head); head.commit; unlock();
} else { unlock(); n.count++; n.insert(x); }

} else { head = new Node<this>(x,null); unlock(); } } }

class Node<Object owner> implements Owned<owner> {

int count; int val; Node<owner> next;

spec public pred couple<int count this, int count next> =
(ex Node<owner> n)(

PointsTo(this.count, 1/2, count this) * PointsTo(this.val, 1, int)
* PointsTo(this.next, 1, n) * n!=this * n.initialized
* (n!=null -* PointsTo(n.count, 1/2, count next))
* (n==null -* count this==1));

spec public pred inv<int c> = couple<c,c-1>;

req PointsTo(next.count, 1/2, c);
ens PointsTo(next.count, 1/2, c)

* (next!=null -* PointsTo(this.count, 1, c+1))
* (next==null -* PointsTo(this.count, 1, 1))
* PointsTo(this.val, 1, val) * PointsTo(this.next, 1, next);

Node(int val, Node<owner> next) {
if (next!=null) { this.count = next.count+1; } else { this.count = 1; }
this.val = val; this.next = next; }

req Lockset(this ·s) * owner.traversable(s) * this.couple<c+1,c-1>;
ens Lockset(s);
void insert(int x) {

Node<owner> n = next;
if (n!=null) {

n.lock();
if (x <= n.val) {

n.unlock(); next = new Node<owner>(x,n); next.commit; unlock();
} else { unlock(); n.count++; n.insert(x); }

} else { next = new Node<owner>(x, null); unlock(); } } }

Fig. 1. A lock-coupling list

req this.unlocked(s) * no list node is in s ; ens Lockset(s);
void insert(int x);

The question is how to formally represent the informal condition. Our solution makes
use of class parameters. We require that nodes of a lock-coupled list are statically owned
by the list object, i.e., they have type Node<o>, where o is the list object. Then we can
approximate the above contract as follows:

req this.unlocked(s) * no this-owned object is in s ; ens Lockset(s);
void insert(int x);

To express this formally, we define a marker interface for owned objects:

182 C. Haack, M. Huisman, and C. Hurlin

interface Owned<Object owner> { /* a marker interface */ }

Next we define an auxiliary predicate π .traversable(π ′) (read as “if the current
thread’s lockset is π ′, then the aggregate owned by object π is traversable”). Concretely,
this predicate says that no object owned by π is contained in π ′:

π.traversable(π ′)
Δ=

(fa Object owner, Owned<owner> x)(!(π ′ contains x) | owner!=π)

Note that in our definition of π .traversable(π ′), we quantify over a type parameter
(namely the owner-parameter of the Owned-type). Here we are taking advantage of the
fact that program logic and type system are inter-dependent.

Now, we can formally define an interface for sorted integer lists:

interface SortedIntList {

pred inv<int c>; // c is the number of list nodes

req this.inv<c>; ens this.inv<c> * result==c;
int size();

req this.unlocked(s) * this.traversable(s); ens Lockset(s);
void insert(int x); }

Figure 1 shows a tail-recursive lock-coupling implementation of SortedIntList. It
makes use of the predicate modifier spec public, which exports the predicate defini-
tion to object clients3. The auxiliary predicate n.couple<c,c′>, as defined in the Node
class, holds in states where n.count == c and n.next.count == c′.

But how can clients of lock-coupling lists establish insert()’s precondition? The
answer is that client code needs to track the types of locks held by the current thread.
For instance, if C is not a subclass of Owned, then list.insert()’s precondition is
implied by the following assertion, which is satisfied when the current thread has locked
only objects of types C and Owned<�>.

list.unlocked(s) * �!=list *
(fa Object z)(!(s contains z) | z instanceof C | z instanceof Owned<�>)

6 Semantics and Soundness

6.1 Runtime Structures

We model dynamics by a small-step operational semantics that operates on states, con-
sisting of a heap, a lock table and a thread pool. As usual, heaps map each object
identifier to its dynamic type and to a mapping from fields to closed values:

h ∈ Heap = ObjId ⇀ Type× (FieldId ⇀ ClVal) ClVal = Val\RdVar

Stacks map read/write variables to closed values. Their domains do not include read-
only variables, because our operational semantics instantiates those by substitution:

s ∈ Stack = RdWrVar ⇀ ClVal

3 spec public can be defined in terms of class axioms, see [12].

Reasoning about Java’s Reentrant Locks 183

A thread is a pair of a stack and a command. A thread pool maps object identifiers
(representing Thread objects) to threads. For better readability, we use syntax-like no-
tation and write “s in c” for threads t = (s,c), and “o1 is t1 | · · · | on is tn” for thread pools
ts = {o1 	→ t1, . . . ,on 	→ tn}:

t ∈ Thread = Stack×Cmd ::= s in c
ts ∈ ThreadPool = ObjId ⇀ Thread ::= o1 is t1 | · · · | on is tn

Lock tables map objects o to either the symbol free, or to the thread object that currently
holds o’s lock and a number that counts how often it currently holds this lock:

l ∈ LockTable = ObjId ⇀ {free}
 (ObjId×N)

Finally, a state consists of a heap, a lock table, and a thread pool:

st ∈ State = Heap×LockTable×ThreadPool

We omit the (pretty standard) rules for our small-step relation st →ct st′. The relation
depends on the underlying class table (for looking up methods), hence the subscript ct.

6.2 Kripke Resource Semantics

We define a forcing relation of the form Γ � E ;R;s |= F , where Γ is a type environment,
E is a predicate environment, R is a resource, and s is a stack. We assume that the
stack s, the formula F , and the resource R are well-typed in Γ , i.e., the semantic relation
is defined on well-typed tuples. The predicate environment E maps predicate identifiers
to concrete heap predicates that satisfy the predicate definitions from the class table.
Our well-foundedness restriction on predicate definitions ensures that such a predicate
environment exists.

Resources R range over the set Resource with a binary relation # ⊆ Resource ×
Resource (the compatibility relation) and a partial binary operator * : # → Resource
(the resource joining operator) that is associative and commutative. Concretely, re-
sources are 5-tuples R = (h,P,L ,F ,I): a heap h, a permission table P ∈ ObjId×
FieldId → [0,1], an abstract lock table L ∈ ObjId ⇀ Bag(ObjId)4, a fresh set F ⊆
ObjId, and an initialized set I ⊆ ObjId. We require that resources satisfy the following
axioms: (1) P(o, f) > 0 iff o ∈ dom(h) and f ∈ dom(h(o)2), (2) F ∩I = /0, and (3)
if o ∈ L (p) then o ∈ I . Each of the five resource components carries itself a resource
structure (#,*). These structures are lifted to 5-tuples componentwise. We now define
and * for the five components.

Heaps are compatible if they agree on object types and memory content:

h#h′ iff

{
(∀o ∈ dom(h)∩dom(h′))(
h(o)1 = h′(o)1 and (∀ f ∈ dom(h(o)2) ∩ dom(h′(o)2))(h(o)2(f) = h′(o)2(f)))

To define heap joining, we lift set union to deal with undefinedness: f ∨ g = f ∪ g,
f ∨undef = undef ∨ f = f . Similarly for types: T ∨undef = undef ∨T = T ∨T = T .

(h * h′)(o)1
Δ= h(o)1 ∨ h′(o)1 (h * h′)(o)2

Δ= h(o)2 ∨ h′(o)2

Joining permission tables is pointwise addition:

4 Where we use � to denote bag intersection, � for bag union, and [] for the empty bag.

184 C. Haack, M. Huisman, and C. Hurlin

P#P ′ iff (∀o)(P(o)+P ′(o) ≤ 1) (P *P ′)(o) Δ= P(o)+P ′(o)

Abstract lock tables map thread identifiers to locksets. The compatibility relation
captures that distinct threads cannot hold the same lock.

L #L ′ iff

{
dom(L)∩dom(L ′) = /0
(∀o ∈ dom(L), p ∈ dom(L ′))(L (o)�L ′(p) = []) L *L ′ Δ= L ∪L ′

Fresh sets F keep track of allocated but not yet initialized objects, while initialized
sets I keep track of initialized objects. We define # for fresh sets as disjointness in
order to mirror that o.fresh is non-copyable, and for initialized sets as equality in
order to mirror that o.initialized is copyable:

F#F ′ iff F ∩F ′ = /0 F *F ′ Δ= F ∪F ′

I #I ′ iff I = I ′ I *I ′ Δ= I (= I ′)

This completes the description of the semantic domains. We continue with the formal
semantics of expressions and formulas. Expressions of type lockset are interpreted as
multisets in the obvious way: [[nil]]hs = [] and [[e · e′]]hs = [[e]]hs � [[e′]]hs . Here are the
semantic clauses for our new formulas for reentrant locking:

Γ � E ;(h,P ,L ,F ,I);s |= Lockset(π) iff L (o) = [[π]] for some o

Γ � E ;(h,P ,L ,F ,I);s |= π contains e iff [[e]]hs ∈ [[π]]

Γ � E ;(h,P ,L ,F ,I);s |= e.fresh iff [[e]]hs ∈ F

Γ � E ;(h,P ,L ,F ,I);s |= e.initialized iff [[e]]hs ∈ I

These clauses are self-explanatory, except perhaps the existential quantification in the
clause for Lockset(π). Intuitively, this clause says that there exists a thread identifier o
in the domain of L such that π denotes the current lockset associated with o. We omit
the (standard) clauses for the other logical operators, see e.g., [11].

6.3 Soundness

In this section, we extend our verification rules to runtime states. The extended rules
are never used in verification, but instead define a global state invariant, st : �, that is
preserved by the small-step rules of our operational semantics.

We need a few definitions: For R = (h,P,L ,F ,I), let Rhp = h, Rperm = P ,
Rlock = L , Rfresh = F and Rinit = I . Our forcing relation |= from the last section
assumes formulas without logical variables: we deal with those by substitution, ranged
over by σ ∈ LogVar ⇀ SpecVal. We state (Γ � σ : Γ ′) whenever dom(σ) = dom(Γ ′)
and (Γ [σ] � σ(α) : Γ ′(α)[σ]) for all α in dom(σ). Furthermore, we define cfv(c) =
{x ∈ fv(c) | x occurs in an object creation command �=newC<π̄> }.

Now, we extend the Hoare triple judgment to threads:

Γhp = fst ◦Rhp Γ � σ : Γ ′ dom(Γ ′)∩cfv(c) = /0 Γ ,Γ ′ � s : �
dom(Rlock) ⊆ {o} Γ [σ] � E ;R;s |= F [σ] Γ ,Γ ′;r � {F}c : void{G}

(Thread)
R � o is (s in c) : �

The object identifier r in the Hoare triple (last premise) is the current receiver, needed
to determine the scope of abstract predicates. We have omitted the receiver parameter

Reasoning about Java’s Reentrant Locks 185

from our Hoare rules in Section 4, because for source code verification the receiver
parameter is always this.

We straightforwardly extend this judgment to thread pools:

(Empty Pool)
R � /0 : �

R � t : � R ′ � ts : �
(Cons Pool)

R *R ′ � t | ts : �

To further extend the judgment to states, we define the set ready(R) of all initialized
objects whose locks are not held, and the function conc that maps abstract lock tables
to concrete lock tables:

ready(R) Δ= Rinit \{o | (∃p)(o ∈ L (p))}
conc(L)(o) Δ= (p,L (p)(o)), if o ∈ L (p) conc(L)(o) Δ= free, otherwise

In conc’s definition, we let L (p)(o) stand for the multiplicity of o in L (p). Note that
conc is well-defined, by axiom (2) for resources. The rule for states ensures that there
exists a resource R to satisfy the thread pool ts, and a resource R ′ to satisfy the resource
invariants of the locks that are ready to be acquired:

h = (R *R ′)hp l = conc(Rlock) R � ts : �
R#R ′ R ′

lock = /0 fst ◦R ′
hp ⊆ fst ◦h = Γ Γ � E ;R ′; /0 |= �o∈ready(R)o.inv

(State)
〈h, l, ts〉 : �

The judgment (ct : �) is the top-level judgment of our source code verification system,
to be read as “class table ct is verified”. We have shown the following theorem:

Theorem 1 (Preservation). If (ct : �), (st : �) and st →ct st′, then (st′ : �).

From the preservation theorem, we can draw the following corollaries: verified pro-
grams are data race free, verified programs never dereference null, and if a verified
program contains assert(F), then F holds whenever the assertion is reached.

7 Comparison to Related Work and Conclusion

Related work. There are a number of similarities between our work and Gotsman et
al. [10], for instance the treatment of initialization of dynamically created locks. Our
initialized predicate corresponds to what Gotsman calls lock handles (with his lock
handle parameters corresponding to our class parameters). Since Gotsman’s language
supports deallocation of locks, he scales lock handles by fractional permissions in or-
der to keep track of sharing. This is not necessary in a garbage-collected language.
In addition to single-entrant locks, Gotsman also treats thread joining. We have cov-
ered joining in a recent paper [12] for Java threads (joining Java threads has a slightly
different operational semantics than joining POSIX threads as modeled in [10]). The
essential differences between Gotsman’s and our paper are (1) that we treat reentrant
locks, which are a different synchronization primitive than single-entrant locks, and (2)
that we treat subclassing and extension of resource invariants in subclasses. Hobor et
al.’s work [13] is very similar to [10].

Another related line of work is by Jacobs et al. [15] who extend the Boogie method-
ology for reasoning about object invariants [3] to a multithreaded Java-like language.

186 C. Haack, M. Huisman, and C. Hurlin

While their system is based on classical logic (without operators like * and -*), it in-
cludes built-in notions of ownership and access control. Their system deliberately en-
forces a certain programming discipline (like CSL and our variant of it also do) rather
than aiming for a complete program logic. The object life cycle imposed by their dis-
cipline is essentially identical to ours. For instance, their shared objects (objects that
are shared between threads) directly correspond to our initialized objects (objects
whose resource invariants are initialized). Their system prevents deadlocks, which our
system does not. They achieve deadlock prevention by imposing a partial order on locks.
As a consequence of their order-based deadlock prevention, their programming disci-
pline statically prevents reentrancy, although it may not be too hard to relax this at the
cost of additional complexity.

In a more traditional approach, Ábráham, De Boer et al. [1,8] apply assume-guarantee
reasoning to a multithreaded Java-like language.

Conclusion. We have adapted concurrent separation logic to a Java-like language.
Resource invariants are specified as abstract predicates in classes, and can be modu-
larly extended in subclasses by a separation-logic axiomatization of the “stack of class
frames” [9,3]. The main difficulty was dealing with reentrant locks. These complicate
the proof rules, and some reasoning about the absence of aliasing is needed. However,
permission-based reasoning is still largely applicable, as illustrated by a verification
of a lock-coupling list in spite of reentrancy. In this example, a rich dependent type
system with value-parameterized classes proved useful. Because we needed to extend
CSL’s proof rules to support reasoning about the absence of aliasing (e.g., by adding
an additional postcondition to the object creation rule), it does not seem possible to de-
rive our proof rules from CSL’s standard proof rules through an encoding of reentrant
locks in terms of single-entrant locks. We have omitted wait/notify (conditional syn-
chronization) in this paper, but we have treated it in our technical report [11]. Whereas
reentrancy slightly complicates the operational semantics of wait/notify (because the
runtime has to remember the reentrancy level of a waiting thread), the proof rules for
wait/notify are unproblematic.

References

1. Ábrahám, E., de Boer, F.S., de Roever, W.-P., Steffen, M.: Tool-supported proof system for
multithreaded Java. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2002. LNCS, vol. 2852, pp. 1–32. Springer, Heidelberg (2003)

2. Andrews, G.: Concurrent Programming: Principles and Practice. Benjamin/Cummings
(1991)

3. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of object-
oriented programs with invariants. Journal of Object Technology 3(6) (2004)

4. Bornat, R., O’Hearn, P.W., Calcagno, C., Parkinson, M.: Permission accounting in separation
logic. In: Principles of Programming Languages. ACM Press, New York (2005)

5. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: Preventing data
races and deadlocks. In: ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (2002)

6. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.) SAS
2003. LNCS, vol. 2694, Springer, Heidelberg (2003)

Reasoning about Java’s Reentrant Locks 187

7. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection. In: ACM
Conference on Object-Oriented Programming Systems, Languages, and Applications. ACM
SIGPLAN Notices, vol. 33(10). ACM Press, New York (1998)

8. de Boer, F.S.: A sound and complete shared-variable concurrency model for multi-threaded
Java programs. In: International Conference on Formal Methods for Open Object-based Dis-
tributed Systems (2007)

9. DeLine, R., Fähndrich, M.: Typestates for objects. In: European Conference on Object-
Oriented Programming (2004)

10. Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local reasoning for storable
locks and threads. In: Asian Programming Languages and Systems Symposium (2007)

11. Haack, C., Huisman, M., Hurlin, C.: Reasoning about Java’s reentrant locks. Technical Re-
port ICIS-R08014, Radboud University Nijmegen (2008)

12. Haack, C., Hurlin, C.: Separation logic contracts for a Java-like language with fork/join.
In: Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS, vol. 5140, pp. 199–215. Springer,
Heidelberg (2008)

13. Hobor, A., Appel, A., Nardelli, F.: Oracle semantics for concurrent separation logic. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 353–367. Springer, Heidelberg
(2008)

14. Ishtiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In: Prin-
ciples of Programming Languages (2001)

15. Jacobs, B., Smans, J., Piessens, F., Schulte, W.: A statically verifiable programming model for
concurrent object-oriented programs. In: International Conference on Formal Engineering
Methods (2006)

16. Müller, P. (ed.): Modular Specification and Verification of Object-Oriented Programs. LNCS,
vol. 2262, p. 195. Springer, Heidelberg (2002)

17. Naftalin, M., Wadler, P.: Java Generics. O’Reilly, Sebastopol (2006)
18. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoretical Computer Sci-

ence 375(1–3), 271–307 (2007)
19. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bulletin of Symbolic

Logic 5(2) (1999)
20. Parkinson, M.: Local Reasoning for Java. Ph.D thesis, University of Cambridge (2005)
21. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: Principles of Programming

Languages (2005)
22. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Logic in

Computer Science, Copenhagen, Denmark. IEEE Press, Los Alamitos (2002)
23. Wadler, P.: A taste of linear logic. In: Mathematical Foundations of Computer Science (1993)

ML Modules and Haskell Type Classes:
A Constructive Comparison

Stefan Wehr1 and Manuel M.T. Chakravarty2

1 Institut für Informatik, Universität Freiburg, Georges-Köhler-Allee 079, 79110
Freiburg i. Br., Germany

wehr@informatik.uni-freiburg.de
2 School of Computer Science and Engineering, The University of New South Wales,

UNSW SYDNEY NSW 2052, Australia
chak@cse.unsw.edu.au

Abstract. Researchers repeatedly observed that the module system of
ML and the type class mechanism of Haskell are related. So far, this
relationship has received little formal investigation. The work at hand
fills this gap: It introduces type-preserving translations from modules to
type classes and vice versa, which enable a thorough comparison of the
two concepts.

1 Introduction

On first glance, module systems and type classes appear to be unrelated program-
ming-language concepts: Module systems allow large programs to be decomposed
into smaller, relatively independent units, whereas type classes [1,2] provide a
means for introducing ad-hoc polymorphism; that is, they give programmers
the ability to define multiple functions or operators with the same name but
different types. However, it has been repeatedly observed [3,4,5,6,7,8] that there
is some overlap in functionality between the module system of the programming
language ML [9], one of the most powerful module systems in widespread use,
and the type class mechanism of the language Haskell [10], which constitutes a
sophisticated approach to ad-hoc polymorphism.

It is natural to ask whether these observations rest on a solid foundation, or
whether the overlap is only superficial. The standard approach to answer such
a question is to devise two formal translations from modules to type classes and
vice versa. The translations then pinpoint exactly the features that are easy,
hard, or impossible to translate; thereby showing very clearly the differences
and similarities between the two concepts.

Such a constructive comparison between ML modules and Haskell type classes
is particularly interesting because the strength of one language is a weak point
of the other: ML has only very limited support for ad-hoc polymorphism, so
translating Haskell type classes to ML modules could give new insights on how to
program with this kind of polymorphism in ML. Conversely, the Haskell module
system is weak, so an encoding of ML’s powerful module system with type classes
could open up new possibilities for modular programming in Haskell.

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 188–204, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

ML Modules and Haskell Type Classes: A Constructive Comparison 189

Contributions. Following the path just described, we make four contributions:

– We devise two formal translations from ML modules to Haskell type classes
and vice versa, prove that the translations preserve type correctness, and
provide implementations for both.

– We use the insights obtained from the translations to compare ML modules
with Haskell type classes thoroughly.

– We investigate if and how the techniques used to encode ML modules in
terms of Haskell type classes and vice versa can be exploited for modular
programming in Haskell and for programming with ad-hoc polymorphism in
ML, respectively.

– We suggest a lightweight extension of Haskell’s type class system that enables
type abstraction.

Outline. We start with examples that motivate the key ideas behind the trans-
lations from ML modules to Haskell type classes (Sec. 2) and from Haskell type
classes to ML modules (Sec. 3). We then sketch the formalization and implemen-
tation of the translations (Sec. 4). Next, we discuss similarities and differences
between ML modules and Haskell type classes (Sec. 5). Finally, we compare with
related work (Sec. 6) and conclude (Sec. 7).

2 From Modules to Classes

The idea of the translation from ML modules to Haskell type classes is the follow-
ing: signatures are modeled as type class declarations, structures and functors
are translated into instance declarations, and type and value components of
signatures and structures are mapped to associated type synonyms [6] and type
class methods, respectively. We now substantiate the idea by presenting example
translations of signatures and structures (Sec. 2.1), of abstract types (Sec. 2.2),
and of functors (Sec. 2.3). Next, we provide a summary (Sec. 2.4). Finally, we
elaborate on alternative translation techniques (Sec. 2.5).1

2.1 Translating Signatures and Structures

Our first example is shown in Fig. 1. The ML code defines a structure IntSet,
which implements sets of integers in terms of lists. The signature of IntSet is
inferred implicitly in ML; however, we represent it explicitly as a type class
SetSig in Haskell. The ���� declarations in this class introduce two associated
type synonyms Elem a and Set a. The identities of such type synonyms depend

1 We use Standard ML in this section; the Haskell code runs under GHC’s [11] latest
development version (after replacing ������� with ����). Throughout the paper, we
assume an ML function any : (’a -> bool) -> ’a list -> bool corresponding
to Haskell’s standard function any :: (a -> bool) -> [a] -> Bool. Moreover, we
rely on functions intEq, intLt, and stringEq for comparing integers and strings.

190 S. Wehr and M.M.T. Chakravarty

ML���	
�	�� IntSet = ���	
� ���� elem = int ���� set = elem list
��� empty = [] 	� member i s = any (intEq i) s
	� insert i s = � member i s ���� s ���� (i::s)

���

Haskell
���� SetSig a �����

���� Elem a; ���� Set a
empty :: a -> Set a; member :: a -> Elem a -> Set a -> Bool
insert :: a -> Elem a -> Set a -> Set a

���� IntSet = IntSet
������
� SetSig IntSet �����

���� Elem IntSet = Int; ���� Set IntSet = [Int]
empty _ = []; member _ i s = any (intEq i) s
insert _ i s = � member IntSet i s ���� s ���� (i : s)

Fig. 1. ML structure for integer sets and its translation to Haskell

ML���	
�	�� IntSet’ = IntSet :> ��� ���� elem = int ���� set
��� empty : set
��� member : elem -> set -> bool
��� insert : elem -> set -> set ���

Haskell���� IntSet’ = IntSet’
������
� SetSig IntSet’ �����

���� Elem IntSet’ = Elem IntSet; ������� Set IntSet’ = Set IntSet
empty _ = empty IntSet; member _ = member IntSet
insert _ = insert IntSet

Fig. 2. Sealed ML structure for integer sets and its translation to Haskell

on a particular instantiation of the class variable a. Hence, concrete definitions
for Elem and Set are deferred to instance declarations of SetSig.

The data type IntSet corresponds to the name of the structure in ML. We
translate the structure itself by defining an instance of SetSig for IntSet. The
translation of the insert function shows that we encode access to the structure
component member by indexing the method member with a value of type IntSet.
We use the same technique to translate qualified access to structure compo-
nents. For example, the ML expression IntSet.insert 1 IntSet.empty is written
as insert IntSet 1 (empty IntSet) in Haskell.

2.2 Translating Abstract Types

The IntSet structure reveals to its clients that sets are implemented in terms of
lists. This is not always desirable; often, the type set should be kept abstract
outside of the structure. Our next example (Fig. 2) shows that we can achieve the

ML Modules and Haskell Type Classes: A Constructive Comparison 191

desired effect in ML by sealing the IntSet structure with a signature that leaves
the right-hand-side of set unspecified. Such signatures are called translucent,
in contrast to transparent (all type components specified) and opaque (all type
components unspecified) signatures.

Abstract types pose a problem to the translation because there is no obvious
counterpart for them in Haskell’s type class system. However, we can model
them easily by slightly generalizing associated type synonyms to also support
abstract associated type synonyms. (We discuss other possibilities for representing
abstract types in Haskell in Sec. 2.5). The idea behind abstract associated type
synonyms is to limit the scope of the right-hand side of an associated type
synonym definition to the instance defining the synonym: Inside the instance,
the right–hand side is visible, but outside it is hidden; that is, the associated
type synonym is equated with some fresh type constructor.2 The first author’s
diploma thesis [13] includes a formalization of this extension.

The Haskell code in Fig. 2 demonstrates how our extension is used to model
abstract types in Haskell. The new keyword ������� introduces an abstract as-
sociated type synonym Set in the instance declaration for IntSet’. The effect
of using ������� is that the type equality Set IntSet’ =[Int] is visible from
within the instance declaration, but not from outside.

Note that there is no explicit Haskell translation for the signature of the
structure IntSet’. Instead, we reuse the type class SetSig from Fig. 1. Such a
reuse is possible because type abstraction in Haskell is performed inside instance
(and not class) declarations, which means that the signatures of the ML struc-
tures IntSet and IntSet’—differing only in whether the type component set is
abstract or not—would be translated into equivalent type classes.

2.3 Translating Functors

So far, we only considered sets of integers. ML allows the definition of generic
sets through functors, which act as functions from structures to structures. Fig. 3
shows such a functor. (We removed the elem type component from the functor
body to demonstrate a particular detail of the translation to Haskell.)

The Haskell version defines two type classes EqSig and MkSetSig as transla-
tions of the anonymous argument and result signatures, respectively. The class
MkSetSig is a multi-parameter type class [14], a well-known generalization of
Haskell 98’s single-parameter type classes. The first parameter b represents a
possible implementation of the functor body, whereas the second parameter a

corresponds to the functor argument; the constraint EqSig a allows us to access
the associated type synonym T of the EqSig class in the body of MkSetSig. (Now
it should become clear why we removed the elem type component from the func-
tor body: If E.t did not appear in a value specification of the functor body, the

2 Interestingly, this idea goes back to ML’s ������� feature, which is nowadays es-
sentially deprecated; the Haskell interpreter Hugs [12] implements a similar feature.
In contrast to abstract associated type synonyms, these approaches require the pro-
grammer to specify the scope of the concrete identity of an abstract type explicitly.

192 S. Wehr and M.M.T. Chakravarty

ML	�
��� MkSet (E : ��� ���� t ��� eq : t -> t -> bool ���)
= ���	
� ���� set = E.t list ��� empty = []

	� member x s = any (E.eq x) s
	� insert x s = � member x s ���� s ���� (x :: s) ���

:> ��� ���� set ��� empty : set ��� member : E.t -> set -> bool
��� insert : E.t -> set -> set ���

Haskell
���� EqSig a �����

���� T a; eq :: a -> T a -> T a -> Bool

���� EqSig a => MkSetSig b a �����

���� Set’ b a; empty’ :: b -> a -> Set’ b a
member’ :: b -> a -> T a -> Set’ b a -> Bool
insert’ :: b -> a -> T a -> Set’ b a -> Set’ b a

���� MkSet = MkSet
������
� EqSig a => MkSetSig MkSet a �����

������� Set’ MkSet a = [T a]; empty’ _ _ = []
member’ _ a x s = any (eq a x) s
insert’ _ a x s = � member’ MkSet a x s ���� s ���� (x : s)

Fig. 3. ML functor for generic sets and its translation to Haskell

ML
���	
�	�� StringSet = MkSet(���	
� ���� t = string ��� eq = stringEq ���)

Haskell���� StringEq = StringEq
������
� EqSig StringEq �����

���� T StringEq = String; eq _ = stringEq

Fig. 4. Functor invocation in ML and its translation to Haskell

necessity for the class parameter a would not occur.) Note that we cannot reuse
the names Set, empty, member, and insert of class SetSig because type synonyms
and class methods share a global namespace in Haskell.

The instance of MkSetSig for the fresh data type MkSet and some type variable
a is the translation of the functor body. The constraint EqSig a in the instance
context is necessary because we use the associated type synonym T and the
method eq in the instance body.

Fig. 4 shows how we use the MkSet functor to construct a set implementa-
tion for strings. To translate the functor invocation to Haskell, we define an
appropriate EqSig instance for type StringEq. The combination of the two types
MkSetSig and StringEq now correspond to the ML structure StringSet: access-
ing a component of StringSet is encoded in Haskell as an application (either on
the type or the term level) with arguments MkSet and StringEq. For example,
StringSet.empty translates to empty’ MkSet StringEq.

ML Modules and Haskell Type Classes: A Constructive Comparison 193

Table 1. Informal mapping from ML modules to Haskell type classes

ML Haskell
structure signature one-parameter type class
structure instance of the corresponding type class

functor argument signature single-parameter type class
functor result signature two-parameter type class (subclass of the argument class)
functor instance of the result class (argument class appears in

the instance context)

structure/functor name data type

type specification associated type synonym declaration
type definition associated type synonym definition
type occurrence associated type synonym application

value specification method signature
value definition method implementation
value occurrence method application

To demonstrate that our Haskell implementation for sets of strings fits the
general set framework, we provide an instance declaration for SetSig (Fig. 1):3

���� StringSet = StringSet
������
� SetSig StringSet �����

���� Elem StringSet = String
������� Set StringSet = Set’ MkSet StringEq
empty _ = empty’ MkSet StringEq; member _ = member’ MkSet StringEq
insert _ = insert’ MkSet StringEq

2.4 Summary

Table 1 summarizes the (informal) translation from ML modules to Haskell type
classes developed so far. We use the notion “type occurrence” (“value occur-
rence”) to denote an occurrence of a type identifier (value identifier) of some
structure in a type expression (in an expression).

2.5 Design Decisions Motivated

While developing our translation from ML modules to Haskell type classes, we
have made (at least) two critical design decisions: associated type synonyms
represent type components of signatures and structures, and abstract associated
type synonyms encode abstract types. In this section, we discuss and evaluate
other options for translating these two features.

To encode abstract types, we see two alternative approaches. Firstly, we could
use Haskell’s module system. It enables abstract types by wrapping them in a
3 The formal translation generates a class and an instance corresponding to the implicit

signature of the ML structure StringSet and the structure itself, respectively.

194 S. Wehr and M.M.T. Chakravarty

Haskell
���� IntSetAbs = ����� a. (SetSig a, Elem a ~ Int) => IntSetAbs a (Set a)
���� IntSet’’ = IntSet’’
������
� SetSig IntSet’’ �����

���� Elem IntSet’’ = Int; ���� Set IntSet’’ = IntSetAbs
empty _ = IntSetAbs IntSet (empty IntSet)
member _ i (IntSetAbs a s) = member a i s
insert _ i (IntSetAbs a s) = IntSetAbs a (insert a i s)

Fig. 5. Alternative encoding of abstract types with Haskell’s existential types

������� constructor and placing them in a separate module that hides the con-
structor. This solution is unsatisfactory for two reasons: (i) Explicit conversion
code is necessary to turn a value of the concrete type into a value of the abstract
type and vice versa. (ii) We do not want Haskell’s module system to interfere
with our comparison of ML modules and Haskell type classes.

Secondly, we could use existentials [15,16] to encode abstract types. Fig. 5
shows the translation of the ML structure IntSet’ from Fig. 2 for this approach.
The type IntSetAbs hides the concrete identity of Set a by existentially quanti-
fying over a. The constraint Elem a ~ Int ensures that the types Elem a and Int

are equal [17]. In the following instance declaration, we use IntSetAbs to define
the Set type and implement the methods of the instance by delegating the calls
to the SetSig instance hidden inside IntSetAbs.

There is, however, a major problem with the second approach: It is
unclear how to translate functions whose type signatures contain multiple oc-
currences of the same abstract type in argument position. For example, sup-
pose the signature of structure IntSet’ (Fig. 2) contained an additional function
union : set -> set ->set. The translation in Fig. 5 then also had to provide a
method union of type IntSetAbs -> IntSetAbs -> IntSetAbs. But there is no
sensible way to implement this method because the first and the second occur-
rence of IntSetAbs may hide different set representation types.4

An obvious alternative to associated type synonyms for representing ML’s type
components are multi-parameter type classes [14] together with functional depen-
dencies [18]. In this setting, every type component of an ML signature would be
encoded as an extra parameter of the corresponding Haskell type class, such that
the first parameter uniquely determined the extra parameters. Nevertheless, there
are good reasons for using associated type synonyms instead of extra type class pa-
rameters: (i) The extra parameters are referred to by position; however, ML type
components (and associated type synonyms) are referred to by name. (ii) Func-
tional dependencies provide no direct support for abstract types, whereas a simple
and lightweight generalization of associated type synonyms enables them. (Using
existential types with functional dependencies has the same problem as discussed
in the preceding paragraph.) Moreover, associated type synonyms are becoming

4 The situation is similar for Java-style interfaces: two occurrences of the same interface
type may hide two different concrete class types.

ML Modules and Haskell Type Classes: A Constructive Comparison 195

increasingly popular and are already available in the development version of the
most widely used Haskell compiler, GHC [11].

3 From Classes to Modules

The translation from Haskell type classes to ML modules encodes type classes as
signatures and instances of type classes as functors that yield structures of these
signatures. It makes use of two extensions to Standard ML, both of which are
implemented in Moscow ML [19]: recursive functors [20,21] model recursive in-
stance declarations, and first-class structures [22] serve as dictionaries providing
runtime evidence for type-class constraints. We first explain how to use first-
class structures as dictionaries (Sec. 3.1). Then we show ML encodings of type
class declarations (Sec. 3.2), of overloaded functions (Sec. 3.3), and of instance
declarations (Sec. 3.4). Finally, we summarize our results (Sec. 3.5).5

3.1 First-Class Structures as Dictionaries

Dictionary translation [2,23,24,25] is a technique frequently used to eliminate
overloading introduced by type classes. Using this technique, type-class con-
straints are turned into extra parameters, so that evidence for these constraints
can be passed explicitly at runtime. Evidence for a constraint comes as a dictio-
nary that provides access to all methods of the constraint’s type class.

The translation from Haskell type classes to ML modules is another applica-
tion of dictionary translation. In our case, dictionaries are represented as first-
class structures [22], an extension to Standard ML that allows structures to be
manipulated on the term level. This article uses first-class structure as imple-
mented in Moscow ML [19].

We need to explicitly convert a structure into a first-class structure and vice
versa. Suppose S is a signature, and s is a structure of signature S. Then the
construct [���	
�	�� s �� S] turns s into a first-class structure of type [S]. Such
types are called package types. Conversely, the construct ��� ���	
�	�� X �� S =

e1 �� e2 ���, where the expression e1 is expected to have type [S], makes the
structure contained in e1 available in e2 under the name X.

Clearly, there are alternative representations for dictionaries in ML; for ex-
ample, we could use records with polymorphic fields, as featured by OCaml [26].
We are, however, interested in a comparison between Haskell-style type classes
and ML’s module system, so we do not pursue this approach any further.

3.2 Translating Type Class Declarations

Fig. 6 shows two Haskell type classes Eq and Ord, which provide overloaded func-
tions eq and lt. We translate these classes into ML signatures of the same name.
Thereby, the type variable a in the class head is mapped to an opaque type spec-
ification t, and the methods of the class are translated into value specifications.
5 We use Haskell 98 [10] in this section; the ML code runs under Moscow ML [19].

196 S. Wehr and M.M.T. Chakravarty

Haskell
���� Eq a ����� eq :: a -> a -> Bool

���� Eq a => Ord a ����� lt :: a -> a -> Bool

ML������	�� Eq = ��� ���� t ��� eq : t -> t -> bool ���

������	�� Ord = ��� ���� t ��� lt : t -> t -> bool
��� superEq : [Eq ����� ���� t = t] ���

Fig. 6. Haskell type classes Eq and Ord and their translations to ML

Haskellelem :: Eq a => a -> [a] -> Bool
elem x l = any (eq x) l

ML	� elem d (x:’a) l = ��� ���	
�	�� D �� Eq ����� ���� t = ’a = d
�� any (D.eq x) l ���

Fig. 7. Overloaded function in Haskell and its translation to ML

The signature Ord has an additional value specification superEq to account for
the superclass Eq of Ord. Consequently, superEq has type [Eq ����� ���� t = t]

which represents a dictionary for Eq at type t.

3.3 Translating Overloaded Functions

Fig. 7 shows the Haskell function elem, which uses the eq method of class Eq.
Hence, the constraint Eq a needs to be added to the (optional) type annotation
of elem to limit the types that can be substituted for a to instances of Eq.

As already noted in Sec. 3.1, such a constraint is represented in the ML version
of elem as an additional parameter d which abstracts explicitly over the dictio-
nary for the constraint Eq a. Hence, the type of elem in ML is [Eq ����� ����

t = ’a] -> ’a -> ’a list -> bool.

In the body of elem, we open the first-class structure d and bind the content to
the structure variable D, so that we can access the equality comparison function as
D.eq. Note that we cannot do without the type annotation (x:’a): It introduces
the lexically scoped type variable ’a used in the signature required for opening
d. (Lexically scoped type variables are part of Standard ML.)

3.4 Translating Instance Declarations

Finally, we turn to the translation of instance declarations. The Haskell code in
Fig. 8 makes the type Int an instance of the type classes Eq and Ord. Furthermore,
it specifies that lists can be compared for equality as long as the list elements
can be compared for equality. This requirement is expressed by the constraint
Eq a in the context of the instance declaration for Eq [a]. (The constraints to

ML Modules and Haskell Type Classes: A Constructive Comparison 197

Haskell������
� Eq Int ����� eq = intEq
������
� Ord Int ����� lt = intLt
������
� Eq a => Eq [a] ����� eq [] [] = True

eq (x:xs) (y:ys) = eq x y && eq xs ys
eq _ _ = False

ML	�
��� EqInt() = ���	
� ���� t = int ��� eq = intEq ���

	�
��� OrdInt() = ���	
� ���� t = int ��� lt = intLt
��� superEq = [���	
�	�� EqInt()

�� Eq ����� ���� t = t] ���

���	
�	�� R = ��

(R’ : ��� 	�
��� F : 	�
��� (X: Eq) -> Eq ����� ���� t = X.t list ���)
���	
� 	�
��� F(X: Eq) =

���	
� ���� t = X.t list
	� eq [] [] = true
| eq (x::xs) (y::ys) =

��� ���	
�	�� Y �� Eq ����� ���� t = t
= [���	
�	�� R’.F(X) �� Eq ����� ���� t = t]

�� X.eq x y ������� Y.eq xs ys ���

| eq _ _ = false
���

���

	�
��� EqList(X: Eq) = R.F(X)

Fig. 8. Instance declarations in Haskell and their translations to ML

the left of the double arrow => are called the context ; the part to the right is
called the head. The double arrow is omitted if the context is empty.)

The functors EqInt and OrdInt are translations of the instances Eq Int and
Ord Int, respectively. These two functors do not take any arguments because the
contexts of the corresponding instance declarations are empty. (We could use
structures instead of functors in such cases; however, for reasons of consistency
we decided to use functors even if the instance context is empty.) The definition
of the superEq component in OrdInt demonstrates that dictionaries are created
by coercing structures into first-class structures.

The translation of the instance declaration for Eq [a] is more interesting be-
cause the Haskell version is recursive (through the expression eq xs ys in the
second equation of eq) and has a non-empty context. Consequently, the functor
EqList for this instance has to be defined recursively and takes an argument of
signature Eq corresponding to the constraint Eq a in the instance context.

To encode recursive functors, we use Moscow ML’s recursive structures [20,21].
We first define an auxiliary structure R that contains a definition of the desired
functor F. The keyword ��
 together with the forward declaration (R’ : ...)

makes the content of R available inside its own body. In the definition of eq,
we use R’.F to invoke the functor recursively, pack the result as a first-class
structure, immediately open this structure again, and bind the result to the

198 S. Wehr and M.M.T. Chakravarty

Table 2. Informal mapping from Haskell type classes to ML modules

Haskell ML
type class declaration signature
class method value component
superclass superclass dictionary

dictionary first-class structure

(recursive) instance declaration (recursive) functor
constraint in instance context argument to the corresponding instance functor
overloaded function function with additional dictionary parameter(s)

variable Y. Now we can use Y.eq to compare xs and ys. The combination of pack
and open operations is necessary to interleave computations on the term level
with computations on the module level; it is not possible to invoke R’.F(X).eq

directly. After the definition of R, we define EqList by invoking R.F.

It may seem awkward to use recursive functors in ML to encode recursive
Haskell functions. Indeed, for the example just discussed, a recursive ML func-
tion would be sufficient. In general, however, it is possible to write polymorphic
recursive functions [27] with Haskell type classes. For such cases, we definitely
need to encode recursion in terms of recursive functors because polymorphic
recursion is not available on the term level of Standard ML.6

3.5 Summary

We summarize the (informal) translation from Haskell type classes to ML mod-
ules in Table 2. Note that dictionaries are not part of Haskell’s surface syntax;
they only become manifest when evidence for constraints is made explicit by our
translation technique.

4 Formalization and Implementation

So far, all we did was apply the translations between ML modules and Haskell
type classes to some examples. How do we know that the translations work
in general and not only for our examples? To answer this question, we have
formalized the two translations, proved that they preserve types, and provided
implementations for them. For space reasons, we only describe the source and
target languages of the formalized translations. All the other details, all proofs,
and the implementations are part of the first author’s diploma thesis [13].

The source language of the formalized translation from modules to classes is a
subset of Standard ML [9], featuring all important module language constructs
except nested structures. The target language of the translation is Haskell 98 [10]
6 Extending Standard ML’s term language with polymorphic recursion is an alterna-

tive option. For Haskell type classes, polymorphic recursion comes “for free” because
class declarations provide explicit type information.

ML Modules and Haskell Type Classes: A Constructive Comparison 199

extended with multi-parameter type classes [14], associated type synonyms [6],
and abstract associated type synonyms (a contribution of the work at hand).

The translation from classes to modules uses a source language that supports
type classes in the style of Haskell 98, but without constructor classes, class
methods with constraints, and default definitions for methods. The target lan-
guage of this translation is a subset of Standard ML extended with first-class
structures [22] and recursive functors [20,21].

5 Discussion

Having developed translations from ML modules to Haskell type classes and vice
versa, we now present a thorough comparison between the two concepts. Sec. 5.1
discusses how Haskell type classes perform as a replacement for ML modules.
Sec. 5.2 changes the standpoint and evaluates how ML modules behave as an
alternative to Haskell type classes.

5.1 Classes as Modules

Namespace management. ML modules provide proper namespace management,
whereas Haskell type classes do not: It is not possible that two different type
classes (in the same Haskell module) declare members of the same name.

Signature and structure components. Signatures and structures in ML may con-
tain all sorts of language constructs, including substructures. Type classes and
instances in Haskell 98 may contain only methods; extensions to Haskell 98 also
allow type synonyms [6] and data types [5]. However, there exists no extension
that allows nested type classes and instances.

Sequential vs. recursive definitions. Definitions in ML are type checked and eval-
uated sequentially, with special support for recursive data types and recursive
functions. In particular, cyclic type abbreviations are disallowed. In Haskell, all
top-level definitions are mutually recursive, so associated type synonyms must
impose extra conditions to prevent the type checker from diverging while expand-
ing their definitions. For our purpose, the original termination conditions [6] are
too restrictive. Nevertheless, no program in the image of our translation from
modules to type classes causes the type checker to diverge because the sequential
nature of type abbreviations carries over to associated type synonym definitions.

Implicit vs. explicit signatures. In ML, signatures of structures are inferred im-
plicitly. In Haskell, the type class to which an instance declaration belongs has
to be stated explicitly. However, once recursive modules are introduced, ML
also requires explicit signatures, so the difference between implicit and explicit
signatures interplays with the preceding point of our comparison.

Anonymous vs. named signatures. Signatures in ML are essentially anonymous
because named signatures can be removed from the language without losing
expressiveness. Haskell type classes cannot be anonymous.

200 S. Wehr and M.M.T. Chakravarty

Structural vs. nominal signature matching. The difference between anonymous
and named signatures becomes relevant when we compare signature matching
in ML with its Haskell counterpart. In ML, matching a structure against a
signature is performed by comparing the structure and the signature component-
wise; the names of the structure and the signature—if present at all—do not
matter. This sort of signature matching is often called structural matching. Our
Haskell analog of signature matching is verifying whether the type representing a
structure is an instance of the type class representing the signature. The name of
a class is crucial for this decision. Therefore, we characterize our Haskell analog
of signature matching as nominal.

Abstraction. In ML, abstraction is performed by sealing a structure with a trans-
lucent or opaque signature. In Haskell, we perform abstraction inside instance
declarations through abstract associated type synonyms.

Unsealed and sealed view. A sealed structure in ML may look different depend-
ing on whether we view its body from inside or outside the signature seal: Inside,
more values and types may be visible, some types may be concrete, and some
values may have a more polymorphic type than outside. For our Haskell ana-
log, the same set of types and values is visible and a value has the same type,
regardless of whether we view the instance from inside or outside.

Translucent vs. opaque signatures Translucent signatures (signatures with both
concrete and abstract type components) are a key feature of ML’s module sys-
tem. Signatures in Haskell (i.e., type classes) may be classified as opaque because
they do not provide definitions for type components (i.e., associated type syn-
onyms).7

First-class structures. First-class structures are a nontrivial extension to Stan-
dard ML [22]. In our representation of structures as data types and instance
declarations, we get first-class structures for free, provided we only use top-level
structures as first-class entities. This restriction is necessary because instance
declarations in Haskell have to be top-level. All examples given by Russo [22,21]
meet this restriction.

5.2 Modules as Classes

Implicit vs. explicit overloading resolution. Overloading in Haskell is resolved
implicitly by the compiler. When type classes are simulated with ML modules,
overloading has to be resolved explicitly by the programmer, which leads to
awkward and verbose code.
Constructor classes. Our current translation scheme is unable to handle con-
structor classes because there is not direct counterpart of Haskell’s higher-oder
types in ML. We consider it as interesting future work to investigate whether
an encoding of higher-order types as functors would enable a translation of con-
structor classes to ML modules.
7 Default definitions for associated type synonyms do not help here because they may

change in instance declarations.

ML Modules and Haskell Type Classes: A Constructive Comparison 201

Recursive classes. Type classes in Haskell may be recursive in the sense that
a class can be used in a constraint for a method of the same class. We cannot
translate such recursive classes to ML because signatures cannot be recursive.
Default definitions for methods. Haskell type classes may contain default de-
finitions for methods. With our approach, such default definitions cannot be
translated properly to ML because signatures specify only the types of value
components and cannot contain implementations of value components.
Associated type synonyms. Type components in ML are similar to associated
type synonyms in Haskell, but it is unclear whether they have the same ex-
pressivity as their Haskell counterpart. For example, consider Chakravarty and
colleagues’ use of associated type synonyms to implement a string formatting
function. Their function sprintf has type Format fmt => fmt -> Sprintf fmt,
where Format is a type class with an associated type synonym Sprintf. Given
the translation presented in this article, we would use a first-class structure
to encode the constraint Format fmt in ML. The translation of the result type
Sprintf fmt would then require access to the type component of this structure
that corresponds to the associated type synonym Sprintf. It is not clear how
this can be realized.

6 Related Work

There is only little work on connecting modules with type classes. None of these
works meet our goal of comparing ML modules with Haskell type classes based
on formal translations.

The work closest to ours is Dreyer and colleagues’ modular reconstruction
of type classes [8]. This work, which strictly speaking came after our own [13],
extends Harper & Stone’s type-theoretic interpretation of modules [28] to include
ad-hoc polymorphism in the style of Haskell type classes. Instead of adding
an explicit notion of type classes to ML, certain forms of module signatures
take the role of class declarations and matching modules may be nominated as
being canonical for the purpose of overload resolution. The presented elaboration
relation mirrors Haskell’s notion of an evidence translation and is related to our
translation of Haskell classes into ML modules. Dreyer and colleagues do not
consider the converse direction of modeling modules by type classes.

Kahl and Scheffczyk [4] propose named instances for Haskell type classes.
Named instances allow the definition of more than one instance for the same
type; the instances are then distinguished by their name. Such named instances
are not used automatically in resolving overloading; however, the programmer
can customize overloading resolution by supplying them explicitly. Kahl and
Scheffczyk motivate and explain their extension in terms of OCaml’s module
system [29,26]; they do not consider any kind of translation from ML modules
to Haskell type classes or vice versa.

Shan [30] presents a formal translation from a sophisticated ML module cal-
culus [31] into System Fω [32]. The source ML module calculus is a unified
formalism that covers a large part of the design space of ML modules. The

202 S. Wehr and M.M.T. Chakravarty

target language System Fω of Shan’s translation can be encoded in Haskell ex-
tended with higher-rank types [33]; however, this encoding is orthogonal to the
type class system. Kiselyov builds on Shan’s work and translates a particular
applicative functor into Haskell with type classes [34]. However, he does not give
a formal translation, so it is unclear whether his approach works in general.
Neither Shan nor Kiselyov consider translations from type classes to modules.

Schneider [3] adds Haskell-style type classes to ML. His solution is conserv-
ative in the sense that type classes and modules remain two separate concepts.
In particular, he does not encode type classes as modules. Translations in the
opposite direction are not addressed in his work.

Jones [35] suggests record types with polymorphic fields for modular pro-
gramming. These record types do not support type components but explicit
type parameterization. Jones then uses parametric polymorphism to express
ML’s sharing constraints and to abstract over concrete implementation types.
His system supports first-class structures and higher-order modules.

Nicklisch and Peyton Jones [36] compare ML’s with Haskell’s module sys-
tem. They report that the simple namespace mechanism offered by Haskell can
compete with the module system offered by ML in many real–world applica-
tions. Moreover, they integrate Jones approach [35] into Haskell to find that the
resulting system exceeds ML’s module system in some cases.

7 Conclusion

This article demonstrates how to translate essential features of ML modules to
Haskell type classes and vice versa. Both translations come with a formalization,
a proof of type preservation, and an implementation. Based on the two trans-
lations, the article presents a thorough comparison between ML modules and
Haskell type classes.

Acknowledgments. We thank the reviewers of FLOPS 2008 and APLAS 2008 for
their detailed comments.

References

1. Kaes, S.: Parametric overloading in polymorphic programming languages. In:
Ganzinger, H. (ed.) ESOP 1988. LNCS, vol. 300, pp. 131–144. Springer, Heidelberg
(1988)

2. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad-hoc. In: Proc.
16th ACM Symp. POPL, Austin, Texas, pp. 60–76. ACM Press, New York (1989)

3. Schneider, G.: ML mit Typklassen. Master’s thesis, Universität des Saarlandes
(2000), http://www.ps.uni-sb.de/Papers/abstracts/Schneider2000.html

4. Kahl, W., Scheffczyk, J.: Named instances for Haskell type classes. In: Hinze, R.
(ed.) Proceedings of the 2001 Haskell Workshop (2001)

5. Chakravarty, M., Keller, G., Peyton Jones, S., Marlow, S.: Associated types with
class. In: Abadi, M. (ed.) Proc. 32nd ACM Symp. POPL, Long Beach, CA, USA,
pp. 1–13. ACM Press, New York (2005)

http://www.ps.uni-sb.de/Papers/abstracts/Schneider2000.html

ML Modules and Haskell Type Classes: A Constructive Comparison 203

6. Chakravarty, M., Keller, G., Peyton Jones, S.: Associated type synonyms. In:
Pierce, B.C. (ed.) Proc. ICFP 2005, Tallinn, Estonia, pp. 241–253. ACM Press,
New York (2005)

7. Rossberg, A.: Post to the alice-users mailing list (May 2005),
http://www.ps.uni-sb.de/pipermail/alice-users/2005/000466.html

8. Dreyer, D., Harper, R., Chakravarty, M.: Modular type classes. In: Felleisen, M.
(ed.) Proc. 34th ACM Symp. POPL, Nice, France, pp. 63–70. ACM Press, New
York (2007)

9. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML
(Revised). MIT Press, Cambridge (1997)

10. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries, The Revised Report.
Cambridge University Press, Cambridge (2003)

11. GHC: The Glasgow Haskell compiler (2008), http://www.haskell.org/ghc/
12. Jones, M.P., Peterson, J.: The Hugs 98 user manual (1999),

http://www.haskell.org/hugs/
13. Wehr, S.: ML modules and Haskell type classes: A constructive comparison.

Master’s thesis, Albert-Ludwigs-Universität Freiburg (November 2005),
http://www.informatik.uni-freiburg.de/∼wehr/publications/Wehr2005.html

14. Peyton Jones, S., Jones, M., Meijer, E.: Type classes: An exploration of the design
space. In: Launchbury, J. (ed.) Proc. of the Haskell Workshop, Amsterdam, The
Netherlands (June 1997)

15. Mitchell, J.C., Plotkin, G.D.: Abstract types have existential types. ACM Trans.
Prog. Lang. and Systems 10(3), 470–502 (1988)

16. Läufer, K.: Type classes with existential types. J. Funct. Program 6(3), 485–517
(1996)

17. Chakravarty, M.M.T., Keller, G., Peyton Jones, S.: Associated type synonyms. In:
Pierce, B.C. (ed.) Proc. ICFP 2005, Tallinn, Estonia, pp. 241–253. ACM Press,
New York (2005)

18. Jones, M.P.: Type classes with functional dependencies. In: Smolka, G. (ed.) ESOP
2000. LNCS, vol. 1782, pp. 230–244. Springer, Heidelberg (2000)

19. Romanenko, S., Russo, C., Kokholm, N., Larsen, K.F., Sestoft, P.: Moscow ML
homepage (2007), http://www.dina.dk/∼sestoft/mosml.html

20. Crary, K., Harper, R., Puri, S.: What is a recursive module? In: Proc. 1999 PLDI,
Atlanta, Georgia, USA, May 1999. SIGPLAN Notices, vol. 34(5), pp. 50–63 (1999)

21. Russo, C.V.: Recursive structures for Standard ML. In: Leroy, X. (ed.) Proc. 2001
ICFP, Florence, Italy, September 2001, pp. 50–61. ACM Press, New York (2001)

22. Russo, C.V.: First-class structures for Standard ML. In: Smolka, G. (ed.) ESOP
2000. LNCS, vol. 1782, pp. 336–350. Springer, Heidelberg (2000)

23. Jones, M.P.: Qualified Types: Theory and Practice. Cambridge University Press,
Cambridge (1994)

24. Hall, C.V., Hammond, K., Peyton Jones, S.L., Wadler, P.L.: Type classes in Has-
kell. ACM Trans. Prog. Lang. and Systems 18(2), 109–138 (1996)

25. Faxén, K.F.: A static semantics for Haskell. J. Funct. Program 12(4&5), 295–357
(2002)

26. OCaml: Objective Caml (2007), http://caml.inria.fr/ocaml/index.en.html
27. Henglein, F.: Type inference with polymorphic recursion. ACM Trans. Prog. Lang.

and Systems 15(2), 253–289 (1993)
28. Harper, R., Stone, C.: A type-theoretic interpretation of Standard ML. In: Plotkin,

G., Stirling, C., Tofte, M. (eds.) Proof, Language, and Interaction: Essays in Honor
of Robin Milner. MIT Press, Cambridge (2000)

http://www.ps.uni-sb.de/pipermail/alice-users/2005/000466.html
http://www.haskell.org/ghc/
http://www.haskell.org/hugs/
http://www.informatik.uni-freiburg.de/~wehr/publications/Wehr2005.html
http://www.dina.dk/~sestoft/mosml.html
http://caml.inria.fr/ocaml/index.en.html

204 S. Wehr and M.M.T. Chakravarty

29. Leroy, X.: Applicative functors and fully transparent higher-order modules. In:
Proc. 1995 ACM Symp. POPL, San Francisco, CA, USA, pp. 142–153. ACM Press,
New York (1995)

30. Shan, C.: Higher-order modules in System Fω and Haskell (July 2004),
http://www.eecs.harvard.edu/∼ccshan/xlate/

31. Dreyer, D., Crary, K., Harper, R.: A type system for higher-order modules. In:
Morrisett, G. (ed.) Proc. 30th ACM Symp. POPL, New Orleans, LA, USA, January
2003, pp. 236–249. ACM Press, New York (2003); ACM SIGPLAN Notices (38)1

32. Girard, J.Y.: Interpretation Fonctionnelle et Elimination des Coupures dans
l’Arithmetique d’Ordre Superieur. Ph.D thesis, University of Paris VII (1972)

33. Peyton Jones, S., Vytiniotis, D., Weirich, S., Shields, M.: Practical type inference
for arbitrary-rank types. J. Funct. Program 17(1), 1–82 (2007)

34. Kiselyov, O.: Applicative translucent functors in Haskell. Post to the Haskell mail-
ing list (August 2004),
http://www.haskell.org/pipermail/haskell/2004-August/014463.html

35. Jones, M.P.: Using parameterized signatures to express modular structure. In: Proc.
1996 ACM Symp. POPL, St. Petersburg, FL, USA. ACM Press, New York (1996)

36. Nicklisch, J., Peyton Jones, S.: An exploration of modular programs. In: Proc. 1996
Glasgow Workshop on Functional Programming (July 1996),
http://www.dcs.gla.ac.uk/fp/workshops/fpw96/Nicklisch.pdf

http://www.eecs.harvard.edu/~ccshan/xlate/
http://www.haskell.org/pipermail/haskell/2004-August/014463.html
http://www.dcs.gla.ac.uk/fp/workshops/fpw96/Nicklisch.pdf

The Essence of Form Abstraction�

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop

School of Informatics, University of Edinburgh

Abstract. Abstraction is the cornerstone of high-level programming;
HTML forms are the principal medium of web interaction. However, most
web programming environments do not support abstraction of form com-
ponents, leading to a lack of compositionality. Using a semantics based
on idioms, we show how to support compositional form construction and
give a convenient syntax.

1 Introduction

Say you want to present users with an HTML form for entering a pair of dates
(such as an arrival and departure date for booking a hotel). In your initial design,
a date is represented just as a single text field. Later, you choose to replace each
date by a pair of pulldown menus, one to select a month and one to select a day.

In typical web frameworks, such a change will require widespread modifica-
tions to the code. Under the first design, the HTML form will contain two text
fields, and the code that handles the response will need to extract and parse
the text entered in each field to yield a pair of values of an appropriate type,
say, an abstract date type. Under the second design, however, the HTML will
contain four menus, and the code that handles the response will need to extract
the choices for each menu and combine them in pairs to yield each date.

How can we structure a program so that it is isolated from this choice? We
want to capture the notion of a part of a form, specifically a part for collecting
values of a given type or purpose; we call such an abstraction a formlet. The
designer of the formlet should choose the HTML presentation, and decide how
to process the input into a date value. Clients of the formlet should be insulated
from the choice of HTML presentation, and also from the calculation that yields
the abstract value. And, of course, we should be able to compose formlets to
build larger formlets.

Once described, this sort of abstraction seems obvious and necessary. But
remarkably few web frameworks support it. Three existing web programming
frameworks that do support some degree of abstraction over form components
are WASH [28], iData [23] and WUI [11,12], each having distinctive features and
limitations. (We discuss these further in Section 6.)

Our contribution is to reduce form abstraction to its essence. We use id-
ioms [19] (also known as applicative functors), a notion of effectful computation,

� Supported by EPSRC grant number EP/D046769/1.

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 205–220, 2008.
� Springer-Verlag Berlin Heidelberg 2008

206 E. Cooper et al.

related to both monads [20] and arrows [14]. We define a semantics for form-
lets by composing standard idioms, show how to support compositional form
construction, and give a convenient syntax. Furthermore, we illustrate how the
semantics can be extended to support additional features (such as checking form
input for validity), either by composing with additional standard idioms or by
generalising to indexed and parameterised idioms.

We originally developed formlets as part of our work on Links [6], a program-
ming language for the web. Like many other systems the original design of Links
exposed programmers to the low-level details of HTML/CGI. We introduced
formlets as a means to abstract away from such details.

In this paper we present a complete implementation of formlets in OCaml.
We take advantage of the extensible Camlp4 preprocessor to provide syntactic
sugar, without which formlets are usable but more difficult to read and write.
Both the library and the syntax extension are available from

http://groups.inf.ed.ac.uk/links/formlets/

The Links implementation of formlets also provides the syntax presented here.
The complete Links system includes many features, such as a full suite of HTML
controls (textareas, pop-up menus, radio buttons, etc.), which are not described
here. Steve Strugnell has ported a commercial web-based project-management
application originally implemented in PHP to the Links version of formlets [26].
He gives an in-depth comparison between Links formlets and forms implemented
in PHP. Chris Eidhof has released a Haskell implementation of formlets [8].

The remainder of this paper is organised as follows. Section 2 presents form-
lets, as they appear to the programmer, through examples. Section 3 gives
a semantics for formlets as the composition of the three idiom instances that
capture the effects needed for form abstraction. Section 4 defines formally the
formlet syntax used throughout the paper and relates it to the formlet idiom.
Section 5 shows how to extend the basic abstraction with additional features:
static XHTML validation, user-input validation, and an optimised representa-
tion based on multi-holed contexts. Section 6 examines the relationship with
existing form-abstraction features in high-level web frameworks.

2 Formlets by Example

Now we illustrate formlets, as they might appear to the programmer, with an
example (Fig. 1). We assume familiarity with HTML and OCaml. This section
covers our OCaml implementation, and so has features that may vary in another
implementation of formlets. We use a special syntax (defined formally in Sec-
tion 4) for programming with formlets; this syntax is part of the implementation,
and makes formlets easier to use, but not an essential part of the abstraction.

