
Undergraduate Lecture Notes in Physics

Alessandro Bettini

A Course 
in Classical 
Physics 1—
Mechanics



Undergraduate Lecture Notes in Physics



More information about this series at http://www.springer.com/series/8917

Undergraduate Lecture Notes in Physics (ULNP) publishes authoritative texts covering
topics throughout pure and applied physics. Each title in the series is suitable as a basis for
undergraduate instruction, typically containing practice problems, worked examples, chapter
summaries, and suggestions for further reading.

ULNP titles must provide at least one of the following:

• An exceptionally clear and concise treatment of a standard undergraduate subject.
• A solid undergraduate-level introduction to a graduate, advanced, or non-standard subject.
• A novel perspective or an unusual approach to teaching a subject.

ULNP especially encourages new, original, and idiosyncratic approaches to physics teaching
at the undergraduate level.

The purpose of ULNP is to provide intriguing, absorbing books that will continue to be the
reader’s preferred reference throughout their academic career.

Series editors

Neil Ashby
Professor, University of Colorado, Boulder, CO, USA

William Brantley
Professor, Department of Physics, Furman University, Greenville, SC, USA

Matthew Deady
Professor, Bard College Physics Program, Annandale-on-Hudson, NY, USA

Michael Fowler
Professor, Department of Physics, University of Virginia, Charlottesville, VA, USA

Morten Hjorth-Jensen
Professor, University of Oslo, Oslo, Norway

Michael Inglis
Professor, SUNY Suffolk County Community College, Long Island, NY, USA

Heinz Klose
Professor Emeritus, Humboldt University, Oldenburg, Niedersachsen, Germany

Helmy Sherif
Professor, Department of Physics, University of Alberta, Edmonton, Alberta, Canada

http://www.springer.com/series/8917


Alessandro Bettini

A Course in Classical
Physics 1—Mechanics

123



Alessandro Bettini
Dipartimento di Fisica e Astronomia
Università di Padova
Padova
Italy

ISSN 2192-4791 ISSN 2192-4805 (electronic)
Undergraduate Lecture Notes in Physics
ISBN 978-3-319-29256-4 ISBN 978-3-319-29257-1 (eBook)
DOI 10.1007/978-3-319-29257-1

Library of Congress Control Number: 2016934941

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland



Preface

This is the first in a series of four volumes, all written at an elementary calculus
level. The complete course covers the most important areas of classical physics
such as mechanics, thermodynamics, statistical mechanics, electromagnetism,
waves, and optics. The volumes result from a translation, an in depth revision and
update of the Italian version published by Decibel-Zanichelli. This first volume
deals with classical mechanics, including an introduction to relativity.

The laws of Physics, and more in general of Nature, are written in the language
of mathematics. The reader is assumed to know already the basic concepts of
calculus: functions, limits, and the differentiation and integration operations. We
shall however, without mathematical rigor, give the necessary information on
vectors and matrices.

Physics is an experimental science, meaning that it is based on the experimental
method, which was developed by Galileo Galilei in the seventeenth century. He
taught us, in particular, that to try to understand a phenomenon one must simplify as
much as possible the relevant working conditions, understanding which of the
aspects are secondary and eliminating them as far as possible. The understanding
process is not immediate, but rather it proceeds by trial and error, in a series of
experiments, which might lead, with a bit of fortune and a lot of thinking, to
discover the governing laws. Induction of the physics laws process goes back from
the observed effects to their causes, and, as such, cannot be purely logic. Once a
physical law is found, it is necessary to consider all its possible consequences. This
is now a deductive process, which is logical and similar to the mathematical one.
Each of the consequences, the predictions, of the law must then be experimentally
verified. If only one prediction is found to be false by the experiment, even if
thousands of them had been found true, it is enough to prove that the law is false.
This implies that we can never be completely sure that a law is true; indeed the
number of its possible predictions does not have limits, and in any historical
moment not all of them have been controlled. However, this is the price we must
pay in choosing the experimental method, which has allowed humankind to
advance in the past four centuries much more than in all the preceding millennia.
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Classical Mechanics is one of the big intellectual constructions of Physics. Its
laws are well established as well as their limits of validity. Consequently, it can be
exposed in an axiomatic way, as a chapter of mathematics. We can start from a set
of propositions whose axioms are assumed to be true by definition, and deduce
from them a number of theorems using only logics, as from the Euclid postulates
the Euclidean geometry theorems are deduced.

We shall not follow this path. The reason is that, while it allows a shorter and
quicker treatment and is also logically more satisfactory for somebody, it also hides
the inductive trial-and-error historical process through which the postulates and the
general laws have been discovered. These are arrival, rather than starting points.
This path has been complex, laborious, and highly nonlinear. Errors have been
made, hypotheses have been advanced that turned out to be false, but finally the
laws were discovered. The knowledge of at least a few of the most important
aspects of this process is indispensable to develop the mental capabilities that are
necessary to anybody contributing to the progress of natural sciences, whether they
pursue applications or teach them. This is one of the reasons for which we shall read
and discuss several pages of the two scientists that built the foundations of physics,
Galileo Galilei and Isaac Newton. A second reason is that reading the geniuses is
always an enlightening experience.

The Galilei and Newton mechanics that we shall discuss in this book is a
coherent set of laws able to describe a great number of physical phenomena. These
laws, however, have a limited validity. One type of limitations does not have a
fundamental nature. Some of the laws, as for example the laws of friction or the
elastic force are, consciously we can say, approximate. In other words, they provide
a description that we know to be valid only in a first approximation and provided
that the values of certain quantities are within some definite intervals (for example,
for the elastic force, for not too large strains). We shall always clearly state those
limits.

The limits of the second type are of a fundamental nature. A first limit of the
Galilei-Newton laws is met when the velocities are very high, high enough to get
close to the speed of light.

The latter is so high, 300,000 km/s, that the speeds of all objects of a common
experience, planets included, are extremely small in comparison. However, we can
reach velocities close to that of light in experiments with microscopic particles, like
atomic nuclei and electrons. In the universe there are double stars and double
black-holes, which are extremely dense and rotate about each other at very high
speeds, close to the speed of light. We observe that in these conditions the pre-
dictions of Newtonian mechanics are in contradiction with experience. Newtonian
mechanics is an approximation valid at velocities substantially smaller than the
speed of light. The theory that generalizes Newtonian mechanics, including
high-speed phenomena, is relativistic mechanics, which was developed between the
end of the nineteenth and the beginning of the twentieth centuries by, principally,
Hendrik Lorentz, Henry Poincaré, and Albert Einstein. We discuss the basic ele-
ments of relativistic mechanics in Chap. 6. They are not necessary for under-
standing of the following ones.
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Newton or relativistic mechanics, depending on the velocities of the problem, is
called classical mechanics. However, not even this is true in every circumstance; the
laws of classical mechanics do not describe correctly the very small-scale phe-
nomena, like vibrations and rotations of molecules, those of the electrons inside
atoms, the nuclear, and subnuclear phenomena. As a matter of fact, the bodies at
these microscopic scales behave in a completely different way than those of
everyday experience. The theory able to describe all the known phenomena both at
small and large scale is quantum physics. Its limit for large scales is classical
mechanics. The study of quantum physics not only requires mathematical instru-
ments more advanced than classical physics, but, even more importantly, cannot be
profitably studied without an in-depth knowledge of classical physics.
Consequently, this course is limited to classical physics. We shall however warn the
reader of the limit of validity, whenever necessary.

In this book we deal with the mechanics of a material point and of extended
bodies, in particular of the rigid ones. The mechanics of fluids will be one of the
objects of study in the second volume, together with their thermal properties.
Mechanical oscillations are treated here only in their most elementary aspects.
A deeper discussion will be given, together with electric oscillations in the fourth
volume.

We start the first chapter with introductory elements: the measurement of
physical quantities, the measurement units and their internationally adopted system,
the International System, reference frames, and basic concepts on vectors and
matrices. The second part of the first chapter deals with kinematics, which is the
mathematical description of motion, without reference to its causes. The second
chapter contains the fundamental laws of the material point (the simplest body) and
the basic concepts of mass (both the inertial and the gravitational masses), of force,
of momentum, of moment of a force, and of angular momentum. We introduce also
the concepts of work of a force, of energy, of power, and the energy conservation
principle. We work on these arguments mainly considering the two most usual
examples of force, weight and friction. At this point we have acquired the basic
laws of mechanics. Historically, these are the result of the work of G. Galilei and I.
Newton. It is important to have some knowledge of how these great authors came to
establish the laws of mechanics. For this purpose a few of their fundamental pages,
describing experiments and mathematical arguments, are reproduced and discussed.
The reader will see also how both authors expose the concepts in a scientific superb
language.

The third chapter describes the different forces, gives their mathematical
expressions, and discusses their limits of validity. We discuss important examples
of motion, in particular the circular and the oscillatory ones. We know now that the
different forces that we see in nature and that look at first sight very different can be
reduced to a very limited number of fundamental forces. The forces present at
macroscopic level, the level of classical mechanics, are different manifestations of
two basic ones: the gravitational and the electromagnetic forces. The latter will be
studied in the third volume of this course, the former in the fourth chapter of this
first book. As a matter of fact the study of gravitation has enormous historic and
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cultural importance. It underlines our comprehension of the universe in which we
live. For this reason we recall the most important steps in the historical development
of the universal gravitation theory.

The description of any motion depends on the frame to which it is referred. In
particular it is different in two frames moving one relative to the other. The study of
this issue is the object of the fifth chapter, in the limit of velocities much smaller
than that of light. We shall meet with the extremely important principle of relativity,
a universally valid principle established already by Galilei. The relations between
reference frames at speed comparable to that of light and the critical analysis of the
concepts of time and space intervals leading to the relativistic mechanics are dealt
with in Chap. 6.

In the last two chapters we study the mechanics of extended bodies. We start
Chap. 7 with systems made of only two different material points. We show that in
any case in which a force acts on a body, this is due to another body, which in turn
is acted upon by a force due to the first one. In other words the forces are always
due to the interaction between bodies. Having studied the issue on two-body sys-
tems, we proceed in the second part of the chapter with the study of material
systems in full generality, finding the fundamental laws of their motion. In the last
chapter we study the principal aspects of the motion of particular, and importantly,
material systems, namely rigid bodies. Their motion is described by well-defined
differential equations. Their solution is an important mathematical problem, which
is however outside the scope of this course.

Each chapter of the book starts with a brief introduction to a scope that will give
to the reader a preliminary idea of the arguments he/she will find. There is no need
to fully understand these introductions, at the first reading, as all the arguments are
fully developed in the following pages.

At the end of each chapter the reader will find a number of queries on which to
check his/her level of understanding of the arguments of the chapter. The difficulty
of the queries is variable; some of them are very simple, some more complex, a few
are true numerical exercises. On the other hand, the book does not contain a
sequence of full exercises, considering the existence of very good textbooks ded-
icated specifically to that.

The answers to a large majority of the queries are included. However, the
solution of numerical exercises (without looking at the answers) is mental gym-
nastics that is absolutely necessary for understanding the subject. Only the effort to
apply what has been learned to specific cases allows us to master them completely.
The reader should be conscious of the fact that the solution of numerical exercises
requires mental mechanisms different from those engaged in understanding a text.
The latter, indeed, has been already organized by the author; solving a problem
requires much more active initiative from the student. This is just the type of
initiative, a creative activity that is needed, for advancing scientific knowledge and
its technical applications as well. Consequently, the student should work on exer-
cises alone, without looking at the solutions in the book. Even failed attempts to
autonomously reach the solution, provided they are undertaken with sufficient
persistence, give important returns, because they develop processing skills. If after
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several failed attempts the solution has not yet been reached, it is a better practice to
momentarily abandon the exercise, rather than looking at the solution, going to
another one, and coming back later.

The following working scheme is methodologically advisable:

1. Examine at depth the conditions posed by the problem. If it is possible, make a
drawing containing the essential elements.

2. Solve the problem using letters, not numbers, in the formulas, then develop
them until the requested quantities are expressed in terms of the known ones.
Only then should you put numbers in the formulas.

3. Confirm the correctness of the physical dimensions (see Sect. 1.3).
4. When necessary transform all the data into the same system of units (preferably

SI, see Sect. 1.2). Use scientific notation, for example 2.5 × 103 rather than
2500, 2.5 × 10−3 rather than 0.0025. In general two or three significant figures
are enough.

5. Once you have the final result, always verify if it is reasonable. For example the
mass of a molecule cannot turn out to be 30 mg, the speed of a bullet cannot be
106 m/s, the distance between two towns cannot be 25 mm, etc.
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Symbols and Units

Table 1 Symbols for the principal quantities

Acceleration a, as
Angular acceleration α,α

Angular frequency ω

Angular momentum l, L
Density (mass) ρ

Dynamic friction coefficient μd
Force F
Frequency ν

Gravitational field G
Gravitational mass mg

Gravity acceleration g
Impulse i
Inertia radius ρ

Inertial mass m i

Kinetic energy UK

Mass m, M

Moment of a force τ

Moment of inertia about a-axis Ia
Momentum p
Newton constant GN

Normal constraint reaction N
Period T

Plane angle θ

Polar angle θ, ϕ

Polar coordinates (space) ρ, θ, ϕ

Position vector r
Potential ϕ

Potential energy Up

(continued)
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Table 1 (continued)

Power w

Pressure p

Reduced mass μ

Spring constant k

Static friction coefficient μs
Time t

Tension T
Total angular momentum Ltot

Total (mechanical) energy Utot

Total moment M
Total momentum P
Young module E

Weight Fw

Work W

Mean value, of x <x>

Angular velocity ω, Ω

Velocity of light (in vacuum) c

Velocity v,υ
Velocity divided by light velocity β

Unit vector of v uυ
Unit vectors of the axes i, j, k

Volume V

Table 2 Base units in the SI

Quantity Unit Symbol

Length metre/meter m

Mass kilogram kg

Time second s

Current intensity ampere A

Thermodynamic temperature kelvin K

Amount of substance mole mol

Luminous intensity candela cd

Table 3 Decimal multiples and submultiples of the units

Factor Prefix Symbol Factor Prefix Symbol

1024 yotta Y 10−1 deci d

1021 zetta Z 10−2 centi c

1018 exa E 10−3 milli m

1015 peta P 10−6 micro µ
(continued)
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Tropical year = time interval between two consecutive passages of the sun at the
spring equinox

(continued)

Factor Prefix Symbol Factor Prefix Symbol

1012 tera T 10−9 nano n

109 giga G 10−12 pico p

106 mega M 10−15 femto f

103 kilo k 10−18 atto a

102 hecto h 10−21 zepto z

10 deka da 10−24 yocto y

Table 4. Fundamental constants

Quantity Symb. Value Uncertainty

Speed of light in vacuum c 299 792 458 m s−1 Definition

Newton constant GN 6.67384(80) × 10−11 m3 kg−1 s_2 120 ppm

Astronomical unit a.u. 149 597 870 700 Definition

Avogadro number NA 6.022 1415(10) × 1023 mole−1 170 ppb

Table 5. Solar planets orbits

Planet Mean distance from
sun (a.u.)

Sidereal period
(tropical year)

Angle with
ecliptic

Eccentricity

Mercury 0.387099 0.24085 7°00'14'' 0.2056

Venus 0.723332 0.61521 3°23'39'' 0.0068

Earth 1 1.00004 0 0.0167

Mars 1.523691 1.88089 1°50'59'' 0.0934

Jupiter 5.202803 11.86223 1°18'19'' 0.0484

Uranus 19.181945 84.01308 0°46'23'' 0.0472

Neptune 30.057767 164.79405 1°46'26'' 0.0086

Pluto 39.51774 248.4302 17°08'38'' 0.2486

Table 6. Data on some bodies of the solar system

Body Mean radius
(Mm)

Radius
(Earth radiuses)

Mass
(Earth masses)

Mean density (kg/m3)

Mercury 2.44 0.38 0.055 5430

Venus 6.05 0.95 0.815 5250

Earth 6.37 1 1 5520

Moon 1.74 0.27 0.012 3360

Mars 3.38 0.53 0.108 3930

Jupiter 71.49 11.19 317.9 1330
(continued)
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(continued)

Body Mean radius
(Mm)

Radius
(Earth radiuses)

Mass
(Earth masses)

Mean density (kg/m3)

Saturn 60.27 9.46 95.18 710

Uranus 25.56 3.98 14.54 1240

Neptune 24.76 3.81 17.13 1670

Pluto 1.12 0.176 0.0026 1990

Sun 696 109.3 330,000 1400

Table 7. Greek alphabet

alpha α Α iota ι Ι rho ρ Ρ

beta β Β kappa κ Κ sigma σ, ς Σ

gamma γ Γ lambda λ Λ tau τ Τ

delta δ Δ mu μ Μ upsilon υ Υ, !

epsilon ε Ε nu ν Ν phi ϕ, φ Φ

zeta ζ Ζ xi ξ Ξ chi χ Χ

eta η Η omicron ο Ο psi ψ Ψ

theta θ, ϑ Θ pi π Π omega ω Ω
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Chapter 1
Space, Time and Motion

Physics is an experimental science that gives a quantitative, mathematical
description of natural phenomena. This means that physical laws are mathematical
relations amongst physical quantities (such as position, velocity, force, energy,
etc.). These relations are to be considered true only if they correspond to experi-
ence. Physical laws must always be experimentally verified. Experiment is the sole
judge of scientific truth. Consequently, any physical quantity must be measurable,
namely the set of operations that must be performed to measure it must be defined.
First, a system of units of measurement must be defined. We shall see in the first
three sections how this is done. The choice of units is a priori arbitrary; the physical
laws depend on Nature, not on our choices, In practice, however, having stan-
dardized choices is extremely important to make the results understandable to
everybody. International agreements have defined the system of units to be named,
in French, Système International (International System).

Some of the physical quantities, like mass and temperature, are represented by a
single number and are called scalar. Other, like velocity and force, are more
complex; specifying how big they are is not sufficient, also their direction must be
given. Mathematically, an ordered set of real numbers represents them; they are
vector quantities. We shall study in the sections from Sects. 1.5 to 1.8 the ele-
mentary mathematical properties of vectors and of the operations (sum, difference,
products) amongst them. In Sect. 1.9 we shall introduce some elements that will be
useful in the following on another mathematical object, matrices.

In the second part of the chapter we shall move to physics, dealing with the
kinematics of the point-like particle, namely the study of its motion, independently
of its causes. We shall introduce the concepts of velocity, angular velocity and
acceleration. These are vector quantities, in general depending on time.
Section 1.13 is again of mathematical type, presenting a formula that will be very
useful in the following, the time derivative of a vector.

A few types of motion are particularly important: circular motion, studied in
Sects. 1.11 and 1.12, motion on a plane in Sect. 1.14 and free fall of weights in
Sect. 1.16.

© Springer International Publishing Switzerland 2016
A. Bettini, A Course in Classical Physics 1—Mechanics,
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1.1 Measurement of Physical Quantities

Physics gives a quantitative description of natural phenomena (or, better, of the
known part of them). Measurement of the relevant physical quantities leads to
discovery of the physical laws, which are mathematical relations amongst those
quantities (for example, the law of the free fall, the Kepler laws, etc.).

All natural phenomena take place in space and have a temporal duration; some
of them happen before, others afterwards. Consequently, space and time are fun-
damental concepts. Physical objects are characterized by quantities like length, area,
volume, color, hardness, mass, temperature, etc. All these concepts result from a
common experience and are present in common language. However, Physics must
give to each quantity a rigorous definition, in order to be able to give it numerical
values. In this definition process, the concept may become rather different from a
common language.

Consider for example the length of an object or the distance between two places.
If we want to designate a number we must first define a unit of length. Indeed we
say: “That bar is 5 m long”, or, if we are in England: “That city is 20 miles away”.
The measure of the length of an object is the ratio between its length and the length
of another object we have chosen as unit. “A bar is 5 m long,” means that its length
is equal to that of 5 one-meter long rules in a line. “The mass of a body is 8 kg,”
means that it is equal to that of eight bodies of 1 kg together.

The measurement of physical quantity is the ratio between that quantity and its
measurement unit.

The measurement operation allows associating to each physical quantity a
number. The symbols that appear in the physical laws representing the various
physical quantities are just these numbers. For example, when we write F = ma we
mean that the ratio between the force we are considering and the force taken as unit,
is equal to the ratio of the mass of the object and the mass of the object taken as
unit, times the ratio between the designated acceleration and the unit acceleration.

Every physical quantity must be measurable and its definition must be precise
and rigorous. The operational definition is the most effective way to define a
physical quantity. This is defined as the set of operations needed to measure that
quantity.

This procedure has two important implications. The first implication is that
quantities that are not, even in principle, measurable are not physical quantities.
This does not imply that such quantities cannot be used. Indeed they are often
useful in the mathematical developments of a theory. Any theory, however, if it has
to be a physical theory, must lead to predictions that are experimentally testable.
The experimentally testable predictions are mathematical relations amongst phys-
ical quantities, meaning measurable ones. The auxiliary, non-measurable, quanti-
ties, should not appear in the final theoretical expression.

The second implication is that scale matters: quantities may be small or large.
Consider for example the length. If we want to measure distances, say, from mil-
limeters to kilometers we can use graduated bars or rules (like yardsticks,
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measuring tapes, calipers, gauges, etc.). If we need to measure distances of tens or
hundreds of kilometers, as for example between two mountaintops or the height of
Mount Everest, the procedure is very different and we must perform triangulations.
If the distances are very much larger, as those of the galaxies, the procedures
change completely again. And different procedures are required to measure small
distances such as the diameter of an atom or of an atomic nucleus. In every range of
orders of magnitude, the set of procedures to measure a length is different. To be
rigorous we would need to talk of many different lengths. This would lead to a
terrible confusion. Fortunately, we experimentally verify that, in the large intervals
in which two or more methods work contemporarily, the results are equal, and we
can define a single length concept. However, the above arguments tell us to be
careful. Suppose that a physical law is well experimentally verified for objects of
sizes between meters and kilometers. We tend to think the same law to be valid also
for objects much smaller and much larger than that. But we have no guarantee that
the extrapolation is true. On that, as always, only experiment can judge. For
example the Newton laws valid at the speeds of ordinary experience are no longer
valid at speeds comparable to the speed of light. The laws of classical mechanics are
simply not valid for atoms and smaller objects.

Let us go back to the measuring operation. For each quantity we need a mea-
surement unit. The choice is in principle arbitrary but is far from being so in
practice. If every Country, for example, would choose a different unit for lengths or
areas, the exchanges, not only the scientific ones, but also the commercial ones,
would be extremely complex. The units must be standardized. The issue is so
important that both units and procedures are made compulsory by law in the
majority of Countries.

1.2 The International System (SI)

The modern international standardization of units started with the French
Revolution. In 1791 the Decimal Metric System was officially announced, but it
took almost a century for its substantial diffusion and acceptance (and, most
important, Napoleon to impose it; in Britain, where his reach was insufficient, the
Imperial System is still used, as it is also in the USA). In May 1875, at the “Metre
convention”, the representatives of 17 Nations signed an international treaty in
Paris. National and international laboratories were created with the mission to
develop measurement standards and procedures. This is a very important sector of
physics, know as metrology.

International Organizations were created to foster international standardization
of weights and measures in the world. The International Conference of Weights and
Measures, CGPM for brief using the initials in French, which meets every several
years, is the main decision-making body. It decides on the evolution of the inter-
nationally adopted system of units, named in French Sistème International or SI for
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brief. In 1971 the European Community issued a directive to the member states for
the legal adoption of the SI.

There are two classes of units: base units and derived units. The base units are
given by definition. Each derived unit is obtained using a physics law, namely a
mathematical expression that links it to quantities of the basic units. The choice of
the basic units, and even their number, is, from a logic point of view, arbitrary. The
choices are based on convenience, taking quantities for which measurements can be
as much as possible precise and reproducible.

Let us consider an example. Take the “physical laws”: (1) the area S of a
rectangle of sides of lengths a and b is proportional to the product of the lengths,
(2) the area A of a circle is proportional to the square of the length R of its radius,
(3) the space s covered by a body moving in absence of any force is proportional to
the time t employed and to its velocity υ. The mathematical expression for these
laws would be

S ¼ kab A ¼ k0R2 s ¼ k00tt: ð1:1Þ

where k, k′ and k″ are purely numerical constants. They depend on the choice of
measurement units. We might take both length and area as base quantities and as
units the meter and square foot respectively. The k and k′ would then have definite
values. Our measuring system would be simpler taking length as the base unit, say
1 m, and the area as derived. Still, however, some arbitrariness remains. For
example, we can choose the units in such a way to have k = 1 or, differently, to have
k′ = 1. In the first option the unitary area is the square of 1 m side, in the second one
it is the circle of 1 m radius. The second choice gives k = 1/π, and appears funny.
The choice k = 1 appears to be the obvious one, and is the universally used one, but,
in principle, it is not necessary.

Similarly, in the third equation we make k″ = 1 by choosing as measuring unit of
velocity the velocity of a body that covers the unit length in the unit of time.

As already mentioned, the internationally accepted system of units is the SI. It is
the easiest to use and the most rational one. In the SI the base units are seven:
length, mass, time, electric current intensity, thermodynamic temperature, amount
of substance, luminous intensity. For each of them, the name of the unit (e.g.
“meter”) and its symbol (e.g. “m”) are fixed, as in Table 1.1. Notice that the initial
of the name of a unit is always lower case, including when it is the name of a
scientist (e.g. “ampere”). Most important, the SI gives a precise and clear definition
for each unit. Notice that these may change with time, as a consequence of the
progress of metrology, after formal approval by the CGPM. We shall give here the
definitions of the first three units, which are the only ones needed in this textbook.
The other ones will be defined in the other volumes of the series, when needed.

The metre (meter is the distance travelled by light in vacuum in a time
interval of 1/229 792 458 of a second.

The kilogram is the mass of the international prototype kilogram (located in
the Pavillon de Breteuil at Sèvres).
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The second is the duration of 9192631770 periods of the radiation corre-
sponding to the transition between the two hyperfine levels of the ground state
of the Cesium 133 atom.

The SI defines the names and symbols of all the derived units. We shall intro-
duce them when we meet them for the first time. The SI further defines names and
symbols of multiples and submultiples of the units. This is done in steps in general
of three orders of magnitudes, of one order for the first three, as in Table 1.2. With
the exception of da, h, and k, all multiple prefix symbols are upper case; all
submultiple prefix symbols are lower case letters.

The derived measurement units are defined, as mentioned, using a physical law
in order to have a definition as simple as possible. Hence, the unit for areas is the
square of 1 m side, the unit of volume is the cube of 1 m side, the unit of velocity is
the velocity of a body travelling 1 m in one second, etc.

The (mean) acceleration is the change of velocity Δυ divided by the time interval
Δt in which that change happens, namely a ¼ Dt=Dt. The acceleration unit is the
acceleration of a body, the velocity of which varies by a unit (1 m/s or 1 m s−1) in the
unit of time (1 s). It is consequently the meter per second per second (m/s2 or m s−2).

Let us now observe, as an example, that all the plane figures, triangles, rect-
angles, circles etc. are expressed as a numerical factor times the product of two
lengths. Namely, all areas have a physical dimension of length squared. If we
change the unit of length, for example from meter to centimeter, the measures of all

Table 1.1 The base
quantities, their units and
symbols

Quantity Unit Symbol

Length metre/meter m

Mass kilogram kg

Time second s

Current intensity ampere A

Thermodynamic temperature kelvin K

Amount of substance mole mol

Luminous intensity candela cd

Table 1.2 Decimal multiples
and submultiples

Factor Prefix Symbol Factor Prefix Symbol

1024 yotta Y 10−1 deci d

1021 zetta Z 10−2 centi c

1018 exa E 10−3 milli m

1015 peta P 10−6 micro µ

1012 tera T 10−9 nano n

109 giga G 10−12 pico p

106 mega M 10−15 femto f

103 kilo k 10−18 atto a

102 hecto h 10−21 zepto z

10 deka da 10−24 yocto y
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the areas change by the same factor: 1002 in the example. The physical dimensions
of velocity are length divided by time, of acceleration of length divided by time
squared, etc. The corresponding mathematical expressions are called dimensional
equations which are of the type

A½ � ¼ L2
� �

; t½ � ¼ LT�1� �
; a½ � ¼ LT�2� �

: ð1:2Þ

Dimensional equations are very useful in practice. Consider any relationship
amongst physical quantities, for example F = ma or A + B = C. All the terms must
have the same physical dimensions. Otherwise, a change of units will cause the
different terms to change in different ways; the validity of the relation would depend
on the choice of units, which is arbitrary. This is the so-called homogeneity prin-
ciple. It is very useful to check analytical expressions obtained with more or less
complex calculations. If we find that some of the terms have different dimensions,
we must conclude that we have made some mistake.

Notice that there are also physical quantities having nil dimensions, namely
[L0T0M0], they are pure numbers. An important example is the angle. In radians
(rd) it is the ratio between the arc of a circumference and its radius. If we change the
unit of length, the ratio between two of them does not change.

Finally notice that a physical law may contain mathematical functions, for
example x ¼ sin a; y ¼ exp �bð Þ or z ¼ ln c. These expressions make sense only if
both the functions themselves (x, y, z) and their arguments (α, β, γ) have no physical
dimensions. All of them must be pure numbers.

1.3 Space and Time

Our study begins with the study of the motion of bodies. Motion of a body means
that its position in space varies in time. The notion of motion is relative: a passenger
in a plane sitting in his chair has a fixed position relative to the plane, but moves at,
say 800 km/h relative to a person standing on earth. The latter moves at 800 km/h
relative to the passenger, in the opposite direction. To describe the motion we then
need a reference frame.

We normally live standing on earth and such are the laboratories in which we do
our experiments. Let us then start by choosing a reference frame fixed on the earth.
The possible choices are still infinite.

The position of a body is defined when we know were it is. The simplest case is
when we deal with a particle, a body that is so small that it can be considered
point-like. It is called a material point. Let us see how we can define the position of
a material point. For an extended body the positions of all its points should be
similarly defined.

To know the position of a point in space we need three numbers, one for each of
its dimensions. To define its position on a given surface, two numbers are needed
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(as for example longitude and latitude on the earth surface). To know the position
on a given curve, one number is needed.

Let us start by considering a point P that can move only on a straight line (see
Fig. 1.1a). To define its position: (1) we choose one of the two directions and call it
positive, (2) we choose a point on the line and call it the origin of the co-ordinates
(O in Fig. 1.1a), (3) we choose a unit length. The oriented line, with an origin and a
measuring unit is called a co-ordinate axis. The position of the generic point P is
given by a real number, called the co-ordinate of the point (x in the figure), which is
the distance of P from O, taken as positive if P is on the right of O, negative if it is
on the left.

Let us now assume that point P can move on a plane (Fig. 1.1b). We now need
two co-ordinate axes, which should not be parallel. It is usually convenient to take
them perpendicular, the origin at the point in which they cross and the same unit
length for both (none of these choices is compulsory, they are just generally the
most convenient). The position of P is given by its two co-ordinates, which is an
ordered pair of real numbers (x, y).

Consider now a point in space. The reference frame shown in Fig. 1.1c is called
a Cartesian rectangular right-handed frame, after René Descartes (1596–1650). It
is made of three co-ordinate axes, called x, y and z. They cross in a single point, the
origin of the frame. All the angles between the (three) pairs of axes are right. The
length units on the three axes are equal. Finally we must choose positive orienta-
tions of the axes. There are two basic possibilities. Let us assume that we have
already defined the positive directions of x and y. We have two possible choices for
the positive direction of z. Figure 1.1c shows one of them; an observer standing
with his feet on the xy plane lying along the z axis and looking down, willing to
move the x axis on the y axis by a 90° rotation, sees this rotation happening
anticlockwise. The second possibility is the opposite sign of z. The two frames are
called right-handed and left-handed respectively.

Now consider the inversion of the axes. If we start from a right-handed frame
and invert one axis, that is a mirror reflection and we get a left-ended frame. The
same happens if we invert all three axes. The inversion of two axes gives, on the
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Fig. 1.1 Orthogonal co-ordinate frames. a One dimension, b two dimensions, c three dimensions
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contrary, the same result as a rotation of 180° around the third axis: the initial and
final frame have the same “handness”.

To define the reference frame we have made a series of choices, which we recall:

(1) choice of the origin
(2) choice of the directions of the axes
(3) choice of the positive directions (left-handed or right-handed)
(4) choice of the units.

While each of these choices is arbitrary, we can ask whether there is any priv-
ileged choice, or if there is one that is better posed, are the physics laws independent
of these choices? The answers cannot come from logics or mathematics, but only
from an experiment. Let us consider each of them.

(1) Are the physics laws independent of the origin of the axes? To check the point,
let us build two identical apparatuses. Let each of them contain inclined planes
with balls rolling on them, pendulums, flywheels, gears, etc., all identical. We
position the two apparatuses in two different locations. We prepare them to be
in exactly the same initial state: the pendulums are out of equilibrium at the
same distance, the spheres are at the same heights on the inclined planes, the
gears and the flywheels are in the same positions. We let them go contem-
porarily and observe their evolutions. Do the two systems evolve in the same
way? Do they assume the same configurations at the same times? As a matter
of fact the answer is not always yes. However, every time some difference is
noticed, it is possible to identify the reason for that in some physical condition
that is different in the two locations. For example, the gravitational accelera-
tion might be a bit different in the two sites and consequently the periods of the
pendulums are a bit different too. In any case, experiments show that, once all
the local effects are eliminated, or accounted for, the apparatuses evolve in the
same manner, i.e. going through the same configurations at the same instants.
The very important conclusion is: The physical laws are independent on
position. In other words all positions are equivalent, or space is homogeneous.
Let us repeat that this is an experimental conclusion. No experiment up to now
has found it wrong. One can state that the physical laws are invariant,
meaning that they do not vary, under space translations.

(2) Are the physics laws independent of directions of the axes? We now take our
two identical apparatuses and rotate one to the other. For example, in one case
the z-axis is vertical, in the other is at 45° with the vertical. Do the two systems
evolve through the same states? Certainly not! Indeed, for example, pendu-
lums oscillate around a vertical axis in one case, around an inclined one in the
other. In this case a privileged direction exists, the direction of weight. But,
think a moment. If we were far from earth, or in absence of weight, the
privileged direction would not exist. That direction is not a property of the
space, but is the “local” effect of a body, the earth. In other words, if we want
to compare the two experiments in the same conditions, we should also rotate
the earth in the second case. If all the external conditions are properly taken
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into account, all the experiments show that the physical laws are independent
on the directions of the axes. In other words, no privileged direction exists, or,
space is isotropic. Still in other words, physics laws are invariant under
rotations.

(3) Are the physics laws, independent of the orientation, left-handed or
right-handed? Experiments have shown that all physics laws at the macro-
scopic level are independent of the choice. But this is no truer at a microscopic
level. A class of radioactive phenomena, like beta decays, is due to a funda-
mental force called weak interaction. Its laws distinguish between the left and
right cases. Namely, not all the physics laws are invariant under inversion of
the axes.

(4) Are the physics laws independent of the scale of length? This time we build
two apparatuses that are identical but for having all their dimensions different,
scaled by the same factor. Do the two evolve in the same manner? The answer
was discovered by Galileo Galilei (Italy, 1564–1642) and is NO.

Consider for example a beam made of a certain homogeneous material. The
beam has a certain length, and its cross section, which we assume to be rectangular,
has a certain width and a certain height. We lay it on two supports near to its
extremes on a horizontal plane. Suppose the beam to be in equilibrium. We now
take a beam geometrically similar to the first one but ten times longer, ten times
wider, ten times higher. Again we lay it on two supports near to its extremes. We
observe that the beam breaks down in its middle point. The reason is the following.
The weight of the beam is a force applied in its middle point directed downward.
The weight tends to break the beam, the cohesion forces between molecules tend to
keep it together. The weight, which is proportional to the volume, is for the second
beam one thousand times larger than for the first one. The resistance to fracture is
proportional to the area of the cross section and for the second beam is one hundred
times larger than for the first one. Consequently, above a certain dimension the
beam breaks down under its own weight. For the same reason the animals cannot be
too big. The bones of the legs of a hypothetical horse ten times bigger than the real
ones would break under their own weights. We know now that the fundamental
reason for that is that substances are made of molecules and atoms, which have a
definite size. Certainly we cannot build one of the above-considered apparatuses so
small to be made of a few molecules.

As another example, consider the heavenly bodies. Stars and the largest planet
emit light, the smaller planet, like earth, do not. Only if the size, hence the mass of
the body, is large enough, the pressure and temperature in its core, which are due to
the action of the gravitational forces between its parts, are large enough to fire the
thermonuclear fusion reactions that produce light.

In conclusion: The physics laws are NOT invariant under changes of scale.
We now come back to mathematics of reference frames. In the following we

shall need to use another type of, equivalent, co-ordinates, the spherical polar
coordinates. Figure 1.2a shows such co-ordinates on the plane, Fig. 1.2b in space,
together with the orthogonal coordinates in both cases. On the plane, the two polar
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co-ordinates of the generic point P are its distance from the origin ρ, which is a
non-negative number, called a radius, and the angle ϕ, between the x-axis and the
segment OP, called an azimuth. It is measured in anticlockwise direction and varies
between 0 and 2π, namely

q� 0; 0�/\2p: ð1:3Þ

We can easily see from the figure that the relations between polar and rectan-
gular co-ordinates are

x ¼ q cos/; y ¼ q sin/; ð1:4Þ

and the inverse ones

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; / ¼ arctan

y
x
: ð1:5Þ

Figure 1.2b shows polar co-ordinates in three dimensions. The first co-ordinate
of the generic point P is again its distance r from the origin (radius), the second
co-ordinate is the angle ϕ between the plane through the z and P and the plane xz
(azimuth), the third co-ordinate is the angle θ between the segment OP and the
z axis (zenith angle). Again r is a non-negative number. The angle θ varies from 0
to π, covering in such a way the semi-plane shown in the figure. This semi-plane
rotates around z when ϕ varies between 0 and 2π. Hence

q� 0; 0� h� p; 0�/\2p: ð1:6Þ

The relations with the orthogonal co-ordinates are

x ¼ q sin h cos/; y ¼ q sin h sin/; y ¼ q cos h; ð1:7Þ

O

P

x

y

x

y

O

P

x

z

x

y

yz

ρ sinθ

(a) (b)

Fig. 1.2 Polar co-ordinates. a Two dimensions, b three dimensions
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and the inverse ones

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
; / ¼ arctan

y
x
; h ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
z

: ð1:8Þ

If the point P is on the xy plane, namely if θ = 0, Eq. (1.8) become

x ¼ q cos/; y ¼ q sin/;

which are equal to Eq. (1.4).
To know the motion of a body we need to know its position in different time

instants. Consequently we most measure the time. More precisely, we measure
intervals of time, rather than an absolute time. In practice we choose a certain
instant and define it as the origin of times, for which t = 0. We next choose a time
interval and define it as the unit of time. In the SI it is the second. In principle we
should also choose one of the two directions as positive, but the choice is obvious.
It is, we can say, imposed by Nature: the positive direction of time is from past to
future. Consequently, the time of an event is negative if it happened before t = 0,
positive if after that.

We now ask: is the origin of times arbitrary? As always we must apply to the
experiment. Let us go back to one of our experimental apparatuses and let us repeat
the experiment starting from the same initial state, for example in the morning, then
in the afternoon, and again in the night, etc. For each trial we take the origin of time
as the initial instant. We observe that, once all the spurious elements are taken care
of (e.g. light in the day, dark in the night) all the experiments evolve in the same
way. The origin of times is arbitrary, time is homogeneous. The physics laws are
invariant under translations in time. In addition, similarly to space, no fundamental
time interval exists.

We have said that the choice of the positive direction of time is imposed by
Nature. Several books have been written on this issue, the “arrow of time”. We shall
not enter in this discussion. We only state here that in the purely mechanical
phenomena no arrow of time exists. Suppose we hit a billiard ball and shoot a
movie of its motion hitting other balls, the walls, etc. If we now play the movie
backwards we observe a perfectively legitimate evolution. We cannot know if it is
backwards of forwards. But, wait; this is not true forever. Indeed, if the movie is
long enough we see that, when plaid forwards, the speeds of the balls gradually
slow down and finally they stop. If it is plaid backwards, the balls are initially
steady and start moving alone. The natural arrow of time is the one in which the
kinetic energy diminishes. When we study thermodynamics in the second volume
of this course we shall see how it explains the arrow of time.
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1.4 Vectors

Many physical quantities, such as temperature and atmospheric pressure, are rep-
resented by a single number. This is not the case of other ones, such as velocity,
acceleration, force, etc. For example to know the velocity of a car is not sufficient to
know how fast it moves (that is the number we read on the speedometer), but also in
which direction (towards South, North or other). Another example is a displacement
in space. To know it we need to know how long it is and in which direction it
happens. These physical quantities are represented by vectors.

A vector is a mathematical entity. To define it, let us start considering line
segments. A segment is called oriented, if one of its two senses is chosen as
positive. Two oriented segments are said to be equipollent if they have the same
length, the same direction and the same sense. A vector is the class of all the
oriented segments equipollent to a given one. It is graphically represented with an
arrow. It is characterized by the length, called magnitude, the direction and the
sense. Differently from the oriented segment, it is not characterized by its position.
The velocities of two cars moving at 100 km/h heading West, one near Paris, one
near London are the same.

Once a reference frame is chosen, we can represent a vector by an ordered triple
of real numbers, which are its components in that reference. However, an ordered
triple of real numbers is not necessarily a vector. To be so the following important
property must be satisfied. Indeed, if we change the reference frame, for example
rotating the axes, the components of the vector change, but the vector does not.
Vector is a definite object; its components are the way to see it in one or another
frame. To satisfy these properties, the vector components, namely the ordered
triples in the two frames, must be connected by well-defined relations, which we
shall now find.

Figure 1.3 shows a reference frame and a point P of co-ordinates x, y, z. Consider
the oriented segment from the origin O to P and the corresponding vector r (namely
the class of equipollent oriented segments). It is called a position vector, and is, we
can say, the prototype of all vectors. Its components in the (Cartesian) reference
frame we are considering are simply the coordinates of P, i.e. the ordered triple
(x, y, z). Let us now take another reference with the same origin and axes rotated by
an angle θ. The point P does not move and r does not change. But its components

O

P

x

z

x

y

y
z

r

Fig. 1.3 The orthogonal
co-ordinates and the position
vector
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(x′, y′, z′) are different. The general relation between the two triplets is rather
complex. For simplicity we shall consider two frames with the same origin and the
same z-axis, as shown in Fig. 1.4.

Let us consider the point P in the figure of co-ordinates (x, y) in one frame, (x′, y′)
in the other. We must express x′ and y′ as functions of x, y and θ. One relation is
obvious, z′ = z. In practice, we are reduced to two dimensions.

We now draw perpendiculars from P to all the axes. We also draw the segment
AB perpendicular to PQ. The figure shows that x′ is the sum of two lengths along
the x′ axis and y′ the difference of two lengths along AB. We obtain

x0 ¼ x cos hþ y sin h

y0 ¼ �x sin hþ y cos h

z0 ¼ z;

ð1:9Þ

where, to be complete, we included also the third co-ordinate. Notice that these
relations are both the relations between the components of the position vector in the
two frames and the relations between the co-ordinates in the two frames. As a
matter if fact they analytically define the rotation of the axes.

We now state that a vector is an ordered triple of real numbers that under
rotations of the reference frame transforms (changes) in the same way as the triple
representing the position vector, namely as co-ordinates.

Figure 1.5a represents, in a plane for simplicity, a generic vector A, which we
can think as of drawn starting from the origin, because all the equipollent segments
are the same vector, and its components in the two frames.

By definition, the relations amongst its components are equal to Eq. (1.9),
namely

O

P

x

yy’

(x,y)
(x',y' )

Q

A

x’

θx cosθ x sinθ

y sinθ
y cosθ

B

Fig. 1.4 A rotation of a
Cartesian reference frame
around the common z axis
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A0
x ¼ Ax cos hþAy sin h

A0
y ¼ �Ax sin hþAy cos h

A0
z ¼ Az:

ð1:10Þ

The inverse relations, namely the expressions of (A′x, A′y, A′z) as functions of
(Ax, Ay, Az) and θ can be obtained in two ways: inverting the system (1.10) or,
which is simpler, thinking that the first reference is obtained from the second by a
rotation of an angle –θ. Consequently we have

Ax ¼ A0
x cos h� A0

y sin h

Ay ¼ A0
x sin hþA0

y cos h

Az ¼ A0
z:

ð1:11Þ

We have considered two frames differing for a rotation of the axes, with a
common origin. Consider now two frames differing for a translation, namely with
parallel axes and different origins, as shown in Fig. 1.5b, again for simplicity in a
plane. We see that the components of the vector A in the two frames are equal.

1.5 Operations with Vectors

A quantity represented by a number, like temperature or pressure, is called a scalar.
Scalars are invariant under rotations of the axes. In two reference frames rotated one
to the other a scalar has the same value. Notice that not every quantity is scalar. For
example the x component of a vector is not, because it changes under rotations.

We shall represent a vector with its components in a given frame with A = (Ax,
Ay, Az).

Given the vector A and the scalar k their product is the vector kA = (kAx, kAy,
kAz). Namely the components of kA are k times those of A. To be sure, we must

O
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yy’
y’

x’

x’
θ x

y
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A
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A
y

A
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y
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,
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y

,

O
,

(a) (b)

Fig. 1.5 Components of the vector A in two frames different for a a rotation b a translation
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verify that the just given definition agrees with the definition of vector. Indeed, it is
immediate to check that the oriented triple (kAx, kAy, kAz) transforms like a vector.

Geometrically, kA is the vector with the same direction as A, the magnitude |k|
times the one of A and the sense of A or opposite depending on k being positive or
negative respectively.

The product of A times the reciprocal of its magnitude is a vector with the
direction of A and unitary magnitude. A vector of unitary magnitude is called a unit
vector or versor. We shall use the symbol uA for the unit vector of A.

The product of the vector A and –1 is called the opposite of A. It has the same
magnitude and direction of A and opposite sense.

Consider now two vectors A and B, which in a given reference frame have the
components (Ax, Ay, Az) and (Bx, By, Bz) respectively. Consider the triple of numbers
that are the sums of the homologous components of A and B, namely (Ax + Bx,
Ay + By, Az + Bz). Is it a vector? Let us check. Knowing that A are B vectors we
know that

A0
x ¼ Ax cos hþAy sin h B0

x ¼ Bx cos hþBy sin h
A0
y ¼ �Ax sin hþAy cos h B0

y ¼ �Bx sin hþBy cos h
A0
z ¼ Az B0

z ¼ Bz:

By summing member to member we have

A0
x þB0

x ¼ Ax þBxð Þ cos hþ Ay þBy
� �

sin h

A0
y þB0

y ¼ � Ax þBxð Þ sin hþ Ay þBy
� �

cos h

A0
z þB0

z ¼ Az þBz:

We see that the answer is positive. We can then define as the vector sum of two
vectors the vector with components equal to the sums of their homologous com-
ponents. Notice that the just found properties are immediate consequences of the
component transformations being linear operations.

It is immediate to verify that the sum of vectors has the usual properties of the
sum, namely commutative

AþB ¼ BþA: ð1:12Þ

and associative

AþBð ÞþC ¼ Aþ BþCð Þ: ð1:13Þ

Figure 1.6 shows the geometric meaning of the vector sum. In Fig. 1.6a the sum
is made putting the tail of B on the head of A; the sum is the vector from the tail of
A to the head of B, as one immediately understands thinking to the components.
For the commutative property, we might have done vice versa, namely start from
B and putting the tail of A on the head of B. We should have reached the same
point.
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Figure 1.6b shows an equivalent way to sum, the parallelogram rule. We put
both vectors with the tails in the same point and we draw the parallelogram having
them as sides.

The vector difference between the two vectors A and B is the vector of com-
ponents equal to the differences between the homologous components or, equiva-
lently, the sum of A and –B. The geometrical meaning is shown in Fig. 1.7.

The properties of vector sums, or composition, which we have just discussed
looks to be obvious, but they are not. Indeed they are valid if the space is flat, not if
it has any curvature. To make things simpler, consider two dimensions. A plane
surface is flat, but not a spherical one or a saddle shaped one. As a matter of fact the
surface on which we live, the surface of the earth, is flat only if we consider
distances substantially smaller than the earth radius, which has a mean value R = 6
371 km, and only in a first approximation.

Let us consider the following example of vector addition. Consider a vector with
the tail in A at 45° in latitude and 0° in longitude and the head B on the same
meridian at 46° latitude. The length of one degree along a meridian is everywhere
10 000 km/90 = 111 km. The second vector has the tail in B and the head on the
same parallel 100 km towards West, say in C. Now we commute the operations. We
start with a vector 100 km long from A to, say, D on its parallel at 100 km to West.
Then we add a 111 m long vector to the North with tail in D and head, say, in C′.
Will C′ be equal to C? The answer is NO. This is because the distance between two
meridians along a parallel is different at different latitudes. Indeed the radius of the
parallel at the latitude λ is r(λ) = R cos λ, that is 7071 km at 45° and 6947 km at 46°,
which is 1.8 % shorter. Consequently, C′ is 1.8 km West of C.

QUESTION Q 1.2. Repeat the calculation with the same vector lengths starting at
65° latitude.

QUESTION Q 1.1. Repeat the calculation with vector lengths of 1 km starting at
45° latitude.

O x

y

A

B

O x

y

A

B A+B

A+B

(a) (b)Fig. 1.6 The sum of two
vectors

A

B

A–BFig. 1.7 The difference
between two vectors
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The question whether or not space has a curvature should be answered experi-
mentally, and experiments show this being the case. In particular, the measurement
of the mean curvature of the Universe over cosmological distances is one of the
important objects of contemporary cosmology. All measurements are compatible
with zero mean curvature, within their uncertainties. However, we should mention
that space curvature exists in another context. General relativity describes local
gravitational effects in terms of a modification of geometry in the space surrounding
a massive object. Its predictions are confirmed by observations. We shall not deal
with this topic in this book.

1.6 Scalar Product of Two Vectors

There two ways to take the product of two vectors, called dot product and cross
product respectively. We start here with the former.

Consider the two vectors A and B. Their dot product is indicated with a dot
between them, namely A � B. In a given reference frame the dot product is, by
definition, the sum of the products of the homologous components

A � B ¼ AxBx þAyBy þAzBz: ð1:14Þ

The dot product has the important property to be scalar, namely invariant under
rotations of the axes. It is consequently also called a scalar product. Let us show the
property, namely that

A0
xB

0
x þA0

yB
0
y þA0

zB
0
z ¼ AxBx þAyBy þAzBz:

For simplicity, let us consider only a rotation around the z-axis. The components
of A in the rotated frame as functions of its components in the starting one are given
by Eq. (1.10) and similarly for B. We can write

A0
xB

0
x þA0

yB
0
y þA0

zB
0
z ¼ Ax cos hþAy sin h

� �
Bx cos hþBy sin h
� �

þ �Ax sin hþAy cos h
� � �Bx sin hþBy cos h

� �þAzBz

¼ AxBx cos2 hþAxBy cos h sin hþAyBx sin h cos h

þAyBy sin2 hþAxBx sin2 h� AyBy sin h cos h

� AyBx cos h sin hþAyBy cos2 hþAzBz:

¼ AxBx þAyBy þAzBz:

We see that the product is invariant.
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It is easy to show that both the commutative and distributive properties are valid
for the dot product.

A � BþCð Þ ¼ A � BþA � C: ð1:15Þ

We shall see now the geometric meaning of the scalar product. We can profit
from it being invariant to choose convenient axes. We take x in the direction of
A and y in the plane defined by A and B (Fig. 1.18a). If θ is the angle between the
vectors, the components are A = (A, 0, 0) and B ¼ B cos h;B sin h; 0ð Þ. Their dot
product is then

A � B ¼ AB cos h: ð1:16Þ

In words, the scalar product of two vectors is the product of their magnitudes
times the cosine of the angle between them. There are also two other interpretations
that may be useful. The scalar product is the product of the magnitude of the first
vector times the projection of the second vector on the first one (Fig. 1.8b), or, the
same with inverted roles (Fig. 1.8c).

The dot product is zero if the vectors are perpendicular, positive if the angle is
acute, and negative if obtuse.

A particular and interesting case is the product of a vector by itself

A � A ¼ A2
x þA2

y þA2
z ¼ A2: ð1:17Þ

By definition the square of a vector is the dot product of the vector times itself
and is equal to the square of its magnitude and also to the sum of the squares of its
components. The latter property is an immediate consequence of the Pythagorean
theorem. It is also called the norm of the vector. The norm is obviously the same in
any reference.

Figure 1.9 shows a Cartesian reference frame in which three important vectors
are drawn, the unit vectors of the coordinate axes, i, j and k. They have unit
magnitude and are mutually normal. Consequently

i � i ¼ 1; j � j ¼ 1; k � k ¼ 1
i � j ¼ 0; j � k ¼ 0; k � i ¼ 0:

ð1:18Þ

The components of any vector can be written in terms of the three unit vectors.
Indeed, the x component of the vector A is its dot product with i, because the
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B

θ
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θA cos θ

B cos θ

(a) (b) (c)

Fig. 1.8 Geometric meanings of scalar product
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magnitude of the latter is 1, and similarly for the other components. We then can
write the vector as

A ¼ AxiþAyjþAzk; ð1:19Þ

namely as the sum of three vectors having the directions of the axes. These are
called the vector components.

In particular the position vector can be written as

r ¼ xiþ yjþ zk: ð1:20Þ

1.7 Vector Product of Two Vectors

Given the two vectors A = (Ax, Ay, Az) and B = (Bx, By, Bz), their cross product is
defined as the ordered triple of real numbers

C ¼ CxiþCyjþCzk ¼ A� B

¼ AyBz � AzBy
� �

iþ AzBx � AxBzð Þjþ AxBy � AyBx
� �

k:
ð1:21Þ

We now show that the cross product transforms as a vector under rotations of the
axes and is also called the vector product. We show that for the x′ component, the
demonstration for the other two are exactly the same.

C0
x ¼ A� Bð Þ0x¼ A0

yB
0
z � A0

zB
0
y ¼ �Ax sin hþAy cos h

� �
Bz � Az �Bx sin hþBy cos h

� �
¼ AzBx � AxBzð Þ sin hþ AyBz � AzBy

� �
cos h ¼ Cy sin hþCx cos h:

The vector product is not commutative and the order of the factors matters. We
have immediately from the definition that

B� A ¼ �A� B: ð1:22Þ

Ax
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Fig. 1.9 The unit vectors of
the Cartesian axes
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Inverting the order of the factors the product changes sign. The property is called
anticommutative.

It is easy to see that the vector product is distributive to the sum

A� BþCð Þ ¼ A� BþA� C: ð1:23Þ

We now see the geometric meaning of the cross product using the same frame as
in the previous section. We draw the two vectors as starting from the same point
and take the x axis in the direction and sense of A, the y axis in the plane of the two
vectors and the z axis to complete the right-handed reference (Fig. 1.10). The
components are A = (A, 0, 0) and B ¼ B cos h;B sin h; 0ð Þ. The cross product has
only the z component different from zero

A� B ¼ kAB sin h: ð1:24Þ

Hence, the cross product is in the positive direction of the z-axis if θ is in one of
the first two quadrants (Fig. 1.10a), in the negative one if in the third and fourth
ones (Fig. 1.10b).

In conclusion, the geometric meaning of the vector product, independently of the
reference frame, is the following. Its magnitude is equal to the area of the
parallelogram having the two vectors as sides. Alternatively, we can also say that its
magnitude is the magnitude of the first (A) times the projection of the second on the
normal to the first (B sin θ) or vice versa. The direction of the product is perpen-
dicular to the plane of the two vectors. Its sense is the one seeing the first factor
going to the second through the smaller angle in anticlockwise direction.

Notice that we have followed here the same convention we used to define the
positive direction of the z-axis. In a left-handed frame, the sense of the vector
product would have changed too.

The cross product is zero if one of the vectors is zero or if the two are parallel. In
particular the product of a vector times itself is zero.

Each of the unit vectors of the axes is the cross product of the other two

i� j ¼ k; j� k ¼ i; k� i ¼ j: ð1:25Þ
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(a) (b)Fig. 1.10 The vector product
of two vectors
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The expressions of this type can be easier remembered thinking that each of
them is obtained from the previous one by cyclic permutation. We now define the
scalar triple product of three vectors, in the order A, B and C. It is the dot product
of the first vectors times the cross product of the second times the third:

A � B� Cð Þ ¼ Ax ByCz � BzCy
� �þAy BzCx � BxCzð ÞþAz BxCy � ByCx

� �
: ð1:26Þ

To see the geometrical meaning, we take the three vectors starting from the same
point as in Fig. 1.11.

We can consider them as the sides of a parallelepiped. As we know the mag-
nitude of B × C is equal to the area of the parallelogram having the two vectors as
sides, which is a face of the parallelepiped. Its direction is the normal to that plane
and the positive sense is the one that sees B going to C, rotating through the smaller
angle, in anticlockwise direction. Let assume that A lies on the same side of the
plane made by B and C as B × C. The dot product of A times B × C is the product
of the projection of A on the direction of B × C hence on the direction perpen-
dicular to the plane of B and C times the magnitude of B × C. But this projection is
just the height h of the parallelepiped. In conclusion the triple product is equal to the
volume of the parallelepiped having the three vectors as sides. In this case we are
considering that this is true in absolute value and sign. It is the opposite of this
volume if case A lies on the opposite side of the plane made by B and C that B × C.

The following properties are immediately demonstrated: the triple scalar product
is zero if the three vectors are coplanar, hence, in particular, if two or three are
parallel. The triple product does not vary if the factors are circularly permuted

A � B� Cð Þ ¼ A� Bð Þ � C: ð1:27Þ

Obviously also

A � A� Cð Þ ¼ 0: ð1:28Þ

A

B

B×C

C

h

Fig. 1.11 The scalar triple
product
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A second triple product is the triple vector product, which is the cross product of
the first vector times the cross product of the second and third ones. By direct
verification one shows that

A� B� Cð Þ ¼ B A � Cð Þ � C A � Bð Þ: ð1:29Þ

1.8 Bound Vectors, Moment, Couple

The forces are vectors. However, to completely characterize a force we need also to
know its application point. If we push an object with our finger, we not only exert
on it an action of a certain intensity and in a certain direction, but also we do that in
a certain point. If we change that point, the effect of the force would change.
A vector with an associated application point is called a bound vector. The line with
the direction of the force through the application point is called the line of action.

Figure 1.12 shows the vector A and its point of application P. It may be a force
for example. We arbitrarily choose a point Ω, which we call the pole. The moment
of A about Ω is defined as the vector product of the vector leading from the pole to
the application point of A, namely

sX ¼ XP� A: ð1:30Þ

Let us see its geometrical meaning. The direction of the moment of the vector
A is perpendicular to the plane defined by the segment ΩP and A. To see its
positive direction we imagine A to be a force and ΩP a rigid bar. If we see the force
turning the bar in an anticlockwise direction, we are on the positive side of the
moment. The magnitude of the moment is given by the product of magnitude of the
distance (h in the figure) of the pole Ω from the action line of A. In particular, if Ω
lies on the action line the moment is zero.

The importance of the moments will be clear when we study the mechanics of
the extended bodies in Chap. 7. We now consider a simple and particularly
important case, the couple of vectors. A couple is a pair of bound vectors equal in

P

A

P × A

h

Ω

Ω

Fig. 1.12 The moment of
vector A about the pole Ω
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magnitude in equal and opposite direction. The distance between the two action
lines is called the arm of the couple.

A very important property of the couple is that their moment is independent of
the pole. This may be called the moment of the couple or a couple torque. The two
terms are synonymous.

Consider for simplicity the pole Ω lying in the plane of the couple, as in
Fig. 1.13 (but the argument is valid in general). The two vectors are A and –A. P1

and P2 the application points respectively. The total moment, i.e. the sum of the two
moments about Ω is

sX ¼ XP1 � A� XP2 � A ¼ XP1 � XP2ð Þ � A ¼ P2P1 � A;

which is independent of the pole. We can also see that the magnitude of the couple
moment (or torque) is the product of the magnitude A of the vectors times the arm
d of the couple, namely

s ¼ d � A: ð1:31Þ

Its direction is perpendicular to the plane of the couple, positive on the side
seeing the couple rotate in an anticlockwise direction.

1.9 Matrices

Matrices are properly studied in mathematics courses. In this textbook only a few
simple concepts and definitions will be needed and are recalled here.

A matrix A is an array of numbers ordered in rows and columns, say M lines and
N columns

A ¼
a11 a12 . . . a1N
a21 a22 . . . a2N
. . . . . . . . . . . .
aM1 aM2 . . . aMN

0
BB@

1
CCA: ð1:32Þ

The matrix is said to be square if the numbers of rows and column are equal; this
number is called the order of the matrix. The generic element of the matrix is aij

A

–A

d

P
1

P
2 Ω

Fig. 1.13 A couple of bound
vectors
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where the first index i (i = 1, …, M) is the row index, the second j (j = 1, …, N) the
column index.

Matrices with the same numbers of rows and column can be added. The sum S =
A + B of such matrices A and B is the matrix having as elements the sums of the
corresponding elements of A and B, namely sij = aij + bij.

If the number of columns of the matrix A is equal to the number of rows of
matrix B the product P = A B is defined as follows. Be M the number of rows and
N the number of columns of A, N the number of rows and L the number of columns
of B. The product matrix P has M rows and L columns and its generic element is

pij ¼
XN
k¼1

aikbkj: ð1:33Þ

We can use the concept of matrix product to re-write Eq. (1.10) for the trans-
formation of a vector between two reference frames in compact form:

A0
x

A0
y

A0
z

0
@

1
A ¼

cos h sin h 0
� sin h cos h 0
0 0 1

0
@

1
A Ax

Ay

Az

0
@

1
A: ð1:34Þ

We see that vectors are represented by a matrix with one column and three rows,
while the rotation is represented by a three-by-three matrix.

Continuing with the definitions, the minor Aij of the generic element aij is
defined as the matrix one obtains from A suppressing row i and column j (i.e. the
row and the column to which the element we are considering belongs).

For square matrices, say A, the determinant can be defined. It is a number,
indicated with ||A|| or with det A. The definition is recurrent. If the order of the
matrix is one, its determinant is its only element. If the order is two,

A ¼ a11 a12
a21 a22

� �
; Ak k ¼ a11a22 � a12a21: ð1:35Þ

If the matrix order is three or larger, one starts choosing a row (or a column). It
can be shown that the choice is arbitrary. We then choose the first row. Then we
multiply each element of the row times the determinant of its minor, keeping it as it
is, if the sum of the indices is even (11, 13, 15,…), changing its sign, if it is odd (12,
14, 16,…). Finally we sum all these numbers. The determinant of the 3×3 matrix

A ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

0
@

1
A

is
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Ak k ¼
X3
k¼1

�1ð Þ1þ ka1k A1kk k ¼ a11 A11k k � a12 A12k kþ a13 A13k k

¼ a11 a22a33 � a23a32ð Þ � a12 a21a33 � a23a31ð Þþ a13 a21a32 � a22a31ð Þ:
ð1:36Þ

It is easy to show that if two (or more) rows or two columns are equal, or simply
proportional, the determinant is null. It is also shown that the determinants of two
matrices differing only for the exchange of two contiguous rows or two contiguous
columns are equal and opposite.

The scalar triple product of three vectors, say A, B and C, can be usefully
expressed as the determinant of a 3 × 3 matrix of their components

A� B� Cð Þ ¼ det

Ax Ay Az

Bx By Bz

Cx Cy Cz

0
B@

1
CA

¼ Ax ByCz � BzCy
� �� Ay BzCx � BxCzð ÞþAz BxCy � ByCx

� �
;

ð1:37Þ

that is Eq. (1.26). The just mentioned properties of the determinant correspond to
the known properties of the triple product: it is null if two factors are equal or
parallel, i.e. with proportional components; inverting two factors the triple product
changes sign.

Finally, also the vector product of two vectors can be written formally as the
determinant of the matrix having in the first row the unit vectors of the axes, and
second and third rows the components of the two vectors in the order. Indeed

A� B ¼ det

i j k

Ax Ay Az

Bx By Bz

0
B@

1
CA

¼ i AyBz � AzBy
� �� j AzBx � AxBzð Þþ k AxBy � AyBx

� �
; ð1:38Þ

that is Eq. (1.21).

1.10 Velocity

We shall now study the motion of the simplest body, the material point or particle.
This is the case when its dimensions are small compared to the distances from other
objects. This is clearly an idealization but it works often in practice. For example
the planets are certainly not point-like, however in the mathematical description of
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their motions around the sun they can be considered as such in a good approxi-
mation, as long as we do not consider the rotations about their axes, or the varia-
tions of the directions of those axes, or the tides on their surfaces. A ship can be
considered a point when she is far from shore, but when she enters a harbor her
dimension must be precisely known.

As we have already stated, the motion has to be studied in a given reference
frame. The particle describes in its motion a curve, which is called the trajectory, as
shown in Fig. 1.14a. The position vector is a function of time r(t) or, in other words,
the co-ordinates are three functions of time x(t), y(t), z(t). If we know these func-
tions we completely know the motion of the particle. We say that the system has
three degrees of freedom.

Let us consider the position vector at the instant of time t, r(t) as represented in
Fig. 1.14a and an immediately following instant t + Δt, r(t + Δt), where Δt is a short
time interval. In this time interval the particle has moved by Δs, which is a step in
the space having a magnitude and a direction, namely it is a vector. Looking at the
figure one immediately sees that Δs is equal to the difference between the two
vectors r(t + Δt) and r(t). This is the variation of the vector r in the time interval Δt.
Hence

Ds ¼ Dr ¼ r tþDtð Þ � r tð Þ: ð1:39Þ

The average velocity in the time interval Δt is the vector obtained by dividing the
displacement by the time interval in which it happens:

vh i ¼ Ds
Dt

¼ Dr
Dt

¼ r tþDtð Þ � r tð Þ
Dt

: ð1:40Þ

or, for the components

txh i ¼ x tþDtð Þ � x tð Þ
Dt

; ty
	 
 ¼ y tþDtð Þ � y tð Þ

Dt
; tzh i ¼ z tþDtð Þ � z tð Þ

Dt
: ð1:41Þ

O

x

z

y
r(t+Δt)

r(t)

Δs = Δr

O

x

z

y

r(t)

v(t)

(a) (b)

Fig. 1.14 a The trajectory of a particle, b the velocity
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Velocity is the limit for Dt ! 0 of the average velocity, namely

v ¼ dr
dt

: ð1:42Þ

In words, the velocity is the time derivative of the position vector. Its compo-
nents are the derivatives of the coordinates

tx ¼ dx
dt

; ty ¼ dy
dt

; tz ¼ dz
dt

: ð1:43Þ

In the limit Dt ! 0 the direction of Δs becomes tangent to the trajectory, in every
point of the trajectory the direction of velocity is that of the tangent in that point
(Fig. 1.14b).

The physical dimensions of velocity are those of a length divided by a time; the
unit is consequently the meter per second (m/s or ms−1).

The motion is said to be uniform, if the magnitude of velocity does not vary in
time. In a uniform motion however, the velocity is not necessarily constant, because
its direction may vary. The direction of velocity does not vary if the motion is
rectilinear. Hence a motion with constant velocity is rectilinear uniform.

Example E 1.1 The motion of a particle is known when its three co-ordinates as
functions of time are known. Consider the motion given by the equations

x tð Þ ¼ btþ c; y tð Þ ¼ 0; z tð Þ ¼ 0;

where a and b are constants.
The co-ordinates y and z are always zero. Consequently the motion is along the

x-axis, hence rectilinear. In the initial instant (t = 0) the particle is in the position x
(0) = c. It is called the initial position. As time varies the position varies in
proportion, b being the proportionality constant. The particle moves in the positive
x direction (increasing x) if b > 0, in the negative one (decreasing x) if b < 0. The
velocity has only one component different from zero, tx ¼ dx

dt ¼ b: Hence, the
motion is also uniform.

Example E 1.2 Consider the motion given by the equations

x tð Þ ¼ b1tþ c1; y tð Þ ¼ b2tþ c2; z tð Þ ¼ 0:

Now the motion takes place in the xy plane, because the z co-ordinate is always
zero. The initial position is

x 0ð Þ ¼ c1; y 0ð Þ ¼ c2; z 0ð Þ ¼ 0:
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In order to find the equation of the trajectory we may take the ratio of the
distances travelled in the same time along y and x. We find

y tð Þ � y 0ð Þ
x tð Þ � x 0ð Þ ¼

b2
b1

;

which is a constant. This means that the trajectory is the straight line through the
point (c1, c2) and making with x-axis the angle arctan (b2/b1).

Hence, the motion is rectilinear as shown in Fig. 1.15.
The components of velocity in the plane of the motion are tx ¼ dx

dt ¼ b1 and

ty ¼ dy
dt ¼ b2: The velocity vector is then v = (b1, b2, 0), having the same direction

as the (rectilinear) trajectory. It is consequently rectilinear uniform.

Example E 1.3 Consider the motion

x tð Þ ¼ bt2 þ ctþ d; y tð Þ ¼ 0; z tð Þ ¼ 0 ð1:44Þ

and let us calculate the velocity. There is only one non-zero component, namely
tx ¼ dx

dt ¼ btþ c: The velocity is not constant but increases (decreases) linearly with
time if b > 0 (b < 0). The motion is rectilinear but not uniform.

As we have already seen, the motion of the bodies is always relative to the
assumed reference frame. Consequently also the velocity is relative to the frame. In
Chap. 5 we shall study in detail the relations between the kinematic quantities
(position, velocity, acceleration, etc.) in different frames in relative motion. We
anticipate here a simple concept, the relative velocity.

The velocity of a body relative to another one is the vector difference between their
two velocities. Indeed, let r1 be the position vector of the first body and r2 that of the
second. The position of the second body relative to the first is the vector
r12 ¼ r2 � r1. The time derivative of this vector is the velocity of 2 relative to 1,
which is the velocity of 2 seen by an observer travelling with 1. Calling it v12 we have

v12 ¼ v2 � v1: ð1:45Þ

The velocity of a passenger walking on the deck of a ship relative to the vessel is
the difference between the velocity vectors of the passenger and of the ship relative
to the sea.

O x

y

arctan(b2/b1)

c1

c2
b1

b2
v

Fig. 1.15 Geometry of the
motion of E 1.2
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Notice that the position of 1 relative to 2 is the opposite of the position of 2
relative to 1. The same is true for the velocities.

Example E 1.4 Consider two ships, A and B, which at a certain instant are in the
position shown in Fig. 1.16. Their velocities are v1 and v2 respectively. The two
courses intercept in the point o P. Will the ships collide in P if they move with
constant velocities?

The answer is immediate in a frame fixed with one of the two vessels, for
example with A as in Fig. 1.16b. In this frame, all the relevant velocities, including
that of the sea, are obtained from those relative to the sea by subtracting v1. Hence
A does not move (by definition) and B moves with velocity v2 − v1. The vector
R leading from A to B is the same in the two frames (they differ by a translation).
Ship B, as seen by A, moves on the course shown in the figure. Hence the minimum
distance she will pass from A is AC, namely the distance of A from the straight line
B travels. In conclusion, they will pass close but will not collide.

Notice on purpose that a passenger A sees B moving sideway, not in the direction
of bow. Indeed, we have a strange impression when we cross closely another ship,
particularly offshore, when any reference to ground is missing. She looks to be
travelling in a not “natural” direction.

1.11 Angular Velocity

An important motion is the circular one, in which the trajectory is a circle. Let R be
its radius. It is always convenient to choose the reference frame taking profit from
the symmetry of the problem, if any is present. We take the origin in the center of
the circle and the z-axis perpendicular to its plane. The motion is then in the xy
plane as shown in Fig. 1.17a.

We further choose the origin of time in the moment in which the point crosses
the positive x-axis. Let ϕ(t) be the angle between the position vector and the x axis
at time t, taken as positive in anticlockwise direction and let s(t) be the length of the
arc subtended by ϕ(t), taken with the same sign as ϕ, namely s(t) = R ϕ(t). Let ds be
the infinitesimal movement in dt (Fig. 1.17b). The infinitesimal changes of s and ϕ

v1

v2

v2

–v1

v2–v1

A

B

P

C

B

A

R R

(a) (b)

Fig. 1.16 Motion relative to the sea and of one sheep relative to the other
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are linked by the relation ds = R dϕ, where in our notation ds is the magnitude of
ds if the motion is anticlockwise (as in Fig. 1.17), and is opposite if clockwise. The
angular velocity measures the rate of change of the angle. We then consider the
time derivative

xz ¼ d/
dt

: ð1:46Þ

This quantity has magnitude and a sign, depending on the sense of rotation. In
fact, it is the z component of the angular velocity, which is a vector. Its magnitude is
the absolute value of Eq. (1.46), its direction is perpendicular to the plane of the
motion, taken positive on the side seeing the motion is anticlockwise. This is the
z-axis in Fig. 1.17c.

The physical dimensions of the angular velocity are the inverse of time; its unit
is radians per second (rad/s)

In a circular motion, the magnitudes of velocity υ = |ds|/dt and the magnitude of
the angular velocity ω are related by

t ¼ xR: ð1:47Þ

The relation between the corresponding vectors, as immediately seen from
Fig. 1.17c is

v ¼ x� r: ð1:48Þ

Let us consider the case in which the magnitude υ of the velocity is constant. The
motion is circular and uniform, the arcs and the corresponding angles are propor-
tional to the times taken to travel them, namely / tð Þ ¼ s tð Þ=R ¼ � tt=R (where, as
usual the sign is positive if the direction is anticlockwise and vice versa). Hence we
have the equations of motion in polar co-ordinates:

r tð Þ ¼ R; h tð Þ ¼ p
2
; / tð Þ ¼ � tt

R
¼ xzt: ð1:49Þ

O x

y

r(t)

v(t)

φ(t)
R

s(t)

O x

y

ds

φ(t)

R
dφ r(t)

s(t)

r

ω

v

(a) (b) (c)

Fig. 1.17 a The circular motion, b an infinitesimal movement, c angular velocity ω
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The equations of motion in Cartesian co-ordinates are

x tð Þ ¼ R cosxzt; y tð Þ ¼ R sinxzt; z tð Þ ¼ 0: ð1:50Þ

As an exercise we can check that the trajectory is indeed a circle. Taking the
squares of the members and summing we have x2 tð Þþ y2 tð Þþ z2 tð Þ ¼ R2 which is
the equation of a circumference. Notice that the two Cartesian co-ordinates x and
y are not independent but if we know one we know also the other. In fact the
particle is bound to travel onto a prefixed trajectory. The system has one degree of
freedom. This is evident in polar co-ordinates, Eq. (1.49). Two of them are constant.

We now express the Cartesian components of velocity

tx tð Þ ¼ dx
dt

¼ �xzR sinxzt; ty tð Þ ¼ dy
dt

¼ xzR cosxzt; tz tð Þ ¼ dz
dt

¼ 0 ð1:51Þ

The components of the velocity vector change in time: when the particle moves
on the circle its direction continuously varies even if its magnitude is constant.
Indeed, the magnitude is

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2x þ t2y þ t2z

q
¼ xR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 xztþ sin2 xzt

q
¼ xR; ð1:52Þ

which is a constant.
As a further exercise, let us check that the velocity is always tangent to the

trajectory, i.e., perpendicular to the position vector everywhere. To see that we take
their scalar product and get

r tð Þ � v tð Þ ¼ x tð Þtx tð Þþ y tð Þty tð Þ ¼ �xzR
2 cosxzt sinxztþxzR

2 sinxzt cosxzt ¼ 0

We now make the following observation that will be useful in the following. In
the case we have noted that we have two vectors: the position vector and the
velocity. The x and y components of the first vector are proportional to the cosine
(Eq. 1.50) and the sine of the angular co-ordinate respectively, those of the second
to the opposit of its sine and to its cosine respectively (Eq. 1.51). When this
happens the two vectors are perpendicular.

Both the co-ordinates and the components of velocity are proportional to the
circular functions cosωt or sinωt, which are periodic. In fact the motion is periodic,
meaning that if position and velocity have some values in the instant t they have
again the same values at the instants t + T, t + 2T, etc., for every t. The time T is
called the period of the motion. It is inversely proportional to the angular velocity

T ¼ 2p
x

: ð1:53Þ
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1.12 Acceleration

The motion of a body in which the velocity varies with time in magnitude or
direction is called accelerated. If the change of velocity in the time interval Δt is Δv,
the average acceleration in that time interval is the ratio

ah i ¼ Dv
Dt

: ð1:54Þ

The instantaneous acceleration at time t is its limit for Dt ! 0, namely the time
derivative of the velocity

a ¼ dv
dt

ax ¼ dtx
dt

; ay ¼ dty
dt

; az ¼ dtz
dt

� �
: ð1:55Þ

In the particular case of the rectilinear motion, when the direction of the velocity is
constant, the acceleration direction is also on the line and its magnitude and sign are

a ¼ dt
dt

: ð1:56Þ

Example E 1.5 Consider again the motion of Example E 1.3, namely

x tð Þ ¼ bt2 þ ctþ d; y tð Þ ¼ 0; z tð Þ ¼ 0:

The motion is along the x-axis with velocity tx ¼ btþ c. The x component of the
acceleration, the only different from zero, is then ax ¼ dtx

dt ¼ d2x
dt2 ¼ b. The acceler-

ation is constant in magnitude and direction. Such motions are called uniformly
accelerated.

We now consider a uniform circular motion in which the velocity vector has a
constant magnitude and varies in direction with constant angular velocity. In order
to find the acceleration, consider the auxiliary diagram of Fig. 1.18a (we assume an
anticlockwise rotation direction). The axes of the figure are the x and y components
of the velocity vector that we think of as having its tail in the origin. It is analogous
to the position vector in the xy plane. The analogy is complete because both vectors
rotate with constant angular velocity ω. In other words, the head of the velocity
vector A describes a circularly uniform motion in the velocity plane, having a radius
equal to its magnitude υ.

Clearly the “velocity” of point A is just the acceleration of particle P because the
displacement of A in the time interval dt is dv and consequently its “velocity” is
a ¼ dv

dt . This vector is tangent to the circle and consequently perpendicular to the
velocity (Fig. 1.18a). More precisely, the direction of acceleration is obtained from
that of the velocity by a rotation of 90° in an anticlockwise direction. Going back to
the representation of the motion in the xy plane in Fig. 1.18b, the acceleration,
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which we just saw to be at 90° from the velocity anticlockwise, is radial directed
towards the center. It is then called centripetal acceleration.

We immediately find the magnitude of the acceleration. We denote by α the
angle between the vector v and the abscissa axis in Fig. 1.18a, and dα its variation
in the time dt. Considering that the vector rotates with constant angular velocity ω,
we have dα = ω dt. On the other hand the change in velocity is dvj j ¼ tda and we
get the important relation

a ¼ dv
dt


 ¼ t

da
dt

¼ xt ¼ t2

R
¼ x2R: ð1:57Þ

Summing up, if the velocity varies only inmagnitude, the acceleration is parallel to
velocity, if the velocity varies only in direction, the acceleration is perpendicular to
the velocity, directed towards the center of the trajectory. We shall see in Sect. 1.14
that in the general case in which both magnitude and direction of velocity vary,
acceleration has two components one parallel and one perpendicular to velocity.

1.13 Time Derivative of a Vector

In the study of uniform circular motion we have dealt with the position vector r and
the velocity v. Both are constant in magnitude and vary in direction with time,
rotating at the angular velocity ω. We have seen that the magnitudes of their time
derivatives are respectively ωr and ωυ, namely, in both cases the magnitude of the
vector times ω. In both cases the direction of the derivative vector is at 90° forward
to the original vector. The result is valid also if the angular velocity is not constant.
Indeed, we did not use this assumption.

We now generalize the argument as follows, with reference to Fig. 1.19.
Consider the vector function of time A(t), constant in magnitude, varying only in

O x

y

v(t)

v(t)

a

a
P

C

A

x

y(a) (b)

Fig. 1.18 Uniform circular motion
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direction. At the generic time instant the vector rotates with angular velocity ω, not
necessarily constant. Let up be the unit vector rotated by π/2 relative to A in the
direction of the rotation. The time derivative of A is

dA
dt

¼ xAup ð1:58Þ

or better

dA
dt

¼ x� A: ð1:59Þ

This important formula that we shall use often in the following is due to
Siméon-Denis Poisson (1781–1842) and is called a Poisson formula. It is valid if
the magnitude A is constant.

In the general case in which the vector A varies both in direction and magnitude,
its time derivative is immediately obtained by writing the vector as the product of
its magnitude and its unitary vector

dA
dt

¼ d AuAð Þ
dt

¼ dA
dt

uA þA
duA
dt

:

But the vector uA is constant in magnitude, being unitary, and we can use the
Poisson formula for its derivative. We get

dA
dt

¼ dA
dt

uA þAx � up ¼ dA
dt

uA þx� A; ð1:60Þ

which is an important result that we shall use often in the following.

1.14 Motion on the Plane

We now consider a general motion in a plane. We indicate with ut the unit vector
tangent to the trajectory in its generic point in the direction of the velocity in that
point. In general ut varies in time. Figure 1.20 shows the situation in two con-
secutive instants.

A(t)

dA
dt

Fig. 1.19 A rotating vector
and its time derivative
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In every instant, i.e. in every point of the trajectory, in general the velocity is
different. We indicate with un the unit vector normal to the trajectory. Its positive
direction is the direction obtained by rotating ut by 90° in the direction of the
instantaneous rotation of the velocity vector. This geometrically means that un is
directed towards the curvature center. The latter may lie on the left or the right of
the trajectory depending on the case. To obtain the acceleration we take the
derivative of the velocity expressed as the product of magnitude times unit vector,
v = υ ut.

dv
dt

¼ dt
dt

ut þ tx � un ¼ atut þ anun: ð1:61Þ

As anticipated, the acceleration has two components. One is tangent to the
trajectory and equal to the time derivative of the magnitude of velocity. It is null if
the motion is uniform, positive if it is accelerated, negative if decelerated. The other
component is normal to the trajectory in any case towards the “interior” of the
curve. It is zero when the direction of the velocity does not vary, even if instan-
taneously, as in the flex points of the trajectory.

We can express the normal component of the acceleration in terms of the cur-
vature radius of the trajectory in the point P under consideration. Figure 1.20b
shows the situation. Consider all the circles tangent to the curve in P having
radiuses between 0 and infinity. One of these gives locally the best approximation
of the curve. It is called an osculating circle, from the Latin word osculum, meaning
kiss. Its radius R is called the curvature radius of the curve in the point P. Its
reciprocal is the curvature. In an inflexion point the curvature radius is infinite and
the curvature is null.

Now we can approximate the small curve segment around P with the arc of the
osculating circle and think of the point as moving on that arc with angular velocity
ω = υ/R. In conclusion, the two components of the acceleration are

at ¼ dt
dt

; an ¼ t2

R
: ð1:62Þ

We see that the normal component of the acceleration is proportional to the
curvature and to the square of the velocity.

ut

un

un

ut

a a

P(t1)

P(t2)

R

utP(t1)

C

(a) (b)Fig. 1.20 a The acceleration
vector in two different points
of the trajectory; b the
osculating circle
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1.15 From Acceleration to Motion

Figure 1.21 represents the trajectory of a material point P in a given Cartesian
reference frame, its position vector r(t), its velocity v(t) and its acceleration a(t), that
are all functions of time.

We recall their expressions

r tð Þ ¼ x tð Þiþ y tð Þjþ z tð Þk; ð1:63Þ

v tð Þ ¼ tx tð Þiþ ty tð Þjþ tz tð Þk ¼ dr
dt

¼ dx
dt

iþ dy
dt

jþ dz
dt

k, ð1:64Þ

a tð Þ ¼ ax tð Þiþ ay tð Þjþ az tð Þk ¼ dv
dt

¼ dtx
dt

iþ dty
dt

jþ dtz
dt

k, ð1:65Þ

a tð Þ ¼ d2r
dt2

¼ d2x
dt2

iþ d2y
dt2

jþ d2z
dt2

k. ð1:66Þ

In words, the velocity is the time derivative of the position vector and the
acceleration is the time derivative of the velocity or the second time derivative of
the position vector. We shall see in the next chapter that acceleration is proportional
to the force.

We consider now the inverse problem, namely to find the velocity and the law of
motion once the acceleration a(t) is given. As the velocity is the time derivative of
the position vector, the latter is given by the integral of the velocity on time from
the initial instant t0 to the time t considered, namely

r tð Þ � r t0ð Þ ¼
Z t

t0

v tð Þdt:

In general, we want to know the position of P at the time t and rewrite the
expression as
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Fig. 1.21 Trajectory,
position vector, velocity and
acceleration
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r tð Þ ¼ r t0ð Þþ
Z t

t0

v tð Þdt: ð1:67Þ

We see that knowledge of the velocity v(t) is not sufficient. We need also to
know the position of the body at a certain instant t0. This instant can be any, but
generally we know how the motion began, namely we know the initial position. It
is customary to choose that instant as the origin and t0 = 0.

To a question like “A car has been travelling at a constant speed of 100 km/h.
Where is it after 2 h?” We can only answer it has travelled 200 km. We can know
its position only if we know from were it started.

Equation (1.67) corresponds to three integrals

x tð Þ ¼ x t0ð Þþ
Z t

t0

tx tð Þdt; y tð Þ ¼ y t0ð Þþ
Z t

t0

ty tð Þdt;

z tð Þ ¼ z t0ð Þþ
Z t

t0

tz tð Þdt:
ð1:68Þ

If we want to know the velocity for a given acceleration, we proceed in the same
manner by integrating

v tð Þ ¼ v t0ð Þþ
Z t

t0

a tð Þdt ð1:69Þ

or, in terms of the components

tx tð Þ ¼ tx t0ð Þþ
Z t

t0

ax tð Þdt

ty tð Þ ¼ ty t0ð Þþ
Z t

t0

ay tð Þdt

tz tð Þ ¼ tz t0ð Þþ
Z t

t0

az tð Þdt:

ð1:70Þ

Again, we need to determine the integration constants, namely the velocity at a
certain instant, which is usually the initial one.

Once the velocity is known we need to integrate again to have the law of motion.
For that we need to know both the initial position and the initial velocity.
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1.16 Free Fall Motion

The study of the free fall motion of bodies near the surface of earth is an important
example of the use of the just developed formalism. With “free fall” we mean an
idealized situation in which the air resistance can be neglected and the bodies move
only under the action of gravity We anticipate that under these conditions the
vertical and horizontal motions are independent from one another, as we shall study
in Sect. 3.7, and that any free body moves with a constant acceleration, g, which is
vertically directed downwards and has a magnitude (approximately) g = 9.8 m/s2.
We choose a reference frame with the z-axis vertical upward, and the x and y-axes
in a horizontal plane, for example the ground. The acceleration of the body, that we
shall consider point-like, P, has the components

a ¼ 0; 0;�gð Þ ¼ �gk. ð1:71Þ

The motion of the body depends on the initial conditions. If for example we drop
the body from a certain height with null velocity it will move vertically down with
uniform acceleration. If we launch it vertically upwards it will gradually slow down,
stop and then fall down. If we launch it at an angle with the horizontal it will
describe a curved trajectory, etc. Let us study these motions.

Let us start from the simplest case. We drop the body at the height h above
ground with null velocity at t = 0. The initial conditions are

x 0ð Þ ¼ 0; y 0ð Þ ¼ 0; z 0ð Þ ¼ h; tx 0ð Þ ¼ 0; ty 0ð Þ ¼ 0; tz 0ð Þ ¼ 0:

The x component of the velocity at the generic time t is

tx tð Þ ¼ tx 0ð Þþ
Z t

0

ax tð Þdt ¼ 0þ 0:

The x component of the velocity is identically zero (i.e. is zero at every instant of
time) because the x components of both acceleration and initial velocity are zero.
A similar argument leads immediately to conclude that also x(t) = 0. The same is
true for the y components of velocity and position vectors. Notice that the initial
conditions x(0) = 0 and y(0) = 0 depend on the reference frame. Its origin has been
chosen in such a way to have the point from which we drop the particle on
the z-axis. A different choice would have led to the initial conditions, say, x(0) =
a, y(0) = b. The two co-ordinates as functions of time would have been x(t) =
a, y(t) = b. The motion obviously is the same.

