CHAPTER

11
Ferdinand P. Beer
E. Russell Johnston, Jr.

Lecture Notes:
J. Walt Oler

Texas Tech University

Modified for Engr 51 at
Cuesta College:
Pam Ridgely

Kinematics of Particles

Vector Mechanics for Engineers: Dynamics

 Introduction- Components of Dynamics:
- Kinematics: study of the geometry of motion. Kinematics is used to relate displacement, velocity, acceleration, and time without reference to the cause of motion.
- Kinetics: study of the relations existing between the forces acting on a body, the mass of the body, and the motion of the body. Kinetics is used to predict the motion caused by given forces or to determine the forces required to produce a given motion.

Vector Mechanics for Engineers: Dynamics Introduction

In this chapter, we'll study:

- Rectilinear motion: position, velocity, and acceleration of a particle as it moves along a straight line.
- Curvilinear motion: position, velocity, and acceleration of a particle as it moves along a curved line in two or three dimensions.

Vector Mechanics for Engineers: Dynamics Rectilinear Motion: Position, Velocity \& Acceleration

- Particle moving along a straight line is said to be in rectilinear motion.
- Position coordinate of a particle is defined by positive or negative distance of particle from a fixed origin on the line.
- The motion of a particle is known if the position coordinate for particle is known for every value of time t. Motion of the particle may be expressed in the form of a function, e.g.,

$$
x=6 t^{2}-t^{3}
$$

or in the form of a graph x vs. t.

Vector Mechanics for Engineers: Dynamics

Rectilinear Motion: Position, Velocity \& Acceleration

$a\left(\mathrm{~m} / \mathrm{s}^{2}\right)$

- Consider particle with motion given by

$$
\begin{aligned}
& x=6 t^{2}-t^{3} \\
& v=\frac{d x}{d t}=12 t-3 t^{2} \\
& a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}=12-6 t
\end{aligned}
$$

- at $t=0, \quad x=0, v=0, a=12 \mathrm{~m} / \mathrm{s}^{2}$
- at $t=2 \mathrm{~s}, \quad x=16 \mathrm{~m}, v=v_{\max }=12 \mathrm{~m} / \mathrm{s}, a=0$
- at $t=4 \mathrm{~s}, \quad x=x_{\max }=32 \mathrm{~m}, v=0, a=-12 \mathrm{~m} / \mathrm{s}^{2}$
- at $t=6 \mathrm{~s}, \quad x=0, v=-36 \mathrm{~m} / \mathrm{s}, a=24 \mathrm{~m} / \mathrm{s}^{2}$

Vector Mechanics for Engineers: Dynamics Determination of the Motion of a Particle

- Recall, motion of a particle is known if position is known for all time t.
- Typically, conditions of motion are specified by the type of acceleration experienced by the particle. Determination of velocity and position requires two successive integrations.
- Three classes of motion may be defined for:
- acceleration given as a function of time, $a=f(t)$
- acceleration given as a function of position, $a=\mathrm{f}(x)$
- acceleration given as a function of velocity, $a=\mathrm{f}(v)$

Vector Mechanics for Engineers: Dynamics

Determination of the Motion of a Particle

- Acceleration given as a function of time, $a=f(t)$:

$$
\begin{aligned}
& \frac{d v}{d t}=a=f(t) \quad d v=f(t) d t \quad \int_{v_{0}}^{v(t)} d v=\int_{0}^{t} f(t) d t \quad v(t)-v_{0}=\int_{0}^{t} f(t) d t \\
& \frac{d x}{d t}=v(t) \quad d x=v(t) d t \quad \int_{x_{0}}^{x(t)} d x=\int_{0}^{t} v(t) d t \quad x(t)-x_{0}=\int_{0}^{t} v(t) d t
\end{aligned}
$$

- Acceleration given as a function of position, $a=f(x)$:

$$
a=\frac{d v}{d t}=\frac{d v}{d x} \cdot \frac{d x}{d t} \quad \text { or } \quad a=v \frac{d v}{d x}=f(x)
$$

$v d v=f(x) d x \quad \int_{v_{0}}^{v(x)} v d v=\int_{x_{0}}^{x} f(x) d x \quad \frac{1}{2} v(x)^{2}-\frac{1}{2} v_{0}^{2}=\int_{x_{0}}^{x} f(x) d x$

