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Preface

While basic features of polarons were well recognized a long time ago and
have been described in a number of review papers and textbooks, interest
in the role of electron—phonon interactions and polaron dynamics in differ-
ent materials has recently gone through a vigorous revival. Electron—phonon
interactions have been shown to be relevant in many inorganic and organic
semiconductors and polymers, colossal magnetoresistance oxides, and trans-
port through nanowires and quantum dots also often depends on vibronic
displacements of ions. These interactions presumably play a role in high-
temperature superconductors as well. The continued interest in polarons
extends beyond the physical description of advanced materials. The field
has been a testing ground for analytical, semi-analytical, and numerical
techniques, such as path integrals, strong-coupling perturbation expansion,
advanced variational methods, exact diagonalization, Quantum Monte Carlo,
and other techniques. This book reviews some recent developments in the
field of polarons, starting with the basics and covering a number of active
directions of research. Single- and multipolaron theories have offered more
insight into colossal magnetoresistance and in a broad spectrum of phys-
ical properties of structures with reduced dimension and dimensionality
such as transport, optical absorption, Raman scattering, photoluminescence,
magneto-optics, etc. While nobody — at present — has a final theory of high-
temperature superconductivity, we discuss one alternative (polaronic) route.
We have benefited from discussions with many experts in the field. While
writing this book and at some earlier stage of our studies, discussions with
A. Andreev, S. Aubry, I. Bozovic, A. Bratkovsky, F. Brosens, P. Edwards,
J. Bonca, V. Cataudella, G. De Filippis, Yu. Firsov, V. Fomin, R. Evrard,
H. Fehske, V. Gladilin, J. Hague, M. Hohenadler, G. Tadonisi, V. Kabanov,
E. Kartheuser, S. Klimin, P. Kornilovitch, L. Lemmens, W. von der Linden,
D. Mihailovic, A. Mishchenko, G. Papadopoulos, F. Peeters, J. Samson,
M. Stoneham, J. Tempere, and P. Zhao were especially helpful.

Loughborough Alexandre S. Alezandrov
Antwerp Jozef T. Devreese
June 2009
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1

Introduction

1.1 First-Principle Hamiltonian

Charge carriers in inorganic and organic matter interact with ion vibrations.
The corresponding electron—phonon interaction (EPI) dominates transport
and other properties of many poor metals and semiconductors. EPI causes also
phase transformations, including superconductivity. When EPI is sufficiently
strong, electron Bloch states are affected even in the normal phase. Phonons
are also affected by conduction electrons. In doped insulators, including the
advanced materials discussed in this review, bare phonons are well defined
in insulating parent compounds, but microscopic separation of electrons and
phonons is not so straightforward in metals and heavily doped insulators [1],
where the Born and Oppenheimer [2] and density functional [3,4] methods are
used. Here, we have to start with the first-principle Hamiltonian describing
conduction electrons and ions coupled by the Coulomb forces:

H=-Y oy ey o
= - — — — Ze —_— .
- 2me 2 — |I‘i —I',L'/l — |I‘i—Rj|
7 i ij
Z%e? 1 %
T Z R, — R;/| _ZW’
J#] J
where r;, R; are the electron and ion coordinates, respectively, ¢ = 1,..., N;

j=1,...,N;V,;=0/0r;,V; = 0/0R;, Ze is the ion charge, and M is the ion
mass. The system is neutral, N, = ZN. The inner electrons are strongly cou-
pled to the nuclei and follow their motion, so the ions can be considered as rigid
charges. To account for their “high-energy” electron degrees of freedom, we can
replace the elementary charge in (1.1) by e/\/e, where € is the high-frequency
dielectric constant, or introduce an electron—ion “pseudopotential” [5] instead
of the bare Coulomb electron—nuclear interaction.

A.S. Alexandrov and J.T. Devreese, Advances in Polaron Physics, Springer Series in
Solid-State Sciences 159,
DOI: 10.1007/978-3-642-01896-1_1, (© Springer-Verlag Berlin Heidelberg 2010



2 1 Introduction
1.2 Local Density Approximation

One cannot solve the corresponding Schrodinger equation perturbatively
because the Coulomb interaction is strong. The ratio of the characteristic
Coulomb energy to the kinetic energy is ry = mee?/(4mne/3)Y/3 ~ 1 for the
electron density ne = ZN = 10?3 cm~2 (here and further, we take the volume
of the system as V' = 1, unless specified otherwise, and i = ¢ = kg = 1).
However, one can take advantage of the small value of the adiabatic ratio
me/M < 1073, Tons are heavy and the amplitudes of their vibrations,
(lu]) =~ y/1/Mwp, near equilibrium positions Ry = 1 are much smaller than

the lattice constant a = N~1/3:
1/4
u Me
<|a|> ~ (Mr ) <1 (1.2)
S

In this estimate, we take the characteristic vibration frequency wp of the order
of the ion plasma frequency wg = /47N Z2e2 /M. Hence, one can expand the
Hamiltonian in powers of |u|.

Any further progress requires a simplifying physical idea, which commonly
is to approach the ground state of the many-electron system via a one-electron
picture. In the framework of the local density approximation (LDA), the
Coulomb electron—electron interaction is replaced by an effective one-body
potential V(r):

n(r’

= —Z¢? _ e? [ dr’ ) n(r
IGREOW = i [ el (03)

where fiex[n(r)] is the exchange interaction, usually calculated numerically
or expressed as pex[n(r)] = —pBn(r)*/? with a constant § in the simplest
approximation. Here, V(r) is a functional of the electron density n(r) =
> (Wl(r)Wy(r)), where Wy(r) annihilates the electron with spin s and coor-
dinate r. As a result, in second quantization for electrons the Hamiltonian
takes the form

H=H,+ Hpn + He pn + He o, (1.4)

where

2Mme

=Y / e (r) [— v, V(r)} () (1.5)

is the electron energy in a periodic crystal field V(r) = >, v(r — 1), which

is V(r) calculated at R; = 1 with the periodic electron density n(®)(r 4 1) =
©)(r):
nlO(r):

V2 9 1
Hyn = ; [—m +u - 3 /drn(o)(r)V(r)} + 3 Z UaUmpDap(l — m)

lLm,a,B

(1.6)
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is the vibration energy. Here, o, 8 = z, ¥, z and

Deas(l— m) = |z 3 LI /dm<0>(r)V(r) (1.7)
o " OlaOmg | 2 I —m/| '
is the dynamic matrix. EPI is given by

He pn = zl:ul : %/dr Z Tl (r)T,(r) — n©(r)

1
- fr n© (p
1m,a,
and the electron—electron correlations are described by
1 e?
Hoomg [ar [ar—0 ;\Pi(r)wi,<r’>w;,<r'>ws<r> (1.9)

/dr[/dr'%Jruex ©)( }Z\Iﬁ

We include the electrostatic repulsive energy of the nuclei in He_, so that the
average of H, . is zero in the Hartree approximation.

1.3 Electron—Phonon Interaction in the Bloch
Representation

The vibration Hamiltonian Hpy, is a quadratic form and therefore can be
diagonalized using the linear canonical transformation for the displacement
operators:

Z — Sav dgv exp(iq-1) + H.c., (1.10)

V2N Mwqg,

0 [ Mwq, .
n = Z eq 2—]\;‘qu exp(iq - 1) — H.c.,
q,V

where q is the phonon momentum, dq, is the phonon (Bose) annihilation oper-
ator, eq, and wq, are the unit polarization vector and the phonon frequency,
respectively, of the phonon mode v, and H.c. is the Hermitian conjugate. Then,
H,;, takes the following form
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th = qul/(dzydql/ + 1/2)7 (111)

Qv

if the eigenfrequencies wq, and the eigenstates eq, satisfy

Mwl,eq, =Y DL, (1.12)
B
and
> eret, = Noag. (1.13)
a
The last equation and the bosonic commutation rules [dquj;/u/] = 0 0qq’

follow from (3/8u1°‘)u1ﬁ - uf(a/au?) = 0o3. Here

D = "exp(iq - m) Dyy3(m) (1.14)

is the Fourier transform of the second derivative of the ion potential energy.
The first derivative in (1.6) is zero in crystals with a center of symmetry.
Different solutions of (1.12) are classified with the phonon branch (mode)
quantum number v, which is 1,2,3 for a simple lattice and 1,...,3k for a
complex lattice with %k ions per unit cell.

The periodic part of the Hamiltonian H, is diagonal in the Bloch repre-
sentation:

‘Ils(r) = Z wnks(r)cnks; (1'15)
n,k

where ¢,ks are the fermion annihilation operators. The Bloch function obeys
the Schrédinger equation

2
(_2V + V(I’)) wnks(r) = E’nkswnks(r)- (1~16)
Me

One-particle states are sorted with the momentum k in the Brillouin zone,
band index n, and spin s. The solution of this equation allows us to calcu-
late the periodic electron density n(o)(r), which determines the crystal field
potential V(r). LDA can explain the shape of the Fermi surface of wide-band
metals and gaps in narrow-gap semiconductors. A spin-polarized version of
LDA can explain a variety of properties of many magnetic materials. How-
ever, this is not the case for narrow d- and f-band metals and oxides (and
other ionic lattices), where the electron—phonon interaction and Coulomb cor-
relations are strong. These materials display much less band dispersion and
wider gaps compared with the first-principle band structure calculations.
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Using the phonon and electron annihilation and creation operators, the
Hamiltonian is finally written as

H=H+ Heph + Heo, (1.17)
where
H.= Z EntsCh s Crkes + quy(dgydqy +1/2) (1.18)
k,n,s a,v
describes independent Bloch electrons and phonons, &,xs = Fnks — i is the

band energy spectrum with respect to the chemical potential u. The part of
EPI, which is linear in the phonon operators, can be written as

1
Hepn = \/ﬁ Z ACH 3 V)qucibkscnk*qsdqv +H.c., (1.19)

k,q,n,n’,v,s
where
N

,—M1/2w2£2

is the dimensionless matrix element. If we restrict the summations over q and
k to the first Brillouin zone of the crystal, then H, ;, should also include the
summation over reciprocal lattice vectors G of umklapp scattering contribu-
tions where q is replaced by q + G. The terms of H. ,;, which are quadratic
and of higher orders in the phonon operators are small. They play a role
only for those phonons which are not coupled with electrons by the linear
interaction (1.19).

The electron—electron correlation energy of a homogeneous electron system
is often written as

(@, K, ) = / dr (eqy - Vo(1)) Wi (D bnrk—an(r)  (1.20)

1
He—e = 5 Z V;:(q)pj;pqv (121)
a
where V.(q) is a matrix element, which is zero for ¢ = 0 because of
electroneutrality and
p:fl = ZCLSCk+qS (1.22)
k,s

is the density fluctuation operator. H should also include a random potential
in doped semiconductors and amorphous metals, which might affect the EPI
matrix element [6].

1.4 Electron—Phonon Interaction in the Wannier (Site)
Representation

For the purpose of this review, we mostly confine our discussions to a
single-band approximation with the EPI matrix element ~,,(q,k,v) = v(q)
depending only on the momentum transfer q. The approximation allows for
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qualitative and in many cases quantitative descriptions of essential pola-
ronic effects in advanced materials. Nevertheless, there might be degenerate
atomic orbitals in solids coupled to local molecular-type Jahn—Teller distor-
tions, where one has to consider multiband electron energy structures (see
Sect. 3.6).

Quantitative calculations of the matrix element in the whole region of
momenta have to be performed from pseudopotentials [1,5]. On the other
hand, one can parameterize EPI rather than to compute it from first princi-
ples in many physically important cases [7]. There are three most important
interactions in doped semiconductors, which are polar coupling to optical
phonons (i.e., the Fréhlich EPI), deformation potential coupling to acousti-
cal phonouns, and the local (Holstein) EPI with molecular-type vibrations in
complex lattices. While the matrix element is ill defined in metals, the bare
phonons wgq, and the electron band structure E,x are well defined in doped
semiconductors, which have their parent dielectric compounds. Here, the effect
of carriers on the crystal field and on the dynamic matrix is small while the
carrier density is much less than the atomic one. Hence, one can use the band
structure and the crystal field of parent insulators to calculate the matrix ele-
ment in doped semiconductors. The interaction constant v(q) has different
g-dependence for different phonon branches. In the long-wavelength limit
(¢ <« 7/a), v(q) < ¢", where n = —1,0 and n = —1/2 for polar optical,
molecular (wg = wp) and acoustic (wq  ¢) phonons, respectively. Not only ¢
dependence is known, but also the absolute values of v(q) are well parame-
terized in this limit. For example in polar semiconductors, the interaction of
two slow electrons at some distance r is found as (3.40)

o(r) = Velr) = 5 3 () P (123)

The Coulomb repulsion in a rigid lattice is V.(r) = €2 /er and |y(q)|* = v*/¢?,
so that

2 2

e Y wo
= — — . 1.24
U(r) €r 4rr ( )

On the other hand, the Coulomb repulsion can be expressed as v(r) = €2 /eor,
where the static dielectric constant, €, describes screening by both core elec-
trons and ions. The high frequency, €, and static, €y, dielectric constants are
measurable: € is the square of the refractive index and ¢q is the low-frequency
dielectric function measured by putting the solid in a capacitor. Hence, the
matrix element of the Frohlich interaction depends only on the dielectric
constants and the optical phonon frequency wq as

Q) =—— (1.25)
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where k = (e7! — €5 '), If the crystal lacks an inversion center to be piezo-
electric, there is EPI with piezoelectric acoustic phonons with an anysotropic
matrix element, which also contribute to a coulombic-like attraction of two
polarons [8].

To get a better insight into physical constraints of the above approxima-
tion, let us transform the Bloch states to the real space or Wannier states

using the canonical linear transformation of the electron operators (here we
follow [9]):

1 ik-m
c; = — e Cks, 1.26
B 2 o
where ¢ = (m, s) includes both site m and spin s quantum numbers. In this
site (Wannier) representation, the electron kinetic energy takes the following
form
H, = Z t(m — n)éssfcl-tcj, (1.27)
2%
where )
. ik-m
tm) =+ zkj Eye

is the “bare” hopping integral. Here, j = (n,s’) and Fy is the Bloch band
dispersion in the rigid lattice.

The electron—phonon interaction and the Coulomb correlations acquire
simple forms in the Wannier representation, if their matrix elements in the
momentum representation depend only on the momentum transfer q:

He—ph - quﬁi [uz(q)dq + HC] s (128)
q,t
1
Hee=3 > Ve(m —n)ngn;. (1.29)
i
Here
1 iq-m
ui(q) = W’Y(Q)e (1.30)
and

Velm) = 5 D Vel (131)

are the matrix elements of the electron—phonon and Coulomb interactions,
respectively, in the Wannier representation for electrons, and n; = c;'ci is the
density operator.

We see that taking the interaction matrix element depending only on
the momentum transfer, one neglects the terms in the electron—phonon and
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Coulomb interactions, which are proportional to the overlap integrals of the
Wannier orbitals on different sites. This approximation is justified for narrow-
band materials, where the electron bandwidth is less than the characteristic
magnitude of the crystal field potential. In the Wannier representation, the
Hamiltonian becomes

H= Z —n) Ss/c ¢+ qum [ui(q)dq + H.c.]
Qi
+z ZV n)iin; + Y wqldldg +1/2). (1.32)
7,73] q

One can transform it further using the site representation also for phonons.
Replacing the Bloch functions in the definition of v(q) by their Wannier series
yields
_ —iq- ng .

v(q) = T 3/2 Ze a° Vno(n). (1.33)
This result is obtained by neglecting the overlap integrals of the Wannier
orbitals on different sites and by assuming that the single-ion potential v(r)
varies over the distance, which is much larger than the radius of orbits. Then
using the displacement operators, one arrives at

He pw = Z fimsUn © Vav(m — n). (1.34)

The site representation of H, py, is particularly convenient for the interaction
with dispersionless modes, when wq = wp and eq = e are g-independent.
Introducing the phonon site operators

1 .
dp = — ) e9mq,, 1.35
\/N zq: q ( )

one obtains in this case

(]
n = —a—=—/(dn +d}),
v QMWO( )

Hpy = wo Y _(dldn +1/2),

and
He ph=wo »_ g(m—n)(e - em n)ims(dh + dn), (1.36)
n,m,s
where . do(m)
v(m
g(m) =

woV2Mwy dm

is a dimensionless force acting between the electron on site m and the dis-
placement of ion n, and eym—n = (M —n)/|m — n| is the unit vector in the
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direction from the electron m to the ion n. The real-space representation
is particularly convenient in parameterizing EPI in complex lattices. Atomic
orbitals of an ion adiabatically follow its motion. Therefore, the electron does
not interact with the displacement of the ion, which orbitals it occupies, i.e.,

9(0) = 0.



2

Continuum Polaron

If characteristic phonon frequencies are sufficiently low, the local defor-
mation of ions, caused by electron itself, creates a potential well, which
traps the electron even in a perfect crystal lattice. This self-trapping phe-
nomenon was predicted by Landau [10] more than 70years ago. It was
studied in greater detail [11-15] in the effective mass approximation for
the electron placed in a continuum polarizable (or deformable) medium,
which leads to a so-called large or continuum polaron. Large-polaron wave
functions and corresponding lattice distortions spread over many lattice
sites. The self-trapping is never complete in the perfect lattice. Due to
finite phonon frequencies, ion polarizations can follow polaron motion if
the motion is sufficiently slow. Hence, large polarons with a low kinetic
energy propagate through the lattice as free electrons but with an enhanced
effective mass.

When the polaron binding energy ), is larger than the half-bandwidth, D
of the electron band, all states in the Bloch bands are “dressed” by phonons.
In this strong-coupling regime, A = E,,/D > 1, the finite bandwidth becomes
important, so the continuum approximation cannot be applied. In this case,
the carriers are described as small or lattice polarons. The main features of
small polarons were understood a long time ago [16-22]. The first identifi-
cation of small polarons in solids was made for nonstoichiometric uranium
dioxide in [23,24]. Large and small polarons were discussed in a number of
review papers and textbooks, for example [7,11,25-34].

In many models of EPI, the ground-state polaron energy is an analytical
function of the coupling constant for any dimensionality of space [35-39].
There is no abrupt (nonanalytical) phase transition of the ground state as the
electron—phonon coupling increases. It is instead a crossover from Bloch states
of band electrons or large polarons propagating with almost bare mass in a
rigid lattice to heavily dressed Bloch states of small polarons propagating at
low temperatures with an exponentially enhanced effective mass. The ground-
state wave function of any polaron is delocalized for any coupling strength.
This result holds for both finite-site models and infinite-site models [38].

A.S. Alexandrov and J.T. Devreese, Advances in Polaron Physics, Springer Series in
Solid-State Sciences 159,
DOI: 10.1007/978-3-642-01896-1_2, (© Springer-Verlag Berlin Heidelberg 2010



12 2 Continuum Polaron

2.1 Pekar’s Polaron

To approach the multipolaron problem, let us briefly discuss a single electron
interacting with the lattice deformation in the continuum approximation, as
studied by Pekar [14]. In his model, a free electron interacts with the dielectric
polarizable continuum, described by the static and high-frequency dielectric
constants. This is the case for carriers interacting with optical phonons in
ionic crystals under the condition that the size of the self-trapped state is
large compared with the lattice constant, so that the lattice discreteness is
irrelevant.

2.1.1 Ground State

Describing the ionic crystal as a polarizable dielectric continuum, one should
keep in mind that only the ionic part of the total polarization contributes to
the polaron state. The interaction of a carrier with valence electrons respon-
sible for the optical properties is taken into account via the Hartree—Fock
periodic potential and included in the band mass m. Therefore, only ion dis-
placements contribute to the self-trapping. Following Pekar, we minimize the
sum E(v) of the electron kinetic energy and the potential energy due to the
self-induced polarization field (here we follow [26]):

B = [arluw (-5 ) v P DE)|. 2

where

—eV/d gLt (2.2)

Ir*r’l

is the electric field of the electron in the state with the wave function ¥ (r) and
P is the ionic part of the lattice polarization. Minimizing F(v) with respect
to 1*(r) at fivzed P and [ dr|¢(r)|* = 1, one arrives at the equation of motion:

<2V_2 - e/dr’P(r’) : V'%r') Y(r) = Eg(r), (2.3)

where Ej is the polaron ground-state energy. The ionic part of the total
polarization is obtained using the definition of the susceptibilities yo and Y,
P = (xo—x)D. The dielectric susceptibilities xo and x are related to the static
and high-frequency dielectric constants, respectively (yo = (€9 — 1)/4meo, and
x = (e — 1)/4me), so that P = D/4mk. Then the equation of motion becomes

1/ l/ !/ / 1 —
(_ - m dr’ /dr lW(E")>v v ,,| -V |r,_r|> U(r) = Eoip(r).
(2.4)
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Differentiating by parts with the use of V2r—! = —474(r), one obtains

(% _é / v ||1f,(r_')5> ¥(r) = Egib(r). (2.5)

K

The solution of this nonlinear integrodifferential equation can be found using
a variational minimization of the functional

() (x)?

1 1
J() = %/dﬂw(r)ﬁ_m/drdr"w s e

where ag = k/me? is the effective Bohr radius. The simplest choice of the
normalized trial function is ¢(r) = Ae™"/™ with A = (mﬂg)*l/Q. Substituting
the trial function into the functional yields J () = T + %U , where the kinetic
energy is T' = 1/2m7"g, and the potential energy U = —5/8mapr,. Minimizing
the functional with respect to r, yields the polaron radius, r, = 16ap/5,
and the ground-state energy Ey = T + U as Ey = —0.146/ma%. This can
be compared with the ground-state energy of the hydrogen atom —0.5mce?,
where m, is the free electron mass. Their ratio is 0.3m/(mek?). In typical polar
solids k 2 4, so that the continuum polaron binding energy is about 0.25eV or
less, if m ~ m,. The potential energy in the ground state is U = —4T = 4F;/3.

The lowest photon energy wmin to excite the polaron into the bare-electron
band iS wmin = |Ep|. The ion configuration does not change in the photoex-
citation process of the polaron. However, a lower activation energy Wr is
necessary, if the self-trapped state disappears together with the polarization
well due to thermal fluctuations, W = |Ey| —Uq, where Uy is the deformation
energy. In ionic crystals,

Ug = %/drP(r) -D(r), (2.7)

which for the ground state is Ug = 2|Ep|/3. Therefore, the thermal activa-
tion energy is W = |Ey|/3. The ratio of four characteristic energies for the
continuum Pekar’s polaron is W : Uqg : Wmin ¢ [U| =1:2:3:4 [40].

Using Pekar’s choice,

w(r) = AL+ 1/ + Br)e”" ", (2.8)
one obtains A = 0.12/7"3/2, b= 0.45/7“3, the polaron radius r, = 1.51ag, and
a better estimate for the ground-state energy, Fy = —0.164/ma% as compared

to the result of the simplest exponential choice.

2.1.2 Effective Mass of Pekar’s Polaron

The lattice polarization is responsible for the polaron mass enhancement [41].
Within the continuum approximation, the evolution of the lattice polarization
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P(r,t) is described by a harmonic oscillator subjected to an external force
~D/k:
_,0?P(r,1)

Wo Ot2 A (29)

where wq is the optical phonon frequency. If during the characteristic time of
the lattice relaxation ~wy, ' the polaron moves a distance much less than the
polaron radius, the polarization practically follows the polaron motion. Hence
for a slow motion with the velocity v < wpagp, the first term in (2.9) is a small
perturbation, so that

QM) (2.10)

1
P(r,t) = — (D(r,t) —wp BT

4Tk

The total energy of the crystal with an extra electron

2
E=E®)+ 27m/dr P(r,t)* + w2 (ap(r’t)> ] (2.11)

ot

is determined in such a way that it gives (2.9) when it is minimized with
respect to P. We note that the first term of the lattice contribution to E is
the deformation energy Ug, discussed in the previous section. The lattice part
of the total energy depends on the polaron velocity and contributes to the
effective mass. Replacing the static wave function ¢(r) in all expressions for
¥ (r — vt) and neglecting a contribution to the total energy of higher orders
than v?, one obtains

*,.2
E:E0+Ud+m2” , (2.12)
were
1
*=_———— [ drD(r) - V’D 2.1
m' =~ g [ D) D) (213)

is the polaron mass. Using the equation V - D = —4me|(r)|? yields

m* = Ame /dr|w(r)|4. (2.14)

~ 3.2
3wik

Calculating the integral with the trial function (2.8), one obtains
m* = 0.02a'm, (2.15)

where « is the dimensionless constant, defined as o = (e?/r)/m/2wy.
Concluding the discussion of the Pekar’s polarons, let us specify conditions
of its existence. The polaron radius should be large compared with the lattice
constant, 1, > a to justify the effective mass approximation for the electron.
Hence, the value of the coupling constant « should not be very large, o <
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(D/zwo) /2, where D =~ z/2ma? is the bare half-bandwidth and z is the
lattice coordination number. On the other hand, the classical approximation
for the lattice polarization is justified if the number of phonons taking part
in the polaron cloud is large. This number is of the order of Uy /wy. The total
energy of the immobile polaron and the deformed lattice is £ = —0.1090wy
and Uy = 0.218c%wy, respectively. Then a is bounded from below by the
condition Ug/wp > 1 as o > 5. The typical adiabatic ratio D/wy is of the
order of 10-100. In fact in many transition metal oxides with narrow bands
and high optical phonon frequencies, this ratio is about 10 or even less, which
makes the continuum strong-coupling polaron hard to be realized in oxides
and related ionic compounds with light ions [26].

2.2 Frohlich Large Polaron

2.2.1 Weak-Coupling Regime

Frohlich [13] applied the second quantization form of the electron-lattice inter-
action [42] to describe the large polaron in the weak-coupling regime, o < 1,
where the quantum nature of lattice polarization becomes important:
v? ;
H=—5—+ (Vadge @™ + Hee) + ) wq(didg +1/2). (2.16)
a a

The quantum states of the noninteracting electron and phonons are specified
by the electron momentum k and the phonon occupation number (d};dnl) =
ng =0,1,2,...,00. At zero temperature, the unperturbed state is the vacuum,
|0), of phonons and the electron plane wave:

Ik, 0) = e™T|0). (2.17)

While the coupling is weak, one can apply the perturbation theory. The inter-
action couples the state (2.17) with the energy k2/2m and the state with the
energy (k — q)2/2m + wp of a single phonon with momentum q and the elec-
tron with momentum k — q, [k — q,14) = ¢/®~9T|1,). The corresponding
matrix element is (k — q, 1q|He pnlk, 0) = V. There are no diagonal matrix

elements of H. 1, so the second-order energy Fy is

3 —k_2_2 |‘/'Cl|2 (2 18)
T om " (k —q)?/2m 4wy — k2/2m’ '

There is no imaginary part of Ej for a slow electron with k < gp, wWhere

gp = min(mwo/q + ¢/2) = (2mw0)1/2, (2.19)

which means that the momentum is conserved. Evaluating the integrals one
arrives at
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- k2 k
Ey = _ 2% aresin | — , (2.20)
2m k ap
which for a very slow motion k < ¢, yields
~ k2
Ey ~ —awg + vl (2.21)

Here, the first term is minus the polaron binding energy —E,,. The effective
mass of the polaron is enhanced as

m
e~ 1 6 2.22
m' = s = m(1+0/0) (222)
due to a phonon “cloud” accompanying the slow polaron. The number of
virtual phonons N, in the cloud is given by taking the expectation value of
the phonon number operator, Npp = (Zq d:fldq>, where bra and ket refer to
the perturbed state:

Vi
) =10) +Z k2/2m — (k qu’)2/2m7w0|1q’>'

(2.23)

For the polaron at rest (k = 0), one obtains Npn = «/2. Hence, the Frohlich
coupling constant, o, measures the cloud “thickness.” One can also calculate
the lattice charge density induced by the electron. The electrostatic potential
ed(r) is given by the average of the interaction term of the Hamiltonian

ep(r) = <Z Vye'9Tdg + H.c.>, (2.24)

q

and the charge density p(r) is related to the electrostatic potential by Poisson’s
equation V¢ = —4mp. Using these equations, one obtains

¢ IVal2 cos(q 1)
= —_— 2.25
 2me Z wo +¢q2/2m (2.25)

which yields

eq e T

2.26
Amk apT ( )

p(r) =

The mean extension of the phonon cloud, which can be taken as the radius
of the weak-coupling polaron, is 7, = ¢ I and the total induced charge is

= [drp(r) = —¢/k.
2.2.2 Lee—Low—Pines Transformation

One can put the Frohlich result on a variational basis by applying the Lee—
Low—Pines (LLP) canonical transformation [43], which removes the electron
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coordinate, followed by the displacement transformation [21,44,45]. The latter
serves to account for that part of the lattice polarization which follows the
electron instantaneously. The remaining part of the polarization field turns out
to be small, if the coupling constant is not extremely large. In the opposite
extreme limit, which is Pekar’s strong-coupling regime discussed above, one
can construct the perturbation theory by an expansion in descending powers
of o [46-48]. Alternatively, one can apply Feynman’s path-integral formalism
to remove the phonon field at the expense of a noninstantaneous interaction
of electron with itself (see (Sect.2.3) and also [49]).
A canonical transformation can be written as

|N) = exp(S)|N), (2.27)

where in our case |N) is a single-electron multiphonon wave function. The
transformed eigenstate, |N) satisfies the Schrodinger equation, H|N >=
E|N), with the transformed Hamiltonian

H = exp(S)H exp(—S). (2.28)

If all operators are transformed according to (2.28), the physical averages
remain unchanged. LLP transformation eliminating the electron coordinate
in the Hamiltonian is defined as

Step =1 (q-r)d]dq. (2.29)

q

The transformed Hamiltonian is obtained as

2
~ 1
g- L <iv - ad} dq> + 3 (Vadq + Hee) +wo Y _(dlidg +1/2).
a

2m
q q
(2.30)

The electron coordinate is absent in H. Hence, the eigenstates |N) are clas-
sified with the momentum K, which is the conserving total momentum of
the system, |N) = ¢"*|N,y,), where |Npy) is an eigenstate of phonons. The
number of virtual phonons is not small in the intermediate-coupling regime.
Therefore, one cannot apply the perturbation theory for H. However, one can
remove the essential part of the interaction term in the Hamiltonian by the
displacement canonical transformation:

S=> fla)dg —He., (2.31)

where c-number f(q) is determined by minimization of the ground-state
energy. Assuming that the transformed ground state is the phonon vacuum
e¥|Npn) = |0), one obtains the energy Ex as

(1-7)K?*  awoqy . 1 (K(1—1n)
Py = — _ 2.32
K= om T waop \ T ) B
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where

3
Nl —n)? = Sl N el ) (2.33)
25\ Jgz — (1 - )2k %

Only the term independent of K needs to be retained in 7 for a slow polaron
with K < ¢p:

n= %. (2.34)
Then, the energy up to the second order in K is given by
2
Ex = —awg + Py (2.35)

where the polaron mass is m* = m(1+«a/6) as in (2.22). Lee, Low, and Pines
evaluated also the corrections due to off-diagonal parts of the transformed
Hamiltonian and found that they are small.

2.3 All-Coupling Frohlich Polaron

2.3.1 Feynman Theory

Feynman developed a superior all-coupling continuum polaron theory using
his path-integral formalism [12]. He got the idea to formulate the polaron
problem into the Lagrangian form of quantum mechanics and then eliminate
the field oscillators, “...in exact analogy to Q. E. D....(resulting in)...a
sum over all trajectories. ...” The resulting path integral (here limited to the
ground-state properties) is of the form

©0.50,0) = [ Dr(r)es, (2.36)

B 2 e—|lT—ol
S = exp —A — 23/2/ / |d7'd0' , (2.37)

where = 1/T. Equation (2.36) gives the amplitude that an electron found at
a point in space at time zero will appear at the same point at the imaginary
time (. The interaction term in the action function S may be interpreted as
indicating that at “time” 7, the electron behaves as if it were in a potential:

a B e—\T—o’\
77 ), W (2.38)
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which results from the electrostatic interaction of the electron with the mean
charge density of its “previous” positions, weighted with the function e =17l
This path integral (2.36) with (2.37) has a great intuitive appeal: it shows
the polaron problem as an equivalent one-particle problem in which the
interaction, nonlocal in time or “retarded,” occurs between the electron and
itself.

Subsequently, Feynman introduced a variational principle for path inte-
grals to study the polaron. He then simulated the interaction between the
electron and the polarization modes by a harmonic interaction (with force
constant k) between a hypothetical (“fictitious”) particle with mass M and
the electron. Within his model, the action function S (2.37) is imitated by a
quadratic trial action (nonlocal in time):

So = exp l—/ Zdr4 = / / (o) eI ldrdo|, (2.39)

where the interaction potential (2.38) is replaced by a parabolic potential:

—/ (0)? e vI"ldo (2.40)

with the weight function e=®!7=?|. The variational parameters C' and w in
(2.40) are adjusted to partly compensate for the error of exploiting the trial
potential (2.40) instead of the true potential (2.38). Following the Feynman
approach, an upper bound for the polaron ground-state energy can be written
down as

.1
E= E() - 611_{20 B<S - S())(), (241)

where S is the exact action functional of the polaron problem, while Sy is the
trial action functional, which corresponds to the above model system, Ej is
the ground-state energy of the model system, and

[ Fe5Dr(t)
o= e

The parameters of the model system C and w are found from the varia-
tional condition that they provide a minimum to the upper bound for the
ground-state energy of (2.41). (For the details of the calculation, see Sect. 2.5.)
At nonzero temperatures, the best values of the model parameters can be
determined from a variational principle for the free energy [50], see [51,52].

Equation (2.41) constitutes an upper bound for the polaron self-energy
at all o, which in Fig. 2.1 is compared with the results of weak- and strong-
coupling expansions. The weak-coupling expansions of Feynman for the
ground-state energy and the effective mass of the polaron are

Bo o - 0.01230% - 0.000640% — - -- (a0 — 0), (2.43)

“

(2.42)

= - 1+%+0.025a2+~~ (@ — 0). (2.44)
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Fig. 2.1. Feynman polaron energy as a function of «a: the all-coupling theory

In the strong-coupling limit, Feynman found for the ground-state energy

E E
Eo_ Bspl@) _ 10602 —2.83 ... (o — o0) (2.45)
wo wo
and for the polaron mass
™ _ m3(Q) 020904 4 -+ (0 — oo). (2.46)

m
Becker et al. [53], using a Monte Carlo calculation, derived the ground-
state energy of a polaron as Ey = limg_,.o AF, where AF = F3 — Fg with Fj
the free energy per polaron and Fg = [3/(20)] In(270) the free energy per
electron. The value fwy = 25, used for the actual computation in [53], cor-
responds to T'/Tp = 0.04 (Tp = hwro/ks; wLo = wp is the longitudinal (LO)
optical phonon frequency in conventional units). The authors of [53] actually
calculated the free energy AF, rather than the polaron ground-state energy.
To investigate the importance of temperature effects on AF, Peeters and
Devreese [54] considered the polaron energy as obtained by Osaka [52], who
generalized the Feynman polaron theory to nonzero temperatures:
AR 2 1n (y sinh 24 > B (coth%v - i)

wo v ginh @ Bov

i [ ()] fy du—ps, (247)

(uw
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Fig. 2.2. Contribution of EPI to the free energy of the Feynman polaron as a
function of the electron—phonon coupling constant « for different values of the lattice
temperature. Inset: temperature dependence of the free energy for a = 3 (from [54])

where Gy = Bwo, n (w) =1/ (eﬁ‘” - 1), and

2

w~u u U2 —w2 U
D)= LY (12 7((1— —vu_y 'h2—). 2.4
() v2 2 ( 50) " 203 ¢ n (v)sin 2 (2.48)

This result is variational, with variational parameters v and w, and gives an
upper bound to the exact polaron free energy.