We have found that the motion is along the z-axis. As the acceleration is con-
stant, it is uniformly accelerated (acceleration may have both signs, if we want to be

38 1 Space, Time and Motion

http://dx.doi.org/10.1007/978-3-319-29257-1_3


specific we can say accelerated, if the acceleration is positive, delayed if it is
negative). Let us now find the velocity in the z direction.

tz tð Þ ¼ tz 0ð Þþ
Z t

0

az tð Þdt ¼ 0�
Z t

0

gdt ¼ �gt: ð1:72Þ

Velocity is always negative. Indeed the body moves always in the z direction we
have chosen as negative. We now integrate once more to find the position as a
function of time

z tð Þ ¼ z 0ð Þþ
Z t

0

tz tð Þdt ¼ h�
Z t

0

gtdt ¼ h� 1
2
gt2 ð1:73Þ

which is the law of the motion. Knowing completely the motion, we can look for
interesting properties, for example the time taken to reach the ground. This is the
instant in which z = 0, hence tf ¼

ffiffiffiffiffiffiffiffiffiffi
2h=g

p
and the velocity in that instant

tf ¼ t tf
� � ¼ ffiffiffiffiffiffiffiffi

2gh
p

: ð1:74Þ

Consider now the same initial conditions with the difference that the initial
velocity has a nonzero vertical value υ0. With the same arguments as before, we
obtain

tz tð Þ ¼ t0 � gt; ð1:75Þ

z tð Þ ¼ hþ t0t � 1
2
gt2: ð1:76Þ

We should now distinguish the two cases of positive (downwards) and negative
(upwards) initial velocity.

If υ0 < 0, the velocity is always negative. To find the instant t in which the body
is at the height z we solve Eq. (1.76), obtaining

t zð Þ ¼ t0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t20 þ 2g h� zð Þ

p
g

:

We have two solutions because Eq. (1.76) is of second degree in t. However, in
the case we are considering, one of them, the one with the negative sign, is always
negative and consequently does not have physical meaning. We must choose the
solution with a positive sign, because the motion starts at t = 0.
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The time of arrival at ground, the duration of the fall, is the time at which z = 0,
namely

tf ¼ t z ¼ 0ð Þ ¼ t0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t20 þ 2gh

p
g

;

which is shorter than in the case of null initial velocity. Obviously the expressions
found in the latter case are particular cases.

If υ0 > 0, from Eq. (1.75) we see that the velocity is positive, namely upwards,
for a while, but it diminishes with increasing time. It is zero in the instant tm = υ0/g,
and negative in later times. Indeed, the body reaches the maximum height at tm,
namely zm ¼ z tmð Þ ¼ hþ t20= 2gð Þ (see Fig. 1.22a). In this case both roots for
t(z) have physical meanings provided t ≥ 0. Indeed, the body goes twice through the
same height, if it is z ≥ h, first going up later going down. If z < h one solution is
negative and again does not have physical meaning.

Why may it happen that a mathematical solution should be discarded on physical
grounds? The reason is that the equations stating the “initial conditions” do not give
information on the system before the “initial” instant. In this case the body stood
still, say in our hand. But it would have been possible that it was moving upwards
in such a way as to reach z = h at t = 0 with velocity equal to υ0. The discarded
solution would have made sense.

We now suppose that the initial position is again at the height h above ground,
but that the velocity v0 is at an angle α with the horizontal. This is what happens
when shooting with a cannon from the top of a tower. We choose the z vertical
upwards as before and the x horizontal in the plane of z and of the initial velocity.
The initial conditions are

x 0ð Þ ¼ y 0ð Þ ¼ 0; z 0ð Þ ¼ h; tx 0ð Þ ¼ t0 cos a; ty 0ð Þ ¼ 0; tz 0ð Þ ¼ t0 sin a:

O
x

z

y

v0

h

xf

zm

O

z

h

zm

P P

(a) (b)

Fig. 1.22 Free fall trajectories with initial velocity a vertical upward, b at an angle α with the
horizontal
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The motion is in the plane xz, as show in Fig. 1.22b. We find, as usual, the
velocity using Eq. (1.69) and the initial conditions.

v tð Þ ¼ it0 cos aþ k t0 sin a� gtð Þ: ð1:77Þ

We see that the horizontal, x, component of the velocity is constant and equal to
its initial value and that the vertical one, z, decreases linearly in time, exactly as in
the case we have considered.

We integrate once more and use the initial conditions to obtain the law of
motion, finding

r tð Þ ¼ i t0 cos að Þtþ k t0 sin að Þt � 1
2
gt2 þ h

� �
ð1:78Þ

or

x tð Þ ¼ t0 cos að Þt; z tð Þ ¼ t0 sin að Þt � 1
2
gt2 þ h: ð1:79Þ

We now know completely the motion. If, for example, we want to know the
shape of the trajectory we must eliminate t from the equations for the co-ordinates.
From the first one we have t ¼ x= t0 cos að Þ, which, substituted in the second
equation, gives

z ¼ x tan a� x2
g

2t20 cos2 a
þ h; ð1:80Þ

which is the equation of a parabola. The distance xf at which the body touches the
ground, namely the range of the weapon, is the value of x corresponding to z = 0.
We then put this value in Eq. (1.80) and solve for x. We find

xf ¼ t20
g
sin a cos a 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2gh

t20 sin
2 a

s !
: ð1:81Þ

The negative root solution is for t < 0 and corresponds to the intersection of the
parabola on the left of the tower. It is shown dotted in Fig. 1.22b and should be
discarded. The positive root is the solution for which we searched.

We now find the duration of the shot, which is the time tf at which the body
touches ground. With x = xf the first of the (1.79) solved for t gives

tf ¼ xf
t0 cos a

¼ t0
g
sin a 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2gh

t20 sin
2 a

s !
: ð1:82Þ

We now find the maximum height zm reached by the body. This can be done in
different ways. One is noticing that this is the height at which υz = 0. From
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Eq. (1.78) we see that a happening at tm ¼ t0 sin a=g, which was substituted in the
second Eq. (1.79), gives

zm ¼ t20 sin
2 a

2g
þ h:

The same result can be reached finding the maximum of the second Eq. (1.79).
It is interesting to consider the special case α = 0. We want the time tf taken by

the bullet to reach ground. Equation (1.79) become

x tð Þ ¼ t0t; z tð Þ ¼ � 1
2
gt2 þ h:

The bullet hits the ground in the instant tf ¼
ffiffiffiffiffiffiffiffiffiffi
2h=g

p
, which, as we see, is

independent of υ0. This implies that for whatever initial velocity, even if enormous,
the time taken to fall from the height h is always the same and is then equal to the
free vertical (the special case υ0 = 0). In other words, the vertical and horizontal
motions are independent.

The law of independence of (the components of) motion was discovered by G.
Galilei. In the “Dialogue concerning the two Chief World Systems” he writes
(translation by the author):

…suppose having on the top of a tower a horizontally arranged culverin (a relatively light
cannon) and firing point-blank shots, namely parallel to the horizon; then for little or much
gunpowder charge given to it, such that the cannonball would fall at a distance of either one
thousands arms, or four thousand, or six thousand, or ten thousand, etc., all these shots
would take place in times equal to each other, and each equal to the time the ball would take
to fall from the cannon’s mouth to earth, when dropped, without any other impulse, for a
simple vertical fall. Indeed it looks really wonderful that in the same short time of the
vertical fall from a height, for example, of one hundred arms, could the same ball travel
either four hundred, or one thousand, or four thousand, or even ten thousand arms, in such a
way that in all the point-blank (horizontal) shots it would be in the air for equal times.

A little later Galilei specifies that that would be true

…when there were no accidental impediments by the air…

1.17 Scalars, Pseudoscalars, Vectors and Pseudovectors

In Sect. 1.4 we have defined the vector as an ordered triple of real numbers that
under rotations of the reference frame transforms in the same way as the triplet
representing the position vector.

In Sect. 1.6 we have met a scalar quantity, the dot product of two vectors. We
have seen that it is the same in two reference frames differing for a rotation of the
axes. Indeed, in general, a quantity is, by definition, a scalar if it is invariant under
change of the reference frame. For example, the x component of a vector is a single
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number but is not, properly speaking, a scalar, because it is not invariant under
rotations of the axes.

Hence, both vector and scalar properties are expressed in terms of transforma-
tions between reference frames. We shall now consider the behaviors of these
quantities under the inversion of the axes. It is called parity operation. It leads from
a, say, left-handed frame to a right-handed one.

We now consider the transformation properties of physical quantities.
A quantity can be scalar or pseudoscalar. Both are invariant under rotations but

the former is invariant under parity operation, the latter changes sign, while keeping
its absolute value.

The dot product of two vectors is a scalar; the “scalar” triple product is a
pseudoscalar. This is immediately evident considering that under inversion of the
axes all the three vector factors change sign.

A quantity can be a vector or a pseudovector (also called an axial vector). Both
transform in the same way under rotations, but the components of the former
change sign under inversion of the axes, as the position vector does, while the
components of the latter do not change sign.

The cross product of two vectors is a pseudovector, because both the vector
factors change sign and their product does not. We met both types of physical
quantities. Position vector, velocity and acceleration are (proper) vectors; angular
velocity and moment of a vector are pseudovectors.

This type of properties of the physical quantities belong to a class generically
called symmetry properties.

Problems

1:1. The vector V varies by ΔV, its absolute value varies by ΔV in the time
interval Δt. (a) Can ΔV be larger than the magnitude of the variation, namely
|ΔV|? Can they be equal?

1:2. The vector V changes its verse. Express ΔV, ΔV and |ΔV|?
1:3. At the instant t1 the velocity of a body is, with certain units, v1 = (1, 3, 2), at

time t2 is v2 = (5, 3, 5). Find: (a) The variation of the velocity Δv, (b) the
magnitude of the variation of the velocity |Δv| and (c) the variation of the
magnitude of velocity Δυ.

1:4. A particle travels on a circle with velocity υ constant in magnitude. After a
complete turn, (a) which is the mean value of υ? (b) which is the mean
velocity <v>?

1:5. A particle moves with a position vector, in the given frame,
r tð Þ ¼ 2tiþ 3t2jþ tkð Þ m. Find: (a) velocity and acceleration as functions of
time, (b) the velocity at t = 2 s.

1:6. A point moves uniformly on a plane curve trajectory with velocity υ. The
magnitude of acceleration on a certain point of the trajectory is a. What is the
curvature radius in that point?
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1:7. The position vector of a point is r tð Þ ¼ i cos xtð Þþ j sin xtð Þ. (a) Find the
velocity and acceleration vectors and their magnitudes. (b) Express the scalar
product of r and v. What does the result mean? (c) Express the scalar product
of r and a. (d) Find the trajectory of the point. (e) How would the motion
change changing the sign of y(t)?

1:8. A cyclist travels at 10 km/h heading north. Wind blows with a speed (relative
to ground) of 6 km/h from a direction between N and E. To the cyclist the
wind appears to come from the direction at 15° from North to East. (a) Find
the speed of the wind relative to the cyclist and the direction of the wind,
relative to ground. When the cyclist goes back, which are velocity and
apparent direction of the wind (wind did not vary).

1:9. We are on a ship travelling at 10 kn heading east. We see another ship, which
we know moves at 20 kn to North, 6 miles distant in the South direction.
What is the minimum distance the two ships will be (without changing their
courses)? After how much time? Refer to Fig. 1.16. N.B. On the sea dis-
tances are measured in nautical miles and velocities in knots (1 kn =
1 mile/h). Assume for the mile the round figure of 1800 m.

1:10. Consider a flat platform rotating with angular velocity ω1 = K t2k where k is
the unit vector of the z-axis directed vertically upwards. A body on the
platform rotates with angular velocity, relative to it, ω2 = 2 Kt2i (the x axis is
horizontal). K = 1 rad/s3. (a) Find the direction of the body relative to the
ground. (b) Find the angle ϕ of which the body has rotated relative to ground
at t = 3 s. (c) Does the magnitude of the resultant angular velocity vary in
time? And its direction?
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Fig. 1.23 The plane and the
cannon of problem 11
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Fig. 1.24 The wheel of
problem 12
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1:11. An airplane is flying at constant velocity V, of horizontal direction and
magnitude V = 100 m/s at the height h = 5000 m. A (super)cannon on earth
shoots against it a ball at the moment in which the plane is just above the
weapon (Fig. 1.23). The velocity of the ball is υ0 = 500 m/s. Neglecting the
presence of air, find: (a) the angle α at which we must shoot to hit the plane;
(b) the time of the collision (which of the two solution should be chosen?);
(c) how much did the plane travel up to this moment.

1:12. The wheel shown in Fig. 1.24 rotates without slipping. Its axis moves for-
ward at the velocity v. Find the velocities (namely their components on the
two co-ordinate axes) of the points A, B, C.
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Chapter 2
Dynamics of a Material Point

In this chapter we study the dynamics of a material point, namely the laws gov-
erning motion by its causes, which are the forces. We shall then start by defining
and discussing the concept of force. The experimental method was introduced by
Galileo Galilei at the end of the XVI century. He also discovered part of the laws of
mechanics. The complete theory of mechanics was built by Isaac Newton, who
published in 1686 the “Philosophiae Naturalis Principia Mathematica”, known
generally as simply “Principia”.

The law of inertia was discovered by Galilei and assumed by Newton as the first
law of mechanics. It will be studied in Sect. 2.3. The law states that a body in
absence of forces acting on it moves naturally with constant velocity in a straight
line, a rectilinear uniform motion. The second law was also discovered by Galilei
and precisely formulated by Newton. It states that the rate of change of the
momentum, a vector that we shall define, namely its time derivative, is equal to the
force acting on the body. In an equivalent manner the acceleration is proportional to
the force. This is the subject of Sect. 2.4. In the same section we shall discuss
Newton’s third law, the action-reaction law.

There are several types of force in Nature, as we shall see in the next chapter. In
this one, however, in Sect. 2.5, we shall talk of weight, the force acting on all the
bodies near the surface of the earth. A few examples will be discussed in Sects. 2.6
and 2.7.

In Sect. 2.8 we introduce two of the fundamental mechanical quantities (beyond
momentum, or quantity of motion, already introduced in Sect. 2.4), the angular
momentum and the moment of a force.

In Sect. 2.9 we shall study a simple but very important system, the pendulum
and its harmonic motion. We shall also see how two concepts of mass, the inertial
and the gravitational mass, are in fact only one.

After having introduced the concept of work made by a force and shown the
theorem of energy conservation in Sect. 2.10, we shall describe an interesting
experiment by Galilei. It establishes that the work done on a body by the weight
force depends only on the difference between initial and final heights, not on the
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particular path followed. In modern language the experiment established that the
weight force is conservative. This very important concept will be defined in
Sect. 2.13. We then demonstrate the energy conservation theorem. Energy con-
servation is a fundamental law of all physics. We shall deal in this book only with
mechanical energy, in its kinetic and potential forms, but we warn the reader that
other important forms of energy exist, in particular thermal energy, as we shall
discuss in the second volume of this course when dealing with thermodynamics.

The historical process leading to a precise definition of the concept of energy and
to the establishment of the law of energy conservation took more than two cen-
turies. Starting with Galilei, it came to maturity around mid XIX century, with the
experiments of Mayer and Joule and enunciation of the energy conservation law by
Mayer and Helmholtz. We shall give some hints in Sect. 2.14.

In Sect. 2.15 we shall discuss a particular type of force, the central forces. The
gravitational attraction of the sun on a planet is an important example of this
category.

In the last paragraph we introduce the concept of power, which is the work done
by a force per unit of time.

2.1 Force, Operational Definition

The primitive concept of force is linked to muscular strain. If we lift a weight, push
an object, we must exert a force with our hands and arms and we feel strain. Since
ancient times humans developed simple mechanical devices to exert forces or
amplify the muscular effect. The string of an archer’s drawn bow exerts a force on
the arrow, throwing it in the air; a lever can be used to lift big weights, etc.
However, in physics the concept must be quantitative. For that, we must define
force accurately enough to be able to measure it. This means that we must be able to
compare two forces and establish when they are equal, when one is twice the other,
etc. In other words we must be able to determine the ratio between two different
forces.

A direct method to compare two forces is based on the lever rule, which was
discovered by Archimedes of Syracuse (287–212 BC) more then two thousand
years ago. The rule states that two equal forces balance when applied at equal
distances on two sides of the pivot (Fig. 2.1a) and that two different forces F1 and
F2 balance when applied at distances from pivot (l1 and l2 respectively) inversely
proportional to the forces (Fig. 2.1b), i.e. such as

F1l1 ¼ F2l2: ð2:1Þ

The first statement can be proven simply with symmetry arguments. If the two
forces are equal and the two arms are equal, the system is symmetric. How could it
choose on which side to bend? The second statement on the contrary, namely the
validity of Eq. (2.1), must be experimentally verified.
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We know that a spring exerts a force when compressed or stretched relative to its
natural length; we feel the muscular strain when we compress or pull it. We build a
certain number of springs as equal as possible to each other. We can then verify that
they exert equal forces when compressed (or stretched) in the same measure by
applying those forces at equal distances from the pivot of a lever as in Fig. 2.1a. We
can now define as unitary the force expanded of a specific length (N.B.: this is not
the official definition).

We can then define the multiples of the unit force. If for example, we want a
force of three units, we put three of our springs in parallel. We can experimentally
verify the lever rule Eq. (2.1) as shown in Fig. 2.2b with different combinations of
unit forces. Once we have stated that, we can use it to measure forces. As a matter
of fact the method has been used in steelyards since very ancient times and is still
used now in fruit or other goods markets to weigh a wide variety of goods. The
weight to be measured is compared with the weight of a standard object seeking for
equilibrium by changing the length of the lever arm of the latter.

In the operational definition of the force we have just chosen, we did not make
any hypothesis on the relation between the force exerted by the spring and its
length. However, this definition is not simple to use in practice. A handier device is
the dynamometer (from the Greek dynami for force and metro for measure).

The dynamometer, shown schematically in Fig. 2.2, is made of a spring fixed at
one extreme on a wood, or other material, plate and with a ring at its other extreme.
The force to be measured is applied to the ring. A pointer moving on a scale gives a
measurement of the dilation of the spring. Once we have built the device we must
calibrate it. With the above described procedure we have built a number of springs,
multiple and submultiples of the unit. We apply each of them to the ring and mark
the position of the pointer on the table. In this way we build a scale on which we
will read the values of unknown forces. In practice, we find that the scale is linear,

O

F F

l l

O

F1 F2

l1 l2
(a) (b)

Fig. 2.1 Comparison of two forces

0 1 2 3 4 5

Fig. 2.2 The dynamometer
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namely the stretch is proportional to the applied force, if the stretch is not too large.
However, this property is comfortable, but not necessary.

The method we have described is used in practice, but does not allow a precise
definition of force. In the SI the unit of force is a derived one, It is the force
imparting the unit acceleration (1 m/s2) to the unit mass (1 kg). It is called newton
(N). To have an idea of the order of magnitude, think that the weight of one liter of
water, 1 kg, is about 9.8 N. In other words one Newton is about the weight of the
water filling a glass.

2.2 Force Is a Vector

In giving the operational definition of force in the previous section we have
implicitly assumed, and we did that by definition, that two equal and opposite
forces when applied to a point do not cause acceleration. Namely, the two forces are
in equilibrium. Clearly, a force not only has a magnitude but also a direction. We
can exert a force on a body applying one of our springs and pulling in different
directions. We are led to think that force is a vector quantity. However, the con-
clusion cannot be reached by logic, rather it needs experimental verification. To be
a vector, a quantity not only should have a magnitude and a direction, but also
satisfy the rule of addition of vectors.

The experience with three forces was originally devised by Pierre Varignon
(1654–1722), a contemporary of Newton. Its device is shown in Fig. 2.3. In the
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Fig. 2.3 Varignon
experiment showing the
composition of forces
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plane of the figure, which is vertical, three pulleys are fixed. The three weights of
masses m1, m2 and m3, act by means of wires, drawn in the figure, joined in the
point O. The forces exerted by the wires have magnitudes proportional to the
weights and the directions of the wires. Once we have joined the three wires in
O and let the system alone, the system moves until it reaches its equilibrium
configuration, the one represented in the figure. We know the values of the weights,
say F1, F2 and F3, and measure the angles θ1 and θ2. We find that the following
relations are satisfied:

F1 sin h1 ¼ F2 sin h2; F1 cos h1 þF2 cos h2 ¼ F3

or

F1 þF2 þF3 ¼ 0:

The Varignon experiment and similar ones made afterwards verify the vector
character of the force. The most precise tests, however, are indirect and come from
the agreement of the experimental data with the predictions made under this
hypothesis in the most different conditions.

Once we have established that forces add as vectors, we define as the resultant of
the set of forces F1, F2, F3, … and their vector sum

F ¼ F1 þF2 þF3 þ � � � : ð2:2Þ

Let us now think of some forces that we know from our everyday experience.
We can distinguish two types. The just considered forces exerted by a spring, the
force a table exerts on an object it supports, the force we exert with our hand
pushing an object, are each exerted by contact. A body, the spring, the plane of the
table and the hand each apply force to the object touching it. The everyday example
of the second type of force is weight. Weight is the force with which earth gravi-
tationally attracts all bodies. It is directed vertically down, towards the center of
earth. This force is exerted at a distance i.e., it does not need contact.

2.3 The Law of Inertia

One of the most revolutionary discoveries of Galilei was the establishment of the
behavior of a body not subject to forces. The problem lies in the fact that in practice
it is impossible to eliminate all the forces. Weight is always present on earth. It
cannot be eliminated, but it can be balanced. If we put a body on a horizontal plane,
the latter will exert on the body a force equal and opposite to its weight. However,
when the body moves, frictional forces due both to the contact between the surfaces
of the plane and the body and the air are present. The effect of these “passive”
forces is much more difficult to control and was not known before Galilei.
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Consider the following experiment. We put a bronze sphere on a horizontal
plane. We then give it a push. That is, we apply a force for a brief time interval,
giving it a certain initial velocity on the plane. We observe the sphere’s motion and
see that its velocity gradually decreases and finally stops. To have the sphere
moving at constant velocity we need to apply a force continuously. The conclusion
seems to be that, when not acted on by forces, a body stands still. If it moves at
constant velocity it is acted upon by a force proportional to its velocity. We now
know that the conclusion, thought to be true for centuries, is actually false.

Galilei’s argument can be summarized as follows. The fact that, when we apply
a force to a body and then we cease to apply it, the body slows down and finally
stops is obviously true. But the cause is not the absence of acting forces. On the
contrary, the cause is the presence of forces that we do not apply, we do not see, yet
exist (they are called passive) and we are unable to avoid, like friction and air drag,

Galilei could not prove his statement experimentally by eliminating all the
passive resistive forces. He observed however that, when launching a solid polished
sphere of brass or ivory on a horizontal guide, the distance travelled by the sphere
before coming to rest was longer and longer when the surfaces of the guide and the
spheres were smoother and smoother. Mentally going to the limit of infinite
smoothness, he concluded that in those conditions the sphere would never stop, but
would continue to move forever with the same velocity.

The conclusion is the law of inertia. In the words of Newton

Every body preservs in its state of rest, or of uniform motion in a right line, unless it is
compelled to change that state by impressed forces.

The law of inertia is not however valid in just any circumstance. Whether it is
valid or not depends on the reference frame. Up to now we have made experiments
in a reference fixed to earth. We now suppose that we want to build a laboratory on
a carriage moving on straight rails at constant velocity, relative to earth. In our
laboratory we have a smooth horizontal plane. We lay a bronze sphere on the table
and observe that, as expected, it remains still. However, suddenly the sphere moves,
accelerates and moves quickly forward, without any visible force acting on it. What
did happen? It happened that the carriage suddenly started to slow down till coming
to rest. Even if our laboratory is closed with no window to look out, we know that
the carriage decelerates because we also experience a mysterious force pushing us
forwards.

An observer on earth, namely in the frame we had been considering above,
easily interprets the phenomenon. The sphere is free to move horizontally, the table
being smooth. A force acted upon by brakes on its reels has slowed the carriage
down. This force, however, does not act on the sphere, because the support plane is
smooth. The resultant of the forces on the sphere is null. For the law of inertia it will
continue in its motion with constant velocity. This is relative to the ground. But the
observer on the carriage, which slows down relative to the ground, sees the sphere
accelerating to reach the velocity that the carriage had before braking.
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A reference frame in which the law of inertia is valid is called an inertial frame.
We shall see that inertial frames have a privileged role in mechanics, and more
generally in physics.

More precisely, the law of inertia can be stated as: Reference frames do exist in
which every body not subject to force indefinitely remains in its state of rest or
uniform rectilinear motion.

One might think that the law of inertia is a consequence of our definition of
inertial frame, in other words that the argument is circular. But this is not true.
Indeed, we can give arbitrarily any definition we like, but we can never establish by
definition a law of nature, namely how she behaves. The existence of inertial frames
is a law of nature not a definition by men.

We further observe that we have considered inertial any reference stationary on
earth. The conclusion comes from the fact that, while doing experiments in such
laboratories, we never observe objects suddenly moving when no force acts on
them, nor do we feel as though we are being pushed in one direction or another.
However, the conclusion is valid only in a first approximation. Accurate mea-
surements show that frames that are stationary on earth are not exactly inertial. This
is due to the fact that earth moves around the sun and rotates on its axis. We shall
come back to that in Chap. 4. For the moment it will be enough to know that
stationary reference frames on earth are close enough to be inertial for the vast
majority of measurements carried out in laboratories and, on the other hand, pro-
cedures exist to define inertial reference systems with all the requested precision in
case this is needed.

2.4 The Newton Laws of Motion

In the Principia, Newton begins by stating, as axioms induced from the experi-
ments, the three fundamental laws from which the description of all the mechanical
phenomena, both on earth and in the Universe can be deduced. The first law is the
law of inertia we already discussed. The causes of any change of the state of rest or
rectilinear uniform motion of a body are to be searched for in the bodies around it.
For example the racket that hits it changes the state of motion of a tennis ball, the
state of the compass needle is changed by the presence of a magnet, etc. The same
hit imparted with a racket to a tennis or ping-pong ball produces different accel-
erations in the two bodies. By the term inertial mass we mean the characteristic of a
given object that makes it more or less resistant to changing its state of motion
under the action of a given force. Galilei had already proven with his experiments
that a body under the action of a constant force, its weight or a component of its
weight, moves with a constant acceleration in the direction of the force.

Let us study the phenomenon quantitatively. We have already built springs
producing forces of different magnitudes. We have performed an analogous

2.3 The Law of Inertia 53

http://dx.doi.org/10.1007/978-3-319-29257-1_4


procedure for mass. We have built a number of blocks of the same material making
them as equal as possible to each other. We can say that one block has unit inertial
mass, two blocks inertial mass equal to two, etc.

We have also prepared a horizontal plane, the function of which is to equilibrate
the weights of our blocks. In our experiments we shall put the blocks in motion
sliding on the plane and we want to reduce as much as possible the friction forces
between the plane and the blocks. We prepare the surface of the plane as smooth as
possible. We can also play the following trick. We can build the blocks with a
cavity inside and a series of holes between the cavity and the lower face. We fill the
cavity with dry ice (frozen CO2), which will sublimate pushing CO2 gas through the
holes. The thin layer of gas between the block and plane surfaces reduces friction to
negligible values.

1. We attach one of our springs to one block, we give it a certain deformation,
stretch or compression (Fig. 2.4a). We observe that the body moves with con-
stant acceleration, say a0, in the direction of the force, as long as we keep
constant the force (i.e. the deformation)

2. We attach two springs (Fig. 2.4b) to the block and give them the same defor-
mation as in the first experiment. We observe the body moving again with
constant acceleration in the direction of the force. The acceleration is twice as
large, 2 a0.

3. We fix two blocks one on top of the other and attach one spring to which we
give once more the same deformation. The acceleration is now one half as in the
first experiment, a0/2 (Fig. 2.4c).

Continuing with similar experiments changing the force on a body or the inertial
mass, we come to the conclusion that its acceleration a is proportional to the force
F and inversely proportional to its inertial mass mi and we write F ¼ mia:

t0

a = a0

t0

a = a0/2

t0

a = 2a0

12

2
1

1
1

(a) (b) (c)

Fig. 2.4 Simple experiments to study the relation between force, acceleration and inertial mass
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We can do better, because we have found that acceleration and force, which are
two vectors, have the same direction. The second law states that

F ¼ mia ¼ mi
dv
dt

¼ mi
d2r
dt2

: ð2:3Þ

This is the form that is more often expressed. However, Newton stated it as

A change of motion is proportional to the motive force impressed, and takes place in the
direction of the right line in which the force is impressed.

The quantity called by Newton “motion” is a fundamental vector quantity, p,
now called quantity of motion, or momentum (sometimes linear momentum). It is
the velocity times the inertial mass

p ¼ miv ¼ mi
dr
dt

: ð2:4Þ

Two bodies of different masses can have the same quantity of motion if their
velocities are in the inverse proportion of the masses. The second Newton law is

F ¼ dp
dt

: ð2:5Þ

In words, the rate of change of the momentum of a material point is equal to the
force acting on it. Considering that mi is a constant, and using Eq. (2.4) we have

F ¼ dp
dt

¼ mi
dv
dt

: ð2:6Þ

As for the law of inertia, the second law is not valid in every reference frame.
Recall the example of the sphere in a laboratory on a carriage that starts suddenly to
accelerate without any force being acting. Like the first law, the second Newton law
is valid only in inertial frames.

Equation (2.3) says that acceleration has the same direction as the relevant force.
This may appear to be obvious but it is not true in every circumstance. The equation
also says that the acceleration due to a given force acting on a given body is
independent of the velocity of the body. Experiments show that both of these, while
true at common experience velocities, are not so for velocities close to the speed of
light. In these conditions, called relativistic, Eq. (2.3) fails. However, even in these
high velocities regimes, Eq. (2.5) remains valid, namely, as Newton stated, the
force and the time derivative of momentum are equal. What needs to be changed is
the relation between momentum and velocity.

We shall study relativistic mechanics in Chap. 6; we anticipate that in a rela-
tivistic regime, the concept of inertial mass remains exactly the same. Mass is a
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constant, independent of velocity, characteristic of the body. The concept of
momentum however must be made more general. Its expression is

p ¼ mic tð Þv, ð2:7Þ

where γ(υ) is a function of velocity, called the Lorentz factor, after Hendrik Lorentz
(1853–1928), one of the fathers of relativistic mechanics. Its value is very close to 1
up to velocities close to that of light, c ≈ 3 × 108 m/s, but increases very rapidly
when υ approaches c.1

For comparison, the speed of the earth relative to the sun is about 3 × 104 m/s,
10−4 of the speed of light, the speeds of the stars relative to their galaxies, including
our sun, are an order of magnitude larger, but still 10−3 of the speed of light. For the
latter, the Lorentz factor differs from 1 only by 0.5 × 10−6.

A second limit of validity of the Newton laws is at very small dimensions.
Indeed, classical physics ceases to be valid and must be modified in quantum
physics, at atomic scales. These however are very small compared to the objects of
everyday experience, e.g., atomic radiuses are typically 30–300 pm.

The Newton law gives the acceleration once the forces are known.
Consequently, in the analysis of any motion we deal with the position vector, the
velocity, which is its first time derivative, and the acceleration, its second time
derivative. We do not need higher derivatives. For these reasons we did not go
beyond the second derivative of the position vector when we studied kinematics.
We recall on purpose that to know the motion of a particle we need to know not
only the acting forces, but also the initial position and velocity.

Let us now look at another aspect. The second law can be used in three main
ways:

1. If we know the inertial mass of a body and all the forces acting on it, and the
initial conditions, we can calculate its motion

2. If we know the motion of a body and its inertial mass, we can infer the forces
acting on it.
Distinguishing the two points of view is not as trivial as it may look. The first
point of view is deductive. The laws of mechanics are used to calculate the
motion of bodies in all possible circumstances. In this way physicists and
engineers design mechanical devices and engines. The second point of view is
inductive and is the point of view taken to make progress in physics. The
challenge of the physics research is to understand from the study of motion the
fundamental nature of the forces that cause it. This is the way followed by
Newton to discover universal gravitation from study of the motions of heavenly

1The reader is warned that one can still find books and articles calling the product miγ(υ) “rela-
tivistic mass” and mi “rest mass”. The former in a relativistic regime increases with increasing
velocity. These concepts were introduced in the last years of the 19th century and the first ones of
the 20th when relativity theory was being developed and things were not yet completely clear.
They are misleading concepts (what varies with velocity is the Lorentz factor, not the mass, which
is invariant) and should be avoided. We shall treat relativity in Chap. 6.

56 2 Dynamics of a Material Point

http://dx.doi.org/10.1007/978-3-319-29257-1_6


bodies. This is the way in which Ernest Rutherford (1871–1937) discovered the
atomic nucleus in 1911 when studying the scattering of energetic alpha particle
by a thin gold sheet. This is the way followed today to study the properties of
atomic nuclei and elementary particles.
We can state that the success of the Newton law is just as follows. It substan-
tially tells us: if you see a body that does not move in a uniform rectilinear
motion, a force should act. Search for it and search for the physical agent to
which it is due. You will find a force, the mathematical expression of which will
be simple and, as a consequence, you will be able to lay down a simple theory.
From this point of view the Newton law is a research program. We shall see in
Chap. 3 that, indeed, the various forces of nature have simple expressions in
terms of the co-ordinates and characteristics of the system. The program is
successful.

3. A third possibility is that, if we know both forces and motion we can deduce the
inertial mass of the body. To know the mass of the proton for example, we can
measure how its momentum and energy vary under the action of a known force.

The law of composition of forces. If more than one force act at the same time on
the material point we are discussing, their effect is the same as if only one force
were acting, equal to the resultant of those forces. Consider for example that two
forces are applied as in Fig. 2.5. The first spring exerts the force F1 in the x di-
rection. When acting alone it produces the acceleration F1/mi along x. The second
spring exerts the force F2 in the y direction. When acting alone it produces the
acceleration F2/mi along y. To know what happens if the two forces act contem-
porarily is something that cannot be found by logic, rather it has to be found
experimentally. Indeed, what experiments show is that the acceleration is just what
one calculates assuming that only one force were acting, equal to the resultant F of
F1 and F2. In other words, the observed acceleration is a = F/mi.

The third Newton law is the law of action-reaction.
If a body exerts a force (an action) on a second body, the second always exerts

on the first a force (a reaction) that is equal and opposite on the same line of action.
Given its importance, we reproduce how it is stated, in an equivalent manner, by

Newton.

F1

F2

x

y

F1

F2

F

F

mi

Fig. 2.5 Two forces acting at the same time
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To every action there is always opposed an equal reaction: or, the mutual actions of two
bodies upon each other are always equal, and directed to contrary parts.

Newton gives then a few examples.

Whatever draws or presses another is as much drawn or pressed by that other. If you press a
stone with your finger, the finger is also pressed by the stone. If a horse draws a stone tied
to a rope, the horse (if I may so say) will be equally drawn back towards the stone; for the
distended rope, by the same endeavor to relax or unbend itself will draw the horse as much
towards the stone as it does the stone towards the horse and will obstruct the progress of the
one as much as it advances that of the other.

We notice that, differently from the first two, the third law deals with two, rather
than one, bodies. It tells us that isolated forces (actions) do not exist, only
interactions do exist.

Pay attention to the fact that action and reactions are applied in different points,
one on one body, the other on the other body. If we push a stone with a finger, the
action of the finger is applied in a point of the stone; the reaction of the stone is on
the tip of our finger. The force exerted by the horse drawing the stone is exerted on
the stone through the rope, the reaction acts, again through the rope, in the point of
the horse at the end of the rope. Every object whether it is falling or laying on a
support, weighs, meaning that the weight force is applied on it. Weight is the force
with which the earth attracts all bodies. As a reaction, each body attracts the earth
with an equal and opposite force. The reaction is applied to a point of the earth, its
center.

The action-reaction principle, as all physical laws, must be experimentally
verified. Direct verifications are based on the fact that in a collision between two
bodies the total quantity of motion, namely the vector sum of the two, is conserved,
meaning that its values before and after the collision are equal (while each of the
two vary).

The vectors we have met so far, position vector, velocity and acceleration
depend, as we have seen, on the reference frame. On the contrary, force does not.

2.5 Weight

We know from every day experience that all the bodies on earth are subject to a
force, vertically directed downwards, called the weight. We can measure the weight
of a body, for example, attaching it to a dynamometer vertically positioned and
reading on its scale the position of the pointer, namely the stretch of the spring. If
we repeat the measurement in different points of our laboratory we find that it does
not vary. However, if we repeat the measurement at much larger distances, for
example at the Equator and at 45° latitude, or at different altitudes, for example at
the sea level and at 2000 m altitude, we notice small differences (of the order of a
few per mille) between them. As we shall discuss in Sect. 5.7, these small variations
are due to the rotation of the Erath. Apart from these small corrections, the weight is
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the gravitational attraction exerted by the earth on the body. This is universal; it is
the same force with which the earth attracts the moon. We shall discuss this fun-
damental force in Chap. 4. We anticipate that the gravitational attraction decreases
as the reciprocal of the distance squared. This is one of the reasons (the other is the
rotation motion of earth) why the weight of an object is a bit smaller on a mountain
than at the sea level.

Different objects, in the same place, may have different weights. This means that
the force with which earth attracts a body depends on a characteristic of the body.
We state that the gravitational force on a body is proportional to its gravitational
mass, which we denote with mg. This is similar to the electric attraction. A charged
body A at a certain distance from another body that is also charged, is subject to an
electrical force. If in the place of A we put a body B with twice the charge, the force
on it is double. Hence, the electric force on a body is proportional to its electric
charge. In a similar way two massive bodies, for example two spheres, at a certain
distance attract with the gravitational force that is proportional to the gravitational
mass of each of them. This force, if between two objects of every day life is quite
small, but can be measured with very delicate experiments, as we shall see in
Sect. 4.7, but is large between Heavenly bodies. Considering that the gravitational
mass is for the gravitational force the analogous of the electric charge for the
electric forces, we might call it gravitational charge, but we shall soon see the
reason why we call it mass.

The weight force FW acting on a body of gravitational mass mg is then

Fw ¼ mgg: ð2:8Þ

The vector quantity g does depend on the location, but in a given site it is equal
for all bodies. If r is the position vector, the vector g(r) is the gravitational force at
r per unit gravitational mass. It is called gravity acceleration. We shall see soon the
reason for the name. We notice that the gravitational mass being a characteristic of a
body is the same in any point, differently from its weight. If we measure the weights
of two bodies in different points on the earth we find that each of them varies a bit,
as already mentioned, but the ratio of the two remains rigorously equal. Even if we
should do this experiment on the moon.

Operationally, the gravitational mass is the physical quantity measured by a
balance. A balance, see Fig. 2.6, consists of a lever with pivot in O and two pans,
which we shall consider, to make it simple, exactly at the same distance on the two

O

Fw1
Fw2

l lFig. 2.6 Comparing the
weights of two equal masses
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sides of O. The balance compares the weights of the two objects on its pans. If they
are equal the balance is in equilibrium. We have seen that, by definition, the weights
of different objects in the same place are proportional to their gravitational mass.
We can then the state that two objects have the same gravitational mass when, put
on the pans of the balance, they are in equilibrium.

We now need a body having unit mass by definition. We put it on a pan. Another
body has gravitational mass equal to one when, put on the other pan it is in
equilibrium. A body has gravitational mass equal to 2, if put on a pan is in equi-
librium with two of the unit masses on the other, etc.

Gravitational mass and inertial mass are two different properties of every body.
The former is a measure of the strength of the gravitational attraction to which it is
subject, the latter of how difficult it is to modify its quantity of motion. However,
we know from every day experience, that heavier bodies are also more difficult to
accelerate because they are more inert. To search for a mathematical relation,
suppose to observe the free fall of two different bodies. Their inertial masses are m1i

and m2i and their gravitational masses m1g and m2g. The weight of the first is,
F1w = m1gg, the weight of the second F2w = m2gg. Calling a1 and a2 the two
accelerations, we have:

m1gg ¼ m1ia1; m2gg ¼ m2ia2;

which can be written as

a1 ¼ m1g

m1i
g; a2 ¼ m2g

m2i
g: ð2:9Þ

We see that the free fall accelerations of different bodies in the same place are
proportional to the ratios of their gravitational and inertial mass. Consequently, if
this ratio is equal for all the bodies, light or heavy, all of them fall with the same
acceleration. This fundamental property was experimentally shown to be true by G.
Galilei.

It is often told that Galilei dropped contemporarily two balls, one made of lead,
one of wood, from the Pisa tower and that he observed them reaching ground at the
same instant, showing in this way that they fall with the same acceleration. The
experiment was absolutely success and spectacularly carried out in 1971 by the
NASA Apollo 15 astronaut D. Scott dropping a hammer and a feather on the moon.
As a matter of fact Galilei never mentions having made his fundamental experi-
ments in such a way. He new very well that it could not work, both for the
perturbing effects of the atmosphere and due to the smallness of the fall times, a fact
that did not allow him precise measurements. His very precise experiments were
done with reduced, to say so, weight forces, with spheres on inclined planes and
with pendulums. We shall discuss this in Sect. 2.9.

We can conclude that the free fall accelerations of all bodies in a given place are
equal, action of the atmosphere apart. The ratio between gravitational and inertial
mass is a universal constant, the same for all bodies. The value of the constant is
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arbitrary, because depends on the choice of the two units. Clearly, the most con-
venient choice is to have the ratio equal to one. With this choice gravitational and
inertial mass are not only proportional, they are equal. The unit of both is the
kilogram. From now on we shall indicate with the same symbol, for example
m without any subscript, both quantities.

2.6 Examples

In this section we study a number of examples of application of the Newton laws.
A good way to proceed is the following.

The first step is to identify all the bodies present in the problem. Next we identify
for each of them all the forces acting on it. To do that it is convenient to wrap it,
ideally in an envelope, in order to identify all the forces acting on the body from its
exterior. To this aim it is often useful to draw each object separately, in its ideal
envelope, and the acting forces and write down for each of them its type and its
agent (for example: weight due to earth, normal force due to the constraint, friction
due to the supporting surface). If the problem contains more than one body, we
must identify the action and reaction pairs, and the bodies on which they act. Once
all the forces are identified we must calculate the resultants on each of the bodies.
To do that we choose a reference frame. The choice should be guided by any
symmetry the problem might have. We must then calculate the Cartesian compo-
nents of the resultant by summing the correspondent components of all the forces.
The components divided by the mass of the body are the three components of the
acceleration of the body. From the acceleration we find the law of motion with the
procedures we studied in Sects. 1.15 and 1.16.

Example E 2.1. Place a block on a horizontal frictionless surface horizontally
drawn by a rope.

Frictionless means a physical surface that does not exert forces parallel to it. It is
an idealization. Friction always exists, but we can reduce it, for example with the
dry ice trick of Sect. 2.4. We attach a rope to the block and draw it horizontally with
the force Fr. The situation is shown in Fig. 2.7.

Knowing Fr and the mass m of the block we want to know its motion, con-
sidering it as a point. We draw the body in its ideal envelope. We identify the forces

N

Fw

x

z

N

Fw

Fr Fr

(a) (b)Fig. 2.7 N normal constraint
force, Fr force exerted by the
rope, Fw weight, due to earth
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acting through the surface: (1) the weight of the block Fw, due to earth, vertically
directed downwards, (2) the constraint force exerted by the plane. As we have
assumed it to be frictionless the force is normal to the surface, upwards and we call
it N, (3) the force (tension) exerted by the rope, Fr. We have drawn all of that in
Fig. 2.7b. As we are considering the block as a material point, all the forces are
applied in the same point. One of the forces, N, is not given. This is always the case
of constraint forces. The body cannot penetrate the support plane because the
molecules of the body and the plane repel each other. We know that the body has
no vertical acceleration. We infer that the support develops the force that is exactly
what is needed to keep it steady. We will find it by solving the equations.

All the forces of the problem lay in the same vertical plane. It is then convenient
to choose a reference frame with one axis, say z, vertical upwards and a second one,
say x, horizontal to the right in the figure. We do not need the third axis because
there are neither forces nor motion in that direction. We now write the second
Newton law and its two components

Fr þNþFw ¼ ma; N � Fw ¼ 0; Fr ¼ max:

We conclude that the normal force exerted by the support plane has magnitude
equal to the weight. Both forces are vertical and have opposite direction; hence their
resultant is zero. The resultant of the forces is the tension of the rope, which causes
a uniformly accelerated motion in the x direction.

Example E 2.2 A block moving on a horizontal frictionless surface drawn by a rope
at an angle with the horizontal.

The situation is the same as in the previous example, but for the rope now
pulling at an angle θ with the horizontal (see Fig. 2.8a). However, we still assume
that the motion is on the plane, namely that there is no vertical acceleration. The
forces are the same, but Fr has different components. We have

Fr þNþFw ¼ ma; N � Fw þFr sin h ¼ 0; Fr cos h ¼ max:

The equation for the z components gives again the normal constraint force,
N = Fw–Fr sin θ. If θ > 0 as in the figure, N is smaller than in the previous example
because the rope helps in sustaining the block, the opposite if θ < 0. The second
equation gives horizontal acceleration.

N

Fw
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x

Fw

Fr

N
Fr

(a) (b)Fig. 2.8 N normal constraint
force, Fr force exerted by the
rope, Fw weight, due to earth
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Notice that a physical limitation of this analysis exists. The normal force cannot
be negative, because the support plane cannot attract the body (there is no glue).
Hence, if Fr sin θ > Fw, the assumed conditions cannot be satisfied. Clearly, in this
situation the block is lifted up and its acceleration has a vertical component.

Example E 2.3 Block on an inclined frictionless surface.
There are two forces acting on the body (Fig. 2.9), the weight Fw and the

constraint force N perpendicular to the support plane, which is now inclined. The
convenient choice of the axes is to take z perpendicular to the plane and x along the
plane, downwards. Clearly, the body will slide accelerating downwards, namely in
the x direction we have chosen.

The Newton equation and its components are

NþFw ¼ ma; Fw sin a ¼ max; N � Fw cos a ¼ 0:

The z component gives us the normal force N = Fw cos α. The x component gives
the acceleration (a = ax). Recalling that Fw = mg, we have that the notion on an
inclined frictionless plane is uniformly accelerated with acceleration

a ¼ g sin a: ð2:10Þ

We see that the motion on an incline is completely similar to the motion of free
fall, as long as we can neglect the resistive forces. The difference is that the
acceleration is smaller on the incline by a factor sin α. We can reduce acceleration
by reducing the slope of the plane. If the motion starts from rest from the origin, the
law of motion is obtained by integrating twice Eq. (2.10), obtaining

x tð Þ ¼ 1
2
at2 ¼ 1

2
g sin að Þt2: ð2:11Þ

In words: the distances travelled are proportional to the squares of the times
taken to travel them.

The incline allows us to slow down the free fall motion and to study its laws over
longer times, which can be measured with better precision.

As mentioned in Sect. 2.5 this is one of the great discoveries of Galilei. He did
not have a modern chronometer, but invented an ingenious water chronometer, with
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x

Fig. 2.9 A block on a
frictionless incline
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which he was able to measure the times of the motion, a few seconds long, with a
precision better than 0.1 s. He describes his experiments in the book “Dialogues and
mathematical demonstrations concerning two new sciences” or “Two new sciences”
published in 1638. He writes:

A piece of wooden molding or scantling, about 12 cubits long, half a cubit wide, and three
finger-breadths thick, was taken; on its edge was cut a channel a little more than one finger
in breadth; having made this groove very straight, smooth, and polished, and having lined it
with parchment, also as smooth and polished as possible, we rolled along it a hard, smooth,
and very round bronze ball. Having placed this board in a sloping position, by lifting one
end some one or two cubits above the other, we rolled the ball, as I was just saying, along
the channel, noting, in a manner presently to be described, the time required to make the
descent. We repeated this experiment more than once in order to measure the time with an
accuracy such that the deviation between two observations never exceeded one-tenth of a
pulse-beat. Having performed this operation and having assured ourselves of its reliability,
we now rolled the ball only one-quarter the length of the channel; and having measured the
time of its descent, we found it precisely one-half of the former. Next we tried other
distances, comparing the time for the whole length with that for the half, or with that for
two-thirds, or three-fourths, or indeed for any fraction; in such experiments, repeated a full
hundred times, we always found that the spaces traversed were to each other as the squares
of the times, and this was true for all inclinations of the plane, i.e., of the channel, along
which we rolled the ball. We also observed that the times of descent, for various inclina-
tions of the plane, bore to one another precisely that ratio which, as we shall see later, the
Author had predicted and demonstrated for them.

For the measurement of time, we employed a large vessel of water placed in an elevated
position; to the bottom of this vessel was soldered a pipe of small diameter giving a thin jet
of water, which we collected in a small glass during the time of each descent, whether for
the whole length of the channel or for a part of its length; the water thus collected was
weighed, after each descent, on a very accurate balance; the differences and ratios of these
weights gave us the differences and ratios of the times, and this with such accuracy that
although the operation was repeated many, many times, there was no appreciable dis-
crepancy in the results.

Example E 2.4 A block at rest in a lift.
A block of mass m lies in a lift on a horizontal pan of a balance, one of those, for

example, that are used to weigh people. What is the apparent weight of the block
when the lift accelerates up or down?

As usual we imagine the block in an ideal envelope (Fig. 2.10). Two forces act
on it, the weight Fw vertical down, and the normal constraint of the pan N upwards.
The balance measures the reaction to N, namely the force on it, which is –N. Hence,
N is the apparent weight of the block.

If the lift moves with acceleration a upward, the unknown N is given by the
Newton law N � Fw ¼ ma: Hence, the apparent weight is N ¼ Fw þma ¼
m gþ að Þ, which is larger than the true weight. If the lift accelerates downwards, the
apparent weight is N ¼ m g� að Þ, smaller than the real one. Notice that if the
acceleration downwards is g the apparent weight is null. Indeed, the block is falling
with the same acceleration of the lift.

If the lift moves uniformly both upwards and downwards the apparent weight is
equal to the real one, as if it were standing. We feel an increase of our weight either
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if the lift accelerates going up or if it decelerates going down. In both cases its
acceleration is upwards. Similarly we feel a decrease of our weight when the lift
slows down going up or accelerates going down.

Tension of the ropes and wires. In some of the examples we made we have used
a stretched rope or wire to apply a force in a point of a body. This force is equal to
the tension of the wire. We generally assume the wire to be inextensible, meaning
that its length does not vary whichever the tension may be, and perfectly flexible,
meaning that the tension is always parallel to the wire, and of negligible mass. Once
more, these are idealizations.

Let us clarify the concept of tension. Consider a wire, stretched and steady as in
Fig. 2.11a. We mentally isolate a small segment, enlarged in Fig. 2.11b. Two forces
act on the segment (neglecting the weight), applied to its extremes and due to the
contiguous elements of the wire. These are the tension forces. As the wire is at rest,
the two forces are equal and opposite. Consequently, the tension is the same in
every section of the wire.

Each of the extremes of the wire is not in contact with another element. As it
does not accelerate, a force must act on it from outside equal in magnitude to the
tension and directed outwards, as in Fig, 2.11a. The forces on the extremes are
equal and opposite and have the magnitude of the tension.

Consider now the case in which the wire moves. As an example, suppose that
one extreme is fixed to a block of mass M lying on a horizontal plane of negligible
friction. We draw the block applying to the free extreme of the wire a force F1

obtaining an acceleration a, as shown in Fig, 2.12a. We want to understand under
which conditions we really can neglect the mass of the wire. To do that, let us start
assuming the mass of the wire to be m.

We are now dealing with two bodies, the block and the wire. We ideally isolate
each of them and draw the force diagrams on each of them, in Fig. 2.12b, c.

N

Fw

Fig. 2.10 A block in an
accelerating lift

T–T T–T
(a) (b)Fig. 2.11 a The tension

forces on a wire and, b on a
segment
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We next identify the action reaction pairs. There is one such pair, consisting of
the forces F2 applied to the block and T2 applied to the left extreme of the wire.
They are equal and opposite. The force F1 applied to the right extreme of the wire is
its tension and we can call it T1. The Newton equations for the two bodies are

F2 ¼ �T2 ¼ Ma; T1 þT2 ¼ ma;

hence, for the magnitudes, T1 ¼ Mþmð Þa and T2 ¼ Ma. We see that the tensions
at the two extremes are different. Indeed T1 > T2 because T1 must accelerate wire
and block, T2 only the block. Let us consider their ratio

T1
T2

¼ Mþm
M

¼ 1þ m
M

;

which becomes unity for m/M → 0. We can then state that the tensions at the
extremes can be considered equal if the mass of the wire is negligible compared to
the mass of the block. When we speak of massless ropes or wires we mean of
negligible mass compared to the masses of the other objects.

Notice that we can arrange a stretched wire, or rope, to have forces at its
extremes of equal magnitude but different directions, by using pulleys. We did so
already discussing the Varignon experiment (Fig. 2.3). Notice that in these cases, if
the motion is accelerated, the magnitudes of the tensions at the extremes can be
considered equal only if also the mass of the pulley is negligible and if it can rotate
with negligible friction on the pivot (Fig. 2.13).

F1T2F1M m F2N

Mg

(a) (b) (c)

Fig. 2.12 a Accelerated motion of a block drawn by a rope, b N normal constraint force,
Mg weight due to earth, F2 force due to the wire, c T2 force on the wire due to the block, F1 force
pulling the wire

F

Fw

Fig. 2.13 With a pulley, the
direction of the force exerted
by a wire can be changed
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Example E 2.5 Two blocks linked by a rope of negligible mass.
Figure 2.14a shows two blocks of masses m1 and m2 lying on a horizontal

frictionless plane, connected by an inextensible wire of negligible mass. To the
second block, at the right, a horizontal force F is applied. The motion is on the
support plane. To know it, we do not need to analyze the vertical forces, which have
zero resultants (Fig. 2.14a, b, c, d).

We start by considering the whole system, thinking of it as a unique ideal
envelope. The only force acting on this surface is F. Hence we have
F ¼ m1 þm2ð Þa. which gives an acceleration a equal for the two bodies.

We now isolate each of the bodies. The block on the left (Fig. 2.14b) is attached
to an extreme of the wire. This exerts on the block the horizontal force F1. For the
action-reaction law the block exerts on the extreme of the wire an equal and
opposite force, which is the tension of the wire at that extreme (F1 = – T1). Two
other forces act on the block, the external force F and the force F2 due to the right
extreme of the wire (Fig. 2.14d). Again, for the action-reaction law the block exerts,
on the right extreme of the wire, a force equal and opposite to F2 that is the tension
T2 at that extreme (F2 = – T2). As we have discussed above, the magnitude of the
tension is the same in all points of the wire. Taking into account the directions we
have T1 = – T2 (Fig. 2.14c). Calling T the magnitude of the tension we can write the
Newton equations as T ¼ m1a; F � T ¼ m2a.

The sum of the two equations gives the acceleration of the system a = F/(m1 +m2).
If we want the value for tension, we substitute a in the first equation obtaining

T ¼ m1

m1 þm2
F:

We see, in particular, that T < F, namely the tension is smaller than the force
with which we pull.

2.7 Curvilinear Motion

In the previous section we have studied a few examples in which the forces were
known, a part of the constraint ones, and the motion that had to be found. In this
action we shall consider the inverse problem, namely, the motion of a material point
being known, find the resultant of the forces. The singular forces, in case more than
one is present, cannot be found, because systems of forces with the same resultant
produce the same motion in the case of material points.

F1F
m1 m2

T1 T2m1
FF2 m2

(a) (b) (c) (d)

Fig. 2.14 a Two blocks connected by a wire, b force on m1, c forces on the wire, d forces on m2

2.6 Examples 67



Circular uniform motion
Consider the motion of a material point P with mass m constrained to move on a
circumference of radius R. Suppose the motion to be uniform, namely the magni-
tude of its speed υ to be constant, as in Fig. 2.15. The motion is however accel-
erated, because the direction of the velocity varies. As we already found, the
acceleration has a constant magnitude (Eq. 1.57) a ¼ t2=R and is in every point
directed to the center (centripetal acceleration). This acceleration must be given by a
force of magnitude

F ¼ ma ¼ m
t2

R
: ð2:12Þ

The corresponding force has the same direction as the acceleration and is called
centripetal force. The adjective “centripetal, from the Latin “petere” for “point
towards”, recalls only its direction but does not specify at all its nature. It may be
the tension of a wire, the normal force of a circular guide, the gravitational force of
the earth on the moon, etc. We shall discuss a few examples in Sect. 3.4.

Variable speed motion.
If the magnitude of the velocity of a particle moving on a circle varies, its accel-
eration has two components. One component, an, is perpendicular to the trajectory,
or, the latter being circular, directed to the center. It is again the variation of the
direction of the velocity, namely the just discussed centripetal acceleration of value
υ2/R where υ, we must now specify, is the instantaneous velocity. The second
component, at, is in the direction of the motion, i.e. tangent to the trajectory and
expresses the variation in time of the magnitude of the velocity. We have

at ¼ dt
dt

; an ¼ t2

R
: ð2:13Þ

The acceleration vector, and the force, is directed at an angle with the radius that
is forward if the velocity is increasing (Fig. 2.15b), backward if it is decreasing
(Fig. 2.15c). The magnitude of the force is F ¼ ma ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n þ a2t
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Fig. 2.15 Circular motion, a uniform, b increasing velocity, c decreasing velocity
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As an example, consider a block lying on the platform of a merry go round,
which is initially still. When the platform starts moving, gradually increasing its
angular velocity, the acceleration of the block has two components, one centripetal
and one tangential. The corresponding force, equal to the mass of the ball times this
acceleration, is given by the friction on the platform. If the latter is not enough, the
block slides towards the periphery of the platform.

As a second example consider the launch of the hammer. The athlete acting on
the rope he holds in his hands puts the hammer in rotation with increasing speed.
The force on the hammer must be adequate to keep it on a circular orbit (component
mυ2/R towards the center) and makes its speed increase (a component in the
direction of the motion). The rope must then be directed forward, as in Fig. 2.15b

General plane motion.
We consider now a material point of mass m moving on a plane trajectory of
arbitrary shape with velocity not necessarily constant in magnitude. We have
already studied the kinematics of the problem in Sect. 1.14. Even in this case, the
acceleration has two components, a tangential and a normal one, as in Eq. (1.62).
They are given by Eq. (2.13).

The only difference from the circular case is that now R is the local curvature
radius, which is not fixed but varies along the trajectory. The second Newton law
tells us that the resultant of the forces acting on the point must be its acceleration
times its mass.

If we know only the trajectory, but nothing of the velocity, we can still say that
in every point of the trajectory in which the curvature is not zero, the resultant of the
forces must be directed on the side of the curvature center, pointing forward from it
(Fig. 2.16a) or backwards (Fig. 2.16b) depending on whether the motion is
accelerated or delayed respectively.

2.8 Angular Momentum and Moment of a Force

Consider a material point P moving in an inertial frame as shown in Fig. 2.17. Let
p = mv be its momentum and r its position vector. Consider a generic point Ω,
which may be at rest or moving relative to the frame. We shall now introduce the
concepts of angular momentum and moment of a force about the pole Ω.
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(a) (b)Fig. 2.16 General plane
motion. a Increasing speed,
b decreasing speed
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We have already defined the moment of a bound vector in Sect. 1.8. The angular
momentum is the moment of the linear momentum, considering it, for this purpose,
as applied to the material point, as shown in Fig. 2.17.

Hence, the angular momentum of the point P about the pole Ω is the vector
product of the vector from Ω to P and its quantity of motion (or momentum).

lX ¼ XP� p: ð2:14Þ

Consider the force F applied to P. The moment of the force about the pole Ω is
the vector product of the vector from Ω to P and F

sX ¼ XP� F: ð2:15Þ

Remember that the order of the factors matters in cross products. Notice also that
the moments change if the reference frame changes.

Let us now see how the angular momentum changes in time. For that, we take
the time derivative of Eq. (2.14) using the rule of the derivative of products, paying
attention to the order of the factors

dlX
dt

¼ dXP
dt

� pþXP� dp
dt

: ð2:16Þ

To find the derivative of the vector XP we notice that it is the difference of two
vectors, both varying with time, XP ¼ r� rX. Deriving we have.

dXP
dt

¼ v� vX:

The meaning of this expression is clear: the derivative of a vector joining two
moving points is the relative velocity of those points. We substitute this expression
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in Eq. (2.16) and also notice that the derivative of the momentum is equal to the
resultant F of the forces acting on P, because the frame is inertial. We get

dlX
dt

¼ v� p� vX � pþXP� F:

The first term in the second member is zero, being the cross product of two
parallel vectors; the last term is the moment of the resultant about the pole τΩ. In
conclusion

dlX
dt

¼ sX � vX � p: ð2:17Þ

This is a very important equation that we shall use often in the following. It
becomes particularly simple if we choose a stationary pole in the reference frame.
The equation becomes

sX ¼ dlX
dt

: ð2:18Þ

In words the equation is called the angular momentum theorem for a material
point: the time derivative of the angular momentum of a material point about a pole
fixed in an inertial reference frame is equal to the moment of the resultant of the
forces acting on it about the same pole.

Notice that if the body is extended, as we shall discuss in the following chapter,
the different forces acting on it, say f1, f2,…, may be applied in different points and
the moment of their resultant F = f1 + f2 + ···, sX ¼ XP� F is in general different
from the vector sum of their moments. In the case under study however, all the
forces are applied in P and

sX ¼ XP� F ¼ XP� f1 þ f2 þ � � �ð Þ ¼ XP� f1 þXP� f2 þ � � �
¼ sX1 þ sX2 þ � � � :

The resultant of the moments is equal to the moment of the resultant of the
forces. We stress that this is true only if all the forces are applied at the same point.

2.9 The Simple Pendulum

The pendulum is a material point constrained to move on an arc of a circumference.
It can be simply made by fixing a thin wire to a small sphere on an extreme and to a
fixed point on the other, which we call Ω. The length l of the wire, or better the
distance between the fixed point and the center of the sphere, is called the length of
the pendulum. If we take the pendulum away from its equilibrium position O and
abandon it with zero velocity, the body moves towards O under the action of two
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forces, the weight, directed vertically down, and the tension of the wire (T),
directed as the wire. The acceleration has the direction of the resultant of these two
forces. Consequently it is always in the plane defined by the wire and the vertical. If
the initial velocity is zero, the motion is on the plane. As the distance from Ω is kept
fixed by the wire, which we assume inextensible, the trajectory is an arc of a circle
of radius l.

As shown in Fig. 2.18, we take a reference system with the origin O in the rest
position of the pendulum, the y-axis vertical upwards, the x-axis horizontally in the
plane of motion and z such as to complete the triplet. The z-axis is normal to the
figure towards the observer. We call θ the angle between the wire and the vertical,
taking it positive if seen anticlockwise by the observer.

Historically, as we have already mentioned, the study of the motion of pendu-
lums, with their periodic motion, made a fundamental contribution to the devel-
opment of mechanics. Galilei discovered two important properties. The first one is
the isochronism of small oscillations; if the amplitude is not too large (we shall be
more precise in the following), the oscillation period is independent of the ampli-
tude. This property allowed building of precise clocks. The second property is even
more important; the oscillation periods of pendulums of the same lengths and
different masses are identical. This proves, as we shall now see, that gravitational
mass and inertial mass are equal. The property was later called equivalence prin-
ciple and is at the basis of general relativity.

In our demonstration, we start by assuming that the two masses might be dif-
ferent. We call mi the inertial mass of the pendulum, namely the proportionality
constant between acceleration and force, and mg its gravitational mass, the constant
that appears in the weight, which is then mgg.

The tension is a constraint force, due to the wire, which we assume to be
perfectly flexible and inextensible. The constraint develops a force, in general
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θ

T

Ω
Fig. 2.18 The simple
pendulum
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unknown a priori, automatically adjusted to make the motion happen, in our case, at
a fixed distance from Ω. We do not know the intensity of the wire tension T, but we
know its direction, which is along the wire.

In our study of the motion we shall use the angular momentum theorem. We
choose the pole in the suspension point Ω, for reasons that will become clear soon.
We use Eq. (2.18) with

sX ¼ XP� Tþmgg
� � ¼ XP� TþXP� mgg:

We now see the reason for our choice of pole. The first term is always zero,
being the vector product of two parallel vectors. Consequently we do not need to
know the intensity of the tension. We have

sX ¼ XP� mgg: ð2:19Þ

The angular momentum about the same pole is

lX ¼ XP� miv; ð2:20Þ

where the mass is the inertial one. Equation (2.18) gives

XP� mgg ¼ d XP� migð Þ
dt

: ð2:21Þ

All the vectors in these equations, in any position of the pendulum, belong to the
plane xy. Both vector products are consequently in z direction. The equation has
only the z component. The z component of XP� mgg is �lmgg sin h. The velocity
is always perpendicular to XP. As a consequence the z component of XP� miv is
simply lmit, where t ¼ l dhdt . So, we have

�lmgg sin h ¼ lmi
dt
dt

:

And finally we can write

d2h
dt2

þ mgg
mil

sin h ¼ 0: ð2:22Þ

This is a differential equation, whose unknown is a function of time θ(t). Once it
is solved, we know the motion of the pendulum, because if we know θ, we know its
position. Equation (2.22) cannot be solved analytically. However, if the oscillations
are “small”, we can approximate the sine with its argument and the equation
becomes
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d2h
dt2

þ mgg
mil

h ¼ 0: ð2:23Þ

This is a well-known differential linear equation with constant coefficients,
which we shall meet several times. We leave its study to calculus courses and
directly give the general solution, which is

h tð Þ ¼ h0 cos x0tþ/ð Þ; ð2:24Þ

where

x0 ¼
ffiffiffiffiffiffiffiffi
mgg
mil

r
ð2:25Þ

is called proper angular frequency. As one sees, it depends only on the charac-
teristics of the pendulum, including its weight.

The reader can easily verify, with two derivatives, that this expression indeed
satisfies Eq. (2.23), for whatever values of the constants θ0 and ϕ. These constants
do not depend on the characteristics of the pendulum but on how the motion has
started. They should be found in each case on the basis of two initial conditions. We
can use the position and velocity at the starting time that we shall take as t = 0. We
immediately see that

h 0ð Þ ¼ h0 cos/;
dh
dt

� �
t¼0

¼ �h0x0 sin/:

The initial velocity being zero, the second equation gives ϕ = 0 (θ0 = 0 is also a
solution of Eq. (2.24) but identically null). The first condition says that θ0 is just the
initial angle, the angle at which we have let the pendulum go. In conclusion the
motion of the pendulum is described by the equation

h tð Þ ¼ h0 cos x0tð Þ: ð2:26Þ

The motion is periodic, meaning that, for any instant of time t we can consider,
both the position and the velocity become the same after a certain time interval T,
called the period, namely at the instant t + T. From Eq. (2.26) we immediately see
that the period is

T ¼ 2p
x0

¼ 2p

ffiffiffiffiffiffiffiffi
mil
mgg

s
; ð2:27Þ

where we used Eq. (2.25).
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The motion is represented in Fig. 2.19. This is the most common periodic motion
in Nature. It is called harmonic motion. In the next chapter we shall study it in
depth.

We now make an important observation on the expressions of proper angular
frequency and period. Angular frequency and period depend on the length of the
pendulum, but not on the oscillation amplitude: two pendulums of the same length
(and in the same place, hence at the same g) are isochronous. On the other hand,
angular frequency and period depend on the ratio between gravitational and inertial
masses. If this ratio is the same for all bodies, independently of the substance they
are made of and of their position, that ratio is a constant and angular frequency will
be independent of the mass of the pendulum. If we want to experimentally test if
gravitational and inertial masses are proportional or not, we can test whether
pendulums of the same length, and different masses or made of different substances,
do oscillate or not with the same period.

Galilei noticed that this method is much more accurate than others he knew. In
principle, one could think to drop two spheres, e.g. one of wood and one of lead,
from the top of a tower and check if they the reach the ground simultaneously.
However, Galilei never mentions having done such an experiment, from the leaning
tower of Pisa. This is a legend without any historical support. Indeed, Galilei
observed, and wrote, that that method is not accurate enough, because is too fast
and at high speeds the air resistance noticeably perturbs observations. Galilei used
inclined slopes, as we have discussed, to slow down the motion, reduce the air drag,
and increase the relative measurement accuracy due to the longer times to be
measured. The use of pendulums allows even better accuracy. He used pairs of
pendulums made of different materials and of exactly the same lengths, took them
out of equilibrium and let them go at the same time. He found that they keep
oscillating in phase for hundreds of periods. The air drag did act more effectively on
the lighter pendulum gradually reducing its amplitude more than that of the heavier
one. However this did not matter because the period is independent of amplitude.

G. Galilei describes accurately his progress toward a more precise experiment,
gradually eliminating the spurious effects and the sources of errors in the “Dialogs
concerning two new sciences” (1638) (translation from Italian by Henry Crew and
Alfonso de Salvio). He established the proportionality of inertial and gravitational
mass with an uncertainty of 2–3 × 10−3.
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Fig. 2.19 Angular harmonic
motion
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The experiment made to ascertain whether two bodies, differing greatly in weight will fall
from a given height with the same speed, offers some difficulty; because, if the height is
considerable, the retarding effect of the medium, … will be greater in the case of the small
momentum of the very light body than in the case of the great force of the heavy body; so
that, in a long distance, the light body will be left behind; if the height be small, one may
well doubt whether there is any difference; and if there be a difference it will be inap-
preciable. It occurred to me therefore to repeat many times the fall through a small height in
such a way that I might accumulate all those small intervals of time that elapse between the
arrival of the heavy and light bodies respectively at their common terminus, so that this sum
makes an interval of time which is not only observable, but easily observable. In order to
employ the slowest speeds possible and thus reduce the change which the resisting medium
produces upon the simple effect of gravity it occurred to me to allow the bodies to fall along
a plane slightly inclined to the horizontal. For in such a plane, just as well as in a vertical
plane, one may discover how bodies of different weight behave: and besides this, I also
wished to rid myself of the resistance which might arise from contact of the moving body
with the aforesaid inclined plane. Accordingly I took two balls, one of lead and one of cork,
the former more than a hundred times heavier than the latter, and suspended them by means
of two equal fine threads, each four or five cubits long. Pulling each ball aside from the
perpendicular, I let them go at the same instant, and they, falling along the circumferences
of circles having these equal strings for semi-diameters, passed beyond the perpendicular
and returned along the same path. This free vibration repeated a hundred times showed
clearly that the heavy body maintains so nearly the period of the light body that neither in a
hundred swings nor even in a thousand will the former anticipate the latter by as much as a
single moment, so perfectly do they keep step. We can also observe the effect of the
medium which, by the resistance which it offers to motion, diminishes the vibration of the
cork more than that of the lead, but without altering the frequency of either.

In conclusion, Galilei experimentally demonstrated the equality of inertial and
gravitational masses with an accuracy of about one per mille, namely that

mi

mg
� 1\10�3: ð2:28Þ

Newton repeated this later on the Galilei experiments. He writes in the
“Principia”:

It has been, now of a long time, observed by others, that all sorts of heavy bodies (al-
lowance being made for the inequality of retardation which they suffer from a small power
of resistance in the air) descend to the earth from equal heights in equal times; and that
equality of times we may distinguish to a great accuracy, by the help of pendulums. I tried
the thing in gold, silver, lead, glass, sand, common salt, wood, water, and wheat. I provided
two wooden boxes, round and equal: I filled the one with wood, and suspended an equal
weight of gold (as exactly as I could) in the center of oscillation of the other.

He concluded that:

By these experiments, in bodies of the same weight, I could manifestly have discovered a
difference of matter (i.e. inertial mass) less than the thousandth part of the whole, had any
such been.
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Hence Newton confirmed what Galilei had discovered with a similar precision of
1 × 10−3. After having found an expression of the gravitational force, Newton did
also a check of the equivalence principle, on a solar system scale. He did that, in
particular, on the system of Jupiter and its satellites. We shall see his argument in
Sect. 4.4. Here we just say that the precision was, once more, of one per mille.

Having established the proportionality of the two types of mass, we can make
them equal by choosing their units. With this choice Eqs. (2.25) and (2.27) become

x0 ¼
ffiffiffi
g
l

r
; T ¼ 2p

ffiffiffi
l
g

s
: ð2:29Þ

To have a feeling of the orders of magnitude, we can easily calculate that a 1-m
long pendulum has a period of about 2 s.

We now recall having approximated the sine of the angle with the angle (in
radiants) itself. Let us verify when the approximation is good. For example, if
θ = 30°, or 0.52 rad, its sine is sin 30° = 0.50. The relative error is (0.52–0.50)/
0.50 = 4 %, which is quite small. Even for θ = 60°, or 1.05 rad, the error is not
enormous, but already noticeable. Indeed, sin 60° = 0.87 and the corresponding
error is 20 %. These are the relative errors making the sine equal to the angle, but
the corresponding ones on the period are even smaller, as we now shall see.

The exact Eq. (2.22), as we said, cannot be solved analytically. However, it can
be solved by successive approximations. In fact, the approximation we made is a
series expansion stopped at the first term (sin θ = θ); the next approximation we
stop at the second term (sin θ = θ − θ3/6). The resulting expression for the period
with amplitude θ0, calling To the period given by Eq. (2.28), is

T h0ð Þ ¼ T0 1þ 1
4
sin2

h0
2

� �
;

which, as it is seen, depends on the amplitude θ0. The relative error made using the
usual expression of the period is 1

4 sin
2 h0

2 . Going back to the above examples, we
find that the relative error for θ = 30° is 1.6 %, the one for θ = 60° is 6.3 %. They
are not large.

We make a last observation. If the oscillations are small, the pendulum moves
substantially on the horizontal, namely on the x-axis in Fig. 2.18. Now x = l tan θ,
that we can approximate with x = lθ. We can then conclude that the motion, as
represented by the x coordinate, has the equation

x tð Þ ¼ x0 cos xtð Þ: ð2:30Þ

As expected it is a harmonic motion, of amplitude x0.
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2.10 The Work of a Force. The Kinetic Energy Theorem

In this section we introduce the concepts of work, done by a force, and kinetic
energy, of a body. The meaning of “work” in physics is rather different from its
meanings in everyday language and consequently from what intuition might suggest.
For example, holding in one hand a heavy object even if we do not move it we still
need to apply a force with our muscles and make some effort. However, we do not
perform any work, in the language of physics. In physics, a force makes work only if
its application point moves. In the example, the work done by the force we exert on
the body is positive if we raise, negative if we lower it, but zero if we do not move it.

Consider the material point P moving in a reference frame with position vector r,
along a certain trajectory, the curve Γ. As shown in Fig. 2.20, consider the position
vector in the instants t, r(t), and immediately after t + dt, r(t + dt). The displacement
of P in the interval dt is the infinitesimal vector

ds ¼ r tþ dtð Þ � r tð Þ: ð2:31Þ

If F is a force acting on the point, its work for the infinitesimal displacement
(2.31) is defined as

dW � F�ds: ð2:32Þ

The finite work having been done by the force, a finite displacement of the point,
say from A to B along the trajectory Γ, is the line integral along the curve Γ from A to B

WAB;C ¼
ZB
A;C

dW ¼
ZB
A;C

F rð Þ � ds; ð2:33Þ
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Fig. 2.20 The elements to
define the work of force F
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where F(r) is the force in the point of position r. The line integral is the sum of all
the elementary dot products F rð Þ � ds on all the elements of the curve. Clearly, the
integral does not depend only on the initial and final points A and B, but also on the
specific path taken to go from the former to the latter. Indeed, if the path changes,
also the force in the new points may change. To make this explicit in the notation
we have included both A and B and Γ in the subscripts of W. The case in which the
integral depends on the origin and the end but not on the path is however important
and will be studied in Sect. 2.13.

Notice that more forces, call them Fi, may act contemporarily on the point P, for
example weight, friction, air resistance, etc. In this case, the total work made by all
the forces is equal to the sum of the works each force would do if acting separately

WAB;C ¼
X
i

ZB
A;C

Fi rð Þ � ds: ð2:34Þ

Clearly, the elementary (meaning “infinitesimal”) displacement of the applica-
tion points of the forces ds is the same for all them. Considering that the sum of
integrals is equal to the integral of the sum, which is in our case the resultant of the
forces R ¼ P

i
Fi, we have

WAB;C ¼
ZB
A;C

X
i

Fi rð Þ � ds ¼
ZB
A;C

R � ds: ð2:35Þ

Namely, the total work made by the acting forces is equal to the work made by
their resultant. Notice, again, that this is true only if all forces are applied in the
same point.

The physical dimension of the work is those of a force times a displacement. Its
unit is the jule, with symbol J, which is the work done by the unit force, 1 N, when
its application point moves one unit of length, 1 m, in the direction of the force. To
appreciate the order of magnitude, a jule is roughly the work you do when you raise
a glass of water by 1 m.

We now prove the work-kinetic energy theorem. Being a consequence of the
second Newton law it is valid in inertial frames. Consider a material point and the
resultant R of the forces acting on it. The Newton law says

R ¼ m
dv
dt

:
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We take the scalar product with the elementary displacement ds = v dt of the two
members

R � ds ¼ m
dv
dt

� vdt ¼ mv � dv:

Now consider the dot product v � dv. We recall that the square of a vector is the
dot product of the vector by itself, in this case t2 ¼ v � v. Differentiating this
expression we have

d t2
� � ¼ d v � vð Þ ¼ dv � vþ v � dv ¼ 2v � dv;

hence R � ds ¼ 1
2m dt2ð Þ:

The work done by R when the point moves from A to B on the given trajectory is
then

WAB;C ¼ 1
2
m
ZB
A

d t2
� � ¼ 1

2
mt2B �

1
2
mt2A: ð2:36Þ

We then define the kinetic energy of the material point of massm and velocity υ as

UK ¼ 1
2
mt2; ð2:37Þ

which is independent of the position. The kinetic energy has the same physical
dimension as the work and is measured in jule. We finally can write Eq. (2.36) as

WAB;C ¼ UK Bð Þ � UK Að Þ; ð2:38Þ

which is the work-kinetic energy theorem. In words: when a material point moves on
a certain trajectory from A to B, the work done by the forces acting on it is equal to
the difference between the kinetic energy of the point has in B and that it had in A.

It is sometimes useful to express kinetic energy in terms of momentum rather
than velocity, namely

UK ¼ p2

2m
: ð2:39Þ

2.11 Calculating Work

In this section we shall see two examples of calculation of works, made respectively
by weight and friction, when the application point P moves on its trajectory from
the initial position A to the final one B. We shall see that in the former case the work
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depends only on the initial and final position, and not on the path taken between
them, in the latter it depends on the path too.

Starting with weight, Fig. 2.21 shows the reference frame (not necessarily
inertial) where we have chosen the z-axis to be vertical. Point P moves on the
trajectory from the position A, with the position vector rA = (xA, yA, zA) to the
position B, with the position vector rB = (xB, yB, zB). The figure shows also the
position vector at the generic instant t and in the immediately following instant
t + dt. The force acting on the point is its weight mg, which is equal in all points.
The elementary work done by the weight, which is vertically directed downwards is
dW ¼ mg � ds ¼ �mgdz. The total work is given by the integral

WAB;C ¼
ZB
A;C

mg � ds ¼ �
ZB
A;C

mgdz ¼ mgz Að Þ � mgz Bð Þ: ð2:40Þ

We see that in this relevant case the work is independent of the path, depending
only on the final and initial position, even better, on their heights only. This con-
clusion was experimentally proven by Galilei with a simple experiment that we
shall describe in the next section.

This is not the case of the second example, the friction force, which we shall
study in Sect. 3.5.

Suppose we have an object, say a book or a brick, lying on a table. In real cases,
the constraint does not apply to the body only the normal force, but also a friction
that is tangent to the contact surface. If we want to move the body on the trajectory
Γ in Fig. 2.22 at a constant speed, as we know from every day experience, we need
to pull it, apply a force, parallel to the plane in the direction of the displacement.
This means that the plane exerts on the body a force equal and opposite to our pull,
because the velocity is constant in magnitude and then the resultant of the forces in
the direction of the motion must be zero. Indeed, as we shall see in Sect. 3.5, the
friction force, Fa, is always parallel and opposite to the elementary displacement
ds. We now calculate the work of Fa.
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Fig. 2.21 Trajectory of the
material point and its weight
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The elementary work is dW ¼ Fa � ds ¼ �Fads which is always negative. The
total work is given by the line integral on the trajectory

WAB;C ¼
ZB
A;C

Fa � ds ¼ �
ZB
A;C

Fads ¼ �FasAB Cð Þ; ð2:41Þ

where sAB(Γ) is the length of the trajectory Γ between A and B. The work is
proportional to the length of the path, a quantity obviously depending on the path.

We conclude with an observation that we shall generalize in Sect. 2.13. We have
seen that the work of the weight force for displacement A to B isWAB = –mg(zB – zA).
Suppose now that the point goes back to A. The work of weight is WBA = –mg
(zA– zB) = –WAB. Namely the total work of the weight on a closed path is zero. On
the other hand, the work of the friction force to go from A to B on the curve Γ is
WAB;C ¼ �FasAB Cð Þ. If we now go back on another curve, say Γ′ in the Fig. 2.22,
the work of the friction is WBA;C ¼ �FasBA Cð Þ, which is again negative.
Consequently the work of the friction on a closed path is not zero, it is negative.

2.12 An Experiment of Galilei on Energy Conservation

One of the discoveries of G. Galilei was the fact, as we have mentioned, that the
velocity of body descending under the action of is weight only, starting from rest,
depends on the difference between the initial and final levels, and not on the
followed path.

In the “Dialogue on Two new sciences” he states that the velocities of bodies
descending on inclines of different slopes and the same height are equal. In his
words (translations by the author):

All contrasts and impediments removed… a heavy and perfectly round ball, descending
through the lines CA, CD, CB would reach the final points A, D, C with the same moments

with reference to Fig. 2.23a reproduced from the book. Notice that, at the time,
Galilei was searching for and developing the laws of mechanics and that several
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Fig. 2.22 Calculating the
work of the friction force
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concepts had not yet been completely defined. In particular, impetus, momentum,
kinetic energy were not well-separated concepts.

However, accurate measurements of those velocities were impossible to do. To
prove the statement, he invented a simple and genial experiment, using a pendulum
and a nail. Figure 2.23b is also reproduced from his book.

Salviati, the person who in the Dialogues represents Galilei, starts with the
description:

Suppose this sheet to be a vertical wall and to have a lead ball of one or two ounces hanging
from a nail fixed in the wall, suspended to a thin wire AB, two or three arms long,
perpendicular to the horizon… and about two finger far from the wall.

Then draw the vertical line AB and, perpendicular to it DC. Move the wire with
the ball in AC and let it go. We shall see the ball

descending first through the arc BCD, and going beyond point B as much as, sliding on the
arc BD, almost reaching the drawn horizontal CD, failing to reach it by a very small gap,
which has been taken away by the impediments of the air and the wire; from which we can
likely conclude that the momentum (impetus) gained by the ball in B, in the descent on the
arc CB, was so much to pull it back through the similar arc BD to the same height.

He continues with the request to repeat the experiments several times to check
the result. Then

I want we fix in the wall, grazing the vertical AB, a nail, like in E or in F, which should
protrude out five or six fingers.

As before, the wire with the ball is moved to AC and let go. The ball will again
move on the arc CB. But, when it is in B, the wire hits the nail, forcing the ball to
move on the arc BG, having center in E.

Now, my Lords, you will see with enjoyment the ball reaching the horizontal line in the
point G, and the same to happen if the obstacle would be lower, as in F, where the ball
would go through the arc BI, always finishing its ascent on the line CD.

Salviati concludes that the momentum acquired by a body descending from a
certain height is just what is needed to bring it back to the same height, through
whatever path. He observes that the momentum acquired in the descent on a given
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Fig. 2.23 a Ball falling on inclines of different slopes; b the pendulum and nail experiment
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arc is equal to the momentum needed to rise through the same arc. He concludes that
the momentum, and we can say also the velocity and kinetic energy in B, is the same
whether it descends through CB, or GB or IB or any arc beginning on the horizontal
DC and having its lowest point in B. On the other hand, the fall along an arc can be
thought of as the fall on an “incline” of varying slope, proving the assumption.

The importance of the result of this experiment became clear in the following
evolution of mechanics. In his experiment the kinetic energy of the ball in B is the
same whatever the path starting from stillness from the same level. We now know
that this energy is equal to the work done by the weight force. We conclude that the
work done by the weight depends only on the difference of level and not on the
particular path followed. We have already discussed this property in the previous
section. Indeed, it is a fundamental one; it shows that there is a quantity, the energy,
which is conserved, does not change in the motion under the action of weight.
Weight is a conservative force, as we shall now see.

2.13 Conservative Forces

In general the work of a force on a point depends on the trajectory of the point.
However, we have seen a case, the case of the weight force, in which the work
depends only on the origin A and end B and not on the trajectory between them.
Forces having these properties are said to be conservative. In the opposite case, as
for the friction, they are said to be non-conservative or dissipative.

Let r be the position vector in the chosen reference frame and F(r) be a con-
servative force, a function of the position. The definition of conservative force states
that, for whatever curve Γ with origin in A and end in B,

WAB;C ¼
ZB
A;C

F � ds ¼ f rA; rBð Þ; ð2:42Þ

where f is a function of the co-ordinates of A and of B. It is easy to show that in this
case it is always possible to find a function of the co-ordinates, which we shall
indicate with Up(r), such as

WAB ¼ Up rAð Þ � Up rBð Þ: ð2:43Þ

To show that, consider an arbitrarily chosen point o, as in Fig. 2.24. The work
from A to o on whatever path is

WoA ¼ f ro; rAð Þ ð2:44Þ
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and similarly the work from o to B is

WoB ¼ f ro; rBð Þ: ð2:45Þ

But, we can go from o toB also going from o toA and then fromA toB. Considering
that work is an additive quantity we can write WoB = WoA + WAB. Hence

WoA þWAB ¼ f ro; rBð Þ: ð2:46Þ

By subtracting Eq. (2.43) from this expression we have

WAB ¼ f ro; rBð Þ � f ro; rAð Þ: ð2:47Þ

We then reach the result by putting Up rð Þ ¼ f ro; rð Þ. The function Up(r) is the
potential energy of the force F(r) and is a function of the co-ordinates only. In
conclusion the potential energy, or better its difference, is defined by the relation

Up rBð Þ � Up rAð Þ ¼ �
ZB
A

F � ds: ð2:48Þ

In words: the difference of potential energy of the force F in the point B and in
the point A is equal to the opposite of the work done by the force when its
application point moves from A to B, following any trajectory.

The reason of the—sign, or the word “opposite”, is the following. To be concrete,
consider the weight. If we move a body of mass m from the level zA to the higher
level zB, the displacement is opposite to the force and the work –mg(zB – zA) is
negative. The potential energy of the body is then larger when its level is higher. The
work done by the weight force is equal and opposite to the gain of potential energy of
the body. This energy can be given back as work by the body, taking it down to the
original level. The higher the body, the greater is its potential to produce work.

We can conclude, and this is true in complete generality, by stating that the
potential energy difference between two states of a body is equal to the work we
need to do against the force acting on the body to change it from the first to the
second state.

Notice again that a potential energy can be defined for a force only if its work is
independent of the path. No potential energy exists, for example, for the friction
forces.

Notice also that only differences of potential energy can be defined, not its
absolute value. In other words, potential energy is defined up to an arbitrary
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B
o

Fig. 2.24 Different paths
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additive constant. In practice, we fix the constant choosing a reference position, say
o, in which we define the potential energy to be zero (Up(o) = 0), The potential
energy in the arbitrary point P is then

Up Pð Þ ¼ Up oð Þ �
ZP
o

F � ds ¼ �
ZP
o

F � ds:

For example for the weight, we arbitrarily fix a reference level at which the
potential energy is zero by definition. This may be the ground level but some other
level too. We take that level as the origin of the vertical upward directed z-axis and
the potential energy is

Up zð Þ ¼ mgz: ð2:49Þ

We have stated that a force F is conservative if the work it does on a point when
it moves from position A to B is independent of the path. There are two equivalent
ways to state the same, which may be useful in certain circumstances.

1. A force is conservative if the work it does moving from A to B on any path is
equal and opposite to the work done moving from B to A on any path
(Fig. 2.25). This follows immediately from (2.48).

2. The work of a conservative force on any closed path is zero.
In summary we can briefly say that the (equivalent) properties of conservative
forces are: (1) its work does not depend on the path, (2) admits a potential
energy, (3) the works going and going back are equal and opposite, (4) the work
on a closed path is zero.

2.14 Energy Conservation

Consider a material point P of mass m moving from the position A to the position
B on the trajectory Γ under the action of the (only) force F. Whether the force is
conservative or not its work is equal to the change of the kinetic energy of the point.
Denoting with Uk the kinetic energy, we write

F

ds

W=0

F
F

ds

ds
A

B

WBA= –WAB

Fig. 2.25 The paths
discussed in the text
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WAB;C ¼ Uk Bð Þ � Uk Að Þ: ð2:50Þ

If, and only if, F is conservative, the same work is also the opposite of the
change of potential energy of the force

WAB;C ¼ Up Að Þ � Up Bð Þ: ð2:51Þ

It immediately follows that

Up Bð ÞþUk Bð Þ ¼ Up Að ÞþUk Að Þ: ð2:52Þ

Considering that the positions A and B are arbitrary, we conclude that the sum of
the kinetic and potential energies is the same, i.e., is constant, in every position of
the motion. The sum is the total mechanical energy, say Utot of the material point.
The conclusion is so important that it is often called a “principle”. The principle, or
law, of energy conservation states that

Utot ¼ Up þUk ¼ constant: ð2:53Þ

If more than one force is acting on the point P and all of them are conservative,
Eq. (2.53) is still valid, provided that Up is the sum of the potential energies of all
the acting forces, or, in an equivalent manner, if it is the potential energy of the
resultant of those forces. Notice however, that the law is no longer valid even if
only one of the forces is dissipative.