The formlet date formlet has two text input fields, labelled “Month” and
“Day.” Upon submission, this formlet will yield a date value representing the
date entered. The user-defined make date function translates the day and month
into a suitable representation.

http://groups.inf.ed.ac.uk/links/formlets/

The Essence of Form Abstraction 207

le
td

at
e

fo
rm

le
t

:d
at

e
fo

rm
le

t
=

fo
rm

le
t

<
d
i
v
>

M
o
n
t
h
:

{i
np

ut
in

t
⇒

m
on

th
}

D
a
y
:

{i
np

ut
in

t
⇒

da
y}

<
/
d
i
v
>

yi
el

ds
m

ak
e

da
te

m
on

th
da

y

le
tt

ra
ve

l
fo

rm
le

t
:(

st
ri

ng
×

da
te

×
da

te
)
fo

rm
le

t
=

fo
rm

le
t

<
#
> N
a
m
e
:

{i
np

ut
⇒

na
m

e}
<
d
i
v
>

A
r
r
i
v
e
:

{d
at

e
fo

rm
le

t
⇒

ar
ri

ve
}

D
e
p
a
r
t
:

{d
at

e
fo

rm
le

t
⇒

de
pa

rt
}

<
/
d
i
v
>

{s
ub

m
it

"
S
u
b
m
i
t
"
}

<
/
#
>

yi
el

ds
(n

am
e,

ar
ri

ve
,d

ep
ar

t)

le
td

is
pl

ay
it
in

er
ar

y
:(

st
ri

ng
×

da
te

×
da

te
)

→
xm

l
=

fu
n

(n
am

e,
ar

ri
ve

,d
ep

ar
t)

→
<
h
t
m
l
>

<
h
e
a
d
>
<
t
i
t
l
e
>
I
t
i
n
e
r
a
r
y
<
/
t
i
t
l
e
>
<
/
h
e
a
d
>

<
b
o
d
y
>

I
t
i
n
e
r
a
r
y

f
o
r
:

{x
m

l
te

xt
na

m
e}

A
r
r
i
v
i
n
g
:

{x
m

l
of

da
te

ar
ri

ve
}

D
e
p
a
r
t
i
n
g
:

{x
m

l
of

da
te

de
pa

rt
}

<
/
b
o
d
y
>

<
/
h
t
m
l
>

ha
nd

le
tr
av

el
fo

rm
le

t
di

sp
la

y
it
in

er
ar

y

F
ig

.1
.
D

at
e

ex
am

pl
e

le
t

da
te

fo
rm

le
t

:
da

te
fo

rm
le

t
=

pu
re

(f
un

((
),

m
on

th
,

()
,
da

y,
()

)
→

m
ak

e
da

te
m

on
th

da
y)

⊗
(t

ag
"
d
i
v
"

[]
(p

ur
e

(f
un

()
m

on
th

()
da

y
()

→
((

),
m

on
th

,
()

,
da

y,
()

))
⊗

te
xt

"
M
o
n
t
h
:
"

⊗
in

pu
t

in
t

⊗
te

xt
"
D
a
y
:
"

⊗
in

pu
t

in
t

⊗
te

xt
"
\
n
"
))

le
t

tr
av

el
fo

rm
le

t
:

(s
tr

in
g

×
da

te
×

da
te

)
fo

rm
le

t
=

pu
re

(f
un

((
),

na
m

e,
((

),
ar

ri
ve

,
()

,
de

pa
rt

),
()

)
→

(n
am

e,
ar

ri
ve

,
de

pa
rt

))
⊗

(p
ur

e
(f

un
()

na
m

e
((

),
ar

ri
ve

,
()

,
de

pa
rt

)
()

→
((

),
na

m
e,

((
),

ar
ri

ve
,

()
,
de

pa
rt

),
()

))
⊗

te
xt

"
N
a
m
e
:
"

⊗
in

pu
t

⊗
(t

ag
"
d
i
v
"

[]
(p

ur
e

(f
un

()
ar

ri
ve

()
de

pa
rt

→
((

),
ar

ri
ve

,
()

,
de

pa
rt

))
⊗

te
xt

"
A
r
r
i
v
e
:
"

⊗
da

te
fo

rm
le

t
⊗

te
xt

"
D
e
p
a
r
t
:
"

⊗
da

te
fo

rm
le

t)
)

⊗
xm

l
(s

ub
m

it
"
S
u
b
m
i
t
"
))

le
t

di
sp

la
y

it
in

er
ar

y
:

(s
tr

in
g

×
da

te
×

da
te

)
→

xm
l

=
fu

n
(n

am
e,

ar
ri

ve
,
de

pa
rt

)
→

xm
l
ta

g
"
h
t
m
l
"

[]
((

xm
l
ta

g
"
h
e
a
d
"

[]
(x

m
l
ta

g
"
t
i
t
l
e
"

[]
(x

m
l
te

xt
"
I
t
i
n
e
r
a
r
y
"
))

)
@

(x
m

l
ta

g
"
b
o
d
y
"

[]
((

xm
l
te

xt
"
I
t
i
n
e
r
a
r
y
f
o
r
:
"
)

@
(x

m
l
te

xt
na

m
e)

@
(x

m
l
te

xt
"
A
r
r
i
v
i
n
g
:
"
)

@
(x

m
l
of

da
te

ar
ri

ve
)

@
(x

m
l
te

xt
"
D
e
p
a
r
t
i
n
g
:
"
)

@
(x

m
l
of

da
te

de
pa

rt
))

))

ha
nd

le
tr
av

el
fo

rm
le

t
di

sp
la

y
it
in

er
ar

y

F
ig

.2
.
D

at
e

ex
am

pl
e

(d
es

ug
ar

ed
)

208 E. Cooper et al.

A formlet expression consists of a body and a yields clause. The body of
date formlet is

<div>
Month: {input int ⇒ month}
Day: {input int ⇒ day}

</div>

and its yields clause is

make date month day

The body of a formlet expression is a formlet quasiquote. This is like an
XML literal expression but with embedded formlet bindings. A formlet binding
{f ⇒ p} binds the value yielded by f to the pattern p for the scope of the
yields clause. Here f is an expression that evaluates to a formlet and the type
yielded by the formlet must be the same as the type accepted by the pattern.
Thus the variables month and day will be bound to the values yielded by the
two instances of the input int formlet. The bound formlet f will render some
HTML which will take the place of the formlet binding when the outer formlet
is rendered.

The value input int : int formlet is a formlet that renders as an HTML text in-
put element, and parses the submission as type int . It is built from the primitive
formlet input which presents an input element and yields the entered string. Al-
though input int is used here twice, the system prevents any field name clashes.

It is important to realize that any given formlet defines behavior at two dis-
tinct points in the program’s runtime: first when the form structure is built up,
and much later (if at all) when the form is submitted by the user, when the
outcome is processed. The first corresponds to the body and the second to the
yields clause.

Next we illustrate how user-defined formlets can be usefully combined to cre-
ate larger formlets. Continuing Fig. 2, travel formlet asks for a name, an arrival
date, and a departure date. The library function submit returns the HTML for a
submit button; its string argument provides the label for the button. (This cov-
ers the common case where there is a single button on a form. A similar function
submit button : string → bool formlet constructs a submit button formlet, whose
result indicates whether this button was the one that submitted the form.)

(The syntax <#> · · · </#> enters the XML parsing mode without introducing
a root XML node; its result is an XML forest, with the same type as XML values
introduced by a proper XML tag. We borrow this notation from WASH.)

Having created a formlet, how do we use it? For a formlet to become a form,
we need to connect it with a handler, which will consume the form input and
perform the rest of the user interaction. The function handle attaches a handler
to a formlet.

Continuing the above example, we render travel formlet onto a full web page,
and attach a handler (display itinerary) that displays the chosen itinerary back
to the user. (The abstract type xml is given in Fig. 3; we construct XML using
special syntax, which is defined in terms of the xml tag and xml text functions,
as shown formally in Section 4.)

The Essence of Form Abstraction 209

type xml = xml item list
and tag = string
and attrs = (string × string) list
and xml item

val xml tag : tag → attrs → xml → xml
val xml text : string → xml

Fig. 3. The xml abstract type

This is a simple example; a more interesting application might render another
form on the display itinerary page, one which allows the user to confirm the
itinerary and purchase tickets; it might then take actions such as logging the
purchase in a database, and so on.

This example demonstrates the key characteristics of the formlet abstraction:
static binding (we cannot fetch the value of a form field that is not in scope),
structured results (the month and day fields are packaged into an abstract date
type, which is all the formlet consumer sees), and composition (we reuse the
date formlet twice in travel formlet , without fear of field-name clashes).

2.1 Syntactic Sugar

Fig. 2 shows the desugared version of the date example. XML values are con-
structed using the xml tag and xml text functions and the standard list concate-
nation operator, @. Formlet values are slightly more complicated. The xml tag
and xml text functions have formlet counterparts tag and text ; composition of
formlets makes use of the standard idiom operations pure and ⊗. The formlet
primitives are covered in detail in Section 3.

The sugar makes it easier to freely mix static XML with formlets. Without
the sugar, dummy bindings are needed to bind formlets consisting just of XML
(see the calls to pure in Fig. 2), and formlets nested inside XML have to be
rebound (see the second call to pure in the body of travel formlet in Fig. 2). A
desugaring algorithm is described in Section 4.

2.2 Life without Formlets

Now consider implementing the above example using the standard HTML/CGI
interface. We would face the following difficulties with the standard interface:

– There is no static association between a form definition and the code that
handles it, so the interface is fragile. This means the form and the handling
code need to be kept manually in sync.

– Field values are always received individually and always as strings: the in-
terface provides no facility for processing data or giving it structure.

– Given two forms, there is generally no easy way to combine them into a new
form without fear of name clashes amongst the fields—thus it is not easy to
write a form that abstractly uses subcomponents. In particular, it’s difficult
to use a form twice within a larger form.

210 E. Cooper et al.

module type Idiom = sig
type α t
val pure : α → α t
val (⊗) : (α → β) t → α t → β t

end

module type FORMLET = sig
include Idiom
val xml : xml → unit t
val text : string → unit t
val tag : tag → attrs → α t → α t
val input : string t
val run : α t → xml × (env → α)

end

Fig. 4. The idiom and formlet interfaces

Conventional web programming frameworks such as PHP [22] and Ruby on
Rails [25] facilitate abstraction only through templating or textual substitution,
hence there is no automatic way to generate fresh field names, and any form
“abstraction” (such as a template) still exposes the programmer to the concrete
field names used in the form. Even advanced systems such as PLT Scheme [10],
JWIG [5], scriptlets [9], Ocsigen [2], Lift [15] and the original design for Links [6]
all fall short in the same way.

Formlets address all of the above problems: they provide a static association
between a form and its handler (ensuring that fields referenced actually exist and
are of the right type), they allow processing raw form data into structured values,
and they allow composition, in part by generating fresh field names at runtime.

3 Semantics

We wish to give a semantics of formlets using a well-understood formalism. We
shall show that formlets turn out to be idioms [19], a notion of computation
closely related to monads [3,20,29]. We begin with a concrete implementation in
OCaml, which we then factor using standard idioms to give a formal semantics.

3.1 A Concrete Implementation

Figs. 4 and 5 give a concrete implementation of formlets in OCaml.
The type α t is the type of formlets that return values of type α (the library

exposes this type at the top-level as α formlet). Concretely α t is defined as a
function that takes a name source (integer) and returns a triple of a rendering
(XML), a collector (function of type env → α) and an updated name source.
The formlet operations ensure that the names generated in the rendering are the
names expected (in the environment) by the collector.

The pure operation is used to create constant formlets whose renderings are
empty and whose collector always returns the same value irrespective of the
environment. The ⊗ operation applies an A → B formlet to an A formlet. The
name source is threaded through each formlet in turn. The resulting renderings
are concatenated and the collectors composed. Together pure and ⊗ constitute
the fundamental idiom operations. (To be an idiom, they must also satisfy some
laws, shown in Section 3.2.)

The Essence of Form Abstraction 211

module Formlet : FORMLET = struct
type α t = int → (xml × (env → α) × int)

let pure x i = ([], const x, i)
let (⊗) f p i = let (x1, g, i) = f i in

let (x2, q, i) = p i in
(x1 @ x2, (fun env → g env (q env)), i)

let xml x i = (x, const (), i)
let text t i = xml (xml text t) i
let tag t attrs fmlt i = let (x, f, i) = fmlt i in (xml tag t attrs x, f, i)

let next name i = ("input_" ^ string of int i, i + 1)
let input i = let (w, i) = next name i in

(xml tag "input" [("name", w)] [], List.assoc w, i)

let run c = let (x, f,) = c 0 in (x, f)
end

Fig. 5. The formlet idiom

As before, the xml and text operations create unit formlets from the given
XML or text, and the tag operation wraps the given formlet’s rendering in a
new element with the specified tag name and attributes.

The primitive formlet input generates HTML input elements. A single name is
generated from the name source, and this name is used both in the rendering and
the collector. The full implementation includes a range of other primitive formlets
for generating the other HTML form elements (e.g. textarea, option, etc.).

The run operation “runs” a formlet by supplying it with a name source (we
use 0); this produces a rendering and a collector function.

3.2 Idioms

Idioms were introduced by McBride [18] to capture a common pattern in func-
tional programming.1 An idiom is a type constructor I together with operations:

pure : α → I α ⊗ : I (α → β) → I α → I β

that satisfy the following laws:

pure id ⊗ u = u pure f ⊗ pure x = pure (f x)
pure (◦) ⊗ u ⊗ v ⊗ w = u ⊗ (v ⊗ w) u ⊗ pure x = pure (λf.f x) ⊗ u

where id is the identity function and ◦ denotes function composition.

1 Subsequently McBride and Paterson [19] changed the name to applicative functor to
emphasise the view of idioms as an “abstract characterisation of an applicative style
of effectful programming”. We stick with McBride’s original “idiom” for brevity.

212 E. Cooper et al.

The pure operation lifts a value into an idiom. Like standard function appli-
cation, idiom application ⊗ is left-associative. The idiom laws guarantee that
pure computations can be reordered. However, an effectful computation cannot
depend on the result of a pure computation, and any expression built from pure
and ⊗ can be rewritten in the canonical form

pure f ⊗ u1 ⊗ · · · ⊗ uk

where f is the pure part of the computation and u1, . . . , uk are the effectful
parts of the computation. This form captures the essence of idioms as a tool for
modelling computation.

The intuition is that an idiomatic computation consists of a series of side-
effecting computations, each of which returns a value. The order in which com-
putations are performed is significant, but a computation cannot depend on
values returned by prior computations. The final return value is obtained by ag-
gregating the values returned by each of the side-effecting computations, using
a pure function. As Lindley and others [17] put it: idioms are oblivious.

Formlets fit this pattern: the sub-formlets cannot depend on one another, and
the final value yielded by a formlet is a pure function of the values yielded by
the sub-formlets.

3.3 Factoring Formlets

Now we introduce the three idioms into which the formlet idiom factors (Fig. 6).
Besides the standard idiom operations in the interface, each idiom comes with
operations corresponding to primitive effects and a run operation for executing
the effects and extracting the final result. A computation in the Namer idiom
has type int → α× int ; it is a function from a counter to a value and a possibly-
updated counter. The next name operation uses this counter to construct a fresh
name, updating the counter. A computation in the Environment idiom has type
env → α; it receives an environment and yields a value. The lookup operation
retrieves values from the environment by name. A computation in the XmlWriter
idiom (also known as a monoid-accumulator) has type xml × α and so yields
both XML and a value; the XML is generated by the primitive xml , text and tag
operations and concatenated using ⊗. Each of these idioms corresponds directly
to a standard monad [19].

The formlet idiom is just the composition of these three idioms (see Fig. 8).
The Compose module composes any two idioms (Fig. 7).

To work with a composed idiom, we need to be able to lift the primitive
operations from the component idioms into the composed idiom. Given idioms
F and G, we can lift any idiomatic computation of type α G.t to an idiomatic
computation of type (α G.t)F.t using F .pure, or lift one of type α F.t to one of
type (α G.t) F.t using Compose(F)(G).refine.

The Essence of Form Abstraction 213

m
od

ul
e

N
am

er
:

si
g

in
cl

ud
e

Id
io

m
va

l
ne

xt
na

m
e

:
st

ri
ng

t
va

l
ru

n
:

α
t

→
α

en
d

=
st

ru
ct

ty
pe

α
t

=
in

t
→

α
×

in
t

le
t

pu
re

v
i

=
(v

,
i)

le
t

(⊗
)

f
p

i
=

le
t

(f
′ ,

i)
=

f
i

in
le

t
(p

′ ,
i)

=
p

i
in

(f
′

p
′ ,

i)
le

t
ne

xt
na

m
e

i
=

("
i
n
p
u
t
_
"
^
st

ri
ng

of
in

t
i,

i+
1)

le
t

ru
n

v
=

fs
t

(v
0)

en
d

m
od

ul
e

E
nv

ir
on

m
en

t
:

si
g

in
cl

ud
e

Id
io

m
ty

pe
en

v
=

(s
tr

in
g

×
st

ri
ng

)
lis

t
va

l
lo

ok
up

:
st

ri
ng

→
st

ri
ng

t
va

l
ru

n
:

α
t

→
en

v
→

α
en

d
=

st
ru

ct
ty

pe
α

t
=

en
v

→
α

an
d

en
v

=
(s

tr
in

g
×

st
ri

ng
)

lis
t

le
t

pu
re

v
e

=
v

le
t

(⊗
)

f
p

e
=

f
e

(p
e)

le
t

lo
ok

up
=

L
is

t.
as

so
c

le
t

ru
n

v
=

v
en

d

m
od

ul
e

X
m

lW
ri

te
r

:
si
g

in
cl

ud
e

Id
io

m
va

l
te

xt
:
st

ri
ng

→
un

it
t

va
l
xm

l
:
xm

l
→

un
it

t
va

l
ta

g
:
ta

g
→

at
tr

s
→

α
t

→
α

t
va

l
ru

n
:

α
t

→
xm

l
×

α
en

d
=

st
ru

ct
ty

pe
α

t
=

xm
l

×
α

le
t

pu
re

v
=

([
],

v)
le

t
(⊗

)
(x

,
f)

(y
,
p)

=
(x

@
y,

f
p)

le
t

te
xt

x
=

(x
m

l
te

xt
x,

()
)

le
t

xm
l

x
=

(x
,

()
)

le
t

ta
g

t
a

(x
,v

)
=

(x
m

l
ta

g
t

a
x,

v)
le

t
ru

n
v

=
v

en
d

F
ig

.6
.
St

an
da

rd
id

io
m

s

m
od

ul
e

C
om

po
se

(F
:
Id

io
m

)
(G

:
Id

io
m

)
:

si
g

in
cl

ud
e

Id
io

m
w

it
h

ty
pe

α
t

=
(α

G
.t

)
F
.t

va
l
re

fin
e

:
α

F
.t

→
(α

G
.t

)
F
.t

en
d

=
st

ru
ct

ty
pe

α
t

=
(α

G
.t

)
F
.t

le
t

pu
re

x
=

F
.p

ur
e

(G
.p

ur
e

x)
le

t
(⊗

)
f

x
=

F
.p

ur
e

(⊗
G

)
⊗

F
f

⊗
F

x
le

t
re

fin
e

v
=

(F
.p

ur
e

G
.p

ur
e)

⊗
F

v
en

d

F
ig

.7
.
Id

io
m

co
m

po
si
ti
on

m
od

ul
e

Fo
rm

le
t

:
F
O

R
M

L
E
T

=
st

ru
ct

m
od

ul
e

A
E

=
C

om
po

se
(X

m
lW

ri
te

r)
(E

nv
ir
on

m
en

t)
in

cl
ud

e
C

om
po

se
(N

am
er

)
(A

E
)

m
od

ul
e

N
=

N
am

er
m

od
ul

e
A

=
X

m
lW

ri
te

r
m

od
ul

e
E

=
E
nv

ir
on

m
en

t
le

t
xm

l
x

=
N

.p
ur

e
(A

E
.r
efi

ne
(A

.x
m

l
x)

)
le

t
te

xt
s

=
N

.p
ur

e
(A

E
.r
efi

ne
(A

.t
ex

t
s)

)
le

t
ta

g
t

at
s

f
=

N
.p

ur
e

(A
.t
ag

t
at

s)
⊗

N
f

le
t

in
pu

t
=

N
.p

ur
e

(f
un

n
→

A
.t
ag

"
i
n
p
u
t
"

[(
"
n
a
m
e
"
,
n
)]

(A
.p

ur
e

(E
.lo

ok
up

n
))

)
⊗

N
N

.n
ex

t
na

m
e

le
t

ru
n

v
=

le
t

xm
l,

co
lle

ct
or

=
A

.r
un

(N
.r
un

v)
in

(x
m

l,
E

.r
un

co
lle

ct
or

)
en

d

F
ig

.8
.
T

he
fo

rm
le

t
id

io
m

(f
ac

to
re

d)

214 E. Cooper et al.

In defining the composed formlet idiom, a combination of N .pure and
AE .refine is used to lift the results of the A.xml and A.text operations. The
tag operation is lifted differently as its third argument is a formlet: here we ap-
ply the A.tag t ats operation to it. The run operation simply runs each of the
primitive run operations in turn. The input operation is the most interesting. It
generates a fresh name and uses it both to name an input element and, in the
collector, for lookup in the environment.

3.4 A Note on Monads

Monads [3,20,29] are a more standard semantic tool for reasoning about side-
effects. However, it is not difficult to see that there is no monad corresponding
to the formlet type. Intuitively, the problem is that a bind operation for formlets
would have to read some of the input submitted by the user before the formlet
had been rendered, which is clearly impossible. (Recall that the type of bind
would be α formlet → (α → β formlet) → β formlet and to implement this
would require extracting the α value from the first argument to pass it to the
second argument; but the rendering of the β formlet should not depend on the
α-type data submitted to the first formlet.)

Every monad is an idiom, though of course, being oblivious, the idiom in-
terface is less powerful (see Lindley and others [17] on the relative expressive
power of idioms, arrows and monads). Although the idioms in Fig. 6 are in fact
also monads, their composition (the formlet idiom) is not a monad: although
idioms are closed under composition, monads are not. Using monad transform-
ers in place of functor composition recovers some compositionality, but there
is no combination of monad transformers that layers these effects in the right
order.

4 Syntax

The syntax presented in Section 2 can be defined as syntactic sugar, which desug-
ars into uses of the basic formlet operations. Here we formally define the syntax
and its translation. We add two new kinds of expression: XML quasiquotes, (or
XML literals with embedded evaluable expressions), and formlet expressions,
denoting formlet values. Fig. 9 gives the grammar for these expressions.

The desugaring transformations are shown in Fig. 10. The operation �·� de-
sugars the formlet expressions in a program; it is a homomorphism on all syntac-
tic forms except XML quasiquotes and formlet expressions. The operation (·)∗
desugars XML quasiquotes and nodes. The operation z† denotes a pattern aggre-
gating the sub-patterns of z where z ranges over formlet quasiquotes and nodes.
In an abuse of notation, we also let z† denote the expression that reconstructs
the value matched by the pattern. (Of course, we need to be somewhat careful in
the OCaml implementation to properly reconstruct the value from the matched
pattern.) Finally, z◦ is a formlet that tuples the outcomes of sub-formlets of z.

The Essence of Form Abstraction 215

Expressions

e ::= · · · | r (XML)
| formlet q yields e (formlet)

XML quasiquotes

m ::= s | {e} | <t ats>m1 . . . mk</t> node
r ::= <t ats>m1 . . . mk</t> | <#>m1 . . . mk</#> quasiquote

Formlet quasiquotes

n ::= s | {e} | {f ⇒ p} | <t ats>n1 . . . nk</t> node
q ::= <t ats>n1 . . . nk</t> | <#>n1 . . . nk</#> quasiquote

Meta variables

e expression
p pattern

f formlet-type expression
s string

t tag
ats attribute list

Fig. 9. Quasiquote syntax

As a simple example of desugaring, consider the definition of the input int
formlet used earlier:

let input int : int formlet =
formlet <#>{input ⇒ i}</#> yields int of string i

Under the translation given in Fig. 10, the body becomes

pure (fun i → int of string i) ⊗ (pure (fun i → i) ⊗ input)

We can use the idiom laws (and η-reduction) to simplify the output a little,
giving the following semantically-equivalent code:

pure int of string ⊗ input

As a richer example, recall date formlet from Fig. 1 and its desugaring in Fig. 2.
We could easily optimise the desugared code by removing the extra units from the
body of the inner pure and from the arguments to the function in the outer pure.
One thing we cannot do is avoid the rebinding of month and day . Section 5.3
outlines an alternate desugaring that obviates this rebinding.

Completeness. Everything expressible with the formlet operations can be
expressed directly in the syntax. For example, the ⊗ operator of the formlet
idiom may be written as a function ap using syntactic sugar:

let ap : (α → β) formlet → α formlet → β formlet =
fun f p → formlet <#>{f ⇒ g}{p ⇒ q}</#> yields g q

Under the desugaring transformation, the body becomes

(pure (fun (g, q) → g q)) ⊗ (pure (fun g q → (g, q)) ⊗ f ⊗ p)

which, under the idiom laws, is equivalent to f ⊗ p. And pure, too, can be
defined in the sugar as fun x → formlet <#></#> yields x. This shows that the
syntax is complete for the formlet operations.

216 E. Cooper et al.

�r� = r∗

�formlet q yields e� = pure(fun q† → �e�) ⊗ q◦

s∗ = xml text s
{e}∗ = �e�

(<t ats>m1 . . . mk</t>)∗ = xml tag t ats (<#>m1 . . . mk</#>)∗

(<#>m1 . . . mk</#>)∗ = m∗
1 @ · · · @m∗

k

s◦ = text s
{e}◦ = xml �e�

{f ⇒ p}◦ = �f�

(<t ats>n1 . . . nk</t>)◦ = tag t ats (<#>n1 . . . nk</#>)◦

(<#>n1 . . . nk</#>)◦ = pure (fun n†
1 . . . n†

k → (n†
1, . . . , n†

k)) ⊗ n◦
1 · · · ⊗ n◦

k

s† = ()
{e}† = ()

{f ⇒ p}† = p

(<t ats>n1 . . . nk</t>)† = (n†
1, . . . , n†

k)
(<#>n1 . . . nk</#>)

† = (n†
1, . . . , n†

k)

Fig. 10. Desugaring XML and formlets

5 Extensions

The formlet abstraction is robust, as we can show by extending it in several
independent ways.

5.1 XHTML Validation

The problem of statically enforcing validity of HTML and indeed XML is well-
studied [4,13,21,27]. Such schemes are essentially orthogonal to the work pre-
sented here: we can incorporate a type system for XML with little disturbance
to the core formlet abstraction.

Of course, building static validity into the type system requires that we have
a whole family of types for HTML rather than just one. For instance, we might
have separate types for block and inline entities (as in Elsman and Larsen’s
system [9]), or even a different type for every tag (as in XDuce [13]).

Fortunately, it is easy to push the extra type parameters through our formlet
construction. The key component that needs to change is the XmlWriter idiom.
As well as the value type, this now needs to be parameterised over the XML type.
The construction we need is what we call an indexed idiom. It is roughly analogous
to an effect-indexed monad [30]. In OCaml, we define an indexed idiom as follows:

module type XIdiom = sig
type (ψ, α) t
val pure : α → (ψ, α) t
val (⊗) : (ψ, α → β) t → (ψ, α) t → (ψ, β) t

end

The Essence of Form Abstraction 217

(For the indexed XML writer idiom the parameter ψ is the XML type.) Like
idioms, indexed idioms satisfy the four laws given in Section 3. They can be
pre- and post-composed with other idioms to form new indexed idioms. Pre-
composing the name generation idiom with the indexed XML writer idiom pre-
composed with the environment idiom gives us an indexed formlet idiom.

As a proof of concept, we have implemented a prototype of formlets with XML
typing in OCaml using Elsman and Larsen’s encoding of a fragment of XHTML
1.0 [9]. It uses phantom types to capture XHTML validity constraints.

5.2 Input Validation

A common need in form processing is validating user input: on submission, we
should ensure that the data is well-formed, and if not, re-display the form to the
user (with error messages) until well-formed data is submitted.

Formlets extend to this need if we incorporate additional idioms for error-
checking and accumulating error messages and add combinators satisfies and
err , which add to a formlet, respectively, an assertion that the outcome must
satisfy a given predicate and an error message to be used when it does not. Any
time the continuation associated with a formlet is invoked, the outcome is sure
to satisfy the validation predicate(s).

The need to re-display a page upon errors also requires additional mechanics.
Instead of simply attaching a continuation to a formlet and rendering it to
HTML, the formlet continuation now needs to have a complete page context
available to it, in case it needs to redisplay the page. To facilitate this, we add
a new syntactic form, which associates formlets with their continuations in the
context of a larger page.

Extending with input validation adds some complexity to the implementation,
so we omit details here. We have implemented it in the Links version of formlets
and provide details in a technical report [7].

5.3 Multi-holed Contexts

The presentation of formlets we have given in this paper relies on lifting the tag
constructor from the XmlWriter idiom into the Formlet idiom. As illustrated by
the desugaring of the date example in Section 4 this makes it difficult to separate
the raw XML from the semantic content of formlets and requires nested formlet
values to be rebound.

Besides obfuscating the code, this rebinding is inefficient. By adapting the
formlet datatype to accumulate a list of XML values rather than a single XML
value, and replacing tag with a general operation for plugging the accumulated
list into a multi-holed context plug, we obtain a more efficient formlet implemen-
tation that does provide a separation between the raw XML and the semantic
content. Further, this leads to a much more direct desugaring transformation.
For example, the desugared version of the date example becomes:

218 E. Cooper et al.

let date formlet : (, date) NFormlet.t =
plug (tag "div" [] (text "Month: " @ hole @ text "Day: " @ hole))

(pure (fun month day → make date month day) ⊗ input int ⊗ input int)

Statically typing plug in OCaml requires some ingenuity. Using phantom
types, we encode the number of holes in a context, or the number of elements
in a list, as the difference between two type-level Peano numbers [16]. As with
XHTML typing the key component that needs to change is the XmlWriter id-
iom. This now needs to be parameterised over the number of XML values in the
list it accumulates. The construction we need is the what we call a parameterised
idiom, the idiom analogue of a parameterised monad [1]. In OCaml, we define a
parameterised idiom as follows:

module type PIdiom = sig
type (μ, ν, α) t
val pure : α → (μ, ν, α) t
val (⊗) : (μ, ν, α → β) t → (σ, μ, α) t → (σ, ν, β) t

end

(For the parameterised XML writer idiom the parameters μ and ν encode the
length of the list of XML values as ν − μ.) Like idioms, and indexed idioms,
parameterised idioms satisfy the four laws given in Section 3. They can be pre-
and post-composed with other idioms to form new parameterised idioms. Pre-
composing the name generation idiom with the parameterised XML writer idiom
pre-composed with the environment idiom gives a parameterised formlet idiom.

We have implemented a prototype of formlets with a multi-holed plugging
operation in OCaml. Statically-typed multi-holed contexts can be combined with
statically typed XHTML [16]. Lifting the result to idioms gives either an indexed
parameterised idiom—that is, an idiom with an extra type parameter for the
XML type and two extra type parameters for the number of XML values in
the accumulated list—or, by attaching the XML type to both of the other type
parameters, a parameterised idiom.

5.4 Other Extensions

These are by no means the only useful extensions to the basic formlet abstraction.
For example, we might wish to translate validation code to JavaScript to run on
the client [12], or enforce separation between those portions of the program that
deal with presentation and those that treat application-specific computation, a
common requirement in large web projects. Either of these may be combined
with the formlet abstraction without injury to the core design presented here.

6 Related Work

The WASH, iData and WUI frameworks all support aspects of the form ab-
straction we have presented. WUI, in fact, meets all of the goals listed in the
introduction. Underlying all these systems is the essential mode of form abstrac-
tion we describe, although they vary richly in their feature sets and limitations.

The Essence of Form Abstraction 219

WASH. The WASH/CGI Haskell framework [28] supports a variety of web
application needs, including forms with some abstraction. WASH supports user-
defined types as the result of an individual form field, through defining a Read
instance, which parses the type from a string. It also supports aggregating data
from multiple fields using a suite of tupling constructors, but it does not allow
arbitrary calculations from these multiple fields into other data types, such as
our abstract date type. In particular, the tupling constructors still expose the
structure of the form fields, preventing true abstraction. For example, given a
one-field component, a programmer cannot modify it to consist of two fields
without also changing all the uses of the component.

iData. The iData framework [23] supports a high degree of form abstraction,
calling its abstractions iData. Underlying iData is an abstraction much like form-
lets. Unlike formlets, where form abstraction is separated from control flow (the
function handle attaches a handler to a formlet), iData have control flow baked
in. An iData program defines a single web page consisting of a collection of in-
terdependent iData. Whenever a form element is edited by the user, the form
is submitted and then re-displayed to the user with any dependencies resolved.
The iTasks library [24] builds on top of iData by enabling or disabling iData
according to the state of the program.

WUI. The WUI (Web User Interface) library [11,12] implements form ab-
stractions for the functional logic programming language Curry. Here the basic
units are called WUIs. WUIs enforce an assumption that each WUI of type α
should accept a value of type α as well as generate one; this input value models
the default or current value for the component. Thus a WUI α is equivalent, in
our setting, to a value of type α → α formlet .

References

1. Atkey, R.: Parameterised notions of computation. In: MSFP (2006)
2. Balat, V.: Ocsigen: typing web interaction with objective caml. In: ML Workshop

2006, pp. 84–94 (2006)
3. Benton, N., Hughes, J., Moggi, E.: Monads and effects. In: Barthe, G., Dybjer, P.,

Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42–122. Springer,
Heidelberg (2002)

4. Brabrand, C., Møller, A., Schwartzbach, M.I.: Static validation of dynamically
generated HTML. In: PASTE, pp. 38–45 (2001)

5. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Extending Java for high-level
web service construction. TOPLAS 25(6), 814–875 (2003)

6. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: web programming without
tiers. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO
2006. LNCS, vol. 4709, pp. 266–296. Springer, Heidelberg (2007)

7. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: An idiom’s guide to formlets. Tech-
nical Report EDI-INF-RR-1263, University of Edinburgh (2008)

8. Eidhof, C.: Formlets in Haskell (2008),
http://blog.tupil.com/formlets-in-haskell/

9. Elsman, M., Larsen, K.F.: Typing XHTML web applications in ML. In: Jayaraman,
B. (ed.) PADL 2004. LNCS, vol. 3057, pp. 224–238. Springer, Heidelberg (2004)

http://blog.tupil.com/formlets-in-haskell/

220 E. Cooper et al.

10. Graunke, P.T., Krishnamurthi, S., Van Der Hoeven, S., Felleisen, M.: Programming
the web with high-level programming languages. In: Sands, D. (ed.) ESOP 2001.
LNCS, vol. 2028, pp. 122–136. Springer, Heidelberg (2001)

11. Hanus, M.: Type-oriented construction of web user interfaces. In: PPDP 2006, pp.
27–38 (2006)

12. Hanus, M.: Putting declarative programming into the web: Translating Curry to
JavaScript. In: PPDP 2007, pp. 155–166 (2007)

13. Hosoya, H., Pierce, B.C.: XDuce: A statically typed XML processing language.
ACM Trans. Internet Techn. 3(2), 117–148 (2003)

14. Hughes, J.: Generalising monads to arrows. Sci. Comput. Program. 37(1-3), 67–111
(2000)

15. Lift website (March 2008), http://liftweb.net/
16. Lindley, S.: Many holes in Hindley-Milner. In: ML Workshop 2008 (2008)
17. Lindley, S., Wadler, P., Yallop, J.: Idioms are oblivious, arrows are meticulous,

monads are promiscuous. In: Capretta, V., McBride, C. (eds.) MSFP 2008, Reyk-
javik, Iceland (2008)

18. McBride, C.: Idioms, 2005. In: SPLS (June 2005),
http://www.macs.hw.ac.uk/∼trinder/spls05/McBride.html

19. McBride, C., Paterson, R.: Applicative programming with effects. Journal of Func-
tional Programming 18(1) (2008)

20. Moggi, E.: Computational lambda-calculus and monads. In: LICS 1989, pp. 14–23
(1989)

21. Møller, A., Schwartzbach, M.I.: The design space of type checkers for XML trans-
formation languages. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363,
pp. 17–36. Springer, Heidelberg (2005)

22. PHP Hypertext Preprocessor (March 2008), http://www.php.net/
23. Plasmeijer, R., Achten, P.: iData for the world wide web: Programming intercon-

nected web forms. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945,
pp. 242–258. Springer, Heidelberg (2006)

24. Plasmeijer, R., Achten, P., Koopman, P.: iTasks: executable specifications of inter-
active work flow systems for the web. SIGPLAN Not. 42(9), 141–152 (2007)

25. Ruby on Rails website (March 2008), http://www.rubyonrails.org/
26. Strugnell, S.: Creating linksCollab: an assessment of Links as a web development

language. B.Sc thesis, University of Edinburgh (2008),
http://groups.inf.ed.ac.uk/links/papers/undergrads/steve.pdf

27. Thiemann, P.: A typed representation for HTML and XML documents in Haskell.
J. Funct. Program. 12(4&5), 435–468 (2002)

28. Thiemann, P.: An embedded domain-specific language for type-safe server-side web
scripting. ACM Trans. Inter. Tech. 5(1), 1–46 (2005)

29. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.)
AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995)

30. Wadler, P., Thiemann, P.: The marriage of effects and monads. ACM Trans. Com-
put. Log. 4(1), 1–32 (2003)

http://liftweb.net/
http://www.macs.hw.ac.uk/~trinder/spls05/McBride.html
http://www.php.net/
http://www.rubyonrails.org/
http://groups.inf.ed.ac.uk/links/papers/undergrads/steve.pdf

On Affine Usages in Signal-Based
Communication

Roberto M. Amadio and Mehdi Dogguy

Université Paris Diderot, PPS, UMR-7126

Abstract. We describe a type system for a synchronous π-calculus for-
malising the notion of affine usage in signal-based communication. In
particular, we identify a limited number of usages that preserve affinity
and that can be composed. As a main application of the resulting system,
we show that typable programs are deterministic.

1 Introduction

We are interested in synchronous systems. In these systems, there is a notion
of instant (or phase, or pulse, or round) and at each instant each component
of the system, a thread, performs some actions and synchronizes with all the
other threads. One may say that all threads proceed at the same speed and it is
in this specific sense that we shall refer to synchrony in this work. Signal-based
communication is often used as the basic interaction mechanism in synchronous
systems (see, e.g., [6,7]). Signals play a role similar to channels in asynchronous
systems. Our goal in this paper is to study the notion of affine usage in this
context. In particular, we shall formalise our ideas in the context of a synchronous
π-calculus (Sπ-calculus) introduced in [2]. We assume that the reader is familiar
with the π-calculus and proceed to give a flavour of the language (the formal
definition of the Sπ-calculus is recalled in section 2).

The syntax of the Sπ-calculus is similar to the one of the π-calculus, however
there are some important semantic differences that we highlight in the follow-
ing simple example. Assume v1 �= v2 are two distinct values and consider the
following program in Sπ:

P = ν s1, s2 (s1v1 | s1v2 | s1(x). (s1(y). (s2(z). A(x, y) , B(!s1)), 0) , 0)

If we forget about the underlined parts and we regard s1, s2 as channel names
then P could also be viewed as a π-calculus process. In this case, P would re-
duce to P1 = νs1, s2 (s2(z).A(θ(x), θ(y)) where θ is a substitution such that
θ(x), θ(y) ∈ {v1, v2} and θ(x) �= θ(y). In Sπ, signals persist within the in-
stant and P reduces to P2 = νs1, s2 (s1v1 | s1v2 | (s2(z).A(θ(x), θ(y)), B(!s1)))
where again θ(x), θ(y) ∈ {v1, v2} but possibly θ(x) = θ(y). What happens
next? In the π-calculus, P1 is deadlocked and no further computation is pos-
sible. In the Sπ-calculus, the fact that no further computation is possible in
P2 is detected and marks the end of the current instant. Then an additional

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 221–236, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

222 R.M. Amadio and M. Dogguy

computation represented by the relation N−→ moves P2 to the following instant:
P2

N−→ P ′
2 = νs1, s2 B(v) where v ∈ {[v1; v2], [v2; v1]}. Thus at the end of the

instant, a dereferenced signal such as !s1 becomes a list (possibly empty) of
(distinct) values emitted on s1 during the instant and then all signals are reset.

We continue our informal discussion with an example of a ‘server’ handling a
list of requests emitted in the previous instant on the signal s. For each request
of the shape req(s′, x), it provides an answer which is a function of x along the
signal s′ (the notation x�p is used to match a value x against a pattern p). The
‘client’ issues a request x on signal s and returns the reply on signal t.

Server(s) = pause.Handle(s, !s)
Handle(s, �) = [� � cons(req(s′, x), �′)](s′f(x) | Handle(s, �′)),Server(s)
Client(x, s, t) = νs′ (sreq(s′, x) | pause.s′(x).tx, 0) .

Let us first notice that a request contains a ‘pointer’, namely the name of the
signal on which to answer the request. Then the ‘folklore solution’ of transform-
ing a list of values into one value via an associative and commutative function
does not work here. Indeed there seems to be no reasonable way to define an
associative and commutative function on pointers. Instead, we look at Handle as
a function from (a signal and) a list of requests to behaviours which is invariant
under permutations of the list of requests. Note that to express this invariance
we need a notion of behavioural equivalence and that this equivalence must sat-
isfy the usual associativity and commutativity laws of parallel composition and
must be preserved by parallel composition.

These considerations are enough to argue that the Server is a ‘deterministic’
program. No matter how many clients will issue requests at each instant, the
Server will provide an answer to each of them in the following instant in a way
which is independent of the order of the requests. Let us now look at the Client.
After issuing a request, the Client waits for a reply in the following instant.
Clearly, if more than one reply comes, the outcome of the computation is not
deterministic. For instance, we could have several ‘Servers’ running in parallel or
a server could somehow duplicate the request. This means that the usage of the
signal s must be such that many ‘clients’ may issue a request but at most one
‘server’ may handle them at the end of the instant in an ‘affine’ way. Further, on
the client side, the return signal s′ can only be used to read while on the server
side it can only be used to emit.

This preliminary discussion suggests the need for a formal analysis of the
principles that allow to establish the determinacy of a synchronous program.
This analysis will be obviously inspired by previous work on the foundations of
linear logic [8], on linear typing of functional programs (e.g., [15]), and on linear
usages of channels (e.g., [11]). Following this line of works, the analysis presented
in section 3 will take the form of a typing system. The previous section 2, will
recall the formal definition of the Sπ-calculus. In the final section 4, first we
shall introduce the properties of the typing system leading to a subject reduction
theorem, and second we shall describe a suitable notion of typed bisimulation
and show that with respect to this notion, typable programs can be regarded as
deterministic.

On Affine Usages in Signal-Based Communication 223

2 Definition of the Sπ-Calculus

We recall the formal definition of the Sπ-calculus and its bisimulation based
semantics while referring the reader to [2,4] for a deeper analysis. This section
is rather technical but to understand the type system described in the following
section 3 there are really just two points that the reader should keep in mind:

1. The semantics of the calculus is given by the labelled transition system pre-
sented in table 2. A reader familiar with a π-calculus with asynchronous
communication can understand these rules rather quickly. The main differ-
ences are (a) the rule for emitting a signal formalises the fact that a signal,
unlike a channel, persists within an instant and (b) the rules that describe
the computation at the end of the instant.

2. The labelled transition system induces a rather standard notion of bisimula-
tion equivalence (definition 1) which is preserved by static contexts (fact 1).1

In section 4, we shall introduce a ‘typed’ definition of the bisimulation and
show that with respect to this definition, typable programs are deterministic.

2.1 Programs

Programs P, Q, . . . in the Sπ-calculus are defined in table 1. We use the notation
m for a vector m1, . . . , mn, n ≥ 0. The informal behaviour of programs follows.
0 is the terminated thread. A(e) is a (tail) recursive call of a thread identifier A
with a vector e of expressions as argument; as usual the thread identifier A is
defined by a unique equation A(x) = P such that the free variables of P occur in
x. se evaluates the expression e and emits its value on the signal s. s(x).P, K is
the present statement which is the fundamental operator of the model [1]. If the
values v1, . . . , vn have been emitted on the signal s then s(x).P, K evolves non-
deterministically into [vi/x]P for some vi ([/] is our notation for substitution).
On the other hand, if no value is emitted then the continuation K is evaluated
at the end of the instant. [s1 = s2]P1, P2 is the usual matching function of the
π-calculus that runs P1 if s1 equals s2 and P2, otherwise. Here both s1 and s2
are free. [u � p]P1, P2, matches u against the pattern p. We assume u is either
a variable x or a value v and p has the shape c(x), where c is a constructor
and x is a vector of distinct variables. We also assume that if u is a variable
x then x does not occur free in P1. At run time, u is always a value and we
run θP1 if θ = match(u, p) is the substitution matching u against p, and P2 if
the substitution does not exist (written match(u, p) ↑). Note that as usual the
variables occurring in the pattern p (including signal names) are bound in P1.
νs P creates a new signal name s and runs P . (P1 | P2) runs in parallel P1
and P2. A continuation K is simply a recursive call whose arguments are either
expressions or values associated with signals at the end of the instant in a sense
that we explain below. We shall also write pause.K for νs s(x).0, K with s not
free in K. This is the program that waits till the end of the instant and then
evaluates K.
1 As a matter of fact the labelled transition system is built so that the definition of

bisimulation equivalence looks standard [4].

224 R.M. Amadio and M. Dogguy

Table 1. Syntax of programs and expressions

P ::= 0 || A(e) || se || s(x).P, K || (programs)
[s1 = s2]P1, P2 || [u � p]P1, P2 || νs P || P1 | P2

K ::= A(r) (continuation next instant)
Sig ::= s || t || · · · (signal names)
Var ::= Sig || x || y || z || · · · (variables)
Cnst ::= ∗ || nil || cons || c || d || · · · (constructors)
Val ::= Sig || Cnst(Val , . . . ,Val) (values v, v′, . . .)
Pat ::= Cnst(Var , . . . ,Var) (patterns p, p′, . . .)
Fun ::= f || g || · · · (first-order function symbols)
Exp ::= Var || Cnst(Exp, . . . ,Exp) || Fun(Exp, . . . ,Exp) (expressions e, e′, . . .)
Rexp ::= !Sig || Var || Cnst(Rexp, . . . ,Rexp) ||

Fun(Rexp, . . . ,Rexp) (exp. with deref. r, r′, . . .)

2.2 Expressions

Expressions are partitioned in several syntactic categories as specified in ta-
ble 1. As in the π-calculus, signal names stand both for signal constants as
generated by the ν operator and signal variables as in the formal parameter of
the present operator. Variables Var include signal names as well as variables of
other types. Constructors Cnst include ∗, nil, and cons. Values Val are terms
built out of constructors and signal names. Patterns Pat are terms built out of
constructors and variables (including signal names). If P, p are a program and a
pattern then we denote with fn(P), fn(p) the set of free signal names occurring
in them, respectively. We also use FV (P),FV (p) to denote the set of free vari-
ables (including signal names). We assume first-order function symbols f, g, . . .
and an evaluation relation ⇓ such that for every function symbol f and values
v1, . . . , vn of suitable type there is a unique value v such that f(v1, . . . , vn) ⇓ v
and fn(v) ⊆

⋃
i=1,...,n fn(vi). Expressions Exp are terms built out of variables,

constructors, and function symbols. The evaluation relation ⇓ is extended in a
standard way to expressions whose only free variables are signal names. Finally,
Rexp are expressions that may include the value associated with a signal s at the
end of the instant (which is written !s, following the ML notation for derefer-
enciation). Intuitively, this value is a list of values representing the set of values
emitted on the signal during the instant.

The definition of a simple type system for the Sπ-calculus can be extracted
from the more elaborate type system presented in section 3 by confusing ‘set-
types’ with ‘list-types’ and by neglecting all considerations on usages.

2.3 Actions

The syntactic category act of actions described in table 2 comprises relevant,
auxiliary, and nested actions. The operations fn (free names), bn (bound names),
and n (both free and bound names) are defined as in the π-calculus [14].

On Affine Usages in Signal-Based Communication 225

The relevant actions are those that are actually considered in the bisimulation
game. They consist of: (i) an internal action τ , (ii) an emission action νt sv where
it is assumed that the signal names t are distinct, occur in v, and differ from s,
(iii) an input action sv, and (iv) an action N (for Next) that marks the move
from the current to the next instant.

The auxiliary actions consist of an input action s?v which is coupled with an
emission action in order to compute a τ action and an action (E, V) which is just
needed to compute an action N . The latter is an action that can occur exactly
when the program cannot perform τ actions and it amounts to (i) collect in lists
the set of values emitted on every signal, (ii) to reset all signals, and (iii) to
initialise the continuation K for each present statement of the shape s(x).P, K.

In order to formalise these three steps we need to introduce some notation.
Let E vary over functions from signal names to finite sets of values. Denote with
∅ the function that associates the empty set with every signal name, with [M/s]
the function that associates the set M with the signal name s and the empty
set with all the other signal names, and with ∪ the union of functions defined
point-wise.

We represent a set of values as a list of the values belonging to the set. More
precisely, we write v ‖−M and say that v represents M if M = {v1, . . . , vn} and
v = [vπ(1); . . . ; vπ(n)] for some permutation π over {1, . . . , n}. Suppose V is a
function from signal names to lists of values. We write V ‖−E if V (s) ‖−E(s)
for every signal name s. We also write dom(V) for {s | V (s) �= []}. If K is
a continuation, i.e., a recursive call A(r), then V (K) is obtained from K by
replacing each occurrence !s of a dereferenced signal with the associated value
V (s). We denote with V [�/s] the function that behaves as V except on s where
V [�/s](s) = �.

With these conventions, a transition P
(E,V)−−−−→ P ′ intuitively means that (1) P

is suspended, (2) P emits exactly the values specified by E, and (3) the behaviour
of P in the following instant is P ′ and depends on V . It is convenient to compute
these transitions on programs where all name generations are lifted at top level.
We write P Q if we can obtain Q from P by repeatedly transforming, for
instance, a subprogram νsP ′ | P ′′ into νs(P ′ | P ′′) where s /∈ fn(P ′′).

Finally, the nested actions μ, μ′, . . . are certain actions (either relevant or
auxiliary) that can be produced by a sub-program and that we need to propagate
to the top level.

2.4 Labelled Transition System and Bisimulation

The labelled transition system is defined in table 2 where rules apply to programs
whose only free variables are signal names and with standard conventions on
the renaming of bound names. As usual, one can rename bound variables, and
symmetric rules are omitted. The first 12 rules from (out) to (νex) are quite
close to those of a polyadic π-calculus with asynchronous communication (see
[9,3]) with the following exception: rule (out) models the fact that the emission
of a value on a signal persists within the instant. The last 5 rules from (0) to

226 R.M. Amadio and M. Dogguy

Table 2. Labelled transition system

act ::= α || aux (actions)
α ::= τ || νt sv || sv || N (relevant actions)
aux ::= s?v || (E, V) (auxiliary actions)
μ ::= τ || νt sv || s?v (nested actions)

(out)
e ⇓ v

se
sv
−→ se

(inaux)
s(x).P,K

s?v
−−→ [v/x]P

(in)
P

sv
−→ (P | sv)

(rec)
A(x) = P, e ⇓ v
A(e) τ

−→ [v/x]P

(=sig
1)

[s = s]P1, P2
τ
−→ P1

(=sig
2)

s1 �= s2

[s1 = s2]P1, P2
τ
−→ P2

(=ind
1)

match(v, p) = θ

[v � p]P1, P2
τ
−→ θP1

(=ind
1)

match(v, p) =↑

[v � p]P1, P2
τ
−→ P2

(comp)
P1

μ
−→ P ′

1 bn(μ) ∩ fn(P2) = ∅

P1 | P2
μ
−→ P ′

1 | P2
(synch)

P1
νt sv
−−−→ P ′

1 P2
s?v
−−→ P ′

2

{t} ∩ fn(P2) = ∅

P1 | P2
τ
−→ νt (P ′

1 | P ′
2)

(ν)
P

μ
−→ P ′ t /∈ n(μ)
νt P

μ
−→ νt P ′

(νex)
P

νt sv
−−−→ P ′ t′ �= s t′ ∈ n(v)\{t}

νt′ P
(νt′,t)sv
−−−−−→ P ′

(0)
0 ∅,V
−−→ 0

(reset)
e ⇓ v v occurs in V (s)

se
[{v}/s],V
−−−−−−→ 0

(cont)
s /∈ dom(V)

s(x).P, K
∅,V
−−→ V (K)

(par)
Pi

Ei,V
−−−→ P ′

i i = 1, 2

(P1 | P2)
E1∪E2,V
−−−−−−→ (P ′

1 | P ′
2)

(next)
P 	 νs P ′ V ‖−E P ′ E,V

−−−→ P ′′

P
N
−→ νs P ′′

(next) are quite specific of the Sπ-calculus and determine how the computation
is carried on at the end of the instant (cf. discussion in 2.3).

We derive from the labelled transition system a notion of (weak) labelled
bisimulation. First define α⇒ as (τ−→)∗ if α = τ , (τ⇒) ◦ (N−→) if α = N , and
(τ⇒) ◦ (α−→) ◦ (τ⇒) otherwise. This is the standard definition except that we insist
on not having internal reductions after an N action. Intuitively, we assume that
an observer can control the execution of programs so as to be able to test them
at the very beginning of each instant. We write P

α−→ · for ∃ P ′ (P α−→ P ′).

On Affine Usages in Signal-Based Communication 227

Definition 1 (labelled bisimulation). A symmetric relation R on programs is
a labelled bisimulation if P R Q, P

α−→ P ′, bn(α) ∩ fn(Q) = ∅ implies ∃ Q′ (Q
α⇒

Q′, P ′ R Q′). We denote with ≈ the largest labelled bisimulation.

Fact 1 ([4]). Labelled bisimulation is preserved by parallel composition and
name generation.

3 An Affine Type System

An analysis of the notion of determinacy carried on in [4], along the lines of
[13], suggests that there are basically two situations that need to be analysed in
order to guarantee the determinacy of programs. (1) At least two distinct values
compete to be received within an instant, for instance, consider: sv1 | sv2 |
s(x).P, K. (2) At the end of the instant, at least two distinct values are available
on a signal. For instance, consider: sv1 | sv2 | pause.A(!s). A sensible approach
is to avoid completely the first situation and to allow the second provided the
behaviour of the continuation A does not depend on the order in which the
values are collected. Technically, we consider a notion of affine signal usage to
guarantee the first condition and a notion of set type for the second one. While
this is a good starting point, it falls short of providing a completely satisfying
answer because the type constructions do not compose very well. Then our goal is
to discover a collection of signal usages with better compositionality properties.
The outcome of our analysis are three new kinds of usages (kinds 3 − 5 in
table 3).

3.1 Usages

In first approximation, we may regard a usage as an element of the set L =
{0, 1, ∞} with the intuition that 0 corresponds to no usage at all, 1 to at most
one usage, and ∞ to any usage. We add usages with a partial operation ⊕ such
that 0⊕ a = a⊕ 0 = a and ∞⊕∞ = ∞, and which is undefined otherwise (note
in particular that 1 ⊕ 1 is undefined). The addition induces an order by a ≤ b
if ∃ c a ⊕ c = b. With respect to this order, 0 is the least element while 1 and
∞ are incomparable. If a ≥ b then we define a subtraction operation a � b as the
largest c such that a = b ⊕ c. Therefore: a � 0 = a, 1 � 1 = 0, and ∞ � ∞ = ∞.

This classification of usages is adequate when handling purely functional data
where the intuition is that data with usage 1 have at most one pointer to them
[15]. However, when handling more complex entities such as references, channels,
or signals it is convenient to take a more refined view. Specifically, a usage can
be refined to include information about whether a signal is used: (i) to emit, (ii)
to receive during the instant, or (iii) to receive at the end of the instant. Then
a usage becomes an element of L3. Among the 27 possible usages of the shape
(a, b, c) for a, b, c ∈ L, we argue that there are 5 main ones as described in table
3 (left part). First of all, we must have a �= 0 and (b �= 0 ∨ c �= 0) since a signal
on which we cannot send or receive has no interest. Now if a = ∞ then we are

228 R.M. Amadio and M. Dogguy

forced to take b = 0 since we want to preserve the determinacy. Then for c = ∞
we have the usage e1 and for c = 1 we have the usage e3. Suppose now a = 1.
One choice is to have b = c = ∞ and then we have the usage e2. On the other
hand if we want to preserve affinity then we should receive the emitted value at
most once. Hence we have b = 0, c = 1 or b = 1, c = 0 which correspond to the
usages e4 and e5, respectively. From these 5 main usages within an instant, we
obtain the derived ones (see again table 3) by simply turning one or more 1’s
to 0’s. We only add, subtract, compare usages in L3 that are derived from the
same main usage.

In a synchronous framework, it makes sense to consider how usages vary over
time. The simplest solution would be to look at signal usages of the shape xω, x ∈
L3, which are invariant under time. However, to reason effectively on programs,
we are led to consider signal usages of the shape xyω where x, y ∈ L3 are derived
from the same main usage.

The reader may have noticed that in this discussion we have referred to in-
creasingly complex ‘usages’ varying over L, L3, and (L3)ω . Henceforth a signal
usage belongs to (L3)ω. Usages are classified in 5 kinds as showed in table 3. 2

We denote with U the set of all these usages and with U(i) the set of usages
of kind i, for i = 1, . . . , 5. We consider that the addition operation ⊕ is defined
only if u, u′ ∈ U(i) and u⊕u′ ∈ U(i) for some i ∈ {1, . . . , 5}. Similar conventions
apply when comparing and subtracting usages. If u ∈ U then ↑ u, the shift of u,
is the infinite word in U obtained from u by removing the first character. This
operation is always defined. If u is a signal usage, then u(i) for i ≥ 0 denotes its
ith character and u(i)j for j ∈ {1, 2, 3} the jth component of u(i).

Table 3. Usages and their classification

main usages derived usages
e1 = (∞, 0,∞)
e2 = (1,∞,∞) (0,∞,∞)
e3 = (∞, 0, 1) (∞, 0, 0)
e4 = (1, 0, 1) (1, 0, 0), (0, 0, 1), (0, 0, 0)
e5 = (1, 1, 0) (1, 0, 0), (0, 1, 0), (0, 0, 0)

xyω ∈ U(i) is affine uniform aff. preserving
i = 1 no yes no
i = 2 yes/no yes/no no
i = 3 yes/no yes/no yes
i = 4 yes/no yes/no yes
i = 5 yes/no yes/no yes

We classify the usages according to 3 properties: affinity, uniformity, and
preservation of affinity. We say that a usage is affine if it contains a ‘1′ and
non-affine otherwise. We also say that it is uniform if it is of the shape xω and
that it is neutral if it is the neutral element with respect to the addition ⊕ on
the set of usages U(i) to which it belongs. It turns out that the non-affine signal
usages are always uniform and moreover they coincide with the neutral ones. Fi-
nally, by definition, the usages in the sets U(i) for i = 3, 4, 5 are affine preserving
The classification is summarised in the table 3 (right part).
2 The fact that, e.g., (1, 0, 0) occurs both in the usages of kind 4 and 5 is a slight

source of ambiguity which is resolved by assuming that the kind of the usage is
made explicit.

On Affine Usages in Signal-Based Communication 229

3.2 Types

In first approximation, types are either inductive types or signal types. As usual,
an inductive type such as the type List(σ) of lists of elements of type σ is defined
by an equation List(σ) = nil || cons of σ,List(σ) specifying the ways in which an
element of this type can be built.

In our context, inductive types come with a usage x which belongs to the set
{1, ∞} and which intuitively specifies whether the values of this type can be
used at most once or arbitrarily many times (once more we recall that 1 and ∞
are incomparable). To summarise, if σ1, . . . , σk are types already defined then
an inductive type Cx(σ1, . . . , σk) is defined by case on constructors of the shape
c of σ′

1, . . . , σ
′
m where the types σ′

j , j = 1, . . . , m are either one of the types
σi, i = 1, . . . , n or the inductive type Cx(. . .) being defined. There is a further
constraint that has to be respected, namely that if one of the types σi is ‘affine’
then the usage x must be affine preserving, i.e., x = 1. An affine type is simply
a type which contains an affine usage. The grammar in table 4 will provide a
precise definition of the affine types.

When collecting the values at the end of the instant we shall also need to
consider set types. They are described by an equation Setx(σ) = nil || cons of σ,
Setx(σ) which is quite similar to the one for lists. Note that set types too come
with a usage x ∈ {1, ∞} and that if σ is an affine type then the usage x must
be affine preserving. The reader might have noticed that we take the freedom of
using the constructor nil both with the types Listu(σ) and Setu(σ), u ∈ {1, ∞},
and the constructor cons both with the types (σ,Listu(σ)) → Listu(σ) and
(σ,Setu(σ)) → Setu(σ). However, one should assume that a suitable label on
the constructors will allow to disambiguate the situation.

Finally, we denote with Sigu(σ) the type of signals carrying values of type
σ according to the signal usage u. As for inductive and set types, if σ is an
affine type then the signal usage u must be affine preserving. To formalise these
distinctions, we are lead to use several names for types as specified in table 4.
We denote with κ non-affine (or classical) types, i.e., types that carry no affine
information. These types have a uniform usage. We denote with λ affine and
uniform types. The types σ, σ′, . . . stand for types with uniform usage (either
non-affine or affine). Finally, the types ρ, ρ′, . . . include all the previous ones
plus types that have a non-uniform usage. We notice that classical uniform types
can be nested in an arbitrary way, while affine uniform types can only be nested
under type constructors that preserve affinity. Moreover, types with non-uniform
usages (either classical or affine) cannot be nested at all.3

The partial operation of addition ⊕ is extended to types so that: Opu1
(σ) ⊕

Opu2
(σ) = Opu1⊕u2

(σ), where Op can be C, Set , or Sig , and provided that
u1 ⊕ u2 is defined. For instance, List1(λ) ⊕ List1(λ) is undefined because 1 ⊕ 1
is not defined.
3 What’s the meaning of sending a data structure containing informations whose usage

is time-dependent? Is the time information relative to the instant where the data
structure is sent or used? We leave open the problem of developing a type theory
with usages more complex than the ones of the shape xyω considered here.

230 R.M. Amadio and M. Dogguy

A type context (or simply a context) Γ is a partial function with finite domain
dom(Γ) from variables to types. An addition operation Γ1 ⊕ Γ2 on contexts is
defined, written (Γ1 ⊕ Γ2) ↓, if and only if for all x such that Γ1(x) = ρ1 and
Γ2(x) = ρ2, the type ρ1 ⊕ ρ2 is defined. The shift operation is extended to
contexts so that (↑ Γ)(x) = Sig(↑u)(σ) if Γ (x) = Sigu(σ) and (↑ Γ)(x) = Γ (x)
otherwise. We also denote with Γ, x : σ the context Γ extended with the pair
x : σ (so x /∈ dom(Γ)). We say that a context is neutral (uniform) if it assigns
to variables neutral (uniform) types.

3.3 Semantic Instrumentation

As we have seen, each signal belongs to exactly one of 5 kinds of usages. Let
us consider in particular the kind 5 whose main usage is e5. The forthcoming
type system is supposed to guarantee that a value emitted on a signal of kind
5 is received at most once during an instant. Now, consider the program st |
s(x).x, 0 and attribute a usage eω

5 to the signals s and t. According to this usage
this program should be well typed. However, if we apply the labelled transition
system in table 2, this program reduces to (st | t) which fails to be well-typed
because the double occurrence of t is not compatible with an affine usage of t.
Intuitively, after the signal s has been read once no other synchronisation should
arise during the instant either within the program or with the environment. To
express this fact we proceed as follows. First, we instrument the semantics so
that it marks (underlines) the emissions on signals of kind 5 that have been
used at least once during the instant. The emission has no effect on the labelled
transition system in the sense that se behaves exactly as se.

(out)
e ⇓ v

se
sv−→ se

(out)
e ⇓ v

se
sv−→ se

(reset)
e ⇓ v v occurs in V (s)

se
[{v}/s],V−−−−−−→ 0

On the other hand, we introduce a special rule (out) to type se which requires
at least a usage (1, 1, 0) · (0, 0, 0)ω for the signal s while neglecting the expression
e. By doing this, we make sure that a second attempt to receive on s will produce
a type error. In other terms, if typing is preserved by ‘compatible’ transitions,
then we can be sure that a value emitted on a signal of kind 5 is received at
most once within an instant.

3.4 Type System

The type system is built around few basic ideas. (1) Usages including both in-
put and output capabilities can be decomposed in simpler ones. For instance,
(1, 1, 0)ω = (1, 0, 0)(0, 1, 0)ω ⊕ (0, 1, 0)(1, 0, 0)ω. (2) A rely-guarantee kind of rea-
soning: when we emit a value we guarantee certain resources while when we
receive a value we rely on certain resources. (3) Every affine usage can be con-
sumed at most once in the typing judgement (and in the computation).

When formalising the typing judgements we need to distinguish the typing of
an expression e from the typing of an expression with dereferenciation r and the

On Affine Usages in Signal-Based Communication 231

typing of a recursive call A(e1, . . . , en) from the typing of a recursive call at the
end of the instant A(r1, . . . , rn). To do this we shall write [r] rather than r and
[A(r1, . . . , rn)] rather than A(r1, . . . , rn).

We shall consider four typing judgements: Γ � e : ρ, Γ � [r] : ρ, Γ � P ,
and Γ � [A(r1, . . . , rn)], and we wish to refer to them with a uniform notation
Γ � U : T . To this end, we introduce a fictious type Pr of programs and regard
the judgements Γ � P : Pr and Γ � [A(r1, . . . , rn)] : Pr as an expansion of
Γ � P and Γ � [A(r1, . . . , rn)], respectively. Then we let U stand for one of e,
[r], P , [A(r1, . . . , rn)], and T for one of ρ,Pr .

We assume that function symbols are given non-affine types of the shape
(κ1, . . . , κn) → κ. We denote with k either a constructor or a function symbol
and we assume that its type is explicitly given.