The results of a numerical-variational calculation of (2.47) are shown in
Fig. 2.2, where the free energy —AF is plotted (in units of fiwr,o) as a function
of « for different values of the lattice temperature. As seen from Fig. 2.2, (a)
—AF increases with increasing temperature and (b) the effect of temperature
on AF increases with increasing a.

In Table 2.1, the Monte Carlo results [53], (AF),q, are compared with
the free energy of the Feynman polaron, (AF)g, calculated in [54]. The values
for the free energy obtained analytically from the Feynman polaron model
are lower than the published MC results for o < 2 and a > 4 (but lie within
the 1% error of the Monte Carlo results). Since the Feynman result for the
polaron free energy is an upper bound to the exact result, we conclude that
for « < 2 and a > 4, the results of the Feynman model are closer to the exact
result than the MC results of [53].
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Table 2.1. Comparison between the free energy of the Feynman polaron theory,
—(AF)g, and the Monte Carlo results of [53], —(AF)wmc, for T/Tp = 0.04

«Q —(AF)g - (AF)MC A (%)
0.5 0.50860 0.505 0.71
1.0 1.02429 1.020 0.42
1.5 1.54776 1.545 0.18
2.0 2.07979 2.080 —0.010
2.5 2.62137 2.627 —0.21
3.0 3.17365 3.184 —0.32
3.5 3.73814 3.747 —0.24
4.0 4.31670 4.314 0.063

The relative difference is defined as A = 100 x [(AF)r —
(AF)c]/(AF)vc (from [54])

2.3.2 Diagrammatic Monte Carlo Algorithm

Mishchenko et al. [55] performed a study of the Frohlich polaron on the basis of
the diagrammatic quantum Monte Carlo (DQMC) method [56]. This method
is based on the direct summation of Feynman diagrams for Green’s functions
in momentum space. The basic object of their investigation is the Matsubara
Green’s function of the polaron in the momentum (k)-imaginary time (7)-
representation:

Gk, 1) = (Vac|ak(7)a;f((0)|vac), T >0, (2.49)
ax(7) = exp(HT)ax exp(—HT). (2.50)
In terms of a complete set {|v)} of eigenstates of the Frohlich polaron

Hamiltonian H, so that for a given k the relation H|v(k)) = E,(k)[v((k))
and H|vac) = Ey|vac), the expansion of the Green’s function (2.49)

Gk,7) = Y |{v]afvac)|® exp{~[E, (k) — Eolr} (2.51)

follows straightforwardly. For the calculations discussed in what follows,
Ey=0.

The spectral function (Lehmann function) gi(w) is defined through the
representation of the Green’s function (2.51) in the form

[ee]
Glr) = [ ae) (2.52)
0
g(2) = Y810 — B, ()| (v]aj[vac) |*. (2.53)
This spectral function is normalized, fooo gk (©)dQ = 1. It can be interpreted as

the probability that a polaron has momentum k and energy 2. The significance
of the spectral function (2.53) is determined by the fact that it has poles (sharp
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peaks) at frequencies, which correspond to stable (metastable) quasiparticle
states.

If, for a given k, there is a stable state at energy F(k), the spectral function
takes the form

a(Q) = ZM5[0 - Bk)]. .. (2.54)
where Zék) is the weight of the bare-electron state. The energy E,s(k) and the

weight Zéf(g)s for the polaron ground state can be extracted from the Green’s

function behavior at long times:
Gk, 7> wy') — 2 exp[-E(k)7]. (2.55)
Similarly to (2.49), the N-phonon Green’s function is defined:

Gn(k,T:q1,...,qn) = (vac|dgy (T) .. . dq, (T)ap(r)aI,(O)dI11 0)... dIm (0)|vac),
72> 0,

N
p=k-3 a (2.56)
j—1

From the asymptotic properties of the Green’s functions (2.56) at long times,
the characteristics of the polaron ground state are found. In particular, the
weight of the N-phonon state for the polaron ground state is given by

Gn(k, 7> wyhiqr,....an) — 2% (qu,....qn)exp[—E(K)r].  (2.57)

A standard diagrammatic expansion of the above-described Green’s functions
generates a series of Feynman diagrams. The following function is further
introduced:

P(va) = G(kaT) + Z /d(h .. -quéN(va;qlv-- -an)a (258)
N=1

where Gy are irreducible N-phonon Green’s functions (which do not contain
disconnected phonon propagators). From (2.55), (2.57), and the completeness
condition for the nondegenerate ground state

Zék) + Z /dq1 e quZj(\l,()(ql, ..o, an) =1, (2.59)
N=1

it follows that the polaron ground-state energy is determined by the asymp-
totic behavior of the function (2.58):

Pk, 7> wy') — exp[—E(k)7]. (2.60)
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The function P(k,7) is an infinite series of integrals containing an ever-
increasing number of integration variables. The essence of the DQMC method
is to construct a process, which generates continuum random variables (k,T)
with a distribution function that coincides exactly with P(k, 7). Taking into
account (2.58) and the diagrammatic rules, P(k,7) is identified with the
distribution function:

Qwh) =>_ Z/dxl...dmem(fm,{y},:cl,...,mm), (2.61)

m=0 &

where the external variables {y} include k, 7, @, and N, while the internal vari-
ables describe the topology of the diagram (labeled with &,,,), times assigned to
electron—phonon vertices and momenta of phonon propagators. The diagram-
matic Monte Carlo process is a numeric procedure, which samples various
diagrams in parameter space and collects statistics for Q({y}) according
to the Metropolis algorithm [57] in such a way that — when the process is
repeated a large number of times — the result converges to the exact answer.
The distribution function given by the convergent series (2.61) is simulated
within the process of sequential stochastic generation of diagrams described
by functions F, (&, {y}, 1, ..., @ ). Further, using (2.52), the spectral func-
tion gx(w) is obtained applying a stochastic optimization technique. We refer
to the review [58] for further details on the DQMC and stochastic optimiza-
tion, where information on the excited states of the polaron is also derived
by the analytic continuation of the imaginary time Green’s functions to real
frequencies.

DQMC [55] (see Fig.2.3) confirms that for o 2 1, the bare-clectron state
in the polaron wave function is no longer the dominant contribution and
perturbation theory is not adequate. The bare-electron weight Z{ for the
polaron ground state, as a function of the polaron coupling constant, rapidly
vanishes for o 2 3. It is suggested in [55] that in the interval 3 < o < 10,
the polaron ground states smoothly transforms between weak- and strong-
coupling limits.

In Sects.2.4.3, 2.4.4, and 2.4.7, earlier analytical studies and results on
Frohlich polarons are compared with DQMC results. It would be beneficial,
to have an independent numerical check of the DQMC results. The comparison
of the DQMC results for the “low-energy” (€2 < 0) part of the spectral density!
for the Frohlich polaron at a = 0.05 [55] demonstrates perfect agreement with
the perturbation theory result:

90(Q < 0) = %5[9 +a (2.62)

(m and wy are set equal to unity). The DQMC results for the “high-energy”
(€2 > 0) part of the spectral density significantly differ from the perturbation

LIt is worth of noticing that the spectral density is not identical to the optical
absorption coefficient, which is discussed in Sects. 2.4.2-2.4.4.
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Fig. 2.3. The bare-electron factor Z§ for the polaron ground state as a function
of the coupling constant. Filled circles are the DQMC data (calculated to accuracy
better than 107 in absolute values). The dashed line connects filled circles. The
solid line is the perturbation theory result Z§ =1 — /2 (from [55])

theory curve. This is attributed to the fact that for the Frohlich polaron, the
perturbation theory expression for

a g(-1)

Q>0 =220 )
9o N

(2.63)

diverges as €2 — 1 and, consequently, the perturbation approach is no longer
adequate. The main difference between the DQMC spectrum of the Frohlich
polaron and the perturbation theory result is the broad peak in the spectral
density at €2 ~ 3.5. This peak appears for significantly larger values of the
coupling constant and its weight grows with « (see Fig.2.4). As shown in the
inset, near the threshold, 2 = 1, the spectral density behaves as /€2 — 1.
Next to Frohlich polarons, other polaron models have been extensively
investigated using the Monte Carlo approach. In particular, Alexandrov [59]
proposed a long-range discrete Frohlich interaction as a model of the inter-
action between a hole and the oxygen ions in high-T, superconductors. The
essence of the model is that a charge carrier moves from site to site on a dis-
crete lattice (or chain in 1D) and interacts with all the ions, which reside
at the lattice sites. Numerically rigorous polaron characteristics (ground-
state energy, number of phonons in the polaron cloud, effective mass, and
isotope exponent) for such a lattice polaron, valid for arbitrary EPI, were
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Fig. 2.4. The spectral density of the Frohlich polaron for various values of the
coupling constant: « = 0.5 (dotted line), « = 1 (solid line), and o = 2 (dashed
line) with energy counted from the ground-state energy of the polaron. The initial
fragment of the spectral density for o = 1 is shown in the inset (from [55])

obtained using a path-integral continuous-time quantum Monte Carlo tech-
nique (CTQMC) [37,60,61]. This study leads to a “mobile small Frohlich”
polaron (Sect. 3.4.3).

Over the years, the Feynman model for the Frohlich polaron has remained
the most successful approach to the problem. The analysis of an exactly
solvable (“symmetrical”) 1D-polaron model [62-64], Monte Carlo schemes
[55,65], and, recently, a unifying variational approach [66,67] demonstrate the
remarkable accuracy of Feynman’s path-integral method. Using the variational
wave functions, which combine both the Landau-Pekar and the Feynman
approximations, Cataudella et al. [66] found in the ov — oo limit

Ey = (—0.1085070” — 2.67) wo. (2.64)

which is slightly lower than the variational Feynman’s estimate, (2.38), and
at small values of «,
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Ey = —awgy — 0.01230%wy, a — 0, (2.65)

i.e., the same result, as (2.43). In the latter limit, the correct result for the
electron self-energy is

E = —awy — 0.0159a%w, (2.66)

as found by Grosjean [68] and confirmed by Héhler and Mullensiefen [69] and
Roseler [70].

Within the path-integral approach, Feynman et al. [71, 72] studied the
mobility of polarons. Subsequently, the path-integral approach to the polaron
problem was generalized and developed to become a powerful tool to study
optical absorption and cyclotron resonance [73,74].

2.4 Response of Continuum Polarons

2.4.1 Mobility

The mobility of large polarons was studied within various theoretical appro-
aches. Frohlich [13,75] pointed out the typical behavior of the large-polaron
mobility:

1 exp(wofd), (2.67)

which is characteristic for weak coupling. Within the weak-coupling regime,
the mobility of the polaron was then derived, e.g., using the Boltzmann equa-
tion in [76,77] and starting from the LLP transformation in [78]. In [79] it
was shown that for weak coupling,

o= i lexp(wof3) — 1] [1 - % + O(oﬁ)] (2.68)

A nonperturbative analysis was based on the Feynman polaron theory, where
the mobility p of the polaron using the path-integral formalism was derived
by Feynman et al. [71] (FHIP) as a static limit, starting from a frequency-
dependent impedance function. Details of the FHIP theory are given in [80].
An approximate expression for the impedance function of a Fréhlich polaron at
all frequencies, temperatures, and coupling strengths was obtained in [71,80]
within the path-integral technique. Assuming the crystal to be isotropic,
an alternating electric field E = FEpe, exp (i) induces a current in the
x-direction:

§() = [2()] " Eg exp (iQ1). (2.69)

The complex function z(2) is called the impedance function. The electric field
is considered sufficiently weak, so that linear-response theory can be applied.
The frequency-depending mobility 1(2) is defined as

1(Q) = Re [2()] . (2.70)
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Taking the electric charge as unity, one arrives at j = (&), where (z) is the
expectation value of the electron displacement in the direction of the applied
field: (z) = E/iQ2z(Q). In terms of time-dependent variables,

(x(7)) = — /T iG(t —0)E(o)do, (2.71)

— 00

where G(7) has the inverse Fourier transform:

G(Q) = / h G(7) exp (—iQ7) dr = [Qz(Q)] . (2.72)

— 00

The expected displacement at time 7 is
(2(1)) = Tr [2U(1,a)pU' "} (1,0)]. (2.73)

Here, p, is the density matrix of the system at some time a, long before the
field is turned on, and

U(r,a) = Texp {—i/ [Hs — zsE(s)] ds} (2.74)

a
is the unitary operator of the development of a state in time with the
complete Hamiltonian H — xF, where H is the Frohlich polaron Hamilto-

nian, and 7" is the time-ordering operator [81]. Primed operators are ordered
antichronologically:

U'=Yr1,a) =T exp {i/{; [H, — 2. E'(s)] ds}. (2.75)

G(71 — o) can be represented as the second derivative:

1 [ 0?
Glr—o) = 2 (87755)

(2.76)

e=n=0

of
g="Tr[U(ba)p,U " (b,a)], b—o00, a— —oo (2.77)

with E(s) =ed(s—o)+nd(s—7) and E’'(s) = ed(s— o) —nd(s—7). The initial
state is chosen at a definite temperature T, p, o exp(—GH). If the time a is
sufficiently far in the past, FHIP assume that only the phonon subsystem was
in thermal equilibrium at temperature T. The energy of the single electron
and of the electron-phonon coupling are infinitesimal (of order 1/V) with
respect to that of the phonons. With this choice of the initial distribution, the
phonon coordinates can be eliminated from (2.77), and the entire expression
is reduced to a double path integral over the electron coordinates only:

g://exp(i@)Dr(t)Dr'(t), (2.78)
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where (taking m = 1)

e

= /_OO {; _ ?} dt—/oo B(t) - r(t) — B'() v/ (0]t (2.79)

—00

a0 % Texp(—ift — s]) +2P(8) cos(t — )
B /_Oo /_Oo [ r(6) ()

n exp(+i|t — s|) + 2P(B) cos(t — s)
v'(t) —r'(s)|
2 [exp(—i(t — s)) + 2P(5) cos(t — s)]

- 1) 2] e

where P(3) = [¢f — 1}_1. The double path integral in (2.78) is over paths
which satisfy the boundary condition r(t) — r'(¢) = 0 at times ¢ approaching
+oo. Expression (2.78) with (2.79) is supposed to be exact [71]. Clearly to
provide analytical solutions at all a presumably is impossible.

Following Feynman’s idea to describe the ground-state energy properties
of a polaron by introducing a parabolic “retarded” interaction of the electron
with itself (see Sect.2.3), it is assumed in [71] that the dynamical behavior
of the polaron can be described approximately by replacing ® of (2.78) by a
parabolic (retarded) expression:

oy = /_Oo [; - ?} dt — /OO [E(t) r(t)—E'(t) ' (t)]dt (2.80)

5 /O; /O:o {[r@) —x@) e+ 2P(Bw) coswle )]

L) - (s) [e+iwlt—s\ + 2P(Bw) cos(t — s)}
—2['(t) — r(s))” [e*i“’(tfs) + 2P(pw) cosw(t — s)} } dtds.

The parameters C' and w are to be determined so as to approximate ® as
closely as possible. However, no variational principle is known for the mobil-
ity. At zero temperature, C' and w are fixed at the values, which provide
the best upper bound for the polaron ground-state energy (2.41). At finite
temperatures (T # 0) the parameters C' and w are determined from the vari-
ational principle for the polaron free energy [50]. This way of selection of the
model parameters C' and w is based on the supposition that “the compar-
ison Lagrangian, which gives a good fit to the ground-state energy at zero
temperature, will also give the dynamical behavior of the system” [71].

The analytical calculation of path integrals in (2.78) in [71] was performed
to the first term in an expansion of exp [i (® — ®y)]:
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9= [ [exp @) expli (@ - @) DD () g0+ 91, (28)
g0 = //exp (i®o) Dr(t)Dr'(t), (2.82)
g1 = z'//exp (i®g) (® — Do) Dr(t)Dr'(t). (2.83)
Using (2.72) and (2.76), one finds from (2.81)
G(Q) = Go(Q) + G1(). (2.84)
The first term in the RHS of (2.84) is

QQ _ ,w2
(Q —ig)2[(Q — ig)2 — v?2]’

with v? = w? 4+ 4C/w. The second term in the RHS of (2.84) is

Gr () = ~¥F) [\ - L | (2.86)
x(Q) = /000 (1 =€) Im S(u)du, (2.87)
2« €4 2P(f) cosu
S(u) = NG [D(u)]3/2 , (2.88)
D(u) = % {” w;;” [1 — eV 4 4P(Bv)sin? (%)} (2.89)
—iu+ ?} .
From (2.72) and (2.84), the impedance results in the form

Q2(Q) = [Go(Q) + G ()] . (2.90)

Feynman et al. [71] suggested to use this expression expanded to first order
in G1(Q):

02(2) ~ [Go(V)] " — [Go(V]>G1 (). (2.91)

Substitution of (2.85) and (2.86) into (2.91) leads to the final expression [71]
for the impedance function of the Frohlich polaron:

Qz(Q) =1 [ — x(Q)] . (2.92)

An alternative derivation of the impedance function of the Frohlich
polaron, based on simple operator techniques, was presented in [82]. The FHIP
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result was worked out in [83] in detail to get a physical insight into the scat-
tering processes incorporated in the FHIP approximation. For sufficiently low
temperature, the FHIP polaron mobility takes the form [71]

w\? 3e 2 2 2
r= (;) We‘”‘)ﬁ eXp{(U —w )/’LU ’U}7 (293)

where v and w are variational functions of « obtained from the Feynman
polaron model.

Using the Boltzmann equation for the Feynman polaron model, Kadanoff
[84] found the mobility, which for low temperatures can be represented as
follows:

_(w\? e wof3 22V 2
= (v) 2mw0ae exp{ (v —w?)/w v}, (2.94)
The weak-coupling perturbation expansion of the low-temperature polaron
mobility as found using the Green’s function technique [79] has confirmed
that the mobility derived from the Boltzmann equation is asymptotically
exact for weak coupling (o < 1) and at low temperatures (T < wp). As
first noticed in [84], the mobility of (2.93) differs by the factor of 3/(25wo)
from that derived using the polaron Boltzmann equation as given by (2.94).2
As follows from this comparison, the result of [71] is not valid when T' — 0.
As emphasized in [71] and later confirmed, in particular, in [83,85] the above
discrepancy can be attributed to an interchange of two limits in calculat-
ing the impedance. In FHIP, for weak electron—phonon coupling, one takes
limg ¢ limg_.0, Whereas lim,_.glimg .o should be calculated. It turns out
that for the asymptotically correct result, the mobility at low temperatures is
mainly limited by the absorption of phonons, while in the theory of FHIP it
is the emission of phonons which gives the dominant contribution as 7' goes
to zero [85].

The analysis based on the Boltzmann equation takes into account the
phonon emission processes whenever the energy of the polaron is above the
emission threshold. The independent-collision model, which underlies the
Boltzmann equation approach, however, fails in the “strong-coupling regime”
of the Frohlich polaron, when the thermal mean free path becomes less than
the de Broglie wavelength; in this case, the Boltzmann equation cannot be
expected to be adequate [71,86].

Experimental work on alkali halides and silver halides indicates that the
mobility obtained from (2.93) describes the experimental results accurately
(see [87,88] and references therein). Measurements of mobility as a func-
tion of temperature for photoexcited electrons in cubic n-type Bij2SiOgq
(Fig. 2.5) are explained well in terms of large polarons within the Feynman

2 In the asymptotic limit of weak electron-phonon coupling and low temperature,
the FHIP polaron mobility of (2.93) differs by the same factor of 3/(28wo) from
the earlier result [76-78], which, as pointed out in [71] and in later publications [79,
83,84], is correct for S > 1.
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Fig. 2.5. Comparison of experimental and theoretical mobilities for cubic n-type
Bi12Si02¢. Open circles and squares represent experimental band mobility data for
photoexcited electrons in two n-Bi12SiO2¢ samples. The three theoretical curves
are drawn for m/me. = 1.7, 2.0, and 2.3 using the Feynman polaron model. The
calculated mobility at 7" = 300 K corresponds to the measured room-temperature
mobility value of 3.4cm? Vs™! when setting m = 2.01m. (after [89])

approach [86]. The experimental findings on electron transport in crystalline
TiO4 (rutile phase) probed by THz time-domain spectroscopy were quantita-
tively interpreted within the Feynman model [90]. One of the reasons for the
agreement between theory based on (2.93) and experiment is that in the path-
integral approximation to the polaron mobility, a Maxwellian distribution for
the electron wvelocities is assumed, when applying the adiabatic switching of
the Frohlich interaction. Although such a distribution is not inherent in the
Frohlich interaction, its incorporation tends to favor agreement with exper-
iment because other mechanisms (interaction with acoustic phonons, etc.)
cause a Gaussian distribution.

2.4.2 Optical Absorption at Weak Coupling

At zero temperature and in the weak-coupling limit, the optical absorption of
a Frohlich polaron is due to the elementary polaron scattering process with
the absorption of incoming photon and emission of an outgoing phonon. In the
weak-coupling limit (o < 1), the polaron absorption coefficient for a many-
polaron gas was first obtained by Gurevich et al. [91]. Their optical absorption
coefficient is equivalent to a particular case of [92] with the dynamic structure
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factor S(q, 2) corresponding to the Hartree-Fock approximation. In [92], the
optical absorption coefficient of a many-polaron gas was shown to be given,
to order «, by

Re[o(Q)] = ny €2

2 o
§a27r93/0 dgg”S(q, Q — wo), (2.95)

where ny, is the density of charge carriers.
In the zero-temperature limit, starting from the Kubo formula the optical
conductivity of a single Frohlich polaron can be represented in the form

U(Q) =1 ¢? + i 1 /OO efdt (eiQt o 1)
m(Q+i6)  m?(Q+i6)* Jo

<> q.d, <\1/0| [Bq(t), B_y (0)]|qfo> dt, (2.96)

where § = +0, Bq(t) = [Vqdqg(t) + V_*da_ (t)]e'a™™® " and |¥y) is the ground-
state wave function of the electron—phonon system. Within the weak-coupling
approximation, the following analytic expression for the real part of the

polaron optical conductivity results from (2.96):

2

2
Reo (Q) = ;ﬂi*&( € “’00‘\/9 @00 (Q — wo) (2.97)

where O(z) = 1 if z > 0 and zero otherwise. The spectrum of the real part of
the polaron optical conductivity (2.97) is represented in Fig. 2.6.

According to (2.97), the absorption coefficient of light with frequency
Q > 0 by free polarons for a — 0 takes the form

1 2n,e%aw?

Q) = GV_’I’L:;)TQ?’O(Q/ 0 — 1?0 (2 - wp), (2.98)
where €, is the dielectric permittivity of the vacuum, and n is the ref-
ractive index of the medium. A simple derivation [95] using a canonical
transformation method gives the absorption coefficient of free polarons, which
coincides with the result (2.98). The step function in (2.98) reflects the fact
that at zero temperature, the absorption of light accompanied by the emission
of a phonon can occur only if the energy of the incident photon is larger than
that of a phonon (€ > wy). In the weak-coupling limit, according to (2.98), the
absorption spectrum consists of a “one-phonon line.” At nonzero temperature,
the absorption of a photon can be accompanied not only by emission, but also
by absorption of one or more phonons. Similarity between the temperature
dependence of several features of the experimental infrared absorption spectra
in high-T, superconductors and the temperature dependence predicted for the
optical absorption of a single Frohlich polaron [73,93] has been revealed in
[96].



34 2 Continuum Polaron

0.15
> o=1
ch
S
= 010 }
o
2
c
>
<
g 0.05 |
©
&

0.00 S S

0 1 2 3 4 5

Fig. 2.6. Polaron optical conductivity for « = 1 in the weak-coupling approxima-
tion, according to [93]. A é-like central peak (at © = 0) is schematically shown by a
vertical line (reprinted with permission from [94]. © 2006, Societa Italiana di Fisica)

Experimentally, this one-phonon line has been observed for free polarons
in the infrared absorption spectra of CdO-films [97], which is a weakly polar
material with o ~ 0.74. The polaron absorption band is observed in the
spectral region between 6 and 20 um (above the LO phonon frequency). The
difference between the one-polaron theoretical absorption and experiment in
the wavelength region where polaron absorption dominates the spectrum has
been explained as due to many-polaron effects [92].

2.4.3 Optical Absorption at Strong Coupling

The structure of the large-polaron excitation spectrum constituted a central
question at the early stages of the development of polaron theory. The exactly
solvable polaron model of [62] was used to demonstrate the existence of the
so-called “relaxed excited states” of large polarons [63]. In [62], an exactly
solvable (“symmetric”) 1D-polaron model was introduced and analyzed. The
further study of this model was performed in [63,64]. The model consists of
an electron interacting with two oscillators possessing opposite wave vectors:
q and —q. The parity operator, which changes dq and d_q (and also dL

and diq), commutes with the Hamiltonian of the system. Hence, the polaron
states are classified into even and odd states with eigenvalues of the parity
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operator +1 and —1, respectively. For the lowest even and odd states, the
phonon distribution functions Wy are plotted in Fig.2.7, upper panel, for
some values of the effective coupling constant A of this “symmetric” model.
The value of the parameter » = [¢2/muw|'/? for these graphs was taken to
be 1, while the total polaron momentum P = 0. In the weak-coupling case
(A = 0.6), Wy is a decaying function of N. When increasing A, Wy acquires a
maximum, e.g., at N = 8 for the lowest even state at A = 5.0625. The phonon
distribution function Wy has the same character for the lowest even and the
lowest odd states at all values of the number of virtual phonons in the ground
state (as distinct from the higher states). This led to the conclusion that the
lowest odd state is an internal excited state of the polaron.

In [55], the structure of the Frohlich polaron cloud was investigated using
the DQMC method. Contributions of N-phonon states to the polaron ground
state were calculated as a function of N for a few values of the coupling
constant « (see Fig. 2.7, lower panel). As follows from Fig. 2.7, the evolution
from the weak-coupling case (aw = 1) into the strong-coupling regime (o = 17)
was studied. The evolution of the shape and the scale of the distribution of the
N-phonon states with increasing a as derived for a Frohlich polaron within
DQMC method [55] is in notable agreement with the results obtained within
the “symmetric” 1D-polaron model [62-64].

The insight gained as a result of those investigations concerning the struc-
ture of the excited polaron states was subsequently used to develop a theory
of the optical absorption spectra of polarons. The first work was limited to the
strong-coupling limit [98], where the impact of the internal degrees of freedom
of polarons on their optical properties was revealed. The optical absorption
of light by free Frohlich polarons was treated in [98] using the polaron states
obtained within the adiabatic strong-coupling approximation. It was argued
in [98] that for sufficiently large o (o 2 3), the (first) relaxed excited state
(RES) of a polaron is a relatively stable state, which gives rise to a “reso-
nance” in the polaron optical absorption spectrum. The following scenario
of a transition, which leads to a “zero-phonon” peak in the absorption by a
strong-coupling polaron, was then suggested. If the frequency of the incoming
photon is equal to Qrps = 0.0650%wy, the electron jumps from the ground
state (which, at large coupling, is well characterized by “s”-symmetry for the
electron) to an excited state (“2p”), while the lattice polarization in the final
state is adapted to the “2p” electronic state of the polaron. In [98], consid-
ering the decay of the RES with emission of one real phonon, it is argued
that the “zero-phonon” peak can be described using the Wigner—Weisskopf
formula which is valid when the linewidth of that peak is much smaller
than wg.

For photon energies larger than Qrgs + wro, a transition of the polaron
toward the first scattering state, belonging to the RES, becomes possible. The
final state of the optical absorption process then consists of a polaron in its
lowest RES plus a free phonon. A “one-phonon sideband” then appears in
the polaron absorption spectrum. This process is called one-phonon sideband
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Fig. 2.7. Upper panel: the phonon distribution functions Wy in the “symmetric”
polaron model for various values of the effective coupling constant A at » =1,P =0
(from [62]). Lower panel: distribution of multiphonon states in the polaron cloud
within DQMC method for various values of « (from [55]) (reprinted with permission
from [94]. © 2006, Societa Italiana di Fisica)
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absorption. The one-, two-, ..., K-, ...phonon sidebands of the zero-phonon
peak give rise to a broad structure in the absorption spectrum. It turns out
that the first moment of the phonon sidebands corresponds to the Franck—
Condon (FC) frequency Qrc = 0.141a%wy.

To summarize, following [98], the polaron optical absorption spectrum at
strong coupling is characterized by the following features (at 7' = 0):

(a) An absorption peak (“zero-phonon line”) appears, which corresponds to
a transition from the ground state to the first RES at Qrgs.

(b) For Q > Qgrgs + wo, a phonon sideband structure arises. This sideband
structure peaks around Qpc. Even when the zero-phonon line becomes
weak, and most oscillator strength is in the LO-phonon sidebands, the
zero-phonon line continues to determine the onset of the phonon sideband
structure.

The basic qualitative strong-coupling behavior predicted in [98], namely, zero-
phonon (RES) line with a broader sideband at the high-frequency side, was
confirmed by later studies, as discussed below.

2.4.4 Optical Absorption at Arbitrary Coupling

The optical absorption of the Frohlich polaron was calculated in 1972 [73,93]
(“DSG”) for the Feynman polaron model using path integrals. Until recently,
DSG combined with Kartheuser et al. [98] constituted the basic picture for
the optical absorption of the Frohlich polaron. Peeters and Devreese [82] red-
erived the DSG result using the memory function formalism (MFF). The DSG
approach is successful at weak electron—phonon coupling and is able to iden-
tify the excitations at intermediate electron—phonon coupling (3 < a < 6).
In the strong-coupling limit, DSG still gives an accurate first moment for the
polaron optical absorption but does not reproduce the broad phonon side-
band structure (cf. [98,99]). A comparison of the DSG results with the optical
conductivity spectra given by recently developed “approximation-free” numer-
ical [100] and approximate analytical [67,101] approaches was carried out
recently [101], see also the review articles [58,66].

The polaron absorption coefficient I'(Q) of light with frequency ) at
arbitrary coupling was first derived in [73]. It was represented in the form

e Im %(9)
)= ney m [Q — Re X(Q)]? + [Im ()] (2.99)

This general expression was the starting point for a derivation of the theoret-
ical optical absorption spectrum of a single Froéhlich polaron at all electron—
phonon coupling strengths by Devreese et al. [73]. () is the so-called
“memory function,” which contains the dynamics of the polaron and depends
on 2, «a, temperature, and applied external fields. The key contribution of [73]
was to introduce T'(2) in the form (2.99) and to calculate Re 3(f2), which is
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essentially a (technically not trivial) Kramers—Kronig transform of the more
simple function Im 3(2). Only the function Im 3(€2) had been derived for the
Feynman polaron [71] to study the polaron mobility p using the impedance
function (2.70): p~! = SIZHHO (ImX(2)/Q).

The basic nature of the Frohlich polaron excitations was clearly revealed
through this polaron optical absorption given by (2.99). It was demon-
strated [73] that the FC states for Frohlich polarons are nothing else but
a superposition of phonon sidebands and a relatively large value of the
electron—phonon coupling strength (o > 5.9) is needed to stabilize the relaxed
excited state of the polaron. It was, further, revealed that at weaker coupling
only “scattering states” of the polaron play a significant role in the optical
absorption [73,102].

In the weak-coupling limit, the absorption spectrum (2.99) of the polaron
is determined by the absorption of radiation energy, which is re-emitted in
the form of LO phonons. As « increases between approximately 3 and 6, a
resonance with increasing stability appears in the optical absorption of the
Frohlich polaron of [73] (see Fig.2.8). The RES peak in the optical absorp-
tion spectrum also has a phonon sideband structure, whose average transition
frequency can be related to a FC-type transition. Furthermore, at zero tem-
perature, the optical absorption spectrum of one polaron exhibits also a
zero-frequency “central peak” [ox §(£2)]. For nonzero temperature, this “central
peak” smears out and gives rise to an “anomalous” Drude-type low-frequency
component of the optical absorption spectrum.

For a > 6.5, the polaron optical absorption gradually develops the struc-
ture qualitatively proposed in [98]: a broad LO-phonon sideband structure
appears with the zero-phonon (“RES”) transition as onset. Devreese et al. [73]
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Fig. 2.8. Optical absorption spectrum of a Frohlich polaron for a = 4.5, o = 5.25,
and o = 6 (after [73]) (DSG). The RES peak is very intense compared with the FC
peak. The d-like central peaks (at 2 = 0) are schematically shown by vertical lines.
The DQMC results of [100] are shown with open circles
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does not predict the broad LO-phonon sidebands at large coupling con-
stant, although it still gives an accurate first Stieltjes moment of the optical
absorption spectrum.

In Fig. 2.8, the main peak of the polaron optical absorption for o = 5.25
at 1 = 3.7lwq is interpreted as due to transitions to a RES. The “shoul-
der” at the low-frequency side of the main peak is attributed as mainly
due to one-phonon transitions to polaron “scattering states.” The broad
structure centered at about Q = 6.6wg is interpreted as a FC band (com-
posed of LO-phonon sidebands). As seen from Fig. 2.8, when increasing the
electron—phonon coupling constant to a = 6, the RES peak at Q = 4.14wy sta-
bilizes. Up to a = 6, the DQMC results of [100] reproduce the main features
of the optical absorption spectrum of a Fréhlich polaron as found in [73].

Based on Devreese et al. [73], it was argued that it is rather Holstein
polarons that determine the optical properties of the charge carriers in oxides
like SrTiOs, BaTiOgs [103], while Frohlich weak-coupling polarons could be
identified, e.g., in CdO [95]. The Frohlich coupling constants of polar semicon-
ductors and ionic crystals are generally too small to allow for a static “RES.”
In [104], the RES peaks of [73] were invoked to explain the optical absorption
spectrum of PraNiOy 25. The RES-like resonances in T'(2) (2.99) due to the
zeros of Q — Re () can effectively be displaced to smaller polaron coupling
by applying an external magnetic field B, in which case the contribution for
what is formally a “RES-type resonance” arises at @ — w, — ReX(2) = 0
(we = eB/m is the cyclotron frequency). Resonances in the magnetoabsorp-
tion governed by this contribution have been clearly observed and analyzed in
many solids and structures, see, e.g., [11,74,105-108] and references therein.