In words, the law of energy conservation states that if a point moves under the
action of conservative forces only, its total mechanical energy is conserved during
its motion.

Consider now the case, which is what happens in practice, that also dissipative
forces are present. Consider for example the motion on an incline under the actions
of weight and friction. The kinetic energy theorem is still valid. The work done by
the forces for the displacement from A to B on the curve Γ, can be written as the
sum of the work WC

AB of the conservative forces and that WD
AB;C of the dissipative

ones and we have

WC
AB þWD

AB;C ¼ Uk Bð Þ � Uk Að Þ

but WC
AB ¼ Up Að Þ � Up Bð Þ, and in conclusion

Utot Bð Þ � Utot Að Þ ¼ WD
AB;C: ð2:54Þ

We see that, if non-conservative forces are active, the total mechanical energy
varies and its variation is equal to the work of the non-conservative forces. The
work of these forces is negative, as we saw for friction. Hence the energy dimin-
ishes. This is the reason of the dissipative term.
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The physical dimension of kinetic, potential and total energies are the same as of
the work. The measurement unit is consequently the jule.

Example E 2.1 Let us go back to the discussion made in Sect. 2.12 on the
experiments by Galilei on inclined planes. Figure 2.26 shows a body of mass m,
which can fall, starting from rest from point C, on inclines of different slopes CA or
CD or vertically on CB. Take a vertical upwards axis z, and denote by zC the height
of C (that is the height of the inclined plane).

Consider the motion on CA. If friction is negligible the force exerted by the
constraint is normal and does not make work. The other acting force is the weight
mg.

The energy conservation principle applied to the displacement CA from C, where
the velocity is zero, to A, where z = 0, gives

mgzC ¼ 1
2
mt2A ð2:55Þ

or

tA ¼ ffiffiffiffiffiffiffiffiffiffiffi
mgzC

p
: ð2:56Þ

We see that the final velocity depends only on the difference in level not on the
inclination.

If the friction is not negligible, the final energy is less than we have just cal-
culated. We can obtain it with Eq. (2.54) calculating the work of friction. The latter
does depend on the inclination for two reasons: the lengths of the paths are different
and the body pushes with different forces on the plane. To do the calculation,
however, we need to know something more on friction. We shall do that in the next
chapter.

We finally observe that the above arguments are valid if the body can be con-
sidered a material point. If the body also rotates, like balls do, there is also kinetic
energy associated to the latter that should be considered. We shall discuss this point
in Sect. 8.16.
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Fig. 2.26 Fall on inclines or
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As we have just seen, in the presence of dissipative forces, the total mechanical
energy, namely the sum of kinetic and potential energy, is not conserved. However,
these are only two of many forms of energy. As a matter of fact the law of energy
conservation is one of the basic laws of physics. The law is universally valid,
without any exception, provided all the forms of energy are included in the balance.
Other forms of energy are chemical energy, thermal energy, electric energy, nuclear
energy, etc. Every time energy seems not to be conserved, it is because we have
failed to include one of its forms. The issue is one of the main objects of ther-
modynamics, which will be discussed in the second volume of this course. The
historic process that led to clarification of the concept of energy and to the estab-
lishment of the universal law of energy conservation was very long. Starting, as we
have seen, already with Galilei, the process came to maturity only in the middle of
the XIX century. It was then established with the first law of thermodynamics,
mainly by Julius von Mayer (1814–1878) and James Prescott Joule (1818–1889).
Energy is conserved also in the presence of dissipative forces if internal thermal
energy is included in addition to macroscopic mechanical energy.

2.15 A Theorem Concerning Central Forces

A region of space in which a force that is a function only of the point, and possibly
of time, is called a force field. If the force does not depend on time, the field is said
to be stationary; if it does not depend on the position, it is said to be uniform.

The most common example of a uniform stationary field is weight, which is
constant in time and space (at least within the limits of a laboratory). On the
contrary, the viscous drag, the resistance of air to the motion, say, of a car or an
airplane, is an (increasing) function of speed and consequently is not a force field.

A force field is said to be central if in every point P the force is directed as the
line between P and a fixed point, called the center of the forces. The situation is
sketched in Fig. 2.27, where C is the center of the forces.

It is clearly convenient to choose the center of the forces as the origin of the
reference frame. We shall employ polar co-ordinates in which r = (r,θ,ϕ) is the

F

C

Fig. 2.27 A central field of
forces
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position vector. Let F(r) be the force under consideration. Saying that the force is
central means that the two vectors F and r are everywhere parallel. They may have
the same or opposite directions. The component of the force on the position vector,
the radial component, is its magnitude in the former case, the opposite in the latter.
This quantity may depend on the three coordinated, the two angles and the distance
r from the center. If the force depends only on r, the field is said to have a spherical
symmetry. On the other hand, a central force may be conservative or not. We shall
now prove that these two properties are correlated: if a field of central forces has
spherical symmetry, the force is conservative and, vice versa, if a central field of
force is conservative it possesses spherical symmetry.

We start with the first statement. The radial component of the force, say Fr(r), is
by hypothesis a function of the distance from the center r only. Given any two
points like A and B in Fig. 2.28, let us calculate the work done by the force on an
arbitrary curve Γ, having A as origin and B as end. We shall proof that it is
independent of the chosen curve. We indicate with ds the generic element of the
curve. The work corresponding to this elementary displacement is

dW ¼ F rð Þ � ds ¼ Fr rð Þds cos a; ð2:57Þ

where α is the angle between F and ds, which is also the angle between the
directions of r of ds. Hence, ds cos α is the projection of ds on the direction of r,
namely simply dr, i.e. the elementary variation of the distance from center. N.B.
Pay attention! This notation is universally employed, but is ambiguous. The des-
ignation dr means the variation of the magnitude of the vector r, namely d|r|, not
the magnitude of the vector variation of r, namely |dr|.

Anyway we have

dW ¼ Fr rð Þdr: ð2:58Þ

Notice that this elementary work may be positive or negative depending on Fr

and dr having the same or opposite sign. The total work on the curve Γ is

αF

r

ds

rB

rA dr

O = C

A

B

Γ

Fig. 2.28 Work by a central
force
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W ¼
ZB
A

Fr rð Þdr ð2:59Þ

which is independent of the chosen curve, proving that the force is conservative.
What we have proven is valid for whatever dependence on r. A particularly

important case is the gravitational force exerted by a mass M, which we shall
consider to be point-like, on another mass m, point-like too. We shall study the
gravitational force in Chap. 5. We anticipate here that such a force acting on m is in
any point directed towards the position of M; namely it is central. Its magnitude is
proportional to the product of the two masses and inversely to the square of their
distance r. Indicating by GN the proportionality constant, the force is

Fr rð Þ ¼ �GN
Mm
r2

; ð2:60Þ

where the minus sign indicates that the force is always in the direction opposite to r,
namely is attractive. The work done on a displacement from A to B is

W ¼
ZB
A

Fr rð Þdr ¼
ZB
A

�GN
Mm
r2

dr ¼ GN
Mm
rB

� GN
Mm
rA

: ð2:61Þ

As expected, it is independent of path. We can then define the potential energy
of the gravitational force. The potential energy difference between the point of
position vector rB and the point of position vector rA is the opposite of the work
Eq. (2.61), namely

Up rBð Þ � Up rAð Þ ¼ �GN
Mm
rB

þGN
Mm
rA

: ð2:62Þ

As always, the potential energy is defined up to an arbitrary additive constant,
namely

Up rð Þ ¼ �GN
Mm
r

þ constant: ð2:63Þ

The constant is fixed choosing a point in which the potential energy is zero by
definition. In this case it is obviously convenient (but not at all necessary) to choose
this point at infinite distance, obtaining

Up rð Þ ¼ �GN
Mm
r

: ð2:64Þ
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This is the potential energy of a point-like mass m (the earth for example) in the
gravitational field of the point-like mass M (the sun). Notice that, in fact, this is the
energy of the pair of masses m and M (see Chap. 7).

We now prove the second of the above stated properties. We assume the force to
be central and conservative and show that its component (magnitude with sign) on
the position vector cannot depend on angles.

Let us consider for simplicity displacements on a plane. Consider a closed path,
as in Fig. 2.29, composed of two circular arcs centered on the center of forces C,
and two radial segments joining their extremes, at the angles θ1 and θ2 respectively.
Take the radial segments of a very short length Δs. Assume by contradiction that
the magnitude of the force F would depend not only on r but also on the angle θ.
Under this hypothesis Fr has different values on the two radial sides that are at
different angles, say Fr1 and Fr2. Let us calculate the work of the force on this path.
The contributions of the arcs are zero because on them the force is perpendicular to
displacement. The contributions of the radial segments are –Fr1Δs and Fr2Δs. The
total work is then W ¼ Fr2 � Fr1ð ÞDs 6¼ 0, in contradiction with the hypothesis that
the force is conservative.

2.16 Power

In physics, power is defined as the work done per unit time. For a given delivered
work, the power is larger for shorter delivery times. The simplest case is the work
done by a force, say F, on a material point, say P. Consider the elementary dis-
placement ds of the point, taking place between the instants t and t + dt. The work
done by the force is dW ¼ F � ds. The power w given by the force the work divided
by the corresponding time interval, that is

w ¼ dW
dt

¼ F � ds
dt

¼ F � v: ð2:65Þ

In words: the power delivered by the force F acting on a material point moving
at the velocity v in a given instant is equal to the dot product of the force and the
velocity of the point in that instant. If the force is a function of the position, it must
be obviously evaluated in the position of the point.

C

F1

F2

2

r

s

1

Fig. 2.29 The closed path
used in the demonstration
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The physical dimensions of the power are those of a work divided by a time. Its
unit is the watt, after James Watt (1736–1819) One watt is the power developed by
a force delivering the work of one joule in one second (1 W = 1 J/1 s). To have an
idea of the order of magnitude, you develop about 1 W if you raise a glass of water
by 1 m in one second.

Problems

2:1 A person is sitting on a chair supported by a horizontal ground. Draw the
diagrams of the forces for the person, the chair, and the earth. Describe each
of the forces, identifying the body that produces them and the body on which
they act. Identify the action reaction pairs.

2:2 A block hangs from the ceiling through a rope. A second rope is attached to
the bottom of the block. It hangs vertically and you draw it with your hands
downwards. Draw the diagrams of the forces for the block, each of the ropes,
your body, the ceiling and the earth. Describe each of the forces, identifying
the body that produce them and the body on which they act. Identify the
action reaction pairs

2:3 Fig. 2.30 represents two blocks of masses m1 and m2 on frictionless planes.
The plane of the first block is horizontal; the plane of the second is at an
angle θ. The two blocks are tied by a mass less inextensible wire that can
slide over a pulley without friction. (a) mentally insulate each block and draw
the force diagrams; then write three equations of motion, (b) find the tension
of the wire and the acceleration of m2.

2:4 A body of mass m = 1 kg moves in a circular uniform motion on a circle of
radius R = 0.1 m. What is the value of the centripetal force?

2:5 The system represented in Fig. 2.31 is in a vertical plane. M > m. Letting it
free, M goes down and m goes up. Neglecting the frictions, draw the dia-
grams of the forces and determine the accelerations of M and of m.

2:6 With a hammer of mass m = 0.1 kg we beat on a nail, which is already
partially stuck in a piece of wood, with a speed of υ = 1 m/s. The nail
advances a distance of s = 1 cm. Find the force exerted by the hammer.

2:7 Two people pull a rope, each on one end, each with a force of magnitude
F. What is the tension? F or 2F? Why?

2:8 Two ropes hang from the ceiling. Two spheres of different masses hang at the
two ends. With both your hands you apply to the two spheres the same force

m1

m2

θ

Fig. 2.30 The two blocks of
problem 2.3
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F, which is not necessarily in the direction of the rope. What are the forces on
each hand?

2:9 The three curves in Fig. 2.32 represent three rigid guides in a vertical plane.
Three rings of different masses slide without friction, one on each of them.
The three rings start from A at the same time with null velocity. State for each
of the following statements if it is true or false. 1. The rings reach
B contemporarily. 2. The rings reach B with velocities equal in magnitude.

2:10 A man of mass m = 80 kg jumps from a platform at the eight h = 0.5 m above
ground. Reaching the soil he forgets to fold his legs. Fortunately the ground
is quite soft and stops the motion in a distance s = 2 cm. What is the average
force exerted on his bones during the stoppage?

2:11 Give an approximate evaluation of the height reached by a pole vaulter
athlete able to reach in his run the speed of υ = 10 m/s.

2:12 Fig. 2.33 shows three blocks of equal weight Fp. The pulley is frictionless. If
we gradually increase all the weights, keeping them equal to each other,
which rope will break?

m

M

Fig. 2.31 The two blocks of
problem 2.5

a

b
c

A

B

Fig. 2.32 The three guides of
problem 2.9 in a vertical plane

M MM

(a) (b)Fig. 2.33 The system of
problem 2.12
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2:13 Two spheres, one with mass double that of the other, are launched upwards
with the same initial momentum p0. If the resistance of air can be neglected,
what is the ratio of the heights they reach.

2:14 A particle of mass m = 2 kg oscillates on the x-axis. The equation of its
motion is x ¼ 0:2 sin 5t � p=6ð Þ, with x in meters and t in seconds. (a) What
is the magnitude of the force acting on the particle at time t = 0? What is the
maximum value of the force?

2:15 A twine of length l can hold a maximum tension T. It is employed to rotate a
mass m on a circle. Find the maximum velocity the body can rotate if (a) the
rotation is in a horizontal plane, (b) in a vertical plane. Draw in each case the
diagram of the forces.
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Chapter 3
The Forces

In 1686, in his Preface to the First Edition of the Principia, Newton wrote

… the whole burden of philosophy seems to consist in this – from the phenomena of
motion to investigate the forces of nature, and then from these forces to demonstrate the
other phenomena.

The second law of motion states that the time derivative of the momentum of a
body is equal to the force acting on it. The law is not complete as long as the forces
are not known. As a matter of fact, the forces present in nature have simple
expressions. There are four fundamental forces: the gravitational force, the elec-
tromagnetic force, the strong nuclear force and the weak nuclear force. The two
latter forces explain how matter behaves at a fundamental level. They appear at
nuclear and subnuclear scales, at which quantum physics is valid, and do not
directly appear in everyday macroscopic phenomena (even if, for example, the
weak force is responsible for nuclear fusion processes in the Sun that give us light
and energy). In the next chapter we shall study in some detail the gravitational force
and related phenomena. The electromagnetic force is the object of the 3rd Volume
of this course.

We have experience of several other forces. Apart from weight, which is
(mainly) due to the gravitational attraction of earth, all the other forces are
macroscopic effects of electromagnetic nature at microscopic level. Such are the
elastic force, the normal force of constraints, friction and viscous drag in a fluid,
both gas and liquid. These forces are not fundamental but are extremely important
for the study of every day phenomena.

We shall study these forces and the corresponding phenomena in this chapter.
The gravitational force will be treated in Chap. 4, fully dedicated to it. Further study
of the viscous drag will be done in the second volume of this course.

The elastic force is met in a wide variety of circumstances. It gives rise to the
most important periodic motion, the harmonic oscillations. Harmonic oscillations
and the connected resonance phenomena, of which the mechanical ones are pro-
totypes, are present with very similar characteristics in all the branches of physics,
electromagnetism, optics, atomic an nuclear physics. Also, the vast majority of the
strongly interacting particles, which are called hadrons, are extremely unstable,
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living only a few yoctoseconds. They are detected as resonances. We shall study the
harmonic oscillator in Sects. 3.8 and 3.9 and, at a deeper level, in Volume 4 of this
course.

In the last two sections we shall discuss the information that we can gather on the
motion of the bodies starting from the potential energy, rather then from the force,
which is possible if the forces are conservative. We shall introduce energy diagrams
in Sect. 3.10 and employ them in three important cases, elastic force, pendulum and
molecular forces, in Sect. 3.11.

3.1 Elastic Force

The solid objects of everyday experience have a definite shape. However, if stressed
by a force, or a system of forces, they deform. Consider the geometrically simple
situation of Fig. 3.1, showing a cylindrical metal bar attached on one face to a fixed
support. If we apply a force, parallel to its axis, on the other face, the bar shortens if
we push and lengthens if we pull. If the force is perpendicular to the axis, the bar
flexes.

As another example consider a rubber band. If we pull on it at one end while
keeping the other end fixed, the band lengthens according to the force exerted.
When the force is removed, the ribbon returns to its natural length.

Many more examples can be cited. Their study shows that if a force is applied to
a body and then removed, the body resumes the shape it had before being
deformed, provided the deformation has not been too big. In these conditions we
speak of elastic deformation.

For larger deformations, the original size is not completely recovered, rather
some deformation is left permanently. This regime is called of plastic deformation.
The transition between elastic and plastic regimes is smooth. It takes place at stress
values that strongly depend on the chosen material. The bar in Fig. 3.1, for
example, will be permanently deformed by more feeble forces if it is made of wax
rather than of steel.

x0

x 0

x0

Fa

FaF

F

hFig. 3.1 A metal bar and its
deformations under an applied
force Fa
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Let us study the phenomenon with reference to the metal bar of Fig. 3.1. When it
is not stressed by a force, its length is called rest length or natural length is h. We
choose a reference axis parallel to the bar directed outside with the origin in its free
end. When we apply a force Fa (a for applied) the extreme end moves and a new
equilibrium state is reached. This means that the bar has reacted by developing a
force, say F, equal and opposite to Fa. The deformation, namely the difference
between the actual and original shapes is, in this, case, a change in the length of the
bar. With the chosen co-ordinate, the infinitesimal change dx, is positive for
lengthening, negative shortening. The x component of the force developed by the
bar is in the positive x direction in case of compression, negative in case of
stretching. The magnitude of this force increases with the deformation and is
experimentally found to be, for not too large deformations, proportional to the
deformation x, namely

Fx xð Þ ¼ �kx: ð3:1Þ

The constant k is called elastic constant or spring constant. It is a property of the
material characterizing its stiffness. Its physical dimensions are a force divided by a
length, its units are the newton per meter (N/m).

The proportionality between force and lengthening was experimentally discov-
ered by Robert Hooke (1635–1703) in 1676 and Eq. (3.1) is called Hooke’s law. He
made it public in a curious way. Initially he challenged his colleagues with the
anagram “ceiiinosssttuv”. Two years later, considering that nobody had solved the
quiz, he gave the solution: “ut tensio, sic vis” (as is the stretch so is the force).

The Hooke’s law is very simple and very useful. However, it is not exact, but
approximate. Let us study the phenomenon more precisely. We apply to the
extreme of the bar a force of increasing and known values of intensity. At equi-
librium, these are equal to the magnitude of the force developed by the bar. For
each value we measure the deformation, both for extension (positive deformation)
and compression (negative deformation). Plotting the results in a diagram we
usually find the behavior of Fig. 3.2. For small enough values the dependence of the
force on the deformation is linear, Hook’s law holds. If the force is too large
however, the deformation, in the case of metals we are considering, is larger than
foreseen by the Hook law in compression, smaller in extension (we shall understand

linearelastic non linear elastic non linear

F(x)

x

0

compression
extension

Fig. 3.2 Force versus
deformation in the elastic and
non-elastic regimes
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the reason in Sect. 3.11). The non-linearity starts at values smaller than those at
which the deformation is permanent. The regime in which the body returns to its
original shape when the stress is removed is called elastic, both if the deformation is
linear or not. The former is called a linear regime.

The transition between linear and non-linear behavior is smooth and is found at
different values from metal to metal. It is smaller, for example, for lead than for
steel.

Suppose that we now keep increasing the force further, for example in com-
pression. The dependence of the deformation on the form is shown in Fig. 3.3,
curve (a). Let us now suppose that, having reached point Q, we start decreasing the
force, always measuring the deformation. We find that the representative point in
the diagram does not go back on the curve (a) but on (b). Namely, for the same
value of the force, the deformation is larger, in absolute value, when we start from a
deformed state. In particular, when the external force, and the force of the bar with
it, is back to zero, the deformation has a value, xr, different from zero. It is called
permanent deformation. We have deformed the bar so much that we went out of the
elastic regime and entered the plastic regime.

Figure 3.3 shows, for one value of the deformation, two values of the force. In
fact, the values are not only two, but a full range between a minimum and maxi-
mum. If we perform the same process, changing the point Q at which we invert
somewhat further or somewhat sooner, the return branch is no longer (b), but a
similar one lower or higher in the diagram, but always below the curve (a). In
conclusion, the force does not depend only on the deformation but also on the past
elastic history of the body. The phenomenon is called elastic hysteresis.

For a given material we can define the elastic limit, which we indicate with L. It
is the maximum value of the deforming force (and of the force developed by the
body) divided by the section of the bar to remain in the elastic regime. It is
measured in newton per square meter (N/m2).

As all the forces that depend only on distance, as the elastic force (within the
elastic limit), are conservative. With reference to the co-ordinate in Fig. 3.1, we
now express the work W of F when the extreme of the bar moves from x1 to x2 in
the linear regime. The work for the elementary displacement dx is, in this regime,
dW ¼ Fxdx ¼ �kxdx, hence

F(x)

x0

Q

xr

compression

(a)
(b)

Fig. 3.3 The elastic
hysteresis

100 3 The Forces



W ¼
Zx2
x1

Fx dx ¼ �k
Zx2
x1

xdx ¼ � 1
2
kx22 �

1
2
kx21

� �

and we can define the potential energy function of x or, better, its difference

Up x2ð Þ � Up x1ð Þ ¼ 1
2
kx22 �

1
2
kx21:

As always, to define its absolute value we need to choose arbitrarily a point in
which the potential energy is zero by definition. In this case it is quite obvious, but
not necessary, to chose the point x = 0 (that is zero deformation). With this choice
we have

Up xð Þ ¼ 1
2
kx2: ð3:2Þ

This expression is valid within the linear regime. In the elastic non-linear regime
the force is still conservative and a potential energy could be defined, but with a
more complicated expression. In the plastic regime the force is dissipative and no
potential energy can be defined. Indeed, to be very rigorous, small dissipative
effects exist also in the elastic regime, but they can be neglected for many practical
purposes.

A deeper study of the elastic force shows that it is the resultant of an enormous
number of microscopic forces acting between the molecules of the material. These
are ultimately electromagnetic forces. The elastic force and the Hook’s law are a
macroscopic description of a very complex situation, which depends on the specific
microscopic structure of the matter of the body under consideration.

Let us go back to the linear regime. If the body has a simple geometry, a
cylinder, a parallelepiped, a wire or a band we can define its length, say h, and its
section, say S. In these cases it is found with a good approximation that the elastic
constant of a body is directly proportional to its section and inversely to its length

k ¼ E
S
h
: ð3:3Þ

The coefficient E, which depends on the material (and its temperature), is called
Young modulus after Thomas Young (1773–1829) Using Eq. (3.1) in absolute
value, we can express the Young modulus as

E ¼ Fxj j
S

=
xj j
h
: ð3:4Þ
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Namely it is the ratio of the deforming force per unit section, which is called
stress, and the deformation per unit initial length, called the strain. The stress is a
pure number, the strain and the Young module are forces per unit area and are
measured in N/m2.

It is useful to appreciate the orders of magnitude. The Young modulus values of
the metals range in the order of 1011 N/m2 (E = 2×1011 N/m2 for steels, E = 1011

N/m2 for Cu, etc.). The elastic limits are around 108 N/m2 (L = 3×108 N/m2 for
steel, L = 108 N/m2 for Cu). A third quantity is the fracture strength σf, which is the
stress under which the bar breaks. For the metals the values are two or three times
larger than the elastic limits. Once the plastic regime is entered, the fracture is
nearing. The issue of the resistance under stress is very important for engineering
and the definition of safety limits is a much more complex issue than the definition
we have given.

Typical values of the three quantities for some substances are given in Table 3.1.
Going back to the orders of magnitude, consider a steel wire S = 1 mm2 in

section and h = 1 m in length. We fix it at one extreme and pull the other with the
force Fa. Its stretch is

x ¼ 1
E
h
S
Fa ¼ 1

2� 1011
1

10�6 Fa ¼ 5� 10�6Fa:

The maximum force in the elastic regime is Fmax ¼ LS ¼ 3� 10810�6 ¼ 300 N
(For example if the wire supports a 30 kg weight). The corresponding elongation is
xmax ¼ 5� 10�6Fmax ¼ 1:5 mm and the stress is quite small, around 1.5 per mille.
A stress a few times larger would break the wire.

Much larger stress without fracture can be obtained with other materials, like
rubbers. Typical values are around E = 106 N/m2, L = 106 N/m2 and fracture
strength of 3 × 106 N/m2. Consider a rubber wire of the same geometry of the steel
one we considered above, namely with S = 1 mm2 and h = 1 m. Under the action of
the force Fa, the elongation is x ¼ 1

E
h
S Fa ¼ 1

106
1

10�6 Fa ¼ 1� Fa. The maximum
force in the elastic regime is Fmax ¼ LS ¼ 10610�6 ¼ 1 N, which is quite small, as
expected for rubber.

Table 3.1 Elastic
characteristics of some
materials in N/m2

Young module Elastic limit Fracture strength

10−10 × E 10−7 × L 10−7 × σf
Iron 20 20 35

Steel 22 30 50–200

Copper 10 10 20–40

Lead 1.5 1 1

Glass 6 2.5 3–9

Rubber 10−4 10−4 3 × 10−4
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The corresponding elongation is xmax ¼ 1� Fmax ¼ 1 m. Hence, a rubber band
can be stretched to twice its original length without reaching the elastic limit.

The reason for such different behavior of the metals and the rubbers is explained
by the molecular structure of the materials. The metals are made of microscopic
crystals. In each of these microcrystals the atoms are arranged at the nodes of a
regular lattice. The distances between the atoms are such that the intermolecular
forces are in equilibrium. When we try to deform a crystal we are attempting to
change those distances by acting against intermolecular forces that are quite strong.
Consequently the system is stiff, difficult to deform. On the other hand, rubber is
composed of very long, spaghetti-like, molecules. These molecular spaghetti form a
sort of tangled skein. The molecules interact amongst one another like a pasta that
has been cooked too much and became sticky. When we pull the rubber we make
the molecules straighter, but we do not change their length. Consequently, the
process is much softer than for a crystal lattice and is reversible within much wider
limits. We mention that when heated a metal expands, a piece of rubber contracts.
With increasing temperature the equilibrium intermolecular distances in a crystal
increase, while in the rubber the increased rate of collisions between molecules
increases their entanglement.

In summary, the metal wires can be loaded with rather large stress and their
strain is small. The rubber bands can have large strains, but do not bear large loads.
If we need to work both with rather intense forces and relevant elongations we can
use a steel helical spring, as in Fig. 3.4. When we pull the spring, its turns flex but
the wire does not change appreciably its length. The elastic force is proportional to
the tilt angle, hence to the elongation (or contraction) and the Hook’s law holds.

3.2 Harmonic Motion

We have already discussed the motion, i.e. the oscillations, of the simple pendulum.
This type of motion is important in every branch of physics and in physics based
technologies. We shall now study the motion in its details.

To be concrete, let us consider the system shown in Fig. 3.5. The block, of mass
m, lies on a horizontal plane, which we assume to be frictionless (we can use the
trick explained in Sect. 2.4). In these conditions the resultant of the vertical forces is
zero, the weight being equilibrated by the normal force of the constraint. A spring is

F

Fa

hFig. 3.4 Helical steel spring
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connected to the block at one end and to a fixed point on the other. We take a
co-ordinate axis, x, horizontally in the direction of the spring elongations and with
the origin at the point in which the spring is attached to the block when it is at rest.
In this way, x will measure the deformation of the spring. We assume we are in the
range of validity of the Hook law. The force acting on the block is then

Fx xð Þ ¼ �kx; ð3:5Þ

which is a restoring force proportional to the displacement.
The equation of motion is

�kx tð Þ ¼ m
d2x
dt2

which we write in the canonical form

d2x
dt2

þ k
m
x tð Þ ¼ 0: ð3:6Þ

We now introduce the positive quantity

x2
0 ¼ k=m: ð3:7Þ

This has a very important dynamical meaning. x2
0 is the restoring force per unit

displacement and per unit mass. It depends on the characteristics of the system. We
can then write Eq. (3.6) as

d2x
dt2

þx2
0x tð Þ ¼ 0: ð3:8Þ

We have already met it (with a different expression, Eq. (2.29) for ω0) when
discussing the pendulum. This very important differential equation describes the

x

m

0

Fig. 3.5 A mechanical
oscillator
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motion of many systems, including pendulums, near their stable equilibrium
position, when subjected to a return force proportional to the displacement. The
general solution, as learned by calculus, is

x tð Þ ¼ a cosx0tþ b sinx0t; ð3:9Þ

where the constants a and b must be determined from the initial conditions of the
motion. They are two in number because the differential equation is of the second
order.

The general solution can also be expressed in the, often more convenient, form

x tð Þ ¼ A cos x0tþ/ð Þ; ð3:10Þ

where now the constants to be determined from the initial conditions are A and ϕ.
To find the relations between two pairs of constants, we start from

A cos x0tþ/ð Þ ¼ A cos/ cosx0t � A sin/ sinx0t:

Hence

a ¼ A cos/; b ¼ �A sin/ ð3:11Þ

and reciprocally

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
; / ¼ � arctan b=að Þ: ð3:12Þ

We now introduce the terms used when dealing with this type of motion. To do
that in a general way, consider the expression (with a generic ω)

x tð Þ ¼ A cos xtþ/ð Þ: ð3:13Þ

The motion is not only periodic, but its time dependence is given by a circular
function. Such motions are said to be harmonic. A is called the oscillation amplitude,
the argument of the cosine, xtþ/, is called the phase (or instantaneous phase in
case of ambiguity) and the constant ϕ is called the initial phase (indeed, it is the value
of the phase at t = 0). The quantity ω, which has the physical dimensions of the
inverse of time, is called angular frequency and also pulsation. Its kinematic
physical meaning is to be the rate of the variation of the phase with time and, notice,
is independent of the initial conditions of the motion. In the specific case we have
considered above, the harmonic motion is the spontaneous motion of the system (in
Sects. 3.8 and 3.9 we shall study motions under the action of external forces) and the
angular frequency, ωo, as in Eq. (3.10), is called proper angular frequency.
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The motion is periodic with period

T ¼ 2p=x: ð3:14Þ

The number of oscillations per unit time is called the frequency, ν. Obviously it
is linked to the period and to the angular frequency by

m ¼ 1
T
¼ x

2p
: ð3:15Þ

The period is measured in seconds, the frequency in hertz (1 Hz = 1 s−1), the
angular frequency in rad s−1 or simply in s−1. The unit is named after Heinrich
Rudolf Hertz (1857–1899).

The harmonic motion can be viewed from another point of view. Consider a
circular disc and a small ball attached to a point of its rim. The disc can rotate in a
horizontal plane around a vertical axis in its center. Suppose the disc is rotating with
a constant angular velocity ω. If we look at the ball from above, in the direction of
the axis, we see a circular motion, but if we look horizontally, with our eye in the
plane of the rotation, we see the ball oscillating back and forth periodically. Indeed,
the motion is not only periodic, it is harmonic, as we now show.

Figure 3.6 shows the material point P moving on a circumference of radius
A with constant angular velocity ω. We call ϕ the angle between the position vector
at t = 0 and the x-axis. The co-ordinates of P at the generic time t are

x tð Þ ¼ A cos xtþ/ð Þ; y tð Þ ¼ A sin xtþ/ð Þ:

The projection of the motion on the axes, in particular on x, is harmonic.
The conclusion leads to the simple graphical representation of the harmonic

phenomena shown in Fig. 3.7. To represent an harmonic motion of amplitude A,
angular frequency ω and initial phase ϕ, we take a fixed reference axis x and a
vector A, of magnitude A, rotating around its origin in the plane of the figure at the

P

O
x

y

A

ωt+φ

Fig. 3.6 A point P moving of
circular uniform motion
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constant angular frequency ω and forming with the x axis the angle ϕ at t = 0. The
projection of A on the reference x axis is our harmonic motion.

We can use this representation also for velocity and acceleration of the harmonic
motion. The derivative of Eq. (3.13) gives

dx
dt

¼ �Ax sin xtþ/ð Þ ¼ Ax cos xtþ/þ p
2

� �
: ð3:16Þ

As written in the last side, the velocity is seen to vary in a harmonic way too,
with a phase that is forward of π/2 radians to the displacement. This is shown in
Fig. 3.8a.

Differentiating once more we have the acceleration

d2x
dt2

¼ �Ax2 cos xtþ/ð Þ ¼ Ax cos xtþ/þ pð Þ: ð3:17Þ

The acceleration is proportional to the displacement with the negative propor-
tionality constant –ω2, or, as seen in the last side, its phase is at π radians to the
displacement, or in phase opposition with it.

We now go back to the oscillator in the linear regime and consider its potential,
kinetic and total energies. The former one is the potential energy of the elastic force,
which we have already expressed in Eq. (3.2). We can use now Eq. (3.7) and write
directly for the total energy

Utot ¼ Uk tð ÞþUp tð Þ ¼ 1
2
m

dx
dt

� �2

þ 1
2
kx2 ¼ 1

2
m

dx
dt

� �2

þx2
0x

2

" #

A

(a) (b)

ωt + φ + πωt + φ + π/2

ωt + φωt + φ

A A

ω2

ω

A

Fig. 3.8 Vector diagram for
harmonic motion a velocity,
b acceleration

A

x

ωt + φ

Fig. 3.7 Vector diagram for
the harmonic motion
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where x(t) is given by Eq. (3.10), and we obtain

Utot ¼ Uk tð ÞþUp tð Þ ¼ 1
2
mx2

0A
2 sin2 x0tþ/ð Þþ cos2 x0tþ/ð Þ� � ¼ 1

2
mx2

0A
2:

ð3:18Þ

We see that neither the kinetic nor the potential energy are constant in time,
rather, they vary as sin2 x0tþ/ð Þ and cos2 x0tþ/ð Þ respectively, but their sum, the
total energy is, as we expected, constant. Notice also that kinetic, potential and total
energies are all proportional to the square of the amplitude and to the square of the
angular frequency.

The mean value of a quantity in a given time interval is the integral of that
quantity on that interval, divided by the interval. It is immediate to calculate that the
mean values of both functions cos2 and sin2 over a period are equal to ½ (the period
of the square of a circular function is half the period of that function). Consequently
the mean values of both potential and kinetic energy over a period are one half of
the total energy.

Ukh i ¼ Up
	 
 ¼ 1

4
mx2

0A
2 ¼ 1

2
Utot: ð3:19Þ

3.3 Intermolecular Forces

All bodies are composed of very small particles that we call “molecules”. These
molecules combine to form gases, liquids and solids. Molecules are composed of
atoms, a different type for each chemical element. Atoms are also composite
objects. Each one has a positively charged central nucleus composed of protons and
neutrons, while electrons form what may be thought of as a cloud surrounding the
nucleus. Electrons and protons are equal in number, the atomic number, so that each
atom is globally neutral. Different elements have different atomic numbers.
Quantum mechanics, not classical mechanics, correctly describes the molecular and
atomic phenomena. We can however give here a few semi-quantitative pieces of
information, with a classical language, that are consistent with the prediction of
quantum mechanics.

An electron inside an atom cannot be thought of as moving on a well-defined
trajectory similar to the orbit of a planet (as was assumed in the early stages of the
development of the theory, i.e., the Bohr model). We must instead consider the
probability of finding an electron at a particular location around the nucleus. This
probability is a known function of position different for each different atom. It, in
particular, vanishes at a certain distance from the nucleus. It is the “cloud” we have
mentioned above. In order of magnitude, the radiuses are tenths of nanometers (or
10−10 m). Nuclei are much smaller, 1–10 fm (10−15−10−14 m). If we magnified a
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nucleus to the size of the dot on an “i” of this page, the diameter of the atom would
be of the order of meters.

The elementary constituents of chemical substances are molecules. For example,
a water molecule is made of two hydrogen and one oxygen atoms, nitrogen one of
two nitrogen atoms, etc. Atoms are bound in a molecule by electric forces that are
described by quantum mechanics. As a matter of fact, electric forces are very strong
inside molecules, but, the molecules being globally neutral, are almost null outside
the “cloud” of their electrons. Not completely however, as two molecules when they
are close enough do interact with a force, much weaker than those inside the cloud,
called van der Waals force, after Johannes Diderik van der Waals (1837–1923)

The van der Waals force between two molecules as a function of the distance
between their centers r is shown in Fig. 3.9. It is repulsive at small distances,
attractive at larger ones. In the diagram we adopted the convention of having
positive repulsive forces.

When the centers of the molecules are at the distance r0, at which the van der
Waals force is zero, they are in equilibrium. At smaller distances the force is repulsive
and becomes quickly enormous. In a very rough approximation we can consider them
as rigid spheres of radius r0. The dotted line in Fig. 3.9 is for an idealized rigid body,
which would be non-deformable. The force would be repulsive and infinite when
trying to squeeze it and null at distances larger than r0 where it is not touched.

3.4 Contact Forces. Constraint Forces

If we put a heavy body, for example a brick, on a horizontal plane, it does not
accelerate, it is in equilibrium. This implies that the plane, in general the constraint,
has developed a force, called normal because it is perpendicular to the plane, which
is exactly equal and opposite to the force that the body, the brick, exerts on the
plane. The latter may be the weight, as in the example, or not. If we push with our
hand on the brick, the magnitude of the normal force is equal to the sum of the
weight and our push. Similarly, if we push a wall with a hand, it does not move.
The normal force made by the wall is equal and opposite to the push.

The normal force is a contact force. If we raise the brick or take back our hand
from the wall, even at very small distances, the force disappears. Contact force is

F

r0
r

0

Fig. 3.9 The force between
two molecules as a function
of the distance between their
centers

3.3 Intermolecular Forces 109



the resultant of the forces between the molecules of the constraint and the molecules
of the body. When the two are in contact, molecules on the two surfaces are at
distances between their centers equal to molecular diameters. The applied force
tends to bring the molecules of the body and of the constraint nearer to each other,
namely to reduce their radii. This is opposed by the van der Waals force, which, as
we have seen, quickly becomes enormous. For this reason two solid bodies cannot
penetrate into each other. We have also seen that the intermolecular force goes
quickly to zero at distances larger than the equilibrium position. This explains why
the force disappears if we separate the surfaces even by very small distances.
Already at a few molecular diameters the surfaces no longer interact.

Contact forces are used in practice when we want to constrain a body to move on
a certain trajectory. For example, we have repeatedly used a horizontal plane to
force a block to move in that plane; the rails force the train to move on a certain
path, etc. The physical systems used for this purpose, the support plane, the rails,
etc., are called mechanical constraints, because they constrain the motion. The
constraints may inhibit motion on one side only or both, being named respectively
unilateral and bilateral. A support plane is unilateral because it does not inhibit a
body from rising above its surface. The rails of a train are unilateral but those of a
roller coaster are bilateral, the coaster cannot detach from the rail.

Usually, forces produced by the mechanical constraints are not known a priori.
They depend on the motion of the body, hence on other forces acting on it. For
example the force exerted by the rail on the wheel of a train in a given curve
depends on the curvature, but also on the speed of the train and on the mass of the
wagon. Indeed, the rail develops a force that is exactly the centripetal force needed
to have the wagon moving at that speed on that curvature with its mass. The forces
exerted by the constraints are said to be passive, the other ones, which are usually
under control, are called active.

We can however, calculate the passive forces if we know the motion of the body
and all the active forces acting on it. Let us look at two examples.

l

xO

y

m g

T

l

T

(a) (b)

Fig. 3.10 Two different mechanical constraints for the same motion. a simple pendulum, b solid
guide
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Example E 4.1 We have already studied the pendulum in Sect. 2.9. We recall that
the simple pendulum is a material body, of mass m, constrained to move on a
circular arc of radius l. The easiest way to implement a mechanical constraint is like
in Fig. 3.10a, with an inextensible wire fixed in Ω that exerts the tension T on the
material point. Clearly, the constraint is unilateral, because the wire can fold. We
could make it bilateral by using a light bar instead of the wire. In Fig. 3.10b the
constraint is implemented with a wooden or plastic guide shaped as an arc of a
circle of radius l, in which the body can slide. Assuming friction to be negligible,
the guide will develop a normal force. We represent it with the same symbol as the
tension of the wire, namely T.

In both cases, the second law gives: Tþmg ¼ ma. We already know the motion
and are interested in the constraint force T. We observe that in both cases T is
directed always towards the center Ω. The radial component of the resultant of the
forces must be the centripetal one, corresponding to the velocity υ of the body,
namely F ¼ �mt2=l, where υ is the velocity at the considered instant and the minus
sign means that the force is towards the center. The radial component of the
resultant is �T þmg cos h and we have

�T þmg cos h ¼ �mt2=l: ð3:20Þ

Clearly, T is not a constant, rather it depends on the position of the pendulum,
which is defined by the angle θ. We could do that using the equation of motion we
have found in Sect. 2.9. However, it is easier to employ energy conservation. The
reason is the term mυ2 in the last expression, which is twice the kinetic energy. If
the pendulum is abandoned from the initial position θ0, corresponding to the height
y0, the energy conservation equation is mgy0 ¼ mgyþmt2=2.

Hence mt2 ¼ 2mg y0 � yð Þ. But, y ¼ l 1� cos hð Þ and y0 ¼ l 1� cos h0ð Þ, hence
y0 � y ¼ l cos h� cos h0ð Þ, and we can write mt2 ¼ 2mgl cos h� cos h0ð Þ and
finally, substituting in Eq. (3.20), T ¼ mg 3 cos h� 2 cos h0ð Þ.
Example E 4.2 Consider, in a vertical plane, an inclined guide connected at its
lower extreme with a circular guide, as shown in Fig. 3.11. We want to study the
motion of a material point, a small rigid ball for example, on the circular rail, which

r

y

x
0

mgN

(a) (b)Fig. 3.11 a The forces on a
ball moving on a vertical
circular rail, b motion of the
ball in case of detachment
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is unilateral, of radius r. We use the incline to launch the ball with a certain initial
velocity on that rail. More precisely, we want to find the minimum initial velocity in
order that the ball would travel through the entire circle without detaching from the
rail.

Two forces act on the ball, its weight mg and the force of the constraint, which
we suppose to be normal, N. The latter is directed as the radius, towards the center.
The normal force cannot be directed outwards.

Again, the radial component of the resultant of the forces must be the centripetal
force requested by the motion. This component is the sum of N and of the radial
component of the weight. The latter is a maximum at the highest point of the guide.

To be sure that the ball does not detach, it is then sufficient to verify that in this
point. Here, the weight and the constraint normal force are both directed vertically
downwards. The condition of non-detachment is then N þmg ¼ mt2=r. Solving for
the unknown N we have N ¼ m t2=r � gð Þ.

The condition of non-detachment is N > 0, hence the term υ 2 > gr. If the velocity
is smaller, the ball detaches following a trajectory as in Fig. 3.11b, which gives a
sequence of images of the ball in its motion. We can think that in this situation the
weight is providing a centripetal force too large for the radius of curvature of the
guide, at that velocity. The motion must follow a trajectory with a smaller radius,
and the ball detaches.

3.5 Friction

We have already seen several times that a physical rigid plane, when pushed by a
body in contact with it, reacts with a normal force which is equal and opposite to
the active force. In the example drawn in Fig. 3.12 the plane is horizontal and the
active force, which is vertical, is simply the weight Fw of the block lying on the
plane. The normal reaction N is vertical upwards.

We now apply to the block a force F parallel to the contact surface (horizontal in
this particular case), by attaching a wire to the block and pulling. Suppose that we

Fw

N

F
Ft

F

Ft

Ft, max 

motion

0
0

(a) (b)

Fig. 3.12 a Active and constraint forces on a block, b friction force versus applied tangential
force
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gradually increase the tangential force starting from zero. We observe that initially,
when F is not very strong, the block does not move, it is still in equilibrium. This
implies that the resultant of the forces must still be zero, not only in the direction
normal to the plane, where nothing is changed, but also in the tangent one, where
now there is a force. The constraint must have developed also a force parallel to the
contact surface, Ft equal and opposite to F, namely

Ft ¼ �F:

The force developed by the constraint parallel to the contact surface, when there
is no motion, is called static friction.

If we continue to increase the tangential force on the block F, the tangential force
by the constraint increases too, as long as the block does not move. This happens at
a certain value of the active force, meaning that the friction force cannot be larger
than a maximum value that we call Ft,max.

This behavior is followed in all cases in which two dry surfaces are in contact. In
these conditions, it is experimentally found that the maximum value of the static
friction is proportional to the normal force, namely that

Ft;max ¼ lsN: ð3:21Þ

The proportionality constant µs is called the coefficient of static friction, which is
clearly a dimensionless quantity.

We now study the motion of the block when the tangential applied force is larger
than Ft,max. By measuring its acceleration, we infer that a tangential contact force Ft

is present, which is in general somewhat smaller than Ft,max as shown in Fig. 3.12b.
Also in the case of relative movements of the two contact surfaces, it is experi-
mentally found that the tangential force by the constraint is proportional to the
normal one. Its direction is always parallel and opposed to the velocity, namely

Ft ¼ �ldNut; ð3:22Þ

where ut is the unit vector of the velocity. The dimensionless constant µd is called
coefficient of kinetic friction.

Figure 3.12b shows schematically the tangential force of the constraint versus
the applied tangential force. We see that Ft grows to be equal to the applied force up
to Ft,max. Then, when the motion is started, it diminishes somewhat, as we have
already noticed, and then remains approximately, but not exactly, constant. Notice
that in the majority of the cases µd < µs but there are also opposite cases.

As a matter of fact, the static and dynamic friction forces are due to the inter-
actions between the molecules on the surfaces of the two bodies. Consequently,
Eqs. (3.21) and (3.22) are a macroscopic description of a complex microscopic
situation. We observe that friction coefficients depend critically on the status of the
surfaces in contact, on how they have been machined, on their cleanliness, etc.
Notice carefully that the molecules on the surface of a body made of a certain
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substance, for example copper or steel, are not only of that substance. Water is
almost always present, oxidation too. One can find mentioned values of the friction
coefficients between, say, copper and copper, copper and steel, etc. But, there is no
single copper on copper, etc. friction coefficient, for the just mentioned reasons.

As a matter of fact, for example in the case of a piece of copper, it is possible to
obtain surfaces populated by copper molecules only. The piece must be processed
with ad hoc procedures under a vacuum, because in the presence of air, copper will
oxidize and water molecules will be deposited on the surface immediately. Now
suppose we have produced two such blocks in a vacuum and put their surface in
contact. They immediately stick one onto the other and you will not be able to
separate them. They became a unique copper bock. How are molecules supposed to
know to which block they belong?

The first astronauts to land on the Moon observed this phenomenon. Putting two
stones gathered from the soil in touch, they found them sticking together and
difficult to separate, even if their surfaces were obviously irregular.

There is no universal mechanism at the origin of the friction between two contact
surfaces. Consider the important case of two metal surfaces. Metallic surfaces can
be worked to be extremely smooth. Even in these conditions, surfaces are not
smooth if looked at nanometer scales. Figure 3.13 tries to show the surfaces as seen
at a large magnification. The irregular patterns have a typical scale of 10 = 100 nm.

When two surfaces are, we think, in contact, the contact is indeed only between
the “crests” on the two sides. Consequently the surface really in contact, say Sc is
much smaller than the nominal surface S (typical values of Sc/S are between 10−4

and 10−5). However, the larger is the normal force N pushing the two surfaces one
against the other, the larger is the number of crests touching each other. We can
then understand why the friction force is proportional to N. We can also understand
why it is independent of the area of contact. Suppose we keep N constant and
double the contact macroscopic surface S. The action of the normal force will
distribute on a doubled area and its effect on the crests per unit area will halve. The
number of contacts per unit surface will halve too, but they will cover a twice as
large area. The total number of contact has not varied. In conclusion, Sc is pro-
portional to N and independent of S.

Fig. 3.13 Pictorial view of
the contact surfaces between
two metals, at nanometer
scale
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In the contact points the molecules of the two bodies interact strongly attracting
each other and becoming, so to say, welded. To have one surface sliding on the
other, these micro welding points must be broken. Again the necessary force is
proportional to Sc and consequently to N and independent of S.

What we have just described is relative to dry surfaces between solid bodies and
has nothing to do with the friction between lubricated surfaces. In this case, a film
of liquid is present between solid surfaces, the molecules of which are far enough
away from each other to have an interaction. In this case the friction is due to the
viscosity of the lubricant (see Sect. 3.6).

The rolling resistance or rolling friction is the force resisting the motion
developed by the constraint, for example the support surface, when a cylindrical or
spherical body, such as a reel or a ball, rolls on the surface. Figure 3.14 represents
in cross section such a cylinder, say a reel, of radius r. We apply a force F to the
axis of the reel parallel to the support plane and normal to the axis. We assume that
the reel does not slide on the plane due to the static friction force. This type of
motion is called pure rolling. When the reel rolls, it does that about an instanta-
neous axis that is the contact generator in the considered instant. The moment of the
applied force about the instantaneous rotation axis is τ = rF. The moment τ nec-
essary to have the rolling at a constant angular velocity is experimentally found to
be proportional to the magnitude of the normal force N, namely

s ¼ cN; ð3:23Þ

where γ is the rolling resistance coefficient. Its physical dimension is a length, and is
measured in meters. The applied moment is equal and opposite to the moment
developed by the constraint.

The rolling resistance force is generally smaller than the dynamic friction. As a
matter of fact it is due to quite complicated phenomena in the region of contact
between the reel and the support plane. In Fig. 3.14 this region is shown as a flat
area of longitudinal with δ. This is an idealization, because actually both the
cylinder and the plane deform into shapes that are not forward-backwards sym-
metrical. We are here simplifying a lot. We can say that on the contact area a
number of the above considered “crests” of both bodies are in contact. The dif-
ference is that now, to have movement, the microwelds are broken acting in a
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Fig. 3.14 Schematics of the
rolling resistance
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direction normal, rather than parallel, to the surface. This requires, caeteris paribus,
a smaller force.

Example E 4.3 Consider Fig. 3.15. A brick lies on an inclined surface, the incli-
nation of which, α, can be varied. Given the coefficient of static friction µs, what is
the maximum value of α at which the brick remains still?

The forces on the brick are its weight mg and the force exerted by the constraint.
The latter can be decomposed in a normal, N, and a tangential, Ft, component,
which is the friction. For equilibrium the components of the resultant must be zero.
Namely, Ft ¼ �mg sin a and N ¼ �mg cos a. Hence Ft=N ¼ tan a. But, the static
friction force cannot be larger than µsN, and the no-slide condition is a� arctan ls.

The maximum angle, say af � arctan ls is called the friction angle. For example,
the slopes of the piles of sand or of the screes in the mountains naturally settle on
the corresponding friction angle.

We have seen in Sect. 2.11 that friction forces are dissipative, and that their work
is negative when their application point moves, because they are always in a
direction opposite to the motion, see Eq. (2.41). Indeed, the friction forces are
always such as to oppose the relative motion of the two bodies. This does not imply
that the friction acting on a body would always act to slow it down, on the contrary
it can also accelerate it.

As an example, let us consider our brick, of mass m, ling on the horizontal
platform of a cart. The latter moves straight forward with constant acceleration
a (see Fig. 3.16) in the direction of its velocity v. If the acceleration of the cart is not
too large, the block remains still relative to the platform; its motion is accelerated
with the same acceleration a as the cart. It must be acted upon by a force equal to
ma. But the only horizontal force acting on it is the friction Ft. Hence, Ft = ma. The
friction accelerates the brick. We know that Ft can be at most equal to µsN = µsmg.

mgmg

Ft

N

N

Ft

α

α

Fig. 3.15 A brick on a slide
and the forces acting on it

N

Ft a

Fig. 3.16 A brick on an
accelerating platform and the
forces acting on it

116 3 The Forces

http://dx.doi.org/10.1007/978-3-319-29257-1_2
http://dx.doi.org/10.1007/978-3-319-29257-1_2


Consequently the maximum acceleration of the cart at which the brick does not
slide is µsg.

Notice that in this case the friction has the direction of the velocity, namely of
the displacement. Consequently its work is positive. In the same way, when we start
running we are accelerated by the friction force between our shoe soles and the
ground, when a car accelerates the accelerating force is the friction between its reel
and the road. Notice however, that in these cases the work of the friction force is
zero, because the point of application does not move.

3.6 Viscous Drag

A solid moving relative to a fluid, a liquid or a gas, is subject to a force, different
from friction, but as friction opposing the relative motion of the body and the
medium. It is called viscous drag or viscous resistance. Differently from friction,
there is no drag when the relative velocity is zero, and an increasing function of the
relative velocity. The direction of the drag force is always equal and opposite to the
relative velocity.

The magnitude of a force depends on the magnitude of the relative velocity, on
the shape of the body and on the fluid. Moving relative to the fluid, the body
induces a number of effects that may perturb substantially its flow. Think for
examples of vortices. Consequently, the dependence of the drag force on velocity is
complicated. We shall study it in the second volume of this course, together with
fluid dynamics. Here we anticipate only a few elements that are needed in our study
of the motions of bodies.

The force depends on the shape of the body, for example it is different for a
cylinder or a sphere, on its orientation, for example the case of a disc is different for
its orientation parallel or perpendicular to the flow, and, for a given geometrical
shape, on its size. We shall limit the discussion here to a spherical body, of radius a.

The force depends on two characteristics of the fluid, its density ρ (mass per unit
volume) and the viscosity η. The latter will be discussed in the second volume. It
suffices to know here that it characterizes the difficulty with which the fluid flows,
so, for example, oil has larger viscosity, is more viscous, than water, but is less
viscous than honey. For a given fluid, the viscosity depends on the temperature.

The physical units of viscosity are

g½ � ¼ ML�1T�1� � ¼ FL�2T
� �

; ð3:24Þ

where, in the third member we have taken into account that the dimensions of the
force are [F] = [MLT−2]. Pressure has the dimensions of a force per unit surface
(FL−2) and its unit is the pascal (Pa), from Blaise Pascal (1623–1662). The unit for
viscosity is then the pascal second (Pa s). For example, for some everyday fluids at
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ambient temperature, their viscosities are for oils η ≈ 0.5–1.5 Pa s, for water
η ≈ 10−3 Pa s, and for air η ≈ 1.8 × 10−5 Pa s.

The Reynolds number is a parameter that gives relevant information on the
regime of the motion, named after Osborne Reynolds (1842–1912). It is dimen-
sionless, namely a pure number. The four quantities of the problem have the
physical dimensions q½ � ¼ ML�3½ �, g½ � ¼ ML�1T�1½ �, a½ � ¼ L½ � and t½ � ¼ LT�1½ �.
They can be arranged in a dimensionless quantity as

Re ¼ q=gð Þta; ð3:25Þ

which is the Reynolds number for a sphere. Its expressions for other shapes are
similar.

Figure 3.17 shows schematically how the drag force on a body can be measured.
The body is fixed to a thin bar and to the pointer of a dynamometer fixed on a
support and is immersed in the fluid under study, which is moving at a known
velocity υ, that we can vary in a known manner. Experiments of this type show that
at small velocities the drag force can be written as the sum of a term proportional to
the velocity and one proportional to its square

R ¼ AtþBt2; ð3:26Þ

where the coefficients A and B depend on the body and the fluid but, for not too
large velocities, are independent of velocity. As the ratio between the second and
the first term is proportional to the velocity, the first term dominates at small
velocities, the second at larger ones. We define as critical velocity υc the velocity at
which the two terms are equal. It corresponds to a quite small value of the Reynolds
number

012345

Fig. 3.17 Measuring the drag
force
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Rec � 20� 30: ð3:27Þ

Consider now the sphere moving in air, as pendulums or free falling bodies, at
normal temperature and pressure conditions. The air density in these conditions is
ρ = 1.2 kg/m3. With the value for viscosity already given, the Reynolds number is

Reðair) ¼ 1:5� 10�5ta ð3:28Þ

and the critical velocity, in a round number

tc � 4� 10�4=a m/s: ð3:29Þ

If for example a = 1 cm, the critical velocity is υc = 4 cm/s. The time taken to
reach it by a body freely (in a vacuum) falling from rest is t = υ/g = 4 ms, which is
very short indeed. In this time it would travel in vacuum d = gt2/2 = 80 µm. For
larger dimensions bodies moving in the air the critical velocities are even smaller.

We conclude that only for very small velocities, smaller than υc, is the viscous
drag proportional to the velocity. However, it becomes proportional to the square
velocity very gradually, reaching that regime only at Reynolds numbers two orders
of magnitude larger than in Eq. (3.27), corresponding to velocities of a few meters
per second for a sphere of 1 cm radius.

As a second example consider the same sphere moving in water. With
ρ = 103 kg/m3 and the viscosity given above, η/ρ = 10−6 kg/m3, which is a value,
notice, smaller than for air. The Reynolds number at velocity υ for a = 1 cm is
Re = 104 υ. The critical velocity is only υc * 2.5 mm/s.

In the elementary study of free fall, of the motion on an incline and of the
pendulum, the viscous drag of air is usually neglected. Is this a good approxima-
tion? Let us control on a few typical cases. Consider a bronze (density
ρ = 8 × 103 kg/m3) ball of a = 2 cm radius and three cases: free fall from a h = 20 m
tall tower, descent of an incline of elevation h = 1 m and oscillation of a pendulum
abandoned at the height from the position at rest h = 0.5 m. The weight of the ball is
Fp = 2.7 N. Neglecting the presence of the air, and the energy of the rotation in the
second case, the velocities at the end of the fall would be in any case t ¼ ffiffiffiffiffiffiffiffi

2gh
p

,
hence υ1 = 20 m/s, υ2 = 4.5 m/s, υ3 = 2 m/s in the three cases respectively. In
presence of air all velocities would be somewhat smaller, but larger than the critical
velocity. The drag force is approximately proportional to the square velocity, but is
not very large. For the just mentioned velocities its values are approximately
R1 = 2.4 × 10−2 N, R2 = 1.2 × 10−2 N, R1 = 2.4 × 10−3 N, which are in any case
small compared to the weight. Neglecting the drag in these cases is not a bad
approximation. However, the effect will be noticeable on much longer times.

Finally notice that, whatever its expression, the viscous drag is a dissipative
force. As it is always directed opposite to velocity, its work is negative for any
displacement of the application point.
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3.7 Air Drag and Independence of Motions

In the study of the motion of a body under the action of one (or more) force, it is
often convenient to decompose the motion in its components on the Cartesian axes.
The component of the motion on an axis is due to the component of the force (or
forces) on that axis. The component motions are independent of each other. This
law of the independence of motions was discovered by Galilei, and assumed by
Newton as a corollary of the second law. We have already quoted in Sect. 1.16 the
following example from Galilei. Suppose we shoot a ball with a gun at the top of a
tower, aiming horizontally. Simultaneously we drop a ball with zero velocity. The
ball leaves the rifle barrel with a very high horizontal speed and, under the action of
its weight, describes a parabola finally touching ground at a horizontal distance far
away. The second ball falls vertically. Galilei established that both balls touch
ground at the same instant, provided that the action of air is neglected, as he
specifies.

We shall now analyze the motion in presence of the air and we shall see that the
law of independence of motions is not always valid.

We refer the motion of the ball, of mass m, to a frame having the y-axis vertical
and x horizontal in the plane of the motion as in Fig. 3.18. Two forces are acting on
the ball, its weight Fp = mg vertical downwards and the viscous drag

R ¼ � AtþBt2
� �

ut ð3:30Þ

where υ is the velocity and uυ is its unitary vector. The Newton law gives

mg� AtþBt2
� �

ut ¼ ma: ð3:31Þ

The components on the axes of the equation, if θ is the angle of v with the
horizontal, are

m
dtx
dt

¼ � AtþBt2
� �

cos h; m
dty
dt

¼ �mg� AtþBt2
� �

sin h: ð3:32Þ

v

R( )

Fp

m

y

x

Fig. 3.18 The forces on a
ball moving in air
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This is a system of two non-linear differential equations, which cannot be easily
solved. However, we are only interested here in knowing if and when the two
motions are independent. To be so, only x and y components should appear in the
first and second equation respectively. This is indeed the case for low velocities,
when the term B can be neglected. In these conditions, considering that tx ¼ t cos h
and ty ¼ t sin h, Eq. (3.32) becomes

m
dtx
dt

¼ �Atx; m
dty
dt

¼ �mg� Aty: ð3:33Þ

The two motions are independent. However, if, as it is often the case, the drag is
proportional to the square velocity, Eq. (3.32) become

m
dtx
dt

¼ �B t2x þ t2y

� �
cos h; m

dty
dt

¼ �mg� B t2x þ t2y

� �
sin h: ð3:34Þ

The motions are not independent. This is an obvious consequence of the pro-
portionality of the drag force to the square of the velocity, which depends on both
components. In the example of Galilei, the air resistance is larger for the gun ball
than for the vertically falling one, because the velocity of the former is larger. The
gun ball touches ground later than the ball falling from the tower if the effects of the
air are not neglected.

3.8 Damped Oscillator

In Sect. 3.2 we discussed the motion of the harmonic oscillator. We then neglected
the dissipative forces, which however, are always present. As we know these are
basically of two types, friction and viscous drag of the air. We shall now include the
viscous drag of the air, which we shall assume to be proportional to the velocity.

To be concrete, consider the system in Fig. 3.19, which is similar to that in
Fig. 3.5, with the addition of an element providing the viscous force. We can think
in terms of an absorber, like a piston moving in a fluid, but the element is meant to

x

m

0

Fig. 3.19 A mechanical
damped oscillator
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represent all the viscous forces, including that due to the air. The viscous drag is
proportional to velocity in magnitude and opposite to it in direction, namely

Fr ¼ �b
dx
dt

ð3:35Þ

where β is a constant. We shall neglect the friction between the support plane and
the block. The force (3.35) tends to slow down or damp the motion. Hence the
oscillator is said to be damped. The second law gives

m
d2x
dt2

¼ �b
dx
dt

� kx; ð3:36Þ

which we write, dividing by m and taking all the terms to the first member, in the
“canonical” form

d2x
dt2

þ c
dx
dt

þx2
0x ¼ 0: ð3:37Þ

In this form, the equation is valid for all harmonic damped oscillators. The two
parameters depend on how the oscillator is built, the strength of the spring, the
viscosity, etc. We have already met the first one while discussing the harmonic
oscillator. It is the restoring force per unit displacement and per unit mass

x2
0 ¼ k=m: ð3:38Þ

The second, see Eq. (3.35) is the resistance force per unit velocity and unit mass

c ¼ b=m: ð3:39Þ

Notice that both constants have the dimension of the inverse of time. We already
know that ω0 is the angular frequency of the oscillator in absence of dissipative
forces. The inverse of the second

s ¼ 1=c ð3:40Þ

is the time that characterizes the damping, as we shall now see.
The solution of the differential Eq. (3.37) is given by calculus. The rule to find it

is as follows. First we write the algebraic equation obtained by substituting in the
differential equation powers of the variable equal to the degree of the derivative. In
our case it is

r2 þ crþx2
0 ¼ 0: ð3:41Þ
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Then we solve it. The two roots are

r
1

underscore2

¼ � c
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
2

� �2
�x2

0

r
: ð3:42Þ

The general solution of the differential equation is

x tð Þ ¼ C1e
r1t þC2e

r2t ð3:43Þ

where C1 and C2 are integration constants that must be determined from the initial
conditions.

Let us discuss the motion we have found. We observe that the effect of the
dissipative force, which is to damp the motion, is larger for larger values of γ.
Considering the two roots r1 and r2 of the algebraic Eq. (3.41), three cases should
be distinguished called respectively: under-damping if γ/2 < ω0, the two roots are
real and different, over-damping if γ/2 > ω0, the two roots are complex conjugate,
and critical damping if γ/2 = ω0, the two roots are real and coincident. Let us
analyze the three cases.

Over-damping. The two solutions, which are real, are both negative. The motion
is the sum of two exponentials decreasing in time

x tð Þ ¼ C1e
� r1j jt þC2e

� r2j jt: ð3:44Þ

The damping is so large that the system is not able to perform even a single
oscillation. The displacement from the equilibrium position decreases monotoni-
cally. Mathematically speaking, Eq. (3.44) says that the time to reach that is infinite.
In practice, after some time both addenda are so small, and so is the velocity, that
other resistive forces that are always present, as the friction, stop the motion in the
equilibrium position (x = 0). This happens in a time interval of a few times 1/|r2|
(which is larger than 1/|r1|).

Critical damping. The two roots coincide, r = –γ/2 = –2/τ. In this particular case,
Eq. (3.42) is not the solution. This is

x tð Þ ¼ C1 þC2tð Þe�t= 2cð Þ: ð3:45Þ

In this case too the system does not oscillate. The displacement reduces to zero,
in practice, in a time interval of a few times 2τ. It can be shown that in the critical
damping the time to reach equilibrium is minimum.

Under-damping. We can write the equation of motion in the form

x ¼ C1e
� c=2ð Þtþ ix1t þC2e

� c=2ð Þt�ix1t
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where

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 �
c
2

� �2
r

: ð3:46Þ

We can now choose two different integration constants as a = C1 + C2 and b = i
(C1 – C2) and have the solution in the form

x tð Þ ¼ e� c=2ð Þt a cosx1tþ b sinx1tð Þ: ð3:47Þ

For damping tending to zero (c ! 0) the equation of motion becomes Eq. (3.9),
as we expect since the oscillator is un-damped in these conditions. The solution can
be written in a form analogous to Eq. (3.10)

x tð Þ ¼ Ae� c=2ð Þt cosx1tþ/ð Þ ¼ Ae�t= 2sð Þ cosx1tþ/ð Þ ð3:48Þ

where now the integration constants are A and ϕ. The motion is an oscillation
similar to the harmonic motion with an amplitude, Ae�t= 2sð Þ, which is not constant
but decreases exponentially in time with a decay time 2τ. The oscillations are
damped. A weakly damped, namely with γ	 ω1, motion is shown in Fig. 3.20. The
oscillation amplitudes diminish gradually in a time long compared to the period. As
a matter of fact, rigorously speaking, the motion is not periodic, because the dis-
placement after every oscillation is somewhat smaller than before it. However, if
the damping is small, γ 	 ω1, we can still identify a period

T ¼ 2p=x1: ð3:49Þ

The weak damping condition γ 	 ω1 can be written as τ 
 T, in words, the
decay time is much longer than the period.

Notice that the proper angular frequency ω1 is smaller than the proper angular
frequency of the free oscillator ω0, but that for γ 	 ω1 the difference becomes
infinitesimal of the second order compared to γ/ω0.

t

x
Ae–(γ/2) t=Ae–t/(2τ)

Fig. 3.20 Weakly damped
oscillations
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We have seen in Sect. 3.2 that the total, kinetic plus potential, mechanical energy
of the harmonic oscillator is constant in time. The difference now, even in the case
of weak damping, is that a dissipative force is present. We expect that energy
decreases. Without losing generality, we can assume the initial phase to be zero.
The initial amplitude of oscillation is A. At every oscillation, the displacement
reaches its maximum at, say, time t. The displacement is then

xmax tð Þ ¼ Ae�t= 2sð Þ: ð3:50Þ

In that instant the velocity is zero and the total energy is equal to the potential
energy, which is proportional to the square of the amplitude

Utot tð Þ/A2e�t=s: ð3:51Þ

The total energy decreases exponentially in time, reducing to a value 1/e of the
initial value in a time τ, which is one half of the time in which the amplitude reduces
of the same factor. τ is called decay time of the oscillator.

An observation on the exponential function. The amplitude of a damped oscil-
lation in the Eq. (3.48) and the energy of the damped oscillator, Eq. (3.50) are
examples of physical quantities decreasing exponentially in time. This behavior is
often met in physics. We make here a simple but important observation. Consider
the function

f tð Þ / f0e
�t=s

and the ratio between its two values in two different instants t1 and t2 (t1 < t2). We
immediately see that this ratio depends only on the interval t2 − t1 and not sepa-
rately on the two times or the constant (the initial value) f0. Indeed

f t2ð Þ=f t2ð Þ ¼ e�ðt2�t1Þ=s: ð3:52Þ

In particular, the function diminishes by a factor 1/e in every time interval
t2 � t1 ¼ s and not only in the initial one.

In particular, we can reformulate the above statement in: “τ is the time interval in
which energy reduces of a factor 1/e”.

3.9 Forced Oscillator. Resonance

Consider again the damped oscillator of the previous section and apply to the body
a force in the direction of the x-axis that oscillates as a circular function of time
with angular frequency ω and amplitude F0. The component of the force on the
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x axis (its magnitude or its opposite depending on the direction relative to x) is
given by

F tð Þ ¼ F0 cos xtð Þ; ð3:53Þ

where we have chosen the origin of times and the instant in which the force is zero;
its initial phase is then null. The second law is

m
d2x
dt2

¼ F0 cosxt � b
dx
dt

� kx; ð3:54Þ

which we write in the form

d2x
dt2

þ c
dx
dt

þx2
0x ¼

F0

m
cosxt: ð3:55Þ

The left-hand side of this equation is that of the equation of the damped oscil-
lation (3.37). But the right-hand side, which is zero for the latter, is now propor-
tional to the external force. Equation (3.55) is a non-homogeneous differential
equation and Eq. (3.37) is its associated homogeneous differential equation.
A mathematical theorem states that the general solution of the former is the sum of
the general solution of the associated homogeneous equation and of any particular
solution of the non-homogeneous one.

We shall limit our discussion to the case of weak damping, as in Fig. 3.20. We
can guess that a possible motion might be a harmonic oscillation at the angular
frequency of the force; namely a particular solution might be

x tð Þ ¼ B cos xt � dð Þ ð3:56Þ

with some amplitude B and initial phase –δ to be determined. Let us check if our
guess is correct. The easiest way to do so is to consider an equation exactly similar
to (3.55) of the complex variable z(t) = x(t) + i y(t). The imaginary part y(t) is some
function that is irrelevant in our arguments. We then search for a solution of the
differential equation, of which (3.55) is the real part

d2z
dt2

þ c
dz
dt

þx2
0z tð Þ ¼ F0

m
eixt: ð3:57Þ

Considering that the equations are linear, the real parts of the solutions of
Eq. (3.57) are solutions of (3.55). The function corresponding to our guessed
solution is

z tð Þ ¼ z0e
ixt: ð3:58Þ
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Let us try it in (3.57)

�x2z0e
ixt þ icxz0e

ixt þx2
0z0e

ixt ¼ F0

m
eixt

which must be satisfied in every instant of time. And so it is, because all the terms
depend on time by the same factor. Hence, Eq. (3.55) is a solution provided that

�x2z0 þ icxz0 þx2
0z0 ¼

F0

m
ð3:59Þ

which is an algebraic equation. The unknown, the parameter we must find to have
the solution, is the complex quantity z0. This is immediately found to be

z0 ¼ F0=m
x2

0 � x2 þ icx
: ð3:60Þ

We see that the solution is completely determined by the characteristics of the
oscillator, ω0 and γ and of the applied force, F0 and ω. It does not depend on the
initial conditions.

The particular solution of Eq. (3.57) is then

z tð Þ ¼ F0=m
x2

0 � x2 þ icx
eixt: ð3:61Þ

To have a particular solution of Eq. (3.55) we must now take the real part of this
expression. To do that it is convenient to write z0 in terms of its modulus B and its
argument –δ (we shall soon see the reason for the negative sign)

z0 ¼ Be�id: ð3:62Þ

Equation (3.60) gives z0 as a ratio. The modulus of a ratio is the ratio of the
modulus of the nominator and the modulus of the denominator

B ¼ F0=mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � x2
� �2 þ c2x2

q : ð3:63Þ

The argument of the ratio is the difference between the argument of the nomi-
nator, which is null, and the argument of the denominator, and its opposite is

d ¼ arctan
cx

x2
0 � x2

: ð3:64Þ
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The particular solution of Eq. (3.57) is then

z tð Þ ¼ Bei xt�dð Þ ð3:65Þ

and, taking the real part, the particular solution of Eq. (3.55) is

x tð Þ ¼ B cos xt � dð Þ: ð3:66Þ

Finally, the general solution of Eq. (3.55) is

x tð Þ ¼ Ae� c=2ð Þt cosx1tþ/ð ÞþB cos xt � dð Þ: ð3:67Þ

Let us now discuss the motion we have found. It is the sum of two terms. The first
one represents a damped oscillation at the angular frequency ω1 that is proper for the
oscillator. The constants A and ϕ, depending on the conditions from which the
motion started, appear in the first term. The second term depends on the applied
force. The motion is under these conditions quite complicated. However, the
amplitude of the first term decreases in time the faster the greater is γ. It diminishes
by a factor of e in every time interval 2/γ. After a few of such intervals, the first term
has practically disappeared. Once this transient regime has gone, the regime of the
motion is stationary. The stationary oscillation or forced oscillation is described by
our particular solution Eq. (3.66), which is called a stationary solution. We write it as

xs tð Þ ¼ B cos xt � dð Þ: ð3:68Þ

We repeat that the stationary motion is a harmonic oscillation at the angular
frequency of the force, not at the proper frequency of the oscillator. However, both
the amplitude B and the quantity δ, which is not the initial phase but the phase delay
of the displacement x relative to the instantaneous phase of the force, do depend on
the characteristics of both the oscillator and the force as in Eqs. (3.63) and (3.64).
An important phenomenon, the resonance, happens when the angular frequency of
the force is near or equal to the proper angular frequency of the oscillator: the
amplitude is very large and the phase delay varies very rapidly.

Figure 3.21 represents the amplitude of the forced oscillation as a function of the
angular frequency B of the force. It has a maximum at the resonance frequency

xR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � c2=2
q

ð3:69Þ

as one obtains with the usual methods finding the derivative of Eq. (3.63). Notice
that ωR is close but not exactly equal both to the angular frequency of the damped
oscillations ω1 and the proper angular frequency of the free oscillator ω0. However
for small damping, namely for γ/ω0 	 1, all of them become almost equal.

A simple way to observe the resonance phenomenon, and to understand the
reason for the noun, is using two tuning forks. The tuning fork is an acoustic
harmonic oscillator that vibrates at a specific frequency when set vibrating by
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striking it. It is made, like a two-pronged fork, with U-shaped prongs, called tines,
and a stem of a metal, usually steel. The instrument is used to have a definite pitch,
typically an A at 440 Hz, to tune the music instruments.

We strike a tine of one of the forks to have it vibrating, and we hear the sound,
with the other one a few meters far. We then bring the latter nearby and stop the first
fork by touching its tines. And we still hear the pitch. The second fork, that has the
same proper frequency, resonated. The first fork had excited sound waves in the air,
namely pressure oscillations at the frequency of its vibrations (the sound we hear).
These pressure oscillations act as a periodic force on the second fork at its resonant
frequency. We can double check that this is true as follows. We fix, with a locking
screw near the top of one of the tines of the second fork, a small weight and repeat
the experiment. This time we do not hear the second fork sound. Its proper fre-
quency is now different and it is no longer in resonance with the first one.

Going back to Fig. 3.21a, we observe that calculations show that the full width
of the resonance curve at half maximum (FWHM) is equal to γ and that the
maximum is inversely proportional to γ. As a matter of fact, Eq. (3.63) immediately
shows that the amplitude is infinite in the ideal case of γ = 0.

We discuss now the behavior of δ, the phase delay of the displacement relative to
the force, given by Eq. (3.64) and shown in Fig. 3.21b. When the frequency of the
force is small relative to the proper one, ω 	 ω0, then δ ≈ 0, namely force and
displacement are in phase. On the contrary, if the frequency of the force is much
larger than the proper frequency, ω 
 ω0, then δ ≈ π. We can easily understand the
physical reasons for that, considering the relative importance of the different terms
in Eq. (3.53). At low frequencies the accelerations are quite small and the applied
force acts mainly against the elastic force –kx and is consequently in phase with
x. At high frequencies, as we have just seen, force and displacement are in phase
opposition; when the mass is on the right, the force pushes to the left and vice versa.
Accelerations are now very large and the dominant term is �m d2x=dt2ð Þ, namely
the inertia. Force acts mainly against acceleration and is in phase with it, which we
know to be in phase opposition with displacement.

We also notice that our calculation shows the transition to be between the two
just described regimes and takes place in a angular frequency interval of the order

ω

B
F0/(m ωRγ)

0 ω0 ω

180˚

90˚

δ

0
0˚

ωR

γ

F
0
/k 

(a) (b)

Fig. 3.21 Dependence on the applied force angular frequency of forced oscillations a amplitude,
b phase delay, γ increases from continuous to dashed curve
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of γ. The less is the damping the more sudden is the transition. In resonance, as
immediately seen in Eq. (3.64) δ = π/2, namely the displacement is in quadrature
with the force, hence it is in phase with the velocity. The power exerted by the force
that is the product of the force and the velocity is a maximum.

The resonance phenomenon is very common in nature and in technology, not
only in mechanics but also in electromagnetism, optics, atomic physics, nuclear and
particle physics. In fact, all the systems oscillate harmonically when displaced close
to a stable equilibrium configuration. We shall discuss this in Sect. 3.11. These
oscillations take place at definite frequencies characteristic of the system. Engines,
for example, have always a rotating part. Irregularities in their structures, even if
small, may produce periodic stresses of an axis and of the support structures at the
frequency of engine rotation. When this is varied and reaches one of the resonance
frequencies of the system (there may be more than one) the amplitude of the
vibration may become very large and, if the damping is small, even destroy the
engine, if it is not properly designed.

We now consider the energy stored in the oscillator when in its stationary
motion, Eq. (3.68). It is the sum of the kinetic and potential energies

Utot ¼ 1
2
kx2s þ

1
2
m

dxs
dt

� �2

¼ 1
2
mB2 x2

0 cos
2 xt � dð Þþx2 cos2 xt � dð Þ� �

: ð3:70Þ

The expression is similar to what we found for the free oscillator. However, the
two terms are now proportional one to x2

0 and one to ω
2 while for the free oscillator

both were proportional to x2
0 and the energy was constant in time. Now the total

energy varies periodically. This is because the power delivered by the force is not
equal at a single instant to the power dissipated by the viscous force, while their
averages on a period are equal. The instantaneous balance exists, however, in
resonance, when x2 ¼ x2

0 and the total energy

Utot ¼ 1
2
mB2x2

0 ð3:71Þ

is constant.

3.10 Energy Diagrams in One Dimension

In our previous discussion, the role of the force has been the principal one, while
that of the potential energy was somewhat secondary. However, when in a more
advanced study of mechanics and in other fields of physics, the potential energy has
a central role. We have studied the problem: given a conservative force, find its
potential energy. We now consider the inverse problem: knowing the potential
energy, find an expression of the force.

130 3 The Forces



For simplicity we consider the motion in one dimension only. The point P moves
on a line, which we take as the x-axis. Suppose we have only one force acting on
the point and call Fx its x component. Suppose the point moves from x1 to x2. In
general, the knowledge of x1 and x2 is not sufficient to know the work done, but we
also need to know the path taken. The point P might have gone directly from x1 to
x2, or have moved in the opposite direction and after a while have come back, etc.
For example, if the force is friction, its work is proportional to the total length of the
path. However, if the force is conservative, as we shall assume, its work depends
only on x1 and x2 by definition. For example the force might be an elastic force, or
the weight of the point. In this case we have

Up x2ð Þ � Up x1ð Þ ¼ �
Zx2
x1

Fxdx: ð3:72Þ

We can fix the arbitrary additive constant by choosing a position x0 in which the
potential energy is null by definition Up x0ð Þ ¼ 0 and write

Up xð Þ ¼ �
Zx

x0

Fx xð Þdx: ð3:73Þ

We now want to invert Eq. (3.73). To do that we take the derivative of both its
members, immediately obtaining

Fx xð Þ ¼ � dUp xð Þ
dx

: ð3:74Þ

In one dimension, the force is the opposite of the derivative of its potential
energy with respect to the position. For example, the potential energy of the weight
(x is vertical upwards) is Up xð Þ ¼ mgx and the corresponding force, by derivation,
is the one we know Fx ¼ �mg, the elastic potential energy is Up xð Þ ¼ �kx2=2 and,
by derivation, the force is Fx ¼ �kx.

Equation (3.74) can be written as

dW ¼ Fx xð Þdx ¼ �dUp xð Þ; ð3:75Þ

which shows that the elementary work of a conservative force is the differential of a
function, the opposite of the potential energy.

Suppose now that the potential energy Up(x) of the force Fx(x) acting on our
point P (in one dimension) to be the function shown in Fig. 3.22. The study of this
type of diagram, called energy diagrams, is often useful to understand, even if in a
semi-quantitative way, the possible types of motion of the system.

We start from the equilibrium positions of point P. A position, more generally a
state, is said to be of equilibrium when, if the system was abandoned in that position
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with null velocity, it remains there indefinitely. This means that in these positions
the force is zero. We can recognize immediately these positions on the diagram as
those in which the derivative, i.e. the slope of the curve, is zero, namely where the
curve has a maximum, a minimum or a flex, x4, x7, x9, x11 in the figure. However, in
practice we can never position the body exactly in a position and if we try to do that
in a maximum or in a flex, the body will run away. As a matter of fact, there are
three types of equilibrium states. To be general (for the material point) we define
them in three dimensions.

1. Stable equilibrium. A position of a material point is of stable equilibrium if,
when it is removed in whatever direction by an infinitesimal distance, the
resultant of the forces tends to bring it back towards the equilibrium position
(restoring force).

2. Unstable equilibrium. A position of a material point is of unstable equilibrium if
at least a direction exists such that, when the point is moved in that direction by
an infinitesimal distance, the resultant of the forces tends to bring it further away
from the equilibrium position.

3. Indifferent or neutral equilibrium. If the point is removed by an infinitesimal
distance in any direction, the point remains there. In other words the equilibrium
position is surrounded by other equilibrium positions.

Going back to Fig. 3.10, in one dimension, the position x4, where the potential
energy has a relative minimum, is of stable equilibrium. Indeed, if we move a small
distance on the left, the force –dUp/dx is positive, hence in the direction towards x4.
On the contrary, if we move to the right the force, –dUp/dx, is negative, hence
directed to the left.

The position at a maximum, like x7 in the figure, is of unstable equilibrium. If we
move a bit on the left the force is to the left (–dUp/dx < 0), if we move to the right,
the force is to the right. In both cases the force tends to pull the point farther from
equilibrium.

In fact, one of these conditions is enough to make the equilibrium unstable. This
happen in the positions of the flexes, like x9 in the figure. Moving the point to the
left, the force is restoring, but moving it to the right the force is of removal.
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Consider finally the position x11. It is on a non-null segment on which dUp/
dx = 0, namely it is surrounded by other equilibrium positions and the equilibrium
is neutral.

We warn the reader that the curve representing Up suggests a ball moving on
hills and valleys, namely to think of the ordinate axis as the height. This is indeed
the case for weight, but not for other forces. Intuition should be controlled.

Three other pieces of information can be extracted from the diagram. For every
value of potential energy, the material point may have different values of kinetic
energy. The sum of the two

Utot ¼ Up þUk ¼ constant ð3:76Þ

is constant during its motion. In Fig. 3.22 we have drawn, as examples, four
different values of the total energy. In any case, the kinetic energy is the difference
between total energy and potential energy, the distance from the line and the curve.

We now consider that, while total and potential energies may be positive or
negative (or zero), the kinetic energy cannot be negative. Consequently, if the total
energy is too low, as is Utot1 in the figure, for which in every point the kinetic
energy would be negative, it is not possible for our system. The total energy cannot
be less than the absolute minimum (the deepest in the figure) of the potential
energy.

If the total energy is somewhat larger, as is Utot2 in the figure, the motion of the
point can happen only in two regions, between x3 and x5 in and between x10 and x12.
In this example, the two regions are separated by a non-reachable interval. If a point
starts moving with total energy Utot2 in one of the two regions, it cannot leave it.
One might think that the point might jump from one allowed interval to another,
because total energy would remain the same. But this cannot happen because
between the two regions there is a forbidden one, in which the total energy would
be different or kinetic energy would be negative. However, this type of phe-
nomenon happens in quantum mechanics, in atomic nuclei for example, which is
called “tunnelling” even if no tunnel exists, because it looks as though the system
would cross under the barrier in a tunnel.

We can learn something more from the diagram in Fig. 3.22. Suppose our
material point with total energy Utot2 to be at a certain instant in x3. In this point the
line of Utot2 intersects the curve of the potential energy. All the energy of the point
is potential, its kinetic energy is zero. The point has zero velocity. However, the
point does not remain still, because it is not in an equilibrium position. The force –
dUp/dx is positive and accelerates the point in the direction of increasing x, with
increasing kinetic energy (the distance on the diagram from the line to the curve
increases). The force, and consequently the acceleration, slows down as the slope of
the potential energy curve diminishes. They become zero when the point reaches
the minimum in x4. The motion does not stop there, it continues now decelerated
(the slope is positive, hence the force is negative, opposite to x). We read from the
diagram that the kinetic energy is now diminishing. It does so up to zero when the
point is in x5. This point is reached with zero velocity.
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What does happen afterwards? The force –dUp/dx acting on the point is now
negative, namely in the direction opposite to x. The point restarts its motion going
back. In conclusion, the motion is an oscillation back and forth between x3 and x5.
The motion is periodic, but generally not harmonic. We shall see in the next section
under what conditions it is so. Clearly also the motion with total energy Utot2

between x10 and x12 is periodic.
Consider now a larger value of the total energy, Utot3 in the figure. There are two

possible motions. The first one is bounded, a periodic oscillation between x2 and x6
similar to that we have just discussed. The second motion is, for example, the
motion of a point approaching from infinite distance on the right. Initially it
accelerates, then, once x11 is passed, decelerated up to stop in x8. Here it bunches
back going through in inverted order all the phases moving farther and never to
come back again. The motion is unbounded.

At still higher values of the total energy, as Utot4, no periodic motion is possible,
but only unbound motions. A particle coming from far away, once reached x1 stops
and bunches back to infinity.

3.11 Energy Diagrams for Relevant Forces

In this section we shall use the methods described in the previous section to relevant
types of motion: the oscillation under the action of a real elastic force, the oscil-
lation of a pendulum and the oscillations of a diatomic molecule.

Let us start with a perfectly elastic spring on the x-axis, which has its origin in
the rest position of the spring. We know that the force it exerts on a point in the
generic position x is Fx = –kx and the potential energy is Up = –kx2/2. In practice, as
we saw in Sect. 3.1, no spring is perfectly elastic. For large deformations the
dependence of the force on the deformation is no longer linear (see Fig. 3.2) or, in
other words, the curve of the potential energy is not a parabola, but as shown in
Fig. 3.23.

The equilibrium position x = 0 corresponds to the minimum of the potential
energy. If the material point is abandoned outside the equilibrium position, its
oscillations are periodic. They are also harmonic if the displacement is not too big,

Up(x)

0
x

compression expansion

Fig. 3.23 The potential
energy versus deformation for
an ideal (dashed curve) and
real (continuous curve) spring
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say within the vertical dashed lines that mark the region in which the potential
energy curve is at a good approximation a parabola.

Consider now a simple pendulum. We attach a small sphere of mass m to a wire
of length l and negligible mass with the other extreme fixed. If the sphere is
abandoned without velocity from out of equilibrium it will move on the arc of a
circle of radius l. The position can be measured with one variable, the angle θ
between the wire and the vertical. The potential energy is

Up hð Þ ¼ mgl 1� cos hð Þ ¼ 2mgl sin2 h=2ð Þ: ð3:77Þ

Figure 3.24 shows this function. The variable θ can take any value from −∞ to
+∞. However, the function is periodic and all the possible physical positions are
already described by the values of θ between –π and π.

In the figure we have taken the minimum potential energy as the zero of the
energy scale. We can see that the motion can be unbounded (in angle), if the total
energy is larger than 2mgl, which is the maximum potential energy, as Utot2 in the
figure. The angle θ grows indefinitely in time, the pendulum rotates on the circle of
radius l (in practice the wire would tangle around the nail). The velocity varies from
a minimum when the ball is in its highest position (θ = π, 3π, 5π,..), to a maximum
when it passes through the equilibrium position (θ = 0, 2π, 3π,..).