Vector Mechanics for Engineers: Dynamics
 Determination of the Motion of a Particle

- Acceleration given as a function of velocity, $a=f(v)$:

$$
\begin{aligned}
& \frac{d v}{d t}=a=f(v) \quad \frac{d v}{f(v)}=d t \quad \int_{v_{0}}^{v(t)} \frac{d v}{f(v)}=\int_{0}^{t} d t \\
& \int_{v_{0}}^{v(t)} \frac{d v}{f(v)}=t \\
& v \frac{d v}{d x}=a=f(v) \quad d x=\frac{v d v}{f(v)} \quad \int_{x_{0}}^{x(t)} d x=\int_{v_{0}}^{v(t)} \frac{v d v}{f(v)} \\
& x(t)-x_{0}=\int_{v_{0}}^{v(t)} \frac{v d v}{f(v)}
\end{aligned}
$$

Vector Mechanics for Engineers: Dynamics Example: Kinematics of Rectilinear Motion

Solve for v
-That's $v(s)$, but we want $v(t)$
-Have to find $s(t)$ first then
differentiate or solve by substitution
$v(s)=\frac{d s}{d t}$

Integrate both sides

Apply initial conditions $s(0)=0$

Solve for s

Note: s can also be solved by solving the ODE $\ddot{s}+k^{2} s=0$
with the initial conditions. The answers should be the same as above.

Vector Mechanics for Engineers: Dynamics

 Motion of Several Particles: Relative Motion

- For particles moving along the same line, time should be recorded from the same starting instant and displacements should be measured from the same origin in the same direction.
$x_{B / A}=x_{B}-x_{A}=$ relative position of B
with respect to A
$v_{B / A}=v_{B}-v_{A}=$ relative velocity of B with respect to A
$a_{B / A}=a_{B}-a_{A}=$ acceleration of B relative to A

Vector Mechanics for Engineers: Dynamics Motion of Several Particles: Dependent Motion

- Positions of three blocks are dependent.
$2 x_{A}+2 x_{B}+x_{C}=$ constant (two degrees of freedom)
- For linearly related positions, similar relations hold between velocities and accelerations.

$$
\begin{array}{lll}
2 \dot{x}_{A}+2 \dot{x}_{B}+\dot{x}_{C}=0 & \text { or } & 2 v_{A}+2 v_{B}+v_{C}=0 \\
2 \dot{v}_{A}+2 \dot{v}_{B}+\dot{v}_{C}=0 & \text { or } & 2 a_{A}+2 a_{B}+a_{C}=0
\end{array}
$$

Vector Mechanics for Engineers: Dynamics

Sample Problem 11.5

SOLUTION:

- Define origin at upper horizontal surface with positive displacement downward.
- Collar A has uniformly accelerated rectilinear motion. Solve for acceleration and time t to reach L.

$$
v_{A}^{2}=\left(v_{A}\right)_{0}^{2}+2 a_{A}\left[x_{A}-\left(x_{A}\right)_{0}\right]
$$

$$
v_{A}=\left(v_{A}\right)_{0}+a_{A} t
$$

Vector Mechanics for Engineers: Dynamics

Sample Problem 11.5

- Differentiate motion relation twice to develop equations for velocity and acceleration of block B.

$$
\begin{aligned}
& x_{A}+2 x_{D}+x_{B}=\text { constant } \\
& v_{A}+2 v_{D}+v_{B}=0
\end{aligned}
$$

$$
a_{A}+2 a_{D}+a_{B}=0
$$

Vector Mechanics for Engineers: Dynamics

Review: Derivatives of Vector Functions

- Let $\vec{P}(u)$ be a vector function of scalar variable u,

$$
\frac{d \vec{P}}{d u}=\lim _{\Delta u \rightarrow 0} \frac{\Delta \vec{P}}{\Delta u}=\lim _{\Delta u \rightarrow 0} \frac{\vec{P}(u+\Delta u)-\vec{P}(u)}{\Delta u}
$$