The typing rules are given in table 4. We comment first on the typing rules for
the expressions. We notice that the arguments and the result of a constructor
or a function symbol have always a uniform type. The rules (!Set) and (!List)
describe the type of a dereferenced signal following its usage. If the usage is of
kind 1 then the list of values associated with the signal at the end of the instant
must be treated as a set, if the usage is of kind 2 then we know that the list of
values contains at most one element and therefore its processing will certainly
be ‘order-independent’, if the usage is of kind 3 then the list may contain several
values and it must be processed as an affine set, finally if the usage is of kind 4
(the usage of kind 5 forbids reception at the end of the instant) then again the
list of values will contain at most one element so we can rely on an affine list
type.

Notice the special form of the rule [var sig]. The point here is that in a recursive
call K = A(!s, s) at the end of instant, we need to distinguish the resources
needed to type !s which should relate to the current instant from the resources
needed to type s which should relate to the following instants. For instance, we
want to type K in a context s : Sigu(σ) where u = (0, 0, 1)ω. This is possible
because we can decompose u in u1 ⊕ u2, where u1 = (0, 0, 1)(0, 0, 0)ω and u2 =
(0, 0, 0)(0, 0, 1)ω, and we can rely on u1 to type [!s] and on u2 to type [s] (by
[var sig]).

A set-type is a particular case of quotient type and therefore its definition goes
through the definition of an equivalence relation ∼ρ on values. This is defined as
the least equivalence relation such that s ∼Sigu(σ) s, c ∼C(σ) c, if c is a constant
of type C(σ), and

c(v1, . . . , vn) ∼Cu(σ1,...,σn) c(u1, . . . , un) if vi ∼σi ui for i = 1, . . . , n
[v1; . . . ; vn] ∼Setu(σ) [u1; . . . ; um] if {v1, . . . , vn} ∼Setu(σ) {u1, . . . , um},
where: {v1, . . . , vn} ∼Setu(σ) {u1, . . . , um} if for a permutation π, vi ∼σ uπ(i) .

Furthermore, we assume that each function symbol f , coming with a (clas-
sical) type (κ1, . . . , κn) → κ, respects the typing in the following sense: (1) if
vi ∼κi ui, i = 1, . . . , n, f(v1, . . . , vn) ⇓ v and f(u1, . . . , un) ⇓ u then v ∼κ u. (2)
If Γ � f(v1, . . . , vn) : κ and f(v1, . . . , vn) ⇓ v then Γ � v : κ.

Finally, we turn to the typing of programs. We assume that each thread identi-
fier A, defined by an equation A(x1, . . . , xn) = P , comes with a type (σ1, . . . , σn).

232 R.M. Amadio and M. Dogguy

Table 4. Affine type system

κ ::= C∞(κ) || Set∞(κ) || Sigu(κ) (u neutral)
λ ::= C1(σ) || Set1(σ) || Sigu(κ) || Sigv(λ) (u affine and uniform, v aff.-pres.

and uniform)
σ ::= κ || λ (uniform types)
ρ ::= σ || Sigu(κ) || Sigv(λ) (v affine-preserving)

(var)
u ≥ u′ Op ∈ {Sig ,Set , C}
Γ, x : Opu(σ) � x : Opu′(σ)

(k)
Γi � ei : σi i = 1, . . . , n

k : (σ1, . . . , σn) → σ k = f or k = c
Γ0 ⊕ Γ1 ⊕ · · · ⊕ Γn � k(e1, . . . , en) : σ

[varC]
Op = C Op = Set

Γ, x : Opu(σ) � [x] : Opu(σ)
[var sig]

yω ≥ u

Γ, s : Sigxyω (σ) � [s] : Sigu(σ)

[k]
Γi � [ri] : σi i = 1, . . . , n

k : (σ1, . . . , σn) → σ k = f or k = c
Γ0 ⊕ Γ1 ⊕ · · · ⊕ Γn � [k(r1, . . . , rn)] : σ

[!Set]
(u(0) ≥ (∞, 0, ∞) ∧ x = ∞) ∨

(u(0) ≥ (∞, 0, 1) ∧ x = 1)
Γ, s : Sigu(σ) � [!s] : Setx(σ)

[!List]
(u(0) ≥ (0, ∞, ∞) ∧ x = ∞) ∨

(u(0) ≥ (0, 0, 1) ∧ x = 1)
Γ, s : Sigu(σ) � [!s] : Listx(σ)

(0)
Γ � 0

(out)
Γ1 � s : Sigu(σ) u(0)1 = 0

Γ2 � e : σ

Γ1 ⊕ Γ2 � se

(ν)
Γ, s : Sigu(σ) � P

Γ � νs : Sigu(σ) P
(in)

Γ1 � s : Sigu(σ) u(0)2 = 0
Γ2, x : σ � P (Γ1 ⊕ Γ2) � [A(r)]

(Γ1 ⊕ Γ2) � s(x).P, A(r)

(ms)
s1, s2 ∈ dom(Γ)
Γ � Pi i = 1, 2

Γ � [s1 = s2]P1, P2

(mc)

c : (σ1, . . . , σn) → σ Γ1 � u : σ
Γ2, x1 : σ1, . . . , xn : σn � P1

(Γ1 ⊕ Γ2) � P2

Γ1 ⊕ Γ2 � [u � c(x1, . . . , xn)]P1, P2

(par)
Γi � Pi i = 1, 2
Γ1 ⊕ Γ2 � P1 | P2

(rec)
A : (σ1, . . . , σn),

Γi � ei : σi i = 1, . . . , n

Γ1 ⊕ · · · ⊕ Γn � A(e1, . . . , en)

(out)
Γ � s : Sigu(σ) u(0) = (1, 1, 0)

Γ � se
[rec]

A : (σ1, . . . , σn),
Γi � [ri] : σi i = 1, . . . , n

Γ1 ⊕ · · · ⊕ Γn � [A(r1, . . . , rn)]

On Affine Usages in Signal-Based Communication 233

Hence we require these types to be uniform. We also require that A has the prop-
erty that: (i) if vi ∼σi ui for i = 1, . . . , n then A(v1, . . . , vn) ≈ A(u1, . . . , un) and
(ii) x1 : σ1, . . . , xn : σn � P is derivable.

We also suppose that generated signals names are explicitly labelled with their
types as in νs : ρ P . The labelled transition system in table 2 is adapted so that
the output action carries the information on the types of the extruded names.
This type is lifted by the rule (next) so that, e.g., νs : ρ s.0, A(s) N−→ νs :↑ ρ A(s).

Example 1. With reference to the example of client-server in section 1, assume an
inductive (non-affine) type D of data. Let σ1 = Sigu1

(D) where u1 = (1, 0, 0)ω

be the type of the signals on which the server will eventually provide an an-
swer. Let Req1(σ1, D) = req of σr, D be the type of requests which are pairs
composed of a signal and a datum. Let σset = Set1(Req1(σ1, D)) be the type
of the set of requests issued by the clients. Let σ = Sigu(Req1(σ1, D)) with
u = (∞, 0, 1)ω be the type of the signal on which the server gets the requests
and σ′ = Sigu′(Req1(σ1, D)), with u′ = (∞, 0, 0)ω, the related type of the signal
on which the clients send the requests. Finally, let σt = Sigu(D) be the type of
the signal on which the client sends the received answer (with a suitable usage u).
Then we can type Server and Client as follows: Server : (σ), Handle : (σ, σset),
and Client : (D, σ′, σt).

Remark 1. In a practical implementation of the type system, one can expect
the programmer to assign a kind (1 − 5) to each signal and let the system infer
a minimum usage which is compatible with the operations performed by the
program.

4 Results

We start by stating the expected weakening and substitution properties of the
type system.

Lemma 1 (weakening). If Γ � U : T and (Γ ⊕ Γ ′) ↓ then (Γ ⊕ Γ ′) � U : T .

Lemma 2 (substitution). If Γ, x : ρ � U : T , Γ ′ � v : ρ, and (Γ ⊕ Γ ′) ↓ then
(Γ ⊕ Γ ′) � [v/x]U : T .

Next we specify when a context Γ is compatible with an action act , written
(Γ, act) ↓. Recall that V and E denote a function from signals to finite lists
of distinct values and finite sets of values, respectively. If V (s) = [v1; . . . ; vn]
then let (V \E)(s) = {v1, . . . , vn}\E(s). Then define a program P(V \E) as the
parallel composition of emissions sv such that v ∈ (V \E)(s). Intuitively, this is
the emission on an appropriate signal of all the values which are in V but not
in E. We also let PV stand for P(V \∅) where ∅(s) = ∅ for every signal s.

Definition 2. With each action act, we associate a minimal program Pact that
allows the action to take place:

234 R.M. Amadio and M. Dogguy

Pact =

����
���

0 if act = τ or act = N
sv if act = sv or act = s?v
s(x).0, 0 if act = sv
PV \E if act = (E, V)

Definition 3 (compatibility context and action). A context Γ is compati-
ble with an action act, written (Γ, act) ↓, if ∃ Γ ′ (Γ ⊕ Γ ′) ↓ and Γ ′ � Pact.

We can now introduce the concept of typed transition which is a transition la-
belled with an action act of a program typable in a context Γ such that Γ and
act are compatible.

Definition 4 (typed transition). We write P
act−−−→
Γ

Q (P act⇒
Γ

Q) if: (1)

Γ � P , (2) (Γ, act) ↓, and (3) P
act−−→ Q (P act⇒ Q, respectively).

Next, we introduce the notion of residual context which is intuitively the context
left after a typed transition. (the definition for the auxiliary actions is available
in [5]). First, we notice that given a (uniform) type σ and a value v we can define
the minimum context Δ(v, σ) such that Δ(v, σ) � v : σ. Namely, we set Δ(s, σ) =
s : σ and Δ(c(v1, . . . , vn)) = Δ(v1, σ1) ⊕ · · · ⊕ Δ(vn, σn) if c : (σ1, . . . , σn) → σ.
Notice that Δ(v, σ) is the empty context if fn(v) = ∅ and it is a neutral context
if σ is non-affine.

Definition 5 (residual context). Given a context Γ and a compatible and
relevant action α, the residual context Γ (α) is defined as follows:

Γ (α) =

����
���

Γ if α = τ
↑ Γ if α = N
(Γ, t : σ′) � Δ(v : σ′) ⊕ {s : Sigu5(σ

′)} if Γ (s) = Sigu(σ′), α = νt : σ′sv, (1)
Γ ⊕ Δ(v, σ′) ⊕ {s : Siguout(σ

′)} if Γ (s) = Sigu(σ′), α = sv, (2)

(1) u5 =
(
0, 1, 0

)
·
(
0, 0, 0

)ω if u ∈ U(5) and it is neutral otherwise (i.e., u ∈
U(2)). (2) uout is the least usage of the same kind as u which allows to perform
an output within the instant (always defined).

The notion of residual context is instrumental to a precise statement of the
way transitions affect the typing. First we notice that the type of expressions is
preserved by the evaluation relation.

Lemma 3 (expression evaluation). If Γ � e : ρ and e ⇓ v then Γ � v : ρ.

The following lemma records the effect of the substitution at the end of the
instant.

Lemma 4 (substitution, end of instant). (1) If Γ � [A(r)], Γ ′ � PV , and
(Γ ⊕ Γ ′) ↓ then ↑ (Γ ⊕ Γ ′) � V (A(r)).
(2) If moreover there are V ′, E such that V, V ′ ‖−E then V (A(r)) ≈ V ′(A(r)).

On Affine Usages in Signal-Based Communication 235

Finally, the subject reduction theorem states that the residual of a typed tran-
sition is typable in the residual context (again, the residual context on auxiliary
actions is defined in [5]).

Theorem 2 (subject reduction). If P
act−−−→
Γ

Q then Γ (act) � Q.

Next we introduce a notion of typed bisimulation which refines the one given in
definition 1 by focusing on typed processes and typed transitions. Let Cxt be
the set of contexts and if Γ ∈ Cxt let Pr(Γ) be the set of programs typable in
the context Γ .

Definition 6 (typed bisimulation). A typed bisimulation is a function R
indexed on Cxt such that for every context Γ , RΓ is a symmetric relation on
Pr(Γ) such that: P RΓ Q, P

α−−→
Γ

P ′, bn(α) ∩ fn(Q) = ∅ implies ∃ Q′ (Q
α⇒
Γ

Q′, P ′ RΓ (α) Q′). We denote with ≈t the largest typed labelled bisimulation.

An expected property of typed bisimulation is that it is a weaker property than
untyped bisimulation: if we cannot distinguish two processes by doing arbitrary
actions we cannot distinguish them when doing actions which are compatible
with the typing.

Proposition 1. If P, Q ∈ Pr(Γ) and P ≈ Q then P ≈t
Γ Q.

We write P
τ
�
Γ

Q if P
τ−−→
Γ

Q or P = Q. The following lemma states a strong

commutation property of typed τ actions and it entails that typed bisimulation
is invariant under τ -actions.

Lemma 5. (1) If P
τ−−→
Γ

Pi for i = 1, 2 then there is a Q such Pi
τ
�
Γ

Q for
i = 1, 2.

(2) If P
τ⇒
Γ

Q then P ≈t
Γ Q.

The second key property is that the computation at the end of the instant is
deterministic and combining the two lemmas, we derive that typable programs
are deterministic.

Lemma 6. If P
N−−→
Γ

Pi for i = 1, 2 then P1 ≈t
↑(Γ) P2.

Theorem 3 (determinacy). If P
N⇒
Γ

· N⇒
Γ ′

· · · N⇒
Γ ′

Pi, i = 1, 2, Γ ′ =↑ Γ then

P1 ≈t
Γ ′ P2.

5 Conclusion

The main contribution of this work is the identification of 5 kinds of usages in
signal-based communication and of the rules that allow their composition while

236 R.M. Amadio and M. Dogguy

preserving determinacy. This goes well-beyond previous analyses for Esterel-
like languages we are aware of that are essentially ‘first-order’ in the sense that
signals are not treated as first-class values. Technically, we have shown that a
typable process P is deterministic. This result builds on previous work by the
authors [2,4] on a mathematical framework to reason about the equivalence of
programs which is comparable to the one available for the π-calculus.

References

1. Amadio, R.: The SL synchronous language, revisited. Journal of Logic and Alge-
braic Programming 70, 121–150 (2007)

2. Amadio, R.: A synchronous π-calculus. Information and Computation 205(9),
1470–1490 (2007)

3. Amadio, R., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous
π-calculus. Theoretical Computer Science 195, 291–324 (1998)

4. Amadio, R., Dogguy, M.: Determinacy in a synchronous π-calculus. Technical Re-
port, Université Paris 7, Laboratoire PPS (July 2007); From semantics to computer
science: essays in honor of Kahn, G., Bertot, Y., et al. (eds.) CUP (to appear)

5. Amadio, R., Dogguy, M.: On affine usages in signal based communication. Technical
Report, Université Paris 7, Laboratoire PPS (April 2008)

6. Berry, G., Gonthier, G.: The Esterel synchronous programming language. Science
of computer programming 19(2), 87–152 (1992)

7. Boussinot, F., De Simone, R.: The SL synchronous language. IEEE Trans. on
Software Engineering 22(4), 256–266 (1996)

8. Girard, J.-Y.: Linear Logic. Theoretical Computer Science 50(1), 1–102 (1987)
9. Honda, K., Yoshida, N.: On reduction-based process semantics. Theoretical Com-

puter Science 151(2), 437–486 (1995)
10. Kobayashi, N.: Type systems for concurrent programs. In: Aichernig, B.K.,

Maibaum, T. (eds.) Formal Methods at the Crossroads. From Panacea to Founda-
tional Support. LNCS, vol. 2757, pp. 439–453. Springer, Heidelberg (2003)

11. Kobayashi, N., Pierce, B., Turner, D.: Linearity and the pi-calculus. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 21(5) (1999)

12. Mandel, L., Pouzet, M.: ReactiveML, a reactive extension to ML. In: Proc. ACM
Principles and Practice of Declarative Programming, pp. 82–93 (2005)

13. Milner, R.: Communication and concurrency. Prentice-Hall, Englewood Cliffs
(1989)

14. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts 1-2. In-
formation and Computation 100(1), 1–77 (1992)

15. Wadler, P.: A Taste of Linear Logic. In: Proc. Mathematical Foundations of Com-
puter Science, SLNCS, vol. 711, pp. 185-210 (1993)

Abstraction of Clocks
in Synchronous Data-Flow Systems�

Albert Cohen1, Louis Mandel2, Florence Plateau2, and Marc Pouzet2,3

1 INRIA Saclay - Ile-de-France, Orsay, France
2 LRI, Univ. Paris-Sud 11, Orsay, France and INRIA Saclay

3 Institut Universitaire de France

Abstract. Synchronous data-flow languages such as Lustre manage in-
finite sequences or streams as basic values. Each stream is associated to
a clock which defines the instants where the current value of the stream
is present. This clock is a type information and a dedicated type sys-
tem — the so-called clock-calculus — statically rejects programs which
cannot be executed synchronously. In existing synchronous languages, it
amounts at asking whether two streams have the same clocks and thus
relies on clock equality only. Recent works have shown the interest of
introducing some relaxed notion of synchrony, where two streams can
be composed as soon as they can be synchronized through the intro-
duction of a finite buffer (as done in the SDF model of Edward Lee).
This technically consists in replacing typing by subtyping. The present
paper introduces a simple way to achieve this relaxed model through the
use of clock envelopes. These clock envelopes are sets of concrete clocks
which are not necessarily periodic. This allows to model various features
in real-time embedded software such as bounded jitter as found in video-
systems, execution time of real-time processes and scheduling resources
or the communication through buffers. We present the algebra of clock
envelopes and its main theoretical properties.

Keywords: Real-time systems; Synchronous languages; Kahn Process
Networks; Compilation; Semantics; Type-systems.

1 Introduction

Synchronous data-flow languages such as Lustre [1] have been introduced in the
80’s for the implementation of real-time critical software. Since then, they have
been used in various industrial applications such as the fly-by-wire commands
in Airbus planes. They were based on the objective to build a programming lan-
guage close to the mathematical models used in embedded systems such as data-
flow equations or the composition of finite-state machines. In these languages,
synchrony finds a very practical justification: at a certain level of observation,
time is considered logically as a sequence of instantaneous steps (or atomic re-
actions) of the system to external events and when processes are composed in

� This work was partially supported by the INRIA research project Synchronics.

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 237–254, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

238 A. Cohen et al.

parallel, they agree on those steps [2]. This also coincides with Milner’s interpre-
tation of synchrony in SCCS [3] or the synchronized product of automata [4]. In
a data-flow language such as Lustre, synchrony is essentially the one of control-
theory and can be interpreted as a typing constraint on the domain of sequences:
when combining two sequences (xi)i∈D1 and (yi)i∈D2 as in (xi)i∈D1 + (yi)i∈D2 ,
their time-domain D1 and D2 must be compatible in some ways. This static
checking is done by a specific type system, the so-called clock-calculus [5,6]
which imposes D1 and D2 to be equal. Such analysis appears not to be bound
to synchronous languages and are of a much wider interest. For example, clock
analysis is done in modeling tools such as Simulink [7] or Scicos [8].

The clock-calculus essentially consists in asking whether two streams have the
same clock. For that, those clock information are abstracted by types. Consider
the following type language (taken from [5]):

σ ::= ∀α.∀X1, ..., Xm.ct
ct ::= ct → ct | ct ∗ ct | ck | (X : ck)
ck ::= ck on c | ck on not c | α
c ::= X |n where n is a numerable set of names

As in the Hindley-Milner type system [9], types are separated into clock
schemes (σ) and clock types (ct). A clock scheme is quantified over clock vari-
ables (α) or boolean variables (X). Then, the clock type of (+) is ∀α.α×α → α
stating that if x and y are two integer streams with the same clock α then x+ y
have also the clock α. Said differently, the addition expects its two arguments
to be synchronous and produces a third stream with the same clock. An other
example of a synchronous primitive is the unitary delay which shifts its input.
If x and y are two sequences x0 x1 x2 ... and y0 y1 y2 ... then x fby y stands for
x0 y0 y1 y2 x and y must have the same clock as well as x fby y and we can
give to fby the clock signature: ∀α.α × α → α.

Things become more interesting when sampling occurs. Two typical program-
ming constructs are the sampler and the merge operator:

when : ∀α.∀X.α → (X : α) → α on X
merge : ∀α.∀X.(X : α) → α on X → α on not X → α

x when y is well clocked when x and y have the same clock α. In that case,
the result has a slower clock corresponding to the instant where y is true and
we write it α on y (the meta-variable X is substituted with the actual one
y). For example, if half is an alternating boolean sequence 10101010101... and
x is a sequence x0 x1 x2 ... then x when half is a half frequency sampling of x,
that is, x0 x2 x4 If x has some clock type ck, then x whenhalf has clock type
ck on half . Then, the expression x + (x whenhalf) which would compute the
sequence (xi + x2i)i∈N is not well clocked since ck is not equal to ck on half
and is statically rejected by the compiler. The merge operator is symmetric: it
expects two streams with complementary clocks and combines them to build a
longer stream.

When comparing clocks, most implementations restrict the comparison to the
equality of names: ck on n1 and ck on n2 can be unified only when n1 = n2.
This strong restriction is justified by the graphical aspect of these languages. Two

Abstraction of Clocks in Synchronous Data-Flow Systems 239

streams can be composed when they are sampled by the same condition com-
ing from the very same source block, that is, the same wire. This restriction is
reasonable when n1 is the result of a complex computation (for which equality
is non-decidable). This is nonetheless overly restrictive for an important variety
of applications where clocks are periodic and it forbids to take their properties
into account. In particular, recent works have shown the interest of a more relaxed
model of synchrony allowing to compose streams as soon as they can be synchro-
nized through the introduction of bounded buffers. This model is called the N-
synchronous Kahn model [10] and pursues the foundational work of Edward Lee
on Synchronous Data-Flow graphs (SDF) [11,12]. Data-flow equations in SDF are
not statically constrained with any notion of synchronous clock, yet the existence
of a static synchronous schedule is guaranteed by periodicity constraints on pro-
duction/consumption rates. From the typing point of view, N-synchrony amounts
at turning the clock calculus into a type-system with a subtyping rule:

(SUB)
H � e : ck ck <: ck′

H � e : ck′

Intuitively, ck <: ck′ means that the 1s of ck arrive before the 1s of ck′ and
that ck and ck′ have in average the same proportion of 1s. In the particular case
of ultimately periodic clocks [13], subtyping is decidable. For example, the clock
half is written (10) whereas 0000(10) is the same clock with a prefix of four false
values. Thus, α on (10) <: α on 0000(10). Algebraic properties allow to compare
more clocks, e.g., α on (10) on (10) equals α on (1000). Note that those clocks
correspond to simple linear circuits (and automata). The technical details shall
be reminded in Section 2.

In the present paper, we adopt a slightly different and simpler point of view
than in [10]. Instead of focusing on periodic clocks, we give the ability to rea-
son on sets of clocks or clock envelopes as abstractions of concrete clocks. In-
deed, in various applications, exact synchrony with precise periodic clocks is
not mandatory and it is sufficient to reason on clock intervals where bounds
are nonetheless periodic. This is typically the case in three kind of applica-
tions, (1) video applications with bounded jitter, (2) the description of ex-
ecution times when modeling physical resources, and (3) the communication
through buffers (or cyclic arrays). For example, a stream x which is present
in average 3 times over 7 according to a base clock ck and with a possible
jitter of 4 will be given a clock type ck on∼ [−2, 2](7/3) as a shortcut for
∃n ∈ [−2, 2](7/3). ck on n. The existential quantifier hides the exact instant
where the element is present but gives a bound on it. The intuition behind
the notation [−2, 2](7/3) is to account for all clocks whose (j + 1)th 1 is between
positions (7/3) × j − 2 and (7/3) × j + 2. Said differently, we consider all clocks
ck′ such that ck on 1(1010100) <: ck′ <: ck on (0010101). If f is of the form
λx.x when e for some complex boolean expression e but for which it can be proved
that its value belongs to the envelope [−2, 2](7/3) then a valid abstraction for f
is ∀α.α → α on∼ [−2, 2](7/3).

Another example appears when modeling the execution time of processes
[14,15,16]. To state that a function f must be executed every ten cycles and

240 A. Cohen et al.

that its computation takes between two and four cycles, we can give it the clock
signature: ∀α.α on∼ [0, 0](10/1) → α on∼ [2, 4](10/1). When composed twice,
we get: f o f : ∀α.(α on∼ [0, 0](10/1)) → α on∼ [4, 8](10/1).

Another typical example can be taken from elastic circuits [17]. For example,
an elastic adder is a stream function which takes two streams which are not
synchronous but are in the same envelope up to one delay, that is, they belong
to some envelope (ck on c) on∼ [0, 1](1/1) for some unknown boolean sequence
c (not necessarily periodic).

Finally, it is also possible to mimic a common feature found in a video ap-
plication: to read several inputs (or write several output) at once. Consider, for
example a stream function f whose input has clock type α on∼ [0, 4](1/1) con-
nected to a stream x with clock type ck on∼ [0, 0](1/1). Then, at each instant, x
produces a value whereas f can wait four instants before to start consuming the
values. At the fifth instant, f can consume the first five values and then continue
to read arrays by slides of five elements every five instants.

The main contribution of this paper is thus to introduce those clock envelopes
and to study their algebraic properties. The paper is organized as follows. In
Section 2, we remind the basic properties of infinite binary words. In Section 3,
we introduce the clock envelopes as sets of clocks. Section 4 presents related
work and we conclude in Section 5.

For lack of space, proofs are not given or only sketched. Proofs and comple-
ments are available at www.lri.fr/∼plateau/aplas08.

2 Clocks as Infinite Binary Words

A subtyping relation can be checked only if clock types are expressed with re-
spect to the same clock variable. Intuitively, this is because sampling is always
relative to a clock (ck on c is relative to ck). In that case the subtyping relation
corresponds to a relation on boolean sequences: α on c <: α on c′ ⇔ c <: c′.

In this section, we present infinite binary words and a boolean operation on
for them such that (ck on c1) on c2 = ck on (c1 on c2). We then present the
subtyping relation on these words. As we mainly manipulate the boolean stream
part c of a clock type we will also call it clock.

2.1 Definitions

A clock can be an infinite binary word or a composition of those. Identifying
names to their values, clocks have the following grammar:

c ::= w | not w | c on c
w ::= 0.w | 1.w

not w is the negation of w, c1 on c2 is the sampled clock and w an infinite
binary word. In infinite binary words, a 1 denotes the presence of a value on the
flow, and a 0 the absence of value.

Remark 1. We will consider that in the clocks we manipulate, the maximal dis-
tance between two successive 1s is bounded (in particular, every word contains

www.lri.fr/~plateau/aplas08

Abstraction of Clocks in Synchronous Data-Flow Systems 241

Instants

N
um

be
r

of
on

es

20191817161514131211109876543210

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

fw1

fw2

fw3

[w1]6

|w1[0..8]|1

w1

In the 2D-chronograms, the dis-
crete function fw(i) = |w[0..i]|1
associates to each instant i
the number of 1s seen in w
since the beginning. The func-
tion f−1

w (j) = min i s.t. f(i) = j
gives the index of the jth 1. A ris-
ing edge at instant i means that
the element at index i of w is
a 1 (i.e. w[i] = 1). In the con-
trary case (i.e. fw(i) = fw(i−1)),
it is a 0 (i.e. w[i] = 0). The
word w1 is represented on the
1D-chronogram, which is a pro-
jection of fw1 .

Fig. 1. Chronograms representing words w1 = (11010), w2 = 0(00111), w3 = (00100)

an infinity of 1s). So, the not operator cannot be applied on a clock that does
not contain an infinity of 0s.

Notations: The concatenation of a finite binary word u and a binary word w
is written u.w. We will sometimes note 0n the concatenation of n values 0 and
1n of n values 1. w[i] is the element at index i of w, w[0..i] is the prefix of
w of length i + 1, and [w]j the position of the jth 1 in w. It is defined by:
[1.w]1 = 0, [1.w]j+1 = 1 + [w]j , [0d.w]j = d + [w]j , with d ∈ N, j ∈ N∗.1 2 Note
that ∀j ≥ 1, [w]j < [w]j+1. Finally, the number of 1s contained in a finite binary
word v is denoted by |v|1.

We will call periodic binary words and we will write u(v), the words consisting
of a finite prefix u, followed by the infinite repetition of a finite binary word v.

Fig. 1 shows some examples of infinite binary words, represented by chrono-
grams. The discrete function fw(i) = |w[0..i]|1 associates to each instant i the
number of 1 seen in w since the beginning. A rising edge at instant i means
that w[i] = 1. If a flow is produced (resp. consumed) at clock w, then a token is
produced (resp. consumed) at each rising edge of the chronogram.

Formally, the on operator is defined by:
1.w1 on 1.w2 = 1.(w1 on w2)
1.w1 on 0.w2 = 0.(w1 on w2)
0.w1 on w2 = 0.(w1 on w2)

The elements of w1 on w2 correspond to the elements of w2, when w2 is tra-
versed at the rhythm of the 1s of w1. So if the jth 1 of w2 is the ith element of
w2, we know that the jth 1 of w1 on w2 is at the index of the ith 1 in w1.

Proposition 1. [w1 on w2]j = [w1][w2]j+1

Corollary 1 (on associativity). (w1 on w2) on w3 = w1 on (w2 on w3)
1 N is the set of natural numbers and N∗ is the set of positive natural numbers.
2 Note that for readability reasons and contrary to previous works, indexes of elements

of w begin at 0. It involves a shift in some formulas, w.r.t those of [10].

242 A. Cohen et al.

2.2 Buffer Size

The minimal buffer size needed to communicate from an output with clock type
α on w to an input with clock type α on w′ is the maximum amount of data
produced and not yet consumed in the course of the execution:

size(w, w′) = maxi∈N(|w[0..i]|1 − |w′[0..i]|1)

Note that if the minimum of this difference is negative, then there will be
at least one read in an empty buffer. Indeed, when a negative value is reached,
more data have been consumed than produced.

In chronograms, the buffer size to communicate from α on w to α on w′ is
equal to the maximal difference fw(i)− fw′(i). For example, in Fig. 1, the maxi-
mal amount of data produced and not yet consumed during the communication
from α on w1 to α on w2 is 2, reached for the first time at instant 1. The amount
of data to store during the communication from α on w1 to α on w3 grows
infinitely.

2.3 Subtyping Relation

The subtyping relation is verified if the tokens are always produced before they
are expected (precedence relation), and at a bounded distance of the instant
they are consumed (synchronizability relation).

Definition 1 (precedence).

We say that w1 precedes w2 and we write w1
 w2 iff ∀j ≥ 1, [w1]j ≤ [w2]j.

A word w1 precedes a word w2 if the jth 1 of w1 always comes before (or at the
same time as) the jth 1 of w2. It permits to verify that the causality relation
between flows is preserved, i.e. that the producer writes its outputs in the buffer
before the consumer needs it.

In Fig. 1, the edges of the chronogram of w1 occur earlier than the corre-
sponding ones of w2 and w3, so w1
 w2 and w1
 w3 but chronograms of w2
and w3 are interleaved, so w2 � w3 and w3 � w2.

We can define the supremum � and the infimum of a set of infinite binary
words W = {w1, ..., wn} for the
 relation:
∀j ≥ 1, [�W]j = max([w1]j , ..., [wn]j) and [W]j = min([w1]j , ..., [wn]j).
For instance, in Fig. 1, w2 � w3 is equal to w2 until instant 3 and then equal
to w3.
For all w ∈ W , W
 w
 �W .

Definition 2 (synchronizability). We say that two words w1 and w2 are
synchronizable and we write w1 �� w2 iff there exists d1, d2 ∈ N such that
w1
 0d2 .w2 and w2
 0d1 .w1.

By definition of
, it ensures that the jth 1 of w1 is at a bounded distance of
the jth 1 of w2:

Proposition 2. w1 �� w2 ⇔ ∃d1, d2 ∈ N, ∀j ≥ 1, −d1 ≤ [w1]j − [w2]j ≤ d2

Abstraction of Clocks in Synchronous Data-Flow Systems 243

For instance, in Fig. 1, w1 �� w2, but w1 ��� w3 and w2 ��� w3. When the producer
of a flow communicates with the consumer through a buffer, it allows to verify
that there exists a correct size for this buffer such that there will never be an
overflow. Indeed, if −d1 ≤ [w1]j − [w2]j ≤ d2, the jth 1 of w2 occurs at worst d1
instants after the jth 1 of w1. So when it occurs in w2, at worst d1 supplementary
1s have occurred in w1, and the size maxi |w1[0..i]|1 −|w2[0..i]|1 is lower or equal
to d1.

Definition 3 (subtyping). The subtyping relation, written <: is the conjunc-

tion of precedence and synchronizability: w1 <: w2
def
= w1
 w2 ∧ w1 �� w2.

In fact, if the tokens are always produced before they are needed, and at a
bounded distance of the time they are consumed, then the communication can
be made synchronous by the insertion of a bounded size buffer. For instance, in
Fig. 1, w1 <: w2.

Remark 2. By Def. of
 and ��, w1 <: w2 ⇔ ∃d ∈ N, ∀j ≥ 1, 0 ≤ [w2]j−[w1]j ≤ d

The on operator is monotonous with respect to the <: relation:

Proposition 3 (on monotonicity).

w1 <: w2 ∧ w′
1 <: w′

2 ⇒ w1 on w′
1 <: w2 on w′

2

All definitions of this section can be lifted to clocks (c) by computation of not
and on operators.

3 Abstraction of Clocks

Abstracting an infinite binary word w consists in keeping only (1) the average
distance T between two 1s in w (the asymptotic rate of 1s of w is 1

T) and
(2) two phases d and D that bound indexes of 1s in w, with respect to the
perfect repartition of one 1 every T instants. We note this abstraction [d, D] (T)
and we call it envelope.

Abstract clocks can be envelopes or compositions of those. They are defined
by the following grammar:3

ac ::= a | not∼ a | ac on∼ ac
a ::= [d, D] (T) with d, D, T ∈ Q, D ≥ 0 and T ≥ 1

In this section, we explain what set of words is represented by an envelope
and we show that this language is recognizable by a finite automaton. Then we
define on∼ and not∼ operators that can be computed efficiently, allowing to
always reduce an abstract clock to an envelope. Finally, we show that relations
presented in Sec. 2 can be easily checked, and that buffer size can be efficiently
computed.
3 Q is the set of rational numbers.

244 A. Cohen et al.

Instants

N
um

be
r

of
on

es

1211109876543210

7

6

5

4

3

2

1

0

fw1 fw2

[w2]5

{a1

}a2

w2

d = 5
3 T = 5

3

D = 9
3 T = 5

3

Fig. 2. If the rising edges of a word w all start
between the lines of equation i−d

T
and i−D

T
, then

w is in the envelope [d, D] (T), because for all
j ≥ 0, T ×j+d ≤ [w]j+1 ≤ T ×j+D. Thus w1 is
in a1 =

�
− 2

3 , 0
� � 5

3

�
and w2 is in a2 =

� 5
3 , 9

3

� � 5
3

�
.

For instance, 5
3 × 4 + 5

3 ≤ [w2]5 ≤ 5
3 × 4 + 9

3 .

Instants

N
um

be
r

of
on

es

543210

3

2

1

0

5
3 × 2 + 0 5

3 × 2 + 1
3

Fig. 3. The concretization set of�
0, 1

3

� � 5
3

�
is empty: there is no valid

discrete index for the third 1

3.1 Abstraction of Infinite Binary Words

An envelope [d, D] (T), with d, D, T ∈ Q, D ≥ 0, T ≥ 1, represents the following
set of infinite binary words:

Definition 4 (concretization).

concr ([d, D] (T))
def
= {w, ∀j ≥ 0, T × j + d ≤ [w]j+1 ≤ T × j + D}

D will always be positive or null, otherwise we would have [w]1 < 0. A T < 1
would represent words that have in average more that one 1 per instant, which
are not considered (as mentioned in Sec. 2.1 ∀j ≥ 1, [w]j < [w]j+1).

In 2D-chronograms, the envelope [d, D] (T) can be represented by two lines
that bound the rising edges starting points of the words it contains. The equa-
tions of these lines are i−d

T and i−D
T . For instance, in Fig. 2 we can see the word

w2 = 0(00111) and a2 =
[5
3 , 9

3

] (5
3

)
, which is an abstraction of w2.

The lines can be interpreted as “ideal clocks” such that from instant
5
3 (resp. 9

3), a tick occurs every 5
3 of instant (i.e. each time the line crosses a

y-axis discrete value). The word w2 is bounded by these two ideal clocks (see
the 1D-chronograms of Fig. 2).

Notice that every word staying at a bounded distance of its asymptotic rate
can be abstracted by an envelope.

Abstraction of Clocks in Synchronous Data-Flow Systems 245

An envelope can always be normalized into the form
[

k
n , K

n

] (
l
n

)
with

gcd(l, n) = 1 without changing the concretization set:

Proposition 4 (normal form).
∀a = [d, D]

(
l′

n′

)
, ∃k ∈ Z, K ∈ N, l ∈ N, n ∈ N∗ with gcd(l, n) = 1

such that concr
([

k
n , K

n

] (
l
n

))
= concr(a).

l = l′

gcd(l′,n′) , n = n′

gcd(l′,n′) , k = �d × n� and K = �D × n�.4

The concretization set is empty if there exists a j ≥ 0 such that there is no
natural number between the bounds of the (j + 1)th 1. Actually, in this case,
there is no valid index for the (j + 1)th 1.

Proposition 5 (empty concretization set).
Let a = [d, D] (T) be an envelope.
concr(a) = ∅ ⇔ ∃j ≥ 0, {m ∈ N, T × j + d ≤ m ≤ T × j + D} = ∅

⇔ ∃j ≥ 0, �T × j + d� > �T × j + D�

For instance, the concretization set of
[
0, 1

3

] (5
3

)
is empty. Indeed, we can see in

Fig. 3 that there is no valid index for the third 1, that must occur between the
instants 5

3 × 2 + 0 and 5
3 × 2 + 1

3 .
The following proposition gives a sufficient condition on an envelope a, to

ensure that its concretization set is not empty. If a is in normal form, this
condition is necessary.

Proposition 6 (non-emptiness test).
Let a =

[
k
n , K

n

] (
l
n

)
be an envelope. K

n − k
n ≥ 1 − 1

n ⇒ concr(a) �= ∅
Additionally, if a is in normal form (i.e. gcd(l, n) = 1), then the converse holds.

A length 1 − 1
n for the interval [k

n , K
n] ensures that for all i, there is a natural

number between the bounds of the jth 1 index. If furthermore the envelope is in
normal form, then this length is the minimal length such that the concretization
set is not empty.

The concretization set contains one and only one element iff for all j there is
exactly one natural number between the lower bound and the upper bound, i.e.
iff ∀j, �T × j + d� = �T × j + D�. Indeed, in that case there is only one choice
for the index of each 1 of the binary word. This occurs when D − d = 1 − 1

n ,
and only when this condition is verified in the case of abstract clocks in normal
form. For instance, in Fig. 2, w1 is the unique element in the concretization set
of a1. Indeed, a1 =

[
− 2

3 , 0
] (5

3

)
and 0 − (− 2

3) = 1 − 1
3 . We can check on the

2D-chronogram that for each j on the y-axis, there is exactly one valid index i
in the envelope.

Otherwise, the concretization set is infinite. In fact, in that case there are
several integers between the bounds of certain indexes, thus several choices for
them. Then, it is the case for an infinity of indexes. This occurs iff ∀j ≥ 0, �T×j+
d� ≤ �T ×j+D�(non-emptiness condition) and ∃j ≥ 0, �T ×j+d� < �T ×j+D�
(several choices for at most one index). This occurs when D − d > 1 − 1

n , and

4 �x� (resp. �x�) is the notation for the ceiling (resp. floor) function.

246 A. Cohen et al.

only when this condition is verified in the case of envelopes in normal form. For
instance in Fig. 2, if we consider the concretization set of a2, we note that the
fourth edge can occur at index 8 (as in w2) or 7.

Remark 3. The chronogram never passes on the right of the envelope. Indeed,
passing on the right of it leads to no more allow rising edges in the word, and
thus to have clocks with a finite number of presence instants, which are not
considered in this work.

Let us consider the concretization set of a simpler example: a4 = [2, 3] (2).
concr(a4) = {02(10), 02(1001), 02(0110), 02(01), 02(011001), 0010(01), . . .}
To simplify the presentation, we only give here some periodic elements of the
concretization set, but it contains an infinity of periodic and non-periodic infinite
binary words, all of the form 00(10 + 01)∗. We show in Sec. 3.2 a complete
representation of the concretization sets.

The infimum and supremum of the concretization set (with respect to the

relation) are periodic binary words:

Proposition 7 (, �). Let a = [d, D] (T) with concr(a) �= ∅.
winf = (concr(a)) ⇔ ∀j ≥ 0, [winf]j+1 = �T × j + d�
wsup = �(concr(a)) ⇔ ∀j ≥ 0, [wsup]j+1 = �T × j + D�
If T = l

n , then the periodic pattern will be of length l and will contain n ones.

Proof. The formulas come from the definitions of and �. Let T = l
n . The

word winf is periodic because for all j ≥ 0, [winf]j+n+1 = � l
n × (j + n) + d� =

� l
n × j + d� + l, so ∀j ≥ n, [winf]j+1 = [winf]j+1−n + l. �

For instance in Fig. 2, w′
2 = 00(10110) is the infimum of the concretization set

of a2, the rising edges occur as soon as possible, and w′′
2 = 00(01101) is the

supremum, the rising edges occur as late as possible. As we illustrate in Sec. 3.2,
these two particular clocks can be efficiently computed with a synchronous circuit
with linear size (w.r.t max(d, D, T)) instead of the size of the period and they
are perfectly balanced.

We have a partial order relation on abstract clocks:

Definition 5 (order relation �∼). ac1 �∼ ac2
def
= concr(ac1) ⊆ concr(ac2)

It can be tested efficiently:

Proposition 8 (�∼ test). Let a1 = [d1, D1] (T1) and a2 = [d2, D2] (T2) be
envelopes such that concr(a1) �= ∅ and concr(a2) �= ∅. Then,

T1 = T2 and [d1, D1] ⊆ [d2, D2] ⇒ a1 �∼ a2

Additionally, if a1 and a2 are in normal form, then the converse holds.

If we interpret this on the 2D-chronograms, a1 �∼ a2 if the lines representing
the envelope of a1 are between the ones of a2.

Proof (Intuition). To stay between the lines of a2, the lines of a1 must have the
same slope as the ones of a2, thus 1

T2
= 1

T1
. Concerning the delays, the proof

that the converse holds relies on the fact that a1 and a2 are in normal form. �
We will write abs(w) any function such that abs(w) = a ⇒ w ∈ concr(a).

Abstraction of Clocks in Synchronous Data-Flow Systems 247

3.2 Abstract Clocks as Automata

We have seen that the concretization set of an abstract clock can be empty,
contain a unique element or an infinity of elements. It can be represented by a
deterministic finite automaton recognizing all binary words of the set, and only
them. We first define an infinite automaton such that the language recognized is
the concretization set, then we show that it is equivalent to a finite automaton.

Definition 6 (automaton associated to an envelope).
Let a = [d, D] (T) be an envelope. The infinite automaton associated to a is
Ia = 〈Q, Σ, δ, qo〉 with:
– The set of states Q is a set of pairs (i, j) ∈ N2

– The initial state qo is (0, 0)
– The alphabet Σ is {0, 1}
– The transition function δ is defined by:

δ(1, (i, j)) = (i + 1, j + 1) if T × j + d ≤ i ≤ T × j + D
δ(0, (i, j)) = (i + 1, j) if i + 1 ≤ T × j + D
It is undefined otherwise.

Proposition 9. Let a = [d, D] (T) be an envelope, and Ia its associated infinite
automaton. The language recognized by Ia is concr(a).

The labels of the states correspond to coordinates in 2D-chronograms. The value
i is the index of the current instant, and j is the number of 1s seen before the
current instant. A transition from (i, j) to (i + 1, j + 1) corresponds to a rising
edge starting at (i, j), i.e. to the occurrence of the (j + 1)th 1 at index i. It can
be taken if (i, j) is between the bounding lines, i.e. if T × j + d ≤ i ≤ T × j + D.
A transition from (i, j) to (i+1, j) corresponds to a flat edge in the chronogram.
It can be taken if the destination state (i + 1, j) is not on the right-side of the
bounding lines (see Rem. 3), i.e. if i+1 ≤ T × j +D (it ensures that i is not the
last valid index for the (j + 1)th 1).

Let us now define the set of reachable states. A state (i, j) is reachable if the
two following conditions are verified: (1) if j > 0, it is possible that the jth 1 has
occurred before i, i.e. the earliest possible index for the jth 1 (T × (j − 1)+ d) is
smaller or equal to i − 1, and (2) it is still possible for the (j + 1)th 1 to occur,
i.e. i is less or equal to the latest possible index for the (j + 1)th 1 (T × j + D).
So we can restrict the set of states to the set of reachable states which is
Q = {(i, j) ∈ N2, (j = 0 or d − T + 1 ≤ i − T × j) and (i − T × j ≤ D)}.

This infinite automaton can be transformed into a finite one, by noticing that
the transition function only depends on the value of i − T × j. We thus identify
all states (i, j), (i′, j′) such that i − T × j = i′ − T × j′. As states are such that
j = 0 and i ≤ D, or d − T + 1 ≤ i − T × j ≤ D, the set of states obtained
is finite. The transition function of the finite automaton Aa equivalent to the
infinite automaton Ia is:
δ(1, (i, j)) = nf (i + 1, j + 1) if T × j + d ≤ i ≤ T × j + D
δ(0, (i, j)) = nf (i + 1, j) if i + 1 ≤ T × j + D

with T = l
n , nf (i, j) = (i−x×l, j−x×n), x = max{x ∈ N, (x×l ≤ i)∧(x×n ≤ j)}

248 A. Cohen et al.

3, 1

6, 25, 2

4, 1

3, 02, 01, 00, 0 0 0 0

1 1

1

0

1

1

0

a2 =
� 5

3 , 9
3

� � 5
3

�

3, 02, 01, 00, 0 0
0 0

1 1

a4 = [2, 3] (2)

Fig. 4. Automata recognizing the clocks of concr(a2) and concr(a4)

We thus are able to represent infinite concretization sets by finite automata.
Fig. 4 shows the automaton associated to a2 =

[5
3 , 9

3

] (5
3

)
of Fig. 2, and to

a4 = [2, 3] (2).
The infimum of the concretization set (with respect to
) corresponds to

the path taking in priority the 1-transitions, and the supremum corresponds to
the path taking in priority the 0-transitions. All paths have the same asymp-
totic rate of 1s (e.g. choosing 1-transitions first only delays the corresponding
0-transitions).

It is interesting because it allows to check dynamically or statically (with
model checking) that a clock is in the envelope specified by the user, and throw
an error message if it’s not the case. Note that it is not necessary to build
explicitly the automaton. Here is a Lustre program that checks that a clock clk
is in an envelope

[
k
n , K

n

] (
l
n

)
.

node norm(const l, n: int; i, j: int) returns (ni, nj: int);
let

(ni, nj) = if i >= l and j >= n then (i - l, j - n) else (i,j);
tel
node check(const k, K, l, n: int; clk: bool) returns (ok: bool);
var i, j, v: int;
let

(i,j) = (0,0) -> pre norm(l, n, i+1, if clk then j + 1 else j);
v = i * n - j * l;
ok = if clk then (k <= v and v <= K) else v <= K - n;

tel

The function norm incrementally computes the normal form of the state (i,j)
using l and n. The function check maintains the value of the current state. It is
initialized to (0,0), then at each instant, i is incremented, and j is incremented
if the clock clk was true at the preceding instant. The normalization function is
applied to the new state. Then, if the current value of clk is true, we check that
a 1-transition is allowed, and in the contrary case, we check that a 0-transition
is allowed.

The same principle allows to generate clocks within a certain abstraction, for
simulation purposes. To generate the earliest clock we take a 1-transition each
time it is allowed.

Abstraction of Clocks in Synchronous Data-Flow Systems 249

node early(const k, K, l, n: int) returns (clk: bool);
var i, j, v: int;
let

(i, j) = (0,0) -> pre norm(l, n, i+1, if clk then j + 1 else j);
v = i * n - j * l;
clk = (k <= v and v <= K);

tel

Similarly, to generate the latest clock we take a 1-transition each time a
0-transition is not allowed.

3.3 Abstract Operators

We define in this section operators on envelopes, corresponding to operators on
words defined in Sec. 2. Computing these operators in the abstract domain is
in constant time and memory. Moreover, they are correct, i.e. the result of the
operation in the abstract domain contains the result of the operation in the
concrete one.

Definition 7 (on∼ operator).
We define an abstract on operator, written on∼:

[d1, D1] (T1) on∼ [d2, D2] (T2) = [d12, D12] (T12)
with: T12 = T1 × T2, d12 = d1 + d2 × T1, D12 = D1 + D2 × T1.

We have seen in Sec. 2 that the elements of w1 on w2 are the elements of w2,
traversed at the pace of the 1s of w1. So if the distance between the 1s of w2
is on average equal to T2, and the distance between those of w1 is on average
equal to T1, then the distance between the 1s of w1 on w2 is on average equal
to T2 × T1. Sampling w1 with w2 keeps intact the delays of w1, and adds to it
the delay of w2 multiplied by T1, because w2 is traversed at the pace T1.

Thus, this abstract operator has the expected property: for all words of the
respective concretization sets, the result of the concrete on operation is in the
concretization set of the result of the abstract operation.

Proposition 10.
∀w1 ∈ concr(a1), ∀w2 ∈ concr(a2), w1 on w2 ∈ concr(a1 on∼ a2)

Remark 4. The fact that a1 and a2 are in normal form does not necessary lead
to a result a3 = a1 on∼ a2 in normal form.

Definition 8 (not∼ operator).
We define an abstract not operator, written not∼:

not∼ ([d, D] (T)) =
[
−D+1
T−1 , max

(
0, 1 − d

T−1

)](
T

T−1

)

with T > 1.

The intuition behind this formula is the following. Let a = [d, D]
(

l
n

)
and w ∈

concr(a). It means that over l elements of the word, there are on average n 1s in
w. So over l instants, there are on average (l−n) 0s in w, thus (l−n) 1s in not w.

250 A. Cohen et al.

The average distance between two 1s in not w is l
l−n , i.e. T

T−1 . Concerning the
delays, the maximal amount of 0s that appear before the first 1 in w is defined by
D, and the maximal amount of 1s that appear before the first 0 in w is function
of d. Thus it is not surprising that in the negation of w, the lower bound of the
interval is function of D, and the upper bound of the interval is function of d.

This abstract operator is correct:

Proposition 11. ∀w ∈ concr(a), not w ∈ concr(not∼ a)

Remark 5. If a is in normal form, then by definition of the not∼ operator,
a′ = not∼ a is also in normal form.

Remark 6. Applying the abstract negation looses some information about the
abstracted word: a �∼ not∼ not∼ a. It is due to the fact that the abstraction can
represent words that will eventually begin with d 0s, by setting the minimum of
the interval to d, but cannot represent their negation without loss of information,
i.e. words that will eventually begin with d 1s (D cannot be negative).

In fact, only the first negation looses information: not∼ a=not∼ not∼ not∼ a.
For example, if a= [2, 3]

(5
3

)
then not∼ a= [−3, 0]

(5
2

)
, not∼ not∼ a =

[2
3 , 3

] (5
3

)

and not∼ not∼ not∼ a = [−3, 0]
(5

2

)
= not∼ a.

3.4 Abstraction of a Clock

Given an abstraction of words (abs(w)), we can compute the abstraction of clocks
composed by these words. It is recursively defined as follows:

Definition 9 (clocks abstraction function).

abs(not w)
def
= not∼ abs(w)

abs(c1 on c2)
def
= abs(c1) on∼ abs(c2)

This abstraction of clocks is correct:

Proposition 12. c ∈ concr(abs(c))

3.5 Abstract Relations

We now define the relations on envelopes, corresponding to the relations on words
defined in Sec. 2. A relation is verified in the abstract domain if it is verified for
all couple of words in the respective concretization sets.

Definition 10 (abstract synchronizability).

ac1 ��∼ ac2
def
= ∀w1 ∈ concr(ac1), w2 ∈ concr(ac2), w1 �� w2

We are able to check the synchronizability on envelopes:

Proposition 13 (synchronizability test).
[d1, D1] (T1) ��∼ [d2, D2] (T2) ⇔ T1 = T2

Indeed, if two clocks stay at a bounded distance of there asymptotic rate, then
the 1s of the first clock stay at a bounded distance of the 1s of the second clock
iff their rates are equal.

Abstraction of Clocks in Synchronous Data-Flow Systems 251

Remark 7. A corollary of this proposition is that ��∼ is reflexive, so every ab-
stract clock is synchronizable with itself. That means that in a concretization
set, all couple of words are synchronizable.

The abstraction contains all necessary information to exactly check the synchro-
nizability of two clocks on their abstraction:

Proposition 14. abs(c1) ��∼ abs(c2) ⇔ c1 �� c2

Proof. From Rem. 7 and by transitivity of ��. �
Definition 11 (abstract precedence).

ac1
∼ ac2
def
= ∀w1 ∈ concr(ac1), w2 ∈ concr(ac2), w1
 w2

The precedence on abstract clocks is verified iff the 1s of the latest concrete
clock in the first envelope arrive before or at the same instant as the 1s of the
earliest concrete clock in the second envelope:

Proposition 15.
Let a1 = [d1, D1] (T1) and a2 = [d2, D2] (T2).

a1
∼ a2 ⇔ �(concr(a1))
 (concr(a2))
⇔ ∀j ≥ 0, [�(concr(a1))]j+1 ≤ [(concr(a2))]j+1
⇔ ∀j ≥ 0, �T1 × j + D1� ≤ �T2 × j + d2�

When abstract clocks are synchronizable, Prop. 15 can be checked by a suf-
ficient condition. If abstract clocks are in normal form, this condition is also
necessary.

Proposition 16 (precedence test).
Let a1 =

[
k1
n , K1

n

] (
l
n

)
and a2 =

[
k2
n , K2

n

] (
l
n

)
be two envelopes. Then:

K1
n − k2

n ≤ 1 − 1
n ⇒ a1
∼ a2

Additionally, the converse holds if a1 and a2 are in normal form (i.e. here
gcd(l, n) = 1).

Proof (Intuition). An overlap of less than 1 − 1
n between [k1

n , K1
n] and [k2

n , K2
n]

ensures that ∀j ≥ 0, � l
n × j + K1

n � ≤ � l
n × j + k2

n �. If furthermore a1 and a2 are
in normal form, then this length is the maximal overlap such that this property
is verified. �
To check the precedence relation between clocks on their abstraction, the lack
of information about the positions of the 1s enforces us to consider the worst
case of concretization. This verification on the abstraction is thus correct, but
not complete with respect to the verification on the concrete clocks:

Proposition 17. abs(c1)
∼ abs(c2) ⇒ c1
 c2

We now define the subtyping relation on envelopes:

Definition 12 (abstract subtyping relation).

ac1 <:∼ ac2
def
= ∀w1 ∈ concr(ac1), w2 ∈ concr(ac2), w1 <: w2

Proposition 18. a1 <:∼ a2 ⇔ a1 ��∼ a2 ∧ a1
∼ a2

252 A. Cohen et al.

3.6 Computing Buffers Size

To synchronize producers and consumers, buffers are inserted. The question
addressed here is the buffer size needed to store a flow produced on a clock of
abstraction ac1, and consumed on a clock of abstraction ac2, with ac1 <:∼ ac2.

Proposition 19. Let a1 =
[

k1
n , K1

n

] (
l
n

)
and a2 =

[
k2
n , K2

n

] (
l
n

)
be two envelopes

such that a1 <:∼ a2. The minimal buffer needed to be able to communicate from
any clock of abstraction a1 to any clock of abstraction a2 is of size:

size(a1, a2) =
⌈

K2−(n−1)−k1
l

⌉

Proof (Intuition). The size of buffer needed to communicate from any clock of
a1 to any clock of a2 is the size needed to communicate from the earliest clock
of a1 ((concr(a1))) to the latest clock of a2 (�(concr(a2))). The formula comes
from the definition of the calculus of size on concrete clocks and the formulas
of |w[0..i]|1 for the infimum and supremum of the concretization sets. �

4 Discussion and Related Work

Back to Periodic Clocks. To be able to check the subtyping relation and compute
buffer sizes, the exclusive use of periodic binary words has been proposed in [10].5

The periodic behavior of those words allows to statically compute the on
and not operators (definitions become algorithms). In the same way, it allows
to check the precedence relation (if it is verified until a certain rank, it will be
verified forever) and the synchronizability relation which is equivalent to the
equality of rates of 1s in the periodic behavior. Finally, the definition of the
minimal buffers size also becomes an algorithm.

However, it can be interesting to avoid exact computations on periodic words
because of their cost: for instance, the on operation needs a complete traversal
of elements of the periods we compose. Moreover if operands have not a com-
patible size, the result is much longer that the operands. In contexts like video
applications, this cost is a problem because the periods length can be huge: in
the example cited in [10], a classical downscaler, the output clock has a periodic
behavior of length 17280. Adding vertical blanking periods leads to a periodic
behavior of size 2073600 (the size of a high definition frame). Computing on
abstract values gives a solution to this drawback.

Notice that when periodic clocks are used, the abstraction of words can be
automatically computed:

Proposition 20 (periodic binary words abstraction function).
Let w = u(v) be an infinite binary word. abs(w) = [d, D] (T) with T = |v|

|v|1 ,
d = minj=0..(|u|1+|v|1−1)([w]j+1−T ×j), D = maxj=0..(|u|1+|v|1−1)([w]j+1−T ×j).

5 Those periodic binary words have been used since then to specify statically computed
periodic schedules for Latency Insensitive Design [18].

Abstraction of Clocks in Synchronous Data-Flow Systems 253

For example, the abstraction of the downscaler’s output clock is:
abs((10100100) on 03600(1) on (172007201720072007201720072007201720))
=

[
− 2

3 , 0
] (8

3

)
on∼ [3600, 3600] (1) on∼

[−4315
4 , 3600

4

] (9
4

)
= [6723, 12000] (6)

A Particular Case of Periodic Clocks. Affine clocks, presented in [19,20], are a
subset of periodic clocks of the form 0φ(10l−1). They have been used to extend
the clock calculus of the synchronous data-flow language Signal [21], in the con-
text of hardware/software co-design. Thanks to the simple regular form of those
clocks, the extended clock calculus of Signal has a more powerful unification
algorithm.

In the case of affine clocks, the abstraction mechanism presented in Sec. 3 is
correct and complete. Abstracting a word is trivial: abs(0φ(10l−1)) = [φ, φ] (l)
and doesn’t loose any information. Indeed, the concretization set contains only
one element (as specified in Sec. 3, φ − φ = 1 − 1

1). Moreover, abs(c) on∼ abs(c′)
has a singleton concretization set: c on c′, and is in normal form. Clocks being
in normal form and concretization sets being singletons, testing precedence re-
lations on the abstraction is equivalent to testing them on the concrete clocks.
As it is also the case for the synchronizability relation, we have
abs(c) <:∼ abs(c′) ⇔ c <: c′.

5 Conclusion

This paper generalizes the classical notion of clocks in synchronous data-flow
languages by allowing to deal with sets of clocks. This is based on the introduc-
tion of clock envelopes which define intervals of clocks up to bounded buffering.
We have focused on the algebraic properties of those clocks and illustrated their
expressive power. The motivation behind them is essentially pragmatic and gives
some answer to the need to model jittering phenomena, execution time and more
generally communication through bounded buffering. The real novelty is to deal
with quantitative properties during the clock calculus instead of simply strict
synchrony as done usually. We have experimented the use of these clocks on
several examples (e.g., video picture-and-picture or filters in software defined
radio). The extension of the existing clock calculus of Lucid Synchrone [22]
compiler is under way.
Acknowledgements. Pascal Raymond showed us an unexpected (and very ele-
gant) use of the Lustre compiler to generate clocks within an envelope. We also
thank the anonymous reviewers for their helpful comments. The figures have
been programmed in Mlpost, we acknowledge Johannes Kanig and Stéphane
Lescuyer for their help.

References

1. Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Le Guernic, P., de Simone,
R.: The synchronous languages 12 years later. Proceedings of the IEEE 91(1) (Jan-
uary 2003)

2. Benveniste, A., Berry, G.: The synchronous approach to reactive and real-time
systems, pp. 147–159. Kluwer Academic Publishers, Norwell (2002)

254 A. Cohen et al.

3. Milner, R.: Calculi for synchrony and asynchrony. Theoretical Computer Sci-
ence 25(3), 267–310 (1983)

4. Arnold, A.: Systèmes de transitions et sémantique des processus communicants.
Masson (1992)

5. Colaço, J.L., Pouzet, M.: Clocks as First Class Abstract Types. In: Third Interna-
tional Conference on Embedded Software, Philadelphia, USA (2003)

6. Amagbegnon, T., Besnard, L., Guernic, P.L.: Implementation of the data-flow syn-
chronous language signal. In: Programming Languages Design and Implementation,
pp. 163–173. ACM, New York (1995)

7. Caspi, P., Curic, A., Maignan, A., Sofronis, C., Tripakis, S.: Translating Discrete-
Time Simulink to Lustre. ACM Transactions on Embedded Computing Systems
(2005); Special Issue on Embedded Software

8. Scicos, http://www-rocq.inria.fr/scicos
9. Milner, R.: A theory of type polymorphism in programming. Journal of Computer

and System Sciences 17(3), 348–375 (1978)
10. Cohen, A., Duranton, M., Eisenbeis, C., Pagetti, C., Plateau, F., Pouzet, M.: N-

Synchronous Kahn Networks: a Relaxed Model of Synchrony for Real-Time Sys-
tems. In: ACM International Conference on Principles of Programming Languages
(2006)

11. Lee, E., Messerschmitt, D.: Synchronous dataflow. IEEE Trans. Comput. 75(9)
(1987)

12. Buck, J., Ha, S., Lee, E., Messerschmitt, D.: Ptolemy: A framework for simulating
and prototyping heterogeneous systems. International Journal of computer Simu-
lation (1994); special issue on Simulation Software Development

13. Vuillemin, J.: On Circuits and Numbers. Technical report, Digital, Paris Research
Laboratory (1993)

14. Curic, A.: Implementing Lustre Programs on Distributed Platforms with Real-time
Constraints. Ph.D thesis, Université Joseph Fourier (2005)

15. Sofronis, C.: Embedded Code Generation from High-level Heterogeneous Compo-
nents. Ph.D thesis, Université Joseph Fourier (2006)

16. Halbwachs, N., Mandel, L.: Simulation and verification of asynchronous systems by
means of a synchronous model. In: Sixth International Conference on Application
of Concurrency to System Design, Turku, Finland (2006)

17. Krstic, S., Cortadella, J., Kishinevsky, M., O’Leary, J.: Synchronous elastic net-
works. In: Proceedings of the Formal Methods in Computer Aided Design, Wash-
ington, DC, USA, pp. 19–30. IEEE Computer Society, Los Alamitos (2006)

18. Boucaron, J., de Simone, R., Millo, J.V.: Formal methods for scheduling of latency-
insensitive designs. EURASIP Journal on Embedded Systems (1), 8 (2007)

19. Smarandache, I.M., Guernic, P.L.: Affine transformations in SIGNAL and their
application in the specification and validation of real-time systems. In: ARTS, pp.
233–247 (1997)

20. Smarandache, I.M., Gautier, T., Guernic, P.L.: Validation of mixed SIGNAL-
ALPHA real-time systems through affine calculus on clock synchronisation con-
straints. In: World Congress on Formal Methods, vol. (2), pp. 1364–1383 (1999)

21. Benveniste, A., Guernic, P.L., Jacquemot, C.: Synchronous programming with
events and relations: the SIGNAL language and its semantics. Sci. Comput. Pro-
gram. 16(2), 103–149 (1991)

22. Pouzet, M.: Lucid Synchrone, version 3. Tutorial and reference manual. Université
Paris-Sud, LRI (April 2006) Distribution,
http://www.lri.fr/∼pouzet/lucid-synchrone

http://www-rocq.inria.fr/scicos
http://www.lri.fr/~pouzet/lucid-synchrone

From Authorization Logics to Types for
Authorization

Radha Jagadeesan

School of CTI, College of CDM, DePaul University, Chicago, IL 60604, USA

Abstract. Web services and mashups are collaborative distributed sys-
tems built by assembling components from multiple independent applica-
tions. Such composition and aggregation involves subtle combinations of
authorization, delegation, and trust. Consequently, how to do so securely
remains a topic of current research.