If Utot < 2mgl, as for example Utot1 in the figure, the motion is limited. The ball
oscillates between the angles –θ0 and +θ0. In general however, the motion is not
harmonic, because the potential energy curve is not a parabola. If the oscillations
are small, however, the curve is approximately parabolic, as shown in Fig. 3.25, and

θ
π–π 0
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mgl θ2/2

mgl (1–cosθ)

Fig. 3.25 The potential
energy of a pendulum and its
parabolic approximation
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Fig. 3.24 The energy
diagram for a pendulum
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the motion is harmonic. The same thing can be seen analytically. If we develop
Eq. (3.77) in series and stop at the first term we obtain

Up hð Þ ¼ mglh2=2:

Notice that the approximation is quite good because the next term in the
development, the term in θ3 is null, hence the first neglected term is the one in θ4.

The last example is the diatomic molecule. To be concrete we consider HCl.
With a good approximation we can consider the two components as point-like. The
atomic clouds of the two atoms keep the two nuclei at the stable equilibrium
distance r0. If the distance is different, a force appears, which tends to bring back
the equilibrium. These forces, which are responsible for chemical bonds, are
electromagnetic and of quantum nature. They are different from the van der Waals
forces we considered in Sect. 3.3. Figure 3.26 shows the potential energy as a
function of the distance between the nuclei of H and Cl. It is known as Morse
potential. The curve has a minimum, corresponding to the equilibrium distance
between the nuclei. The distances are of the order of the nanometers. The energy is
given in electronvolt (eV), which is a practical unit for atomic energies. An elec-
tronvolt is the kinetic energy gained by an electron falling under the electric
potential difference of one volt. Its value is in round figures

1 eV = 1:6� 10�19 J: ð3:78Þ

Suppose now we communicate a certain energy to the system, for example by
striking with another molecule. Also in this case there are two types of motion. If
the energy given to the molecule is large enough, as Utot2 in the figure, the motion is
unbounded. The two ions separate and the molecule dissociates. If the energy is
smaller, like Utot1, the molecule remains bound and performs a periodic oscillation.
As seen in Fig. 3.26, the potential energy curve is not symmetric about its mini-
mum. However, if the total energy is small enough and the curve can be approx-
imated with a parabola, the oscillation is almost harmonic.
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We also observe that the potential energy curve grows more rapidly at energies
smaller than the minimum than at higher ones. In other words, the restoring force is
larger than it would be if elastic for compression, smaller for expansion.
Macroscopically this translates in the asymmetry of the deviations from the
behavior described by Fig. 3.2.

The resonance phenomenon is present also in the molecular oscillators, at quite
high frequencies, of the order of 1013 Hz (10 THz). These are the frequencies of the
electromagnetic waves in the infrared. Imagine doing the following experiment. We
radiate a container with transparent walls containing a HCl gas with an infrared
radiation, of which we can vary the frequency and we measure the intensity of the
radiation transmitted by the gas in correspondence. Taking the ratio between the
transmitted and the incident intensities we have the quantity of radiation absorbed
by the gas as a function of frequency. We obtain Fig. 3.27. It is a resonant curve,
because in resonance much more energy is transferred from the radiation to the
molecular oscillators than for other frequencies. However, two peaks, not one, are
observed. The reason is that Chlorine has two isotopes, 35Cl and 37Cl of atomic
masses 35 and 37 respectively. The two proper frequencies squared x2

0 are different,
as the forces are equal, the masses different, in the two cases. To be complete, in the
spectrum several doublets like the one in Fig. 3.27 are present. This is because
quantum oscillators have several, rather than a single one, proper oscillation
frequencies.

From the examples in this section we can draw an important conclusion. The
physical systems are found naturally in their (or one of their) stable equilibrium
state(s) corresponding to the minimum (or one of them) of the potential energy.
A small perturbation can take them out of equilibrium. The potential energy curve is
not in general a parabola. However, if the displacement from equilibrium is small
enough it can be well approximated by a parabola. In these conditions the system
oscillates harmonically. Consequently, the largest fraction of natural oscillations are
indeed harmonic.

85.5 86.0 86.5 ν (THz)

Fig. 3.27 Absorption
probability for HCl molecules
versus frequency
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Problems

3:1. Consider the oscillator of Fig. 3.5 with m = 0.3 kg and k = 30 N/m. Calculate
the proper angular frequency, the period and the frequency of its oscillation.
Write the equation of motion for an initial displacement, with zero velocity,
of 4 cm.

3:2. Show that the amplitude of a damped oscillator is halved in a time of 1.39/γ.
How much is the energy variation in this time?

3:3. A damped oscillator has the proper angular frequency ω0 = 300 rad/s and
ω0/γ = 50. Calculate the angular frequency of the free oscillations ω1 and the
resonance frequency ωR. Compare the values.

3:4. We build a mechanical oscillator as in Fig. 3.5. We can use a body with a
certain mass and two identical springs. We separately attach to the mass:
(a) one spring, (b) two springs in series, (c) two springs in parallel. What are
the ratios of the proper angular frequencies in cases (b) and (c) to case (a)?

3:5. A perfectly elastic spring stretches 10 cm when it hangs a mass of 10 kg.
(a) what is the value of the spring constant? (b) Lay the spring and the mass
on a horizontal plane without friction. Move the mass so as to stretch the
spring 5 cm and let it go at t = 0. Write the equation of motion if (a) the initial
velocity is zero, (b) the initial velocity is 1 m/s in the direction of increasing
x.

3:6. Consider a forced oscillator vibrating at the angular frequency ω in its sta-
tionary regime. Show that its energy is mainly potential when ω 
 ω0,
mainly when ω 	 ω0, exactly half and half when ω = ω0.

3:7. We know the oscillation amplitudes of the displacement and the velocity of a
harmonic oscillator. How can we know the angular frequency?

3:8. A force with sinusoidal dependence on time acting on an oscillator makes it
oscillate, in a stationary regime, with amplitude A1 = 20 mm. A second force,
acting alone on the same oscillator, makes it oscillate in the stationary motion
with amplitude A2 = 40 mm. If both forces act together, the amplitude in the
stationary motion is A = 30 mm. What is the phase difference between the
forces?

3:9. A car of mass m = 1000 kg travels horizontally at 100 km/h. Suddenly an
obstacle appears at 100 m. The driver brakes immediately (neglecting the
reaction time, which is 1–2 s) and stops 10 m before the obstacle. Assuming
the force to have been constant how much was the magnitude of the force? If
the road were downhill with a slope of 15 % at which speed the car would
have hit the obstacle?

3:10. A block of mass m = 1 kg lies on a horizontal plane attached to a rope, the
other extreme of which is fixed to the point O of the plane. The block under
these constraints is moving on a circle of center O and radius l = 1 m and
velocity at the considered instant υ = 2 m/s. The coefficient of kinetic friction
between block and plane is µd = 0.4. What is the magnitude of the resultant
of the forces in that instant? What is the direction relative to velocity?
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3:11. A sphere of radius a moving with velocity υ acts in air with a drag force
R. The latter depends on the radius as R a; tð Þ ¼ C1atþC2a2t2 with C1 ¼
3:1� 10�4 kg m�1s�1 and C2 ¼ 0:87 kg m�3. Consider a raindrop falling
starting from null velocity. The drop moves under the action of its weight
and the resistance. When the velocity is small, the weight is larger than the
resistance and the drop accelerates. However, at a certain velocity the two
forces become equal and opposite and the velocity becomes constant. It is
called limit velocity. Calculate the limit velocities for a drop of radius
a = 0.1 mm and for one of radius a = 1 mm. In both cases assume the second
term in the above expression can be neglected. Verify a posteriori if the
assumption is reasonable. For a drop of radius a = 1 mm, now assume that
the first term is negligible and again verify a posteriori if the hypothesis was
reasonable.

3:12. A body of mass m is attached to an extreme of a rope of length R. The other
extreme is fixed. The body rotates in a vertical plane. a) Find the expression
of the tension T of the rope when the body passes, with velocity υ, in the
highest point of the trajectory. What is the agent of the centripetal force in
this point? Study the meaning of the found expression for decreasing values
of υ. What does T > 0, T = 0 and T < 0 mean? What does happen when the
velocity is such that T = 0? Repeat for the lowest point.

3:13. A small body starts sliding, with negligible initial velocity, on a frictionless
wheel starting from its highest point, as in Fig. 3.28. The radius of the wheel
is R. (a) at what height h, measured from the center of the wheel does the
body detach and fall freely? (b) how would the result change on the moon?

Rh

C

Fig. 3.28 Body sliding on a
wheel, problem 3.13
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Chapter 4
Gravitation

The first two books of Newton’s Principia establish the mechanics laws for phe-
nomena on the surface of earth. The third book, titled “The system of the word”,
applies the same laws to interpret the motions of extra-terrestrial bodies. The grand
unification of terrestrial and heavenly physics, started by G. Galilei and J. Kepler,
was completed. In the introduction to the volume, I. Newton wrote

It was the ancient opinion of not a few, in the earliest ages of philosophy, that the fixed stars
stood immovable in the highest parts of the world; that under the fixed stars the planets
were carried about the sun; that the earth, as one of the planets, described an annual course
about the sun, while by a diurnal motion it was in the meantime revolved about its own
axis; and the sun, as the common fire which served to warm the whole, was fixed at the
centre of the universe.

This was the philosophy taught of old by Phylolaus, Aristarchus of Samos, Plato in his
riper years, and the whole sect of the Pythagoreans; and this was the judgment of
Anaximander, more ancient still …

A few lines below, after having mentioned the contributions of the Romans and
of the Egyptians, he added

It is not to be denied that Anaxagoras, Democritus, and others, did now and then start up,
who would have it that the earth possessed the centre of the world, and that the stars of all
sorts were revolved towards the west about the earth quiescent in the centre, some at a
swifter, others at a slower rate.

However, it was agreed on both sides that motions of the celestial bodies were per-
formed in spaces altogether free and void of resistance. The whim of solid orbs was of a
later date, introduced by Eudoxus, Calippus and Aristotle; when the ancient philosophy
began to decline, and to give the place to the new prevailing fictions of the Greeks

Observation of the night sky, with its moon and countless stars has, since ancient
times, never failed to astonish humanity throughout the world. Along with aston-
ishment, a deep curiosity aroused about the nature of these heavenly bodies and the
reasons of their existence. Along with the myth, truly scientific activities developed
in time in several cultures. Since the second millennium B.C. mankind accurately
and systematically registered the positions of the stars in the sky. However, the
mystical charm of the starry sky contributed to the suggestion, in several periods,
that the motion of the heavenly bodies should have obeyed symmetry rules of a
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higher, often divine, order. This is the case of the solid orbits of Aristotle, men-
tioned by Newton, and of the uniform circular motions of Ptolemy and Copernicus.
Gradually, beginning in the Renaissance, there developed an inquiry leading to
establishment of the physics laws that rules the motions in the cosmos.

In this chapter we shall study universal gravitation, the physical law that
describes motions of the planets and their satellites, of the solar system and of the
galaxies and their clusters as well as the motions of all bodies up to the boundaries
of the Universe. We might start from the Newton law of gravitation and analyze its
consequences. We prefer to reach it following, albeit briefly, the historical process
that led to discovery of the law. Indeed, the path leading to these discoveries has
never been straight, but rather tortuous, through lateral, sometimes wrong, paths,
with successes and failures, laborious in any case. Universal gravitation is one of
the grand theories built by several scientists. Knowledge, even if in a summary, of
the historical roots of the process adds to the depth of the physics laws. As a matter
of fact, physics can be understood even without knowing its history. The historical
part of the chapter should be considered as a, hopefully interesting, reading
adventure. The parts to remember are the laws and their experimental proofs.

Figure 4.1 shows the lifetime spans of the great authors of the development of
mechanics and astrophysics from the XVI to the XVIII century, the period of the
construction of a vast theoretical edifice.

In Sect. 4.1 we shall briefly describe the geocentric and heliocentric models. In
Sect. 4.2 we shall see how the periods and diameters of the orbits of the planets
were measured from Greek civilization to the Renaissance. We shall then see the
fundamental contribution of Tycho Brahe with his systematic measurements, with
precision increased by an order of magnitude, of the positions of the planets and
how Johannes Kepler, based on those measurements, discovered that the orbits of
the planets are ellipses, rather than circles, and established his three laws. The
Kepler laws are very important but still phenomenological. The dynamical theory
was later established by Newton, as discussed from Sects. 4.4 to 4.6.

The Newton law is a simple and symmetric mathematical expression. In the
fundamental physical laws the harmony of the world takes on an abstract character,
appearing as the simplicity of the mathematical expression that is able to describe
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an enormous quantity of different phenomena, which, when that law was not
known, appeared to be uncorrelated.

The Newton law contains a universal constant, which is the same on earth and in
the Cosmos. In Sect. 4.7 we see how it was measured in the laboratory.

The gravitational force acts between bodies that are not in contact, rather they
may be very far from each other. The force acts through a vacuum. This is also the
nature of all the other fundamental forces, in particular of the electromagnetic one.
For all of them the concept of field of force is important. The source of the force, for
example the sun, creates a field of force in all the space around it. The field then acts
on every massive object as a force. We shall see that in Sect. 4.8.

In Sect. 4.9 we shall go back to history and show how G. Galilei discovered the
satellites of Jupiter, discussing some of his data.

In Sect. 4.10 we shall see how the Newton law describes the motions of cosmic
objects of the most different sizes and distances and how it shows that the nature of
the largest fraction of matter is still unknown. It is called dark matter.

In the first part of the chapter we assumed for simplicity the orbits of the planets
to be circular. In the final three sections, we relax this assumption and discuss fully
the problem of elliptic orbits. This is known as the “direct Kepler problem”:
knowing that the orbit is an ellipse with the centre of force in one of the foci, find
the force. We shall do that first using modern calculus formalism (Sect. 4.10), then,
in (Sect. 4.11) we shall read and explain, line by line, the original demonstration of
Newton, as a beautiful example of his thought. In the last section, we shall consider
the energy of a body in the gravitational field of a central body.

4.1 The Orbits of the Planets

Observational astronomy is a very ancient science, dating back to the most ancient
civilizations to the third millennium B.C. The varying celestial co-ordinates of the
stars, of the moon and of the planets were accurately and systematically measured
and registered. The problem has always been to understand what the data meant.
Particularly complicated are the motions of the planets, which owe their name to the
Greek word for tramp.

The Heavenly bodies, including the planets, are so far away that their distances
could not be measured in ancient times, with the exception of the moon. What we
measure, for each body, is the direction at which it appears as a function of the time
of the observation. The directions are given by two angular co-ordinates. However,
it was natural to think of the stars as points on a sphere of very large, but arbitrary,
radius, which was called a celestial sphere. Its center is on the earth and its axis
coincides with the rotation axis of the earth. The circle cut on the celestial sphere by
the plane through the earth equator is called the celestial equator.

The annual motion of the Heavenly bodies appears to an observer on earth as a
rotation around a common center, the earth. The stars, as different from the planets,
do move on the celestial sphere, but keeping all the distances between them
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invariable. For this reason they have been called fixed. We know now that the stars
are not fixed at all and that they are at very different distances. They appear to be
fixed because the distances are enormous. The most striking (apparent) motion is
the diurnal one due to the rotation of the earth on its axis. A further apparent motion
of the fixed stars, due to the revolution of the earth around the sun, is a rotation with
a period called the sidereal year. The sidereal year is also the time taken by the sun,
in its apparent motion, to return to the same position relative to the fixed stars. As
such it is almost, but not exactly, equal to our common year. As we shall see, the
moon and the planets have more complicated apparent movements (which are
combinations of their own and of earth).

As for distances, Aristarchus of Samos (310–230 BC) developed a brilliant
method to extract the distances from earth to the moon and to the sun by angular
measurement. He found correctly that the distance of the moon is about 60 times the
radius of the earth. However, due to an insufficient resolution in the measurement of
the angles, he concluded that the sun is 20 times farther away than the moon, rather
than about 400 times as it is. This was enough to conclude that, considering the
moon and the sun to have the same apparent size, the real size of the sun had to be
enormous. Aristarchus concluded that his finding confirmed that the sun must be the
center of the system. He then found the correct order of the distances of the five
planets around the sun that are visible with the naked eye around the sun, which
was standing still at the center of the system. However, at least to our knowledge,
he did not fully develop a quantitative model of the planetary system.

A powerful quantitative model was developed three centuries later by Claudius
Ptolemy (90–168 AD), who lived at Alexandria in Egypt. By that time the idea that
the heavenly bodies had to move with constant (in magnitude) velocity on circles,
or combinations of circles, being brought around on a system of solid spheres, had
become dominant, as Newton recalls with the words quoted in the introduction to
this chapter. His book, originally written in Greek and titled “Mathematical syn-
taxes” came to us through its Arabic translation and is universally known as
Almagest.

The “planets” were seven: sun, moon, Mercury, Venus, Mars, Jupiter and
Saturn. Figure 4.2a shows the basis of the model. Earth is at rest at the center of the
system. The sun describes a circle around the earth. The path of the sun on the
celestial sphere, through the fixed stars, is the ecliptic. The motion of each planet,
like P in the figure, is more complicated. In a first approximation it is described by a
circular uniform motion around earth performed by the point C and by a second
circular uniform motion of the planet itself around C. The former circle is the
deferent the latter the epicycle. The two motions are (approximately) in the same
plane and their combination is a curve, called an epicycloid, shown in Fig. 4.2a.
Clearly, both the deferent and the epicycle are different for different planets. The
observed trajectory of the planet is the projection of its epicycloid on the celestial
sphere, taking into account the angle between its orbit and the plane of the celestial
equator, which is also somewhat different for different planets. Notice that for the
largest fraction of its period the planet moves forward, from East to West. However,
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in correspondence with the smaller loops of the epicycloid it moves, for some time,
backwards. This is in accord with observations.

Ptolemy calculated, on the basis of the available measurements, results of cen-
turies of observations, the radii of the primary and secondary circles (with the solar
orbit radius as unit) and the corresponding periods. He found however, that this
relatively simple model did not work, namely did not explain all the data. To make
it work he added two features.

1. The primary circle (deferent) of each planet is not centered exactly on earth
but in a point not very far from her and different from planet to planet. It is called
equant, because it makes the motion on the deferent uniform. We now know that
the equant is the empty focus of the elliptical orbit of the planet. We shall under-
stand in Sect. 4.3 how it works.

2. A number of tertiary and quaternary circles, all called epicycles.
The model of Ptolemy, though even not particularly simple, was able to rea-

sonably explain all the observational facts and would remain such till the accuracy
in the measurements of the planets positions will be improved by an order of
magnitude by Tycho Brahe (1546–1601).

We can notice that the period of the deferent in two cases (Mercury and Venus)
and of the (first) epicycle in the other three cases (Mars, Jupiter and Saturn) are all
equal to a sidereal year. We know that the orbit of the first two planets is smaller,
the orbit of the other three is larger than the orbit of the earth (Fig. 4.2). Ptolemy did
not notice this feature. In his model all the circles are independent. This important
discovery is due to Nicolaus Copernicus (1473–1543).

Another feature that is not explained by the model is why both Mercury and
Venus never depart much from the sun. The maximum angle between Mercury and
the sun is θm = 22.5° and Venus and the sun θm = 46°.

Let us now go back for simplicity to the model with only one primary and one
secondary circle. Let us change our reference frame by choosing the sun at rest at its
center. We assume that the earth moves uniformly on a circle around the sun with
the radius of the epicycle of the planet and that the planet P moves uniformly on the
circle centered on the sun and radius equal to the deferent radius, as in Fig. 4.2b.
The relative positions of earth and planet are exactly the same as before, but the
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description is now logically simpler. In addition, the reason for which the period on
the epicycle is the sidereal year becomes obvious. Figure 4.2 represents an external
planet. The reader can easily verify that an analogue explanation works for the
internal planets by simply exchanging the roles of primary and secondary circles.

In the heliocentric frame the reason why Mars and Venus, which have orbits
smaller than earth around the sun, cannot be very far from the sun when viewed by
earth is also clear, as shown in Fig. 4.3. This argument was already known to the
Greeks, in particular to Aristarchus.

The heliocentric description we have sketched, in its modern form, is due to
Nicolaus Copernicus. He gave a preliminary version of his model in the
“Commnetariolus” distributed privately to his friends in 1514, and the final one in
“De Revolutionibus Orbium Caelestium” published in 1543, the year of his death.
Differently from Aristarchus, Copernicus developed a full mathematical model able
to explain the observational facts.

The Copernicus model, as we have presented it so far, looks much simpler than
the Ptolemy model. One can then ask why it took so long to be accepted. The
reason is that, as for Ptolemy before him, such a simple model does not work. The
main reason was that Copernicus still believed that the orbits had to be circles or
combinations of circles and the motions on them uniform. The reason of the belief
was dogmatic, rather than scientific: the heavenly bodies being the creation of God,
their motion must be perfect. The bodies must be on a rotating sphere, because, in
his words, the sphere in its rotation moves

on itself through the same points, it expresses its form in the simplest body, in which it is
impossible to find either a beginning or an end or distinguish the points from each other.

The consequence was that, to agree with the data, Copernicus, as long before
him Ptolemy, had to introduce both the equant and a rather large number of
epicycles. Indeed, the Copernicus model, in the form he presented it, was not less
arbitrary than the Ptolemy model.
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4.2 The Periods of the Planets and the Radii of Their
Orbits

As we have already mentioned, two planets, Mercury and Venus, in their motion as
seen from earth never go far from the sun. The maximum angle between Mercury
and the sun is θm = 22.5° and Venus and the sun θm = 46°. The model of
Copernicus allows us to calculate the radii of the orbits of these planets. Here the
model shows its superiority to Ptolemy.

From Fig. 4.4, which is drawn for Venus, we have

r=rE ¼ sin hm: ð4:1Þ

Notice that the condition is for the ratio of the radius of the planet with the radius
of the earth orbit. Indeed the latter is the natural unit in astronomical measurements
and is called astronomical unit (au). To be precise the astronomical unit is the mean
distance of the earth from the sun. We shall not discuss the different methods to
measure rE. We simply mention that the problem of the scales of the distances is a
central one in astronomy.

The value of the astronomical unit was not known even to Kepler. He was able
to determine a lower limit (on the basis of the parallax of Mars) as 1 au > 15 Gm.
The first measurements were made at the beginning of the XVII century by
Giovanni Domenico Cassini (1625–1712) and by Edmund Halley (1656–1742),
who found values between 140 and 150 Gm.

The value known today is

1 au ¼ 1:49597871� 1011 m ’ 149:6 Gm: ð4:2Þ

From the above values of θm we have for Mercury rM ≈ 0.34 au and for Venus
rV ≈ 0.72 au.

For the external planets, the three known to Copernicus, the argument is similar,
but now the radius of the orbit of the planet is larger than that of the earth.
Figure 4.4 gives the geometry. The Copernicus interpretation is that the larger
circle, the deferent, is the orbit of the planet, and the smaller one, the epicycle, is the
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orbit of earth. Consequently the angular diameter under which the latter is seen
from earth is 2θm. From the figure we see that

rE=r ¼ sin hm: ð4:3Þ

Already Ptolemy knew the angles for the three planets, θm = 41° for Mars,
θm = 11° for Jupiter and θm = 6° for Saturn. Equation (4.3) gives for the radii of
their orbits rMa ≈ 1.5 au for Mars, rJ ≈ 5.2 au for Jupiter and rJ ≈ 9.5 au for Saturn.

Let us see how to extract the periods from the observational data. For that we
must take into account that the observations are done from a frame moving in the
solar system. This problem is solved a little differently for the internal and for the
external planet, as in the case of the radii of the orbits. For the sake of brevity we
shall consider only one external planet, for example Jupiter.

Consider the two situations represented in Fig. 4.5. In both of them the relative
positions of earth, sun and Jupiter is the same. It is also such, being the three bodies
on the same line, to be easily and precisely recognized. This is done, for a given
observer, by taking the date at which Jupiter crosses the celestial meridian at
midnight. The celestial meridian is the projection of the local meridian on the
celestial sphere.

The intervals between two consecutive recurrences of the phenomenon are all
equal and called the synodic period. Consequently, we can average on several
measurements and increase the precision. The synodic period of Jupiter is τ = 399 d.
In this period Jupiter travels through the angle θ (Fig. 4.5), the earth travels that plus
a revolution, namely 360° + θ. The number of revolutions of Jupiter per unit time
nJ = 1/TJ, where TJ is its period. Similarly for earth, nE = 1/TE. We can then write
nEs ¼ nJsþ 1; that is s=TJ ¼ s=TE þ 1; and also

TJ ¼ TE
1� TE=s

¼ 365
1� 365=399

¼ 11:8 year:

Question Q4.1. Find the equivalent expression for an internal planet.
Table 4.1 gives the values of the orbit radii in astronomic units and of the periods

of the first six planets as known to Copernicus and as it is today.
We see that the values known to Copernicus, in particular for the periods, were

already close to the modern ones. We add that the values that can be extracted from
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the data of Ptolemy are quite similar too. A millennium of observations before 150
AD did allow great precision.

4.3 The Kepler Laws

As we have seen the (almost) heliocentric Copernicus system was not much simpler
than the Ptolemy (almost) geocentric one. Both systems make use of the equant. To
be precise, the center of the Copernicus system is not the sun, but the equant of the
earth (what we now know to be the empty focus of her elliptical orbit). In both
cases, beyond a primary circle, several secondary and tertiary ones were necessary
to fit the data. Since his youth, Tycho Brahe (1546–1601) started his study of the
astronomical texts and his observations of the night sky. He soon found out that
neither the tables of Ptolemy nor those of Copernicus were very accurate. Both of
them were in contradiction with the facts. When he was 17 year old he had the
opportunity to observe a not very frequent phenomenon, the conjunction of Jupiter
and Saturn (the two planets appear very close to each other). Brahe calculated the
conjunction time predicted by the Ptolemy tables finding it to be off by about one
month (which is not really so much considering it is based on observations 1400
old) and that predicted by the Copernicus tables finding it off by several days (being
an extrapolation over a few decennia, the relative error of Copernicus is much larger
than that of Ptolemy). Brahe was now sure that a correct model of the Cosmos (then
the solar system) could be found by planning and performing a systematic series of
measurements as accurate as possible, rather than interpreting the classic texts.

The observations still had to be done with the naked eye because the telescope,
as a scientific instrument, will not be invented by Galilei until 1609. One of his first
instruments is shown in Fig. 4.6. The star under consideration must be seen through
two small holes (D and E in the figure) fixed at the extremes of a bar that can rotate
over the arc of a circle. The angle of the bar relative to the vertical, defined by the
plumb line AH, is measured with a goniometer on a scale giving the arc minute. To
increase the sensitivity the instrument had to be large. The graduated circle was
almost seven meters in diameter. The instrument had to be robust and accurately

Table 4.1 Orbit radii and periods of the first six planets

Planet Orbit radius (au) Orbit radius (au) Period Period

Copernicus Modern Copernicus Modern

Mercury 0.376 0.387 87.97 day 87.97 day

Venus 0.719 0.723 224.70 day 224.70 day

Earth 1.000 1.000 365.26 day 365.26 day

Mars 1.520 1.524 1.882 year 1.881 year

Jupiter 5.219 5.203 11.87 year 11.862 year

Saturn 9.174 9.539 29.44 year 29.457 year
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built to reduce systematic errors. The instrument was built of timber and was so
heavy that twenty men were needed to install it in a garden.

Somewhat later Brahe succeeded to be funded by king Frederic II of Denmark
and Norway for the construction of a big astronomic observatory on the island of
Hveen near Copenhagen, the Uraniburg observatory. The castle in which the
observatory was built had a rich library, bedrooms, kitchens and dining rooms.
Brahe designed, built and installed a dozen different instruments, apt at various
types of observation. For the next 20 years, at Uraniburg and later in Prague, Brahe
continued his systematic observations. Before Brahe the angular resolution had not
improved from Grecian times, being about 10′. He was determined to improve
down to 1′ or better. He gathered the data in a series of tables, which became the
database that allowed Kepler and Newton to solve the problem of the heavenly
bodies’ motions.

Johannes Kepler (1571–1630) started his studies in the school of Tycho Brahe in
1600. He began by searching through a large amount of available data to determine
if he could find any simple relation. Tables such as Table 4.1 pointed to existence of
a relation between orbit radii and periods. The larger the radius the larger is the
period. But, is there really a mathematically simple relation? Kepler finally found it
and published it in the book “Harmonice mundi” in 1618. He writes with
confidence:

Fig. 4.6 Instrument of Brahe
to measure the position of the
stars
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initially I thought I was dreaming…but it is absolutely certain and exact that the ratio
existing between the periodic times of any pair of planets is exactly the ratio of the mean
distances [from sun] to the power 2/3.

We can do the calculations ourselves. Starting from Table 4.1 we obtain the data
in Table 4.2. We can easily understand Kepler’s pride and satisfaction when he
found such a simple relation. We know it as the 3rd Kepler law, because it came 10
years later than the discovery of the first two. The first two laws regard the orbits of
a single planet, the third gives a relation between different planets.

Let us now briefly see how Kepler established that the orbits of the planets are
not complicated combinations of circles, but, simply, ellipses. Its great discovery
was based on the study of a single planet, Mars. The choice fell on Mars because its
deviations from the predictions of both models based on circles where larger than
for the other planets. Its strange behavior was the object of study of several
astronomers, but its anomalies remained unexplained. Brahe had taken Kepler as
his assistant in 1600 and charged him with a solution to this problem. Kepler
worked on the problem for 6 years, in which partial successes alternated to partial
failures, wrong paths were followed and retraced back, before reaching the solution
that we know.

Kepler fully accepted from the start a heliocentric view with the guiding idea that
the orbits should be a simple curve around the sun, but not necessarily a circle. The
problem to find the curve was made difficult by the fact that the positions of the
planet, Mars in his analysis, were measured in a frame fixed to the earth, which
moves in a non-uniform and unknown motion around the sun. It took several years
to solve this first problem, to find accurately enough, the motion of earth. We shall
not describe here the various mathematical methods he employed, some of which
are really elegant. We simply state that he found that the earth orbit is indistin-
guishable from a circle. However, its center is not the sun and its angular velocity
about the sun is not uniform. The dogma that had resisted from Aristotle to
Copernicus included was broken.

With reference to Fig. 4.7, d is the distance from the center of the sun to the
center of the circle and R its radius. From the data of Brahe, Kepler found that d/
R = 0.018. The angular diameter of the sun, as seen from earth, varies periodically
during the year between a minimum and a maximum. Kepler had Brahe’s mea-
surements for that. With the above value of d/R, Kepler calculated the variations of
earth sun distance during the year and the consequent variations of the apparent sun

Table 4.2 Ratios of the
cubes of the orbit radii and the
squares of the period for the
first six planets

Planet r3/T2 (au3 d–2)

Mercury 7.64 × 10–6

Venus 7.52 × 10–6

Earth 7.50 × 10–6

Mars 7.50 × 10–6

Jupiter 7.49 × 10–6

Saturn 7.43 × 10–6
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diameter. He found his results in agreement with the data. He gained confidence
that he was on the correct path.

In retrospect we know now, and Kepler himself was to learn that in a while, that
this model of the earth orbit is not correct, because the orbit is an ellipse. However,
the eccentricity of the earth orbit is so small that the maximum difference between
the preliminary Kepler model and the true orbit was smaller than the experimental
uncertainty. To fix the orders of magnitude, the distance NN′ is about one half of a
per cent of R. In conclusion the error introduced in the analysis by the preliminary
model is irrelevant.

Having defined the geometry of the orbit, Kepler had to find the motion. He did
that using a trick invented by Ptolemy, and that we have already quoted, the equant.
This is the point Q in the figure, lying on the line joining the center of the sun and
the center C of the circle, at the same distance d as the sun but on the other side.
Then the angular velocity of the position vector from Q to the earth is constant. It is
called equant for this reason. We shall see soon why it works.

Kepler now knew the motion of earth in a reference frame in which the sun stood
still. He could then calculate the positions of Mars at all times. It was an enormous
amount of calculations (by hand obviously). Once more, he assumed the orbit of the
planet to be an eccentric circle and a uniform angular velocity around an equant
(different from that of earth). He calculated 40 points on the Mars orbit and com-
pared it with the Brahe data. The maximum disagreement was only 8′, a very small
one, but larger than the uncertainties in the Brahe measurements. Kepler knew he
could trust Brahe. The model had to be wrong.

Kepler had to find another curve. Finally, his enormous computing effort showed
the light. Suddenly, everything became clear: the curve is the ellipse. The first two
Kepler laws were found. Kepler continued his work finding the parameters of the
ellipse of the orbits of the other planets, including earth, calculating their positions
and finding them in agreement with the rich and precise Brahe data.

We notice now that the reason why an eccentric circle had worked for the earth
and not for Mars is the relatively large eccentricity of its orbit, which is 0.09, which
is five time larger than that of the earth.
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He published his results in 1609 in his book Astronomia nova.
The three Kepler laws are:

1. The orbits of the planets are ellipses, the sun occupying one of their foci.
2. The position vector from the sun to the planet sweeps out equal areas in equal times
3. The ratio of the squares of the periods of any two planets is equal to the ratio of

the cubes of their average distances from the sun.

We can now show the reasons that make the equant work in a first approximation.
Indeed, the reason is in the second Kepler law. Consider Fig. 4.8 where an ellipse, in
fact much more different from a circle than the real cases, is shown. The equant,
which is the center of a circle that tries to represent the ellipse, is just the empty focus
of the ellipse. In Fig. 4.8 the areas SCD and SAB are travelled in the same time by the
planet and are equal for the second Kepler law. Consequently the arc CD is longer
then AB proportionally at its distance from the sun. However, there is a second effect.
A given path length on the orbit appears from the sun to be smaller, in its angular
span, when it is closer than when it is farther, once more proportionally to the
distance. The two effects, one due to the law of the areas and the geometrical one are
identical. Consequently, if we look to the planet from the other focus, the former
effect remains while the second inverts and the two cancel each other.

The contribution of Brahe had been a systematic and accurate experimental
work, the work of Kepler an ingenious and superb analysis of the data. Both were
needed to discover three simple laws, which were able to interpret all the available
data. The work was not yet complete however. The marvelous Kepler laws were
still purely phenomenological. A fundamental step was missing: their dynamical
interpretation, which was going to lead to universal gravitation, one of the highest
creations of human genius, the genius of Isaac Newton (1642–1727).

4.4 The Newton Law

We begin by showing that a consequence of the Kepler laws is that the angular
momentum, L, of any planet P about the position of the sun is constant. With
reference to Fig. 4.9, let r be the position vector, v the velocity and m the mass of
the planet. Its angular momentum is then
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L ¼ r� mv: ð4:4Þ

L is always perpendicular to both r and v, hence to the plane of the orbit that is
constant for the first Kepler law. Hence the direction of L is constant.

In addition L is constant also in magnitude for the second law. Indeed, consider
the area dA swept by the position vector in the time dt, which is the area of the
triangle in Fig. 4.9. Two of its sides are v dt and r. Remembering the geometric
meaning of the vector product we have

dA ¼ 1
2
r� v dtj j ð4:5Þ

or

dA
dt

¼ 1
2
r� vj j: ð4:6Þ

The quantity dA/dt is the area swept by the position vector in the unit of time and
is called areal velocity. It is constant for the second Kepler law. We immediately
recognize that the second member is proportional to the magnitude of the angular
momentum, namely

L ¼ r� mvj j ¼ 2m
dA
dt

: ð4:7Þ

The areal velocity being constant, the magnitude of the angular momentum is
constant too. In conclusion the angular momentum vector about the sun is constant.
On the other hand, the planet is certainly subject to a force, because it accelerates,
but this force does not vary the angular momentum about a point fixed in an inertial
frame. Consequently, its moment about that pole must be zero, namely its direction
must be parallel to the position vector from the sun to the planet. It must be towards
the sun because in a curved motion the force is always directed on the side of the
curvature center.

In conclusion, the force on every planet must be directed towards the sun. The
conclusion suggests, better forces, us to think the sun to be the source of the forces
acting on all the planets.

We now consider the magnitude of the force. The symmetry of the problem
suggests choosing a reference frame with origin in the sun and polar co-ordinates
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with an arbitrary polar axis. Let r be the magnitude and θ the azimuth of the
position vector of the planet r. Data show that the motion of the planets does not
slow down through the centuries, hence the force should be conservative. Having
just shown that it is also central, for the theorem we demonstrated in Sect. 2.15, its
magnitude cannot depend on θ, but depends only on the distance from the center of
the sun r (Fig. 4.10).

To make the demonstration as simple as possible we shall assume the orbits to be
circumferences rather than ellipses. In Sects. 4.11 and 4.13 the problem of the
ellipse will be treated exactly.

If the motion is circular, the area law implies that the angular velocity ω is
constant. The force should be the centripetal force of such a motion

F rð Þ ¼ mx2r ¼ 4p2
r
T2 m ð4:8Þ

where m is the mass of the planet and T is its period. The third Kepler law states that

T2 ¼ KSr
3 ð4:9Þ

where KS is the proportionality constant, the same for all the planets of the solar
system (but not necessarily for other systems) and that, substituted in Eq. (4.8),
gives

F rð Þ ¼ 4p2

KS

m
r2
: ð4:10Þ

We have found two fundamental properties of the force: 1. It is inversely pro-
portional to the distance from the sun, which is its source, 2. is proportional to the
mass of the planet. We now show the third property: the force is proportional to the
mass of its source. To find it, observational data on systems similar to the solar one,
but with a different central body, are needed. Newton, had already compared the
force exerted by earth on bodies on its surface, namely the weight, and on the
moon, as we shall see in Sect. 4.5. He had established that, taking into account the
difference in the distances from the center, the force is the same. The characteristics
of the gravitational force are universal.
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Two small “solar systems” were known, Jupiter with its four principal satellites
(Io, Europa, Ganymede, Callisto), which had been discovered by Galileo Galilei
(1564–1642) (we shall tell of the discovery in Sect. 4.9), and Saturn with its two
larger satellites, which had been observed by Christiaan Huygens and by Giovanni
Domenico Cassini. These observations had established the validity of the 3rd
Kepler law for the systems (in both cases more, smaller, satellites were discovered
in recent times with the space missions).

Gravity, Newton concluded, is of all the planets and satellites, and continued:

And since all attraction (by Law III) is mutual, Jupiter will therefore gravitate towards all
his own satellites, Saturn towards his, the earth towards the moon, and the sun towards the
primary planets.

To be concrete, consider one of the Jupiter satellites, Callisto. Jupiter is attracted
by the sun with a force proportional to its mass and attracts Callisto with a force
proportional to the mass of Callisto. For the 3rd Newton law Callisto attracts Jupiter
with a force equal and opposite. But, this latter force has the same characteristics as
the force that Jupiter receives from the sun, including being proportional to the mass
of Jupiter. We can conclude that the force that Jupiter exerts on Callisto is pro-
portional to the mass of Jupiter (beyond that of Callisto). The property is general,
namely the gravitational force between any two (point-like) objects of masses
m and M is proportional to the product of the masses. We write

F rð Þ ¼ GN
mM
r2

ð4:11Þ

where GN is a universal constant, the Newton constant, that we shall soon deter-
mine. This equation gives the magnitude of both the forces of mass M on m and of
m on M. Their directions are equal and opposite. If r is the position vector from
M to of m and ur is its unitary vector, the force exerted by M on m is

F rð Þ ¼ �GN
mM
r2

ur: ð4:12Þ

This is the Newton law of universal gravitation.
We first observe that, as written, the law is valid for point-like objects. In the

cases of the solar system and in the systems of Jupiter and Saturn, all the bodies,
sun included, can be considered as points because their distances are always very
much larger than their diameters. However, also two extended objects, for example
two bricks one close to the other, attract gravitationally one another. To find the
force we must ideally divide each body in infinitesimal parts. Every pair of
infinitesimal elements attracts each other with the force of Eq. (4.12) where r is the
position vector of one element relative to the other and the masses are those of the
two elements. The total force is obtained by taking the vector sum (integrating) of
all the pairs. There is certainly a case in which such an integration is needed,
namely the weight. Indeed, we state that the weight of an object on the surface of
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earth is the gravitational force of the earth considered as a point in its center. Why is
this possible? The answer is in Sect. 4.6.

A second observation is on the masses in the Newton law Eq. (4.11). They are
clearly gravitational masses. However, in our demonstration we have started from
Eq. (4.8) where the mass is the inertial one. As we have seen in Sect. 2.9, the
equality of inertial and gravitational masses had been established by the experi-
ments of Galilei, which Newton had repeated. However, the experiments had been
done on terrestrial bodies and the question arises: does the same relation hold for
celestial bodies? Newton showed this to be true considering the system of Jupiter
and its four Galileian satellites. The system is a small replica of the solar system, but
is part of the solar system too. Observations had shown that the satellites perform
“exceedingly regular motions”. The radiuses of the orbits about Jupiter and the
periods had been measured. The periods turned out to be proportional to the 3/2rd
power of the orbits radiuses. Consequently, the force exerted by Jupiter is inversely
proportional to the distance. Suppose now the ratio between gravitational and
inertial mass of Jupiter and any of its satellites, Callisto for example, to be different,
say as

mCg=mCi
� �� mJg=mJi

� � ¼ �e

where ε is a positive small number. Then, Newton argues, the forces of the sun on
Jupiter and on Callisto, at equal distances from the sun, will differ by ± ε also, and
this would have an effect on the orbit of Callisto about Jupiter. The calculation of
the effect needs to solve a three-body problem, Jupiter, Callisto and the sun, which
cannot be done analytically. But Newton was able to find that, if the forces of the
sun on Jupiter and Callisto would differ in a certain proportion, then the distances of
the center of the orbit of Callisto (call it rCS) about the sun and the center of Jupiter
(rJ) from the sun would differ “nearly” as the square root of the same proportion “as
by some computations I have found”, namely,

rCS � rJ
rJ

¼
ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
ffi 1� e=2:

He writes

Therefore if, at equal distances from the sun, the accelerative gravity (he means the
gravitational force) of any satellite towards the sun were greater or less than the acceler-
ative gravity Jupiter towards the sun but by one 1/1000 part of the whole gravity, the
distance of the centre of the satellite’s orbit from the sun would be greater or less than the
distance of Jupiter from the sun by one 1/2000 part of the whole distance; that is the fifth
part of the utmost satellite (Callisto) from the centre of Jupiter; an eccentricity of the orbit
which would be very sensible. But the orbits of the satellites are concentric to Jupiter, and
therefore the accelerative gravities of Jupiter, and of all its satellites towards the sun, are
equal among themselves.

Newton adds that if the ratios of gravitational to inertial mass of the earth,
mEg=mEi, and of the moon, mMg=mMi, would be different, the above-described effect
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should be present and a deformation of the moon orbit should be observable.
Today, the moon-earth distance is measured with extreme precision with LASER
ranging techniques. In 1969 the Apollo 11 astronauts and later other lunar missions
deployed on the surface of the moon systems of mirrors able to reflect back a
LASER pulse sent from earth. The measurement of the round-trip time of the pulse
gives the moon distance with a few millimeter precision as a function of time. The
extremely sensitive technique did not detect any effect, providing the very low
upper limit

mEg=mEi
� �� mMg=mMi

� ��� ��� 5� 10�13:

We now come back to the universality of the Newton law. If it is so, the constant
GN must be the same in any circumstance and is one of the fundamental constants
of physics, called the gravitational Newton constant. At laboratory scale, between
everyday life size objects, the Newton law is very small and difficult to measure.
This was first done by Henry Cavendish (1731–1810) (see Sect. 4.7) leading him to
a laboratory measurement of GN (which is also called a Cavendish constant).

The universality of the Newton law needs to be verified experimentally. This has
been done at all the length scales in many different conditions, finding it valid. We
shall discuss a few examples further in the chapter. However, a limit of validity
exists, as we shall see.

Equation (4.12) is mathematically very simple and symmetric in its elements. It
interprets a huge amount of phenomena, from the motion of planets to the free fall
of objects on earth, from the motion of the satellites, to that of the stars and the
galaxies. The expression shows us how Nature can be described in its most fun-
damental aspects in simple and elegant mathematical form. The harmony of the
world that up to the Middle Age, and to Copernicus, was believed to be substan-
tiated in the existence of a mechanism of solid spheres, symmetric objects, that
rotate uniformly (simple motion), comes back, in an abstract form, in the harmony,
so to speak, of the physical law.

We finally come back on the constant KS in Eq. (4.9). From Eq. (4.12) we can
write, for the solar system

KS ¼ T2

r3
¼ 4p2

GNM
: ð4:13Þ

We see that the constant depends on the mass of the sun, namely the mass of the
central body. It is not universal. For example for the Jupiter system it is the mass of
Jupiter, for the earth-moon systems it is the mass of the earth, etc.
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4.5 The Moon and the Apple

If Eq. (4.12) is universal, the force that earth exerts on the moon, the centripetal
force corresponding to her motion, must be the same as the force she exerts on a
body on her surface, for example an apple, which is its weight. In particular the
constant GN should be the same. As Newton himself recalls, in 1665 he started to
ask himself this question. He developed the following argument. Indeed, in her
circular motion the moon continuously falls accelerating towards earth. This is
simply another way to look at centripetal acceleration.

Suppose that the moon is at the point A of her orbit, as in Fig. 4.11, at a certain
instant. In the figure we have taken a reference frame with the origin O in the center
of earth and y-axis directed towards the moon in the considered instant. After a
certain short time, say after one second, if no force were present, the moon would
have moved to point B. On the other hand, if the moon would be abandoned still in
B, she would fall in a second, under the action of gravity, from B to P. Point P is at
the same distance r from the center of earth as A. Let us calculate the drop h, taking
into account that the angle θ is very small. The Pythagorean theorem for the triangle
ONP gives

r2 ¼ r � hð Þ2 þ x2 ¼ r2 þ h2 � 2rhþ x2:

If θ is infinitesimal, h2 is an infinitesimal of second order and can be neglected.
We can also consider x equal to s and write

h ¼ x2

2r
¼ s2

2r
: ð4:14Þ

To evaluate the displacement of the moon in one second we can use the pro-
portion s:2πr = 1:T, where T is the period of the moon revolution, T = 27.3
d = 2.4 × 106 s and r = 3.8 × 108 m. We have s = 2πr/T ≈ 1000 m and h ’
s2=ð2rÞ ¼ 1:34 mm: In a second the moon falls a little more than a millimeter. We

A (0,r) B (x,r)

P (x,r–h)

x

h

N

rr–h

s

y

xO

θ

Fig. 4.11 How the moon
falls
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now compare this with the drop length of an object on earth, the famous apple for
example, which is

ha ¼ 1
2
gt2 ¼ 4:9 m: ð4:15Þ

The ratio of the two drops in one second is equal to the ratio of their acceler-
ations. The latter, if the Newton law is valid, should be in the inverse ratio of the
squares of their distances. The ratio of the drops is 4:9= 1:34� 10�3ð Þ ¼ 3:65� 103

. Newton knew that the ratio of the distance of the moon is about 60 times the radius
of the earth and what we have just found is about 602.

However, Newton had still the problem that we already mentioned. While moon
and earth can be considered as points, considering their large distance, for what
reason we should consider the apple, on a visually flat ground, should be attracted
towards a point 6380 km under the ground as if all the mass of earth would be
concentrated there?

This is a “miracle” true only for forces inversely proportional to the distance
square. In the next section we shall prove the following theorem: the force exerted
by a homogeneous spherical mass in any point outside its surface is equal to the
force that would be exerted if all the mass were in a point at its center.

Newton did not publish any result until he had made everything clear, complete
and perfect, in the Principia published in 1687.

4.6 The Gravitational Force of the Homogeneous Sphere

We shall calculate the force of a sphere of mass M on a point-like particle of mass
m outside the sphere at a distance r from the center. We assume that the density of
the sphere, if variable, depends only on the distance from the center (spherical
symmetry). We shall prove that the force is equal to that which would exert all the
mass M concentrated in the center.

We start by observing that is enough to prove the thesis for a spherical shell of
infinitesimal thickness. Indeed if it is true for one shell it is also true for the sphere,
which can be considered as composed of shells with the same center.

θ

dθ

φ

s

r

m

PO

R

A

A'

dF

d2F

Fig. 4.12 Elements for
calculation of the force of a
spherical shell on an external
point
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Consider the spherical shell, of radius R and center O, shown in Fig. 4.12,
having radius R and on it the ring AA′ limited by cones with their vertex in O and
semi-vertex angles θ and θ + dθ. Let ϕ be the semi-vertex angle of the cone with
vertex in P and the ring AA′ as base.

All the elements of the ring AA′ are at the same distance from P and conse-
quently they exert on P forces, call them d2F, equal in magnitude, but not in
direction. The symmetry of the problem tells us that the resultant of these forces,
dF, is directed as OP. The contributions normal to it cancel each other. The
component in the direction OP of the force is proportional to the mass of the
element, to cosϕ and inversely to the square of the distance s2. The resultant of the
forces on m in P due to the ring being

dF ¼ �GN
mdM
s2

cos/

where dM is the mass of the ring. Now the mass of the ring is to the mass of the
shell as the area of the ring is to the area of the shell:

dM : M ¼ 2pR sin h� R dh : 4pR2;

which gives us dM = (M/2)sinθ dθ. The force of the ring on the mass m is then

dF ¼ �GN
mM
2s2

cos/ sin h dh: ð4:16Þ

The force of the shell is the integral of this expression for θ varying from 0 to π,
namely

F ¼ �GN
mM
2

Zp
0

cos/ sin h
s2

dh: ð4:17Þ

Both s and ϕ are functions of the integration variable θ. It is convenient however
to express everything as functions of s. The Carnot theorem applied to the triangle
OAP gives

cos h ¼ r2 þR2 � s2

2rR
; cos/ ¼ r2 þ s2 � R2

2rs
: ð4:18Þ

We differentiate the first equation, remembering that r and R are constant,
obtaining

sin h dh ¼ sds
rR

:

We substitute this expression and the second Eq. (4.18) in the integral of
Eq. (4.17) and take into account that now the variable is s and the limits must be
changed in accord, obtaining
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F ¼ �GN
Mm
4r2R

ZrþR

r�R

r2 þ s2 � R2

s2
ds:

The integral does not present difficulties. The indefinite integral gives

Z
r2 þ s2 � R2

s2
ds ¼

Z
dsþ r2 � R2

� � Z ds
s2

¼ s� r2 � R
s

;

which, evaluated in its limits, gives 4R. In conclusion the force of the shell on a
point P of mass m is

F ¼ �GN
mM
r2

; ð4:19Þ

which is, in particular, independent of the radius R of the shell. This proves the
theorem.

Consider now a point P of mass m inside the shell. What is the force on
P exerted by the shell? The reasoning remains exactly the same, but for the limits
on the integration on s. Now the angle θ varies between 0 and 2π and correspon-
dently s between R + r and R − r. The definite integral is zero. The gravitational
force exerted by a spherical shell on a point inside it is zero. This is another
property of the inverse square law forces.

Newton gave another proof of the last property using a simple geometric
argument. Consider point P inside the shell as shown in Fig. 4.13 and the cone with
vertex in P of very small vertex angle. The two napes intercept on the shell’s two
surfaces ΔS1 and ΔS2. As the density is constant, the masses of the two surfaces are
proportional to their areas. The latter are proportional to the squares of their dis-
tances from P, say r21 and r

2
2 . But the forces they exert in P are proportional directly

to the masses and inversely to the square distances. The two forces are equal in
magnitude. As their directions are opposite, their resultant is null. As the shell can
be divided in pairs giving null contribution, the resultant is zero.

P

ΔS2

r1

r2

ΔS1
Fig. 4.13 The geometry to
calculate the gravitational
force of a spherical shell on an
internal point
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4.7 Measuring the Newton Constant

The Newton gravitational force Eq. (4.12) exerts between every pair of point- like,
or spherical, masses. It is important to control experimentally its validity not only at
the astronomical scales, but also at the laboratory scale. The laboratory experiments
are difficult because the force is, at these scales, very small. Any disturbance such as
small air currents, spurious electric forces, the movement of the experimenter itself,
is a possible cause of errors and must be eliminated.

However, if we want to know the Newton constant, we must measure the force
between two known masses at a known distance. In the case of the heavenly bodies
in fact we do not know a priory the masses, but we infer them from the Newton law.

The gravitational force was first measured by Henri Cavendish (1731–1810) in
1798. His experiment is shown schematically in Fig. 4.14. A rigid metal bar sus-
pended on a very thin metal wire, carries to equal lead spheres at equal distance
from the wire. The system is in equilibrium and free to rotate about the wire. This
type of arrangement is called torsion balance and will be further discussed in
Sect. 8.9.

Two more larger and heavier equal spheres, of mass M, are arranged symmet-
rically, each at the same distance from one of the small ones. Consequently each of
the large spheres attracts the small one nearby with an (equal) gravitational force.
The arm of the couple is the distance between the centers of the small spheres and
can be accurately measured. The moment of the couple induces a rotation to the bar.
The wire reacts with an elastic torsion moment, which is proportional to its rotation
angle. The equilibrium is at an angle at which the torsion moment and the moment
of the gravitational couple are equal. Hence, the measurement of this angle gives
the moment of the couple and, the arm being known, the forces.

The rotation angle is measured with the technique of the optical lever. A narrow
light beam is sent to a very light mirror, fixed to the wire. The mirror reflects the
beam on a scale located at a certain distance. The device is very sensitive. Even a
very small change in the orientation of the mirror causes a sizeable movement of the
light spot on the scale. Indeed, the moments are very small. The wire must have a
very small elastic constant and consequently be very thin, but still capable of

M m

r

r

m

M

Fig. 4.14 The Cavendish experiment
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holding the weight of the small spheres and bar. All the apparatus must be closed in
a container to avoid air currents. The presence of electrostatic charges must be
avoided, etc.

The value of the gravitational constant obtained by Cavendish was

GN ¼ 6:67� 10�11 m3 kg�1 s�2: ð4:20Þ

The present value is

GN ¼ 6:67384� 80ð Þ � 10�11 m3 kg�1 s�2: ð4:21Þ

To have a quantitative idea, consider that the large spheres of Cavendish had a
mass M = 158 kg, the small ones m = 0.73 kg and that the distance between one
small and one large was r = 0.225 m. The two forces to be measured are about 10–7

N. This is about the weight of a hair.

4.8 The Gravitational Field

We interrupt in this section our discussion of experimental proofs of the Newton
gravitational law, to discuss an important property of the gravitational, and of the
other fundamental forces. Namely they are action at a distance. Other examples are
the electric force, which operates between electrically charged bodies, and the
magnetic force, for example between a magnet and a piece of iron.

In all these cases an extremely useful concept is the field of force or simply field
(gravitational, electric, magnetic field).

Consider the gravitational force exerted by the earth, on different objects. It
depends on the mass of the object (is proportional to it) and on the position of the
object. If we consider two particles of different masses in the same position and
divide the forces acting on each of them by its mass, we find the same result. This
vector function of the position is the gravitational field.

The gravitational field generated by a distribution of masses is a vector function
of the position. It is equal to the force acting on the unit mass in that position. The
masses giving origin to the field are called the sources of the field.

In particular to describe the field of the earth we can take a reference frame with
origin in the center of the earth. Consider a point P at the position vector r with the
unit vector ur. If we put a mass m in P, it feels the force

F rð Þ ¼ m �GN
M
r2

ur

� �
: ð4:22Þ

where M is the mass of the earth. The gravitational field is the vector function of the
position
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G rð Þ ¼ �GN
M
r2

ur: ð4:23Þ

This expression is valid for points outside the earth in the approximation of earth
being spherical and with a spherically symmetrical distribution of masses. The
physical dimensions of the gravitational field are a force divided by a mass, hence
the dimensions of the acceleration. As a matter of fact, it is just the gravity
acceleration g.

The concept of field eliminates from our reasoning the idea of action at a dis-
tance. We can think as follows. The earth, or any distribution of masses, creates in
all the space around it a physical entity, the gravitational field, which extends, even
if with decreasing intensity, to infinity. The field exists independently of being
perceived as a force. But if we place in a point of the field a test body of mass m, it
will feel like a force equal to the product of m times the gravitational field in that
point. By means of the field the gravitational action becomes local.

We can now consider the potential energy of our test mass in the field of the
earth. Defining the potential energy to be zero at infinite distance, we have

Up rð Þ ¼ �GN
M
r
m: ð4:24Þ

The physical meaning is: the potential energy of the mass m in the point P is the
work to be done against the forces of the field to move the mass m from infinity to
P.

Obviously the potential energy, as the force, is proportional to m. If we divide it
by m we find a function of the position, independent of the body

/ rð Þ ¼ �GN
M
r
: ð4:25Þ

This function is the gravitational potential. The relationship between potential
and field is the same as between potential energy and force. The gravitational
potential in a point is the work to be done against the forces of the field to carry
from infinity to that point a unitary mass. The physical dimensions of the gravi-
tational potential are a velocity squared. It is measured in m2/s2.

Consider now our mass m moving on a circular orbit of radius r with velocity υ.
It might be for example our moon. There is a simple relation between kinetic and
potential energy. Recalling that υ = 2πr/T, where T is the period, the kinetic energy
is

Uk ¼ 1
2
mt2 ¼ 1

2
m4p2

r2

T2

and for the 3rd Kepler law Eq. (4.13)
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Uk ¼ 1
2
GN

Mm
r

¼ 1
2
Up

�� ��: ð4:26Þ

This result, valid for circular orbits, is that the kinetic energy is one half of the
potential energy in absolute value. Consequently, the magnitude of the gravitational
potential in the points of the orbit is equal to the square of the velocity of the body
on that orbit

/ rð Þj j ¼ t2: ð4:27Þ

This expression will be useful in Sect. 7.13.
To appreciate the orders of magnitude, consider the motion of the earth around

the sun. The velocity is t ¼ 3:3� 104 m/s: For Eq. (4.27), the potential of the field
of the sun in the points of the earth orbit is ϕ ≈ 109 m2 s–2.

We have already mentioned that limits of the validity of the Newton law exist,
when it must give place to general relativity. More precisely, the effects that are in
contradiction with the Newton law, and that are explained by general relativity, are
of the order of the gravitational potential compared to the square of the speed of
light, namely ϕ/c2. Considering that c2 ≈ 9×1016 m2 s–2, these effects are usually
very small (of the order of 10–8 on the earth orbit), but can be detected with high
precision observations, as in the case of the anomalous precession of the Mercury
perihelion (see Sect. 4.11). The effects become large at very high gravitational
potentials, near massive and compact objects, like black holes.

The graphic representation of the gravitational field is very useful to have a
visual idea of its main features. It is done with the lines of force and with the
equipotential surfaces.

A line of force is drawn as shown in Fig. 4.15. We start from a point, 1 in the
figure, where we evaluate the vector of the field. Then we make a small step δs in
the direction of the field, reaching point 2. We calculate the field in this point and
proceed another step as above, etc. In this way we obtain a broken line. It becomes
a field line for δs tending to zero. It is a continuous curve, in all the points of which
the field is tangent. Obviously the field lines are infinite in number. However, there
is only one line through any given point. If they were, say, two, the field should
have had two directions contemporarily. Graphically, we draw a number of lines,
which is enough to see the features of the field.

The equipotential surfaces are the loci of the points that satisfy the equations ϕ(x,
y,z) = constant, one for each value of the constant. These are infinite in number too.
It is convenient to draw a set of surfaces at constant steps of the potential. An
analogy are the geographic maps in which the level curves are drawn every, say,

1
2 3 4

G(1)

δs
G(2)

G(3)
G(4)

Fig. 4.15 Construction of a
line of force
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one hundred meters of elevation. In the regions where the level curves are denser,
the elevation varies more rapidly and the slope of the surface is steeper. The
situation is analogous for equipotential surfaces.

Figure 4.16a shows some lines of force and equipotential surfaces for a spherical
mass M. The lines of force are radial and point to the mass, because the force is
attractive. The equipotentials are spherical and become denser getting closer to the
mass, which is the source of the field.

Figure 4.16b represents the field originated by two spherical masses, one double
the mass of the other. In every point the field is the vector sum of the fields of the
two masses taken separately, the potential is simply the sum of the potentials.
Notice the “saddle” point on the line joining the two centers. Here there is a
minimum moving in that direction, a maximum moving perpendicularly to it.

One sees that the lines of force are always perpendicular to the equipotentials.
This is a general property. Indeed, suppose we are moving with the infinitesimal
displacement ds. The potential difference between the two points is d/ ¼ �G � ds:
If the displacement is on the equipotential, dϕ = 0 by definition, hence G must be
perpendicular to ds. The lines of force that have the direction of G are perpendicular
to the equipotential.

If we call Gs the projection of G on the direction of the displacement we can
write

d/ ¼ �G � ds ¼ �Gs ds; ð4:28Þ

which can be also written as

Gs ¼ � @/
@s

: ð4:29Þ

2MMM

(a) (b)

Fig. 4.16 Equipotentials and field lines for a a spherical mass M, b two masses one twice the
other
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We read this expression as: the component of the field in a given direction is the
directional derivative of the potential in that direction. Directional derivative is just
the name of the derivative in Eq. (4.29), it is the rate of change of the function in
that direction. As we have just seen the directional derivative is null for directions
on the equipotentials.

Consider infinitesimal displacements as those in Fig. 4.17, which are in different
directions but all leading from the equipotential ϕ to ϕ + dϕ. The directional
derivative is different for each of them because dϕ is the same and ds is different.
The derivative is a maximum when the direction is normal to the surfaces because
ds is there a minimum. The vector having the magnitude of the maximum direc-
tional derivative and the direction of the normal to the equipotential towards
increasing potential is called the gradient of the potential. Its symbol is grad ϕ. In
conclusion we have

G ¼ �grad/: ð4:30Þ

If we think of the level curves of a geographic map, the gradient is directed as
the line of maximal slope of the ground; its magnitude is greater the greater is the
slope.

On earth, the equipotential surfaces are materialized by the surfaces of the lakes
and of the seas (neglecting the waves).

We now see how to calculate the gradient starting from the potential. We start
from Eq. (4.28) and use the total differential theorem

d/ ¼ @/
@x

dxþ @/
@y

dyþ @/
@z

dz ¼ �G � ds ¼ � GxdxþGydyþGzdz
� �

; ð4:31Þ

where dx, dy and dz are the Cartesian components of δs. It immediately follows that
the Cartesian components of the gradient are the partial derivatives of the potential

Gx ¼ � @/
@x

; Gy ¼ � @/
@y

; Gz ¼ � @/
@z

: ð4:32Þ

Obviously, similar relations exist between gravitational potential and gravita-
tional force of a mass m. It is just a matter of multiplying by m,

P

φ

φ+dφ

ds
ds1

ds2
Fig. 4.17 Different steps
between the same
equipotentials
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F ¼ �gradUp ð4:33Þ

and

Fx ¼ � @Up

@x
; Fy ¼ � @Up

@y
; Fz ¼ � @Up

@z
: ð4:34Þ

4.9 Galilei and the Jovian System

G. Galilei (1564–1642) was the first human to explore scientifically the sky using
the telescope, which he had developed. As a matter of fact, combinations of two
lenses put one after the other at a certain distance had existed for at least 30 years.
The first written mention is in 1589, by Giovanni Battista Della Porta (1535–1615).
At the beginning of the XVII century telescopes were built in the Netherlands by
eyeglasses manufacturers. They were toys sold in exhibitions at low prices. Galilei
new of the Dutch telescope in 1609. He quickly envisioned a way to transform the
device into a scientific instrument and immediately started his experimental work,
without a solid theoretical basis. What is known today as geometrical optics was
developed only in 1611 by Johannes Kepler (motivated by the desire to explain
how the telescope works). Lenses had already been produced since the XIII century,
but their quality was not adequate for a scientific instrument.

An important property of the telescope is angular magnification, which is the
ratio between the angle under which an object is seen through the telescope and the
angle under which it is seen with the naked eye. The second property is the
resolving power, namely the ability of the telescope to resolve, to see separated, two
point images very close one to the other. To increase both properties the diameter of
the objective lens (the one farther from the eye) must be increased. However, the
larger the lens, the more difficult is its production without any defect. With a series
of improvements, and the help of the Venetian glass makers, Galilei developed the
technique to the point that he could build a telescope with magnification 10 and,
some time later, one with magnification 30, with lenses of perfect optical quality.
With this magnification the light reaching the eye in 302 = 900 times as with the
naked eye.

Galilei published his first observation in the booklet “Sidereus nuncius” (as-
tronomical notice) in 1610. In addition, the logbooks of his observations have come
down to us. One of his great discoveries was that around Jupiter’s four satellites
orbit, making a small replica of the solar system. A view of the system with a
modern telescope is shown in Fig. 4.18. Let us see how he describes his discovery
in the Sidereus Nuncius.

On the night of the 7th of January 1610, looking to Jupiter, Galilei observed
three small “starlets”. They attracted his attention because they were perfectly
aligned between them and with Jupiter and on the ecliptic. He did not correlate the
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starlets with Jupiter, thinking they were fixed stars in the background. He took note
of their positions in the logbook, as we try to reproduce in Fig. 4.19a.

The following night he repeated the observations and noticed that the relative
positions had changed, as in Fig. 4.19b. He thought the change to be due to the
movement of Jupiter relative to the stars, that he believed to be fixed, with some
doubts, because the motion did not match the calculations. He anxiously waited, as
he writes, the following night, but his hope was frustrated, because all the sky was
cloudy. The night of the 10th the stars were only two and had again changed
position, but still on a line, as in Fig. 4.19c. The third one, he thought, should be
hidden by Jupiter. Galilei had no more doubts. He writes (translated by the author):

my perplexity changed to astonishment and I became sure that the apparent movement was
not of Jupiter, but in the stars I observed; hence I decided to continue my investigation with
increased attention and scrupulosity.

The 13th he saw for the first time the fourth satellite, which had entered the field
of view of the telescope, as in Fig. 4.19d.

After several more nights of observations he published the discovery, together
with other important ones on the moon and the Milky way in the above quoted book
in March 1610.

The next task was the measurement of the periods. The measurement was
extremely difficult, as much that Kepler had declared it impossible, because the
images of the four starlets were indistinguishable. Galilei understood that the pre-
cision on his measurements of the angular distances from the center of Jupiter had
to be improved. He had measured them “by eye” with a precision of better than one

Fig. 4.18 Jupiter and his satellites. Image © NASA

(a) (b) (c) (d)

Fig. 4.19 Sketches of the Galilei observations in January 1610 in the nights of a 7th, b 8th, c 10th,
d 13th
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arc minute (1/60°). It was not enough. He developed the micrometer, with which he
was to measure the positions with a precision “better than very few arc seconds”
(one arc sec = 1/3600°).

Galilei continued his systematic measurements for several years, but already in
1611 he had been able to identify each of the satellites and to calculate their period
and the apparent diameters of the orbits. In Fig. 4.20 we report a subset of his
measurements made in spring 1611, as taken from his hand notes. For simplicity
they are for the two more external ones, Callisto and Ganymede. The planes of the
orbits are almost on the line of view from earth. Consequently, if the orbit is an
ellipse (or, in particular a circle) the motion appears as sinusoidal functions of time.
With a computer it is today easy to find the sinusoid that best interpolates the data,
the ones shown in the figure. Clearly, the data are in agreement with the hypothesis.
The procedure also gives us a value for the amplitude and the period. Galilei had no
computer and made his calculations by hand.

Table 4.3 reports the periods as measured by Galilei and how they are known
today. One sees that his measurements were quite good.

Accurate measurements of the apparent amplitudes are more difficult. Notice that
these quantities are measured relative to the apparent diameter of Jupiter, namely
they are, say, n = r/rJ. Table 4.4 reports the values of n as measured by Galilei in
subsequent years, showing how the precision is increasing, approaching the pre-
sently known values.

The Jovian system is a small solar system. Is the third Kepler law verified?
Galilei did not check that, but Newton did. From the data in the two tables, we can
do it ourselves obtaining the following table (Table 4.5).
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Fig. 4.20 The distances from Jupiter of his two farther satellites as measured by Galilei in spring
1611. The sinusoids are from my calculations

Table 4.3 Periods of the
Jupiter satellites (in days)

Io Europa Ganymede Callisto

Galilei 1.76 3.53 7.16 16.3

modern 1.77 3.55 7.17 16.75
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The 3rd Kepler law is satisfied, better obviously by the modern data, for which
the experimental uncertainties are smaller.

We can finally check the universality, namely if the gravitational constant has
the same value in the Jovian and in the solar systems. We check if Eq. (4.13),
namely, KS ¼ T2=r3 ¼ 4p2= GNMð Þ; is valid with the same GN, where nowM is the
mass of Jupiter, r and T are orbit radium and period of any of the satellites. For that
we need absolute values. We now know the distance of Jupiter and then the radii
r. The Jupiter mass has been evaluated from his perturbing effects on the other
planets. With these values we find that, indeed, the gravitational constant is the
same.

4.10 Galaxies, Clusters and Something Else

In this section we shall give two examples of structures of larger scales than the
solar systems. The Newton law is valid also at the largest scales. However, we shall
also see that the same law gives us evidence that the mass of the Universe is made
for its largest fraction of components that are not visible, because they do not emit
or absorb light. This is the so-called dark matter, whose nature we do not know.

A first example is shown in Fig. 4.21. It is a globular cluster, a system con-
taining millions of stars, which are very old, having an age comparable with the
Universe itself. The effect of the gravitational force keeping those stars together is
spectacular.

Figure 4.22. shows the image of a spiral galaxy, a system of hundreds and
millions of stars kept together by the gravitational attraction. All this enormous

Table 4.4 Angular radii of the orbits relative to the radius of Jupiter

Io Europa Ganymede Callisto

1610? 3.5 5.7 8.8 15.3

1611 3.8 6.2 8.4 15

1611? 4 7 10 15

1612 5.7 8.6 14 “almost 25”

modern 5.58 8.88 14.16 24.90

Table 4.5 The 3rd Kepler law in the Jovian system

Galilei Modern

T (d) n = r/rJ n3/T2 T (d) n = r/rJ n3/T2

Io 1.76 5.7 59.8 1.77 5.91 65.8

Europa 3.55 8.6 50.5 3.55 9.40 65.9

Ganymede 7.16 14.0 53.5 7.16 14.97 65.8

Callisto 16.3 24.9 58.1 16.69 26.33 65.5
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system is rotating, as evident by the image. The angular momentum of the huge gas
cloud from which the galaxy originated billions of years ago remained constant.

Let us more closely to the rotation. Let us start by considering how the orbital
velocity υ(r) of a body of mass m orbiting around a central body of mass M (like a
planet around the sun) varies with the distance from the center r. Assume for

Fig. 4.21 The global cluster
NGC 2808. Image © ESA

Fig. 4.22 The galaxy M74
from the Hubble Space
Telescope. Image © NASA
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simplicity a circular orbit. We state that the centripetal force must be equal to the
gravitational attraction

GN
mM
r2

¼ mt2

r
ð4:35Þ

or

t ¼
ffiffiffiffiffiffiffiffiffiffiffi
GNM

p
=

ffiffi
r

p
: ð4:36Þ

The velocity is inversely proportional to the square root of the distance from the
center. The validity of the law can be tested on the planets of the solar system.

Five planets are visible with the naked eye and have been known since ancient
times. In order of distance from the sun, including earth, they are: Mercury, Venus,
Earth, Mars, Jupiter and Saturn. In 1781, William Herschel (1738–1822) discovered
a “star”, the image of which in the telescope had a non-zero diameter. It was the
seventh planet, Uranus. The object had been already observed by Galilei and by
more astronomers in the following years. They had not recognized it as a planet,
due to the limitations of their telescopes, but had measured its coordinates. On the
basis of these measurements, Herschel could reconstruct the parameters of the orbit
of Uranus. The motion of Uranus showed some anomalies, when compared to the
Newton law predictions. These were interpreted in 1846, independently by Urbain
LeVerier (1811–1877) and by Johan Couche Adams (1819–1891), as possibly due
to an eighth planet. When his calculations were complete, LeVerrier sent a letter,
with the calculated coordinates, to the astronomer Johanne Grottfried Galle (1812–
1910) in Berlin, asking him to verify. The following night, Galle found Neptune
within 1° of the predicted position. Similarly, in 1930 Pluto was discovered, having
its existence predicted from the anomalies of the Neptune motion.

Figure 4.23 shows the orbital velocity of the planets as a function of their
distance from the sun. Equation (4.36) is fully satisfied.

Consider now the galaxy, a typical one, shown schematically in Fig. 4.24. The
image shows that its luminosity decreases for increasing distance r from the center,
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Fig. 4.23 Inverse square root
dependence of orbital
velocities of the planets
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till it disappears. This means that the star density decreases departing from the
center. We indicate with M(r) the total mass contained in a sphere of radius r. We
would guess it having the same behavior as the luminosity. But it is not so. Let
υ(r) be the (average) velocity of the points of the galaxy at the distance r from the
rotation axis. We can consider with a reasonable approximation the mass distri-
bution as spherically symmetrical. Then, the gravitational force acting on a body, a
star or a gas particle, at the distance r is the same as the force of all the mass inside
r, concentrated in the center, exactly as for the weight of an apple. Differently from
the apple, there is now a lot of mass outside r, but, as we have proven in Sect. 4.6,
its gravitational force inside a spherical shell is zero.

The force at the distance r is

F rð Þ ¼ GN
M rð Þm
r2

ð4:37Þ

and the rotation velocity at the distance r is

F rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNM rð Þ

p 1ffiffi
r

p : ð4:38Þ

The image of the galaxy shows that the luminosity ends at a certain distance. The
visible part of the galaxy has a radius that we call rvis. Typical values vary from 10
kpc to 100 kpc (1 pc, parsec,1 is 3 × 1016 m = 3.3 light years) from the center. We
then expect the function M(r) to increase with r and to become constant at about
rvis, because there is no more mass after that, as represented in Fig. 4.24.

M(r)

M(r)

r

0
0 rvis

F(r)

r

Fig. 4.24 A spherical mass
distribution. M(r) is the mass
in a sphere of radius r

1A parsec is the distance at which the diameter of the earth orbit is seen under the angle of a
second.
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Consequently, the function υ(r) for values of r larger than the radius of the galaxy
rvis should decrease as 1/√r.

How can we measure the rotation velocities of the galaxies at different distances
from the axis? The motion of the single stars is not observable from earth. However,
each of the elements in nature emits light having a well-defined spectrum, which is
characteristic of the element. If the source is moving, the spectrum is shifted in a
known way dependent on the relative velocity between source and observer (it is
called the Doppler effect).

Consequently, we measure the velocities of the different elements of a galaxy by
measuring the spectra of the light they emit. In practice the light emitted by the
huge clouds of gases, such as hydrogen and helium that extend farther than the stars
from the axis, but do not contribute substantially to the mass.

Figure 4.25 shows the velocities relative to us of the galaxy NGC 2998 as
functions of the apparent distance from its center. We can deduce that the galaxy
has an average velocity (the velocity of its center) of about 4700 km/s. However, on
the left the velocities are systematically smaller, higher on the right. This is because
we are observing the rotation of the galactic disk at an angle different from 90°.
Consequently the disk is approaching on one side, withdrawing on the other. To
have the rotation curve of the galaxy, namely the orbital velocities at different
distances from its center, we subtract the average velocity. The distance of the
galaxy being known, we can convert the apparent distances from axes in absolute
distances. We obtain the diagram in Fig. 4.26.

We would expect the orbital velocity to decrease as 1/√r at distances larger than
the visible radius, which is in this case about 8 kpc. It is not so; the velocity remains
practically constant up to the maximum distance explored, much beyond the dis-
tance at which no more stars are present.

The behavior of NGC 2998 is not an exception, rather is the norm. The same
phenomenon was found in all the spiral galaxies. We need to conclude that either
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the Newton law is no longer valid in these circumstances, or that there is much
more matter in the galaxies than the visible one, which extends much beyond the
visible one. It has been called dark matter (but invisible matter would be a better
name). We now know that the right alternative is the latter. The conclusion comes
from a large number of observations, at different length scales, for phenomena ruled
by different physics, at different eras of the Universe. All point consistently to the
conclusion that dark matter is about five times more abundant than the matter we
know. The search for dark matter is one of the frontiers of today’s physics.

4.11 Elliptic Orbits

In Sect. 4.4 we have seen the solution of the so-called direct Kepler problem,
namely how to find the force from knowledge of the orbit. We have done that
however, in the particular case of circular orbits. It is instructive to solve the
problem in general, for elliptic orbits. We shall do that in this section using the
modern calculus. In the next section we shall show the same, following the Newton
demonstration.

We start finding the expressions of velocity and acceleration of a generic material
point P, moving an arbitrary plane curve, in polar co-ordinates. We introduce a polar
co-ordinate frame with origin O and polar axis x (see Fig. 4.27). We call θ the
azimuth of the position vector r, and uθ and ur the unitary vectors respectively. The
time derivatives of the latter is given by the Poisson formula (1.59)

dur
dt

¼ dh
dt

uh;
duh
dt

¼ � dh
dt

ur: ð4:39Þ

We now find the velocity, which is the time derivative of the position vector
r = rur

v ¼ dr
dt

¼ dr
dt

ur þ dur
dt

r:

which, for the first of Eq. (4.39) is

v ¼ dr
dt

ur þ r
dh
dt

uh ¼ trur þ thuh:

O
θ

r
P

x

ur

uθFig. 4.27 The unit vectors of
the polar co-ordinates
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We now derive once more to have the acceleration

a ¼ dv
dt

¼ d2r
dt2

ur þ dr
dt

dh
dt

uh þ dr
dt

dh
dt

uh þ r
d2h
dt2

uh � r
dh
dt

dh
dt

ur

¼ d2r
dt2

� r
dh
dt

� �2
" #

ur þ 2
dr
dt

dh
dt

þ r
d2h
dt2

� 	
uh

and finally

a ¼ d2r
dt2

� r
dh
dt

� �2
" #

ur þ 1
r
d
dt

r2
dh
dt

� �� 	
uh ¼ arur þ ahuh: ð4:40Þ

We have now the kinematic expressions we need. Pay attention to the fact that υr
and ar are the components of the vectors on the position vector r from the focus, not
from the center of the ellipse.

We now consider the motion of the planet. The 1st Kepler law states that the
orbit is an ellipse with the sun in one of the foci.

We start by recalling the main properties of the ellipse (one of the conic sections,
together with the hyperboles and the parabola). We choose the polar co-ordinate
frame shown in Fig. 4.28 with the origin in the focus where the sun is and the major
axis as polar axis. (Notice that there are also polar co-ordinates with the origin in the
center O). The angle θ is called anomaly (to be precise, it is sometimes called true
anomaly, to distinguish it from the case in which the origin is in the center), a and
b the semi-major and semi-minor axes.

The equation of the ellipse, in its “canonical” form, is

r 1þ e cos hð Þ ¼ b2=a ¼ p; ð4:41Þ

where e is the eccentricity and p is the semi-latus rectum which is the position
vector for θ = 90°. The relation between eccentricity and semi-axes is

e2 ¼ 1� b2=a2: ð4:42Þ
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Fig. 4.28 The geometry of
the ellipse and its main
parameters
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The circle can be considered a degenerate ellipse with e = 0. The smaller the
eccentricity the smaller is the difference of the ellipse from the circle. As a matter of
fact, the eccentricities of the planets are in any case quite small, much smaller than
in Fig. 4.28.

Consider now the force. First we observe that, being the force directed to the
sun, the Fθ component is zero. This statement is equivalent to the 2nd Kepler law
and to the conservation of angular momentum. Indeed, from Fig. 4.29 we see that
the infinitesimal area swept by the position vector is dA ¼ rdhð Þr=2: Hence the
areal velocity is

dA
dt

¼ 1
2
r2
dh
dt

ð4:43Þ

and

Fh ¼ mah ¼ m
d
dt

r2
dh
dt

� �
¼ 0: ð4:44Þ

In addition, calling L the angular momentum and recalling Eq. (4.7) we can write

L ¼ 2m
dA
dt

¼ mr2
dh
dt

: ð4:45Þ

This expression will be useful in the following.
We are now ready to go to the acceleration ar and the force Fr towards the sun.

We already found, Eq. (4.40), that

ar ¼ d2r
dt2

� r
dh
dt

� �2

: ð4:46Þ

The polar co-ordinates r and θ are not independent, but linked by the ellipse
Eq. (4.41). Taking the time derivative of this equation, rearranging the terms and
using Eq. (4.45), we have

dr
dt

¼ e
p
sin hr2

dh
dt

¼ e
p
L
m
sin h: ð4:47Þ
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Fig. 4.29 Elementary area
swept by the position vector
of the planet
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We derive this again, because Eq. (4.46) contains the second derivative, and use
again Eq. (4.45), obtaining

d2r
dt2

¼ e
p
L
m
cos h

dh
dt

¼ e
p

L
m

� �2cos h
r2

:

We now substitute this in Eq. (4.46), use once more Eq. (4.45) and get

ar ¼ e
p
L2

m2

cos h
r2

� L2

m2

1
r3

¼ L2

m2

1
r2

e cos h
p

� 1
r

� �
:

Looking back to the equation of the ellipse we recognize that the expression in
parenthesis in the last member is just –1/p. Finally we have

ar ¼ � L2

m2

1
p
1
r2

ð4:48Þ

where the minus sign tells us that the force is opposite to r. We see that the
acceleration is inversely proportional to the square of the distance from the sun. The
same is true obviously for the force

Fr ¼ � L2

m
1
p
1
r2
: ð4:49Þ

This completes the proof. We have proven that if the orbit is an ellipse with the
sun in one of the foci, the force is inversely proportional to the square of the
distance. The remaining part of the argument to reach the Newton law is the same
we already did for circular orbits, with the conclusion

F ¼ L2

m
1
p
1
r2

¼ GN
mM
r2

: ð4:50Þ

We did not need the 3rd Kepler law to reach this conclusion, as it had been the
case in the particular case of circular orbits. Indeed, in that case Eq. (4.41) reduces
to r = p = constant and not all of the arguments of this section any longer hold.

Before concluding we stress once more that there is a unique dependence on r of
a central force Fr(r) that produces elliptic orbits with the sun in a focus,
F rð Þ / 1=r2. As Newton showed, even the smallest difference in the exponent,
Fr rð Þ / 1=r2þ e would produce an orbit of the type shown in Fig. 4.30, which is, so
to say, a slowly rotating ellipse, called a rosette. We shall not reproduce the
argument here, but only give a hint. In a motion on an ellipse or on a rosette, both
polar co-ordinates, r and θ, vary in time periodically. The period of the latter is in
any case the time to increase θ by 2π. The period of r depends on the force. Only if
the force is inversely proportional to r2 is it equal to the period of θ and the
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trajectory is closed. If the exponent of 1/r is not exactly 2, the two periods are
different, the orbit does not close and we have a situation like Fig. 4.30. This effect
cannot be seen if the orbit is circular, because a circle rotating on itself is not
different from a circle.

Astronomers have observed for centuries the apparent trajectories of the planets
in the sky with high accuracy. The absolute trajectories are obtained subtracting the
now well-known motion of earth. The aphelia and the perihelia, in particular, can be
accurately identified. If the force is proportional to the inverse square distance from
the sun, these points should remain fixed. Indeed, this is almost the case, but not
quite. Very slow movements, called precessions, of the perihelia are observed. They
are the effects of the forces of the other planets, the larger ones in particular, that act
on them in addition to the sun. Observations and calculations agree, with an
exception, which was found by Le Verrier in 1849. He calculated the precession of
the perihelion of Mercury, the nearest to sun, in 10 arc minutes per century. The
largest fraction of that is explained by the just mentioned effects of other planets.
But not completely; 43 arc sec per century remained unexplained. A number of
hypothesis were advanced, but all of them failed. This was the first historical
example of the limits of the Newton law. The explanation of the anomalous pre-
cession of the Mercury perihelion by Albert Einstein (1879–1955) in 1915 marked
the success of general relativity.

The 3rd Kepler law is a consequence of the 1st one. Let us prove that. We start
with the consideration that the period T is the area of the orbit A divided by the areal
velocity and expressing the latter in terms of the angular momentum L using
Eq. (4.45).

T ¼ A=
dA
dt

¼ 2pabm
L

:

Fig. 4.30 A “rosette” orbit,
showing a “snapshot” every
15° of precession
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We now write the acceleration ar Eq. (4.48) using this equation and writing the
parameter p in terms of the axes, Eq. (4.42)

ar ¼ � L2

m2

a
b2

1
r2

¼ �4p2
a3

T2

1
r2
:

The force on the planet is the Newton force, and we can write

Fr ¼ mar ¼ �4p2m
a3

T2

1
r2

¼ �GN
mM
r2

and finally

a3

T2 ¼ GN
M
4p2

: ð4:51Þ

That is the 3rd Kepler law: the squares of the periodic times are proportional to
the cubes of the ellipse semi-major axis, for all the bodies orbiting the same central
body (of mass M).

4.12 The Newton Solution

In this section we shall not introduce any new concept, rather we shall show how
Isaac Newton demonstrates some of those we discussed in the previous sections.
Reading pages of the giants is, in fact, very instructive, even if, as is the case with
Newton, it is not always easy. After having given the necessary preliminary
information, we shall read one page of the Principia, explaining their meaning line
by line. As we shall see, the Newton arguments are mainly geometrical. The
novelty, with respect to what was already known to the Greeks, is the final passage
to the limit for the length of the considered orbit arc going to zero.

After having stated the laws of motion in Sect. 1 of the Principia, Newton
dedicates Sect. 2 to “The determination of the centripetal forces”. Here he considers
orbits of various geometrical shapes under the action of a force directed to a
immovable center (i.e. centripetal). The case we shall take is the ellipse with the
center of force in a focus. In the first two “Propositions” of Sect. 2, he shows that, in
any case, if the areal velocity is constant the force is directed to the center and vice
versa.

Subsequently, in Proposition VI, Newton lays down the basic scheme he shall
use to solve the above-mentioned problems. The scheme is shown in Fig. 4.31.

A body moves on the arc PQ of its orbit in the short time interval Δt. If there
were no gravitational force from the sun, the planet would move of rectilinear
uniform motion on the displacement PR. On the other hand, if abandoned still in
P the planet would drop in the time Δt, under the gravitational attraction, by the
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displacement PX. If the force is constant, the motion is uniformly accelerated and
PX is proportional to Δt2. If both conditions are present, the displacement is the
diagonal PQ. We now draw the segment QR parallel to PX. QR touches the tra-
jectory in Q.

What we just stated would be true if the force were constant during Δt, which is
not true. However, the smaller is Δt the smaller is the variation of the force in that
interval. This means going to the limit of Dt ! 0: The limit geometrically corre-
sponds to approximate the segment of the trajectory with a segment of parabola.
The motion is then equal to what was found by Galilei for the projectiles on earth.

On the other hand, QR is also proportional to the acceleration and to the force
F we are looking for, namely QR / F � Dt2 , or F / QR=Dt2 .

For the constancy of the areal velocity, the time interval is proportional to the
area swept by the position vector in that interval, which is the area of the triangle
SQP. The latter, in turn, is proportional to the product of its base SP and its height
QT, and we have

F / QR
QT2

1
SP2 ¼

QR
QT2

1
r2
: ð4:52Þ

This expression is valid for any curve. We shall see how it simplifies in the case
of the elliptic orbit, with the center of force in a focus. To do that, we shall need to
know some definitions and four properties of the ellipse. We give them here without
proof.

A diameter is a chord going through the center of the ellipse. Consider the
tangent to the ellipse in any given point P on it (see Fig. 4.32). Let be PP′ the
diameter passing in P and DK the diameter parallel to the tangent in P. The
diameters PP′ and DK are called conjugate diameters.
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Notice that the conjugate diameters bisect each other but, in general, do not have
equal lengths, neither t0 they cross at right angles.

Property 1. The sums of the distances of any point of the ellipse from the two foci
are equal and are equal to the major axis, 2a.
Property 2. (Fig. 4.33). All the parallelograms having conjugate diameters as sides
have the same area. It is equal to the area of the parallelogram having, in particular,
the axes as sides, namely 4ab.
Property 3 (Fig. 4.34). The two focal lines that join any point P of the ellipse form
equal angles with the tangent in that point.
Property 4 (Fig. 4.35). Every diameter bisects all the conjugate chords. For any
given diameter the ratio between the areas of the rectangles made by the two
segments of the diameter and the square of the corresponding semi-chord are equal.
Namely

PQ0 � Q0P0

QQ02 ¼ PR0 � R0P0

RR02 ¼ PS0 � S0P0

SS02
¼ � � � : ð4:53Þ

We have now the properties of the ellipse we shall need and we can read
Proposition XI.
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Fig. 4.35 Property 4
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Proposition XI states:

if a body revolves in an ellipse; it is requested to find the law of the centripetal force
directed to the focus of the ellipse.

The proof shows that the ratio QR/QT2 in Eq. (4.52), in the particular case of the
ellipse with the center of force in a focus, is equal to the latus rectum, which we
called 2p and he calls L. We shall use his symbol in this section (no risk of
confusion with the angular momentum).