Evidence for the polaron character of charge carriers in AgBr and AgCl was
obtained through high-precision cyclotron resonance experiments in external
magnetic fields up to 16 T (see Fig.2.9). The all-coupling magnetoabsorption
calculated in [74] leads to the best quantitative agreement between theory
and experiment for AgBr and AgCl. This quantitative interpretation of the
cyclotron resonance experiment in AgBr and AgCl [106] by the theory of [74]
provided one of the most convincing and clearest demonstrations of Frohlich
polaron features in solids. The energy spectra of polaronic systems such as
shallow donors (“bound polarons”), e.g., the Dy and D™ centers, constitute
the most complete and detailed polaron spectroscopy realized in the literature
(see, e.g., Fig. 2.10).

The numerical calculations of the optical conductivity for the Frohlich
polaron performed within the DQMC method [100] confirm the analytical
results derived in [73] for @ < 3. In the intermediate-coupling regime 3 <
a < 6, the low-energy behavior and the position of the RES peak in the
optical conductivity spectrum of [100] follow closely the prediction of [73].
There are some minor quantitative differences between the two approaches in
the intermediate-coupling regime: in [100], the dominant (“RES”) peak is less
intense in the Monte Carlo numerical simulations and the second (“FC”) peak
develops less prominently. The following qualitative differences exist between
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Fig. 2.9. The polaron cyclotron mass in AgBr (a) and in AgCl (b): comparison of
experiment and theory (Larsen: [109]; PD: [74]); P parabolic band, NP corrections
of a two-band Kane model. In each case, the band mass was adjusted to fit the
experimental point at 525 GHz (reprinted with permission from [106]. (© 1987 by
the American Physical Society)

the two approaches: in [100], the dominant peak broadens for o 2 6 and the
second peak does not develop, but gives rise to a flat shoulder in the optical
conductivity spectrum at a = 6. As « increases beyond a =~ 6, the DSG
results for the OC do not produce the broad phonon sideband spectrum of
the RES transition that was qualitatively predicted in [98] and obtained with
DQMC.

Figure 2.11 shows that already for o = 1 noticeable differences arise
between Reo(£2) calculated with perturbation theory to O(a), respectively,
O(a?), and DSG or DQMC. Remarkably, the DQMC results for a = 1 seem to
show a somewhat more pronounced two-phonon scattering contribution than
the perturbation theory result to O(a?). This point deserves further analysis.

An instructive comparison between the positions of the main peak in
the optical absorption spectra of Frohlich polarons obtained within the DSG
and DQMC approaches has been performed recently [112]. In Fig.2.12; the
frequency of the main peak in the OC spectra calculated within the DSG
approach [73] is plotted together with that given by DQMC [100, 101]. As
seen from the figure, the main peak positions, obtained within DSG, are in
good agreement with the results of DQMC for all considered values of a. At
large «a, the positions of the main peak in the DSG spectra are remarkably
close to those given by DQMC. The difference between the DSG and DQMC
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Fig. 2.10. The 1s — 2pT, 2p. transition energies as a function of a magnetic field
for a donor in GaAs. The authors of [108] compare their theoretical results for
the following cases: (a) without the effect of polaron and band nonparabolicity (thin
dashed curves); (b) with polaron correction (dotted curves); (c¢) including the effects
of polaron and band nonparabolicity (solid curves) to the experimental data of [110]
(solid dots). Here v9 = 0.15413 (T) is the dimensionless unit of the magnetic field
(reprinted with permission from [108]. © 1993 by the American Physical Society)

results is relatively larger at « = 8 and for o = 9.5, but even for those values
of the coupling constant the agreement is rather good.

It is suggested that the RES peak at a =~ 6 in the DSG treatment, as «
increases, gradually transforms onto a FC peak. As stated above and in [73],
DSG predicts a much too narrow FC peak in the strong-coupling limit, but
still at the “correct” frequency. The DSG spectrum also satisfies the zero and
first moment sum rules at all « as discussed below.

2.4.5 Main Peak Line and Strong-Coupling Expansion

To describe the OC main peak linewidth at intermediate electron—phonon cou-
pling, the DSG approach was modified [101] to include additional dissipation
processes, the strength of which is fixed by an exact sum rule [66].
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Fig. 2.11. One-polaron optical conductivity Reo (2) for o = 1 calculated within
the DQMC approach [100] (open circles), derived using the expansion in powers
of a up to a [95] (solid line) up to o [111] (dashed line) and within the DSG

approach [73] (dotted line). A §-like central peak (at 2 = 0) is schematically shown
by a vertical line
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Fig. 2.12. Main peak positions from DQMC optical conductivity spectra of Frohlich
polarons [101] compared to those of the analytical DSG approach [73] (from [112])
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Within the memory function formalism (MFF) [113,114], the interaction
of the charge carriers with the free phonon oscillations is expressed in terms
of the electron density—density correlation function:

x(q,t) = —iO(¢) (exp [ig - r(t)] exp [~iq - r(0)]), (2.100)

which is evaluated in a direct way [82] using the Feynman polaron model,
where the electron is coupled via a harmonic force to a fictitious particle that
simulates the phonon degrees of freedom. Within this procedure, the electron
density—density correlation function takes the form:

Xm(a,t) = —1O(t) exp [—ig°t/2M ] exp [-¢°R(1 — e ") /2M],  (2.101)

where R = (M — 1)/v, M (the total mass of electron and fictitious particle),
and v are determined variationally within the path-integral approach [12].
The associated spectral function A,,(q,w) = —2Im x,,(q,w) is a series of
d-functions centered at ¢?/2M + nv (n is integer). Here, ¢?/2M represents
the energy of the center of mass of electron and fictitious particle, and v is
the energy gap between the levels of the relative motion. To include dissipa-
tion [101], a finite lifetime was introduced for the states of the relative motion,
which can be considered as the result of the residual EPI not included into
the Feynman variational model. To this end, in x,,(q,t) the factor exp [—ivt]
was replaced with (1+it/7)~ " which leads to the replacement of d-functions
by Gamma functions with mean value and variance given, respectively, by
q?/2M + nv and nv/7. The parameter of dissipation 7 is determined by the
third sum rule for A(q,w), which is additional to the first two sum rules that
are already satisfied in the DSG model without damping. As expected, T turns
out to be of the order of wy L If broadening of the oscillator levels is neglected,
the DSG results [73,82] are recovered.

Starting from the Kubo formula, the strong-coupling polaron optical con-
ductivity can be evaluated using the strong-coupling expansion (SCE) [66,
101]. In [112,115], SCE has been extended. To apply the extended SCE for
the polaron OC, a scaling transformation of the coordinates and moments
of the electron—phonon system is made following Allcock [46], r = o~ !x,
p = —iad/0x, and q = aq. This transformation allows us to see explicitly the
order of magnitude of different terms in the Hamiltonian. Expressed in terms
of the new variables, the Hamiltonian can be written as a sum of two terms,
which are of different orders in powers of a, H = H, + Ho, where H; ~ a?
is the leading term and Hs ~ a~? is the kinetic energy of the vibrating ions.
The next step is the Born-Oppenheimer approximation [46], which neglects
the nonadiabatic transitions between different polaron levels in calculating
the dipole—dipole correlation function of the Kubo formula [112,115].

Figure 2.13 shows the polaron OC spectra for different values of « cal-
culated numerically using the extended SCE with different approximations.
The OC spectra calculated within the extended SCE approach, taking into
account both the Jahn-Teller effect and the corrections of order o, are
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Fig. 2.13. The polaron OC calculated within the extended SCE taking into account
corrections of order o’ (solid curve), the OC calculated within the leading-term
strong-coupling approximation (dashed curve), with the leading term of the Landau—
Pekar (LP) adiabatic approximation (dash-dotted curve), and the numerical DQMC
data (open circles) for a =7, 9, 13, and 15 (from [112])

shown by the solid curves. The OC obtained with the leading-term strong-
coupling approximation taking into account the Jahn—Teller effect and with
the leading term of the Landau—Pekar adiabatic approximation are plotted as
dashed and dash-dotted curves, respectively. The full circles show the DQMC
data [100,101].

The polaron OC band of Fig. 2.13 obtained within the extended SCE gen-
eralizes the Gaussian-like polaron OC band (as given, e.g., by equation (3) of
[101]), thanks to (1) the use of the numerically exact strong-coupling polaron
wave functions [116] and (2) the incorporation of both static and dynamic
Jahn—Teller effects. The polaron OC broad structure calculated within the
extended SCE consists of a series of LO-phonon sidebands and provides a real-
ization — with all LO-phonons involved for a given a — of the strong-coupling
scheme proposed in [98].

As seen from Fig.2.13, the polaron OC spectra calculated within the
asymptotically exact strong-coupling approach are shifted toward lower fre-
quencies as compared with the OC spectra calculated within the LP approx-
imation. This shift is due to the use of the numerically exact (in the strong-
coupling limit) energy levels and wave functions of the internal excited polaron
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states, as well as the numerically exact self-consistent adiabatic polaron poten-
tial. Furthermore, the inclusion of the corrections of order o leads to a
shift of the OC spectra to lower frequencies with respect to the OC spec-
tra calculated within the leading-term approximation. The value of this shift

AQ, o/wro &~ —1.8 obtained in the present calculation is close to the LP value

Aﬂgﬁ)/wo =4In2 — 1 ~ 1.7726 (cf. [50,117]). The distinction between the

OC spectra calculated with and without the Jahn—Teller effect is very small.

Starting from a &~ 9 toward larger values of «, the agreement between the
extended SCE polaron OC spectra and the numerical DQMC data becomes
gradually better, consistent with the fact that the extended SCE for the
polaron OC is asymptotically correct in the strong-coupling limit. The results
of the extended SCE are qualitatively consistent with the interpretation
advanced in [98]. In [98], only the 1-LO-phonon sideband was taken into
account, while in [99] 2-LO-phonon emission was included. The extended
SCE carries on the program started in [98]. The spectra in Fig.2.13, in the
strong-coupling approximation, consist of LO-phonon sidebands to the RES
(which itself has negligible oscillator strength in this limit, similar to the
optical absorption for some color centers in alkali halides). These LO-phonon
sidebands form a broad FC-structure.

2.4.6 Comparison Between Optical Conductivity Spectra
Obtained by Different Methods

A comparison between the optical conductivity spectra obtained with the
DQMC method, extended MFF, SCE, and DSG for different values of «
is shown in Figs.2.14 and 2.15, taken from [101]. The key results of the
comparison are the following.

First, as expected, in the weak-coupling regime, both the extended MFF
with phonon broadening and DSG [73] are in very good agreement with the

Fig. 2.14. Comparison of the optical conductivity calculated with the DQMC
method (circles), extended MFF (solid line), and DSG [73,82] (dotted line), for four
different values of a. The arrow indicates the lower-frequency feature in the DQMC
data (reprinted with permission from [101]. (©2006 by the American Physical
Society)
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Fig. 2.15. (a)—(c) Comparison of the optical conductivity calculated with the
DQMC method (circles), the extended MFF (solid line), and SCE (dashed line)
for three different values of . (d) The energy of the lower- and higher-frequency
features obtained by DQMC (circles and triangles, respectively) compared (1) with
the FC transition energy calculated from the SCE (dashed line) and (2) with the
energy of the peak obtained from the extended MFF (solid line). In the inset, the
weights of Franck-Condon and adiabatically connected transitions are shown as
a function of « (reprinted with permission from [101]. (© 2006 by the American
Physical Society)

DQMC data [100], showing significant improvement with respect to the weak-
coupling perturbation approach [91,95] which provides a good description
of the OC spectra only for very small values of a. For 3 < o < 6, DSG
predicts the essential structure of the optical absorption, with a RES transition
gradually building up for increasing «, but underestimates the peak width.
The damping, introduced in the extended MFF approach, becomes crucial in
this coupling regime.

Second, comparing the peak and shoulder energies, obtained by DQMC,
with the peak energies, given by MFF, and the FC transition energies from
the SCE, it is concluded [101] that as « increases from 6 to 10 the spectral
weights rapidly switch from the dynamic regime, where the lattice follows the
electron motion, to the adiabatic regime dominated by FC transitions. In the
intermediate electron—phonon coupling regime, 6 < a < 10, both adiabatic
FC and nonadiabatic dynamical excitations coexist. For still larger coupling
a 2 10, the absorption spectrum consists of a broad FC-structure, built of
LO-phonon sidebands.

In summary, the accurate numerical results obtained from DQMC and
from the recent analytical approximations [67,101] confirm the essence of the
mechanism for the optical absorption of Frohlich polarons, proposed in [73,93]
combined with [98] and do add important new insights.

2.4.7 Sum Rules for the Optical Conductivity Spectra
of Fréhlich Polarons

In this section, several sum rules for the optical conductivity spectra of
Frohlich polarons are applied to test the DSG approach [73] and the DQMC
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results [100]. The values of the polaron effective mass for the DQMC approach
are taken from [55]. In Tables 2.2 and 2.3, we show the polaron ground state
FEy and the zero, My and first, M7, frequency moments calculated using the
optical conductivity spectra:

My = [ Reo () dQ, (2.102)
My = [ QReo (Q)d9, (2.103)
where Qax is the upper value of the frequency available from [100], and

Qmax
~ T
My = Q) dQ. 2.104

0= 5 Jr/l Reo () (2.104)

Here, m™ is the polaron mass, the optical conductivity is calculated in units
npe?/(mwp), m* is measured in units of the band mass m, and the frequency

Table 2.2. Polaron parameters Mo, M1, Mo obtained from the diagrammatic Monte
Carlo results (reprinted with permission from [94]. (© 2006, Societa Italiana di Fisica)

o MéDQMC) m*(DQMO) MéDQMC) Ml(DQMC)/a EéDQMC)
0.01 0.00249 1.0017 1.5706 0.634 —0.010
1 0.24179 1.1865 1.5657 0.65789 —1.013
3 0.67743 1.8467 1.5280 0.73123 —3.18
4.5 0.97540 2.8742 1.5219 0.862 —4.97
5.25 1.0904 3.8148 1.5022 0.90181 —5.68
6 1.1994 5.3708 1.4919 0.98248 —6.79
6.5 1.30 6.4989 1.5417 1.1356 —7.44
7 1.3558 9.7158 1.5175 1.2163 —8.31
8 1.4195 19.991 1.4981 1.3774 —9.85

Table 2.3. Polaron parameters My, My, My obtained within the path-integral
approach (reprinted with permission from [94]. (© 2006, Societa Italiana di Fisica)

a MéDSG) m*(Feynman) MéDSG) MI(DSG)/Oé E(()Feynman)
0.01 0.00248 1.0017 1.5706 0.633 —0.010

1 0.24318 1.1957 1.5569 0.65468 —1.0130
3 0.69696 1.8912 1.5275 0.71572 —3.1333
4.5 1.0162 3.1202 1.5196 0.83184 —4.8394
5.25 1.1504 4.3969 1.5077 0.88595 —5.7482
6 1.2608 6.8367 1.4906 0.95384 —6.7108
6.5 1.3657 9.7449 1.5269 1.1192 —7.3920
7 1.4278 14.395 1.5369 1.2170 —8.1127

8 1.4741 31.569 1.5239 1.4340 —9.6953
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is measured in units of wg. The values of Q. are Qnax = 10 for o = 0.01, 1,
and 3; Qmax = 12 for o = 4.5, 5.25, and 6; and Q. = 18 for o = 6.5, 7, and
8.

The optical conductivity derived by DSG [73] exactly satisfies the sum
rule [118]:

™

e T
T /1 Reo (Q)dQ = 5 (2.105)

Since the optical conductivity obtained from the DQMC results [100] is known
only within a limited interval of frequencies 1 < Q < Quax, the integral
in (2.104) for the DSG approach [73] is calculated over the same frequency
interval as for the Monte Carlo results [100].

The comparison of the resulting zero-frequency moments MéDQMC) and

MéDSG) with each other and with the value 7/2 = 1.5707963. .. correspond-
ing to the right-hand side of the sum rule (2.105) shows that the difference

MéDQMC) — MSDSG)‘ on the interval o < 8 is smaller than the absolute value

of the contribution of the “tail” of the optical conductivity for Q > Q.x to
the integral in the sum rule (2.105):

[ee]
/Q Re o P59 (Q)dQ = g — MPS9Y), (2.106)

Within the accuracy determined by the neglect of the “tail” of the part of the
spectrum for > Qax, the contribution to the integral in the sum rule (2.105)
for the optical conductivity obtained from the DQMC results [100] agrees
well with that for the optical conductivity found within the path-integral
approach in [73]. Hence, the conclusion follows that the optical conductivity
obtained from the DQMC results [100] satisfies the sum rule (2.105) within
the aforementioned accuracy.

We analyze the fulfillment of the “LSD” polaron ground-state theorem
introduced in [119]:

3 (0% dal o0 ,
Bofe) = Bo(0) = == | 5 | QReo (2,0') a0 (2.107)

using the first-frequency moments M. I(DQMC) and M fDSG). The results of this
comparison are presented in Fig.2.16. The dots indicate the polaron ground-
state energy calculated by Feynman using his variational principle for path
integrals. The solid curve is the value of Fy (a) calculated numerically using
the optical conductivity spectra and the ground-state theorem with the DSG
optical conductivity [73] for the polaron:

EPSY) (a / / ORe P59 (Q, o) A2, (2.108)

The dotted curve and the open circles are the values obtained using M fDSG) ()
and Ml(DQMC) (), respectively:



2.4 Response of Continuum Polarons 49

10 PY _EO(Fermn) K
.................. > (DSG) o
~ &l E0 .
= (DSG)
g—] _EO .'__9
7 (DQMC) o
i) (o] —E
g 6 0 o
-
S 4r
T .
N
2 -
0 1 1 1
0 2 4 6 8
o

Fig. 2.16. Test of the ground-state theorem for a Frohlich polaron from [119] using
different optical conductivity spectra, DSG from [73], and DQMC from [100]. The
notations are explained in the text (reprinted with permission after [94]. (© 2006,
Societa Italiana di Fisica)

_ 3 « d / Qmax 3 [e% M !
Ey (a)E——/ “ / QRea(Q,a')sz——/ da'ﬂ.
T Jo "Jo m™Jo o

: (2.109)

As seen from the figure, E(()DSG) () coincides, to a high degree of accuracy,
with the variational polaron ground-state energy. From the comparison of
E(SDSG) (o) with E(SDQMC) (), it follows that the contribution to the integral
in (2.109), with the given limited frequency region, which approximates the
integral in the right-hand side of the “LSD” ground-state theorem (2.107), for
the optical conductivity obtained from the DQMC results [100] agrees with a
high accuracy with the corresponding contribution to the integral in (2.109)
for the optical conductivity derived from the path-integral approach of [73].

Because for the path-integral result, the integral E(SDSG) () noticeably differs

from the integral E(()DSG) (), a comparison between the Feynman polaron

ground-state energy Ey and the integral E(gDSG) («) is not justified. Similarly,
a comparison between the polaron ground-state energy obtained from the
DQMC results and the integral ESDQMC) (o) would require to overcome the
limited frequency domain of the available optical conductivity spectrum [100].

The DQMC optical conductivity spectrum for higher frequencies than
Omax of [100] is needed to check the fulfillment of the sum rules (2.105) and
(2.107) with a higher accuracy.
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2.5 Polaron Scaling Relations

The form of the Frohlich Hamiltonian (2.16) in n-dimensions is the same as in
3D, except that now all vectors are n-dimensional. In this section, we take m =
wo = 1. In 3D, the EPI matrix element is well known, |Vq|2 = 2V2ra/ Vaq?.
The interaction coefficient in n-dimensions becomes [120]

2"_3/271'(”_1)/2F (anl) a

2
Vol = TP (2.110)

with V,, the volume of the n-dimensional crystal.

The only difference between the model system in n-dimensions and the
model system in 3D is that now one deals with an n-dimensional har-
monic oscillator. Directly following [12], the variational polaron energy was
calculated in [120]:

n (U — ’LU) n (1}2 — w2) 2*3/21" (n—l) o 00 e_t

B = _ — 2 ——dt
2 v (%) o /Do(t)
2 n— _
_nlow) D)a > ot (2.111)
w2 @h VR
where 5 5 5
w V¥ —w ot

To facilitate a comparison of E for n-dimensions with the Feynman result [12]
for 3D,

3(v—w)? 1 /‘X’ e !
Fsp (o) = — «@ —dt, 2.113
sp (@) p =) Do (2.113)
it is convenient to rewrite (2.111) in the form
2 n—1 —
- 1 3l (%) [~ et
Bup (a) = 2|20 =w) VAl () [T et ) (2.114)
3 4v V2r 2nl (% o /Do ()

The parameters w and v must be determined by minimizing F. In the case of
(2.114), one should minimize the expression in the square brackets. The only
difference of this expression from the RHS of (2.113) is that « is multiplied

by the factor )
_ 3Vl (#5)
ap =Y —~2 ) (2.115)
2nIl (%)
This means that the minimizing parameters w and v in nD at a given a will be
exactly the same as those calculated in 3D with the Froéhlich constant chosen
as anQ:
UnD (a) = V3D (ana) ,  WnD (Oé) = WsD (ana) . (2.116)
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Comparing (2.114) to (2.113), the following scaling relation [120-122] is
obtained:

Epp (@) = gEgD (ana), (2.117)

where a,, is given by (2.115). As discussed in [120], the above scaling relation
is not an ezxact relation. It is valid for the Feynman polaron energy and also for
the ground-state energy to order a. The next-order term (i.e., @) no longer
satisfies (2.117). The reason is that in the exact calculation (to order a?),
the electron motions in different space directions are coupled by EPI. No such
coupling appears in the Feynman polaron model; this is the underlying reason
for the validity of the scaling relation for the Feynman approximation.

In [82,118,120,121], scaling relations were obtained also for the impedance
function, Z,p (o; Q) = Zsp (ana; ), the effective mass, and the mobility of a
polaron. In the important particular case of 2D, the scaling relations take the
form [120-122):

Esp (o) = §E3D (%ra)a (2.118)
Zap (a; ) = Zsp (%a;ﬂ), (2.119)

msp (@) m3p (STWO‘)

CONS N (2:120)

top (@) = psp (%a). (2.121)

The fulfillment of the scaling relation [121] (PD) can be checked for the
path-integral Monte Carlo results [65] for the polaron free energy. The path-
integral Monte Carlo results of [65] in 3D and 2D are given for a few values
of temperature and for some selected values of a. For a check of the scaling
relation, the values of the polaron free energy at 8 = 10 (8 = wo/T) are taken
from [65] and plotted in Fig.2.17, upper panel for 2D and 3D, with squares
and open circles, respectively. In Fig. 2.17, lower panel, the available data for
the free energy from [65] are plotted in the following form, inspired by the
LHS and the RHS of (2.118): Fup (a) (squares) and (2/3)Fsp(3wa/4) (open
triangles). As follows from the figure, the path-integral Monte Carlo results
for the polaron free energy in 2D and 3D wvery closely follow the PD-scaling
relation of the form given by (2.118):

Fop (a) = %FgD (?’TTO‘> (2.122)
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Fig. 2.17. Upper panel: the polaron free energy in 2D (squares) and 3D (open cir-
cles) obtained by TPC’2001 [65] for 5 = 10. The data for Fip («) are interpolated
using a polynomial fit to the available four points (dotted line). Lower panel: demon-
stration of the PD-scaling (cf. PD’1987). The polaron free energy in 2D obtained
by TPC’2001 [65] for 5 = 10 (squares). The PD-scaled according to PD’1987 [121]
polaron free energy in 3D from TPC’2001 for 8 = 10 (open triangles). The data for
(2/3)F3p (3ma/4) are interpolated using a polynomial fit to the available four points
(solid line) (reprinted with permission from [94]. (©) 2006, Societa Italiana di Fisica)
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Lattice Polaron

When the coupling with phonons increases, the polaron radius decreases and
becomes of the order of the lattice constant. Then, all momenta of the Brillouin
zone contribute to the polaron wave function and the effective mass approx-
imation cannot be applied. This regime occurs if the characteristic potential
energy E,, (polaron level shift) due to the local lattice deformation is com-
pared or larger than the half-bandwidth D. The strong-coupling regime with
the dimensionless coupling constant

A

_I>1 3.1

is called the small or lattice polaron. In general, E;, is expressed as
1 2
Ep = ox zq: [v(a)["wq (32)

for any type of phonons involved in the polaron cloud. For the Frohlich inter-
action with optical phonons, one obtains E,, ~ gqe®/mk, where qq is the Debye
momentum [59]. For example, with parameters appropriate for high 7t cop-
per oxides ey > € ~ 5 and gp ~ 0.7 A~!, one obtains E, ~ 0.6eV [123,124].
The exact value of A\ when the continuum (large) polaron transforms into the
small one depends on the lattice structure, phonon frequency dispersions, and
the radius of the electron—phonon interaction, but in most cases the trans-
formation occurs around A, ~ 1 [125]. Lattice polarons are expected to be
the carriers in oxides, which are strongly polarizable doped semiconductors,
if the bare-electron band is narrow enough [26], and in molecular nanowires
(Sect. 6.3.2).

3.1 Holstein Model

Main features of small polarons are revealed in the simple Holstein model [18]
of two vibrating molecules and the electron hopping between them. A simpli-
fied version of the model is defined by a two-site Hamiltonian describing the

A.S. Alexandrov and J.T. Devreese, Advances in Polaron Physics, Springer Series in
Solid-State Sciences 159,
DOI: 10.1007/978-3-642-01896-1_3, (© Springer-Verlag Berlin Heidelberg 2010
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electron tunneling between sites 1 (“left”) and 2 (“right”) with the amplitude
t and interacting with a vibrational mode of an ion, placed at some distance
in between (Fig.3.1):

H =t(cles + cher) + Hon + He ph. (3.3)

Here, we take the position of an atomic level in the rigid lattice as zero, and
¢; annihilates the electron on the left, ¢ = 1, or on the right, i = 2, site.
The vibration part of the Hamiltonian in this toy model is

1 02 ka2
Hy = —— — 4+ 4
ph M 92 T 2 (3.4)

where M is the ion mass, k = Mw? is the spring constant, and z is the
ion displacement. The electron—phonon interaction, H. i, depends on the
polarization of vibrations. If the ion vibrates along the perpendicular direction
to the hopping (in c-direction, Fig.3.1), we have

Hefph = fcx(c]icl + C;CQ) (35)
and
He pn = faz(cler — cles), (3.6)

if the ion vibrates along the hopping (a-direction).

4+—> a-polarised

c-polarised I ‘

L : P
e
“left” “right”

Fig. 3.1. Electron tunnels between sites 1 (“left”) and 2 (“right”) with the ampli-
tude t and interacts with c-axis or a-axis polarized vibrational modes of the ion,
placed in between
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The wave function of the electron and the ion is a linear superposition of
two terms describing the electron on the “left” and “right” site, respectively:

Y = [u(z)e] + v(z)ch) o), (3.7)

where |0) is the vacuum state describing a rigid lattice without the extra
electron. Substituting v into the Schrodinger equation, Hiy = E, we obtain
two coupled equations for the amplitudes:

(E — fa,cx — Hpn)u(x) = to(z), (3.8)

(E £ fo,cx — Hpn)v(x) = tu(x), (3.9)

where + and — in the second equation correspond to a- and c-polarized vibra-
tions, respectively. There is the exact solution for the c-axis polarization, when
a change in the ion position leads to the same shift of the electron energy on
the left and right sites:

u(x) = uxn(zx),
U(x) = UXn(x)v (310)
where © and v are constants and

v 1/4
0l0) = iz ) Hulle £/ R)Me) 2] expl-M (o — /12

(3.11)

is the harmonic oscillator wave function. There are two ladders of levels
given by

Ef = —E,+t+w(n+1/2) (3.12)

with E, = f2/2k. Here, H,(¢) are the Hermite polynomials, and n =
0,1,2,3,.... Hence, the c-axis single-ion deformation leads to the polaron
level shift but without any renormalization of the hopping integral ¢. In con-
trast, a-polarized vibrations with the opposite shift of the electron energy on
the left and right sites strongly renormalize the hopping integral. There is no
simple general solution of the Holstein model in this case, but one can find it
in two limiting cases, nonadiabatic, when ¢t < wy and adiabatic, when t > wy.

3.1.1 Nonadiabatic Holstein Polaron

In the nonadiabatic regime, the ion vibrations are fast and the electron hop-
ping is slow. Hence, one can apply a perturbation theory in powers of ¢ to

solve B - . (@)
— fax — — w(x
< ot th> [v(x)} —0. (3.13)
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One takes ¢t = 0 in zero order and obtains a twofold degenerate ground state
[ubF (z), v (2)], corresponding to the polaron localized on the left (1) or on
the right (r) sites:

i) = oxp |- 250w + 107 (3.14)

vl(z) =0 (3.15)
and

u'(x) =0, (3.16)

v(z) = exp { Mo 4. //ﬂ (3.17)

with the energy Fy = —E, + wo/2, where E, = f2/2k. The eigenstates are
found as linear superpositions of two unperturbed states:

u(z)]  [ul(x) 0

[wm}‘a[o ()] (3.18)
Here, the coefficients o and  are independent of z. The conventional secular
equation for E is obtained, multiplying the first row by u!(z) and the second

row by v'(x), and integrating over the vibration coordinate, z, each of two
equations of the system. The result is

E—Ey, B
det< 7 EEO)O (3.19)

with the renormalized hopping integral
i ffooo dau! (x)v" ()

g ) (3.20)
t ffooo da|ul(z)|?

The corresponding eigenvalues Fy are
Ei =wy/2—-E, +t. (3.21)

The hopping integral splits the degenerate level, as in the rigid lattice, but an
effective “bandwidth” 2t is significantly reduced compared with the bare one:

t =t exp(—2E,/wp). (3.22)

This polaron band narrowing originates in a small overlap integral of two
displaced oscillator wave functions u!(x) and v*(x).

3.1.2 Adiabatic Holstein Polaron

In the adiabatic regime, when ¢t > wq, the electron tunneling is fast compared
with the ion motion. Hence, one can apply the Born-Oppenheimer adiabatic
approximation [2] taking the wave function in the form

ool e

Ve ()
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Here, u,(x) and v,(x) are the electron wave functions obeying the Schrédinger
equation with the frozen ion deformation x, i.e.,

(Ea(x)—t_ et E(x)_j- faa:> [Zﬁﬁiﬂ =0. (3.24)

The lowest energy level is found as
Eu(x) = —/(fax)? + t2. (3.25)

E.(r) together with kx?/2 plays the role of a potential energy term in the
equation for the “vibration” wave function, x(x):
1 0% ka?
- Y M 2 1 2 _

st VAP B x@) = Ex(@). (3:26)
Terms with the first and second derivatives of the electron wave functions
uq(z) and v, (z) are small compared with the corresponding derivatives of
x(z) in the adiabatic approximation, so they are neglected in (3.26). As a
result, we arrive at the familiar double-well potential problem, where the

potential energy U(x) = kx?/2 — \/(fax)? + t2 has two symmetric minima,
separated by a barrier. Minima are located approximately at

Tm = ifa/k (327)

in the strong-coupling limit, F}, > t, and the potential energy near the bottom
of each potential well is about
U(x)=—Ep, + (3.28)
If the barrier were impenetrable, there would be the ground-state energy level
Ey = —E, 4+ wo/2, the same for both wells. The underbarrier tunneling results

in a splitting of this level 2¢, which corresponds to a polaron bandwidth in
the lattice. It can be estimated using the quasiclassical approximation as

f o exp {2 /O o p(x)dx} , (3.29)

where p(z) = \/2M[U(x) — Eo] =~ (Mk)*/?|x — f,/k| is the classical momen-
tum.

Estimating the integral, one finds the exponential reduction of the “band-
width”:

t o exp(—2E, /wo), (3.30)

which is the same as in the nonadiabatic regime. Holstein found corrections
to this expression up to terms of the order of 1/A2, which allowed him to
improve the exponent and estimate the pre-exponential factor as
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- E ~
far || 22206-3" (3.31)
T
Here, g2 = 2F, /wy and
1 1
2 9
= 1——In(4)\) — —|. .32
g g{ D n(4A) 8/\2} (3.32)

A more accurate expression for £ was obtained in [126]:

- E 2
Pr pT%ﬁ5/2A1—5[2(1+ﬁ)]‘5e‘9 : (3.33)

where now % = ¢*{3 — [In(2X\(1 + B))]/4A\?} and A = E,/t. This expres-
sion takes into account the phonon frequency renormalization, 8 = Wy/wy =
\/1 —1/4)2, and the anharmonic corrections of the order of 1/A? to the
turning point z,, in (3.29). The term in front of the exponent in (3.31)
and (3.33) differs from ¢ of the nonadiabatic case (3.22). It is thus appar-
ent that the perturbation approach covers only a part of the entire lattice
polaron region, A 2 1. The upper limit of applicability of the perturba-
tion theory is given by ¢t < y/E,wg. For the remainder of the region,
the adiabatic approximation is more appropriate. A much lower effective mass
of the adiabatic small polaron in the intermediate-coupling region compared
with that estimated from the perturbation theory expression (3.22) is revealed
in (3.33) [126]. The double-well potential disappears at A = A, = 0.5, where
the renormalized phonon frequency @ is zero.

The Holstein polaron model can be readily generalized for infinite lattices
(Sect. 3.2). Similar models were used, for instance, in studies of dissipation
[127,128] and effects of decoherence in open quantum-mechanical systems.