- Derivative of vector sum,

$$
\frac{d(\vec{P}+\vec{Q})}{d u}=\frac{d \vec{P}}{d u}+\frac{d \vec{Q}}{d u}
$$

- Derivative of product of scalar and vector functions,

$$
\frac{d(f \vec{P})}{d u}=\frac{d f}{d u} \vec{P}+f \frac{d \vec{P}}{d u}
$$

- Derivative of scalar product and vector product,

$$
\begin{aligned}
& \frac{d(\vec{P} \bullet \vec{Q})}{d u}=\frac{d \vec{P}}{d u} \bullet \vec{Q}+\vec{P} \bullet \frac{d \vec{Q}}{d u} \\
& \frac{d(\vec{P} \times \vec{Q})}{d u}=\frac{d \vec{P}}{d u} \times \vec{Q}+\vec{P} \times \frac{d \vec{Q}}{d u}
\end{aligned}
$$

Vector Mechanics for Engineers: Dynamics Rectangular Components of Velocity \& Acceleration

- Rectangular components particularly effective when component accelerations can be integrated independently, e.g., motion of a projectile,

$$
a_{x}=\ddot{x}=0 \quad a_{y}=\ddot{y}=-g \quad a_{z}=\ddot{z}=0
$$

with initial conditions,

$$
x_{0}=y_{0}=z_{0}=0 \quad\left(v_{x}\right)_{0},\left(v_{y}\right)_{0},\left(v_{z}\right)_{0}=0
$$

Integrating twice yields

$$
\begin{array}{lll}
v_{x}=\left(v_{x}\right)_{0} & v_{y}=\left(v_{y}\right)_{0}-g t & v_{z}=0 \\
x=\left(v_{x}\right)_{0} t & y=\left(v_{y}\right)_{0} y-\frac{1}{2} g t^{2} & z=0
\end{array}
$$

- Motion in horizontal direction is uniform.
- Motion in vertical direction is uniformly accelerated.
- Motion of projectile could be replaced by two independent rectilinear motions.

Vector Mechanics for Engineers: Dynamics

Example: Kinematics in Rectangular Coordinates
The position vector of a radio-operated airplane is given as

$$
\vec{r}=\left(1.5 t^{2}+3 t\right) \hat{i}+\left(1.5 t-t^{2}\right) \hat{j}+1.2 t^{2} \hat{k} \quad \mathrm{ft}
$$

where t is in seconds. The operator stands at the origin of the coordinate system with z-axis directly upwards. At $\mathrm{t}=2$ s., determine:
(a) the ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) projections of the velocity and acceleration.
(b) the speed of the airplane.
(c) the magnitude of the displacement
(b) speed = magnitude of velocity
of the airplane from $\mathrm{t}=0 \mathrm{~s}$.
(d) the distance travel from $\mathrm{t}=0 \mathrm{~s}$.

Vector Mechanics for Engineers: Dynamics Example: Kinematics in Rectangular Coordinates

(c) First find the displacement
(d) distance traveled
then find the magnitude

Vector Mechanics for Engineers: Dynamics
 Note on Vector Notations and Vector Usage

- The book uses bold faced letter to denote vectors, i.e., a.
\cdot Bold is impractical with handwriting, so use symbols such as: $\vec{a}, \hat{a}, \tilde{a}, \underline{a}$
-Variables with no special symbols denoting them as vectors will be interpreted as a scalar. A scalar with the same variable name as a vector is the magnitude of that vector. For example:
v_{A} will be interpreted as $\left|\vec{v}_{A}\right|$
ω as $|\stackrel{\omega}{\omega}|$
-Be especially careful with vector equations. If you write the relative velocity equation as:

$$
v_{B}=v_{A}+v_{B / A}
$$

The equation above is normally incorrect. You will get points off!
-Worse, if you treat the above equation as a scalar equation (adding up the magnitudes even though the vectors are not parallel), you will get no credit at all.

- Velocity vector of particle is tangent to path of particle. In general, acceleration vector is not. Wish to express acceleration vector in terms of tangential and normal components.
- \hat{e}_{t} and \hat{e}_{t}^{\prime} are tangential unit vectors for the particle path at P and P^{\prime}. When drawn with respect to the same origin, $\Delta \vec{e}_{t}=\vec{e}_{t}^{\prime}-\vec{e}_{t}$ and $\Delta \theta$ is the angle between them.

$$
\begin{aligned}
& \Delta e_{t}=2 \sin (\Delta \theta / 2) \\
& \lim _{\Delta \theta \rightarrow 0} \frac{\Delta \vec{e}_{t}}{\Delta \theta}=\lim _{\Delta \theta \rightarrow 0} \frac{\sin (\Delta \theta / 2)}{\Delta \theta / 2} \vec{e}_{n}=\vec{e}_{n} \\
& \vec{e}_{n}=\frac{d \vec{e}_{t}}{d \theta}
\end{aligned}
$$