Figure 4.36 reproduces the diagram on which the theorem is developed. The first
lines of the Proposition are:

Let S be the focus of the ellipse. Draw SP cutting the diameter DK of the ellipse in E, and
the ordinate QV in X; and complete the parallelogram QXPR

The sun (the center of force) is in the focus S; H is the other focus, C is the
center, CA = a and CB = b are the semi-major and the semi-minor axes respectively.
At a certain instant the planet is in P, SP = r is the position vector from the sun. We
draw the tangent RPZ to the ellipse in P and the line QV parallel to it. Be X and
V the points were it cuts SP and PC respectively. We also draw the lines of QRPT
as in Fig. 4.31. To complete the diagram we draw the perpendicular from P to the
diameter DK and call F the point in which they meet.

The Newton language is extremely synthetic. What is evident for him is not
always evident for us. We shall explain his lines immediately.

It is evident that EP is equal to the greater semi axis AC: for drawing HI from the other
focus H of the ellipse parallel to EC, because CS and CH are equal, ES and EI will be also
equal; and hence EP is half the sum of PS and PI, that is (because of the parallels HI and
PR, and the equal angles IPR, HPZ) of PS and PH, which taken together are equal to the
whole axis 2AC.

D

B

A

B’

Q
R

P

T

E

F
CS H

K

ZI
V
X

Fig. 4.36 The Newton
diagram for Proposition XI
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The geometric elements of Fig. 4.36 that are relevant for this step are redrawn in
Fig. 4.37. We start from the equation (Property 1)

2a ¼ PHþPS ¼ PHþPIþ IEþES: ð4:54Þ

The triangle IPH is isosceles with vertex in P. This is because:

• the angles RPI and PIH are equal, as alternate interior angles of the two parallel
lines JL and RZ

• the angles HPZ and IHP are equal as alternate interior angles of the same lines
• the angles PIR and HPZ are equal for the Property 3 of the ellipse

Consequently the angles PIH and IHP are equal, which proves the statement.
Hence PH = PI and we can simplify Eq. (4.54) as

2a ¼ 2PIþ IEþES: ð4:55Þ

The triangles ISH and ESC are similar because they have the same angle in the
vertex S and the sides opposite to it (EC and IH respectively) are parallel. In
addition, SH is twice SC and consequently SI = 2 ES, that is also ES = IE.
Substituting in Eq. (4.55) we obtain

2a ¼ 2PIþ 2IE ¼ 2 PIþ IEð Þ ¼ 2PE ð4:56Þ

and finally

PE ¼ a: ð4:57Þ

Now Newton works on QR:

Draw QT perpendicular to SP [we did that already], and putting L for the principal latus
rectum of the ellipse (or for 2BC2/AC [see our Eq. (4.41)]) we shall have
L � QR : L � PV ¼ QR : PV ¼ PE : PC ¼ AC : PC

Is not so simple to follow the Newton language. He uses proportions, which we
shall write as fractions to make them more readable. In addition, when he takes a
route he does not tell us the reasons, which are understood only at the end. Let us
trust him and follow. He starts from the ratio QR/PV with numerator and

H
C

L

P
J

I

R

E

S

Z

Fig. 4.37 EP is equal to the
major axis
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denominator multiplied by L, because at the end this will be useful. The relevant
geometrical elements are drawn in Fig. 4.38.

The first step is trivial

L � QR
L � PV ¼ QR

PV
:

But QR = PX by construction. Let us find PX.
The triangles PXV and PEC are similar because they have a common vertex in

P and the two opposite sides, XV and EC, are parallel. Consequently PE/PC = PX/
PV and also

QR
PV

¼ PE
PC

:

Using Eq. (4.57) namely PE = AC we have

QR
PV

¼ AC
PC

and in conclusion

L � QR
L � PV ¼ AC

PC
: ð4:58Þ

The next step is working on PV. The single line of Newton is:

also L � PV : GV � PV ¼ L : GV and GV � PV : QV2 ¼ PC2 : CD2

Once more Newton works on a ratio, L/GV, and multiplies numerator and
denominator by the same quantity, which is PV, the quantity we are now looking
for. The relevant geometrical elements are shown in Fig. 4.39.
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Fig. 4.38 Working on QR
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The first step is again trivial,

L � PV
GV � PV ¼ L

GV
: ð4:59Þ

We use the Property 4 of the ellipse applied to the diameter PG and to the
semi-chords QV and DC conjugated to it, getting

GV � PV
QV2 ¼ PC � CG

CD2 ¼ PC2

CD2 : ð4:60Þ

Newton continues, finding a fourth proportion. Finally he will put the four
together. We take a breath, abandon him for a moment and put immediately
together the three Eqs. (4.58), (4.59) and (4.60) we found. We multiply them
member by member and obtain

L � QR
L � PV

L � PV
GV � PV

GV � PV
QV2 ¼ AC

PC
L
GV

PC2

CD2 :

Simplifying, but keeping L that will be useful, we have

L � QR
QV2 ¼ L � AC � PC

GV � CD2 : ð4:61Þ

We need another proportion, the last one.

By Cor. II, Lem. VII [is the rule for going to the limit], when points P and Q coincide,
QV2 = QX2 and QX2 or QV2: QT2 = EP2:PF2 = CA2:PF2, and (by Lem. XII) = CD2:CB2.

We now need to express 1/QT2. As usual, Newton works with proportions, and
we shall do the same with ratios. This time it is QX2/QT2. At the end we shall take
the limit for the length of the arc PQ going to zero, namely to have the points P and
Q coincident. In this limit, points X and V coincide too and it is then convenient to
consider QV2/QT2 in place of QX2/QT2. The relevant geometrical elements are
drawn in Fig. 4.40.
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Fig. 4.39 Work on PV
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The triangles EPF and XQT are similar, because

• the angles in F and T are equal because are both right,
• the sides of the angles respectively in P and Q (in evidence in the figure) are

mutually perpendicular, hence they are equal.

Hence

QV
QT

¼ QX
QT

¼ EF
PF

and, as EP = CA,

QV
QT

¼ CA
PF

: ð4:62Þ

To find PF we use Property 2. Figure 4.41a shows that PF is one half of the
height to DK of the drawn parallelogram on conjugate diameters.

Property 2 gives: PF � CD ¼ BC � CA; or

CA
PF

¼ CD
CB

;
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Fig. 4.40 Work on 1/QT2
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4.12 The Newton Solution 189



which, substituting in Eq. (4.62) and squaring, gives

QV2

QT2 ¼
CD2

CB2 : ð4:63Þ

The next step is to multiply the four proportions. Newton writes:

Multiplying together corresponding terms of the four proportions, and simplifying, we shall
have

L � QR : QT2 ¼ AC � L � PC2 � CD2 : PC � GV � CD2 � CB2 ¼ 2PC : GV

since AC � L ¼ 2BC200
We have already multiplied the first three ratios obtaining Eq. (4.61). Hence we

multiply now its members with those of Eq. (4.63)

L � QR
QV2

QV2

QT2 ¼
L � AC � PC
GV � CD2

CD2

CB2

and simplify

L � QR
QT2 ¼ L � AC � PC

GV � CB2 :

Recalling the relation between latus rectum and axes L � AC ¼ 2CB2 and sim-
plifying we finally have

L � QR
QT2 ¼ 2PC

GV
: ð4:64Þ

Remember that the factor in Eq. (4.52) we want to express is QR/QT2. We have
it now in Eq. (4.64). The final step is taking the limit for P ! Q: Remember that the
concept of limit was not known before Newton. He writes:

But the points Q and P coinciding, 2PC and GV are equal. And therefore the quantities
L � QR and QT2, proportional to these, will be also equal. Let those equals be multiplied by
SP2

QR ; and L � SP2 will become equal to SP2 �QT2

QR :

In the limit in which the arc PQ becomes infinitely small, point V coincides with
P. Consequently, GV becomes equal to 2PC, and the second member of Eq. (4.64)
goes to one, becoming

L � QR ¼ QT2:
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Now multiply both members by SP2/QR and get

L � SP2 ¼ SP2 � QT2

QR
:

Finally, Newton concludes:

And therefore (by Cor. I and v, Prop. VI) the centripetal force is inversely as L � SP2 , that
is, inversely as the square of the distance SP.

Q.E.D.

Namely:

F / QR
QT2

1
SP2 ¼

1
L � SP2 ð4:65Þ

and, given that L, our 2p, is a constant for a given ellipse,

F / 1
SP2 ¼

1
r2
: ð4:66Þ

The force is inversely proportional to the square of the distance from the center.
That is what we had to show.

4.13 The Constants of Motion

We now go back to the main stream and consider the potential and the kinetic
energy of a body of mass m in the gravitational field of a body of mass M, moving
on an ellipse.

We start with its angular momentum, which we call L and go back to our
formalism calling p the semi-latus rectum. From Eq. (4.50) we can write

L2

m2 ¼ pGNM ¼ r4
dh
dt

� �2

; ð4:67Þ

which, using Eq. (4.42) is

L2 ¼ 1� e2
� �

aGNm
2M: ð4:68Þ

In words, the square of the angular momentum is proportional to the major axis.
For a given major axis, the angular momentum is the largest for e = 0, which is the
circle. It decreases for increasing e, i.e. for the ellipse becoming more and more
squeezed.
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Consider now the potential energy, and make use for r of the ellipse equation

Up ¼ �GN
mM
r

¼ �GN
mM
p

1þ e cos hð Þ: ð4:69Þ

For the kinetic energy, remember Eq. (4.39)

Uk ¼ m
2

r2
dh
dt

� �2

þ dr
dt

� �2
" #

: ð4:70Þ

Using the expression of dr/dt given by Eq. (4.47) and using Eq. (4.52), we have

Uk ¼ GNMm
2

p
1
r2

þ e2

p2
sin2 h

� �
:

We use now the Eq. (4.41) of the ellipse to express 1/r2 and, taking into account
that sin2 hþ cos2 h ¼ 1; obtain

Uk ¼ GNMm
2p

1þ e2 þ 2e cos h

 �

: ð4:71Þ

Both potential energy, Eq. (4.69), and kinetic energy Eq. (4.56) depend on the
position of the planet and consequently on time. Not so the total energy, which is
their sum

Utot ¼ Up þUk ¼ GN
Mm
2p

e2 � 1

 �

; ð4:72Þ

which we can also write, in equivalent manner

Utot ¼ �GN
Mm
2a

: ð4:73Þ

In conclusion, the total energy of the planet depends only on the semi-major
axis. Different orbits, such as those in Fig. 4.42, which have the same semi-major

F

Fig. 4.42 Orbits of the same
energy and different angular
momenta
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but different semi-minor axes have the same total energy. However, as we have
seen above, the angular momentum grows for decreasing eccentricity.

Pay also attention to the fact that the total energy is negative. However, this is
not the only possibility for a body moving about the sun, or any other source of
gravitational force. As a matter of fact, in our demonstration we have used only
Eq. (4.41). This is not only the equation of the ellipse, but, more generally of all the
conics, ellipse if e < 1, parabola if e = 1, hyperboles if e > 1. The three cases
correspond, from the physical point of view, to total energy (4.73) negative, null or
positive respectively. The potential energy is always negative, tending to zero at
infinite distance from the center. The kinetic energy can be positive or zero.
Consequently, at infinite distance the total energy is positive or, as a minimum,
zero. If the total energy of a body is negative, it must remain at finite distances. The
orbit is said to bound. The ellipse (including the circle as a particular case) is the
only conic that does not reach infinity. If on the contrary, the total energy of a body
is positive, it will be able to go farther and farther; at infinite distances, or more
realistically at distances large enough to have negligible potential energy, all its
energy is kinetic, positive in fact. The intermediate case is when the body reaches
infinity with zero kinetic (and total) energy. The trajectory is a parabola.

Problems

4:1. A pendulum having 1 s period on the surface of earth is brought on the
surface of a planet having the same radius of earth and mass four times
larger. What is the period of the pendulum?

4:2. The gravitational potential difference between two points on the earth surface
(at the same latitude) is 1000 m2 s–2. What is the difference between the
heights were they are located?

4:3. We abandon a body at the distance from earth of the moon orbit with no
velocity. Will it fall with constant velocity? With constant acceleration?

4:4. We move a body from the sea level to the top of a mountain 5000 m high
(same latitude). How does its mass vary? How does its weight vary?

4:5. Does the velocity at which a satellite moves in a circular orbit around the
earth depend on the mass of the earth? on the mass of the satellite? on the
radius of the orbit?

4:6. The apparent diameter of the sun as seen from earth is approximately
α = 0.55°. What would be the period of a hypothetical planet orbiting just out
of the sun?

4:7. We want to put an artificial satellite in orbit around the earth having a period
of 2 h. Knowing the gravity acceleration g on the surface of earth an its
radius RE, find the height of the requested orbit above the surface.

4:8. Consider a spring (of a ballpoint pen) with rest length 3 cm and elastic
constant k = 50 N/m. We fix to its two extremes two equal Pb spheres
(density ρ = 11 × 103 kg/m3), of mass m = 104 kg each. Assume,
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unrealistically, that all frictions can be neglected. How much will the spring
shrink under the action of the gravitational attraction of the two spheres?

4:9. Knowing the values of g, of GN and of the radius of earth (RE = 6.4 × 106 m),
make an estimate of the mass and of the mean density of earth.

4:10. Knowing the values of GN and of the radius of earth orbit (rE = 1.5 × 1011 m)
and of its period, make an estimate of the mass of the sun. Knowing that its
apparent diameter from earth is 0.55°, estimate its mean density.

4:11. The sun moves on an orbit that we can consider circular about the center of
the Galaxy. The radius of the sun orbit is RS = 25 000 l year = 2.5 × 1020 m,
his velocity is υS = 250 km/s. Compare these data with those relative to the
motion of earth about the sun (rE = 1.5 × 1011 m, υE = 30 km/s). Make an
estimate of the total mass Mtot around which the sun orbits; give it as a
multiple of the solar mass MS.

4:12. Io, one of the Jupiter satellites, has the orbital period TI = 1.77 d and the orbit
radius rI = 4.22 × 108 m. Compare these data with those of the motion of the
earth about the sun (rE = 1.5 × 1011 m, υE = 30 km/s). Determine the mass of
Jupiter in solar masses.

4:13. Find a procedure to determine the mass of earth.
4:14. Knowing that the earth moves around the sun with the velocity of

υE = 30 km/s, find the gravitational potential of the sun ϕS(E) in the points of
earth orbit. The gravitational potential in a point of the earth is the sum of the
just considered ϕS(E) due to the sun and of the gravitational fields of the earth
itself, say ϕE(E), and of all the Galaxy, say ϕG(E). Calculate the values of the
latter two relative to ϕE(E), knowing that the masses in the three cases are
approximately MS = 2×1030 kg, ME = 6×1024 kg, MG = 2×1041 kg and taking
as distances, from earth to sun rES = 1.5 × 1011 m, radius of earth
rE = 6.4 × 106 m, distance from sun to the center of Galaxy rSG = 2.5 × 1020 m
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Chapter 5
Relative Motions

In our study of the kinematics of the material point, we have already seen that the
equations of motion depend on the reference frame. The law of motions, and more
generally all the laws of Physics, transform, as we say, from one frame to another.
This chapter is dedicated to the study of these transformations.

Two reference frames may differ in different ways.
The two frames have no relative motion, their co-ordinate homologous axes are

parallel, but have different origins; the frames differ for a rigid translation.
The two frames have no relative motion and coincident origins, but the direc-

tions of the axes are different; the frames differ for a rigid rotation.
One frame can translate relative to the other in time with uniform or varying

velocity, or it can rotate, again with constant or varying angular velocity, or it can
translate and rotate contemporarily.

In Sect. 5.1, we shall consider two stationary frames relative to one another, with
a relative translation or rotation. We shall see that the laws of Physics have the same
form, namely the same mathematical expressions, in both frames. As we say, the
laws are covariant under translations and rotations. The meaning of the term will be
explained.

We shall then consider frames in relative motion and learn that, when the relative
motion is a translation with constant speed, the laws of mechanics are also
covariant. This is the relativity principle, a fundamental principle of physics,
established by Galilei. For example, experiments done inside a closed room in a
ship cannot establish whether the ship is moving in uniform motion or is standing
still. One of the consequences is that once we have found an inertial frame, any
other frame moving in a uniform translation motion relative to it is also inertial.

In Sect. 5.3, we shall deal with the relative translatory accelerated motion. As
already anticipated, in any reference that accelerates relative to an inertial frame, the
Newton laws are not valid. For example, a body at rest can start moving without
any force acting on it. The motion can be described introducing fictitious forces,
which are known by several equivalent names, apparent forces of the relative
motions, pseudo-forces and inertial forces. We feel such “force,” for example, when
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we brake suddenly in a car. In Sect. 5.4, we shall deal with the general case
(translation and rotation) and we shall see the relations between velocities and
between accelerations in two frames of any relative motion. In Sect. 5.5, we shall
discuss several examples of motion in frames rotating relative to an inertial frame.

Any frame at rest in a laboratory on earth does, in fact, move with earth. In
initial, and quite good, approximation, these frames can be considered to be inertial.
Not completely, however, because earth rotates on its axis and moves along its orbit
around the sun, and even the sun moves along its orbit in the galaxy. In Sect. 5.7,
we shall study a few effects of the inertial forces in frames at rest relative to earth:
the variation with latitude of the magnitude of the weight, the rotation of the
oscillation plane of pendulums, the deviation from the vertical of free fall and the
circulation of winds.

The inertial forces acting on a body are proportional to its inertial mass, while
the gravitational attraction of earth is proportional to its gravitational mass. This
observation allows for the realization of very delicate experiments to check whether
the two masses are different or equal. We shall describe such an experiment in
Sect. 5.8.

5.1 Covariance of the Physical Laws Under Rotations
and Translations

Consider two Cartesian reference frames, which are stationary relative to each
other, S (coordinates x, y, z, origin O) and S′ (coordinates x′, y′, z′, origin O′).

A physical law is a mathematical equation between physical quantities. The
relation between the two frames can be a rigid rotation or a rigid translation. Let us
start with rotations.

We choose the origins of the two frames as coincident. For simplicity, we
consider their z-axes also to be coincident. The frames differ for a rotation, by an
angle θ, around this axis. The rotation is in the common plane xy, as shown in
Fig. 5.1.

Suppose now that an observer in S makes a very simple experiment. He mea-
sures, using a balance, the masses of two objects, finding the values m1 and m2. He

θ
x

y

x' 

y'

r

Fig. 5.1 Two reference
frames different for a rigid
rotation
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finds that the second mass is three times the first. He writes the relation (let us call it
the “law”)

m2 ¼ 3m1: ð5:1Þ

Another observer in S′ performs the same experiment. We indicate with a prime
the homologous quantities he finds. In this very simple case, considering that the
procedure of measuring the mass with a balance does not depend on the direction of
the axes, we can conclude that he will find the same result, namely

m0
1 ¼ m1; m0

2 ¼ m2: ð5:2Þ

The second observer also states that

m0
2 ¼ 3m0

1: ð5:3Þ

Equation (5.3) has the same form as Eq. (5.1). Namely, the two observers
describe the same phenomenon with laws of the same form. Indeed, mass is a scalar
quantity, which is invariant under rotations of the axes. In general, a relation
between scalar quantities, if valid in a frame, is also valid in any frame rotated
relative to the first one, because both sides of the equation do not vary going from
one frame to the other.

But it is not always so. Suppose that the observer in S measures two components
of the velocity of a point, finding the values υx and υy. He finds, again, the second
quantity three times larger than the first and writes the equation

ty ¼ 3tx: ð5:4Þ

What would the observer in S′ find? We know the answer because we know the
relations between velocities in the two frames:

t0x ¼ tx cos hþ ty sin h; t0y ¼ �tx sin hþ ty cos h: ð5:5Þ

We calculate the ratio between t0x and t0y, also employing Eq. (5.5):

t0y
t0y

¼ �tx sin hþ ty cos h
tx cos hþ ty sin h

¼ � sin hþ ty
tx
cos h

cos hþ ty
tx
sin h

¼ � sin hþ 3 cos h
cos hþ 3 sin h

:

In conclusion, in S′, we have

t0y ¼
� sin hþ 3 cos h
cos hþ 3 sin h

t0x: ð5:6Þ
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The form of the “law” is different this time in the two frames, being (5.4) in
S and (5.6) in S′. This is an obvious consequence of the fact that the components of
a vector transform differently one from another.

But wait a moment, a law may be valid in both frames, even if its sides are not
invariant, as in the case of the masses; rather, it is sufficient that, if they vary, in the
same way. Let us see what happens for a law linking vector quantities.

The observer in S′, which we assume, for the sake of this example, to be inertial,
studies the motion of a material point. He measures the acceleration a (namely its
three components), the force acting on the point F (again, the three components)
and the mass m. He finds the relation

F ¼ ma. ð5:7Þ

More explicitly, this vector relation corresponds to three equations:

Fx ¼ max; Fy ¼ may; Fz ¼ maz: ð5:8Þ

We know how the components of the vectors, such as F and a are, transform
from one frame to the other, namely

F0
x ¼ Fx cos hþFy sin h; F0

y ¼ �Fx sin hþFy cos h; F0
z ¼ Fz

a0x ¼ ax cos hþ ay sin h; a0y ¼ �ax sin hþ ay cos h; a0z ¼ az
ð5:9Þ

and we can write

F0
x ¼ max cos hþmay sin h ¼ m ax cos hþ ay sin h

� �
F0
y ¼ �max sin hþmay cos h ¼ m �ax sin hþ ay cos h

� �
F0
z ¼ maz

and, for Eq. (5.9),

F0
x ¼ ma0x; F0

y ¼ ma0y; F0
z ¼ ma0z; ð5:10Þ

which has the same form as Eq. (5.8). Both sides of the equations are different,
varying from one frame to the other. However, they vary in the same way, because
both sides are vectors. Thus, we say that the equation is covariant.

In conclusion, the laws of Physics keep the same form under rotations of the
axes, or, in other words, are covariant under rotations. And yet, from another
perspective, it is impossible experimentally to establish any privileged directions of
the reference axes. Space should be considered isotropic, without preferential
directions.

The case of the translations is very simple. Scalar quantities obviously have the
same values in two frames differing for a translation. This is also valid for vectors,
which are simply translated; hence, they are the same vector.
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5.2 Uniform Relative Translation. Relativity Principle

Consider now two reference frames, S and S’, which are in relative motion. We
arbitrarily call one of them S (origin O and coordinates x, y, z) fixed and the other
one S’ (origin O’ and coordinates x’, y’, z’) mobile. We consider the case of a
uniform translation of S’. All the points of S’ move with the same velocity relative
to S, which is constant in magnitude and direction. The frames, for example, might
consist of one fixed on the ground, the other on a carriage moving on straight rails,
or a frame fixed at the shore and one on a ship moving straight, in both cases with
uniform motion.

The axes of the two frames do not change the relative directions and we can take
them as being parallel. Fig. 5.2 shows the two frames at a certain instant. At a later
time, the mobile frame will be in a different position, more on the right, but its axes
will still be parallel to the axes of S. We choose t = 0 as the time at which the axes
of the two frames overlap.

Figure 5.2 shows the material point P and its trajectory. The position vectors
r and r’ of P in the two frames have the well-known relation

r ¼ r0 þ rO0 ð5:11Þ

where rO’ is the position vector of the origin O’ of the mobile frame S’ in the fixed
frame O, namely OO’.

A fixed and a mobile observer see the point P moving with different velocities,
v and v’. To find their relation, we take the time derivatives of Eq. (5.11), obtaining

v ¼ v0 þ vO0 ð5:12Þ

where vO’ is the velocity of the origin O’ of the mobile frame, and also of all its
points (because the motion is a translation) as seen by S. The velocity of an insect
flying in the ship in the above example relative to the shore is the vector sum of the
velocity of the insect relative to the ship and the velocity of the ship relative to the
shore.

A further time derivation gives the relation between accelerations

Fig. 5.2 Two reference
frames in relative uniform
translation motion
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a ¼ a0 þ aO0 ð5:13Þ

where aO’ is the velocity of the origin O’ of the mobile frame, and also of all its
points.

We now consider the important particular case in which the translation of S’
relative to S is uniform, namely the velocity of its origin, and of all its points, seen
by S is constant in time

vO0 ¼ constant: ð5:14Þ

Then, obviously,

aO0 ¼ 0 ð5:15Þ

and Eq. (5.13) becomes

a ¼ a0: ð5:16Þ

The accelerations in the two frames are equal. The implications of this simple
conclusion are extremely important considering inertial frames.

If S is an inertial frame, any material point P not subject to forces moves at
constant velocity v (or remains at rest). In other words, its acceleration is zero,
a = 0. In the mobile frame, its acceleration a’, which is equal to a, is also zero.
Consequently, S’ is inertial too.

We conclude that, given an inertial reference frame, any other frame moving
relative to it by a uniform translation is also inertial.

What about the second Newton law? It is valid in the frame S, which is inertial
by assumption. Is it also valid in S’? In S, we have

F ¼ ma: ð5:17Þ

The observer in S’ measures the same mass (m’=m) and the same force (if, e.g.,
he uses a dynamometer, the spring stretches by the same amount), F = F’. The
acceleration a’ that he measures is also equal to a, but only in the case we are
considering of relative translation at constant velocity. Then, in S’, the relation
between force, mass and acceleration is

F0 ¼ m0a0: ð5:18Þ

In other words: the laws of mechanics are covariant under the transformations
that link two reference frames in relative uniform translation motion.
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As an example, consider a reference S’ fixed on a sailing ship moving on the sea
at constant velocity and S a frame fixed to the shore. As above, we choose the axes
of the two frames mutually parallel and with coincident origins at t = 0. An
experimenter climbs on top of the mast and drops a stone. Fig. 5.3 shows the
trajectories of the stone as seen by an observer on the shore, a), and on the ship, b).

For the observer in S, the stone falls under the action of its weight, a constant
force (F = mg), directed downwards, opposite to the z-axis (that we have taken to be
vertical upwards). The initial velocity of the stone is the velocity of the ship, and we
have taken the x-axis in that direction. Hence, the motion of the stone in the
z direction is uniformly accelerated, while in the x direction, it is uniform
(neglecting the air resistance). The trajectory is a parabola. In the figure, we marked
the positions of the stone in time instants separated by the same time interval.

In S’, the forces are the same, but the initial conditions are different; the initial
velocity of the stone is zero. Hence, it falls vertically along the z’-axis with a
uniformly accelerated motion.

Summarizing, in the two frames, the trajectories are different. The reason for the
difference is in the different initial conditions of the motion. On the contrary, both
observers describe the motion with the same law, F = ma. The two frames are
perfectly equivalent for every dynamic experiment. Each of them can be considered
as fixed or movable.

This conclusion is important and is known as the relativity principle. The
principle does not deal directly with the phenomena but rather with the laws that
describe the phenomena. It states that: the laws of Physics are covariant, namely
have the same form, in any reference frame moving of translational uniform rel-
ative motion.

In our discussion, we have seen that the relativity principle is valid for the laws
of mechanics, which is the physics chapter we are studying. However, its validity is
completely general, including, in particular, all fundamental interactions, gravita-
tional, electromagnetic, nuclear strong and weak interactions. In other words, it is
impossible experimentally to establish the relative motion, provided it is as uniform
translation. Historically, the principle was established by G. Galilei. He did not use
that name, which was given to it by Henri Poincaré (1854–1912) in 1904, but
Galilei established it in complete generality, describing, in a beautiful page, a series
of experiments, some of which were of an electromagnetic nature, below the deck

Fig. 5.3 Trajectory of a stone
dropped from the top of the
mast of a ship, as seen from
the ship and the shore
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of a large sailing ship. The page of the Dialogue (transalted from Italian into
English by the author) is:

Shut yourself with a few friends in the largest room below decks of some large vessel, and
have with you flies, butterflies and similar small flying animals. Let a large bowl of water
with several small fish in it be the cabin too. Hang also, at a certain height, a bucket pouring
out water drop by drop into another vase with a narrow mouth beneath it. When the ship
stands still, carefully observe how those flying small animals fly with equal speed towards
all sides of the cabin; you will see the fish swim indifferently in all directions; all the drops
will fall into the vessel beneath; and you, when throwing something to a friend, will not
need throw it more strongly in one direction than another, when the distances are equal; and
jumping up feet together, you will pass equal spaces in all directions.

Once you have observed all these things carefully, though there is no doubt that when
the vessel is standing they must happen like that, let the vessel move with speed as high as
you like. Then (provided the motion is uniform and not unevenly fluctuating) you will not
discover the slightest change in any of the named effects, nor you will be able to understand
from any of them whether the ship is moving or standing still. In jumping you will pass on
the planking the same spaces as before, nor you will make longer jumps toward the stern
than toward the prow, as a consequence of the fast motion of the vessel, despite the fact that
during the time you are in the air the planking under you is running in a direction opposite
to your jump. In throwing something to your companion, no more force will be needed to
reach him whether he is on the side of the prow and you of the stern or your positions are
inverted. The drops will fall as before in the lower bowl, without a single one dropping
towards the stern, although, while the drop is in the air, the vessel runs many palms. The
fish in their water will swim toward the forward part of their vase with no more effort than
toward the backward part, and will come with equal ease to food placed anywhere on the
rim of the vase. And finally the butterflies and the flies will continue their flights indif-
ferently towards every side, nor will ever happen to find them concentrated close to the wall
on the side of the stern, as if tired from keeping up with the course of the ship, from which
they, remaining in the air, will have been separated for a long time. And if some smoke will
be made burning a bit of incense, it will be seen ascending upward and, similar to a little
cloud, remaining still and indifferently moving no more toward one side than the other. The
cause of all these correspondences of effects is that the motion of the ship is common to all
things contained in it, and to the air also.

We notice here that the development of electromagnetism in the last part of the
XIX century led to doubts concerning the general validity of the principle. The
process of in depth analysis of the physical laws that followed, leading to the
relativity theory, showed that the Galilei relativity principle was, as we have stated,
valid in general. However, it was found that the transformations of the co-ordinates,
and of the time, between reference frames, valid at a small velocity relative to the
speed of light, do not hold at high speeds. We shall discuss that in Chap. 5. Here,
we simply anticipate the root of the issue. Consider the transformation equations
that link the co-ordinates in S′ and in S

x0 ¼ x� tO0 t; y0 ¼ y; z0 ¼ z; t0 ¼ t; ð5:19Þ

where we have included the relation between times t and t′ measured by the two
observers. Indeed, the measurement of a time interval should be, we think, the same
on the shore as on the ship (to continue the example). However, this conclusion,
coming from our everyday experience and from experiments at the usual velocities,
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is wrong at velocities not too small compared to the speed of light. Two observers
in two frames moving at those speeds measure different time intervals between the
same two events; in other words, t and t′ are not equal. A consequence is that the
relations between co-ordinates are different from those of Eq. (5.19). The trans-
formation Eq. (5.19), called Galilei transformations, fail at high velocities and must
be generalized into the Lorentz transformations, as we shall see in Chap. 5. But the
relativity principle remains completely valid.

5.3 Non-uniform Translation. Pseudo Forces

We now consider the case in which the motion of the reference S′ relative to S is
still a translation, but with variable velocity. Consider, for example, S′ to be fixed
on a trolley moving on straight rails with an accelerated (or decelerated) motion
relative to S fixed on the ground. We still consider the motion of the point P in
Fig. 5.2 as seen by two observers in the two frames. The relation between the
accelerations is

a ¼ a0 þ aO0 . ð5:20Þ

As in the previous section, aO′ is the acceleration in S of the origin of S′ and also
of all the points fixed in it (its motion being a translation). Suppose now that S is an
inertial frame. If no force acts on P, its acceleration is zero, a = 0. In S′, however,
a = – aO′ ≠ 0. Namely, in S′, a body not subject to forces may accelerate. The law of
inertia does not hold. S′ is not inertial. Consider the trolley in the above example
initially moving at constant speed. If we put a ball on a horizontal plane, it will not
move. If the trolley now suddenly slows down, we shall see the ball accelerating
forward, without any force acting. This is the interpretation of the observer in S′.
The inertial observer in S thinks that there is no force acting on the ball (suppose
friction to be negligible), and that it is just continuing its uniform motion (Fig. 5.3).

If a force F acts on the point P of mass m, the inertial observer in S finds the
relation

F ¼ ma. ð5:21Þ

The observer in S′ measures the same value of the mass, m′ = m, the same force,
F′ = F, but a different acceleration a′, and finds F0 ¼ F ¼ ma ¼ m0a0 þm0aO0 , or

F0 ¼ m0a0 þm0aO0 : ð5:22Þ

We also see that the second Newton law, not only the first one, does not hold for
the non-inertial observer S′.

However, the observer in S′ can play a trick. Indeed, he is accustomed to
thinking that any acceleration will be due to a force and will imagine that a force
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has suddenly started to act on the ball on the table. Formally, the trick is by Jean
Baptiste d’Alembert (1717–1783); we can re-write Eq. (5.22) moving m′aO′ to the
left-hand side, as

F0 � m0aO0 ¼ m0a0 ð5:23Þ

and call −m′aO′ a force, or, more accurately, a fictitious force, or inertial force

Fin ¼ �m0aO0 ð5:24Þ

and Eq. (5.23) becomes

F0 þFin ¼ m0a0. ð5:25Þ

Namely, if we add to the “real” forces the fictitious, or inertial, ones, we
re-establish the validity of the 1st and 2nd Newton laws. However, these forces are,
as we said, fictitious, not real, because they are not produced by any physical agent.
Consequently, there is no corresponding reaction. The 3rd Newton law, the
action-reaction law, does not hold for the inertial forces.

Let us go back to the example of a sphere on a table on the trolley. The resultant
of the true forces, weight and normal reaction of the plane, is zero. When the
velocity of the trolley is constant, the fictitious force Fin is also zero because so is
aO′. But when the trolley slows down, the observer in the S′ sees the effect of a
fictitious force as in Eq. (5.24). It is directed forward, opposite to aO′. He can
measure the fictitious force attaching the sphere to a spring and measuring its
stretch. In this way, he verifies that Eq. (5.24) is correct.

5.4 Rotation and Translation. Pseudo Forces

Consider now a stationary frame S (origin O and coordinates x, y, z) and a mobile
frame S′ (origin O′ and coordinates x′, y′, z′), the motion of which is completely
general. It may be a translation, with constant or variable velocity, a rotation, again
with constant or varying angular velocity, or both of them together. Figure 5.4
represents the two frames at a certain time. At another time, for example, a bit later,
both the position of O′ and the direction of the axes of S′ will be, in general,
different.

We begin by finding a formula that will be useful in the following. Consider a
vector A, which does not vary with time relative to S′. Examples are the position
vector in S′ and the velocity of a point moving in rectilinear uniform motion relative
to S′. The vector A is not constant in S. We now find its time derivative. We notice
that A varies relative to S only in direction, not in magnitude. More precisely,
A rotates with the same angular velocity at which, in that instant, the mobile frame
S′ rotates relative to S. We indicate it with ω. Notice that ω can vary in time, which
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is why we specify “in that instant”. Under these conditions, the time derivative of
A is given by the Poisson formula and we have

dA
dt

� �
S
¼ x� A,

where the subscript S specifies that it is the rate of change in the reference S.
If the vector A also varies in S′, we have to sum the rate of change in S′, and

finally we have

dA
dt

� �
S
¼ dA

dt

� �
S0
þx� A, ð5:26Þ

which is the formula we were looking for. Notice that in the preceding sections, we
did not take care to specify in which frame we were taking the derivatives. This was
allowed because, being the considered transformations translations, the Cartesian
components of the vectors were not modified. This can be immediately verified in
Eq. (5.26) in which, if ω = 0, the derivatives in the two frames are equal.

We shall now find the relations between the kinematic quantities in S and in S′.
We shall call the former absolute and the latter relative, but we notice that the
definition is arbitrary; we could have started calling S′ stationary and S mobile.

See that the relation between the position vectors is always

r ¼ r0 þ rO0 : ð5:27Þ

To obtain the relation between relative (in S′) and absolute (in S) velocities, we
need the time derivatives. To do that, we need to have on each side of the equation
only vectors in one frame. Hence, we re-write Eq. (5.27) as

r� rO0 ¼ r0 ð5:28Þ

and derive the vector r – rO′ using the rule (5.26), obtaining

x

y

x'

y' 
r r'

r
O’ O'

O

S

S'
P

z z'Fig. 5.4 Reference frame S′
moves in an arbitrary motion
relative to S
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d r� rO0ð Þ
dt

� �
S
¼ d r� rO0ð Þ

dt

� �
S0
þx� r� rO0ð Þ: ð5:29Þ

The meaning of the left-hand side of this equation is clear: it is the difference
between the absolute velocities of the point P, say v, and of the point O′, say vO′.
We substitute Eq. (5.28) on the right-hand side, obtaining

v� vO0 ¼ dr0

dt

� �
S0
þx� r0: ð5:30Þ

Now, we see that the first term on the right-hand side is the rate of change in S′ of
the position vector in S′, namely the velocity of P in S′, which we call relative and
indicate with v′. We then write

v ¼ v0 þ vO0 þx� r0 ¼ v0 þ vt: ð5:31Þ

In other words, the velocity v of the point P in S is the sum of its velocity v′ in S′
and of two more terms that we have grouped in vt. The meaning of the latter is
understood considering the case in which the point does not move in S′, namely if v
′ = 0. Then, vt is the absolute velocity of the point. We can then state that vt is the
velocity of the point fixed in the frame S′, and call it Q, through which the moving
point P passes at the considered time. We can think of vt as the velocity of the
moving space. It is called the velocity of transportation. It contains two terms,

vt � vO0 þx� r0; ð5:32Þ

which we discuss looking at Fig. 5.5. The first one is the velocity of the origin of S′
and corresponds to the translational component of its motion relative to S. The

x'
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r'

O'

S' Q

z'

ω

ω×r'

Fig. 5.5 The relative velocity
in the rotating frame

206 5 Relative Motions



second term is due to the rotation of S′. We can think of this as taking place about
an instantaneous rotation axis passing through O′ with angular velocity, in the
considered instant, ω. Indeed, the velocity of the point Q stationary in S′ where P is
passing is just x� r0.

We shall now find the accelerations, by a further derivative. We shall meet more
terms. We start from Eq. (5.31) in the form

v� vO0 ¼ v0 þx� r0 ð5:33Þ

and derive the left-hand side using Eq. (5.26), obtaining

d v� vO0ð Þ
dt

� �
S
¼ d v� vO0ð Þ

dt

� �
S0
þx� v� vO0ð Þ: ð5:34Þ

Similarly to above, the left-hand side is the difference between the absolute
accelerations of P, say a, and O′, say aO′. Still analogously, we use Eq. (5.33) to
substitute v – vO′ on the right-hand side, obtaining

a� aO0 ¼ dv0

dt

� �
S0
þ d x� r0ð Þ

dt

� �
S0
þx� v0 þx� x� r0ð Þ

¼ dv0

dt

� �
S0
þ dx

dt

� �
S0
�r0 þx� dr0

dt

� �
S0
þx� v0 þx� x� r0ð Þ:

ð5:35Þ

The last term looks a bit complicated, but its terms have well-defined physical
meanings. Let us examine them. The first term is the acceleration of P in S, namely
the relative acceleration, say a′. In the second term, the angular acceleration of the
motion of S′ relative to S appears. We shall name it

a ¼ dx
dt

� �
S0
: ð5:36Þ

The next two terms are equal. We put them together and also group some other
terms, writing

a ¼ a0 þ aO0 þ a� r0 þx� x� r0ð Þ½ � þ 2x� v0; ð5:37Þ

which expresses the Coriolis theorem, after Gustave de Coriolis (1792–1843). We
now define

at � aO0 þx� x� r0ð Þ þ a� r0; ð5:38Þ

which is called the acceleration of transportation and
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aCo � 2x� v0; ð5:39Þ

which is called the Coriolis. Finally, we write Eq. (5.37) as

a ¼ a0 þ at þ aCo: ð5:40Þ

The meaning of the acceleration of transportation at is analogous to that of the
velocity of transportation vt. Indeed, if both velocity and acceleration of P in S′ are
zero, then its absolute acceleration is at, as the other two terms on the right-hand
side of Eq. (5.40) are then zero. The term at is the absolute acceleration of the point
stationary in S′ through which the point P (call it Q again) is passing at the
considered instant. It is the sum of three terms. The first is the acceleration relative
to S of the origin of the mobile frame S′. The second term is the absolute accel-
eration of Q due to the rotation of S′ relative to S. The situation is shown in Fig. 5.6.
Indeed, the velocity of Q (of position vector r′) due to the rotation is x� r0. In turn,
this velocity varies in time, and its rate of change is, by the same formula
x� x� r0ð Þ. This is simply the centripetal acceleration of the point Q. Indeed, as
we understand looking at Fig. 5.6, we have

x� r0j j ¼ xr0 sin h ¼ xd;

where d is the curvature radius (the radius of the osculating circle) of the curve Q is
describing. And further

x� x� r0ð Þj j ¼ x2d;

which is the centripetal acceleration of Q.

x'
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O'

S' Q

z'

ω

ω×r'

ω×(ω×r')

θ

Fig. 5.6 Geometry in a
rotating frame
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Consider now the third term in Eq. (5.36). If the angular velocity ω is constant,
the absolute velocity of Q varies only in direction, and this term is zero. If ω is not
constant, the magnitude of the absolute velocity of Q also varies. This acceleration
is given by the third term, a� r0.

As for the Coriolis acceleration aCo, we see in Eq. (5.39) that it is zero in three
cases: when, in the considered instant, the point P does not move in S′ (v′ = 0),
when the mobile frame does not rotate (ω = 0) and when the velocity of the point
P is parallel to the angular velocity. The Coriolis acceleration does not depend on
the position of P but does depend on its relative velocity and becomes larger for
larger relative velocities. It is always directed perpendicularly to the motion and
consequently is a cause of change in its direction, rather than of its magnitude. We
shall see examples in the next section.

We shall now assume that S is an inertial frame. As we have seen in the previous
section, if S′ accelerates relative to S, it is consequently not inertial. In other words,
the Newton laws in S do not hold. Let us look at the details.

In the inertial frame S, the law of motion of the mass m under the action of the
force F is F = ma. This can be written, using Eq. (5.40), as

F ¼ ma0 þmat þmaCo:

The observer in S′ measures the acceleration a′ and wants to have that on the
right-hand side. We move the other terms to the left-hand side, obtaining

F� mat � maCo ¼ ma0: ð5:41Þ

We get the Newton law back formally by defining two fictitious forces

Ft � �mat ð5:42Þ

and

FCo ¼ �maCo; ð5:43Þ

which is called the Coriolis force, and we subsequently get

FþFt þFCo ¼ ma0: ð5:44Þ

We can then state that, in a frame mobile with an arbitrary motion relative to an
inertial frame, the product of the mass times the acceleration is equal to the resultant
of both true and fictitious forces. However, as already stated, the fictitious forces are
not real and are not due to any physical agent. Consequently, the action-reaction
law is not satisfied.
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5.5 Motion in a Rotating Frame

Consider now the simple case in which the reference frame S′ rotates relative to the
inertial frame S with angular velocity ω constant in magnitude and direction. For
example, S′ may be fixed on a rotating platform, for example, a merry-go-round,
and S stationary on earth. As we shall see in the next section, such a frame is not
exactly inertial due to the rotation of earth on its axis and its revolution around the
sun, but the effects of the difference are quite small and we shall disregard them
here.

We choose the origin of both frames in the center of the platform, their z and z′
axes vertical upwards and, consequently, x, y and x′, y′ in the horizontal plane of the
platform, as shown in Fig. 5.7. The axes x and y are stationary relative to the
ground, while x′ and y′ rotate. With our choice of co-ordinates, the position vectors
in the two frames coincide, r = r′.

In the particular case we are considering, the relevant expressions for velocities
and accelerations simplify in

v ¼ v0 þ vt; ð5:45Þ

vt ¼ x� r0 ¼ x� r, ð5:46Þ

a ¼ a0 þ at þ aCo; ð5:47Þ

at ¼ x� x� r0ð Þ ¼ x� x� rð Þ; ð5:48Þ

aCo ¼ 2x� v0: ð5:49Þ

Let us consider the velocities. In general, the point P is not necessarily on the
platform. In Fig. 5.8, we have drawn it somewhat higher up. In general, the vectors
ω and r are not parallel. Recalling that vt is the velocity of the point Q stationary in
S′ in the instant position of P, we see that it is tangent to the circle thorough
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Fig. 5.7 The S reference
frame is stationary to the
ground, S′ rotates with
constant angular velocity
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P normal to the rotation axis and with its center on the axis. This circle is the
trajectory of Q. The magnitude of the velocity of transportation is then

tt ¼ xr sin h ¼ xd; ð5:50Þ

where d is the radius of the circle, namely the distance from the rotation axis. vt is
then simply the velocity of Q in its circular motion.

We now consider the accelerations. We immediately see that the at term is
simply the centripetal acceleration of the point Q as seen in the inertial frame S.

Let us now consider a point P of mass m to be standing still, relative to S′, on the
platform at the distance r from the axis. Suppose that the friction is negligible and
that P is kept in position by a rubber band attached to a small ring around the axis.

The inertial observer in S sees P moving in uniform circular motion with
velocity ωr. He knows that the motion has an acceleration towards the center, the
centripetal acceleration, of magnitude ω2r (this is the absolute acceleration in this
case). The (centripetal) force causing the acceleration is due to the rubber band. The
observer can check that measuring the stretch of the rubber band.

The non-inertial observer in S′, on the platform, also sees that the rubber band is
stretched, determining that a centripetal force is acting on P. He measures it and
finds the same result as the inertial observer. The mobile observer now insists on
having the first Newton law be valid and concludes that a second force, equal and
opposite to that of the rubber band, must exist. This is the inertial force, due to the
acceleration of transportation, –mat, the direction of which is opposite to the cen-
tripetal force. In this case, the force is centrifugal. In this case, and always, the
centrifugal forces are not real forces, but pseudo forces of the relative motion. They
appear only when we pretend to describe the motion in a non-inertial, rotating frame
as if it were inertial. However, the centrifugal force is felt as a real force, such as,
for example, in a fast rotating merry-go-round.

We now discuss the Coriolis acceleration (Eq. 5.49) and the effects of the
corresponding fictitious Coriolis force

FCo ¼ �maCo ¼ �2mx� v0: ð5:51Þ

Consider again the point P lying on the rotating platform. If P does not move
relative to the platform, the Coriolis acceleration is null, as in the case just
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Q

Fig. 5.8 The velocity vt of
the point Q
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discussed. Let v′ be this velocity, which we assume, for simplicity, to be parallel to
the platform. As we have already noticed, the Coriolis acceleration, and conse-
quently the Coriolis force, does not depend on the position of P on the platform and
is in any case perpendicular to the relative velocity. Consider Fig. 5.9. If the angular
velocity ω is directed out of the plane of the figure, as in Fig. 5.9a, we see the
platform turning counter-clockwise. In this case, the Coriolis acceleration is
directed towards the left of the motion, and the Coriolis force to the right. Suppose
you are the point P waking or running on the platform. You will feel a push to the
right of your speed, in whatever direction you move. Contrastingly, if ω is directed
inside the drawing, as in Fig. 5.9b, and the rotation is clockwise, the Coriolis force
pushes to the left of the speed.

If we were to look at the earth from some distance from its surface on the axis,
we would see the northern hemisphere rotating counter-clockwise if we were above
the North pole, and the southern one clockwise if we were above the South pole.
The Coriolis forces are the dominant causes of the circulation of winds in the
atmosphere and cyclonic and anticyclonic phenomena. We shall discuss that in the
next section.

Consider now another example, namely a material point P, standing in equi-
librium above the platform in a fixed position relative to S, i.e., to the ground. We
might think about a fly located just above the platform. The observer in S sees P at
rest. Knowing that it is subject to its weight, he understands that another force,
equal and opposite to the weight, should exist. The force is exerted by the beating of
the fly’s wings.

For the observer in S′, the description is more complicated. He sees P moving in
a circular uniform motion on a circle of radius r with velocity ωr. The motion is
accelerated with a centripetal acceleration ω2r. He deduces that a force mω2r should
act on the fly. However, he also knows, as the result of experiments he has done in
the past, such as the one we just discussed, that a centrifugal force exists on the
platform, namely a force of magnitude mω2r directed outwards. Considering that
the point moves on a circle, he concludes that the centripetal force on the fly must

v'
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v' aCo
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aCo

aCo
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Fig. 5.9 Coriolis acceleration and (pseudo)force on a platform rotating. a Counter-clockwise,
b Clockwise
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be twice as large, namely 2 mω2r. From where is this force is coming? It is the
Coriolis force. In this case, ω and v′ are mutually perpendicular; Eq. (5.49) says that
the magnitude of this force is just 2 mω2r and that its direction is radial, towards the
center. Physics is difficult in non-inertial frames, but the factor two is needed!

As a final example, let us go back to the first one, in which the point P is kept
still on the platform by a rubber band attached to the axis. The motion seen by S is
circular uniform. At a certain instant when we cut the band, S will see P sliding on
the platform of a straight uniform motion at the velocity it had at the moment of the
cut, directed as the tangent to the circle in that moment. Indeed, there is no net force
acting on P.

How does the observer in S′ describe the motion? To be concrete, assume the
rotation to be counter-clockwise. When the rubber band is cut, the force that is
needed in the rotating system to keep the objects standing disappears, and we might
expect to see the point P moving outside along the radius of the platform. But this is
not what we observe; rather, the point moves outside describing a curve. The reason
is the Coriolis force. Before the rubber band was cut, P did not move on the
platform, and the Coriolis force was null, but it is not so any longer since P has
started moving. The Coriolis force acts, pushing P to the right all along its tra-
jectory. Observing from outside, we can better understand what is going on. When
the rubber band is cut, P moves with the same velocity as the point of the platform
on which it is seated. While moving outwards, P reaches points of the platform
having higher speeds, because they are farther from the axis, and consequently is
left behind by them.

5.6 The Inertial Frame

As we have already stated, a reference frame is defined as inertial, if in that frame
the first Newton law is valid. We have also seen that if a reference frame is inertial,
any other one moving in uniform translation motion relative to it is also inertial.
Indeed, the relativity principle we saw in Sect. 5.2 states that no experiment can
distinguish between them. In other words, there is no absolute reference frame.
Finally, we have seen that the Newton laws are covariant under the Galilei
transformations.

However, nature does not necessarily behave according to our definition, and
inertial reference frames might just not exist. The answer must come, as always,
from the experiment. Basically, we need to check if we can find one reference frame
in which material points not subject to forces, or, better yet, subject to forces of null
resultant, always move in a rectilinear uniform motion. As a matter of fact, as is
often the case in physics, we proceed through successive approximations. We can
find reference frames that can be considered inertial, within a certain approxima-
tion, namely for experiments of a certain sensitivity or precision. For more precise
experiments, we must search for frames that are closer to the inertial one, and we
can find them.
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Indeed, the largest fraction of the experiments takes place on earth, and is
described in a stationary frame relative to the walls of our laboratory. These frames
can be considered inertial within a quite good approximation, although not perfect.
Indeed, earth rotates on its axis, making a turn (2π angle) in a day (84 600 s). The
corresponding angular velocity, directed from the South to the North pole, is
ωrot = 7.3 × 10–5 s–1. Figure 5.10a, for example, shows a stationary reference frame
on earth at a certain latitude λ. In this frame, the transportation and Coriolis
acceleration are present.

Let us analyze the first one, to which the centrifugal (pseudo)force corresponds.
The magnitude of this force on a point P of mass m is the product of the mass, the
square of the angular velocity (equal everywhere on earth) and the radius of the
circle on which P moves. The latter is the distance from the axis, Rcosλ, where R is
the earth radius and λ is the latitude of P. Calling a1 the acceleration, the magnitude
of the force is

F1 ¼ ma1 ¼ mx2
rotR cos k: ð5:52Þ

Let us look at the numbers. Recalling that R = 6.4 × 106 m and taking, for
example, λ = 45˚, the acceleration, which is also the force per unit mass, is

a1 ¼ 2:4� 10�2 ms�2; ð5:53Þ

which is quite small, less than a per mille of the gravitational acceleration.
However, for precise measurements, it can be relevant. The Coriolis force is usually
smaller. However, it is important for large-scale phenomena, as we shall see in the
next section.

However, a stationary reference frame on earth differs from an inertial frame for
a second reason, to even smaller effect. Indeed, earth moves along its orbit, turning
around in a year, with an angular velocity of ωriv = 2×10–7 s–1 on an orbit of radius
Rorb = 1.49 × 1011 m (Fig. 5.10b). The centripetal acceleration is
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Fig. 5.10 Three reference frames with, acceleration towards a the rotation axis of earth
a1 = 2.4 × 10–2 ms–2, b the sun a2 = 5.9 × 10–3 ms–2, c the center of the Galaxy a3 = 10–10 ms–2
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a2 ¼ x2
rivRorb ¼ 5:9� 10�3 ms�2; ð5:54Þ

which is an order of magnitude smaller than a1. The effects of the corresponding
pseudo force are negligible, if not for the most precise measurements. Usually, the
Coriolis force is even smaller.

Even these small effects, however, can be eliminated by choosing a reference
frame with its origin in the sun and directions of the axes stationary to the fixed
stars. This frame is inertial to an extremely good approximation, although not
perfect. Indeed, the sun is located at the periphery of our spiral galaxy (1011 stars in
order of magnitude). The sun turns around the center of the galaxy in an orbit of
radius RS ≈ 2.4 × 1020 m over a period of about 150 million years, corresponding to
the angular velocity of ωS = 7.9 × 10–16 s–1. The corresponding centripetal
acceleration is

a3 ¼ x2
SRS � 10�10 ms�2: ð5:55Þ

This is very small indeed. However, experiments exist that are so sensitive, they
are able to detect deviations from the state of inertia even at these extremely small
levels. As a matter of fact, our galaxy moves too, in a non-uniform motion.
However, when needed, we know how to eliminate the effects.

In conclusion, inertial reference frames exist in nature at every level of
approximation we need.

5.7 Earth, as a Non-inertial Frame

As we just saw, the rotation of earth on its axis, with the angular velocity,
ωrot = 7.3 × 10–5 s–1. This implies that in reference frame stationary on earth
dynamical effects of the transportation and Coriolis fictitious forces exist. We shall
discuss the principal ones in this section.

We take a reference system S with the origin in the center of earth and stationary
with it. We shall use the symbols v and a for velocities and accelerations in this
frame, omitting the prime we used in the previous sections.

The acceleration of transportation is

at ¼ aO � x2
rot
rE;

where aO is the acceleration of the earth’s center. This is the centripetal acceleration
of its motion around the sun in a very good approximation, and rE is the radius of
the orbit, as shown in Fig. 5.11a. The Coriolis acceleration on a point moving with
velocity v in S is

5.6 The Inertial Frame 215



aCo ¼ 2xrot � v.

In S, the equation of motion of a point with mass m subject to the real force Ftrue

is then

ma ¼ Ft þFCo þFtrue ¼ �maO þmx2
rotrE � 2mxrot � vþFtrue: ð5:56Þ

We can distinguish the following contributions to the true force Ftrue: the
gravitational attraction of earth FE, the gravitational attraction of all the other
heavenly bodies FO, and of any other force that might be present (air resistance,
tension of a wire, etc.), with resultant F. We re-write Eq. (5.56), grouping the terms
according to their causes,

ma ¼ FE þmx2
rotrE

� �� 2mxrot � vþ FO � maOð ÞþF. ð5:57Þ

The gravitational force FO is due to all the heavenly bodies different from earth,
but is largely dominated by the sun. As the diameter of earth is much smaller than
the distance from the sun, in a first approximation, we can consider FO equal in all
the points of the earth. However, the small differences that are present are one of the
causes of the tides, as we shall see in Sect. 6.4. The acceleration produced by FO on
every body is proportional to the mass of the body. Consequently, it is the same on
the surface of the earth and in its center. In other words, it is the acceleration aO, of
the earth herself. Hence, FO–m aO = 0.

We have reached an important conclusion, which is true as long as FO can be
considered not to vary on the points of the earth, that the gravitational forces of the
sun, the moon end of the other heavenly bodies do not appear in the equations of
motion in reference frames stationary on earth. These forces are exactly balanced
by the inertial forces resulting from the acceleration that those agents impart to the
earth.

We can simplify Eq. (5.57) as
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ma ¼ FE þmx2
rotrE

� �� 2mxrot � vþF. ð5:58Þ

Now, we are ready to consider several important examples.
The first case is of a body at rest, and F is simply its weight. This is the force we

measure with a balance and that we have written as

Fw ¼ mg, ð5:59Þ

where g is a vector quantity, which is equal for all the bodies in a given position. Up
to now, we have talked of it as gravitational acceleration, but we are now ready to
see that it is only approximately so. Equation (5.58) indicates that the force pushing
a body downwards that does not move (v = 0, a = 0) is FE þmx2

rotrE. We can say
that the gravitational force of the earth on the body is

FG ¼ mG ð5:60Þ

and write

Fw ¼ mg ¼ m Gþx2
rotrE

� �
; ð5:61Þ

where G is the gravitational field of earth, and

g ¼ Gþx2
rotrE: ð5:62Þ

The acceleration is the same for all the bodies in the same location.
Equation (5.58) shows that a body dropped in absence of any force other than its
weight, from a position of rest, v = 0, moves with an acceleration a = g. We can say
that g is the acceleration of the free-fall of any body, provided its velocity is null in
the considered instant. If v ≠ 0, the Coriolis acceleration is, in general, present too.

In any case, Eq. (5.61) tells us that the weight is the sum of two contributions:
the gravitational attraction mG of the earth, which largely dominates, and the
centrifugal force due to the rotation of earth, which is much smaller and varies with
the position. We will now discuss the observable consequences of that.

The local value of g. Suppose we take a plumb and fix it at a support. In the
equilibrium position, its weight Fw, given by Eq. (5.59), and the tension of the wire
are equal and opposite. The direction is given by the wire. The distance from the
rotation axis of a point P on the surface at the latitude λ is rE = Rcosλ, where R is the
earth radius (Fig. 5.11a). The weight Fw can be decomposed in a component, let us
call it Fw,r, directed to the center of earth, and a component, Fw,θ, in the direction of
the meridian, to the North in the northern hemisphere and to the South in the
southern one. The two components are
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Fwr ¼ mG� Ft cos k ¼ m G� x2
rotR cos2 k

� �
Fwh ¼ Ft sin k ¼ mx2

rotR sin k cos k:
ð5:63Þ

The centrifugal term, the first one, is zero at the poles and maximum at the
Equator. The tangential component is zero both at the poles and at the Equator. In
these locations, but not elsewhere, the weight is precisely directed to the center of
earth. As for the magnitude, the measured values are g = 9.832 ms–2 at the poles
and g = 9.780 ms–2 at the Equator. If we approximate the shape of the earth surface
with a sphere, all its points are at the same distance from the center, and if the mass
distribution inside the earth is spherically symmetric, the gravitational term G is
equal everywhere. It should be equal to g at the poles, G = 9.780 ms–2. Let us check
by giving an estimate, starting from g at the Equator.

G ¼ gþx2
rotR ¼ 9:780þ 7:3� 10�5� �2�6:378� 106 ¼ 9:814 ms�2:

This value is close, but still a bit smaller than what we found from g at the poles.
The main reason for that is that earth is not really spherical but somewhat squeezed
at the pole, an effect of the centrifugal forces. Consequently, the poles are a bit
closer to the center than the Equator.

Notice however, that small differences on the value of g in the different points of
the surface are present, due to the local geology.

Absence of weight. If we measure the weight of an object with a balance on the
space station, we find it to be zero. Such is also the weight of all the objects in the
station, and in every artificial satellite. The arguments we just made are still valid, if
we put the station in the place of earth, and consider the earth as an external body,
as the sun, the moon and the other planets are. The spaceship is small enough for
the gravitational force of those bodies to be considered equal at all the points of the
ship. This force is exactly balanced by the inertial force to the acceleration of the
spaceship. If its engines are shot, the ship freely falls under the action of gravitation.
In this case, the equivalent of the weight on earth, namely the gravitational
attraction of the ship on the body inside it, is completely negligible, Fw = 0. The
centrifugal term to the weight in the space ship is also negligible because the ship
does not rotate appreciably. The weight in the ship is zero.

Eastwards shift in the free-fall. If a material point P of mass m is dropped with
null initial velocity at a height h from the ground, it initially falls under the action of
the weight, Fw. However, as soon as its velocity, v, is appreciably different from
zero, a second inertial force, the Coriolis force, enters into action. It is

FCo ¼ �2mxrot � v. ð5:64Þ

The velocity v relative to earth is in the plane containing the earth’s axis and
point P, namely the plane PON in Fig. 5.11a. Consequently, the Coriolis force is
perpendicular to this plane. Considering that the direction of the angular velocity is
from South to North, and that v is downwards, we see that the Coriolis force is
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toward East in both hemispheres. The situation is shown in Fig. 5.11b, where AB is
the direction of the plumb, i.e., the direction of Fw (no Coriolis force on the plumb
that does not move) and C is the point in which the body reaches the ground, falling
from the height h. The shift from the vertical BC is very small, and exaggerated in
the figure. Let us calculate it.

We take a reference with the z-axis vertical, i.e., in the local direction of the
plumb, and the x-axis horizontal towards the East. Within a good approximation,
we can take the magnitude of the velocity to be υ = gt, as in the vertical fall. Its
direction is opposite to the z-axis. The equation of the component of the motion on
the x-axis is

m
d2x
dt2

¼ 2mxrotgt cos k:

We solve the equation by integrating twice on time and imposing the initial
conditions x(t) = 0, (dx/dt(0)) = 0, obtaining

x ¼ 1
3
gxrott

3 cos k: ð5:65Þ

The time of the fall is, with good approximation, t ¼ ffiffiffiffiffiffiffiffiffiffi
2h=g

p
, and we have

x ¼ 2
ffiffiffi
2

p

3
g�1=2xroth

3=2 cos k: ð5:66Þ

For example, at the latitude of 45˚ and a fall from h = 50 m, the eastward shift is
x * 5 mm, which is quite small, but has been measured, carefully eliminating
perturbing effects.

Horizontal wind circulation. As is well known, the earth’s atmosphere in a
certain instant contains zones of high pressure and zones of low pressure. Naively,
one would expect winds to blow from the former to the latter in the direction of the
pressure gradient. However, the direction of the winds is substantially perpendicular
to that, moving along the isobars, as you can see watching weather forecasts on TV.
The effect is due to the Coriolis force.

Figure 5.12 summarizes the situation. H is the pressure maximum, L a pressure
minimum, in the Northern hemisphere. Hence, the earth’s angular velocity direction
is out of the paper and the Coriolis force is directed, perpendicular to the velocity, to
the right. Consider, for simplicity, a horizontal wind at constant velocity (in
magnitude). Suppose we insulate a small mass of air within an ideal film and follow
its motion. Two vertical and two horizontal forces act on our mass. The vertical
ones are the weight and the Archimedes force. As the motion is horizontal, they are
equal and opposite. The horizontal forces are the pressure (true) force and the
Coriolis (pseudo) force. The pressure force acts on the surfaces of our gas mass.
The pressure on its left-hand face pushes to the right, while the pressure on the right
face pushes to the left. If the pressure were equal on the two sides, the neat force
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would be null. However, if there is a pressure maximum on the right of the gas mass
we are following, as in Fig. 5.12a, there is a neat pressure force F(P) pushing to the
left. The Coriolis force has an equal and opposite direction. Consequently, the two
forces may balance each other, or result in the right value being the centripetal force
for the curvature of the wind trajectory. This can happen only if the wind circulates
in a counter-clockwise direction around a pressure maximum (anticyclone).
Contrastingly, it must circulate clockwise around a minimum (cyclone), as in
Fig. 5.12b. The two situations are inverted in the southern hemisphere.

Let us look at the orders of magnitudes. The magnitude of the Coriolis force on
an air mass m moving with horizontal speed υ at the latitude λ is

FCo ¼ 2mxrott sin k: ð5:67Þ

For example, the force on a kilogram of air, which is about 1 m3, moving at
10 m/s at 45˚ is about 10–3 N. This should be compared to the pressure forces on the
same volume. To be of the same order of magnitude, the pressure forces on two
opposite sides of our cubic meter volume should be different by 10–3 N. This
corresponds to a pressure difference of 10–3 Pa, being the surface unitary. Hence,
the pressure gradient should be of 10–3 Pa/m, corresponding, say, to a distance of
100 km between two isobars of 100 Pa difference. This is reasonable (have a look at
the weather maps).

The Foucault pendulum. A simple pendulum abandoned in a non-equilibrium
position with null velocity oscillates in a vertical plane. However, if we watch
carefully for a long enough time, along the order of one hour, we can see that the
oscillation plane rotates relative to the laboratory, i.e., relative to a reference fixed
on earth. The reason for the rotation is, once more, that the frame is not exactly
inertial. As a matter of fact, the oscillation plane is fixed in an inertial frame, relative
to which the earth rotates, as in Fig. 5.13.

While the effect has been known since its first observation by Vincenzo Viviani
(1622–1703) in 1661, the main experiment and its correct interpretation were done
by Léon Foucault (1819–1868) in 1851 in the Pantheon of Paris. His pendulum was
67 m long and had a 28 kg mass.

A similar situation, shown in Fig. 5.14, helps in our understanding. There, we
have a pendulum, supported on a turning platform. If we put the pendulum in

H
F (P)FCo L

FCo
F(P)

Fig. 5.12 Isobars around pressure maximum (left) and minimum (right-hand), in the Northern
hemisphere and the forces on a mass of air
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oscillation and the platform in rotation, we observe the oscillation plane remaining
fixed, as expected, and the platform rotating under the pendulum. We can easily
imagine what an observer on the platform would see, namely the plane of oscil-
lation rotating in the opposite direction.

In this way, we easily understand what happens on earth if we are on a pole.
Here, the angular velocity vector ωrot is normal to the “platform”, the earth surface,
exactly as in that experiment. From the point of view of an inertial observer, the
oscillation plane is constant, and he sees the earth turning relative to it. He
understands why an observer at the pole sees the oscillation plane rotating and
making a complete turn in 24 h. In the reference fixed to earth, the equation of
motion is, once more, (5.58), with F the tension of the wire (neglecting air resis-
tance). The Coriolis force FCo ¼ �2mxrot � v is normal to the oscillation plane,
and causes its rotation.

If the experiment is done not at the pole but at a latitude λ, we must pay attention
to the vector characteristic of ωrot. We decompose it in a horizontal component,
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Fig. 5.13 The Foucault pendulum

Fig. 5.14 Pendulum on a
rotating platform
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namely parallel to the ground in our position, ωh, and a vertical one ωv:
ωrot = ωh + ωv. We further decompose the horizontal component, which is still a
vector, in its components parallel, ωp, and normal, ωn, to the oscillation plane and
write Eq. (5.56) as

ma ¼ mg� 2mxv � v� 2mxp � v� 2mxn � vþF. ð5:68Þ

The term �2mxn � v has the direction of the wire. Its effect is to change the
tension a bit, but it has no effect on the oscillation plane. The term �2mxv � v is
perpendicular to the oscillation plane and causes its rotation. The third term
�2mxn � v is also perpendicular to the rotation plane, but is very small. Indeed, as
we can see in Fig. 5.13b, it is proportional to sinθ, where θ is the angle between the
wire and the vertical and is small, for small oscillations. We can then simplify
Eq. (5.68) by writing

ma ¼ mg� 2mxv � vþF. ð5:69Þ

In concussion, the motion is similar to that at the pole with the sole difference
being that in place of the angular velocity ω, we must consider its component along
the local vertical, of magnitude

xv ¼ xrot sin k: ð5:70Þ

The oscillation plane makes a complete turn in the period

Trot ¼ 2p
xrot sin k

¼ 24 hr
sin k

: ð5:71Þ

At 45˚ latitude, in one hour, the plane rotates by 10.6˚.
Figure 5.13c shows the projection on the horizontal plane of the trajectory of the

Foucault pendulum. The vector ωv is normal to the drawing towards the observer.
The Foucault force is always directed normally to the velocity to the right of the
direction of motion. The force bends the trajectory, as shown with exaggeration in
Fig. 5.13c. Suppose that the pendulum is initially in A and abandoned with null
velocity. Initially, when the Coriolis force is very small, the pendulum heads to A′.
But as soon as the velocity becomes appreciable, the Coriolis force pushes to the
right, bending the trajectory. The pendulum reaches point B, where it stops. When
the velocity has again sufficiently increased, but in the opposite direction, the
Coriolis force pushes in the opposite direction too, although still to the right of the
motion. The pendulum reaches C, etc.

In the Foucault experiment, the length of the pendulum was large, l = 67 m,
corresponding to a period T = 16.4 s. With such a long period, the lateral shift can
already be observed in a single oscillation. The oscillation amplitude was A = 3 m.
At the Paris latitude, sinλ = 0.753 and the rotation period is Trot = 3.8 h = 14
480 s = 31,8 h = 14480 s. In an oscillation period T, the plane rotates at the angle
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2πT/Trot. Hence, the shift of the oscillation extreme in one period is s = 2πAT/
Trot = 2.7 mm.

Moreover, the length is important for another reason to which we can only hint.
In practice, it happens that the stress forces always present in the wire and in the
hook supporting the pendulum result in a spurious rotation of the oscillation plane.
The effect is slow, but important for observations of several hours. It can be shown,
however, that it is smaller for longer lengths.

5.8 The Eötvös Experiment

In Sect. 2.5, we have seen how Galilei and then Newton experimentally established
the identity between inertial and gravitational mass. This is a very fundamental
issue, and experiments have been done, and are still being done, to increase the
precision within which the equality is verified. We discuss here the beautiful
experiments conducted by the Hungarian physicist Loránd Eötvös (1848–1919) in
the last years of the XIX century.

In this chapter we gave a number of examples of the effects of the inertial forces,
the pseudo forces that appear in non-inertial frames. The inertial forces acting on a
mass are proportional to the mass, just like the gravitational force. There is an
important difference, however, as inertial forces are proportional to the inertial mass
mi, and the gravitational force is proportional to the gravitational mass mg. Suppose
the ratio between the two types of mass to be different for different substances. We
could then hang spheres made of the two substances to two wires and look for any
small difference in the directions of the wires. In this section, we shall use different
symbols, mi and mg, for the two types of mass.

Consider a body hanging from a wire fixed in Ω, as in Fig. 5.15, at a point at the
latitude λ. The distance from the axis is rERcosλ, where R is the earth’s radius. The
centrifugal force has a direction perpendicular to the axis outwards and magnitude

to earth
centre

ωrot

λ

r
E
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TR

plumb
direction

mgGO

Ω
Fig. 5.15 The basis of the
Eötvös experiment
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Fc ¼ mix
2
rotR cos k: ð5:72Þ

and the gravitational force

FG ¼ mgg ¼ GN
mGME

R2 : ð5:73Þ

If for two substances, mi and mg are different, the angle between the two forces is
also different, and so is the direction of the wire. As we saw in Sect. 5.6, the
centrifugal acceleration on the earth’s surface is of the order of the per mille of the
gravity acceleration. Correspondingly, the sought-after effects can be very small.

The Eötvös experiment directly compares the angles of wires to which spheres
of different substances are attached. The two wires are attached to the extremes of a
rigid bar. The bar is suspended by a metal wire that acts as a torsion balance, as
shown in Fig. 5.16, similar to what we described in Sect. 4.7.

Figure 5.16a shows the system in perspective, with Fig. 5.16b looking at it
parallel to the bar. If the ratio mi/mg is different for the two spheres, the directions α
and β of the two tensions are a bit different. This produces a moment on the bar, due
to the horizontal components of the two tensions, that rotates it about the wire from
which it hangs. Under rotation, the wire develops an elastic moment, which
increases with the angle. At the equilibrium angle, the two moments are equal and
opposite. Measuring the angle, the torsion balance gives the moment.

The result of the very sensitive Eötvös experiment was null, allowing him to give
the upper limitmg=mi � 1\5� 10�9, namely that the difference, if any, is less than 5
parts per billion.An experiment of the same type byRobert HenryDicke (1916–1997)
in the 1960s established the even smaller limit of mg=mi � 1\3� 10�11.
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Fig. 5.16 The scheme of the Eötvös experiment
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Problems

5:1. A kid sits in a carriage moving on straight rails. (a) If the speed of the carriage
is constant, in which direction should he launch a ball to take it back in his
hand without moving? In which direction if the carriage accelerates forwards?

5:2. A train travels on straight horizontal rails at the velocity υ0 = 30 m/s. Reaching
a station, its stops, with constant acceleration, in s = 150 m. A suitcase of mass
m = 10 kg lies on the floor, with dynamical friction coefficient µd = 0.20.
During the braking, it slides along the corridor. (a) How much is its accel-
eration relative to the ground during this time? (b) Which is the velocity of the
suitcase when the train stops? (c) After the train stops, the suitcase continues to
slide for a while and then itself stops. Which was the total displacement of the
suitcase on the floor?

5:3. A man measures his weight in a lift, which is at rest, using a spring and
balance, and finds it to be 700 N. With the lift moving, he repeats the mea-
surement and finds it to be 500 N. What can he determine about the lift
acceleration? And about its velocity?

5:4. A person sits in a chair standing on the platform of a merry-go-round, which is
turning. The person holds a plumb. Draw separate force diagrams for the
plumb, the wire, the person, the chair and the platform. Describe each of the
forces in words. Identify the action reaction pairs, both for a frame stationary
on earth and for one stationary on the platform. In the latter case, specify
which of the forces are inertial.

5:5. A kid sits on a merry-go-round that turns at angular velocity ω, while his
friend is on the ground. The resultant of the forces on the latter is zero.
(a) What is the motion of the second kid seen by the first? (b) What is his
acceleration? (c) What are the forces causing it?

5:6. An old vinyl disk rotates at 33 turns per minute. Its radius is r = 15 cm. An
insect walks from the center towards the border. Will it be able to reach it if
the static friction coefficient is µs = 0.1?

5:7. A tennis player at 45˚ latitude is imparting to the ball a speed of 100 km/s,
which we assume to be initially horizontal. Willing to hit ground at a distance
of 50 m, should he take into account the Coriolis force?
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Chapter 6
Relativity

In the preceding chapters we have seen how the Galilei-Newton mechanics is able
to describe with simple laws an enormous number of phenomena both at the
everyday scale and at cosmic level. Newtonian mechanics is one of the major
conceptual constructions of human genius. However, the validity of the theory is
limited on two sides, on the side of high velocities and on the side of small
dimensions.

Newtonian mechanics is no longer valid for not very small velocities compared
to speed of light. The latter is very large, about 3 × 108 m/s. The velocities of all the
objects we have to deal with on earth, of planets and of the majority of heavenly
bodies are very small in comparison. The velocity of the earth and the planets
around the sun, for example, are of the order of one in ten thousand of the speed of
light. Consequently, Newtonian mechanics gives an extremely good approximation
for these phenomena. In this chapter we shall see how the theory needs to be
extended at speeds comparable with the speed of light, in relativistic mechanics.

Classical mechanics, as are called both the Newtonian and relativistic mechan-
ics, cease to apply for objects at molecular or smaller scales, of the order, say, of
nanometers. These are one thousand times smaller than microbes. The correct
theory, valid at all orders of magnitude is quantum physics. Classical mechanics is
the limit of quantum physics for sufficiently large dimensions. In this book we shall
only warn the reader of the limits of classical mechanics when needed.

As we have just stated, in this chapter we shall study the fundamental principles
of relativistic mechanics and of the high velocity phenomena it describes. In the last
part of the XIX century Maxwell formulated a set of equations that completely
describe with great accuracy all the electromagnetic phenomena. However, these
equations seemed to be in contrast with the relativity principle. If it was so it would
have been possible to experimentally find an absolute reference frame. Astronomical
observations and accurate experiments, culminated in the experiment by Michelson
and Morley in 1887 (described in Sect. 6.2), showed that was impossible. An in
depth criticism of the fundamental concepts, in particular on the measurement of
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time, followed, leading to development of special relativity mainly by A. Lorentz, H.
Poincaré and A. Einstein, which was substantially completed in 1905.

The relativity principle was found to be universally valid, but new transforma-
tions of coordinates and time, valid between two inertial frames, the Lorentz
transformations were established. The Lorentz covariance, first established for
electromagnetism, must be valid for all physics laws. We shall emphasize this point
after having followed the historical path.

In the sections from Sects. 6.4 to 6.6 we shall study how the concepts of
simultaneity, time interval and distance must be revised. In Sect. 6.7 we shall find
the law of addition of velocities, which shows, in particular, that the speed of light
is the largest possible one. Space and time become completely correlated concepts
and should be considered as a single four-dimensional manifold, space-time, which
we shall study in Sect. 6.8.

In Sects. 6.9 and 6.10, we shall discuss relativistic dynamics and see how the
fundamental concepts of mass, linear momentum and energy change. In Sect. 6.11
we shall find the relativistic form of the second Newton law.

As already mentioned, all the physics laws should be relativistically covariant.
This in fact is the case. We shall give a few hints on that in Sect. 6.12.

Finally, in Sect. 6.13 we shall give a summary of the differences and equalities
between Newtonian and relativistic mechanics.

6.1 Does an Absolute Reference Frame Exist?

In Chap. 5 we studied the covariance of physical laws under transformation
between two reference frames. We have seen that inertial frames exist, which are by
definition the frames in which the inertia law is valid. In such frames also the
second and third Newton laws hold. In this chapter we shall consider only inertial
frames. Formally, we can state that the physics laws have the same form in two
inertial frames in the following cases. The two frames have no relative motion but
differ for a translation or a rotation of the axes, or the two frames are in a relative
uniform translation motion. In other words we have no means for experimentally
observing differences between one location or another (invariance under transla-
tions, the space is homogeneous), or between one direction or another (invariance
under rotations, the space is isotropic), or, to establish whether a frame is moving in
a uniform translation motion or not relative to another inertial system. The latter
property is the relativity principle established by Galilei.

We observe now that the set of all translations of the reference frames, all their
rotation, and all the transformations between two inertial frames in relative uniform
translation motion have the important mathematical characteristics of being a
group. Let us define what this means.

Consider a set of transformations A, B, C… for which a product operation, ⊗ , is
defined. The set is a group if the following conditions are satisfied:
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1. For any pair of transformations A and B of the set, the product C = A⊗ B is also
a transformation of the set. The product is associative, namely
A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C.

2. The set includes the identity transformation E, such as A ⊗ E = A.
3. For every transformation A of the set, the inverse transformation, called A−1,

exists, such as A ⊗ A−1 = E

With product B ⊗ A we mean that we first apply transformation A and then, on
the result of that, transformation B.

To better understand that, consider the example of the static translations or
displacements, which we take in two dimensions for simplicity. Suppose that the
transformation A is the displacement a in the x direction from the coordinates S (x,
y) to the coordinates Sʹ (xʹ, yʹ), as shown in Fig. 6.1.

The transformation A is

x0 ¼ xþ a

y0 ¼ y:
ð6:1Þ

Let the static transformation B be the displacement b in the yʹ direction of the
result of A, which is Sʹ(xʹ, yʹ), to Sʺ (xʺ, yʺ), namely

x00 ¼ x0

y00 ¼ y0 þ b:
ð6:2Þ

The product of the two is the transformation from S(x, y) to Sʺ (xʺ, yʺ). Is it a
translation? These relations are

x00 ¼ xþ a

y00 ¼ yþ b;
ð6:3Þ

x

y

x'

x’’

y'
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b

O O'

S S'
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Fig. 6.1 Two translations
and their product
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which is the expression of a translation too. It is also easy to see that the associative
property holds. Property 2 for being a group is satisfied.

The other two properties are also satisfied. The identity is the translation of null
displacement (do nothing). Given a translation by a certain displacement, the static
translation of the opposite one is also such a translation. Doing one after the other
leads to the identity. In conclusion, static translations form a group.

Particularly important are the rotations. We recall that the covariance of the laws
under rotations of the axes correspond to the fact that the quantities appearing in the
equations that express the laws (position vector, velocity, acceleration, force,
energy, etc.) must have well-defined transformation properties under rotations.
They should be scalar, pseudoscalar, vectors or pseudovectors, and both sides of the
equation must share the property.

Consider now the time. In Newtonian mechanics time is the same in all reference
systems. We need to look at that more carefully. The time interval, as all the
physical quantities, must be operationally defined. It is not obvious that the oper-
ations to measure the time interval between two events is the same for an observer
at rest relative to the events and one moving relative to them. As we shall see, this is
not true at high enough velocities, in the domain of relativistic physics.

We state immediately that the covariance properties of physics laws relative to
translations and rotations remain equal to those we know, in relativistic physics.
The changes are in the covariance properties between two frames in relative uni-
form translation motion. Let us consider two (inertial) reference frames. The first
one has the coordinates x, y, z and time t. We call it S (x, y, z, t). The second frame,
Sʹ(xʹ, yʹ, zʹ, tʹ), has axes parallel to the first one. The relative velocity is along the,
overlapping, x and xʹ axes. The constant velocity of Sʹ, or of its origin, is vOʹ, is in
the positive direction of x. We choose the origins of the times in both frames in the
instant in which Oʹ and O coincide. Figure 6.2 shows the situation.

The covariance of the laws under transformations between two inertial frames is
defined once the transformation equations are defined, namely the relations between
coordinate and time in Sʹ and in S. The transformation equations we know,
including the relation between the times, are

x

y

x'

y'

r r'

O O'

vO'
S S'

P

Fig. 6.2 Two reference
frames in relative motion
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x0 ¼ x� t0t

y0 ¼ y

z0 ¼ z

t0 ¼ t:

ð6:4Þ

More generally, for a generic direction of the velocity vO, of the points of Sʹ the
transformations are

r0 ¼ r� vO0 t; t0 ¼ t: ð6:5Þ

These are called Galilei transformations. An important property of the Galilei
transformation is that they form a group.

The time intervals, in particular, are equal in the two frames. In other words, time
is absolute, independent of the motion of the observer. This implies that it is
possible to synchronize the clocks in S with the ones in Sʹ independently of the
relative velocity of the two frames. As is time, simultaneity is absolute. If two
events are simultaneous in S they are simultaneous in Sʹ too and in any other
(inertial) frame, whatever its velocity.

The Galilei and Newton laws of mechanics that we have studied were estab-
lished when only one of the fundamental interactions, gravitation, was known.
Three more fundamental interactions were discovered in the following centuries.
The first one was electromagnetism, including electric and magnetic phenomena
and will be treated in the third volume of this course. The other two are the strong
interaction between quarks in the nucleons and the weak interaction responsible, in
particular, for beta decay. Both of them act at the nuclear and subnuclear scales and
are quantum phenomena. Do they obey the invariance principles we have dis-
cussed, in particular the relativity principle? Let us see.

The study of electromagnetic phenomena was developed in the second half of
the XVII and, mainly, in the XIX Century. In 1820 Hans Christian Ørsted (1777–
1851) discovered that electric currents generate magnetic fields, linking for the first
time electricity and magnetism. Between 1820 and 1826 André Marie Ampère
(1775–1836) completely clarified the relation between electric currents and mag-
netism with a series of experiments. In 1831 Michael Faraday (1791–1867) dis-
covered the electromagnetic phenomena: magnetic fields varying in time give origin
to electric fields. The progress became rapid and in 1865 James Clerk Maxwell
(1831–1879) developed the complete theory of electromagnetism. All the electric
and magnetic phenomena are described by a set of differential equations, called the
Maxwell equations. In addition, the theory predicted a new phenomenon. Electric
charges in acceleration produce electromagnetic waves, which propagate with a
well-defined velocity. This velocity can be expressed in terms of two quantities that
measure the strength of the force between two electric charges at rest and between
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two stationary electric currents respectively. Maxwell himself accurately measured
these quantities and found the resulting value of the velocity to be, in round figures,

c ’ 3� 108 ms�1: ð6:6Þ

This is just equal to the velocity of light. And Maxwell noticed that

the only use made of light in the experiment was to see the instruments.

He concluded

that light is an electromagnetic disturbance propagated through the field according to
electromagnetic laws.

The direct experimental confirmation of the existence and of the foreseen
properties of the electromagnetic waves was very difficult. Heinrich Rudolf Hertz
finally succeeded in that in 1887.

The Maxwell equations led to the unification of electric, magnetic and optical
phenomena. However, soon they showed an unexpected behavior. Their form
changes between two inertial frames when coordinates and time are transformed
according to the Galilei transformations Eq. (6.5). It looked like Maxwell equations
did violate relativity principle. If it were so, it should have been possible to design
and perform electromagnetic and optic experiments able to establish an absolute
reference frame.

Suppose for example we have a light source emitting a light pulse in the positive
x direction in Fig. 6.2. Let c be its velocity in S. Notice that light is a wave
phenomenon, similar to sound or sea waves. Consequently, its propagation velocity
is independent of the velocity of the source relative to the observer. However,
differently from the other mentioned cases, light propagates in a vacuum too.
Indeed it comes to us from very distant stars. Consequently there is no substance
perturbed by the wave and supporting its motion. This fact, which is clear to
everybody now, was not so at the end of the XIX Century, when the existence of a
substance pervading all space was assumed, the luminifer (light supporting) ether.
The ether hypothesis has been a serious problem in the development of electro-
magnetic physics.

Anyway, as the speed of light is independent of the motion of the source, it
should transform as any other velocity, as we have by derivation of Eq. (6.4) in the
case of our example

c0 ¼ c� tO0 : ð6:7Þ

As any other velocity, the speed of light should be different for the observer in
S and in Sʹ. If we then measure the speed of light in Sʹ and find it different from c we
would establish that S is the absolute reference frame, namely the only one,
amongst all the inertial frames in which the velocity of light has the value of
Eq. (6.6).
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More specifically, the non-covariance of Maxwell’s equations under the Galilei
transformations requires us to establish which of the following alternatives is the
right one.

(1) The relativity principle is valid for the Newton laws of mechanics but not for
the Maxwell laws of electromagnetism. The Galilei transformations are cor-
rect. This implies the existence of an absolute reference frame, which should
be experimentally found.

(2) The relativity principle is valid for both the Newton laws and electromag-
netism. The Galilei transformations are correct, but the Maxwell equations are
wrong. In this case we should find modifications to the Maxwell equations that
are necessary to have them covariant under Galilei transformations and then
experimentally control whether the predictions of these modifications exist or
not.

(3) The relativity principle is valid for mechanics and electromagnetism. The
Maxwell equations are correct, but the transformation equations between
reference frames are not the Galilei transformations. In this case we must find
new transformations, different from the Galilei ones and such as to insure the
covariance of the Maxwell equations. In addition, the Newton laws would no
longer be any more covariant under the new transformations. We should find
the modifications needed to guarantee the covariance also of mechanical laws
and experimentally verify whether the consequences of the modifications we
made are correct. The historical process leading to the clarification of the
problem was not straight, but rather along winding paths. After the important
contributions of Hendrik Antoon Lorentz (1853–1928), in 1905 two funda-
mental articles were separately published, the first by Henry Poincaré (1854–
1912), the second a few weeks later by Albert Einstein, that laid down the
complete theory. It became known as special relativity.

The crucial experiment to choose between the above stated alternatives is the
measure of the speed of light in inertial frames in relative motion, allowing us to
verify whether it is the same or not. The expected effects however, are extremely
small and very difficult to detect. The experiment was done by Albert Abraham
Michelson (1852–1931) in 1881 and, in a much more sensitive version, together
with Edward William Morley (1838–1923) in 1887. We shall describe the 1887
experiment in the next section. We shall see how it showed that the speed of light is
the same in all reference frames, so excluding alternatives (1) and (2).

6.2 The Michelson and Morley Experiment

We start with a bit of history. In 1879 Maxwell studied the possibility of estab-
lishing the absolute motion of earth relative to the reference in which the speed of
light is c, namely the absolute reference frame, on the basis of astronomical data.
The absolute reference is the frame in which the ether, which was thought to exist,
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is still. If this frame exists, it should be at rest relative to the fixed stars, according to
astronomical observations. We do not know the velocity of the earth relative to this
hypothetical frame, but we know that it should be at least the velocity of the earth in
its orbital motion around the sun. This is about υE ≈ 30 km/s in magnitude and
varies in direction throughout the year. Let us assume this velocity to be, in order of
magnitude, what we have to detect. Its ratio to the speed of light is

bE ¼ tE
c
’ 10�4; ð6:8Þ

which is a very small value. Maxwell established that only in astronomical phe-
nomena could one expect effects of the first order in βE. In laboratory experiments,
in which the light leaves from a point, moves to a certain distance and comes back
to the starting point, or close to it, only effects of the second order were expected,
namely of the order of 10−8. This is really a very small number. Maxwell’s argu-
ment is the following.

Suppose that in our laboratory, namely in a reference in which the earth moves
with speed υE, we place a bar of length l in the direction of the motion. At one end
of the bar we have a source emitting flashes of light and a detector of light nearby.
At the other end there is a mirror sending the light pulses back to the detector. The
light pulse travels the distance l from the source to the mirror at velocity c + υE and
when going back from the mirror to the detector at velocity c – υE. The total time is
then

t ¼ l
cþ tE

þ l
c� tE

¼ 2lc
c2 � t2E

� 2l
c

1þ t2E
c2

� �
¼ 2l

c
1þ b2E
� �

: ð6:9Þ

Now, 2 l/c would be the round-trip time if the bar were not moving. This is a
very short time. But the time to measure is b2E ¼ 10�8 of it. Maxwell concluded that
such an experiment was impossible.