3.2 Lang—Firsov Canonical Transformation

The kinetic energy is smaller than the interaction energy as long as A > 1.
Hence, a self-consistent approach to the lattice polaron problem is possible
with the “1/\” expansion technique [19,129] on infinite lattices with any
type of EPI conserving the electron site occupation numbers, and any phonon
spectrum. The technique treats the electron kinetic energy as a perturbation,
and can be applied for multipolaron systems as well [130] (see Sect.4.2). It
is based on the fact, known for a long time, that there is an analytical exact
solution of the any-number polaron problem in the extreme strong-coupling
limit, A — oo. Following Lang and Firsov, one applies the canonical transfor-
mation e to diagonalize the Hamiltonian (1.32). The diagonalization is exact,
if t((m) =0 (or A = o0):

H=e¢He (3.34)



3.2 Lang—Firsov Canonical Transformation 59

where

- Z 7 [ui(q)dq — H.c.] (3.35)

is such that ST = —S. The electron and phonon operators are transformed as
¢ =e3¢;e™% and dg = esdqe_s. The result is

and

dg =dgq— Y _#uj(q), (3.37)

where X; = exp {Zq ui(q)dg — H.c.} . The Lang—Firsov transformation shifts

the ions to new equilibrium positions. In a more general sense, it changes the
boson vacuum. As a result, the transformed Hamiltonian takes the following
form:

ﬁ:Z&ijcgcj pZn —i—qu de +1/2) + Zvunmj, (3.38)
2 z#]
where

6i; = t(m —n)d. X X; (3.39)

is the renormalized hopping integral depending on the phonon operators, and

vij = Ve(m Z [7(a)[*wq coslq - (m — )] (3.40)

is the interaction of polarons, v;; = v(m —n), comprising their Coulomb
repulsion and the interaction via the lattice deformation. In the extreme
infinite-coupling limit, A — oo, we can neglect the hopping term of the trans-
formed Hamiltonian. The rest has analytically determined eigenstates and
cigenvalues. The eigenstates [N) = |n;,nq) are sorted by the polaron 7, and
phonon ng occupation numbers. The energy levels are

EZ—(M+Ep)an vanmj—&—z:wq ng +1/2), (3.41)
i 1#]

where n; =0,1 and nq =0,1,2,3,...,00

3.2.1 “1/A\” Expansion and Polaron Band

The Hamiltonian H in zero order with respect to the hopping describes local-

ized polarons and independent phonons, which are vibrations of ions relative to
new equilibrium positions depending on the polaron occupation numbers. The
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middle of the electron band is shifted down by the polaron level shift £, due
to the potential well created by lattice deformation. Importantly, the phonon
frequencies remain unchanged in this limit at any polaron density, n. At finite
A and n, there is a softening of phonons dwy of the order of won/A? [131-134]
(the initial paper on the phonon renormalization [132] predicting dwg o< 1/\
was subsequently corrected [131,133,134]). Interestingly, the optical phonon
can be mixed with a low-frequency polaronic plasmon forming a new exci-
tation, “plasphon,” which was proposed in [131] as an explanation of the
anomalous phonon-mode splitting observed in cuprates [135].

Now, let us discuss the 1/A expansion. First, we restrict the discussion
to a single-polaron problem with no polaron—polaron interaction. The finite
hopping term leads to the polaron tunneling because of degeneracy of the
zero-order Hamiltonian with respect to the site position of the polaron. To
see how the tunneling occurs, we apply the perturbation theory using 1/A
as a small parameter. The proper Bloch set of N-fold degenerate zero-order
eigenstates with the lowest energy (—FE}) of the unperturbed Hamiltonian is

1
k,0) = — Y ¢l exp(ik - m)|0), 3.42
k., 0) N; p( )10) (3.42)

where |0) is the vacuum and N is the number of sites. By applying the text-
book perturbation theory, one readily calculates the perturbed energy levels.
Up to the second order in the hopping integral, they are given by

(k, 0132, Gijclej |k ng)?

Zq WqNq

Bx=-Ep+eac— »

’
k/ ,ng

, (3.43)

where |k, ng) are the exited states of the unperturbed Hamiltonian with one
electron and at least one real phonon. The second term in this equation, which
is linear with respect to the bare hopping ¢(m), describes the polaron band
dispersion [136]:

ac= Y t(m)e 9™ exp(—ik - m), (3.44)

m

where
¢(m) = 5= 3" (@[l cos(q  m)] (3.45)

is the band-narrowing factor at zero temperature.

The third term, quadratic in ¢(m), yields a negative k-independent correc-
tion to the polaron level shift of the order of 1/A2, and a small correction to
the polaron band dispersion (3.44) [131,137,138]. The correction to the level
shift due to polaronic hops onto a neighboring site with no deformation around
it. As any second-order correction, this transition shifts the energy down by
an amount of about —¢?(m)/E,. It has little to do with the polaron effective
mass and the polaron tunneling mobility because the lattice deformation does
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not follow the electron. The polaron hops back and forth many times (about

692) “waiting” for a sufficient lattice deformation to appear around neighbor-
ing site n. Only after the deformation around the neighboring site is created
does the polaron tunnel onto the next site together with the deformation.

3.2.2 Temperature Effect on the Polaron Band

Let us now analyze the temperature dependence of the polaron bandwidth,
which is determined by the average of the multiphonon operator (3.39):

(XTX5)) = [ [explu; (a)dfy — Hec] expluy(@)dg, — Hee])). (3.46)

Here, the double angular brackets correspond to quantum as well as statistical
averages of any operator A with the Gibbs distribution:

Ay =" e @ BT ) Ay = Te{el @ DITAY, (3.47)

where €2 is the thermodynamic potential and |v) are the eigenstates of ﬁ with
the eigenvalues E,. An operator identity exp(fl + B) = exp(A exp(B ))exp
(—[A, B]/2) is instrumental. It is applied when the commutator [A, B] is a
number. The identity allows us to write

e[u:f(q)dfl—H.c.]e[uj(q)dq—H.c.] _ ea*dj; e—adq e—\a|2/2 (348)

w elui (@] (@) —u (@u;(@)/2

Quantum and statistical averages are calculated by expanding the exponents
in the trace as

2n

(e ey = (1) 3 3 Y 1)

N=0n=0
(3.49)

where we dropped the phonon and site quantum numbers for transparency.
Here, p = exp(—wqu/T), so that a single-mode phonon partition function is
Zon = 1/(1 — p). Equation (3.49) can be written in the form [19]

2n dn 0

Z p (3.50)

Taking the sum over N, Z?Vo:OpN =1/(1 —p), and differentiating it n times
yield n! in the numerator, after which the series over n turns out equal to

(e em0dy) = (1 p) Z(—l)”

(e ¥ emadyy = g=lal’ne (3.51)
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where n, = [exp(wq/T) — 1]7! is the Bose-Einstein phonon distribution

function. Collecting all multipliers, one finally obtains

2T
(3.52)

((645)) = T(m — n)dss exp ( 2;{ Z |v(q)[?[1 — cos(q - m)] coth ﬁ) ,

with the zero-temperature limit given by (3.44).

The small-polaron band is exponentially narrow. Hence, one can raise
a concern about its existence in real solids [139]. At zero temperature, the
perturbation term of the transformed Hamiltonian conserves the momentum
because all off-diagonal matrix elements vanish:

<k,0 > Gijele k',o> =0 (3.53)

4]

if k # k’. The emission of a single high-frequency phonon is impossible for
any k because of the energy conservation. The polaron half-bandwidth is
exponentially reduced,

waDe 9, (3.54)

and it is usually less than the optical phonon energy wq (g2 is about DX /wy).
Hence, there is no damping of the polaron band at T" = 0 caused by optical
phonons, no matter how strong the interaction is. The phonons “dress” the
electron and coherently follow its motion. However, at finite temperatures
the simultaneous emission and absorption of phonons are possible. More-
over, the polaron bandwidth shrinks with increasing temperature because the
phonon-averaged hopping integrals depend on temperature (3.52). For high
temperatures, 7' >> wg/2, the band narrows exponentially as w ~ D e~ T/To,
where

Ty = % 3 la)Pwg L~ cos(g - m))

On the other hand, the two-phonon scattering of polarons becomes more
important with increasing temperature. One can estimate this scattering rate
by applying the Fermi—Dirac golden rule:

1 2
—=2r <Z | Maqr|* 6(exc — ek+qqf>>, (3.55)
a9’
where the corresponding matrix element is

Myq =Y (k+a-d\ng—Ling + 1655 ¢; [k.ng, ng) -
i

For simplicity, we consider the momentum independent v(q) = v and wq =
wp. Expanding 6;;-operators in powers of the phonon creation and annihilation
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operators, one estimates the matrix element of the two-phonon scattering as
Maq ~ N 'wydy/ng(ng +1). Using this estimate and the polaron density
of states (DOS), pp(§) = N71 >, 8(€ — ex) &~ 1/2w, one obtains [26]

~ wygne (1 +ny), (3.56)

N

where n,, = [exp(wo/T) — 1]~ ! is the phonon distribution function.

The polaron band is well defined, if 1/7 < w, which is satisfied for a tem-
perature range T’ < Tiin =~ wo/ In 'yé about half of the characteristic phonon
frequency for relevant values of 42. At higher temperatures, the incoherent
thermal activated hopping dominates in the polaron dynamics [18-20,22], and
the polaron states are no longer the Bloch states. When the optical phonon
frequencies are exceptionally high (i.e., about 1,000K as in high-temperature
superconductors [135]), lattice polarons are in the Bloch states in the relevant
range of temperatures, where the Boltzmann kinetic theory with renormalized
energy spectrum is applied.

3.3 Effect of EPI Range and Phonon Dispersion
on Lattice Polaron Dynamics

The narrowing of the band and the polaron effective mass strongly depend
on the range of EPI [59]. Let us compare the small Holstein polaron (SHP)
formed by the zero-range EPI and a small polaron formed by the long-range
(Frohlich) interaction, which we refer to as the small Frohlich polaron (SFP).
We use the real-space representation of He 1, [60]:

He pn =Y f(m —n)énit;, (3.57)
with the normal coordinate at site n
€n =Y (2NMuwg) /2619 dq + H.c. (3.58)
q

and the force between the electron at site m and the normal coordinate &,

fm) = N1 " y(q)(Mw])! /el a™, (3.59)

In general, there is no simple relation between the polaron level shift F,
and the exponent g? of the mass enhancement. This relation depends on
the form of EPI. Indeed for EPI with a single dispersionless phonon mode,
Wq = Wo, one obtains

1
By, = YV %: f*(m) (3.60)

and
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1
9 = 2Mw] zm: [£*(m) = f(m)f(m +a)], (3.61)

where a is the primitive lattice vector. In the nearest-neighbor approximation,
the effective mass renormalization is given by m*/m = egz7 where 1/m* =
0%e/OKk? at k — 0 is the inverse polaron mass. If the interaction is short-
ranged, f(m) = kdm o (the Holstein model), then g> = E,/wq. Here, k is a
constant. In general, one has g = vE,/wo with the numerical coefficient

LY fm)fm e
SR

which might be less than 1. To estimate «, let us consider a one-dimensional
chain model with the long-range Coulomb interaction between the electron
on one chain (m) and ion vibrations of another chain (n), polarized in the
direction perpendicular to the chains [60] (Fig.3.2). The corresponding force
is given by

(3.62)

K
(jm —mnf2 +1)3/2°

Here, the distance along the chains |m — n| is measured in units of the lattice
constant a, the interchain distance is also a, and we take a = 1. For this long-
range interaction, we obtain E, = 1.27x2/(2Mw3), g* = 0.49x2/(2Mw}), and
g% = 0.39E,, /wo. Thus, the effective mass renormalization in the nonadiabatic
regime is much smaller than that in the Holstein model, roughly as mgpp o<
(m&yp)'/? in units of m. An analytical solution of a two-site single-electron
system interacting with many vibrating ions of a lattice via a long-range
Frohlich EPI found that SFP is also several orders of magnitude lighter than
SHP in the adiabatic regime [140].

Another interesting point is that the size of SFP and the length, over
which the distortion spreads, are different. In the strong-coupling limit, the
polaron is almost localized on one site m. Hence, the size of its wave function
is the atomic size. On the other hand, the ion displacements, proportional to
the displacement force f(m — n), spread over a large distance. Their ampli-
tude at a site n falls with the distance as |m — n|~2 in the one-dimensional
model (Fig.3.2). The polaron cloud (i.e., lattice distortion) is more extended
than the polaron itself. Such polaron tunnels with a larger probability than
the Holstein polaron due to a smaller relative lattice distortion around two
neighboring sites. For a short-range EPI, the entire lattice deformation dis-
appears at one site and then forms at its neighbor, when the polaron tunnels
from site to site. Therefore, v = 1 and the polaron is very heavy already at
A ~ 1. On the contrary, if the interaction is long-ranged, only a fraction of the
total deformation changes every time the polaron tunnels from one site to its
neighbor, and v is smaller than 1.

A lighter mass of SFP compared with the nondispersive SHP is a generic
feature of any dispersive electron—phonon interaction. For example, a short-
range interaction with dispersive acoustic phonons (y(q) o 1/¢'/2, wq x q)

f(m —n) =

(3.63)
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o b0 o

Fig. 3.2. A one-dimensional model of the lattice polaron on chain m interacting
with displacements of all ions of another chain n (¢ is the polaron hopping integral
along chain m)

also leads to a lighter polaron in the strong-coupling regime compared with
SHP [9]. Even within the Holstein model with the local (intramolecular) EPI,
the dispersion of phonon frequencies is a vital ingredient since nondispersive
phonons might lead to a divergent site jump probability of polarons [22].
Importantly, the comprehensive studies of the molecular Holstein Hamilto-
nian, in which the dispersive features of the phonon spectrum are taken into
account, found much lower values of the polaron mass compared with the
nondispersive model [141-143]. In those studies, the 1/\ perturbation theory
based on the standard Lang-Firsov (LF) and the variational (modified) MLF
transformation of the molecular Holstein Hamiltonian with dispersive phonons
has been applied for 1D, 2D, and 3D lattices including the second-order
corrections as in (3.43):

H=—tY clej+gwo Y nildi +d) + > wqldidg +1/2), (3.64)
(4,4) i q

where dq is the Fourier transform of d;. The phonon dispersion has been
modeled using the intermolecular first neighbor force constant, Mw?, which
yields, e.g., in 1D case w? = w3/2 + wi + (w}/4 + wiwicosq + wi)'/2.
MLF improves the convergence of the 1/ perturbation series by introducing a
suitable variational parameter \q in the LF transformation (3.35) as [144,145]

S= Surr = > Aqlhpq@i(dq —dl ). (3.65)
q.k

As a result, the polaron mass converges to much lower values when the phonon
dispersion is introduced, in particular in the adiabatic regime. There is a con-
tinuous mass enhancement whose abruptness is significantly smoothed for the
largest values of the phonon dispersion, similar to the SFP discussed above.
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While a phase transition is ruled out in the single-electron Holstein Hamilto-
nian, where the ground-state energy is analytic in the EPI strength [36,38], a
crossover from more itinerant to more self-trapped behavior may be identified
as a rather sudden event in the adiabatic regime [146-149].

3.4 All-Coupling Lattice Polaron

3.4.1 Holstein Model at Any Coupling

During past 20 years, significant efforts were directed toward the extension
of the weak- and strong-coupling perturbation lattice polaron theories to the
intermediate region of the relevant parameters, A ~ 1, and wo/t ~ 1. It was
argued [29,131,137] that the expansion parameter is actually 1/22\2, so the
analytical strong-coupling expansion in powers of 1/A might have a wider
region of applicability than one can expect using simple physical arguments
(i.e., A > 1). However, it has not been clear how fast the expansion converges.

Kudinov and Firsov [138] developed the analytical approach to the two-
site Holstein model by the use of the expansion technique, which provides the
electronic and vibronic terms as well as the wave functions and all correlation
functions in any order of powers of t. They have found the exponential reduc-
tion factor in all orders of the 1/ perturbation expansion. On the other hand,
the corrections to the atomic level were found as small as 1/A? rather than
exponential in agreement with the conventional second-order result (3.43).
Chatterjee and Das [144] studied the same problem for any coupling within the
perturbative expansion combined with MLF (3.65) and MLF with a squeez-
ing canonical transformation [150], exp(S), where S = ald;d; — djdj) Using
two variational parameters introduced by MLF and squeezing transforma-
tions allows for very good convergence of the 1/ perturbation series even
in the near-adiabatic regime, wo/t 2 0.5, where the conventional 1/\ expan-
sion shows bad convergence. These studies also showed that the region of the
parameters of the Holstein model, where neither weak- nor strong-coupling
perturbation analytical methods are applicable, is rather narrow. A semiana-
lytical approach to the solution of two coupled differential equations (3.8) and
(3.9) of the Holstein model in the whole parameter space has been proposed
in [151] based on the coherent-state expansion of u(z),v(z). These authors
obtained the recursive relations among the expansion coefficients, allowing
for highly accurate numerical solutions, which agree well with those by MLF
method in the weak- and strong-coupling regimes. The deviation from the
MLF solution in the intermediate-coupling regime implies that MLF misses
some higher-order correlation terms. A continued fraction analytical solution
of the two-site Holstein model was derived by Capone and Ciuchi [152] as for
a related model in quantum optics [153]. In practice, it also requires some
truncation of the infinite phonon Hilbert space. Finally, all Green’s functions
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for the two-site Holstein—-Hubbard model were derived in terms of continued
fractions [154].

Numerical results obtained by different methods actually show
that the ground-state energy (about —E,) is not very sensitive to the
parameters, while the effective mass and the bandwidth strongly depend on
the polaron size, EPI range, and the adiabatic ratio, wg/t. Several meth-
ods exist for numerical simulations of lattice polarons. They include exact
diagonalization (ED) [35, 126, 155-163], the global-local (GL) [164], and
other advanced variational methods [165,166]: quantum Monte Carlo (QMC)
algorithms [167-177], density matrix renormalization group (DMRG) [178-
180], continuous-time QMC [37,60,61,181,182], and diagrammatic QMC [55,
56, 183]. The methods vary in accuracy and versatility, and, combined
together, can provide all the polaron properties of interest in the entire space
of model parameters. On the other hand, ED suffers from the necessary trun-
cation of the phonon Hilbert space, especially at strong couplings and low
phonon frequencies (even then, the total Hilbert space is huge, reducing the
number of sites and leading to poor momentum resolution), DMRG cannot
easily handle long-range interactions, diagrammatic QMC and ED are incon-
venient in calculating the density of states, and path-integral CTQMC slows
down at small frequencies [35,58,177,184]. In numerical analysis of polaron
models, a complex approach is needed where each method is employed to
calculate what it does best.

Until recently, most numerical studies were performed on the Holstein
model (i.e., with zero-range EPI). Reliable results for the intermediate region
were obtained using ED of vibrating clusters [35, 126,139, 156,157, 160-163,
185].

Taking as a measure of the polaron kinetic energy the correlation function
ter = (—t(clea + cher)) (here ¢1 o are annihilation operators on the “left”
and “right” sites of the Holstein model), one might doubt of the Lang—Firsov
approach [139, 185], since this correlation function is much larger than the
small-polaron bandwidth. However, applying the 1/A expansion up to the
second order in ¢, one obtains the numerical t.g very close to the perturbation
tLr in the strong-coupling regime, A > 1 [136, 186]:

At t
teff ~ tLp = —texp ( " ) X (3.66)
with A\ = 2E,/t. Here, only the first exponential term describes the true
coherent tunneling, while the second term describes the correction to the
middle of the polaron band owing to the virtual “back-forth” transitions to
the neighboring site, as discussed above (Sect. 3.2.1).

The main contribution to t.g comes from the second-order term lowering
the middle of the band [131,136-138], rather than from the polaron transport-
related first term (see also [187,188]). Comparing the analytical expression
(3.66) with the numerically calculated teg, one confirms that the Holstein—
Lang—Firsov approach is asymptotically exact both in the nonadiabatic and
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Fig. 3.3. The ratio of the perturbatively calculated correlator (3.66) of the two-
site Holstein model to the numerically exact correlator for different values of the
adiabatic ratio (here w = wo) [136]. The lowest curve represents the erroneous result
of [185] with the missing second-order term in (3.66)

adiabatic regimes [136], if the second-order correction is taken into account
(Fig. 3.3).

The numerical diagonalization of the two-site one-electron Holstein model
[126] shows that the first-order term of the 1/ perturbation theory describes
well the polaron bandwidth in the nonadiabatic regime for all values of the
coupling constant. There is no agreement in the adiabatic region, where the
first-order perturbation expression (3.22) overestimates the polaron mass by
a few orders of magnitude. A poor convergence of the perturbation expansion
is due to appearance of the familiar double-well potential [18] in the adiabatic
limit. The tunneling probability is extremely sensitive to the shape of this
potential. The splitting of levels for the two-site cluster is well described by
the Holstein quasiclassical formula generalized for the intermediate coupling
in (3.33). While SHP is only a few times heavier than the bare (unrenormal-
ized) electron in a wide range of the coupling for a moderate adiabatic ratio
wo/t = 1, it becomes very heavy in the adiabatic regime and for the strong
coupling [126].

3.4.2 Short-Range EPI in Infinite Lattices

A number of other independent numerical results proved that “by the use
of the Holstein approximation and the canonical Lang—Firsov approach with
appropriate corrections, one obtains an excellent estimate of the coherent
bandwidth in both adiabatic and nonadiabatic (strong-coupling) regimes” [189].



3.4 All-Coupling Lattice Polaron 69

3.0 T T
VED
———— Global-Local
0 wg/t=0.2, DMRG
o o/t =1.0, DMRG
2.0 - O g/t =4.0, DMRG i
E
E
(@]
o
1.0 r 1
0.0 &
0.0 1.0 2.0 3.0 4.0

Fig. 3.4. Logarithm of the polaron effective mass in 1D Holstein model as a function
of g (after [35]). VED results (full lines) were obtained operating repeatedly L = 20
times with the off-diagonal pieces of the Holstein Hamiltonian. For comparison,
global-local (GL) results (dashed lines) are included [164]. Open symbols, indicating
the value of wp/t, are DMRG results [178]

In particular, the elaborate variational ED (VED) [35,190] provides an exact
numerical solution of the Holstein crystal model (3.64) in any dimension. In
contrast to finite-lattice ED, it yields the ground-state energy which is a vari-
ational bound for the exact energy in the thermodynamic limit. Figure 3.4
shows the effective mass computed by VED [190] in comparison with GL and
DMRG methods. m* is obtained from m/m* = (1/2t)90?E) /0k?, k — 0, where
mo = 1/(2t) is the rigid band mass (here the lattice constant is a = 1). In
the intermediate-coupling regime where VED gives an energy accuracy of 12
decimal places, one can calculate the effective mass accurately (6-8 decimal
places) [35].

In Fig. 3.4, the parameters span different physical regimes including weak
and strong coupling, and low and high phonon frequency. There is good
agreement between VED and GL away from strong coupling and excellent
agreement in all regimes with DMRG results. DMRG calculations are not
based on finite-k calculations due to a lack of periodic boundary conditions,
so they extrapolate the effective mass from the ground-state data using chains
of different sizes, which leads to larger error bars and demands more compu-
tational effort. There is no phase transition in the ground state of the model,
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but the polaron becomes extremely heavy in the strong-coupling regime. The
crossover to a regime of large polaron mass is more rapid in adiabatic regime,
i.e., at small wy/t.

For analyzing all-coupling polarons in more complex lattices, the conti-
nuous-time path-integral quantum Monte Carlo algorithm (CTQMC) is ide-
ally suited. The algorithm is formulated in real space [181,184] and based
on the analytical integration over phonon degrees of freedom introduced by
Feynman [12] and on an earlier numerical implementation in discrete time by
De Raedt and Lagendijk [168-171]. CTQMC introduced two critical improve-
ments. Firstly, formulation in continuous imaginary time eliminated errors
caused by the Trotter slicing and made the method numerically exact for
any strength of EPIL. Secondly, introduction of twisted boundary conditions
in imaginary time [181,191] enabled calculation of polaron effective masses,
spectra, and the densities of states (DOS) in any dimensions in infinite lattices.

The polaron action, obtained by analytical integration over phonon degrees
of freedom, is a functional of the polaron path in imaginary time r(7). It is
given by the following double integral:

ZA\wo Borp Y (3 / 5(3 /
_ —wp/2 ( w(B/2—|T—T']) —w(B/2—|T—7"])
Alr(1)] 255(0.0) 0.0) /0 /0 drdr’e (e +e )

x®o[r(7),r(r")] + cpj)(\)wo / / drdr/e 9T @A)

X (@ axlr(7), ()] — Blr(r),x(7)]) (3.67)
Danlr(r = 2 Fnle (e arle (s (3.68)

where the vector Ar = r(3) — r(0) is the difference between the end points of
the polaron path, 3 = t/T, © = wo/t, and fm(n) = fm(n)/k (see also (3.63)).
From this starting point, the polaron is simulated using the Metropolis Monte
Carlo method. The electron path is continuous in time with hopping events (or
kinks) introduced or removed from the path with each Monte Carlo step. From
this ensemble, various physical properties may be computed, in particular, the
ground-state energy, the number of phonons in the polaron “cloud,” and the
polaron band energy spectrum:

1
ex — €9 = — lim = In(cos(k - Ar)), (3.69)

B—o0

where k is the quasimomentum. By expanding this expression in small k, the
1th component of the inverse effective mass is obtained as

1* = lim l<(Ari)2>. (3.70)

mi B—00 ﬁ
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Thus, the inverse effective mass is the diffusion coefficient of the polaron
path in the limit of the infinitely long “diffusion time” S. The ground-state
properties of the Holstein polaron are presented in Figs. 3.5-3.7.

3.4.3 Finite-Range EPI: Mobile Small Polaron

As discussed above (Sect.3.3) the lattice polaron mass strongly depends on
the radius of EPI. Also does the range of the applicability of the analytical
1/X expansion theory. The theory appears almost exact in a wide region of
the Frohlich EPI (3.63) for which the exact polaron mass was calculated with
CTQMC algorithm in [60].

At large A (>1.5) SFP was found to be much lighter than SHP in agree-
ment with the analytical results (Sect. 3.3), while the large Frohlich polaron
(i.e., at A < 1) was heavier than the large Holstein polaron with the same
binding energy (Fig. 3.8). The mass ratio mjp/mjp is a nonmonotonic func-
tion of A. The effective mass of the Frohlich polaron, mpp(A) is well fitted
by a single exponent, which is €% 73* for wg = t and e** for wy = 0.5t. The
exponents are remarkably close to those obtained with the Lang—Firsov trans-
formation, €*78 and e!®%*, respectively. Hence, in the case of the Frohlich
interaction, the transformation is perfectly accurate even in the moderate
adiabatic regime, wo/t < 1 for any coupling strength. It is not the case for
the Holstein polaron. If the interaction is short-ranged, the same analytical
technique is applied only in the nonadiabatic regime wp/t > 1 (see Fig.3.6).

An important question about polaron properties also involves the effects of
screening on the electron—phonon interaction. Unscreened EPI makes polarons
very mobile [59], which leads to strong effects even on the qualitative physical
properties of the polaron gas. Modeling the screening effects a form for the
interaction force between electrons and phonons was introduced in [61], and
is a screened discrete Frohlich interaction:

fm() = F n; T o (%) . (3.71)

It describes EPI of holes with c-axis polarized lattice distortions, which has
been suggested as the relevant electron-phonon interaction in the cuprates [59].

The CTQMC polaron mass for the one-dimensional lattice with the
screened Frohlich EPI (3.71) is shown in Fig. 3.9 at four different values of
the screening length, Ry, — 0 (the short-range Holstein interaction), Rs. = 1,
Ry = 3, and Ry, — oo (the nonscreened Frohlich interaction).

The QMC results for the energy, and the number of phonons in the polaron
cloud [61] are in excellent agreement with the weak-coupling expansion results
at small )\, and tend to the strong-coupling result as A\ — co. An important
observation is evident from the plot of In(m*/mg) against A shown in Fig. 3.9.
At intermediate and large couplings (i.e., in the transition and small-polaron
regions), altering the value of Ry, has a dramatic effect on the effective mass.
For example, the nonscreened Frohlich polaron is over 10% times “lighter”
than the Holstein polaron at A = 4, and over 10* times lighter at A = 5. It
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Fig. 3.8. Inverse effective polaron mass in units of the bare band mass in a linear
lattice [60]

is apparent from the above results for the screened Frohlich model that as
Ry increases (from Holstein to Frohlich), the QMC results move, in general,
closer to the “1/)\” expansion over the entire range of A. That is, the “1/\”
expansion becomes generally more applicable as the range of EPI increases
(as well as with increasing @).

The polaron features for the long-range EPI were also investigated by
extending a variational approach previously proposed for the study of systems
with local (Holstein) coupling [192]. The ground-state spectral weight, the
average kinetic energy, the mean number of phonons, and the electron—lattice
correlation function were calculated for a wide range of model parameters
focusing on the adiabatic regime. A strong mixing of electronic and phononic
degrees of freedom even for small values of EPI was found in the adiabatic
case due to the long-range interaction.

CTQMC has enabled accurate analysis of models with long-range electron—
phonon interactions [37,60,61] and a model with anisotropic electron hop-
ping [182].

All numerical results confirm gross polaronic features well understood ana-
lytically by Holstein [18] and others both in the nonadiabatic and adiabatic
regimes. A great power of numerical methods is the ability to calculate an
entire polaron spectrum, and the polaron DOS p(E) = N=13°, §(F — Ex +
Ey), in the whole parameter space. The coherent part of the spectrum, ey,
possesses an interesting property of flattening at large lattice momenta in
the adiabatic limit, ¢ > wq [35,162-164,193,194]. In the weak-coupling limit,
the flattening can be readily understood as hybridization between the bare-
electron spectrum and a phonon mode [195]. The resulting polaron dispersion
is cosine-like at small k and flat at large k. As a result, the polaron DOS
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should be peaked close to the top of the polaron band. Exact VED [35] and
CTQMC [184] calculations have confirmed that this is indeed the case for the
short-range EPI. The evolution of the DOS of the isotropic Holstein model
with phonon frequency wy in two and three dimensions is shown in Fig. 3.10a,b.
In all the cases presented the polaron is fully developed, with the bandwidth
much smaller than wg.

At small wg, DOS develops a massive peak at the top of the band. The
peak is more pronounced in d = 3 than in d = 2. The van Hove singularities
are absorbed in the peak and as such cannot be seen. With increasing wg, the
polaron spectrum approached the cosine-like shape in full accordance with the
Lang—Firsov nonadiabatic formula. The respective DOS gradually assumes the
familiar shape of the tight-binding band with renormalized hopping integrals.
The van Hove singularities are clearly visible. These results have an interesting
corollary for the Holstein model. At small-to-moderate wp/t in two and three
dimensions, the bottom half of the polaron band contains a tiny minority of
the total number of states, so that the system’s responses will be dominated
by the states in the peak.

In the long-range model (3.63) the two-dimensional DOS, shown in
Fig. 3.10c, is much closer to the tight-binding shape than the Holstein DOS
at the same parameters. The polaron spectrum and DOS are another man-
ifestation of the extremity of the Holstein model. Long-range EPI removes
those peculiarities and make the shape of polaron bands more close to the
1/ expansion results.
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Fig. 3.10. (a) and (b) The evolution of the density of states of the Holstein polaron
with phonon frequency w = wo/t in d = 2 and 3, respectively. (¢) The same for the
small Frohlich polaron in d = 2 (after [184]

3.5 Isotope Effect on the Polaron Mass

There is a qualitative difference between ordinary metals and polaronic (semi)
conductors. The renormalized effective mass of electrons is independent of the
ion mass M in ordinary metals (where the Migdal adiabatic approximation
is believed to be valid, see below), because A does not depend on the isotope
mass. However, when electrons form polarons dressed by lattice distortions,
their effective mass m* depends on M through m* = mexp(yE,/wo), in the
strong-coupling limit. Here, the phonon frequency depends on the ion mass,
so that there is a large polaronic isotope effect (PIE) on the carrier mass
with the carrier mass isotope exponent ay,~ = (1/2)In(m*/m) as predicted
in [196], in contrast to the zero isotope effect in ordinary metals (see [9] for
more details). The effect was found experimentally in cuprates [197-199] and
manganites [200]. More recent high-resolution angle-resolved photoemission
spectroscopy (ARPES) also revealed a complicated isotope effect on the whole
band structure in cuprate superconductors depending on the electron energy
and momentum [201].

PIE in the intermediate region of parameters was calculated using the
dynamic mean-field approximation (DMFT) [202,203] and CTQMC algo-
rithm [37, 61, 204]. Importantly, o~ and the effective mass averaged over
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dimensions are related to the critical temperature isotope exponent, o =
—dInT,/d1In M, of a (bi)polaronic superconductor as

Q= - (1 - ;”i";) , (3.72)

where p. is the Coulomb pseudopotential [9,196].

In the adiabatic regime, the isotope effect on the polaron mass does not
fully represent the isotope effect on the vast majority of polaron states, in
particular for the short-range EPI, so that additional insight can be gained
from the isotope effect on the entire polaron spectrum [204]. The isotope effect
on polaron spectrum and DOS in d = 2 is illustrated in Fig. 3.11. The ratio of
the two phonon frequencies, w = 0.80¢ and 0.75¢, has been chosen to roughly
correspond to the substitution of 6O for 'O in complex oxides. One can
see that the polaron band shrinks significantly, by 20-30%, for both polaron
types. The middle panels show the isotope exponents on spectrum points cal-
culated as | (@) A

w €k
g = B <€k> Ao’ (3.73)
where the angular brackets denote the mean value either of the two frequencies
or of the two energy values. An interesting observation is that aj of the
Frohlich polaron is roughly independent of k (£10%). In the Holstein case,
ay dips in the vicinity of the I' point.

Unconventional isotope effects as observed in high-temperature supercon-
ducting cuprates [197] were also explained by polaron formation stemming
from the coupling to the particular quadrupolar Q(2)-type phonon mode [205].
PIEs in the spectral function of strongly correlated systems were numerically
studied in [206] in the framework of the Holstein-Hubbard model and in [207]
using the extended ¢ — J model including EPI.

3.6 Jahn—Teller Polaron

The density—displacement EPIs discussed above are not only possible types of
the electron—lattice coupling. Examples of other types are the Su—Schrieffer—
Heeger (SSH) EPI [208] (for recent path-integral results for SSH polarons,
see [209]), and the Jahn-Teller (JT) EPI [210]. In the former, the lattice
deformation is coupled to electron kinetic energy, while JT involves a mul-
tidimensional electron basis and a multidimensional representation of the
deformation group. The JT interaction is active in some molecules and crys-
tals of high point symmetry, and it was served as a guide in the search
for high-temperature superconductivity [211]. Later on JT-type EPIs were
widely discussed in connection with cuprate and other high-T. supercon-
ductors (see, e.g., [212-216]) and colossal-magnetoresistance manganites (see,
e.g., [217-221]).

The simplest model of the JT interaction is the F®e interaction [222] that
describes a short-range coupling between twice-degenerate ey electronic levels
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Fig. 3.11. Isotope effect on polaron spectrum and density of states. Top row: the 2d
Holstein polaron at A = 1.2. Left: polaron spectrum at w = 0.80 and 0.75 (in units
of t). Middle: the isotope exponent for each k-point. Right: the density of states
for the two frequencies. Bottom row: the same for the small 2d Frohlich polaron at
A = 2.4 (after [204])

(c1,c2) and a local double-degenerate vibron mode ({,n). The Hamiltonian
reads

HJT =—1 Z ( n/16n1 +c /QCnQ)

(o)
_ HZ [( ChiCn2 + CLQCnl) M + (cfﬂcnl n20n2) Cn]
+Z[ L <§;+ 82>+M—w(§2+nn)}. (3.74)

The symmetry of the interaction ensures the same coupling parameter x for
the two phonons. Because the ionic coordinates of different cells are not cou-
pled, the model describes a collection of separate clusters that are linked only
by electron hopping. To relate the Hamiltonian to more realistic situations,
phonon dispersion should be added [215,223].