Vector Mechanics for Engineers: Dynamics Tangential and Normal Components

- With the velocity vector expressed as $\vec{v}=v \vec{e}_{t}$ the particle acceleration may be written as

$$
\vec{a}=\frac{d \vec{v}}{d t}=\frac{d v}{d t} \vec{e}_{t}+v \frac{d \vec{e}_{t}}{d t}=\frac{d v}{d t} \vec{e}_{t}+v \frac{d \vec{e}_{t}}{d \theta} \frac{d \theta}{d s} \frac{d s}{d t}
$$

but

$$
\frac{d \vec{e}_{t}}{d \theta}=\vec{e}_{n} \quad \rho d \theta=d s \quad \frac{d s}{d t}=v
$$

After substituting,

$$
\vec{a}=\frac{d v}{d t} \vec{e}_{t}+\frac{v^{2}}{\rho} \vec{e}_{n} \quad a_{t}=\frac{d v}{d t} \quad a_{n}=\frac{v^{2}}{\rho}
$$

- Tangential component of acceleration reflects change of speed and normal component reflects change of direction.
- Tangential component may be positive or negative. Normal component always points toward center of path curvature.

Vector Mechanics for Engineers: Dynamics Tangential and Normal Components

- What happens to these equations when the object is moving along a circular path?
- The path (n-t) coordinates do expand to cover 3-D motion, but we won't be studying them in this class.

	Vector Mechanics for Engineers: Dynamics	
	Problem 11.135	
		SOLUTION: -The tangential acceleration is not given, but it is irrelevant. -Normal acceleration and speed are related.
	Determine the maximum speed that the cars of the roller-coaster can reach along the circular portion AB of the track if the normal component of their acceleration cannot exceed 3 g .	- Solve for $v_{\max }$
	© 2004 The McGraw-Hill Companies, Inc. All rig	ts reserved. 11-32

Vector Mechanics for Engineers: Dynamics Radial and Transverse Components (Polar Coordinates)

$\vec{r}=r \vec{e}_{r}$

$$
\frac{d \vec{e}_{r}}{d \theta}=\vec{e}_{\theta} \quad \frac{d \vec{e}_{\theta}}{d \theta}=-\vec{e}_{r}
$$

$$
\frac{d \vec{e}_{r}}{d t}=\frac{d \vec{e}_{r}}{d \theta} \frac{d \theta}{d t}=\vec{e}_{\theta} \frac{d \theta}{d t}
$$

$$
\frac{d \vec{e}_{\theta}}{d t}=\frac{d \vec{e}_{\theta}}{d \theta} \frac{d \theta}{d t}=-\vec{e}_{r} \frac{d \theta}{d t}
$$

- When particle position is given in polar coordinates, it is convenient to express velocity and acceleration with components parallel and perpendicular to $O P$.
- The particle velocity vector is

$$
\begin{aligned}
\vec{v} & =\frac{d}{d t}\left(r \vec{e}_{r}\right)=\frac{d r}{d t} \vec{e}_{r}+r \frac{d \vec{e}_{r}}{d t}=\frac{d r}{d t} \vec{e}_{r}+r \frac{d \theta}{d t} \vec{e}_{\theta} \\
& =\dot{r} \vec{e}_{r}+r \dot{\theta} \vec{e}_{\theta}
\end{aligned}
$$

- Similarly, the particle acceleration vector is
$\vec{a}=\frac{d}{d t}\left(\frac{d r}{d t} \vec{e}_{r}+r \frac{d \theta}{d t} \vec{e}_{\theta}\right)$
$=\frac{d^{2} r}{d t^{2}} \vec{e}_{r}+\frac{d r}{d t} \frac{d \vec{e}_{r}}{d t}+\frac{d r}{d t} \frac{d \theta}{d t} \vec{e}_{\theta}+r \frac{d^{2} \theta}{d t^{2}} \vec{e}_{\theta}+r \frac{d \theta}{d t} \frac{d \vec{e}_{\theta}}{d t}$
$=\left(\ddot{r}-r \dot{\theta}^{2}\right) \vec{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \vec{e}_{\theta}$

Vector Mechanics for Engineers: Dynamics Sample Problem 11.12

Rotation of the arm about O is defined by $\theta=0.15 t^{2}$ where θ is in radians and t in seconds. Collar B slides along the arm such that $r=0.9-0.12 t^{2}$ where r is in meters.