Authorization logics elegantly record the change of context from sender
to receiver when messages are transmitted in distributed systems. Such
logics are well suited to specify security policies since they satisfy a non-
interference property: namely, that the dependencies between the state-
ments of principals arise solely from the user-defined non-logical axioms.
Building on the prior work of Abadi, Abadi and Garg, and Garg and
Pfenning, we describe a semantic approach to such non-interference
results.

Authorization logics constitute the logical foundations of our type-
and-effect system for TAPIDO, a calculus of distributed objects. The
effects are “object-centric” and record the rights associated with the ob-
ject. Object effects are validated at the point of creation, ensuring that
the security policy permits the creation of the object. When such an
object is received, the associated rights, perhaps constrained by prove-
nance information, are delegated as a benefit accrued to the recipient. A
TAPIDO program is safe if every object creation at runtime is in confor-
mance with the security policy of the system. Well-typed programs are
safe even in the face of dishonest opponent processes that aim to subvert
the global authorization policy by creating unauthorized objects.

This talk is based on joint work with Abramsky and joint work with
Cirillo, Pitcher and Riely.

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, p. 255, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Interface Types for Haskell

Peter Thiemann and Stefan Wehr

Institut für Informatik, Universität Freiburg, Germany
{thiemann,wehr}@informatik.uni-freiburg.de

Abstract. Interface types are a useful concept in object-oriented pro-
gramming languages like Java or C#. A clean programming style advo-
cates relying on interfaces without revealing their implementation.

Haskell’s type classes provide a closely related facility for stating an
interface separately from its implementation. However, there are situa-
tions in which no simple mechanism exists to hide the identity of the
implementation type of a type class. This work provides such a mecha-
nism through the integration of lightweight interface types into Haskell.

The extension is non-intrusive as no additional syntax is needed and
no existing programs are affected. The implementation extends the treat-
ment of higher-rank polymorphism in production Haskell compilers.

1 Introduction

Interfaces in object-oriented programming languages and type classes in Haskell
are closely related: both define the types of certain operations without revealing
their implementations. In Java, the name of an interface also acts as an interface
type, whereas the name of a type class can only be used to constrain types.
Interface types are a proven tool for ensuring data abstraction and information
hiding. In many cases, Haskell type classes can serve the same purpose, but there
are situations for which the solutions available in Haskell have severe drawbacks.

Interface types provide a simple and elegant solution in these situations. A
modest extension to Haskell provides the simplicity and elegance of interface
types: simply allow programmers to use the name of a type class as a first-
class type. The compiler then translates such interface types into existentially
quantified data types [11] (available in several Haskell compilers such as GHC [3]
or Hugs [5]) and generates all the boilerplate code necessary for dealing with
these existential types. To keep type inference manageable, we follow the same
strategy as type inference algorithms for rank-n types [14] and require type
annotations if interface types should be introduced.

Contributions and Outline. A case study (Section 2.1) compares several ap-
proaches to information hiding in Haskell. It demonstrates that interface types
provide the simplest solution. Two further example applications (Section 2.2 and
Section 2.3) underline the advantages of interface types.

In Section 3, we formalize interface types as an extension of a type system
and inference algorithm for rank-n types introduced by Peyton Jones and oth-
ers [14]. The resulting inference algorithm (explained in Section 4 in terms of a
bidirectional type system) is close to the one used in GHC.

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 256–272, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Interface Types for Haskell 257

A prototype implementation of the type inference algorithm is available.1 We
have developed it as an extension of Peyton Jones’s implementation of rank-n
type inference [14].

Section 5 sketches the translation to System F, the second component needed
for implementing interface types in a compiler. Sections 6 and 7 discuss related
work and conclude.

2 Motivation

To motivate the need for interface types, we present the results of a case study
that compares different approaches to information hiding in the design of a li-
brary for database access (Section 2.1). In two additional examples, we show how
interface types help in designing a library for sets and graphical user interfaces
(Section 2.2 and Section 2.3, respectively).

2.1 Interface Types for Database Access

Consider a programmer designing a Haskell library for accessing databases. Ide-
ally, the public interface of the library makes no commitment to a particular
database system and users of the library should not be able to create depen-
dencies on a particular database system (exception to both: opening new con-
nections). Thus, all datatypes describing connections to the database, query
results, cursors, and so on should be abstract, and the only way to manipulate
them should be through operations provided in the library.

Record Types as Interface Types. As a concrete example, consider the HDBC
package [4]. Up to version 1.0.1.2, HDBC provided database operations through
a record type similar to the following:2

������ Database.HDBC (Connection(..)) ���	�

�
�
 Connection = Connection { dbQuery :: String -> IO [[String]] }

HDBC comes with a number of drivers that provide support for a specific
database system through an operation to create a connection:

������ Database.HDBC.PostgreSQL (connectPSQL) ���	�

connectPSQL :: String -> IO Connection

������ Database.HDBC.Sqlite3 (connectSqlite3) ���	�

connectSqlite3 :: FilePath -> IO Connection

Once a connection is established, the Connection datatype ensures that ap-
plication code works independently of the specific database system. Thus, the
design just outlined fulfills the requirements at the beginning of this paragraph.

1 http://www.informatik.uni-freiburg.de/∼thiemann/haskell/IFACE/impl.tgz
2 We only show those parts of the code relevant to our problem. Modules whose names

start with MyHDBC are not part of HDBC.

http://www.informatik.uni-freiburg.de/~thiemann/haskell/IFACE/impl.tgz

258 P. Thiemann and S. Wehr

There is, however, one major disadvantage: the set of database operations
is fixed and cannot be extended easily. Suppose that we want to add sup-
port for PostgreSQL’s [16] asynchronous events.3 We cannot extend the existing
Connection datatype because not all database systems support asynchronous
events. Thus, we need to create a new datatype:

������ MyHDBC (ConnectionAE(..)) ���	�

�
�
 ConnectionAE = ConnectionAE { dbQuery’ :: String -> IO [[String]],
listen :: String -> IO (),
notify :: String -> IO () }

But now functions operating on Connection do not work with ConnectionAE,
although the latter type supports, in principle, all operations of the former.

Type Classes as Interface Predicates. For this reason, HDBC version 1.1.0.0
replaces the datatype Connection with a type class IConnection:

������ Database.HDBC (IConnection(..)) ���	�

��
 IConnection c ���	�

dbQuery :: c -> String -> IO [[String]]

Support for asynchronous events is nowmodeled througha subclass ofIConnection:

������ MyHDBC (IConnectionAE(..)) ���	�

��
 IConnection c => IConnectionAE c ���	�

listen :: c -> String -> IO ()
notify :: c -> String -> IO ()

This way, functions with signatures of the form IConnection c => .. -> c -> ..

also work when passing an instance of IConnectionAE as the c argument.
The classes Connection and IConnectionAE are not types, but serve as predi-

cates on type variables. Thus, the connect function provided by a database driver
has to return the concrete connection type. For example:

������ Database.HDBC.Sqlite3 (ConnectionSqlite3(), connectSqlite3) ���	�

�
�
 ConnectionSqlite3 = ConnectionSqlite3 {
sqlite3Query :: String -> IO [[String]] }

���
��� IConnection ConnectionSqlite3 ���	�

dbQuery = sqlite3Query
connectSqlite3 :: FilePath -> IO ConnectionSqlite3

A concrete return type violates our requirement that application code should
not be able to create a dependency on a particular database system: The driver
module Database.HDBC.Sqlite3 exports the datatype ConnectionSqlite3. Appli-
cation code may use this type in function signatures, data type declarations
etc.

Is there a Haskell solution to this problem? Simply hiding the ConnectionSqlite3
type inside the Database.HDBC.Sqlite3 module is not enough, because a type name
3 PostgreSQL provides a listen and a notify operation: listen allows processes to

register for some event identified by a string, notify signals the occurrence of an
event.

Interface Types for Haskell 259

is useful for type specifications. There are at least two solutions to this problem,
both of which involve advanced typing constructs.

Existential Types as Interface Types. The first solution uses algebraic datatypes
with existential types [11].4

������ Database.HDBC (IConnection(..), ExIConnection(..)) ���	�

-- class IConnection as before
�
�
 ExIConnection =

��	
�� c . IConnection c => ExIConnection c
���
��� IConnection ExIConnection ���	�

dbQuery (ExIConnection c) = dbQuery c

������ MyHDBC (IConnectionAE(..), ExIConnectionAE(..)) ���	�

-- class IConnectionAE as before
�
�
 ExIConnectionAE = ��	
�� c . IConnectionAE c => ExIConnectionAE c
���
��� IConnection ExIConnectionAE ���	�

dbQuery (ExIConnectionAE c) = dbQuery c
���
��� IConnectionAE ExIConnectionAE ���	�

listen (ExIConnectionAE c) = listen c
notify (ExIConnectionAE c) = notify c

With this solution, the module Database.HDBC.Sqlite3 no longer exports
the type ConnectionSqlite3 and the return type of connectSqlite3 becomes
ExIConnection.

However, this solution has some drawbacks:

– A value of type ExIConnectionAE cannot be used where a value of type
ExIConnection is expected. Instead, we have to unpack and re-pack the ex-
istential type.

– Writing and maintaining the boilerplate for the datatype declarations
ExIConnection and ExIConnectionAE, as well as the corresponding instance
declarations is tedious, especially when the class hierarchy becomes larger.

Rank-2 Types as Interface Types. The second solution is to provide a function
that passes the newly created connection to a continuation. Thanks to higher-
rank polymorphism [14], the continuation can be given a sensible type. With
this approach, the driver for PostgreSQL would look like this:

������ MyHDBC.PostgreSQL (runWithPSQL) ���	�

�
�
 ConnectionPSQL = ConnectionPSQL { psqlQuery
:: String -> IO [[String]],

psqlListen :: String -> IO (),
psqlNotify :: String -> IO () }

���
��� IConnection ConnectionPSQL ���	�

dbQuery = psqlQuery
���
��� IConnectionAE ConnectionPSQL ���	�

listen = psqlListen

4 GHC uses the keyword ��	
�� for existential quantifiers.

260 P. Thiemann and S. Wehr

notify = psqlNotify
connectPSQL :: String -> IO ConnectionPSQL
runWithPSQL :: String -> (��	
�� c. IConnectionAE c => c -> IO t) -> IO t
runWithPSQL s f = �� c <- connectPSQL s

f c

Thanks to the generic instantiation relation for types, this function allows for
some unexpected flexibility. Clearly, a function of type

psqlWorker :: IConnectionAE c => c -> IO Result

can serve as a (second) parameter to runWithPSQL. But also

dbWorker :: IConnection c => c -> IO Result

is a type correct second argument to runWithPSQL. The flexibility of this ap-
proach is appealing, but writing the user code using continuations can be de-
manding and may obfuscate the code.

Which of the two solutions does HDBC choose? The answer is: none. It seems
that the benefit of hiding the concrete connection type does not outweigh the
complexity of the two solutions.

Type Classes as Interface Types. We propose an alternative solution that is light-
weight and easy to use. We consider the name C of a type class as an interface
type that denotes some unknown instance of the class. Thus, the interface type
C stands for the bounded existential type ∃c . C c ⇒ c.

For example, the interface type IConnection represents some unknown in-
stance of the type class IConnection. Here is some code for an Sqlite3 driver
module following this approach:

������ Database.HDBC.Sqlite3 (connectSqlite3) ���	�

�
�
 ConnectionSqlite3 = ConnectionSqlite3 {
sqlite3Query :: String -> IO [[String]] }

���
��� IConnection ConnectionSqlite3 ���	�

dbQuery = sqlite3Query
connectSqlite3 :: FilePath -> IO IConnection
connectSqlite3 = internConnectSqlite3
internConnectSqlite3 :: FilePath -> IO ConnectionSqlite3

Transferring the subclass hierarchy on type classes to a “more polymorphic
than” relation on interface types allows values of type IConnectionAE to be passed
to functions accepting a parameter of type IConnection without any explicit
conversions. This approach yields the same flexibility with respect to parameter
passing as with type classes and continuations using rank-2 types (but without
requiring the use of continuations).

Thus, the solution combines the advantages of type classes approach (ex-
tensibility, flexibility with respect to parameter passing, ease to use) with the
additional benefit that application code cannot directly refer to the implemen-
tation type of a connection. Moreover, there is no need to write boilerplate code
as with existential types wrapped in data types and there is no need to use
continuations as with the rank-2 types approach.

Interface Types for Haskell 261

2.2 Interface Types for Sets

Consider a programmer designing a Haskell library for manipulating sets. The
library should consist of a public interface for common set operations and various
implementations of this interface. For simplicity, we consider only sets of integers
with the operations empty, insert, contains, and union. We can easily encode
the first three operations as methods of a type class IntSet:

��
 IntSet s ���	�

empty :: s
insert :: s -> Int -> s
contains :: s -> Int -> Bool

The signature of the union operation is not straightforward, because it should be
possible to union two sets of different implementations. Thus, the second para-
meter of union should be an arbitrary IntSet instance, leading to the signature
union :: IntSet s’ => s -> s’ -> ?. But what should the result type be?

When implementing sets using lists, we would like it to be s’:

���
��� IntSet [Int] ���	�

empty = []
insert l i = i:l
contains l i = i ‘elem‘ l
union l s’ = foldl insert s’ l

When implementing sets using characteristic functions, we would like it to be s:

���
��� IntSet (Int -> Bool) ���	�

empty = \i -> False
insert f i = \j -> i == j || f j
contains f i = f i
union f s’ = \i -> contains f i || contains s’ i

In general, the result type of union is some unknown instance of IntSet, which
is exactly the kind of interface type introduced in Section 2.1. This choice avoids
the declaration of an extra algebraic data type with existential quantification,
writing boilerplate instance definitions, and packing and unpacking the existen-
tial type. Instead, we simply define the signature of union as

-- inside type class IntSet
union :: s -> IntSet -> IntSet

and get the rest for free. Especially, the two instance declarations for [Int] and
Int -> Bool now become valid.

2.3 Interface Types for Graphical User Interfaces

Consider a programmer designing a Haskell library for writing graphical user
interfaces. The library should provide several different kinds of widgets: a text
input widget, a button widget, a table widget, and so on. It is reasonable to
abstract over the common operations of widgets with a type class:

262 P. Thiemann and S. Wehr

��
 Widget w ���	�

draw :: w -> IO ()
minSize :: w -> (Int,Int)
name :: w -> String

Some widgets provide additional features. A typical example is focus handling:

��
 Widget w => FocusWidget w ���	�

setFocus :: w -> IO ()
unsetFocus :: w -> IO ()

As an example, let us write the representation of a table widget. A table
widget is essentially a list of rows, where each row consists of a list of widgets.
Additionally, a table stores a second list of all focusable widgets. Clearly, the
list of widgets in a row and the list of focusable widgets are heterogeneous. The
element types just happen to be instances of Widget or FocusWidget. Hence, we
need some kind of existential type, again.

As in Section 2.1 and Section 2.2, algebraic datatypes with existential quan-
tifiers are an option. Here is the code with a function that extracts all rows from
a table containing at least one focusable widget.

ExWidget = w . Widget w => ExWidget w
ExFocusWidget = w . FocusWidget w => ExFocusWidget w

Widget ExWidget
draw (ExWidget w) = draw w
minSize (ExWidget w) = minSize w
name (ExWidget w) = name w

Widget ExFocusWidget
draw (ExFocusWidget w) = draw w
minSize (ExFocusWidget w) = minSize w
name (ExFocusWidget w) = name w

FocusWidget ExFocusWidget
setFocus (ExFocusWidget w) = setFocus w
unsetFocus (ExFocusWidget w) = unsetFocus w

Eq ExWidget
w1 == w2 = name w1 == name w2

Eq ExFocusWidget
w1 == w2 = name w1 == name w2

Table = Table { rows :: [[ExWidget]], focusable :: [ExFocusWidget] }

focusableRows :: Table -> [[ExWidget]]
focusableRows tab =

filter (\row -> any (\w -> w ‘elem‘ map asWidget (focusable tab)) row) (rows tab)
asWidget (ExFocusWidget w) = ExWidget w

With interface types all the boilerplate code vanishes:

���
��� Eq Widget ���	�

w1 == w2 = name w1 == name w2
���
��� Eq FocusWidget ���	�

w1 == w2 = name w1 == name w2

Interface Types for Haskell 263

�
�
 Table = Table { rows :: [[Widget]],
focusable :: [FocusWidget] }

focusableRows :: Table -> [[Widget]]
focusableRows tab =

filter (\row -> any (\w -> w ‘elem‘ (focusable tab)) row) (rows tab)

In the subexpression w ‘elem‘ (focusable tab), the compiler has to insert a
coercion from [FocusWidget] to [Widget]. In general, such coercions are generated
automatically if the corresponding datatype is an instance of Functor. In our
concrete example, the datatype is List, which is already an instance of Functor.

2.4 Restrictions on Interface Types

Interface types are not a panacea. In the preceding section, we have seen that
compound datatypes have to be instances of Functor if coercions should be gen-
erated automatically.

Moreover, not every type class makes for a sensible interface type. In particu-
lar, the “dispatch type” of the class must appear exactly once negatively in the
signatures of the member functions. Without this restriction, it is not possible
to derive the instance definition on the interface type automatically. The exam-
ples in this section all obey this restriction, but any type class with a “binary
method” such as (==) :: Eq a => a -> a -> Bool does not.

3 A Language with Interface Types

This section defines a calculus with interface types in two steps. The first step
recalls qualified types [6] and extends it with higher-rank polymorphism along
the lines of Peyton Jones et al [14]. The second step adds interface types to that
calculus and defines and investigates their induced subtyping relation.

The presentation relies on standard notions of free and bound variables, sub-
stitution for type variables in a syntactic object s[a �→ m], as well as the notation
a as a shorthand for the sequence a1, . . . , an, for some unspecified n ≥ 0.

3.1 Qualified Types with Higher-Rank Polymorphism

Fig. 1 contains the syntax and the static semantics of λQ, the language of quali-
fied types as considered by Jones [6]. There are expressions e, types t, monotypes
m (types that only contain type variables and type constructors), and predicates
P . Predicates are conjunctions of (at this point) unspecified atomic predicates A.
The comma operator “,” on predicates stands for conjunction and is assumed to
be associative, commutative, and idempotent. Besides function types, the type
language includes arbitrary covariant data type constructors T , which are intro-
duced and eliminated with appropriate functions provided in the environment.5

5 In Haskell, the covariance requirement boils down to require T to be an instance
Functor.

264 P. Thiemann and S. Wehr

Syntax

expressions e, f ::= x | λx.e | λ(x :: s).e | f e | letx = e in f | (e :: s)
types s, t ::= a | T t | s −→ t | ∀a.P ⇒ t
monotypes m ::= a | T m | m −→ m
predicates P, Q ::= true | P, A

Typing rules

(E-var) P | Γ (x : s) � x : s (E-lam)
P | Γ (x : m) � e : t

P | Γ � λx.e : m −→ t

(E-alam)
P | Γ (x : s) � e : t

P | Γ � λ(x :: s).e : s −→ t
(E-app)

P | Γ � f : s −→ t P | Γ � e : s

P | Γ � f e : t

(E-ann)
P | Γ � e : s

P | Γ � (e :: s) : s
(E-let)

P | Γ � e : s P | Γ (x : s) � f : t

P | Γ � let x = e in f : t

(E-gen)
P, Q | Γ � e : s a ∩ free(Γ) = ∅ free(P) ⊆ free(Γ)

P | Γ � e : ∀a.Q ⇒ s

(E-spec)
P | Γ � e : s P �dsk s 	 t

P | Γ � e : t

Fig. 1. Syntax and static semantics of λQ

The typing judgment and the rules defining its derivability are standard for a
language with qualified types. The presentation extends Jones’s by allowing ar-
bitrary rank universally quantified types including type qualifications (cf. [10]).
These higher-rank types are introduced through explicit type annotations fol-
lowing the initial lead of Odersky and Läufer [12]. Type inference for a language
with these features is tricky and incomplete, but manageable [20,14,10]. In par-
ticular, this language is a core subset of the language implemented in bleeding
edge Haskell compilers like GHC.

The rule (E-spec) relies on the generic instantiation relation � for types spec-
ified in Fig. 2. It generalizes the respective definition of Odersky and Läufer [12]
(to qualified types) as well as Jones’s ordering relation on constrained type
schemes [6] (to higher-ranked types). Its particular formulation of � using deep
skolemization is taken from Peyton Jones et al [14], extended with rule (I-tycon)
that exploits the assumption that type constructors are covariant. A yet more
general definition albeit without deep skolemization underlies the system of qual-
ified types for MLF [10].

So far, the definition is independent of any particular choice of predicates.
Thus, it remains to choose a language of atomic predicates and define the
entailment relation P �� Q. In our case, the atomic predicates are type class con-
straints. Their entailment relation �� relies on specifications of type classes I and

Interface Types for Haskell 265

Rho-types r ::= m | s −→ s

Weak prenex conversion pr(s) = s′

(N-poly)
pr(r1) = ∀b.Q ⇒ r2 a ∩ b = ∅
pr(∀a.P ⇒ r1) = ∀ab.P, Q ⇒ r2

(N-fun)
pr(s2) = ∀a.P ⇒ r2 a ∩ free(s1) = ∅

pr(s1 −→ s2) = ∀a.P ⇒ s1 −→ r2
(N-mono) pr(m) = m

Deep skolemization P �dsk s 	 r

(I-dsk)
pr(s2) = ∀a.Q ⇒ r2 a ∩ free(s1) = ∅ P, Q �dsk* s1 	 r2

P �dsk* s1 	 s2

(I-spec)
P �� Q[a
→ m] P �dsk* r1[a
→ m] 	 r2

P �dsk* ∀a.Q ⇒ r1 	 r2

(I-fun)
P �dsk s3 	 s1 P �dsk* s2 	 r4

P �dsk* s1 −→ s2 	 s3 −→ r4
(I-tycon)

P �dsk* s 	 r

P �dsk* T s 	 T r

(I-mono) P �dsk* m 	 m

Fig. 2. Instantiation rules for types

atomic predicates A, B ::= Im

(P-assume) P, A �� A (P-collect)
P �� Q P �� A

P �� Q, A

(P-subcl)
P �� Im I ⇒C J

P �� Jm
(P-inst)

m ∈I I
P �� Im

Fig. 3. Entailment for predicates

of type class instances, i.e., the subclass relation between two classes I ⇒C J
(read: I is a subclass of J) and the instance relation m ∈I I between a monotype
m and a class I. Their syntactic details are of no concern for this work and
we consider the relations as built into the entailment relation �� on predicates
which obeys the rules in Fig. 3. To avoid clutter, Haskell’s facility of recursively
defining ∈I from single instance definitions for type constructors is omitted.

3.2 Interface Types

The language λQ serves as a base language for the language λI , which augments
λQ with the definitions in Fig. 4. The only extension of λI over λQ is the notion

266 P. Thiemann and S. Wehr

Extended syntax of types
m ::= · · · | I

Additional type instantiation rules

(I-iface)
P �� Im

P �dsk* m 	 I

Additional entailment rules

(P-subint)
I ⇒C J
P �� J I

Fig. 4. Extensions for λI with respect to Figures 1 and 2

(S-refl) t ≤ t (S-trans)
t1 ≤ t2 t2 ≤ t3

t1 ≤ t3
(S-subclass)

I ⇒C J
I ≤ J

(S-instance)
m ∈I J
m ≤ J

(S-tycon)
s ≤ t

T s ≤ T t
(S-fun)

t1 ≤ s1 s2 ≤ t2
s1 −→ s2 ≤ t1 −→ t2

(S-qual)
s ≤ t

∀a.Q ⇒ s ≤ ∀a.Q ⇒ t

Fig. 5. Subtyping

of an interface type I and a slightly extended type instantiation relation. Each
(single-parameter) type class I gives rise to an interface type of the same name.
This interface type can be interpreted as the existential type ∃a.I a ⇒ a in that
it stands for one particular element of the set of instances of I. Furthermore, the
interface type I is regarded an instance of J whenever I ⇒C J. This assumption
is consistent with the observation that all instances of I are also instances of J,
hence the set of instances of J includes the instances of I.

There is no explicit constructor for an element of interface type, but any suit-
able value can be coerced into one through a type annotation by way of the in-
stantiation relation �. This practice is analogous to the practice of casting to the
interface type, which is the standard way of constructing values of interface type
in, say, Java.6 There is no explicit elimination form for a interface type I, either.
Rather, member functions of each class J where I ⇒C J are directly applicable to
a value of interface type I without explicitly unpacking the existential type.

Section 2 demonstrates that interface types are most useful if they enjoy a
subtyping relation as they do in Java. Fig. 5 defines this subtyping relation in
the obvious way. Each instance type of J is a subtype of J and the subclass

6 An implementation can easily provide a cast-like operation to introduce interface
types. However, type annotations are more flexible because they simplify the con-
version of functions that involve interface types.

Interface Types for Haskell 267

relation induces subtyping among the interface types. The remaining structural
rules are standard.

Interestingly, the instantiation relation � already includes the desired subtyp-
ing relation ≤.

Lemma 1. The instance relation P �dsk s � t is reflexive and transitive.

Lemma 2. 1. If I ⇒C J, then P �� I � J.
2. If m ∈I J, then P �� m � J.

Lemma 3. s ≤ t implies P �� s � t.

4 Inference

The type system presented in Section 2 is in logical form. It is a declarative spec-
ification for the acceptable type derivations, but gives no clue how to compute
such a derivation, in particular because rules (E-gen) and (E-spec) allow us to
generalize and specialize, respectively, everywhere. Thus, the logical system is
suitable for investigating meta-theoretical properties of the system, such as type
soundness, but unsuitable for inferring types.

This section introduces a bidirectional version of the system geared at type
inference. As the development in this paper parallels the one in the “Practical
Type Inference” paper [14, Fig. 8], we omit the intermediate step of forming a
syntax-directed system, which would not yield further insight.

Fig. 6 displays the rules of the directional system. It relies on the same entail-
ment relation as the logical system as well as on the weak prenex transformation
and (extended) deep skolemization judgments from Figures 2 and 4. It extends
the system of Peyton Jones et al [14] with the handling of predicates in general,
one extra instantiation rule (I-iface), and one extra generalization rule (BE-
gen3). This rule mimics (I-iface), but it can only occur in a derivation in a place
where full instantiation is not desired so that (I-iface) is not applicable.

It is straightforward to check that the directional system is sound with respect
to the logical system. However, doing so requires extra type annotations because
the directional system accepts more programs than the logical one.

Lemma 4. Suppose that P | Γ �poly
δ e : s. Then there exists some e′ such that

P | Γ � e′ : s where e′ differs from e only in additional type annotations on the
bound variables of lambda abstractions.

Here is an example for a term that type checks in the directional system (ex-
tended with integers and booleans), but not in the logical system:

λ(f :: ((∀a.a → a) → int × bool) → (∀a.a → a) → int× bool).
f (λid.(id 5, id false)) (λx.x)

It works in the directional system because the rule (BE-app) infers a polymorphic
type for f , checks its argument against the resulting polymorphic type, and

268 P. Thiemann and S. Wehr

Direction δ ::= ⇑ | ⇓
Judgment P | Γ �δ e : r

(BE-var)
P �inst

δ s 	 r

P | Γ (x : s) �δ x : r
(BE-lam1)

P | Γ (x : m) �⇑ e : r

P | Γ �⇑ λx.e : m −→ r

(BE-lam2)
P | Γ (x : s) �poly

⇓ e : s′

P | Γ �⇓ λx.e : s −→ s′ (BE-alam1)
P | Γ (x : s) �⇑ e : r

P | Γ �⇑ λ(x :: s).e : s −→ r

(BE-lam2)
P | Γ (x : s) �poly

⇓ e : s′′ P �dsk s′ 	 s

P | Γ �⇓ λ(x :: s).e : s′ −→ s′′

(BE-app)
P | Γ �⇑ f : s′ −→ s′′ P | Γ �poly

⇓ e : s′ P �inst
δ s′′ 	 r

P | Γ �δ f e : r

(BE-ann)
P | Γ �poly

⇓ e : s P �inst
δ s 	 r

P | Γ �δ (e :: s) : r

(BE-let)
P | Γ �poly

⇑ e : s P | Γ (x : s) �δ f : r

P | Γ �δ let x = e in f : r

Generalization judgment P | Γ �poly
δ e : s

(BE-gen1)
P, Q | Γ �⇑ e : r

a = free(r) \ free(Γ) free(P) ⊆ free(Γ)
P | Γ �poly

⇑ e : ∀a.Q ⇒ r

(BE-gen2)
P, Q | Γ �⇓ e : r pr(s) = ∀a.Q ⇒ r
a ∩ free(Γ) = ∅ free(P) ⊆ free(Γ)

P | Γ �poly
⇓ e : s

(BE-gen3)
P �� Im P | Γ �⇓ e : m

P | Γ �poly
⇓ e : I

Instantiation judgment P | Γ �inst
δ e : s 	 r

(BE-inst1)
P �� Q[a
→ m]

P �inst
⇑ ∀a.Q ⇒ r 	 r[a
→ m]

(BE-inst2)
P �dsk s 	 r

P �inst
⇓ s 	 r

Fig. 6. Bidirectional version of Odersky and Läufer, extended with qualified types and
subtyping of interface types

then does the same for the second argument. However, in the logical system, the
argument of the function λid.(id 5, id false) cannot receive a polymorphic type.

The directional system extends the logical one (viz. [14, Theorem 4.8]).

Lemma 5. Suppose that P | Γ � e : s. Then P | Γ �poly
δ e : s′ and P �dsk s′ � s.

Interface Types for Haskell 269

Type translation

|a| = a |s −→ t| = |s| −→ |t| |I| = WI |∀a.P ⇒ t| = ∀a.|P | −→ |t|

|true| = ∗ |P, Q| = |P | × |Q| |I m| = EI{|m|}

Term translation (excerpt)

(TS-tycon)
P �dsk* h : s 	 r

P �dsk* mapT h : T s 	 T r

(TS-iface)
P �� y : Im

P �dsk* λ(x :: |m|).KI y x : m 	 I

(TE-gen3)
v : A �� y : I r v : A | Γ �⇓ e � e′ : r

v : A | Γ �poly
⇓ e � KI y e′ : I

Fig. 7. Translation from λI to System F. EI{t} is the type of evidence values for class
I at instance t. The type of a wrapper constructor is KI : ∀a.EI{a} −→ a −→ WI .

It is not clear whether the directional system retains the principal types prop-
erty (viz. [14, Theorem 4.13]).

5 Translation to System F

The last step towards an implementation of interface types in a Haskell compiler
is the translation to its internal language, System F, in Fig. 7. Peyton Jones
et al [14] define most parts of this translation by extending their bidirectional
system (without predicate handling), so the figure concentrates on the rules and
types not present in that work.

This translation maps an atomic predicate Im into evidence, which is a vari-
able binding v : |Im|. The value of v is a suitable dictionary DI{|m|} : EI{|m|}
for the type class I. A value with interface type I is represented as a System F
term of type WI . This term wraps a dictionary of type EI{|m|} and a witness
of type |m| using an automatically generated datatype constructor KI.

The translation rules for instantiation have the form P � h : s � s′ and yield
a System F term h of type |s| → |s′|. The rule (TS-tycon) demonstrates why
the type constructors T have to be covariant: the translation of the instantiation
judgment requires a map operation mapT for each such T .7 The rule (TS-iface)
shows the conversion of an instance type m of class I to its interface type I by
applying the wrapper constructor KI to the dictionary y yielded by the extended
entailment judgment and the value x of type |m|.

The translation rules for expressions have the form P | Γ � e � e′ : r where
e is the source expression and e′ its translation. The rule (TE-gen3) performs
essentially the same task as (TS-iface), but in a term context.
7 In Haskell, T has to be an instance of Functor, so mapT becomes fmap.

270 P. Thiemann and S. Wehr

The translation to System F preserves types:

Lemma 6. Let �F denote the System F typing judgment.

– Suppose that (v :: A) | Γ � e � e′ : r. Then (v :: |A|), |Γ | �F e′ : |r|.
– Suppose that (v :: A) | Γ �poly e � e′ : s. Then (v :: |A|), |Γ | �F e′ : |s|.

6 Related Work

There is a lot of work on type inference for first-class polymorphism [12, 7, 8,
18, 10, 20, 14, 9, 21]. Our inference algorithm directly extends the algorithm for
predicative higher-rank types of Peyton Jones and others [14] with support for
interface types. The interface type system is also predicative.

Läufer [11] extends algebraic data types with existential quantification con-
strained over type classes. In Läufer’s system, programmers have to explicitly
pack and unpack existential types through the standard introduction and elim-
ination constructs of algebraic data types. Our approach translates interface
types into algebraic data types with existential quantification. Type annotations
serve as the pack operation for interface types. An explicit unpack operation for
interface types is not required.

Diatchki and Jones [2] use type class names to provide a functional notation
for functional dependencies. The name of a type class C with n + 1 parameters
serves as a type operator that, when applied to n type arguments, represent
the (n + 1)th class parameter, which must be uniquely determined by the other
class parameters. Hence, the type C t1 . . . tn translates to a fresh type variable a
subject to the constraint C t1 . . . tn a. With interface types, the name of a single-
parameter type class represents some unknown type that implements the type
class. An interface type in argument position of some type signature could be
handled by a local translation similar to the one used by Diatchki and Jones.
An interface type in result position, however, requires a different treatment to
cater for the existential nature of interface types.

Oliveira and Sulzmann [13] present a Haskell extension that unifies type
classes and GADTs. Their extension also includes a feature that allows class
names being used as types. Similar to our work, these types represent some un-
known instance of the class. Different from our work, Oliveira and Sulzmann
provide neither a type inference algorithm and nor an implementation.

The present authors [22] investigate a language design that extends Java’s
interface mechanism with the key features of Haskell’s type class system. The
resulting language generalizes interface types to bounded existential types, fol-
lowing an idea already present with LOOM’s hash types [1].

Standard ML’s module system [19] allows programmers to hide the imple-
mentation of a module behind an interface (i.e., signature). For example, an ML
implementation of the database library from Section 2.1 might provide several
database-specific modules such that all implementation details are hidden be-
hind a common signature. A programmer then chooses at compile-time which
database should be used. In contrast, interface types allows this choice to be

Interface Types for Haskell 271

deferred until runtime. Providing this kind of flexibility to users of Standard
ML’s module system would require first-class structures [17].

7 Conclusion and Future Work

An interface type can be understood as an existential type representing an un-
known instance of some type class. We demonstrated the usefulness of interface
types through a case study from the real world and formalized a type system
with support for interface types. Based on this type system, we implemented a
prototype of a type inference algorithm that can be included easily in a produc-
tion Haskell compiler.

Here are some items for future work:

– How about higher-order polymorphism? For higher-order classes such as
Monad, the interface type would be parameterized and encapsulate a par-
ticular implementation of Monad.

– How about multi-parameter type classes? To support interface types for
multi-parameter type classes, we would need explicit pack and unpack oper-
ations that coerce multiple values to/from an interface type.

– What if a type is coerced multiple times to an interface type? Each coercion
results in the application of a wrapper, so that there might be a stack of
wrappers. There is not much that can be done about it at the source level
and it is not clear if it would have a significant performance impact on a
realistic program. However, the implementation could be instrumented to
have the application of a wrapper constructor check dynamically if it is
applied to another wrapper and thus avoid the piling up of wrappers.

References

1. Bruce, K.B., Petersen, L., Fiech, A.: Subtyping is not a good ”match” for object-
oriented languages. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 104–127. Springer, Heidelberg (1997)

2. Diatchki, I.S., Jones, M.P.: Strongly typed memory areas programming systems-
level data structures in a functional language. In: Löh, A. (ed.) Proceedings of
the 2006 ACM SIGPLAN Haskell Workshop, Portland, Oregon, USA, pp. 72–83
(September 2006)

3. GHC. The Glasgow Haskell compiler (2008), http://www.haskell.org/ghc/
4. Goerzen, J.: Haskell database connectivity (2008),

http://software.complete.org/software/projects/show/hdbc
5. Hugs 98 (2003), http://www.haskell.org/hugs/
6. Jones, M.P.: Qualified Types: Theory and Practice. Cambridge University Press,

Cambridge (1994)
7. Jones, M.P.: First-class polymorphism with type inference. In: Jones, N. (ed.) Proc.

1997 ACM Symp. POPL, Paris, France, January 1997, pp. 483–496. ACM Press,
New York (1997)

http://www.haskell.org/ghc/
http://software.complete.org/software/projects/show/hdbc
http://www.haskell.org/hugs/

272 P. Thiemann and S. Wehr

8. Le Botlan, D., Rémy, D.: MLF: raising ML to the power of System F. In: Shivers,
O. (ed.) Proc. ICFP 2003, Uppsala, Sweden, August 2003, pp. 27–38. ACM Press,
New York (2003)

9. Leijen, D.: HMF: Simple type inference for first-class polymorphism. In: ICFP, pp.
283–293. ACM Press, New York (2008)

10. Leijen, D., Lóh, A.: Qualified types for MLF. In: Pierce [15], pp. 144–155
11. Läufer, K.: Type classes with existential types. J. Funct. Program. 6(3), 485–517

(1996)
12. Odersky, M., Läufer, K.: Putting type annotations to work. In: Proc. 1996 ACM

Symp. POPL, St. Petersburg, FL, USA, January 1996, pp. 54–67. ACM Press,
New York (1996)

13. Oliveira, B., Sulzmann, M.: Objects to unify type classes and GADTs (April
2008), http://www.cs.mu.oz.au/∼sulzmann/manuscript/objects-unify-type-
classes-gadts.ps

14. Peyton Jones, S., Vytiniotis, D., Weirich, S., Shields, M.: Practical type inference
for arbitrary-rank types. J. Funct. Program. 17(1), 1–82 (2007)

15. Pierce, B.C. (ed.): ICFP, Tallinn, Estonia. ACM Press, New York (2005)
16. PostgreSQL, the most advanced Open Source database system in the world (2008),

http://www.postgresql.org
17. Russo, C.V.: First-class structures for Standard ML. In: Smolka, G. (ed.) ESOP

2000. LNCS, vol. 1782, pp. 336–350. Springer, Heidelberg (2000)
18. Rémy, D.: Simple, partial type-inference for System F based on type-containment.

In: Pierce [15], pp. 130–143
19. Tofte, M.: Essentials of Standard ML Modules. In: Advanced Functional Program-

ming, pp. 208–238. Springer, Heidelberg (1996)
20. Vytiniotis, D., Weirich, S., Peyton Jones, S.: Boxy types: Inference for higher-rank

types and impredicativity. In: Lawall, J. (ed.) Proc. ICFP 2006, Portland, Oregon,
USA, Sep. 2006, pp. 251–262. ACM Press, New York (2006)

21. Vytiniotis, D., Weirich, S., Peyton Jones, S.: FPH: First-class polymorphism for
Haskell. In: ICFP (to appear, 2008), http://www.cis.upenn.edu/∼dimitriv/fph/

22. Wehr, S., Lämmel, R., Thiemann, P.: JavaGI: Generalized interfaces for Java. In:
Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 347–372. Springer, Heidelberg
(2007)

http://www.cs.mu.oz.au/~sulzmann/manuscript/objects-unify-type-
classes-gadts.ps
http://www.postgresql.org
http://www.cis.upenn.edu/~dimitriv/fph/

Exception Handlers as Extensible Cases

Matthias Blume, Umut A. Acar, and Wonseok Chae

Toyota Technological Institute at Chicago
{blume,umut,wchae}@tti-c.org

Abstract. Exceptions are an indispensable part of modern program-
ming languages. They are, however, handled poorly, especially by higher-
order languages such as Standard ML and Haskell: in both languages a
well-typed program can unexpectedly fail due to an uncaught exception.
In this paper, we propose a technique for type-safe exception handling.
Our approach relies on representing exceptions as sums and assigning
exception handlers polymorphic, extensible row types. Based on this rep-
resentation, we describe an implicitly typed external language EL where
well-typed programs do not raise any unhandled exceptions. EL relies
on sums, extensible records, and polymorphism to represent exception-
handling, and its type system is no more complicated than that for ex-
isting languages with polymorphic extensible records.

EL is translated into an internal language IL that is a variant of Sys-
tem F extended with extensible records. The translation performs a CPS
transformation to represent exception handlers as continuations. It also
relies on duality to transform sums into records. (The details for this
translation are given in an accompanying technical report.)

We describe the implementation of a compiler for a concrete language
based on EL. The compiler performs full type inference and translates
EL-style source code to machine code. Type inference relieves the pro-
grammer from having to provide explicit exception annotations. We be-
lieve that this is the first practical proposal for integrating exceptions
into the type system of a higher-order language.

1 Introduction

Exceptions are widely used in many languages including functional, imperative,
and object-oriented ones such as SML, Haskell, C++ and Java. The mechanism
enables programs to raise an exception when an unexpected condition arises
and to handle such exceptions at desired program points. Although uncaught
exceptions—just like stuck states—constitute unrecoverable runtime errors, their
presence or absence is usually not tracked by the type system and, thus, also
not included in the definition of soundness. Even strongly typed languages such
as ML and Haskell which claim that “well-typed programs do not go wrong”
permit uncaught exceptions. This is unfortunate, since in practice an uncaught
exception can be as dangerous as a stuck state. Critical software failing due to
a divide-by-zero error is just as bad as it failing due to a segmentation fault.
(Famously, the Ariane 5 disaster was in part caused by a runtime exception that
was not appropriately handled by its flight-control software [15].)

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 273–289, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

274 M. Blume, U.A. Acar, and W. Chae

There have been attempts at providing some form of exception checking. For
example, CLU, Modula-3, and Java allow the programmer to declare the excep-
tions that each function may raise and have the compiler check that declared
exceptions are caught properly [16,6,10]. If these languages were to be used only
in the first-order setting, the approach would work well. But this assumption
would preclude first-class use of objects and function closures. Functional lan-
guages like ML or Haskell, where higher-order features are used pervasively, do
not even attempt to track exceptions statically.

In the higher-order setting, latent exceptions, before they get raised, can be
carried around just like any other value inside closures and objects. To stati-
cally capture these highly dynamic aspects faithfully and precisely is challeng-
ing, which perhaps explains why existing language designs do not incorporate
exceptions tracking. A practical design should have the following properties:

(1) Exception types can be inferred1 by the compiler, avoiding the need
for prohibitively excessive programmer annotations. (2) Exception polymor-
phism makes it possible for commonly used higher-order functions such as map
and filter to be used with functional arguments that have varying exception
signatures. (3) Soundness implies that well-typed programs handle all excep-
tions. (4) The language is practically implementable. (5) Types do not
unduly burden the programmer by being conceptually too complex.

In this paper we describe the design of a language that satisfies these criteria.
We use row types to represent sets of exceptions and universal quantification
over row type variables to provide the necessary polymorphism. As a result, our
type system and the inference algorithm are no more complicated than those
for extensible records and extensible cases. We implemented this design in our
MLPolyR compiler.The proof of soundness and more implementation details
can be found in the extended technical report [5].

The starting point for our work is MLPolyR [4], a language already featuring
row polymorphism, polymorphic sum types, and extensible cases. To integrate
exceptions into the type system, we consider an implicitly typed external lan-
guage EL (Section 3) that extends λ-calculus with exceptions and extensible
cases. Our syntax distinguishes between the act of establishing a new exception
handler (handle) and that of overriding an existing one (rehandle). The latter
can be viewed as a combination of unhandle (which removes an existing han-
dler) and handle. As we will explain in Section 5, this design choice makes it
possible to represent exception types as row types without need for additional
complexity. From a usability perspective, the design makes overriding a handler
explicit, reducing the likelihood of this happening by mistake.

In EL, the typing of an expression includes both a result type and an exception
type. The latter describes the set of exceptions that might be raised by the
expression. The typing of exception-handling constructs is analogous to that of
1 There still will be a need for programmers to spell out types, including exception

types, for example in module signatures. It is possible to avoid excessive notational
overhead by choosing a syntax with good built-in defaults, e.g., shortcuts for common
patterns and the ability to elide parts that can be filled in by the compiler. In our
prototype, the pretty-printer for types employs such tricks (see footnote 4).

Exception Handlers as Extensible Cases 275

extensible first-class cases. Exception values themselves are sums, and those are
also described by row types. To support exceptions, the dynamic semantics of
EL evaluates every expression in an exception context that is an extensible record
of individual evaluation contexts—one for each exception constructor.

Our implementation rests on a deterministic, type-sensitive semantics for EL
based on elaboration (i.e., translation) into an explicitly typed internal language
IL (Section 4). The elaboration process involves type inference for EL. IL is an
extension of System F with extensible records and nearly coincides with the
System F language we used in previous work on MLPolyR. The translation of
exception constructs views an exception handler as an alternative continuation
whose domain is the sum of all exceptions that could arise at a given program
point. By duality, such a continuation is equivalent to a record of individual con-
tinuations, each responsible for a single exception constructor. Taking this view,
establishing a handler for a new exception corresponds to functional extension
of the exception handler record. Raising an exception simply projects out the
appropriate continuation from the handler record and throws its payload to it.
Since continuations are just functions, this is the same mechanism that under-
lies MLPolyR’s first-class cases feature; first-class cases are also extensible, and
their dual representations are records of functions.

Previous work in this context focused on analysis tools for statically detecting
uncaught exceptions [11,19,18,7,14,2]. We take advantage of our position as lan-
guage designers and incorporate an exception analysis into the language and its
compiler directly. The ability to adapt the language design to the analysis makes
it possible to use a formalism that is simple and transparent to the programmer.

2 Motivating Examples

We will now visit a short sequence of simple program fragments, roughly ordered
by increasing complexity. None of the examples exhibits uncaught exceptions.
The rejection of any one of them by a compiler would constitute a false positive.
The type system and the compiler that we describe accept them all.

Of course, baseline functionality consists of being able to match a manifest
occurrence of a raised exception with a manifestly matching handler:

(. . . raise ‘Neg 10 . . .) handle ‘Neg i ⇒ ...

The next example moves the site where the exception is raised into a separate
function. To handle this in the type system, the function type constructor →
acquires an additional argument ρ representing the set of exceptions that may
be raised by an application, i.e., function types have the form τ1

ρ→ τ2. This is
about as far as existing static exception trackers that are built into programming
languages (e.g., Java’s throws declaration) go.

fun foo x = if x<0 then raise ‘Neg x else . . .
(. . . foo y . . .) handle ‘Neg i ⇒ ...

But we also want to be able to track exceptions through calls of higher-order
functions such as map, which themselves do not raise exceptions while their
functional arguments might:

276 M. Blume, U.A. Acar, and W. Chae

fun map f [] = [] | map f (x :: xs) = f x :: map f xs
(. . . map foo l . . .) handle ‘Neg i ⇒ ...

Moreover, in the case of curried functions and partial applications, we want to
be able to distinguish stages that do not raise exceptions from those that might.
In the example of map, there is no possibility of any exception being raised when
map is partially applied to the function argument; all exceptions are confined to
the second stage when the list argument is supplied:

val mfoo = map foo
(. . . mfoo l . . .) handle ‘Neg i ⇒ ...

Here, the result mfoo of the partial application acts as a data structure that
carries a latent exception. In the general case, exception values can occur in any
data structure. For example, the SML/NJ Library [9] provides a constructor
function for hash tables which accepts a programmer-specified exception value
which becomes part of the table’s representation from where it can be raised,
for example when an attempt is made at looking up a non-existing key.

The following example shows a similar but simpler situation. Function check
finds the first pair in the given list whose left component does not satisfy the
predicate ok. If such a pair exists, its right component, which must be an excep-
tion value, is raised. To guarantee exception safety, the caller of check must be
prepared to handle any exception that might be passed along in the argument
of the call:

fun check ((x, e) :: rest) = if ok x then check rest else raise e
| check [] = ()

(. . . check [(3, ‘A 10), (4, ‘B true)] . . .) handle ‘A i ⇒ . . . | ‘B b ⇒ . . .

Finally, exception values can participate in complex data flow patterns. The
following example illustrates this by showing an exception ‘A that carries another
exception ‘B as its payload. The payload ‘B 10 itself gets raised by the exception
handler for ‘A in function f2, so a handler for ‘B on the call of f2 suffices to
make this fragment exception-safe:

fun f1 () = . . . raise ‘A (‘B 10) . . .
fun f2 () = f1 () handle ‘A x ⇒ raise x
(. . . f2 () . . .) handle ‘B i ⇒ . . .

3 The External Language (EL)

We start by describing EL, our implicitly typed external language that facilitates
sums, cases, and mechanisms for raising as well as handling exceptions.

Syntax of Terms

Figure 1 shows the definitions of expressions e and values v. EL is MLPolyR [4]
extended with constructs for raising and handling exceptions. We have integer
constants n, variables x, injection into sum types l e, applications e1 e2, recur-
sive functions fun f x = e, and let-bindings let x = e1 in e2. For the purpose
of comparison, we also include first-class cases { l1 x1 ⇒ e1, . . . , ln xn ⇒ en }
and with their elimination form match e1 with e2 as well as case extension

Exception Handlers as Extensible Cases 277

e1 ⊕ {l x ⇒ e2}. The additions over MLPolyR consist of raise e for rais-
ing exceptions and several forms for managing exception handlers: The form
e1 handle { l x ⇒ e2 } establishes a handler for the exception constructor l.
The new exception context is used for evaluating e1, while the old context is
used for e2 in case e1 raises l. The old context cannot already have a handler for
l. The form e1 rehandle { l x ⇒ e2 }, on the other hand, overrides an existing
handler for l. Again, the original exception context is restored before executing
e2. The form e1 handle { x ⇒ e2 } establishes a new context with handlers for
all exceptions that e1 might raise. As before, e2 is evaluated in the original con-
text. The form e unhandle l evaluates e in a context from which the handler
for l has been removed. The original context must have a handler for l.

To simplify and shorten the presentation, we exclude features that are un-
related to exceptions. Therefore, EL does not have records or recursive types.
Adding them back into the language would not cause technical difficulties.

Operational Semantics

We give an operational small-step semantics for EL as a context-sensitive rewrite
system in a style inspired by Felleisen and Hieb [8]. An evaluation context E is
essentially a term with one sub-term replaced by a hole (see Figure 2). Any closed
expression e that is not a value has a unique decomposition E[r] into an evalua-
tion context E and a redex r that is placed into the hole within E.2 Evaluation
contexts in this style of semantics represent continuations. The rule for handling
an exception could be written simply as E[(E′[raise l v]) handle { l x ⇒ e }] �→
E[e[v/x]], but this requires an awkward side-condition stating that E′ must not
also contain a handler for l. We avoid this difficulty by maintaining the exception
context separately and explicitly on a per-constructor basis. This choice makes it
clear that exception contexts can be seen as extensible records of continuations.
However, we now also need to be explicit about where a computation re-enters
the scope of a previous context. This is the purpose of restore-frames of the form
restore Eexn E that we added to the language, but which are assumed not to
occur in source expressions.3

An exception context Eexn is a record {l1 = E1, . . . , ln = En} of evaluation con-
texts E1, . . . , En labeled l1, . . . , ln. A reducible configuration (E[r], Eexn) pairs a
redex r in context E with a corresponding exception context Eexn that represents
all exception handlers that are available when reducing r. A final configuration is
a pair (v, {}) where v is a value. Given a reducible configuration (E[r], Eexn), we
call the pair (E, Eexn) the full context of r.

The semantics is given as a set of single-step transition rules from reducible
configurations to configurations. A program (i.e., a closed expression) e evaluates
to a value v if (e, {}) can be reduced in the transitive closure of our step relation

2 We omit the definition of redexes. All important redexes appear as part of our
semantic rules. Non-value expressions that are not covered are stuck.

3 There are real-world implementations of languages with exception handlers where
restore-frames have a concrete manifestation. For example, SML/NJ [1] represents
the exception handler as a global variable storing a continuation. When leaving the
scope of a handler, this variable gets assigned the previous exception continuation.

278 M. Blume, U.A. Acar, and W. Chae

T
er

m
s

e
::=

n
|x

|l
e

|e
1

e 2
|f

u
n

f
x

=
e

|l
et

x
=

e 1
in

e 2
|{

l i
x

i
⇒

e i
}n i=

1
|m

at
ch

e 1
w

it
h

e 2
|e

1
⊕

{
l
x

⇒
e 2

}
|

ra
is

e
e

|e
1

h
an

d
le

{
l

x
⇒

e 2
}

|e
u
n
h
an

d
le

l
|e

1
re

h
an

d
le

{
l
x

⇒
e 2

}
|e

1
h
an

d
le

{
x

⇒
e 2

}
V
al

ue
s

v
::=

n
|f

u
n

f
x

=
e

|l
v

|{
l i

x
i
⇒

e i
}n i=

1
K

in
ds

κ
::=

�
|L

La
be

ls
et

s
L

::=
{l

1
,.

..
,l

n
}

|∅
T
yp

es
τ

::=
α

|i
nt

|τ
1

ρ →
τ 2

|〈
ρ
〉|

〈ρ
1
〉

ρ
2

↪→
τ

ρ
::=

α
|�

|l
:τ

,ρ
θ

::=
τ

|ρ
Sc

he
m

as
σ

::=
τ

|∀
α

:κ
.σ

T
yp

en
v

Γ
::=

∅
|Γ

,x
�→

σ
K

in
de

nv
Δ

::=
∅

|Δ
,α

�→
κ

F
ig

.1
.
E

xt
er

na
l
la

ng
ua

ge
(E

L)
sy

nt
ax

e
::=

..
.
|r

es
to

re
E

e
x
n

::=
{l

1
=

E
1
,.

..
,l

n
=

E
n
}

E
::=

[]
|l

E
|E

e
|v

E
|l

et
x

=
E

in
e

|E
⊕

{
l

x
⇒

e
}

|m
at

ch
E

w
it
h

e
|m

at
ch

v
w

it
h

E
|r

ai
se

E
|r

es
to

re
E

e
x
n

E

F
ig

.2
.
E

va
lu

at
io

n
co

nt
ex

ts
an

d
ex

ce
pt

io
n

co
nt

ex
ts

(E
[(
fu

n
f

x
=

e)
v
],

E
e
x
n
)

�−→
(E

[e
[f
u
n

f
x

=
e/

f
,v

/
x
]],

E
e
x
n
)

(a
p
p
)

(E
[l
et

x
=

v
in

e]
,E

e
x
n
)

�−→
(E

[e
[v

/
x
]],

E
e
x
n
)

(l
et

)
(E

[{
l i

x
i
⇒

e′ i
}n i=

1
⊕

{
l

x
⇒

e
}]

,E
e
x
n
)

�−→
(E

[{
l 1

x
1

⇒
e′ 1

,.
..

,l
n

x
n

⇒
e′ n

,l
x

⇒
e

}]
,E

e
x
n
)

(c
/
ex

t)
(E

[m
at

ch
l i

v
w

it
h

{
..
.,

l i
x

i
⇒

e i
,.

..
}]

,E
e
x
n
)

�−→
(E

[e
i
[v

/
x

i
]],

E
e
x
n
)

(m
at

ch
)

(E
[r
ai

se
l i

v
],

{.
..

,l
i
=

E
i
,.

..
})

�−→
(E

i
[v

],
{}

)
(r

ai
se

)
(E

[e
1

h
an

d
le

{
l

x
⇒

e 2
}]

,E
e
x
n
)

�−→
(E

[r
es

to
re

E
e
x
n

e 1
],

E
′ e
x
n
)

(h
an

d
le

)
w

he
re

E
e
x
n

=
{

l i
=

E
i
}n i=

1
an

d
E

′ e
x
n

=
{l

1
=

E
1
,.

..
,l

n
=

E
n
,l

=
E

[l
et

x
=

re
st

or
e

E
e
x
n

[]
in

e 2
]}

(E
[e

1
re

h
an

d
le

{
l j

x
⇒

e 2
}]

,E
e
x
n
)

�−→
(E

[r
es

to
re

E
e
x
n

e 1
],

E
′ e
x
n
)

(r
eh

an
d
le

)
w

he
re

E
e
x
n

=
{

l i
=

E
i
}n i=

1
an

d
E

′ e
x
n

=
{

l i
=

E
′ i
}n i=

1
an

d
∀i

	=
j.

E
′ i
=

E
i

an
d

E
′ j
=

E
[l
et

x
=

re
st

or
e

E
e
x
n

[]
in

e 2
]

(E
[e

u
n
h
an

d
le

l j
],

E
e
x
n
)

�−→
(E

[r
es

to
re

E
e
x
n

e]
,E

′ e
x
n
)

(u
n
h
an

d
le

)
w

he
re

E
e
x
n

=
{

l i
=

E
i
}n i=

1
an

d
E

′ e
x
n

=
{

l i
=

E
i
}n i=

1,
i�=

j

(E
[e

1
h
an

d
le

{
x

⇒
e 2

}]
,E

e
x
n
)

�−→
(E

[r
es

to
re

E
e
x
n

e 1
],

E
′ e
x
n
)

(h
an

d
le

al
l)

w
he

re
E

′ e
x
n

=
{

l i
=

E
[l
et

x
=

l i
(r

es
to

re
E

e
x
n

[])
in

e 2
]}

n i=
1

(f
or

so
m

e
n)

(E
[r
es

to
re

E
′ ex

n
v
],

E
e
x
n
)

�−→
(E

[v
],

E
′ e
x
n
)

(r
es

to
re

)

F
ig

.3
.
O

pe
ra

ti
on

al
se

m
an

ti
cs

fo
r

E
L

Exception Handlers as Extensible Cases 279

to a final configuration (v, {}). Rules unrelated to exceptions are standard and
leave the exception context unchanged. The rule for raise l v selects field l of
the exception context and places v into its hole. The result, paired with the
empty exception context, is the new configuration which, by construction, will
have the form (E′[restore E′

exn
v], {}) so that the next step will restore exception

context E′
exn. The rules for e1 handle { l x ⇒ e2 } and e1 rehandle { l x ⇒ e2 }

as well as e unhandle l are very similar to each other: one adds a new field to
the exception context, another replaces an existing field, and the third drops a
field. All exception-handling constructs augment the current evaluation context
with a restore-form so that the original context is re-established if and when
e1 reduces to a value.

The rule for the “handle-all” construct e1 handle { x ⇒ e2 } stands out be-
cause it is non-deterministic. Since we represent each handled exception construc-
tor separately, the rule must guess the relevant set of constructors {l1, . . . , ln}.
Introducing non-determinism here might seem worrisome, but we can justify it
by observing that different guesses never lead to different outcomes:

Lemma 1. If (e, {}) �→∗ (v, {}) and (e, {}) �→∗ (v′, {}), then v = v′.

The proof for this lemma uses a bi-simulation between configurations, where two
configurations are related if they are identical up to records. Records may have
different sets of labels, but common fields must themselves be related. It is easy
to see that each step of the operational semantics preserves this relation.

However, guessing too few or too many labels can get the program stuck.
Fortunately, for well-typed programs there always exists a good choice. The cor-
rect choice can be made deterministically by taking the result of type inference
into account, giving rise to a type soundness theorem for EL. Type soundness is
expressed in terms of a well-formedness condition � (E[e], Eexn) wf on config-
urations. For details on its definition and the proof of soundness (progress and
preservation) see the technical report [5]. Since uncaught exceptions are simply
stuck configurations, the soundness theorem justifies our motto: Well-typed EL
programs do not have uncaught exceptions.

Well-Formed Types

The type language for EL is also given in Figure 1. It contains type variables
(α, β, . . .), base types (e.g., int), constructors for function- and case types (→
and ↪→), sum types (〈ρ〉), the empty row type (�), and row types with at least
one typed label (l : τ, ρ). Notice that function- and case arrows take three type
arguments: the domain, the co-domain, and a row type describing the exceptions
that could be raised during an invocation. A type is either an ordinary type or a
row type. Kinding judgments of the form Δ � τ : κ (stating that in the current
kinding context Δ type τ has kind κ) are used to distinguish between these cases
and to establish that types are well-formed. As a convention, wherever possible
we will use meta-variables such as ρ for row types and τ for ordinary types.
Where this distinction is not needed, for example for polymorphic instantiation
(var), we will use the letter θ.

280 M. Blume, U.A. Acar, and W. Chae

Ordinary types have kind �. A row type ρ has kind L where L is a set of
labels which are known not to occur in ρ. An unconstrained row variable has
kind ∅. Inference rules can be found in the technical report [5]. The use of
a kinding judgment in a typing rule constrains Δ and ultimately propagates
kinding information back to the let/val rule where type variables are bound
and kinding information is used to form type schemas.

Typing

The type τ of a closed expression e characterizes the values that e can evaluate
to. From a dual point of view it describes the values that the evaluation context
E must be able to receive. In our operational semantics E is extended to a full
context (E, Eexn), so the goal is to develop a type system with judgments that
describe the full context of a given expression. Our typing judgments have an
additional component ρ that describes Eexn by individually characterizing the
its constituent labels and evaluation contexts. General typing judgments have
the form Δ; Γ � e : τ ; ρ, expressing that e has type τ and exception type ρ. The
typing environment Γ is a finite map assigning types to the free variables of e.
Similarly, the kinding environment Δ maps the free type variables of τ , ρ, and
Γ to their kinds.

The typing rules for EL are given in Figure 4. Typing is syntax-directed; for
most syntactic constructs there is precisely one rule, the only exceptions being
the rules for fun and let which rely on the notion of syntactic values to dis-
tinguish between two sub-cases. As usual, in rules that introduce polymorphism
we impose the value restriction by requiring certain expressions to be valuable.
Valuable expressions do not have effects and, in particular, do not raise excep-
tions. We use a separate typing judgment of the form Δ; Γ �v e : τ for syntactic
values (var, int, fun/val, fun/non-val, and c). Judgments for syntactic val-
ues are lifted to the level of judgments for general expressions by the value rule.
The value rule leaves the exception type ρ unconstrained. Administrative rules
teq and teq/v deal with type equivalences τ ≈ τ ′, especially the reordering of
labels in row types. Rules for τ ≈ τ ′ were described in previous work [4].

Rules unrelated to exceptions simply propagate a single exception type with-
out change. This is true even for expressions that have more than one sub-term,
matching our intuition that the exception type characterizes the exception con-
text. For example, consider function application e e′: The rules do not use any
form of sub-typing to express that the set of exceptions is the union of the three
sets corresponding to e, e′, and the actual application. Like Pessaux and Leroy
we rely on polymorphism to collect exception information across multiple sub-
terms. As usual, polymorphism is introduced by the let/val rule for expressions
let x = e1 in e2 where e1 is a syntactic value.

The rules for handling and raising exceptions establish bridges between ordi-
nary types and handler types (i.e., types of exception handler contexts). Excep-
tions themselves are simply values of sum type; the raise expression passes such
values to an appropriate handler. Notice that the corresponding rule equates
the row type of the sum with the row type of the exception context; there is no

Exception Handlers as Extensible Cases 281

implicit subsumption here. Instead, subsumption takes place where the exception
payload is injected into the corresponding sum type (dcon).

Rule handle-all is the inverse of raise. The form e1 handle { x ⇒ e2 }
establishes a handler that catches any exception emanating from e1. The ex-
ception is made available to e2 as a value of sum type bound to variable x.
Operationally this corresponds to replacing the current exception handler con-
text with a brand-new one, tailor-made to fit the needs of e1. The other three
constructs do not replace the exception handler context wholesale but adjust it
incrementally: handle adds a new field to the context while retaining all other
fields; rehandle replaces an existing handler at a specific label l with a new
(potentially differently typed) handler at the same l; unhandle removes an ex-
isting handler. There are strong parallels between c/ext (case extension) and
handle, although there are also some significant differences due to the fact that
exception handlers constitute a hidden part of the context while cases are first-
class values. As hinted in Section 4 and explained fully in the technical report [5],
we can highlight the connection and de-emphasize the differences by translating
both handlers and cases into the same representation, namely records of func-
tions. The value-level counterpart to rehandle is functional case update, which
we omitted for reasons of brevity. Similarly, unhandle corresponds to a form
for narrowing cases or, dually, a form for widening a sums (not are shown here).