An important property of the E ® e interaction is the absence of an
exact analytical solution in the atomic limit ¢ = 0. Here, in contrast with
the Holstein and Frhlich EPI, the atomic limit is described by two cou-
pled partial differential equations for the electron doublet 11 2((, 7). At large
couplings, however, the elastic energy assumes the Mexican hat shape and
the phonon dynamics separates into radial oscillatory motion and azimuthal
rotary motion. This results in an additional pre-exponential factor « x in the
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ion overlap integral, leading to the effective mass m’/m = (2/7g)'/? exp g2,
where g% = k?/2Mw? [224].

A path-integral approach to Hamiltonian (3.74) was developed by
Kornilovitch [225]. Its details are found in [184]. Because there are two elec-
tron orbitals, the electron path must be assigned an additional orbital index
(or color) a = 1,2. Color 1 (or 2) of a given path segment means that it
resides in the first (second) atomic orbital of the electron doublet. There is a
difference between the two phonons. Phonon ( is coupled to electron density,
like in the Holstein case. The difference from the Holstein is that the direction
of the force changes to the opposite when the electron changes orbitals. In
contrast, phonon 7 is coupled to orbital changes themselves: the more often
the electron changes orbitals, the more “active” is 7. Discrete orbital changes
are analogous to electron hops between discrete lattice sites, and as such are
associated with “kinetic orbital energy.” Phonon coupling to orbital changes
is analogous to phonon coupling to electron hopping in the SSH model [208].

After the update rules are established, the JT polaron properties can be
calculated with no approximations using QMC algorithm. The mass, spec-
trum, and density of states are obtained as for the conventional lattice
polarons. Results of QMC calculations are shown in Fig.3.12 [225]. Most
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Fig. 3.12. Physical properties of the d = 3 Jahn—Teller polaron at w = 1.0t [225].
(a) The total and kinetic energy. (b) The effective mass compared with the d = 3
Holstein polaron at the same phonon frequency. (c) The number of excited phonons
of both types. (d) The density of states of the JT polaron at A = 1.3 (after [184]
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properties behave similarly to those of the d = 3 Holstein polaron at the
same phonon frequency. For example, the kinetic energy (Fig.3.12a) sharply
decreases by absolute value between A = 1.2 and 1.4. The JT polaron mass is
slightly larger at the small to intermediate coupling, but several times smaller
at the strong coupling. This nonmonotonic behavior of the ratio of the JT and
Holstein masses was later confirmed by accurate variational calculations [226],
although in that work the JT polaron (and bipolaron) was investigated in one
spatial dimension. The relative lightness of the JT polaron is consistent with
Takada’s result mentioned above [224]. The number of excited phonons of both
types is shown in Fig. 3.12c. Interestingly, the shape of the phonon curves is
similar to that of the logarithm of the effective mass. This suggests an inti-
mate relationship between the two quantities, again similarly to the Holstein
case. Finally, the density of JT polaron states features the same peak at the
top of the band, caused by the spectrum flattening at large polaron momenta.

In summary, the local character of the JT interaction and the indepen-
dence of vibrating clusters result in the same extremity of polaron properties
as in the 3d Holstein model. One could expect that either a long-range JT
interaction or phonon dispersion will soften the sharp polaron features and
make JT polarons more mobile.

3.7 Trapping of Lattice Polarons by Impurities

The situation as regards polaron formation and dynamics in real materials is
complicated by an intrinsic disorder. In a pioneering paper, Economou and
coauthors [227] studied a one-dimensional (1D) large polaron with a diagonal
disorder by using methods from the theory of nonlinear systems. Bronold et
al. [228] investigated the dynamics of a single electron in a Holstein model with
a site-diagonal, binary-alloy-type disorder by applying a dynamical mean-field
theory (DMFT) for a Bethe lattice with infinite coordination number.

Since a delicate interplay between the self-trapping by EPI and the trap-
ping by doped-induced disorder in the intermediate-coupling regime, even
a single polaron has to be studied by numerically exact CTQMC or DMC
techniques.

Using CTQMC, Hague et al. [229] have solved the problem of the electron
interacting with phonons in the presence of an impurity in a 3D lattice. The
electron hopping was assumed to be between nearest neighbors only. The
phonon subsystem was made up of independent oscillators with frequency
w, displacement &,,, momentum Py = —1h0/0¢m, and mass M associated
with each lattice site. The sites are indexed by n or m for electrons and ions,
respectively. The real-space Hamiltonian reads
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H=—t3 cyeat Anchen (3.75)
(nn’) n
R 2
+ ﬁ %: P+ MT“ ; € - gnja Fm(n)el cném.

Here, (nn’) denote pairs of nearest neighbors. The spin indices and Hubbard
U are omitted since there is only one electron. As above, the dimensionless
e-ph coupling constant A is defined as A = Y f2 (0)/2Mw?zt which is the
ratio of the polaron energy when t = 0 to the kinetic energy of the free electron
W = zt. Hague et al. [229] simulated the trapping of the Holstein polaron,
with the force function fm(n) = dn m for the case where A, = Adn o, which
is the single impurity problem.

One of the main complications regarding the QMC simulation of a particle
in a single impurity potential is ensuring that the whole configuration space is
sampled. To ensure that the path includes sufficient sampling of the impurity,
a functional of the path has been introduced with the property that the walker
revisits the impurity in finite time. In the weighted ensemble, the ground-state
polaron energy, the number of phonons in the polaron cloud, and the average
distance from the impurity were computed.

Applying the Lang-Firsov canonical transformation and assuming large
phonon frequency, an approximate instantaneous Hamiltonian can be derived

- QMC (o/t=1) il
Bound LF (oft=1) -
Ac(A=0) Mg/ M¥ 1@
-5 ! |
0 0.5 1 1.5 2

A

Fig. 3.13. Binding diagram in A, A space. Also shown are the approximate values
predicted by the Lang—Firsov transformation with zero excited phonons Ac(\) =
Ac(0) exp(—ztA/w), from the exact mass in the perfect crystal lattice (measured
using QMC) Ac(A) = Ac(0)mo/m™ and the value measured from the Monte Carlo
code (after [229])
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with the form: H = _£Z<U> cle; + Ang, where § = texp(—zth/w). It is
possible to compute an approximate analytic value for the value of A at
which impurity trapping occurs, Ac = 3.95t = 3.95mo/m*. When there is
no electron—phonon coupling, the relation Ag = 3.95¢ is exact. While the
approximation for £ is not expected to hold for low phonon frequency, use of
the exact value of the inverse mass computed from CTQMC is expected to
lead to a qualitatively correct value for Ac.

Figure 3.13 shows the binding diagram in A, A space. Also shown are the
approximate values predicted by the Lang—Firsov transformation with zero
excited phonons Ac(A) = Ac(0) exp(—ztA/w), from the exact mass in the
noninteracting case (measured using QMC) Ac(A) = Ac(0)mo/m™* and the
value measured from the current Monte Carlo code (here my is the bare band
mass). The total energy showed that for electron—phonon coupling A > 1, Hol-
stein polarons are strongly bound to the impurity. For small A, there is a more
gradual binding, coupled with a sudden increase in the number of phonons
present in the polaron. The binding diagram (Fig. 3.13) has showed that in the
intermediate-coupling regime, the critical impurity strength changes mono-
tonically with A and differs significantly from the weak- and strong-coupling
approximations.

3.8 Response of Lattice Polarons

3.8.1 Hopping Mobility

Studies of lattice polarons allowed for a theoretical understanding of low
mobility problem [230] of many “poor” conductors, where an estimate of the
mean-free path yields values much lower than the lattice constant. Trans-
port properties of lattice polarons depend strongly on temperature. For T
lower than the characteristic phonon energy polaron kinetics is the Boltz-
mann kinetics of heavy particles tunneling in the narrow band [18]. However
at higher temperatures, the polaron band collapses (Sect.3.2.2), and the
transport is diffusive via thermally activated jumps of polarons from site to
site [18,22,27,29,129,231-233].

The 1/ perturbation expansion is particularly instrumental in calculating
hopping mobilities and optical absorption coefficients. Applying the canonical
transformation (Sect. 3.2) and singling out the diagonal coherent tunneling in
the polaron band, one can write the Hamiltonian as

H = Hy + Hyp, + Hin, (3.76)

where H, = Zk fkchk is the “free” polaron contribution (here we drop the
spin), Hpn = ) wq(df,dg+1/2) is the phonon part, and & = Z’Ey — pu is the
renormalized (polaron) band dispersion. The chemical potential p includes
the polaron level shift —E},, and it could also include all higher orders in 1/X
corrections to the polaron spectrum, which are independent of k (3.43). The
band-narrowing factor Z’ is defined as
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o >om t(m)e’gz(m) exp(—ik - m)
Yo t(m)exp(—ik -m) '

which is Z' = exp(—vEp/w), where v < 1 depends on the range of EPI
and phonon frequency dispersions (Sect. 3.3). The interaction term Hijy, com-
prises the polaron—polaron interaction (3.40) and the residual polaron—phonon
interaction:

(3.77)

Hy o =Y (635 — (63)]cle;, (3.78)
i#,]
where (6;;) means averaging with respect to the bare phonon distribution. In
the framework of the single-polaron problem, one neglects the polaron—polaron
interaction and treats Hy, 1, as a perturbation.

The motion of the small polaron at high temperatures is a random walk
consisting of steps from site to site [18]. Holstein calculated the probability
W for the hop of a small polaron to a neighboring site. He suggested that
the random walk was a Markovian process. For such processes, the diffusion
coefficient is given by D ~ a?W, where W is the hopping probability. The
only term in the polaronic Hamiltonian, which changes the phonon occupa-
tion numbers, is the polaron—phonon interaction H, . The nearest-neighbor
hopping probability in the second order is

W =2 <Z |G| Hppnli)[*6 (Z wq(nf — né)) > : (3.79)

where |i) and |j) are the eigenstates of Hy corresponding to the polaron on site
1 with nfl phonons in each phonon mode and the polaron on the neighboring
site j with nfl phonons, respectively. Replacing the §-function in (3.79) by the
integral yields

W = %2 /OO dr lexp (% > (@[t - cos(q-a)]

— 00

_cos(wqr) \ | —iotpry
x sinh(wq/2T)) 1} ' (3.80)

The integration over 7 is performed using a saddle-point approximation by
allowing a finite phonon frequency dispersion dw < wq. Expanding cos(wqT)
in powers of 7, and using the Einstein relation p = eD/T, one obtains the
hopping mobility:

7T1/2t2 BT
HUh = €a We arty (381)
where
T
Eo= & > (@[l - cos(q - a)] tanh(wq/4T) (3.82)

q
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is the activation energy, which is half of the polaron level shift E|, for the
Holstein EPI. This expression is applicable at T >> wo /2 and t? /wo(E,T) < 1.
Importantly, increasing the EPI range diminishes the value of E, further. The
hopping mobility uy, = o, /ne ~ exp(—E,/T) can be below ea? ~ 1 cm? Vs,
which is the lowest limit for the Boltzmann theory to be applied. Within the
Boltzmann theory, such a low mobility corresponds to the mean free path
| < a, which is not a reasonable result.

Holstein suggested that at low temperatures T < wg/21n~g, there is the
ordinary Boltzmann transport in momentum space, but in the narrow polaron
band. According to Holstein [18], the transition from the band regime to the
hopping regime occurs when the uncertainty in the polaron energy becomes
comparable to the width of the polaron band. If phonons dominate in the
scattering, the polaron mobility, © = u¢ + pn decreases when the temper-
ature increases from zero to some Thin, where it is at minimum, because
its Boltzmann part, u, falls down due to an increasing number of phonons,
while the hopping part, up, remains small. However, p increases above T,
due to the thermal activated hopping. There is a wide temperature range
around Ty, where the thermal activated hopping still makes a small con-
tribution to the conductivity, but the uncertainty in the polaron band is
already significant [29, 234]. The polaron transport theory requires a spe-
cial diagrammatic technique [29,129,232,234] and a conditional-probability
function description [235,236] in this region.

The transverse conductivity o, and the Hall coefficient Ry = 0, /Ho?2,
of lattice polarons can be calculated with the Peierls substitution [237]:

t(m — n) — t(m — n)e ieA(m)-(m—n) (3.83)

which is a fair approximation if the magnetic field, B, is weak compared with
the atomic field eBa? < 1. Here, A(r) is the vector potential, which can
also be time dependent. Within the Boltzmann theory, the sign of the Hall
coefficient Ry ~ +1/en depends on the type of carriers (holes or electrons)
and the Hall mobility ug = Rpo., is the same as the drift mobility u¢ up
to a numerical factor of the order of 1. The calculations of the hopping Hall
current similar to those of the hopping conductivity [238-241] show that the
Hall mobility depends on the symmetry of the crystal lattice and has nothing
in common with the hopping mobility, neither with respect to the temperature
dependence and even nor with respect to the sign. In particular for hexagonal
lattices, three-site hops yield [241]

/2%t
et —————
(12E,T)1/2
with the same sign for electrons and holes. The activation energy of the Hall
mobility is three times less than that of the hopping mobility. In cubic crystals,
the hopping Hall effect is governed by four-site hops. The four-site calculations

in [239,240] gave the Hall mobility with the “normal” sign depending on the
type of carriers.

i = e~ Ba/3T (3.84)



86 3 Lattice Polaron

The Hall conductivity and resistivity of strongly localized electrons at
low temperatures and small magnetic fields strongly depend on frequency,
the size of a sample [242], and on a magnetic order like, for example, in
ferromagnetic (Ga,Mn)As [243]. In the presence of the spin—orbit interaction,
each hopping path acquires a spin-dependent phase factor of the same form
as that in a perpendicular (to the 2D system) magnetic field, which leads to
spin accumulation and spin-Hall effects [238,244].

3.8.2 Optical Conductivity

One of the fingerprints of lattice polarons is the frequency (w) and tem-
perature dependence of their mid-infrared (MIR) conductivity o(w). In the
low-frequency and low-temperature region, where the tunneling band trans-
port operates [17, 18], the conductivity acquires the conventional Drude
form _—
o(w) = 5 @2 (3.85)
where the transport relaxation time 7 may be frequency dependent because of
the narrow band. For high (mid-infrared) frequencies, well above the polaron
bandwidth (w > w) but below the interband gap, the Drude law is not
applied. In this frequency region, one can apply the generalized Einstein rela-
tion o(w) = eD(w)/w, where D(w) = a?W(w), and W(w) is the hopping
probability of the absorption of the energy quantum w [18]. The number of
nearest-neighbor transitions per second with the absorption of a photon of

the energy w is given by the Fermi—Dirac golden rule:

W~ =2r <Z |(i| Hy pn]j) |6 <Z wq(nd, —nk) + w) > , (3.86)

and with the emission,

Wt =2r <Z | (3| Hp-pnlj)|?0 <Z wq(nd, —nk) — w) > . (3.87)

As a result, one obtains

W(w) =W~ — W = 2% 29 ginh(w/27T) (3.88)
X /_OO dre w7 [exp (% Z |’y(q)|2[1 — cos(q - a)]%) 11 .
(3.89)

As in the case of the hopping mobility discussed above, the integral over 7 is
calculated using the saddle-point approximation [28]:

T sinh(w/2T) o215
w )

o(w) = on (3.90)
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where

OJQ

5= 5 > @l — costa- s

For high temperatures, T > wp/2, this expression simplifies as

(w—4E,)?
16E,T .

1/2t2 1— —w/T
_ 2 27 [l—e ]
o(w) = npe“a S BT 2

exp {— (3.91)
Here, o, = neuy and n;, (n) is the atomic density (concentration) of polarons.
The frequency dependence of the MIR conductivity has a form of an asymmet-
ric Gaussian peak centered at w = 4FE, with the half-width 4\/E,T [16,245,
246]. According to the Franck—Condon principle, the position of the ions is not
changed during an optical transition. Therefore, the frequency dependence of
the MIR conductivity can be understood in terms of transitions between the
adiabatic levels of the two-site Holstein model (Sect. 3.1.2). The polaron, say,
in the left potential well absorbs a photon through the vertical transition to
the right well, where the deformation is lacking, without any change in the
molecular configuration. The photon energy required to excite the polaron
from the bottom of the well is w ~ 2F,, which corresponds to the maximum
of o(w) in (3.91). The main contribution to the absorption comes from the
states near the bottom with the energy of the order of T'. The corresponding
photon energies are found in the interval 2E, £ /8E,T in agreement with
(3.91). For low temperatures T < wq/2, the half-width of the MIR maxi-
mum is about ~/E,wy rather than ~ /E,T [247]. The optical absorption
of small polarons is distinguished from that of large polarons (Sect.2.4.6)
by the shape and the temperature dependence. Their comparison [247-249]
shows a more asymmetric and less temperature-dependent MIR absorption
of large polarons compared with that of small polarons. The high-frequency
behavior of the optical absorption of small polarons is described by a Gaus-
sian decay [250] (3.91) while for large polarons it is much slower power law
w=5/2 [93].

Many contemporary materials, such as superconducting cuprates and
colossal magnetoresistive manganites, are characterized by intermediate values
of EPI, A\ ~ 1, which requires an extension of the theory of optical absorption
to the crossover region from continuous to lattice polarons. The intermediate-
coupling and frequency regime has been inaccessible for an analytical or
semianalytical analysis, with an exception of infinite spatial dimensions, where
DMFT yields reliable results [251-254]. DMFT treats the local dynamics
exactly, but it cannot account for the spatial correlations being important in
real finite-dimensional systems. Nevertheless, DMFT allows one to address the
intermediate-coupling and adiabaticity regimes in the absorption not covered
by the standard small-polaron theory, where qualitatively new features arise.
In particular, the optical absorption exhibits a reentrant behavior, switching
from weak-coupling-like to polaronic-like upon increasing the temperature,
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and sharp peaks with a nonmonotonic temperature dependence emerge at
characteristic phonon frequencies [255].

Earlier ED studies of the lattice polaron absorption were limited to small
two- to ten-site 1D and 2D clusters in the Holstein model [156, 189, 256,257].
The optical absorption occurs as energy is transferred between the electromag-
netic field and the phonons via the charge carriers. The vibration energy must
be capable of being dissipated. Hence, using ED one has to introduce some
continuous density of phonon states, or a phonon lifetime, which makes MIR
absorption to be finite [256]. As a result, one obtains a fair agreement between
ED absorption spectra and the analytical results (3.91) in the strong-coupling
limit as far as a smooth part of w dependence is concerned. The MIR con-
ductivity occurs much more asymmetric in the intermediate-coupling region
than in the strong-coupling regime, and it shows an additional oscillating
superstructure corresponding to a different spectral weight of the states with
a different number of virtual phonons in the polaron cloud.

More recent ED, VED, and a kernel polynomial method (KPM) (for a
review of KPM, see [258]) allowed for numerical calculations of lattice polaron
properties in the Holstein model in the whole parameter range on fairly large
systems [155,226,259]. Applying standard linear-response theory, the real part
of the conductivity takes the form: Reo(w) = Di(w) + 0'°8(w), where D
denotes the Drude weight at w = 0 and 0" is the finite-frequency response
for w > 0. It can be written in spectral representation at T'= 0 as [7]

I ™ ~
) = T S (Wl o - (B - )] (3.92)
Em>Eo
with the (paramagnetic) current operator j = —iet Zi(c;fciﬂ — c;chi). One

can also calculate the w-integrated spectral weight:

w
S*8(w) = | dw'o™E(W'). (3.93)
0+

The optical conductivity, 0*°8(w), and its integral S**8(w) for the 1D Hol-
stein model are presented in Fig.3.14 [35]. The upper panel (a) gives the
results for intermediate-to-strong EP coupling, i.e., near the polaron crossover,
in the adiabatic regime. The main signature of ¢"%(w) is that the spec-
trum is strongly asymmetric, which is characteristic for rather large polarons
(Sect. 2.4.6). Importantly, the weaker decay at the high-energy side meets the
experimental findings for many polaronic materials like TiO2 [260] even better
than standard small-polaron theory.

At larger EPI, A = 2 and wy = 0.4¢, a more pronounced and symmetric
maximum appears in the low-temperature optical response (see Fig.3.14b).
The maximum is located below the analytical one for small polarons at
T = 0. A deviations from the analytical small-polaron result (dashed line
in Fig.3.14b) might be important for relating theory to experiment. When
the phonon frequency becomes comparable to the electron transfer amplitude
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Fig. 3.14. Optical conductivity of the 1D Holstein polaron at 7' = 0 (after [35]).
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(Fig. 3.14c) different absorption bands appear, which can be classified accord-
ing to the number of phonons involved in the optical transition (see inset).

3.8.3 Spectral and Green’s Functions

The polaron problem has the exact solution (3.41) in the extreme infinite-
coupling limit, A = oo, for any EPI conserving the on-site occupation numbers
of electrons. For a finite but strong coupling 1/\ perturbation expansion is
applied. Importantly, the analytical perturbation theory becomes practically
exact in a wider range of the adiabatic parameter and of the coupling constant
for the long-range Frohlich interaction (Sect. 3.4.3).

Keeping this in mind, let us calculate the polaron spectral function in the
first order in 1/ [261,262]. We can neglect Hj, 5, in the first order if 1/\ < 1.
To understand spectral properties of a single polaron, we also neglect the
polaron—polaron interaction. Then, the energy levels are

Es = kank + qu[nq +1/2], (3.94)
k q

where & is the small-polaron band dispersion with respect to the chemi-
cal potential, and the transformed eigenstates |m) are sorted by the polaron
Bloch-state occupation numbers, nx = 0,1, and the phonon occupation
numbers, ng =0,1,2,...,00.

The spectral function of any system described by quantum numbers m, n
with the eigenvalues F,,, F,, is defined as

Ak, w) = w(1+e /MM TN " e B /T [(n] o m)|* 6 (wnm +w).  (3.95)
n,m

It is real and positive, A(k,w) > 0, and obeys the sum rule:

1 o0
—/ dwA(k,w) = 1. (3.96)
™ —0o0
The matrix elements of the electron operators can be written as
1 " N
n|cg |m) = — e ™M (| e; X |m 3.97
(n] cx [m) Wi %: (7] |) (3.97)

using the Wannier representation and the Lang—Firsov transformation. Now,
applying the Fourier transform of the d-function, the spectral function is
expressed as

Ak, w) = 1 / dtei“t% D el nmm) (3.98)

m,n



3.8 Response of Lattice Polarons 91

Here, the quantum and statistical averages are performed for independent
polarons and phonons; therefore, ((c; (t)Xi(t)X;cj)) = ((cb(t)c;»((Xz(t)X;»
The Heisenberg free-polaron operator evolves with time as c¢x(t) =

ck exp(—iéxt), so that

(el = 5 3 W mw ) (a()e)) (3.99)

k/ k//
— 1k' (m—m)—i&t
- NZ k )
1 - .
T _ = (1.7 ok - (m—m)—i& ./t
(et = = ;Mk e o, (3.100
where fi(k) = [1 + exp&/T]"! is the Fermi-Dirac distribution function

of polarons. The Heisenberg free-phonon operator evolves in a similar way,
dq(t) = dg exp(—iwgt), so that
(Xi(t)XT)) = [[(explui(a, t)dgq — H.c] exp[—u;(q)dq — Hc])), (3.101)

a

where w; j(q,t) = u;;(q)exp(—iwgt). This average is calculated using the
operator identity, as in (3.46):

(Xi()X])) = eXp{ Z V(@) fq(m — nﬂf)}7 (3.102)

where
fq(m,t) = [1 — cos(q - m) cos(wqt)] coth — + icos(q - m)sin(wqgt). (3.103)

Here, we used the symmetry of v(—q) = v(q), so that terms containing
sin(q - m) have disappeared.

To proceed with the analytical results, we consider low temperatures,
T < wq, when coth(wq/2T) ~ 1. Expanding the exponent in (3.102) and
performing summation over m,n, k’ and integration over time, we arrive
at [262]

W)= [A( )k, w) + AP (k,w)] (3.104)
=0
where
(-) _ 1 h(a)?
A7 (kw) =772 Z W (3.105)

1
1—n <k Z%)] o <w *ZWqT* fk—zi:l qq-> ’
r=1 r=1
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AN (kW) =72 Z % (3.106)

1
XN <k+ZqT> é <W+qur_€k+2£,1 Ch') )
r=1 r=1

and Z = exp (~(2N) " g (@)

Clearly (3.104) is in the form of the perturbative multiphonon expansion.
Each contribution Al(i) (k,w) to the spectral function describes the transition
from the initial state k of the polaron band to the final state k+ 21:1 q-
with the emission (or absorption) of [ phonons.

The 1/X expansion result (3.104) is different from the conventional spectral
function of metallic electrons coupled to phonons in the Migdal-Eliashberg
theory [263,264]. There is no imaginary part of the self-energy since the expo-
nentially small (at low temperatures) polaronic damping (3.56) is neglected.
Instead EPI leads to the coherent dressing of electrons by phonons, and
phonon “sidebands.” The spectral function of the polaronic carriers comprises
two different parts. The first (I = 0) k-dependent coherent term arises from
the polaron band tunneling:

Acon(k,w) = [AS) (k, w) + Ag“(k,w)} = 7 Z8(w — &) (3.107)

The spectral weight of the coherent part is suppressed as Z < 1. However in
the case of the Frohlich interaction, the effective mass is less enhanced, since
the band-narrowing factor Z’ (3.77) in {x = Z'Ex — u is large compared with
Z [262).

The second incoherent part Aincon(k,w) comprises all the terms with [ > 1.
It describes excitations accompanied by emission and absorption of phonons.
We notice that its spectral density spreads over a wide energy range of about
twice the polaron level shift £, which might be larger than the unrenormal-
ized bandwidth 2D in the rigid lattice without phonons. On the contrary, the
coherent part shows a dispersion only in the energy window of the order of
the polaron bandwidth, w = Z’'D. It is interesting that there is some k depen-
dence of the incoherent background as well, if the EPI matrix element and/or
phonon frequencies depend on q. Only in the Holstein model with the short-
range dispersionless e-ph interaction v(q) = vy and wq = wy, the incoherent
part is momentum independent (see also [7]):

o 2]

Aincon (K, w) = w% > ;10“ (3.108)

xz{ 18wl — &)+ (&) 8 (0 + bt — &)}
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Fig. 3.15. Spectral function of the 1D Holstein polaron in the weak (a), intermediate
(b), and strong (c) EP coupling regimes based on finite-cluster ED with N sites,
and M =7 (A=0.25), M =15 (A=1), M = 25 (A = 2) phonon quanta (after [35])



94 3 Lattice Polaron

As soon as we know the spectral function, different Green’s functions
(GF) are readily obtained using their analytical properties. For example, the
temperature GF is given by the integral

Gk, wi) / do Ak ) (3.109)
1wk — W
where wy, = 7T (2k + 1), k = 0,4£1,£2,.... Calculating the integral, we find
in the Holstein model [261]

1—nk) n (k')
Gk, wn) = - Z 2171 Z{M —lwg — & + iwnJrlwofk/}'
(3.110)
Here, the first term describes the coherent tunneling in the narrow polaron
band while the second k-independent sum describes the phonon sidebands.

The spectral function (3.110) satisfies the major sum rule (3.96). How-
ever, the higher-momentum integrals, [ fooo dwwP A(k,w) with p > 0, calculated
using (3.110), differ from the exact values [265] by an amount proportional to
1/A. The difference is due to a partial “undressing” of high-energy excitations
in the sidebands, which is beyond the first-order 1/ expansion. A rather accu-
rate Green’s function of the Holstein polaron has been recently obtained by
summing all the diagrams, but with each diagram averaged over its free prop-
agators’ momenta [266,267]. The resulting Green’s function satisfies exactly
the first six spectral weight sum rules. All higher sum rules are satisfied with
great accuracy, becoming asymptotically exact for coupling both much larger
and much smaller than the free particle bandwidth.

The spectral properties of the Holstein model in a wide parameter range
have been studied numerically using ED (see [35, 156,161, 189, 226, 256, 257,
259,268], and references therein). Figure 3.15a shows that at the weak EPI,
the electronic spectrum of 1D Holstein model is nearly unaffected for energies
below the phonon emission threshold. Hence, for the case considered with wq
lying inside the bare-electron band Ej, = —2tcoska, the signal correspond-
ing to the renormalized dispersion € nearly coincides with the tight-binding
cosine band (shifted « E,) up to some kx, where the phonon intersects the
bare-electron band with the familiar flattening effect (Sect. 3.5). Reaching the
intermediate EPT (polaron crossover) regime, a coherent band separates from
the rest of the spectrum (kx — ; see Fig.3.15b). At the same time, its spec-
tral weight becomes smaller and will be transferred to the incoherent part,
where several subbands emerge.

A(k,w) in the strong-coupling case is shown in Fig.3.15c. The coherent
quasiparticle absorption band becomes extremely narrow and its bandwidth
approaches the strong-coupling result. The incoherent part of the spectrum
carries most of the spectral weight consisting of a sequence of subbands
separated in energy by wy, in agreement with the analytical results.

Effects of the finite-range EPI on the spectral properties of lattice polarons
have been studied numerically by Fehske et al. [269] using exact Lanczos diago-
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nalization method in the framework of the 1D model of [60]. The polaron band
structure has been calculated in agreement with the analytical and CTQMC
results (Sect. 3.4.3). The optical absorption of lattice polarons with a finite-
range (Frohlich-type) EPI has been found similar to the continuous-polaron
absorption (Sect. 3.4.3) for all EPI strengths.

The polaron features due to EPIs with different coupling ranges were also
investigated in the framework of the variational approach [270]. The ground-
state energy, the spectral weight, the average kinetic energy, the mean number
of phonons, and the electron—lattice correlation function were calculated for
the system with coupling to local and nearest-neighbor lattice displacements
and compared with the long-range case. As in [262], a substantially different
mass renormalization compared with the coherent weight reduction, Z <« 7,
was found for the finite-range EPI.



4

Bipolaron

4.1 Polaron—Polaron Interaction

Polarons interact with each other, cf. (3.40) for small polarons. The range of
the deformation surrounding the Frohlich polarons is quite large, and their
deformation fields are overlapped at finite density. Taking into account both
the long-range attraction of polarons owing to the lattice deformations and
their direct Coulomb repulsion, the residual long-range interaction turns out
rather weak and repulsive in ionic crystals [26]. In the long-wavelength limit
(¢ < 7/a), the Frohlich EPI dominates in the attractive part, but polarons
repel each other at large distances, jm — n| > a:

62

v(m —n) = P e— > 0. (4.1)
The Frohlich EPI nearly nullifies the bare Coulomb repulsion, if €9 > 1, but
cannot overscreen it at large distances.

Considering the polaron—phonon interaction in the multipolaron system,
we have to take into account the dynamic properties of the polaron response
function [136]. One may erroneously believe that the long-range Frohlich EPI
becomes a short-range (Holstein) EPI due to screening of ionic potentials by
heavy polaronic carriers. In fact, small polarons cannot screen high-frequency
optical vibrations because their renormalized plasma frequency is comparable
with or even less than the phonon frequency in the strong-coupling and/or the
dilute (low-density) regimes. In the absence of bipolarons (see below), one can
apply the ordinary bubble approximation to calculate the dielectric response
function of polarons at the frequency w as [136]

n(k +q) — (k)
w—extekrq

e(a,w) =1—2v(q) Y

k

(4.2)

A.S. Alexandrov and J.T. Devreese, Advances in Polaron Physics, Springer Series in
Solid-State Sciences 159,
DOI: 10.1007/978-3-642-01896-1_4, (© Springer-Verlag Berlin Heidelberg 2010
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This expression describes the response of polarons to the external field of
frequency w < wp, when phonons in the polaron cloud follow the polaron
motion. In the static limit, we obtain the usual Debye screening at large dis-
tances (¢ — 0). For the temperature larger than the polaron half-bandwidth,
T > w, one can approximate the polaron distribution function as

f(k) ~ % (1 - %) , (4.3)

to obtain
2

e(q,0) =1+ Z—;, (4.4)
where

)

_ [2me2ny(2 — np) 1/2
&= eoTa3

and ny, is the number of polarons per unit cell. However, for a finite but rather
low frequency, wy > w > w, the polaron response becomes dynamic:

w2
e(quw)=1- i}(Qq), (4.5)
where
wi(@) = 20(q) Y n(k)(exrq — 1) (4.6)
k

is the temperature-dependent polaron plasma frequency squared. The polaron
plasma frequency is rather low due to the large static dielectric constant,
€p > 1, and the enhanced polaron mass m* > me. If wyg > wy, the singular
behavior of the Frohlich EPI, v(q) ~ 1/g, is unaffected by screening. Polarons
are too slow to screen high-frequency crystal field oscillations. As a result,
EPI with high-frequency optical phonons in ionic solids remains unscreened
at any density of polarons.

Another important issue is a possibility of the Wigner crystallization of
polarons. Because the net long-range interaction is relatively weak, a relevant
dimensionless parameter ry = m*ae?/eo(4nn,/3)1/3 is not very large in ionic
semiconductors. The Wigner crystallization appears around s ~ 100 or larger,
which corresponds to the atomic density of polarons n, < 107% with ¢y = 30
and m* = 5m,. This estimate tells us that polaronic carriers are in a liquid
state [136] at substantial doping levels, but can be crystallized at low doping
(see Sect.5.1).

When the short-range deformation and molecular-type (i.e., Holstein) EPIs
are added to the Frohlich interaction, two polarons attract each other at a
short distance of about the lattice constant. Then, owing to a narrow band,
two lattice polarons easily form a local tightly bound state, i.e., a small bipo-
laron [271-276]. One can estimate the coupling constant A and the adiabatic
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ratio wo/t, at which the small bipolaron “instability” occurs [136]. The char-
acteristic attractive potential is |v| = D(A— i), where p. is the dimensionless
Coulomb repulsion and A includes the interaction with all phonon modes. The
radius of the potential is about a. In three dimensions, a bound state of two
attractive particles appears, if |v| > 72 /8m*a?. Substituting the polaron mass,
m* = [2a*t] 7! exp(yAD /wy), we find

t

. (y2A)"'In {”72} : (4.7)

dz(X — pe)

As a result, small bipolarons form at A > p. + m2/4z, which is almost
independent of the adiabatic ratio.