The young, 25 years old, officer of the USA navy Albert Abraham Michelson,
who had already performed an accurate measurement of the speed of light, did not
accept as obvious the impossibility of a laboratory experiment sensitive to the
second order. Rather he worked on the problem and in 2 years found a solution. In
1881, he had already a first result. The sensitivity of this experiment was enough to
detect the effect down to one half of the prediction. The result was null. However,
the conclusion was so important that a confirmation was needed. Michelson, now
with Morley, designed and performed in 1887 a second experiment sensitive to
effects 40 times smaller than the predictions. Again the result was null.

The Michelson-Morley experiment is based on the employment of the inter-
ferometer shown in Fig. 6.3, which had been developed by Michelson himself
(Michelson interferometer).

The source L emits a monochromatic line. This means that the wave is a sinu-
soid. The distance between two consecutive maxima is the wavelength
(λ = 0.6 µm). Each point on the wave moves up and down periodically with a
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period T. In an equivalent manner we can say that if we looked at the wave passing
on a fixed point, the time interval between the passage of two maxima would be T.

Consequently the ratio between wavelength and period is the speed of the wave.
If this is c we have

c ¼ k=T: ð6:10Þ

In the Michelson interferometer, the light beam is divided in two by a semi-
transparent mirror M at 45° with the incident beam direction. One of the two beams
after this mirror reaches the totally reflecting mirror M1, is reflected back, reaches
again M, and is reflected towards the telescope C. The other beam on the arm 2 is
reflected back by M2 and, after M, which partially transmits it, rejoins with the first
beam. The lengths of the two arms are made as equal as possible. The two light
waves are in phase when they leave M for the first time and are also in phase when
they recombine, namely in the telescope, provided that the times, call them t1 and t2,
are identical, or differ exactly by an integer number of periods. This is the situation
drafted in Fig. 6.4a. In this situation, the signal they originate when they recombine
is a maximum (constructive interference).

L M

M1

M2

C

l1

l2

Fig. 6.3 The Michelson
interferometer

+ =

In phase waves Constructive interference

+ =

Opposite phase waves Distructive interference

(a)

(b)

Fig. 6.4 a waves in phase,
b waves in phase opposition
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If the travelling times t1 and t2 differ by half a period, or an odd number of half
periods, as in Fig. 6.4b, the two waves are in phase opposition and cancel each
other giving a zero signal (destructive interference). In the intermediate cases, the
intensity is intermediate too. If these were the conditions of the field seen by the
observer through the telescope, it would be clear in constructive, dark in destructive
interference. In practice however, the planes of the two mirrors are never exactly at
90°. Consequently, the conditions of constructive and destructive interference
alternate through the width of the beam in the visual field. The observer sees a
series of clear and dark bands, called interference fringes. One could change the
planes of the mirrors by adjusting screws in order to have the fringes horizontal, as
in Fig. 6.5. A reference wire in the eyepiece was used to measure the position of the
fringes.

We now evaluate the difference between the times t1 and t2. It is due to two
causes. The first one is instrumental and due to the fact that the lengths, say l1 and
l2, of two arms are never exactly equal. Notice that here exactly means to be so
within a small fraction of the wavelength, namely a few dozens of nanometers. The
other cause is what we want to measure, namely a difference in the light speed,
relative to the instrument between the two arms due to the motion of the earth.

Suppose we have aligned the arm 1 parallel to its transportation velocity and
evaluate t1. In the path fromM toM1 the speed of light is c + υE and in the path back
from M1 to M is c – υE. We have already calculated the round-trip time, Eq. (6.9).
We can write

t1 ¼ 2l1c
c2 � t2E

� 2l1
c

1þ b2E
� �

: ð6:11Þ

We now calculate the time t2. If earth moves with velocity υE relative to the
absolute frame, in the time t2 is displaced by υEt2 as shown in Fig. 6.6. Looking at
the figure we write

ct2=2ð Þ2¼ l22 þ tEt2=2ð Þ2

and hence

t2 ¼ 2l2
c

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2E

q � 2l2
c

1þ b2E
2

� �
: ð6:12Þ

Notice that we have just calculated t1 in the frame fixed to earth and t2 in the
supposed absolute frame. This was allowed because we have assumed the Galilei

inital position  after 90˚ rotationFig. 6.5 The interference
fringes before and after the
rotation of 90° of the
apparatus
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transformations to be valid, in particular the time to be absolute. Notice also that, as
anticipated, the effect is of the second order, namely as b2E.

The difference between the two times is then

Dt ¼ 2
c

l2 1þ b2E
2

� �
� l1 1þ b2E

� �� �
: ð6:13Þ

As we anticipated, the two times differ by the searched for effect, i.e. the term in
b2E, and for the difference between the arm lengths, 2(l2 − l1)/c. To get rid of the
second effect, Michelson employed a measurement method by comparison. The
comparison was between a measurement in the just described conditions and one
after rotating the whole apparatus by 90°. The time difference, say Δtʹ, is Eq. (6.9)
with inverted l1 and l2, namely

Dt0 ¼ 2
c

l2 1þ b2E
� �� l1 1þ b2E

2

� �� �
: ð6:14Þ

We take the difference between the two differences and obtain

Dt � Dt0 ¼ l1 þ l2
c

b2E: ð6:15Þ

If the difference between the differences is zero, the position of the fringes seen
by the observer remains fixed relative to the reference wire when we rotate the
apparatus. If it is equal to one period the fringe pattern moves by one fringe. In
general, the number Δn (not integer in general) of fringes crossing the reference
wire during the rotation, is given by

Dn ¼ Dt0 � Dt
T

¼ l1 þ l2
cT

b2E ¼ 2l
k
b2E; ð6:16Þ
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where, in the last member we have used Eq. (6.15) and introduced the mean value
l of the lengths of the two arms.

In the 1881 experiment the length of the arms was l = 1.2 m, corresponding to an
expected shift of Δn = 0.04 fringes. Michelson was able to appreciate a shift of 0.02
fringes. He did not observe any and concluded that:

The consequence of a stationary ether results therefore contradicted by the facts and it must
be concluded that the hypothesis of the ether is false.

The second experiment is shown in Fig. 6.7. The optical path, namely the path of
the beams, is increased to l = 11 m, having the beam going back and forth on its arm
eight times with a set of mirrors (Fig. 6.7b). The 90° rotation was an extremely
delicate operation. Any vibration even by a small fraction of a wavelength had to be
avoided. Everything had to be stable at this level. Michelson and Morley mounted
the interferometer on a massive granite bench, which was floating on a mercury
bath. The shift expected in the ether hypothesis was now Δn = 0.40 fringes.
Figure 6.4 reproduces the fringes before and after the rotation. No shift can be seen.
The sensitivity was one hundredth of a fringe, corresponding to a distance of 6 nm.
Figure 6.8 shows the result of the measurements, which are the full lines. The

light beam telescope

(a)

(b)

Fig. 6.7 The Michelson Morley experimentMichelson Morley experiment
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the diagram) for Galilei
transformations
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dotted curves are 1/8th (to enhance the visibility of a possible difference) of the
expectations assuming the Galilei transformations. No effect was detected repeating
the experiment in day-time and during the night, to check for any effect of the
rotation velocity of the earth. The conclusion was definitive: the experiment cannot
establish the movement of earth. This is an example of how a null result can give
extremely important information.

A first attempt to explain the result was done in 1889 by George FitzGerald
(1851–1901) and independently in 1992 by H.A. Lorentz. They advanced the
hypothesis that the objects, when in motion, contract, only in the direction of the
motion and not in the perpendicular ones. The contraction was able to cancel the
effect expected in the ether hypothesis. It was an ad hoc, and wrong, hypothesis but
an important step towards relativity theory.

In the following years the Michelson experiment was repeated with increasing
precision, always with a null result. Other experiments sensitive to the absolute
velocity were done, again with null result. In 1904 H. Poincaré, after a careful
analysis of the experimental evidence, drew the conclusion that the relativity
principle (so he named it for the first time) holds for all physical laws. His words,
similar to those of Galilei three centuries before him, are:

According the Relativity Principle the laws of the physical phenomena must be the same,
whether an observer is fixed, or for an observer moving in an uniform translation motion: so
that we have no means, and could not have any, of discovering if are or are not carried
along in such a motion.

His second conclusion was that the speed of light is the same in all inertial
reference frames, i.e., the speed of light is invariant.

From our side, we concede that only the third alternative of those considered in
the previous section can be valid. We must now, first of all, find new transformation
laws, in place of the Galilei transformations.

6.3 The Lorentz Transformations

We need now to find new transformation laws of coordinates and of time between
two inertial frames in relative uniform translation motion. They must be such, in
order to guarantee the relativity principle, that the Maxwell equations are covariant,
namely maintain their form, under such transformations. The invariance of the
speed of light is an immediate consequence of that. These are the Lorentz trans-
formations. After having recalled the important historical elements, we shall give
the result without demonstration and shall discuss it. Finally we shall state which
are the basic assumptions under which the Galilei and Lorentz transformations are
valid.

The Lorentz transformations were, found as the result of a difficult theoretical
effort in several subsequent steps of improving precision, by Hendrik Lorentz
between 1895 and 1904 and, with a further small correction, in final form, by Henri
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Poincaré in 1905, who published the result on the 5th of June 1905. Albert Einstein
reached the same result on the 30th June, when his fundamental article was sent for
publication.

Consider once more the two inertial reference frames S and Sʹ represented in
Fig. 6.2. We have in both frames rulers along the Cartesian axes, to measure the
coordinates, and, in every point of the space, we have identical clocks to measure
the time. All the clocks in each frame are synchronized with one another. We shall
discuss in the next section how this crucial operation can be done. We choose the
origins of the times in both frames, t = 0 and tʹ = 0, as the time at which the two
frames overlap.

We shall call something happening in a definite position an event, as defined by
the three Cartesian coordinates measured by the rulers in the considered frame, at a
definite instant of time, as measured by the clock in that position in the considered
frame. There are two relevant parameters, which always are present in relativistic
formulas. They are pure numbers and are functions of the velocity υOʹ of Sʹ relative
to S. The first one is the ratio of this velocity and the light speed

bO0 ¼ tO0=c; ð6:17Þ

and the second is

cO0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2O0

q
: ð6:18Þ

The Lorentz transformations are

x0 ¼ cO0 x� bO0ctð Þ
y0 ¼ y

z0 ¼ z

t0 ¼ cO0 t � bO0x=cð Þ:

ð6:19Þ

We immediately see that they are a generalization of the Galilei transformations,
tending to them for bO0 ! 0, namely for velocities much smaller than the light
speed, tO0 � c.

The inverse transformations, to go from Sʹ to S, can be found by inverting the
system of equations or, in a simpler way, by changing the sign of the velocity.
Hence

x ¼ cO0 x0 þ bO0ct0ð Þ
y ¼ y0

z ¼ z0

t ¼ cO0 t0 þ bO0x0=cð Þ:

ð6:20Þ
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The Lorentz transformations show very strange looking aspects. They mix, so to
say, space and time. We shall see the consequences in the next sections. Here we
shall look at them from a geometrical point of view. Indeed, Eq. (6.20) are similar
to the transformations between the coordinates in two frames differing for a rotation
of the axes. If the rotation is, for example, around the common z axis, that we can
call the height, the transformations are

x0 ¼ x cos hþ y sin h

x0 ¼ �x sin hþ y cos h:
ð6:21Þ

Also in this case, the quantities in the second frame are mixtures, better linear
combinations, of the quantities in the first. If we look at an object we refer to one of
its dimensions as width, another as thickness. If we now rotate our point of view by
an angle around a vertical axis, the new width, namely the angle under which we
see the object in the horizontal plane, contains a part of what we called depth before
the rotation, and vice versa. It follows that depth and width are not absolute
properties, rather they depend on the point of view, namely they are relative to the
reference frame. The Lorentz transformations are analogous. They tell us that the
length measurements made by a person contain some of the time measured by
another person moving relative to the first one. When speeds are high, close to the
speed of light, the objects are mixtures of space and time, as usually they are of
width and depth. When we turn around an object and we see it from different
angles, our brain automatically recalculates depth and width, because it developed
under these conditions. If we were living at high speed we might have a brain able
to calculate the new mixture of space and time every time we change speed. We do
not have this automatic habit and must understand the situation by carefully
reasoning.

As we well know, the norm of a vector in our three dimensional space is the sum
of the squares of its Cartesian components. In particular the norm of the position
vector is

r2 ¼ x2 þ y2 þ z2: ð6:22Þ

If we consider for simplicity a plane, we have r2 ¼ x2 þ y2, which is the
Pythagorean theorem. Notice that the same is not true, for example, on a spherical,
rather than plane, surface. The Pythagorean theorem is valid if the two dimensional
space is flat. The same is true in three dimensions. A space in which the squares of
the distances are given by Eq. (6.22) is said to be an Euclidean space.

We also know that a property of the rotation of the axes is to leave the norm of
the vectors invariant. We can see the reason for that writing Eq. (6.21) as a product
of matrices
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x0

y0

z0

0
@

1
A ¼

cos h sin h 0
� sin h cos h 0

0 0 1

0
@

1
A x

y
z

0
@

1
A: ð6:23Þ

We see that the square matrix in the transformation is orthogonal. Do the Lorentz
transformations have the same property?

Consider the following two events in S. The first one is the start of a light pulse
from its origin O at the instant t = 0, the second is the arrival of the pulse in the
point (x, y, z) at time t. We express the fact that the speed of light is c by writing

x2 þ y2 þ z2 � ctð Þ2¼ 0: ð6:24Þ

In Sʹ too the light propagates with the same velocity c and we can write

x02 þ y02 þ z02 � ct0ð Þ2¼ 0: ð6:25Þ

The quantities in the left-hand side are very similar to the norm of a vector in
four dimensions. They are called intervals. The difference is the minus sign in front
of the temporal term. Technically, the four dimensional space—time is said to be a
pseudo-Euclidean space. Another way to cope with the issue is to define an
imaginary time coordinate, ict. To simplify the expressions we shall use the
symbols

x1 ¼ x; x2 ¼ y; x3 ¼ z; x4 ¼ ict: ð6:26Þ

An event is a point in space-time. Analogous to the position vector in three
dimensions is the four dimensional vector of coordinates given by Eq. (6.26). We
shall call these vectors, four-vectors, to distinguish them from the vectors in three
dimensions (three-vectors). The Lorentz transformations written as products of
matrices are

x1
x2
x3
x4

0
BB@

1
CCA ¼

c 0 0 ibc
0 1 0 0
0 0 1 0

�ibc 0 0 c

0
BB@

1
CCA

x01
x02
x03
x04

0
BB@

1
CCA: ð6:27Þ

As first established by Poincaré in 1905, the Lorentz transformations joined with
the space rotations, forming a group which he named the Lorentz group. The matrix
corresponding to the product of two transformations is the product of their corre-
sponding matrices.

Equations (6.24) and (6.25) tells us two things. Firstly, two events connected by
a light signal are separated by a null interval. This does not mean that they coincide
but that the norm of the interval between them is zero. This possibility is a con-
sequence of the minus sign in the temporal term. The norm of a four-vector can be
positive, zero, or negative in space-time. Secondly, if an interval is null in S it is
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null in Sʹ too. This is a formal way to state that the speed of light is invariant. As a
matter of fact we can state more. The square matrix in Eq. (6.27) is orthogonal. The
consequence is that all the intervals, even more the norms of all the four-vectors, are
invariant under Lorentz transformations.

In three-dimensional space we dealt with vectors in three dimensions, which we
now call three-vectors. As the reader remembers, a three-vector is an ordered triplet
of real numbers that transforms under rotation of the axes as the position vector.

In a similar manner in relativistic physics we deal with four-vectors.
A four-vector is a quadruple of numbers, real the first three, imaginary the fourth,
which transform from an inertial reference to another, in relative uniform translation
motion, as the coordinates do. The norms of all the four-vectors are consequently
invariant under Lorentz transformations, in other words they are four-scalars. As
such, they play very important roles in relativistic physics. We shall see examples
later.

In the next sections we shall discuss the deep consequences of the Lorentz
transformations on the basic concepts of space and time. Here we notice the
following.

Historically, the Lorentz transformations were found, as mentioned, by the three
main authors, in temporal order, Lorentz, then Poincaré and then Einstein. Each of
them started from somewhat different hypotheses and followed a different logical
path. The path we have followed here is to start from the experimental discovery of
the invariance of the speed of light. This was indeed a revolutionary discovery. This
was also one of the axioms, together with the relativity principle, assumed by
Einstein. From the logical point of view, however, this second axiom is not nec-
essary. Indeed, the relativity principle imposes the covariance of the Maxwell
equations. Once this is established, with the Lorentz transformations, the invariance
of the speed of light is an immediate consequence.

However, the historical approach we have followed, as the vast majority of
textbooks do, tends to hide the logical structure of special relativity and to
overemphasize the role of electromagnetism in the foundations of the theory. After
more than one century from its creation we know that all the fundamental inter-
actions, not only the electromagnetic one, but also the gravitational, the strong and
the weak interactions obey the relativity principle. All the laws that govern them are
covariant under Lorentz transformations. The fields of the fundamental interactions,
which are analogous to the gravitational field we studied in Chap. 4, in quantum
mechanics, are mediated by “quanta”. The quantum of light is the photon. Its
velocity is the velocity of light. As we shall see in Sect. 6.10 this implies that the
mass of the photon is zero. However, it would be logically possible that the photon
would be massive. In this case, the Lorentz transformations would not change, but
the parameter c appearing in the equations would not be the speed of light and the
latter would not be invariant. Indeed, this is the case of the weak interaction, the
quanta of which, called Z0 and W± bosons, have mass and do not move at the speed
of light. If that was the case, the demonstration based on the invariance of the speed
of light would not hold. But the final result would still be valid.
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From the logical point of view, we must ask ourselves the following questions.
Can we establish the relativity theory independently on electromagnetism? What
are the assumptions needed for that? The answer is yes; only a few hypotheses on
the basic structure of the space-time are needed. These are the following:

1. Space-time is isotropic and homogeneous.
2. A class of inertial reference frames exist, namely frames in which the inertia law

holds.
3. The relativity principle is valid, namely there is no privileged reference frame.
4. The transformations form a group.
5. A class of events exists for which the causality principle holds. In this class the

sign of the time differences between events, that is the nature of a possible
causal relation, is the same in all the inertial frames.

It can be demonstrated that only two transformations exist under these
hypotheses, the Galilei and the Lorentz transformations.1 The quantity c in the
latter has the dimension of a velocity and enjoys the properties of being invariant
and being the maximum possible velocity. Galilei transformations are the limit of
the Lorentz ones for c ! 1. There is no need to rely on electromagnetism. The
electromagnetism enters the game only to give to c the physical meaning of speed
of light.

6.4 Criticism of Simultaneity

The most important difference between Galilei and Lorentz transformation is on
time measurements. In the former the result of the measurement of a time interval is
the same in S and in Sʹ. Time is absolute, independent of the reference frame, in the
Galilei and Newton physics. On the contrary, the last Eq. (6.19) states, in particular,
that the instant at which an event happens in Sʹ depends not only on the time in
which it happens in S (as expected) but also on its position in S, as not expected.
Hence, two events happening in two different points that appear to be simultaneous
to an observer in S do not appear to be so to an observer in Sʹ. The simultaneity of
two events is not an absolute concept, but rather it is frame dependent. The in-depth
criticism of the simultaneity concept and of the time intervals measurement was
made by H. Poincaré in 1898. We shall explain the argument considering the ideal
experiment represented in Fig. 6.9.

We suppose to have fixed in the Sʹ frame a rigid bar parallel to the xʹ axis. In the
middle point of the bar we have installed a light source, which emits a light flash at
a certain instant. The flash propagates in all directions, in particular towards two

1For an elementary proof of this result, see J-M. Lévy-Leblond “One more derivation of the
Lorentz transformation” American Journal of Physics 44 (1976) 271 and A. Pelissetto and M.
Testa “Getting Lorentz transformations without requiring an invariant speed” American Journal of
Physics 83 (2015) 338.
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detectors R1 and R2 at the two extremes of the bar. The observer in Sʹ considers the
two events of arrival of the flash at the two detectors as simultaneous. Notice that
this conclusion can be reached only assuming that light propagates with the same
velocity in both directions, namely that space is isotropic. Notice that the
assumption is different from the invariance of the speed of light.

For the observer in S the two events are not simultaneous. Suppose that the
velocity v of the bar in S has the direction from R1 to R2. One flash travels towards R1

that is approaching, the other towards R2 that is receding. The former will then take a
shorter time than the latter to reach its detector. The two events are not simultaneous.

The fact that the simultaneity of two events happening in two different points is
not absolute is a consequence of the existence of a maximum velocity for the
propagation of the signals. This in turn has deep consequences on the measurement
of time. We have defined an event as the set of the three spatial coordinates and the
temporal one that characterize a phenomenon happening at a certain time in a certain
point. To give a physical meaning to this definition, we need to define the sets of
operations to be done to measure the space and time coordinates. In particular, to
measure the time of the events we need to have identical clocks in all the points of
the reference frame. All the clocks must be synchronized. This means that the arms
of all the clocks must reach the same position simultaneously. As simultaneity is
frame dependent, an observer moving relative to a frame, the clocks of which have
been synchronized by the observer at rest in that frame, sees those clocks as not
synchronized. The consequence of the frame dependence of simultaneity is the
frame dependence of the time measurements. Let us see that in the details.

6.5 Dilation of Time Intervals

Consider two events happening in the same point x1 of the frame S in two different
instants t1 and t2. In these conditions we can measure the time with a single clock in
x1. In other words, we have no need to synchronize clocks in different positions.
The two events have the space and time coordinates (x1, 0, 0, t1) and (x1, 0, 0, t2).
They are separated by the time interval

Dt0 ¼ t2 � t1;

where the subscript 0 is to recall that the time interval is measured in the frame in
which the object is at rest. Such intervals are said to be of proper time. The observer

R2R1 L

v

Fig. 6.9 A light flasher and
two detectors at equal
distances
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in Sʹ obviously does not see the two events in the same point of his frame, but, say,
in x1ʹ and x2ʹ. If he wants to measure the times t1ʹ and t2ʹ, in which the events
happen he needs two clocks, one in x1ʹ and one in x2ʹ, which must be synchronized.
Equation (6.19) tell us that

t
0
1 ¼ cO0 t1 � bO0

x1
c

	 

; t

0
2 ¼ cO0 t2 � bO0

x1
c

	 

:

The time interval in Sʹ is then

Dt0 ¼ t
0
2 � t

0
1 ¼ cO0 t2 � t1ð Þ

or

Dt0 ¼ cO0Dt0: ð6:28Þ

Consider for example a clock producing periodic ticks. The period, namely the
time interval between two consecutive ticks, in the frame in which the clock is at
rest, is, say Δt0. An observer moving with velocity υOʹ the clock appears emitting
ticks with the period

Dt0 ¼ cO0Dt0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

o0
c2

q Dt0; ð6:29Þ

which is longer than the proper time Δt0.
It is useful to show this result also with a physics argument. Suppose that the

observer in S and in Sʹ have two identical clocks, built as in Fig. 6.10a. The light
source L emits a flash at a certain instant, which reaches the mirror R at the distance
l and is reflected back to the detector R. When the light pulse reaches R a tick is
emitted and the source L emits anther flash, and so on. Let us see now how the two

L R

M
M

ll

L R

(Δt’/2) O’

(Δ
t’/

2)
c

(a) (b)Fig. 6.10 A clock in, a seen
in its rest frame, b seen from a
moving observer
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observers see the period of the clock. For both observers the period of their clocks is
the time to go twice through the distance l, as in Fig. 6.10a, namely the proper time
Dt0 ¼ 2l=c.

Also, to both observers the clock of the other one appears to move with velocity
υOʹ = υO. Suppose that both clocks are oriented perpendicularly to the relative
motion. In these conditions, the path of light that the observer Sʹ sees in the clock in
S is as represented in Fig. 6.10b, and reciprocally. Light takes half a period Δtʹ/2 to
go from L to M, and the other half a period to go from M to L. The distance
travelled by the flash in half a period is then (Δtʹ/2)c. In the same time interval the
clock has moved a distance of (Δtʹ/2)υOʹ. Hence (see figure)

Dt0=2ð Þ2c2 ¼ Dt0=2ð Þ2t2O0 þ l2 ¼ Dt0=2ð Þ2t2O0 þ Dt0=2ð Þ2c2;

from which

Dt0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

o0
c2

q Dt0;

which is Eq. (6.29).
In the just made argument we implicitly assumed that the length l of the clock is

independent of its motion, namely the same for both observers. As we shall prove in
the next section, this is true because it is perpendicular to the relative motion. We
can reach the same conclusion by observing that it is a consequence of the relativity
principle. Indeed, both observers may agree to cut two notches in the positions of
the extremes of the moving clock, respectively on the y and yʹ axis, when this passes
by. Such notches must result in the same values of y and yʹ, otherwise the results
would be able to distinguish which is moving and which is still. Notice also that the
hypothesis of the independence of light speed of the direction is once more
necessary.

The phenomenon of time dilation is observed every day in elementary particles
laboratories. Protons and electrons are accelerated in accelerators to speed very
close to the speed of light. If time dilation were not taken into account, these
machines would not work.

Consider as another example a natural phenomenon, the cosmic rays. These are
particles, mainly protons and atomic nuclei, accelerated in the galaxy, and above it,
to speed close to that of light and constantly entering the earth’s atmosphere. In the
atmosphere, sooner or later, one of these particles hits a nucleus of the air producing
a shower of secondary particles. Some of them are unstable. Among them are the µ
leptons, or muons, which are very similar to electrons, if not for the mass that is
about 200 times larger. Their lifetime is 2.2 µs. In the decay, a muon produces an
electron, a neutrino and an antineutrino.

The following experiment was done with didactic aims. Charged particles can be
detected using a block of transparent plastic material, doped with substances that
emit a flash of light when a charged particle goes through. The small flash of light is
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converted into an electric current pulse, which is sent to an electronic circuit. When
a cosmic ray enters the block a pulse is observed. If it is a muon and if it stops in the
block, after a time of the order of the lifetime it dies and the newborn electron gives
a second pulse. This signature allows us to discriminate the stopping muons from
other events induced by cosmic radiation. The apparatus was first used on Mount
Washington (New Hampshire) at 1800 m height. In 1 h 568 stopping muons were
counted.

How much time is needed for the muons to travel from 1800 m height to sea
level? Obviously that depends on their speed. However, a lower limit is given by
assuming they move with the speed of light. This lower limit is 6.3 µs. The
experimenters then counted how many muons had lived more than 6.3 µs of the 568
detected on the Mount Washington. They found 27 of them. They then moved their
detector to sea level. In absence of time dilation, about 27 events had to be detected.
They found 412. This number agrees with Eq. (6.29) if the average muon speed is
β = 0.99.

Now consider an observer sitting on a muon. In this frame the lifetime is not
dilated and the muon survives only a few microseconds. How can so many reach
sea level? The reason is that, as we shall see in the next section, the distance from
the top of Mount Washington to sea level does not appear to the muon to be
1800 m, rather it is contracted by the same factor, the Lorentz γ parameter, as the
time dilation. For β = 0.99, we have γ = 6.1 and the distance to travel is only 257 m.

6.6 Contraction of Distances

A second consequence of Lorentz transformations is the contraction of lengths. We
start by observing that the operational definitions of the length of an object at rest
and of an object in motion are not the same. The operations to be done in the two
cases are indeed completely different. Consequently, there is really no a priori
reason for which the two lengths should be equal. It is just every-day experience
with objects moving at relatively low velocities that makes us believe in this
equality. The lengths are equal, as is easily seen, for the Galilei transformations,
not, as we shall now see, for the Lorentz transformations. According to the latter,
when a body moves with velocity v relative to the observer, its dimension parallel
to v appears contracted by a factor 1/γ relative to its value measured at rest. The
transverse directions are equal for both observers.

To demonstrate these statements we imagine a rule fixed to the frame S lying on
its x-axis. The observer in the moving frame Sʹ determines the length of the ruler by
measuring the coordinates of its extremes x1ʹ and x2ʹ at the same instant tʹ. The two
corresponding events have the space-time coordinates (x1ʹ, 0, 0, tʹ) and (x2ʹ, 0, 0, tʹ).
The length found by the observer is lʹ = x2ʹ– x1ʹ. The coordinates in S of the two
events are
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x1 ¼ cO0 x01 þ tO0 t
� �

; x2 ¼ cO0 x02 þ tO0 t
� �

and their distance in S is

l0 ¼ x2 � x1 ¼ cO0 x02 � x01
� �

:

In conclusion, the relation between the length parallel to the relative velocity of
an object at rest and moving with velocity υOʹ is

l0 ¼ l0
cO0

¼ l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2O0

q
; ð6:30Þ

where the subscript 0 recalls that this is the length at rest. This is called the proper
length. In any other moving frame the length appears contracted by the factor 1/γ.

As for the dimension of the ruler, or any object, along y and z, perpendicular to
the motion, the fact that they do not vary follows immediately from the second and
third Eq. (6.19).

In this case too, let us demonstrate the result also with a physics argument. This
will show that the contraction of the length is a logical consequence of the time
dilation.

We still consider the ruler fixed along the x-axis of S. The observer in S measures
the length l, and establishes that the observer in Sʹ, which is travelling at speed υOʹ,
crosses the distance l in the time interval Δt = l/υOʹ. This time is not a proper time,
because it is between two events happening in different locations, the passage of the
mobile observer at one extreme and at the other. As such it is measured with two
different clocks. On the other hand, for the observer in Sʹ the two events happen in
the same point and he can measure the time interval, Δtʹ, with the same clock. Δtʹ is
a proper time interval and, for what we saw in the last section, Dt0 ¼ Dt=cO0 , and, as
Dt ¼ l=tO0 , it is Dt0 ¼ Dt= tO0cO0ð Þ. The mobile observer sees the rule moving at the
speed υOʹ and consequently evaluates its length to be l0 ¼ tO0Dt0 ¼ l=cO0 , which is
the result that had to be demonstrated.

6.7 Addition of Velocities

In this section we shall find the rule of addition of velocities in relativistic physics.
We just recall that for the Galilei transformations, if, for example, a ship moves
relative to shore with velocity u and on the ship a passenger moves with velocity vʹ,
relative to the ship, the velocity of the passenger relative to shore is v = u + vʹ. This
is the Galilean composition rules of velocities. We shall now find the corresponding
rule for Lorentz transformation, still in the particular case in which the two frames
S and Sʹ are those in Fig. 6.11.
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The velocity vʹ of a point in Sʹ is v0 ¼ dx0
dt0 ;

dy0
dt0 ;

dz0
dt0

	 

and the corresponding in

S v ¼ dx
dt ;

dx
dt ;

dx
dt

� �
. Notice that each derivative in each frame is with respect to the

time in that frame. We shall now use the Lorentz transformations Eq. (6.19) with

b ¼ u=c and c ¼ 1� b2
� ��1=2

. We have

dx ¼ c dx0 þ bcdt0ð Þ
dy ¼ dy0

dz ¼ dz0

dt ¼ c dt0 þ b
c
dx0

� �
:

By dividing the first three equations by the fourth we have

tx ¼ dx
dt

¼ dx0 þ bcdt0

dt0 þ b
c dx

0 ¼
t0x þ u

1þ b t0x
c

ty ¼ dy
dt

¼ dy0

c dt0 þ b
c dx

0
	 
 ¼ t0y

c 1þ b t0x
c

	 

tz ¼ dz

dt
¼ dz0

c dt0 þ b
c dx

0
	 
 ¼ t0z

c 1þ b t0x
c

	 
 :

We then write the conclusion

tx ¼ t0x þ u

1þ b t0x
c

; ty ¼
t0y

c 1þ b t0x
c

	 
 ; tz ¼
t0z

c 1þ b t0x
c

	 
 : ð6:31Þ

Notice that not only the components parallel to the relative motion, but also the
normal ones, are different in the two frames. The complicated behavior of the
velocity stems from the fact that its components are not the three components of a
four-vector. This is because, while (dx, dy, dz) are such components, dt is not a
four-scalar.
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Fig. 6.11 Two frames in
relative motion
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It is easy to verify that the Eq. (6.31) tend to the Galilean one for b ! 0.

Example E 6.1 Consider a particle moving with velocity υʹx = c/2 relative to Sʹ, in
the positive direction of xʹ. The reference Sʹ moves relative to S at the speed u = c/2
in the same direction. Notice that if the transformation were the Galilean ones the
velocity of the particle relative to S would have been equal to c. With the Lorentz
transformation we have

tx ¼ c=2þ c=2
1þð1=2Þð1=2Þ ¼

4
5
c:

Example E 6.2 Consider Sʹ to be a (very fast) ship and shooting a ball vertically
upwards with velocity υzʹ. Which velocity of the ball is seen from shore? With
υxʹ = υyʹ = 0 Eq. (6.31) give

tx ¼ u; ty ¼ 0; tz ¼ t0z=c:
Consider now the important case of a light signal propagating along the xʹ axis of

Sʹ. Its velocity relative to S is

tx ¼ cþ u
1þ u=c

¼ c ð6:32Þ

Namely, it has the same value in Sʹ and in S, whatever their relative velocity can
be. This result was expected considering that the speed of light is invariant under
the Lorentz transformations.

A corollary is that combing to velocities smaller than c the resulting velocity is
always smaller than c. The speed of light is the maximum possible velocity.

6.8 Space-Time

We have seen in Sect. 6.3 that the Lorentz are, from the geometric point of view,
rigid rotations in the space-time, of coordinates (x, y, z, ict).

We cannot represent the four dimensions of the space-time on the two dimen-
sions of a page of a book. However, we can learn a lot considering a particle
moving in just one dimension, x. The space-time diagram has then two axes, the
space coordinate x and the time, or, better to have the same physical dimensions ct,
as shown in Fig. 6.12.

A point on this diagram represents an event happening in the space point x at
time t. A particle at rest in the frame is, in space-time, a sequence of events at
different times that have all the same coordinates. This is a line parallel to the ct
axis, as line 1 in the figure. Such a line, in general, is called the lifeline of the
particle.
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If the particle moves with a constant speed υ its lifeline is a straight line, like 2 in
the figure, having a slope relative to the ct axis equal to υ/c. Notice that the scales of
the axes are such that the lifelines of any particle moving at the usual velocities are
very near to being vertical (υ/c < <1). On the other hand, the lifelines of the light
signals are straight lines at +45° or −45° (dotted in Fig. 6.12) depending on the
direction of propagation being the same or opposite to the x-axis. Line 3 is the life
line of a particle that is at rest at a positive value of x at time 0, and that later on
moves in the positive x direction of an accelerated motion, soon reaching speeds
close to c. Notice that no lifeline can have a slope relative to the ct axis larger than
one, namely a velocity larger than c.

Consider now the event O in the origin of the space time reference frame,
namely the instant t = 0 in the point x = 0. Suppose this event being the start of light
signals in all directions (the two of the x axis in our case). The lifelines of the
signals are the bisectors of the axes as shown in Fig. 6.13. In the four dimensional
space time, these lines draw a hypercone with vertex in the origin and half vertex
angle equal 45°. It is called the light cone. The part of the light cone on ct < 0
corresponds to a light signal reaching the point x = 0 at t = 0.

It is not difficult to see that a Lorentz transformation transforms the axes as
shown in the figures for xʹ, ctʹ. The rotation of the axes is different from rotations in
space because here the metric is pseudo-Euclidean rather than Euclidean. In the

ct

xO

1
2

3

Fig. 6.12 The space-time
diagram

ct

xO

absolute future 
A

C

B

ct'

x'

absolute past

Fig. 6.13 The light cone
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space time the x and ct axes rotate in opposite directions, by the same angle,
approaching the light cone. The rotation angle is larger for higher relative velocity
and tends to 45° when that tends to c. Obviously, the light cones of the two frames
coincide, because the light velocity is the same in both.

Consider now events inside the light cone. The intervals between the origin
O and each of them, like A and B, are negative. Such intervals are said to be time-
like, because the purely time intervals are negative. The events outside the light
cone are separated from the origin by positive intervals, called space-like. The
events on the light cone are separated by null intervals and are called light-like. The
intervals being invariant, these properties are independent of the reference frame.

Two events separated by a time-like interval can be joined by a signal travelling
at a speed smaller than light, if the interval is light-like interval, they can be joined
by a light signal, but if is space-like, they cannot be joined by any signal. Such a
signal should travel faster than light. Consequently, no cause and effect relation can
exist between two events at a space-like interval. This conclusion is connected with
the fact that the relation past-future is not an absolute one for events outside the
light cone, such as the event C in the figure. This event is future relative to O in (it
has t > 0), while it is past relative to O, the same event, in Sʹ (tʹ < 0) as is clear from
the figure.

The events separated from the origin by time-like intervals are, as we have seen,
inside the light cone. We can distinguish two parts of the cone. In the upper half
cone, with t > 0, we have the events future relative to O. In the lower half cone, with
t < 0, we have the events past relative to O (as B). Consider now, for example, the
event A. It is separated from O by a negative interval. As the intervals are invariant
there is no reference frame in which A is contemporary to O, because in this case
A would be separated from O by a positive, or null interval. We can conclude that
there is also no frame in which A is past relative to O, because in this case, for
continuity reasons, a frame would exist in which A and O are simultaneous. In
conclusion, all the events in the upper half light cone are future to O in any
reference frame (absolute future of O), those in the lower half cone are past of O in
any frame (absolute past of O).

6.9 Momentum, Energy and Mass

As we have seen, the Lorentz transformations between inertial frames are such as to
guarantee the validity of the relativity principle for the Maxwell equations, the
equations that govern electromagnetism. The principle requires however that all the
physical laws should be covariant under these transformations. Consequently, we
must also find the Lorentz covariant expression that generalizes the second law of
Newton. Once we have found the new law, its predictions should be checked
against experiments.
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We start with the observation that the new law should admit the Newton one as a
limit for small velocities. We also notice that, if an equation has to be covariant, all
its terms must transform in the same way under Lorentz transformations. All of
them must be four-scalar or four-vectors.

We already know a four-vector, the one that identifies the event in space-time,
having components (x1, x2, x3, x4). We have obtained “promoting” the space
three-vector r = (x1, x2, x3) with the addition of the fourth time component. Such a
“promotion” is not always possible with every three-vector. As we have already
seen, for example, the three components of the velocity three-vector v = (dx/dt, dy/
dt, dz/dt) are not the three space components of a four vector, because such are (dx,
dy, dz), but dt is not a four-scalar.

The first step towards using relativistic dynamics is finding the correct expres-
sion of linear momentum. As we well know, the linear momentum of a particle of
mass m and velocity small relative to c is

p ¼ mv ¼ m
dr
dt

:

We can solve the problem of the non-invariance of dt by taking the derivative
relative to the proper time t0, the time in the reference frame moving with the
particle, rather than relative to t. Recalling that dt0 = dt/γ we have

p ¼ mcv ¼ mffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

c2

q v. ð6:33Þ

We can immediately check that this expression tends to the Newtonian one for
small velocities, namely for c ! 1. As a matter of fact, γ does not differ much from
1 even at quite large velocities. For example, even at υ = 0.25c, γ = 1.03, it has
increased by only 3 %. However, when the velocity approaches c, the increase of γ
becomes very rapid, for example, for υ = 0.5c, γ = 1.15, for υ = 0.75c, γ = 1.51, for
υ = 0.99c, γ = 7.09, to diverge for υ → c. If we try to accelerate a particle, when its
velocity approaches the speed of light the work necessary to increase the velocity
further becomes larger and larger. The work uses a larger and larger fraction of
force to increase the γ factor and less and less to increase the velocity. The work to
reach c would be infinite.

We have now found the space vector Eq. (6.33) that can be promoted to
four-vector, which is called four-momentum. What is its fourth component? Taking
into account that dt/dt0 = γ it is clearly

p4 ¼ m
dx4
dt=c

¼ iccm: ð6:34Þ

This very important quantity is, as a part of a constant, the energy of a free
particle, as will become clear soon after having found the law of motion.
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Before doing that we express the norm of the four-momentum p2 � ccmð Þ2. As
all the norms of the four-vectors, this is a Lorentz invariant quantity, a four-scalar.
Its expression is particularly simple in the rest frame of the particle, in which p = 0,
and we have

p2 � ccmð Þ2¼ �c2m2: ð6:35Þ

The norm of the four-momentum is proportional to the mass squared of the
particle.

We now state without demonstration that, once the expression of the momentum
is changed according to Eq. (6.33), the expression of the Newton law does not need
any further change. However, there are now two time dependent factors in the
derivative, the velocity and γ. We have

F ¼ dp
dt

¼ m
d
dt

c tð Þv½ � ð6:36Þ

Notice that neither the force nor the time derivative of the momentum are the
space components of a four-vector. However, such are Fdt and dp, and conse-
quently Eq. (6.36) is Lorentz covariant. Historically, the equation was found for the
first time in June 1905 by H. Poincaré, who demonstrated its covariance and, in
addition, that it is the unique expression enjoying such a property.

We are now ready to see the physical meaning of the fourth components of the
four-momentum and of Fdt, namely of F � ds. We shall proceed in a way quite
similar to what we did for the kinetic energy theorem. Let F(r) be the resultant force
acting on the particle at the position vector r. We calculate its work when the
particle moves from A to B on a certain trajectory, as shown in Fig. 6.14.

The elementary displacement ds in the time interval dt is ds = v dt. The work
done by F is dW ¼ F � ds ¼ F � vdt ¼ dp

dt � vdt ¼ v � dp. To evaluate the last dot
product we differentiate Eq. (6.35), obtaining 2p � dp� 2m2c2cdc ¼ 0. Substituting
p = m γ v, and simplifying, we have

v � dp ¼mc2dc ð6:37Þ

and the elementary work is then

dW¼mc2dc: ð6:38Þ

A

B
ds

F

Fig. 6.14 The trajectory of a
particle and the force acting
on it
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The work done by the force when the particle moves from A to B is

WAB ¼ mc2
Z B

A
dc¼mc2c tBð Þ � mc2c tAð Þ ¼ mc2ffiffiffiffiffiffiffiffiffiffiffiffi

1� t2B
c2

q � mc2ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2A

c2

q : ð6:39Þ

Exactly as in Newtonian physics, the work done by the resultant of the forces on
the particle is the difference between the values of a function of the velocity only at
the end and at the beginning of the considered trajectory. In the following we shall
consider only free particles, namely in absence of potential energy. In these con-
ditions, we can say that the energy of the particle is

E ¼ mcc2: ð6:40Þ

We see that the fourth component of the four-momentum is just the energy of the
particle, divided by c. For this reason, the four-momentum is also called an energy-
momentum vector. Its components are mcv; imccð Þ. Its norm, or better the opposite
of its norm is

m2c2 ¼ E=cð Þ2�p2: ð6:41Þ

The relativistic energy of a free particle, Eq. (6.40), is not only kinetic energy.
Indeed, the particle has energy also when it is at rest. It is called rest energy and we
shall indicate it with

E0 ¼ mc2: ð6:42Þ

We can say that the relativistic kinetic energy of a free particle is its total energy
less its rest energy, namely

EK ¼ E�mc2: ð6:43Þ

We see immediately, by developing in series of β2, that the relativistic kinetic
energy tends to the non-relativistic one at low velocities:

EK ¼ E�mc2 ¼ mc2 1� b2
� ��1=2�1
h i

¼ mc2 1þ 1
2
bþ . . .� 1

� �
’ 1

2
mt2:

On the other hand, at very high velocities, Eq. (6.40) shows that the energy of
the particle grows without limits when its velocity approaches the speed of light. As
we have seen for the momentum, this is due to divergence of the γ factor. The
particle “accelerators” of the laboratories studying the elementary particles work
usually with protons or electrons “accelerated” at a speed very close to
c. Accelerators act to increase the energy of the particles, while their velocity may
change only by very small amounts. They should be more properly called
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“energizers”. Indeed, particles of non-zero mass can never reach the speed of light.
Their energy and momentum would be infinite. We shall come back to massless
particles soon.

The fundamental mechanical quantities of a free particle are its mass, its
momentum and its energy. These quantities are linked by two fundamental equa-
tions, Eq. (6.41) that we shall now write in a bit different form (multiplying by c2)
and a somewhat different expression of Eq. (6.33). They are

E2 ¼ mc2
� �2 þ pcð Þ2; ð6:45Þ

p ¼ E
c2

v. ð6:46Þ

We now observe that in nature elementary massless particles exist. Such are the
photons, the quanta of light, and also the quanta of the strong interaction binding
the quarks in a proton and in a nucleon, which are called gluons. When m = 0, the
expression Eq. (6.33) has no meaning, because it contains the ratio between a null
and an infinite quantity. The most general expression of the relativistic momentum
is Eq. (6.46) that is valid both for massive and for massless particles.

Let us have a better look at Eq. (6.45) with the help of the “cartoon” of Fig. 6.15.
In the general case, Fig. 6.15a, the energy is like the hypotenuse of a right triangle
having mc2 and pc as sides. It is given by the quadratic sum of the two quantities,
namely it is the square root of the sum of their squares. One of them, mc2, is the
mass energy, the other one, pc, is the energy of its motion.

If the particle is at rest, its energy is only mass energy, or rest energy

E0 ¼ mc2 ð6:47Þ

Here we must warn the reader that this equation is often written in the press, but
also in the scientific literature, as E = mc2, which is not true, because, as we saw in
general it is E = mγc2, Eq. (6.40). The confusion is increased by writing mγ “rel-
ativistic mass” and talking of mass varying with velocity. These are archaic con-
cepts that were introduced when relativity theory was being developed, but should
be avoided. Indeed the mass is an invariant quantity and does not vary with
velocity. The term mγ is apart from a factor c2 not else than the energy, which is the
fourth component of a four-vector.

E E

E

pc pc

mc2 mc2

(a)

(b)

(c)Fig. 6.15 Relation between
energy, momentum and mass.
a Generic, b particle at rest,
c massless particle
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Equation (6.46) tells us that the mass energy is enormous, due to the c2 factor.
However matter and energy are not equivalent. Indeed, matter has existed since the
origin of the universe and does not convert into energy. The reason is that the matter
particles have charges, the electric, the weak and the strong ones. These charges are
conserved. We cannot destroy, for example, an electron and get energy from its
mass. We can however, annihilate an electron with its antiparticle, the positron that
has opposite charge. However, the quantity of antimatter in the universe is very
small. We shall come back to the mass and to energy transformations in the next
section.

Figure 6.15c shows the case of a massless particle, say a photon. For Eq. (6.45),
being massless means that

E ¼ pc ð6:48Þ

and from Eq. (6.46), for photons

t ¼ c ð6:49Þ

a free massless particle can move at only one speed, the speed of light.

6.10 Mass, Momentum and Energy for a System
of Particles

We now consider a system of free particles, namely there are no forces, external or
internal, acting on them. As in non-relativistic physics, the total momentum and the
total energy of the system are the sum of the homologues quantities of the single
particles, namely

E ¼
XN
i¼1

Ei; p ¼
XN
i¼1

pi: ð6:50Þ

The situation is more complex if the particles interact with internal forces. In
particular, Eq. (6.50) are not valid. We do not have the time to discuss the issue
here, but only mention that, in addition to the mechanical ones of the particles, there
are both energy and momentum distributed in the fields of forces.

Coming back to the system of relativistic non-interacting particles, we shall now
look at its total mass. As for the single particle, the total momentum and the total
energy of a system are (taking into account the c factors) the four components of a
four-vector, of which Mc2 is the norm.
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M ¼
XN
i¼1

Ei

c2

� �2

�
XN
i¼1

pi
c

	 
2
" #1

2

: ð6:51Þ

We see here a fundamental difference from the non-relativistic case: the mass of
the system is not the sum of the masses of its constituents.

Consider now several examples.

Example E 6.3 Find the expressions for the mass of the system of two photons of
the same energy E, if they move in equal or opposite directions.

For the photon that has zero mass, pc = E. Consequently the total energy
Etot = 2E.

If the photons have the same direction, then the total momentum is ptot = 2E/
c and therefore the mass is m = 0.

If the velocities of the photons are opposite, it is still Etot = 2E, but ptot = 0, and
hence m = 2E/c2.

In general, if θ is the angle between the velocities,

p2tot ¼ 2p2 þ 2p2 cos h ¼ 2 E=c2
� �2

1þ cos hð Þ

and hence m2 ¼ 2 E=c2ð Þ2 1� cos hð Þ=c:
Example E 6.4 Consider two particles with the same mass m moving with the same
initial velocity υ of opposite direction. The two particles collide and stick together.
The final kinetic energy is zero. Macroscopically we call the collision completely
inelastic. However, the total energy did not vary, because the rest energy has
increased by the same amount. In relativistic mechanics the inelastic collisions do
not exist. Energy is always conserved

2
mc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� t2=c2
p ¼ Mc2:

In other words, the mass of the final body is not M = 2 m, but
M ¼ 2m=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2=c2

p
, which is larger than 2 m. The mass increase is extremely

small at low velocities. As an example, suppose that υ = 300 m/s, which is quite
large for everyday life, but very small compared to c, being that β = υ/c = 10−6.
Developing the above expression in series we have

M ¼ 2m=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
’ 2m 1þ b2=2

� �
;

which differs from m by, in order of magnitude, 10−12. This is so small that it
cannot be measured. In other words, the rest energy is so large that its increase
corresponding to the decrease in kinetic energy is undetectable. The decrease of
kinetic energy between initial and final state is on the contrary evident. It looks like
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energy is not conserved. But, what appears to have been lost is rather hidden in the
mass energy.

Example E 6.5 The most massive nuclei, as some of the Uranium isotopes, are
often unstable. They can break up in fragments spontaneously, or make them
absorb a neutron. Suppose the fragments to be two and m1 and m2 their masses,
while M is the mass of the mother nucleus. We state that m1 + m2 < M. Indeed, the
energy conservation requires that

Mc2 ¼ m1c
2 þEK1 þm2c

2 þEK2:

The final kinetic energy EK1 + EK2 is the energy produced for example in a
power station. The remaining energy difference M � m1 � m2ð Þc2 may correspond
to a small mass difference, but the corresponding energy can be large due to the
factor c2. Let us see a numerical example.

We profit from an example to introduce a measurement unit of mass that is
widely used in atomic and subatomic physics. As we have seen, energy can be
measured in electronvolt, Eq. (3.78). As the mass is equal to the rest energy divided
by c2, we shall measure it in eV/c2.

The simplest nucleus, the hydrogen one, is simply a proton, the mass of which is
mp ¼ 938:27 MeV/c2. The mass of the neutron is a bit larger,
mn ¼ 939:57 MeV/c2. The mass of the electron is about 2000 times smaller,
me ¼ 511 keV/c2. The most massive nuclei have masses of hundreds of GeV/c2. In
a heavy nuclear fission, namely a break up, the released energy is of several MeV.
In other words, the mass difference between the initial and the final state is, in
relative value, of a few parts in hundred thousandths. These values are small, but
can be measured, and the predictions of the theory can be checked.

In the lightest nuclei the opposite process can happen. That process is fusion. For
example, two neutrons and two protons can join together to produce a He nucleus.
This is because the mass of the latter, mHe ¼ 3:72741 GeV/c2, is smaller than the
sum of the initial masses. Let us calculate the mass defect, namely

mHe � 2mp � 2mn ¼ 3277:41� 2� 938:27� 2� 939:57 ¼ �28:3 MeV/c2:

The mass defect corresponds to the binding energy, namely to separate the four
components of a He nucleus we must give it an energy of 28.3 MeV.

Example E 6.6 Consider now the hydrogen atom, which is made of a proton and an
electron. Its binding energy, namely the energy to separate the electron from the
proton is ΔE = 13.6 eV. The mass difference in relative values is

mH � mp � me

mH
¼ DE

mHc2
¼ 13:6

9:39� 108
¼ 1:4� 10�8;

which is a very small fraction. The atomic energy scale is much smaller than the
nuclear one.
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Example E 6.7 When energy is measured in eV, the momenta are measured in eV/
c. Let us see, for example, the value in SI of a 1 meV/c momentum. It is

p ¼ 1 MeV/c ¼ 1 MeV/cð Þ 1:6� 10�13J
1 MeV

� �
c

3� 108 m/s

	 

¼ 5:3� 10�22 kg m s�1:

6.11 Force and acceleration

As we have seen, the relativistic law of motion of a particle of mass m under the
action of the force F states that the force is equal to the rate of change of mo-
mentum. This is p = mγ(υ)v. It contains the product of two functions of time.
Consequently, the derivative is the sum of two terms

F ¼ dp
dt

¼ mc
dv
dt

þm
dc
dt

v ¼ mcaþm
dc
dt

v: ð6:52Þ

Taking the derivative of γ(υ), we obtain

dc
dt

¼ d
dt

1� t2=c2
� ��1=2¼ � 1

2
1� t2=c2
� ��3=2 �2t=c2

� � dt
dt

¼ c3
b
c
dt
dt

:

We substitute this expression in Eq. (6.52) taking into account that dυ/dt is the
component of the acceleration in the direction of the velocity, namely that
dt=dt ¼ a � ut, where uυ is the unit vector of velocity, obtaining

F ¼ mcaþmc3bb a � utð Þ ¼ mcaþmc3b a � bð Þ, ð6:52Þ

where β is the vector v/c.
We see that the force is the sum of two terms, one parallel to the acceleration and

one parallel to the velocity. Therefore, we cannot define any ‘mass’ as the ratio
between force and acceleration. At high speeds, the mass is not the inertia to motion.

To solve for the acceleration we take the scalar product of the two sides of
Eq. (6.52) with b. We obtain

F � b ¼ mca � bþmc3b2a � b ¼ mc 1þ c2b2
� �

a � b ¼ mc3a � b.

Hence

a � b ¼ F � b
mc3

ð6:53Þ
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and, by substitution into (6.52)

F� F � bð Þb ¼ mca. ð6:54Þ

The acceleration is the sum of two terms, one parallel to the force, and one
parallel to the speed.

Equation (6.52) and its equivalent Eq. (6.54) have been the object of a large
number of experimental controls with high energy charged particles like protons,
nuclei and electrons under electric and magnetic forces in different configurations.
The engineers designing the accelerators at relativistic energies use these formulas
in their everyday work.

We notice that force and acceleration have the same direction in two cases only:
1. force and velocity are parallel: F = mγ3a; 2. force and velocity are perpendicular:
F = mγa. The proportionality constants are different. Consider for example a particle
moving with 95 % of light speed, that is β = 0.95 and γ = 3.2. If the particle travels
on a circle, the centripetal force should be 3.2 times larger than what was foreseen
by Newtonian mechanics. However, if it is in a rectilinear accelerated motion the
force necessary to give it the same acceleration is γ3 = 32.8 times larger than in
Newtonian mechanics. We see that, even in these special cases, we cannot consider
mass as the inertia to motion.

6.12 Lorentz Covariance of the Physics Laws

We have seen how the relativity principle, originally established by G. Galilei in the
XVII century, was found to hold for electromagnetic interactions, provided that the
transformations of coordinates and time between two inertial reference frames are
Lorentz transformations. This led to special relativity. The theory, however, can
work only if all the physics laws turn out to be Lorentz covariant. Indeed, we have
already discussed that for the second Newton law.

We have already firmly stated that the Lorentz transformations, while they
historically discovered a guarantee for the relativity principle of a specific inter-
action, can be demonstrated independently of electromagnetism, on the basis of
very general assumptions as we saw at the end of Sect. 6.4.

It remains to be seen, however, whether the other forces, or better interactions, of
nature satisfy the relativity principle, namely if the equations that rule them behave
in a Lorentz covariant form. The answer is yes, but we can give here only a few
hints.

The Newton law of the gravitational force,

F rð Þ ¼ �GN
m1m2

r2
ur ð6:55Þ

262 6 Relativity



is clearly not Lorentz invariant. Indeed, this expression implies instantaneous
propagation of the effects over any distance. If, for example, our sun would sud-
denly disappear, the gravitational force on earth would go to zero immediately. But
Lorentz invariance requires that all the fundamental interactions propagate with a
speed not larger than c, which is the parameter in a Lorentz transformation.
Consequently we would be safe still for 8 min, the time taken by the gravitational
wave resulting from the explosion to reach us. The relativistic theory of gravity is
called general relativity, as we have already mentioned. The equations were sent for
publication at the end of 1915 independently by David Hilbert (1862–1943) and A.
Einstein. We have now an enormous quantity of experimental proofs of its validity.
We only mention, as an example, that the data of the global position system, the
GPS, which is based on a constellation of artificial satellites, would give wrong
information on our position if not elaborated with general relativity.

All the other forces we studied in Chap. 3, the elastic force, the forces of the
constraints, the force between molecules, etc. are, at a fundamental level, due to
electromagnetic interaction. As such, the laws by which they are governed are
Lorentz invariant.

The other two fundamental interactions, the weak interaction and strong inter-
action, were discovered after the establishment of special relativity and their
equations, which are quantum theories, were written in a Lorentz covariant form
since the start. Their validity has been proven with a myriad of very high precision
experiments on high energy particles both from natural sources, like the radioactive
decays and cosmic rays, and, mainly, in the accelerator laboratories.

6.13 What Is Equal and What Is Different

We summarize here the concepts that are different in relativistic mechanics (r.m.)
from Newtonian mechanics (n.m) and those that remain unaltered.

1. The relativity principle is valid both in n.m. and in r.m.
2. The coordinate transformations are different, Galilei in n.m., Lorentz in r. m.
3. Time and simultaneity are absolute in n.m., relative in r.m.
4. The law for summing velocity is different.
5. In n.m., velocities can have any value; in r.m. they cannot be larger than c.
6. The expressions of momentum are different.
7. The forces have the same expressions.
8. The force is equal to the time derivative of the momentum in both.
9. The total momentum (and the total angular momentum) of an isolated system

are conserved in both cases.
10. The energy has different expressions. The kinetic energy is directly proportional

to the square of velocity in n.m., not in r.m. The rest energy does not exist in n.m.
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11. The energy of an isolated system is conserved only if all the forces are con-
servative in n.m., always in r.m.

12. The total momentum of a system of non-interacting particles is the sum of the
momenta of the single particles. The same is true for energies. This both in n.m.
and in r.m. In r.m. the same is not true for the systems of interacting particles.
We can only hint at the reason for that here. It lays in the fact that the field of
the interaction force contains both energy and momentum.

13. The mass of a composite body is the sum of the masses of its components in n.
m. it is not in r.m.

14. In n.m., force and acceleration are parallel; they are not so, in general, in r.m.
15. In n.m. the proportionality constant between force and acceleration is the mass,

which acts as inertia to the motion. In r.m. acceleration is not proportional to the
force, there is no “inertial” mass.

16. The mass is invariant both under the Galilei and the Lorentz transformations.

Problems

6:1. Consider two reference frames, S, which we call fixed, and Sʹ, which we call
mobile as in Fig. 6.2. In the two frames there are clocks as those in Fig. 6.5.
Develop the argument analogous to that of Sect. 6.5 if the arms of the clocks
are in the direction of the x axis, namely of the relative velocity.

6:2. A muon is produced by cosmic rays in the atmosphere. It travels at
υ = 0.99c for 4 km and then decays. (a) How long does it live in our
reference? (b) and in its frame? (c) How much is the thickness of the
atmosphere it crossed in its reference?

6:3. A particle of mass m moves in a straight motion along the x axis with
x tð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x20 þ c2t2
p

. Find its limit velocity for t → ∞. Find the expression of
the force acting on the point.

6:4. A particle of mass m moving with the speed υ = (4/5)c, hits a particle at rest
with the same mass. After the collision the two particles form a unique body
of mass M. Find M and the velocity of this body.

6:5. The cosmic rays contain protons with 1010 GeV energy. Find the time in the
reference frame of such a proton to cross the Galaxy.

6:6. Find its momentum (in MeV/c) of an electron of 1 meV kinetic energy.
6:7. Find the momentum, in MeV/c of an electron travelling at c/2.
6:8. Find the energy of an electron travelling at 80 % of the speed of light.
6:9. A particle called ρ having mass 770 meV/c2 decays at rest in two particles

called π, which have mass m = 140 meV/c2. Find their velocity.
6:10. In the LEP accelerator at CERN, electrons were accelerated up to an energy

of 50 GeV. Find the relative difference between the velocity of the electrons
and light.
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6:11. A particle called tau has a lifetime of 0.3 ps. Find the velocity it should have
to travel 1 mm in a lifetime.

6:12. A Z° (mass 91.2 GeV/c2) particle decays at rest in an electron and a positron
(they have equal masses). Find the energy and the momentum of the elec-
trons. How much does, in relative terms, the velocity of the electron differ
from c?
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Chapter 7
Extended Systems

In this chapter we shall discuss the mechanics of extended systems, namely of
mechanical systems composed of more than one particle or by bodies of finite
extension. As a matter of fact, even in the simplest case of a point-like body under
the action of a force, at least another body, giving origin to the force, must exist.
Every action is always accompanied by a reaction. In other words, the simplest
mechanical system consists of two interacting particles. We have considered, for
example, the motion of earth or of a planet around the sun. We had ignored the sun.
We could do that without much error because its mass is enormously bigger. These
however are particular cases.

In the first three sections we shall study two-body systems. We shall see
(Sect. 7.1) how the potential energy, corresponding to the force that one body exerts
on the other is, in fact, relative to the pair. In other words, it is an interaction. We
shall then introduce in Sect. 7.2 the concepts of center of mass and of reduced mass.
In Sects. 7.3 and 7.4 we shall discuss two examples of a two-body system, the
double stars and the tides, a phenomenon in another two-body system, earth and
moon.

The experimental study of collisions between two bodies had, and still has, an
enormous importance in the development of physics. In the sections from Sects. 7.5
to 7.7 we shall see the collision experiments between two pendulums that led
Newton to establish the principle of conservation of linear momentum. This is one
of the fundamental principles in physics, strictly connected with the action-reaction
law.

We shall then move to systems of many particles, introducing the concepts of
total linear momentum (or quantity of motion) and total angular momentum of a
system. We shall find the fundamental laws giving their rate of change, and study
the properties of a privileged point, the center of mass of the system.

In the last two sections we shall come back to the study of collisions between
extended bodies.

© Springer International Publishing Switzerland 2016
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7.1 Interaction Energy

In our discussions on potential energy in the preceding chapters, we have analyzed
the problems as if only one body existed, on which given forces were acting. For
example, we said that the potential energy of the weight of a body of mass m at the
height h is mgh. This is a perfectly correct statement when the mass of the body
under consideration, an apple for example, is much smaller than the body with
which it interacts, the earth in the example. In this situation, a reference frame
united with the larger object can be considered at rest. As a matter of fact, when the
apple falls towards the earth, also the earth falls towards the apple in an accelerated
motion. In practice, both earth velocity and acceleration are completely negligible.
Rigorously speaking however, we are dealing with a two-body system, the apple
and the earth and mgh is the variation of potential energy of the earth-apple system,
when the distance between the center of the apple and the center of the earth
increase by h. In other words, the potential energy is a property of the couple of
objects together; it cannot be associated to one or the other individually. Indeed, if
the two interacting bodies have comparable masses, both of them accelerate con-
siderably under the action of interaction forces. The kinetic energy of each of them
will vary at the variation of the interaction potential energy. Let us now study the
issue.

We start with a simple example in Fig. 7.1. It is made of two small spheres of
mass m1 and m2 joined by a spring. In the upper part of the figure the system is in its
configuration at rest. We now move both spheres and call x1 and x2 the two
displacements, in value and sign, measured each from its equilibrium position, as in
the lower part of the figure. Both forces now act, F21 on sphere 1 and F12 on sphere
2. The forces, an action reaction pair, are equal and opposite. These are elastic
forces, which are proportional to the stretch that is Δx = x1 – x2 (N.B. x1 is positive,
x2 is negative).

The elastic potential energy, Eq. (3.2), is

Up ¼ 1
2
kDx2 ð7:1Þ
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Fig. 7.1 Two masses linked
by a spring
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where k is the spring constant. Notice that this energy does not belong to one or the
other sphere, but to the whole system, in other words is the interaction (through the
spring) energy between the spheres.

The potential energy of any system in a given state is always the work that must
be done against the forces that the system develops to change its state from the
(arbitrarily) defined zero energy state to the given state. In our case the zero energy
state is when the spring is not deformed. In the above statement, all the work must
go into a change of the potential energy, namely it must be done at constant kinetic
energy (zero in particular). Let us check with a direct calculation that our statements
are correct.

Suppose we start from the equilibrium position. We first move sphere 1, keeping
2 at rest. Call x the displacement (with sign) of sphere 1 from its equilibrium
position. We are moving it from x = 0 to x = x1. During the displacement the stretch
of the spring is just x. The x component of the force is consequently F21x = –kx and
the work to be done is against it,

W1 ¼ �
Zx1
0

F21xdx ¼ þ k
Zx1
0

xdx ¼ 1
2
kx21:

We now move sphere 2, keeping 1 steady. We now call x the displacement of
sphere 2 from its equilibrium position. We are moving it from x = 0 to x = x2. The
stretch of the spring is now x1 – x and the x component of the force F12x = k(x1 – x).
The work to be done against it is

W2 ¼ �
Zx1
0

F12xdx ¼ �kx1x2 þ 1
2
kx22:

Finally the total work is

W ¼ W1 þW2 ¼ 1
2
kx21 � kx1x2 þ 1

2
kx22;

which is clearly Eq. (7.1).
Consider now a second example: the potential energy of the gravitational force.

Consider a point-like body of mass m on the surface of the earth (mass M), at the
distance RE from its center. As we know, the potential energy is

Up ¼ �GN
mM
RE

: ð7:2Þ

Recalling the arguments of Sect. 2.14 one easily sees that this is the work to be
done against the gravitational force to move the mass m, say an apple, at zero
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kinetic energy, from infinite distance (the state we have defined to have zero
potential energy) to the surface of earth. The energy is negative because, from
outside of the system, we must work against an attractive force. In other words, the
work we are considering is the opposite of the work of the gravitational force. We
also see that the energy is not in the apple alone but in the earth and apple system.

As the last example we consider the weight force. The potential energy of a body
of mass m at height h over the level we have decided for the potential energy to be
zero, say the ground, is

Up ¼ mgh: ð7:3Þ

We know that this energy is just Eq. (7.2), apart from an additive constant.
Indeed, in the two cases we made a different choice of the zero potential energy
state. At first sight the two equations look quite different. However, consider that
Eq. (7.3) is an approximate expression, valid for small level differences relative to
the earth’s radius, h « RE. We then start from Eq. (7.2) expanding it in series of h/RE

stopping at the first order. We get

Up RE þ hð Þ � Up REð Þ ¼ �GN
mM

RE 1þ h=REð Þ þGN
mM
RE

’ GN
mM
R2
E
h:

Now consider that GNM=R2
E is simply the gravity acceleration on the earth’s

surface g. Equation (7.3) is valid when taking the potential energy on the earth’s
surface equal to zero, Up REð Þ ¼ 0: And the last equation becomes Eq. (7.3). In
conclusion, the energy of the weight force mgh is not of the body but of the system
body and earth.

7.2 Centre of Mass and Reduced Mass

We now come back to the simple mechanical system of two spheres joined by a
spring (Fig. 7.2) and consider its motions. We are interested in the motion of one of
them, say sphere 1. The sphere is subject to the elastic force F21. In Sect. 3.2 we
have already discussed the motion of a material point under the action of an elastic
force and found it to be harmonic. In that case, however, the other end of the spring
was fixed to a wall and did not move. We can think of the wall as analogous in that

ξ1ξ2
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Fig. 7.2 Two spheres
connected by a spring
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case to sphere 2 in this case. In both cases, the force F12 acts on the second body.
But the mass of the wall is so large that its acceleration is completely negligible. In
the present case, on the contrary, sphere 2 will accelerate.

The problem we have now is that both points move. As we shall see in this
chapter however, for every material system a privileged point, called center of mass
of the system, exists. It is a geometrical point, not a physical one. In the presence of
only internal forces, as in the case under discussion, the acceleration of its center of
mass, in an inertial reference frame, is zero. We shall profit from that and describe
the motion in a reference frame moving with the center of mass and with its origin
in it, called the center of mass frame, for a brief CM frame. The center of mass of a
two point-like bodies system is the point on the segment joining the two points that
divide it in parts inversely proportional to the masses at the corresponding extremes.

We shall call C the center of mass, ξ1 and ξ2, the distances of the two masses
from it and r the coordinate of point 1 measured from point 2. By definition of
center of mass

n1=n2 ¼ m2=m1: ð7:4Þ

Considering that r = ξ1 + ξ2 is the coordinate of point 1, the motion of which we
want to study is

n1 ¼
m2

m1 þm2
r: ð7:5Þ

The force F21 acting on point 1 will give it the acceleration a1 according to the
Newton law

F21 ¼ m1a1 ¼ m1
d2n1
dt2

¼ m1m2

m1 þm2

d2r
dt2

:

We have so found, in the last side of this equation, an important quantity, called
the reduced mass of the system

l ¼ m1m2

m1 þm2
: ð7:6Þ

We can the write the equation of motion of point 1 as

F21 ¼ l
d2r
dt2

; ð7:7Þ

which is a very simple expression indeed. The equation of motion of point 1 is
identical to its equation of motion valid when point 2 is fixed, provided that we are
in the CM frame and we substitute for the mass of point 1 the reduced mass of the
system.
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Let us check if the arguments we made in Sect. 3.2 agree. First, we observe that
when m2 becomes very large compared to m1, the reduced mass tends to the smaller
of the two masses, m1. To see that, just write Eq. (7.6) as l ¼ m1= 1þm1=m2ð Þ,
from which immediately l ! m1 for m1=m2 ! 0: Clearly, what we said in Sect. 3.
2 is the limit case of what we are discussing here.

We now come back to the problem of the motion of point 1. We call r0 the
length at rest of the spring and s its stretch. Hence r = r0 + s and F21 = –ks. But
d2s=dt2 ¼ d2r=dt2 and Eq. (7.7) becomes

�ks ¼ l
d2s
dt2

; ð7:8Þ

which we recognize as the harmonic oscillator equation. We already know its
solution

s tð Þ ¼ A cos x0tþ/ð Þ ð7:9Þ

where A and ϕ depend on the initial condition and

x0 ¼
ffiffiffiffiffiffiffiffi
k=l

p
: ð7:10Þ

In the CM frame the motion of point 1 is a harmonic oscillation. The difference
with the case when point 2 is at rest is that in place of the mass of the oscillating
body we have the reduced mass of the system. Clearly, point 2 moves with a
harmonic motion of the same frequency because the reduced mass is the same in
both cases.

In Sect. 3.11 we have considered, as an example of mechanical resonance, a
diatomic molecule, in particular HCl. The two nuclei are small enough to be
considered point-like particles in a very good approximation. Call r0 their equi-
librium distance. When the distance r is different from r0, the electron cloud that in
the molecule surrounds the nuclei exerts a force, which, in a first approximation, is
proportional to the displacement s = r – r0. The force is then elastic and the system
is quite similar to the one we just discussed. As a matter of fact, the internal motions
of molecules are correctly described by quantum mechanics. Our discussion should
be considered a first approximation.

The potential energy of the interaction between the two nuclei, which we have
already considered in Sect. 3.11, is shown in Fig. 7.3. The dotted parabola around
the minimum is an approximation of the potential energy corresponding to the
elastic force. In this approximation the potential energy is

Up ¼ 1
2
ks2: ð7:11Þ

The equation of the parabola is written in Fig. 7.3 in eV units of energy and
nanometer units of length. Expressing them in joule and meters respectively we
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obtain Up rð Þ ¼ 270 s2 J and the “spring constant” equivalent is
k ¼ 2� 270 ¼ 540 N/m2.

We calculate now the reduced mass. In atomic mass units (u = 1.66 × 10−27 kg)
the masses of hydrogen and chlorine are (approximately) equal to 1 u and 35 u. In
the same units l ¼ 1� 35ð Þ= 1þ 35ð Þ ¼ 0:97 u, which is close to the smaller
hydrogen mass.

Finally, the proper oscillation frequency is m0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
= 2pð Þ ¼ 90 THz, which

is the value we used in Sect. 3.11.
As a second example, consider a molecule of carbon oxide (CO). The potential

energy is quite similar to HCl, also quantitatively. We then take the same value of
the “elastic constant”.

As for the reduced mass we must consider that the masses of 12C and 16O are
respectively 12 u and 16 u. The reduced mass is then l ¼ 12� 16ð Þ= 12þ 16ð Þ ¼
6:9 u = 1:1� 10�26 kg: Notice that, this time, the two masses are similar and the
reduced mass is substantially different from, and smaller than, each of them. The
reduced mass of a system of two equal masses is one half of each of them.

Concluding our calculation, we find the oscillation frequency m0 ¼ 34 THz,
which is not too different, considering our approximations, from the measured value
m0 ¼ 64 THz

7.3 Double Stars

In this section we shall consider a two-body system moving in two dimensions
rather than one dimension as the diatomic molecules. It will also be a much larger
astrophysical system. In Chap. 4 we discussed the motion of a planet, of mass m,
about the sun, of mass M or of a satellite around its planet, assuming the sun in the
first case, the planet in the second, to be at rest. From the discussion of the last
sections one clearly understands that the assumption is not rigorously true. Indeed,
both bodies move around their center of mass. However, in those cases the mass of
the central body is much larger than the one of the orbiting body, and the
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approximation is quite good. We shall now consider an astronomical system in
which the two masses, say m1 and m2 are similar.

We know today that a large fraction of the stars are in fact double, or, in several
cases, even multiple. To establish these facts, the image of the star system needs to
be resolved in those of its components. Telescopes of adequate resolving power are
needed.

The first double star system was discovered in 1780 by Sir William Herschel
(1738–1822) in the Ursa Major constellation. It is called Xi Ursae Majoris. More
double stars were discovered by Sir William and his son John (1792–1871) in the
following years. The study of double stars gives a further opportunity to check the
Newton theory.

Figure 7.4 shows the apparent positions, namely the angles under which the
objects are seen from earth of the Xi, as measured for more than a century. The
motion must be studied in the CM frame, as in Fig. 7.5. C is the center of mass of
the system, r1 and r2 the position vectors of the two stars, which are point-like in a
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good approximation, and m1 and m2 their masses. Let r be the vector from m2 and
m1.

From the definition of center of mass m1r1 ¼ m2r2 and

r1 ¼ m2

m1 þm2
r: ð7:12Þ

We know that the force, call it F(r), acting on m1 is the attraction of m2 and
consequently that it is directed as r. The acceleration is ar1 ¼ arm2= m1 þm2ð Þ and
the Newton law

F rð Þ ¼ m1m2

m1 þm2
ar ¼ lar: ð7:13Þ

In this case too, as in one dimension, we have found that the motion of a body of
mass m1 around another body of mass m2 when both are moving is the same as
when m2 is at rest if, (a) we substitute for m1 the reduced mass of the system, (b) we
work in the CM taking into account that the center of the forces is the center of
mass.

Figure 7.4 shows that the orbit shape is an ellipse. However, one of the stars does
not look to be in a focus of the ellipse. This is an optical effect due to the fact that
we are not looking normally at the orbit plane, but at a certain angle.

An interesting feature of binary systems is that their period depends only on the
sum of the masses and not on their ratio. This is true in general, but, for simplicity,
we restrict ourselves to the circular ones, as shown in Fig. 7.5b. The two stars rotate
around the center of mass with the common angular velocity ω. The motion of one
of them, m1 for example, is given by the Newton equation GNm1m2=r2 ¼ m1x2r1
and hence x2 ¼ GNm2= r1r2ð Þ and, for Eq. (7.12)

x ¼ 2p
T

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GN

m1 þm2

r3

r
: ð7:14Þ

By measuring the period T and the distance r between the stars we can determine
the sum of their masses.

7.4 Tides

The level of water contained by the seas and oceans varies during the day. The level
grows (flux) till it reaches a maximum level (high tide) and then decreases (reflux)
to a minimum (low tide) and so on. The phenomenon is periodic with a period (for
example between consecutive high tides) of 12 h 25′, which is exactly equal to one
half the time taken by the moon to come back to the same position relative to earth,
namely its revolution period. Consequently, since ancient times tides were thought
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to be due to the moon. The explanation of the phenomenon however is not at all
simple and had to wait for Newton.

Considering that we observe the phenomenon on earth, we shall describe it in a
reference frame fixed on her. The first idea coming to mind is that the moon attracts
the parts of the oceans nearest to it more strongly, causing their rise. But it does not
work, because after half a period, when the moon is in its farthest position, we
observe another rise rather than a lowering. The explanation must be different.

We cannot consider here the earth as point-like. We must take into account that
the gravitational field of the moon is different in different points of the earth’s
surface, that have different distances from the moon. We shall work in a reference
frame with the origin in the center of the earth. Notice that it cannot be considered
inertial in the present discussion. If the gravitational force was equal in all the points
of earth, it would be exactly balanced by the inertial force (centrifugal) due to the
accelerated motion of the center of the earth, as we have seen in Sect. 5.7. Actually,
the gravitational force is exactly balanced by the centrifugal one only in the earth’s
center. On the part of the surface nearer to the moon, the moon gravitational force is
larger than the centrifugal one. On the opposite part the centrifugal force is larger
than the gravitational one.

We underline that the inertia force we are considering is due to the acceleration
of the origin of the reference frame (the center of the earth) that is rotating during
the day around the center of mass of the earth-moon system. We also observe that
we are neglecting the action of the sun on earth, which is much more intense than
that of the moon. We can do that, in a first approximation, because what matters
here is not the gravitational field itself but its differences in the different points of
the earth. As a consequence of the much larger distance (400 times) of the sun than
the moon, its field, even if stronger, is much more homogeneous. However, the sun
does have an influence. We shall come back to that at the end of the section.

To simplify the problem, we shall consider the earth as a solid sphere with a
layer of water of constant depth on the surface. We also assume the moon moving
in the plane of the Equator. Figure 7.6 shows a view in this plane. The earth and the
moon, a two-body system, rotate about their common center of mass. The
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accelerations of both are directed towards the center. We can also think that both are
continuously falling towards the center of mass.

In the point A, in which the moon is at the zenith, its gravitational attraction is
larger than in O, because A is closer to it. As a consequence, the water particles in
A fall towards the center of mass, and towards the moon too, with a larger accel-
eration than the earth’s center O. On the contrary, in the point B in which the moon
is on nadir, the gravitational attraction of the moon is smaller than in O and the
water particles there fall towards the center of mass, and the moon, with an
acceleration smaller than O.

We have followed the argument of Newton till here. However, at this point,
Newton made a mistake (followed by several authors). The error is to extend what
was established for the accelerations of water particles to their displacements. If we
could do so, we would say that the water particles in A move towards the moon
more than the center O and the sea rises, while those in B move towards the moon
less than O. The sea moves away from the moon, and rises here too. The situation is
shown in Fig. 7.7a. The ocean presents two bumps, diametrically opposed, on the
line joining the moon with the earth’s center. The bumps move in phase with the
moon. We then expect high tides to take place just when the moon passes at the
zenith and at the nadir, the low tides in quadrature, i.e. at a quarter of the period
relative to those positions.

The observations, however, do not confirm these predictions. Rather, high tides
happen when the moon is about in quadrature, the low tides when she is at the
zenith and at the nadir as shown in Fig. 7.7b. The presence of the continents and
other effects make the situation more complex. In any case, however, the delay
between the passage of the moon on the zenith and nadir and the high tide is always
of several hours. The disagreement is a consequence of the above-mentioned
mistake. The displacement of a water particle at a certain time is not parallel to the
acceleration in that instant.

The correct treatment of the tides can be divided in two parts. In the first part we
calculate the tide-generating force as a function of a point on the earth’s surface.
The second part is the calculation of the forced oscillation of the oceans under the
action of that force. This calculation is complicated by the presence of continents.
We shall show the basic points of the argument.

(a) (b)Fig. 7.7 Schematic view of
the earth and of the tides.
a Phase as foreseen by
Newton. b Phase as actually
observed (approximately)
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Let us start with the force. Both the gravitational and the inertia force acting on a
water particle are proportional to its mass. We can then consider the force per unit
mass. The weight per unit mass, g, has no influence on the tides, because it, even if
different from point to point, is constant in time in each point. If the moon did not
exist, the surfaces of the sea would be in any point perpendicular to g. The
tide-generating force per unit mass, that we shall call f, is, as we already said, the
resultant of the gravitational attraction of the moon and of the centrifugal force due
to the rotation of the earth’s center around the center of mass of the moon-earth
system.

We shall not perform the calculation of f (which is not difficult). We show the
result in Fig. 7.6b. We shall however, evaluate the order of magnitude of f, cal-
culating it in A, where it is particularly easy. In the center O the gravitational
attraction of the moon and the centrifugal force are equal. In A the centrifugal force
is the same and is larger than in O. In this point they have equal and opposite
directions. The magnitude of the sum of the gravitational attraction and the inertia
force in A is consequently the difference between the gravitational attraction in
A and the gravitational attraction in O (because the latter is equal to the inertia force
both in O and in A). In conclusion, with rEM the earth moon distance, RE the earth
radius and MM the moon mass, we have

f ¼ GN
MM

rEM � REð Þ2 � GN
MM

r2EM
¼ GN

MM

r2EM

1

1� RE=rEMð Þ2 � 1

" #
:

Considering that the radius of the earth is much smaller than the earth-moon
distance, RE/rEM * 1/60, we can expand this expression in series of this quantity
and stop at the first term. We have

f ¼ GN
MM

r2EM
1þ 2 RE=rEMð Þ � 1½ � ¼ 2GN

MMRE

r3EM
: ð7:15Þ

This is the tide-generating force per unit mass in the point A, which has the
dimensions of an acceleration. Let us compare it with the weight per unit mass,
g ¼ GNME=R2

E, where ME is the earth mass. We have, in the right-hand side, with
RE=rEM ¼ 1=60 and MM=ME ¼ 1=81,

f
g
¼ 2

MM

ME

R3
E

r3EM
¼ 1:1� 10�7: ð7:16Þ

First we observe that the tide-generating force is inversely proportional to the
cube of the earth-moon distance. In fact it depends on the differences between the
gravitational force in different points, namely the derivative of the gravitational
force. The latter varies inversely as the square, its derivative as the cube.

We observe that the tide-generating force is very small, but still enough to be a
cause of such important phenomena. As a matter of fact, the height of the tide is of
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the order of a few to several meters, corresponding to a fraction of 10−7 of the earth
diameter.

Calculations show that the magnitude of the tide-generating force is the same
everywhere, hence is equal to what we calculated. Its direction, as shown in
Fig. 7.6b varies as a function of the point.

To be precise, we notice that the moon’s orbit is elliptic. Its distance from earth
varies between 57 and 63.7 earth radii. Consequently f/g varies from 1.33 × 10−7 to
0.96 × 10−7.

We now pass to the second part of the theory. Let us look at the situation in a
point of the earth’s surface. As we have said, the magnitude of the tide generating
force is constant in time, but its direction varies. Its variation is a rotation at constant
angular velocity. In other words, the components of the force, say the horizontal
and vertical ones, vary periodically in time. When the former is a maximum the
latter is null and vice versa. The ocean, which we still imagine to cover the entire
surface, is subject to a periodic force, varying in time as a circular function. Even if
the system is much more complex than a pendulum, it behaves as a forced
oscillator.

Consider for example a drop of water in the air of a spaceship. Its natural shape
is spherical. If we deform it a bit and then we let it go, it will tend to go back to its
natural shape. But it cannot do that directly. Rather, like a pendulum, it will
oscillate between different shapes and alternate between oblate and prolate. The
oscillations have a proper period, which depends on the physical characteristics of
the drop, and, if dissipative forces are present, are damped. The same would happen
if, in absence of the moon, we would deform the surface of the ocean around the
earth and abandon it. The system would oscillate at its proper oscillation frequency
or, in other words, with the period, call it T0, of the free oscillations of the system.
Calculating T0 is extremely difficult due to the complicated shape of the continents
and of the sea bottom. Calculations on simplified models lead however, to values of
T0 = 20–30 h.

We can imagine the ocean as an oscillator, with proper oscillation period T0. The
oscillator is forced by a periodic force of period T = 12 h 25′, which is much smaller
than T0. In other words, it is an oscillator forced at a frequency substantially larger
than the resonance frequency. In these conditions, as we know (see Fig. 3.21b),
displacement and force are in phase opposition. Consequently, the correct shape is
that of Fig. 7.7b, not that of Fig. 7.7a, in substantial agreement with observations.

We now come back to the action of the sun. The reasoning is exactly the same as
for the moon, and the result analogous to Eq. (7.16) is reached, obviously with the
mass and the distance of the sun in the place of those of the moon. It is so found that
the magnitude of the tide-generating force due to the sun is about half than that due
to the moon. The two forces must be obviously summed as vectors. The two forces
reinforce one another when the sun and the moon are about on the same line (new
and full moon). The tides are then particularly ample (a condition called a syzygy),
about one and a half larger than the value for the moon only. On the contrary, when
the moon is at the first or last quarter, at 90° with the sun, the two forces partially
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cancel each other and the tides have small amplitude (quadrature tides), about one
half as for the moon alone.

In practice, the height of the tides depends on several other factors, like the shape
of the shores of the continents and the islands, the shape of the sea bottom, the
oceanic currents, the winds, etc. Near the oceanic islands the height of the tides is
typically one meter and near the continental shores it is about twice larger.
However, in some sites the tides reach three meters and in a few even six meters.
Particularly great tides are observed in deep gulfs or fiords facing the open sea. The
greatest tides are in the Bay of Fundy, in Nova Scotia, Canada. Their amplitude is
4 m at the bay entrance, to reach 14 m at its end and even more at the syzygy.

7.5 Impulse and Momentum

Consider a material point of mass m in an inertial reference frame. Let F be the
resultant force acting on the point. The second Newton law can be written in the
form

Fdt ¼ dp ¼ d mvð Þ: ð7:17Þ

In words, the effect of a force in the time interval dt is a variation of momentum
equal to the product of the force and of the time interval. The vector quantity Fdt is
called elementary (meaning infinitesimal) impulse of the force in dt. The impulse of
a force in a non-infinitesimal time interval from t1 to t2 is defined to be

i12 �
Zt2
t1

Fdt: ð7:18Þ

Integrating in that time interval Eq. (7.17) we immediately have

i12 ¼
Zt2
t1

dp ¼ p2 � p1 ¼ Dp: ð7:19Þ

This equation expresses the impulse-momentum theorem: the momentum change
of a material point under the action of the force F in the time interval from t1 to t2 is
equal to the corresponding impulse, whatever is the time variation of the force and
whatever is the length of the interval.

The impulse-momentum theorem is useful when the force acts for a short time,
like in the collisions, strokes, explosions, etc. In these cases the force is initially
null, then it quickly grows and as quickly goes back to zero. In these cases we do
not usually know the instantaneous values of the force, but only its average value.
The average value of a quantity in a given time interval is, by definition, the integral
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of the quantity over that time interval divided by the length of the interval. For the
force, as shown in Fig. 7.8,

Fh i ¼ 1
t2 � t1

Zt2
t1

Fdt:

Example E 7.1 The hammer is an instrument used since ancient times to amplify
the muscular force. Initially, at time t1, a hammer of mass m, is at rest. With our arm
we apply to it a force of average value Fh i till the instant t2 in which the hammer
strikes the head of the nail. In accordance with the impulse-momentum theorem, in
this instant the momentum of the hammer is p1 ¼ Fh i t2 � t1ð Þ: After that, the
hammer slows down and stops (its momentum becomes zero) at time t3. For the
same theorem, the average force on the nail in the interval from t2 to t3 is F0h i ¼
p1= t3 � t2ð Þ: In conclusion, F0h i= Fh i ¼ t2 � t1ð Þ= t3 � t2ð Þ: Clearly, t3 – t2 is much
smaller than t2 – t1 so that we obtain a large amplification of the force, by factors
than can well be three orders of magnitude.