After the arm has rotated through 30°, determine (a) the total velocity of the collar, (b) the total acceleration of the collar, and (c) the relative acceleration of the collar with respect to the arm.

SOLUTION:

- Evaluate time t for $\theta=30^{\circ}$.
- Evaluate radial and angular positions, and first and second derivatives at time t.
- Calculate velocity and acceleration in cylindrical coordinates.
- Evaluate acceleration with respect to arm.

CHAPTER

VECTOR MECHANICS FOR ENGINEERS: DYNAMICS

Ferdinand P. Beer
E. Russell Johnston, Jr.

Kinetics of Particles: Newton's Second Law
Lecture Notes:
J. Walt Oler

Texas Tech University

Modified for Engr 51 at
Cuesta College:
Pam Ridgely

Vector Mechanics for Engineers: Dynamics Introduction

- Newton's first and third laws are sufficient for the study of bodies at rest (statics) or bodies in motion with no acceleration.
- When a body accelerates (changes in velocity magnitude or direction), Newton's second law is required to relate the motion of the body to the forces acting on it.
- Newton's second law:
- A particle will have an acceleration proportional to the magnitude of the resultant force acting on it and in the direction of the resultant force.
- The resultant of the forces acting on a particle is equal to the rate of change of linear momentum of the particle.
- The sum of the moments about O of the forces acting on a particle is equal to the rate of change of angular momentum of the particle about O.
Vector Mechanics for Engineers: Dynamics Newton's Second Law of Motion
- Newton's Second Law: If the resultant force acting on a

a_{2}^{a}
 particle is not zero, the particle will have an acceleration proportional to the magnitude of resultant and in the direction of the resultant.
- Consider a particle subjected to constant forces,
- When a particle of mass m is acted upon by a force \vec{F}, the acceleration of the particle must satisfy

$$
\vec{F}=m \vec{a}
$$

- Acceleration must be evaluated with respect to a Newtonian frame of reference, i.e., one that is not accelerating or rotating.
- If force acting on particle is zero, particle will not accelerate, i.e., it will remain stationary or continue on a straight line at constant velocity.

- First, define the coordinates used in the problem. They can be drawn separately, or integrated into the diagrams. (The book often skips this step. You don't get to. If you mention x-direction, define it.)
- Draw the Free-Body Diagram (FBD) to see all forces acting on the body.
- Draw the Mass-Acceleration Diagram (MAD), sometimes called Kinematics Diagram (KD). The acceleration should be broken down into components according to the coordinates.
- Relate the two diagrams.
- Often we have to analyze kinematics information. Sometimes to find the acceleration, or sometimes to find the motion given the acceleration.

The collar A is free to slide along the smooth shaft B mounted in the frame. The plane of the frame is vertical. Determine the horizontal acceleration a of the frame necessary to maintain the collar in a fixed position on the shaft.

SOLUTION:

- Rectangular (x-y) coordinates fit well with this problem, though n-t would work just as well.
- We are interested in the collar, so we'll draw the FBD and MAD diagrams for it.
- The collar position is fixed relative to the shaft/frame, therefore its acceleration is also a.
- We can write 2 equations relating the FBD and the MAD. (for the x and y components)
- The unknowns are the normal force, N, between the shaft and the collar, and the acceleration, a.

Vector Mechanics for Engineers: Dynamics Example: FMA in Rectangular Coordinates

SOLUTION:

- We can write the $\sum \vec{F}=m \vec{a}$ equation as two rectangular component equations.

$$
\sum F_{x}=m a_{x}:
$$

$$
\sum F_{y}=m_{A} a_{y}=0:
$$

Vector Mechanics for Engineers: Dynamics Example: FMA in Constrained System

Each of the two blocks shown has a mass m. The coefficient of kinetic friction at all surfaces of contact is μ. If a horizontal force \mathbf{P} moves the blocks, determine the acceleration of the bottom block.

SOLUTION:

- We have to analyze each block separately. So draw FBD and MAD for each of them.
- Write the kinematic relationships for the dependent motions and accelerations of the blocks.
- We can write 4 equations relating the FBD and the MAD. (the x and y components of each block)
- The unknowns are acceleration (of both; they are related), the tension in the cable, the normal force N_{A} between block A and the ground, and the normal force N_{B} between blocks A and B.