4.2 Holstein Bipolaron

The attractive energy of two small polarons is generally much larger than
the polaron bandwidth, which allows for a consistent treatment of small
bipolarons [130,271,272]. Under this condition, the hopping term in the trans-
formed Hamiltonian H is a small perturbation of the ground state of immobile
bipolarons and free phonons:

H=H,+ Hperta (48)

where

1
Hy = 5 ZvijCIC}CjCi + quv[dfwdqv +1/2] (4.9)
.7 q,v
and
Hport = D dijele;. (4.10)
4,7

Let us first discuss the dynamics of on-site bipolarons, which are the
ground state of the system with the Holstein nondispersive EPI [271,273-277].
The on-site bipolaron is formed if 2E, > U, where U is the on-site Coulomb
correlation energy (the Hubbard U). The intersite polaron—polaron interac-
tion (3.40) is just the Coulomb repulsion since the phonon-mediated attraction
between two polarons on different sites is zero in the Holstein model. Two or
more on-site bipolarons as well as three or more polarons cannot occupy the
same site because of the Pauli exclusion principle. Hence, bipolarons repel sin-
gle polarons and each other. Their binding energy, A = 2E,—U, is larger than
the polaron half-bandwidth, A > w, so that there are no unbound polarons
in the ground state. Hpere (4.10) destroys bipolarons in the first order. Hence,
it has no diagonal matrix elements. Then, the bipolaron dynamics, including
superconductivity, is described by the use of another canonical transformation
exp(S2) [271], which eliminates the first order of Hpert:
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_ N Wldiclelp)
(S2)pp = Z “E -, (4.11)
i,
Here, Ef, and |f),|p) are the energy levels and the eigenstates of Hy.
Neglecting the terms of the order higher than (w/A)?, one obtains

(Hp)gp = (eS2He_52) (4.12)

11

1 . .
(Hy)ggr = (Ho)gpr =5 > Aflowcleslp)(pldsycley| )
v jAG

y Lo, 1
E,—Ep  E,—Ef)’

The bipolaronic Hamiltonian Hjy, is defined in the subspace |f),|f’) with no
single (unbound) polarons. On the other hand, the intermediate bra (p| and
ket |p) refer to configurations involving two unpaired polarons and any number
of phonons. Hence, we have

E,—FEr=A+ quq, (nb, — nfw) , (4.13)

qQ,v

where n{;’g’ are the phonon occupation numbers (0,1,2,3,...,00).

The lowest eigenstates of Hy, are in the subspace, which has only dou-
bly occupied cInscjns,|O> or empty |0) sites. On-site bipolaron tunneling is a
two-step transition. It takes place via a single polaron tunneling to a neighbor-
ing site. The subsequent tunneling of its “partner” to the same site restores
the initial energy state of the system. There are no real phonons emitted or
absorbed because the (bi)polaron band is narrow. Hence, we can average Hy,

with respect to phonons:

H,=Hy—i Y Y t(m—m)tn-n (4.14)

m#m’,s n#n’,s’

o0
. ’
X CIns Cm/sCIls/ Cn’s! / dteilAt(I)nmnm/ (t) .
0

Here, ®™ (t) is a multiphonon correlator:
e (£) = (X[ (O X0 (0 X[ X)), (4.15)
which can be readily calculated as [131]

q)nmnr;l,(t) _ e—gz(m—m')e—gz(n—n') (4.16)

i 9 , ,. cosh [wqq, (% — it)]
Xexp{QN;h/(qu” Fq(m,m,n,n) sinh [u;%i,} ’
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where Fy(m, m’,n,n’) = cos[q- (n" — m)] + cos[q - (n — m’)] — cos[q- (n' —
m’)] — cos[q - (n — m)].

Taking into account that there are only bipolarons in the subspace, where
Hy, operates, one can rewrite the Hamiltonian in terms of the creation bf =
cInT cfn I and annihilation by = ¢m|cm7 operators of singlet pairs [271]:

H,=-Y

m

1
- (2) —m’
A+ 5 E/ o' (m —m )] Tim (4.17)

1
+ Z {tb(m —m )bl by + 517(m —m’ )N N

m#m’

Here, nm = b, by is the bipolaron site occupation operator, o(m —m’) =
4v(m —m’) + v (m — m’) is the bipolaron-bipolaron interaction including
the direct polaron—polaron interaction v(m — m’) and a repulsive correlation
energy:

(oo}
v®(m—m') = 2i / dre IATQMM (1), (4.18)
0

This additional repulsion appears since a virtual hop of one of two polarons
of the pair is forbidden, if the neighboring site is occupied by another pair.
The bipolaron transfer integral, ¢y, is of the second order in ¢(m):

o0
tp(m — m’) = —2it?(m — m')/ dTe_iATq)EE: (7). (4.19)
0

The multiphonon correlator is simplified for dispersionless phonons at
T < wp as

mm’ (t) _ 67292(m7m’) exp [—292(111 . m/)efiwot] ,

mm’

@E;l'}(t) — 29" (m—m") exp [292(m - m')efiwot] ,

which yields [278]

t(m)

s —29 (m)
Z 1 + le/A (4.20)

and
(2) 2 W 24 (m) 4.91
v (m) = Zl' 1+lw0/A (421)

When A <« wy, we can keep the first term only with [ = 0 in the bipolaron
hopping integral (4.19). In this case, the bipolaron half-bandwidth zt(a) is
of the order of 2w?/(zA). However, if the bipolaron binding energy is large,
A > wy, the bipolaron bandwidth dramatically decreases proportionally to
e~49” in the limit A — oo. This limit is not realistic since A = 2B, - V. <
2¢2wp. In a more realistic regime, wy < A < 2g%wg (4.19) yields [278]
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tp(m) ~ % exp [292 - wéo (1 +1In %ﬁl)“oﬂ . (4.22)

On the contrary, the bipolaron—bipolaron repulsion (4.21) has no small
exponent in the limit A — oo, v o D2?/A. Together with the direct
Coulomb repulsion, the second order v(?) ensures stability of bipolarons
against clustering.

Interestingly, the high-temperature behavior of the bipolaron bandwidth is
just opposite to that of the small-polaron bandwidth. While the polaron band
collapses with increasing temperature (3.2.2), the bipolaron band becomes
wider [279]

1 B, + A} (423)

tp(m) o I exp [— 5T

for T > wy.

The hopping conductivity of strong-coupling on-site bipolarons in the
Holstein—Hubbard model (HHM) was found small compared with the hop-
ping conductivity of thermally excited single polarons [279]. However, as the
frequency of the electric field increases, the dominant role in the optical
absorption is gradually transferred to bipolarons at low temperatures. Like
in the single-polaron case, the bipolaron optical absorption can be estimated
using the Franck—Condon principle which states that optical transitions take
place without any change in the nuclear configuration. The corresponding
analysis [280] shows that the absorption coefficient of light by the on-site
bipolaron has three Gaussian peaks located at frequencies Q2 = 4F,, 8FE, — U,
and 16E,. The lowest peak corresponds to the absorption by single thermally
excited polarons. The highest peak is due to the shakeoff of phonons with-
out dissociation of the bipolaron while the main central peak is the absorption
involving dissociation. A generalization of the Franck—Condon principle for the
optical absorption of intersite bipolarons with a finite-range EPI was given by
Alexandrov and Bratkovsky [281].

The optical absorption and single-particle spectral functions of the bipo-
laron in 1D HHM in the whole range of parameters were calculated using
ED on a two-site cluster with two electrons [256], and more recently in [282]
using the cluster perturbation theory (CPT). The latter allowed one to cal-
culate the spectrum at continuous wave vectors and to find pronounced
deviations (e.g., noncosine dispersions) of the bipolaron band structure from
a simple tight-binding band due to an important contribution from the
next-nearest-neighbor hoppings.

Treating phonons classically in the extreme adiabatic limit [274,277,283~
285] found along with the on-site bipolaron (Sj) also an anisotropic pair of
polarons lying on two neighboring sites, i.e., the intersite bipolaron (Si).
Such bipolarons were originally hypothesized in [286] to explain the anomalous
nuclear magnetic relaxation (NMR) in cuprate superconductors. The intersite
bipolaron could take a form of a “quadrisinglet” (QS) in 2D HHM, where
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the electron density at the central site is 1 and “1/4” on the four nearest-
neighboring sites. In a certain region of U, where QS is the ground state, the
double-well potential barrier, which usually pins polarons and bipolarons to
the lattice, depresses to almost zero, so that adiabatic lattice bipolarons can
be rather mobile (see [283] for more details).

Sil [287] investigated the stability of the bipolaronic phase in HHM using
a modified Lang—Firsov variational transformation with on-site and nearest-
neighbor lattice distortions. There is a critical on-site Hubbard repulsion U,
below which the bipolaronic phases are stable for a fixed electron—phonon
coupling. In the absence of on-site repulsion, bipolaronic phases are stable
over the entire range of electron—phonon coupling for one dimension, whereas
there is a critical electron—phonon coupling for formation of a stable bipo-
laron in two and three dimensions. Mobile S; bipolarons were found in 1D
HHM using variational methods also in the non- and near-adiabatic regimes
with dynamical quantum phonons [288,289]. The intersite bipolaron with a
relatively small effective mass is stable in a wide region of the parameters
of HHM due to both exchange and nonadiabaticity effects [289]. Near the
strong-coupling limit, the mobile S; bipolaron has an effective mass of the
order of a single Holstein polaron mass, so that one should not rule out the
possibility of a superconducting state of S; bipolarons with s- or d-wave sym-
metry in HHM [288]. The recent diagrammatic Monte Carlo study [183] found
S1 bipolarons for large U at intermediate and large EPI and established the
phase diagram of 2D HHM, comprising large and small unbound polarons,
So and S7 domains. Macridin et al. [183] emphasized that the transition to
the bound state and the properties of the bipolaron in HHM are very differ-
ent from bound states in the attractive (negative U) Hubbard model without
EPI [290].

The two-dimensional many-body HHM was examined within a fluctuation-
based effective cumulant approach by Hakioglu and Zhuravlev [291], con-
firming that the numerical results on systems with finite degrees of freedom
(Sect. 3.4) can be qualitatively extended to the systems with large degrees of
freedom. When the electron—electron repulsion U is dominant, the transition
is to a Mott insulator; when EPI dominates, the transition is to a bipolaronic
state. In the former case, the transition was found to be second order in con-
trast to the transition to the bipolaronic state, which is first order for larger
values of U [292].

For a very strong electron—phonon coupling, polarons become self-trapped
on a single lattice site and bipolarons are on-site singlets. A finite bipolaron
mass appears only in the second order of polaron hopping (4.19), so that
on-site bipolarons might be very heavy in the Holstein model with the short-
range EPI. As a result, the model led some authors to the conclusion that
the formation of itinerant small polarons and bipolarons in real materials
is unlikely [139,185], and high-temperature bipolaronic superconductivity is
impossible [293,294].
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4.3 Continuum Frohlich Bipolaron

While polarons repel each other at large distances, two large polarons can also
be bound into a large bipolaron by an exchange interaction even without any
additional EPT but the Fréhlich one [295-304] (see also the reviews [305,306]).
Large bipolarons in the continuum limit are referred to as Frohlich bipo-
larons. Besides the Frohlich coupling constant, «, the Frohlich bipolaron
energy depends also on the dimensionless parameter U, a measure for the
strength of the Coulomb repulsion between the two electrons [301, 302],
U = (e? /ewp)/mwy. In the discussion of bipolarons, the ratio = £/e¢ of the
high-frequency (electronic) and static dielectric constants is important (0 <
n < 1). The following relation exists between U and o:: U = v/2a/(1 — 7). Only
values of U satisfying the inequality U > v/2a have a physical meaning. It was
shown that bipolaron formation is favored by larger values of o and by smaller
values of 7.

Intuitive arguments suggesting that the Frohlich bipolaron is stabilized in
going from 3D to 2D had been given, but the first quantitative analysis based
on the Feynman path integral was presented in [301,302]. The conventional
condition for bipolaron stability is Eyi, < 2E},01, where Epo and Ey;, denote
the ground-state energies of the polaron and bipolaron at rest, respectively.
From this condition, it follows that the Fréhlich bipolaron with zero spin is sta-
ble (given the effective Coulomb repulsion between electrons) if the electron—
phonon coupling constant is larger than a certain critical value: o > ..

A “phase diagram” for the two continuum polarons — bipolaron system — is
shown in Fig. 4.1 for 3D and for 2D. The Frohlich coupling constant as high as
6.8 is needed to allow for bipolaron formation in 3D. The confinement of the
bipolaron in two dimensions facilitates bipolaron formation at smaller c.. This
can be shown using the PD-type scaling relation between the free energies F
in two dimensions Fap(«, U, 3) and in three dimensions Fsp (v, U, §) [301,302]:

2 3r 3
Fop(a,U, B) = S Fsp (fa, fU, 6) : (4.24)

According to (4.24), the critical value of the coupling constant for bipo-

laron formation «, turns out to scale with a factor 37/4 ~ 2.36 or aéQD) =

aggD)/2.36. From Fig.4.1b it is seen that bipolarons in 2D can be stable for
a > 2.9, a domain of coupling constants which is definitely realized in sev-
eral solids. The “characteristic line” U = 1.526« for the material parameters
of YBayCusOr7 enters the region of bipolaron stability in 2D at a value of
« which is appreciably smaller than in the case of LagCuQOy4. This fact sug-
gests YBasCuszOr as a good candidate for the occurrence of stable Frohlich
bipolarons.

An analytical strong-coupling asymptotic expansion in inverse powers of
the electron—phonon coupling constant for the large bipolaron energy at T'=0
was derived in [309]:
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Fig. 4.1. The stability region for bipolaron formation in 3D (a) and in 2D (b).
The dotted line U = /2a separates the physical region (U > v/2a) from the non-
physical (U < \/504). The shaded area is the stability region in physical space.
The dashed (dotted) characteristic line U = 1.537a (U = 1.526«) is determined by
U = v2a/(1 — g/e0) where we took the experimental values ¢ = 4 and g0 = 50
for LapCuO4 (¢ = 4.7 [307] and g9 = 64.7 calculated using the experimental data
of [307,308] for YBazCusO7). The critical points a. = 6.8 for 3D and a. = 2.9 for
2D are represented as full dots (reprinted with permission after [301]. (© 1990 by
Elsevier)

Fap (1) = —%A(u) ~ B(u) + 0(a"?), (4.25)

where the coefficients are closed analytical functions of the ratio u = U/a:
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NG u? 3/2 5 5, ul

A(u) =4 —2V2u (1 + 128) + Y T (4.26)
and for B(u) see the above-cited paper. The scaling relation (4.24) allows one
to find the bipolaron energy in two dimensions as well.

The stability of bipolarons has also been examined with the use of operator
techniques with a variational approach [296]. The bipolaron is bound if the
electron—phonon coupling constant « is larger than ~6 in three dimensions
and larger than ~2 in two dimensions, provided the ratio n = ¢/¢¢ is smaller
than a critical value 7, which depends on «. The critical value 7, is larger in
the two-dimensional case than in the three-dimensional one. The bipolaron
radius is shown to be of the order of a few polaron radii. The results of [296]
and [301,302] tend to qualitatively confirm each other. Furthermore, bipolaron
states obtained in [296] under the assumption that the total linear momentum
is conserved, have intrinsically high mobility.

In the framework of the renewed interest in bipolaron theory after the
discovery of high-T. superconductivity, an analysis of the optical absorption
by large [247,310] and small [281] bipolarons was given.

4.4 Discrete Superlight Frohlich Bipolaron

The Holstein model is an extreme polaron model, and typically yields the
highest possible values of the (bi)polaron mass in the strong-coupling regime
(except the case when the lattice vibrations are polarized along the hopping
direction [166]). Many doped ionic lattices are characterized by poor screening
of high-frequency optical phonons and they are more appropriately described
by the finite-range Frohlich EPI [59]. The unscreened Frohlich EPI provides
relatively light lattice polarons (3.3) and also “superlight” small bipolarons,
which are several orders of magnitude lighter than bipolarons in HHM [59,
311,312).

To illustrate the point, let us consider a generic “Fréhlich—Coulomb” model
(FCM) on a lattice, which explicitly includes the finite-range Coulomb repul-
sion and the strong long-range EPI [59,311]. The implicitly present (infinite)
Hubbard U prohibits double occupancy and removes the need to distinguish
the fermionic spin, if we are interested in the charge rather than spin exci-
tations. Introducing spinless fermion annihilation operators ¢, and phonon
annihilation operators dy,, the Hamiltonian of FCM is written in the real-space
representation as [311]

H= Z chen + = Z Ve(n —n') cL,cn/ (4.27)

n#n’ n;én’

1
+(UQZ —n e em— n)C Cn(d +d +w02(d1-ndm+§>7

n#m

where T'(n) is the bare hopping integral in a rigid lattice.
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If we are interested in the non- or near-adiabatic limit and the strong EPI,
the kinetic energy is a perturbation. Then, the model can be grossly sim-
plified using the Lang—Firsov canonical transformation. In particular, lattice
structures like a staggered triangular ladder in Fig.4.3 the intersite lattice
bipolarons tunnel already in the first order in ¢(n). That allows us to aver-
age the transformed Hamiltonian over phonons to obtain its polaronic part as
H, = Hy + Hper,, where

= —Ip g c cn+ E n—n cncjl,cn/

n;én/

and

Hyere = Y t(n = 1)l
n#n’

is a perturbation. £, is the familiar polaron level shift:

ED =w Z 92(m - n)(e ' emfn)2a (428)

m

which is independent of n. The polaron—polaron interaction is

v(n—n')=V.(n—n') — Vop(n—n'), (4.29)
where
Von(n —n') = 2w Y _g(m —n)g(m —n')(e - em n)(e-em n).  (4.30)
The transformed hopping integral is t(n — n’) = T'(n — n’) exp[—g?(n — n’)]
with

(n—n') Zg (e.em-n) (4.31)

X [g(m - n)(e : emfn) - g(m - n/)(e ' emfn/)]

at T' < wp. The mass renormalization exponent can be expressed via E,, and
Von as
1

2 /
_ - — |E. —
g°(n—n’) wO{p

%Vph(n —n')|. (4.32)
When V), exceeds V. the full interaction becomes negative and polarons
form pairs. The real-space representation allows us to elaborate more physics
behind the lattice sums in Vpp, [311]. When a carrier (electron or hole) acts on
an ion with a force f, it displaces the ion by some vector x = f/k. Here k is
the ion’s force constant. The total energy of the carrier-ion pair is —f2/(2k).
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Fig. 4.2. Mechanism of the polaron—polaron interaction. (a) Together, two polarons
(solid circles) deform the lattice more effectively than separately. An effective attrac-
tion occurs when the angle ¢ between x; and x2 is less than 7/2. (b) A mixed
situation: ion 1 results in repulsion between two polarons while ion 2 results in
attraction (after [311])

This is precisely the summand in (4.28) expressed via dimensionless coupling
constants. Now, consider two carriers interacting with the same ion. The ion
displacement is x = (f;+f2)/k and the energy is —£7/(2k)—f3/(2k)—(f1-£2) / k.
Here, the last term should be interpreted as an ion-mediated interaction
between the two carriers. It depends on the scalar product of f; and f; and
consequently on the relative positions of the carriers with respect to the ion.
If the ion is an isotropic harmonic oscillator, as we assume here, then the
following simple rule applies. If the angle ¢ between f; and f5 is less than 7 /2,
the polaron—polaron interaction will be attractive, otherwise it will be repul-
sive. In general, some ions will generate attraction, and some ions — repulsion
between polarons (Fig. 4.2).

The overall sign and magnitude of the interaction is given by the lattice
sum in (4.30). One should note that according to (4.32), an attractive EPI
reduces the polaron mass (and consequently the bipolaron mass), while repul-
sive EPI enhances the mass. Thus, the long-range EPI serves a double purpose.
Firstly, it generates an additional interpolaron attraction because the distant
ions have a small angle ¢. This additional attraction helps to overcome the
direct Coulomb repulsion between polarons. And secondly, the Frohlich EPI
makes lattice bipolarons lighter.
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The many-particle ground state of Hy depends on the sign of the polaron—
polaron interaction, the carrier density, and the lattice structure. Following [311],
we consider the staggered ladder (Fig. 4.3), assuming that all sites are isotropic
two-dimensional harmonic oscillators. For simplicity, we also adopt the nearest-
neighbor approximation for both interactions, g(1) = g, V.(n) = V., and for
the hopping integrals, T'(m) =T(a) for [ = n = m = a, and zero otherwise.
Hereafter, we set the lattice period a = 1. There are four nearest neighbors in
the ladder, z = 4. The single-particle polaronic Hamiltonian takes the form

Hy, = —E, Z(Clcn +p;rzpn) (4.33)
n

+ Z[tl(cz-{-lcn + p;.ﬂpn) + t(plcn + p;_lcn) + H.cl],
n

where ¢, and p,, are polaron annihilation operators on the lower and upper

legs of the ladder, respectively (Fig.4.3). Using (4.28), (4.30), and (4.32), one

obtains E, = 4g%wy, t' = T'(a) exp(—TE,/8wo), and t = T'(a) exp(—3E, /4wp).
The Fourier transform of H,, yields two overlapping polaron bands:

Ey(k) = —E, + 2t' cos(k) & 2t cos(k/2) (4.34)

with the effective mass m* = 2/|4t' & t| near their edges.

Let us now place two polarons on the ladder. The nearest-neighbor inter-
action is v = V; — E, /2, if two polarons are on different legs of the ladder, and
v =V,—E,/4, if both polarons are on the same leg. The attractive interaction
is provided via the displacement of the lattice sites, which are the common
nearest neighbors to both polarons. There are two such nearest neighbors for
the intersite bipolaron of type A or B (Fig.4.3c), but there is only one com-
mon nearest neighbor for bipolaron C' (Fig.4.3d). When V, > E,, /2, there are
no bound states and the multipolaron system is a one-dimensional Luttinger
liquid. However, when V; < E,,/2 and consequently v < 0, the two polarons
are bound into an intersite bipolaron of types A or B.

Remarkably, bipolarons tunnel in the ladder already in the first order with
respect to the single-polaron tunneling amplitude. This case is different both
from on-site bipolarons discussed above and from intersite chain bipolarons
of [313], where the intersite bipolaron tunneling appeared in the second order
in ¢ as for the on-site bipolarons. Indeed, the lowest-energy configurations A
and B are degenerate. They are coupled by H,e,. Neglecting all higher-energy
configurations, we can project the Hamiltonian onto the subspace containing
A, B, and empty sites. The result of such a projection is the bipolaronic
Hamiltonian

5
H, = (VC -5 Ep) > (Al A, + BB, zn:[B,TLAn—&—Bl_lAn—i—H.c.], (4.35)

n
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Fig. 4.3. One-dimensional zigzag ladder. (a) Initial ladder with the bare hopping
amplitude T'(a). (b) Two types of polarons with their respective deformations. (c)
Two degenerate bipolaron configurations A and B (here t,t’ are renormalized (i.e.,
polaronic) hopping integrals). (d) A different bipolaron configuration, C, whose
energy is higher than that of A and B

where A, = c¢p,pn, and B,, = pncny1 are intersite bipolaron annihilation
operators, and the bipolaron—bipolaron interaction is omitted. The Fourier
transform of (4.35) yields two bipolaron bands:

Es(k) = Vi — ng + 2t/ cos(k/2) (4.36)
with a combined width 4|¢'|. The bipolaron binding energy in zero order with

respect to t,t" is A = 2F1(0) — E2(0) = E, /2 — V.
The bipolaron mass near the bottom of the lowest band, m** = 2/t', is

E,
m* = 4m* [1 +0.25 exp (—pﬂ : (4.37)
8wo
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Fig. 4.4. Polaron to bipolaron mass ratio for a range of & = wo/7T(a) and X\ on
the staggered ladder. Mobile small bipolarons are seen even in the adiabatic regime
@ = 0.5 for couplings A up to 2.5 (reproduced from [312], (© American Physical
Society, 2007)

The numerical coefficient 1/8 in the exponent ensures that m** remains of the
order of m* even at sufficiently large E, up to £}, = 10wq. This fact combined
with a weaker renormalization of m* provides a superlight small bipolaron
[59,311,312].

4.5 Discrete All-Coupling Frohlich Bipolaron

The FCM model discussed above is analytically solvable in the strong-coupling
nonadiabatic (wg 2 T'(a)) limit using the Lang—Firsov transformation of the
Hamiltonian, and projecting it on the intersite pair Hilbert space [59, 311].
The theory has been extended to the whole parameter space using CTQMC
technique for bipolarons [312]. Hague et al. [312] simulated the FCM Hamil-
tonian on a staggered triangular ladder (1D), triangular (2D), and strongly
anisotropic hexagonal (3D) lattices including triplet pairing. On such lattices,
bipolarons are found to move with a crab-like motion (Fig. 4.3), which is dis-
tinct from the crawler motion found on cubic lattices [271]. Such bipolarons
are small but very light for a wide range of electron—phonon couplings and
phonon frequencies. EPI has been modeled using the force function in the site
representation as in (3.63). Coulomb repulsion has been screened up to the
first nearest neighbors, with on-site repulsion U and nearest-neighbor repul-
sion V.. The dimensionless electron—phonon coupling constant A is defined as
A= f2(0)/2Mw?2T(a) which is the ratio of the polaron binding energy
to the kinetic energy of the free electron zT'(a), and the lattice constant is
taken as a = 1.

Extending the CTQMC algorithm to systems of two particles with strong
EPI and Coulomb repulsion solved the bipolaron problem on different
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Fig. 4.5. Bipolaron radius (in units of a) for a range of @ and A on the staggered
ladder (reproduced from [312], © American Physical Society, 2007)

lattices from weak to strong coupling in a realistic parameter range where
usual strong- and weak-coupling limiting approximations fail.

Figure 4.4 shows the ratio of the polaron to bipolaron masses on the
staggered ladder as a function of effective coupling and phonon frequency
for V. = 0. The bipolaron to polaron mass ratio is about 2 in the weak-
coupling regime (A < 1) as it should be for a large bipolaron (Sect.4.3). In
the strong-coupling, large phonon frequency limit the mass ratio approaches
4, in agreement with strong-coupling results (Sect.4.4). In a wide region of
parameter space, the bipolaron/polaron mass ratio has been found between
2 and 4 and a bipolaron radius similar to the lattice spacing (see Figs. 4.4
and 4.5). Thus, the bipolaron is small and light at the same time. Taking into
account additional intersite Coulomb repulsion V. does not change this con-
clusion. The bipolaron is stable for V; < 4T'(a). As V¢ increases the bipolaron
mass decreases but the radius remains small, at about two lattice spacings.
Importantly, the absolute value of the small bipolaron mass is only about four
times of the bare-electron mass my, for A = w/T'(a) =1 (sec Fig.4.4).

Simulations of the bipolaron on an infinite triangular lattice including
exchanges and large on-site Hubbard repulsion U = 20T (a) also lead to
the bipolaron mass of about 6mgs;, and the bipolaron radius Ry, ~2a for
a moderate coupling A=0.5 and a large phonon frequency w = T'(a) (for the
triangular lattice, moy, = 1/3a®T(a)). Finally, the bipolaron in a hexago-
nal lattice with out-of-plane hopping 77 = T'(a)/3 has also a light in-plane
inverse mass, myy = 4.5mqz, but a small size, Ry, ~ 2.6a for experimentally
achievable values of the phonon frequency w = T'(a) = 200meV and EPI,
A = 0.36. Out-of-plane m** =~ 70my, is Holstein like, where mq, = 1/2d*T" (d
is the interplane spacing). When bipolarons are small and pairs do not over-
lap, the pairs can form a Bose-Einstein condensate (BEC) at Tsrc = 3.31

2ng/a?v/3d 2/3 mi/ 3mi/ 3). If we choose realistic values for the lattice con-
Yy
stants of 0.4 nm in the plane and 0.8 nm out of the plane, and allow the density
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of bosons to be ng = 0.12 per lattice site, which easily avoids overlap of pairs,
then Tgrc ~ 300 K.

4.6 Polaronic Exciton

We also briefly mention works on electron—hole bound states coupled with
phonons. Such excitonic polaron states have been analyzed by Iadonisi and
Bassani [314-316]. The binding energies of excitonic states in interaction with
LO phonons were computed using a phonon coherent state and applying a
variational method [314]. Incomplete relaxation of the lattice is found. The
binding energies are larger than those obtained with static dielectric screening
when the polaron radius is comparable to the exciton radius. Analyzing the
relative intensities of the one-phonon and zero-phonon lines for a number of
semiconductors, Iadonisi and Bassani [314] observed that the zero-phonon
exciton states are generally much more probable than the phonon replicas.

The binding energy of a core exciton, which depends on the interaction
of the conduction electron and of the core hole with the valence elec-
trons via a Frohlich-type coupling with the electron-hole pairs, in addition
to the Coulomb attraction, was calculated within a functional variational
method [315]. When the exciton radius is comparable to the polaron radius,
the static dielectric screening reduces and the core exciton binding energy
increases. The excitonic polaron effective mass renormalization was analyzed
by Iadonisi and Bassani [315] using a variational numerical approach. Evidence
for this renormalization is found from the experimental data on polariton
dispersion in hexagonal CdS and in CuCL

The angular momentum as a constant of the motion of a Fréhlich polaron
was introduced by Evrard et al. [317]. Representing the excitonic polaron
problem in angular coordinates and solving it numerically, Iadonisi et al. [318]
showed that exciton states with various total angular momenta L are differ-
ently affected by the interaction with LO phonons. However, when extending
this approach to the bipolaron problem, the same authors found that the
Frohlich interaction is not strong enough to guarantee a stable bipolaron state
at least in the case of cubic materials.

The approximation-free diagrammatic Monte Carlo technique has also
been applied to the exciton—polaron problem, providing numerically exact
results for the wave function, ground-state energy, binding energy, and effec-
tive mass of polaronic excitons [319].
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Multipolaron Problem

5.1 Ground State of a Large-Polaron Gas, Polaron
Wigner Crystals, and Ripplopolarons

For the weak-coupling regime, which is realized in most polar semiconductors,
the ground-state energy of a gas of interacting continuous polarons has been
derived in [320] by introducing a variational wave function:

[YroB) = U |8) |¢e) (5.1)

where |pq) represents the ground-state many-body wave function for the elec-
tron (or hole) system, |¢) is the phonon vacuum, and U is a many-body
unitary operator. U defines the LDB-canonical transformation for a fermion
gas interacting with a boson field:

N
U=expq » > (fadqe' ™ — fidie 9™9) 4, (5.2)

j=1 «q

where r; represent the position of the N constituent electrons (or holes).
The fq were determined variationally [320]. It may be emphasized that (5.2),
although it appears like a straightforward generalization of the one-particle
transformation in [321], constitutes — especially in its implementation — a
nontrivial extension of a one-particle approximation to a many-body system.
An advantage of the LDB-many-polaron canonical transformations introduced
in [320] for the calculation of the ground-state energy of a polaron gas is
that the many-body effects are contained in the static structure factor of the
electron (or hole) system, which appears in the analytical expression for the
energy. Within the approach, the minimum of the total ground-state energy
per particle for a polaron gas lies at lower density than that for the electron
gas.

The nondegenerate system of interacting polarons in polar doped insula-
tors was analyzed by Fratini and Quémerais [322] using a simplified Feynman-
type polaron model. The phase diagram in Fig. 5.1 presents the mean distances

A.S. Alexandrov and J.T. Devreese, Advances in Polaron Physics, Springer Series in
Solid-State Sciences 159,
DOI: 10.1007/978-3-642-01896-1_5, (© Springer-Verlag Berlin Heidelberg 2010
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Fig. 5.1. Model for the phase diagram of the polaron Wigner lattice. Rs is the mean
distance between two electrons at a given density, agp = 1/mee? is the Bohr radius.
Crystal melting and polaron dissociation are represented with bold and broken lines,
respectively. The dotted line indicates the mean distance between two electrons
corresponding to the low-density approximation. The arrow corresponds to the crit-
ical density of the polaron dissociation. The melting driven by the fluctuations of
the localized particles is impossible beyond a* (the filled dot). For a@ < a, the
metallic state beyond the critical density changes with increasing o from a weak-
coupling polaron liquid (region I) to a strong-coupling polaron liquid (region II).
For o > «*, the insulator-to-metal transition is described by the dissociation of the
polarons(region III) (reprinted with permission after [322]. (© 2000, EDP Sciences,
Societa Italiana di Fisica, Springer)

between two electrons for Wigner crystal melting and polaron dissociation as
a function of the electron—phonon coupling constant a. In the low-density
limit, the ground state of the many-polaron system is the Wigner lattice of
polarons. With increasing density depending on the value of «, one of the fol-
lowing two scenarios is possible (1) the melting of the polaron Wigner lattice
for o < a* and (2) the dissociation of the polarons for ao > o* [322].

An interesting 2D system counsists of electrons on films of liquid He [323,
324]. In this system, the electrons couple to the ripplons of the liquid He,
forming “ripplopolarons.” The effective coupling can be relatively large and
self-trapping can result. The acoustic nature of the ripplon dispersion at long
wavelengths induces the self-trapping. Spherical shells of charged particles
appear in a variety of physical systems, such as fullerenes, metallic nanoshells,
charged droplets, and neutron stars. A particularly interesting physical real-
ization of the spherical electron gas is found in multielectron bubbles (MEBs)
in liquid helium-4. These MEBs are 0.1-100um sized cavities inside liquid
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helium that contain helium vapor at vapor pressure and a nanometer-thick
electron layer, anchored to the surface of the bubble [325,326]. They exist as
a result of equilibrium between the surface tension of liquid helium and the
Coulomb repulsion of the electrons [327,328].

Recently proposed experimental schemes to stabilize MEBs [329] have
stimulated theoretical investigation of their properties (see, e.g., [330]). The
dynamical modes of MEB were described by considering the motion of
the helium surface (“ripplons”) and the vibrational modes of the electrons
together. In particular, the case when the ripplopolarons form a Wigner lat-
tice was analyzed in [331]. The interaction energy between the ripplons and
the electrons in the multielectron bubble is derived from the following consid-
erations (1) the distance between the layer electrons and the helium surface
is fixed (the electrons find themselves confined to an effectively 2D surface
anchored to the helium surface) and (2) the electrons are subjected to a force
field, arising from the electric field of the other electrons. To study the rip-
plopolaron Wigner lattice at nonzero temperature and for any value of the
electron-ripplon coupling, the variational path-integral approach [12] is used.

In their treatment of the electron Wigner lattice embedded in a polarizable
medium, such as a semiconductor or an ionic solid, Fratini and Quémerais [322]
described the effect of the electrons on a particular electron through a mean-
field lattice potential. The (classical) lattice potential Vi,¢ is obtained by
approximating all the electrons acting on one particular electron by a homo-
geneous charge density, in which a hole is punched out; this hole is centered
in the lattice point of the particular electron under investigation and has a
radius given by the lattice distance d.