7.6 The Action-Reaction Law

Consider again a two-body system, made of two material points, which we call 1
and 2, and later, to follow Newton, A and B, of masses m1 and m2. The two points
interact, point 1 acting on 2 with the force F12 and point 2 acting on 1 with the force
F21. The two forces are an action and reaction pair. The third Newton law states that
they are equal and opposite

F12 ¼ �F21: ð7:20Þ

We shall assume that no external force exists or, if some do, their resultant is
zero. We deal with an isolated system.

t1 t2

t

F(t)

<F>

Fig. 7.8 An impulsive force
and its average value
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F21 being the only force acting on point 1, it is equal to the rate of change of its
linear momentum, or quantity of motion, p1, and similarly F12 is equal to the rate of
change of p2. Equation (7.20) immediately gives

dp1
dt

¼ � dp2
dt

ð7:21Þ

and also

d p1 þ p2ð Þ
dt

¼ dP
dt

¼ 0 ð7:22Þ

where we have put P = p1 + p2. This is total linear momentum (or total quantity of
motion) of the system. Equation (7.22) implies that

P ¼ const: ð7:23Þ

This equation expresses the principle of conservation of linear momentum in the
case of a two-particle system. The principle states that total momentum of an
isolated system is constant. We shall prove its general validity later in this chapter.
In this section we shall use it in an experimental proof of the third law, as Newton
himself did. Indeed, we have just seen that, for a two-body system, the principle is a
consequence of the action-reaction law. It is also true that, if the total linear
momentum of an isolated system is constant, the internal forces must be pairs of
equal and opposite ones. Indeed, the most accurate verifications of the
action-reaction law are, in fact, verifications of conservation of the total momentum.
We observe, however, that in this way we verify the interaction forces to be equal
and opposite, not that they have the same application line. We shall come back later
on to this point.

Historically, the first experimental checks of the action-reaction law were done
by Newton and his contemporaries Christopher Wren (1632–1723), Christiaan
Huygens (1629–1695) and John Wallis (1616–1703). Their experiments are very
accurate, conceptually simple and elegant. The experiments study the collisions
between two spheres of different sizes, measure the momenta before the collision,
say p1 and p2, and after, say p1′ and p2′, as accurately as possible and check if the
relation is satisfied or not. The experiments were done by attaching the two spheres
to two wires of equal lengths,

p1 þ p2 ¼ p01 þ p02 ð7:24Þ

thus making two pendulums of the same period. When at rest the two spheres touch
each other as in Fig. 7.9a. We move the spheres from equilibrium, each at a certain
distance, which we measure. If we let both spheres go at the same instant from rest,
they will accelerate, collide with each other in their lowest points, separate and
move back together.
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The experiment profits from two properties of the pendulum. The first property is
the isochronism of the (small) oscillations. Having the same lengths, the periods of
the two pendulums are equal, independently of the masses of the spheres and of
their initial positions (amplitude). Consequently, also the times taken to reach the
equilibrium position are equal (a quarter of a period) and they will always collide
there, if abandoned at the same time with null velocity. The second property is: the
velocity of the pendulum when reaching the equilibrium position starting from a
certain distance with null velocity is proportional to that distance. Let us show this
property.

Let m be the mass and l the length of the pendulum. Let us remove it from the
equilibrium position by x0 as in Fig. 7.10 and let it go with null velocity. In this
position, the pendulum is at a certain height, say h, above the horizontal through the
equilibrium position. For small displacement angles we can use for h the approx-
imate expression, Eq. (4.14)

h ¼ x20
2l
: ð7:25Þ

C D

A B x

C D

A
B

x
O x20x10

(a) (b)

Fig. 7.9 The two-pendulum experiment to verify the momentum conservation. a Position at rest,
b an initial configuration

l

h
x0O

m

Fig. 7.10 Geometry of the
starting configuration of the
pendulum
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If υ0 is the velocity of the pendulum in an equilibrium position, the energy
conservation law states that 1=2ð Þmt20 ¼ mgh: Hence, using Eq. (7.25),

t0 ¼
ffiffiffiffiffiffiffiffi
2gh

p
¼ x0

ffiffiffi
g
l

r

and also if T ¼ 2p
ffiffiffiffiffiffiffi
l=g

p
is the period of the pendulum

t0 ¼ 2p=Tð Þx0: ð7:26Þ

We conclude that the velocity υ0 at a collision will be known if we measure the
period once and the initial position x0 for each and every experiment.

We are now ready to read how Newton describes his experiments in the
Principia. He does that just after having stated the third law to prove experimentally
its validity. Newton built two pendulums each 10 ft (about 3.25 m) long, attaching
two spheres A and B of the materials to test, and fixing the two wires in C and D as
in Fig. 7.9a. We call m1 and m2 the masses of A and B respectively and x1 and x2
their displacement, measured for each pendulum from its equilibrium position (the
position of its center to be precise). We remove both spheres to x10 and x20
respectively and accurately measure these distances. Notice that x10 and x20 can be
on opposite sides, both on one side or both on the other of O. If we let them go at
the very same instant with null velocities, they will collide in O with velocities

t1 ¼ 2p=Tð Þx10; t2 ¼ 2p=Tð Þx20: ð7:27Þ

Let υ1′ and υ2′ be the velocities immediately after the collision. We can deter-
mine them by measuring the maximum distances, x10′ and x20′ reached (contem-
porarily) in their swing back. Indeed, we have

t01 ¼ 2p =Tð Þx010; t02 ¼ 2p=Tð Þx020: ð7:28Þ

The two particles interact only during the instant of the collision. The external
forces acting on them, the weight and the tension of the wire, have zero resultant.
However, the system is not exactly isolated because air resistance exists and is an
external force. This is small, but it must be taken into account in precision mea-
surements. Newton did that as follows. He started operating with one pendulum
only. He removed it from equilibrium at each of the distances that he was going to
use in the following experiments. He let it go with zero velocity and observed the
position reached after one period, which did not coincide exactly with the original
one. He measured the miss. A quarter of that is what is lost in a quarter of a period
due to the air resistance.
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He made a number of experiments with spheres of different substances. For each
of them, he tried different pairs of starting positions x10 and x20, measured those
reached after the collision x10′ and x20′ and applied the just described correction.
Each of them corresponds to a value of the quantity of motion; he calls that simply
“motion”, before the collision. The linear momentum conservation law (which is
equivalent to the third law) that we need to verify is

m1t1 þm2t2 ¼ m1t
0
1 þm2t

0
2: ð7:29Þ

He writes (in parenthesis some explanations):

Thus trying the thing with pendulums of ten feet (3.25 m) in unequal as well as equal
bodies, and making the bodies to concur after a descent through large spaces, as of 8, 12, or
16 feet (2.6, 3.9, 5.2 m), I found always, without an error of 3 inches (8 cm), that when the
bodies concurred together directly (in a straight line), equal changes towards the contrary
parts were produced in their (quantities of) motions, and, of consequence, that the action
and reaction were always equal.

He continues giving numerical examples of his results. The initial and final
momenta are given in “parts of motion”, namely in an arbitrary unit. The unit is
clearly irrelevant. For clarity, we shall write the values of the two sides of Eq. (7.29)
for each quoted result at the beginning of each experiment. For each experiment, he
mentions also the changes of the momentum of each body.

In the first experiment B is initially at rest (9 + 0 = 2 + 7).

if the body A impinged upon the body B at rest with 9 parts of motion, and losing 7,
proceeded after reflection with 2, the body B was carried backwards with those 7 parts.

In the second experiment the initial velocities have opposite directions
(12 – 6 = –14 + 8).

If the bodies concurred with contrary motions, A with twelve parts of motion, and B with
six, then if A receded (in its motion after the collision) with 14, B receded with 8; namely,
with a deduction of 14 parts of motion on each side. For from the motion of A subtracting
twelve parts, nothing will remain; but subtracting 2 parts more, a motion will be generated
of 2 parts towards the contrary way; and so, from the motion of the body B of 6 parts,
subtracting 14 parts, a motion is generated of 8 parts towards the contrary way.

In the third experiment the two initial displacements are in the same direction
(14 + 5 = 5 + 14).

But if the bodies were made both to move towards the same way, A, the swifter, with 14
parts of motion, B, the slower, with 5, and after reflection A went on with 5, B likewise
went on with 14 parts; 9 parts being transferred from A to B. And so in other cases.

Newton then discusses the causes of the errors in the measurements of the
distances and, as we have read above, evaluates them less than 3 in., 8 cm. The
distances being several meters; this is about 2–3 % error. The relative error on the
momenta was similar (masses and periods being known with a much better
accuracy).
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It was not easy to let go the two pendulums so exactly together that the bodies should
impinge one upon the other in the lowermost place AB; nor to mark the places s, and k, to
which the bodies ascended after congress. Nay, and some errors, too, might have happened
from the unequal density of the parts of the pendulous bodies themselves, and from the
irregularity of the texture proceeding from other causes.

He, and we with him, then observe that the total momentum is conserved both
for elastic and non-elastic collisions. A collision is called elastic if energy is con-
served. This is an idealization; in practice perfectly elastic collisions do not exist.
However, the collision between two steel spheres is close to being so, between two
wax ones is not. In an elastic collision the two forces F12 and F21 are conservative.
Elastic collisions conserve mechanical energy, inelastic ones do not, but in both
cases the total momentum is conserved. Let us go back to Newton.

But to prevent an objection that may perhaps be alleged against the rule (the action and
reaction law), for the proof of which this experiment was made, as if this rule did suppose
that the bodies were either absolutely hard, or at least perfectly elastic (whereas no such
bodies are to be found in Nature), I must add that the experiments we have been describing,
by no means depending upon that quality of hardness, do succeed as well in soft as in hard
bodies.

Obviously, the relative velocity of the bodies after a collision is smaller for the
inelastic than for elastic collisions with the same initial conditions. It may even be
null; the two bodies remain attached. The total momentum however is always equal
to the initial one.

This I tried in balls of wool, made up tightly, and strongly compressed.

He compared the results obtained with balls of steel, glass and cork. The Newton
conclusion is that

And thus the third Law, so far as it regards percussions and reflections, is proved by a
theory exactly agreeing with experience

In collision experiments the interaction forces act for a very short time, during
which they are very intense. We talk of impulsive forces. The just described
experiments establish that the total momentum is conserved in an isolated system in
which the internal forces are impulsive. And if the forces are not impulsive? To
answer this question Newton did the following experiment. He fixed a magnet on a
piece of wood and a piece of iron on another one. He leaned both of them on the
surface of the water in a container, carefully controlling them to be perfectly at rest.
He let the two bodies go. The two bodies moved one towards the other, under the
attraction of the magnet, attached themselves to each other and remained still. The
important observation is that the final body, iron plus magnet, does not move on
water, even if there is no impediment to do so. The total final momentum is zero, as
the initial one was. In this experiment too the system is isolated. Indeed, the
external forces, weight and Archimedes force equilibrate each other.

The conservation of linear momentum in an isolated system is a fundamental law
of universal validity.
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7.7 Action, Reaction and Linear Momentum Conservation

The conclusions from experiments we have described and many other ones can be
summarized as follows. We build an isolated two-body system. The resultant
external force is zero. The internal forces are F21 = –F12. We start from an initial
state i and measure the two momenta pi1 and pi2. We let the system spontaneously
evolve under the action of the internal forces. When the system has reached the
state, which we call final, f, we measure again the momenta, pf1 and pf2. We always
find out that

p1f þ p2f ¼ p1i þ p2i: ð7:30Þ

The linear momentum is conserved. We stated that this proves the action and
reaction law (equality of the application lines apart). Let us look at that more
closely. Equivalently, we can write

p1f � p1i ¼ � p2f � p2i
� �

: ð7:31Þ

In words, the changes of the linear momentum of the two bodies are equal and
opposite. For the impulse-momentum theorem we have

p1f � p1i ¼
Zt2
t1

F21 tð Þdt; p2f � p2i ¼
Zt2
t1

F12 tð Þdt:

The experimental verification of Eq. (7.31) is then a verification of

Zt2
t1

F21 tð Þdt ¼ �
Zt2
t1

F12 tð Þdt: ð7:32Þ

In conclusion, these experiments verify that the time of the force body 1 exerts
on body 2 is equal and opposite to the time integral of the force body 2 exerts on
body 1. In absence of any contrary evidence, we assume the instantaneous values of
F21 and F12 to be equal and opposite too.

Figure 7.11 shows the time evolution of internal forces in the example of a
hypothetical collision. Rigorously speaking, we know from the experiment only
that the two areas are equal and assume that the curves have, in addition, mirror
shapes, namely that the forces are equal and opposite in any instant.

This assumption is basically a postulate. Moreover, the postulate, namely the
action-reaction law, is not true in every circumstance. There is no problem when the
two bodies interact through contact forces, as in a collision. Problems arise when
the two bodies are separated by a distance. As we have seen in Chap. 6, no effect
can propagate over a distance instantaneously. Consequently, when the propagation
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time is comparable with the time in which the change in motion takes place, the
concept of instantaneous equality of action and reaction loses validity.

Figure 7.12 shows a simple mechanical model of a “delayed” interaction. The
two bodies are two trolleys moving with negligible friction on straight rails. Trolley
1 carries a gun, trolley 2 a block of material at the height of the gun. At a certain
instant the gun shoots a bunch of projectiles. Suppose the projectiles to be invisible,
have masses much smaller than the trolleys but very high speeds. Consequently, the
bunch carries an appreciable momentum p. We observe the system and see, in the
instant of the shot, trolley 1 to recoil with a momentum –p while trolley 2 remains
still. The total momentum of the two trolleys is changed.

If υ is the velocity of the bullets and L the distance between the trolleys, the
bullets will reach trolley 2 in a time L/υ and stick to the block. We observe trolley 2
acquiring a momentum p. The total momentum of the two blocks is now null, as it
was initially. Momentum conservation is restored.

The example looks a bit stupid. The momentum seems not to be conserved
during the time the bullets are in flight, just because we did not include their
momentum in the total, assuming them to be “invisible”. If we include that, as we
should, the total momentum is conserved in every instant. However, things are not
very different in the cases of actions at a distance as the gravitational and elec-
tromagnetic ones. Light, in particular, is an electromagnetic phenomenon. Consider
again two trolleys, now very light, again with negligible friction. The first trolley
carries a lamp that emits a light flash at a certain instant. Now, light carries
momentum, even if in a very small amount. Consequently, the first trolley recoils
with an opposite momentum (p), while the second is still at rest. Suppose the
second trolley carries a black screen, which absorbs the light pulse completely,
acquiring the momentum –p. The situation is quite similar to the “stupid”
mechanical example. However now during the time of flight of the light the total

t

F12

F21

Fig. 7.11 The time evolution
of the internal forces during a
collision

v

Fig. 7.12 Mechanical model of an action at a distance
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mechanical momentum is not conserved. The missing momentum is, during this
time, in the electromagnetic field. We shall study this in the 3rd volume of this
course. We only notice here that this is basically the reason for which Eq. (6.50)
that we found in discussing relativity is not valid for non-interacting particles. In
quantum mechanics the analogy is even closer; light is made of “invisible” parti-
cles, the photons. A quite similar situation exists for the gravitational interaction. In
this case also the gravitational field carries momentum. This is described by general
relativity.

7.8 Systems of Particles

We shall now start our study of systems of several, say N, of material points. The
relevant physical quantities are shown in Fig. 7.13, in an inertial reference frame.
Let ri be the position vector of the generic point Pi in a generic instant. We call the
set of positions of its constituent material points a configuration of the system.

Let mi be the mass of Pi, vi its velocity and pi = mivI its momentum. The forces
acting on each point can be usefully divided in internal, due to the other points of
the system, and external, due to agents external to the system.

Consider for example the system of Jupiter and its satellites. The forces on one
of them, Ganymede for example, are the internal ones due to Jupiter and to the other
satellites, Io, Europa, Callisto, and the external ones due to the sun and the other
planets. Obviously, being an internal or external force depends on the system under
consideration. If the system is the solar system, all the mentioned forces are
internal.

We call F eð Þ
i the resultant external force and F ið Þ

i the resultant internal force acting
on Pi. All the forces, both external and internal, according to the Newton law,
determine the motion of Pi,

P1
P2

P3

F12
F21

F31

F13

F32

F23
r1

r2

r3

O

x

y

F1
(e)

F3
(e)

F2
(e)

Ω

Fig. 7.13 A system of
material points
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F ið Þ
i þF eð Þ

i ¼ dpi
dt

¼ miai: ð7:33Þ

The motion of a system of N points is described by N independent Eq. (7.33).
Their solution is in general quite difficult. Indeed, just think of the fact that the force
acting on a certain point at a certain time depends not only on its position, but on
those of all the other points too. The problem is so complicated that even in the
simplest case N = 3 cannot be in general solved analytically. Numerical methods are
today available to solve the problem with the help of powerful computers.

We shall not analyze the motions of single points, but rather consider quantities
relative to the whole system. We indicate with Ω a geometric point that we choose
as the pole of the linear momenta and of the moments of the forces. This point is not
necessarily at rest in the reference frame, rather it moves with a velocity that is a
function of time, vΩ. The angular momentum of point Pi about Ω is

li ¼ XPi � pi: ð7:34Þ

Let f1,i, f2,i,…. be the forces acting on the point Pi and Fi = f1,i + f2,i + …. their
resultant. All these forces are applied to the same point and, consequently, their
total moment is equal to the moment of their resultant. The external moment acting
on Pi is then

s eð Þ
i ¼ XPi � F eð Þ

i

and the internal moment

s ið Þ
i ¼ XPi � F ið Þ

i :

The global quantities of the system that we shall need are the following:

(1) The total linear momentum of the system, which is the vector sum of the linear
momenta of the constituent points

P ¼
XN
i¼1

pi; ð7:35Þ

(2) the total angular momentum

LX ¼
XN
i¼1

lXi ¼
XN
i¼1

XPi � pi; ð7:36Þ
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(3) the total kinetic energy

Uk ¼
XN
i¼1

Uki ¼
XN
i¼1

1
2
mit

2
i ; ð7:37Þ

(4) the resultant force

F ¼
XN
i¼1

F ið Þ
i þF eð Þ

i

� �
¼
XN
i¼1

F ið Þ
i þ

XN
i¼1

F eð Þ
i ¼ F ið Þ þF eð Þ ð7:38Þ

where the vectors in the last side are the resultants of internal and external
forces acting on the system.
We now make a very important observation that will greatly simplify several
problems. The internal forces come in pairs; the force exerted on point Pi by
another point Pj is equal and opposite to the force that Pj exerts on Pi and their
sum is null. Consequently the resultant internal force is zero, F ið Þ ¼ 0, and
Eq. (7.38) becomes

F ¼
XN
i¼1

F ið Þ
i þ

XN
i¼1

F eð Þ
i ¼ F eð Þ: ð7:39Þ

(5) The total moment about the pole Ω is

MX ¼
XN
i¼1

s ið Þ
Xi þ s eð Þ

Xi

� �
¼
XN
i¼1

s ið Þ
Xi þ

XN
i¼1

s eð Þ
Xi ¼ M ið Þ

X þM eð Þ
X ð7:40Þ

where the vectors in the last side are the total moment of the internal and of the
external forces respectively.

Notice that we can calculate the total moment of the forces acting on a single
point Pi or calculate first the moments of the different forces and then sum them, or
sum the forces and then calculate the moment of the resultant. On the contrary, to
calculate the total moment acting on the system we must first calculate the moments
of the forces on the single points and then sum those moments. Indeed, in this case
the forces are applied in different points.

A second important observation is the following. The internal forces come in
pairs that, for the action-reaction law, not only are couples, but also zero arm
couples. Consequently, the moment of each couple is null, whatever is the pole. The

total internal moment is zero, M ið Þ
X ¼ 0 and we can write

MX ¼
XN
i¼1

s ið Þ
Xi þ

XN
i¼1

s eð Þ
Xi ¼ M eð Þ

X : ð7:41Þ
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7.9 The Center of Mass

We continue with the system of N material points. Figure 7.14 represents the
situation.

We define as the center of mass of the system the geometric point (it is not a
material point) defined by the position vector

rC ¼
PN
i¼1

miri

PN
i¼1

mi

¼
PN
i¼1

miri

M
ð7:42Þ

where M is the total mass of the system. The coordinates of the center of mass are,
clearly

xC ¼
PN
i¼1

mixi

M
; yC ¼

PN
i¼1

miyi

M
; zC ¼

PN
i¼1

mizi

M
: ð7:43Þ

It can be shown, but we shall not do so, that the position of the center of mass is
independent of the choice of the reference frame. However, obviously, its coordi-
nates depend on that. We already met the center of mass in the particular case of a
two-point system. In this case the center of mass is the point of the segment joining
the two points at distances from them inversely proportional to the masses. It can be
shown that the two definitions agree in this particular case.

We now consider the motion of points of the system. We call vi the velocity of Pi

(which is a function of time). By deriving Eq. (7.42) we find that the velocity of the
center of mass is

m1

P2

m3

r1

r4

r3

O

x

y

r2

m4

P4

P1 m2

P3

v1

v3

v4

v2

rC

C

Fig. 7.14 A material system
and its center of mass
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vC ¼
XN
i¼1

mivi=M: ð7:44Þ

We observe that the sum in the right-hand side of this equation is just the sum of
the linear momenta of the points, namely is the total momentum of the system

P ¼
XN
i¼1

mivi ¼
XN
i¼1

pi: ð7:45Þ

We can write Eq. (7.44) as

P ¼ MvC; ð7:46Þ

which is a very important equation. It states that the total momentum of the system is
equal to the momentum of the center of mass, if considered as a material point in
which all the mass of the system is concentrated.

Consider now how the total momentum varies in time. We work in an inertial
reference frame. Taking the derivative of Eq. (7.45) we have

dP
dt

¼
XN
i¼1

miai; ð7:47Þ

but, as we are in an inertial frame, miai is equal to the resultant force, both external
and internal, acting on Pi.

F ið Þ
i þF eð Þ

i ¼ miai: ð7:48Þ

Substituting this in Eq. (7.47) we have

dP
dt

¼
XN
i¼1

F ið Þ
i þF eð Þ

i

� �
¼ F eð Þ þF ið Þ;

but, as we know, the resultant internal force is zero, a fact that enormously sim-
plifies the equation. It becomes

F eð Þ ¼ dP
dt

: ð7:49Þ

This fundamental equation states that the rate of change of the total momentum
of a mechanical system is equal to the resultant external force acting on the system.
The fact that the internal forces do not contribute to the variation of the total
momentum simplifies many problems.
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We now go back to Eq. (7.46) and immediately see that

F eð Þ ¼ MaC; ð7:50Þ

which is called the theorem of the center of mass motion: the center of mass moves
as a material point in which all the mass of the system is concentrated and acted
upon by the resultant external force. Notice that while the motion of the center of
mass is determined by the external forces only, the motion of each point of the
system depends on both external and internal forces.

As an example, suppose we take in our hand the handle of a hammer, and we
launch it in the air. The motion of the hammer will be a complicated combination of
rotations and displacements. The motion of its center of mass, on the contrary, will
be simply a parabola, with the hammer rotating about it (neglecting air resistance).
For that the body does not need to be rigid. If we launch a chain in the air, its center
of mass will describe a parabola too. In a similar way, consider the bullet shot by a
cannon. It describes a parabola. If at a certain moment the bullet explodes, its pieces
will describe complicated trajectories, but their center of mass will continue on the
same parabola, as long as the first piece hits the ground. When this happens a new
external force, due to the action of ground, starts acting on the system.

The center of mass, as we have seen, is not a material point but behaves as such.

7.10 Linear Momentum Conservation

The law (or principle) of conservation of linear momentum states that: if, in an
inertial frame, resultant external force on a system is zero, the total linear
momentum is constant in time. The property is immediately obtained from
Eq. (7.50)

P ¼ constant, if F eð Þ ¼ 0: ð7:51Þ

We can also say that, under the same hypotheses

aC ¼ 0; vC ¼ constant, if F eð Þ ¼ 0: ð7:52Þ

If the resultant external force is zero in an inertial frame the center of mass
remains still if initially still or continues on its rectilinear uniform motion.

In Sects. 7.5 and 7.6, we have already used the center of mass properties and the
linear momentum conservation principle in the particular case of two-body systems
and discussed the relations with the action-reaction law.
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7.11 Continuous Systems

The mechanical systems we have considered so far are discrete, namely composed
of a number of point-like particles. We shall now consider continuous mechanical
systems. Such are the solid bodies when their physical dimensions cannot be
neglected. Figure 7.15 represents a continuous body of mass M and volume V.

We can divide the body into small volumes dV, which we take as cubes with
sides parallel to the coordinate axes. Let r be the position vector of the generic dV
and Δm its mass. We define the density ρ(r) of the body in the position r to be the
ratio between the mass and the volume of the element in the limit in which the
volume becomes very small, namely

qðrÞ ¼ lim
DV!0

Dm
DV

¼ dm
dV

: ð7:53Þ

The density can vary from point to point. Think for example of the atmospheric
density that decreases with altitude. A body is said to be homogeneous if its density
does not vary from point to point.

Here we need to specify that the limit DV ! 0 should be understood as a
physical rather than mathematical limit. Indeed, when seen at a molecular scale,
matter is not continuous, but made of small particles, the molecules, separated one
from another. Consequently, the limit for volumes going mathematically to zero is
not defined. However, the granularity of matter is so small compared to the
macroscopic sizes and we can safely state that the limit is taken for volumes very
small compared to macroscopic dimensions but still large enough to contain a great
number of molecules. Indeed, we can say, for volumes physically tending to zero.

The definition of center of mass for a continuous system is completely analogous
to that we gave in Sect. 7.9 for a discrete system. We divide the system in N small

r

O
x

y

z

dx
dy
dz dV

V

Fig. 7.15 A continuous body
and an infinitesimal volume
element
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volumes ΔVi, then use Eq. (7.42) to define the center of mass and take the limit for
the small volumes tending physically to zero. We obtain

rC ¼ 1
M

lim
Dm!0

XN
i¼1

Dmiri ¼ 1
M

lim
DV!0

XN
i¼1

DViq rið Þiri ¼
1
M

Z
V

rqðrÞdV :

The position vector of the center of mass is then

rC ¼ 1
M

Z
V

rq rð ÞdV ð7:54Þ

or, its coordinates are

xC ¼ 1
M

Z
V

xqðrÞdV ; yC ¼ 1
M

Z
V

yqðrÞdV ; zC ¼ 1
M

Z
V

zqðrÞdV : ð7:55Þ

In this chapter we shall continue the study of material systems. For the sake of
simplicity, we shall consider them discrete. The discussion of continuous systems is
completely similar, just changing sums with integrals. The limitation to discrete
systems does not subtract anything from the physics conclusions.

As examples, we shall now calculate the position of the center of mass in two
examples of homogeneous bodies of simple geometrical shapes.

Example E 7.2 Figure 7.16 represents a thin sheet in the form of an isosceles
triangle of height h and base b. It can be considered two-dimensional and the
volume integral (7.54) becomes a surface integral. It is evident, for symmetry
reasons, that the center of mass must be on the height of the triangle (the same
quantity of mass must lay on the right and on the left). We need only to find its
y coordinate. It is convenient to take as surface elements strips of height dy running
from one side to the other. Indeed all points of such a strip have the same y and
equally contribute to the integral. The length l(y) of the strip at height y can be
found considering the proportion l(y):b = y:h. Hence we have l yð Þ ¼ by=h: The area

h
dy

y

x
O

b/2
Fig. 7.16 Calculating the
center of mass of a
homogenous isosceles
triangle
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of the strip is dS yð Þ ¼ by=hð Þdy and, if σ is the surface density, namely the mass per
unit area, its mass is dm yð Þ ¼ r by=hð Þdy: We then calculate the integral (Fig. 7.17)

Zh
0

ydm ¼ r
b
h

Zh
0

y2dy ¼ r
bh2

3
:

The mass M of the body is σ times the area hb/2 and we have yC ¼ 2=3ð Þh:
Example E 7.3 Figure 7.17 represents a homogeneous cone of height h and base
radius R. As evident in this case too, the center of mass is on the axis. To calculate
its height y, we take as volume elements thin sheets parallel to the base. All the
points of a sheet have the same height y. The volume of the sheet at y is dV = πR2

(y) dy. But r(y) = Ry/h and, if ρ is the density

Z
V

yq rð ÞdV ¼ q
pR2

h2

Zh
0

y3dy ¼ q
pR2h2

4
;

which we must divide by the mass, that is M ¼ pR2hq=3, obtaining yC ¼ 3h=4.

7.12 Angular Momentum

The fundamental equation Eq. (7.49), describes the evolution in time of the total
linear momentum of a mechanical system. We shall now see how the total angular
momentum varies in time. Figure 7.18 shows a mechanical system in a reference
frame, which we choose to be inertial. We arbitrarily choose a geometric Ω to be the
pole of the moments and angular momenta. The pole is not necessarily still, and we
call vΩ its velocity.

h
dy

y

x
O

R

r(y)

Fig. 7.17 Calculating the
center of mass of a
homogenous cone
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The total angular momentum about the pole we have chosen is

LX ¼
XN
i¼1

LXi ¼
XN
i¼1

XP� pi: ð7:56Þ

We take the time derivative and obtain

dLX

dt
¼
XN
i¼1

dXP
dt

� pi þ
XN
i¼1

XPi � dpi
dt

: ð7:57Þ

The vector XPi is the difference between two vectors, XPi ¼ ri � rX, both of
which vary in time. Consequently its time derivative is dXPi=dt ¼ vi � vX.

In the second term in the right-hand side we have the rates of change of the linear
momenta of single points. As we are in an inertial frame, the rate of change of pi is
the resultant force, both internal and external, acting on the point Pi. We can write

dLX

dt
¼
XN
i¼1

vi � pi � vX �
XN
i¼1

pi þ
XN
i¼1

XPi � F eð Þ
i þ

XN
i¼1

XPi � F ið Þ
i :

The first term in the right-hand side is zero, being the sum of cross products of
parallel vectors. The sum in the second term is the total linear momentum P of the
system. The third term is the total moment of the external forces M(e). The last term
is the total internal moment, which is zero. In conclusion Eq. (7.57) becomes

dLX

dt
¼ M eð Þ

X � vX � P: ð7:58Þ

The expression becomes still simpler with two different choices of the pole.
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Fig. 7.18 The material
system
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If the pole is fixed in the (inertial) reference frame, vΩ = 0 and

dLX

dt
¼ M eð Þ

X : ð7:59Þ

This fundamental equation reads: the rate of change of the total angular
momentum of a mechanical system about a pole fixed in an inertial frame is equal
to the moment of the external forces about the same pole.

If the pole coincides with the center of mass, which generally moves, the second
term in the right-hand side of Eq. (7.58) is again zero. It is the cross product of two
parallel vectors, the velocity of the center of mass and the total linear momentum.
We can write

dLCM

dt
¼ M eð Þ

CM : ð7:60Þ

In words: The rate of change of the angular momentum of a mechanical system
about its center of mass as a pole is equal to the total external moment (about the
same pole).

7.13 Angular Momentum Conservation

The principle of conservation of angular momentum states that in an isolated
system the total angular momentum, about any pole fixed in an inertial frame is
conserved.

Indeed, in an isolated system the resultant external force and the total external
moment are zero. If the pole stands still in an inertial frame Eq. (7.59) holds, we can
state that the time derivative of the total angular momentum is zero.

Similarly for Eq. (7.60) we can state also that in an inertial frame the total
angular momentum of any isolated system about its center of mass is constant.

Even if in the case of non-isolated systems, namely in the presence of external
forces, it is sometimes possible to choose a fixed pole, such that the total external
moment about it is zero. Then, the total angular momentum about that pole is
conserved. We shall see some examples in the following.

Notice also that the total external moment may be zero and their resultant
different from zero, or vice versa. Consequently, the linear momentum and the
angular momentum conservations are in general independent issues. If the system is
isolated however, both quantities are conserved.

Finally we observe the following. As we have seen, conservation of the total
linear momentum is a consequence of one aspect of the action-reaction law: action
and reaction are equal and opposite. The total angular momentum conservation is a
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consequence of the second aspect of the third law: action and reaction have the
same application line. All the experimental evidence, without exceptions, is in favor
of the angular momentum conservation. Consequently, also this second aspect of
the third law must be considered experimentally proven.

The linear and angular momentum conservation laws are fundamental principles
of physics, not only of mechanics. In advanced treatments we can show that they
are consequences respectively of the homogeneity of the space (there are no
privileged points in space) and of its isotropy (there are no privileged directions).

7.14 Energy of a Mechanical System

We continue to consider a material system of N material points Pi in an ri the
position vector of Pi, mi its mass and vi its velocity. The generic point Pi has the
kinetic energy UKi ¼ mit2i =2, and the total kinetic energy of the system is

UK ¼ 1
2

XN
i¼1

mit
2
i : ð7:61Þ

During the motion of the system its kinetic energy will, in general, vary, because

the single kinetic energies of the points vary under the action of the forces. Let F eð Þ
i

and F ið Þ
i be the resultants of external and internal forces acting on Pi respectively. In

the generic elementary time interval dt the displacement of the point is dri. The
corresponding elementary work of the forces is

dWi ¼ F eð Þ
i � dri þF ið Þ

i � dri ¼ dW eð Þ
i þ dW ið Þ

i :

Consider the point Pi moving on a certain trajectory from an initial position A in
riA to a final position B in riB. The variation of its kinetic energy is given by the
kinetic energy theorem

UK Bð Þ � UK Að Þ ¼
ZB
A

F eð Þ
i � dri þ

ZB
A

F ið Þ
i � dri ¼ W eð Þ

AB þW ið Þ
AB:

In words, the variation of the total kinetic energy of a system is equal to the
works of both the external and internal forces. Differently from the cases of the total
linear and angular momenta, the contribution of internal forces is not zero.

If all forces acting on the system are conservative, the work can also be
expressed as a difference of potential energy. Calling UP the total potential energy,
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which is the sum of the potential energies of all points of the system, we imme-
diately find that

UK Bð ÞþUP Bð Þ ¼ UK Að ÞþUP Að Þ: ð7:62Þ

We define the total energy of the system Utot as the sum of its potential and
kinetic energy and we see that it has the same values in A and in B. Considering that
these points are arbitrary, we conclude that the total energy is constant during
movement of the system

Utot ¼ UK þUP ¼ constant: ð7:63Þ

If the system is isolated, there are no external forces and only the internal ones
make work. This does not imply that the total energy is conserved. For that to be the
case all of the internal forces must be conservative. As an example consider a
system made by a block and a trolley supporting it. The trolley can move on rails
without appreciable friction, but there is friction between the plane of the trolley
and the block. The block moves on that plane. The plane exerts a friction force on
the block and so does the block on the plane. The two forces are equal and opposite
with the same application line. During a motion, the total and angular momentum
are conserved, but not kinetic energy.

7.15 Center of Mass Reference Frame

It is often useful to consider the motion of a mechanical system in the center of
mass frame, CM for brevity, even if that frame is not usually inertial. We start from
an inertial frame and we define as center of mass frame, the frame with origin in the
center of mass of the system and with axes parallel to the axes of the inertial frame.

Figure 7.19 shows the two just mentioned reference frames and a generic point
of the system Pi. The CM frame does not rotate relative to the inertial frame, it

Pi

ri

O

x

y

z

x*

y*

z*

C

rC

ri*

Fig. 7.19 The inertial frame
xyz and the center of mass
frame x*y*z*
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translates with the center of mass velocity. This may vary and, as a consequence,
the CM frame is not in general inertial. It is so if the resultant external force is zero
(even if the total external moment is not) because then the velocity of the center of
mass is constant.

We shall indicate with an asterisk the quantities in the CM frame. The relation
between the position vectors in the two frames is

r�i ¼ ri � rCM ð7:64Þ

and the relation between the velocities is

v�i ¼ vi � vCM ð7:65Þ

and similarly for the accelerations

a�i ¼ ai � aCM : ð7:66Þ

Obviously, the center of mass position vector and the velocity are null in its
reference

r�CM ¼ 0; v�CM ¼ 0; a�CM ¼ 0: ð7:67Þ

In Sect. 7.9 we have found that in every reference frame, both inertial and not,
the total linear momentum of a system is equal to the mass of the system times the
velocity of the center of mass. But the latter is null in the CM frame and we have

P� ¼
XN
i¼1

miv�i ¼ 0: ð7:68Þ

The CM frame is also the frame in which the total linear momentum is zero. It is
sometimes called the center of momenta frame.

We obtain another interesting property by expressing Eq. (7.42) in the CM
frame. For the first of Eq. (7.67) this becomes

XN
i¼1

mir�i ¼ 0: ð7:69Þ

We now consider the total angular momentum, which has an important role in
mechanics. We might expect it to be different in the two frames of Fig. 7.19, the
inertial and the center of mass frames. As a matter of fact they are equal. Indeed the
total angular momentum in the inertial system is

LCM ¼
XN
i¼1

r�i � mi v�i þ vCM
� � ¼XN

i¼1

r�i � miv�i þ
XN
i¼1

mir�i

 !
� vCM :
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The first term in the last side is the angular momentum about the center of mass,
as a pole, in the CM frame, while the second is zero for Eq. (7.69). Hence

L�
CM ¼ LCM : ð7:70Þ

We conclude that the total angular momentum of a material system about its
center of mass is an intrinsic characteristic of the system, independent of the ref-
erence frame.

7.16 The König Theorems

The two König theorems that we shall discuss in this section give two relations, one
between the kinetic energy in the inertial and CM frames UK and U�

K respectively,
and one between the angular momenta L and L*. In both cases the quantity in the
inertial frame is equal to the sum of two terms, one of the system as a whole, the
other corresponding to its motion relative to the center of mass. The theorems are
named after Johann Samuel König (1712–1757)

König kinetic energy theorem.
The kinetic energy of the system in the inertial frame is

UK ¼ 1
2

XN
i¼1

mit
2
i :

Using Eq. (7.65) it becomes

UK ¼ 1
2

XN
i¼1

mi v�i þ vCM
� �2 ¼ 1

2

XN
i¼1

miv�2i þ 1
2
Mv2CM þ

XN
i¼1

miv�i

 !
� vCM :

The expression in parenthesis in the last term of the last side is the total
momentum in the CM frame, hence is null. And we obtain

UK ¼ 1
2

XN
i¼1

miv�2i þ 1
2
Mv2CM ¼ U�

K þ 1
2
Mv2CM : ð7:71Þ

We read this expression as: the kinetic energy in the inertial frame is the sum of
two terms. One term is the kinetic energy “of the center of mass”, if we think of it as
being a material point with all the mass of the system. The second term is the
kinetic energy in the center of mass system, namely relative to the motion of the
parts of the system about the center of mass.
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Example E 7.4 A child is sitting on a wheelchair near to a wall with his feet resting
on it with folded legs. The child, in stretching his legs, pushes on the wall and
accelerates backward. After his feet detach from the wall he continues to move at
constant velocity (neglecting frictions). What forces have caused the acceleration?
Which force is the variation of kinetic energy?

Our system is the child and the chair. We cannot consider it as point-like,
because the stretching of the legs changes the shape of the system. The resultant
external force is the normal reaction of the wall, N. This is the force causing the
acceleration. If m is the mass and aCM the center of mass acceleration, we have
N = maCM.

The work of the external force N is, on the other hand, zero, because its
application point does not move. Which is the cause of the kinetic energy variation?

In the analysis of this type of problem, the following mistake is often made. It
consists in application of the kinetic energy theorem to the center of mass, in a form
valid for the material point. Indeed, the center of mass behaves as a material point
from several points of view, but not from this one. Let us look at that. We can write
Eq. (7.50), which is valid for the center of mass, as

F eð Þ ¼ m
dvCM
dt

;

which is formally identical to the law and is valid for the material point. We try now
to go ahead as we did in Sect. 2.10 to show the kinetic energy theorem for a
material point. We indicate with dsCM the elementary displacement of the center of
mass in dt, in order to have vCM ¼ dsCM=dt: We take the dot product of the above
equation and dsCM obtaining

F eð Þ � dsCM ¼ m
dvCM
dt

� dsCM ¼ mvCM � dvCM :

We indicate with Γ the trajectory of the center of mass and we consider two
positions, A and B on Γ. As we did for the material point we integrate the above
expression on Γ from A to B obtaining

ZB
CA

F eð Þ � dsCM ¼ 1
2
mt2CM Bð Þ � 1

2
mt2CM Að Þ; ð7:72Þ

which has the same form as (2.36). Its meaning is however fundamentally different.
While the right-hand side of Eq. (7.72) is indeed the difference of center of mass
kinetic energy, the left-hand side is not the work of the resultant external force. This
is because dsCM is the displacement of the center of mass, not of the application
point of the resultant. The latter may not even have been defined. It is defined only
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if all the forces are applied to the same point. Consequently, Eq. (7.72) is not very
useful in practice.

We can conclude that the work of the resultant external force has nothing to do
with the variation of kinetic energy. The latter is due to an internal force, the one
due to the muscles of the legs of the child.

Similarly, when a car accelerates, the force producing acceleration is the friction
of the road on the tires. The work of this force is null. The kinetic energy variation
is equal to the work of the internal forces due to the engine.

Example E 7.5 Figure 7.20 shows two blocks of masses m1 and m2 supported by a
horizontal plane with negligible friction. A spring, in its natural length, is fixed to
the left-hand side of the block on the right. Its elastic constant is k. The two blocks
move with velocities v1 and v2 in the same direction and with υ1 > υ2. Block 1
reaches block 2 and hits it, compressing the spring.

We then calculate the maximum spring compression.
We shall solve the problem in two ways, using a trivial reasoning first, then

using the König kinetic energy theorem. Let υ1′ and υ2′ be the velocities after the
collision. The linear momentum (one dimension) and energy conservation give us
two equations

m1t1 þm2t2 ¼ m1t
0
1 þm2t

0
2 ¼ P

1
2
m1t

2
1 þ

1
2
m2t

2
2 ¼

1
2
m1t

02
1 þ 1

2
m2t

02
2 ¼ Utot:

From the first equation we express υ2′ as a function of υ1′. Then, with the second
equation, we express the spring energy as a function of υ1′. We denote by x the
compression of the spring

t02 ¼
m1t1 þm2t2

m2
� m1

m2
t01 ¼

P
m2

� m1

m2
t01;

1
2
kx2 ¼ Utot � 1

2
m1t

02
1 � 1

2
m2

P
m2

� m1

m2
t01

� �2

¼ Utot � 1
2
m1t

02
1 � 1

2
P2

m2
� 1
2
m2

1

m2
t021 þ m1

m2
Pt01:

The maximum spring deformation corresponds to the maximum elastic energy.
We obtain the latter by taking the derivative of the last side, putting it equal to zero
and solving for υ1′:

m1 m2v1 v2

Fig. 7.20 Two locks on a horizontal plane of negligible friction
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t01 ¼
P

m1 þm2
¼ m1t1 þm2t2

m1 þm2
:

By substituting this in the expression of the energy just found, we see that the
velocity corresponding to the maximum compression is the center of mass velocity.
Considering the symmetry of the problem, we expect υ2′ to be equal. This is
immediately found from the above equation, as the reader can verify.

The second approach to solve the problem is much quicker. Moreover, it
immediately shows the reason for both velocities being equal to the center of mass
velocity. We write the energy in the form given by the König theorem.

Utot ¼ 1
2
kx2 þ 1

2
m1t

2
1 þ

1
2
m2t

2
2 ¼

1
2
kx2 þ 1

2
m1 þm2ð Þt2CM þ 1

2
m1t

�2
1 þ 1

2
m2t

�2
2

where υCM is the center of mass velocity and t�1 ¼ t1 � tCM and t�2 ¼ t2 � tCM are
the velocities relative to the center of mass. We then have

1
2
kx2 ¼ Utot � 1

2
m1 þm2ð Þt2CM � 1

2
m1t

�2
1 � 1

2
m2t

�2
2 :

The first two terms in the right-hand side do not vary due to the energy and linear
momentum conservation respectively. The elastic energy is then a maximum when
the two last terms, namely the kinetic energies, and consequently the velocities,
relative to the center of mass are zero.

The angular momentum König theorem.
With reference to the inertial frame of Fig. 7.19, we choose the pole in the origin O.
The angular momentum is

LO ¼
XN
i¼1

ri � mivi;

which, using Eqs. (7.64) and (7.65) becomes

LO ¼
XN
i¼1

r�i þ rCM
� �� mi v�i þ vCM

� �

¼
XN
i¼1

r�i � miv�i þ rCM �
XN
i¼1

miv�i þ
XN
i¼1

mir�i

 !
� vCM þ rCM �MvCM :

The last side contains four terms. The first term is the total angular momentum in
the center of mass about the center of mass as a pole, say L�

CM . The second term is
the total linear momentum in the CM frame and is null. The third term is zero for
Eq. (7.69). The fourth term is the cross product of the position vector of the center
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of mass and the total linear momentum in the inertial system, say P ¼ MvCM . We
can write

LO ¼ rCM � PþLCM : ð7:73Þ

We can state that the total angular momentum in the inertial frame is equal to the
sum of two terms. One term is the angular momentum “of the center of mass”,
which is the angular momentum that the center of mass would have if it were a
material point with the total mass of the system. The second term is the angular
momentum relative to the center of mass.

7.17 Elastic Collisions

In this chapter we have already discussed collision experiments. From the obser-
vation of the linear momentum conservation we have deduced the validity of the
action and reaction law. We shall now take the opposite point of view. Assuming
the mechanics laws to be valid, we shall discuss in some detail collision phe-
nomena. We shall limit the discussion to material points. This is an idealization.
However, we can consider the real bodies as points coinciding with their centers of
mass, in which all their mass is concentrated, as long as in the collision the kinetic
energies of each body do not vary. If we are dealing, for example, with the collision
of two rigid balls, their motions should be translations, with no rotation.

We specify that when talking of collision of two bodies we do not necessarily
imply that the two bodies come into contact. Considering for example the Newton
experiments on the collisions between two pendulums we might substitute the balls
with two bar magnets, with their north poles facing each other. If we take the
pendulums out of equilibrium and let them go, the two magnets will approach each
other subject to the repulsive force between the magnets. This force will slow them
down till they stop and bunch back, without touching each other. As another
example, consider two ions of the same charge moving one towards the other.
When they are far from one another they feel practically no force and move with
constant velocities. But when they become close enough, the repulsive electric
force will cause both trajectories to deflect. The two ions will move on curved
trajectories, approaching to a minimum distance and then separating again. When
they are far enough apart, the ions will again move practically with constant
velocities. The final velocities are in general different in magnitude and direction
from the initial ones.

In a collision process we can distinguish three phases. In the initial phase the two
bodies are distant and do not interact, namely the force exerted by one on the other
is negligible. The second phase is the phase of the proper collision, which has a
limited duration, say Δt. During this time the two bodies interact. The interaction
forces are internal, an action and reaction pair. The internal forces are much larger
than the external forces, which can consequently be neglected. As a matter of fact
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we talk of a collision when this condition is met. In the third phase the bodies no
longer interact but move away from each other. Notice that during the collision the
two bodies may change their shape, the internal energy can decrease or increase,
one or both of them can break into a number of pieces, or they may join in a single
body, etc. In other words, the bodies in the final state may be different, also in
number, from the two initial ones.

As during the collision only internal forces are present, we can state in complete
generality that the total linear momenta before and after the collision are equal.
Assume for simplicity to have two bodies both in the initial and final state. We
indicate with the subscripts i and f the quantities in the initial and final states
respectively and write

pi1 þ pi2 ¼ pf 1 þ pf 2: ð7:74Þ

The collision is said to be elastic if each of the bodies after the collision is the
same as before the collision, its internal energy included, and if the total energies
after and before the collision are equal. As the external forces are negligible and as
the internal forces are zero in the initial and final states, the initial and final total
kinetic energies are equal as well. If m1 and m2 are the masses of the two bodies, we
have

1
2
m1t

2
1i þ

1
2
m2t

2
2i ¼

1
2
m1t

2
1f þ

1
2
m2t

2
2f ð7:75Þ

and Eq. (7.75) can be written as

m1vi1 þm2vi2 ¼ m1vf 1 þm2vf 2: ð7:76Þ

Equation (7.75) is one relation, Eq. (7.76) are three relations, in total four,
between the initial and final states. We shall now consider a few important cases.

Often one of the particles is at rest. If it is not so, we can always change the
reference frame by choosing a frame moving with one particle (think of an observer
sitting on the particle). The frame in which one particle stands still is called a
laboratory frame. The particle that is still, say particle 2, is called the target
particle. In the laboratory frame Eqs. (7.75) and (7.76) become

m1t
2
1i ¼ m1t

2
1f þm2t

2
2f ð7:77Þ

m1vi1 ¼ m1vf 1 þm2vf 2: ð7:78Þ

The velocity of the target particle after the collision is given by Eq. (7.78),

vf 2 ¼ m1

m2
vi1 � vf 1
� �

: ð7:79Þ
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Consider the case in which the mass of the target is very large, namely
m1=m2 � 1. We see that the final velocity of the target particle is very small. Its
final kinetic energy, namely the energy gained in the collision, is also very small. In
the limit of infinite target mass, the final velocity and kinetic energy of the target are
zero. For example, a standing railcar hit by a ping-pong ball does not move, neither
does a billiard table when a ball hits one of its sides. As a consequence, the kinetic
energies of a light particle hitting a very massive target particle before and after
collision are equal.

We now consider the case of two equal mass particles, which are at rest in the
laboratory frame. The masses being equal, we can eliminate it from Eqs. (7.77) and
(7.78) and write

vi1 ¼ vf 1 þ vf 2; t21i ¼ t21f þ t22f : ð7:80Þ

The first of these equations tells us that the three velocity vectors can be thought
of as the sides of a triangle, as shown in Fig. 7.21. For the second equation we have
a right triangle, the hypotenuse of which is vi1. The final velocities of two particles
of equal masses in the laboratory frame are always at 90° from one another. This
can be observed, for example in a billiard game.

Consider now Fig. 7.22, which represents the initial state of the collision
between two spherical bodies. One is initially at rest. The distance between the line
on which the center of the moving body travels and the center of the target is called
impact parameter. It is b in the figure. Clearly, the final state depends on
b. Suppose, for example, that the two bodies are rigid spheres. When they touch,
they interact with a force in the direction of the normal to the contact surface, which
depends on b. This is the direction also of the variation of the momenta.

The simplest case is when the impact parameter is zero. The collision is then said
to be central. The incoming particle travels on a line passing through the center of
the target. When the particles collide, the action and reaction forces are directed on
that line, and so are consequently the final momenta. After the collision both

vi1

vf 2vf1

Fig. 7.21 Initial and final velocities in a collision of two equal mass particles in the CM frame

b

vi1

m1

m2

Fig. 7.22 The impact
parameter
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particles will travel on this line. The momentum conservation law Eq. (7.78)
becomes a simple relation between magnitudes

m2tf 2 ¼ m1 ti1 � tf 1
� �

: ð7:81Þ

The energy conservation equation Eq. (7.77) becomes

m2t
2
2f ¼ m1 t21i � t21f

� �
: ð7:82Þ

We seek two final velocities as functions of the initial one υ1i. As Eq. (7.82) can

be written as t21i � t21f ¼ m1 t1i � t1f

� �
t1i þ t1f

� �
, we can usefully divide it by

Eq. (7.81) obtaining tf 2 ¼ ti1 þ tf 1. And finally

tf 1 ¼ m1 � m2

m1 þm2
ti1; tf 2 ¼ 2m1

m1 þm2
ti1: ð7:83Þ

Let us discuss the first equation. If the mass of the incoming particle is smaller
than the mass of the target (m1 < m2) its final velocity is negative, meaning that after
the collision it bounces back. On the contrary, if its mass is larger than the mass of
the target (m1 > m2), after the collision it continues to move forward, even if with a
smaller velocity. An interesting case is when the two masses are equal. After the
collision the velocities are υf1 = 0 and υf2 = υi1. The two balls exchange their
velocities. The phenomenon is easily seen hitting two pendulums of equal mass.

Finally, if m2 � m1, then υf1 = –υi1 and υf2 = 0. This is the case of an elastic
collision of a ball, for example a tennis one, against a wall, shown in Fig. 7.23. Here
we suppose the wall to be smooth. In this case the force of the wall on the ball is
normal to the surface. We decompose the quantity of motion of the ball in com-
ponents normal and parallel to the wall. The latter is not changed by the collision.
To the normal component we can apply the results we found for the central col-
lisions. Particle 1 is the ball, particle 2 is the wall, hence m2 � m1. After the
collision the wall is still at rest while the normal component of the ball velocity has
changed its sign.

vi1

vf1

Fig. 7.23 Elastic collision on
a wall
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We now analyze the general case of the elastic collision between two particles.
As during the collision the system is isolated, the center of mass velocity is constant
and the CM frame is inertial. Recalling that υi2 = 0, the CM velocity in the labo-
ratory frame is

vCM ¼ m1v1i þm2v2i
m1 þm2

¼ m1v1i
m1 þm2

: ð7:84Þ

We obtain the velocities of the particles in the CM frame, which we indicate with
an asterisk, by subtracting the CM velocity from their velocities in the laboratory
frame

v�1i ¼ v1i � vCM ; v�2i ¼ 0� vCM ; v�1f ¼ v1f � vCM ; v�2f ¼ v2f � vCM : ð7:85Þ

In the CM frame the total linear momentum is zero both before and after the
collision. This means that the momenta of the two particles are equal and opposite
before the collision and similarly after it. These quantities are called center of mass
momentum before and after the collision respectively. If p�i is the momentum of
particle 1 before the collision, the momentum of particle two is – p�i . Similarly, after
the collision the momenta are, say, p�f and – p�f . We write the kinetic energy
conservation as

p�2f
2m1

þ p�2f
2m2

¼ p�2i
2m1

þ p�2i
2m2

and also

p�2f ¼ p�2i : ð7:86Þ

In words, in an elastic collision in the CM frame, the magnitude of the linear
momentum of each particle is equal after and before the collision. The only effect of
the collision is to change the common direction of the momenta by an angle, say, θ,
as shown in Fig. 7.24.

The angle θ is called a scattering angle. It cannot be found only on the basis of
the conservation laws. First of all, it depends on the impact parameter b, which in
the CM frame is the distance between the lines on which the center of mass of the
two bodies travel in the initial state.

θp*
i

–p*
i

p*
f

–p*
f

Fig. 7.24 Elastic collision in
the CM frame
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The dependence of the scattering angle on the impact parameter, given by the
function θ(b), depends on the structure of the colliding bodies. Suppose, for
example, that one of them, the incoming one in the laboratory frame, is point-like,
while the target body has a structure. We can think of the first as an electron, the
second an atom. We imagine the atom as a spherical cloud of negative electric
charge with the positively charged nucleus at the center. This is very small and
hard. If the impact parameter is larger than the atomic radius, the electron is not
deflected in its motion, namely the scattering angle is θ = 0. If the impact parameter
is smaller than the atomic radius, the electron penetrates in the charged cloud, is
deflected by the electric force and exits in a direction different from the incident
one. The scattering angle is now θ ≠ 0, which is increasing with a decreasing impact
parameter. In practice however it is never very large. When the impact parameter is
smaller than the nuclear radius, the collision is with the nucleus, and is violent. The
scattering angle is large. It can even reach 180°, namely the direction of motion can
invert if the collision is central, b = 0, because the mass of the nucleus is much
larger than that of the electron.

This example shows how the measurement of the function θ(b) in a scattering
experiment (a it is called) can be extremely useful to understand the structure of the
objects that, like atoms, are too small to be visible. As a matter of fact, the example
we have just made is quite similar to the experiment performed in 1911 by Hans
Wilhelm Geiger (1882–1945) and Ernest Marsden (1889–1970) that led Lord
Ernest Rutherford (1871–1937) to discover the atomic nucleus. Geiger and
Marsden used energetic α particles (rather than the electron in the example) sending
them on a thin gold sheet and measuring how many of them were scattered at
different angles. They found, in particular, that sometimes they were deflected
backwards. If the atoms were soft clouds of charges, as in the current model, this
could not happen. Rutherford concluded that a small hard nucleus had to be present
inside the atom. In the same way the internal structure of the atomic nuclei was
studied and, in 1967, the presence of the quarks in protons and neutrons was
discovered.

7.18 Inelastic Collisions

As we have stated, linear momentum is always conserved in a collision. This is not
the case for energy. When the final energy is different from the initial one the
collision is said to be inelastic. Rigorously speaking, in real collisions between
every day size objects, at least a small fraction of the mechanical energy is lost. For
example, if we drop a steel ball on a rigid floor, it will bunch back but will not reach
exactly the initial height. If we do the same experiment with a wax ball we see that
it sticks on the floor. The real collisions are never perfectly elastic, but have a
smaller or larger degree of inelasticity. We shall give a quantitative definition of this
concept. Before doing that, let us consider the case of the completely inelastic
collision (the case of the wax ball in the example).
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Consider two spherical bodies of masses m1 and m2 and initial velocities vi1 and
vi2. The collision is completely inelastic if the two bodies stick together, namely if
their velocities after the collision are equal vf1 = vf2. We can indicate simply with vf
the final velocity and write the momentum conservation as

P ¼ m1v1i þm2v2i ¼ m1 þm2ð Þvf : ð7:87Þ

The final velocity is then

vf ¼ m1v1i þm2v2i
m1 þm2

; ð7:88Þ

which is the same as the center of mass velocity (that does not vary in the collision)
as expected, considering that in the final state there is only one body. We write
down the initial kinetic energy, using the König theorem

UK;i ¼ 1
2
m1t

2
1i þ

1
2
m2t

2
2i ¼ U�

K;i þ
1
2

m1 þm2ð Þt2CM ;

where U�
K;i is the kinetic energy in the CM reference. The final kinetic energy is

UK;f ¼ 1
2

m1 þm2ð Þt2CM :

We see that in the completely inelastic collision all the kinetic energy relative to
the center of mass U�

K;i is lost in the collision. If we want to look at the collision in
the CM frame we can take over all the conclusions of the last section, with the
exception of equality of the magnitudes of the initial and final momenta. If the
collision is inelastic, the final center of mass momentum is smaller than the initial
one, null if it is completely inelastic. Figure 7.25 shows the situation. In the
completely inelastic collision all the momentum in the CM reference and all the
kinetic energy relative to the center of mass are lost. In the laboratory frame not all
the kinetic energy gets lost, because the velocity of the center of mass must be the
same after and before the collision, due to the momentum conservation.
Consequently, the kinetic energy “of the center of mass” cannot be lost. In the
completely inelastic collision all the energy that can be lost is lost, but this is not all
the energy.

θp*i
–p*i

p*
f

–p*
f

θp*i
–p*i

p*
f

–p*
f

p*i
–p*i

(a) (b) (c)

Fig. 7.25 Collisions in the CM frame. a Elastic, b inelastic, c completely inelastic
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In the above example of the wax ball falling on the floor, the ball loses all its
energy. However, in this case the mass of the target is enormous, practically infinite
and consequently the velocity of the center of mass is zero.

An application of a completely inelastic collision is the ballistic pendulum used
to measure the velocities of bullets. Figure 7.26 shows the device, which is made of
a sand bag of mass M suspended with a bar to the pivot O. The bullet P of mass
m and velocity υ to be measured hits the pendulum, penetrates the bag and sticks.
By measuring the resulting oscillation amplitude we determine the velocity of the
bag υf after the collision. Equation (7.81), considering that v21 = 0, and that M » m,
becomes mt ¼ mþMð Þtf ’ Mtf , or t ¼ ðm=MÞtf . This gives the bullet velocity,
the two masses being known.

Looking at Fig. 7.25 we understand immediately that all the intermediate cases
between elastic and completely inelastic collisions are possible. The parameter
characterizing the degree of elasticity is called the coefficient of restitution and is
defined as the ratio between the center of mass momentum after and before the
collision

e ¼ p�f =p
�
i : ð7:89Þ

By definition, the coefficient is a non-negative number. It is equal to one in the
elastic collision. Notice that it can be larger than one. Suppose for example that the
target body contains a spring, which is compressed and blocked by a nail. In the
collision the nail is broken, the spring expands and gives energy to the colliding
bodies. The final center of mass momentum is larger than the initial ones. As
another example, energy can be gained in collisions between two molecules. Such
are the exothermic chemical reactions.

Let us write down the kinetic energy in the CM reference frame

U�
K;i ¼

p�2i
2m1

þ p�2i
2m2

¼ 1
2
p�2i m1 þm2ð Þ

m1m2
¼ 1

2
p�2i
l

where µ is the reduced mass. Similarly the final kinetic energy is

U�
K;f ¼

1
2

p�2f
l

v

O

P

m

Fig. 7.26 Ballistic pendulum
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and finally, for Eq. (7.89)

U�
Kf =U

�
Ki ¼ e2; ð7:90Þ

namely the ratio of the final and initial kinetic energies relative to the center of mass
is equal to the square of the coefficient of restitution.

Problems

7:1. What is the total momentum P of a system of particles in the CM frame?
7:2. A system of interacting bodies moves in the neighborhood of the earth’s

surface. Neglect air resistance. How does the center of mass move?
7:3. Two railcars move one against the other on a rail. The first one has a mass of

1000 kg and moves at the speed of 2 m/s. The second one has twice the mass.
After the collision the two cars are at rest. What was the initial velocity of the
second car? Did the kinetic energy change?

7:4. A railcar of 5 t mass and speed 10 m/s is stopped by bumpers in 0.5 s. Find
the impulse and the average value of the force.

7:5. Two pendulums collide elastically. Initially, one of the two, of mass m2

stands still in the equilibrium position, the other one, of mass m1 is aban-
doned at a certain height above that. After the collision the two velocities are
equal and opposite. (a) What is the ratio of their masses? (b) What is the ratio
between the center of mass velocity and the velocity of pendulum 1 before
the collision?

7:6. In Problem 7.5, knowing the kinetic energy UKi(1) of pendulum 1 imme-
diately before the collision, find: (a) the total kinetic energy in the CM
reference, (b) the kinetic energy UKf(1) of the first pendulum immediately
after the collision.

7:7. In a first approximation, the moon revolves around the center of the earth.
More precisely, earth and moon revolve around their common center of
mass. Knowing that the mass of the earth is about 81 times that of the moon
and that the distance between the two centers is about 60 earth radii, RE,
calculate the position of the center of mass (in RE units).

7:8. A planet of mass M has a satellite of mass m = M/10. The distance between
their centers is R. (a) Express the revolution period as a function of R and
M. (b) Find the ratio between the (revolution) kinetic energies of the two
bodies.

7:9. We have measured the period of T earth years of a binary system and the
distance between the two stars in R astronomic units. Find the sum of the two
masses in solar mass (MS) units.

7:10. Two point-like bodies have a completely inelastic collision. The first body
has a mass m1 = 2 kg and the velocity before collision v1i = (3, 2, –1) m/s.
The second body has a mass m2 = 3 kg and the velocity before collision
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v2i = (–2, 2, 4) m/s. (a) Find the velocity V of the composite body after the
collision. (b) Find the total energy and the energy relative to the center of
mass before the collision and compare with the kinetic energy after the
collision.

7:11. A material point of mass m, moving with velocity v1i collides with a second
point, of mass 2m, that is standing. We measure the velocity after the col-
lision of the particle of mass m finding its direction at 45° with the incident
one and its magnitude one half of the initial value. (a) Find the magnitude
and direction of the velocity of a particle of mass 2m. (b) Was the collision
elastic?

7:12. The force F = (3, 4, 0) N is applied on the point P having coordinates (8, 6,
0) m. Find (a) its moment about the origin, (b) the lever arm b of the force,
namely the distance of its application line from the pole. (b) the component
Fn of the force perpendicular to the position vector r.

7:13. A ball falls on the floor from 5 m. What are the heights it reaches when
bouncing back the first, the second and the third times if the coefficient of
restitution is 0.8? What are the corresponding energies? Neglect air resistance.

7:14. An air guide is a rail with a series of small holes through which compressed
air is blown. A sledge can run on the guide practically without friction. We
put two such sledges on the rail. The first one, of mass m1 = 2 kg is still. On
its right side lies a spring of elastic constant k = 300 N/m and 1 m long, in its
natural length. The second sledge, of mass m2 = 3 kg is launched towards the
first with velocity 5 m/s. It hits the first sledge putting it and the spring in
motion. What is the maximum deformation Δx of the spring?

7:15. A material system is made of a particle of mass m1 = 0.1 kg in the point of
coordinates (1, 2, 3) m, a particle of mass m2 = 0.2 kg at the coordinates (2, 3,
1) m and a particle of mass m13 = 0.3 kg at the coordinates (3, 1, 2) m. Find
the coordinates of the center of mass.

7:16. A body of mass m = 2 kg is shot vertically upwards with initial velocity
υ0 = 10 m/s from a point with coordinates (0, 20, 0) m. The z-axis is vertical
upwards. Find the difference ΔLO of the angular momentum of the body
about the origin between the instant when it is back in the initial position and
the initial instant.

7:17. A particle of mass m is launched with initial velocity v0 at an angle α with the
horizontal. In the reference frame of Fig. 7.27, neglecting air resistance, find
the time dependence of (a) the moment of the force about the origin O,
(b) the angular momentum LO of the body about the same pole.

x

y

O

v0

α

Fig. 7.27 The trajectory of
problem 7.17
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Chapter 8
Rigid Bodies

In this chapter, we shall discuss the mechanics of an important class of extended
systems, the rigid bodies. In a perfectly rigid body, the distance between any pair of
its points does not vary for any acting forces or any motion. Clearly, this is an
idealization, but, in practice, the solid objects are rigid in a good approximation.

The motion of the rigid bodies is governed by two differential equations. The
known members are the ns of the external forces and of the external moments. The
solution to these may involve advanced calculus. We shall limit the discussion to
the simplest situations.

In Sect. 8.1, we shall define the rigid body and its motions, and then do the same
for the properties of the systems of applied forces in Sect. 8.2. In Sect. 8.3, we shall
consider the equilibrium conditions.

We then consider the rotations about a fixed axis, which are the simplest
motions. We shall find the expressions of the kinetic energy and the angular
momentum. We shall introduce a new kinematic quantity, the moment of inertia,
and see how the dynamics of the rotations about a fixed axis have some similarities
with the dynamics of the material point. In Sects. 8.9 and 8.10, we discuss two
important examples, the torsion balance and the compound pendulum.

We shall then move on to more complex motions, those of a rigid body about a
fixed point. We shall first find the expression of the angular momentum about that
point, and of the kinetic energy in Sects. 8.12 and 8.13. We shall see that, in
general, the directions of the angular momentum and the angular velocity are
different. One consequence of that is that the forces develop on the supporting, as
demonstrated in Sect. 8.14. In Sects. 8.15 and 8.16, we study the pure rolling
motion of cylindrical and spherical rigid bodies on a plane.

In Sect. 8.17, we consider the gyroscopes, which are rigid bodies moving about a
fixed point, a top being a good example.

Finally, in Sect. 8.18, we shall study the collisions between rigid bodies.

© Springer International Publishing Switzerland 2016
A. Bettini, A Course in Classical Physics 1—Mechanics,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-29257-1_8

317



8.1 Rigid Bodies and Their Movements

The solid bodies are approximately rigid. Upon first approximation, their shape
does not change if we stretch, compress or torque them. Clearly, this is never
rigorously true, because small deformations always take place. However, several
dynamical properties of these bodies can be studied considering them as rigid. We
define them as rigid if the distance between any pair of their points does not vary.

The space location of a rigid body is called its configuration, which is the set of
the positions of its points. To define the configuration of a generic system of
N points, we need 3 N coordinates, but only six for a rigid body. Let us see why.

We start by defining the position of one point, for example, A in Fig. 8.1, namely
its three coordinates in the reference frame we have chosen. In a certain instant, it is
in A1 = (xA1, yA1, zA1). We then shall give the coordinates of a second point, like B,
which is in B1 = (xB1, yB1, zB1). But, wait a moment: we cannot do that arbitrarily.
We can choose only two coordinates, because the distance between A and B is
fixed, independent of the configuration, namely

xB1 � xA1ð Þ2 þ yB1 � yA1ð Þ2 þ zB1 � zA1ð Þ2¼ const:

With this, we do not yet know the configuration. We need the position of a third
point, like C, which is in C1 in the considered instant. Of its three coordinates, we
can arbitrarily choose only one, the other two being defined by the two conditions
that the distances C1A1 and C1B1 are fixed. Now, the positions of all the points are
defined, hence the configuration of the body too.

In total, the configuration of a rigid body is defined by six coordinates. We say
that the system has six degrees of freedom.

Consider now two configurations. The transport from one configuration to
another can always be obtained with a translation followed by a rotation around an
axis. This is geometrical and not necessarily fixed. In Fig. 8.1, the translation brings
point A from A1 to A2 and the body goes to the dotted configuration. To bring the
other points to their final positions, we need a rotation about an axis through A2 (this

A1 A2

B1

B2

C1 C2
Fig. 8.1 Two configurations
of a rigid body
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point is already in position, and should not move any more). The axis should have
the right direction and the rotation angle the right value.

In the above argument, the choice of the point A was arbitrary, but it determines
the translation. If we had chosen, for example, B, the translation would have been
different. Consequently, there are infinite translation-rotation pairs that produce the
given displacement. It can be demonstrated, however, that once given the initial and
final configurations, the rotation direction and the angle are determined.

Obviously, the same result can be obtained by performing the rotation first and
then the translation, or a sequence of rotation and translation pairs. As a matter of
fact, the motion of the rigid body can be thought of as a continuous series of
infinitesimal roto-translations. The rotation axis, in general, varies continuously
during the motion and we subsequently talk of an instantaneous rotation axis.

While the choice of the translating point is, as we said, arbitrary, it is in practice
convenient to choose the center of mass, considering its privileged role in
dynamics. We recall here the dynamical equations governing every mechanical
system in an inertial frame that we found in Chap. 7. We choose a point Ω fixed in
the inertial frame as the pole. Let MΩ be the total external torque about Ω and LΩ

the total angular momentum about the same pole, F the external resultant force and
P the total linear momentum. The two dynamical equations are

F ¼ dP
dt

; ð8:1Þ

MX ¼ dLX

dt
: ð8:2Þ

We also recall that the second equation is similarly valid when we choose a
particular point, even if it is moving in the inertial frame, namely the center of mass
of the system

MCM ¼ dLCM

dt
: ð8:3Þ

The two vector equations give six independent conditions. For any mechanical
system, these are necessary conditions, but in general, they are not sufficient. They
are, however, sufficient for a rigid body, which has six degrees of freedom, as many
as the conditions. In other words, if we know the external resultant force and the
total external torque (or moment) and the initial conditions, we can know the
motion of the body solving the above differential equations.

We notice that Eq. (8.1) rules the motion of the center of mass of the body.
Remembering that P = mvCM, where m is the mass of the body and vCM the velocity
of its center of mass, we can write Eq. (8.1) in the equivalent form
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F ¼ maCM ð8:4Þ

where aCM is the center of mass acceleration. The motion of the center of mass is
exactly in the same way as the motion of a material point.

Equation (8.3) allows us to find the motion of the body about its center of mass.
This is general around an axis through the center of mass but of varying direction
and with varying angular velocity. The solution is, in general, quite complicated.
We shall consider the simplest cases here.

We immediately notice an important property of the rigid motions: the work of
the internal forces is always zero. Indeed, the internal forces come in couples acting
on pairs of points in the direction of the line joining the points. The work done by
one of the two for a given displacement of the body is equal to the force times the
projection of the displacement of the point on which it acts on the direction of the
force. The latter is the line joining the two points. The work done by the couple of
forces is then equal to the magnitude of the force times the difference between the
projections of the two displacements on the joining line. But this difference is the
change in the distance between the two points, and this is zero, if the body is rigid.

8.2 Applied Forces

Suppose that several external forces are acting on a rigid body. As we have just seen,
the motion of the body is determined by their resultant and total torque. Clearly, there
is an infinite number of systems of forces having the same resultant and the same
torque. All these force systems applied to the same rigid body produce the same
motion, when starting from the same initial conditions. Consequently, from the
observation of the motion, we can know the resultant force (from the center of mass
acceleration) and the total torque (from the angular acceleration), but not the single
acting external forces. We define as equivalent any system of applied forces with the
same resultant and torque. Notice such force systems are equivalent for the motion of
a rigid body, but they do not have the same effects if applied to a non-rigid body.
Consider the very simple example of a couple on the same line. The resultant force
and torque are zero. Acting on a rigid body, they tend to approach or separate the two
points, namely to change their distance. This distance, the body being rigid, cannot
vary. But if the body is a rubber band, the distance varies and both forces do work.

We now show a few simple properties of the force systems that will be useful in
the following.

(1) A force system has resultant F and total torque about the fixed point Ω, MΩ.
We show that the torque about any other fixed pole Ω′ is

MX0 ¼ MX þXX0 � F. ð8:5Þ
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With reference to Fig. 8.2, we can easily see that the relation between the
torques about the two poles of the generic force Fi is

siX0 ¼ r0i � Fi ¼ XX0 þ rið Þ � Fi ¼ XX0 � Fi þ siX;

which, summed on all the forces, gives Eq. (8.5)

Corollary 1 The torque of a force system of zero resultant is independent of the
pole, namely MΩ = MΩ′.

Corollary 2 If two force systems have the same resultant and the same torque
about the same pole, they have the same torque about any pole.

(2) Consider a generic force system of resultant F and torque about Ω, MΩ. The
system is equivalent to a force system of a force F applied to the pole Ω plus a
torque couple MΩ. The demonstration is immediate. The two systems have the
same resultant and the same torque, as the torque of F about the pole is null.

(3) A system of mutually parallel forces Fi applied to different points Pi of position
vectors ri is equivalent to their resultant F applied to the point C, having the
position vector

rC ¼
XN
i¼1

Firi

,XN
i¼1

Fi: ð8:6Þ

The point C is called the center of the force system. The demonstration of the
theorem is easy. First of all, the two systems obviously have the same resultant. As
for the torque, let us take the origin O as the pole, as in Fig. 8.3. The forces being
parallel, we can call u their common unit vector and write Fi = Fiu. The torque
about O is

MO ¼
XN
i¼1

ri � Fi ¼
XN
i¼1

ri � Fiu ¼
XN
i¼1

riFi

 !
� u,

'

Pi
Fi

ri
r'i

Ω

Ω

Fig. 8.2 A force and two
different poles
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which, by definition of the center of the forces, becomes

MO ¼
XN
i¼1

riFi

 !
� u ¼ rC

XN
i¼1

Fi

 !
� u ¼ rC � u

XN
i¼1

Fi ¼ rC � F,

which proves the theorem.
The weight forces are a relevant example of parallel forces. Consider a system of

n material points (the argument is also valid for a continuous system) Pi of position
vectors ri and masses mi. The weights mig are parallel forces applied to the points
Pi. The position vector of the center of the forces is

rC ¼
PN

i¼1 gmiriPN
i¼1 gmi

¼
PN

i¼1 miriPN
i¼1 mi

: ð8:7Þ

We see that the center of the weight forces, called the barycenter, is simply the
center of mass of the system. The motion of a rigid body under the action of the
weights of all its parts can be described as if a single force was acting, its total
weight applied to the center of mass. This property, which we have already used,
substantially simplifies several problems.

Notice, to be precise, that the coincidence between center of mass and center of
the weight forces exists for bodies that are not too large, such that the weights of all
their parts can be considered to be parallel. This is almost always true in practice.

8.3 Equilibrium of the Rigid Bodies

A configuration of a rigid body is said to be of equilibrium if, leaving the body at
rest in that configuration, it keeps it indefinitely. The necessary and sufficient
condition for the equilibrium, in an inertial frame, is that the external resultant force
and the external moment are zero. Indeed, if the body is in equilibrium, the
acceleration of its center of mass is zero; hence, the resultant force is zero. In
addition, the angular momentum that is initially zero must remain as such. Hence,

O

Pi

Fi

r2

F2

P1

ri

r1

F1

P2

Fig. 8.3 A system of parallel
forces
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the total moment is zero. On the other hand, if the resultant is zero, the center of
mass does not change its velocity, which is initially zero, and, if the moment is zero,
the angular momentum is constant and remains zero, if it is so initially.

Notice that the two conditions are independent from one another. For example, a
couple of forces have zero resultant and non-zero moment, while a force applied to
the pole has zero moment and nonzero resultant.

Example E 8.1 Consider a rigid body on a horizontal plane under the action of its
weight. The position is of an equilibrium position if the vertical through the center
of mass of the body intersects its support base. Indeed, the external forces are the
weights of its elements and the constraint forces. The former are equivalent to the
total weight applied to the center of mass, the latter are normal to the base and
consequently are a system of parallel forces too. Consequently, they are equivalent,
with their resultant N applied to their center of forces D, as shown in Fig. 8.4a. The
constraint automatically adjusts its reaction in such a way that the magnitude of
N and the center D guarantee the equilibrium, in other words, that mg and N are a
couple with the same line of application. This implies that N = −mg and that
D should be on the vertical from C. This is possible if the foot of this vertical is
between A and B, namely inside the base. The insert in the figure shows a possible
configuration of the constraint forces. They are applied between A and
B. Consequently, their center must be a point of AB.

In the configuration of Fig. 8.4b, the equilibrium is not possible. Even if the
constraint normal reaction N is concentrated in the extreme point B of the basis, this
is not enough to produce a couple of zero moments. The body overturns. During the
fall, the normal reaction is less than the weight, because the center of mass is
accelerating downwards. The difference mg − N is equal to the acceleration of the
center of mass times the mass of the body.

The center of the constraint forces can, however, be brought outside the segment
AB, and the equilibrium is also guaranteed in the conditions of Fig. 8.5b, if part of
the constraint forces is directed upwards. We can, for example, drive a nail in A, as
in Fig. 8.5, or attach a hook. If R is the reaction of the nail, or of the hook, and
N the reaction of the plane, the equilibrium is when the resultant force and moment

are zero, namely N ¼ Rþmg ¼ 0,RAB
�! ¼ mgBD

�!
.

C
mg

N

mg
C

N

(a) (b)

A BAA B
D

Fig. 8.4 a An equilibrium position, b a non-equilibrium position
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Example E 8.2 The ladder shown in Fig. 8.6 of length l is supported by a vertical
wall, at an angle of α. Suppose the friction on the wall to be negligible, while the
coefficient of static friction on the horizontal plane is µS. Let us discuss the equi-
librium conditions.

In Fig. 8.5, C is the center of mass, and A and B are the footholds. We take the
reference frame with the x-axis horizontal in the plane of the figure, the z-axis
horizontal directed out of the figure and the y-axis vertical upwards. The external
forces are: the weight mg, applied to the center of mass, the constraint reaction
applied in B, which we consider decomposed in a vertical component, N, and a
horizontal component, Ft, and finally, the constraint reaction applied in A, NA that is
horizontal (no friction here). At equilibrium, their resultant is zero:

NþFt þNA þmg ¼ 0:

This equation gives two independent relations, its x and y components, the
z component being identically zero. The two relations are N ¼ �mg; which gives
the unknown N, and Ft ¼ �NA , which links the other two unknowns. We now state
that the external moment should be zero too, namely

mg
C

N
A

B D
R

Fig. 8.5 The constraint
R guarantees equilibrium

A

B

C

mg
N

Ft

NA

y

x

α

Fig. 8.6 The forces acting on
a ladder
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Mz ¼ mgðl=2Þ sin a� NAl cos a ¼ 0:

We have written the signs in this equation taking into account that NA must be in
the positive x direction, because the wall can only push. Consequently, NA tends to
rotate the ladder clockwise and the z component of its moment is negative. On the
other hand, for the above written equation, for the equilibrium of the horizontal
forces, Ft must be in the opposite x direction. The z component of its moment is
consequently positive. Solving the two equations for Ft and NA, we immediately
have Ft ¼ �NA ¼ �ðmg=2Þ tan a.

The friction force cannot be too large, namely Ft � lsN: On the other hand,
Ftj j=N ¼ ðtan aÞ=2: Consequently, to be in equilibrium, the leaning angle should
not be too large, namely tan a� 2ls: For larger angles, the ladder slides down.

We have assumed the vertical wall to be smooth and its reaction to be normal. If
there is friction, as there always is in practice, there is a vertical component to the
wall reaction too. We would have one more unknown, with the same number of
equations. Under these conditions, the problem is undetermined. Indeed, there is an
infinite number of pairs of the two tangential reactions that lead to equilibrium.
Another example of an undetermined problem is the problem of finding the con-
straint reactions on the four wheels of a car, or the four legs of a table, on a plane.
These problems have a solution if more information is available, such as the nature
of the elastic forces of the tires on the car or the lengths of the legs of the table.

8.4 Rotation About a Fixed Axis

An important and relatively simple class of rigid movements is the class of
movements about a fixed axis. Consider a rigid body of arbitrary shape, as repre-
sented in Fig. 8.7, which can move around the axis a, which is fixed in an inertial
frame. Let ua be the unit vector, arbitrarily chosen in one of the two directions of
a. The configuration of the body is defined by the rotation angle, which we call ϕ,
around the axis a, relative to a fixed plane, which we choose as the origin of the
angles.

We now choose a point Ω on the axis as the pole of the moments and callMΩ the
total external moment and LΩ the total angular momentum about Ω. The dynamic
equation is

MX ¼ dLX

dt
: ð8:8Þ

We now take the dot product of the two members with the unitary vector of the
rotation axis ua. We have
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MX � ua ¼ d LX � uað Þ
dt

: ð8:9Þ

In this equation, we have the projections on the a-axis of the external moment
and of the angular momentum, namely

Ma � MX � ua; La � LX � ua: ð8:10Þ

These quantities are called the external moment or the torque about the axis and
the angular momentum about the axis. Both quantities are the components of a
pseudo-vector. They can have both signs. It can be easily shown that they are
independent of the choice of the pole Ω, provided it is on the rotation axis.

We can write Eq. (8.9) as

Ma ¼ dLa
dt

; ð8:11Þ

which expresses the theorem of the angular momentum about an axis. In other
words, the rate of change of the angular momentum about a fixed axis, in an inertial
frame, is equal to the external moment about the same axis.

Let us find the expression of the angular momentum. The angular velocity,
which we call ω, is parallel to the axis. Its magnitude and its sign relative to the axis
can vary in time, but not its direction. We start by considering, for simplicity, the
body consisting of particles of mass mi, in the positions ri relative to Ω, distance
from the axis r′i and velocity vi, as shown in Fig. 8.7. The trajectory of the generic

ua

a

ri

φ

vi mi

r'i

ω

plane
at rest

Oi

Fig. 8.7 A rigid body with a
fixed axis
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particle is a circle normal to the axis of radius r′i. Its velocity is tangent to this circle
and has the magnitude ti ¼ xr0i .

We profit by the fact that the angular momentum about the axis is independent of
the pole on the axis and take it, for each particle, in the center Oi of its orbit. The
angular momentum of the particle about this pole is

li ¼ r0i � miv ¼ r0i � mi x� r0i
� �

;

which, as in figure, has the direction of the axis. What we need is its component on
the axis. Its sign is the same as the sign of the projection on the axis of the angular
velocity, ωa. We have lai ¼ r02i mixa . We now sum over all the particles and obtain
the total angular momentum about the axis

La ¼ xa

XN
i�1

mir
02
i ¼ xaIa ð8:12Þ

where we have introduced the quantity

Ia ¼
XN
i�1

mir
02
i ; ð8:13Þ

which is the moment of inertia of the body about the axis a.
We now consider the body as a continuous distribution of masses. Instead of

point particles of mass mi, we consider infinitesimal volume e dV, in the position
r and having mass dm = ρ(r) dV, where ρ is the density (that can be different from
point to point). Following the same arguments as for the discrete body, one finds the
same result

La ¼ xaIa; ð8:14Þ

but now with an integral in place of the sum, namely

Ia ¼
Z

r02i qðrÞdV : ð8:15Þ

In Sect. 8.7, we shall calculate the moments of inertia of several bodies of simple
geometry. We observe here that the moment of inertia depends on the axis, not only
on the body. What matters is how the masses are distributed about the axis. The
equation of motion Eq. (8.11) can be written in equivalent forms.

Ma ¼ dLa
dt

¼ Ia
dxa

dt
¼ Ia

d2/
dt2

ð8:16Þ
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and also

Ma ¼ Iaa ð8:17Þ

where

a ¼ d2/
dt2

ð8:18Þ

is the angular acceleration.
The last expression looks very similar to the dynamical equation for a point

moving along a straight line. If x is its coordinate, m the mass and Fx the component
of the acting force, the equation of motion is, as we know,

Fx ¼ max ¼ m
d2x
dt2

:

Equation (8.17) is the same differential equation with ϕ in place of x (and
consequently, angular velocity and acceleration in place of the linear ones), the
external moment about the axis in place of the force and the moment of inertia in
place of the mass. Consequently, the solutions to Eq. (8.17) are the same as those
for the linear motion of a point.

The simplest case is when the external moment about the axis Ma is constant.
Then, the angular acceleration α = Ma/Ia is constant too and, analogous to the
uniformly accelerated rectilinear motion, we have

/ðtÞ ¼ /0 þx0tþ 1
2
at2 ð8:19Þ

where ϕ0 and ω0 are the angle and the angular velocity, respectively, at t = 0.

Example E 8.3 Figure 8.8 shows a rigid disk, say a pulley, that can rotate around a
horizontal axis a passing through it center of mass. A wire, to which a mass m is
attached, is wrapped around the pivot. The radius of the pivot is r. The external
moment about the axis is clearly constant, Ma = mgr. Suppose the disk to be
initially at rest and choose the origin of the angles such that ϕ0 = 0. The motion is
then /ðtÞ ¼ 1

2
mgr
Ia

t2 . Namely, the angle through which the system has turned is
proportional to the square of the time.

8.5 Conservation Angular Momentum About an Axis

We still consider a rigid body with a fixed (in an inertial frame) rotation axis a. If
the external moment about the axis is zero, the angular momentum about the axis is
constant, namely

328 8 Rigid Bodies



La ¼ constant: ð8:20Þ

The external moment about the axis is zero, a part of the trivial case of absence
of forces, in two important cases: (1) the directions of all the external forces are
parallel to the axis, and (2) the application lines of all the external forces meet the
axis. In these cases, for Eq. (8.14), as the moment of inertia is constant, the angular
velocity is constant too

xa ¼ constant: ð8:21Þ

Notice that, for zero external moment about the axis, Eq. (8.20) is also valid for
non-rigid bodies, while Eq. (8.21) is not. A simple experiment follows. A person
sits on a turntable stool holding in his hands two heavy objects with arms hori-
zontally outstretched. A second person pushes the first in rotation. The first brings
hands and heavy objects near his chest. His angular velocity increases substantially.
The initial moment of inertia of the body was, say, I1 and was quite large because
heavy masses were far from the axis, while the final one, I2, is much smaller
because the masses are close to the axis. We can say that the external moment about
the axis is zero, if we neglect frictions, because the external forces, the weights, are
parallel to the axis. The angular momentum is conserved, and, if ω1 and ω2 are the
initial and final velocities, we have I1x1 ¼ I2x2 and consequently, as I2 � I1,
ω2 � ω1. This trick is used by skaters in their figures.

Example E 8.4 As an example, consider the system in Fig. 8.9, which shows an
electrical motor fixed on a support that can rotate about a vertical axis, coinciding
with the axis of the motor. The motor has two parts: the external one (stator) is fixed
to the platform, while the internal one (rotor) is free to rotate and has a flywheel
(V in the figure). The two parts are coaxial rigid bodies with moments of inertia, I1
being the internal and I2 the external.

ra

mg

Fig. 8.8 A pulley and a
weight
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Suppose that, starting from rest, we switch on the motor for some time and then
switch it off. We neglect frictions. We observe that the two parts rotate at angular
velocities ω1 and ω2, respectively.

The initial angular momentum is zero. The final one is zero as well, because
during the action of the motor, the forces are only internal. Hence, again, La ¼
I1xa1 þ I2xa2 ¼ 0 or xa2 ¼ �xa1I1=I2 . We can measure the initial and final
angular velocities, repeat the experience with different flywheels, and verify if the
prediction is correct.

8.6 Work and Kinetic Energy

We continue our study of the rigid body rotating about the fixed axis a, represented
in Fig. 8.7. Its generic particle of mass mi, as shown in Fig. 8.10, moves in a circle.
We call Oi its center and r′i the position vector of the particle from it.

1

2

V

Fig. 8.9 An electrical motor

mi

r'i
Oi

ω

φdφ
dsi

Fi

Fig. 8.10 The motion of a
particle of a rigid body
rotating about an axis
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We now calculate the total moment about the axis of the external forces Fi acting
on the particle. We start from the moment τi about any pole on the axis. Once more,
we take the center Oi of the trajectory of mi as the pole. The force Fi can be thought
of as the sum of three components, one parallel to the axis, one to r′i, and one
tangent to the trajectory. The contribution of the first is normal to the axis and has
no axial component. The contribution of the second is zero, because it is parallel to
the arm. The only contribution is the third.

We call ut the unit vector tangent to the trajectory with positive direction in
accordance with the direction of increasing angles (which is not necessarily the
direction of motion). Let Fti be the component of the external force on ut. The
component of τi on the axis is then, in magnitude and sign, sai ¼ r0iFti .

Consider now the infinitesimal rotation of the body along the angle dϕ, and
calculate the corresponding total work of the forces. As we know, the body being
rigid, the total work of the internal forces is zero. As for the work of the external
forces, we start with the work on one particle. The displacement of the particle is
dsi = r′idϕ and the elementary work dWi ¼ Ftidsi ¼ Ftir0id/ ¼ said/ . To find the
total work of the external forces, we have now only to add up all the particles.
Taking into account that dϕ is the same for all and calling Ma ¼

P
sai , we have

dW ¼ Mad/: ð8:22Þ

This important relation tells us that the elementary work of the external forces
for an infinitesimal rotation is equal to the external moment about the axis times the
rotation angle. Again, we have found an analogy with the elementary work of the
force on a point Fxdx.