Whole programs are closed up to some initial basis environment Γ0, raise no
exceptions, and evaluate to int. This is expressed by a judgment Γ0 � e program.

Polymorphic Recursion vs. Explicit Narrowing

Pessaux and Leroy explain that their exception analysis becomes more precise
if they employ inference for polymorphic recursion. Since the problem of type
inference in the presence of polymorphic recursion is generally undecidable [12],
we chose not to base our language design on this idea. To see the problem,
consider a scenario similar to the one described by Pessaux and Leroy:

fun f x = (if (. . . raise ‘C() . . .) then () else f x) handle ‘C() ⇒()

Here f is called in a context that requires a handler for exception ‘C, because
‘C is raised in a different sub-expression. However, exception ‘C will always be
caught, and it would be nice to have this fact expressed in f’s type. Since the
Pessaux/Leroy system uses presence types (see Section 5), it can represent and (in
some cases) infer this fact. But doing so requires type inference with polymorphic
recursion because f’s body has to be type-checked under the assumption of f
being exception-free. Exception freedom is expressed via polymorphism.

In our language, the above example would be illegal even in the presence
of polymorphic recursion. The body of f must be checked assuming that f’s
exception type can be instantiated with a row containing ‘C. But the use of
. . . handle ‘C() ⇒ . . . within the same body ultimately invalidates this as-
sumption. The problem can easily be understood in terms of the operational
semantics: every recursive call of f wants to add another field ‘C to the excep-
tion context. Since fields can only be added if they are not already present, this
is impossible.

282 M. Blume, U.A. Acar, and W. Chae

Fortunately, the programmer can work around such problems by explicitly
removing ‘C from the exception context at the site of the recursive call:

fun f x = (if (. . . raise ‘C() . . .) then () else (f x unhandle ‘C))
handle ‘C() ⇒()

In the concrete language design implemented by our compiler we adopt an idea
of Benton and Kennedy [3] and provide a variant of the handle-syntax that in
some cases avoids the need for unhandle, since it provides an explicit success
branch that is evaluated under the original context:

fun f x = let val tmp = . . . raise ‘C() . . .
handling ‘C() ⇒()
in if tmp then () else f x

Polymorphic Recursion and Curried Functions

There is one situation, however, where a limited form of type inference for
polymorphic recursion is very helpful: curried functions, or—more generally—
functions whose bodies are syntactic values. Our type system has a separate rule
(fun/val) that types the body of the function assuming unrestricted polymor-
phism in its exception type. Since the body is a syntactic value, this assumption
is guaranteed to be valid and leads to a decidable inference problem. The point
of including the rule is improved precision. Consider our map example from Sec-
tion 2. In the absence of fun/val, i.e., if fun/non-val were to be used for
all functions regardless of whether or not their bodies are syntactic values, we
would infer the type of map (using Haskell-style notation for lists types [τ]) as:

val map : ∀α : �.∀β : �.∀γ : ∅.(α
γ→ β)

γ→ ([α]
γ→ [β])

Notice the use of the same row type variable γ on all three occurrences of →. The
type checker fails to notice that exceptions suspended within the first argument
cannot be raised during the first stage (i.e., a partial application) of map. This
violates one of the requirements that we spelled out when we motivated the
need for an exception type system. The fix is the introduction of fun/val.
Consider map once again. Since it is curried, its body—when rendered in EL—is
another fun expression, i.e., a syntactic value. Without having performed any
type inference at all we know that map will not raise an exception at the time of
a partial application, so we can use this as an assumption when type-checking
the body. To express that a function cannot raise an exception we make its type
polymorphic in the exception annotation on →. Indeed, fun/val binds f to
∀α : ∅.τ2

α→ τ in the typing environment for the function body. With this rule
in place, map’s type is now inferred as we had hoped4:

val map : ∀α : �.∀β : �.∀γ : ∅.∀δ : ∅.(α
γ→ β) δ→ ([α]

γ→ [β])

4 As hinted in footnote 1, our compiler prints this type as (α γ→ β) → ([α] γ→ [β])
since all elided parts (including δ) can be inferred from suitably chosen conventions.

Exception Handlers as Extensible Cases 283

4 CPS and Duality: The Internal Language (IL)

In previous work we used a type-directed translation of MLPolyR into a variant
of System F with extensible polymorphic records. Sum types and extensible cases
were eliminated by taking advantage of duality [4]. We then used an adaptation
of Ohori’s technique of compiling record polymorphism by passing sets of indices
which serve as witnesses for row types [17].

It is possible to retain this general approach to compilation even in the
presence of exceptions. For this we combine the original dual transformation—
which eliminates sums and cases—with continuation-passing style (CPS). While
a “double-barreled” CPS makes continuations explicit and represents exception
handlers as alternative continuations, we take this idea one step further and split
the exception context into a record of possibly many individual continuations—
one for each exception constructor that is being handled. Such a “multi-barreled”
CPS provides a manifest explanation for the claim contained in the title of this
paper: after CPS- and dual translation both exception handlers and extensible
cases are represented identically, namely as records of functions.

The type-sensitive translation from EL into the System F-like intermediate
language IL is given as rules for an extended typing judgment. Such a judgment
has the form:

Δ; Γ � e : τ ; ρ � c̄ : (τ̄ , ρ̄) comp

Here Δ, Γ , e, τ , and ρ are EL-level environments, terms, and types which appear
exactly as they do in Figure 4. The IL-term c̄ is the result of the translation. Its
type is that of a computation that either sends a result of type τ̄ (corresponding
to τ) to its default continuation or invokes one of the handler continuations
described by ρ̄ (corresponding to ρ). The notation (τ̄ , ρ̄) comp is a type synonym
for τ̄ cont → ρ̄ hdlr → ans, with τ̄ cont and ρ̄ hdlr themselves being further type
synonyms. The details of IL and the translation of EL-types to IL-types as well as
all rules for deriving translation judgments are given in the extended technical
report accompanying this paper [5].

Eliminating Non-determinism—reify

Recall that the handle all rule of the EL semantics had to guess the new ex-
ception record to be constructed. But guessing correctly is not that difficult:
the constructed record merely needs to match the exception (row-) type inferred
at this point. To provide runtime access to the necessary type information, we
equipped IL with a special type-sensitive reify construct, whose role is to convert
functions on (dually encoded) sums to their corresponding records of individual
functions.

Since reify is type-sensitive, type-erasure cannot be applied to IL. This is
not a problem in practice, since subsequent compilation into lower-level untyped
languages via index-passing in the style of our previous work on MLPolyR [4]
is still possible. Details can be found in our technical report [5].

The translation from EL into IL amounts to an alternative elaboration-based
semantics for EL. IL is sound and the translation maps well-typed EL programs

284 M. Blume, U.A. Acar, and W. Chae

Γ
(x

)
=

∀α
1

:
κ

1
..

.∀
α

n
:
κ

n
.τ

∀i
.Δ

θ

i
:
κ

i

Δ
;Γ

 v
x

:
τ
[θ

1
/
α

1
,.

..
,θ

n
/
α

n
]

(
v
a
r
)

Δ
;Γ

 v
n

:i
nt

(
i
n
t
)

∀i
.Δ

;Γ
,x

i
�→

τ i

e
i
:
τ
;ρ

Δ

(l
1

:
τ 1

,.
..

,l
n

:
τ n

,�
)

:∅

Δ
;Γ

 v
{

l i
x

i
⇒

e
i
}n i=

1
:
〈l

i
:
τ i

〉n i=
1

ρ ↪→
τ

(
c
)

Δ
;Γ

,f
�→

(∀
α

:
∅

.τ
2

α →
τ
),

x
�→

τ 2

 v

e
:
τ

Δ

τ 2
:�

Δ

ρ
:
∅

Δ
;Γ

 v
fu

n
f

x
=

e
:
τ 2

ρ →
τ

(
f
u
n
/
v
a
l
)

Δ
;Γ

,f
�→

τ 2
ρ →

τ
,x

�→
τ 2

e

:
τ
;ρ

Δ

τ 2
:
�

Δ

ρ
:
∅

Δ
;Γ

 v
fu

n
f

x
=

e
:τ

2
ρ →

τ
(
f
u
n
/
n
o
n
-
v
a
l
)

Δ
:
Γ

 v
e

:
τ

τ
≈

τ
′

Δ
;Γ

 v
e

:
τ

′
(
t
e
q
/
v
)

Δ
;Γ

e

:τ
;ρ

τ
≈

τ
′

ρ
≈

ρ
′

Δ
;Γ

e

:τ
′ ;

ρ
′

(
t
e
q
)

Δ
;Γ

 v
e

:
τ

Δ

ρ
:∅

Δ
;Γ

e

:
τ
;ρ

(
v
a
l
u
e
)

Δ
;Γ

e
1

:
τ 2

ρ →
τ
;ρ

Δ
;Γ

e
2

:
τ 2

;ρ
Δ

;Γ

e
1

e
2

:τ
;ρ

(
a
p
p
)

α
1
,.

..
,α

n
=

F
T

V
(τ

1
)
\

F
T

V
(Γ

)
Δ

,α
1

�→
κ

1
,.

..
,α

n
�→

κ
n
;Γ

 v
e
1

:
τ 1

Δ
;Γ

,x
�→

∀α
1

:κ
1
..

..
∀α

n
:
κ

n
.τ

1

e
2

:τ
2
;ρ

Δ
;Γ

le

t
x

=
e
1

in
e
2

:
τ 2

;ρ
(
l
e
t
/
v
a
l
)

Δ
;Γ

e

:τ
;ρ

′
Δ

(l

:
τ
,ρ

)
:
∅

Δ
;Γ

l

e
:〈

l
:
τ
,ρ

〉;
ρ

′
(
d
c
o
n
)

Δ
;Γ

e
1

:
τ 1

;ρ
Δ

;Γ
,x

�→
τ 1

e
2

:
τ 2

;ρ
Δ

;Γ

le
t

x
=

e
1

in
e
2

:
τ 2

;ρ
(
l
e
t
/
n
o
n
-
v
a
l
)

Δ
;Γ

e
1

:
〈ρ

〉;
ρ

′
Δ

;Γ

e
2

:〈
ρ
〉

ρ
′

↪→
τ
;ρ

′

Δ
;Γ

m

a
tc

h
e
1

w
it
h

e
2

:τ
;ρ

′
(
m
a
t
c
h
)

Δ
;Γ

e

:
〈ρ

〉;
ρ

Δ

τ
:�

Δ
;Γ

ra

is
e

e
:τ

;ρ
(
r
a
i
s
e
)

Δ
;Γ

e
1

:
〈ρ

1
〉

ρ ↪→
τ
;ρ

′
Δ

(l

:
τ 1

,ρ
1
)
:
∅

Δ
;Γ

,x
�→

τ 1

e
2

:
τ
;ρ

Δ
;Γ

e
1

⊕
{

l
x

⇒
e
2

}
:
〈l

:
τ 1

,ρ
1
〉

ρ ↪→
τ
;ρ

′
(
c
/
e
x
t
)

Δ
;Γ

e
1

:
τ
;l

:τ
′ ,

ρ
Δ

;Γ
,x

�→
τ

′

e
2

:
τ
;ρ

Δ
;Γ

e
1

h
a
n
d
le

{
l

x
⇒

e
2

}
:
τ
;ρ

(
h
a
n
d
l
e
)

Δ
;Γ

e

:
τ
;ρ

Δ

(l
:τ

′ ,
ρ
)
:
∅

Δ
;Γ

e

u
n
h
a
n
d
le

l
:
τ
;l

:
τ

′ ,
ρ

(
u
n
h
a
n
d
l
e
)

Δ
;Γ

e
1

:τ
;l

:
τ

′ ,
ρ

Δ
;Γ

,x
�→

τ
′

e
2

:
τ
;l

:
τ

′′
,ρ

Δ
;Γ

e
1

re
h
a
n
d
le

{
l

x
⇒

e
2

}
:
τ
;l

:τ
′′
,ρ

(
r
e
h
a
n
d
l
e
)

Δ
;Γ

e
1

:
τ
;ρ

′
Δ

;Γ
,x

�→
ρ

′

e
2

:τ
;ρ

Δ
;Γ

e
1

h
a
n
d
le

{
x

⇒
e
2

}
:
τ
;ρ

(
h
a
n
d
l
e
-
a
l
l
)

∅
;Γ

0

e
:
in

t;
�

Γ
0

e

pr
og

ra
m

(
p
r
o
g
r
a
m
)

F
ig

.4
.
T

yp
in

g
ru

le
s

fo
r

E
L

fo
r

sy
nt

ac
ti
c

va
lu

es
(t

op
),

ty
pe

eq
ui

va
le

nc
e

an
d

lif
ti
ng

(2
nd

),
ba

si
c

co
m

pu
ta

ti
on

s
(3

rd
),

an
d

co
m

pu
ta

ti
on

s
in

vo
lv

in
g

ca
se

s
or

ex
ce

pt
io

ns
(b

ot
to

m
).

T
he

ju
dg

m
en

t
fo

r
w

ho
le

pr
og

ra
m

s
is

sh
ow

n
in

th
e

fr
am

ed
bo

x.

Exception Handlers as Extensible Cases 285

to well-typed IL programs. Since an uncaught EL exception would try to select
from the top-level exception handler, which by definition is an empty record,
this constitutes a proof for our motto that “well-typed programs do not have
uncaught exceptions” in the setting of this alternative semantics.

5 Related Work

We know of no prior work that incorporates higher-order exception tracking into
the design of a programming language and its type system. Previous work in this
context focused on analysis for identifying uncaught exceptions without attempt-
ing to incorporate such analysis into the language design itself [11,19,18,7,14,2].
While most of these attempts use flow analysis for exception tracking, some
are based on types. In particular, this is true for the analysis by Pessaux and
Leroy [14]. Much like we do, they also encode exception types as row types and
employ row polymorphism.

Since the technical details of the Pessaux-Leroy system are similar to our
work, we will now discuss the differences in some detail.

5.1 The Pessaux-Leroy Type System

Pessaux and Leroy [14] describe an exception analysis based on a type system
that is very similar to ours. However, there are a number of key differences which
reflect the difference in purpose: The Pessaux-Leroy system is an exception an-
alyzer, i.e., a separate tool that is used to fine-comb programs written in an
existing language—in their case Ocaml [13]. In contrast, our exploration of the
language design space itself leads us to different trade-offs. Perhaps most impor-
tantly, our type system is simpler but forces the programmer to choose among
a variety of exception-handling constructs (handle, rehandle, unhandle).

In most dialects of ML, including Ocaml, there is only one handle construct
which—depending on the current exception context—can act either like our
handle or like our rehandle. To deal with this form of exception-handling,
the Pessaux-Leroy type system uses a third kind of type called a presence type.
In row types, labels are associated with presence types π rather than ordinary
types. There are two forms of presence types: a indicates that a field is absent;
p(τ) expresses that the field is present and carries values of type τ . The key
to the added expressive power of presence types is the fact that they can also
be represented by type variables of presence kind (◦), opening the possibility of
functions being polymorphic in the presence of explicitly named fields.

Figure 5 shows the modified type language. Notice that this is an idealized
version. Pessaux and Leroy use presence types only for nullary exception con-
structors (i.e., exceptions without “payload”). This is done in an attempt at

ρ ::= α | � | l : π, ρ π ::= α | p(τ) | a θ ::= τ | ρ | π κ ::= � | L | ◦

Fig. 5. Alternative type language with presence types (for τ see Figure 1)

286 M. Blume, U.A. Acar, and W. Chae

Δ; Γ
 e : τ ; ρ′

Δ
 (l : p(τ), ρ) : ∅

Δ; Γ
 l e : 〈l : p(τ), ρ〉 ; ρ′ (dcon)

Δ; Γ
 e1 : τ ; l : p(τ ′), ρ
Δ; Γ, x : τ ′
 e2 : τ ; ρ Δ
 π : ◦

Δ; Γ
 e1 handle { l x ⇒ e2 } : τ ; l : π, ρ
(handle)

Δ
 (l1 : p(τ1), . . . , ln : p(τn), �) : ∅ ∀i.Δ; Γ, xi : τi
 ei : τ ; ρ

Δ; Γ
v { li xi ⇒ ei }i=1...n : 〈 li : p(τi), lj : a 〉i=1...n,j=n+1...m

ρ
↪→ τ

(c)

Δ; Γ
 e1 : 〈l : π, ρ1〉
ρ

↪→ τ ; ρ′

Δ
 (l : p(τ1), ρ1) : ∅ Δ; Γ, x : τ1
 e2 : τ ; ρ

Δ; Γ
 e1 ⊕ { l x ⇒ e2 } : 〈l : p(τ1), ρ1〉
ρ

↪→ τ ;ρ′
(c/ext)

Fig. 6. Alternative typing rules for EL with presence types of kind ◦

dealing with nested patterns, a feature that is also absent from our language.5

The new expression language is the same as the old one, except that we no longer
need rehandle or unhandle.

New or modified typing rules are given in Figure 6. (For modified kinding see
the technical report [5].) The addition of presence types results in a consider-
ably more involved equational theory on types, since (assuming well-formedness)
both ρ and l : a, ρ are the same type. See rule c in Figure 6 for an example of
how this formally manifests itself in the type system. To see the difference in ex-
pressiveness between the two systems—stemming from the fact that rule c/ext

can both extend and override cases—consider a function definition such as:
fun f c = c ⊕ {‘A x ⇒ x + 1}

In our type system, the most general type schema inferred for f is:

val f : ∀α : {‘A}.∀γ : ∅.∀δ : ∅.(〈α〉
γ
↪→ int) δ→ (〈‘A : int, α〉

γ
↪→ int)

This type restricts the argument to cases that do not already handle the ‘A
constructor. With presence types, the inferred schema is:

val f : ∀α : {‘A}.∀β : ◦.∀γ : ∅.∀δ : ∅.(〈‘A : β, α〉
γ
↪→ int) δ→ (〈‘A : p(int), α〉

γ
↪→ int)

It does not restrict the argument, since all labels—including ‘A—are permitted
to be present or absent, even though the type “talks” about label ‘A separately.

A low-level implementation technique based on index-passing is still possible.
Presence type variables that in the IL are bound by a type abstraction turn
into Boolean witness parameters. The calculation of indices itself becomes more
complicated, since presence witnesses have to be taken into account.

The improved expressiveness of a type system with presence types comes at
the expense of added conceptual complexity. Such complexity is perfectly accept-
able when it is used internally by an analysis tool, but it may be undesirable in a
type system that programmers confront directly in everyday use of the language.
5 For some programs, not using presence types for non-constant constructors reduces

the precision of the analysis. The fact that Pessaux and Leroy do not report on such
a loss probably indicates that such exception constructors are rare in practice.

Exception Handlers as Extensible Cases 287

A more serious problem with presence types is the loss of a certain degree
of functional abstraction. Let h be a polymorphic function of type ∀α : ∅.∀γ :
∅.(〈α〉 γ

↪→ int)
γ→ int. Now consider the following two definitions:

fun f c = h c
fun g c = h (c ⊕ {‘A x ⇒ x + 1})

Using presence types, the inferred signatures are:

val f : ∀α : ∅.∀γ : ∅.(〈α〉
γ
↪→ int)

γ→ int

val g : ∀α : {‘A}.∀β : ◦.∀γ : ∅.(〈‘A : β, α〉
γ
↪→ int)

γ→ int

The type schemas for f and g look very different, yet their respective sets of
instantiations coincide precisely. In traditional denotational models of types they
are the same. Should we not consider the two schemas equivalent then? The
obvious difference between them seems to be just an artifact of type inference.
It arises due to the absence of case extension in f, while case extension is used
in g. Clearly, an implementation detail has leaked into the inferred signature.

An obvious idea is to try and “normalize” g’s type to make it equal to that of
f. However, doing so would break index-passing compilation! Since g performs
functional extension of a case, it needs to know the index of label ‘A. But the
index-passing transformation—when working with the signature of f—would not
generate such an index argument. Thus, not only has an implementation detail
leaked into the signature, this leakage is actually essential to the compilation
technology. Under the rules that we use for EL, function g is typed as:

val g : ∀α : {‘A}.∀γ : ∅.(〈α〉
γ
↪→ int)

γ→ int

Here g’s type is not the same as that of f—neither syntactically nor denotation-
ally. Indeed, f and g have different interfaces, since the latter does not accept
arguments that already handle ‘A. While this seems like a restriction on where g
can be used, there is always an easy workaround when this becomes a problem:
the programmer can explicitly narrow the intended argument by removing ‘A at
the call site. Applied to the problem of handling exceptions, the same reasoning
inspired us to the inclusion of rehandle and unhandle in the language.

Forcing the programmer to be explicit about such things can be considered
both burden and benefit. By being explicit about widening or narrowing, a pro-
gram documents more clearly what is going on. We hope that practical experi-
ence with the language will tell whether or not this outweighs the disadvantages.

6 Conclusions

We have shown the design of a higher-order programming language that guar-
antees freedom from uncaught exceptions. Using a type system—as opposed to
flow- or constraint-based approaches—for tracking exceptions provides a straight-
forward path for integration into a language design. Moreover, our type system is
simpler than the one used by Pessaux and Leroy for exception analysis, because
we are able to avoid presence types by trading them for language constructs that
explicitly manipulate the shape of the exception handler context.

288 M. Blume, U.A. Acar, and W. Chae

Our language is sound, and soundness includes freedom from uncaught excep-
tions. We formalized our language and also provided an elaboration semantics
from the implicitly typed external language EL into an explicitly typed internal
form IL that is based on System F. The elaboration performs CPS transfor-
mation as well as dual translation, eliminating exceptions, handlers, sums, as
well as first-class cases. The translation supports our intuition that the act of
establishing a new exception handler is closely related to the one of extending
first-class cases. The latter had recently been described in the context of our
work on MLPolyR [4]. Our new IL is almost the same as the original internal
language, a fact that enabled us to reuse much of the existing implementation
machinery. The only major addition to our IL is a type-sensitive reify construct
that accounts for “catch-all” exception handlers.

We have adapted the existing index-passing translations into low-level code
to work with our system. Our prototype compiler translates a concrete language
modeled after EL into PowerPC machine code. It shares most of its type inference
engine with the previous compiler for MLPolyR.

Index-passing, while providing motivation for this work, is not the driving
force behind the actual language design. Instead, our distinction between handle
and rehandle keeps the type system simpler and may have certain software-
engineering benefits. The same considerations would apply even if the target
language provided native support for, e.g., extensible sums. As we have explained
in Section 5, based on the more complicated Pessaux-Leroy type system, witness-
passing can also be used for implementing an ML-like dual-purpose handle-
construct.

References

1. Appel, A.W., MacQueen, D.B.: Standard ML of New Jersey. In: Third International
Symp. on Prog. Lang. Implementation and Logic Programming, pp. 1–13 (August
1991)

2. Benton, N., Buchlovsky, P.: Semantics of an effect analysis for exceptions. In: TLDI
2007, pp. 15–26. ACM, New York (2007)

3. Benton, N., Kennedy, A.: Exceptional syntax. J. Funct. Program. 11(4), 395–410
(2001)

4. Blume, M., Acar, U.A., Chae, W.: Extensible programming with first-class cases.
In: ICFP 2006: Proceedings of the eleventh ACM SIGPLAN international confer-
ence on Functional programming, pp. 239–250. ACM, New York (2006)

5. Blume, M., Acar, U.A., Chae, W.: Exception handlers as extensible cases.
U.Chicago, Computer Sci. Tech. Report TR-2008-03 (February 2008)

6. Cardelli, L., Donahue, J., Glassman, L., Jordan, M., Kalsow, B., Nelson, G.:
Modula-3 report. Technical Report Research Report 31, DEC SRC (1988)

7. Fähndrich, M., Foster, J., Cu, J., Aiken, A.: Tracking down exceptions in Standard
ML programs. Technical Report CSD-98-996, UC Berkeley (February 1998)

8. Felleisen, M., Hieb, R.: A revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science 103(2), 235–271 (1992)

9. Gansner, E.R., Reppy, J.H.: The Standard ML Basis Library. Cambridge University
Press, Cambridge (2002)

10. Gosling, J., Joy, B., Steele, G., Bracha, G.: Java Language Specification, 2nd edn.
The Java Series. Addison Wesley, Reading (2000)

Exception Handlers as Extensible Cases 289

11. Guzmán, J., Suárez, A.: An extended type system for exceptions. In: ACM SIG-
PLAN Workshop on ML and its Applications (1994)

12. Henglein, F.: Type inference with polymorphic recursion. ACM Trans. Program.
Lang. Syst. 15(2), 253–289 (1993)

13. Leroy, X.: The Objective Caml System (1996), http://caml.inria.fr/ocaml
14. Leroy, X., Pessaux, F.: Type-based analysis of uncaught exceptions. ACM Trans.

Program. Lang. Syst. 22(2), 340–377 (2000)
15. Lions, J.L.: Ariane 5, flight 501 failure, report by the inquiry board (1996),

http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
16. Liskov, B., Atkinson, R., Bloom, T., Moss, E., Schaffert, J.C., Scheifler, R., Snyder,

A.: CLU Reference Manual. Springer, New York (1981)
17. Ohori, A.: A polymorphic record calculus and its compilation. ACM Trans. Pro-

gram. Lang. Syst. 17(6), 844–895 (1995)
18. Yi, K.: An abstract interpretation for estimating uncaught exceptions in Standard

ML programs. Sci. Comput. Program. 31(1) (1998)
19. Yi, K., Ryu, S.: Towards a cost-effective estimation of uncaught exceptions in sml

programs. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 98–113.
Springer, Heidelberg (1997)

http://caml.inria.fr/ocaml
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html

Sound and Complete Type Inference for a
Systems Programming Language

Swaroop Sridhar, Jonathan S. Shapiro, and Scott F. Smith

Department of Computer Science, The Johns Hopkins University
swaroop@cs.jhu.edu, shap@cs.jhu.edu, scott@cs.jhu.edu

Abstract. This paper introduces a new type system designed for safe
systems programming. The type system features a new mutability model
that combines unboxed types with a consistent typing of mutability. The
type system is provably sound, supports polymorphism, and eliminates
the need for alias analysis to determine the immutability of a location. A
sound and complete type inference algorithm for this system is presented.

1 Introduction

Recent advances in the theory and practice of programming languages have re-
sulted in modern languages and tools that provide certain correctness guarantees
regarding the execution of programs. However, these advances have not been ef-
fectively applied to the construction of systems programs, the core components
of a computer system. One of the primary causes of this problem is the fact that
existing languages do not simultaneously support modern language features —
such as static type safety, type inference, higher order functions and polymor-
phism — as well as features that are critical to the correctness and performance
of systems programs such as prescriptive data structure representation and mu-
tability. In this paper, we endeavor to bridge this gap between modern language
design and systems programming. We first discuss the support for these features
in existing languages, identify the challenges in combining these feature sets and
then describe our approach toward solving this problem.

Representation Control. A systems programming language must be expres-
sive enough to specify details of representation including boxed/unboxed data-
structure layout and stack/heap allocation. For systems programs, this is both
a correctness as well as a performance requirement. Systems programs interact
with the hardware through data structures such as page tables whose represen-
tation is dictated by the hardware. Conformance to these representation speci-
fications is necessary for correctness. Languages like ML [16] intentionally omit
details of representation from the language definition, since this greatly simplifies
the mathematical description of the language. Compilers like TIL [24] implement
unboxed representation as a discretionary optimization. However, in systems pro-
grams, statements about representation are prescriptive, not descriptive. Formal
treatment of representation is required in systems programming languages.

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 290–306, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Sound and Complete Type Inference for a Systems Programming Language 291

Systems programs also rely on representation control for performance since
it affects cache locality and paging behavior. This expressiveness is also crucial
for interfacing with external C [9] or assembly code and data. For example, a
careful implementation of the TCP/IP protocol stack in Standard ML incurred
a substantial overhead of up to 10x increase in system load and a 40x slowdown
in accessing external memory relative to the equivalent C implementation [1,3].
This shows that representation control is as important as, or even
more important than, high level algorithms for the performance of systems
tasks.

Complete Mutability. One of the key features essential for systems program-
ming is support for mutability. The support for mutability must be ‘complete’
in the sense that any location — whether on the stack, heap, or within other
unboxed structures — can be mutated. Allocation of mutable cells on the stack
boosts performance because (1) the top of the stack is typically accessible from
the data cache (2) stack locations are directly addressable and therefore do not
require the extra dereferencing involved in the case of heap locations (3) stack
allocation does not involve garbage collection overhead. This is particularly im-
portant for high confidence and/or embedded kernels as they cannot tolerate
unpredictable variance in overhead caused by heap allocation and collection.
ML-like languages require all mutable (ref) cells to reside on the heap. In pure
languages like Haskell [14], the support for mutability is even more restrictive
than ML. These restricted models of mutability are insufficiently expressive from
a systems programming perspective.

Consistent Mutability. The mutability support in a language is said to be
‘consistent’ if the (im)mutability of every location is invariant across all aliases
over program execution. In this model, there is a sound notion of immutability
of locations. This benefits tools that perform static analysis or model check-
ing because conclusions drawn about the immutability of a location need never
be conservative. It also increases the amount of optimization that a compiler
can safely perform without complex alias analysis. Polymorphic type inference
systems such as Hindley-Milner algorithm [15] also rely on a sound notion of im-
mutability. ML supports consistent mutability since types are definitive about
the (im)mutability of every location. In contrast, C does not support this fea-
ture. For example, in C it is legal to write:

const bool *cp = ...; bool *p = cp; *p = false; // OK!

The alleged “constness” of the location pointed to by cp is a local property
(only) with respect to the alias cp and not a statement of true immutabil-
ity of the target location. The analysis and optimization of critical systems
programs can be improved by using a language with a consistent mutability
model.

Type Inference and Polymorphism. Type inference achieves the advan-
tages of static typing with a lower burden on the programmer, facilitating rapid

292 S. Sridhar, J.S. Shapiro, and S.F. Smith

prototyping and development. Polymorphic type inference (c.f. ML or Haskell)
combines the advantages of static type safety with much of the convenience pro-
vided by dynamically typed languages like Python [18]. Automatic inference of
polymorphism simplifies generic programming, and therefore increases the reuse
and reliability of code. Safe languages like Java [17], C# [4], or Vault [2] do not
support type inference. Cyclone [10] features partial type inference and supports
polymorphism only for functions with explicit type annotations.

The following table summarizes the support available in existing languages
for the above features and static type safety:

C/Asm Safe-C CCured Cyclone Vault Java ML Haskell
Representation � � �
Complete Mutability � � � � � �
Consistent Mutability � �
Static Type Safety � � � � �
Poly. Type Inference � �

In this paper, we present a new type system and formal foundations for a safe
systems programming language that supports all of the above features.

The combination of mutability and unboxed representation presents several
challenges for type inference. Mutability is an attribute of the location storing a
value and not the value itself. Therefore, two expressions across a copy bound-
ary (ex: arguments copied at a function call) can differ in their mutability. We
refer to this notion of mutability compatibility of types as copy compatibility.
Copy compatibility creates ramifications for syntax-directed type and mutabil-
ity inference. Type inference is further complicated due to well known problems
with the interaction of mutability and polymorphism [26]. This has forced a
second-class treatment of mutability in ML-like languages and a lack of inferred
polymorphism in others.

We present a sound and complete polymorphic type inference algorithm for a
language that supports consistent and complete mutability. In order to overcome
the challenges posed by copy compatibility, the underlying type system uses
a system of constrained types that range over mutability and polymorphism.
Safety of the type system as well as the soundness and completeness of the type
inference algorithm have been proved.

2 Informal Overview

In this section, we give an informal description of our type system and infer-
ence algorithm. For purposes of presentation in this paper, we define B, a core
systems programming language calculus. B is a direct expression of lambda cal-
culus with side effects, extended to be able to reflect the semantics of explicit
representation.

Sound and Complete Type Inference for a Systems Programming Language 293

Identifiers x ::= y | z | ...
Booleans b ::= true | false
Indices i ::= 1 | 2 | !i
Values v ::= () | b | λx .e | (v,v)
Left Expr l ::= x | e^ | l.i | l : τ
Expressions e ::= v | x | e e | l := e

| if e then e else e | e : τ
| dup(e) | e^ | (e,e) | e.i
| let x [:τ] = e in e

Vars α ::= α | β | γ | δ | ε | ...
ς ::= α | Ψα

Types ρ ::= α | unit | bool | τ → τ
| τ × τ | ⇑τ | Ψρ

� ::= ρ | α�ρ
τ ::= � | ς↓ρ

Scheme σ ::= τ | ∀α.τ\D
Ct. Set D ::= ∅ | {�κ

x (τ)} | D ∪ D
Kinds κ ::= κ | ψ | ∀

The type ⇑τ represents a reference (pointer) type and Ψρ represents a mutable
type. The expression dup(e), where e has type τ , returns a reference of type ⇑τ
to a heap-allocated copy of the value of e. The ^ operator is used to derefer-
ence heap cells. Pairs (,) are unboxed structures whose constituent elements are
contiguously allocated on the stack, or in their containing data-structure. e.1
and e.2 perform selection from pairs. We define !1 = 2 and !2 = 1. The let con-
struct can be used for allocating (possibly mutable) stack variables and to create
let-polymorphic bindings. let x [:τ] = e represents optional type qualification of
let-bound variables.

The Mutability Model. B supports consistent, complete mutability. The mu-
tability support is complete since the := operator mutates both stack locations
(let-bound locals, function parameters) and heap locations (dup-ed values). It
can also perform in-place updates to individual fields of unboxed pairs. The mu-
tability support is consistent since we impose the “one location, one type” rule.
For example, in the following expression,

let cp : ⇑bool = dup(true) in let p : ⇑Ψbool = cp (* Error *)

cp has the type reference to bool (⇑bool), which is incompatible with that of
p, reference to mutable-bool (⇑Ψbool). Unlike ML, := does not dereference its
target. The expressions that can appear on the left of an assignment := are
restricted to left expressions (defined by the above grammar). This not only
preserves the programmer’s mental model of the relationship between locations
storage, but also ensures that compiler transformations are semantics preserving.

Copy Compatibility. B is a call-by-value language, and supports copy com-
patibility, which permits locations across a copy boundary to differ in their
mutability. For example, in the following expression:

let fnxn = λx .(x := false) in let y : bool = true in fnxn y

the type of fnxn is (Ψbool) → unit, whereas that of the actual argument y is
bool. Since x is a copy of y and occupies a different location, this expression is
type safe. Thus, we write bool ∼= Ψbool, where ∼= indicates copy compatibility.

Copy compatibility must not extend past a reference boundary in order to
ensure that every location has a unique type. We define copy compatibility for
B as:

294 S. Sridhar, J.S. Shapiro, and S.F. Smith

τ ∼= τ

τ 1 ∼= τ 2

τ 2 ∼= τ 1

τ 1 ∼= τ 2 τ 2 ∼= τ 3

τ 1 ∼= τ 3

τ ∼= ρ

τ ∼= Ψρ

τ 1 ∼= τ ′
1 τ 2 ∼= τ ′

2

τ 1 × τ 2 ∼= τ ′
1 × τ ′

2

Copy compatibility is allowed at all positions where a copy is performed: at argu-
ment passing, new variable binding, assignment, and basically in all expressions
where a left-expression is not expected or returned. For example, the expression
(x : τ) : Ψτ is ill typed, but the branches of a conditional can have different but
copy compatible types as in if true then a : τ else b : Ψτ .

2.1 Type Inference

We now consider the problem of designing a type inference algorithm for B. Due
to copy compatibility, it is no longer possible to infer a unique (simple) type
for all expressions. For example, in the expression let p = true, we know that
the type of the literal true is bool, but the type of p could either be bool or
Ψbool. Therefore, unlike ML, we cannot use a straightforward syntax-directed
type inference algorithm in B.

It is natural to ask why mutability should be inferred at all. That is: why not
require explicit annotation for all mutable values, and infer immutable types by
default? Unfortunately, in a language with copy compatibility, this will result
in a proliferation of type annotations. Constructor applications, polymorphic
type instantiations, accessor functions, etc. will have to be explicitly annotated
with their types. For example, if fst is an accessor function that returns the first
element of a pair, and m is a variable of type Ψbool, we will have to write:

let xyz = dup(fst (m,false) : Ψbool × bool) : ⇑Ψbool in ...

Therefore, if mutability is not inferred, it results in a substantial increase in the
number of programmer annotations, and type inference becomes ineffective. It
is desirable that the inference algorithm must automatically infer polymorphism
(without any programmer annotations) as well, since this leads to better software
engineering by maximizing code reuse.

Therefore, the desirable characteristics of a type inference algorithm for B are:

(1) It must be sound, complete, and decidable without programmer annotations.
(2) It must automatically infer both polymorphism and mutability.
(3) It must infer types that are intelligible to the programmer. That is, it must

avoid the main drawback of many inference systems with subtyping, where
the inferred principal type is presented as a set of equations and inequations.

In order to address the above requirements, we propose a variant of the Hindley-
Milner algorithm [15]. This algorithm uses constrained types that range over mu-
tability and polymorphism in order to infer principal types for B programs.

Polymorphism Over Mutability. In order to infer principal types in a lan-
guage with copy compatibility, we define the following constrained types that
allow us to infer types with variable mutability. Let � be a equivalence rela-
tion on types such that ρ � Ψρ. Let τ \ η denote a constrained type where τ is
constrained by the set of (in)equations η. We write :

Sound and Complete Type Inference for a Systems Programming Language 295

α�ρ ≡ α \ {α � ρ}: any type equal to base type ρ except for top level mutability.
ς↓ρ ≡ ς \ {ς ∼= ρ}: any type copy compatible with ρ, where ς = α or Ψα.

Now, in the expression let p = true, we can give p the type α↓bool. During
inference, the type can later get resolved to either bool or Ψbool. The forms
α�ρ and ς↓ρ respectively provide fine grained and coarse grained control over
expressing types with variable mutability. For example:

Type Instances Non-Instances
α�(bool × unit) bool × unit, Ψ(bool × unit) Ψbool × unit
α↓(bool × unit) bool × unit, Ψ(Ψbool × Ψunit) unit × bool

Ψbool × unit, β�(bool × unit)
Ψα↓(bool × unit) Ψ(bool × unit), Ψ(bool × Ψunit) bool × unit, β�(bool × unit)

α↓⇑bool ⇑bool, Ψ⇑bool ⇑Ψbool

By embedding constraints within types, we obtain an elegant representation of
constrained types that are self contained. The programmer is just presented a
type, rather than a type associated with a set of unsolved inequations. Every
type of the form ς↓ρ can be realized through a canonical representation using
α�ρ types. However, types of the form ς↓ρ are critical for type inference. For
example, the type α↓β represents a type that is compatible with β, even if β
later resolves to a more concrete (ex: pair) type.

Since we allow copy compatibility at function argument and return positions,
two function types are equal regardless of the shallow mutability of the argument
and return types. Therefore, we follow a convention of writing all function types
with immutable types at copy compatible positions. The intuition here is that
the type of a function must be described in the interface form, and must hide
the “internal” mutability information. For example, the function λx .(x := true),
has external type bool → unit even though the internal type is Ψbool → unit.

B is a let-polymorphic language. At a let boundary, we would like to quantify
over variables that range over mutability, in order to achieve mutability poly-
morphism. The next sections discuss certain complications that arise during the
inference of such types, present our solution to the problem.

Soundness implications. Like ML, B enforces the value restriction [26] to
preserve soundness of polymorphic typing. This means that the type of x in
let x = e1 in e2 can only be generalized if e1 is an immutable syntactic value.
For example, in the expression let id = λx .x , the type of id before generaliza-
tion is β↓(α → α). However, giving id the generalized type ∀αβ.β↓(α → α) is un-
sound, since it permits expressions such as let id = λx .x in (id := λx .true,id
()) to type check. We can give id either the polymorphic type ∀α.α → α, or the
monomorphic type β↓(α → α). However, neither is a principal type for id .

Overloading Polymorphism. Due to the above interaction of polymorphism
and unboxed mutability, a traditional HM-style inference algorithm cannot de-
fer decisions about the mutability of types past their generalization. Therefore,
current algorithms fix the mutability of types before generalization based on

296 S. Sridhar, J.S. Shapiro, and S.F. Smith

certain heuristics — thus sacrificing completeness [22]. In order to alleviate this
problem, we use a new form of constrained types that range over both mutability
and polymorphism.

We introduce constraints�κ

x (τ) to enforce consistency restrictions on instan-
tiations of generalized types. The constraint �κ

x (τ) requires that the identifier
x only be instantiated according to the kind κ, where κ = ψ or ∀. If κ = ψ, the
instantiation of x must be monomorphic. That is, all uses of x must instantiate
τ to the same type τ ′. Here, τ ′ is permitted to be a mutable type. If κ = ∀,
different uses of x can instantiate τ differently, but all such instantiations must
be immutable. At the point of definition (let), if the exact instantiation kind
of a variable is unknown, we add the constraint �κ

x (τ), where κ ranges over ψ
and ∀. The correct instantiation kind is determined later based on the uses of
x , and consistency semantics are enforced accordingly. The variable x in �κ

x (τ)
represents the program point (let) at which this constraint is generated. We
assume that there are no name collisions so that every such x names a unique
program point.

In this approach, the definition of id will be given the principal constrained
type:

let id = λx .x in e id : ∀αβ.β↓(α → α) \ {�κ
id (β↓(α → α))}

Every time id is instantiated to type τ ′ in e, the constraints �κ
id (τ ′) are col-

lected. e is declared type correct only if the set of all instantiated constraints
are consistent for some κ. Note that we do not quantify over κ.

Example of e Constraint set Kind assignment
(id true,id ()) {�κ

id (bool → bool), �κ
id(unit → unit)} κ 	→ ∀

id := λx .x {�κ
id (Ψ(γ → γ))} κ 	→ ψ

(id true,id := λx .()) {�κ
id (bool → bool), �κ

id (Ψ(unit → unit))} Type Error
(id,id) {�κ

id (β1↓(α1 → α1)), �κ
id(β2↓(α2 → α2))} κ 	→ ψ or ∀

The final case type checks with either kind, under the type assignments (α1 = α2,
β1 = β2) if κ 	→ ψ and (β1 = α1 → α1, β2 = α2 → α2) if κ 	→ ∀. The intuition
behind �κ

x (τ) constraints is to achieve a form of overloading over polymorphism
and mutability. We can think of�κ

x (τ) as a type class [11] constraint that has ex-
actly one possibly mutable instance �ψ

x (τm), and an infinite number of �∀
x (τp)

instances where all types τp are immutable.
In practice, once the correct kind of instantiation is inferred, the type scheme

can be presented in a simplified form to the programmer. For example, consider
the expression let f = λx .if x^ then () else () in (f m,f n), where m:⇑Ψ
bool and n : ⇑bool. Here, f : ∀αβ.β↓(⇑α↓bool → unit)\{�κ

f (β↓(⇑α↓bool →
unit))}. However, based on the polymorphic usage, we conclude that κ 	→ ∀.
We can now simplify the type scheme of f to obtain f : ∀α.⇑α↓bool → unit.
Since all function types are immutable, the mutability of the argument type need
not be fixed, thus preserving mutability polymorphism. In order to ensure that
type inference is modular, the �κ

x (τ) constraints must not be exposed across a

Sound and Complete Type Inference for a Systems Programming Language 297

module boundary. For every top-level definition in a module, an arbitrary choice
of κ = ψ or κ = ∀ must be made for every surviving �κ

x (τ) constraint.
In summary, we have used a system of constrained types to design a polymor-

phic type inference system that meets all of the design goals set at the beginning
of this section. In the next section, we present a formal description of our type
system and inference algorithm.

3 Formal Description

In order to formalize the semantics of B, we extend the calculus with stack and
heap locations (Fig. 1). Heap locations are first class values, but stack locations
are not. Further, we annotate all let expressions with a kind — letψ: monomor-
phic, possibly mutable definition, and let∀: polymorphic definitions. The two
kinds of let expressions have different execution semantics. We write letκ to
range over the two kinds of let expressions. This distinction is similar to Smith
and Volpano’s Polymorphic-C [21]. However, unlike Polymorphic-C, let-kind is
meta syntax, and is not a part of the input program. The correct kind of let
is inferred from the static type information. We do not show the semantics for
type-qualified expressions as they are trivial.

Locations L ::= l | �
Stack Loc l ::= l1 | l2 | ...
Heap Loc � ::= �1 | �2 | ...
Sel Path p ::= i | p.p
Values v ::= ... | �
Expr e ::= ... | l | �
Left Expr l ::= ... | l
Syn. Val υ ::= v | x | l | (υ,υ)
lvalues £ ::= l | �^ | l.p | �^.p

Stack S ::= ∅ | S, l �→ v
Heap H ::= ∅ | H, � �→ v
Env. Γ ::= ∅ | Γ , x �→ σ
Store Typ Σ ::= ∅ | Σ, L �→ τ
Subst θ ::= 〈〉 | [α � τ] | [κ � κ] | θ ◦ θ
Unf. Ctset C ::= D | {τ = τ} | {κ = κ} | C ∪ C
Redex R ::= - | R e | v R | £ := R | dup(R)

| R^ | if R then e else e | (R,e)
| (v,R) | R.i | letκ x = R in e

Fig. 1. Extended B grammar

Dynamic Semantics. The system state is represented by the triple S; H; e
consisting of the stack S, the heap H, and the expression e to be evaluated. Eval-
uation itself is a two place relation S; H; e ⇒ S′; H′; e ′ that denotes a single step
of execution. Fig. 2 shows the evaluation rules for our core language. We assume
that the program is alpha-converted so that there are no name collisions due
to inner bindings. Following the theoretical development of [6], we give separate
execution semantics for left evaluation (execution of left expressions l on the
LHS of an assignment, denoted by �) and right evaluation (⇒) respectively.

Since the E-Dup and E-ˆ rules work only on the heap, we can only capture
references to heap cells. Stack locations cannot escape beyond their scope since
E-Rval rule performs implicit value extraction from stack locations in rvalue con-
texts. State updates can be performed either on the stack or on the heap (E-:=*
rules). The stack is modeled as a pseudo-heap. This enables us to abstract away
details such as closure-construction and garbage collection while illustrating the
core semantics, as they can later be reified independently.

298 S. Sridhar, J.S. Shapiro, and S.F. Smith

Rule Pre-conditions Evaluation Step
E-Rval S(l) = v S; H; l ⇒ S; H; v

E-# S; H; e ⇒ S′; H′; e′ S; H; R[e] ⇒ S′; H′; R[e′]
E-App l /∈ dom(S) S; H; λx .e v ⇒ S, l �→ v ; H; e[l/x]
E-If b1 = true b2 = false S; H; if bi then e1 else e2 ⇒ S; H; ei

E-.i S; H; (v1,v2).i ⇒ S; H; vi

E-Dup � /∈ dom(H) S; H; dup(v) ⇒ S; H, � �→ v ; �
EL-ˆ# S; H; e ⇒ S′; H′; e′ S; H; e^ � S′; H′; e′^
E-ˆ H(�) = v S; H; �^ ⇒ S; H; v

E-:=# S; H; l � S′; H′; l′ S; H; l := e ⇒ S′; H′; l′ := e

E-:=Stack S, l �→ v ; H; l := v ′ ⇒ S, l �→ v ′; H; ()
E-:=Heap S; H, � �→ v ; �^ := v ′ ⇒ S; H, � �→ v ′; ()
E-:=S.p v ′

!i = v !i S, l �→ vi; H; l.p := v ′
i S, l �→ (v1,v2); H; l.i.p := v ′

i

⇒ S, l �→ v ′
i; H; () ⇒ S, l �→ (v ′

1,v
′
2); H; ()

E-:=H.p v ′
!i = v !i S; H, � �→ vi; �^.p := v ′

i S; H, � �→ (v1,v2); �^.i.p := v ′
i

⇒ S; H, � �→ v ′
i; () ⇒S; H, � �→ (v ′

1,v
′
2); ()

E-Let-M l /∈ dom(S) S; H; letψ x = v1 in e2 ⇒ S, l �→ v1; H; e2[l/x]
E-Let-P S; H; let∀ x = v1 in e2 ⇒ S; H; e2[v1/x]

Fig. 2. Small Step Operational Semantics

τ �(τ) (τ) �(τ) �(τ) I(τ) {|τ |}
α Ψα α Ψα α α {α}

unit Ψunit unit Ψunit unit unit ∅
bool Ψbool bool Ψbool bool bool ∅

τ1 → τ2 Ψ(τ1 → τ2) τ1 → τ2 Ψ(τ1 → τ2) τ1 → τ2 τ1 → τ2 {|τ1|} ∪ {|τ2|}
⇑τ Ψ⇑τ ⇑τ Ψ⇑τ ⇑τ ⇑I(τ) {|τ |}
Ψρ �(ρ) (ρ) �(ρ) �(ρ) I(ρ) {|ρ|}

τ1 × τ2 Ψ(�(τ1) × �(τ2)) (τ1) × (τ2) Ψ(τ1 × τ2) τ1 × τ2 I(τ1) × I(τ2) {|τ1|} ∪ {|τ2|}
α�ρ �(ρ) (ρ) �(ρ) �(ρ) I(ρ) {α�ρ} ∪ {|ρ|}
ς↓ρ �(ρ) (ρ) �(ς)↓ρ �(ς)↓ρ I(ρ) {ς↓ρ} ∪ {|ρ|}
τ Immut(τ) Mut(τ) �(τ) θ〈τ〉
α false false false τ if [α � τ] ∈ θ, else α.

unit true false true unit
bool true false true bool

τ1 → τ2 true false true θ〈τ1〉 → θ〈τ2〉
⇑τ Immut(τ) Mut(τ) �(τ) ⇑θ〈τ〉
Ψρ false true �(ρ) Ψθ〈ρ〉

τ1 × τ2 Immut(τ1) ∧ Immut(τ2) Mut(τ1) ∨ Mut(τ2) �(τ1) ∧ �(τ2) θ〈τ1〉 × θ〈τ2〉
α�ρ false Mut(�(ρ)) �(ρ) α′�θ〈ρ〉 if θ〈α〉 = α′

ρ′ if θ〈α〉 = ρ′ �= α′

ς↓ρ false Mut(ς) ∨ Mut((ρ)) �(ρ) ς′↓θ〈ρ〉 if θ〈ς〉 = ς′

� if θ〈ς〉 = � �= ς′

Fig. 3. Operations and Predicates on Types

The execution semantics do not perform a copy operation in all cases where
copy compatibility is permitted. For example, the E-If rule does not introduce a
copy step in the branching expression. Since if-expressions are not lvalues, they
cannot be the target of an assignment. Therefore, the value that either branch
evaluates to, can itself be used in all cases where a copy of that value can be.

Static Semantics. Fig. 3 defines several operators and predicates on types that
we use in this section. The operators � and � respectively increase and decrease
the shallow top-level mutability of a type. � and � maximize / minimize the
mutability of a type up to a reference or function boundary. I removes all mu-
tability in a type up to a function boundary. We write τ1

�= τ2 as shorthand

Sound and Complete Type Inference for a Systems Programming Language 299

for �(τ1) = �(τ2) and τ1
�= τ2 for �(τ1) = �(τ2). In our algebra of types, the

mutable type constructor is idempotent (ΨΨτ ≡ Ψτ). We also define the equiv-
alences: α�ρ ≡ α�ρ′, where ρ

�= ρ′ and ς�ρ ≡ ς�ρ′, where ρ
�= ρ′. The predicates

Immut and Mut identify types that are observably immutable and mutable re-
spectively. The �(τ) predicate tests if the type τ is concretizable by fixing vari-
ables that range over mutability.

θ〈τ〉 denotes the application of a substitution θ on τ as defined in Fig. 3. θ〈e〉
performs substitutions for κ annotations in e. {|τ |}denotes the set of all constrained
types and unconstrained type variables structurally present in τ . θ〈 〉 and {| |} are
extended to σ, Γ , Σ, and {τ} in the natural, capture-avoiding manner.

Definition 1 (Canonical Expressions). An expression e is said to be canon-
ical if all let expressions in e are annotated with one of the kinds ψ or ∀.

Definition 2 (Consistency of Constrained types). Let mtv(τ), Mtv(τ),
and ntv(τ) be the set of all type variables appearing in {τ} constrained by α�ρ, by
ς↓ρ and unconstrained respectively. We say that the set of types {τ} is consistent,
written 	 {τ}, if: (1) For all {α�ρ, α�ρ′} ⊆ {|τ |}, we have ρ

�= ρ′.
(2) For all {ς↓ρ, ς ′↓ρ′} ⊆ {|τ |} such that ς

�= ς ′, we have ρ
�= ρ′.

(3) mtv(τ), Mtv(τ), and ntv(τ) are mutually exclusive.

Definition 3 (Consistency of substitutions). A substitution θ is said to be
consistent over a set of types {τ}, written θ 	 {τ} if: (1) 	 θ{|τ |}.
(2) For all α�ρ ∈ {|τ |}, we have θ〈α〉 = β, or θ〈α〉 = ρ′ such that ρ′ �= θ〈ρ〉.
(3) For all ς↓ρ ∈ {|τ |}, we have θ〈ς〉 = ς ′, or θ〈ς〉 = � such that �

�= θ〈ρ〉.

Definition 4 (Consistency of � constraints). A set of � constraints D is
said to be consistent, written |= D if: (1) For all�∀

x (τ) ∈ D, we have Immut(τ).
(2) For all �ψ

x (τ1) ... �ψ
x (τn) ∈ D, we have τ1 = ... = τn.

(3) For all �κ1
x (τ1) ∈ D and �κ2

y (τ2) ∈ D, κ1 �= κ2 implies x �= y.

Declarative Type Rules. Fig. 4 presents a declarative definition of the type
system of B. In this type system, copy compatibility is realized through copy
coercion (
:) rules that are similar to subtyping rules (S-* rules in Fig. 4). Since
reference types ⇑τ are handled only by S-Refl, types cannot coerced beyond
a reference boundary. Also, two function types are coercible only if they are
structurally identical. Here, the contravariance/covariance of argument/return
types is unnecessary as we can follow a standard convention with respect to the
mutability of argument/return types at copy positions. The rules for typing ex-
pressions (T-* rules) introduce these coercions at all copy-compatible positions.

The type judgment D; Γ ; Σ � e : τ is understood as: given a binding envi-
ronment Γ and store typing Σ, the expression e has type τ subject to the set of
� constraints D. We write e
: τ as a shorthand for e : τ ′ and τ ′
: τ , for some
type τ ′. The rule T-Lambda permits the interface type of a function be differ-
ent from its internal type, as explained in Sec. 2.1. The rule T-App introduces
copy-coercions at argument and return positions of an application. T-Let-M rule

300 S. Sridhar, J.S. Shapiro, and S.F. Smith

S-Refl

τ 	: τ

S-Trans

τ0 	: τ1 τ1 	: τ2
τ0 	: τ2

S-Mut

ρ 	: ρ′

Ψρ 	: Ψρ′

S-Pair

τ1 	: τ ′
1 τ2 	: τ ′

2
τ1 × τ2 	: τ ′

1 × τ ′
2

S-Mt1

�(ρ) = τ
α�ρ 	: τ

S-Mt2

�(ρ) = τ
τ 	: α�ρ

S-Mf1

�(ρ) = τ
α↓ρ 	: τ

S-Mf2

α↓ρ 	: ρ′

Ψα↓ρ 	: Ψρ′

S-MF3

�(ρ) = τ
τ 	: ς↓ρ

T-Unit

∅; Γ ; Σ
 () : unit

T-Bool

∅; Γ ; Σ
 b : bool

T-Id

Γ (x) = ∀α.τ\D θ
 {τ , D} dom(θ) = {α}
θ〈D〉; Γ ; Σ
 x : θ〈τ〉

T-Hloc

Σ(�) = τ
∅; Γ ; Σ
 � : ⇑τ

T-Sloc

Σ(l) = τ
∅; Γ ; Σ
 l : τ

T-Lambda

D; Γ , x �→ τ1; Σ
 e : τ2 τ1
�= τ ′

1 τ2
�= τ ′

2
D; Γ ; Σ
 λx .e : τ ′

1 → τ ′
2

T-App

D1; Γ ; Σ
 e1 	: τa → τr D2; Γ ; Σ
 e2 	: �(τa) �(τr) 	: τ
D1 ∪ D2; Γ ; Σ
 e1 e2 : τ

T-If

D1; Γ ; Σ
 e1 	: bool D2; Γ ; Σ
 e2 	: τ D3; Γ ; Σ
 e3 	: τ τ ′ 	: τ
D1 ∪ D2 ∪ D3; Γ ; Σ
 if e1 then e2 else e3 : τ ′

T-Pair

D1; Γ ; Σ
 e1 	: τ1 D2; Γ ; Σ
 e2 	: τ2 τ ′
1 	: τ1 τ ′

2 	: τ2
D1 ∪ D2; Γ ; Σ
 (e1,e2) : τ ′

1 × τ ′
2

T-Sel

D; Γ ; Σ
 e : τ τ
�= τ1 × τ2

D; Γ ; Σ
 e.i : τ i

T-Set

D1; Γ ; Σ
 l 	: Ψρ D2; Γ ; Σ
 e 	: ρ
D1 ∪ D2; Γ ; Σ
 l := e : unit

T-Dup

D; Γ ; Σ
 e 	: τ τ ′ 	: τ
D; Γ ; Σ
 dup(e) : ⇑τ ′

T-Deref

D; Γ ; Σ
 e 	: ⇑τ
D; Γ ; Σ
 e^ : τ

T-Let-M

D1; Γ ; Σ
 e1 	: τ1 τ 	: τ1 D2; Γ , x �→ τ ; Σ
 e2 : τ2

D1 ∪ D2; Γ ; Σ
 (letψ x = e1 in e2) : τ2

T-Let-MP

D1; Γ ; Σ
 υ 	: τ1 τ 	: τ1 D = D1 ∪ {�κ

x (τ)} {α} = ftv(τ , D) \ ftv(Γ , Σ)
D2; Γ , x �→ ∀α.τ\D; Σ
 e : τ2 |=new β

D[β/α] ∪ D2; Γ ; Σ
 (letκ x = υ in e) : τ2

Fig. 4. Declarative Type Rules

types let expressions monomorphically, and thus requires a letψ annotation. In
this case, the expression e1 is permitted to be expansive (i.e. need not be a syn-
tactic value υ). The T-Let-MP rule types let expressions where the expression
being bound is a syntactic value. It assigns x a constrained type scheme along
with the constraint �κ

x (τ). The T-Id rule instantiates types and constraints.
The instantiated constraints are collected over the entire derivation, so that we
can enforce instantiation consistency. |=new α identifies fresh type variables.

We prove the soundness of our type system by demonstrating subject re-
duction. Here, we prove that the type of an expression is preserved exactly by
left-execution, which ensures that the type of a location does not change during
the execution of a program. We also show that right execution preserves types
except for shallow mutability. The result of a right execution can only be used
in copy compatible positions, or as the target of a dereference. In the former
case, preservation of shallow mutability is unnecessary, and in the later, the
type within the reference is preserved exactly.

The interesting case is the safety of polymorphic let expressions. The T-Let-
MP rule does not require that the type τ being quantified over be immutable,
but adds the �κ

x (τ) constraint. Now, if we have a derivation D; Γ ; Σ � e : τ

Sound and Complete Type Inference for a Systems Programming Language 301

such that |= D, then one of the two cases must follow. (1) If any instantiation
of τ is mutable, then κ = ψ. In this case, execution proceeds through the E-
Let-M rule, which create a stack location for x . Therefore, x is permitted to be
the target of an assignment. |= D guarantees that all instantiations of τ are
identical, which ensures that the type of a location cannot change. (2) If τ is
instantiated polymorphically, then κ = ∀. Execution proceeds through the E-
Let-P rule, which performs a value substitution. Here, |= D guarantees that all
instantiations are deeply immutable. Therefore, x cannot be directly used (in
the forms x or x.p) as the target of an assignment, which ensures that the value
substitution cannot lead to a stuck state.

Definition 5 (Consistent Type Derivation). Let {|D; Γ ; Σ
 e : τ |} denote the
extension {| |} function to the set of all types used in the derivation of D; Γ ; Σ
 e : τ .
We say that D; Γ ; Σ
∗ e : τ is a consistent derivation if D′; Γ ; Σ
 e : τ for some
D′ ⊆ D, and 	 {|D|} ∪ {|D′; Γ ; Σ
 e : τ |}.

Definition 6 (Stack and Heap Typing) A heap H and a stack S are said to be well
typed with respect to Γ , Σ and D, written D; Γ ; Σ
∗ H + S, if:
(1) dom(Σ) = dom(H) ∪ dom(S)
(2) ∀� ∈ dom(H), D; Γ ; Σ
∗ H(�) : τ such that Σ(�) �= τ

(3) ∀l ∈ dom(S), D; Γ ; Σ
∗ S(l) : τ such that Σ(l) �= τ

Definition 7 (Valid Lvalues). We say that an lvalue £ is valid with respect to a
stack S and heap H, written H + S
v £ if for some p, either (1) £ = l or £ = l.p
where l ∈ dom(S); or (2) £ = �^ or £ = �^.p where � ∈ dom(H).

Lemma 1 (Progress). If e is a closed canonical well typed expression, that is,
D; ∅; Σ
∗ e : τ for some τ and Σ, given any heap and stack such that D; ∅; Σ
∗ H+S,
(1) If e is a left expression (e = l), then e is either a valid lvalue (that is, e = £ and

H + S
v £) or else ∃ e ′, S′, H′ such that S; H; e � S′; H′; e ′.
(2) e is a value v or else ∃ e ′, S′, H′ such that S; H; e ⇒ S′; H′; e ′.

Lemma 2 (Preservation). For any canonical expression e, if D; Γ ; Σ
∗ e : τ ,
D; Γ ; Σ
∗ H + S and |= D then,
(1) If S; H; e � S′; H′; e ′, then, ∃ Σ′ ⊇ Σ such that D; Γ ; Σ′
∗ e ′ : τ

and D; Γ ; Σ′
∗ H′ + S′.
(2) If S; H; e ⇒ S′; H′; e ′, then, ∃ Σ′ ⊇ Σ such that D; Γ ; Σ′
∗ e ′ : τ ′,

D; Γ ; Σ′
∗ H′ + S′ and τ
�= τ ′.

Definition 8 (Stuck State). A system state S; H; e is said to be stuck if e �= v and
there are no S′, H′, and e ′ such that S; H; e ⇒ S′; H′; e ′.

Theorem 1 (Type Soundness). Let ∗⇒ denote the reflexive-transitive-closure of
⇒. For any canonical expression e, if D; ∅; Σ
∗ e : τ , D; ∅; Σ
∗ H + S, |= D,
and S; H; e ∗⇒ S′; H′; e ′, then S′; H′; e ′ is not stuck. That is, execution of a closed,
canonical, well typed expression cannot lead to a stuck state.