The Lindemann melting criterion states in general that a crystal lat-
tice of objects (be it atoms, molecules, electrons, or ripplopolarons) will
melt when the average displacement of the objects from their lattice site
is larger than a critical fraction dp of the lattice parameter d. It would be
a strenuous task to calculate, from first principles, the exact value of the
critical fraction &y, but for the particular case of electrons on a helium
surface, we can make use of an experimental determination. Grimes and
Adams [332] found that the Wigner lattice melts when I' = 137 + 15,
where T is the ratio of potential energy to the kinetic energy per electron. At
temperature T, the average kinetic energy of an electron in a lattice potential
WNat, characterized by the frequency parameter wi,y, is

w w
By = % coth ( 21;) , (5.3)

and the average distance that an electron moves out of the lattice site is
determined by

2E‘kin

5 -
MeW)at

(r*) = ! coth (u;l;) = (5.4)
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From this, one finds that for the melting transition in the experiment in [332],
the critical fraction equals §p ~ 0.13. This estimate is in agreement with
previous (empirical) estimates yielding dp =~ 0.1 [333].

Within the approach of [322], the Wigner lattice of (ripplo)polarons melts
when at least one of the two following Lindemann criteria is met:

R2
5= YV Reus) o (55)
d
2
5, = <d” ) o 5o, (5.6)

where p and R are, respectively, the relative coordinate and the center of
mass coordinate of the model system: if r is the electron coordinate and R is
the position coordinate of the fictitious ripplon mass M, this is

Rcms = %, p=r— R. (57)
The appearance of two Lindemann criteria takes into account the compos-
ite nature of (ripplo)polarons. As follows from the physical meaning of the
coordinates p and Ry, the first criterion (5.5) is related to the melting of
the ripplopolaron Wigner lattice toward a ripplopolaron liquid, where the rip-
plopolarons move as a whole, the electron together with its dimple. The second
criterion (5.6) is related to the dissociation of ripplopolarons: the electrons
shed their dimple.

The Feynman path-integral variational formalism allows us to calculate
the expectation values (R2_,) and (p*) with respect to the ground state of
the variationally optimal model system.

Numerical calculation shows that for ripplopolarons in an MEB, the
inequality

(Rins) < (p?) (5.8)
is realized. As a consequence, the destruction of the ripplopolaron Wigner
lattice in an MEB occurs through the dissociation of ripplopolarons, since the
second criterion (5.6) will be fulfilled before the first (5.5). The results for
the melting of the ripplopolaron Wigner lattice are summarized in the phase
diagram shown in Fig. 5.2.

For any value of NV, pressure p, and temperature T in an experimentally
accessible range, Fig.5.2 shows whether the ripplopolaron Wigner lattice is
present (points above the surface) or the electron liquid (points below the
surface). Below a critical pressure (on the order of 10* Pa), the ripplopolaron
solid will melt into an electron liquid. This critical pressure is nearly inde-
pendent of the number of electrons (except for the smallest bubbles) and is
weakly temperature dependent, up to the helium critical temperature 5.2 K.
This can be understood since the typical lattice potential well in which the
ripplopolaron resides has frequencies of the order of THz or larger, which
correspond to ~10 K.
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Fig. 5.2. The phase diagram for the spherical 2D layer of electrons in an MEB.
Above a critical pressure, a ripplopolaron solid (a Wigner lattice of electrons with
dimples in the helium surface underneath them) is formed. Below the critical pres-
sure, the ripplopolaron solid melts into an electron liquid through dissociation of
ripplopolarons (reprinted with permission from [331]. (© 2003, EDP Sciences, Societa
Italiana di Fisica, Springer)

The new phase that was predicted in [331], the ripplopolaron Wigner lat-
tice, will not be present for electrons on a flat helium surface. At the values
of the pressing field necessary to obtain a strong enough electron—ripplon
coupling, the flat helium surface is no longer stable against long-wavelength
deformations [334]. Multielectron bubbles, with their different ripplon disper-
sion and the presence of stabilizing factors such as the energy barrier against
fissioning [335], allow for much larger electric fields pressing the electrons
against the helium surface. The regime of N, p, and T parameters suitable
for the creation of a ripplopolaron Wigner lattice lies within the regime that
would be achievable in recently proposed experiments, aimed at stabilizing
MEBs [329]. The ripplopolaron Wigner lattice and its melting transition might
be detected by spectroscopic techniques [332,336], probing, e.g., the transverse
phonon modes of the lattice [337].

Another field, where the LDB-canonical transformation has been fruitfully
applied, is the theory of optical absorption spectra of many-polaron systems.
In [92], starting from the LDB-many-polaron canonical transformation and
the variational many-polaron wave function introduced in [320], the optical
absorption coefficient of a many-polaron gas has been derived. The real part
of the optical conductivity of the many-polaron system is obtained in an
intuitively appealing form, given by (2.95).

This approach to the many-polaron optical absorption allows one to
include the many-body effects to order « in terms of the dynamical structure



120 5 Multipolaron Problem

25 T T T T T T T T T T
Experiment, sample A from Lupi et al.
i - - one-polaron result (3D), ®, ,=565 em’ 7
—~ —— 3D polaron gas, n=1.5 107 em”, @ =565 e’
20 ’ —
8
£ | _
K N(:12Cu02
Z
— 15
—
)
b -
Q
~
0=, \\ -t
\ I background
r phonon + contribution .
IRAV modes
5 L | L | L | L | L | L
0 500 1000 1500 2000 2500 3000
Q(cm’)

Fig. 5.3. The infrared optical absorption of Nd2CuO2_s (§ < 0.004) as a function of
frequency. The experimental results of [338] are presented by the thin full curve. The
experimental “d-band” is clearly identified, rising in intensity at about 600cm ™!,
peaking around 1000 cm ™', and then decreasing in intensity above that frequency.
The dotted curve shows the single polaron result calculated according to [73]. The
bold full curve presents the theoretical results of [92] for the interacting many-polaron
gas with the following choice of parameters: n = 1.5 x 10'” cm™® (polaron density),
a = 2.1, and m = 0.5me (reprinted with permission from [92]. (© 2001 by the
American Physical Society)

factor S(k, Q2 —wro) of the electron (or hole) system. The experimental peaks
in the mid-infrared optical absorption spectra of cuprates [338] (Fig.5.3) and
manganites [339] have been adequately interpreted within this theory. The
many-polaron approach describes the experimental optical conductivity better
than the single-polaron approximations [91,247]. Note that in [92], like in [104],
coexistence of small and Frohlich polarons in the same solid is involved.
Recent experimental observations of the optical conductivity in the Nb-
doped SrTiOg [340] reveal the evidence of the mid-infrared optical conductiv-
ity band provided by the polaron mechanism. The effective mass of the charge
carriers is obtained by analyzing the Drude spectral weight. Defining the mass
renormalization of the charge carriers as the ratio of the total electronic spec-
tral weight and the Drude spectral weight, a twofold mass enhancement is
obtained, which is caused by the electron—phonon coupling. The missing spec-
tral weight is recovered according to the sum rule [118] in a mid-infrared
optical conductivity band. This band results from the electron—phonon cou-
pling interaction, traditionally associated with the polaronic nature of the
charge carriers. The effective mass obtained from the optical spectral weights
yields an intermediate electron—phonon coupling strength, 3 < o < 4.
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Therefore, it has been suggested in [340] that the charge transport in the
Nb-doped SrTiOj is carried by large polarons.

The optical conductivity of a many-polaron gas was investigated in [341]
in a different way by calculating the correction to the dielectric function
of the electron gas, due to the electron—phonon interaction with variational
parameters of a single-polaron Feynman model. A suppression of the opti-
cal absorption of a many-polaron gas as compared to the one-polaron optical
absorption of [73,93] with increasing density has been found. Such a sup-
pression is expected because of the screening of the Frohlich interaction with
increasing polaron density.

5.2 Breakdown of the Migdal-Eliashberg Theory
in the Strong-Coupling Regime

While the single- and two-polaron problems have been actively researched for
a long time, the multipolaron physics has gained particular attention in the
last two decades. For weak electron—phonon coupling, A < 1, and the adiabatic
limit, wo/Er < 1, Migdal theory describes electron dynamics in the normal
Fermi-liquid state [264], and BCS—Eliashberg theory in the superconducting
state [263,342]. If EPI is weak Migdal’s theorem is perfectly applicable. The
theorem proves that the contribution of diagrams with “crossing” phonon lines
(so-called “vertex” corrections) is small if the parameter Aw/EF is small, where
Er is the Fermi energy. Neglecting the vertex corrections, Migdal [264] calcu-
lated the renormalized electron mass as m* = m(1+ \) (near the Fermi level)
and Eliashberg [263] extended Migdal’s theory to describe the BCS super-
conducting state at intermediate values of A < 1. Later on many researchers
applied Migdal-Eliashberg theory (MET) with A even larger than 1 (e.g.,
in [343], and references therein).

Naturally, with increasing strength of EPI and increasing phonon fre-
quency, wp, finite bandwidth [344, 345], and vertex corrections [346, 347]
become more and more important. But unexpectedly for many researchers,
who applied MET even at A > 1 with or without vertex corrections, the
theory breaks down entirely at A\ ~ 1 for any value of the adiabatic ratio
wo/Er [130]. Tt happens since the bandwidth is narrowed (Sect. 3.2.1) and the
Fermi energy, Ep, is renormalized down exponentially, so that the effective
parameter Awg/Er becomes large already at A ~ 1. Under certain con-
ditions [125,130], the multipolaron system is metallic but with polaronic
carriers rather than bare electrons. This regime is beyond MET, where the
effective mass approximation is used and the electron bandwidth is infi-
nite. In recent years, a number of numerical and analytical studies have
confirmed the conclusion [130] that MET breaks down at A > 1 (see,
e.g., [165,189, 190, 224, 251, 274,277, 288, 348, 349], and references therein).
Strong correlation between polarons shrinks the region of applicability of MET
even further [35,58].
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It is easy to illustrate the breakdown using the simple molecular Holstein
model in the extreme adiabatic limit, wg/t — 0 [125], where MET is supposed
to be exact. The Hamiltonian of the model is

H——th ¢; + H.c. + 2(\kt) 1/223310 ¢i (5.9)
(i7)

1 92 k:vi
+Z< 2M8x 2)’

where z; is the normal coordinate of the molecule (site) i, & = Mw?, and
the kinetic energy of ions is neglected. In the framework of MET, one would
expect the Fermi-liquid behavior above T, and the BCS ground state below
T. at any value of A\. In fact, the exact ground state is an insulator due to
self-trapping at any filling of the band, if A > 1.

Let us first consider a two-site case (zero-dimensional limit), i,j7 = 1,2
with one electron. The transformation X = (z1 4+ x2), £ = 21 — a2 allows us
to eliminate the coordinate X, which is coupled only with the total density
(n1 + ng = 1). That leaves the following Hamiltonian to be solved in the
extreme adiabatic limit M — oo:

k’ 2
H = —t(cles + cher) + Okt) 2 (cley — cles) + % (5.10)
The solution is
W = (acf + Bc}) |0), (5.11)
where
t
a = 73 (5.12)

|12 4 ((ARDY2€ + (22 + Mhtg2)1/2)°)

/2 2 2\1/2
5—_ (At)V/2€ + (12 + Nkte?)! _ (5.13)

(124 ()26 + (12 + Ate2)/2) ] /

and the energy is
k&2

E = — (12 + Mkte?)V/2, (5.14)

In the extreme adiabatic limit, the displacement £ is classical, so the ground-
state energy Ey and the ground-state displacement £y are obtained by mini-
mizing (5.14) with respect to . If A > 0.5, one obtains

Ey = (A+4A> (5.15)
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and

2 1/2
& = {75(4)\)71)} : (5.16)

The symmetry-breaking “order” parameter is

[2A + (4X2 — 1)1/2)2 -1
2\ + (4N2 —1)1/2]2 + 17

A=p*—a?= (5.17)

If A < 0.5, the ground state is “translation” invariant, A = 0, and Ey = —t,
£ =0, 0 = —a. However, when A\ > 0.5, this solution is not the ground
state of the system. The system collapses into a localized adiabatic polaron
trapped on the “right-hand” or on the “left-hand” site due to the finite-lattice
deformation, & # 0.

The generalization for a multipolaron system on the infinite lattice of any
dimension is straightforward in the extreme adiabatic regime. According to
Kabanov and Mashtakov [350] the self-trapping of a single electron occurs
at A > 0.875 and at A > 0.92 in 2D and 3D Holstein model. The radius
of the self-trapped adiabatic polaron is about the lattice constant. Hence,
the multipolaron system remains in the self-trapped insulating state in the
strong-coupling adiabatic regime, no matter how many polarons it has. The
only instability which might occur in this regime is the formation of self-
trapped on-site bipolarons, if the on-site attractive interaction, 2Azt, is larger
than the repulsive Hubbard U [273,276]. Self-trapped on-site bipolarons form
a charge-ordered state due to a weak repulsion between them [271,277,283].

In general, the transition into the self-trapped state due to a broken trans-
lational symmetry is expected at 0.5 < A < 1.3 (depending on the lattice
dimensionality) for any EPI conserving the on-site electron occupation num-
bers. For example, Hiramoto and Toyozawa [297] calculated the strength of
the deformation potential, which transforms electrons into small polarons and
bipolarons. They found that the transition of two electrons into a self-trapped
small bipolaron occurs at the electron-acoustic phonon coupling A ~ 0.5, that
is, half of the critical value of A\ at which the transition of the electron into
the small acoustic polaron takes place in the extreme adiabatic limit. The
radius of the acoustic polaron and bipolaron is about the lattice constant,
so that the critical value of A\ does not depend very much on the number
of electrons in this case either. Of course, the nonadiabatic corrections (i.e.,
quantum phonons) allow small bipolarons to propagate as the Bloch states in
narrow bands [271].

Carriers in the fascinating advanced materials are strongly coupled with
high-frequency optical phonons, making small polarons and nonadiabatic
effects relevant for high-temperature superconductivity, colossal magnetore-
sistance phenomenon, and molecular electronic devices. Indeed, the charac-
teristic phonon energies 0.05-0.2eV in cuprates, manganites, and in many
organic materials are of the same order as generally accepted values of the
hopping integrals, ¢t ~ 0.1-0.4eV.
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5.3 Polaronic Superconductivity

The polaron—polaron interaction is the sum of two large contributions of the
opposite sign (3.40). It is generally larger than the polaron bandwidth and the
polaron Fermi energy, ep = Z’ E [130]. This condition is opposite to the weak-
coupling BCS regime, where the Fermi energy is the largest. However, there
is still a narrow window of parameters, where pairs of two lattice polarons are
overlapped similarly to the Cooper pairs. Here, the BCS approach is applied
to nonadiabatic carriers with a nonretarded attraction, so that small polarons
form the polaronic Cooper pairs [130], rather than the real-space bipolarons.
The size of the pair is estimated as

1

"y =~

where A is the binding energy of the order of the attraction potential v. The

1/3

BCS approach is applied if r, > anp ’”, which puts a severe constraint on

the value of the attraction:
v < ep. (5.19)

There is no “Tolmachev—Morel-Anderson” logarithm (see, e.g., in [343]) in the
case of nonadiabatic carriers, because the attraction is nonretarded as soon as
er < wp. Hence, a superconducting state of lattice polarons is possible only if
A > . This consideration leaves a rather narrow crossover region from the
normal polaron liquid to a superconductor, where one can still apply the BCS
mean-field approach, 0 < A\— p. < Z’ < 1. In the case of the Frohlich interac-
tion, Z' is about 0.1 + 0.3 for typical values of X. Hence, this region is on the
borderline from the polaronic normal metal to a bipolaronic superconductor
(Sect. 5.5).

When EPI is strong, A > 1, and the Coulomb repulsion nearly compensates
the attraction, small polarons behave like fermions in a narrow band with the
weak nonretarded attraction described by the transformed Hamiltonian:

5 R 1
H~ Z |:(<O'Z]> - M(sij)CICj + 5’()7;]‘610}0]'61' (520)
4,7

in the Wannier representation. If the condition (5.19) is satisfied, we can treat
the polaron—polaron interaction approximately using the BCS-like mean-field
theory [130]. For simplicity, we can keep only the on-site vy and the nearest-
neighbor v; interactions. At least one of them should be attractive to ensure

that the ground state is superconducting. Introducing Ay = —vo{Cm,1Cm,|)
and Ay = —v1(¢m,1Cm+a,;) and transforming into k-space results in the
familiar BCS Hamiltonian:

Hy =Y &ecl,oes + Y _[Arclyely | +Hel, (5.21)

k,s k
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where &k = ex — u is the renormalized kinetic energy and Ax = Ag— Aq((&k +
1)/w) is the order parameter.

A BCS-like equation for Ax = A(&) has the half polaron bandwidth w
as a cutting parameter in the integral, rather than the Debye temperature:

A(E) = /w_” ANV (1) >~ tanh A (g 0

—w—p n* + An)? 2

where V(€,17) = —vy = 201(§ + 1) (n + 1) /.
The critical temperature 7T is found as [130]

/ 12 2w
T.~1.14 1-— —_— 5.23
c w U}2 exp (’UO + ZU1M2/U)2) ’ ( )

if vo + zv1 2/ w® < 0. Hence, the polaronic superconductivity exists even in
the case of the on-site repulsion, vy > 0, if this repulsion is less than the total
intersite attraction, z|vq|. There is a nontrivial dependence of T on doping.
With a constant density of states in the polaron band, the Fermi energy ep ~ p
is expressed via the number of polarons per atom n, as

w=wn, —1), (5.24)

2w
T. ~1.14 2 — . 5.25
c wy/np(2 — np) exp (Uo + zv1[np — 1}2) (5.25)

It has two maxima as a function of n, separated by a deep minimum in the
half-filled band (n, = 1), where the nearest-neighbor contributions to pairing
are

canceled.

An important feature of T, in polaronic and bipolaronic superconductors
is the unusual isotope effect [196]. With increasing ion mass, the (bi)polaron
mass increases and the Bose—Einstein condensation temperature T, o< 1/m*
decreases in the bipolaronic superconductor (Sect. 5.5). On the contrary, in a
polaronic superconductor an increase of the ion mass leads to a band narrow-
ing enhancing the polaron density of states and increasing T, (5.25). Hence,
the isotope exponent of Te, & = —dInT,/dIn M can distinguish the BCS-like
polaronic superconductivity with a < 0, and the Bose-Einstein condensation
of small bipolarons with a > 0. Moreover, a could be larger than the BCS
value o > 0.5, in bipolaronic superconductors. Using (5.25), one can link
the isotope effect on Ti. with the isotope effect on the carrier mass, a;,- (see
Sect. 3.5 and (3.72)).

Another important conclusion is that the highest superconducting tran-
sition temperature is attained in polaronic superconductors at the crossover
between the BCS weak-coupling regime and the bipolaronic (strong-coupling)
superconductivity [130].

so that




126 5 Multipolaron Problem
5.4 Lattice Bipolarons and Competing Orders

In models with strong attractions, there is a possibility of clustering. A finite-
range EPI combined with the Coulomb repulsion can cause clustering of
polarons into finite-size strings [351,352] and other mesoscopic textures [214].
Formation of polaronic clusters can be analytically studied in the strong-
coupling regime in the framework of a generic Frohlich-Coulomb model (FCM)
(Sect. 4.4) on a two-dimensional lattice of ideal octahedra (Fig.5.4) that can
be regarded as a simplified model of the copper—oxygen perovskite layer [311].

The FCM Hamiltonian including the coupling with different vibration
modes « is written as

1
H=-— Z {T(n —n')clcn — §Vc(n —n')el encl e

n#n’
= 3 wagalm — 1) eq - tm-n)chen(dhng + dma)
a,nm
+ Zwa (d;rnadma + 1/2) ’ (526)

where e, is the polarization vector of the ath vibration coordinate.

Due to poor screening, the hole-ion interaction can be taken as purely
coulombic:
Ra
ga(m - 1’1) - |II’1 — n|27
where a = z,y,2z with kK, = Ky = Kk, /\/5 accounting for the experimental
fact that c-axis (z-polarized) phonons couple to in-plane holes stronger than

Fig. 5.4. Simplified model of the copper—oxygen perovskite layer (reproduced
from [311], © IoP, 2002)
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Fig. 5.5. Four degenerate in-plane bipolaron configurations A, B, C, and D. Some
single-polaron hoppings are indicated by arrows (reproduced from [311], © IoP,
2002)

others. The direct hole-hole repulsion is

_ Ve
Van - u|

so that the repulsion between two holes in the nearest-neighbor (NN) config-
uration is V.. The nearest-neighbor hopping Tnn, the next-nearest-neighbor
(NNN) hopping across copper Txnn, and the hopping between the pyramids
T{nn have been included (Fig. 5.5).

The polaron level shift in this model is given by the lattice sum:

Ve(n —n’)

1 h2
By =2k2wo Y (|m e n|6) = 31.15k2wo, (5.27)

where the factor 2 accounts for two layers of apical sites, and the in-plane
lattice constant is @ = 1 and w, = wg. For reference, the Cartesian coordinates
are n = (ngy +1/2,n, + 1/2,0), m = (my,my, h), and ng,n,, my, m, are
integers. The polaron—polaron attraction is

>4 (m ) (m-n)

lm — n/[?jm — n|?

Von(n —n') = dwor? Y h (5.28)
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Performing the lattice summations for the NN, NNN, and NNN’ configu-
rations, one finds V,n = 1.23E,, 0.80E,, and 0.82F),, respectively. As a
result, we obtain a net interpolaron interaction as vy = V. — 1.23E,
onnN = (Ve/V2) — 0.80E,, viny = (VeA/2) — 0.82F,, and the mass renor-
malization exponents (see below) as g&y = 0.38(E,/w), ginn = 0.60(E,/w),
and (gnn)? = 0.59(E,/w). At V. > 1.23E,, no bipolarons are formed and
the system is a polaronic Fermi liquid. Polarons tunnel in the square lat-
tice with the renormalized hopping integrals ¢ = Tnn exp(—0.38E,,/w) and
t' = Tnnwexp(—0.60E,/w) for NN and NNN hoppings, respectively. The
polaron mass is m* oc 1/(t + 2t').

If V. < 1.23E), then intersite NN bipolarons form. The intersite bipolarons
tunnel in the plane via four resonating (degenerate) configurations A, B, C,
and D, as shown in Fig.5.5. In the first order of the renormalized hopping
integral, one should retain only these lowest energy configurations and discard
all the processes that involve configurations with higher energies. These inter-
site bipolarons already move in the first order of the single polaron hopping.
This remarkable property is entirely due to the strong on-site repulsion and
long-range electron—phonon interactions that leads to a nontrivial connectiv-
ity of the lattice. This fact combines with a weak renormalization of ¢’ yielding
a superlight bipolaron with the mass m** x exp(0.60E,/w). We recall that in
the Holstein model m** o exp(2E,/w). Thus, the mass of the small Fréhlich
bipolaron in the perovskite layer scales approximately as a cubic root of that
of the Holstein bipolaron.

At even stronger EPI, V., < 1.16E,, NNN bipolarons become stable.
More importantly, holes can now form three- and four-particle clusters. The
dominance of the potential energy over kinetic in the transformed Hamilto-
nian enables us to readily investigate these many-polaron cases. Three holes
placed within one oxygen square have four degenerate states with the energy
2(Ve—1.23E,)+V. A/2—0.80 E,,. The first-order polaron hopping processes mix
the states resulting in a ground-state linear combination with the energy F3 =
2.71V,—3.26 E,—/4t? 4 t'2. It is essential that between the squares such triads
could move only in higher orders of polaron hopping. In the first order, they are
immobile. A cluster of four holes has only one state within a square of oxygen
atoms. Its energy is By = 4(V.—1.23E,)+2(V.A/2—0.80E,,) = 5.41V.—6.52E,,.
This cluster, as well as all bigger ones, are also immobile in the first order of
polaron hopping. Hence, a strong EPI combined with the Coulomb repulsion
could cause clustering of polarons into finite-size mesoscopic textures. Impor-
tantly at distances much larger than the lattice constant, the polaron—polaron
interaction is always repulsive, and the formation of infinite clusters, stripes,
or strings is prohibited [351].

There is strong experimental evidence for superlight intersite bipolarons
in cuprate superconductors (Sect. 6.1), where they form in-plane oxygen—apex
oxygen pairs (so-called apex bipolarons [59,353] and in-plane oxygen—oxygen
pairs [25,311]). Analytical [311,351] and QMC [214] studies with realistic
lattice deformations and the Coulomb repulsion show that real-space pairs
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dominate over entire phase diagram since bipolarons effectively repel each
other (4.18) (for more details on polaronic textures, see [277,354,355]). Nev-
ertheless, there is evidence in favor of small-polaron lattices in some lattice
structures (e.g., nickelates) with low-dimensional energy spectrum and sig-
nificant densities of small polarons [354, 356, 357]. Long-range ordering of
polarons is especially important in 1D systems. In this respect, 1D Holstein
model of spinless fermions and 1D HHM have been investigated in much detail
using the density matrix renormalization group [358,359], kernel polynomial
and cluster approaches [360], Lanczos diagonalization [361], and QMC [362]
with a focus on the competition of conducting, insulating, and (bi)polaron
charge-ordered phases. This issue was also discussed in infinite dimension
using DMFT [206, 363].

5.5 Bipolaronic Superconductivity

In the strong-coupling regime, where the BCS electron—phonon coupling con-
stant is relatively large, A 2 1, pairing is individual [9], in contrast with the
collective Cooper pairing [342]. Bipolarons survive even in the normal state
above their Bose-Einstein condensation temperature representing a simplest
“cluster” of carriers. These and bigger clusters can be localized by disorder
below the mobility edge. However, bipolarons propagate as the Bloch states
above the mobility edge.

In the subspace with no single polarons, the Hamiltonian of electrons
strongly coupled with phonons is reduced to the bipolaronic Hamiltonian
(4.18) written in terms of creation and annihilation bipolaron operators [271].
There could be additional spin quantum numbers S = 0,1; S, = 0, £1, which
should be added to the definition of the bipolaron operator by, in the case of
intersite bipolarons. Bipolarons are not perfect bosons since their operators
commute as

benbl 4 bl b =1, (5.29)

benbl, — bl b =0 (5.30)

for m # m’. This makes useful the pseudospin analogy [271], b, = SZ —
iSY and bj by = (1/2) — SZ using the pseudospin 1/2 operators S¥¥:% =
(1/2)71,2,3(here 7; are Pauli matrices). S&, = 1/2 corresponds to an empty site
m and SZ, = —1/2 to a site occupied by the bipolaron. Spin operators preserve
the bosonic nature of bipolaron operators, when bipolarons are on different
sites, and their fermionic internal structure. Replacing bipolaron operators by
spin operators, one transforms the bipolaronic Hamiltonian into the familiar
anisotropic Heisenberg Hamiltonian:

1
Hy= " [577(m m')S5,5%, + ty(m — m')(S5,5%, + S%5%,)| . (5.31)

m#m’
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where the position of the middle of the bipolaron band is taken as zero. This
Hamiltonian has been investigated in detail as a relevant form for magnetism
and also for quantum solids like a lattice model of *He. However, while in
those cases the magnetic field is an independent thermodynamic variable, in
our case the total “magnetization” is fixed, N=1 3" ((SZ)) = 1/2—ny, if the
bipolaron density ny, is conserved.

Spin 1/2 Heisenberg Hamiltonian cannot be solved analytically. Compli-
cated commutation rules for bipolaron operators make the problem hard, but
not in the limit of low atomic density of bipolarons, ny, < 1. In this limit, we
can reduce the problem to a charged Bose gas (CBG) on a lattice [364] by
transforming the bipolaronic Hamiltonian to a representation containing only
the Bose operators a,, and aIn defined as

bm = Y _ Brlaly)Fair", (5.32)

k=0
where amaln, — a;rn,am = Omm/. The first few coefficients (; are found
as fo = 1, By = —1, B = 1/2 + /3/6. One can also introduce bipo-

laron and boson W-operators as ®(r) = N~/23"  §(r — m)by, and ¥(r) =
N=1/2%"  §(r — m)am, and write down the bipolaronic Hamiltonian as

Hy, = /dr/dr"lﬁ(r)t(r —r')¥(r') + Hy + Hi + H®), (5.33)

where

Hy = %/dr/dr'@(r — I'/)\I/T(I')\I/T(I‘/)\I/(r')\:[l(r) (5.34)

is the dynamic part,

Hy = %/dr/dr'tb(rfr’) (5.35)
[WH ) e () ()W) + OF () T () W (1) 0 (x)]

4

is the kinematic (hard-core) part due to the “imperfect” commutation rules
and H® includes three- and higher-body collisions. Here

to(r =) =) en(k)el ),

k
B —1') = 1 3 el 1)
N - ’
Uk = Domxo?(m)exp(ik-m) is the Fourier component of the dynamic
interaction, and
en(k) = Z tp(m) exp(—ik - m) (5.36)

m=#0
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is the bipolaron band dispersion. H®) contains more than four field operators.
In the dilute limit, ny, < 1, only two-particle interactions are essential which
include the short-range kinematic and direct density—density repulsions. Since
7 already contains the short-range part v(?) (4.18), the kinematic contribution
can be included in the definition of . As a result, Hy is reduced to the
Hamiltonian of interacting hard-core charged bosons tunneling in the narrow
band.

To describe electrodynamics of bipolarons, one introduces the vector
potential A(r) using the Peierls substitution [237]:

th(m — m’) — t,(m — m’)el2eA M) (m—m’),

which yields

to(r — 1) = ty(r,1') = ) en(k — 2eA)e ") (5.37)
k

in the real space. If the magnetic field is weak, we can expand e,(k) in
the vicinity of k = 0 to obtain tp(r,r’) ~ — [V + 2ieA(r)]>6(r — 1/)/m**
where 1/m** = (d?e, (k)/dk2)k—>0 is the inverse bipolaron mass. Assuming a
parabolic dispersion near the bottom of the band, e, (k) ~ k2, yields

Hy ~ /drqﬁ { [V-+2ieA(r)]* +u} U(r) (5.38)

2m**
2/drdr o(r — )T ()Wl () (r)T(r'),

where we add the bipolaronic chemical potential p. The bipolaron—bipolaron
interaction is the Coulomb repulsion, o(r) ~ 1/(eor) at large distances, and
the hard-core effects are not important in the dilute limit. Hence, Hy, describes
the CBG with the effective boson mass m** and charge 2e, which exhibits the
equilibrium features of a superconductor [365]. Moreover, this gas is almost
ideal since €y > 1 in ionic lattices like cuprates, so that the Coulomb repulsion
of mobile bipolarons is weak compared with their kinetic energy.

At relatively high densities, the bipolaronic hard-core Bose gas can trans-
form into a charge-density wave supersolid [271], similar to a supersolid
proposed for “He [366], with a growing tendency to a phase separation with
doping (different phase diagrams of hard-core bipolarons or bosons on a lattice
can be found in [277,367-370], and references therein).

5.6 Polarons and Spin Effects

An important feature of contemporary materials like cuprates and man-
ganites is the coupling of the carrier charge degrees of freedom to a dense
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background of magnetically correlated spins (ferro in colossal magnetore-
sistance manganites and antiferro in cuprates). Evidence for the resulting
spin correlations and underlying Hund’s rule and/or Mott—Hubbard strong
local Coulomb interactions is overwhelming in these materials (see, e.g.,
(25,218,293, 371-376]).

Since EPT proved to be also very strong (see [11,59,197-199,201,211, 216,
218,219,377-390], and references therein), its interplay with electron exchange
correlations in the formation of dressed quasiparticles in manganites, cuprates,
and many other materials, including conducting polymers and ferroelectrics,
is becoming the focus of great attention (for recent reviews, see [35,58,391]).
The coupling of lattice polarons to the spin degrees of freedom alters their
tunneling and pairing characteristics. A lattice disorder introduces additional
complexity to the polaron problem because interference of impurity potential
with lattice distortion, which accompanies the polaron movement, can con-
tribute to the polaron and bipolaron localization on impurity [26,28,392-395].
Also networks of local distortions correlated by elastic fields in doped transi-
tion metal oxides [396] and self-organized discrete dopant networks [397] lead
to multiscale complexity for key materials.

The foregoing points have been the central theme and main emphasis of
a large body of theoretical works on polaron physics in strongly correlated
electron models that are potentially relevant to the manganites and cuprates.
Apart from the strong-coupling bipolaronic limit discussed above, the inter-
play of EPI with the on-site Coulomb repulsion in the intermediate region
of parameters has been studied in the framework of the Holstein—-Hubbard
(HHM) and the Holstein t-J (HtJM) models. In the latter model, the strong
electron—electron correlations are described by

Hy=-t Y (EIH’SEHVS + H.c.) +7 Y (§m§n - iﬁmﬁn), (5.39)

(m,n),s (m,n)

acting in a projected Hilbert space, i.e., &b = cg%s(

! 1—Tim,—s), om = D, €1 &,
and §; = ZS’S, éLl,Sf;s/ém#/. Within the t-J model, the bare transfer ampli-
tude of electrons () sets the energy scale for incoherent transport, while the
Heisenberg interaction (J) allows for spin flips leading to coherent hole motion
at the bottom of a band with an effective bandwidth determined by J < t.

To study polaronic effects in systems exhibiting besides strong antiferro-
magnetic exchange a substantial EPI, the Hamiltonian (5.39) is supplemented
by a Holstein-type interaction term:

(ﬁm = 1 — fim denotes the local density operator of the spinless hole). The
resulting HtJM (5.40) takes the coupling to the hole as dominant source of
the particle-lattice interaction. In the cuprate context an unoccupied site, i.e.,
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a hole, corresponds to a Zhang-Rice singlet [398] formed by Cu3d,2_,» and
O 2p,, hole orbitals.

In the framework of HHM, Zhong and Schuttler [399] demonstrated for the
nearly half-filled band that the presence of antiferromagnetic spin correlations
can cause polaronic carrier self-localization and strongly anharmonic lattice
potential, already at moderate electron—phonon coupling strengths A ~ 0.2—
0.4. The anharmonic effects were analyzed in the framework of the Holstein
and HHM models through a strong-coupling expansion up to fourth order in
the hopping integrals [400]. Anharmonicity favors superconductivity relative
to charge-density-wave order. Fehske et al. [401] showed that the Coulomb
repulsion shifts the self-trapping transition to lower EPI strength, and the
effective polaron mass below the transition is enhanced.