Vector Mechanics for Engineers: Dynamics Example: FMA in Constrained System

SOLUTION:

- Write the kinematic relationships for the dependent motions and accelerations of the blocks.
- Write equations of motion for each block.

$$
B: \sum F_{y}=m_{B} a_{y} \quad \sum F_{x}=m_{B} a_{x}:
$$

$$
A: \sum F_{y}=m_{A} a_{y}: \quad \sum F_{x}=m_{A} a_{x}:
$$

Vector Mechanics for Engineers: Dynamics

SOLUTION:

- Pick the coordinate system for the problem.
- Translate "losing contact".

Determine the maximum speed, v, which the sliding block may have as it passes point A without losing contact with the surface

- We're only interested in the dynamics at point A, not as it travels there. Only have to draw the FBD and MAD diagram for point A.

Vector Mechanics for Engineers: Dynamics Example: Curvilinear FMA

SOLUTION:

- There could be friction and therefore a_{t} but they are both irrelevant in this particular problem.

Vector Mechanics for Engineers: Dynamics Eqs of Motion in Radial \& Transverse Components

- Consider particle at r and θ, in polar coordinates,

$$
\begin{aligned}
\sum F_{r} & =m a_{r}=m\left(\ddot{r}-r \dot{\theta}^{2}\right) \\
\sum F_{\theta} & =m a_{\theta}=m(r \ddot{\theta}+2 \dot{r} \dot{\theta})
\end{aligned}
$$

- This result may also be derived from conservation of angular momentum,

$$
H_{O}=m r^{2} \dot{\theta}
$$

Vector Mechanics for Engineers: Dynamics Sample Problem 12.7

A block B of mass m can slide freely on a frictionless arm $O A$ which rotates in a horizontal plane at a constant rate $\dot{\theta}_{0}$.

Knowing that B is released at a distance r_{0} from O, express as a function of r
a) the component v_{r} of the velocity of B along $O A$, and
b) the magnitude of the horizontal force exerted on B by the arm $O A$.

SOLUTION:

- First, we want v_{r} which is \dot{r}. We don't have r as a function of time, so we have to find v_{r} some other way.
- With the information we have, we can write the radial and transverse equations of motion for the block.
- The radial equation contains \ddot{r} which can be integrated to find v_{r}.
- The transverse equation can be used to find an expression for the force on the block.

Vector Mechanics for Engineers: Dynamics Sample Problem 12.7

- Integrate \ddot{r} to find an expression for the radial velocity.

SOLUTION:

- Write the radial and transverse equations of motion for the block.
$\sum F_{r}=m a_{r}:$
- Use the transverse equation to find an expression for the force on the block.
$\sum F_{\theta}=m a_{\theta}:$

Vector Mechanics for Engineers: Dynamics Conservation of Angular Momentum

- When only force acting on particle is directed toward or away from a fixed point O, the particle is said to be moving under a central force.
- Since the line of action of the central force passes through $O, \sum \vec{M}_{O}=\dot{\vec{H}}_{O}=0$
- Position vector and motion of particle are in a plane perpendicular to \vec{H}_{O}.
- Magnitude of angular momentum,

$$
\begin{aligned}
H_{O} & =r m v \sin \phi=\text { constant } \\
& =r_{0} m v_{0} \sin \phi_{0}
\end{aligned}
$$

or $H_{O}=m r^{2} \dot{\theta}=$ constant

Vector Mechanics for Engineers: Dynamics Example: Conservation of Angular Momentum

The particle, connected by a spring to the fixed point O, slides on the frictionless, horizontal table. The particle is launched at A with the velocity v_{A} in the y-direction. If the velocity of the particle at B is $\vec{v}_{B}=3.66 \hat{i}-5.72 \hat{j} \mathrm{~m} / \mathrm{s}$, determine v_{A}.

SOLUTION:

- Since there is no friction and the motion is horizontal, the only force acting on the particle is the spring force.
- The spring force is always directed to or from point O , that means the particle is moving under a central force.
- The particle's angular momentum is constant. Equate the angular momentum at A and B and solve for v_{A}.

Vector Mechanics for Engineers: Dynamics Example: Conservation of Angular Momentum