Type Inference Algorithm. Type inference is a program transformation that
accepts a program in which let expressions are not annotated with their kinds,

302 S. Sridhar, J.S. Shapiro, and S.F. Smith

I-Unit

Γ ; Σ
i () : unit | ∅

I-Bool

Γ ; Σ
i b : bool | ∅

I-Id

Γ (x) = ∀α.τ\D θ = [α � β] |=new β
Γ ; Σ
i x : θ〈τ〉 | θ〈D〉

I-Hloc

Σ(�) = τ
Γ ; Σ
i � : ⇑τ | ∅

I-Sloc

Σ(l) = τ
Γ ; Σ
i l : τ | ∅

I-Lambda

Γ , x �→ β↓α; Σ
i e : τ | C |=new αββ′γγ′δ
Γ ; Σ
i λx .e : β′↓α → γ′↓δ | C ∪ {τ = γ↓δ}

I-App

Γ ; Σ
i e1 : τ1 | C1 Γ ; Σ
i e2 : τ2 | C2 |=new αββ′γγ′δε
Γ ; Σ
i e1 e2 : ε↓γ | C1 ∪ C2 ∪ {τ1 = α↓(β′↓β → γ′↓γ), τ2 = δ↓β}

I-If

Γ ; Σ
i e1 : τ1 | C1 Γ ; Σ
i e2 : τ2 | C2 Γ ; Σ
i e3 : τ3 | C3 |=new αβγδε
Γ ; Σ
i if e1 then e2 else e3 : ε↓γ | C1 ∪ C2 ∪ C3 ∪ {τ1 = α↓bool, τ2 = β↓γ, τ3 = δ↓γ}

I-Set

Γ ; Σ
i l : τ1 | C1 Γ ; Σ
i e : τ2 | C2 |=new αβγ
Γ ; Σ
i l := e : unit | C1 ∪ C2 ∪ {τ1 = (Ψα)↓β, τ2 = γ↓β}

I-Deref

Γ ; Σ
i e : τ | C |=new αβ
Γ ; Σ
i e^ : α | C ∪ {τ = β↓⇑α}

I-Dup

Γ ; Σ
i e : τ | C |=new αβγ
Γ ; Σ
i dup(e) : ⇑(α↓β) | C ∪ {τ = γ↓β}

I-Sel

Γ ; Σ
i e : τ | C τ1 = α↓β τ2 = γ↓δ |=new αβγδε
Γ ; Σ
i e.i : τ i | C ∪ {τ = ε�(τ1 × τ2)}

I-Pair

Γ ; Σ
i e1 : τ1 | C1 Γ ; Σ
i e2 : τ2 | C2 |=new αα′ββ′γδ
Γ ; Σ
i (e1,e2) : α↓γ × β↓δ | C1 ∪ C2 ∪ {τ1 = α′↓γ, τ2 = β′↓δ}

I-Let-Exp

Γ ; Σ
i e1 : τ1 | C1 e1 �= υ Γ , x �→ α↓β; Σ
i e2 : τ2 | C2 |=new αβγκ
Γ ; Σ
i letκ x = e1 in e2 : τ2 | C1 ∪ {τ1 = γ↓β, κ = ψ} ∪ C2

I-Let-Val

Γ ; Σ
i υ : τ1 | C1 C′
1 = C1∪{τ1 = γ↓β} U(C′

1) = (D′,θ) D = D′∪{�κ
x (τ)} τ = θ〈δ↓β〉

{α} = ftv(τ , D) \ ftv(θ〈Γ 〉, θ〈Σ〉) Γ , x �→ ∀α.τ\D; Σ
i e : τ2 | C2 |=new βγδεκ
Γ ; Σ
i letκ x = υ in e : τ2 | C′

1[ε/α] ∪ C2

Fig. 5. Type Inference Algorithm

and returns the same program with let expressions annotated with their kinds
and all expressions annotated with their types. The type inference algorithm is
shown in Fig. 5. The inference judgment Γ ; Σ �i e : τ | C is understood as: given
a binding environment Γ and store typing Σ, the expression e has type τ subject
to the constraints C.

The inference algorithm introduces constrained types of the form ς↓ρ at all
copy compatible positions. For example, the I-App rule introduces copy com-
patibility for the function type itself, the argument and the return types. The
I-Sel rule represents the pair type as ε�(α↓β × γ↓δ), which (1) permits top-level
mutability of the pair type to be either mutable or immutable (2) ensures that
the type of the selection is exactly same as the type of the field being selected
(3) propagates full copy compatibility “one level down.”

The unification algorithm is shown in Fig. 6. The unification of a constraint
set C either fails with an error ⊥, or produces the pair (D,θ). θ is a solution for
all equality constraints and some of the � constraints in C. D is the set of �
constraints in C on which θ has been applied. ·∪ represents disjoint union of sets.

The U-Ct* rules perform unification of constrained types with other con-
strained or unconstrained types. First, immutable versions of the two types
are unified to establish compatibility (through constraints involving �= and �=).
Then, the constrained type is made to exactly equal the other type by unifying
its variable part with the other type. The key observation here is that the copy

Sound and Complete Type Inference for a Systems Programming Language 303

U-Empty U(∅) = (∅,〈〉)
U-Refl U({τ = τ} ·∪ C) = U(C)
U-Sym U({τ1 = τ2} ·∪ C) = U({τ2 = τ1} ∪ C)
U-Var U({α = τ} ·∪ C) | α /∈ τ = (D,θa ◦ θu) where θa = [α � τ] and

U(θa〈C〉) = (D,θu)

U-Fn U({τa → τr = τ ′
a → τ ′

r} ·∪ C) = U(C ∪ {τa = τ ′
a, τr = τ ′

r})
U-Ref U({⇑τ1 = ⇑τ2} ·∪ C) = U(C ∪ {τ1 = τ2})
U-Mut U({Ψρ1 = Ψρ2} ·∪ C) = U(C ∪ {ρ1 = ρ2})
U-Pair U({τ1 × τ2 = τ ′

1 × τ ′
2} ·∪ C) = U(C ∪ {τ1 = τ ′

1, τ2 = τ ′
2})

U-Ct1 U({α�ρ1 = β�ρ2} ·∪ C) = U(C ∪ {ρ1
�= ρ2, α = β})

U-Ct2 U({α�ρ = ρ′} ·∪ C) = U(C ∪ {ρ
�= ρ′, α = ρ′})

U-Ct3 U({ς1↓ρ1 = ς2↓ρ2} ·∪ C) = U(C ∪ {ρ1
�= ρ2, ς1 = ς2})

U-Ct4 U({ς↓ρ = �} ·∪ C) = U(C ∪ {ρ
�= �, ς = �})

U-K U({κ = κ} ·∪ C) = (D,θk ◦ θu) where θk = [κ � κ] and
U(θk〈C〉) = (D,θu)

U-Om1 U({�ψ
x (τ1), �ψ

x (τ2)} ·∪ C) = (D ∪ θ{�ψ
x (τ1), �ψ

x (τ2)},θ) where
U(C ∪ {τ1 = τ2}) = (D,θ)

U-Op1 U({�∀
x (τ)} ·∪ C) | �(τ) = (D ∪ θ{�∀

x (τ)},θ) where
U(C ∪ {τ = I(τ)}) = (D,θ)

U-Om2 U({�κ
x (τ)} ·∪ C) | Mut(τ) = (D,θk ◦ θu) where θk = [κ � ψ] and

U(θk〈{�κ
x (τ)} ∪ C〉) = (D,θu)

U-Op2 U({�κ
x (τ1), �κ

x (τ2)} ·∪ C) = (D,θk ◦ θu) where θk = [κ � ∀] and
where U({τ1 = τ2} ∪ C) = ⊥ U(θk〈{�κ

x (τ1), �κ
x (τ2)} ∪ C〉) = (D,θu)

U-Error U(c ·∪ C) | c /∈ Cv ∪ Cs ∪ Cp = ⊥

Cv = ∀ α, ς, ρ, τ , τ ′ | α /∈ τ ′ . {τ = τ , α = τ ′, τ ′ = α, α�ρ = τ , τ = α�ρ, ς↓ρ = τ , τ = ς↓ρ}

Cs = ∀ ρ, ρ′, τ , τ ′, τ1, τ ′
1 . {τ → τ1 = τ ′ → τ ′

1, ⇑τ = ⇑τ ′, Ψρ = Ψρ′}

Cp = ∀ x , κ, κ, τ , τ ′ | ¬Mut(τ ′) . {κ = κ, �ψ
x (τ), �∀

x (τ ′), �κ
x (τ)}

Fig. 6. Unification Algorithm

compatibility is a special restricted form of subtyping. Since the type of the copy
can be anywhere in the lattice of copy compatible types, subtyping requirements
are always with respect a local maxima (the most immutable compatible type).
We exploit this behavior to design a simple unification algorithm that only uses
equality constraints over constrained types.

The U-Om1 ensures that all instantiations of monomorphic kind are the same.
U-Op1 rule forces any concretizable instantiation of polymorphic kind to be
immutable. The U-Om2 rule infers monomorphic kind based on the mutability
of the instantiated type, and U-Op2 infers polymorphic kind if a variable x is
instantiated polymorphically to two types that do not inter-unify.

Definition 9 (Constraint Satisfaction). The satisfaction of a constraint set C by
a substitution θ is defined as follows.

∀ (τ 1 = τ 2) ∈ C, θ〈τ 1〉 = θ〈τ 2〉 ∀ (κ = κ) ∈ C, θ〈κ〉 = θ〈κ〉
D = {θ〈�κ

x (τ)〉 | �κ

x (τ) ∈ C}

θ �sol C � D

θ �sol C � D
|= D

θ �sat C � D

Definition 10 (Notational Derivations). We write:
(1) θ; Γ ; Σ
i e : τ | D if Γ ; Σ
i e : τ | C, θ
sol C � D, and θ 	 {Γ , Σ, τ , C}
(2) θ; D; Γ ; Σ
∗ e : τ if θ〈D〉; θ〈Γ 〉; θ〈Σ〉
∗ θ〈e〉 : θ〈τ 〉

304 S. Sridhar, J.S. Shapiro, and S.F. Smith

Lemma 3 (Correctness of Unification). If U(C) = (D,θ), then θ
sol C � D

Lemma 4 (Satisfiability of Unified Constraints). If U(C) = (D,θu), then there
exists a substitution θs such that θu ◦ θs
sat C � D.

Lemma 5 (Principality of Unification). If U(C) = (D,θu), where C is a set
of constraints obtained from the type inference algorithm, then, for all θs such that
θs
sol C � D′, we have θs ⊇ θu.

Lemma 6 (Decidability of Unification). The problem of computing a canonical
derivation of U(C) for an arbitrary C, where no two applications of U-Sym rule happen
consecutively is decidable.

Theorem 2 (Soundness of Type Inference). If θ; Γ ; Σ
i e : τ | D, then
θ; D; Γ ; Σ
∗ e : τ .

Lemma 7 (Type Checkability). If Γ ; Σ
i e : τ | C and U(C) = (D,θ), then ∃ θ′

such that |= θ′〈D〉 and θ ◦ θ′〈e〉 is canonical, and θ ◦ θ′; D; Γ ; Σ
∗ e : τ .

Theorem 3 (Completeness of Type Inference). If θ; D; Γ ; Σ
∗ e : τ , then
there exists a θ′ ⊇ θ such that θ′; Γ ; Σ
i e : τ | D.

Proofs for safety of the type system and soundness and completeness of the
inference algorithm can be found in [23].

4 Related Work

Grossman [6] provides a theory of using quantified types with imperative C style
mutation for Cyclone. However, his formalization requires explicit annotation for
all polymorphic definitions and instantiations. In contrast, we believe that the
best way to integrate polymorphism into the systems programming paradigm is
by automatic inference. A further contribution of our work (in comparison to [6])
is that we give a formal specification and proof of correctness of the inference
algorithm, not just the type system. Cyclone [10] uses region analysis to provide
safe support for the address & operator. This technique is complementary to our
work, and can be used to incorporate & operator in B.

C’s const notion of immutability-by-alias offers localized checking of im-
mutability properties, and encourages good programming practice by serving
as documentation of programmers’ intentions. Other systems have proposed
immutability-by-name [2], referential immutability [19,25] (transitive immutabi-
lity-by-reference), etc. These techniques are orthogonal and complementary to
the immutability-by-location property in B. For example, we could have types
like (const Ψτ) that can express both global and local usage properties of a
location.

A monadic model [13] of mutability is used in pure functional languages like
Haskell [14]. In this model, the type system distinguishes side-effecting compu-
tations from pure ones (and not just mutable locations from immutable ones).
Even though this model is beneficial for integration with verification systems,
it is considerably removed from the idioms needed by systems programmers.

Sound and Complete Type Inference for a Systems Programming Language 305

For example, Hughes argues that there is no satisfactory way of creating and
using global mutable variables using monads [7]. There have been proposals for
adding unboxed representation control to Haskell [12,8]. However, these systems
are pure and therefore and do not consider the effects of mutability.

Cqual [5] provides a framework of type qualifiers, which can be used to infer
maximal const qualifications for C programs. However, CQual does not deal
with polymorphism of types. In a monomorphic language, we can infer types
and qualifiers independently. Adding polymorphism to CQual would introduce
substantial challenges, particularly if polymorphism should be automatically in-
ferred. The inference of types and qualifiers (mutability) becomes co-dependent:
we need base types to infer qualifiers; but, we also need the qualifiers to infer
base types due to the value restriction. B supports a polymorphic language and
performs simultaneous inference of base types and mutability.

5 Conclusion

In this paper, we have defined a language and type system for systems program-
ming which integrates all of unboxed representation, consistent complete muta-
bility support, and polymorphism. The mutability model is expressive enough to
permit mutation of unboxed/stack locations, and at the same time guarantees
that types are definitive about the mutability of every location across all aliases.

Complete support for mutability introduces challenges for type inference at
copy boundaries. We have developed a novel algorithm that infers principal types
using a system of constrained types. To our knowledge, this is the first sound and
complete algorithm that infers both mutability and polymorphism in a systems
programming language with copy compatibility.

The type inference algorithm is implemented as part of the BitC [20] language
compiler. The core of the compiler involves 22,433 lines of C++ code, of which
implementation of the type system accounts for about 7,816 lines. The source
code can be obtained from http://bitc-lang.org.

References

1. Biagioni, E., Harper, R., Lee, P.: A network protocol stack in Standard ML. Higher
Order and Symbolic Computation 14(4) (2001)

2. Deline, R., Fähndrich, M.: VAULT: a programming language for reliable systems
(2001), http://research.microsoft.com/vault

3. Derby, H.: The performance of FoxNet 2.0. Technical Report CMU-CS-99-137
School of Computer Science, Carnegie Mellon University (June 1999)

4. ECMA International Standard ECMA-334 C# Language Specification,
http://www.ecma-international.org/publications/standards/Ecma-334.htm

5. Foster, J.S., Johnson, R., Kodumal, J., Aiken, A.: Flow-Insensitive Type Qualifiers.
Trans. on Programming Languages and Systems. 28(6), 1035–1087 (2006)

6. Grossman, D.: Quantified Types in an Imperative Language. ACM Transactions
on Programming Languages and Systems (2006)

http://research.microsoft.com/vault
http://www.ecma-international.org/publications/standards/Ecma-334.htm

306 S. Sridhar, J.S. Shapiro, and S.F. Smith

7. Hughes, J.: Global variables in Haskell. Journal of Functional Programming
archive 14(5) (September 2004)

8. Diatchki, I.S., Jones, M.P., Leslie, R.: High- level Views on Low-level Represen-
tations. In: Proc. ACM Int. Conference on Functional Programming, pp. 168–179
(2005)

9. International Std. Organization ISO/IEC 9899:1999 (Prog. Languages - C) (1999)
10. Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., Wang, Y.: Cyclone: A

safe dialect of C. In: Proc. of USENIX Annual Technical Conference, pp. 275–288
(2002)

11. Jones, M.P.: Qualified types: theory and practice.Cambridge Distinguished Disser-
tation in Computer Science (1995) ISBN:0-521-47253-9

12. Peyton Jones, S.L., Launchbury, J.: Unboxed values as first class citizens in a
non-strict functional language. Functional Programming Languages and Computer
Architecture (1991)

13. Peyton Jones, S.L., Wadler, P.: Imperative functional programming. In: Proc. ACM
SIGPLAN Principles of Programming Languages (1993)

14. Peyton Jones, S.L. (ed.): Haskell 98 Language and Libraries: The Revised report.
Cambridge University Press, Cambridge (2003)

15. Milner, R.: A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 348–375 (1978)

16. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML
- Revised. The MIT Press, Cambridge (1997)

17. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd
edn., http://java.sun.com/docs/books/jls

18. van Rossum, G.: Python Reference Manual. In: Drake Jr., F.L, ed. (2006),
http://docs.python.org/ref/ref.html

19. Shapiro, J.S., Smith, J.M., Farber, D.J.: EROS: a fast capability system. In: ACM
Symposium on Operating Systems Principles (December 1999)

20. Shapiro, J.S., Sridhar, S., Doerrie, M.S.: BitC Language Specification,
http://www.bitc-lang.org/docs/bitc/spec.html

21. Smith, G., Volpano, D.: A sound polymorphic type system for a dialect of C.
Science of Computer Programming 32(2–3), 49–72 (1998)

22. Sridhar, S., Shapiro, J.S.: Type Inference for Unboxed Types and First Class Muta-
bility. In: Proc. 3rd Workshop on Prog. Languages and Operating Systems (2006)

23. Sridhar, S., Shapiro, J.S., Smith, S.F.: Sound and Complete Type Inference in
BitC. Technical Report SRL-2008-02, Systems Research Laboratory, The Johns
Hopkins University (2008)

24. Tarditi, D., Morrisett, G., Cheng, P., Stone, C., Harper, R., Lee, P.: TIL: A type-
directed optimizing compiler for ML. In: Proc. ACM SIGPLAN PLDI (1996)

25. Tschantz, M.S., Ernst, M.D.: Javari: Adding reference immutability to Java.
Object-Oriented Programming Systems, Languages, and Applications (October
2005)

26. Wright, A.: Simple Imperative Polymorphism. Lisp and Symbolic Comp. 8(4), 343–
355 (1995)

http://java.sun.com/docs/books/jls
http://docs.python.org/ref/ref.html
http://www.bitc-lang.org/docs/bitc/spec.html

An Operational Semantics for JavaScript

Sergio Maffeis1, John C. Mitchell2, and Ankur Taly2

1 Department of Computing, Imperial College London
2 Department of Computer Science, Stanford University

Abstract. We define a small-step operational semantics for the EC-
MAScript standard language corresponding to JavaScript, as a basis for
analyzing security properties of web applications and mashups. The se-
mantics is based on the language standard and a number of experiments
with different implementations and browsers. Some basic properties of
the semantics are proved, including a soundness theorem and a charac-
terization of the reachable portion of the heap.

1 Introduction

JavaScript [8,14,10] is widely used in Web programming and it is implemented
in every major browser. As a programming language, JavaScript supports func-
tional programming with anonymous functions, which are widely used to handle
browser events such as mouse clicks. JavaScript also has objects that may be
constructed as the result of function calls, without classes. The properties of an
object, which may represent methods or fields, can be inherited from a proto-
type, or redefined or even removed after the object has been created. For these
and other reasons, formalizing JavaScript and proving correctness or security
properties of JavaScript mechanisms poses substantial challenges.

Although there have been scientific studies of limited subsets of the language
[7,21,24], there appears to be no previous formal investigation of the full core
language, on the scale defined by the informal ECMA specifications [14]. In
order to later analyze the correctness of language-based isolation mechanisms
for JavaScript, such as those that have arisen recently in connection with online
advertising and social networking [1,2,6,20], we develop a small-step operational
semantics for JavaScript that covers the language addressed in the ECMA-262
Standard, 3rd Edition [14]. This standard is intended to define the common
core language implemented in all browsers and is roughly a subset of JavaScript
1.5. We provide a basis for further analysis by proving some properties of the
semantics, such as a progress theorem and properties of heap reachability.

As part of our effort to make conformance to the informal standard evi-
dent, we define our semantics in a way that is faithful to the common explana-
tions of JavaScript and the intuitions of JavaScript programmers. For example,
JavaScript scope is normally discussed in relation to an object-based represen-
tation. We therefore define execution of a program with respect to a heap that
contains a linked structure of objects instead of a separate stack. Thus enter-
ing a JavaScript scope creates an object on the heap, serving as an activation

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 307–325, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

308 S. Maffeis, J.C. Mitchell, and A. Taly

record for that scope but also subject to additional operations on JavaScript
objects. Another unusual aspect of our semantics, reflecting the unusual nature
of JavaScript, is that declarations within the body of a function are handled by
a two-pass method. The body of a function is analyzed for declarations, which
are then added to the scope before the function body is executed. This allows
a declaration that appears after the first expression in the function body to be
referenced in that expression.

While the ECMAScript language specification guided the development of
our operational semantics, we performed many experiments to check our un-
derstanding of the specification and to determine differences between various
implementations of JavaScript. The implementations that we considered include
SpiderMonkey [17] (used by Firefox), the Rhino [4] implementation for Java,
JScript [3] (used by Internet Explorer), and the implementations provided in
Safari and Opera. In the process, we developed a set of programs that test im-
plementations against the standard and reveal details of these implementations.
Many of these program examples, a few of which appear further below, may
be surprising to those familiar with more traditional programming languages.
Because of the complexity of JavaScript and the number of language variations,
our operational semantics (reported in full in [15]) is approximately 70 pages
of rules and definitions, in ascii format. We therefore describe only a few of
the features and implications of the semantics here. By design, our operational
semantics is modular in a way that allows individual clauses to be varied to
capture differences between implementations.

Since JavaScript is an unusual language, there is value and challenge in proving
properties that might be more straightforward to verify for some other languages
(or for simpler idealized subsets of JavaScript). We start by proving a form
of soundness theorem, stating that evaluation progresses to an exception or a
value of an expected form. Our second main theorem shows, in effect, that the
behavior of a program depends only on a portion of the heap. A corollary is
that certain forms of garbage collection, respecting the precise characterization
of heap reachability used in the theorem, are sound for JavaScript. This is non-
trivial because JavaScript provides a number of ways for an expression to access,
for example, the parent of a parent of an object, or even its own scope object,
increasing the set of potentially reachable objects. The precise statement of the
theorem is that the operational semantics preserve a similarity relation on states
(which include the heap).

There are several reasons why the reachability theorem is important for vari-
ous forms of JavaScript analysis. For example, a web server may send untrusted
code (such as an advertisement) as part of a trusted page (the page that con-
tains third-party advertisement). We would therefore like to prove that untrusted
code cannot access certain browser data structures associated with the trusted
enclosing page, under specific conditions that could be enforced by web security
mechanisms. This problem can be reduced to proving that a given well-formed
JavaScript program cannot access certain portions of the heap, according to
the operational semantics of the language. Another future application of heap

An Operational Semantics for JavaScript 309

bisimilarity (as shown in this paper) to security properties of JavaScript appli-
cations is that in the analysis of automated phishing defenses, we can reduce the
question of whether JavaScript can distinguish between the original page and
a phishing page to whether there exists a bisimulation between a certain good
heap (corresponding to the original page) and a certain bad heap (correspond-
ing to the phishing page). Thus the framework that we develop in this paper for
proving basic progress and heap reachability theorems provides a useful starting
point for JavaScript security mechanisms and their correctness proofs.

1.1 JavaScript Overview and Challenges

JavaScript was originally designed to be a simple HTML scripting language [8].
The main primitives are first-class and potentially higher-order functions, and
a form of object that can be defined by an object expression, without the need
for class declarations. Commonly, related objects are constructed by calling a
function that creates objects and returns them as a result of the function call.
Functions and objects have properties, which are accessed via the “dot” notation,
as in x.p for property p of object x. Properties can be added to an object or
reset by assignment. This makes it conceptually possible to represent activation
records by objects, with assignable variables considered properties of the object
corresponding to the current scope. Because it is possible to change the value
of a property arbitrarily, or remove it from the object, static typing for full
JavaScript is difficult. JavaScript also has eval, which can be used to parse and
evaluate a string as an expression, and the ability to iterate over properties of an
object or access them using string expressions instead of literals (as in x[“p”]).
Many online tutorials and books [10] are available.

One example feature of JavaScript that is different from other languages that
have been formally analyzed is the way that declarations are processed in an
initial pass before bytecode for a function or other construct is executed. Some
details of this phenomenon are illustrated by the following code:

var f = function(){if (true) {function g() {return 1}}
else {function g() {return 2}};

function g() {return 3};
return g();
function g() {return 4}}

This code defines a function f whose behavior is given by one of the declarations
of g inside the body of the anonymous function that returns g. However, dif-
ferent implementations disagree on which declaration determines the behavior
of f. Specifically, a call f() should return 4 according to the ECMA specifica-
tion. Spidermonkey (hence Firefox) returns 4, while Rhino and Safari return 1,
and JScript and the ECMA4 reference implementation return 2. Intuitively, the
function body is parsed to find and process all declarations before it is executed,
so that reachability of second declarations is ignored. Given that, it is plausible
that most implementations would pick either the first declaration or the last.
However, this code is likely to be unintuitive to most programmers.

310 S. Maffeis, J.C. Mitchell, and A. Taly

A number of features of JavaScript are particularly challenging for develop-
ment of a formal semantics and proving properties of the language. Below, we
just cite some. Global values such as undefined or Object can be redefined, so the
semantics cannot depend on fixed meanings for these predefined parts of the lan-
guage. Some JavaScript objects, such as Array.prototype, are implicitly reachable
even without naming any variables in the global scope. The mutability of these
objects allows apparently unrelated code to interact. Some properties of native
JavaScript objects are constrained to be for example ReadOnly, but there is no
mechanism to express these constraints in the (client) language. JavaScript’s
rules for binding this depend on whether a function is invoked as a constructor,
as a method, as a normal function, etc.. If a function written to be called in
one way is instead called in another way, its this property might be bound to an
unexected object or even to the global environment.

1.2 Beyond this Paper

Our framework for studying the formal properties of JavaScript closely follows
the specification document and models all the features of the language that we
have considered necessary to represent faithfully its semantics. The semantics
can be modularly extended to user-defined getters and setters, which are part of
JavaScript 1.5 but not in the ECMA-262 standard. We believe it is similarly pos-
sible to extend the semantics to DOM objects, which are part of an independent
specification, and are available only when JavaScript runs in a Web-browser.
However, we leave development of these extensions to future work.

For simplicity, we do not model some features which are laborious but do
not add new insight to the semantics, such as the switch and for construct (we
do model the for−in), parsing (which is used at run time for example by the
eval command), the native Date and Math objects, minor type conversions like
ToUInt32, etc. and the details of standard procedures such as converting a string
into the numerical value that it actually represents. For the same reason, we also
do not model regular expression matching, which is used in string operations.

In Section 5 we summarize some directions for future work.

2 Operational Semantics

Our operational semantics consists of a set of rules written in a conventional
meta-notation. The notation is not directly executable in any specific automated
framework, but is designed to be humanly readable, insofar as is possible for a
programming language whose syntax requires 16 pages of specification, and a suit-
able basis for rigorous but un-automated proofs. Given the space constraints of a
conference paper, we describe only the main semantic functions and some repre-
sentative axioms and rules; the full semantics is currently available online [15].

In order to keep the semantic rules concise, we assume that source pro-
grams are legal JavaScript programs, and that each expression is disambiguated
(e.g. 5+(3∗4)). We also follow systematic conventions about the syntactic cat-
egories of metavariables, to give as much information as possible about the

An Operational Semantics for JavaScript 311

intended type of each operation. In addition to the source expressions and
commands used by JavaScript programmers, our semantics uses auxiliary syn-
tactic forms that conveniently represent intermediate steps in our small-step
semantics.

In principle, for languages whose semantics are well understood, it may be
possible to give a direct operational semantics for a core language subset, and
then define the semantics of additional language constructs by showing how these
additional constructs are expressible in the core language. Instead of assuming
that we know how to correctly define some parts of JavaScript from others, we
decided to follow the ECMA specification as closely as possible, defining the
semantics of each construct directly as given in the ECMA specification. While
giving us the greatest likelihood that the semantics is correct, this approach also
did not allow us to factor the language into independent sublanguages. While
our presentation is divided into sections for Types, Expressions, Objects, and so
on, the execution of a program containing one kind of construct may rely on
the semantics of other constructs. We consider it an important future task to
streamline the operational semantics and prove that the result is equivalent to
the form derived from the standard.

Syntactic Conventions. In the rest of the paper we abbreviate t1,..., tn with
t˜ and t1 ... tn with t∗ (t+ in the nonempty case). In a grammar, [t] means
that t is optional, t|s means either t or s, and in case of ambiguity we escape
with apices, as in escaping [by ”[”. Internal values are prefixed with &, as in
&NaN. For conciseness, we use short sequences of letters to denote metavariables
of a specific type. For example, m ranges over strings, pv over primitive values,
etc.. These conventions are summarized in Figure 1. In the examples, unless
specified otherwise, JavaScript code prefixed by js> is verbatim code from the
SpiderMonkey shell (release 1.7.0 2007-10-03).

2.1 Heap

Heaps and Values. Heaps map locations to objects, which are records of pure
values va or functions fun(x,...){P}, indexed by strings m or internal identifiers @x
(the symbol @ distinguishes internal from user identifiers). Values are standard.

As a convention, we append w to a syntactic category to denote that the
corresponding term may belong to that category or be an exception. For example,
lw denotes an address or an exception.

Heap Functions. We assume a standard set of functions to manipulate heaps.
alloc(H,o) = H1,l allocates o in H returning a fresh address l for o in H1. H(l) = o
retrieves o from l in H. o.i = va gets the value of property i of o. o−i = fun([x˜]){P}
gets the function stored in property i of o. o:i = {[a˜]} gets the possibly empty
set of attributes of property i of o. H(l.i=ov)=H1 sets the property i of l in H to
the object value ov. del(H,l,i) = H1 deletes i from l in H. i !< o holds if o does not
have property i. i < o holds if o has property i.

312 S. Maffeis, J.C. Mitchell, and A. Taly

H ::= (l:o)˜ % heap
l ::= #x % object addresses
x ::= foo | bar | ... % identifiers (do not include reserved words)
o ::= ”{”[(i:ov)˜]”}” % objects
i ::= m | @x % indexes
ov ::= va[”{”a˜”}”] % object values

| fun”(”[x˜]”){”P”}” % function
a ::= ReadOnly| DontEnum | DontDelete % attributes

pv ::= m | n | b | null | &undefined % primitive values
m ::= ”foo” | ”bar” | ... % strings
n ::= −n | &NaN | &Infinity | 0 | 1 | ... % numbers
b ::= true | false % booleans
va ::= pv | l % pure values
r ::= ln”∗”m % references
ln ::= l | null % nullable addresses
v ::= va | r % values
w ::= ”<”va”>” % exception

Fig. 1. Metavariables and Syntax for Values

2.2 Semantics Functions

We have three small-step semantic relations for expressions, statements and pro-
grams denoted respectively by e−→ , s−→ , P−→ . Each semantic function trans-
forms a heap, a pointer in the heap to the current scope, and the current term
being evaluated into a new heap-scope-term triple. The evaluation of expres-
sions returns either a value or an exception, the evaluation of statements and
programs terminates with a completion (explained below).

The semantic functions are recursive, and mutually dependent. The semantics
of programs depends on the semantics of statements which in turn depends on
the semantics of expressions which in turn, for example by evaluating a function,
depends circularly on the semantics of programs. These dependencies are made
explicit by contextual rules, that specify how a transition derived for a term
can be used to derive a transition for a bigger term including the former as a
sub-term. In general, the premises of each semantic rule are predicates that must
hold in order for the rule to be applied, usually built of very simple mathematical
conditions such as t < S or t != t′ or f(a) = b for set membership, inequality
and function application.

Transitions axioms (rules that do not have transitions in the premises) specify
the individual transitions for basic terms (the redexes). For example, the axiom
H,l,(v) −→ H,l,v describes that brackets can be removed when they surround a
value (as opposed to an expression, where brackets are still meaningful).

Contextual rules propagate such atomic transitions. For example, if program
H,l,P evaluates to H1,l1,P1 then H,l,@FunExe(l’,P) (an internal expression used

An Operational Semantics for JavaScript 313

to evaluate the body of a function) reduces in one step to H1,l1,@FunExe(l’,P1).
The rule below show exactly that: @FunExe(l,−) is one of the contexts eCp for
evaluating programs.

H,l,P P−→ H1,l1,P1

H,l,eCp[P] e−→ H1,l1,eCp[P1]

As another example, sub-expressions are evaluated inside outer expressions (rule
on the left) using contexts eC ::= typeof eC | eCgv | ..., and exceptions propagated
to the top level (axiom on the right).

H,l,e e−→ H1,l1,e1

H,l,eC[e] e−→ H1,l1,eC[e1]
H,l,eC[w] e−→H,l,w

Hence, if an expression throws an exception (H,l,e e−→ H1,l,w) then so does say
the typeof operator: H,l,typeof e

e−→ H1,l,typeof w
e−→ H1,l,w.

It is very convenient to nest contexts inside each other. For example, contexts
for GetValue (the internal expression that returns the value of a reference), gen-
erated by the grammar for eCgv ::= −[e] | va[−] | eCto | eCts | ..., are expression
contexts. Similarly, contexts for converting values to objects eCto ::= −[va] | ...
or to strings eCts ::= l[−] | ... are get-value contexts.

H,l,eCgv[ln∗m] e−→ H1,l,eCgv[@GetValue(ln∗m)]

Type(va) != Object ToObject(H,va) = H1,lw

H,l,eCto[va] e−→ H1,l,eCto[lw]

Type(v) != String ToString(v) = e

H,l,eCts[v] e−→ H,l,eCts[e]

As a way to familiarize with these structures of nested contexts, we look in
detail at the concrete example of member selection. The ECMA-262 specification
states that in order to evaluate MemberExpression[Expression] one needs to:

MemberExpression : MemberExpression [Expression]
1. Evaluate MemberExpression.
2. Call GetValue(Result(1)).
3. Evaluate Expression.
4. Call GetValue(Result(3)).
5. Call ToObject(Result(2)).
6. Call ToString(Result(4)).
7. Return a value of type Reference whose base object is Result(5) and
whose property name is Result(6).

In our formalization, the rule for member selection is just H,l,l1[m] e−→ H,l,l1∗m.
As opposed to the textual specification, the formal rule is trivial, and makes it
obvious that the operator takes an object and a string and returns the corre-
sponding reference. All we had to do in order to model the intermediate steps

314 S. Maffeis, J.C. Mitchell, and A. Taly

was to insert the appropriate contexts in the evaluation contexts for expressions,
values, objects and strings. In particular, −[e] is value context, and value con-
texts are expression contexts, so we get for free steps 1 and 2, obtaining va[e].
Since va[−] is also a value context, steps 3 and 4 also come for free, obtaining
va[va]. Since −[va] is an object context, and l[−] a string context, steps 6 and 7
are also executed transparently. The return type of each of those contexts guar-
antees that the operations are executed in the correct order. If that was not the
case, then the original specification would have been ambiguous. The rule for
propagating exceptions takes care of any exception raised during these steps.

The full formal semantics [15] contains several other contextual rules to ac-
count for other mutual dependencies and for all the implicit type conversions.
This substantial use of contextual rules greatly simplifies the semantics and will
be very useful in Section 3 to prove its formal properties.

Scope and Prototype Lookup. The scope and prototype chains are two dis-
tinctive features of JavaScript. The stack is represented implicitly, by maintain-
ing a chain of objects whose properties represent the binding of local variables
in the scope. Since we are not concerned with performance, our semantics needs
to know only a pointer to the head of the chain (the current scope object). Each
scope object stores a pointer to its enclosing scope object in an internal @Scope
property. This helps in dealing with constructs that modify the scope chain, such
as function calls and the with statement.

JavaScript follows a prototype-based approach to inheritance. Each object
stores in an internal property @Prototype a pointer to its prototype object, and
inherits its properties. At the root of the prototype tree there is @Object.prototype,
that has a null prototype. The rules below illustrate prototype chain lookup.

Prototype(H,null,m)=null

m < H(l)
Prototype(H,l,m)=l

m!< H(l) H(l).@Prototype=ln

Prototype(H,l,m)=Prototype(H,ln,m)

Function Scope(H,l,m) returns the address of the scope object in H that first
defines property m, starting from the current scope l. It is used to look up
identifiers in the semantics of expressions. Its definition is similar to the one for
prototype, except that the condition (H,l.@HasProperty(m)) (which navigates the
prototype chain to check if l has property m) is used instead of the direct check
m < H(l).

Types. JavaScript values are dynamically typed. The internal types are:

T ::= Undefined | Null | Boolean | String | Number % primitive types
| Object | Reference % other types

Types are used to determine conditions under which certain semantic rules can be
evaluated. The semantics defines straightforward predicates and functions which
perform useful checks on the type of values. For example, IsPrim(v) holds when v
is a value of a primitive type, and GetType(H,v) returns a string corresponding to
a more intuitive type for v in H. The user expression typeof e, which returns the

An Operational Semantics for JavaScript 315

type of its operand, uses internally GetType. Below, we show the case for function
objects (i.e. objects which implement the internal @Call property).

Type(v)=Object @Call < H(v)
GetType(H,v) = ”function”

An important use of types is to convert the operands of typed operations and
throw exceptions when the conversion fails. There are implicit conversions into
strings, booleans, number, objects and primitive types, and some of them can
lead to the execution of arbitrary code. For example, the member selection ex-
pression e1[e2] implicitly converts e2 to a string. If e2 denotes an object, its
re-definable toString propery is invoked as a function.

js> var o={a:0}; o[{toString:function(){o.a++; return ”a”}}] % res: 1

The case for ToPrimitive (invoked by ToNumber and ToString) is responsible for
the side effects: the result of converting an object value into a primitive value
is an expression l.@DefaultValue([T]) which may involve executing arbitrary code
that a programmer can store in the valueOf or toString methods of said object.

Type(l)=Object

ToPrimitive(l[,T]) = l.@DefaultValue([T])

2.3 Expressions

We distinguish two classes of expressions: internal expressions, which correspond
to specification artifacts needed to model the intended behavior of user expres-
sions, and user expressions, which are part of the user syntax of JavaScript.
Internal expressions include addresses, references, exceptions and functions such
as @GetValue,@PutValue used to get or set object properties, and @Call,@Construct
used to call functions or to construct new objects using constructor functions.
For example, we give two rules of the specification of @Put, which is the internal
interface (used also by @PutValue) to set properties of objects. The predicate
H,l1.@CanPut(m) holds if m does not have a ReadOnly attribute.

H,l1.@CanPut(m)
m !< H(l1) H(l1.m=va{})=H1

H,l,l1.@Put(m,va) e−→ H1,l,va

H,l1.@CanPut(m)
H(l1):m={[a˜]} H(l1.m=va{[a˜]}) = H1

H,l,l1.@Put(m,va) e−→ H1,l,va

These rules show that fresh properties are added with an empty set of attributes,
whereas existing properties are replaced maintaining the same set of attributes.

Object Literal. As an example of expressions semantics we present in de-
tail the case of object literals. The semantics of the object literal expression

316 S. Maffeis, J.C. Mitchell, and A. Taly

{pn:e,...,pn’:e’} uses an auxiliary internal construct AddProps to add the result of
evaluating each e as a property with name pn to a newly created empty object.
Rule (1) (with help from the contextual rules) creates a new empty object, and
passes control to AddProps. Rule (2) converts identifiers to strings, and rule (3)
adds a property to the object being initialized. It uses a sequential expression to
perform the update and then return the pointer to the updated object l1, which
rule (4) releases at the top level.

H,l,{[(pn:e)˜]} e−→ H,l,@AddProps(new Object()[,(pn:e)˜]) (1)

H,l,@AddProps(l1,x:e[,(pn:e)˜]) e−→ H,l,@AddProps(l1,”x”:e[, (pn:e)˜]) (2)

H,l,@AddProps(l1,m:va[,(pn:e)˜]) e−→ H,l,@AddProps((l1.@Put(m,va),l1)[,(pn:e)˜])(3)

H,l,@AddProps(l1) e−→ H,l,l1 (4)

Rule (1) is emblematic of a few other cases in which the specification requires
to create a new object by evaluating a specific constructor expression whose
definition can be changed during execution. For example,

js> var a = {}; a % res: [object Object]
ljs> Object = function(){return new Number()}; var b = {}; b % res: 0

where the second object literal returns a number object. That feature can be
useful, but can also lead to undesired confusion.

2.4 Statements

Similarly to the case for expressions, the semantics of statements contains a
certain number of internal statements, used to represent unobservable execution
steps, and user statements that are part of the user syntax of JavaScript. A
completion is the final result of evaluating a statement.

co ::= ”(”ct,vae,xe”)” vae ::= &empty | va xe ::= &empty | x
ct ::= Normal | Break | Continue | Return | Throw

The completion type indicates whether the execution flow should continue nor-
mally, or be disrupted. The value of a completion is relevant when the completion
type is Return (denoting the value to be returned), Throw (denoting the exception
thrown), or Normal (propagating the value to be return during the execution of
a function body). The identifier of a completion is relevant when the completion
type is either Break or Continue, denoting the program point where the execution
flow should be diverted to.

Expression and Throw. Evaluation contexts transform the expression operand
of these constructs into a pure value.All the semantic rules specify is how suchvalue
is packaged into a completion. The rules for return,continue,break are similar.

H,l,va s−→ H,l,(Normal,va,&empty) H,l,throw va; s−→ H,l,(Throw,va,&empty)

An Operational Semantics for JavaScript 317

2.5 Programs

Programs are sequences of statements and function declarations.

P ::= fd [P] | s [P] fd ::= function x ”(”[x˜]”){”[P]”}”

As usual, the execution of statements is taken care of by a contextual rule. If
a statement evaluates to a break or continue outside of a control construct, an
SyntaxError exception is thrown (rule (9)). The run-time semantics of a function
declaration instead is equivalent to a no-op (rule (10)). Function (and variable)
declarations should in fact be parsed once and for all, before starting to execute
the program text. In the case of the main body of a JavaScript program, the
parsing is triggered by rule (11) which adds to the initial heap NativeEnv first the
variable and then the function declarations (functions VD,FD).

ct < {Break,Continue}
o = new SyntaxError() H1,l1 = alloc(H,o)

H,l,(ct,vae,xe) [P] P−→ H1,l,(Throw,l1,&empty)
(9)

H,l,function x ([x˜]){[P]} [P1] P−→ H,l,(Normal,&empty,&empty) [P1] (10)

VD(NativeEnv,#Global,{DontDelete},P) = H1
FD(H1,#Global,{DontDelete},P) = H2

P
P−→ H2,#Global,P

(11)

2.6 Native Objects

The initial heap NativeEnv of core JavaScript contains native objects for repre-
senting predefined functions, constructors and prototypes, and the global ob-
ject @Global that constitutes the initial scope, and is always the root of the
scope chain. As an example, we describe the global object. The global object de-
fines properties to store special values such as &NaN, &undefined etc., functions
such as eval, toString etc. and constructors that can be used to build generic
objects, functions, numbers, booleans and arrays. Since it is the root of the
scope chain, its @Scope property points to null. Its @this property points to itself:
@Global = {@Scope:null, @this:#Global, ”eval”:#GEval{DontEnum},...}. None of the
non-internal properties are read-only or enumerable, and most of them can be
deleted. By contrast, when a user variable or function is defined in the top level
scope (i.e. the global object) it has only the DontDelete attribute. The lack of
a ReadOnly attribute on ”NaN”,”Number” for example forces programmers to use
the expression 0/0 to denote the real &NaN value, even though @Number.NaN
stores &NaN and is a read only property.

Eval. The eval function takes a string and tries to parse it as a legal program
text. If it fails, it throws a SyntaxError exception (rule (12)). If it succeeds, it
parses the code for variable and function declarations (respectively VD,FD) and
spawns the internal statement @cEval (rule (13)). In turn, @cEval is an execution

318 S. Maffeis, J.C. Mitchell, and A. Taly

context for programs, that returns the value computed by the last statement in
P, or &undefined if it is empty.

ParseProg(m) = &undefined
H2,l2 = alloc(H,o) o = new SyntaxError()

H,l,#GEval.@Exe(l1,m) e−→ H2,l,<l2>
(12)

l != #Global ParseProg(m) = P
VD(H,l,{},P) = H1 FD(H1,l,{},P) = H2

H,l,#GEval.@Exe(l1,m) e−→ H2,l,@cEval(P)
(13)

va = (IF vae=&empty THEN &undefined ELSE vae)

H,l,@cEval((ct,vae,xe)) e−→ H,l,va
(14)

As we are not interested in modeling the parsing phase, we just assume a parsing
function ParseProg(m) which given string m returns a valid program P or else
&undefined. Note how in rule (13) the program P is executed in the caller’s scope
l, effectively giving dynamic scope to P.

Object. The @Object constructor is used for creating new user objects and
internally by constructs such as object literals. Its prototype @ObjectProt becomes
the prototype of any object constructed in this way, so its properties are inherited
by most JavaScript objects. Invoked as a function or as a constructor, @Object
returns its argument if it is an object, a new empty object if its argument is
undefined or not supplied, or converts its argument to an object if it is a string,
a number or a boolean. If the argument is a host object (such as a DOM object)
the behavior is implementation dependent.

o = new object(”Object”,#ObjectProt)
H1,lo = Alloc(H,o) Type(pv) < {Null,Undefined}

H,l,#Object.@Construct(pv) e−→ H1,l,lo

Type(pv) < {String, Boolean, Number}
H1,le = ToObject(H,pv)

H,l,#Object.@Construct(pv) e−→ H,l,le

Type(l1) = Object !IsHost(H,l1)

H,l,#Object.@Construct(l1) e−→H,l,l1

The object @ObjectProt is the root of the scope prototype chain. For that
reason, its internal prototype is null. Apart from ”constructor”, which stores a
pointer to @Object, the other public properties are native meta-functions such as
toString or valueOf (which, like user function, always receive a value for @this as
the first parameter).

2.7 Relation to Implementations

JavaScript is implemented within the major web browsers, or as standalone
shells. In order to clarify several ambiguities present in the specification, we have
run experiments inspired by our semantics rules on different implementations.

An Operational Semantics for JavaScript 319

We have found that, besides resolving ambiguities in different and often incom-
patible ways, implementations sometimes openly diverge from the specification.
In [15] we report several cases.

For example, in SpiderMonkey (the Mozilla implementation) the semantics of
functions depends on the position, within unreachable code of statements which
should have no semantic significance! The function call below returns 0, but if
we move the var g; after the last definition of g, it returns 1.

(function(){if (true) function g(){return 0};return g();var g;function g(){return 1}})()

Apart from pathological examples such as this, Mozilla’s JavaScript extends
ECMA-262 in several ways, for example with getters and setters. A getter is
a function that gets called when the corresponding property is accessed and a
setter is a function that gets called when the property is assigned. While we can
extend our semantics to deal with these further constructs, we leave for future
work the full integration of this approach.

3 Formal Properties

In this section we give some preliminary definitions and set up a basic framework
for formal analysis of well-formed JavaScript programs. We prove a progress
theorem which shows that the semantics is sound and the execution of a well-
formed term always progresses to an exception or an expected value. Next we
prove a Heap reachability theorem which essentially justifies mark and sweep
type garbage collection for JavaScript. Although the properties we prove are
fairly standard for idealized languages used in formal studies, proving them for
real (and unruly!) JavaScript is a much harder task.

Throughout this section, a program state S denotes a triple (H, l, t) where H
is a heap, l is a current scope address and t is a term. Recall that a heap is a
map from heap addresses to objects, and an object is a collection of properties
that can contain heap addresses or primitive values.

3.1 Notation and Definitions

Expr, Stmnt and Prog denote respectively the sets of all possible expressions,
statements and programs that can be written using the corresponding internal
and user grammars. L denotes the set of all possible heap addresses. Wf(S) is a
predicate denoting that a state S is well-formed. prop(o) is the set of property
names present in object o. dom(H) gives the set of allocated addresses for the
heap H.

For a heap address l and a term t, we say l ∈ t iff the heap address l occurs
in t. For a state S = (H, l, t), we define Δ(S) as the set of heap addresses
{l} ∪ {l|l ∈ t}. This is also called the set of roots for the state S.

We define the well-formedness predicate of a state S = (H, l, t) as the con-
junction of the predicates Wf Heap(H), Wf scope(l) and Wf term(t). A term t is
well-formed iff it can be derived using the grammar rules consisting of both the

320 S. Maffeis, J.C. Mitchell, and A. Taly

language constructs and the internal constructs, and all heap addresses con-
tained in t are allocated ie l ∈ t ⇒ l ∈ dom(H). A scope address l ∈ dom(H)
is well-formed iff the scope chain starting from l does not contain cycles, and
(@Scope ∈ prop(H(l)))∧ (H(l).@Scope �= null ⇒ Wf(H(l).@Scope)). A heap H
is well-formed iff it conforms to all the conditions on heap objects mentioned in
the specification (see the long version [15] for a detailed list).

Definition 1 (Heap Reachability Graph). Given a heap H, we define a
labeled directed graph GH with heap addresses l ∈ dom(H) as the nodes, and an
edge from address li to lj with label p iff (p ∈ prop(H(li)) ∧ H(li).p = lj).

Given a heap reachability graph GH , we can define the view from a heap address
l as the subgraph GH,l consisting only of nodes that are reachable from l in
graph GH . We use viewH(l) to denote the set of heap addresses reachable from
l: viewH(l) = Nodes(GH,l). viewH can be naturally extended to apply to a
set of heap addresses. Observe that the graph GH only captures those object
properties that point to other heap objects and does not say anything about
properties containing primitive values.

Definition 2 (l-Congruence of Heaps ∼=l). We say that two heaps H1 and
H2 are l-congruent (or congruent with respect to heap address l) iff they have
the same views from heap address l and the corresponding objects at the heap
addresses present in the views are also equal. Formally,

H1 ∼=l H2 ⇔ (GH1,l = GH2,l ∧ ∀ l′ ∈ viewH1(l) H1(l′) = H2(l′)).

Note that if H1 ∼=l H2 then viewH1(l) = viewH2(l). It is easy to see that if two
heaps H1 and H2 are congruent with respect to l then they are congruent with
respect to all heap addresses l′ ∈ viewH1(l).

Definition 3 (State congruence ∼=). We say that two states S1 = (H1, l, t)
and S2 = (H2, l, t) are congruent iff the heaps are congruent with respect to all
addresses in the roots set. Formally, S1 ∼= S2 ⇔ ∀ l′ ∈ Δ(S1) (H1 ∼=l′ H2)).

Note that Δ(S1) = Δ(S2) because the definition of Δ depends only on l and
t. In the next section we will show that for a state S = (H, l, t), viewH(Δ(S))
forms the set of live heap addresses for the S because these are the only possible
heap addresses that can be accessed during any transition from S.

Definition 4 (Heap Address Renaming). For a given heap H, a heap ad-
dress renaming function f is any one to one map from dom(H) to L.

We denote the set of all possible heap renaming functions for a heap H by
FH . We overload f so that f(H) is the new heap obtained by renaming all
heap addresses l ∈ dom(H) by f(l) and for a term t, f(t) is the new term
obtained by renaming all l ∈ t by f(l). Finally, for a state S = (H, l, t) we define
f(S) = (f(H), f(l), f(t)) as the new state obtained under the renaming.

An Operational Semantics for JavaScript 321

Definition 5 (State similarity ∼). Two states S1 = (H1, l1, t1) and S2 =
(H2, l2, t2) are similar iff there exists a renaming function f for H1 such that
the new state f(S1) obtained under the renaming is congruent to S2. Formally,
S1 ∼ S2 ⇔ ∃ f ∈ FH1 f(S1) ∼= S2.

Property 1. Both ∼= and ∼ are equivalence relations. Moreover, ∼=�∼.

3.2 Theorems and Formal Properties

We now present the main technical results. Our first result is a progress and
preservation theorem, showing that evaluation of a well-formed term progresses
to a value or an exception.

Lemma 1. Let C denote the set of all valid contexts for expressions, state-
ments and programs. For all terms t appropriate for the context C we have
Wfterm(C(t)) ⇒ Wfterm(t).

Theorem 1 (Progress and Preservation). For all states S = (H, l, t) and
S′ = (H ′, l′, t′):

– (Wf(S) ∧ S → S′) ⇒ Wf(S′) (Preservation)
– Wf(S) ∧ t /∈ v(t) ⇒ ∃ S′ (S → S′)) (Progress)

where v(t) = ve if t ∈ Expr and v(t) = co if t ∈ Stmnt or Prog.

Our second result shows that similarity is preserved under reduction, which
directly gives a construction for a simple mark-and-sweep-like garbage collector
for JavaScript. The proofs for the theorems are given in the long version [15].

Lemma 2. For all well-formed program states S = (H, l, t), if H, l, t → H ′, l′, t′

then H(l′′) = H ′(l′′), for all l′′ /∈ viewH(Δ(H, l, t)) ∪ viewH′ (Δ(H ′, l′, t′)).

The above lemma formalizes the fact that the only heap addresses accessed
during a reduction step are the ones present in the initial and final live address
sets. We can formally prove this lemma by an induction over the rules.

Theorem 2 (Similarity preserved under reduction). For all well-formed
program states S1, S2 and S′

1, S1 ∼ S2 ∧ S1 → S′
1 ⇒ ∃S′

2. S2 → S′
2 ∧ S′

1 ∼ S′
2.

We can intuitively understand this theorem by observing that if the reduction
of a term does not involve allocation of any new heap addresses then the only
addresses that can potentially be accessed during the reduction would be the
ones present in the live heap address set. When the program states are similar,
then under a certain renaming the two states would have the same live heap
address sets . As a result the states obtained after reduction would also be con-
gruent(under the same renaming function). On the other hand, if the reduction
involves allocation of new heap addresses then we can simply extend the heap
address renaming function by creating a map from the newly allocated addresses

322 S. Maffeis, J.C. Mitchell, and A. Taly

in the first heap (H ′
1) to the newly allocated addresses in the second heap (H ′

2).
Thus state similarity would be preserved in both cases.

A consequence of Theorem 2 is that we can build a simple mark and sweep
type garbage collector for JavaScript. For any program state S = (H, l, t), we
mark all the heap addresses that are reachable from Δ(S). We modify the heap
H to H ′ by freeing up all unmarked addresses and obtain the new program state
S′ = (H ′, l, t). It is easy to show that S′ ∼ S. Hence by Theorem 2, a reduction
trace starting from t, in a system with garbage collection, would be similar to
the one obtained without garbage collection. In other words, garbage collection
does not affect the semantics of programs.

4 Related Work

The JavaScript approach to objects is based on Self [23] and departs from the
foundational object calculi proposed in the 1990s, e.g., [5,9,16]. Previous foun-
dational studies include operational semantics for a subset of JavaScript [11]
and formal properties of subsets of JavaScript [7,19,22,21]. Our aim is different
from these previous efforts because we address the full ECMA Standard lan-
guage (with provisions for variants introduced in different browsers). We believe
a comprehensive treatment is important for analyzing existing code and code
transformation methods [1,2]. In addition, when analyzing JavaScript security, it
is important to consider attacks that could be created using arbitrary JavaScript,
as opposed to some subset used to develop the trusted application. Some work
on containing the effects of malicious JavaScript include [18,24]. Future versions
of JavaScript and ECMAScript are documented in [13,12].

In the remainder of this section, we compare our work to the formalizations
proposed by Thiemann [22] and Giannini [7] and comment on the extent to which
formal properties they establish for subsets of JavaScript can be generalized to
the full language.

Giannini et al. [7] formalize a small subset of JavaScript and give a static
type system that prevents run-time typing errors. The subset is non-trivial, as it
includes dynamic addition of properties to objects, and constructor functions to
create objects. However the subset also lacks important features such as object
prototyping, functions as objects, statements such as with, try−catch, for−in, and
native functions and objects. This leads to substantial simplifications in their
semantics, relative to ours. For example, function definitions are stored in a
separate data structure rather than in the appropriate scope object, so there is
no scope-chain-based resolution of global variables appearing inside a function
body. Their simplification also makes it possible to define a sound type system
that does not appear to extend to full JavaScript, as further discussed below.

Thiemann [22] proposes a type system for a larger subset of JavaScript than
[7], as it also includes function expressions, function objects, and object literals.
The type system associates type signatures with objects and functions and iden-
tifies suspicious type conversions. However, Thiemann’s subset still does not all-
low object prototyping, the with and the try−catch statements, or subtle features

An Operational Semantics for JavaScript 323

of the language such as property attributes or arbitrary variable declarations
in the body of a function. As we showed in section 2, these non-trivial (and
non-intuitive) aspects of JavaScript make static analysis of arbitrary JavaScript
code very difficult.

The substantial semantic difference between the subsets covered in [7,22]
and full JavaScript is illustrated by the fact that: (i) Programs that are well-
typed in the proposed subsets may lead to type errors when executed using
the complete semantics, and (ii) Programs that do not lead to a type error
when executed using the complete semantics may be considered ill-typed un-
necessarily by the proposed type systems. The first point is demonstrated by
var x = ”a”; x.length = function(){ }; x.length(), which is allowed and well-typed
by [22]. However it leads to a type error because although the type system con-
siders implicit type conversion of the string x to a wrapped string object, it does
not consider the prototyping mechanism and attributes for properties. Since
property length of String.prototype has the ReadOnly attribute, the assignment in
the second statement fails silently and thus the method call in the third state-
ment leads to a type error. An example demonstrating the second point above
is function f(){return o.g();}; result = f(), which is allowed by [7,22]. If method g
is not present in the object o then both type systems consider the expression
result = f() ill-typed. However g could be present as a method in the one of the
ancestoral prototypes of o, in which case the expression will not lead to a type er-
ror. Because object prototyping is the main inheritance mechanism in JavaScript
and it is pervasive in almost all real world JavaScript, we believe that a type
system that does not consider the effects of prototypes will not be useful without
further extension.

5 Conclusions

In this paper, we describe a structured operational semantics for the ECMA-262
standard [14] language. The semantics has two main parts: one-step evaluation
relations for the three main syntactic categories of the language, and definitions
for all of the native objects that are provided by an implementation. In the
process of developing the semantics, we examined a number of perplexing (to
us) JavaScript program situations and experimented with a number of imple-
mentations. To ensure accuracy of our semantics, we structured many clauses
after the ECMA standard [14]. In a revision of our semantics, it would be possi-
ble to depart from the structure of the informal ECMA standard and make the
semantics more concise, using many possible optimization to reduce its appar-
ent complexity. As a validation of the semantics we proved a soundness theorem,
a characterization of the reachable portion of the heap, and some equivalences
between JavaScript programs.

In ongoing work, we are using this JavaScript semantics to analyze meth-
ods for determining isolation between embedded third-party JavaScript, such as
embedded advertisements provided to web publishers through advertising net-
works, and the hosting content. In particular, we are studying at YAHOO!’s

324 S. Maffeis, J.C. Mitchell, and A. Taly

ADsafe proposal [1] for safe online advertisements, the BeamAuth [6] authen-
tication bookmarklet that relies on isolation between JavaScript on a page and
JavaScript contained in a browser bookmark, Google’s Caja effort [2] to provide
code isloation by JavaScript rewriting, and FBJS [20], the subset of JavaScript
used for writing FaceBook applications. While trying to formally prove prop-
erties of these mechanisms, we have already found violations of the intended
security policies of two of them [15].

Acknowledgments. Sergio Maffeis is supported by EPSRC grant EP/E044956
/1. This work was done while the first author was visiting Stanford University,
whose hospitality is gratefully acknowledged. Mitchell and Taly acknowledge the
support of the National Science Foundation.

References

1. AdSafe: Making JavaScript safe for advertising, http://www.adsafe.org/
2. Google-Caja, A.: source-to-source translator for securing JavaScript-based Web,

http://code.google.com/p/google-caja/
3. Jscript (Windows Script Technologies),

http://msdn2.microsoft.com/en-us/library/hbxc2t98.aspx
4. Rhino: Javascript for Java, http://www.mozilla.org/rhino/
5. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Heidelberg (1996)
6. Adida, B.: BeamAuth: two-factor Web authentication with a bookmark. In: ACM

Computer and Communications Security, pp. 48–57 (2007)
7. Anderson, C., Giannini, P., Drossopoulou, S.: Towards type inference for

JavaScript. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 428–452.
Springer, Heidelberg (2005)

8. Eich, B.: Javascript at ten years,
http://www.mozilla.org/js/language/ICFP-Keynote.ppt

9. Fisher, K., Honsell, F., Mitchell, J.C.: A lambda calculus of objects and method
specialization. Nordic J. Computing (formerly BIT) 1, 3–37 (1994)

10. Flanagan, D.: JavaScript: The Definitive Guide. O’Reilly, Sebastopol (2006),
http://proquest.safaribooksonline.com/0596101996

11. Herman, D.: Classic JavaScript,
http://www.ccs.neu.edu/home/dherman/javascript/

12. Herman, D., Flanagan, C.: Status report: specifying JavaScript with ML. In: ML
2007: Proc. Workshop on ML, pp. 47–52 (2007)

13. ECMA International. ECMAScript 4, http://www.ecmascript.org
14. ECMA International. ECMAScript language specification. stardard ECMA-262,

3rd Edition (1999),
http://www.ecma-international.org/publications/ECMA-ST/Ecma-262.pdf

15. Maffeis, S., Mitchell, J., Taly, A.: Complete ECMA 262-3 operational semantics and
long version of present paper. Semantics: http://jssec.net/semantics/ Paper:
http://jssec.net/semantics/

16. Mitchell, J.C.: Toward a typed foundation for method specialization and inheri-
tance. In: POPL 1990, pp. 109–124 (1990)

17. Mozilla. Spidermonkey (javascript-c) engine,
http://www.mozilla.org/js/spidermonkey/

http://www.adsafe.org/
http://code.google.com/p/google-caja/
http://msdn2.microsoft.com/en-us/library/hbxc2t98.aspx
http://www.mozilla.org/rhino/
http://www.mozilla.org/js/language/ICFP-Keynote.ppt
http://proquest.safaribooksonline.com/0596101996
http://www.ccs.neu.edu/home/dherman/javascript/
http://www.ecmascript.org
http://www.ecma-international.org/publications/ECMA-ST/Ecma-262.pdf
http://jssec.net/semantics/
http://jssec.net/semantics/
http://www.mozilla.org/js/spidermonkey/

An Operational Semantics for JavaScript 325

18. Reis, C., Dunagan, J., Wang, H., Dubrovsky, O., Esmeir, S.: Browsershield:
Vulnerability-driven filtering of dynamic HTML. ACM Transactions on the
Web 1(3) (2007)

19. Siek, J., Taha, W.: Gradual typing for objects. In: Ernst, E. (ed.) ECOOP 2007.
LNCS, vol. 4609, pp. 2–27. Springer, Heidelberg (2007)

20. The FaceBook Team. FBJS,
http://wiki.developers.facebook.com/index.php/FBJS

21. Thiemann, P.: Towards a type system for analyzing JavaScript programs. In: Sagiv,
M. (ed.) ESOP 2005, vol. 3444, pp. 408–422. Springer, Heidelberg (2005)

22. Thiemann, P.: A type safe DOM api. In: Bierman, G., Koch, C. (eds.) DBPL 2005.
LNCS, vol. 3774, pp. 169–183. Springer, Heidelberg (2005)

23. Ungar, D., Smith, R.B.: Self: The power of simplicity. In: Proc. OOPSLA, vol. 22,
pp. 227–242 (1987)

24. Yu, D., Chander, A., Islam, N., Serikov, I.: JavaScript instrumentation for browser
security. In: ACM POPL, pp. 237–249 (2007)

http://wiki.developers.facebook.com/index.php/FBJS

JavaScript Instrumentation in Practice

Haruka Kikuchi1, Dachuan Yu2, Ajay Chander2, Hiroshi Inamura2,
and Igor Serikov2

1 NTT DOCOMO, Inc.
2 DOCOMO Communications Laboratories USA, Inc.

Abstract. JavaScript has been exploited to launch various browser-based attacks.
Our previous work proposed a theoretical framework applying policy-based code
instrumentation to JavaScript. This paper further reports our experience carrying
out the theory in practice. Specifically, we discuss how the instrumentation is per-
formed on various JavaScript and HTML syntactic constructs, present a new pol-
icy construction method for facilitating the creation and compilation of security
policies, and document various practical difficulties arose during our prototyping.
Our prototype currently works with several different web browsers, including Sa-
fari Mobile running on iPhones. We report our results based on experiments using
representative real-world web applications.

1 Introduction

The success of the Web can be contributed partly to the use of client-side scripting
languages, such as JavaScript [3]. Programs in JavaScript are deployed in HTML doc-
uments. They are interpreted by web browsers on the client machine, helping to make
web pages richer, more dynamic, and more “intelligent.”

As a form of mobile code, JavaScript programs are often provided by parties not
trusted by web users, and their execution on the client systems raises security concerns.
The extent of the problem [2,14] ranges from benign annoyances (e.g., popping up ad-
vertisements, altering browser configurations) to serious attacks (e.g., XSS, phishing).

In previous work [19], we formally studied the application of program instrumen-
tation to enforcing security policies on JavaScript programs. Specifically, we clarified
the execution model of JavaScript (particularly, higher-order script—script that gener-
ates other script at runtime), presented its instrumentation as a set of syntactic rewriting
rules, and applied edit automata [12] as a framework of policy management. Focusing
on articulating the generic instrumentation techniques and proving their correctness,
the previous work is necessarily abstract on several implementation aspects, and can be
realized differently when facing different tradeoffs. For example, among other possibil-
ities, the instrumentation process can be carried out either by a browser on the client
machine or by a proxy sitting on the network gateway.