The formation of hole pairs in the planar t-J model was studied in the
presence of in-plane (breathing modes) and out-of-plane (buckling modes)
displacements [402], where strong evidence in favor of a stabilization of the
two-hole bound pair by out-of-plane vibrations of the in-plane oxygens was
found. On the contrary, the breathing modes weaken the binding energy of
the hole pair. The tunneling dynamics of dopant-induced hole polarons that
are self-localized by electron—phonon coupling in a two-dimensional antiferro-
magnet was studied by Yonemitsu et al. [403] using HtJM. Antiferromagnetic
spin correlations in the original many-electron Hamiltonian are reflected by an
attractive contribution to the first-neighbor charge interaction and by Berry
phase factors that determine the signs of effective polaron tunneling matrix
elements with implications for the doping-dependent isotope effect, pseudo-
gap, and T, of a superconducting polaron-pair condensate of the cuprate
superconductors. More recently, self-localization of holes in HtJM was studied
using ED and DQMC [35,58,404,405]. It was shown that the critical electron—
phonon coupling decreases with increasing J. The spin correlation functions
in the localized region can be understood within a percolation picture where
antiferromagnetic order persists up to a substantial hole doping [405]. EPI can
also affect phase separations in the form of tiles and stripe phases inherent
for the t-J model. The stripes are stabilized by half-breathing modes, while
the tiles arise due to the development of extended breathing modes [406].

EPI itself and phonons are also affected by the electron—electron correla-
tions. In the weak- and intermediate-correlation regimes, one finds that the
on-site Coulomb interaction U acts to effectively suppress EPI due to screen-
ing [292, 407]. However, entering the strong-correlation regime, EPI stops
decreasing and begins to substantially increase as a function of U, leading to an
effective EPI which is peaked in the forward direction [407]. The phonon prop-
agator shows a characteristic softening near the metal to bipolaronic transition
but there is very little softening on the approach to the Mott transition [408].
Importantly, the interaction with c-axis polarized optical phonons in cuprates
remains virtually unscreened since a poor mobility of carriers perpendicular to
the CuOs planes, so that the Frohlich EPT remains strong at any doping [59)].
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Other types of EPIs, in particular SSH interaction was also studied
in strongly correlated systems [409]. The phase diagram of a Hamiltonian
both with on-site repulsion between electrons and with hopping probabili-
ties which depend on dynamically varying separations of neighboring lattice
sites was obtained as a function of density, electron—electron, and electron—
phonon interaction strengths. The superconducting regime is characterized by
a pattern of short and long bonds correlated with resonating pair hopping.

The foregoing discussion is by no means complete. The theoretical works
on strongly correlated EPI systems are one of the most hot topics in con-
densed matter physics, and many of them are currently in progress. Generally
speaking, the changes of the quasiparticle properties due to the combined
effects of hole-phonon/(pseudo)magnon correlations are expected to be very
complex and have to be addressed using numerical techniques such as ED on
finite lattices with the phonon truncated Hilbert space, QMC and DQMC.
Dressed hole quasiparticles will show the characteristics of both “lattice” and
“magnetic” (spin) polarons (for recent comprehensive reviews, see [35,58]).



6

Polarons and Bipolarons in Advanced
Materials

EPIs have been shown to be relevant in cuprate and other high-temperature
superconductors through, e.g., isotope substitution experiments [197-199],
high-resolution angle-resolved photoemission (ARPES) [201,382,383], a num-
ber of earlier optical [378,384,389], neutron scattering [388] and more recent
inelastic scattering [385], and some other measurements [410]. In colossal
magnetoresistance (CMR) manganites, isotope substitutions [390], X-ray and
neutron scattering spectroscopies [379,380], and a number of other experi-
ments also show a significant effect of EPI on the physical properties (for
review, see [411]). Therefore, it has been suggested that the long-range [13]
and/or the molecular-type (e.g., [210]) EPIs play significant role in high-
temperature superconductors (see [11,59, 211, 216], and references therein),
and in CMR manganites (see [218,219,377], and references therein).

6.1 Polarons in High-Temperature Superconductors

There are still many theories that attempt to explain the phenomenon of
high-temperature superconductivity in cuprates and other related materials.
In general, the pairing mechanism of carriers could be not only “phononic” as
in the BCS theory [342] (left-hand upper corner in Fig.6.1) or its strong-
coupling bipolaronic extension [130] (right-hand upper corner in Fig.6.1),
but also “excitonic” [412,413], “plasmonic” [414,415], “magnetic” [416,417],
“kinetic” [418], or purely repulsive Coulomb due to a mirror-nested Fermi
surface [419]. The BCS theory like any mean-field theory is rather universal,
so that it describes well the cooperative quantum phenomenon of supercon-
ductivity even with these nonphononic mechanisms, if the coupling is weak
(left-hand lower corner in Fig.6.1). The main motivation behind these con-
cepts is that high superconducting critical temperature, Tc, could be achieved
by replacing phonons in the conventional BCS theory by higher-frequency
bosonic modes, such as plasmons, spin waves (pseudomagnons), or even by the
direct Coulomb repulsion combined with unconventional pairing symmetries.

A.S. Alexandrov and J.T. Devreese, Advances in Polaron Physics, Springer Series in
Solid-State Sciences 159,
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Fig. 6.1. A few theories of high-temperature superconductivity. The highest Tt is
predicted in the BCS to bipolaron crossover [130] for the phonon pairing mechanism
(upper half of the diagram). Lower half of the diagram represents a number of
nonphononic mechanisms of pairing

Actually, following original proposal by P.W. Anderson [293], many
authors [420] assumed that the electron—electron interaction in novel super-
conductors is very strong but repulsive and it provides high-T, without any
phonons (right-hand lower corner in Fig.6.1). A motivation for this concept
can be found in the earlier work by Kohn and Luttinger [421], who showed
that the Cooper pairing of repulsive fermions is possible. However, the same
work clearly showed that T, of repulsive fermions is extremely low, well below
the mK scale. Nevertheless, the BCS and BCS-like theories (including the
Kohn-Luttinger consideration) heavily rely on the Fermi-liquid model of the
normal state, which fails in many high-temperature superconductors. If the
normal state is not the Fermi liquid, then there is no direct reason to reject
the assumption. In fact, there is little doubt that strong on-site repulsive
correlations (Hubbard U) are an essential feature of the cuprates. Indeed,
all undoped cuprate compounds are insulators with the insulating gap about
2eV or so. But if the repulsive correlations are weak, one would expect a
metallic behavior of a half-filled d-band of copper in cuprates, or, at most, a
much smaller gap caused by lattice and spin distortions (i.e., due to charge
and/or spin density waves [422,423]). It is a strong on-site repulsion of d-
electrons in cuprates which results in their parent insulating “Mott” state.
When on-site correlations are strong and dimensionality is low, there is an
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alternative to the usual Fermi liquid. In Anderson’s resonating-valence-bond
(RVB) model [293], the ground state supports “topological solitons” (the so-
called spinons and holons), such as occur in one-dimensional Hubbard model.
Theoretically, holons could be paired by a superexchange interaction without
any additional glue like phonons or spin waves [424].

To discriminate one theory with respect to another, one has to rely on
experimental facts and/or on exact theoretical results. Some variational Monte
Carlo (VMC) simulations with a (projected) BCS-type trial wave function
(see, e.g., [420] and references therein), and a number of other analytical
and numerical studies appeared to back up superexchange pairing. However,
recent studies by Aimi and Imada [425], using an advanced sign-problem-
free Gaussian—Basis Monte Carlo (GBMC) algorithm, have shown that these
variational methods, as well as other approximations, overestimated the nor-
mal state energy and therefore overestimated the condensation energy by at
least an order of magnitude, so that the Hubbard model does not account
for high-temperature superconductivity. The ground state of the model is a
normal Fermi liquid with no superconductivity and no stripes. This remark-
able result is in line with earlier numerical studies using the auxiliary-field
quantum (AFQMC) [426] and constrained-path (CPMC) [427] Monte Carlo
methods, none of which found superconductivity in the Hubbard model.

On the other hand, a growing number of observations point to the possibil-
ity that high-T, cuprate superconductors [428] may not be conventional BCS
superconductors [342]. Some of their features could be attributed to the Bose—
Einstein condensation (BEC) of real-space mobile bipolarons [9,25,59,429]. A
possible fundamental origin of such strong departure of the cuprates from
conventional BCS behavior is the unscreened Frohlich EPI, providing the
polaron level shift E}, of the order of 1eV [59,281,377], routinely neglected in
the Hubbard U and t-J models [420]. This interaction with c-axis polarized
optical phonons is virtually unscreened because the upper limit for the out-
of-plane plasmon frequency (<200 cm ™! [430]) is well below the characteristic
frequency of optical phonons, wy ~ 400-1,000cm~". Since screening is poor,
the magnetic interaction remains small compared with the Frohlich EPI at
any doping of cuprates. Consequently, to build an adequate theory of high-
temperature superconductivity, the long-range Coulomb repulsion and the
unscreened EPI should be treated on an equal footing with the short-range
Hubbard U. When these interactions are strong compared with the kinetic
energy of carriers, this Coulomb—Frohlich model predicts the ground state in
the form of mobile intersite bipolarons [59,311] (see Sect.4.4).

Most compelling evidence for (bi)polaronic carries in novel superconduc-
tors is the discovery of a substantial isotope effect on the carrier mass [197—
199] predicted for the (bi)polaronic conductors in [196]. High-resolution
ARPES [201, 382, 383] provides another piece of evidence for the strong
EPT in cuprates [431] apparently with c-axis polarized optical phonons [383].
These as well as optical [378,384, 389], neutron scattering [385, 388], tunnel-
ing [432] spectroscopies of cuprates, and recent pump-probe experiments [410]
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unambiguously show that lattice vibrations play a significant though uncon-
ventional role in high-temperature superconductors. The interpretation of the
optical spectra of high-T, materials (measured in [338]) in the normal phase,
and of manganites (measured in [339]) as due to many-polaron absorption [92]
strengthens the view that the Frohlich EPI is important in those structures.
Operating together with a shorter-range deformation potential and molecular-
type (e.g., Jahn-Teller [216]) EPIs, the Frohlich EPT readily overcomes the
Coulomb repulsion at a short distance about the lattice constant providing
small but yet mobile bipolarons (Sect.4.4).

A parameter-free estimate of the Fermi energy using the magnetic field
penetration depth found a very low value, ep < 100meV [433] clearly sup-
porting the real-space (i.e., individual) pairing in cuprate superconductors.
There is strong experimental evidence for a gap in the normal state elec-
tron density of states of cuprates [25], which is known as the pseudogap.
Experimentally measured pseudogaps of many cuprates are about 50 meV or
larger [434,435]. If one accepts that the pseudogap is about half of the pair
binding energy [286], then the condition for real-space pairing is well satisfied
in most cuprates (typically r, ~ 0.2-0.4 nm).

Also, magnetotransport and thermal magnetotransport data strongly sup-
port preformed bosons in cuprates. In particular, many high-magnetic-field
studies revealed a non-BCS upward curvature of the upper critical field Heo(T")
(see [436] for a review of experimental data), in accordance with the theoretical
prediction for the Bose—Einstein condensation of charged bosons in the mag-
netic field [437]. The Lorenz number, L = e%k,/To, differs significantly from
the Sommerfeld value L, = 72/3 of the standard Fermi-liquid theory, if carri-
ers are double-charged bosons [438]. Here, k. and o are electron thermal and
electrical conductivities, respectively. Alexandrov and Mott [438] predicted
a rather low Lorenz number for bipolarons, L =~ 0.15L,, due to the double
elementary charge of bipolarons, and also due to their nearly classical distribu-
tion function above T,. Direct measurements of the Lorenz number using the
thermal Hall effect [439] produced the value of L just above T, about the same
as predicted by the bipolaron model, and its strong temperature dependence.
This breakdown of the Wiedemann—Franz law is apparently caused by excited
single polarons coexisting with bipolarons in the thermal equilibrium [440].
Also, unusual normal state diamagnetism uncovered by torque magnetome-
tery [441,442] has been convincingly explained as the normal state (Landau)
diamagnetism of charged bosons [443].

Despite clear evidence for the existence of polarons in cuprate supercon-
ductors, no consensus currently exists concerning the microscopic mechanism
of high-temperature superconductivity. As it has been emphasized in a number
of early (1990s) and more recent studies of HHM and HtJM, the antiferro-
magnetic spin system promotes doping-induced polaron formation (Sect. 5.6).
On the other hand, some works (e.g., [420]) suggest that EPI and polaron
formation do not only not help, but hinder the pairing instability.
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6.2 Polarons in Colossal Magnetoresistance Oxides

Ferromagnetic oxides, in particular manganese perovskites, have very large
magnetoresistance near the ferromagnetic transition (for reviews, see [411,
444]). The effect observed in these materials was termed “colossal” magnetore-
sistance (CMR) to distinguish it from the giant magnetoresistance in metallic
magnetic multilayers. The discovery raised expectations of a new generation
of magnetic devices, and is a focus of extensive research aimed at describing
the effect. Significant progress has been made in understanding the properties
of CMR manganites, but many questions remain.

The ferromagnetic metal-insulator transition in manganites has long been
thought as a consequence of the so-called double exchange mechanism (DEX),
which results in a varying bandwidth of electrons in the Mn®* d-shell as a
function of temperature [445,446]. Crystal fields split the Mn 3d orbitals
into three localized ty, orbitals, and two higher energy e, orbitals which are
hybridized with the oxygen p orbitals. Each manganese ion has a core spin of
S =3/2, and a fraction (1 —z) (e.g., in La;_,Sr,MnO3) have extra electrons
in the e, orbitals with spin parallel to the core spin due to the Hund’s rule.
The electron can hop to an adjacent Mn-site unoccupied e, orbital with the
probability that varies with the angle between the core spins.

However, it has been pointed out that DEX alone cannot account for CMR,
in La;_,Sr,MnO3 [219], so that lattice polarons should be involved due to
strong EPT arising from the Jahn-Teller effect [219, 220,447, 448]. A tight-
binding parametrization of LDA band theory combined with a dynamical
mean-field treatment of correlations showed that manganites are character-
ized by a moderate Hund’s coupling, and magnetic-order-driven changes in
the kinetic energy may not be the cause of the observed “colossal” magne-
toresistive and multiphase behavior [449]. The basic idea of [219] is that the
electron—phonon coupling constant A is large in the high-temperature para-
magnetic state and the carriers are polarons, while the ferromagnetic order
increases the bandwidth and thus decreases \ sufficiently for metallic behavior
to occur below the Curie temperature T¢. Indeed, there is strong experimental
evidence for exceptionally strong EPI in doped manganites from the isotope
effects [390,450], the Arrhenius behavior of the drift and Hall mobilities [451]
in the paramagnetic phase above T, and many other experiments. Millis
et al. [219,448] and a great number of subsequent theoretical studies have
combined DEX with the Jahn-Teller EPI in d-states arriving at the conclu-
sion that the low-temperature ferromagnetic phase is a spin-polarized metal
while the paramagnetic high-temperature phase is a polaronic insulator (for
a review, see [218]).

A wide variety of experimental results and theoretical investigations have
emphasized that competing physical interactions can cause the spontaneous
emergence of electronic nanometer-scale structures in transition metal oxides
like manganites [372]. Yunoki et al. [452], using a Kondo lattice Hamiltonian
with ferromagnetic Hund’s coupling as a model for manganites, identified a
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phase separation between hole-undoped antiferromagnetic and hole-rich fer-
romagnetic regions. Disorder on exchange and hopping amplitudes of the
nondisordered strongly correlated system induces large coexisting metallic
and insulating clusters with equal electronic density and percolative charac-
teristics of manganites and related compounds [453]. Relevance of cooperative
lattice effects and stress fields in phase separation was emphasized [396, 454].

Although it has been generally accepted that strong EPI plays an impor-
tant role in manganites, a quantitative explanation of CMR, has been lacking.
The very nature of charge carriers in the ferromagnetic metallic state and
in the paramagnetic state is still under intensive debate [218,450]. Some low-
temperature optical [455,456], electron energy loss spectroscopy (EELS) [457],
photoemission [458], and thermoelectric [459] measurements showed that the
ferromagnetic phase of manganites is not a conventional metal. In particular,
broad incoherent spectral features and a pseudogap were observed in ARPES.
EELS [457], and O 1s X-ray absorption spectroscopy [460] consistently show
that doped holes in manganites are of oxygen p character as expected for
doped charge-transfer insulators, rather than d(Mn3T) electrons. CMR has
been observed in the ferromagnetic pyrochlore manganite TloMnoO7 [461],
which has neither the mixed valence for DEX magnetic interaction nor the
Jahn-Teller cations such as Mn®*, raising a question of whether DEX com-
bined with the Jahn—Teller EPI remains a relevant mechanism of CMR and
ferromagnetism [377,462]. The existence of polarons has been demonstrated by
atomic pair distribution [463], X-ray and neutron scattering studies [464-466)
both above and well below T¢ [467].

These and more recent experiments (e.g., the observation of that some
samples of ferromagnetic manganites manifest an insulator-like optical con-
ductivity even well below T¢ [468]) further rule out DEX as the mechanism
of CMR. The earlier of the above observations [390, 455-457, 460, 461] led
to a novel theory of ferromagnetic/paramagnetic phase transition and CMR,
based on the so-called current-carrier density collapse (CCDC) [377]. Accord-
ing to Alexandrov and Bratkovsky [377], one needs to consider the formation
of small bipolarons in the paramagnetic state to explain CMR quantitatively.
In the framework of CCDC p-holes are bound into heavy bipolarons above
Tc due to the Frohlich EPI. The resistivity peak near the transition and
CMR are the result of the magnetic pair breaking below T, caused by the p—
d spin-exchange interaction. Different from cuprates, oxygen-hole bipolarons
are much heavier in manganites because the Frohlich EPI is stronger [281].
They are readily localized by disorder, so it is mainly thermally excited single
polarons that conduct in the paramagnetic phase. Upon temperature lowering
single polarons polarize manganese spins at T¢ via the exchange interaction
Jpd, and the spin polarization of manganese breaks the bipolaronic singlets
creating a spin-polarized polaronic metal.

CCDC quantitatively explained the temperature dependence of resistivity
and CMR in the experimental range of external magnetic fields [377,469-471].
The oxygen isotope effect was observed in the low-temperature resistivity of
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Lag.75Cag.25 MnO3 and Ndg.7Srg.3MnO3 and explained with polaronic carri-
ers in the ferromagnetic phase [200]. The current-carrier density collapse was
observed in the Hall data in Lag g7Cag.33MnO3 and Lag ¢75r0.33MnO3 [472],
and the first-order phase transition at T¢, predicted by the theory [377], was
established in the specific heat measurements [473]. Importantly, the charac-
ter of the magnetic phase transition in TlyMnsO7 pyrochlores has also been
determined to be the first order [474]. CCDC also provided a simple expla-
nation of the coexistence of high- and low-resistive phases as a mixture of
the bipolaronic paramagnetic insulator and the polaronic ferromagnetic metal
due to unavoidable disorder in doped manganites [469]. The concept of pola-
ronic metal in ferromagnetic manganites [200,377] has been substantiated by
the angle-resolved photoemission spectroscopy data for the bilayer manganite
Laj 2Sry sMnyO7, where a polaron metallic state below T¢ has been clearly
observed [475]. The observation of the pseudogap and nodal quasiparticles
in ARPES of colossal magnetoresistive manganites [476], which have been
considered as a characteristic feature of the copper oxide, further substanti-
ates the analogy [477] between high-temperature superconducting and CMR
oxides.

Nevertheless like in the case of the cuprates, there is still significant amount
of work arguing that the major features of CMR manganite phenomenology
can be reproduced by local spin degrees of freedom, coupled via Hund’s rule
interaction to a strongly correlated conduction electron system, where EPI
plays only a supporting role [218,478,479].

6.3 Polarons in Nanostructures

6.3.1 Polaron Effects in Semiconductor Quantum Dots

Polarons in low-dimensional semiconductor structures and quasi-zero-
dimensional systems like individual molecules have received significant atten-
tion in recent years. Quite generally, confinement enhances EPI and the
tendency to polaron formation. Here, we touch upon just a few theoretical
results on polaronic effects in nanostructures referring the reader to more
comprehensive reviews and books [480-482].

A new aspect of the polaron concept has been investigated for semiconduc-
tor structures at nanoscale: the exciton—phonon states are not factorizable into
an adiabatic product Ansatz, so that a nonadiabatic treatment is needed [483].
Considerable deviations of the oscillator strengths of the measured phonon-
peak sidebands from the standard FC progression find a natural explanation
within the nonadiabatic approach [483-485].

Experimental evidence of the enhanced phonon-assisted absorption due to
effects of nonadiabaticity has been provided by the multiphonon photolumi-
nescence (PL) spectra observed under selective excitation in self-assembled
InAs/GaAs quantum dots [486] and by the photoluminescence excitation
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(PLE) measurements on single self-assembled InAs/GaAs [487] and InGaAs/
GaAs [488] quantum dots. The polaron concept was also invoked for the expla-
nation of the PLE measurements on self-organized In,Ga;_,As/GaAs [489]
and CdSe/ZnSe [490] quantum dots.

The stability of a strong-coupling singlet bipolaron was studied in two-
and three-dimensional parabolic quantum dots using the Landau—Pekar vari-
ational method [491]. It was shown that the confining potential of the quantum
dot reduces the stability of the bipolaron. A theory of bipolaron states in a
spherical parabolic potential well was further developed applying the Feynman
variational principle. The basic parameters of the bipolaron ground state (the
binding energy, the number of phonons in the bipolaron cloud, and the bipo-
laron radius) were studied as a function of the radius of the potential well [492].
It was found that confinement can enhance the bipolaron binding energy, when
the radius of a quantum dot is of the same order of magnitude as the polaron
radius. A unified insight into the stability criterion for bipolaron formation in
low-dimensionally confined media was provided by Senger and Ercelebi [493]
using an adiabatic variational method for a pair of electrons immersed in
a reservoir of bulk LO phonons and confined within an anisotropic parabolic
potential box. Bipolaron formation in a two-dimensional lattice with harmonic
confinement, representing a simplified model for a quantum dot, was investi-
gated by means of QMC [494]. This method treats all interactions exactly and
takes into account quantum lattice fluctuations. Calculations of the bipolaron
binding energy reveal that confinement opposes bipolaron formation for weak
electron—phonon coupling but abets a bound state at intermediate to strong
coupling.

The ground-state energy and the optical conductivity spectra for a sys-
tem with a finite number of interacting arbitrary-coupling large polarons in a
spherical quantum dot were calculated using the path-integral formalism for
identical particles [495-498]. Klimin et al. [499] have extended the memory-
function approach to a system of arbitrary-coupling interacting polarons,
confined to a parabolic potential. Importantly, the interplay of EPI and the
Coulomb correlations within a confinement potential can lead to the cluster-
ing of polarons in multipolaron systems for strong EPI. The shell structure
for a system of interacting polarons in a quantum dot is clearly revealed when
analyzing the addition energy and the first-frequency moment of the optical
conductivity.

Using the many-body path-integral formalism, the ground-state energy of
an N-polaron system has been derived [500] at arbitrary-coupling strength
in a confinement potential which is a combination of a parabolic potential
and of a potential induced by a background charge. The many-body path-
integral variational principle provides a rigorous upper bound for the ground-
state energy of N polarons taking into account both the Fermi statistics and
the Coulomb interaction between fermions. For finite IV, the dependencies of
the ground-state energy and of the polaron contribution to the ground-state
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energy on the average fermion density in a quantum dot are very similar to
those for a polaron gas in bulk.

Finally, we mention the exciton—polaron formation in nanostructures and
quantum-light sources studied recently by QMC in lattice models with short-
or long-range carrier—phonon interaction (see [501] and references therein).

6.3.2 Correlated Polaron Transport Through Molecular
Quantum Dots

It has been experimentally demonstrated that the low-bias conductance of
molecules is dominated by resonant tunneling through coupled electronic and
vibronic levels [502]. Conductance peaks caused by electron—vibron interac-
tions have been seen in Cg [503]. Different electron—vibron interaction effects
on the tunneling through molecular quantum dots (MQDs) have been stud-
ied (see, e.g., [504-509], and references therein). In the pioneering [506,509]
and subsequent studies of resonant-tunneling transmissions, EPI produced
transmission sidebands peaks.

While correlation effects in transport through metallic quantum dots with
repulsive electron—electron interactions received considerable attention in the
past, and continue to be the focus of intense investigations, much less has been
known about a role of attractive correlations between small polarons mediated
by EPI in MQD. In the framework of the negative Hubbard U model [510], it
has been found that the attractive electron correlations within the molecule
could lead to a molecular switching effect where I-V characteristics have two
branches with high and low current at the same bias voltage. The switching
phenomenon has also been predicted by a theory of correlated polaron trans-
port with a full account of both the Coulomb repulsion and EPI in MQD
weakly coupled with electrodes [504, 505]. Alexandrov and Bratkovsky [504]
have shown that while the phonon sidebands significantly modify the shape
of hysteretic I-V curves in comparison with the negative-U Hubbard model,
switching remains robust. It shows up at sufficiently low temperatures when
the effective interaction of polarons in MQD is attractive and the molecular
level is multiply degenerate. Importantly, the switching has not been found in
non- and twofold degenerate MQDs either weakly [504] or strongly [511,512]
coupled with electrodes.

When the polaronic energy shift is very large, the effective charging energy
of molecules can become negative, favoring ground states with even numbers
of electrons. Koch et al. [513] have shown that charge transport through such
molecules is dominated by tunneling of bipolarons which coexists with single-
electron cotunneling. In asymmetric junctions, pair tunneling can be used
for gate-controlled current rectification and switching. Electronic transport
measurements of some single-molecule transistor devices [514] suggest that
alternative switching mechanisms rather than (bi)polaronic effects could be
involved in certain measurement configurations (see also [482,515]).
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Current Status of Polarons and Open Problems

At present, the basic properties of single polarons are well understood the-
oretically, and to a large extent they are analytically under control at all
coupling. It is remarkable how the Frohlich continuum polaron, one of the
simplest examples of a Quantum Field Theoretical problem, as it basically
consists of a single fermion interacting with a scalar Bose field, has resisted
full analytical solution at all coupling since ~1950, when its Hamiltonian was
first written. Although a mechanism for the optical absorption of Froéhlich
polarons was already proposed a long time ago [73,98], some subtle character-
istics were only clarified very recently [101] by combining numerical DQMC
studies [100] and improved analytical methods [66,112] (Sect. 2.4.6). Of special
interest are several sum rules derived for the optical conductivity spectra of
arbitrary-coupling Frohlich polarons [118,119]. A variety of magneto-optical
and transport experiments were successfully analyzed with Froéhlich polaron
theory (see, e.g., [74,83,106,516], and references therein).

The charge carriers in a rich variety of systems of reduced dimension
and dimensionality (submicron- and nanostructures including heterojunc-
tions, quantum wells, quantum wires, quantum dots, etc.) turn out to be
Frohlich polarons. Several scaling relations were derived [121], which connect
polaron characteristics (the self-energy, the effective mass, the impedance, and
the mobility) in different dimensions.

The Frohlich polaron has led to many generalizations. The stability
region of the Frohlich large bipolaron is now firmly established [296,301,302]
(Sect. 4.3). Here, the surprise is double (cf. [302,310]) (a) only in a very lim-
ited sector of the phase diagram (Coulomb repulsion vs. «), the bipolaron
is stable and (b) most traditional Frohlich polaron materials (alkali halides
and the like) lie completely outside (and “far” from) this bipolaron stability
sector, but several high-T, superconductors lie very close and even inside this
very restricted area of the stability diagram. This should be a very hopeful
sign for bipolaronic quasiparticles in the high-T. superconductors.

The many-body theory for continuum polarons has been established for
weak coupling and it became clear how — in this limit — this problem can be
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reduced to the study of the structure factor of a uniform electron gas [320]. In
materials like high-T. cuprates and manganites, a gas of interacting Frohlich
polarons has been invoked to quantitatively analyze optical experiments [92].
For stronger coupling, the problem remains highly cumbersome. The opti-
cal response of a many-polaron gas was analyzed in [341] using variational
parameters of a single-polaron Feynman model. Progress has been made using
path-integral approaches to the many-fermion system, that — inherently — is
intricate to treat because of the “sign problem” that goes with it.

The richness and profundity of Landau—Pekar’s polaron concept is further
illustrated by its extensions to lattice polarons. Even the simplest two-site
polaron model by Holstein (Sect. 3.1) proved to be very useful for a qualitative
understanding of nontrivial features of the polaron problem, and for obtaining
some novel analytical and semianalytical results (see, e.g., [138,151]).

The “1/A” expansion technique based on the Lang—Firsov transformation
(Sect.3.2.1) and unbiased numerical analysis of the finite and infinite Hol-
stein and Frohlich models combining Lanczos diagonalizations of clusters,
density matrix renormalization group, cluster perturbation theory techniques,
DMFT and different QMC algorithms, allowed for a description of properties
of a single lattice polaron and a lattice bipolaron. The Lang-Firsov canonical
transformation [19] was proven particularly instrumental in calculation of dif-
ferent kinetic and optical coefficients, which can be represented as expansions
in powers of the unrenormalized hopping integral ¢ (Sect. 3.8). Sometimes, it
is possible to sum the expansion and get results, which are valid for arbitrary
values of parameters providing the understanding of the crossover region from
the Boltzmann kinetics to thermally activated hopping [234].

Recent ED [35], CTQMC [184], and DQMC [58] techniques allow for
determination of the ground state and excited states of lattice polarons with
arbitrary precision in the thermodynamic limit for any dimension and any
type of lattices (Sect.3.4.2). The spectral properties (e.g., photoemission),
optical response and thermal transport, as well as the dynamics of polaron
formation in the Holstein model have been numerically analyzed for all EPI
strengths and phonon frequencies, including the intermediate-coupling regime
(see Sect. 3.8 and [35]). CTQMC methods have proven to be powerful and ver-
satile tools providing unbiased results for the polaron properties in any lattices
for any-range EPI, including Jahn—Teller polarons (Sect. 3.4). Combining the
Lang—Firsov transformation and quantum Monte Carlo simulations allows for
an exact sampling without autocorrelations, which proves to be an enormous
advantage for small phonon frequencies or low temperatures [177].

Importantly, variational and numerical techniques confirmed that the
Frohlich and Holstein—Lang—Firsov theories are asymptotically exact in the
weak, A < 1, and strong-coupling, A > 1, regimes, respectively, and the
polaron formation represents a continuous crossover of the ground state
(Sect. 3.4). The crossover is related to the exponential increase of the effective
mass, and the band narrowing with a strongly suppressed electronic quasi-
particle residue and the Drude weight, accompanied by an increase of the
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incoherent spectral weight (Sect.3.8.3). These features strongly depend on
the phonon dispersion [141], EPI radius [59, 60, 269, 270], lattice geome-
try [37], and are more pronounced in higher dimensions [37,269]. Remark-
ably, the unscreened Frohlich EPI provides relatively light lattice polarons
(Sect. 3.3), which are several orders of magnitude lighter than the Holstein
small polarons [59, 60] at strong coupling. This classification of weak- and
strong-coupling regimes still leaves room for Frohlich polarons of not only
weak but also intermediate and — in the theoretical analysis — of strong cou-
pling classified with respect to the Frohlich electron—phonon coupling constant
a (Sect. 2.3).

While the single polaron has been actively researched for a long time
and is now well understood, the multipolaron physics has gained particu-
lar attention in the last two decades. It has been found — unexpectedly for
many researchers — that the Migdal-Eliashberg theory breaks down already
at A ~ 1 for any adiabatic ratio wg/Er. The effective parameter \wo/Er
becomes large at A 2 1 since the bandwidth is narrowed and the Fermi
energy, Er, is renormalized down exponentially [125,130]. Extending the BCS
theory toward the strong interaction between electrons and ion vibrations,
a charged Bose gas of tightly bound small bipolarons was predicted [271],
with a further prediction that the highest superconducting transition temper-
ature is attained in the crossover region of EPI strength between the BCS-like
polaronic (Sect.5.3) and bipolaronic (Sect. 5.5) superconductivity [130]. Sub-
sequent studies of the Holstein-Hubbard model found sufficiently mobile
two-site bipolarons [183,277,288,289] even in this model, generally unfavor-
able for tunneling. Taking into account that many advanced materials with low
density of free carriers and poor mobility are characterized by poor screening
of high-frequency optical phonons, the Coulomb—Fréhlich multipolaron lattice
model was introduced and related to high-temperature cuprate superconduc-
tors [59,311]. The large Hubbard U and intersite Coulomb repulsions and the
unscreened Frohlich EPI provide “superlight” but small intersite bipolarons
(Sect. 4.4). More recent CTQMC simulations of intersite small bipolarons in
the Frohlich—Coulomb model [312] have found such quasiparticles in a wide
parameter range with achievable phonon frequencies and couplings. They
could have a superconducting transition in excess of room temperature.

Although a rather complete understanding of the Frohlich and Holstein
polarons and bipolarons in the weak, crossover and strong-coupling regimes
is now achieved in the dilute limit, the multipolaron problem remains a
challenging one when EPI competes with sometimes strong electronic corre-
lations (Sect. 5.6). The corresponding microscopic models contain (extended)
Hubbard, Heisenberg, or double-exchange terms, and maybe also a coupling
to orbital degrees of freedom along with strong EPI, so that even numeri-
cal solutions with the same precision as in the dilute (bi)polaron case are
often problematic. A number of ED, QMC, DMFT, and combined numer-
ical results give strong evidence that the tendency toward lattice polaron
formation is enhanced in strongly correlated electron systems due to a
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narrowing of the electron band caused by strong correlations (see Sect.5.6
and reviews [35,176,177,218] for more details). Not only antiferromagnetic
correlations enhance EPI, resulting in polaron formation for moderate cou-
pling strength, but also EPI strongly enhances spin correlations [152, 517].
Some of these studies show that increasing carrier density could be accom-
panied by a dissociation of polarons, leading to normal metallic behavior in
the intermediate-coupling adiabatic regime [176] that is reminiscent of the
“overcrowding” effect hypothesized by Mott [518]. On the other hand for
parameters favoring small polarons, no such density-driven crossover occurs
in agreement with simple analytical results [125] (see Sect.5.2). A more thor-
ough investigation of these models will definitely be a great challenge in the
near future.

However, exactly solvable models might give a rather limited, sometimes
misleading, description of polarons in real systems. Qualitative inconsisten-
cies can arise when coupling is assumed to be just to one phonon mode,
often taken as dispersionless, and ad hoc approximations for EPI matrix ele-
ments are applied. Moreover, electronic nanoscale disorder and long-range
strain fields can interweave with the microscopic mechanisms of polaronic
transport [392]. Hence, ab initio calculations of the phonon spectrum, EPI,
and polaron properties beyond the adiabatic Born—-Oppenheimer approxima-
tion are required in many cases for which the theory and experiment can be
compared in detail [519].
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