The work for a finite rotation, say from ϕ1 to ϕ2, is obtained by integration

W ¼
Z/2

/1

Mad/: ð8:23Þ

For the rotations about a fixed axis, the kinetic energy theorem has a simple
expression. Recalling Eq. (8.16), we write

dW ¼ Mad/ ¼ Ia
dx
dt

d/ ¼ Iadx
d/
dt

¼ Iaxdx:

For a finite rotation, the work is equal to the difference of the kinetic energies

W ¼ Ia

Z2
1

xdx ¼ 1
2
Iax

2
2 �

1
2
Iax

2
1: ð8:24Þ
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We see that the kinetic energy of a rigid body rotating about a fixed axis is (once
again similar to the material point)

UK ¼ 1
2
Iax

2: ð8:25Þ

8.7 Calculating Inertia Moments

In this section, we shall calculate the moments of inertia of a few geometrically
simple bodies. We shall consider all of them as homogeneous, namely having
density independent on point. Consequently, their geometric centers coincide with
their centers of mass.

Cylindrical bar. Figure 8.11a represents a bar of mass m and length L. We
assume it to be thin, namely of transverse dimensions much smaller than the length.
We assume the faces to be perpendicular to the geometrical axis. The shape of the
faces is arbitrary. They can be circles, squares, anything. We calculate its moment
of inertia about the axis c normal to the bar through its center C.

We take a coordinate x along the bar originating in its center. We cut the bar into
infinitesimal slices between x e x + dx of mass dm. As the diameter of the slice is
very small, we can consider all the points of the slice at the same distance from the
axis c. The mass of the slice is clearly dm = (m/L)dx. We notice that there are two
slices at the same distance from c, on its two sides. Their contribution to the
moment of inertia is dIc ¼ 2x2dm ¼ 2ðm=LÞx2dm: We integrate it on half of the
bar, namely from 0 to L/2, and obtain

Ic ¼ 2m
L

ZL=2
0

x2dx ¼ mL2

12
: ð8:26Þ

Ring. Figure 8.12 represents a thin ring of mass m and radius R. We assume the
diameter of the section to be small compared to R. All the points of a section can be
considered at the same distance R from the center.

We calculate the moment of inertia about the axis c normal to the plane of the ring
through its center C. As all the mass sits at the same distance, we immediately have

Ic ¼ mR2: ð8:27Þ

c(a) (b)

x x+dx

L/2

xC x x+dx xC

P

Fig. 8.11 Calculating the moment of inertia of a thin bar about a central transverse axis
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Cylindrical surface. The moment of inertia of a cylindrical surface (namely of
negligible thickness) about the geometrical axis is given by Eq. (8.27) as well,
because all the masses in this case are also at the same distance R from the axis.

Homogenous disk. Figure 8.13 represents a disk of radius R and mass m. We
calculate the moment of inertia about the geometric axis c shown in the figure. We
divide the disk into infinitesimal rings of rays between r and r + dr. The area of a
ring is 2πr dr, to be compared with the area πR2 of the entire disk. The mass of the
ring is then dm ¼ mð2prdrÞ=ðpR2Þ ¼ ð2m=R2Þrdr: Its contribution to the moment
of inertia is dIc ¼ r2dm ¼ ð2m=R2Þr3dr: Integrating, we obtain

Ic ¼ 2m
R2

ZR
0

r3dr ¼ mR2

2
: ð8:28Þ

Homogenous cylinder. Figure 8.14 shows a homogenous cylinder. It can be
thought of as a pile of disks. Hence, the moment of inertia about the symmetry axis
is given by Eq. (8.28).

Homogeneous rectangular parallelepiped. Figure 8.15 represent a parallelepiped
of uniform density ρ, mass m and side lengths a, b and c. We calculate the moment
of inertia about the axes through the center C parallel to the sides. These we call x,
y and z and take as reference axes.

As a matter of fact, it will be enough to calculate the moment of inertia about one
axis, say z, and this will be analogous for all the axes. We have

Iz ¼
Zþ a=2

�a=2

dx
Zþ b=2

�b=2

dy
Zþ c=2

�c=2

dz x2 þ y2
� �

q ¼ abcq
a2 þ b2

12
¼ m

a2 þ b2

12
:

R C

cFig. 8.12 Calculating the
moment of inertia of a thin
ring about the central axis

c

r

dr

C
R

Fig. 8.13 Calculating the
moment of inertia of a disk
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Analogous expressions holding for the other axes, we can conclude that

Ix ¼ m
b2 þ c2

12
; Iy ¼ m

a2 þ c2

12
; Iz ¼ m

a2 þ b2

12
: ð8:29Þ

Homogeneous cube. The moment of inertia about one, of the three, symmetry
axes is a particular case of what we have just found. If L is the length of the side, we
have

Ia ¼ m
L2

6
: ð8:30Þ

Homogeneous sphere. We give only the result without developing the calcula-
tion. The moment of inertia about an axis through the center is

Ia ¼ 2
5
mR2: ð8:31Þ

c

R

L

Fig. 8.14 Homogenous
cylinder and its axis

C

x

y

z

a

b

c

Fig. 8.15 Calculating the
moment of inertia of a
parallelepiped about three
central axes
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8.8 Theorems on the Moments of Inertia

In this section, we shall show two theorems that will help in several cases of
computing moments of inertia. The first one, the Steiner theorem, after Jacob
Steiner (1796–1863), concerns rigid bodies of arbitrary shape, while the second one
is for thin bodies, namely of negligible thickness.

Theorem of the parallel axes, or Steiner theorem. The theorem of the parallel
axes states that the moment of inertia about an arbitrary axis is equal to sum of the
moment of inertia about the parallel axis through the center of mass and the product
of the mass of the system and the square of the distance between the two axes.

Figure 8.16 represents a rigid body of arbitrary shape. The c axis is through its
center of mass C. The moment of inertia about c is Ic, the one relative to the parallel
axis a, at distance h, is Ia. Let h be the vector from a to c in a plane normal to the
axes. Consider an arbitrary element of the body, of mass dm and the plane normal to
the axes through the element. In this plane, let rc′ and ra′ be the vectors to dm from
c and a, respectively. Clearly, r0a ¼ hþ r0c.

The contribution dIa of the moment of inertia about a is

dIa ¼ r02a dm ¼ hþ r0c
� �2

dm ¼ h2dmþ 2h � r0cdmþ r02c dm:

Taking into account that the last term is dIc and integrating on the body, we have

Ia ¼ h2
Z

dmþ 2h �
Z

r0cdmþ Ic:

h
r'c

ar'

ca

dm

C

Fig. 8.16 A rigid body, an
axis through the center of
mass and a parallel axis
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The integral in the first term is the mass of the body, while the second term is the
component on the considered plane of the position vector of the center of mass from
the center of mass, and is zero. We have

Ia ¼ mh2 þ Ic; ð8:32Þ

which is the parallel axes theorem. Notice that mh2 is a positive definite quantity.
For all the axes of a given direction, the moment inertia is minimum for the axis
through the center of mass.

Example E 8.5 Consider the right cylinder in Fig. 8.17, of mass m and radius R, its
central axis c and its generator a.

The moment of inertia relative to c is given by Eq. (8.28). Hence, for the parallel
axes theorem, Ia ¼ mR2

2 þmR2 ¼ 3
2mR

2.

Theorem of the perpendicular axes.
The moment of inertia of a thin body about an axis perpendicular to its plane
through the point O of this plane is equal to the sum of its moments of inertia about
two mutually perpendicular axes passing through O.

a c

R

Fig. 8.17 Moment of inertia
of a cylinder about a generator

O

x

y

z

dm
r

Fig. 8.18 A thin body and
two perpendicular axes in its
plane
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Consider the body represented in Fig. 8.18. O is an arbitrary point of the body
that we take as the origin of the coordinates axes, z normal to the plane, and x and
y in the plane. The moment of inertia about z is Iz ¼

R
r2dm; where r is the distance

of the element dm from z. As r2 ¼ x2 þ y2 , we have, Iz ¼
R
x2dmþ R

y2dm namely

Iz ¼ Ix þ Iy; ð8:33Þ

which is the theorem of the perpendicular axes.

Example E 8.6 Calculate the moment of inertia of a rectangular plate of sides a and
b about the perpendicular axis through its center, as in Fig. 8.19.

Equation (8.29), with c = 0, gives Ix ¼ mb2=12 and Iy ¼ ma2=12Iy and, for the
theorem of the perpendicular axes

Iz ¼ m a2 þ b2
� �

=12; ð8:34Þ

which is the third of Eq. (8.29)

Example E 8.7 Calculate the moment of inertia of a circular plate of radius R about
a diameter, as in Fig. 8.20.

The moment of inertia about the central perpendicular axis Iz is given by
Eq. (8.24). On the other hand, obviously, Ix = Iy and, for the theorem of the
perpendicular axes, Iz ¼ Ix þ Iy ¼ 2Ix ¼ mR2=2; thus giving us

Ix ¼ mR2=4: ð8:35Þ
Example E 8.8 Find the moment of inertia of a circular disk about an axis tangent
to its rim, as in Fig. 8.21.

O

x

y

z

b

a

Fig. 8.19 A rectangular plate
and the considered axes

O

x

y

z

R

Fig. 8.20 Circular plate and
axes
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We just have to apply the theorem of the parallel axes to the result we just found
to have Ia ¼ mR2=4þmR2 ¼ 5mR2=4:

Moment of inertia of a cylinder about the normal axis through the center.
Consider the (homogeneous) cylinder of radius R and length L represented in
Fig. 8.22.

We want the moment of inertia about the axis y in the figure. This is the same
situation as we discussed in the previous section, but here, we do not assume the
section of the cylinder to be negligible. We call λ the linear density, namely the
mass per unit length of the cylinder. Consider an infinitesimal slice between x and
x + dx. Its mass is dm = λ dx. We can use Eq. (8.35) to find the moment of inertia of
the slice about the axis through it parallel to y (dotted in the figure). For the theorem
of parallel axes, we have dIy by adding to it x2dm, namely dIy ¼ R2dm=4þ x2dm:
Integrating along the entire length, namely in x from −L/2 to L/2, we have

Iy ¼ mL2=12þmR2=4: ð8:36Þ

8.9 Torsion Balance

The torsion balance is a very sensitive instrument used to measure small moments
and, consequently, small forces. We have already seen how it was used by
Cavendish in Sect. 4.7 and by Eötvös in Sect. 5.8. We shall discuss it in more detail

C

R

a

cFig. 8.21 A circular disk and
an axis tangent to its rim

y

x x+dx

L/2

xC

Fig. 8.22 The cylinder and
its longitudinal and
perpendicular central axes
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now. Figure 8.23 shows the scheme of the device. A rigid bar AB is suspended from
a vertical wire through its center. The equilibrium position of the bar is determined
by the configuration of the wire at rest.

When we apply a moment τ, the bar rotates about its center. The rotation gives
origin to an elastic moment τe in the wire in the opposite direction, proportional to
the rotation angle ϕ

se ¼ �k/ ð8:37Þ

where the minus sign indicates that the elastic moment tends to bring the bar back
into its original position. The elastic constant k depends on the length and the
section of the wire and on its material. We can choose this constant when we design
the balance, depending on the torques we have to measure. For example, thin quartz
wires can be used for sensitivities down to several femtonewton.

The new equilibrium is reached when the rotation angle is such that the elastic
moment is equal to the applied one, τ = τe. Hence, we can measure τ by measuring
ϕ, and knowing k.

The most accurate measurement of k is done using a dynamical method. We
rotate the bar at an angle ϕ0 and let it go. It is the motion of a rigid body about a
fixed axis under the action of the external torque τe. If I is the moment of inertia, the
equation of motion, Eq. (8.16), is

se ¼ �k/ ¼ I
d2/
dt2

ð8:38Þ

or

d2/
dt2

þx2
0/ ¼ 0 ð8:39Þ

with

x2
0 ¼ k=I: ð8:40Þ

A

B
φ

Fig. 8.23 Schematics of the
torsion balance

8.9 Torsion Balance 339



We recognize the differential equation of the oscillator. Its solution is an har-
monic motion in the angular coordinate ϕ with period

T ¼ 2p=x0: ð8:41Þ

The period can be measured with high accuracy, because we can measure it over
many oscillations and count them. Once we know the period and the moment of
inertia by construction, we know the elastic constant.

8.10 Composite Pendulum

The composite pendulum is a rigid body, of mass m, which can rotate around a
fixed horizontal axis, an axis which should not be through the center of mass. In
Fig. 8.24, O is the trace of the axis, C is the center of mass and ϕ is the angle to the
vertical, taken to be positive counter-clockwise. The distance of the center of mass
from the axis is h.

We take the pole for the moments to be the fixed point O. Two forces act on the
pendulum, the weight, which we can think of as being applied to the center of mass,
and the constraint reaction, applied to the axis of rotation. This is a cylinder of
radius r, as shown in the insert of the figure. The constraint reaction is applied to the
point P of its lateral surface. In the presence of friction, the force has a direction
different from the direction of the segment OP and its moment about O is different
from zero. If, however, the friction is negligible, as we shall assume, the direction of
the force is OP and its moment is zero. The external moment on the system is,

φ

C

O

h

mg

O
Pr

Fig. 8.24 The composite
pendulum
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under these conditions, the moment of the weight, which, at the angle ϕ, is −mgh
sin ϕ. The equation of motion is

�mgh sin/ ¼ I
d2/
dt2

ð8:42Þ

where I is the moment of inertia about the axis. For small angles, we can
approximate the sine with the angle, obtaining

d2/
dt2

þx2
0/ ¼ 0 ð8:43Þ

with

x2
0 ¼ mgh=I: ð8:44Þ

Equation (8.43) is equal to that of the simple pendulum. Hence, the motion of the
composite pendulum is a harmonic motion in ϕ. Its period is

T ¼ 2p
x0

¼ 2p

ffiffiffiffiffiffiffiffiffi
I

mgh

s
: ð8:45Þ

The device is used, in particular, to measure g, knowing from construction the
other quantities in Eq. (8.45).

The period of the composite pendulum is equal to the period of the simple one of
length

l ¼ I
mh

; ð8:46Þ

which is then called the reduced length of the composite pendulum

8.11 Dumbbell

We have discussed several examples of rotations of rigid bodies around a fixed axis.
However, the axis will move if we do not provide the proper supports to keep it
fixed. In general, the axis is supported by a massive body at rest, on which the axis
rotates through a number of ball bearings to reduce the frictions as much as pos-
sible. The relevant kinematic quantities are the angular velocity and the angular
momentum. Both are vector quantities. The former is by definition parallel to the
axis, the latter not necessarily so. Up to now, we have used only the component on
the axis of the angular momentum. In general, there are also components perpen-
dicular to the axis, which, in addition, vary in time. Consequently, an external
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moment must be present. This is the action of the supports. We shall now turn our
attention to this action.

We shall start from the particularly simple case of the dumbbell in Fig. 8.25. It is
made of two equal spheres of mass m at the extreme ends of a rigid bar of length 2d
of negligible mass.

The axis, a in the figure, is vertical through the center of the system
O perpendicular to the bar, namely a symmetry axis of the body. The frictions in the
rotation are negligible. The system is very similar to those we have already
discussed.

We indicate with r01 and r02 the position vectors of the two masses from O and
with ua the unit vector of the axis. The angular velocity has the direction of the axis
ω = ω ua.

The angular momentum about the fixed point O, LO ¼ r01 � mv1 þ r02 � mv2 .
Considering that r01

�� �� ¼ r02
�� �� ¼ d; we can write

LO ¼ 2dmtua ¼ 2md2xua ¼ Iax ð8:47Þ

where Ia is the moment of inertia about a. In this case, the angular momentum is
parallel to the rotation axis. The external moment is zero. Indeed, the moments of
the weights of the two masses are equal and opposite and we are neglecting the
frictions. Under these conditions, angular momentum and angular velocity are
constant in time. If initially the system rotates at a certain angular velocity, it will
continue to do so forever. The ball bearings that keep the axis must support the total
weight, but do not exert any moment.

We now suppose the fixed rotation axis to be still through the center, but not
perpendicular to the bar, at the angle, say π/2 − θ, with it, as in Fig. 8.26. The
angular velocity still has the direction of the axis, ω = ω ua. If r1 and r2 are the
position vectors of the two masses, the angular momentum about O is

LO ¼ r1 � mv1 þ r2 � mv2: ð8:48Þ

Looking at the figure, we see that the two terms are equal both in magnitude and
in direction. The latter is the direction perpendicular to the bar in the plane of the

O

a

r'1

v1

v2 ua

ω

r'2

Lo

Fig. 8.25 A dumbbell
rotating about a symmetry
central axis
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bar and the axis. We call n its unit vector. The plane rotates with angular velocity ω.
The magnitude of the angular momentum is

LO ¼ 2dmt ¼ 2md2x cos h: ð8:49Þ

The moment of inertia relative to the axis is now Ia ¼ 2mðd cos hÞ2 . Multiplying
Eq. (8.49) by cos θ, and indicating with La the angular momentum about the axis,
we have

La ¼ LO cos h ¼ Iax: ð8:50Þ

We already knew this result. The axial angular momentum is equal to the
moment of inertia times the angular velocity. However, the axial angular
momentum is only one of the components of the angular momentum vector.
Equation (8.49) gives its magnitude, while its direction is n. We have

LO ¼ 2md2x cos hn: ð8:51Þ

Even if the angular velocity is constant, the angular momentum vector is not. It
rotates at constant velocity on the cone of semi-vertex angle θ around the fixed axis.
Consequently, dLO=dt 6¼ 0 and the external moment is not zero. It is due to the
supporting ball bearings.

Let us look more closely at the situation. We decompose the momentum of
Eq. (7.59) in its components parallel and perpendicular, transverse, to the axis

Me
P ¼ dLP

dt
; Me

T ¼ dLT

dt
;

O

a

r1

v1

v2 ua

ω

r2

d cosθ

θn
θ

LO

Fig. 8.26 A dumbbell
rotating about a central,
non-symmetry, axis
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as shown in Fig. 8.27a for the angular momentum. Its component parallel to the
axis LP is constant, and consequently, MP = 0. LT is constant in magnitude and
rotates around the axis at a constant angular velocity. Its derivative is

dLT

dt
¼ x� LT :

As seen in Fig. 8.27b, this derivative is also a vector rotating at constant angular
velocity ω in a plane perpendicular to the axis. It is at 90° with LT. This derivative
is just the external moment, which is exerted by the ball bearings. These act with
two forces, F1 and F2 in the figure, of constant magnitude and rotating direction.

The situation is similar, for example, when the rotation axis of the reel of a car is
not exactly the symmetry axis. The periodic stress on the ball bearings would
induce vibrations in the vehicle.

8.12 Angular Momentum About a Fixed Pole

Let us summarize what we have established up to this point on the motions of rigid
bodies. The simplest is the rotation about a fixed axis. In this case, the configuration
of the body is defined by a single (angular) coordinate. Its rate of change is the
angular velocity. The axial angular momentum is the component on the axis of the
angular momentum about any point of the axis (and is independent of its choice).
The axial angular momentum is equal to the angular velocity times the moment of
inertia about the axis. The rate of change of the axial angular momentum is equal to
the component of the moment of the external forces on the axis. This is the dif-
ferential equation ruling the dynamics of the system. In the last section, we saw the
consequences of the angular momentum components perpendicular to the axis on
the constraints that guarantee the stability of the axis. We shall now further study
the relation between angular velocity and angular momentum and the motion of a
rigid body about a fixed point, which is at rest in an inertial reference frame. We call
it the pole, O.

O

ω

θLO L ||

LT

ω

LT
dLT
dt

F1

F2

(a) (b)Fig. 8.27 a The angular
momentum and its
components, b the external
torque
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The rigid motion about a fixed pole is still a rotation with an angular velocity ω,
which now may vary both in magnitude and in direction. In other words, in every
instant, the body rotates about an “instantaneous rotation axis” that passes through
O and has the direction of ω, which continuously changes. We choose the inertial
reference frame as shown in Fig. 8.28, with origin O. We shall also take O as the
pole.

We consider a system of material points. A continuous system can be treated
through the same arguments with integrations in place of sums. Let mi be the mass
of the generic point and ri its position vector. Its velocity is

vi ¼ x� ri; ð8:52Þ

which is obviously the same for all the points. The angular momentum of the point
about O is

lOi ¼ ri � mivi ¼ miri � x� rið Þ: ð8:53Þ

We now use Eq. (1.29) to express the double cross product in the last member,
obtaining

lOi ¼ mir
2
i x� miri x � rið Þ: ð8:54Þ

The sum of these quantities is the total angular momentum we want to find. In
doing that, we would find a set of quantities analogous to the moment of inertia
about an axis. These are the nine elements of a 3 × 3 matrix. We shall work on the
Cartesian components. We start with the x component of the just found equation.
After simplification, we have

lOi;x ¼ mi y
2
i þ z2i

� �
xx � mixiyixy � mixizixz:

ri

O

y

z

x

ω

vi
mi

r'i

Fig. 8.28 Motion of a rigid
body about a fixed point O
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We now add up all the points, obtaining

LO;x ¼
XN
i¼1

mi y
2
i þ z2i

� �" #
xx �

XN
i¼1

mixiyi

" #
xy �

XN
i¼1

mixizi

" #
xz

¼ Ixxxx � Ixyxy � Ixzxz

where, in the last member, we have introduced the quantities

Ixx ¼
XN
i¼1

mi y
2
i þ z2i

� �
; Ixy ¼

XN
i¼1

mixiyi; Ixz ¼
XN
i¼1

mixizi: ð8:55Þ

The first quantity is immediately recognized as the moment of inertia about the
x-axis, while the second and third ones are the products of inertia. The same
argument for the other two components of the angular momentum lead to analogous
expressions. The final result can be expressed in a compact form with the matrix
formalism as

LOx
LOy
LOz

0
@

1
A ¼

Ixx �Ixy �Ixz
�Iyx Iyy �Iyz
�Izx �Izy Izz

0
@

1
A xx

xy

xz

0
@

1
A: ð8:56Þ

The 3 × 3 matrix is mathematically a tensor and is called the tensor of inertia. Its
elements in the first line are given by Eq. (8.55), and those of the other two by
analogous expressions. We shall not need to know its mathematical properties. We
only notice that the matrix is symmetric, namely the elements in symmetric posi-
tions about the diagonal are equal, Ixy = Iyx, etc.

The situation looks quite complicated, but we can make it simpler with an
appropriate choice of the directions of the coordinate axes. This is because the
matrix of inertia is square and symmetric. Indeed, mathematics shows that this type
of matrix can always be put in diagonal form by a rotation of the axes. We still refer
to x, y, z as such axes, pose, for simplicity, Ix = Ixx, Iy = Iyy, Iz = Izz, and write

LOx
LOy
LOz

0
@

1
A ¼

Ix 0 0
0 Iy 0
0 0 Iz

0
@

1
A xx

xy

xz

0
@

1
A: ð8:57Þ

Another form of Eq. (8.57) that we shall use is

LO ¼ Ixxxiþ Iyxyjþ Izxzk. ð8:58Þ

We have found that the angular momentum of the rigid body about the pole O is
the sum of three vectors. Each of them is directed as one of the axes, with the
magnitude equal to the product of the component of the angular velocity on that
axis and the moment of inertia about that axis. This is true only for the particular
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choice of axes that makes the matrix of inertia diagonal. These are called the
principal axes of inertia relative to O. Their position is fixed relative to the body
and they move with it. Consequently, the reference Oxyz is NOT generally an
inertial one. If the pole O is the center of mass, the principal axes are called central
axes of inertia.

We shall now state without demonstration a few important properties of the
principal axes of inertia.

Firstly, as intuition suggests, if the body has symmetry axes relative to O, these
are also the principal axes.

For example, the principal axes of a homogeneous rectangular parallelepiped
relative to its center O are the axes parallel to its sides through O. If two sides of the
parallelepiped are equal, two of its moments of inertia are equal, say Ix = Iy.
Consider now an axis through O in an arbitrary direction in the plane xy (namely
defined by the two equal moments of inertia). It can be shown that the moment of
inertia about it is I = Ix = Iy, even if that axis is not a symmetry axis. We notice that
the symmetry of the moments of inertia is larger than the symmetry of the distri-
bution of the masses.

Consider as a second example a right homogenous cylinder. Its geometric axis is
both a symmetry axis and a central axis of inertia. Any axis in the plane perpen-
dicular to it through the center is a central axis too. Hence, again, there are infinite
central axes.

There are also cases in which all three moments about the central axes are equal.
Consider, for example, the symmetry axes of a homogenous cube parallel to its
sides. These are clearly central axes of inertia, with equal moments. However, any
other axis through the center is also a central axis of inertia with the same moment.
Again, we see that the symmetry of the moments of inertia is larger than the
symmetry of the distribution of the masses. The former is for a cube, a spherical
symmetry. Obviously, all the axes through the center of a homogeneous sphere are
central axes of inertia.

Consider now again a homogeneous cylinder, with height h and base radius
R. We put the origin of the reference in its center and the z on its axis. The other two
(central) axes are on the normal section. We already know the expression of the
moments of inertia, Eqs. (8.28) and (8.36), which give

Ix ¼ Iy ¼ mh2=12þmR2=4; Iz ¼ mR2=2:

We notice that all of them are equal if h ¼ ffiffiffi
3

p
R: In these particular cases, all the

axes through the center are central axes of inertia. All the moments of inertia about
them are equal. Again, the symmetry of the moments of inertia is larger than the
symmetry of the masses. In other words, if there are symmetry axes, these are
principal axes of inertia, but a principal axis of inertia may not be a symmetry axis.
Indeed, any rigid body of whatever shape, with no symmetry at all, like an irregular
stone, has three principal axes of inertia about any point at rest with it, even outside
the body.
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We state without proof that the principal axes of inertia about a point O and
those about another point O′ are not parallel, in general.

We shall now discuss a few important aspects of Eq. (8.58). First, it tells us that
angular velocity and angular momentum are not, in general, parallel vectors.
However, they are so if the rotation is around a principal axis, namely ω is parallel
to a principal axis. Consequently, the principal axes are also called permanent
rotation axes or spontaneous rotation axes. Consider a rotation about a fixed point
in an inertial frame. Its generic motion is a rotation about an instantaneous axis
through the fixed point, whose direction varies continuously in time. As a conse-
quence, the angular momentum about the point varies too. This implies the exis-
tence of a non-zero external moment.

Consider now a rigid body with a fixed point which is otherwise free. The
external moment is zero. Consequently, its angular momentum about the fixed point
is constant. If, at a certain instant, the body rotates about a principal axis with
angular velocity ω, it is simply L ¼ Ix: L being constant, ω is constant too, in
magnitude and direction. If, on the contrary, the body rotates around a non-principal
axis, L is constant, but ω is not necessarily so.

The same arguments are valid for the motion of a rigid body without any
constraint, provided the center of mass is chosen as the pole, for Eq. (7.60).

8.13 Kinetic Energy

In this section, we shall discuss the kinetic energy of a rigid body moving about a
fixed point O, which is not necessarily in an inertial frame. Figure 8.29 shows the
situation at a certain instant. The vector ω is the instantaneous angular velocity,
which, in general, varies both in magnitude and direction.

As usual, we think of the body as being made of material points of mass mi. The
kinetic energy of the generic point is UK;i ¼ ð1=2Þmit2i ¼ ð1=2Þmir02i x

2 , where υi
is the magnitude of the velocity of the point and r′I is its distance from the

ri

O

y

z

x

ω

vi
mi

r'i

Fig. 8.29 A rigid body
moving about a fixed point
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instantaneous rotation axis. We obtain the kinetic energy of the body adding up all
the points. If Iω is the moment of inertia about the instantaneous rotation axis, we
have

UK ¼ 1
2
Ixx

2: ð8:59Þ

We had already found this expression, Eq. (8.25), in the case of rotation about a
fixed axis.

If the reference is an inertial one and if the body is not subject to external forces,
the kinetic energy is constant in time, but the direction of the angular velocity
relative to the body does, in general, vary. Also in general, both ω and Iω vary,
while the product of the square of the former and the latter are constant. In practice,
Eq. (8.59) is not very useful. Let us find a more useful expression proceeding in a
way similar to what we did in Sect. 8.12 for the angular momentum. We work in the
reference frame of Fig. 8.29, with origin in the fixed point O. The velocity of the
generic point Pi at the position vector ri is

vi ¼ x� ri: ð8:60Þ

The kinetic energy of the point is

UK;i ¼ 1
2
mit

2
i ¼

1
2
mi x� rið Þ2¼ 1

2
mi xyzi � xzyi
� �2 þ xzxi � xxzið Þ2 þ xxyi � xyxi

� �2h i
¼ 1

2
mi x2

yz
2
i þx2

z y
2
i � 2xyxzyizi þx2

z x
2
i þx2

xz
2
i � 2xzxxzixi þx2

xy
2
i þx2

yx
2
i � 2xxxyxiyi

� �

We should now add up all the points. In the above expression, we have, for
example, the term mix2

z x2i þ y2i
� �

=2: Adding up the points, this gives Izx2
z=2; and is

analogous for the other axes. The sums of the terms with the products of two
coordinates give terms propositional to the products of inertia. It is then convenient
to choose the coordinates on the principal axes relative to O, because the products
of inertia are zero. With this choice, we have

UK ¼ 1
2

Ixx
2
x þ Iyx

2
y þ Izx

2
z

� �
. ð8:61Þ

which we can write, recalling Eq. (8.58), as

UK ¼ 1
2
LO � x. ð8:62Þ

In this expression, the components on the axes no longer appear. Consequently,
it is valid independent of the reference frame. We also notice that, in absence of
external forces, both kinetic energy and angular momentum are conserved.
Consequently, the component of the angular velocity on LO is constant too.
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8.14 Rotation About a Fixed Axis. Forces on the Supports

We often deal, in practice, with symmetric rigid bodies that rotate about a fixed axis
at high angular velocities. This is the case with the rotating parts of electric and
internal combustion engines, with the reels of cars and bikes, turbines, helices, etc.
There are two vector quantities in the game: the angular velocity, which is, by
construction, parallel to the axis, and the angular momentum, which can have a
direction. We have seen an example of this situation in Sect. 8.11. In Sect. 8.12, we
have seen that angular velocity and angular momentum are parallel only if the
rotation axis is a principal axis of inertia. If this is not the case, an external moment
must be applied to maintain the rotation axis as fixed. This is done through the
mechanical structure that supports the axis, in general, through a ball bearing to
reduce frictions.

To be concrete, consider the example in Fig. 8.30. The rotation axis is through
the center of mass C of the body, but is not the symmetry axis. The axis is kept in
position by two ball bearings, represented in the figure. The central axes of inertia
are the symmetry axis of the disk, that we shall take as coordinate z, and any two
mutually perpendicular directions in the plane through C normal to z, which we take
as coordinates x and y. The figure is a shot of the movement when the x axis goes
through the plane of the figure.

The total force exerted by the supports is just equal to the weight of the body,
both if it rotates and if it is at rest. It will not enter into our arguments.

We shall take as the pole of the moments of the forces and of the angular
momentum the center of mass C, which is also a fixed point in this case. The
symmetry axis of the body forms an angle α with the rotation axis. Consequently,
angular momentum and angular velocity are not parallel. We shall soon find the
direction of the former.

We observe that the angular momentum can be usefully decomposed in one
component parallel and one perpendicular to the axis. The direction of the latter
rotates around the axis with angular velocity ω.

The component of the angular momentum on the axis is, with obvious meaning
of the symbols,

C

x

z

LC

ω

F

–F

α
θ

Fig. 8.30 Rotation of a rigid
body about a central
non-principal axis
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Lx ¼ Ixx: ð8:63Þ

To vary the magnitude of the angular velocity, we must apply a moment parallel
to the axis. This is what engines do, when they accelerate or decelerate. As a matter
of fact, the ball bearings are used to decrease the friction, which, however, cannot
be completely eliminated. The friction moment opposes the motion. If we abandon
the body in rotation, we observe its angular velocity gradually decreasing due to the
moment of the frictions.

We now study the rotation of the components normal to the axis of the angular
momentum and of the moment exerted by the support. We assume the frictions to
be negligible and the moment of the forces to be perpendicular to the axis.
Consequently, both the magnitude of the angular velocity and the axial component
of the angular momentum are constant.

Equation (8.58) becomes, in the case under consideration,

LC ¼ Ixxxiþ Izxzk. ð8:64Þ

If θ is the angle between the angular momentum and the rotation axis, as seen in
Fig. 8.30, we have

tanða� hÞ ¼ LC;x
LC;z

¼ Ixx sin a
Izx cos a

¼ Ix
Iz
tan a: ð8:65Þ

Both the ratio Ix/Iz and the relation between α and θ depend on the shape of the
body. If the body is a disk, as we saw in Sect. 8.8, Ix/Iz = 1/2, and Eq. (8.65) gives
tanða� hÞ ¼ tanðaÞ=2: If, as is often the case, the angles are small and we can
approximate the tangent with its argument, it is h 	 a=2: Hence, the angle between
angular momentum and rotation axis is constant in time. In addition, as we have
already observed, the component of the angular momentum on the axis is also
constant and, as a consequence, the magnitude of the angular momentum is con-
stant. In conclusion, the normal component of the angular momentum is constant in
magnitude and rotates around the axis with angular velocity ω. The dynamical
equation is

MC ¼ dLC

dt
¼ x� LC ð8:66Þ

where MC is the external moment exerted by the ball bearings. The couple of forces
is shown in the figure. In the considered instant, the plane of the couple is the plane
of the figure. The magnitude of the moment is MC ¼ xLC sin h . And also, writing
Eq. (8.63) as LC cos h ¼ Ixx ,

MC ¼ Ixx
2 tan h: ð8:67Þ
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In conclusion, the stress on the support is periodic, with period 2π/ω, and
proportional to the square of the angular velocity. If the latter increases, for
example, by a factor of ten, the moment increases by one hundred.

We now consider a rotation at constant angular velocity around a fixed axis,
which is principal of inertia, but not through the center of mass, as in Fig. 8.31. In
this case, the angular momentum is parallel to the axis and, consequently, is con-
stant in time. The moment exerted by the ball bearings is zero. The force they exert,
however, must be equal to the centripetal force that is necessary to maintain the
center of mass in its circular motion, namely

FC ¼ maC ¼ �m
x2

rC
uC ð8:68Þ

where rC is the position vector of the center of mass relative to the point O on the
axis (see figure) and uC is its unit vector. The force is exerted by the ball bearings.
Its direction rotates at angular velocity ω, its magnitude is constant, proportional to
the square of the angular velocity.

In conclusion, the ball bearings during the rotation must develop forces that
periodically vary in direction, having resultant FC and total moment MC. The
former is zero if the center of mass is on the axis; the latter is zero if the rotation
axis is a principal axis of inertia. Both are zero if the axis is central of inertia.
Clearly, this is the configuration engineers try to realize, especially if the velocities
are high. Under such conditions the system is said to be dynamically balanced.
Dynamic balance is obtained, for example, for car wheels, by inserting small lead
counterweights where necessary along the tire rim.

8.15 Rolling Motion

The wheels of a bike or of a car moving down the street normally roll without
slipping. If the friction between wheel and street is lower due to rain or snow,
slipping can set in, a situation that should obviously be avoided. The wheel can be
considered a disk. The hub is a central axis of inertia.

C

ω

F F
Fc

O
rC

Fig. 8.31 Rotation about a
principal non-central axis
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Consider, for example, a bike wheel. If we lift the bike and begin rotating the
wheel, which does not touch the ground, it rotates around its axis. If we put it down
and ride it, the motion of the wheel is the sum of a translation, with the velocity of
its center, and of a rotation.

We shall consider rolling without slipping here. If this is true, in every instant,
the contact point of the wheel with the ground is still. Figure 8.32 represents the
wheel at a certain instant in full color and in four near instants, two before and two
after that in pale color. As one can see, the extreme of the spoke near the ground is
almost at rest, while all the other points move, to the degree that they are farther
from the contact point.

As a matter of fact, there are two equivalent ways to describe the rolling motion,
shown in Fig. 8.33.

1. a translation with the velocity of the center of mass with a superposed rotation
around the symmetry axis with angular velocity ω

2. a rotation, again with angular velocity ω, around the instantaneous rotation axis,
which is the axis parallel to the symmetry one in contact with the ground in the
considered instant.

The type of motion we are discussing, rolling without slipping, can take place for
cylindrical and spherical shapes. To be concrete, we shall continue considering a
cylinder, of radius R, rolling on a plane, with reference to Fig. 8.34.

A

Fig. 8.32 A bike wheel
moving down the road

2vC

C

A

ωR

vC

vC

ωR

C C+ =

BvC

vC

ω

Fig. 8.33 Two possible representations of rolling without slipping
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We take the x axis on the ground in the direction of the motion. If there is no
slipping, the magnitude υC of the velocity vC of the center of mass and the angular
velocity ω are linked by the relation

xR ¼ tC: ð8:69Þ

The direction of the angular velocity vector ω is normal to the plane drawn
towards the inside. If R is the position vector of the center C relative to the contact
point A, we can write

R� x ¼ vC: ð8:70Þ

We now find the expression of the kinetic energy of the body in both of the
above-mentioned points of view and verify that the result is the same.

In the first point of view, the kinetic energy is the sum of the kinetic energy “of
the center of mass”, mt2C=2; where m is the mass of the cylinder, and that of the
motion relative to the center of mass, ICx2=2; where IC is the moment of inertia
relative to the central axis

UK ¼ 1
2
mt2C þ

1
2
ICx

2 ¼ 1
2

mR2 þ IC
� �

x2: ð8:71Þ

In the second point of view, the motion is a pure rotation, with the same angular
velocity. The moment of inertia is, for the theorem of parallel axes, mR2 þ IC .
Hence, the kinetic energy is given by the last member of Eq. (8.71).

8.16 Rolling on an Inclined Plane

An important example of rolling motion is the descent of a rigid sphere on an
inclined plane. Figure 8.35 represents the system. The plane forms the angle θ with
the horizontal, and the radius of the sphere is R. The forces acting on the sphere are
its weight mg, applied to the center of mass C, and the reaction of the constraint
applied to the contact point A. The latter can be decomposed in two components,

R

vCC

A

ω

x

Fig. 8.34 Cylinder rolling on
a plane
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one normal, N, and one tangent, Ft. Notice that, in the case of the latter, the friction
force must be present in order to prevent slipping. As a matter of fact, the magnitude
of Ft cannot be larger than µSN, where µS is the coefficient of static friction. After
that, slipping occurs. We shall assume that the condition of pure rolling is satisfied.

We shall deal with the problem through three different methods.
Method 1. We consider the moment of the forces, MA, about the instantaneous

rotation axis through the contact point A. If IA is the moment of inertia relative to
this axis, we can write the dynamical equation

MA ¼ IA
dx
dt

: ð8:72Þ

The moment of the constraint reaction, which is applied in A, is zero. The
moment of the weight is, in magnitude, mgR sin h and we have mgR sin h ¼ IA dx

dt .
The velocity of the center of mass is tC ¼ xR; because the motion does not include
slipping, and its acceleration is aC ¼ Rdx=dt: Substituting in the above equation,
we find

aC ¼ mgR2 sin h
IA

;

but, for the theorem of parallel axes, IA ¼ IC þmR2 , where IC is the moment of
inertia about the central symmetry axis. Consequently,

aC ¼ g sin h

1þ IC
mR2

: ð8:73Þ

Method 2. We consider the moments about the horizontal central axis (through
C), MC, and use the equation

MC ¼ IC
dx
dt

: ð8:74Þ

The moment of the weight is zero because it is applied to C. The moment of the
normal reaction N is also zero because the force is parallel to the arm. The mag-
nitude of the tangent reaction of the constraint is FtR. We can write

N

m g sin θFt

m g cosθ m g

θ
h

L

0 x

Fig. 8.35 A sphere rolling on
an inclined plane without
slipping
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RFt ¼ IC
dx
dt

: ð8:75Þ

This equation contains two unknowns, the angular acceleration and Ft. A second
equation is given by the theorem of the center of mass motion

mg sin h� Ft ¼ maC: ð8:76Þ

Recalling that aC ¼ Rdx=dt; we find back for aC Eq. (8.73) and for Ft

Ft ¼ IC
IC þmR2 mg sin h: ð8:77Þ

Method 3. In the process, we are considering that the mechanical energy is
conserved. Indeed, even if a non-conservative force is present, such as the friction,
its work is zero, because the contact point A, where it is applied, does not move.
Suppose that the body starts from rest at the point O of the plane at the height h (see
Fig. 8.35). We call x a coordinate along the inclined plane directed downwards with
the origin in O. The velocity of the center of mass is tC ¼ dx=dt: We take the zero
of the potential energy at h = 0. Initially, the energy of the body is only potential,
and its value is mgh. When the body is at the generic coordinate x, its potential
energy is mg(h − x sin θ). Its kinetic energy is the sum of the kinetic energies of the
center of mass, mt2C=2; and of the rotation about the center of mass, ICx2=2: The
energy conservation equation is then

mgh ¼ mgðh� x sin hÞþ 1
2
mt2C þ

1
2
ICx

2

or

mgx sin h ¼ 1
2
mt2C þ

1
2
ICx

2 ¼ 1
2
mt2C þ

1
2
IC
R2 t

2
C; ð8:78Þ

from which we obtain the center of mass velocity at the generic x

tC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gx sin h
1þ IC= mR2ð Þ

s
: ð8:79Þ

At the end of the inclined plane, the center of mass velocity is then

tC;f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gh
1þ IC= mR2ð Þ

s
: ð8:80Þ
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The ratio IC=m that appears in this expression has the physical dimensions of a
length squared. This length, k, is called the radius of gyration of the body about the
central axis, namely

k ¼
ffiffiffiffiffiffiffiffiffiffi
IC=m

p
: ð8:81Þ

Using this quantity, the final center of mass velocity is

tC;f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gh

1þ k=Rð Þ2
s

: ð8:82Þ

Using energy conservation, we have directly found the center of mass velocity.
Taking its time derivative, we get back Eq. (8.73) written in terms of the gyration
radius.

aC ¼ g sin h

1þ k=Rð Þ2 : ð8:83Þ

In the denominators of the expressions, we have found we have the ratio of two
lengths, the gyration radius and the geometric radius of the body. This ratio depends
on the distribution of the masses, as we shall now see in some examples. Notice that
the acceleration and the final velocity from a given height are smaller for larger
values of k/R. Indeed, as we have seen, part of the initial potential energy becomes
kinetic energy of the translation, while part becomes kinetic energy of the rotation.
The ratio between these two energies is

UK;rot

UK;transl
¼ Icx2=2

mt2C=2
¼ k

R

	 
2

: ð8:84Þ

For example, using the expressions for the moments of inertia we found in
Sect. 8.7, we find for an empty cylinder k2 = R2 and ac ¼ ðg sin hÞ=2; for a full
homogeneous cylinder k2 = R2/2 and ac ¼ ð2g sin hÞ=3; and for a full homogenous
sphere k2 = 2R2/5 and ac ¼ ð5g sin hÞ=7. In general, the empty bodies descend
slowly, followed by the full ones. This is because, for the same total mass, the
former have larger moments of inertia, and consequently, the fraction of kinetic
energy associated with the rotation is larger. To enhance the effect, we can build the
device shown in Fig. 8.36a, which is a disk with a cylindrical axis. The radius R of
the latter is much smaller than that of the disk. The axis lays on two parallel inclined
rails. The ratio k/R can be made very small, obtaining a quite slow downward
acceleration. Contrastingly, in the configuration of Fig. 8.36b, the instantaneous
axis of rotation is close to the central axis and the larger fraction of the kinetic
energy the energy of the center of mass.
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We shall now analyze when the conditions of pure rolling are satisfied. We have
already found the expression Eq. (8.77) for the tangential force that the constraint
must provide. We now write it in the form

Ft ¼ ðk=RÞ2
1þðk=RÞ2 mg sin h: ð8:85Þ

The maximum tangential force the constraint can provide is Ft;max ¼ lsN: The
normal reaction should equilibrate the normal component of the weight, because
there is no acceleration in that direction, namely N ¼ mg cos h . Hence, Ft;max ¼
lsmg cos h . The no-slipping condition is then

Ft ¼ ðk=RÞ2
1þðk=RÞ2 mg sin h� lsmg cos h:

This is a condition on the slope angle θ, namely, simplifying,

h� arctan
1þðk=RÞ2
ðk=RÞ2 ls

" #
: ð8:86Þ

Suppose we study the motion of a sphere rolling on an inclined plane and we
gradually increase its slope. When we reach slopes larger than the value of
Eq. (8.86), we observe the contact point slipping on the inclined plane.

Let us briefly go back to what we saw in Sect. 2.12, as to how Galilei experi-
mentally established that the velocity of a sphere at the end of an inclined plane is
independent on its slope, depending only on the drop h. He did not know, that part
of the kinetic energy is in the rotation motion. However, we can now show that this

(b)(a)

Fig. 8.36 The fraction of kinetic energy in rotation is a large, b small
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conclusion was independent of that. In the configuration of Fig. 8.35, the velocity of
the sphere after a drop h is

tC;f ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2
5
7
gh

r
ð8:87Þ

to be compared to that of a material point

tC;f ¼
ffiffiffiffiffiffiffiffi
2gh

p
: ð8:88Þ

Consequently, the motion of the center of mass of the sphere is the same for a
material point with 5/7 g in place of g. We notice, in addition, that he very likely
was using a cross-section of the beam similar to Fig. 8.36b for which the factor in
front of g is closer to 1. However, this factor is irrelevant, because the scope of his
experiments was the study of the accelerated motion, not the measurement of the
gravity acceleration.

8.17 Gyroscopes

A gyroscope is a rigid disc with a fixed point. Often, but not always, the fixed point
is the center or mass or, at least, a point on the symmetry axis. The construction is
such that the rotation axis is free to assume any orientation. If the fixed point is the
center of mass, the external moment is zero, and consequently, the angular
momentum is conserved when the disk rotates. The direction of the axis is unaf-
fected by tilting or rotation of the mounting. For this property, gyroscopes of this
type are useful for measuring or maintaining orientation. Another example of a
gyroscope is the spinning top.

The gyroscope in Fig. 8.37 is the disk in the center. The mounting, called a
Cardan mounting, after Girolamo Cardano (1501–1576), guarantees a complete
freedom to rotate in any direction with the center of mass fixed. The support is
made of three “gimbals” or rings. The outer gimbal is a half circular, or fully
circular, ring fixed on the support basis. The second gimbal is mounted on the outer
one. It is free to pivot about an axis in its own plane (a in the figure) that is always
perpendicular to the pivot axis of the outer gimbal. The third gimbal is mounted on
the second one and is free to pivot about an axis in its own plane perpendicular to
the first axis (b in the figure). Finally, the axis of the disk is mounted on the third
gimbal, free to pivot around an axis in its plane perpendicular to the second axis
(c in the figure). This is a central axis of the disk and, as such, a permanent rotation
axis.

All the pivots are joined through ball bearings to minimize the frictions. Notice
that in the figure, the three axes are not only mutually perpendicular, but also that
b is vertical, and a and c are horizontal. The latter condition is not necessary,
however. Indeed, if one takes the basis in one’s hand and rotates the external
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support, b will not be vertical and a and c will not be horizontal, but they remain
mutually perpendicular.

If we take the disk in our hand, we feel how it can be rotated in any direction
without any effort. Indeed, the disk is in an indifferent equilibrium configuration
and, as we just said, the frictions are negligible. We can give a rapid spinning
motion to the disk by wrapping many turns of wire around its axis and then drawing
it quickly. The rotation can last a long time, because the frictions are very small.

The Cardan mounting is not necessary for gyroscopes having the fixed point on
the symmetry axis, but not in the center of mass. The most well-known example is
the spinning top. The top, the motion of which we shall study soon, is a body of
approximately conic shape supported on a horizontal plane spinning about its axis.
If the friction between the tip of the top and the plane is enough, the support point
remains (approximately) at rest and the top is a gyroscope.

We anticipate that the motions of the gyroscopes, when we apply an external
action onto them, look quite strange. Gyroscopes do not behave as our intuition
would suggest to us. To understand them, we should fix our attention on the fact
that the characteristic kinematic quantities of a rigid body in rotation are the angular
velocity and the angular momentum. Both are vectors. Pay attention to the fact that,
to modify the angular momentum, we need to apply a torque, or a couple of forces,
rather than one force. The induced change of angular momentum (another vector)
has the direction of the applied torque, which is perpendicular to the force. If we
apply a torque parallel to the angular momentum, we modify its magnitude and not
its direction, whereas if we apply the torque perpendicular to the angular
momentum, we modify its direction and not its magnitude.

c

a

b

Fig. 8.37 A gyroscope with Cardan mounting
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Let us now discuss a few simple examples.
In the first case, represented in Fig. 8.37, the fixed point is the center of mass and

the axis is the symmetry axis, which is an axis of permanent rotation. The angular
momentum LC and the angular velocity ω are parallel and

LC ¼ ICx. ð8:89Þ

If the external moment is zero, the angular momentum is constant and the
angular velocity as well:

LC ¼ constant ) x ¼ constant: ð8:90Þ

We observe that, if we take the support in one hand and change its orientation,
the spinning direction relative to the ground, which is an inertial frame, does not
change. The support gimbals change direction about the invariable direction of the
rotation axis (c, in this case).

Torpedoes, for example, make use of this property. One mounts a gyroscope
inside the torpedo and guarantees a continuous spinning with a motor. If the torpedo
deviates from the straight trajectory, due to a submarine current or some other
factor, the direction of the spinning axis changes relative to the torpedo.
A servomechanism then enters into action to modify the route acing on the helm.

The second case is the same gyroscope in the presence of an applied torque. We
can, for example, suspend a mass m to a point A of the c axis at a certain distance
from the center, as in Fig. 8.38. The angular velocity and the angular momentum
are still parallel and Eq. (8.89) is still valid. But now, the angular momentum varies,
according to the equation

c
a

b

C

mg

A
ω

Fig. 8.38 A gyroscope with
an external torque

8.17 Gyroscopes 361



MC ¼ dLC

dt
: ð8:91Þ

Our intuition suggests that we would see the point A lower under the action of
the weight. But this is not what we observe. Point A does not lower, but, on the
contrary, slowly moves in a horizontal circle. This motion of the rotation axis c is
called precession.

To understand this, as we have already stated, we must think about the direction
of the applied moment, not of the force. Let us start considering the instant in which
the axis of the gyroscope is still at rest and we apply the weight. The vertical weight
force exerts on the gyroscope a moment, or torque, the direction of which is
horizontal and perpendicular to the c axis and, consequently, perpendicular to the
angular momentum. In the time interval dt, the variation of angular momentum is,
for Eq. (8.91),

dLC ¼ MCdt;

which has a direction perpendicular to LC in the horizontal plane, as shown in
Fig. 8.39. Consequently, LC varies in direction and not in magnitude. The c axis,
which has the direction of the angular velocity and, consequently, of the angular
momentum, also rotates in accord. The torque, which is perpendicular to the axis,
rotates as well, because the weight is applied to the point A of the axes. The torque
always remains perpendicular to the angular momentum. Consequently, the just
described situation is such in every instant, not only in the initial one.

The angular velocity of the precession motion, which we call Ω, is directed
vertically, in our case, upwards. To have it downwards, namely to have the gyro-
scope preceding in the opposite direction, we just have to attach the weight at the
other extreme of the c axis, or have the disk spinning in the opposite direction and
the weight still in A.

The motion of the gyroscope is a rotation with angular velocity equal to the
(vector) sum of ω and Ω. Rigorously speaking then, the rotation axis is not exactly

C

mg

MC

LC

dLC LC
dL C

= M C
dtdφ

(a) (b)

Ω
Ω

Fig. 8.39 The precession of the gyroscope
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the symmetry axis. However, in practice, the spinning velocity is always much
larger that of the precession. The rotation is in a good approximation about the
symmetry axis and we can consider Eq. (8.89) valid. With reference to Fig. 8.39b,
we can write dLC ¼ LCd/ . If l is the distance of point A from the center C, the
magnitude of the moment is MC = mgl and the precession velocity is

X ¼ d/
dt

¼ mgl
ICx

:

The third case we will consider is the following. The suspension point is not the
center of mass, but is on the symmetry axis anyway. The external moment is not
zero; its direction is always perpendicular to the rotation axis. Figure 8.40a shows
how such conditions can be realized. The axis of the disk ends with a small sphere.
The sphere lays on a concave support on top of a column, allowing the axis to spin
and to change its direction freely. We now give to the gyroscope a rapid spin about
its axis, keeping it horizontal with our hand. When we abandon the axis, it does not
fall downwards, but rotates in a precession motion in the horizontal plane. The
analysis of the motion is identical to the preceding case, with the only difference
being that the weight is now the weight of the gyroscope itself.

Notice how the behavior of the system is completely different when the disk is
spinning from when it is not. In the latter case, if we take the extreme of the axis in
our hand and then abandon it, the axis falls, rotating in the vertical plane. If we do
the same with the disk spinning, the axis rotates in the horizontal plane. The acting
torque, the moment of the weight, is equal in both cases, and so is the change of the

O

A

–mg

Icω

precession

O

mg

(a) (b)

Ω

Fig. 8.40 a A gyroscope with suspension point on the symmetry axis, but not in the center.
b precession and nutation
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angular momentum in any time interval dt. This, however, in the case of the
spinning disk, adds to a pre-existent angular momentum, modifying its direction,
while, contrastingly, in the case of no spinning, the change is solely to the angular
momentum, which consequently has the direction of the torque.

To be sure, the angular velocity is the sum of ω and Ω, and, consequently, is not
exactly parallel to a principal, permanent rotation axis. The just-made description is
valid only in a first approximation. Let us look more carefully into the issue.

As a matter of fact, the gyroscope’s strange immunity to its own weight is not
completely true. If we set the gyroscope spinning with the point A in our hand,
when we abandon it, it initially falls down vertically a bit. However, as soon as the
precession starts, the extreme A rises again, reaching the horizontal plane, as shown
in Fig. 8.40b. This is not all, however. The axis does not remain horizontal. The
precession has slowed down somewhat due to the rise of the axis and is no longer
fast enough to neutralize the weight. The extreme falls again to the height of the
first descent, the precession velocity increases and the extreme rises again, and so
on; the motion continues with a series of up and down oscillations, which are
ideally all equal. The motion is similar to the motion of the head of somebody that
nods, and is called nutation, which means ‘nodding’ in Latin.

We shall not further analyze this motion, which is quite complex. Rather, we
shall make a few observations. When a gyroscope spins about its symmetry axis
with angular velocity ω and precedes at the same time with angular velocity Ω, its
total angular velocity is not parallel to the symmetry axis. Consequently, angular
velocity and angular momentum are not exactly parallel. The effects are generally
small because ω � Ω, but it is the basis of the nutation phenomena.

Consider a gyroscope rotating about an axis a bit different from a symmetry axis
in absence of external torque. In that case, the angular momentum is constant and
the angular velocity rotates around it, describing a cone. In our case, however, an
external torque exists. It is the moment of the weight that is directed horizontally,
perpendicular to the axis. The vertical component of the angular momentum is
constant, because the external torque is horizontal. The magnitude of the angular
momentum is constant too, because the torque is perpendicular to its direction.
Consequently, the angular momentum vector rotates uniformly in the horizontal
plane. This is the precession. The angular velocity contemporarily describes a cone
around the angular momentum. The extreme of the axis describe a cycloid curve, as
shown in Fig. 8.40b. This is the nutation.

We can look at the phenomenon from another slightly different point of view.
When we abandon the axis horizontal of the spinning gyroscope, the precession
starts. This adds to the angular momentum the vector quantity IΩΩ where IΩ is the
moment of inertia about the vertical axis through O. The external torque being
horizontal, the vertical component of the angular momentum is conserved.
Consequently, the spinning axis must fall a bit, or even better, rotate downwards, in
such a way that ICω has a vertical component equal and opposite to IΩΩ (see
Fig. 8.41). An oscillation starts in which IΩΩ increases and decreases alternatively,
and so does the angle with the horizontal of ICω.
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As a last example of precession, we consider the top. The top is a rigid body of
approximately conical shape, ending with a tip. Initially, we give the top a rapid
spin about its symmetry axis with angular velocity ω. The tip O lays on a horizontal
floor, as in Fig. 8.42. We assume that the friction is enough to keep point O at rest.
We observe that, beyond spinning, the top also has a precession motion, with
angular velocity that we shall call Ω.

Let r be the position vector of the center of mass C relative to O and mg the
weight of the top, applied, as usual, to the center of mass. The constraint forces are
applied in O, which we choose as the pole of the moments. Consequently, the
constraint forces do not contribute to the external moment. We have

MO ¼ r� mg ¼ dLO

dt
: ð8:92Þ

The moment MO is horizontal, perpendicular to the spin axis. Consequently, the
direction, but not the magnitude of the angular momentum, varies. More precisely,
the angular momentum rotates with angular velocity Ω. Hence, for the Poisson
formula

dLO

dt
¼ X� LO: ð8:93Þ

Considering that Ω � ω, we can assume that LO 	 Ix and, for the above
equations, that X� Ix ¼ r� mg: Now, both Ω and g are vertical, something we
can express as g ¼ gX=X . Substituting in the last expression, we have

I

Icω

LO

ΩΩ
Fig. 8.41 The vectors
playing roles in the nutation

ω

θ
mg

O

C

r
Ω

Fig. 8.42 A top and its
precession
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X� Ix ¼ �X� mg
X

r

or

Ix ¼ �mg
X

r

and finally, for the magnitudes

X ¼ mgr
Ix

: ð8:94Þ

This corresponds to the period of the precession

T ¼ 2p
Ix
mgr

: ð8:95Þ

Let us look at the orders of magnitude. We approximate the top with a homo-
geneous cylinder of radius R = 2 cm. Let r = 3 cm be the distance from the center of
mass to the tip. Suppose that the spinning angular velocity is ω = 120 s−1 (that is,
about 20 turns per second). Let us calculate the precession period. The moment of
inertia is I = mR2/2. We have

T ¼ 2p
Ix
mgr

¼ 2p
mR2

2mgr
x ¼ pR2

gr
x ¼ 0:8 s:

The corresponding precession angular velocity is X ¼ 2p=T ’ 8 s�1; which is
qiute small in comparison to the spinning velocity.

8.18 Collisions Between Material Systems

In Chap. 7, we studied the collision phenomena. In that discussion, we considered,
for each colliding body, only the motion of its center of mass. We did not consider
there the motion of each body relative to its center of mass. For example, when a
football player kicks the ball, the momentum of the ball varies. However, the player
may wish to give an angular momentum to the ball as well, to make it follow a
curved trajectory. In general, in a collision, both the linear and the angular
momentum of each body vary. We shall now discuss this aspect of collisions. We
shall limit the discussion to the cases in which one of the bodies can be considered
as point-like, while the other is extended and rigid.

There are two different possible situations: the target body may be free or may be
subject to constraints. In the first case, but not in the second, we can neglect the
external forces during the collision, as in the case of point-like objects.
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Consequently, the total linear momentum and the angular momentum are con-
served. The latter does not have any role in collisions between point-like objects. It
adds nothing to the linear momentum conservation. The angular momentum con-
servation has, contrastingly, observable consequences in collisions between
extended objects. Even better, we observe that the angular momentum conservation
in an isolated system is a consequence of a particular aspect of the action-reaction
law, namely that action and reaction have the same application line. This aspect
cannot be experimentally controlled with collisions between point-like bodies. We
need to look at the angular momentum conservation in collisions between extended
bodies.

If constraints are present, there are external forces acting during the collision.
Consider, for example, a ball hitting a bar pivoted on an axis initially at rest. The
motion after the collision is bound to be a rotation about the axis. The forces exerted
by the constraints must be such as to equilibrate some of the components of the
impulsive forces that develop during the collision. Consequently, their intensity is
great, and cannot be neglected. The collision with a constrained body is not,
consequently, a process in an isolated system. Linear and angular momentum, in
general, are not conserved.

We shall limit the discussion to two examples.

Example E 8.9 A homogeneous disk of mass M and radius R lays on a horizontal
plane. It is initially at rest. A bullet of mass m and velocity vi1 hits the disk on its
rim tangentially, as in Fig. 8.43, and sticks. Find the motion of the system after the
collision.

There are no constraints. The system can be considered as isolated. Linear and
angular momentum are conserved. As in Fig. 8.43, we take a reference frame at rest
on the support plane, with the x axis in the direction of the initial velocity of the
bullet and through the center A of the disk. The y is perpendicular to x in the support
plane and the z axis is perpendicular to both. The angular momentum of the system,
which we take to be about the center of mass C, is in the z direction. After the
collision, we have one lone body moving at the velocity of the center of mass vC.
The angular momentum conservation gives the two equations

mti1 ¼ ðmþMÞtC;x; 0¼ðmþMÞtC;y:

y

A
yC C

vi1

R

x

Fig. 8.43 A bullet hitting a
disk
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The second equation tells us that the y component of the velocity of the center of
mass is zero, which is obvious. The first equation gives the velocity of the center of
mass

tC ¼ tC;x
mti1
mþM

: ð8:96Þ

We choose the center of mass as being the pole of the angular momentums. Its
y coordinate does not vary during the motion and is given, by definition, by

yC ¼ Rmþ 0M
mþM

¼ R
m

mþM
: ð8:97Þ

The initial angular momentum is that of the bullet, because the disk is not
moving. Its direction is opposite to the z axis and its magnitude is

LC;i ¼ R� yCð Þmti1 ¼ mM
mþM

Rti1: ð8:98Þ

In the final state, the system disk plus the bullet rotates with angular velocity ω,
which we must determine. Its angular momentum about the center of mass is
LC;f ¼ ICx . The angular momentum conservation then gives

ICx ¼ mM
mþM

Rti1; ð8:99Þ

which gives us ω once we know the moment of inertia IC. This is the sum of the

moments of the inertia of the bullet, Ib and of the disk, Id. The former is Ib ¼

m R� ycð Þ2¼ mR2 M
mþM

� �2
, and the latter can be found with the theorem of parallel

axes, giving Id ¼ 1
2MR2 þMy2C ¼ 1

2MR2 3m2 þM2 þ 2mM
ðmþMÞ2 : In conclusion,

IC ¼ Ib þ Id ¼ MR2 Mþ 3m
2ðmþMÞ

and finally, from Eq. (8.99),

x ¼ ti1
R

2m
3mþM

:

Example E 8.10 Suppose now the disk in the previous example is constrained by a
vertical axis through its center A, about which it can rotate freely. In this case, the
system is not isolated. Neither the linear nor the angular momentum are necessarily
conserved. In this case, the external forces are the constraint ones, which are applied
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to the point A. Their moment about A is zero. Consequently, the angular momentum
about A is conserved, say LA,f = LA,i.

In the final state, the system is a rigid body, disk plus bullet, rotating with the
angular velocity ω, still to be found. We can write LA;i ¼ mti1R ¼ LA;f ¼ IAx .
Here, IA is the moment of inertia of the system about A, namely IA ¼ MR2=2þmR2:
Hence, the final angular velocity is

x ¼ 2m
Mþ 2m

ti1
R
:

Notice the difference from the previous example.

8.19 The Virtual Works Principle

In this section, we shall discuss a method that often turns out to be useful for
establishing the equilibrium conditions for mechanical systems, rigid or not. The
method is based on the so-called virtual works principle.

A virtual displacement of a mechanical system is defined as any infinitesimal
displacement compatible with the constraints to which the system is subject. For
example, for a rigid body pivoted on a fixed axis, a rotation of an infinitesimal angle
about the axis, or for a carriage on a rail, an infinitesimal translation in the direction
of the rail, etc.

The work dWi that would be done for that displacement by the ith force acting on
the system is called the virtual work of that force. The virtual works principle states
that a mechanical system is in equilibrium in a given configuration if the sum of the
virtual works done by the forces acting on the system for any virtual displacement
from that configuration is zero.

XN
i¼1

dWi ¼ 0: ð8:100Þ

We shall discuss a few examples.

Example E 8.11 Figure 8.44 shows a rigid bar, pivoted in O. Two forces, F1 and
F2, are applied to its extremes A1 and A2 perpendicular to the bar. The distances of
the extremes from O are b1 and b2, respectively.

The virtual displacements ds1 and ds2 of the extremes are infinitesimal arcs of
the circles of the center in O of radiuses A1 and A2. Indeed, the only degree of
freedom is the rotation angle ϕ about the axis.

Let us start with F1. Its virtual work for the displacement ds1 is dW1 ¼
F1 � ds1 ¼ F1b1d/ ¼ s1;zd/ , where τ1,z is the moment of the force about the
z rotation axis, with positive direction pointing outside the page of the drawing.
Once ds1 is chosen, the displacement ds2 of A2 is fixed. The virtual work of the
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force F2 is dW2 ¼ F2 � ds2 ¼ �F2b2d/ ¼ s2;zd/ . According to the virtual work
principle, the configuration is of equilibrium if F1b1 � F2b2 ¼ s1;z þ s2;z ¼ 0: We
recognize the known result that to have equilibrium, the total moment about the
rotation axis must be zero.

As a matter of fact, the virtual works principle is a consequence of the energy
conservation law. To see that, let us look at the present example from a slightly
different point of view, as in Fig. 8.44b. The force F1 is the weight of a block placed
in A1. We want to establish the equilibrium by placing another block of weight F2 in
A2. Which is the value of F2 requested for that? We imagine that when we place the
second block, A2 moves ds2 down and A1 moves ds1 up. The corresponding vari-
ation of potential energy is �F1ds1 þF2ds2:

Being the total energy conserved, the variation of potential energy might be
compensated by an opposite variation of kinetic energy. However, in the virtual
change we are considering, the system is at rest both before and after the dis-
placement and the kinetic energy is always zero. We conclude that the potential
energy cannot vary, F1ds1 � F2ds2 ¼ 0: This is what the virtual works principle
states.

Example E 8.12 Figure 8.45a shows two blocks of masses m1 and m2 resting on
two inclined planes tilted to the horizontal at the angles θ1 and θ2 and connected by
a rope. Frictions are negligible. We want to know which is the ratio of the two
masses to have equilibrium.

We think to move block 1 of ds upwards on the plane. The work done by the
weight is dW1 = − m1g(sin θ1)ds. At the same time, block 2 moves on its plane of the
same ds downwards, because we want the rope to remain invariant. The work of its
weight is dW2 = +m2g(sin θ2)ds. The constraint forces are normal to the displace-
ments and do no work. The virtual works principles then requires for equilibrium
that dW1 + dW2 = 0. The ratio of the masses must be m1=m2 ¼ sin h2= sin h1:

Historically, as we have already mentioned, Galilei established the law of the
free fall with experiments on inclined planes of different slopes. He then extended
the validity of the law to the vertical motion with the exact above argument, with
one of the angles being equal to 90°.

His contemporary Simon Stevin (1548–1620) demonstrated the rule as drawn in
Fig. 8.45b. The chain is in equilibrium. In the case of this particular right triangle,

ds1

F1

b2Ob1 F2ds2
dφ

F1

b2Ob1 F2

(a) (b)

Fig. 8.44 a Finding the equilibrium condition for a lever, b the same with two weights
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five rings balance three rings. In those times, the trigonometric functions were still
not known.

Example E 8.13 Figure 8.46 shows a rigid bar of mass m pivoted at its lowest point
and held by a rope. The bar holds, in turn, a block of mass M. Find the tension T of
the rope. This problem also has one degree of freedom, the rotation angle θ. To
respect the constraint, we can only diminish it, say by −dθ. The acting forces are
three: the weight of the bock Mg, the weight of the bar mg and the tension of the
rope T.

The displacement corresponding to −dθ of the block is d(b cos θ) = b sin θ dθ
upwards. The work of its weight is dW1 = −Mgb sin θ dθ. The weight of the bar is
applied to its center of mass. Its work is dW2 = −mg(b/2) sin θ dθ. The application
point of the rope has the displacement d(a sin θ) = a cos θ dθ and the work of the
tension is dW3 = a cos θ dθ.

Imposing dW1 + dW2 + dW3 = 0, we have T ¼ ðMþm=2Þgðb=aÞ tan h.

m1
m2

θ2 θ1

(a) (b)

3 4

5

Fig. 8.45 a Two blocks in equilibrium on different slopes, b the basis of the Stevin argument

T

Mθ a
b

Fig. 8.46 Find the
equilibrium configuration
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Problems

8:1. Fig. 8.47 represents a rigid bar b, and v1 and v2 are the velocities of its
extremes. Is it possible?

8:2. A rigid bar of length L = 8 m and mass m = 100 kg lays on two supports at
distances L1 = 2m and L2 = 1 m from the two extremes. Find the forces F1

and F2 on the two supports.
8:3. On which of the following elements does the moment of inertia of a body

depend? The mass of the body, the shape of the body, the angular velocity of
the body, the position of the axis relative to the body, or the external resultant
force?

8:4. A rigid body rotates about a fixed axis. How much does its kinetic energy
vary if the angular velocity doubles?

8:5. Two material points of masses m1 and m2 are linked by a rigid bar of length
L and negligible mass. Find the moment of inertia about a perpendicular axis
through the center.

8:6. The density ρ(r) of a cylinder of length L and radius R varies linearly with the
distance r from the axis from the value ρ1 on the axis to the value ρ2 = 3ρ1 on
the lateral surface. Find the moment of inertia about the axis.

8:7. Figure 8.48 represents a thin annular sheet of radii R1 and R2. Find the
moment of inertia about the a axis.

bv1
v2

Fig. 8.47 Problem 8.1

C
R1

a

c

R2

Fig. 8.48 Problem 8.7
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8:8. A rigid cylinder rolls on an inclined plane without slipping. Its density is not
necessarily uniform. Can the kinetic energy relative to the center of mass be
larger than that of the center of mass?

8:9. Two material points of masses m1 and m2 are fixed to the extremes of a rigid
bar of length L and negligible mass. We want to bring the bar into rotation
with angular velocity ω about an axis perpendicular to the bar through one of
its points. How should we choose this point so as to have the minimum
kinetic energy for the given angular velocity?

8:10. Under which conditions do the angular velocity ω and the angular
momentum L of a rigid body have the same direction?

8:11. In which cases is equation MO ¼ Idx=dt valid for a rigid body?
8:12. In which cases is the kinetic rotation energy of a rigid body given by

UK ¼ Ix2=2?
8:13. A homogeneous sphere of radius R and mass m rotates about an axis through

its center C with angular velocity ω. Find the angular momentum about
C. Does the angular momentum depend on the pole?

8:14. A homogeneous sphere of radius R and mass m rotates without slipping on a
horizontal plane. Its axis advances with velocity v. The points X, Y, and Z in
Fig. 8.49 are in the vertical plane containing the center of the cylinder shown
in the figure. Their heights are R/2 lower than C, equal to C and R/2 higher
than C, respectively. Find the angular momentum of the cylinder about each
of these points.

8:15. A bar of length l = 3 m of mass m = 50 kg is initially vertical at rest with one
extreme O laying on the ground. With O maintained at rest, the bar falls to
the ground. Find the angular momentum about O and the velocity of the
other extreme at the instant in which the bar hits the ground.

8:16. A rigid homogeneous sphere is set free on a plane inclined at 40° with the
horizontal. At which values of the friction coefficient will the sphere roll
without slipping?

8:17. A yo-yo (Fig. 8.50), which we consider to be a homogenous cylinder, of
mass m = 100 g, hangs from a wire wrapped around its axis. The axis is
horizontal. Assume the radius of the wrapping to be equal to the radius of the
cylinder. The yo-yo is released at rest. (a) What is time t that it takes to drop
to h = 50 cm? (b) Which is the tension T of the wire during the descent?

R
R/2
R/2

v

X
Y
Z

C

Fig. 8.49 Problem 8.14
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8:18. A homogeneous disk of radius R in a vertical plane can rotate about its
geometrical axis (Fig. 8.51). The friction on the axis is not negligible but
exerts a torque Ma about the axis, independent of the angular velocity.
A particle of mass m sticks to the rim of the cylinder at the level of the axis.
The system is released at rest. (a) Which is the minimum value of m for the
cylinder to start rotation? (b) Which is the value of m at which it rotates a
quarter of a turn and stops?

8:19. A homogeneous disk of radius R and mass m rotates about its geometric axis
with angular velocity ω. The frictions of the axis slow it down until it comes
to rest. How much work have they done?

8:20. A block of mass M on an inclined plane at the angle θ is held in equilibrium
by a set of pulleys, as shown in Fig. 8.52. Using the virtual works principle,
find the value of the mass m of the counterweight needed to insure the
equilibrium.

C RΩ

Fig. 8.50 The yo-yo of
Problem 8.17

R
m

Fig. 8.51 Problem 8.18

M

m

θ

Fig. 8.52 The system of
Exercise 8.20
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8:21. The system in Fig. 8.53 is made of two identical dumbbells. Each of them
consists of two small spheres, each of mass m = 0.3 kg, separated by a bar of
negligible mass of length l = 1 m. The dumbbells move on a horizontal plane
with negligible friction with equal and opposite velocities υ = 1 m/s. Two
spheres, as shown in the figure, collide elastically. (a) Describe the motion
after the collision. Find the angular velocities (magnitude and direction).
(b) How long does the rotation last? (c) Then what happens?

v

v

m

m

v v

m

m
l

Fig. 8.53 The system of
Problem 8.21
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Solutions

1:1. (a) No. (b) Yes, if ΔV has the same direction and verse as V.
1:2. ΔV = −2 V, ΔV = 0 and |ΔV| = 2 V.
1:3. (a) Δv = (4,0,3), (b) |Δv| = 5, (c) Δυ = 3.9.
1:4. (a) <υ> = υ, (b) <v> = 0.
1:5. (a) v tð Þ ¼ 2iþ 6tjþ kð Þ m/s, a(t) = 6 j m/s2; (b) υ (t = 2 s) = 12.2 m/s.
1:6. R = υ2/a.
1:7. (a) v(t) = −iAω sin ωt + jAω cos ωt; a(t) = −iAω2sin ωt − jAω2cos ωt; υ(t) =

Aω, a(t) = Aω2; (b) r � v ¼ 0, velocity is perpendicular to the position vector
(c) r � a ¼ �x2A ¼ �ra, acceleration is parallel and opposite to the position
vector; (d) x(t)2 + y(t)2 = A2 = constant. The trajectory is a circle with center
in the origin and radius A. The motion is uniform in anticlockwise direction;
(e) direction changes to clockwise.

1:8. (a) The first step in solving this type of problems is drawing the vectors they
contain, as in Fig. 1. v1 is the cyclist velocity, v2 is the wind velocity relative
to ground, v2 − v1 is the wind velocity as felt by the cyclist. Vectors and
angle drawn with continuous lines are known. With the sine law we get
v2 � v1j j ¼ 15:1 km/h and β = 139.5°. Consequently, the wind blows from
40.5° from North to East. (b) The new apparent direction of the wind (the
velocity of the cyclist is −v1) is v2 þ v1j j ¼ 6:7 km/h and its apparent
direction is 35.6° from South to East.

1:9. She will cross at 3 miles towards stern in 18′.
1:10. (a) The rotation axis in the plane xz is at 27° to the x-axis (b) 20 rad. (c) the

magnitude of ω grows proportionally to the square of time, its direction is
constant.

1:11. (a) α = 78.5°, (b) t = 11.5 s (the smaller solution must be chosen); (c) s =
1.15 km.

1:12. The motion is the sum of a translation at the velocity v and a rotation about
the wheel axis. Hence, υA = (υ, υ, 0); υB = (2υ, 0, 0); υC = (υ, −υ, 0).
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2:3. T ¼ m1m2= m1 þm2ð Þg sin h; a2 ¼ m2= m1 þm2ð Þg sin h
2:4. 3.94 N
2:5. The equation of motion of the body of mass M is −T + Mg = Ma and for the

body of mass m is −T + mg = ma. Hence a ¼ g M � mð Þ= Mmmð Þ.
2:6. The kinetic energy of the hammer is (1/2)mυ2 when it hits and 0 at the end.

The change of kinetic energy is equal to the work done on the nail, which in
turn is equal to the mean force times the displacement s. The mean force is
then Fh i ¼ mt2= 2sð Þ ¼ 5 N.

2:7. F, for the action reaction law.
2:8. −F on each hand, independently of the accelerations of the spheres being

different, as a consequence of the action-reaction law
2:9. Statement 1 is, in general, false. Statement 2 is true for the rings on the

guides b and c, for energy conservation. For the same reason the statement is
false for the guide a, because that ring cannot reach B.

2:10. Fh is ¼ mgh; Fh i ¼ 2� 104 N
2:11. The initial kinetic energy transforms into elastic energy of the pole and then

in potential gravitational energy of the athlete. mt2=2 ¼ mgh; h ¼ 5 m. (NB
In practice, the athlete raises even more doing work with his arms.)

2:12. The two ropes have equal tensions. They break at the same time.
2:13. The lighter sphere rises four times more (energy conservation).

h ¼ p20= 2m2gð Þ
2:14. (a) F(t = 0) = 0.09 N; (b) Fmax = 10 N.
2:15. If the rotation plane is horizontal, the wire is on a cone at an angle, say θ,

with the horizon, in order to balance the weight mg with the vertical com-
ponent of the tension, T sin θ. Hence the radius of the circle is l cos θ. We
have two equations T sin h ¼ mg; T cos h ¼ mt2max= l cos hð Þ. Eliminating θ,

we have tmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tl=m 1� mg=Tð Þ2

h ir
If the circle is vertical, its radius is l. The tension varies along the circle,
reaching its maximum in the lowest point. Draw the situation. In this point
T � mg ¼ mt2max=l, hence tmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=mð Þ T � mgð Þp

.

–v1

v2

v 2
–v

1

α

N

E

β

Fig. 1 Velocities and relative
velocity of problem 1.8
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3:1. In the SI units, ω0 = 10 s−1, ν = 1.6 s−1, T = 0.63 s.
3:3. Expand Eq. (3.46) in series of the small quantity γ/ω0 = 0.02 as

x1 ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c=x0ð Þ2=4

q
¼ x0 1� c=x0ð Þ2=8

h i
. ω1 is smaller than ω0 of

five parts in one hundred thousand.
3:4. (b) Each spring expands x/2, the restoring force reduces to ½, the proper

angular frequency is √2 smaller. (c) The proper angular frequency is √2 larger
than in (a).

3:5. (a) k = 1 kN/m; (b) with x in centimeters and t in seconds x(t) = 5cos 10t;
(c) in the same units x(t) = 5cos 10t + 10cos 10t.

3:6. Take the average on a period of Eq. (3.70) and compare the members.
3:8 In a vector diagram like in Figs. 3.7 and 3.8 the two forces are represented by

rotating vectors at the same angular velocity. The angle between them, which
is the difference between their phases, ϕ, is constant. The phase difference
between forces is the same as between displacements. From the geometry we
have A2 ¼ A2

1 þA2
2 þ 2A1A2 cos/ and ϕ =133°.

3:9. Initial velocity is υ = 28 m/s and the kinetic energy Uk = 390 kJ. This is the
work of the force in 90 m. The magnitude of the force is 4.3 kN (43 % of the
weight of the car). With 15% slope, in 100 m the car descends h = 15 m and
the potential energy decreases by mgh = 150 kJ. To stop the car the work of
the braking force should be 430 kJ. After 100 m the kinetic energy is reduced
to 110 kJ and the velocity is 15 m/s (53 km/h).

3:10. The vertical forces are equal and opposite. The horizontal forces are the
tension of the wire T, which is the centripetal force of magnitude mυ2/l di-
rected towards O and the friction of magnitude µdmg directed opposite to
velocity. The magnitudes of both are equal to 4 N. The angle between them is
90°. Hence the magnitude of the resultant is 5.7 N and its direction is at 135°
with velocity.

3:11. At the limit velocity υlim the drag force is equal to the weight mg. If the term
proportional to the velocity dominates, R = C1aυ, υlim = 1.3×108a2 m/s. For
a = 1 mm υlim = 130 m/s, for a = 0.1 mm υlim = 1.3 m/s. The term pro-
portional to velocity is dominant only in the second case. If the term pro-
portional to the square velocity of the drag dominates, υlim = 217 √a m/s.
Hence, for a = 1 mm, υlim = 6.9 m/s. Neglecting the term proportional to
velocity is justified.

3:12. (a) T = mυ2/R − mg. The centripetal force is the sum of the weight and the
tension, which in the considered point have the same direction, vertical
downwards. If the velocity is smaller than the critical one the motion is not
circular. (b) T = mυ2/R + mg.

3:13. (a) h = 2R/3. (b) same on the moon, it does not depend on g.
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4:1. 0.5 s
4:2. g(h2 − h1) = Δϕ. Hence 1000/9.8 or about 100 m.
4:3. Neither velocity nor acceleration are constant.
4:4. Mass does not vary, weight diminishes.
4:5. Answers are found putting the centripetal force equal to the gravitational

attraction.

4:6. Tp ¼ a=2ð Þ3=2TE ¼ 10400 s (almost 3 h).

4:7. If r is the radius of the orbit of the satellite, its velocity is t ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNME=r

p
.

Remember that g ¼ GNME=R2
E. The period of the satellite is then T ¼

2pr3=2= g1=2RE
� �

and r − RE = 1500 km.
4:8. The radius of the spheres is r = 0.60 m, the distance between their centers is

d = 1.23 m. The gravitational force is F = 4.4 × 10−3 N and the shrinking of
the spring is 90 µm.

4:9. ME ¼ gRE=GN ¼ 6� 1034 kg, qh i ¼ 5:5� 103kg/m3 (notice that this value
is much higher than the density of the crust, which is about 2000 kg/m3

showing that the central part of the earth must be much denser than the
average; it is made of iron).

4:10. MS ¼ 4p2=GNð Þ r3E=T
2
E

� � � 2� 1030 kg, qS � 1:3� 103 kg/m2, a little
denser than water.

4:11. Mtot=MS ¼ tS=tEð Þ2 rS=rEð Þ ¼ 1:2� 1011.
4:12. The orbital velocity of Io is υI = 18 km/s and consequently

MG=MS ¼ tI=tEð Þ2 rI=rEð Þ ¼ 10�3:

4:14. /S Eð Þ ¼ 109 m2s�2; /E Eð Þ=/S Eð Þ ¼ 0:07; /G Eð Þ=/S Eð Þ ¼ 60. We see
that the contributions to the potential of the distant masses are important,
differently than for the force. Indeed, the potential decreases as 1/r, the force
as 1/r2.

5:1. (a). Vertically. (b) At the angle arc tang (a/g) to the vertical, forward.
5:2. (a) During the braking, the acceleration of the train is at = −3 ms−2. In the

reference frame of the train, the forces acting on the case are the inertial force
−m at and the friction force −µdmg. Its acceleration relative to the train is ar =
1 ms−2 and the absolute one aa = −2 ms−2. (b) During the time tb of the
braking, the case moves relative to the train with acceleration ar starting from
rest. Its speed is 10 m/s, both relative to the train and the ground (train has
stopped). (c) The case travels a first path s1 = 50 m during braking (accelerated
relative motion) and a second one s2 when the train has stopped. In the second
path, the acceleration is a′ = −2 ms−2, taking 5 to stop. The time to stop is s2 =
25 m.

5:3. The acceleration of the lift is 2.8 ms−2 upwards. Nothing can be said on
velocity.
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5:6. The angular velocity is ω = 3.45 rad/s, the centrifugal force at the rim is
m 1.8 N, where m is the mass of the insect. The force of static friction is
m 0.98 N. It does not make it.

5:7. Not really, because the lateral shift of the point where the ground is hit is about
5 mm.

6:1. Suppose that the direction from the lamp to the mirror is the same as the
velocity vO′. (the analysis of the apposite case is quite similar). The time in
S taken by the pulse for its round-trip is always Δt0 = 2 l/c. The observer in
S sees the clock of S′ moving in the direction of the length; this is

l0 ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2O0

q
. In addition he sees that, while the pulse is travelling, the

mirror recedes with speed υO′. Call Dt0a the time to reach the mirror,

we have cDt0a ¼ l0 þ tO0Dt0a, henceDt
0
a ¼ l=cð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2O0

q
= 1� bO0ð Þ.When the

pulse comes back, the observer in S′ sees the detector approaching. If
we call Dt0a the return time, we have cDt0a ¼ l0 � tO0Dt0a, hence

Dt0a ¼ l=cð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2O0

q
= 1þ bO0ð Þ. The period of the clock is the sum of the two.

6:2. (a) 13.5 µs. (b) 1.9 µs. (c) 560 m.
6:3. The limit for t → ∞ is c. F ¼ mc2=x0 constant in time.
6:4. υf = 0.62 c, M = 2.1 m.
6:5. γ = 1010, about 5 min.
6:6. p = 1.42 meV/c.
6:7. p = 0.295 meV/c.
6:8. E = 0.852 meV.
6:9. γ = 2.75, β = 0.93.

6:10. γ = 105, c� tð Þ=c ¼ 1=2c2 � 5� 10�11.

7:1. It is zero.
7:2. It moves with acceleration g.
7:3. 1 m/s. Yes, the collision was completely inelastic.
7:4. i = 5 × 104 Ns, F = 105 N.
7:5. m2/m1 = 3, υCM/υi = 1/4.
7:6. (a) U�

K ¼ ð3=4ÞUKi 1ð Þ, (b) UKf ¼ ð1=4ÞUKi 1ð Þ.
7:7. 0.74 RE.
7:8. (a)T ¼ 7:3� 105R3=2=

ffiffiffiffiffi
M

p
. (b) 10.

7:9. m1 þm2 ¼ R3=T2ð ÞMS.
7:10. The velocity after the collision is V = (0, 2, 2) equal to the center of mass

velocity. (b) 50 J, 30 J, 20 J.
7:11. (a) θ = −29°, t2f ¼ 0:37t1i. (b) Not.
7:12. (a) (0,0,14) Nm, (b) If α is the angle between vectors r and F,

s ¼ rF sin a ¼ bF, hence b = 2.8 m, (c) s ¼ rFn, hence Fn = 1.4 N.
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7:13. 5 m, 3.2 m, 2.05 m and 1.31 m. The initial energy is U = mg 5, the following
ones are 0.8U, (0.8)2U, (0.8)4U, (0.8)6U.

7:14. The maximum energy transfer is 15 J, corresponding to Δx = 32 cm.
7:15. (14/6, 11/6, 11/6).
7:16. ΔLO = (0, −800, 0) kg m2 s−1.
7:17. MO ¼ �mgt0 cos að Þtuz, LO ¼ � 1

2mgt0 cos að Þt2uz.
8:1. No.
8:2. The external resultant force is zero. The total external moment about one of

the support points is zero. F1 = 590 N, F2 = 390 N.
8:4. Quadruple.
8:5. I = µL2, where µ is the reduced mass.
8:6. I ¼ 39=70ð ÞmR2.
8:7. Use the parallel axes theorem. Ia ¼ m R2

1 þ 5R2
2

� �
=4.

8:8. A positive answer would require I/R2 > M, where M is the mass and R is the
radius of the cylinder. Clearly, this is impossible for any distribution of the
masses.

8:9. At the distance from m1 of r1 ¼ m2= m1 þm2ð ÞL, which is the center of mass.
8:11. When both MO and ω have the direction of a principal axis of inertia and

when O is fixed or is the center of mass and the three principal axes about it
are equal.

8:13. LC ¼ 2=5ð ÞmR2x, which does not depend on the pole, if it is still.
8:14. LX ¼ LC þRmt=2 ¼ Rmt, Ly ¼ Rmt=2, L = 0.
8:15. L ¼ mg

ffiffiffiffiffiffiffiffiffi
gl=3

p ¼ 4:7� 102 kg m2s�1, t ¼ ffiffiffiffiffiffiffi
3gl

p ¼ 9:5 ms�1.ls ¼ 0:24
8:17. There are two unknown, the tension of the wire and the acceleration of the

center of mass. Use the equations (7.49) and (7.59) and solve them. There are
two alternatives for the second equation, namely taking the pole in the center
of mass or in the point Ω where the wire detaches from the yo-yo. In the
latter case, take into account that the velocity of the pole is parallel to the
total linear momentum.
t ¼ ffiffiffiffiffiffiffiffiffiffi

3h=g
p ¼ 0:39 s,T ¼ mg=3 ¼ 0:33 N.

8:18. (a) m[Ma= gRð Þ, (b) m ¼ pMa= 2gRð Þ
8:19. W ¼ mR2x2=4
8:20. m ¼ M=4ð Þ sin h
8:21. (a) Both dumbbells rotate with counter-clockwise angular velocity, and their

centers are at rest (angular and linear momentum conservation). The mag-
nitude of the angular velocity ω = 2υ/l = 2 rad/s. (b) They rotate half a turn,
then collide again. It takes t = π/ω = 1.57 s. (c) The second collision, which is
symmetric to the first, blocks the rotations and the two dumbbells separate
with translations of speed opposite to the initial ones.
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