In this paper, we discuss the practical application of the above theory to real-world
scenarios. Specifically, we have completed a relatively mature prototype following a
proxy-based architecture. In this prototype, both the instrumentation process and the
policy input are managed by a proxy program, which is situated on the network gateway
(or an enterprise firewall) and is maintained separately from the JavaScript programs of

G. Ramalingam (Ed.): APLAS 2008, LNCS 5356, pp. 326–341, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

JavaScript Instrumentation in Practice 327

concern. The browser is set up to consult the proxy for all incoming traffic, and the
proxy sends instrumented JavaScript programs (and HTML documents) to the browser.

Such an architecture provides centralized interposition and policy management
through the proxy, thus enabling transparent policy creation and update for the end user.
It requires no change to the browser implementation; therefore, it is naturally applicable
to different browsers, modulo a few browser-specific implementation issues. As part of
our experiments, we applied our proxy to the Safari Mobile browser on an iPhone [1].
The instrumentation and security protection worked painlessly, even though no soft-
ware or browser plug-in can be installed on an iPhone. Furthermore, the proxy-based
architecture poses minimal computation requirement on the client device for securely
rendering web pages (as shown in our experiments, some popular web pages contain
several hundred kilobytes of JavaScript code; their instrumentation takes a nontrivial
amount of time). It is thus suitable for deployment with the use of mobile browsers.

We have successfully run our prototype with several browsers: Firefox, Konqueror,
Opera, Safari, and Safari Mobile on an iPhone [1]. IE is currently only partially sup-
ported, because its behaviors on certain JavaScript code are significantly different than
those of the other tested browsers. For the experiments, we applied a selected set of poli-
cies, which triggered the instrumentation of a variety of JavaScript constructs. We hand-
picked some representative web pages as the instrumentation target. Measurements are
made on both the proxy overhead and the client overhead. The initial numbers matched
our expectations, noting that our prototype had not been optimized for performance.

2 Background

2.1 Previously: A Theoretical Framework

The generic theoretical framework for JavaScript instrumentation is illustrated in Fig-
ure 1 (reused from previous work [19]). Beyond the regular JavaScript interpreter pro-
vided in a browser, three modules are introduced to carry out the instrumentation and
policy enforcement. A rewriting module ι serves as a proxy between the browser and
the network traffic. Any incoming HTML document D, possibly with JavaScript code
embedded, must go through the rewriting module first before reaching the browser.

The rewriting module identifies security-relevant actions A out of the document D
and produces instrumented code check(A) that monitors and confines the execution

A′

instr(E)

JavaScript
Interpreter
(Browser)

Special
Instruction

(instr)

ι(D) Dv

check(A)

D′

Rewriting
Module

(ι)

Policy
Module

(Π)

ι(D′)
ι(D′)

D

Fig. 1. JavaScript instrumentation for browser security

328 H. Kikuchi et al.

send-to-any
send-to-
origin

readCookie

loadURL(l)/safe-loadURL(l)

Fig. 2. Example edit automaton for a cookie policy

of A. This part is not fundamentally different from conventional instrumentation tech-
niques [18,4]. However, this alone is not sufficient for securing JavaScript code, because
of the existence of higher-order script (e.g., document.write(E), which evaluates E
and use the result as part of the HTML document to be rendered by the browser)—
some code fragments (e.g., those embedded in the value of E) may not be available for
inspection and instrumentation until at runtime. To address this, the rewriting module
wraps higher-order script (e.g., E) inside a special instruction (e.g., instr(E)), which
essentially marks it to be instrumented on demand at runtime.

With the rewriting module as a proxy, the browser receives an instrumented document
ι(D) for rendering. The rendering proceeds normally using a JavaScript interpreter, un-
til either of the two special calls inserted by the rewriting module is encountered. Upon
check(A), the browser consults the policy module Π , which is responsible for main-
taining some internal state used for security monitoring, and for providing a replacement
action A′ (a secured version of A) for execution. Upon instr(E), the implementation
of the special instruction instr will evaluate E to D′ and invoke the rewriting module
at runtime to perform the necessary rewriting on higher-order script. The instrumented
ι(D′) will then be sent back to the browser for rendering, possibly with further invoca-
tions of the policy module and special instruction as needed.

The policy module Π essentially manages an edit automaton [12] at runtime for
security enforcement. A simple policy is illustrated in Figure 2, which restricts URL
loading to prevent potential information leak after cookie is read. Following this, the
policy module updates the automaton state based on the input actions A that it re-
ceives through the policy interface check(A), and produces output actions A′ based
on the replacement actions suggested by the automaton. For example, if the current
state is send-to-origin, and the input action is loadURL(l), then the current
state remains unchanged, and the output action becomes safe-loadURL(l), which
performs necessary security checks and user promptings before loading a web page.

2.2 This Paper: A Proxy-Centric Realization

Focusing on the formal aspects and correctness of policy-based instrumentation on
higher-order script, the previous work is largely abstract on the implementation aspects.
Subsequently, we have conducted thorough prototyping and experiments on the practi-
cal realization of the formal theory. Several interesting topics were identified during the
process, which we believe will serve as useful contributions to related studies.

Overall, we have opted for a proxy-centric realization for its browser independence
and low computation overhead on client devices. This can be viewed as an instantia-
tion of the framework in Figure 1 for a specific usage scenario—the use with multiple

JavaScript Instrumentation in Practice 329

JavaScript
Rewriter

HTML
Rewriter

Instrumentation
Proxy

Rewriting
Rules

loadURL(u);
...
write(s);

loadURL(l);
write(e);
...

Security Policies
(Edit Automata

in XML)

Instantiation

Policy
Compiler

Original
Document

Instrumented
Document

Runtime-Generated
Document

safe-loadURL(l);
instr(e);
...

function safe-loadURL(x) {
... code for

policy enforcement ...
}
function instr(x) {
... code for

invoking proxy ...
}
...

Security Module

Rewritten Code

Translation

Policy Templates

HTML &
JavaScript
Interpreter

Client
Browser

Co
de

 G
en

.

Pa
rs

er

In
st

an
ti

at
io

n

Rewriting
Templates

Fig. 3. A proxy-centric realization

mobile browsers. The instantiated architecture is more accurately depicted in Figure 3.
The basic requirement here is that the proxy takes care of the rewriting and policy in-
put, without changing the browser implementation. As a result, the tasks of the policy
module Π and the special instruction instr in Figure 1 have to be carried out in part
by regular JavaScript code (the Security Module in Figure 3). Such JavaScript code is
inserted into the HTML document by the proxy based on some policy input.

The rewriting process is carried out on the proxy using a parser, two rewriters, and a
code generator. The rewriters work by manipulating abstract syntax trees (ASTs) pro-
duced by the parser. Transformed ASTs are converted into HTML and JavaScript by
the code generator before fed to the browser that originally requested the web pages.

The rewriting rules direct the rewriters to put in different code for the security module
when addressing different policies. On the one hand, the rewriters need to know what
syntactic constructs to look for in the code and how to rewrite them. Therefore, they
require low-level policies to work with syntactic patterns. On the other hand, human
policy designers should think in terms of high-level actions and edit automata, not low-
level syntactic details. We use a policy compiler to bridge this gap, which is a stand-
alone program that can be implemented in any language.

We now summarize three major technical aspects of this proxy-centric realization.
These will be expanded upon in the next three sections, respectively.

The first and foremost challenge is raised by the flexibility of the JavaScript lan-
guage. Much effort is devoted to identifying security-relevant actions out of JavaScript
code—there are many different ways of carrying out a certain action, hence many dif-
ferent syntactic constructs to inspect. We introduce a notion of rewriting templates to
help managing this. Policy designers instantiate rewriting templates to rewriting rules,
which in turn guides the instrumentation. This allows us to stick to the basic design
without being distracted by syntactic details.

330 H. Kikuchi et al.

Next, the rewriting templates are still too low-level to manage. In contrast, the theo-
retical framework used edit automata for policy management. We support edit automata
using an XML representation, and compile them into rewriting rules. As a result, we can
handle all policies allowed by the theoretical framework. Nonetheless, edit automata
are general-purpose, and browser-based policies could benefit further from domain-
specific abstractions. We have identified some useful patterns of policies during our
experiments. We organize these patterns as policy templates, which are essentially tem-
plates of specialized edit automata. We again use an XML representation for policy
templates, which enables a natural composition of simple templates to form compound
ones.

Finally, using a proxy, we avoid changing the browser implementation. This provides
platform independence and reduces the computation overhead on the client devices. As
a tradeoff, there are some other difficulties. In particular, the interfaces to the special
instruction instr and the policy module Π have to be implemented in regular JavaScript
code and inserted into the HTML document during instrumentation. Such code must
be able to call the proxy at runtime, interact with the user in friendly and meaningful
ways, and be protected from malicious modifications. Furthermore, different browsers
sometimes behave differently on the same JavaScript code, an incompatibility that we
have to address carefully during instrumentation.

3 Rewriting JavaScript and HTML

We now describe the details of the instrumentation, which is carried out by transform-
ing abstract syntax trees (ASTs). Specifically, the proxy identifies pieces of the AST
to be rewritten, and replaces them with new ones that enforce the desired policies. Al-
though a clean process in Figure 1, action replacement in the actual JavaScript language
raises interesting issues due to the flexible and dynamic nature of the language. Specif-
ically, actions A in Figure 1 exhibit themselves in JavaScript and HTML through var-
ious syntactic forms. Some common examples include property access, method calls,
and event handlers. Therefore, upon different syntactic categories, the instrumentation
should produce different target code, as opposed to the uniform check(A). We specify
what syntactic constructs to rewrite and how to rewrite them using rewriting rules.

We summarize commonly used rewriting rules for various syntactic constructs in
Table 1 as rewriting templates. The first column shows the template names and para-
meters. The second shows the corresponding syntactic forms of the code pieces to be
rewritten (which correspond to actions A). The third shows the target code pieces used
to replace the original ones (which correspond to check(A)). These templates are to be
instantiated using relevant JavaScript entities. Examples are given in the last column.

For example, the first row (Get, obj, prop) specifies how to rewrite syntactic con-
structs of reading properties (both fields and methods). Get is the name of the template,
and obj and prop are parameters to be instantiated with the actual object and property.
Two sample instantiations are given. The first is on the field access document.cookie.
Based on (Get, document, cookie), the JavaScript rewriter will look for all AST
pieces of property access (i.e., those of the shape obj.prop and obj[“prop”]), and re-
place them with a call to a redirector function sec.GetProp. Here sec is a JavaScript

JavaScript Instrumentation in Practice 331

Table 1. Rewriting templates

Rewriting templates Sample Code patterns Rewritten code (redirectors) Sample instantiation

(Get, obj, prop) obj.prop
obj[“prop”] sec.GetProp(obj, prop) (Get, document, cookie)

(Get, window, alert)

(Call, obj, meth) obj.meth(E, . . .)
obj[“meth”](E, . . .) sec.CallMeth(obj, meth, Ei, . . .) (Call, window, open)

(GetD, dprop) dprop sec.GetDProp(dprop) (GetD, location)

(CallD, dmeth) dmeth(E, . . .)
sec.isEval(dmeth) ?
eval(sec.instrument(Ei, . . .)) :
sec.CallDMeth(dmeth, Ei, . . .)

(CallD, open)

(Set, obj, prop)

obj.prop = E
obj[“prop”] = E
obj.prop += E
obj[“prop”] += E

sec.SetProp(obj, prop, Ei)

sec.SetPropPlus(obj, prop, Ei)

(Set, document, cookie)
(Set, window, alert)

(SetD, dprop) dprop = E
dprop += E

sec.SetDProp(dprop, Ei)
sec.SetDPropPlus(dprop, Ei)

(SetD, location)
(SetD, open)

(Event, tag, attr) <tag attr=“E”> <tag attr=“sec.Event(this,Ei)”> (Event, button, onclick)

(FSrc)

<img src=“U”
onerror=“E”>

<iframe src=“U”
onload=“E”>

<img src=“ ” onerror=“setAttribute(onerror, “Ei”);
sec.FSimg(this, U)”>

<iframe src=“ ” onload=“setAttribute(onload, “Ei”);
sec.FSiframe(this, U)”>

object inserted by our proxy; it corresponds to the “Security Module” in Figure 3.
Among other tasks, sec maintains a list of private references to relevant JavaScript
entities, such as document.cookie. The body of the redirector above will inspect
the parameters obj and prop as needed to see if they represent document.cookie. If
yes, the redirector proceeds to carry out a replacement action supplied during template
instantiation.

The implementation of the replacement action is the topic of Section 4. For now, it
suffices to understand the replacement action simply as JavaScript code. It can perform
computation and analysis on the arguments of the redirector, provide helpful promptings
to the user, and/or carry out other relevant tasks. One typical task that it carries out is to
advance the monitoring state of the edit automaton used by the security policy.

The second example of the Get category is on accessing window.alert. Note that
JavaScript allows a method to be accessed in the same way as a field. For example,
var f = window.alert assigns the method window.alert to a variable f. This is han-
dled during rewriting using the same Get category as described above, and the body of
sec.GetProp can monitor such access and implement related policies (e.g., to replace
the access to window.alert with the access to an instrumented version sec.alert).

The remainder of the table follows the same intuition. (Call, obj, meth) tells the
rewriter to look for syntactic categories relevant to method calls (e.g., obj.prop(E, . . .),
obj[”prop”](E, . . .)) and produce a call to a redirector sec.CallMeth. The argument
E to the method invocation is rewritten to Ei following the same set of rewriting rules
(the same also applies to other cases in the table). (GetD, dprop) and (CallD, dmeth)
are for accessing default properties and calling default methods. (Set, obj, prop) and
(SetD, dprop) are for setting object properties and default properties.

Sometimes relevant actions are coded as event handlers of certain HTML tags. For
example, the code <button onclick = “alert()”> raises an alert window whenever
the button is clicked. The template (Event, tag, attr) captures such event handling con-
structs. The redirector sec.Event takes the instrumented expression Ei and the parent
object this of the attribute as arguments. The exact implementation of the redirector

332 H. Kikuchi et al.

depends on the security policy. Typically, the internal state of the policy edit automaton
is updated while entering and exiting the corresponding event.

The last template (FSrc) is on the loading of external resources, such as those initi-
ated by and <iframe src=“E”>. Instead of directly loading such
a resource, we use an event handler with a redirector for interposition. The src attribute
is modified from the original URL U to a space character to trigger immediately a corre-
sponding event (e.g., onerror for img, onload for iframe). In the rewritten event han-
dler, after binding the original event handler (rewritten from E to Ei) back to the event
for execution later, we call a redirector function (e.g., sec.FSimg, sec.FSiframe). The
redirector implementation depends on the policy. For example, it may check the target
domain of the URL U to identify where the HTTP request is sent, perform other URL
filtering, and/or present user prompting. In general, this rule is also applicable to some
other cases of HTTP requests (e.g.,), except different event handlers
(e.g., onclick) and redirectors (e.g., sec.FShref) are used accordingly.

Although designed mainly for rewriting actions (A), the rewriting templates are also
applicable for handling higher-order script. For example, document.write(E) should
be rewritten using sec.instrument (the realization of the instr of Figure 1). This
can be represented using the Call template as (Call, document, write). In our pro-
totype, however, the handling of higher-order script is directly coded in the rewriter for
efficiency, since it is always performed regardless of what the security policy is.

There are some other cases where built-in rewriting rules are applied. Selected ones
are given in the companion technical report [9]. Most of the cases are designed to handle
script that is not available statically, but rather generated or loaded at runtime. Others
are for facilitating error handling and instrumentation transparency.

In summary, the proxy performs rewriting by syntax-directed pattern matching on
ASTs, and redirectors are used to implement appropriate interposition logic and se-
curity polices. Built-in rewriting rules are always applied, but a policy designer may
customize action replacement using rewriting templates. If the same rewriting template
is instantiated multiple times on different entities, a single rewriting rule with a merged
function body for the redirector is produced. The proxy only rewrites cases described by
the given rewriting rules. If a certain security policy only uses one rewriting template
(e.g., get, possibly with multiple instantiations), then only one rewriting rule is pro-
duced, and only the corresponding syntactic constructs (e.g., obj.prop, obj[“prop”])
are rewritten. This avoids unnecessary rewriting and execution overhead.

4 Policy Writing and Management

The rewriting templates and their redirector code in Section 3 serve as a low-level pol-
icy mechanism. It allows policy designers to focus on the abstract notion of “actions”
without being distracted by the idiosyncrasies of JavaScript syntax. However, it pro-
vides little help on encoding edit automata. If used for construction, a policy designer
needs to implement states and transitions of policy automata in the redirectors.

We now discuss a more manageable framework that directly accommodates the no-
tion of edit automata, allowing policy designers to focus on implementing replacement
actions (e.g., insertion of runtime checks). The key of this framework is the policy com-
piler in Figure 3, a stand-alone program compiling policies into rewriting rules off-line.

JavaScript Instrumentation in Practice 333

some_state

(Get, obj, prop) / ... filtering code... <template name = “ReadAccessFiltering”>
<object> obj </object>
<property> prop </property>
<states> some state </states>
<replacement>

. . . filtering code . . .
</replacement>

</template>

Fig. 4. Read access filtering

some_state

(Call, obj, meth) / ... filtering code... <template name = “CallFiltering”>
<object> obj </object>
<property> meth </property>
<states> some state </states>
<replacement>

. . . filtering code . . .
</replacement>

</template>

Fig. 5. Call filtering

s1
(not accessed)

s2
(accessed)

(Set, obj, prop)
<template name = “WriteAccessTracking”>

<object> obj </object>
<property> prop </property>
<states> s1 , s2 </states>

</template>

Fig. 6. Write access tracking

In essence, an edit automaton concerns a set of states (with one as an initial state),
a set of actions, and a set of state transitions. In any state, an input action determines
which transition to take and which output action to produce. We use an XML file to
describe all these aspects for an edit automaton as a security policy. Due to space con-
straints, we refer interested readers to the companion technical report [9] for the details
of the XML representation and its compilation to rewriting rules.

During our policy experiments, we identified several commonly used patterns of edit
automata. We organize these as policy templates. Instead of always describing an edit
automaton from scratch, a policy designer may instantiate a relevant template to quickly
obtain a useful policy. We illustrate this with examples.

One pattern is on filtering read access to object properties (both fields and methods).
The (fragment of) edit automaton is shown in Figure 4, together with an XML represen-
tation. Note that this is essentially a template to be instantiated using a specific object,
property, state, and filtering code. It captures a common pattern where the property
access is filtered without applying any state transition.

One may also filter method calls in a similar pattern (Figure 5). This is typically used
to insert security checks for method calls. Another pattern is on tracking write access
(Figure 6). This tracks the execution of property writing by transitioning the state of the
automaton. The replacement action is the same as the input action. The corresponding
policy template specifies two states, but no replacement action.

334 H. Kikuchi et al.

s1
(not accessed)

s2
(accessed)(Set, window, alert)

(Call, window, alert) / ... filtering code...
(Get, window, alert) / ... filtering code...

<template name = ”FuncReplacement”>
<object> obj </object>
<property> prop </property>
<states> s1 , s2 </states>
<replacementAction>

. . . filtering code . . .
< /replacementAction>

</template>

Fig. 7. Function replacement

We have implemented a total of 14 policy templates, including four on tracking
property access (object and default properties; read and write access), four on filtering
property access (object and default properties; read and write access), four on method
calls (tracking and filtering; object and default methods), one on tracking inlined event
handlers (e.g., <body onunload=“window.open(); ”>), and one on filtering implicit
HTTP requests (e.g., images and inlined frames). The policy compiler expands instan-
tiated policy templates into edit automata, and further compilation follows.

The above templates each describe a particular aspect of security issue. It is often the
case that multiple templates are used together to enforce a useful policy. As an example,
consider a simple policy of adding a prefix “Security Module : ” to the alert text
produced by window.alert. Naturally, we implement a replacement action myAlert
as follows: function myAlert(s) { window.alert(“Security Module : ” + s); } .

This obviously requires some filtering on read access and calls to window.alert, as
illustrated in Figures 4 and 5. For example, the former is applicable to rewriting code
from f = window.alert to f = myAlert, and the latter is applicable to rewriting code
from window.alert(“Hello”) to myAlert(“Hello”).

An additional complication is that JavaScript code in the incoming document may
choose to rewrite window.alert for other functionalities:

window.alert = function(s) {};
window.alert(”a debugging message to be ignored”);

Here, window.alert is redefined as an “ignore” function. It would be undesirable to
perform the same filtering after the redefinition. Therefore, a more practical policy is to
filter read access and calls to window.alert only if it has not been redefined.1 This can
be addressed using write access tracking as in Figure 6.

A compound edit automaton can be obtained by combining read access filtering,
call filtering, and write access tracking, as shown on the left side of Figure 7. In our
XML representation, this can be achieved using a direct combination of the three in-
stantiated templates. This is a very common pattern, because any methods could be
redefined in incoming JavaScript code. Therefore, we also support a compound tem-
plate FuncReplacement (shown on the right side of Figure 7) to directly represent this
pattern. The actual policy on window.alert can then be obtained by instantiating this
compound template with the corresponding parameters.

1 Readers might wonder if this could be exploited to circumvent the instrumentation. The answer
is no, because the function body of the new definition would be instrumented as usual.

JavaScript Instrumentation in Practice 335

We have also implemented some other compound templates to represent common
ways of template composition. Examples include one on filtering default function calls
up to redefinition and one on tracking the invocation of global event handlers.

As a summary, instantiated policy templates are expanded into edit automata, which
in turn are compiled into rewriting rules and redirectors. The XML-based represen-
tation supports arbitrary edit automata for expressiveness, and some domain-specific
templates are introduced to ease the task of policy construction.

5 Runtime Interaction with Proxy and with Client

5.1 Structure of Instrumented Documents

We have described two stand-alone components—one is the proxy for the instrumenta-
tion of incoming contents at runtime, the other is a policy compiler compiling high-level
security policies (edit automata) into low-level rewriting rules off-line. These two com-
ponents collaborate to complete the instrumentation tasks.

The structure of an instrumented document is shown in Figure 8. Based on the rewrit-
ing rules, the proxy replaces relevant syntactic constructs in the incoming content with
calls to redirectors. The proxy also inserts a security module, which contains the real-
ization of the special instruction instr and policy module Π in Figure 1. Specifically,
instr exhibits itself as a utility function sec.instrument (more in Section 5.2), and
the policy module Π is interfaced through the redirectors. The redirectors call certain
transition functions for maintaining edit automata at runtime, and invoke some replace-
ment actions provided by policy designers. These functions may also refer to other util-
ity functions as needed. We will discuss one such utility function on user notification in
Section 5.3. Other commonly used utility functions include those for IP normalization,
URL filtering, and policy object embedding and manipulation.

Since the security module is realized as regular JavaScript code, it resides in the same
execution environment as incoming contents, and thus must be protected from malicious
exploits. For example, malicious JavaScript code may modify the implementation of
the security module by overwriting the functions of security checks. We organize the
security module in a designated object named sec, and rename all other objects that
could cause conflicts (i.e., changing sec into sec, sec into sec, and so on).

Although sec is usually inserted by the proxy during rewriting, sometimes a window
could be created without going through the proxy at all. For example, the incoming

Security Module Instrumented Document

Replacement?Actions

Transition?Functions

Redirector?Functions

Utility?Functions

Security?Module

Rewritten?Code

(relevant?actions
replaced?with

various?redirectors)

Fig. 8. Structure of an instrumented document

336 H. Kikuchi et al.

content may use window.open() to open up an empty new window without triggering
the proxy. Once the window is open, its content could be updated by the JavaScript code
in the parent window. In response, we explicitly load a sec object into the empty new
window when needed, so as to correctly enforce its future behaviors.

Another potential concern is that the incoming code could modify the call sites to the
redirectors through JavaScript’s flexible reflection mechanisms. Suppose the rewritten
document contains a node that calls sec.GetProp. Using features such as innerHTML,
incoming script could attempt to overwrite the node with some different code, such
as exploit. This is in fact one form of higher-order script, and it is correctly han-
dled, provably [19], following the theoretical framework of Figure 1. In particular, the
runtime-generated script exploit will be sent back to the proxy for further instrumen-
tation before executed; therefore, it cannot circumvent the security policy. In essence,
the effect of using the runtime-generated code exploit as above is not different from
statically using exploit in the original content directly.

Finally, the proxy-centric architecture is browser-independent in theory, and the proxy
should work for all browsers. In practice, however, different browsers sometimes behave
differently when rendering the same content, due to either implementation flaws or am-
biguity and incompleteness of the language specification [3] (e.g., some behaviors are
undefined). The companion technical report provides more details on this aspect.

5.2 Calling Proxy at Runtime

The utility function instrument needs to call the proxy at runtime to handle higher-
order script. Therefore, we need to invoke the rewriters on the proxy from within the
JavaScript code on the client. This is done with help of the XMLHttpRequestobject [17]
(or ActiveX in IE), which allows us to send runtime-generated JavaScript/HTML code
to the proxy and receive their rewritten result.

An interesting subtlety is that XMLHttpRequest is restricted to communicate only
with servers that reside in the same domain as the origin of the current document. We
use a specially encoded HTTP request, targeting the host of the current document, as
the argument to XMLHttpRequest. Since all HTTP requests go through the proxy, the
proxy is able to intercept relevant requests based on the path encoding and respond with
the instrumentation result. Some key code, simplified (e.g., the handling of the scope
chain is omitted) for ease of reading, is given below for illustration:
// This function sends str to the proxy for instrumentation.
// str is either HTML or JavaScript code, depending on type.
function instrument (type, str) {
var xhr = new XMLHttpRequest();
var url = “http://” + location.hostname + “/? proxy /”

+ type + “&url = ” + escape(location.href);
try{
xhr.open(”POST”, url, false); // false specifies synchronous communication.
xhr.send(str);

}catch(e){...}
return xhr.responseXML; // The result of the instrumentation is in XML.

}

JavaScript Instrumentation in Practice 337

5.3 User Interaction

Effective user interaction upon a policy violation is important for practical deployment.
A simple notification mechanism such as a dialogue box may not appear sufficiently
friendly or informative to some users. Upon most policy violations, we overlay the noti-
fication messages on top of the rendered content. This better attracts the user’s attention,
disables the user’s access to the problematic content, and allows the user to better assess
the situation by comparing the notification message with the rendered content.

This would be straightforward if we were to change the browser implementation.
However, in the proxy architecture, we need to implement such notification in HTML.
To enable the overlaying effect, we use a combination of JavaScript and Cascading Style
Sheets (CSS) to provide the desired font, color, visibility, opacity and rendering areas.
An interesting issue occurs, however, because such functionality works by directly ma-
nipulating the document tree. This manipulation happens after the entire document is
loaded, e.g., by using an onload event handler. Unfortunately, a policy violation may
occur before the onload event. In this case, we fall back to use either dialogue boxes,
silent suppression, or page redirection based on different code and error scenarios [9].

6 Experiments

We have run our proxy with several browsers: Firefox, Konqueror, Opera, Safari, Sa-
fari Mobile on iPhone, and (partially) IE. During experiments, we manually confirmed
that appropriate error notifications were given upon policy violations. In this section,
we report some performance measurements on well-behaved web pages to demonstrate
the overhead. These measurements were made mainly using Firefox as the rendering
browser, with help of the Firebug [7] add-on. Specifically, we profiled JavaScript execu-
tion in target web pages without counting in certain network-relevant activities, such as
those due to the loading of inlined frames and external JavaScript sources, and the com-
munication through XMLHTTPRequest. Two machines were used in the experiments—
one as the proxy, the other as the client. Both machines have the same configuration:
Intel Pentium 4, clock rate 3.2GHz, 1.5 GB of RAM, running FreeBSD 6.2. Micro-
benchmarks are given in the companion technical report due to space constraints.

6.1 Macro-benchmarks

To learn how the instrumentation works under typical browsing behaviors, we run
macro-benchmarks using a selected set of policies and some popular web applications.

Policy Set.3 We crafted a set of policies to serve together as the policy input to the
proxy, as listed in Table 2. The policies are selected based on both relevance to secu-
rity and coverage of rewriting rules. The Cookie policy warns against the loading of
dynamic foreign links after a cookie access [10], helping preventing XSS. The IFrame
policy warns against foreign links serving as iframe sources, helping preventing a form
of phishing. The IP-URL policy disallows dynamic IP URLs so as to prevent incom-
ing script from analysing the presence of hosts on the local network. The Pop-up policy
sets a limit on the number of pop-up windows, and restricts the behaviors of unwieldy

338 H. Kikuchi et al.

Table 2. Policy set and coverage of rewriting cases

Get Call GetD CallD Set SetD Event FSrc
Cookie X
IFrame X X
IP-URL X X X
Pop-up X X X X X X
URL-Event X X X X

Table 3. Target applications and various performance measurements

DoCoMo LinkedIn WaMu MSN YouTube MSNBC GMap GMail
(corporate) (social) (bank) (portal) (video) (news) (map) (email)

size before (B) 24,433 97,728 156,834 170,927 187,324 404,311 659,512 899,840
size after (B) 28,047 144,646 141,024 252,004 232,606 495,568 959,097 1,483,577
ratio 1.15 1.48 0.90 1.47 1.24 1.23 1.45 1.65

proxy time (ms) 614 1,724 2,453 3,933 4,423 7,290 10,570 14,570

time before (ms) 94 82 553 402 104 2,832 1,369 4,542
time after (ms) 143 143 688 695 167 3,719 1,783 7,390
time ratio 1.52 1.74 1.24 1.73 1.61 1.31 1.30 1.63
time diff (ms) 49 61 135 293 63 887 414 2,848

(e.g., , very small/large, out-of-boundary, and respawning) pop-ups. Finally, the URL-
Event policy inspects certain event handlers (e.g., onclick) to prevent malicious code
from updating target URLs unexpectedly (e.g., redirection to a phishing site after a linked
is clicked). These together cover all the rewriting cases of Table 1.

Target Applications and Overheads. We hand-picked a variety of web pages as the
target applications. These applications and their “code” sizes (for contents that require
rewriting, including JavaScript and various HTML constructs, but excluding images, etc)
before and after the instrumentation are listed in the top portion of Table 3. A variety
of sizes are included, ranging from about 24KB to nearly 900KB. Recall that the proxy
produces rewritten code and inserts a security module. The sizes in Table 3 are about
the rewritten code only. The security module is always the same once we fix the policy
set. For our policy set, the security module is 16,202 bytes; it is automatically cached
by the browser, thus reducing network cost.

The ratio row shows how much the code size grew after instrumentation. In most
cases, the growth was less than 50%. The worst case was the inbox of GMail, where the
nearly 900KB of code grew by 65%. Interestingly, the WaMu code reduced by about 10%
after instrumentation. By inspection, we found out that there was a significant amount
of code commented out in the WaMu page, which was removed by the proxy.

The middle row shows proxy rewriting time, calculated based on the average of 50
runs. The figures are roughly proportional to the code sizes. The proxy spent a few
seconds for smaller applications but over ten seconds for bigger ones. Since there was
usually multiple code chunks processed, the client side perceptual delay was alleviated,
because part of the content had started rendering even before the rewriting was done.

JavaScript Instrumentation in Practice 339

The bottom portion is Firefox interpretation time of the code before and after rewrit-
ing. The ratio and diff columns show the proportional and absolute time increases for
rendering the instrumented code. For most applications, the absolute increase is negli-
gible with respect to user perception. For GMail, the increase is nearly three seconds.

6.2 Safari Mobile on iPhone

We briefly report our experience of web browsing using Safari Mobile on iPhone. Al-
though there has been some fluctuation of traffic in the WLAN, the numbers we collected
still seems useful in describing the perceptual overhead introduced by the proxy.

When directly loading the applications of Table 3 without using the proxy, almost
all pages started showing within 7-12 seconds, and finished loading (as indicated by a
blue progress bar) within 11-24 seconds. The only exception was the inbox of GMail,
which took well over a minute to be rendered. When loading the applications through the
proxy, almost all pages started showing within 9-14 seconds (with exceptions described
below). The finish time of the loading varied from 15 seconds to over a minute.

A few special cases are worth noting. MSNBC used a special page for rendering on
iPhones; it took on average about 11 seconds for the entire page to be loaded without
the proxy, and 15 seconds with the proxy. For GMap, we further experimented with the
address searching functionality. It took on average 17 seconds to render the resulting
map without the proxy, and 34 seconds with the proxy. GMail inbox could not be ren-
dered through the proxy, because the proxy does not currently support the CONNECT
protocol [13] for tunnelling the SSL’ed login information. In contrast, our tested desktop
browsers were set up to use direct connections for SSL’ed contents.

7 Related Work

There has been work applying code instrumentation to the security of machine code
and Java bytecode. SFI [18] prevents access to memory locations outside of predefined
regions. SASI [4] generalizes SFI to enforce security policies specified as security au-
tomata. Program Shepherding [11] restricts execution privileges on the basis of code ori-
gin, monitors control flow transfers to prevent the execution of data or modified code,
and ensures that libraries are entered only through exported entry points. Naccio [6]
enforces policies that place arbitrary constraints on resource manipulations as well as
policies that alter how a program manipulates resources. PoET [5] applies inlined refer-
ence monitors to enforces EM policies [16] on Java bytecode. As pointed out by several
studies [4,15,19], the above work is not directly applicable to JavaScript instrumenta-
tion for user-level security policies. Some notable problems include the pervasive use
of reflection and higher-order script in JavaScript, the lack of flexible and usable policy
management, and the difficulty of interpositioning a prototype-based object model.

A closely related work is BrowserShield [15], which applies runtime instrumentation
to rewrite HTML and JavaScript. Designed mainly as a vulnerability-driven filtering
mechanism to defend browser vulnerabilities prior to patch deployment, the policies
of BrowserShield are mainly about vulnerability signatures, and are written directly as
JavaScript functions. After initial rewriting at an enterprise firewall, rewriting logic is

340 H. Kikuchi et al.

injected into the target web page and executed at browser rendering time. A browser
plug-in is used to enable the parsing and rewriting on the client.

In contrast, we target general user-level policies, and much of our work has been
on practical policy management. Specifically, domain-specific abstractions are used for
policy construction, and a policy compiler is engaged to translate such constructed poli-
cies to syntactic rewriting rules. Different syntactic categories are rewritten based on
different policies. For simple policies, only one or two kinds of syntactic constructs are
rewritten, although a composite policy typically requires the rewriting of more. All the
rewriting (both load-time and run-time) happens on a proxy. The rewritten page interacts
with the proxy at runtime using XMLHttpRequest. No software or plug-in is required
on the client. Therefore, our architecture is naturally applicable to work with multiple
web browsers, even if software/plug-in installation is not allowed.

JavaScript instrumentation has also been applied to the monitoring of client-side be-
haviors of web applications. Specifically, AjaxScope [8] applies on-the-fly instrumenta-
tion of JavaScript code as it is sent to users’ browsers, and provides facilities for reducing
the client-side overhead and giving fine-grained visibility into the code-level behaviors
of the web applications. Targeting the development and improvement of non-malicious
code (e.g., during debugging), AjaxScope does not instrument code that is generated
at runtime (i.e., higher-order script). Therefore, the rewriting is simpler and, as is, not
suitable as a security protection mechanism against malicious code.

8 Conclusion and Future Work

We have presented a JavaScript instrumentation prototype for browser security. We re-
ported experiences on instrumenting various JavaScript constructs, composing user-level
policies, and using a proxy to enable runtime rewriting. Our proxy enables flexible de-
ployment scenarios. It naturally works with multiple browsers, and does not require
software installation on the client. It provides a centralized control point for policy man-
agement, and poses relatively small computation requirement on the client. Although not
optimized, our prototype yields promising results on the feasibility of the approach.

In the future, we plan to conduct more experiments based on real-world web brows-
ing patterns (e.g., top URLs from web searches) and improve the support on popular
browsers (most notably IE). We also plan to study the instrumentation of plug-in con-
tents. For example, VBScript and Flash are both based on the ECMAScript standard [3],
thus our instrumentation techniques are also applicable.

Our proxy-based architecture does not directly work with encrypted contents (e.g.,
SSL). Some of our tested web pages (e.g., GMail) uses SSL, but only for transmitting
certain data, such as the login information. If the entire page was transmitted through
SSL (as is the case of many banking sites), then the proxy cannot perform rewriting. This
can be addressed by either decrypting on the proxy (if a trusted path between the proxy
and the browser can be established), having the browser sending decrypted content back
to the proxy, or directly implementing the instrumentation inside the browser.

Although the proxy-based architecture enables flexible deployment scenarios, a
browser-based implementation may also be desirable. Some of our difficulties support-
ing multiple browsers have been due to their inconsistent treatment on undefined

JavaScript Instrumentation in Practice 341

JavaScript behaviors. If implemented inside the browser, the same parsing process would
be applied to both the rendering and the instrumentation, thus avoiding extra parsing
overhead and problems caused by specific semantic interpretations.

References

1. Apple Inc. Safari mobile on iphone, http://www.apple.com/iphone/internet/
2. Christey, S., Martin, R.A.: Vulnerability type distributions in CVE (2007),

http://cve.mitre.org/
3. ECMA International. ECMAScript language specification. Standard ECMA-262, 3rd Edition

(December 1999)
4. Erlingsson, U., Schneider, F.B.: SASI enforcement of security policies: A retrospective. In:

Proc. 1999 New Security Paradigms Workshop, Caledon Hills, Ontario, Canada, pp. 87–95
(September 1999)

5. Erlingsson, U., Schneider, F.B.: IRM enforcement of Java stack inspection. In: Proc. IEEE
S&P (2000)

6. Evans, D., Twyman, A.: Flexible policy-directed code safety. In: Proc. 20th IEEE S&P, pp.
32–47 (1999)

7. Hewitt, J.: Firebug—web development evolved, http://www.getfirebug.com/
8. Kiciman, E., Livshits, B.: AjaxScope: a platform for remotely monitoring the client-side

behavior of web 2.0 applications. In: Proc. SOSP 2007, pp. 17–30 (2007)
9. Kikuchi, H., Yu, D., Chander, A., Inamura, H., Serikov, I.: Javascript instrumentation

in practice. Technical Report DCL-TR-2008-0053, DoCoMo USA Labs (June 2008),
http://www.docomolabsresearchers-usa.com/∼dyu/jiip-tr.pdf

10. Kirda, E., Kruegel, C., Vigna, G., Jovanovic, N.: Noxes: a client-side solution for mitigating
cross-site scripting attacks. In: Proc. 2006 ACM Symposium on Applied Computing, pp.
330–337 (2006)

11. Kiriansky, V., Bruening, D., Amarasinghe, S.P.: Secure execution via program shepherding.
In: Proc. 11th USENIX Security Symposium, pp. 191–206 (2002)

12. Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for run-time se-
curity policies. International Journal of Information Security 4(2), 2–16 (2005)

13. Luotonen, A.: Tunneling TCP based protocols through web proxy servers. IETF RFC 2616
(1998)

14. OWASP Foundation. The ten most critical web application security vulnerabilities (2007),
http://www.owasp.org/

15. Reis, C., Dunagan, J., Wang, H.J., Dubrovsky, O., Esmeir, S.: BrowserShield: Vulnerability-
driven filtering of dynamic HTML. In: Proc. OSDI 2006, Seattle, WA (2006)

16. Schneider, F.B.: Enforceable security policies. Trans. on Information & System Security 3(1),
30–50 (2000)

17. van Kesteren, A., Jackson, D.: The XMLHttpRequest object. W3C working draft (2006),
http://www.w3.org/TR/XMLHttpRequest/

18. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault isolation.
In: Proc. SOSP 1993, Asheville, NC, pp. 203–216 (1993)

19. Yu, D., Chander, A., Islam, N., Serikov, I.: JavaScript instrumentation for browser security.
In: Proc. POPL 2007, Nice, France, pp. 237–249 (January 2007)

http://www.apple.com/iphone/internet/
http://cve.mitre.org/
http://www.getfirebug.com/
http://www.docomolabsresearchers-usa.com/~dyu/jiip-tr.pdf
http://www.owasp.org/
http://www.w3.org/TR/XMLHttpRequest/

Author Index

Acar, Umut A. 273
Agarwal, Shivali 53
Amadio, Roberto M. 221
Asada, Kazuyuki 122

Barik, RajKishore 53
Barthe, Gilles 75
Blume, Matthias 273

Chae, Wonseok 273
Chakravarty, Manuel M.T. 188
Chander, Ajay 326
Chatterjee, Krishnendu 91
Chen, Liqian 3
Chen, Xin 107
Chin, Wei-Ngan 19
Clarke, Dave 139
Cohen, Albert 237
Cooper, Ezra 205
Cousot, Patrick 3
Craciun, Florin 19

de Alfaro, Luca 91
Deng, Yuxin 107
Distefano, Dino 1
Dogguy, Mehdi 221

Ghosh, Indradeep 36

Haack, Christian 171
Huisman, Marieke 171
Hurlin, Clément 171

Inamura, Hiroshi 326

Jagadeesan, Radha 255
Johnsen, Einar Broch 139

Khurshid, Sarfraz 36
Kikuchi, Haruka 326
Kunz, César 75

Li, Xin 36
Lindley, Sam 205

Maffeis, Sergio 307
Majumdar, Rupak 91
Mandel, Louis 237
Miné, Antoine 3
Mitchell, John C. 307

Nandivada, V. Krishna 53

Ogawa, Mizuhito 36
Östlund, Johan 139

Peyton Jones, Simon 138
Plateau, Florence 237
Pouzet, Marc 237

Rajan, Sreeranga P. 36

Sacchini, Jorge Luis 75
Serikov, Igor 326
Shannon, Daryl 36
Shapiro, Jonathan S. 290
Shyamasundar, Rudrapatna K. 53
Smith, Scott F. 290
Sridhar, Swaroop 290
Stefan, Alexandru 19
Suenaga, Kohei 155

Taly, Ankur 307
Thiemann, Peter 256

Varma, Pradeep 53

Wadler, Philip 205
Wehr, Stefan 188, 256
Wrigstad, Tobias 139

Yallop, Jeremy 205
Yu, Dachuan 326

	front-matter
	fulltext
	Abductive Inference for Reasoning about Heaps
	References

	fulltext_001
	A Sound Floating-Point Polyhedra Abstract Domain
	Introduction
	Related Work
	Rational Polyhedra Domain Based on Constraints
	Redundancy Removal
	Emptiness Test
	Projection
	Join
	Transfer Functions
	Inclusion Test
	Widening

	Floating-Point Polyhedra Domain
	Linearization
	Floating-Point Fourier-Motzkin Elimination
	Rigorous Linear Programming
	Soundness of the Floating-Point Polyhedra Domain

	Precision and Efficiency Issues
	Bounds Tightening
	Convex Hull Tightening
	Linearization Heuristics
	Efficient Redundancy Removal

	Implementation and Experimental Results
	Conclusion
	References

	fulltext_002
	A Flow-Sensitive Region Inference for CLI
	Introduction
	Existing SSCLI Memory System
	Garbage Collector
	CIL and Allocation Instructions

	Regions for SSCLI
	Modifying the Environment
	New CIL Instructions

	Region Inference for CIL
	Lexically-Scoped Regions
	Inference Details
	Special Techniques for Translation
	Implementation
	Experimental Evaluation

	Related Work and Conclusion
	References

	fulltext_003
	Context-Sensitive Relevancy Analysis for Efficient Symbolic Execution
	Introduction
	Context-Sensitive Relevancy Analysis
	Interprocedural Program Analysis by Weighted Pushdown Model Checking
	PER-Based Abstraction and Relevancy Analysis Infrastructure

	Modelling Java Programs
	Building the Weighted Dependence Graph
	Precision Enhancement by Refined Modelling on Globals

	Evaluations
	Configuration of the Evaluation Steps
	Experimental Results

	Related Work
	Conclusions
	References
	Application-Oriented Modelling for Efficiency

	fulltext_004
	Static Detection of Place Locality and Elimination of Runtime Checks
	Introduction
	 A Brief Overview of X10 Language
	Activity Representation
	Escapes to Analysis
	Place Locality
	Examples
	PCA Handling for Distributed Arrays
	Related Work
	Conclusion and Future Work
	References

	fulltext_005
	Certified Reasoning in Memory Hierarchies
	Introduction
	A Primer on Sequoia
	Analyzing and Reasoning about Sequoia Programs
	Program Analysis
	Program Verification
	Example Program

	Certificate Translation
	SPMD Distribution
	Exec Grouping
	Copy Grouping

	Related Work
	Conclusion
	References

	fulltext_006
	The Complexity of Coverage
	Introduction
	Definitions
	Examples

	The Complexity of Maximal Coverage Problems
	Graphs
	Game Graphs

	The Complexity of Coverage in Bounded Time Problem
	Graphs
	Game Graphs

	Extensions
	References

	fulltext_007
	Game Characterizations of Process Equivalences
	Introduction
	Preliminaries
	Game Template
	Game Hierarchy
	Game Hierarchy I
	Game Hierarchy II
	The Whole Game Hierarchy

	Characterizing Process Equivalences
	Concluding Remarks
	References

	fulltext_008
	Extensional Universal Types for Call-by-Value
	Introduction
	Related Work
	Outline

	Second Order Computational Lambda Calculi
	Preliminaries for Semantics
	Categorical Semantics for Second Order Computational Lambda Calculi
	Concrete Models
	The Class of Monads
	Products, Powers and Final Coalgebras
	Constant

	Separated Sums and Linearly Initial Algebras
	Basic Ideas
	Linear Parametric Models
	Relevant Parametricity for Separated Sum
	Linearly Initial Algebras

	Concluding Remark
	References

	fulltext_009
	Harnessing the Multicores: Nested Data Parallelism in Haskell

	fulltext_010
	Minimal Ownership for Active Objects
	Introduction
	Building Blocks
	Ownership
	External Uniqueness
	Immutability and `Safe' Methods
	Owner-Polymorphic Methods

	Active Ownership
	Active and Passive Classes
	Putting It Together: Language Constructs for Active Ownership
	Data Transfer and Minimal Cloning
	Revisiting the Example
	Other Relevant Features

	Related Work
	Ownership Types
	Actors and Active objects
	Software Transactional Memory

	Concluding Remarks
	References

	fulltext_011
	Type-Based Deadlock-Freedom Verification for Non-Block-Structured Lock Primitives and Mutable References
	Introduction
	Target Language
	Type System
	Overview
	Syntax
	Type Judgment
	Type Inference

	Type Soundness
	Related Work
	Conclusion
	References

	fulltext_012
	Reasoning about Java’s Reentrant Locks
	Introduction
	A Java-Like Language with Contracts
	A Variant of Intuitionistic Separation Logic
	Proof Rules for Reentrant Locks
	Examples
	Semantics and Soundness
	Runtime Structures
	Kripke Resource Semantics
	Soundness

	Comparison to RelatedWork and Conclusion
	References

	fulltext_013
	ML Modules and Haskell Type Classes: A Constructive Comparison
	Introduction
	From Modules to Classes
	Translating Signatures and Structures
	Translating Abstract Types
	Translating Functors
	Summary
	Design Decisions Motivated

	From Classes to Modules
	First-Class Structures as Dictionaries
	Translating Type Class Declarations
	Translating Overloaded Functions
	Translating Instance Declarations
	Summary

	Formalization and Implementation
	Discussion
	Classes as Modules
	Modules as Classes

	Related Work
	Conclusion
	References

	fulltext_014
	The Essence of Form Abstraction
	Introduction
	Formlets by Example
	Syntactic Sugar
	Life without Formlets

	Semantics
	A Concrete Implementation
	Idioms
	Factoring Formlets
	A Note on Monads

	Syntax
	Extensions
	XHTML Validation
	Input Validation
	Multi-holed Contexts
	Other Extensions

	Related Work
	References

	fulltext_015
	On Affine Usages in Signal-Based Communication
	Introduction
	Definition of the \spi-Calculus
	Programs
	Expressions
	Actions
	Labelled Transition System and Bisimulation

	An Affine Type System
	Usages
	Types
	Semantic Instrumentation
	Type System

	Results
	Conclusion
	References

	fulltext_016
	Abstraction of Clocks in Synchronous Data-Flow Systems
	Introduction
	Clocks as Infinite Binary Words
	Definitions
	Buffer Size
	Subtyping Relation

	Abstraction of Clocks
	Abstraction of Infinite Binary Words
	Abstract Clocks as Automata
	Abstract Operators
	Abstraction of a Clock
	Abstract Relations
	Computing Buffers Size

	Discussion and Related Work
	Conclusion
	References

	fulltext_017
	From Authorization Logics to Types for Authorization

	fulltext_018
	Interface Types for Haskell
	Introduction
	Motivation
	Interface Types for Database Access
	Interface Types for Sets
	Interface Types for Graphical User Interfaces
	Restrictions on Interface Types

	A Language with Interface Types
	Qualified Types with Higher-Rank Polymorphism
	Interface Types

	Inference
	Translation to System F
	Related Work
	Conclusion and Future Work
	References

	fulltext_019
	Exception Handlers as Extensible Cases
	Introduction
	Motivating Examples
	The External Language (EL)
	CPS and Duality: The Internal Language (IL)
	Related Work
	The Pessaux-Leroy Type System

	Conclusions
	References

	fulltext_020
	Sound and Complete Type Inference for a Systems Programming Language
	Introduction
	Informal Overview
	Type Inference

	Formal Description
	Related Work
	Conclusion
	References

	fulltext_021
	An Operational Semantics for JavaScript
	Introduction
	JavaScript Overview and Challenges
	Beyond this Paper

	Operational Semantics
	Heap
	Semantics Functions
	Expressions
	Statements
	Programs
	Native Objects
	Relation to Implementations

	Formal Properties
	Notation and Definitions
	Theorems and Formal Properties

	Related Work
	Conclusions
	References

	fulltext_022
	JavaScript Instrumentation in Practice
	Introduction
	Background
	Previously: A Theoretical Framework
	This Paper: A Proxy-Centric Realization

	Rewriting JavaScript and HTML
	Policy Writing and Management
	Runtime Interaction with Proxy and with Client
	Structure of Instrumented Documents
	Calling Proxy at Runtime
	User Interaction

	Experiments
	Macro-benchmarks
	Safari Mobile on iPhone

	Related Work
	Conclusion and Future Work
	References

	back-matter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AdobePiStd
 /AdobeSansMM
 /AdobeSansXMM
 /AdobeSerifMM
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AkzidenzGroteskBE-Bold
 /AkzidenzGroteskBE-BoldCn
 /AkzidenzGroteskBE-BoldEx
 /AkzidenzGroteskBE-BoldExIt
 /AkzidenzGroteskBE-BoldIt
 /AkzidenzGroteskBE-Cn
 /AkzidenzGroteskBE-Ex
 /AkzidenzGroteskBE-It
 /AkzidenzGroteskBE-Light
 /AkzidenzGroteskBE-LightCn
 /AkzidenzGroteskBE-LightEx
 /AkzidenzGroteskBE-LightOsF
 /AkzidenzGroteskBE-Md
 /AkzidenzGroteskBE-MdCn
 /AkzidenzGroteskBE-MdCnIt
 /AkzidenzGroteskBE-MdEx
 /AkzidenzGroteskBE-MdIt
 /AkzidenzGroteskBE-Regular
 /AkzidenzGroteskBE-Super
 /AkzidenzGroteskBE-XBd
 /AkzidenzGroteskBE-XBdCn
 /AkzidenzGroteskBE-XBdCnIt
 /AkzidenzGrotesk-Black
 /AkzidenzGrotesk-Bold
 /AkzidenzGrotesk-Light
 /AkzidenzGrotesk-Roman
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Aldus-Italic
 /Aldus-ItalicOldstyleFigures
 /Aldus-ItalicOsF
 /Aldus-Roman
 /Aldus-RomanSC
 /Aldus-RomanSmallCaps&OldstyleFigures
 /Alexa
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /AmericanTypewriter-Bold
 /AmericanTypewriter-BoldA
 /AmericanTypewriter-BoldCond
 /AmericanTypewriter-BoldCondA
 /AmericanTypewriter-Cond
 /AmericanTypewriter-CondA
 /AmericanTypewriter-Light
 /AmericanTypewriter-LightA
 /AmericanTypewriter-LightCond
 /AmericanTypewriter-LightCondA
 /AmericanTypewriter-Medium
 /AmericanTypewriter-MediumA
 /Amigo
 /Andreas
 /Anna
 /AntiqueOlive-Black
 /AntiqueOlive-Bold
 /AntiqueOlive-BoldCond
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Light
 /AntiqueOlive-Nord
 /AntiqueOlive-NordItalic
 /AntiqueOlive-Roman
 /ApolloMT
 /ApolloMT-Expert
 /ApolloMT-Italic
 /ApolloMT-ItalicExpert
 /ApolloMT-ItalicOsF
 /ApolloMT-SC
 /ApolloMT-SemiBold
 /ApolloMT-SemiBoldExpert
 /ApolloMT-SemiBoldOsF
 /Arcadia
 /Arcadia-A
 /Ariadne-Roman
 /ArialAF
 /ArialAF-Bold
 /ArialAF-BoldItalic
 /ArialAF-Italic
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArnoldBoecklin
 /AshleyScriptMT
 /ATQuaySans-Black
 /ATQuaySans-Book
 /ATQuaySans-Medium
 /ATQuaySans-MediumItalic
 /ATypewriterMedium
 /AudioLH-Pi
 /Auriol
 /Auriol-Black
 /Auriol-BlackItalic
 /Auriol-Bold
 /Auriol-BoldItalic
 /AvantGarde-Bold
 /AvantGarde-BoldObl
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-CondBold
 /AvantGarde-CondBook
 /AvantGarde-CondDemi
 /AvantGarde-CondMedium
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGarde-ExtraLight
 /AvantGarde-ExtraLightObl
 /Avant-GardeGothicMedium
 /AvantGarde-Medium
 /AvantGarde-MediumObl
 /Avenir-Black
 /Avenir-BlackOblique
 /Avenir-Book
 /Avenir-BookOblique
 /Avenir-Heavy
 /Avenir-HeavyOblique
 /Avenir-Light
 /Avenir-LightOblique
 /Avenir-Medium
 /Avenir-MediumOblique
 /Avenir-Oblique
 /Avenir-Roman
 /BakerSignet
 /Balzano
 /Banco
 /Banshee
 /BaskervilleCyr-Bold
 /BaskervilleCyr-Inclined
 /BaskervilleCyr-Upright
 /BauerBodoni-Black
 /BauerBodoni-BlackCond
 /BauerBodoni-BlackItalic
 /BauerBodoni-Bold
 /BauerBodoni-BoldCond
 /BauerBodoni-BoldItalic
 /BauerBodoni-BoldItalicOsF
 /BauerBodoni-BoldOsF
 /BauerBodoniBT-Black
 /BauerBodoniBT-BlackCondensed
 /BauerBodoniBT-BlackItalic
 /BauerBodoniBT-Bold
 /BauerBodoniBT-BoldCondensed
 /BauerBodoniBT-BoldItalic
 /BauerBodoniBT-Italic
 /BauerBodoniBT-Roman
 /BauerBodoniBT-Titling
 /BauerBodoni-Italic
 /BauerBodoni-ItalicOsF
 /BauerBodoni-Roman
 /BauerBodoni-RomanSC
 /Bauhaus-Bold
 /Bauhaus-Demi
 /Bauhaus-Heavy
 /Bauhaus-Light
 /Bauhaus-Medium
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /Beesknees
 /BellCentennial-Address
 /BellCentennial-BoldListing
 /BellCentennial-BoldListingAlt
 /BellCentennial-NameAndNumber
 /BellCentennial-SubCaption
 /BellGothic-Black
 /BellGothic-Bold
 /BellGothic-Light
 /BellMT-Bold
 /BellMT-BoldExpert
 /BellMT-BoldItalic
 /BellMT-BoldItalicExpert
 /BellMT-Italic
 /BellMT-ItalicAlt
 /BellMT-ItalicExpert
 /BellMT-Regular
 /BellMT-RegularAlt
 /BellMT-RegularExpert
 /BellMT-RegularExpertAlt
 /BellMT-RegularSC
 /BellMT-SemiBold
 /BellMT-SemiBoldAlt
 /BellMT-SemiBoldExpert
 /BellMT-SemiBoldExpertAlt
 /BellMT-SemiBoldItalic
 /BellMT-SemiBoldItalicAlt
 /BellMT-SemiBoldItalicExpert
 /BellMT-SemiBoldSC
 /Belwe-Bold
 /Belwe-Condensed
 /Belwe-Light
 /Belwe-Medium
 /Bembo
 /Bembo-Bold
 /Bembo-BoldExpert
 /Bembo-BoldItalic
 /Bembo-BoldItalicExpert
 /Bembo-BoldItalicOsF
 /Bembo-BoldOsF
 /Bembo-Expert
 /Bembo-ExtraBold
 /Bembo-ExtraBoldExpert
 /Bembo-ExtraBoldItalic
 /Bembo-ExtraBoldItalicExpert
 /Bembo-ExtraBoldItalicOsF
 /Bembo-ExtraBoldOsF
 /Bembo-Italic
 /Bembo-ItalicExpert
 /Bembo-ItalicOsF
 /Bembo-SC
 /Bembo-Semibold
 /Bembo-SemiboldExpert
 /Bembo-SemiboldItalic
 /Bembo-SemiboldItalicExpert
 /Bembo-SemiboldItalicOsF
 /Bembo-SemiboldOsF
 /Benguiat-Bold
 /Benguiat-BoldItalic
 /Benguiat-Book
 /Benguiat-BookItalic
 /BenguiatGothic-Bold
 /BenguiatGothic-BoldOblique
 /BenguiatGothic-Book
 /BenguiatGothic-BookOblique
 /BenguiatGothic-Heavy
 /BenguiatGothic-HeavyOblique
 /BenguiatGothic-MediumOblique
 /Benguiat-Medium
 /Benguiat-MediumItalic
 /Berkeley-Black
 /Berkeley-BlackItalic
 /Berkeley-Bold
 /Berkeley-BoldItalic
 /Berkeley-Book
 /Berkeley-BookItalic
 /Berkeley-Italic
 /BerkeleyMedium
 /Berkeley-Medium
 /Berling-Bold
 /Berling-BoldItalic
 /Berling-Italic
 /Berling-Roman
 /BermudaLP-Dots
 /BermudaLP-Open
 /BermudaLP-Solid
 /BermudaLP-Squiggle
 /Bernhard-BoldCondensed
 /BernhardModern-Bold
 /BernhardModern-BoldItalic
 /BernhardModern-Italic
 /BernhardModern-Roman
 /BickhamScriptMM
 /BickhamScriptMM-AltI
 /BickhamScriptMM-AltII
 /BickhamScriptMM-Beg
 /BickhamScriptMM-End
 /BickhamScriptMM-Lig
 /BickhamScriptMM-Or
 /BickhamScriptMM-SwCaps
 /BiffoMT
 /Birch
 /Blackoak
 /BlueIsland
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldCondensed
 /Bodoni-BoldItalic
 /Bodoni-Book
 /Bodoni-BookItalic
 /Bodoni-Italic
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /Bodoni-PosterItalic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Bold
 /Bookman-BoldItalic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /Bookman-Medium
 /Bookman-MediumItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BorderPi-OneFiveOneFiveNine
 /BossaNovaMVB
 /BossaNovaMVB-Alternates
 /BriemAkademiMM
 /BriemScriptMM
 /BriemScriptMM-Exp
 /BriemScriptMM-SC
 /BrunoJB
 /BrunoJB-Bold
 /BrushScript
 /BulmerMT-Bold
 /BulmerMT-BoldAlt
 /BulmerMT-BoldDisplay
 /BulmerMT-BoldDisplayAlt
 /BulmerMT-BoldExpert
 /BulmerMT-BoldItalDisplayAlt
 /BulmerMT-BoldItalic
 /BulmerMT-BoldItalicAlt
 /BulmerMT-BoldItalicDisplay
 /BulmerMT-BoldItalicExpert
 /BulmerMT-Italic
 /BulmerMT-ItalicAlt
 /BulmerMT-ItalicDisplay
 /BulmerMT-ItalicDisplayAlt
 /BulmerMT-ItalicExpert
 /BulmerMT-Regular
 /BulmerMT-RegularAlt
 /BulmerMT-RegularDisplay
 /BulmerMT-RegularDisplayAlt
 /BulmerMT-RegularExpert
 /BulmerMT-RegularSC
 /BulmerMT-SemiBold
 /BulmerMT-SemiBoldAlt
 /BulmerMT-SemiBoldExpert
 /BulmerMT-SemiBoldItalExpert
 /BulmerMT-SemiBoldItalic
 /BulmerMT-SemiBoldItalicAlt
 /BulmerMT-SemiBoldSC
 /BundesbahnPi-One
 /BundesbahnPi-Three
 /BundesbahnPi-Two
 /Caecilia-Bold
 /Caecilia-BoldItalic
 /Caecilia-BoldItalicOsF
 /Caecilia-BoldItalicSC
 /Caecilia-BoldOsF
 /Caecilia-BoldSC
 /Caecilia-Heavy
 /Caecilia-HeavyItalic
 /Caecilia-HeavyItalicOsF
 /Caecilia-HeavyItalicSC
 /Caecilia-HeavyOsF
 /Caecilia-HeavySC
 /Caecilia-Italic
 /Caecilia-ItalicOsF
 /Caecilia-ItalicSC
 /Caecilia-Light
 /Caecilia-LightItalic
 /Caecilia-LightItalicOsF
 /Caecilia-LightItalicSC
 /Caecilia-LightOsF
 /Caecilia-LightSC
 /Caecilia-Roman
 /Caecilia-RomanOsF
 /Caecilia-RomanSC
 /CaflischScript-Bold
 /CaflischScriptMM
 /CaflischScriptMM-Alt
 /CaflischScriptMM-Sw
 /CaflischScript-Regular
 /Caliban
 /CalvertMT
 /CalvertMT-Bold
 /CalvertMT-Light
 /Candida-Bold
 /Candida-Italic
 /Candida-Roman
 /CantoriaMT
 /CantoriaMT-Bold
 /CantoriaMT-BoldItalic
 /CantoriaMT-ExtraBold
 /CantoriaMT-ExtraBoldItalic
 /CantoriaMT-Italic
 /CantoriaMT-Light
 /CantoriaMT-LightItalic
 /CantoriaMT-SemiBold
 /CantoriaMT-SemiBoldItalic
 /CaravanLH-Four
 /CaravanLH-One
 /CaravanLH-Three
 /CaravanLH-Two
 /Carolina
 /Carolina-Dfr
 /Carta
 /CascadeScript
 /CaslonFiveForty-Italic
 /CaslonFiveForty-ItalicOsF
 /CaslonFiveForty-Roman
 /CaslonFiveForty-RomanSC
 /CaslonOpenFace
 /CaslonThree-Italic
 /CaslonThree-ItalicOsF
 /CaslonThree-Roman
 /CaslonThree-RomanSC
 /CaslonTwoTwentyFour-Black
 /CaslonTwoTwentyFour-BlackIt
 /CaslonTwoTwentyFour-Bold
 /CaslonTwoTwentyFour-BoldIt
 /CaslonTwoTwentyFour-Book
 /CaslonTwoTwentyFour-BookIt
 /CaslonTwoTwentyFour-Medium
 /CaslonTwoTwentyFour-MediumIt
 /CastellarMT
 /Caxton-Bold
 /Caxton-BoldItalic
 /Caxton-Book
 /Caxton-BookItalic
 /Caxton-Light
 /Caxton-LightItalic
 /CelestiaAntiqua
 /CelestiaAntiqua-Bold
 /CelestiaAntiqua-BoldLig
 /CelestiaAntiqua-Italic
 /CelestiaAntiqua-ItalicLig
 /CelestiaAntiqua-Ligatures
 /CelestiaAntiqua-Ornaments
 /CelestiaAntiqua-SC
 /CelestiaAntiqua-Semibold
 /CelestiaAntiqua-SmBdLig
 /CentaurMT
 /CentaurMT-Bold
 /CentaurMT-BoldExpert
 /CentaurMT-BoldItalic
 /CentaurMT-BoldItalicExpert
 /CentaurMT-BoldItalicOsF
 /CentaurMT-BoldOsF
 /CentaurMT-Expert
 /CentaurMT-Italic
 /CentaurMT-ItalicA
 /CentaurMT-ItalicAlternate
 /CentaurMT-ItalicExpert
 /CentaurMT-ItalicOsF
 /CentaurMT-SC
 /CentaurMT-SwashCapitals
 /Centennial-Black
 /Centennial-BlackItalic
 /Centennial-BlackItalicOsF
 /Centennial-BlackOsF
 /Centennial-Bold
 /Centennial-BoldItalic
 /Centennial-BoldItalicOsF
 /Centennial-BoldOsF
 /Centennial-Italic
 /Centennial-ItalicOsF
 /Centennial-Light
 /Centennial-LightItalic
 /Centennial-LightItalicOsF
 /Centennial-LightSC
 /Centennial-Roman
 /Centennial-RomanSC
 /Century-Bold
 /Century-BoldCondensed
 /Century-BoldCondensedItalic
 /Century-BoldItalic
 /Century-Book
 /Century-BookCondensed
 /Century-BookCondensedItalic
 /Century-BookItalic
 /CenturyExpanded
 /CenturyExpanded-Italic
 /Century-HandtooledBold
 /Century-HandtooledBoldItalic
 /Century-Light
 /Century-LightCondensed
 /Century-LightCondensedItalic
 /Century-LightItalic
 /CenturyOldStyle-Bold
 /CenturyOldStyle-Italic
 /CenturyOldStyle-Regular
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbookCE
 /CenturySchoolbookCE-Bold
 /CenturySchoolbookCE-BoldIta
 /CenturySchoolbookCE-Italic
 /CenturySchoolbookTur
 /CenturySchoolbookTur-Bold
 /CenturySchoolbookTur-BolIta
 /CenturySchoolbookTur-Italic
 /Century-Ultra
 /Century-UltraCondensed
 /Century-UltraCondensedItalic
 /Century-UltraItalic
 /Cerigo-Bold
 /Cerigo-BoldItalic
 /Cerigo-Book
 /Cerigo-BookItalic
 /Cerigo-Medium
 /Cerigo-MediumItalic
 /ChaparralMM
 /ChaparralMM-Ep
 /ChaparralMM-It
 /ChaparralMM-ItEp
 /ChaparralMM-ItSC
 /ChaparralMM-Or
 /ChaparralMM-SC
 /Charlemagne-Bold
 /Charlemagne-Regular
 /Charme
 /ChelseaStudio
 /Cheltenham-Bold
 /Cheltenham-BoldCond
 /Cheltenham-BoldCondItalic
 /Cheltenham-BoldItalic
 /Cheltenham-Book
 /Cheltenham-BookCond
 /Cheltenham-BookCondItalic
 /Cheltenham-BookItalic
 /Cheltenham-HandtooledBdIt
 /Cheltenham-HandtooledBold
 /Cheltenham-Light
 /Cheltenham-LightCond
 /Cheltenham-LightCondItalic
 /Cheltenham-LightItalic
 /Cheltenham-Ultra
 /Cheltenham-UltraCond
 /Cheltenham-UltraCondItalic
 /Cheltenham-UltraItalic
 /Cheq
 /ChiantiBT-Bold
 /ChiantiBT-Roman
 /Christiana-Bold
 /Christiana-BoldItalic
 /Christiana-Italic
 /Christiana-Medium
 /Christiana-MediumItalic
 /Christiana-Regular
 /Christiana-RegularExpert
 /Christiana-RegularSC
 /Clairvaux
 /Clairvaux-Dfr
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Light
 /Clearface-Black
 /Clearface-BlackItalic
 /Clearface-Bold
 /Clearface-BoldItalic
 /ClearfaceGothicLH-Black
 /ClearfaceGothicLH-Bold
 /ClearfaceGothicLH-Light
 /ClearfaceGothicLH-Medium
 /ClearfaceGothicLH-Roman
 /Clearface-Heavy
 /Clearface-HeavyItalic
 /Clearface-Regular
 /Clearface-RegularItalic
 /Cloister-OpenFace
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /Cochin
 /Cochin-Bold
 /Cochin-BoldA
 /Cochin-BoldItalic
 /Cochin-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CongaBravaMM
 /CongaBravaMM-St
 /CooperBlack
 /CooperBlack-Italic
 /Copal-Decorated
 /Copal-Outline
 /Copal-Solid
 /Copperplate-ThirtyAB
 /Copperplate-ThirtyBC
 /Copperplate-ThirtyOneAB
 /Copperplate-ThirtyOneBC
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoAB
 /Copperplate-ThirtyTwoBC
 /Copperplate-TwentyNineAB
 /Copperplate-TwentyNineBC
 /Coriander
 /Corona
 /Corona-Bold
 /Corona-Italic
 /Coronet-Bd
 /Coronet-Regular
 /Cottonwood
 /Courier
 /CourierA
 /Courier-Bold
 /Courier-BoldA
 /Courier-BoldOblique
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /Critter
 /CronosMM
 /CronosMM-Ep
 /CronosMM-It
 /CronosMM-ItEp
 /CronosMM-ItSC
 /CronosMM-Or
 /CronosMM-SC
 /CronosMM-Sw
 /CTMercurius-Black
 /CTMercurius-BlackItalic
 /CTMercurius-Light
 /CTMercurius-LightItalic
 /CTMercurius-Medium
 /CTMercurius-MediumItalic
 /Cushing-Bold
 /Cushing-BoldItalic
 /Cushing-Book
 /Cushing-BookItalic
 /Cushing-Heavy
 /Cushing-HeavyItalic
 /Cushing-Medium
 /Cushing-MediumItalic
 /Cutout
 /Cyrillic
 /CyrillicBold
 /CyrillicBold-Italic
 /CyrillicNormal-Italic
 /DanteMT-Bold
 /DanteMT-BoldAlt
 /DanteMT-BoldExpert
 /DanteMT-BoldItalic
 /DanteMT-BoldItalicAlt
 /DanteMT-BoldItalicExpert
 /DanteMT-BoldItalicOsF
 /DanteMT-BoldOsF
 /DanteMT-Italic
 /DanteMT-ItalicAlt
 /DanteMT-ItalicExpert
 /DanteMT-ItalicOsF
 /DanteMT-Medium
 /DanteMT-MediumAlt
 /DanteMT-MediumExpert
 /DanteMT-MediumItalic
 /DanteMT-MediumItalicAlt
 /DanteMT-MediumItalicExpert
 /DanteMT-MediumItalicOsF
 /DanteMT-MediumOsF
 /DanteMT-Regular
 /DanteMT-RegularAlt
 /DanteMT-RegularExpert
 /DanteMT-RegularSC
 /DanteMT-Titling
 /Delphin-I
 /Delphin-IA
 /Delphin-II
 /Delphin-IIA
 /DidotLH-Bold
 /DidotLH-BoldOsF
 /DidotLH-Headline
 /DidotLH-HeadlineOsF
 /DidotLH-Initials
 /DidotLH-Italic
 /DidotLH-ItalicOsF
 /DidotLH-OrnamentsOne
 /DidotLH-OrnamentsTwo
 /DidotLH-Roman
 /DidotLH-RomanOsF
 /DidotLH-RomanSC
 /DIN-Black
 /DIN-BlackAlternate
 /DIN-Bold
 /DIN-BoldAlternate
 /DINEngschrift
 /DINEngschrift-Alternate
 /Dingbats
 /DIN-Light
 /DIN-LightAlternate
 /DIN-Medium
 /DIN-MediumAlternate
 /DINMittelschrift
 /DINMittelschrift-Alternate
 /DINNeuzeitGrotesk-BoldCond
 /DINNeuzeitGrotesk-Light
 /DIN-Regular
 /DIN-RegularAlternate
 /Diotima-Italic
 /Diotima-ItalicOsF
 /Diotima-Roman
 /Diotima-RomanOsF
 /Diotima-RomanSC
 /Diskus
 /Diskus-Bold
 /DomCasual
 /DomCasual-Bold
 /DorchesterScriptMT
 /Doric-Bold
 /DucDeBerry
 /DucDeBerry-Dfr
 /Eccentric
 /EgyptienneF-Black
 /EgyptienneF-Bold
 /EgyptienneF-Italic
 /EgyptienneF-Roman
 /EhrhardtMT
 /EhrhardtMT-Italic
 /EhrhardtMT-Regular
 /EhrhardtMT-Semibold
 /EhrhardtMT-SemiBold
 /EhrhardtMT-SemiboldItalic
 /EhrhardtMT-SemiBoldItalic
 /ElectraLH-Bold
 /ElectraLH-BoldCursive
 /ElectraLH-BoldCursiveDisplay
 /ElectraLH-BoldCursiveOsF
 /ElectraLH-BoldDisplay
 /ElectraLH-BoldOsF
 /ElectraLH-BoldSC
 /ElectraLH-Cursive
 /ElectraLH-CursiveDisplay
 /ElectraLH-CursiveOsF
 /ElectraLH-Display
 /ElectraLH-Regular
 /ElectraLH-RegularOsF
 /ElectraLH-RegularSC
 /EleusisRoman
 /EllingtonMT
 /EllingtonMT-Bold
 /EllingtonMT-BoldItalic
 /EllingtonMT-ExtraBold
 /EllingtonMT-ExtraBoldItalic
 /EllingtonMT-Italic
 /EllingtonMT-Light
 /EllingtonMT-LightItalic
 /ElseNPL-Bold
 /ElseNPL-Light
 /ElseNPL-Medium
 /ElseNPL-SemiBold
 /EmmascriptMVB
 /EngraversLH-BoldFace
 /Esprit-Black
 /Esprit-BlackItalic
 /Esprit-Bold
 /Esprit-BoldItalic
 /Esprit-Book
 /Esprit-BookItalic
 /Esprit-Medium
 /Esprit-MediumItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM6
 /Eufm6
 /EUFM7
 /EUFM8
 /EUFM9
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuropeanPi-Four
 /EuropeanPi-One
 /EuropeanPi-Three
 /EuropeanPi-Two
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldCondensed
 /Eurostile-BoldExtendedTwo
 /Eurostile-BoldOblique
 /Eurostile-Condensed
 /Eurostile-Demi
 /Eurostile-DemiOblique
 /Eurostile-ExtendedTwo
 /Eurostile-Oblique
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSB8
 /EUSB9
 /EUSM10
 /EUSM5
 /EUSM7
 /EUSM8
 /EUSM9
 /Excelsior
 /Excelsior-Bold
 /ExcelsiorCyr-Bold
 /ExcelsiorCyr-Inclined
 /ExcelsiorCyr-Upright
 /Excelsior-Italic
 /ExPontoMM
 /ExPontoMM-Alternate
 /ExPontoMM-Beginning
 /ExPontoMM-Ending
 /ExPontoMM-OsF
 /ExPonto-Regular
 /FairfieldLH-Bold
 /FairfieldLH-BoldItalic
 /FairfieldLH-BoldSC
 /FairfieldLH-CaptionBold
 /FairfieldLH-CaptionHeavy
 /FairfieldLH-CaptionLight
 /FairfieldLH-CaptionMedium
 /FairfieldLH-Heavy
 /FairfieldLH-HeavyItalic
 /FairfieldLH-HeavySC
 /FairfieldLH-Light
 /FairfieldLH-LightItalic
 /FairfieldLH-LightSC
 /FairfieldLH-Medium
 /FairfieldLH-MediumItalic
 /FairfieldLH-MediumSC
 /FairfieldLH-SwBoldItalicOsF
 /FairfieldLH-SwHeavyItalicOsF
 /FairfieldLH-SwLightItalicOsF
 /FairfieldLH-SwMediumItalicOsF
 /FalstaffMT
 /Fences
 /Fenice-Bold
 /Fenice-BoldOblique
 /Fenice-Light
 /Fenice-LightOblique
 /Fenice-Regular
 /Fenice-RegularOblique
 /Fenice-Ultra
 /Fenice-UltraOblique
 /FetteFraktur
 /FetteFraktur-Dfr
 /Flood
 /Flora-Bold
 /Flora-Medium
 /FlorensLP
 /FlorensLP-Alternates
 /Flyer-BlackCondensed
 /Flyer-ExtraBlackCondensed
 /Folio-Bold
 /Folio-BoldCondensed
 /Folio-ExtraBold
 /Folio-Light
 /Folio-Medium
 /FootlightMT-Bold
 /FootlightMT-BoldItalic
 /FootlightMT-Italic
 /FootlightMT-Light
 /Formata-Bold
 /Formata-Light
 /Formata-Medium
 /Formata-Regular
 /ForteMT
 /FournierMT-Italic
 /FournierMT-ItalicAlt
 /FournierMT-ItalicExpert
 /FournierMT-ItalicOsF
 /FournierMT-ItalicTallCaps
 /FournierMT-Ornaments
 /FournierMT-Regular
 /FournierMT-RegularAlt
 /FournierMT-RegularExpert
 /FournierMT-RegularSC
 /FournierMT-RegularTallCaps
 /FranklinGothic-Book
 /FranklinGothic-BookCmpr
 /FranklinGothic-BookCmprItal
 /FranklinGothic-BookCnd
 /FranklinGothic-BookCndItal
 /FranklinGothic-BookItal
 /FranklinGothic-BookOblique
 /FranklinGothic-BookXCmpr
 /Franklin-GothicCondensed
 /FranklinGothic-Condensed
 /FranklinGothic-Demi
 /FranklinGothic-DemiCmpr
 /FranklinGothic-DemiCmprItal
 /FranklinGothic-DemiCnd
 /FranklinGothic-DemiCndItal
 /FranklinGothic-DemiItal
 /FranklinGothic-DemiOblique
 /FranklinGothic-DemiXCmpr
 /FranklinGothic-ExtraCond
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItal
 /FranklinGothic-HeavyOblique
 /FranklinGothic-MedCnd
 /FranklinGothic-MedCndItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumItal
 /FranklinGothic-Roman
 /FreestyleScript
 /FrizQua-BoldOS
 /FrizQuadrata
 /FrizQuadrata-Bold
 /FrizQua-Regu
 /FrizQua-ReguOS
 /FrizQua-ReguSC
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /FrutigerBold
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Fusaka
 /Fusaka-Alternates
 /Futura
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-BoldSmallcaps
 /Futura-Book
 /Futura-BookOblique
 /Futura-BookSmallcaps
 /Futura-Condensed
 /Futura-CondensedBold
 /Futura-CondensedBoldOblique
 /Futura-CondensedExtraBold
 /Futura-CondensedLight
 /Futura-CondensedLightOblique
 /Futura-CondensedOblique
 /Futura-CondExtraBoldObl
 /Futura-ExtraBold
 /Futura-ExtraBoldOblique
 /Futura-Heavy
 /Futura-HeavyOblique
 /Futura-Light
 /Futura-LightOblique
 /Futura-Oblique
 /Futura-Smallcaps
 /Galahad-Alternate
 /Galahad-OsF
 /Galahad-Regular
 /Galliard-Black
 /Galliard-BlackItalic
 /Galliard-Bold
 /Galliard-BoldItalic
 /Galliard-Italic
 /Galliard-Roman
 /Galliard-Ultra
 /Galliard-UltraItalic
 /Garamond-Bold
 /Garamond-BoldB
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /GaramondBoldItalic
 /Garamond-Book
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-BookItalic
 /Garamond-HandtooledBold
 /Garamond-HandtooledBoldItalic
 /Garamond-Light
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Garamond-LightItalic
 /GaramondThree
 /GaramondThree-Bold
 /GaramondThree-BoldItalic
 /GaramondThree-BoldItalicOsF
 /GaramondThree-BoldSC
 /GaramondThree-Italic
 /GaramondThree-ItalicOsF
 /GaramondThree-SC
 /Garamond-Ultra
 /Garamond-UltraCondensed
 /Garamond-UltraCondensedItalic
 /Garamond-UltraItalic
 /GarthGraphic
 /GarthGraphic-Black
 /GarthGraphic-Bold
 /GarthGraphic-BoldCondensed
 /GarthGraphic-BoldItalic
 /GarthGraphic-Condensed
 /GarthGraphic-ExtraBold
 /GarthGraphic-Italic
 /GazetteLH-Bold
 /GazetteLH-Italic
 /GazetteLH-Roman
 /Geneva
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /Giddyup-Thangs
 /GillFloriatedCapsMT
 /GillFloriatedCapsMT-Alt
 /GillSans
 /Gill-SansBold
 /GillSans-Bold
 /Gill-SansBoldCondensed
 /GillSans-BoldCondensed
 /GillSans-BoldExtraCondensed
 /Gill-SansBoldItalic
 /GillSans-BoldItalic
 /Gill-SansBook
 /GillSans-Book
 /Gill-SansBookItalic
 /GillSans-BookItalic
 /Gill-SansCondensed
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-ExtraBoldDisplay
 /Gill-SansItalic
 /GillSans-Italic
 /Gill-SansLight
 /GillSans-Light
 /Gill-SansLightItalic
 /GillSans-LightItalic
 /GillSans-LightShadowed
 /Gill-SansRoman
 /GillSans-Shadowed
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Giovanni-Black
 /Giovanni-BlackItalic
 /Giovanni-Bold
 /Giovanni-BoldItalic
 /Giovanni-Book
 /Giovanni-BookItalic
 /Glypha
 /Glypha-Black
 /Glypha-BlackOblique
 /Glypha-Bold
 /Glypha-BoldOblique
 /Glypha-Light
 /Glypha-LightOblique
 /Glypha-Oblique
 /Glypha-Thin
 /Glypha-ThinOblique
 /Gothic-Thirteen
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /Goudy-BoldItalicOsF
 /Goudy-BoldOsF
 /Goudy-ExtraBold
 /Goudy-Heavyface
 /Goudy-HeavyfaceItalic
 /Goudy-Italic
 /Goudy-ItalicOsF
 /GoudyModernMT
 /GoudyModernMT-Italic
 /Goudy-OldStyle
 /Goudy-OldStyleItalic
 /GoudySans-Black
 /GoudySans-BlackItalic
 /GoudySans-Bold
 /GoudySans-BoldItalic
 /GoudySans-Book
 /GoudySans-BookItalic
 /GoudySans-Medium
 /GoudySans-MediumItalic
 /Goudy-SC
 /GoudyTextMT
 /GoudyTextMT-Alternate
 /GoudyTextMT-Dfr
 /GoudyTextMT-LombardicCapitals
 /Gr_Norm
 /Graeca-Italic
 /Graeca-Roman
 /Granjon-Bold
 /Granjon-BoldOsF
 /Granjon-ItalicOsF
 /Granjon-SC
 /GraphiteMM
 /Greek
 /GreymantleMVB
 /GreymantleMVB-Alternates
 /GreymantleMVB-Ornaments
 /GriffithGothic-Black
 /GriffithGothic-Bold
 /GriffithGothic-Thin
 /GriffithGothic-Ultra
 /GrotesqueMT
 /GrotesqueMT-Black
 /GrotesqueMT-Bold
 /GrotesqueMT-BoldExtended
 /GrotesqueMT-Condensed
 /GrotesqueMT-ExtraCondensed
 /GrotesqueMT-Italic
 /GrotesqueMT-Light
 /GrotesqueMT-LightCondensed
 /GrotesqueMT-LightItalic
 /Guardi-Black
 /Guardi-BlackItalic
 /Guardi-Bold
 /Guardi-BoldItalic
 /Guardi-Italic
 /Guardi-Roman
 /Hadriano-Bold
 /Hadriano-ExtraBold
 /Hadriano-ExtraBoldCondensed
 /Hadriano-Light
 /HardwoodLP
 /Helvetica
 /Helvetica-75Bold
 /Helvetica-75Rom
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Compressed
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /HelveticaCyr-Bold
 /HelveticaCyr-BoldInclined
 /HelveticaCyr-Inclined
 /HelveticaCyr-Upright
 /Helvetica-ExtraCompressed
 /Helvetica-Fraction
 /Helvetica-FractionBold
 /HelveticaInseratCyr-Upright
 /HelveticaInserat-Roman
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackCond
 /HelveticaNeue-BlackCondObl
 /HelveticaNeue-BlackExt
 /HelveticaNeue-BlackExtObl
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldCond
 /HelveticaNeue-BoldCondObl
 /HelveticaNeue-BoldExt
 /HelveticaNeue-BoldExtObl
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-BoldOutline
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-ExtBlackCond
 /HelveticaNeue-ExtBlackCondObl
 /HelveticaNeue-Extended
 /HelveticaNeue-ExtendedObl
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyCond
 /HelveticaNeue-HeavyCondObl
 /HelveticaNeue-HeavyExt
 /HelveticaNeue-HeavyExtObl
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeueLight
 /HelveticaNeue-Light
 /HelveticaNeue-LightCond
 /HelveticaNeue-LightCondObl
 /HelveticaNeue-LightExt
 /HelveticaNeue-LightExtObl
 /HelveticaNeue-LightItalic
 /HelveticaNeueMedium
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-MediumExt
 /HelveticaNeue-MediumExtObl
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinCond
 /HelveticaNeue-ThinCondObl
 /HelveticaNeue-ThinExt
 /HelveticaNeue-ThinExtObl
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLigCond
 /HelveticaNeue-UltraLigCondObl
 /HelveticaNeue-UltraLigExt
 /HelveticaNeue-UltraLigExtObl
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /Helvetica-Oblique
 /Helvetica-Roman
 /Helvetica-RomanBold
 /Helvetica-RomanBoldOblique
 /Helvetica-RomanOblique
 /HelveticaRounded-Black
 /HelveticaRounded-BlackObl
 /HelveticaRounded-Bold
 /HelveticaRounded-BoldCond
 /HelveticaRounded-BoldCondObl
 /HelveticaRounded-BoldObl
 /Helvetica-UltraCompressed
 /Herculanum
 /Highlander-Bold
 /Highlander-BoldItalic
 /Highlander-Book
 /Highlander-BookItalic
 /Highlander-Medium
 /Highlander-MediumItalic
 /Highlight-Bold
 /Hiroshige-Black
 /Hiroshige-BlackItalic
 /Hiroshige-Bold
 /Hiroshige-BoldItalic
 /Hiroshige-Book
 /Hiroshige-BookItalic
 /Hiroshige-Medium
 /Hiroshige-MediumItalic
 /Hobo
 /HorleyOldStyleMT
 /HorleyOldStyleMT-Bold
 /HorleyOldStyleMT-BoldItalic
 /HorleyOldStyleMT-Italic
 /HorleyOldStyleMT-Light
 /HorleyOldStyleMT-LightItalic
 /HorleyOldStyleMT-SbItalic
 /HorleyOldStyleMT-SemiBold
 /HVMathBoldItalic
 /HVMathItalic
 /HVMathSymbol
 /HVMathSymbolBold
 /HYSMyeongJoStd-Medium-Acro
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /ImmiFiveOFive
 /Impact
 /Impressum-Bold
 /Impressum-Italic
 /Impressum-Roman
 /Industria-Inline
 /Industria-InlineA
 /Industria-Solid
 /Industria-SolidA
 /InflexMT-Bold
 /Insignia
 /Insignia-A
 /Interstate-Bold
 /Interstate-Light
 /Interstate-LightCondensed
 /Interstate-Regular
 /Interstate-regular
 /Ironwood
 /Isabella
 /Isadora-Bold
 /Isadora-Regular
 /Italia-Bold
 /Italia-Book
 /Italia-Medium
 /ItalianOldStyleMT
 /ItalianOldStyleMT-Bold
 /ItalianOldStyleMT-BoldItalic
 /ItalianOldStyleMT-Italic
 /ITCAvantGardeMM
 /ITCAvantGardeMM-Oblique
 /ITC-BenguiatBoldA
 /ITC-BookmanDemi
 /ITC-BookmanLight
 /ITC-BookmanLightItalic
 /ITC-ErasBold
 /ItcEras-Bold
 /ItcEras-Book
 /ItcEras-Demi
 /ItcEras-Light
 /ITC-ErasMedium
 /ItcEras-Medium
 /ItcEras-Ultra
 /ITCFeniceBold
 /ITC-FeniceBoldItalic
 /ITC-Galliard-Bold
 /ITC-GaramondBoldCondensedItalicA
 /ITC-GaramondBook
 /ITC-GaramondBookCondensed
 /ITC-GaramondBookCondensedItalic
 /ITC-GaramondBookItalic
 /ITC-GaramondLight
 /ITCGaramondMM
 /ITCGaramondMM-It
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /ITC-StoneSerif-Bold
 /ITC-StoneSerif-Roman
 /ITC-StoneSerif-Semibold
 /ItcSymbol-Black
 /ItcSymbol-BlackItalic
 /ItcSymbol-Bold
 /ItcSymbol-BoldItalic
 /ItcSymbol-Book
 /ItcSymbol-BookItalic
 /ItcSymbol-Medium
 /ItcSymbol-MediumItalic
 /JansonText-Bold
 /JansonText-BoldItalic
 /JansonText-BoldItalicOsF
 /JansonText-BoldOsF
 /JansonText-Italic
 /JansonText-ItalicOsF
 /JansonText-Roman
 /JansonText-RomanSC
 /JimboMM
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-ExtraBold
 /JoannaMT-Italic
 /JoannaMT-SemiBold
 /JoannaMT-SemiBoldItalic
 /Juniper
 /KabelBd-Normal
 /Kabel-Black
 /Kabel-Book
 /Kabel-Heavy
 /KabelITCbyBT-Book
 /KabelITCbyBT-Demi
 /KabelITCbyBT-Medium
 /KabelITCbyBT-Ultra
 /Kabel-Light
 /Kasten
 /Kaufmann
 /Kaufmann-Bold
 /KeplMM
 /KeplMM-Ep
 /KeplMM-It
 /KeplMM-ItEp
 /KeplMM-ItSC
 /KeplMM-Or1
 /KeplMM-Or2
 /KeplMM-Or3
 /KeplMM-SC
 /KeplMM-Sw
 /Khaki-One
 /Khaki-Two
 /Kigali-Block
 /Kigali-Italic
 /Kigali-Lx
 /Kigali-LxItalic
 /Kigali-Roman
 /Kigali-Sx
 /Kigali-SxItalic
 /Kigali-ZigZag
 /KinesisMM
 /KinesisMM-Ep
 /KinesisMM-It
 /KinesisMM-ItEp
 /KinesisMM-ItSC
 /KinesisMM-SC
 /KinoMT
 /KlangMT
 /KochAntiqua
 /KoloLP-Alternates
 /KoloLP-Narrow
 /KoloLP-Regular
 /KoloLP-Wide
 /Kompakt
 /Korinna-Bold
 /Korinna-KursivBold
 /Korinna-KursivRegular
 /Korinna-Regular
 /KozMinPro-Regular-Acro
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /LAstrologyPi-One
 /LAstrologyPi-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /LatinMT-Condensed
 /LCIRCLE10
 /Lcircle10
 /Lcirclew10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LDecorationPi-One
 /LDecorationPi-Two
 /Leawood-Black
 /Leawood-BlackItalic
 /Leawood-Bold
 /Leawood-BoldItalic
 /Leawood-Book
 /Leawood-BookItalic
 /Leawood-Medium
 /Leawood-MediumItalic
 /LegacySans-Bold
 /LegacySans-BoldItalic
 /LegacySans-Book
 /LegacySans-BookItalic
 /LegacySans-Medium
 /LegacySans-MediumItalic
 /LegacySans-Ultra
 /LegacySerif-Bold
 /LegacySerif-BoldItalic
 /LegacySerif-Book
 /LegacySerif-BookItalic
 /LegacySerif-Medium
 /LegacySerif-MediumItalic
 /LegacySerif-Ultra
 /Legault
 /Legault-Alternates
 /Legault-Bold
 /Legault-BoldAlternates
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Slanted
 /LGamePi-ChessDraughts
 /LGamePi-DiceDominoes
 /LGamePi-EnglishCards
 /LGamePi-FrenchCards
 /LHolidayPi-One
 /LHolidayPi-Three
 /LHolidayPi-Two
 /LicsA
 /LicsC
 /LicsD
 /Life-Italic
 /Life-Roman
 /LightBulb10
 /LINE10
 /Line10
 /Linew10
 /LINEW10
 /LinoLetter-Black
 /LinoLetter-BlackItalic
 /LinoLetter-BlackItalicOsF
 /LinoLetter-BlackOsF
 /LinoLetter-BlackSC
 /LinoLetter-Bold
 /LinoLetter-BoldItalic
 /LinoLetter-BoldItalicOsF
 /LinoLetter-BoldOsF
 /LinoLetter-BoldSC
 /LinoLetter-Italic
 /LinoLetter-ItalicOsF
 /LinoLetter-Medium
 /LinoLetter-MediumItalic
 /LinoLetter-MediumItalicOsF
 /LinoLetter-MediumOsF
 /LinoLetter-MediumSC
 /LinoLetter-Roman
 /LinoLetter-RomanOsF
 /LinoLetter-RomanSC
 /Linoscript
 /Linotext
 /Linotext-Dfr
 /Lithos-Black
 /Lithos-Bold
 /Lithos-ExtraLight
 /Lithos-Light
 /Lithos-Regular
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /ltlfonts
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /Lucida-MathItalic
 /MacBemboTItal
 /Machine
 /Machine-Bold
 /MacmillanAKL
 /MacmillanMathBItal
 /Madrone
 /MagnesiumMVB
 /MagnesiumMVB-Grime
 /MagnoliaMVB
 /MagnoliaMVB-Ligatures
 /ManitoLP
 /Marigold
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /Math-FuturaOblique
 /MathPackDoyle
 /MathPackEight
 /MathPackEleven
 /MathPackExOne
 /MathPackExSeven
 /MathPackExSix
 /MathPackExThree
 /MathPackExTwo
 /MathPackFive
 /MathPackFour
 /MathPackNine
 /MathPackOne
 /MathPackSeven
 /MathPackSix
 /MathPackTen
 /MathPackThirteen
 /MathPackThree
 /Math-PackTw
 /MathPackTwelve
 /MathPackTwo
 /Math-PalatinoBolditalic
 /MaturaMT
 /MaturaMT-ScriptCapitals
 /Maximus
 /MediciScript
 /Melior
 /Melior-Bold
 /Melior-BoldItalic
 /Melior-Italic
 /Memphis-Bold
 /Memphis-BoldItalic
 /Memphis-ExtraBold
 /Memphis-Light
 /Memphis-LightItalic
 /Memphis-Medium
 /Memphis-MediumItalic
 /MendozaRoman-Bold
 /MendozaRoman-BoldItalic
 /MendozaRoman-Book
 /MendozaRoman-BookItalic
 /MendozaRoman-Medium
 /MendozaRoman-MediumItalic
 /MercuriusMT-BoldScript
 /Meridien-Bold
 /Meridien-BoldItalic
 /Meridien-Italic
 /Meridien-Medium
 /Meridien-MediumItalic
 /Meridien-Roman
 /Mesquite
 /Meta-Bold
 /Meta-BoldCaps
 /Meta-Caps
 /Meta-Italic
 /Meta-ItalicCaps
 /Meta-Normal
 /MetaNormal-Caps
 /MetaNormal-CapsExpert
 /MetaNormalLF-Caps
 /MetaPlusBlack-Italic
 /MetaPlusBlack-Roman
 /MetaPlusBold-Caps
 /MetaPlusBold-CapsItalic
 /MetaPlusBold-Italic
 /MetaPlusBold-Roman
 /MetaPlusBook-Caps
 /MetaPlusBook-CapsItalic
 /MetaPlusMedium-Caps
 /MetaPlusMedium-CapsItalic
 /MetaPlusMedium-Italic
 /MetaPlusMedium-Roman
 /MetaPlusNormal-Caps
 /MetaPlusNormal-CapsItalic
 /MetaPlusNormal-Italic
 /MetaPlusNormal-Roman
 /MezzMM
 /MICR
 /Minion-Black
 /Minion-BlackOsF
 /Minion-Bold
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-BoldItalic
 /Minion-BoldItalicOsF
 /Minion-BoldOsF
 /Minion-Condensed
 /Minion-CondensedItalic
 /MinionCyr-Bold
 /MinionCyr-BoldItalic
 /MinionCyr-Italic
 /MinionCyr-Regular
 /MinionCyr-Semibold
 /MinionCyr-SemiboldItalic
 /Minion-DisplayItalic
 /Minion-DisplayItalicSC
 /Minion-DisplayRegular
 /Minion-DisplayRegularSC
 /MinionExp-Black
 /MinionExp-Bold
 /MinionExp-BoldItalic
 /MinionExp-DisplayItalic
 /MinionExp-DisplayRegular
 /MinionExp-Italic
 /MinionExp-Regular
 /MinionExp-Semibold
 /MinionExp-SemiboldItalic
 /Minion-Italic
 /Minion-ItalicSC
 /MinionMM
 /MinionMM-Ep
 /MinionMM-It
 /MinionMM-ItEp
 /MinionMM-ItSC
 /MinionMM-Or
 /MinionMM-SC
 /MinionMM-Sw
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Minion-Regular
 /Minion-RegularSC
 /Minion-Semibold
 /Minion-SemiboldItalic
 /Minion-SemiboldItalicSC
 /Minion-SemiboldSC
 /Minion-SwashDisplayItalic
 /Minion-SwashItalic
 /Minion-SwashSemiboldItalic
 /Minister-Black
 /Minister-BlackItalic
 /Minister-Bold
 /Minister-BoldItalic
 /Minister-Book
 /Minister-BookItalic
 /Minister-Light
 /Minister-LightItalic
 /MMMaths-EnglishOpen
 /MMMaths-FrakturBold
 /MMMaths-GreekOpenUpright
 /MMMaths-GreekSansUpright
 /MMMaths-GreekSansUprightBold
 /MMMathsOpenItalicLetters
 /MMMaths-OpenLetters
 /MMMaths-Sorts
 /MMMaths-SortsOne
 /ModernMT-Bold
 /ModernMT-BoldItalic
 /ModernMT-Condensed
 /ModernMT-CondensedItalic
 /ModernMT-Extended
 /ModernMT-ExtendedItalic
 /ModernMT-Wide
 /ModernMT-WideItalic
 /Mojo
 /Monaco
 /MonaLisaICG-Solid
 /MonaLisa-Recut
 /MonaLisa-Solid
 /MonolineScriptMT
 /MonotypeOldStyleMT-BoldOut
 /MotterCorpusMM
 /MPALSY
 /MR.CMMIB10A
 /MR.CMR7AA
 /MR.CMTT10A
 /MR_CMBX10
 /MR_CMBX12
 /MR_CMCSC10A
 /MR_CMMI10A
 /MR_CMR10A
 /MR_CMR9A
 /MR_CMTI9
 /MRCMBX12-Bold
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSungStd-Light-Acro
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTimesNewRomanPS
 /MTimesNewRomanPS-Bold
 /MTimesNewRomanPS-BoldItalic
 /MTimesNewRomanPS-Italic
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIGIFMedium
 /MTMIH
 /MTMINEW
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSymbolRoman
 /MTSYN
 /MyriadBold
 /Myriad-Bold
 /MyriadBoldCondensed
 /MyriadBoldCondensedItalic
 /MyriadBoldItalic
 /Myriad-BoldItalic
 /Myriad-CnBold
 /Myriad-CnBoldItalic
 /Myriad-CnItalic
 /Myriad-CnSemibold
 /Myriad-CnSemiboldItalic
 /Myriad-Condensed
 /Myriad-Italic
 /MyriadLight
 /MyriadLightCondensed
 /MyriadLightCondensedItalic
 /MyriadLightItalic
 /MyriadMM
 /MyriadMM-It
 /MyriadPro-Black
 /MyriadPro-BlackCond
 /MyriadPro-BlackCondIt
 /MyriadPro-BlackIt
 /MyriadPro-BlackSemiExt
 /MyriadPro-BlackSemiExtIt
 /MyriadPro-Bold
 /MyriadPro-BoldCond
 /MyriadPro-BoldCondIt
 /MyriadPro-BoldIt
 /MyriadPro-BoldSemiCn
 /MyriadPro-BoldSemiExt
 /MyriadPro-BoldSemiExtIt
 /MyriadPro-Cond
 /MyriadPro-CondIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightCond
 /MyriadPro-LightCondIt
 /MyriadPro-LightIt
 /MyriadPro-LightSemiExt
 /MyriadPro-LightSemiExtIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldCond
 /MyriadPro-SemiboldCondIt
 /MyriadPro-SemiboldIt
 /MyriadPro-SemiboldSemiCn
 /MyriadPro-SemiboldSemiExt
 /MyriadPro-SemiboldSemiExtIt
 /MyriadPro-SemiCn
 /MyriadPro-SemiExt
 /MyriadPro-SemiExtIt
 /MyriadRegular
 /MyriadRegularCondensed
 /MyriadRegularCondensedItalic
 /MyriadRegularItalic
 /Myriad-Roman
 /MyriadSemiBold
 /MyriadSemiBoldCondensed
 /MyriadSemiBoldCondensedItalic
 /MyriadSemiBoldItalic
 /Myriad-Sketch
 /Myriad-Tilt
 /Mythos
 /NationalCodes-Africa
 /NationalCodes-America
 /NationalCodes-AsiaPlus
 /NationalCodes-Europe
 /NationalCodes-Universal
 /NeueHammerUnziale-One
 /NeueHammerUnziale-OneAlt
 /NeueHammerUnziale-Two
 /NeueHammerUnziale-TwoAlt
 /Neuland
 /NeuzeitS-Book
 /NeuzeitS-BookHeavy
 /NewAster
 /NewAster-Black
 /NewAster-BlackItalic
 /NewAster-Bold
 /New-Aster-Bold
 /NewAster-BoldItalic
 /NewAster-Italic
 /NewAster-SemiBold
 /NewAster-SemiBoldItalic
 /NewBaskerville-Bold
 /NewBaskerville-BoldItalic
 /NewBaskerville-BoldItalicOsF
 /NewBaskerville-BoldSC
 /NewBaskerville-Italic
 /NewBaskerville-ItalicOsF
 /NewBaskerville-Roman
 /NewBaskerville-SC
 /NewBerolinaMT
 /NewCaledonia
 /NewCaledonia-Black
 /NewCaledonia-BlackItalic
 /NewCaledonia-Bold
 /NewCaledonia-BoldItalic
 /NewCaledonia-BoldItalicOsF
 /NewCaledonia-BoldSC
 /NewCaledonia-Italic
 /NewCaledonia-ItalicOsF
 /NewCaledonia-SC
 /NewCaledonia-SemiBold
 /NewCaledonia-SemiBoldItalic
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Fraction
 /NewCenturySchlbk-FractionBold
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewCenturySchoolbook-Bold
 /NewCenturySchoolbook-BoldItalic
 /NewCenturySchoolbook-Italic
 /NewCenturySchoolbook-Roman
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothic-BoldOblique
 /NewsGothicMT
 /NewsGothic-Oblique
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /NotreDame-Ornaments
 /NotreDame-Roman
 /NotreDame-RomanDfr
 /Novarese-Bold
 /Novarese-BoldItalic
 /Novarese-Book
 /Novarese-BookItalic
 /Novarese-Medium
 /Novarese-MediumItalic
 /Novarese-Ultra
 /Nueva-BoldExtended
 /NuevaMM
 /NuevaMM-It
 /Nueva-Roman
 /NuptialScript
 /Nyx
 /OceanSansMM
 /OceanSansMM-It
 /OCRA
 /OCRA-Alternate
 /OCRB
 /OCRB-Alternate
 /OctavianMT
 /OctavianMT-Expert
 /OctavianMT-Italic
 /OctavianMT-ItalicExpert
 /OctavianMT-ItalicOsF
 /OctavianMT-SC
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldClaudeLP
 /OldClaudeLP-OsF
 /OldClaudeLP-SC
 /OldStyleSeven
 /OldStyleSeven-Italic
 /OldStyleSeven-ItalicOsF
 /OldStyleSeven-SC
 /Olympian
 /Olympian-Bold
 /Olympian-BoldItalic
 /Olympian-Italic
 /Omnia
 /Ondine
 /OnyxMT
 /OPTIGranby-ElephantAgency
 /OPTIGranbyElephantAgencyMedium
 /Optima
 /Optima-Black
 /Optima-BlackItalic
 /Optima-Bold
 /Optima-Bold-Italic
 /Optima-BoldOblique
 /Optima-DemiBold
 /Optima-DemiBoldItalic
 /Optima-ExtraBlack
 /Optima-ExtraBlackItalic
 /Optima-Italic
 /Optima-Medium
 /Optima-MediumItalic
 /Optima-Oblique
 /Optima-Roman
 /Orator
 /Orator-Slanted
 /Origami-Bold
 /Origami-BoldItalic
 /Origami-Italic
 /Origami-Medium
 /Origami-MediumItalic
 /Origami-Regular
 /Origami-SemiBold
 /Origami-SemiBoldItalic
 /Ouch
 /Oxford
 /Ozwald
 /PalaceScriptMT
 /PalaceScriptMT-SemiBold
 /Palatino-Black
 /Palatino-BlackItalic
 /Palatino-Bold
 /Palatino-BoldA
 /Palatino-BoldItalic
 /Palatino-Bold-Italic
 /Palatino-BoldItalicOsF
 /Palatino-BoldOsF
 /Palatino-Italic
 /Palatino-ItalicA
 /Palatino-ItalicOsF
 /Palatino-Light
 /Palatino-LightItalic
 /Palatino-Medium
 /Palatino-MediumItalic
 /Palatino-Roman
 /Palatino-SC
 /Parisian
 /ParkAvenue
 /Peignot-Bold
 /Peignot-Demi
 /Peignot-Light
 /Pelican
 /PenumbraMM
 /PepitaMT
 /Pepperwood-Fill
 /Pepperwood-Outline
 /Pepperwood-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldExp
 /Perpetua-BoldItalic
 /Perpetua-BoldItalicExp
 /Perpetua-BoldItalicOsF
 /Perpetua-BoldOsF
 /Perpetua-Exp
 /Perpetua-Italic
 /Perpetua-ItalicExp
 /Perpetua-ItalicOsF
 /Perpetua-SC
 /PhoneticsP01
 /PhoneticsP02
 /PhoneticsP03
 /PhotinaMT
 /PhotinaMT-Bold
 /PhotinaMT-BoldItalic
 /PhotinaMT-Italic
 /PhotinaMT-RegularExpert
 /PhotinaMT-RegularSC
 /PhotinaMT-SemiBold
 /PhotinaMT-SemiBoldItalic
 /PhotinaMT-UltraBold
 /PhotinaMT-UltraBoldItalic
 /Plantin
 /Plantin-Bold
 /Plantin-BoldCondensed
 /Plantin-BoldItalic
 /Plantin-Italic
 /Plantin-Light
 /Plantin-LightItalic
 /Plantin-Semibold
 /Plantin-SemiboldItalic
 /Poetica-ChanceryExpert
 /Poetica-ChanceryI
 /Poetica-ChanceryII
 /Poetica-ChanceryIII
 /Poetica-ChanceryIV
 /Poetica-RomanSmallCaps
 /Poetica-RomanSmallCapsAlt
 /Poetica-SuppAmpersands
 /Poetica-SuppInitialSwashCaps
 /Poetica-SuppLigatures
 /Poetica-SuppLowercaseAltI
 /Poetica-SuppLowercaseAltII
 /Poetica-SuppLowercaseBegI
 /Poetica-SuppLowercaseBegII
 /Poetica-SuppLowercaseEndI
 /Poetica-SuppLowercaseEndII
 /Poetica-SuppOrnaments
 /Poetica-SuppSwashCapsI
 /Poetica-SuppSwashCapsII
 /Poetica-SuppSwashCapsIII
 /Poetica-SuppSwashCapsIV
 /Pompeia-Inline
 /Pompeia-InlineItalic
 /Pompeijana-Borders
 /Pompeijana-Roman
 /Ponderosa
 /Poplar
 /Postino
 /Postino-Italic
 /Present
 /Present-Black
 /Present-BlackCondensed
 /Present-Bold
 /Present-BoldCondensed
 /Present-Condensed
 /PrestigeElite
 /PrestigeElite-Bold
 /PrestigeElite-BoldSlanted
 /PrestigeElite-Slanted
 /Quake
 /Quorum-Black
 /Quorum-Bold
 /Quorum-Book
 /Quorum-Light
 /Quorum-Medium
 /Rad
 /Raleigh
 /Raleigh-Bold
 /Raleigh-DemiBold
 /Raleigh-Medium
 /Raphael
 /ReliqMM
 /ReliqMM-OsF
 /Reporter-Two
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldCondensed
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Romic-Bold
 /Romic-ExtraBold
 /Romic-Light
 /Romic-LightItalic
 /Romic-Medium
 /Rosewood-Fill
 /Rosewood-Regular
 /Rotation-Bold
 /Rotation-Italic
 /Rotation-Roman
 /RotisSansSerif
 /RotisSansSerif-Bold
 /RotisSansSerif-ExtraBold
 /RotisSansSerif-Italic
 /RotisSansSerif-Light
 /RotisSansSerif-LightItalic
 /RotisSemiSans
 /RotisSemiSans-Bold
 /RotisSemiSans-ExtraBold
 /RotisSemiSans-Italic
 /RotisSemiSans-Light
 /RotisSemiSans-LightItalic
 /RotisSemiSerif
 /RotisSemiSerif-Bold
 /RotisSerif
 /RotisSerif-Bold
 /RotisSerif-Italic
 /rsfs10
 /rsfs5
 /rsfs7
 /RulingScript-Two
 /RunicMT-Condensed
 /RussellOblique
 /RussellOblique-Informal
 /RussellOblique-InformalAlt
 /RussellSquare
 /RussellSquare-Oblique
 /Rusticana-Borders
 /Rusticana-Roman
 /RuzickaFreehandLH-Bold
 /RuzickaFreehandLH-BoldSC
 /RuzickaFreehandLH-Roman
 /RuzickaFreehandLH-RomanSC
 /Sabon-Bold
 /Sabon-BoldItalic
 /Sabon-BoldItalicOsF
 /Sabon-BoldOsF
 /Sabon-Italic
 /Sabon-ItalicOsF
 /Sabon-Roman
 /Sabon-RomanSC
 /SanMarco
 /SanMarco-Dfr
 /Sanvito-Light
 /SanvitoMM
 /Sanvito-Roman
 /Sassafras-Italic
 /Sassafras-Lx
 /Sassafras-LxItalic
 /Sassafras-Roman
 /Sassafras-Sx
 /Sassafras-SxItalic
 /SButtons
 /ScalaSans
 /ScalaSans-Bold
 /ScalaSans-BoldItalic
 /ScalaSans-Caps
 /ScalaSans-CapsItalic
 /ScalaSansExtraBold
 /ScalaSansExtraBoldItal
 /ScalaSans-FiguresBold
 /ScalaSans-FiguresBoldItalic
 /ScalaSans-Italic
 /ScheringLetterBold
 /ScheringLetterCEBold
 /ScheringLetterCERegular
 /ScheringLetterRegular
 /ScheringLogoFont
 /ScheringSansBold
 /ScheringSansBoldItalic
 /ScheringSansCEBold
 /ScheringSansCEBoldItalic
 /ScheringSansCEItalic
 /ScheringSansCERegular
 /ScheringSansItalic
 /ScheringSansRegular
 /ScheringSerifBold
 /ScheringSerifCEBold
 /ScheringSerifCEItalic
 /ScheringSerifCERegular
 /ScheringSerifItalic
 /ScheringSerifRegular
 /ScheringSymbolsArrowsNegative
 /ScheringSymbolsArrowsOutline
 /ScheringSymbolsArrowsPositive
 /ScheringSymbolsForms
 /ScheringSymbolsIconsNegative
 /ScheringSymbolsIconsOutline
 /ScheringSymbolsIconsPositive
 /ScheringSymbolsLines
 /ScheringSymbolsNumbersNegative
 /ScheringSymbolsNumbersPositive
 /ScotchRomanMT
 /ScotchRomanMT-Italic
 /ScriptMT-Bold
 /Serifa-Black
 /Serifa-Bold
 /Serifa-Italic
 /Serifa-Light
 /Serifa-LightItalic
 /Serifa-Roman
 /SerifGothic
 /SerifGothic-Black
 /SerifGothic-Bold
 /SerifGothic-ExtraBold
 /SerifGothic-Heavy
 /SerifGothic-Light
 /SerlioLH
 /Serpentine-Bold
 /Serpentine-BoldOblique
 /Serpentine-Light
 /Serpentine-LightOblique
 /Serpentine-Medium
 /Serpentine-MediumOblique
 /Shannon-Bold
 /Shannon-Book
 /Shannon-ExtraBold
 /Shannon-Oblique
 /Shelley-AllegroScript
 /Shelley-AndanteScript
 /Shelley-VolanteScript
 /Sho-Roman
 /Shuriken-Boy
 /SILDoulosIPA
 /SILSophiaIPA
 /SimonciniGaramond
 /SimonciniGaramond-Bold
 /SimonciniGaramond-Italic
 /Slimbach-Black
 /Slimbach-BlackItalic
 /Slimbach-Bold
 /Slimbach-BoldItalic
 /Slimbach-Book
 /Slimbach-BookItalic
 /Slimbach-Medium
 /Slimbach-MediumItalic
 /SLines
 /SLinesTab
 /SLinesTab-Bold
 /Smaragd
 /Smaragd-Alternate
 /SMinionPlus-Bold
 /SMinionPlus-BoldItalic
 /SMinionPlus-Italic
 /SMinionPlus-Regular
 /SMinionPlusSC-Bold
 /SMinionPlusSC-BoldItalic
 /SMinionPlusSC-Italic
 /SMinionPlusSC-Regular
 /SMinionPlusTab-Bold
 /SMinionPlusTab-BoldItalic
 /SMinionPlusTab-Italic
 /SMinionPlusTab-Regular
 /SMinion-Regular
 /SMinionSC-BoldItalic
 /SMyriad-Bold
 /SMyriad-BoldItalic
 /SMyriad-Condensed
 /SMyriad-CondensedBold
 /SMyriad-CondensedBoldItalic
 /SMyriad-CondensedItalic
 /SMyriad-CondensedLight
 /SMyriad-CondensedLightItalic
 /SMyriad-CondensedSemiBold
 /SMyriad-CondensedSemiBoldItalic
 /SMyriad-Italic
 /SMyriad-Light
 /SMyriad-LightItalic
 /SMyriad-Regular
 /SMyriad-SemiBold
 /SMyriad-SemiBoldItalic
 /SnellRoundhand-BlackScript
 /SnellRoundhand-BoldScript
 /SnellRoundhand-Script
 /Sonata
 /Souvenir-Bold
 /Souvenir-BoldItalic
 /Souvenir-Demi
 /Souvenir-DemiItalic
 /Souvenir-Light
 /Souvenir-LightItalic
 /Souvenir-Medium
 /Souvenir-MediumItalic
 /Spartan-BookClassified
 /Spartan-HeavyClassified
 /SpectrumMT
 /SpectrumMT-Expert
 /SpectrumMT-Italic
 /SpectrumMT-ItalicExpert
 /SpectrumMT-ItalicOsF
 /SpectrumMT-SC
 /SpectrumMT-SemiBold
 /SpectrumMT-SemiBoldExpert
 /SpectrumMT-SemiBoldOsF
 /SpringerLogo
 /SpringLP
 /SpringLP-Light
 /Springnew-Regular
 /SprMyriad
 /SprMyriadBold
 /SprMyriadBold-Italic
 /SprMyriad-Italic
 /SPSASORT-Normal
 /SPSKGSaur
 /SPSMathItalic
 /Spsmmi10
 /SPSTimes
 /SPSTimes_B
 /SPSTimes_BI
 /SPSTimes-Bold
 /SPSTimesBoldExpert
 /SPSTimesBoldItalicExpert
 /SPSTimes-Italic
 /SPSTimesItalicEnunExpert
 /SPSTimesItalicExpert
 /SPSTimes-Roman
 /SPSTimesRomanExpert
 /SpumoniLP
 /SSymbolRegular
 /SSymbol-Regular
 /StandardGreekBold
 /StandardGreekItalic
 /Standard-NewGreekItalic
 /StandardSymL
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-BoldItalicOsF
 /StempelGaramond-BoldOsF
 /StempelGaramond-Italic
 /StempelGaramond-ItalicOsF
 /StempelGaramond-Roman
 /StempelGaramond-RomanSC
 /StempelSchneidler-Black
 /StempelSchneidler-BlackItalic
 /StempelSchneidler-Bold
 /StempelSchneidler-BoldItalic
 /StempelSchneidler-Italic
 /StempelSchneidler-Light
 /StempelSchneidler-LightItalic
 /StempelSchneidler-MedItalic
 /StempelSchneidler-Medium
 /StempelSchneidler-Roman
 /Stencil
 /STMARY10
 /STMARY5
 /STMARY7
 /StoneInformal
 /StoneInformal-Bold
 /StoneInformal-BoldItalic
 /StoneInformal-Italic
 /StoneInformal-Semibold
 /StoneInformal-SemiboldItalic
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-PhoneticAlternate
 /StoneSans-PhoneticIPA
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Bold
 /StoneSerif-BoldItalic
 /StoneSerif-Italic
 /StoneSerif-PhoneticAlternate
 /StoneSerif-PhoneticIPA
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /StrayhornMT-Bold
 /StrayhornMT-BoldItalic
 /StrayhornMT-BoldItalicOsF
 /StrayhornMT-BoldOsF
 /StrayhornMT-ExtraBold
 /StrayhornMT-ExtraBoldItalic
 /StrayhornMT-ExtraBoldItaOsF
 /StrayhornMT-ExtraBoldOsF
 /StrayhornMT-Italic
 /StrayhornMT-ItalicOsF
 /StrayhornMT-Light
 /StrayhornMT-LightItalic
 /StrayhornMT-LightItalicOsF
 /StrayhornMT-LightSC
 /StrayhornMT-Regular
 /StrayhornMT-RegularSC
 /Strumpf-Contour
 /Strumpf-Open
 /STSongStd-Light-Acro
 /Studz
 /Symbol
 /Syntax-Black
 /Syntax-Bold
 /Syntax-Italic
 /Syntax-Roman
 /Syntax-UltraBlack
 /Tahoma-Bold
 /Tekton
 /Tekton-Bold
 /Tekton-BoldOblique
 /TektonMM
 /TektonMM-Oblique
 /Tekton-Oblique
 /TektonPro-Bold
 /TektonPro-BoldCond
 /TektonPro-BoldCondObl
 /TektonPro-BoldExt
 /TektonPro-BoldExtObl
 /TektonPro-BoldObl
 /TektonPro-Cond
 /TektonPro-CondObl
 /TektonPro-Ext
 /TektonPro-ExtObl
 /TektonPro-Light
 /TektonPro-LightCond
 /TektonPro-LightCondObl
 /TektonPro-LightExt
 /TektonPro-LightExtObl
 /TektonPro-LightObl
 /TektonPro-Obl
 /TektonPro-Regular
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TheSerif-Italic
 /TheSerif-Plain
 /TheSerifSemiBold-Plain
 /Tiepolo-Black
 /Tiepolo-BlackItalic
 /Tiepolo-Bold
 /Tiepolo-BoldItalic
 /Tiepolo-Book
 /Tiepolo-BookItalic
 /Tiffany
 /Tiffany-Demi
 /Tiffany-DemiItalic
 /Tiffany-Heavy
 /Tiffany-HeavyItalic
 /Tiffany-Italic
 /Times
 /TimesAccents
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldOblique
 /Times-BoldSC
 /TimesEuropa-Bold
 /TimesEuropa-BoldItalic
 /TimesEuropa-Italic
 /TimesEuropa-Roman
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesMath-FrakturLight
 /TimesMath-LatinOpenFace
 /TimesMath-LatinOpenFaceAlt
 /TimesMath-LightScript
 /TimesMath-SansSerifBold
 /TimesMath-ScriptBold
 /TimesMath-ScriptFirstBold
 /TimesMath-ScriptFirstLight
 /TimesNewRoman
 /TimesNewRomanMT-BoldCond
 /TimesNewRomanMT-Cond
 /TimesNewRomanMT-CondItalic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /TimesNRGreekMT
 /TimesNRGreekMT-Bold
 /TimesNRGreekMT-BoldInclined
 /TimesNRGreekMT-Inclined
 /TimesNRMT
 /TimesNRMT-Bold
 /TimesNRMT-BoldItalic
 /TimesNRMT-Italic
 /Times-Oblique
 /Times-PhoneticAlternate
 /Times-PhoneticIPA
 /Times-Roman
 /Times-RomanSC
 /Times-RomanSmallCaps
 /Times-Semibold
 /Times-SemiboldItalic
 /Times-TenBold
 /TimesTen-Bold
 /Times-TenBoldItalic
 /TimesTen-BoldItalic
 /TimesTen-BoldItalicOsF
 /TimesTen-BoldOsF
 /TimesTenCyr-Bold
 /TimesTenCyr-BoldInclined
 /TimesTenCyr-Inclined
 /TimesTenCyr-Upright
 /Times-TenItalic
 /TimesTen-Italic
 /TimesTen-ItalicOsF
 /Times-TenRoman
 /TimesTen-Roman
 /TimesTen-RomanSC
 /Toolbox
 /Trade-Gothic
 /TradeGothic-BoldCondTwenty
 /TradeGothic-BoldCondTwentyObl
 /TradeGothic-BoldOblique
 /TradeGothic-BoldTwo
 /TradeGothic-BoldTwoOblique
 /TradeGothic-CondEighteen
 /TradeGothic-CondEighteenObl
 /TradeGothicLH-BoldExtended
 /TradeGothicLH-Extended
 /TradeGothic-Light
 /TradeGothic-LightOblique
 /TradeGothic-Oblique
 /Trajan-Bold
 /Trajan-Regular
 /TrumpMediaeval-Bold
 /TrumpMediaeval-BoldItalic
 /TrumpMediaeval-BoldItalicOsF
 /TrumpMediaeval-BoldOsF
 /TrumpMediaeval-Italic
 /TrumpMediaeval-ItalicOsF
 /TrumpMediaeval-Roman
 /Umbra
 /Univers
 /Univers45-Light
 /Univers65-Bold
 /Universal-GreekwithMathPi
 /Universal-NewswithCommPi
 /Univers-Black
 /Univers-BlackExt
 /Univers-BlackExtObl
 /Univers-BlackOblique
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-CondensedBold
 /Univers-CondensedBoldOblique
 /UniversCondensedBQ-Bold
 /UniversCondensedBQ-Light
 /UniversCondensedBQ-Regular
 /Univers-CondensedLight
 /Univers-CondensedLightOblique
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-ExtraBlack
 /Univers-ExtraBlackExt
 /Univers-ExtraBlackExtObl
 /Univers-ExtraBlackObl
 /UniversityRoman
 /Univers-Light
 /Univers-LightOblique
 /Univers-LightUltraCondensed
 /Univers-Oblique
 /UniversSB-Bold
 /UniversSB-Con
 /UniversSB-ConIta
 /UniversSB-ExtBol
 /UniversSB-Italic
 /UniversSB-LigCon
 /UniversSB-Light
 /UniversSB-MedCon
 /UniversSB-Medium
 /UniversSB-Roman
 /Univers-ThinUltraCondensed
 /Univers-UltraCondensed
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /Usherwood-Black
 /Usherwood-BlackItalic
 /Usherwood-Bold
 /Usherwood-BoldItalic
 /Usherwood-Book
 /Usherwood-BookItalic
 /Usherwood-Medium
 /Usherwood-MediumItalic
 /Utopia-Black
 /Utopia-BlackOsF
 /Utopia-Bold
 /Utopia-BoldItalic
 /Utopia-BoldItalicOsF
 /Utopia-BoldOsF
 /UtopiaExp-Black
 /UtopiaExp-Bold
 /UtopiaExp-BoldItalic
 /UtopiaExp-Italic
 /UtopiaExp-Regular
 /UtopiaExp-Semibold
 /UtopiaExp-SemiboldItalic
 /Utopia-Italic
 /Utopia-ItalicOsF
 /Utopia-Ornaments
 /Utopia-Regular
 /Utopia-RegularSC
 /Utopia-Semibold
 /Utopia-SemiboldItalic
 /Utopia-SemiboldItalicOsF
 /Utopia-SemiboldSC
 /Utopia-Titling
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /VectoraLH-Black
 /VectoraLH-BlackItalic
 /VectoraLH-Bold
 /VectoraLH-BoldItalic
 /VectoraLH-Italic
 /VectoraLH-Light
 /VectoraLH-LightItalic
 /VectoraLH-Roman
 /Veljovic-Black
 /Veljovic-BlackItalic
 /Veljovic-Bold
 /Veljovic-BoldItalic
 /Veljovic-Book
 /Veljovic-BookItalic
 /Veljovic-Medium
 /Veljovic-MediumItalic
 /Versailles-Black
 /Versailles-BlackItalic
 /Versailles-Bold
 /Versailles-BoldItalic
 /Versailles-Italic
 /Versailles-Light
 /Versailles-LightItalic
 /Versailles-Roman
 /VerveMM
 /VerveMM-A
 /Visigoth
 /Viva-BoldExtraExtended
 /VivaMM
 /Viva-Regular
 /Volkswagen-Bold
 /Volkswagen-BoldIta
 /Volkswagen-DemiBold
 /Volkswagen-DemiBoldIta
 /Volkswagen-ExtraBold
 /Volkswagen-Heavy
 /Volkswagen-HeavyIta
 /Volkswagen-Light
 /Volkswagen-LightIta
 /Volkswagen-Medium
 /Volkswagen-MediumIta
 /Volkswagen-Regular
 /Volkswagen-RegularIta
 /VolutaScript
 /VolutaScript-Alternates
 /VolutaScript-Swash
 /WarningLH-Pi
 /WarnockPro-Bold
 /WarnockPro-BoldCapt
 /WarnockPro-BoldDisp
 /WarnockPro-BoldIt
 /WarnockPro-BoldItCapt
 /WarnockPro-BoldItDisp
 /WarnockPro-BoldItSubh
 /WarnockPro-BoldSubh
 /WarnockPro-Capt
 /WarnockPro-Disp
 /WarnockPro-It
 /WarnockPro-ItCapt
 /WarnockPro-ItDisp
 /WarnockPro-ItSubh
 /WarnockPro-Light
 /WarnockPro-LightCapt
 /WarnockPro-LightDisp
 /WarnockPro-LightIt
 /WarnockPro-LightItCapt
 /WarnockPro-LightItDisp
 /WarnockPro-LightItSubh
 /WarnockPro-LightSubh
 /WarnockPro-Regular
 /WarnockPro-Semibold
 /WarnockPro-SemiboldCapt
 /WarnockPro-SemiboldDisp
 /WarnockPro-SemiboldIt
 /WarnockPro-SemiboldItCapt
 /WarnockPro-SemiboldItDisp
 /WarnockPro-SemiboldItSubh
 /WarnockPro-SemiboldSubh
 /WarnockPro-Subh
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /WatersTitlingMM
 /WatersTitlingMM-Alt
 /WatersTitlingMM-Lig
 /WatersTitlingMM-TallCaps
 /Weidemann-Black
 /Weidemann-BlackItalic
 /Weidemann-Bold
 /Weidemann-BoldItalic
 /Weidemann-Book
 /Weidemann-BookItalic
 /Weidemann-Medium
 /Weidemann-MediumItalic
 /Weiss
 /Weiss-Bold
 /Weiss-ExtraBold
 /Weiss-Italic
 /WendyLP-Bold
 /WendyLP-Light
 /WendyLP-Medium
 /WiesbadenSwing-Dingbats
 /WiesbadenSwing-Roman
 /WilhelmKlingsporGotisch
 /WilhelmKlingsporGotisch-Dfr
 /Wilke-Black
 /Wilke-BlackItalic
 /Wilke-Bold
 /Wilke-BoldItalic
 /Wilke-Italic
 /Wilke-Roman
 /Willow
 /Wingdings-Regular
 /WittenbergerFrakturMT
 /WittenbergerFrakturMT-Bd
 /WittenbergerFrakturMT-BdDfr
 /WittenbergerFrakturMT-Dfr
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WontonICG
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-CyrillicA
 /WP-MathA
 /WP-Phonetic
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /Yfrak-Regular
 /Ygoth-Regular
 /Yswab-Regular
 /ZapfChancery-Bold
 /ZapfChancery-Demi
 /ZapfChancery-Italic
 /ZapfChancery-Light
 /ZapfChancery-LightItalic
 /ZapfChancery-MediumItalic
 /ZapfChancery-Roman
 /ZapfDingbats
 /Zebrawood-Fill
 /Zebrawood-Regular
 /ZineSansDis-RegularRoman
 /ZiptyDo
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

